ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

DOTTORATO DI RICERCA IN FISICA
CICLO XXXVI

Settore Concorsuale: 02/A2
Settore Scientifico Disciplinare: FIS/02

Machine Learning for Quantum Systems

and
Quantum Optimization for Classical Problems

Presentata da

Simone Tibaldi

Supervisor Coordinatore dottorato

Prof.ssa Elisa Ercolessi Alessandro Gabrielli

Co-supervisor
Dott. Edoardo Tignone

Esame Finale Anno 2024



Abstract

This manuscript is divided in two parts. In the first one we explore different machine
learning inspired techniques to reconstruct the topological phase diagram of a few
variants of the Kitaev chain and the extended Hubbard model in 1D. By applying four
algorithms to a dataset of correlation functions we show how reliable this methods
can be at predicting unknown phases and transfer the knowledge of one model to the
other allowing also for interpretability of the results. In the second part we study
Bayesian optimization and use it to run the Quantum Approximate Optimization
Algorithm on the neutral atom quantum computer of the company PASQAL to solve
a classical combinatorial problem. We show that the fast convergence and resilience
to noise of the algorithm makes it suitable for this type of platforms. We conclude
with an analysis of measurement-based quantum computation approach on neutral
atoms with an estimation of resources needed to perform it.
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Introcduction

As suggested by the title, this thesis is divided in two distinct and yet symmetric
parts that focus on two different types of problems that are hard to solve with two
different types of approaches. On one side, we tackle the main problem lying at
the heart of quantum many-body theory, which is the reconstruction of the phase
diagram of a model, by using classical machine learning techniques. On the other
side, we tackle a classical combinatorial optimization problem on a graph using
quantum computation. The difficulty of the quantum problem of classifying the
phases of a model is due to the fact that finding the ground-state of an interacting
system is NP-hard[PW09]. The difficulty of the classical problem on a graph we
considered is that it is strongly NP-hard [C]78] We collected in this work a series
of results that can prove that classical techniques can improve research in quantum
problems and viceversa.

This work is organized as follows: both parts are self-contained and therefore
present an introduction (motivation) and a conclusion chapter. In the introductions
there is a more detailed review of what is the problem being considered and mo-
tivations to why it has been the focus of this work. In the conclusions we recollect
the objectives listed above and explain how and why they were respected.

The first part: Classical for Quantum, focuses on the reconstruction of the phase
diagram of topological models with machine learning techniques. The reconstruction
of the phase diagram is a central problem in fundamental physics because it allows
you to predict the behaviour of a model and it has been approached with a variety
of analytical and numerical techniques up to a few years ago. At the moment, we
are seeing a rising number of approaches combining machine learning methods
that have been proved extremely efficient at predicting the phase diagram. For this
reason, in this part we present four machine learning techniques that were used
especially for the job of classifying topological phases.

We clearly state the objectives of this part in the following:

1. provide re-usable techniques based on unsupervised learning algorithms that
can be used to create a proposal of phase diagrams without assuming any
a-priort knowledge of them;

2. prove that the information retained by this algorithms from the data of a model
can be transferred to a more complicated related model;

3. give interpretation to the results obtained with machine learning being aware
of the operations that are performed and their significance.
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The second part: Quantum for Classical, focuses on quantum optimization on neutral
atoms for combinatorial problems. This is part of a wide class of classical intractable
problems that are being approached with the help of quantum computation. Since
current quantum computers cannot yet run fault-tolerant deep algorithms, there
is a lot of attention on hybrid quantum-classical algorithms — like the Quantum
Approximate Optimization Algorithm (QAOA) — that alternate quantum circuits with
classical optimization that can show quantum advantage at solving the classical task.
These types of algorithms require a quantum variational (parametric) circuit and an
efficient classical optimization routine. The project that inspired this work was in
fact aimed at running QAOA on the quantum computer of the company PASQAL. The
quantum part of the algorithm was therefore run on their neutral atoms quantum
computer — a type of architecture that is based on trapped alkali atoms —in analogue
mode, that is acting on all the qubits at once. For the classical part we studied
and used Bayesian optimization that turned out to be ideal for the characteristic of
the computer at PASQAL. During an internship at the company | also studied and
expanded a quantum computation approach different from analogue, measurement-
based quantum computation specifically suited for current state-of-the-art neutral
atoms devices. Thus, | also present the results of this ongoing collaboration.

The objectives of this part are:

1. prove that Bayesian optimization is a reliable classical global optimizer suited
for variational quantum algorithms like QAOA,;

2. prove that we can efficiently solve QAOA on a neutral atoms quantum computer
run in the analogue mode;

3. present the results of running our optimization scheme on the neutral atoms

computer at PASQAL

4. present a new approach to measurement-based quantum computation on neu-

tral atoms that | studied and expanded during an internship at the company
PASQAL.

We end this general introduction by listing the main content of each chapter:
* Part |

O Chapter 1. We introduce the topological models that were considered for the
problem of identifying the topological phases. The models are: the Kitaev
chain, the Kitaev chain with next-to-nearest neighbour (NNN) hopping, the
interacting Kitaev chain, the Extended Hubbard model with a soft-shoulder
potential.

O Chapter 2. Four unsupervised machine learning techniques to classify the
phases of the models are presented: principal components analysis (PCA),
k-means clustering, t-distributed stochastic neighbor embedding (t-SNE) and
learning by confusion. Each algorithm is explained along with the methodol-
ogy used for classifying the phases and then applied to each of the previous
models. We show that the algorithms are efficient at classifying the topologi-
cal phases, that knowledge can be transferred from one system to another and
that we can predict also unknown phases of the Extended Hubbard model.
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% Part Il

[0 Chapter 3. A detailed explanation of the combinatorial problem considered in
this work and the Bayesian optimization algorithm is given. The algorithm
is compared to other global optimizer to show better performance in term of
calls to the quantum circuit and resilience to noise.

O Chapter 4. The neutral atoms platform of the company PASQAL that was
used for the experiments is presented with explanation on how the QAOA
algorithm was run in analogue mode. The chapter finishes showing the results
of the experiment that prove that Bayesian optimization performed the task of
optimization with success.

[ Chapter 5. The chapter introduces the basics of measurement-based quantum
computation both in its first conception and in the later-developed correlation
approach. This work stems from the 6 months internship | spent at the com-
pany PASQAL in Paris. In the chapter it is also presented another approach
developed for neutral atoms quantum computers that we expanded and used
to estimate the resources needed to perform a standard quantum algorithm.

See the Declaration in the next page for further information on which papers this
work was based on.

Acknowledgements

This manuscript was produced thanks to the help of many colleagues and collabo-
rators. First and foremost my supervisor Elisa Ercolessi, my co-supervisor Edoardo
Tignone and D. Vodola for guiding me in the process of the PhD. My colleagues
S. Pradhan, F. Dell’Anna, R. Cioli and C. M. Sanavio for very interesting and useful
discussions. F. Caleca and G. Pupillo for the work on machine learning on the Hub-
bard model. The colleagues at CINECA, in particular D. Ottaviant and R. Mengoni.
The colleagues at the PASQAL company: L. Leclerc for the help with accessing
the quantum machine, L-P. Henry and L. Vignoli for working with me during my 6
months spent at PASQAL preparing part of the work presented in this manuscript.



Declaration

This manuscript is based on some published papers and some works that are still
in production. In particular:

Chapter 2 is based on

v S. Tibaldi, G. Magnifico, D. Vodola, E. Ercolessi
Unsupervised and supervised learning of interacting topological phases from
single-particle correlation functions
SciPost Phys. 14, 005 (2023)

> F. Caleca, S. Tibaldi, E. Ercolessi, G. Pupillo
Unsupervised learning of 1d Fermi-Hubbard model phase diagram
(In preparation)

Chapter 3 is based on:

v' S. Tibaldi, D. Vodola, E. Tignone, E. Ercolessi
Bayesian Optimization for QAOA
IEEE Trans. on Quantum Engineering, 4:1-11 (2023)

Chapter 4 is based on:

> S. Tibaldi, L. Leclerc, E. Ercolessi
QAOA on neutral atoms quantum computer with Bayesian Optimization
(In preparation)

Chapter 5 is based on:

> S. Tibaldi, L. Vignoli
Measurement-based quantum computation on neutral atoms: resources esti-
mation and improvement of the technique.
(In preparation)

A Work that is not included in the manuscript:

> C. M. Sanavio, S. Tibaldi, E. Tignone, E. Ercolessi
Quantum Circuit for Imputation of Missing Data
(In preparation)


https://scipost.org/SciPostPhys.14.1.005
https://ieeexplore.ieee.org/document/10286414

Part |

Classical for Quantum

10



Motivation: Machine Learning for
Quantum Many-Body Systems

In the last few years research in physics has seen a new series of methods and prac-
tices inspired by and exploiting machine learning [MBW*19]. These new instruments
have proved to be useful in applications in many-body quantum physics [CCC*19],
in particular for finding a representation of a wavefunction [CT17] and describ-
ing its dynamics [CG.G18], for reconstructing the wavefunction from experimental
data [TMC*18], for speeding-up numerical simulations [CGG18], and for classifying
quantum phases of matter of both synthetic [Wan16, vNLH17a, BCMT17, HSS17,
SS20, RNS19] and experimental data [KDK*21, YZSD23]. A particular type of the
latter is given by symmetry protected and topologically ordered phases, whose
classification escapes from the standard Landau theory of spontaneous symmetry
breaking [Sac11]. Indeed the combination of symmetries and topology can lead to
new kinds of quantum phases that are characterized by a set of unusual features,
such as non-local order parameters, the appearance of zero energy states at the
boundary of the system, topological invariants, and long-range entanglement (for
reviews see, for example: [Ber13, ZCZW19]). From an experimental point of view,
topological materials have attracted much attention also because they represent
a promising solution for physical implementation of qubits, more resilient to deco-
herence processes that affect devices based on superconducting or atomic physics
technologies [Kit03, LP17].

Due to their intrinsically non-local features and the lack of local order parameters,
the classification of topological phases is considered a very challenging task to
tackle [CCC"19]. However, machine learning methods have been successfully applied
to both non-interacting models where the topological invariant (winding number)
representing each phase was known a priori [/S5718, SYZ718], and to interacting
models where the topological invariant cannot be obtained easily [HDW18]

The field of merging machine learning techniques with phase classifications of many-
body models has seen increasing attention over the years. Starting from seminal
works such as [Wan16] and [CM17] in which they showed that principal component
analysis (the former) and simple neural networks (the latter) can identify the phase
transition on the 2D Ising model, there has been great improvement in inventing
new techniques, based on unsupervised learning as in [CVB*20] or completely
original like the learning by confusion scheme [VNLH17b] that we exploited and
extended in Section 2.4 of this work. At the moment, a lot of attention is given to
models that exploit topological aspects of data in the classification like the diffusion
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maps [KDK*21, RNS19, YD21, LYTS20, WKJC21].

Despite their success, in order to perform well, machine learning models require
data sets with a very large number of training data [CHMT23}, in the order of the
thousands or millions. However, especially when handling interacting systems, it
is not always easy to build such big data sets from both numerical simulations or
experimental measurements.

This led us to the work presented in this chapter. One main goal is to study machine
learning models trained on a data set obtained from a solvable system to be then
applied to an interacting model which is obtained as an interacting generalization
of the former, as in e.q. Ref [MZvN*21] In this way, insights about the features
of a simple dataset can be exploited to characterize the phases of a more com-
plicated one, saving simulation resources. Differently from what has been done in
previous works [CGLN20, ZSZ18), our dataset will be constructed out of two-point
single-particle correlation functions. These encode the properties of the different
phases of the model and can be obtained numerically and measured experimen-
tally [LGO8, PMC*T16, CNL716], e.g. by using atom gas microscope with quenches to
non-interacting models [CGE21] or with randomized measurements [NEM™23].

The second goal of this work is to exploit unsupervised machine learning to explore
unknown phases of models like the extended Hubbard model. We wish to show that
it is possible to create a combined work-frame that exploits both machine learning
predictions and analytical/numerical results from the theory of condensed matter.
We care to do this in a reliable and reproducible way in order to give a first structure
to a machine learning-assisted study of topological phases.

In this logic, we also acknowledge that despite the many works related to clas-
sification of topological or quantum phase transitions with machine learning and
deep learning methods, there is often a lot of use of required a priori knowledge
about the classification job. For this reason in this chapter we propose a series of
techniques, both inspired and invented for the task of topological characterization
of models, that try to be agnostic of the model considered and gives the idea of
being universally applicable. To do so we compare our technique over a dataset
that comprehends a total of 4 systems, either non—interacting and interacting data,
with different data—size and data—types wishing to give a comprehensive analysis
of the methods and how they can be used.

This first part of the thesis is organized in two chapters. The first chapter consists
in an introduction of the models and the data produced for the analysis. In Sec. 1.1
we introduce the one dimensional Kitaev chain in its non-interacting [Kit01] and in
Sec. 1.2 its interacting version [SASF11, HS12, TRS13, KST15, Mial/, FMV*20], in
Sec. 1.3 the same model but with a next-to-nearest neighbour hopping term, Sec. 1.4
is for the extended Hubbard 1d model.

The second chapter lists the various methods used and the obtained results. We
start with the most simple, yet effective, principal components analysis Sec. 2.1 and
show that it is able to exploit the information from non-interacting systems and
reproduce correct phase diagrams of their interacting version both for the Kitaev
chain and its extended version. Then k-means in Sec. 2.2, a clustering algorithm

12



that also has the ability to transfer the information from a system to another and to
predict many unknown phase transitions in the extended Hubbard model. Sec. 2.3 is
for t-SNE another clustering algorithm and finally in Sec. 2.4 we exploit the famous
learning by confusion method to corroborate the results of the previous sections.
We finish this part of the manuscript with our conclusions in Sec. 2.4.3.
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1 | Quantum Many-Body Models

In this chapter we introduce the quantum many-body models that interested this
work. For each model we introduce the Hamiltonian and give an explanation of
the phase diagram obtained by varying two Hamiltonian parameters. We give more
details for the Kitaev chain which is more central to this work and just mention the
relevant details for the other models. For each model we also explained the type of
data that was generated and used in the following chapter to classify the phases
with machine learning techniques. The models are:

> Sec. 1.1 Kitaev chain
> Sec. 1.2 Interacting Kitaev chain
> Sec. 1.3 Kitaev chain with next-to-nearest neighbour hopping (Kitaev NNN)

> Sec. 1.4 Extended Hubbard model

1.1 Kitaev Chain

In this section we introduce the Kitaev chain in its non—interacting version. We will
present the phase diagram of the former and introduce the correlators that will be
later used as a training set for the algorithms.

The one-dimensional Kitaev chain [KitO1] is a pedagogical model to show super-
conducting and topological effects. Given a chain of L sites the Hamiltonian of the
non—interacting (NI) version can be written as:

HN' = Z (]CI;I’-CI[H + A aaiq 4+ he) + L/Z ala;. (1.1)

i i

The operators a;(a/) create (annihilate) spinless fermions on site i, J is the nearest
neighbour hopping coefficient, A the superconducting pairing and p the chemical
potential.

We consider anti-periodic boundary conditions to diagonalize HN' by going to mo-
mentum space using the standard Fourier transform (the choice of conditions is
to avoid cancellation of terms like (a;a;) [VLE"14]). In this way, the Hamilto-
nian is translated into its Brillouin zone (BZ) version HN = Y~, .. H(k), where
H(k) = h,(k)o? + h,(k)a¥ is a two-band Hamiltonian, k is the lattice quasi momen-
tum and 0¥, 0¥ are Pauli matrices. In particular the expression for the single—particle

14



CHAPTER 1. QUANTUM MANY-BODY MODELS

hy (k) hy (k)
A A

> M
JRANY

hy(k)

A

(k)

Figure 1.1: Hamiltonian vector windings in the 1D. The image shows an example
of possible windings v of the Hamiltonian vector h(k) when k € [0, 25| (Left) v = 0.
(Right) v = 1.

functions are:
h,(k) = Jcosk + pl2, hy(k) =Asink. (1.2)

Now, we perform a Bogoliubov transformation that casts HN' in a diagonal form
HN' = 5", E(k)n.nk, where n, are Bogoliubov operators and the single-particle
energy E(k) is given by

E(k) = /hoAk)? + hy (k)2 (13)

This model describes a one-dimensional topological superconductor belonging to
the BDI symmetry class [SRFLO8, CTSR16, KdBVW™17, SMJZ13]. This class has the
particularity that the Hamiltonian vector /A7(/<) = /7(/<)//7(/<) with /7(/<) = (hy(k), h.(k))
is a continuous map from the 1D BZ to the circle S'. If we let the quasi-momentum
k slide from 0 to 27 (the 1D BZ) and count the number of times the vector /A7(/<)
turns around the origin we obtain the number winding v (see Fig. 1.1). The winding
number can be used to classify the model into different topological phases.

Phase diagram For our model, the winding number allows us to divide the Kitaev
chain phase diagram into three phases. A trivial phase with winding number v =0
and two superconducting topological phases with v = +1. The phase diagram
showing these phases obtained varying (i, A) keeping / = 1 is shown in Fig. 1.2(a).
Notice that the phase diagram is symmetric for p <> —p.

The physical significance of these phases can be understood by transforming the
fermionic operators into Majorana operators like so:

Yo+ v of _ Y1~ (Y2

2 e Z S 14
a . l . (1.4

where y»;_1, y»; are the Majorana operators respecting the anti-commutation relation
{vi.v;} = 0. This relation entails that y/ = y; meaning that creating a Majorana

15



CHAPTER 1. QUANTUM MANY-BODY MODELS

> (a)

1- TOP+1
TRI- TRI+

Figure 1.2: Phase diagram of the Kitaev chain. (a) The model presents two sectors:
a trivial one for || > 2 which we divided into the phases TRI— and TRI+ and a
topological sector, divided into two topological phases by the different winding
numbers v = +1 for the phases TOP+/TOP—1 respectively. (b) The correlation
functions of this model for the different topological phases.

fermion is equal to destroying it and that y? = 1 meaning that they do not respect
the Pauli exclusion principle.

Rewriting Hamiltonian (1.1) using the Majorana operators we obtain:
[
Hy=5 2 [ lvymw) + (e + 18Dyayoer + (=t + 1A yaivaa). - (15)
J

We can consider two different cases:

o [Al=1t=0,p<0. This takes (1.5) into the form
7
H, = > ()/21—1)/21) (1.6)
[

where the Majorana operators y,;_1 and y,; are paired inside the same site
(upper part of Fig. 1.3). In this way, we obtain a groundstate with vanishing
occupancy number which means that there are no Majorana fermions emerg-
ing. For this reason, this is called the trivial phase and it corresponds to the
v = 0 phase.

o |Al =t >0, p=0. Setting these parameters we obtain:

N—-1

Hy =it ) yavairt (17)
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CHAPTER 1. QUANTUM MANY-BODY MODELS

0 1 [ N
—o, S GO - &l - d v=0
D =V » P & 9 & 9 ¢ v =1
0 1 2 3 2j—1 2] 2N—1 2N

Figure 1.3: Majorana Sites Representation of the Majorana modes composing the
sites of a topological model like the Kitaev chain. We can split each site (numerated
0,1,---N) into two Majorana modes. In the trivial phase (v = 0) the modes of each
pairs interacts more strongly between each other, in the topological phase (v = 1)
the interaction is stronger between sites giving the freedom to the boundary modes
to detach from the chain with zero energy cost.

the main difference with the previous phase is that now the right fermion of
a site is paired to the left fermion of the next one (see lower part of Fig. 1.3).
This corresponds to the topological phase that is characterized by a winding
number v = +1. This configuration suggests that there are two Majorana
modes (at the far left/right of the chain) coupled between themselves but not to
any other mode and thus have a null contribution to the energy. Consequently,
we have a degeneracy of the groundstate due to the fact that we can either
have zero fermions in the absence of the edge modes.

Therefore, v corresponds to the number of (couples of) zero energy states that the
model hosts at the boundaries of the chain when open boundary conditions are
considered. This is a well-known fact in the literature as bulk-edge correspon-
dence [BH13, AOP15] For v = 0 no edge states will be present, while for v = +1
an edge state on each boundary appears, as show in Figure 1.3.

Correlators data We define the Fourier transform of the single-particle standard
(c(k)) and anomalous (f(k)) correlation functions:

Z e' (al Clj (1.8)
Z e' (a.a;) (1.9)

where the expectation values are taken over the ground state. Notice that c(k)
is real whereas f(k) is purely imaginary. This is due to the antisymmetry of the
expectation value (a;a;) for the exchange i «<» j. For this reason we only take the
imaginary part of f(k). In our non—interacting model (Eq. (1.1)), the correlators c(k)
and f(k) can be computed analytically and take the form:

L2 + Jcos k

C(/<)=§+T(k), (1.10)
Asink
f(k) = JER) (1.11)
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CHAPTER 1. QUANTUM MANY-BODY MODELS

with E(k) being the energy dispersion relation 1.3. The typical form of one pair
of correlators for each phase of the phase diagram is represented in panel (b) of
Figure 1.2.

The correlators egs. (1.8) and (1.9) are similar to the components of the Hamiltonian
vector h(k) (1.2), in fact by a simple comparison we can check that:

(k) = 2ulk) (1.12)

c(k) = 2E(K)

This is interesting because the winding number is calculated with h,(k), h, (k) [BH13]:

v = /2ﬁ hy(K)9h.(k) — h.(k)oh,(K) (1.13)
0

E(k)
This makes us believe that the winding number can be extracted from c(k) and f(k).
The correlation functions c(k) and f(k) will be used for building a non-interacting
training set S where each data point is labelled with the winding number of its
corresponding phase. It is interesting to consider them as a dataset because they

are typically measured in experiments to recover information about a system [LC08,
PMC*16, CNL*16).

1.2 Interacting Kitaev Chain

For this model we add a nearest neighbor interaction term to the Hamiltonian (1.7)
of the previous section to obtain:

H' = Z(JCI;’LCIM +A a;ai4q +he)+ “Z n; + \/Z NN (1.14)

L

where n; = CIZLCI[- is the occupation number at site i. This model cannot be solved
exactly due to the interacting potential. By means of the DMRG algorithm [Sch05]
with the iTensor package [FWS20], we have reproduced the phase diagram, after
setting / = A =1, which is shown in panel (a) of Fig. 1.4, for > 0 only since the
model is symmetric for p <> —p.

The model in Eq. (1.14) is characterized by only one topological superconducting
phase (TOP, yellow in the image) and four trivial phases: Topological trivial (that we
denoted with TRl and the color green in the phase diagram), a Charge Density Wave
sector separated into Incommensurate (I-CDW, light-blue) and Commensurate (CDW,
purple) and a Schrodinger-cat-like phase (CAT, light green dashed line) which shows
up at the symmetric point p = 0 as a superposition of two trivial superconducting
states with different occupation numbers [HS12, TRS13, KST15, Mial7] At V =0
we recover the non-interacting case with a critical point at p = 2.

The different phases in Fig. 1.4(a) are detected from the number of edge states
that appear in the chain: in the TRI, (I-)CDW and CAT phases the number of edge
states is zero, while it is one in the TOP phase. The transition between |I-CDW
and CDW is found by looking at the homogeneity of local densities and entropy
signatures [TRS13]. This phase transition is identified also when mapping the Kitaev

18
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5 (a)

4 1-CDW
13 TRI TOP
2
1
0

cbw

CAT

(I)CDW 4 CAT
T

0 k 2n 0 k 2mn

Figure 1.4: Phase diagram of the interacting Kitaev chain. (a) The model is
characterized by one topological phase (TOP) and 4 trivial phases: the Schrodinger-
cat-like phase (CAT), trivial (TRI) and (I)CDW the (Incommensurate) Charge Density
Wave. (b) The correlators for each phase. We only show one correlator for the
whole charge density wave sector.

chain to a Josephson junction array [HS12], in this case the transition between the
phases induces a non-zero conductance due to finite-size effects. This suggests
that although it is not relevant as a topological effect, this transition might be
individuated in the machine learning analysis of Chapter 2.

In the interacting case, it is not possible to evaluate exactly the correlation functions
c(k) (Eq. (1.8)) and f(k) (Eq. (1.9)) on the ground state of the Hamiltonian of Eq. (1.14).
Therefore we calculate them by means of the DMRG algorithm for a lattice of size
L =100. Some examples of the correlation functions for the different regions of the
phase diagram are shown in panel (b) of Fig. 1.4.

1.3 Next-to-nearest neighbour Kitaev

In Section 1.1 we studied the Kitaev model in its original form, that is with nearest
neighbor coupling. It is also interesting to show the effects of a longer range cou-
pling, specifically the next-to-nearest neighbor (NNN) coupling. Considering this
type of interaction was firstly proposed by Y. Niu et al [NCH"12] as a necessary step
when dealing with the realistic implementation of a quantum wire. As mentioned
above, the Kitaev Hamiltonian belongs to the BDI symmetry class which is charac-
terized by a Z, homotopy group. That means that different topological phases are
characterized by a different integer number which also corresponds to the number
of edge states. The Kitaev chain shows the presence of one edge state which is
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Figure 1.5: Phase diagram of the NNN Kitaev chain. The model of Hamilto-
nian (1.18) presents 5 phase characterized by a different phases identified by 3
transition lines: Ay = p+ Ay, Ao = p— Ay and for A, = —p for [Aq] < 2|y, with
t =1 in this section. Each phase a different winding number v. Blue: phases with
|v| = 1. Purple: phases with v =0. Green v = 2.

related to the winding number v &+ 1. This extended version can host up to two.

We start by writing the Hamiltonian of this extended model. We define t, and A, as
the hopping parameter and the superconductive gap of nearest neighbour (a = 1)
and next-to-nearest neighbour interaction (a = 2). Let us set t; = Ay = Ay and
th = Ay = Ay, with Ay and A; real, so that we come to the following Hamiltonian

o M
Hy = %Z(c Ciri+cl el +h.c) (1.15)

j=1

2 =

?Zc C]+2+ 2+hc) (1.16)

Jj=1
LIZ (cjc;— (1.17)

Jj=1
H=H,+ H + H; (1.18)

Since all the parameters are real, the total Hamiltonian (1.18) still enjoys the same
symmetries of the Kitaev chain with nearest neighbor coupling and thus belongs to
the BDI topological class.

Phase diagram We can diagonalize Hamiltonian (1.18) by going into momentum
space (see Section 1.1), where we obtain the single-particle functions in the form:

hy(k) = Aysin 2k + Aysink,  h,(k) = p — A; cos 2k — Aq cos k (1.19)
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and then performing a Bogoliubov transformation that gives us the energy spectrum:

e(k) = i\/uz + A7+ A3 + 2A1(u — A2) cos(k) — 245 cos(2k) (1.20)

The energy gap closes for Ay = 1+ Ay, Ay = p— Ay and for A, = —p for |A] < 2|p).
This phase transitions and the whole phase diagram are shown in 1.5 with p = 1.

To better understand the diagram 1.5, we first consider some limiting cases.
o | A, [As] < |ul: this is the trivial phase which hosts no Majorana edge modes;

e ), = 0: we regain the Nearest Neighbor coupling Kitaev chain that we studied
in the last section. Thus, we can see the phase transition from 0 edge modes
to 1 happening when Ay is larger then p/2;

e ) = 0: in this case there is only next-to-nearest neighbor coupling so the wire
splits into two Kitaev sub—chains (the odd and even sites). Each sub—chain
has one Majorana edge mode appearing when |A;| > p1.

Finally, we are interested in the correlation functions c(k), f(k) (defined in the pre-
vious section (1.8),(1.9)) that will create our dataset elements:

1  p—Aycos2k — Ay cosk
2" 2lek)
(k) = Arsin 2k + Ay sink

2| e(k)]

c(k) = (1.27)

(1.22)

We considered a chain of length L = 100 and generated a dataset of 6000 equally
spaced points in the range Ay € [—4, 4], A, € [—4, 4] to cover the full phase diagram
of Fig. 1.5. Each datapoint is a vector made of 2L entries corresponding to c(k)
followed by f(k).

1.4 Extended Hubbard

The fermionic Hubbard model [ABKR22, Tas97] has been deeply studied in the past
due to its solvability in one dimension, which can give physical insights regarding
strongly correlated electronic systems, and due to the growing possibilities of sim-
ulating it through quantum technologies [DHTPac21, HFJeal7, TSP18]. In recent
years extensions of this model have been interest of study in order to investigate
high temperature superconductivity [RB99, DRTC22]. In the following we will con-
sider the one-dimensional Hamiltonian [NakOO]

I'e

H=—t Z (c;fﬂﬂ dio+ h.c.) + UZ/m/m + \/ZZn[mH (1.23)

io=1 i 1=1

where a;":g, a;, are the usual fermionic creation and annihilation operators for par-
ticles of spin 0 =T, |, ni{y = C/;":UCI,-,U and n; = n; + n;. Hamiltonian (1.23) represent
the famous Hubbard model with the on-site potential U and an additional soft-
shoulder term V' which covers a longer range of r. sites. We will consider a chain
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of L = 30 sites with periodic boundary conditions (PBC) at filling p = 2/5, with
pr = p, = 1/5 and interaction range r. = 2. The choice of L = 30 is connected
to the frustration of the model for these particular values of r. and p and it will
be clarified in what follows. A full description of the phase diagram of this model
is way beyond the purposes of this introductory section, for this reason we limit
ourselves to list the main topological phases that can be predicted with theoretical
and numerical approaches showing the many limits of these methods, paving the
way to the use of machine learning techniques.

Classical Limit This is obtained by setting t = 0. In this framework the deter-
mination of the 7 = 0 K phase diagram is rather simple. In fact, as hopping is
completely turned off, one can prove that, for fillings greater than 1/(r. + 1), the
classical ground state is constituted by three different blocks, which we will refer
to as A, B' and B and are represented in Fig. 1.6(a). The length of A and B’ blocks
is of ro + 1 sites, while block B's is of r. + 2 sites. The energies of these blocks are
Ea=0, Eg =V and Eg = U respectively. We consider the two following limits:

e U > V: the elementary unit of this phase must have a length which contains
an integer number of particles and no C block. This is obtained with one block
B and two blocks A, as represented in Fig. 1.6(b). We will refer to this phase
as Nearest neighbours phase (NN);

e V > U: with similar reasoning, the elementary unit is constituted by four
blocks A and one block 5, as represented in Fig. 1.6(b). We will refer to this
phase as Doublons phase (D).

It is straightforward that the minimal length which allows for both of these phases
is L = 30, this justifies our choice of chain length. As going from one phase to
the other is equivalent to trading two B’ blocks for three B blocks, the classical
phase transition line is U = 3V/2. It is important to stress that the total number of
blocks constituting the system changes from one phase to the other. In particular,
for generic value of r., L and p = 2/5 the NN phase presents

L
My = g_— (1.24)
e

blocks, while the D phase has a number of blocks equal to

L
re+1

Mp = (1.25)

Small Coupling In the regime with low V < U we can use bosonization [Gia04]
to explore the phase diagram, the details of this operation can be found also
in [CTEP24]. The main result is that when the soft-shoulder potential is turned
off, te. V. =0, the interaction is always marginal, and the system shall therefore
always be a Tomonaga Luttinger Liquid (7 LL), which is a widely-known and studied
model describing one dimensional conductors [Tom50, Lut04]. When, on the other

hand, the potential is turned on, the system reaches a phase transition point for
V = U [CTEP24, Mal13] as depicted in Fig. 1.6(c).
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Figure 1.6: Possible Phase Diagram of Extended Hubbard. (a) Types of blocks
of sites forming in this model. From left to right: the A block with zero energy
since there is only one occupation, the B block with energy contribution V' due to
the presence of two neighbouring occupations and B’ with energy U due to the
on-site double occupancy. (b) Combination of blocks forming macro-structures that
compose different ground states. Top: A combination of 1 B block + 2 A blocks is
the main brick that composes the CLL,, phase. Bottom: 1 B’ block + 3 A blocks
making up the main component of the doublons phase CLLp. For both structures
we have the t = 0 in which the blocks do not move and the t # 0 scenario in
which tunneling effects allow the blocks to exchange position between each other.
(c) Tentative reconstruction of the phase diagram using initial assumption and the
previous knowledge of the model. A more complete proposal will be given at the
end of the Chapter 2.

Intermediate U,V For intermediate values of V and U, it is possible to apply
Haldane's formalism, which is also known as phenomenological bosonization. As it
is shown in [MDLP13] applying Haldane's formalism, one ends up with an Hamil-
tonian with an identical functional form as TLL. For this reason this phase shall
preserve many properties of the 7LL phase, with the fundamental difference that the
elementary units of the system are no longer single particles, but rather clusters of
particles, as represented in Fig. 1.6(b). We hypothesize the existence of two distinct
CLL phases, namely the Cluster Luttinger Liquid of nearest neighbours (CLL,,),
whose fundamental entities are blocks A and B, and Cluster Luttinger Liquid of
Doublons (CLL,), whose fundamental entities are blocks A and B’. For the same
considerations valid for the classical limit, it is reasonable to expect the transition
between the two phases to happen in the proximity of the classical phase transition
line U = 3V/2. We expect this phases to be the ground state of the system for
intermediate values of the couplings U, V, as represented in Fig. 1.6(c).

U> V > t Limit For this part we can erase the spin degrees of freedom since
double occupancies are necessarily prohibited. The results we expect on this phase
can be taken by [MDLP13] which considered a similar problem and suggested that
strong coupling perturbation theory led to the theoretical prediction that the system
shall undergo a general crystallization (i.e. more localized particles) for high values
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of V. Their prediction are accurate as far as V/t > 10 and break down for V ~5—7.
Assuming the transition points is V' & [5,7] we split the nearest neighbours and
doublons phases between their liquid phase (denoted CLL,,, CLL, respectively)
and crystal phase: CLL],,, CLL],.

nn'

All in all, we put all the information gained into the phase diagram in Fig. 1.6(c)
but we clearly see that there is a lot of space to investigate, much more that the
other models considered in this work. We will thus heavily rely on results obtained
with the machine learning methods in of Chapter 2 to obtain a clearer picture of
the phases.

Data As we can see from the amount of phases that are present in this model and
our lack of knowledge on the areas with strong interactions, we expect this model
to be more difficult to tackle than the previously listed ones. In addition to that, the
limited size of the model L = 30 — that was decided merely for costly computation
reasons — would generate low-dimensional points. For these reasons we decided
to generate more types of data. Specifically, we focus on charge and spin structure
factors, which are defined as

Sc(k) = %Z etk(=)) (Cnuny) = (ni)(n;)) (1.20)
Lj
1 . )
Selk) =)™ ({SFS]) = (SPNST)) (1.27)
Lj

with k = 2mn/L, n =0,...,L/2—1 (it is easy to see that for n = L/2, ..., L there is
only a difference in sign) and with:

ni = Ny + ng (1.28)
S[z =N — Ny (129)

On the other hand we shall consider a local density operator, defined as

= ({n), (n), ..., (ng)). (1.30)

All these quantities are numerically computed using DMRG [Sch11] onto a L = 30
chain with Periodic Boundary Conditions (PBC). In particular, we made use of the
tTensor library [FWS20]. The convergence found for maximum bond dimension
equal to 400 and we compute the ground state for N = 4000 values of U and V
with 100 different values of U € [0, 25] equally spaced and 40 equally spaced values
of V € 10,10]. Even if computations were worked out for U € [0, 25], plots in the
following are limited to U = 15, as the upper part of the phase diagram does not
show any relevant difference with the plotted region.

24



2 | Phase diagrams reconstruction
techniques

In this chapter we show many concrete examples of how Machine Learning tech-
niques can be exploited in a common and important task of many body physics: the
reconstruction of the phase diagram of a model. Investigating and classifying the
phases of a quantum many-body systems is a non-trivial job and in most cases it
cannot be done analitically. For this reason many approximation methods have been
developed in the years. The most successful one is certainly the DMRG algorithm
which finds the groundstate of a system from which correlation functions and order
parameters can be calculated approximately but still with a very good precision.

Yet, we often find interacting systems that are difficult to simulate even with the
DMRG and can be resource-demanding. For this reason, in this chapter we show
how unsupervised and supervised learning algorithms can be trained to recognize
the phases of a solvable non-interacting model and then used to perform the clas-
sification on the same system but in presence of interactions.

For each algorithm we first give an intuitive explanation of its functioning and we
mostly focus on how its results can be interpreted in order to give a re-usable
instrument to investigate the topological phases of a model. We then proceed to
apply it to the systems mentioned in the previous chapter with two types of train-
ing. The standard one means training and testing on the data of the same model
(interacting or not). The second one, when possible, consists in training first to a
non-interacting version of the model and then to the interacting version. We refer to
the former as transfer learning as it is typically done in machine learning [Ben12].
The content of this chapter is redacted from and extends the work we published
on this topic during my PhD studies [TMVE23] and another one that is currently in
preparation [CTEP24].

2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a simple algorithms used in statistics and
Machine Learning to reduce the dimension of a dataset. This is done by extracting
the (orthogonal) directions along which the dataset varies the most and projecting
the data onto these vectors. Figure 2.1 shows a 3D qualitative example of a dataset
made with correlators like the ones we obtained in Chapter 1. In this section we
want to explore how much information PCA can extract from the correlator data and
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what it can tell us about the topological phases of the system. We will see soon
that it is a non—trivial amount of information.

TRI-

Figure 2.1: Principal Component Analysis. The data in this simplified scenario is
mostly distributed on a plane. The vectors Vi, Vs, Vs are the principal components,
that is the vectors obtained from PCA, and we can see they are aligned with the
directions of the plane because those are the directions more informative about
our data. Each vectors is also represented by an eigenvalue that ngaDtlﬁes how
much information is encoded in each of the directions. In this case V4, V5 will have
larger eigenvalues A4, A, (in modulus) compared to the third direction V5 which is
not representative of the data.

In order to apply PCA we start by creating a design matrix
cilko) ... alki—) flke) - filki=)
X = : . (2.1)
C/\/(ko) L. C/\/(/<Lf1) f/\/(/(o) L. f/\/(/(L,1)

Each row is formed by the correlation functions c(k) and f(k) of the model calculated
for one of the N points of the phase diagram. For each model we generated N pairs

of points (x4, Ys), @ =1,..., N where x, y represent two Hamiltonian parameters.
Each column represents one of the Fourier components of the correlation functions
with quasi-momentum k, = 2z7n/L (n = 0,...,L — 1) that are interpreted as the

features of the data from which the PCA extracts the principal components. We
rescale the columns of X such that they have zero mean and unit standard deviation
and we compute the eigenvalues {4}, the explained variances = A;/ ) _; 4, and the
eigenvectors {w;} of the correlation matrix S = X" X. The principal components of
the data X, which are the eigenvectors of S corresponding to the largest eigenvalues,
are the directions in a 2L dimensional space along which the original data shows
the largest variance. The first d of these vectors are generally used to project the
data into a smaller number of features. A common measure of the projection along
the principal components used in the context of detection of phases is the quantified
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Figure 2.2: PCA for topological phase detection. Schematic representation of our
method. We start with a dataset of points in 2L dimensions obtained from some
phase diagram that depends on two parameters (i, 1t (left). We extract the first
(largest) explained variances and corresponding principal components (center), they
are graphically represented as vectors (cf. Fig 2.1). Finally, we project the data on
these components (calculate the QLCs) which might highlight different sets of the
phase diagram (right).

leading component (QLC) [Wan16, HSS17]. For each model, we compute the QLC
by dividing the set of the two parameters in 40 sections, creating a grid of 40 x 40
subsets, each made of M datapoints, M depending on the number of points N. Then,
for each of the subsets we calculate the quantity

pi=>_ —|X5Mwi|

s

22)

where s runs on the elements of each subset, X, is the s-th row of the matrix X
corresponding to the s-th point of the subset, and w; is the i-th eigenvector of S.
The value of the QLC for a datapoint shows how much that point is represented by
that specific principal component.

Figure 2.2 shows an example of this simple pipeline and how it allows us to extract
different phases from a topological model. We start from a dataset of correlators
obtained by varying two parameters of a Hamiltonian, the example of the image
shows a phase diagram that is split in three phases. We extract the eigenvalues
(explained variances) and eigenvectors (principal components) of the correlation
matrix. Finally we project the original data on the principal components and plot
the results.

211 Kitaev Chain

For the Hamiltonian of Eq. (1.1), we create the design matrix X™ from data points
generated in the range p € [=8,8 and A &€ [—2, 2] with a step of 0.1 for p and
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Figure 2.3: PCA of the non-interacting Hamiltonian. (a) Explained variances
of the first ten principal components. (b) The first four principal components w;
(i =1,2,3,4) extracted from data plotted in the same fashion of the correlators in
the dataset. In red the first 100 elements of each vector and in orange the second
(orange triangles) of the corresponding principal components . On the right side
we have the quantified leading components (QLC) p; which measure the projections
of the data onto the space of each of the first four principal components in (b),
corresponding to the eigenvalues with largest explained variance €;. (c) The first
QLC with e = 0.451 reveals the points of the phase diagram with trivial winding
number. (d) The second QLC, with e, = 0.421, highlights the points of the phase
diagram with non-trivial winding number, (e) The third QLC, with e3 = 0.052 shows
the phase transition lines, (f) The fourth QLC with €4 = 0.042 has a high projection
on the phase with v = —1.

0.05 for A, for a system with L = 100 sites. This subdivision of the ranges of A
and p corresponds to have a total of N = 12800 data points. The sum ZL €; of
the explained variances (plotted in Fig. 2.3(a)) of the first four eigenvalues results
in 96.6% meaning that most of the information of the data X is contained in the first
four eigenvectors (Fig. 2.3(b)). For this reason, in Fig. 2.3(c-f), we show the first four
QLCs. These are calculated as in Eq. (2.2) by grouping the N = 12800 datapoints
in 40 x 40 subsets corresponding to M = 8 datapoints per subset.

The explained variances ¢€; of each eigenvector are reported for each of the first
four components. In panel (c) we see that p; is large for the points with |py| > 2,
this means that the first principal component allows us to find the points of the
phase diagram with winding number v = 0 (that belong to the trivial phases TRI—
and TRI4). This is due to the shape of the first principal component wy (depicted
in Fig. 2.3(b)) that resembles the shape of the correlation functions c(k) and f(k)
shown in Fig. 1.2(b) (TOP+1 phase). In Fig. 2.3(d), we see that, instead, p, allows
us to extract the points of the phase diagram with winding number v = +1 as the
shape of the second principal component w; (Fig. 2.3(b)) is similar to the correlation
functions c(k) and f(k) shown in Fig. 1.2(b) (TOP+1 phases).

This analysis shows that the first two principal components are sensitive to the
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Figure 2.4: PCA of the interacting Hamiltonian. (a) Explained variances of the
first ten principal components. (b) The first four principal components w; (i =
1,2,3,4) extracted from data plotted in the same fashion of the correlators in the
dataset. On the right side we have the quantified leading components (QLC) p;
which measure the projections of the data onto the space of each of the first four
principal components in (b), corresponding to the eigenvalues with largest explained
variance €. (c) The first QLC with e; = 0.595 reveals the points of the phase diagram
with trivial winding number. (d) The second QLC, with e, = 0.255, highlights the
points of the phase diagram with non-trivial winding number, (e) The third QLC, with
e3 = 0.083 shows the phase transition lines, (f) The fourth QLC with €4 = 0.033 has
a high projection on the phase with v = —1 and is the most effective at recognising
the transitions between incommensurate and commensurate CDW.

trivial and non-trivial phases. All the other 198 QLCs have a total explained variance
of the order of 13%, in particular the third QLC (Fig. 2.3(e)) has explained variance
€3 = 5.2% and recognizes the phase transition lines, while the fourth (Fig. 2.3(f)) has
explained variance €4 = 4.2% and has a larger projection on the phase with winding
v=-1

2.1.2 Interacting Kitaev chain

We repeat the analysis with the data obtained from the interacting Hamiltonian.
To this end, we construct a design matrix X! with data obtained from the inter-
acting Hamiltonian in the range p € [0,5], V € [—4, 4] with a step of 0.1. We plot
in Figure 2.4(a) the first ten explained variances and we see that they decrease
exponentially. The first four in this case amount to 96./% of the total, the values
of each one are described in the caption of Figure 24. The main result of this
analysis is being able to capture the phases of the model. In particular the central
topological phase around i ~ 0 seems to be highlighted by each QLC in different
ways. In particular we can clearly separate it from the trivial and the charge den-
sity wave (CDW) phases (TRI and CDW sectors of Fig. 1.2(b)). The first three QLCs
— Fig. 24(c-e) — can also highlight the CAT phase at A = 0 with ease while QLC
number 1,3 and 4 evidently signal the phase transition between Incommensurate
and Commensurate CDW.
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(b) - w (c) - ws (d) - wy

Figure 2.5: PCA transfer learning on the interacting Hamiltonian Projection of the
interacting correlation functions along the principal components obtained applying
PCA to the non interacting dataset. Darker colors correspond to areas of the phase
diagram which are more similar to the principal component w; (i = 1,2, 3,4) used
for the projection. QLCs drawn in (a) and (d) highlight the trivial (superconduting
and charge density wave) and topological phases respectively. In both cases, the
CAT phase is highlighted by higher values of p; compared to the other phases.
Component (c) pins down a phase transition line whereas component (b) does not
seem to be informative on the interacting dataset. The projections of all four plots
are rescaled independently. The dots are the same as panel (c) of Fig. 1.2, added
to help recognize the phase transition points.

Transfer learning on the interacting Hamiltonian We are interested in under-
standing if the principal components of the non-interacting model computed before
can be used to distinguish among the phases of the interacting Hamiltonian. In
order to do that we consider again the design matrix of the interacting data. Then,
we calculate the QLC by projecting these data along the principal components w;
of the non-interacting Hamiltonian. The first four QLC are shown in Fig. 25. The
first (panel (a)) and the fourth (panel (d)) principal components w; and wy, of the
non-interacting data show higher projections on the interacting data and are thus
able to discriminate between the trivial and topological phases, respectively. The
third principal components ws (panel (c)) recovers only the transition line between
the trivial and the non-trivial superconducting phases while the second one seems
to highlight only the region for low p and V' &€ [—1,0]. We note that, even though
the CAT phase is present only on the single line = 0, three out of four principal
components are able to recognize it (Fig. 2.5(a), (c), (d)) and once again the phase
separation inside the CDW sector is evident in the first and fourth components.

2.1.3 Kitaev with NNN

We repeat the same analysis to the Kitaev model with Next—to—nearest neighbour
hopping. We generated a dataset of 6000 points in the range A; € [—4,4] A, €
[—4,4]. The correlators span the 5 phases of the model with v = 0,%1,2, as
shown in 1.3. We followed exactly the same steps as in the previous section and
obtained fairly comparable results, we will thus limit our discussion in this section.
In particular Figure 2.6 shows that the QLCs obtained with the PCA analysis can
highlight all the phases, in order (c): 1, (d): O, (e): 2. Once again, the first
component that is not sensitive to a specific phase shows us the phase transition
lines 2.6(f).
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Figure 2.6: PCA of NNN model. (a) Normalized eigenvalues of PCA showing
two relevant direction in the dataset correlations, (b) Eigenvectors of PCA. (c-f)
Projections of data onto the first four eigenvectors highlighting the phases of the
model.
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Figure 2.7: PCA transfer learning on NNN model. PCA projections of the NNN
Kitaev data onto the Kitaev chain eigenvectors correctly predicting the phases of
the model.

Transfer learning To prove once again the level of versatility of PCA we apply
transfer learning by using the principal components extracted with PCA on the
non—interacting dataset and we apply it to the NNN dataset. We consider only
the first four principal components as they contain almost 100% of the explained
variance of the Kitaev chain and we project the correlators of the NNN model onto
them. The projections are shown in Figure 2.7 and it is evident that all the phases
of the model can be directly detected.

We can say with fairness that the PCA allows us to learn the underlying pattern
which distinguishes a trivial phase from a topological one in the Kitaev model. This
is a good indication that even a supervised method can exploit the representation
it learns of the non-interacting data to classify the interacting ones.

2.1.4 Extended Hubbard

In order to apply PCA, we arrange the data in a design matrix which differs from
the other models only because we are concatenating different observables: the spin
and charge structure factors (eqgs. 1.26) and the local density operators (eq (1.30))
explained in Section 1.4. We note again that the reason for this variety of data is
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due to the expected difficulty at recognizing the phases of this model. Considering
that also the analytical and numerical theory does not currently go beyond certain
threshold values (see Section 1.4). The dataset was also produced for a short chain
of L = 30 for two reasons. Firstly, it is computationally hard to obtain data with
larger system size and secondly, as explained in Section 1.4, for our choice of filling
p = 2/5 the length L must be a multiple of 10 and 15.

- (1 - (1
stost g
XP=1 . (2.3)
S(N) (N
S M

The index indicates the point of the phase diagram where the observables are
evaluated and

—

Sa = (Sa(ko), Sa(/<1) ..... Sa(kL/271)) (24)
with a = ¢,s and k, = 27n/L.

For this model we generated 4000 points of the phase diagram in the range U &
[0,20] and V €10,10], k, = 27n/L with n =0,...,L/2—1 and L = 30. The design
matrix has shape 4000 x 60 (where the 60 columns are made of 15 values of S(k,),
15 values of S¢(k,,) and 30 values of n(x;)), for clarity. So the eigenvalues and vectors
will also have length 2L as with he previous models, the rest of the procedure is in
fact identical.

The relative weights of the first ten eigenvalues (in decreasing order of magnitude)
of £, which are defined as
A= 25)
2 Wi
are reported in Fig. 28(a). The index i runs from the biggest eigenvalue to the
smallest one. The first ten eigenvalues sum up to almost 98% of the total.

Next, we plot the QLCs P, which can be seen as the projection of the principal
components onto the phase diagram under examination. The plots of P, P2 PO)
and P") are represented in Fig. 2.8. From the projection of the first eigenvector P
we can clearly see that the dataset experiences a drastic variation for V'~ 5.5. This
trend is confirmed by all the projections under considerations and it coincides with
the theoretical predictions from perturbation theory (see [CTEP24]). In addition to
that, the region of the phase diagram delimited by U = 5 and U = 3V/2 seems to
present radical differences w.rt. the rest of the phase diagram.

PO, P2 and PO also suggest that, for V ~ 55, there is a significant change in
the observables when 0 < U < 2 and 2 £ U < 5. Other projections with relevant
weights such as PP, PW and P exhibit similar patterns and are therefore not
represented. Finally, PY) underlines one tiny region of the phase diagram, whose
nature will be better understood with the k-means analysis of section 2.2. For the
time being it is only worth noticing that this region sits almost at U ~ 3V//2.
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Figure 2.8: Plots of the projections. Projections P, P, PP and PV) described
in the text, are plotted here. The first three characterize the V' 2 5.5. region, with
differences arising for 0 < U < 2,2 S U <S5 and 5 S U < 3V/2 The last one,
te. PY), underlines one small region of the phase diagram in correspondence of
U=3V/2

2.2 K-means

K-means clustering is a machine learning method for finding clusters and cluster
centers in a set of unlabelled data [Mac0O3] The algorithm starts by choosing a
number of cluster centers called centroids and then it iteratively moves the centers
to minimize the total variance within each cluster. The centroids are the central
point of every cluster that are calculated by the algorithm autonomously, so we
interpret them as the most representative points of the cluster. Figure 2.9 shows a
qualitative example of this process.

More specifically, the algorithm starts by randomly partitioning the N elements of

the dataset into K subsets Py, ... Pg. In this way we can build the matrix U & NN
whose entries numbers are 0 or 1 according to which partition each point was
assigned to. At the same time a set of centroids C = (;,...(; is created also

randomly. The loss function to minimize is simply given by:

K

LW.C)=) > IX—-GlP (26)

i=1 X;eP;

Setting Up, Gy the initial partition and centroids, k-means iteratively solves the
mintmizations:

Uipr = mbn LU, G) (2.7)
Ciy1 = mén L(U;, €) (2.8)
until convergence which is usually reached either when the matrix values of U do

not change or the variation of £ is below a certain threshold. The output of the
algorithm is one label for each point assigning it to a cluster.

The choice of the number of partitions K is clearly crucial in this algorithm. In order
to settle on a value of K without any a priori knowledge of our data we choose to
calculate the silhouette score S which is a value representing the average quality
of the clusterization for each K. Calling a; the mean distance of a sample point to
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Figure 2.9: k-means. Visual representation of the clustering operation performed
by k-means. At the initial step the points of the dataset are assigned to the closest
of K random cluster centers called centroids, in this case 4. After the final step
the centroids have been moved in order to minimize the variance of each cluster.
The image also shows an example of the a; and b; average distances needed to
calculate the silhouette coefficient of a point.

all the points in its cluster and b; its mean distance to all the points of the second
closest cluster (see Fig. 2.9) we can define and calculate the silhouette coefficient
of a data point S; and the silhouette score of the dataset S as

o (bl — Cl[')
5= max(a;, b;) (29)
N 1
S=% Z S (2.10)

where i runs over all the N elements of the dataset. The values for S lie in the range
[—1,1] where negative numbers correspond to a wrongly assigned point. Positive
values indicate the right classification and the quality increases reaching 1. Points
with a silhouette close to 0 belong to overlapping clusters.

The information gained from the silhouette is thus crucial to allow us a deeper
analysis of the topological phases respect to one offered only by the k-means labels
assigned to every point. In fact, the latter simply force every point into a cluster.
The former, instead, gives us an estimation of how well a point fits into its cluster,
if this value is low it means that the algorithm is indecisive about two possible
classes and by definition that could be a phase transition point. This intuition that
we developed from our work here [TMVE23] has proven very effective in every model
studied so far.

Another meta-analysis is related to the centroids. Once they are identified, we can
gain more in-depth analysis of how the data points are distributed by looking at
their shape. We believe this might help us find a meaning, if any, in the clusterization
of the data points similarly to what we did in the PCA cases. In fact, also for the
k-means, a centroid is a 2L vector that can be depicted as a set of two correlators.
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Figure 2.10: Pipeline of phase extraction with k-means. We start by evaluating
the best number of cluster K from the silhouette scores S. Next, k-means is applied
from which we can obtain the k-means labels and the silhouette coefficient of each
point that we plot back into the phase diagram. Next we analyse the shape of the
centroids to see what characterize each phase found by the algorithm.

One last consideration about the results: being k-means an algorithm inclined to
fall into local minima [AVOO] it is extremely sensible to initial conditions. Thus, we
run k-means 10 times for each K and then collect the average silhouette value S
of every point over the 10 runs, whereas the centroids and projections correspond
to the largest silhouette only.

We summed up the pipeline of our application of k-means in order to clarify the
ideas. This is explained more in-depth in the caption of Figure 2.10.

2.2.1 Kitaev Chain

The analysis of the silhouette for the non-interacting data of the Kitaev chain turns
out to be very informative. Firstly, we find the maximum value of the silhouette score
at K = 4 as shown in Fig. 211. This suggests that the most reasonable way to
divide the data points is in 4 classes, which might correspond to 4 different phases.
Secondly, we see that the silhouette of the points indeed can be used for identifying
the phase transition lines. We confirm in fact that the points lying near a phase
transition, which show properties of both phases, have silhouette value close to 0,
indicating that their classification might be non ideal. We see this in Fig. 2.11(b)
which shows the average silhouette of every point calculated over 10 iterations of
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Figure 2.11: K-means of non interacting data. (a) Silhouette score for different
cluster numbers K suggesting 4 clusters. (b) Centroids of K-means. (c) Labels
assigned to points by K—means. (d) Silhouette coefficients of each point highlighting
the phase transition lines.

k-means algorithm applied with K = 4, as suggested by the previous analysis. We
can see that points that are inside the phases have a larger silhouette than points
lying at the phase transition.

We now consider the analysis of the centroids obtained by applying the k-means
algorithm with K = 4. In Fig. 211 we plot: (a) the phases associated to each point
by the k-means algorithm, a quick comparison to the original phase diagram 1.2(a)
shows that the reconstruction is fairly similar; (b) the 4 centroids. Each centroid
seems to exactly represent the features of the datapoints, t.e. the correlation func-
tions, of the four different regions of the phase diagram. Moreover, they can be
useful to detect better the phase transition lines.

As a final comment, the lines appearing peculiar but unfortunately we do not have
a clear understanding of the behaviour of the silhouette at these points. This could
probably be due to the change of sign of A which affects the shape of the f(k)
correlators. Nonetheless, the values of the silhouettes along those lines are around
0.5 so still very far from 0, which excludes a possible phase transition.

222

The same analysis can be repeated on the interacting dataset, obtaining similar
results which are collected in Fig. 2.12. In particular the silhouette reaches its
peak at K = 4 corresponding to the four phases of the interacting model shown in
Fig. 1.2(c). This is, of course, if we associate the CDW sector as one whole phase,
to which k-means assigned the "1" label. Yet, we see that the separation between
[-CDW and CDW is present in the silhouette coefficients plotted in panel (d) of the

Interacting Kitaev chain
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Figure 2.12: k-means interacting phase diagram reconstruction.(a) Silhouette
score for different cluster numbers K suggesting 4 clusters. (b) Centroids of K-means
each one labelled by its corresponding phase. (c) Labels assigned to points by K-
means. (d) Silhouette coefficients of each point highlighting the phase transition
lines.

same figure. In this case the change of phase is not signaled by the vanishing of
the silhouette but with a discontinuity in the silhouette values, much alike the one
that can be seen at low V and p < 0 for the CAT phase.

This results confirms that it is more informative to look at the silhouette coefficients
rather than at the mere classification of the algorithm because it gives a richer
interpretation of the possible phase transition lines.

Transfer learning In the same fashion as PCA we now apply k-means to the non—
interacting dataset and use it to predict the phases of the interacting one. In this
case we can select the number K by training the clustering on the first dataset and
use it to obtain the silhouette coefficients and score of the second one.

This operation is not standard in the context of k-means since it was meant to be
trained and tested always on the same data. This is confirmed by the fact that
trying our transfer learning procedure returns us the same silhouette score of 0.55
for every K in the range [2, 10] which suggests us that it is not an ideal value to keep
track of. Therefore, instead of the silhouette score we check the average silhouette
coefficient, we care to specify that the two values are related to each other but
not necessarily identical. Interestingly, the average silhouette coefficient seems to
suggest a possible clustering. In fact we obtain that it is maximized for K = 2 and
reaches a second maximum at K = 5. The average silhouette coefficient for different
K are shown in Figure 2.13 along with the silhouette coefficient of every point for
K =2 in panel (b) and for K =5 in panel (c).

For K = 2 we see that there is a neat separation of the topological phase from
the trivial one, as well as the evidence for the CAT phase. For K = 5 we obtain
a richer phase diagram with all the phases of the interacting model being present
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Figure 2.13: k-means transfer learning. The algorithm is trained with non-
interacting data and tested on the interactin data. (a) Average Silhouette coefficients
for different cluster numbers K suggesting 2 and 5 clusters for classification. (b)
Silhouette coefficients for K = 2. (c) Silhouette coefficients for K = 5.

and a particular sharp transition between CDW and | — CDW. Thanks to transfer
learning we are able to confirm the presence of a transition between the two charge
density wave phases.

2.2.3 NNN Kitaev

The k-means analysis turns out to be very successful also on the extended Kitaev
model with next-to-nearest neighbour hopping, Fig. 2.14. In fact we are able to
identify the 5 phases of the model from the k-means values assigned by the cluster-
ing algorithm and the phase transition lines by looking at the individual silhouettes
coefficients of each point. Apparently, the distinctive characteristics of the points of
this model allows us to distinguish the phases easily.
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Figure 2.14: k-means on NNN Kitaev.

U

(a) Average Silhouette coefficients for

different cluster numbers K suggesting exactly 5 clusters as predicted for this model.
(b) The first four centroids of K-means with K = 5. (c) K-means labels assigned to
each point correctly identifying the phases. (d) Silhouette coefficients of the points.
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Figure 2.15: Results of k-means algorithm for K = 2 . (a) Here plotted the
silhouette score as a function of the number of clusters. Two evident peaks emerge
for n = 2 and n = 8 clusters, here we show the results for K = 2. (b) Density part
(last 30 entries) of the centroids. The crystallized phase presents far more localized
particles. (c) Labels assigned by the algorithm. Clearly, the region 5 S U < 3V/2
of the phase diagram appears to be radically different from the others. (d) The
silhouette coefficients.

2.2.4 Extended Hubbard

We applied the algorithm to the design matrix Xi; we previously defined in Eq. 2.3.
The average Silhouette score as a function of the number of clusters is plotted in
Fig. 2.15(a). Two peaks clearly emerge at K = 2 and K = 8, with average Silhouette
score S =0.65 and S = 0.62 respectively. Since we expect a richer phase diagram
compared to the previous model, these are the clusterizations of interest that we
will consider and their results are plotted in Fig. 2.15 and 2.16 respectively. As it
is customary we plot the labels assigned to the points after classifying them with
K-means and the Silhouette score of each point. As suggested in [TMVE23] low
Silhouette score can be considered as an indicator of a possible phase transition.

Clusterization with K = 2 (Fig. 2.15(c)) clearly resembles results of PCA, dividing
the 5 < U < 3V/2 region from the rest of the phase diagram. The nature of this
separation can be understood by looking at the local density part of the centroids
plotted in panel (b) of Fig. 2.15. In fact, in the 5 < U < 3V/2 part of the phase
diagram, the ground state presents far more localized particles, resembling a sort
of crystalline phase, while in the rest of the phase diagram they are essentially
delocalized, as one would expect for a liguid phase. This confirms the liquid to
crystal phase transition that we had predicted in Chapter 1 Sec. 1.4.

The K = 8 phase diagram The clusterization with K = 8 is far richer and gives
more physical insights into a reliable reconstruction of the phase diagram. In Fig-
ure 2.16(a, b) we plot the k-means labels ad the silhouette coefficients which already
give us a picture of the phase diagram. In order to understand the nature of each
clusters, that is of each phase, it is useful to examine the centroids by dividing them
in their spin/charge structure part (Fig. 2.16(c)), and the local density part of the
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Figure 2.16: Results of k-means for K = 8 . Clusterization in 8 subsets with
K-means. (a) Labels assigned by K-means. (b) Silhouette coefficients. (c) Charge
and Spin structure factor part of the centroids. More peaked density corresponds
to higher particles localization. Phases with M blocks shall have a peak in S(k)
at ke = 27M|L. (d) Local densities part of the centroids, plotted separated into
categories according to their position on the phase diagram
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centroids, which is plotted in Fig. 2.16(d).

We analyze the diagram from top to bottom. Starting from the high part of the phase
diagram, t.e. U > V, there appears to be a separation into three phases, which we
call, for growing values of V: TLL, CLL,, and CLL/, . Looking at the local density
plot of these phases — represented in the upper panel of Fig 2.16(d) — one can see
that, while TLL and CLL,, (light-green and yellow) have almost perfect uniform
density around 0.5, CLL/,, (orange) exhibits well-defined peaks, which correspond
to more localized particles. On the other hand both CLL,, and CLL/,,, contrarily to
T'LL, present a peak in the charge structure factor S.(k) for k = 957/15, as plotted
in the lower panel Fig 2.16(c). This, as reported in [MDLP13, DLC*15], corresponds
to a cluster-ordering of particles. Transitions are identified, in this sector of the
diagram for U > V, at V =55 and V = 7. This findings agrees perfectly with our

theoretical knowledge of the model in this sector cf. 1.0.

Moving to mid-range values of U there is a transition between CLL,,/CLL],, to the
previously described crystalline phase, which we will refer to as D in the following
and is shown in dark green in Fig 2.16(a). Furthermore, for 5~ U =~ 10 and V = 7,
there appears to be a tiny cluster which divides CLL,, and D highlighted in lilly.
This is the same region that was highlighted by the seventh principal component (cf.
Fig. 2.8). This tiny phase exhibits a well-pronounced peak in the charge structure
factor for k = 1077/15, signalling again an underlying block structure, while local
density is more compatible with liquidity w.rt. the D phase. In this sector we
recollect the classical phase transition at U 3/2V. Yet, given the mid-range values
of U and V we would expect the quantum fluctuations to lead from a cluster CLL,,
type phase to a doublon liquid. Instead we find that only small fraction of the dataset
is a liquid of doublons, the lilly CLL, phase, whereas the phase D is crystallized.

Finally for small values of U we see the emergence of three other phases. The first
one, which we call tt — CLLy, is found for V' < 7.5 and has, again, uniform density,
and charge structure factor peaked at k = 857/15. As the off-site interaction becomes
stronger the local density becomes more peaked. For U < 2 the charge structure
is not modified, while for 2 < U < 5 the peak shifts to k = 977/15. We will refer
to these phases as tt — CLL), and t — CLL, respectively. On a final note, the third
peak in Fig. 2.9(a) suggests a third classification with K = 10 (that we run and not
show here for brevity) in which another phase arises next to t — CLLy for V 2 7
that can also be seen in the silhouette coefficients of Fig. 2.9(b).

The name of the last three phases suggests that we expected effects of quantum
tunneling become relevant in this sector of the phase diagram. Further analysis that
consider also a doublon and a nearest neighbour order parameters is presented in
the soon-to-be-published work [CTEP24] in which we explore further the connec-
tlon between the predictions of machine learning with the standard many body
investigation of the phase diagram. The general picture depicted by k—means clus-
tering will also be confirmed by other clustering algorithms such as t-SNE, which
we analyze in the following section. Then, in order to benchmark these results we
will exploit another unsupervised machine learning technique that was developed
specifically for detecting phase transitions, i.e. Learning by Confusion.
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2.3 t-distributed Stochastic Neighbor Embedding

t-distributed stochastic neighbor embedding [vdMHO8] is a popular dimensionality
reduction technique that creates a low-dimensional distribution of data which is
faithful to the original one and thus helps visualizing clusters of data in 2 or 3
dimensions. It starts by creating a probability distribution from the Euclidean dis-
tances between data points in their original space. In particular given two points
x;, Xj € D where D is the dataset, we interpret the conditional probability p;; as a
measure of similarity between the two points under a Gaussian centered at x;:

exp(l[xi — xj||?/20”)
Zk:/éi exp(||xi — xk|[?/20?)

where o is the Gaussian band-width parameter that we will discuss later. t-SNE
- e O - it P fr i —

creates a symmetric joint probability P from 211 by taking p;; = (pi; +pji)/2. Then,

it gives to each point x; a new set of coordinates in a lower-dimensional space

y; € R for d = 2 or 3, where the similarity between points is given by a t-Student

distribution Q in the form:

lyi — yill*
Z/qu yx — ydll?

9 = 212

In order to make g;; a faithful low-dimensional representation of the distribution p;;,
t-SNE minimizes the Kullback-Leibler divergence

C=KLPYO) =)} pylog:! 213
i uy

Typically this is done updating the position of points y; by gradient descent:

g = yi— n% 214)
with n the learning rate. The parameter o appearing in 211 is chosen by the
algorithm according to another hyperparameter called perplexity which needs to be
set when running the t-SNE. Perplexity is defined as the exponential of the entropy
of the distribution and can be interpreted as the average number of neighbors we
expect the points to have in the original space and typical values range from 5 to
50 [vdMHO8].

Setting the hyperparameters in this context is not easy because t-SNE does not
offer a quantitative analysis of the goodness of clustering. It merely shows the data
in a new reduce dimensional space and the rest is left for out interpretation. For this
reason we are forced to select the hyperparameters by varying them in a relevant
range and choose the division in clusters that seems to fit best to the data. In the
results below we will show that t-SNE does not seem to be affected very much by
changes in the two main hyperparameters: perplexity and early exaggeration. The
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Figure 2.17: t-SNE. The datapoint live in a N — dim space (left). The algorithm
assigns a new set of coordinates (yq,y, for each qubit in a reduced space of 2
dimensions in our case (center). Each point is colored differently so that we can
plot it back in the phase diagram (right) according to its parameters tn, 1 and
highlight the phase transition (s) if detected from the algorithm.

first one has already been explained whereas the latter is a parameter that enforces
distance between cluster of points.

As an example, in Figure 2.17(b) we show a possible data encoding into a 2D space
where the points are separated well-enough to allow us to assign them to different
phases. Since we cannot assume this to be the case for every model we also color
each point uniquely according to its embedded coordinates (y1, y»). The same color
is then used for the original point, shown in the phase diagram (c). This might allow
for better detection of phase transitions.

2.3.1 Kitaev Chains

We ran t-SNE on our datasets varying both perplexity and learning rate n without
seeing major changes to the final result. Also, no relevant distinction was found in
either reducing the dimensions to 3 or 2, so we stick to 2D.

In Figure 218 we plot the results of t-SNE on the non-interacting/interacting
dataset. For both models we plot the dimensional reduction to 2 dimensions. In
the non-interacting case we see four well-separated clusters and each one corre-
sponds to one of the phases of the model. In particular t-SNE separates the two
trivial phases (TRI+, TRI-) of the non interacting model in the same way as k-means
does. For the interacting case the clusters are not as well-separated except for the
CAT phase. Although the shape of the of the low-dimensional representation is not
meaningful in t-SNE cluster, we are interested in finding the position of the points
close to the phase transition lines. For this reason we adjust the brightness of each
data point according to its silhouette value that was calculated in section 2.2.B
(compare with Figs. 211 and 2.12). In this way we are able to see that the points
closer to a phase transition are close to the margin of the cluster.
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Figure 2.18: Clustering with t-SNE on Kitaev data. The plot shows the visualiza-
tion of the data projected in 2D applying t-SNE (components y4, y»). In both panels
we assign a color to each point corresponding to its phase in the model while the
brightness of each point corresponds to its silhouette (see Section 2.2.B). (a) Projec-
tion of the non-interacting model data points. Four clusters appear evidently and
they correspond to the 3 phases of the non-interacting model with the two trivial
phases (TRI4, TRI-) separated. The silhouette of the points (brightness of the color)
highlights the points close to a phase transition, which happen to be at the borders
of each cluster. (b) Projection of the interacting model data points. The separation
of the clusters is less neat compared to (a) but thanks to the silhouette we can see
the borders of each cluster.

2.3.2 Kitaev NNN

The previous sections showed us that the extended Kitaev model has neat and easy
to spot phases and we expect t-SNE to work efficiently in the separation task.
This is indeed the case because as we can see in the graph of Figure 2.19 the
new set of coordinates associated to each data point from the algorithm allows us
to distinguish 5 well-separated sets of points. Each group of points corresponds
indeed to one of the phases with winding number v = 0, £1, &2, confirming the
power of t-SNE at clustering the models. The plot was obtained with perplexity
100 and early exaggeration 50. The values were selected after by swiping both
hyperparameters in a range selecting the best clustering. As noticed with previous
datasets there was no relevant change with different hyperparameters.

2.3.3 Extended Hubbard

The tricky—to—reconstruct phase diagram of the Extended Hubbard Hamiltonian we
considered tackled also with t—=SNE in a pretty efficient way. Given the large num-
ber of phases of this model we have to be a bit creative with the interpretation
of the output of the algorithm. This is because t~-SNE does not try to divide the
points into cluster but merely to conserve their high-dimensional geometrical prop-
erties when projecting to 2 or 3 dimensions. For this reason, some clusters appear
spontaneously while others are less likely to be spotted.
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Figure 2.19: t-SNE applied to Kitaev NNN. The algorithm neatly separates the
dataset in 5 clusters corresponding to the 5 phases of the model. Since the dataset
is neatly separated we do not need further analysis so we colored each cluster with
the corresponding label known a priori. Notice how a few points are misclassified
and we checked by direct inspection that they lie on the phase transition lines. For
this reason their mis-classification is due merely to discreteness of the dataset. The
results were obtained with early exaggeration 50 and perplexity 100.

It is indeed our case, shown in Figure 2.20. The panel on the left shows the new set
of coordinates (y1, y») assigned to each of the 4000 points of the dataset. We can
clearly identify a few separated clusters, highlighted by numbers, that represent
phases that have already been found by, e.g. k-means algorithm. Cluster 5, instead,
encompasses 4 phases, in particular: TLL, CLLyn, CLLy, tt—CLL,. This information
is pretty trivial and would not allow us to recover many phases. For this reason
in the left panel (b) we plot each point of the phase diagram color-coded with the
coordinates of its t-SNE representation. This allows us to clearly separate almost
all the four phases, with the transition between 7LL and tt — CLLy being not so
evident. The last panel in the figure helps to figure out the color-coding scheme.

We acknowledge that we could have used a different metric to assign a label to
each point, for example \/y? + y3 or |y1| + |y2| might seem more intuitive. Yet, it
would also compromise the geometric distribution realized by t-SNE. For example
the first metric would make points in the upper left corner of (a) and the lower right
placed close to each other, which we think would destroy the information gained
by t-SNE and the meaning of this algorithm.

The choice for the hyperparameters used are early exaggeration 50 and perplexity
100. They were selected after a few trials in which we tried to explore the meaning
of these parameters. Perplexity is proportional to the number of nearest neighbours
considered by the algorithm and we immediately notice that the final KL divergence
(the error of the algorithm) would increase with the perplexity. This would suggest
that the higher the perplexity the better but trying with an excessive value of 1000
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Figure 2.20: t-SNE applied to Extended Hubbard (a) Points of the model plotted
in the embedded space with the new coordinates (y4, y»). The position of the points
produces a few evident clusters of different shape. To highlight the intra-cluster
differences the scatter plot is color-coded according to the positions of the points.
(b) Each point of the dataset is plotted with the same color of its corresponding
embedded point. The results were obtained by using early exaggeration 50 and
perplexity 100.

(which accounts 3000 nearest neighbours for every point, cf our dataset is 4000
points) we only get one big cluster of points that are not separated at all. That
means that the final KL might not be a suitable parameter to check. For this reason
we settled on a value of perplexity 100.

The second hyperparameter is early exaggeration. We varied it range [10, 80] with
steps of 10 because t-SNE is pretty fast at converging and we did not see interesting
changes in the final cluster forms, so we settled on ee = 50.

2.4  Learning by Confusion

Learning by Confusion is a widely-known unsupervised method to determine phase
transition points [DART22, RLKM22, vNLH17a]. The central idea is to use a super-
vised algorithm, in this case a Convolutional Neural Networks (CNN), to determine
the phase transition point of a quantum system by scrambling the dataset until a
good performance is reached.

More specifically, in the context of condensed matter physics we have a set of
data that typically depends on, say, two parameters pn, t» that span a whole phase
diagram. To apply Learning by Confusion in its original form, we fix one of the
two parameters (11 and swipe the second one along a line of values 1 € [A, B]
generating a dataset of points that we assume might undergo one phase transition
as shown in Fig. 2.21.

At each value of 1, we train the CNN. To do so, every element of the dataset is
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Figure 2.21: Confusion Learning. (l) We start by selecting a line of the phase
diagram that may or may not cross a phase transition by fixing one parameter
and changing the other one (1, in this case). (Il) By swiping i in the discretized
interval [A, B] we generate different labellings for our data going from all zeros to all
ones. (lll) Schematic of the convolutional neural network used in the process. Blue
is the input data, in green, yellow and purple the intermediate layers and finally
the accuracy is the red square representing the output neuron. For each labelling
we train a convolutional neural network and plot its accuracy (IV). We expect the
canonical V-shape and W-shape in the case of 0 (1) phase transition. There is no
case in literature for multiple phase transitions.

assigned a label (0 and 1 in the case of two phases). The CNN is then trained in
order to learn how to assign labels correctly. The degree of precision achieved by
the network is evaluated by computing the accuracy, which is defined as the ratio
between the number of right guesses and the total number of guesses, over a test
set.

Now, the core of this technique is that: we initially label the dataset uniformly, e.g.
assign to each point the label “0" corresponding to one of either phases. The CNN
is subsequently trained and tested. As all points are assigned the same label the
network learns easily to associate the label “0" to every input, resulting in a perfect
accuracy. Once that has been done, the dataset is relabelled: the first element of
the dataset (the one obtained by setting e.g. 1 = A) is now assigned the label
“1", while the rest of the data points remain “0". The CNN is then trained and
tested again, and the accuracy is expected to decrease because we are forcing the
CNN to classify the dataset in a wrong way. We then proceed to relabel the data
by assigning the first two data points to “1” and the following ones to “0". This
steps represent the confusion part of the algorithm because we are deliberately
mislabelling our dataset. The process is repeated until uniform “1" labelling, and
therefore again perfect accuracy is reached. We call this process the 2—phases
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Learning by Confusion.

If the system under study undergoes a phase transition in the phase diagram region
swept by the dataset, at a certain point during the confusion process the data will
be correctly labelled according to the two phases. If that is the case, we expect a
peak in the accuracy because the dataset is now labelled in a sensible way that
the CNN can understand. This results in the so-called W-shape of the accuracy
plot [\NLH17al]. In case of no phase transition we expect instead a V-shaped plot
which is due to the deterioration of accuracy with the mislabeling. It is instead not
clear what to expect in the case of two or more phase transitions. We will purposely
investigate phase diagram lines that undergo 2 phase transitions to explore these
effects. We applied this technique only on the more challenging datasets, that is
the interacting Kitaev chain and extended Hubbard.

2.41 Extended Hubbard

For this model, we construct the matrix data points to feed to the CNN with the
charge and spin structure factors and the local density arranged to form a 2 x 30
matrix

SYke) ... SYk)

M = [=¢ ;
: n9(x) ... n(xys)

where the index i refers to a point in the phase diagram.

We apply 2—phases learning by confusion for two different lines in the phase dia-
gram. In the first case we generate 1000 points with U = 20 fixed and sweeping
V €10, 10]. In the second one we consider 1000 points with V = 7.5 and U € [0, 10].
We always considered equally spaced values of V' and U respectively. The results
of 2-phase learning are summed up in Figure 2.22(b,c). The accuracy as a function
of the transition point V for the former case is plotted in panel (b) and for the latter
in panel(c).

The fact that it does not show the previously cited W-shape hints at the fact that
the division in two phases might not completely describe our dataset. This is in
fact not surprising, as both theory and K-means algorithm predict three different
phases for this particular line in the phase diagram (namely TLL, CLL,, and CLL],
as depicted in panel (a)).

2.4.2 3-phase learning

To explore further the multiple-phases transitions that appear in our phase diagram
we push the limits of the learning by confusion further. Here, we introduce a 3
phases generalization of Learning by Confusion. This is a natural extension of the
method explained above but using 3 labels instead of 2, e.g."0", “1" and “2", and
iteratively moving the two transitions points. Following this generalization idea
we expect the diagram to have peaks of high accuracy at the corners (where the
confusion dataset is always uniformly mislabelled) and one peak in middle. The
coordinates of this maximum, e.g. (V4, V5) are the two phase transition points.
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Figure 2.22: Confusion learning of the Hubbard model. (a) The model's phase
diagram reconstructed with k-means (cf. 2.160) Red line: we set U = 20 and swiped
V €10, 10], results are shown in (b) for the 2-phase learning and (c) for the 3-phase
learning. Blue line: we set V = 7.5 and U € [0,10] and the results for 2-phase
learning are in (d) and in (e) for the 3-phase learning.

U = 20 phase transition This is indeed what we find for the high U = 20, plotted in
panel (d) of Fig. 2.22. Each column represents a different value for the first transition,
that we call V!, and each row a different value for the second one, called V.”.
Results are clearly symmetrical w.rt the diagonal since the transposition operation
simply corresponds to an inversion between “1" and “2" labels. As expected, we
observe a sort of 3d version of the W-shape, with the angles corresponding to
uniform labelling corresponding to perfect accuracy of the network and a central
peak indicating again the presence of three phases for this line of the phase diagram.
In particular the peak of the accuracy, i.e. 98%, corresponds to V; = 3.8 and V, = 7.2.
The results are averaged over 50 runs in order to decrease the variation due to the
training of the neural network. The peak forming at the center stands out, this
signals that the data is clearly separable into 3 different phases, the TLL, CLL,,
and CLL’ , as we would expect from previous analysis.

nn'

V' = 7.5 transition line The second line we considered is at V' = 7.5 fixed case
with V' =75 and U € [0, 10]. In this case the plot of the accuracy for the 2-phases
Learning by Confusion, represented in Fig. 2.22(e), is more compatible with the
desired W-shape, with a peak emerging at U. = 4.7. That being said, the accuracy
still presents anomalous peaks, which suggest, together with predictions of K-means
clustering, to apply again the 3—phases generalization of the algorithm. Results are
plotted in Fig. 2.22. This is more challenging classification task and we can see that
for many reason. Firstly, one can see that, differently w.r.t Fig. 2.22(d), there are new
peaks in the middle of the “borders’. These are in agreement with the previously
stated compatibility of 2—phases accuracy plot with the W-shape. Consider in fact,
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Figure 2.23: Confusion Learning of the Kitaev interacting model. (a) The model's
phase diagram with the red line at p = 3 while V' & [—4, 4] Results are shown in
(b) for the 2-phase learning and (c) for the 3-phase learning.

for example, the first row; this corresponds to placing the first transition at U = 0.
Therefore, the peak in the middle of the lower border corresponds to a 2—phases
system with phase transition at U. = 4.7. This happens identically on the last
column (with Uy = 10), and on the diagonal U; = U, ~ 4.7, as expected. In addition
to these, a new non-trivial maximum of the accuracy emerges for U = 2.2 and
U? = 4.6. This last prediction is in perfect agreement with K-means clustering.

2.4.3 Kitaev Chain

To confirm the validity of our extended learning by confusion scheme we also apply
it to the interacting Kitaev chain. If we consider a line of points at p = 3 fixed
varying V' € [0, 8] we cross two phase transitions from trivial (TRI) to topological
(TOP) to charge density wave (CDW) as highlighted in Figure 2.23(a).

We divided a set of 880 points in 44 sections and ran the 2-phase learning method
(b) we again obtain a very unclear shape of the accuracy in the central part of the
graph where we expect more than one phase transition. The standard deviation in
particular being very large makes us assume that it is needed to use the 3-phase
learning scheme, whose results are plotted in the next panel (c) and confirm the
expected 3d version of the W-shape graph. In particular, there is a peak of accuracy
at around (—0.6 & 0.2,1.3 & 0.2) which agrees with values that we have from the
theory (Sec. 1.4) but also with applying the various machine learning models of this
chapter.

It is also important to consider that the precision of this method relies in the number
of partitions of the dataset. In this case having 880 points divided in 44 sections we
have an uncertainty on the result of 8/44 ~ 0.2 so we still cannot retain a precise
phase transition point. As a final remark, there is a chance that some generalization
beyond 3-phase learning might actually find the third phase transition, that is the
transition inside the CDW sector that up to now we have ignored for simplicity.
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Conclusions

In this part of the work we have shown how to develop techniques which combine
machine learning to predict the topological and non-topological quantum phases of
paradigmatic models. In particular there are a few main points on which we want
to concentrate.

Transfer learning A first interesting result is the ability of algorithms (as simple
as principal components analysis) used to learn the phase diagram of a model to
transfer this information into a new model, more complicated than the previous
one. This was the case for the PCA applied to the Kitaev chain which not only
successfully highlights all the phases of the model but with the same information
from the datapoints can also classify perfectly the interacting system. The same,
unexpected, result was obtained with k-means which is not conceived to be used for
transfer learning but yielded satisfactory results towards this application. t-SNE
and Learning by Confusion by definition do not allow us to be used from a model
to another and cannot be taken into consideration for this analysis.

Interpretability A second interesting point is the interpretability of some of these
techniques. PCA and k-means in particular offer many clues to what the algorithm
understands from the data. PCA explained variances give a quantitative measure of
how much the data can be compressed into way less feature that the original ones,
often the number of the most relevant ones (i.e. largest) is related also to the number
of phases. Along with that, the shape of the eigenvectors is a clear indicators of the
differences that characterize the data and why they can be separated. Finally, the
explained variance puts this information together giving us a clear picture of the
model we are exploring.

k-means allows also for interpretability. First of all it allows us to find a priori the
number of phases by looking at the silhouette score for different number of clusters
K. Secondly, the silhouette coefficient of each point is of utmost importance in
detecting the points that lie on a phase transition as it was extensively noticed in
each of the 6 models considered in this work. This information is more relevant than
the simple classification done automatically obtaining the labels from the K-means
algorithm because it can tell us many details on the structure of the phase diagram,
for example the CDW and [-CDW of the Kitaev Interacting model can be seen easily
thanks to this method, the same goes for all the small phases at large V' and small
U of the Extended Hubbard model we considered. Finally, the centroids — much as
for the eigenvectors of PCA — tell us why the algorithm chooses such classifications
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and were used in concomitance with the silhouette coefficients to understand the
physical properties of the different phases, e.g., in the Extended Hubbard model.

Clearly, these considerations do not apply to t-SNE despite it being a powerful
algorithm, since it can merely embed points into a lower dimensional space. Yet, as
we saw with each model the clusterization can either be very evident like with Kitaev
NNN or Kitaev non-interacting, while being less trivial for Kitaev Interacting and
Extended Hubbard. This is shown by the geometry of the points in the embedded
space that allowed us to create a shadow of the phase diagram in line with the
predictions of the other models.

Learning by confusion, contrarily to other three was invented with the purpose
of having a classification of data in condensed matter that comes from a reasoning
similar to human intuition. This is what allowed us to use it also beyond its original
intended scope inventing the 3-phase learning.

Systematic approach This last point inspires our final but not least important
remark. We believe that we showed systematically that it is possible to have a
conscious approach in the study of phase diagrams which combine more traditional
approaches from quantum many-body theory and machine learning. Throughout
this part we used the machine learning with a few precautions.

First of all, our complete agnostic approach to the models. In no part of the algorithm
we assumed we knew what the phase diagram of each model would look like, there
are in fact two notable examples that confirm this. A simple one, the CAT-like phase
in the interacting Kitaev chain was not known to us (or had not been considered)
and it was found because it emerged explicitly from PCA and k-means analysis.
A more sophisticated one, the whole analysis of the Hubbard model produced a
plethora of phases that were not considered a priori or known in literature and were
later explored with more traditional numerical techniques to show their existence,
the power of this methods in fact required a follow-up work that is currently in
preparation [CTEP24].

Following the agnostic reasoning, which is the reason why the algorithms are un-
supervised, we did not simply applied the algorithms but for each one tried to create
a pipeline so that they could be used in the same way for many other models.

Finally, we pushed the interpretation of this methods to its limits, for example with
the learning by confusion scheme, which lead us to invent an extension of this
technique, useful for multi-phase transition sectors of the phase diagram.

As it is clear from this work we did not consider scaling the size of the systems to
probe the success of these algorithms in the context of the therdmodynamic limit.
This was not done mainly because it would require a lot of time to generate that
many datasets, in particular for complicated models like the Extended Hubbard, and
was not considered at the time of the work. Although this remains an interesting
question to open, we did try, at least in the case of the Kitaev model, to generate
larger instances of data for example with L = 200 and noticed very few numerical
differences in the correlation functions. This suggests in a qualitative way that the
algorithms might be effective even for larger system sizes.
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Putting all together, we might confidently say that all the results summed up above
guarantees one last aspect of this research: reproducibility. Being able to classify
phases not only to an exemplary model like the Kitaev chain but even the Extended
Hubbard gives us confidence that our methods can be used in any other topological
model of interest.
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Part I

Quantum for Classical
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Motivation: Optimization of Quantum
Circuits on Neutral Atoms

Hybrid quantum-classical variational algorithms [MRBAG16, PMS*™14, MBB*18]
play a central role in the current research on noisy intermediate-scale quantum
(NISQ) devices [Pre18] In a hybrid variational setting, a classical computer is en-
trusted with the non-trivial task of optimizing the parameters of a quantum state.
These algorithms implement a heuristic protocol to approximately solve variational
problems including combinatorial optimization tasks, which are ubiquitous and have
a great practical importance [DP99], and are indeed one of the main drivers of the
industry interest towards quantum computing applications. Unfortunately, the prob-
lems belonging to this class are hard to solve with classical methods [G)82] In this
work we focus on the Max-Cut and the Max Independent Set (MIS) problems defined
on specific graph instances.

MIS is part of a large set of combinatorial problems that include also Max-Clique
and it was chosen because it is particularly suited for the class of quantum computer
that uses neutral atoms. The idea to use neutral atoms for quantum computation
was developed in the early 2000s [BCJ"00] and since then it has reached impressive
results, with the current capability of simulating many-body states of hundreds of
atoms [EWL*21], solving combinatorial problems on graphs [DHK*23], improving on
quantum machine learning [HTDH21] and providing impressive results on quantum
error correcting codes [BECGT23]. This type of computers exploit Rydberg blockade
to entangle qubits. This phenomenon prevents electrons to be excited at the same
time when two atoms are close enough. It turns out that this is a condition for the
solution of many combinatorial problems and for this reason these problems are
used for benchmark on the current NISQ algorithms like QAOA.

Among the hybrid variational algorithms, the Quantum Approximate Optimization
Algorithm (QAOA) [FCCG14] is in fact extensively studied [Z/WC'20] as a promising
algorithm to investigate quantum speedups on NISQ devices and has been im-
plemented on several experimental platforms, such as the Rydberg atom arrays
[EKCT22] we just cited, superconducting processors [HSN*21], trapped-ions simula-
tors [PBB*20], as well as simulated on classical devices [MC21].

Similarly to other hybrid variational algorithms, QAOA consists in a sequence of
parametrized quantum gates applied to a wavefunction, on which an expectation
value of some operator, typically the Hamiltonian, is reconstructed from measure-
ments. The task of the classical subroutine is to optimize the gate parameters
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in order to minimize such expectation value. Every variational quantum algorithm
therefore requires the estimation of the expectation value of a Hamiltonian [HKP20]
for which the number of measurements scales with the dimension of the problem.
Moreover, the interplay between the classical and quantum parts of the algorithm
entails to run the quantum circuit a large number of times, thus being expensive in
term of resources because not all the current proposal for quantum computers have
an efficient repetition rate. In particular, the Rydberg atoms’ platforms on which we
focus in this work run with a repetition rate of 1 ~ 5 Hz [HBS*20]. Finally, there
is the notorious problem of Barren Plateaus (BP) which are large portions of the
optimization landscape in which the gradient becomes exponentially small with the
number of qubits and layers [MBS*18] This phenomenon was proven to be caused
also by the presence of noise [WKJC21] or by the use of a cost function depending
on global observables [CSV™21].

To overcome these issues that emerge both in neutral atoms’ platforms and other
platforms, in fact, an efficient classical optimization routine is crucial. Different
techniques have been proposed for optimizing variational quantum circuits, e.g.
Nelder-Mead [CS17], Machine Learning [WHT16], gradient descent [WHJR18], it-
erative schemes [/WC"20, MMS ™22, MFES19], Gaussian Processes [SKS23, MLIdJ22]
and Bayesian methods [O"17, ZLB"19, SKS*21, WKJC21, TY22]. In particular, to
tackle the problem of BPs it might seem logical to avoid the calculation of the gra-

dient. However, in [ACCT21] it was shown that gradient-free optimizers such as
COBYLA, Powell and Nelder—-Mead suffer from BPs too.

In this thesis work we want to present a Bayesian optimization framework developed
especially to be ran on neutral atom quantum computers. Bayesian optimization
is in fact extremely suitable for gradient-free global optimization of black-box func-
tions [SSW*16, Fral8] and we present it in Chapter 3 without focusing on any
particular type of platforms. We explore its behaviour in comparison with other
global optimizers and we show that the convergence rate to a local minimum is
faster. We demonstrate that the Bayesian approach is efficient in terms of number
of circuit runs and is robust against noise sources. Then, in Chapter 4 we present
the neutral atoms computer of the company PASQAL. We show the modifications
needed to perform QAOA optimized with Bayesian Optimization on their computer
and then the results of a few experiments run on the real machine. These first
sections are developed from our published work [TVTEZ3]

We conclude this part, in Chapter 5 explaining and developing a different technique
called Measurement Based Quantum Computation, how it can be used on Rydberg
atoms and what resources are needed to perform it. This is part of an ongoing work
that will be developed further also after the publication of this thesis.
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3 | Bayesian Optimization for QAOA

3.1 QAOA for combinatorial problems

The QAOA is a variational quantum algorithm that performs hybrid quantum-classical
optimization [FGG14] This algorithm was introduced as an alternative to classical
approximate methods to find the solution to hard combinatorial problems. The main
advantage of using a quantum version of the algorithm is to exploit the search for the
solution in the exponentially growing space of the qubits, with the action of relatively
simple quantum algorithms. Given a cost function C(z) with z = (z1, ..., z;, ..., ZN)
with z; € {0, 1}, QAOA aims at finding the bitstring z* that minimizes the cost. In
order to do so, the cost function is translated into a quantum operator He. This is
done by replacing each binary variable z; with a two-level quantum state |z;) and
each z; term appearing in the cost function with a Pault matrix Z;. Since Z; is diago-
nal on the qubit |z;), He is diagonal in the computational basis |z) = |z1...z ... zn)
for N qubits. This means that applying H¢ to |z) gives the classical cost C(z) of
such string, t.e.

He|z) = C(z)|z). (3.1

The QAOA circuit consists in preparing an initial state of N qubits, usually |+) =
S |2)/V/2N, and then applying two unitary operators alternatively: one generated
by He, the other generated by Hy = ) . Xi, where X; is the flip (NOT) operator
acting on the i-th qubit. The two unitaries together form one layer of the circuit
and the operation is iterated for a number of layers p which is called the depth of
the circuit. The problems that we consider in this work (see Sec. 3.3) have a cost
function at most quadratic in the binary variables. This means that He comprehends
only Z and ZZ; terms. For this reason, we can implement Hc by applying only
rotations =4 on the qubits and gates e 44 on the pairs of qubits. Putting all
together, the QAOA circuit prepares the state

p
16) = |_| e*[BIHMe*[V[HC|_|_>, (3.2)
(=1

where 6 = (y, B) are 2p parameters. By measuring the state |0) in the computa-
tional basis we obtain the probability amplitudes of each bitstring. In this way, by
using relation (3.1) an estimate of the energy £(8) = (6|Hc|0) is obtained. This en-
ergy is then fed to a classical routine which looks for the set of angles 8" = (y*, B)
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that minimizes E(6). Several strategies have been proposed for finding the optimal
parameters 8. In this work we rely on Bayesian optimization.

3.1.1  Combinatorial problems

Max-Cut — Given a graph G = (V, E) where V' is the set of nodes and E the set of
edges, the Max-Cut problem consists in finding a partition of the graph’s vertices V,
P = {W, Vi}, such that the number of edges between V4 and its complement V; is
as large as possible. It is known to be a NP-hard problem [Edw/3]. We can define
the assignment of the nodes to the sets Vj and V4 by labelling with label “0" the
nodes v € Vy and with label “1" the nodes v € V4. In these terms, the Max-Cut
consists in finding the largest number of edges connecting the bits labelled with
‘0" to the bits labelled with “1". On a quantum computer, the labels 0 and 1 are
replaced by the computational basis states |0) and |1) and the cost Hamiltonian
can be written as:

HYC ==Y (1-22)2 (3.3)

(ij)EE

The states with minimum energy then represent the bitstrings that maximizes the
number of edges with two opposite values on their vertices.

MIS — The Max Independent Set problem consists in finding the largest number
of graph nodes which are not adjacent. The corresponding cost Hamiltonian in its

classical formulation [Luc14] is
le +w Z XiX; (3.4)

eV (i.j)eE

where x; = 0,1, w is a parameter that balances the effect of the first term (which
maximizes the number of bits in |1)) and the second one (which prevents neighbour
bits to be activated at the same time). In order to translate the problem into its
quantum version we make the variable substitution x; = (1—z)/2 so that z; = +1, —1.
Then, we replace each z; with Z; and obtain the quantum Hamiltonian (discarding

constant terms):
24— 24— 2 Z Z
HMIS —
E 2 wg (3.5)

(i,/)eE

During the optimization process we monitor the approximation ratio R = E(8)/E¢s
[FGCG14] where Egs is the energy of the solution b'Ltstr'Lng Since Egs < 0 (due to
our definition of the problems’ Hamiltonians (3.3), ), |E(8)] < |Egs| and thus R
is upper bounded by 1. We also look at the hde[ttg cleﬁned as F =|(0|z*|0|z*) |
where |z*) is the state which encodes the solution. The following results are ob-
tatned on two 3-reqgular graphs of 6 and 10 nodes which are plotted in the insets
of Figs. 3.1(a)—(b).

3.2 Bayesian optimization

Bayesian optimization is a global optimization strategy which allows us to find
within relatively few evaluations the minimum of a noisy, black-box objective func-
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Figure 3.1: Energy distributions of graphs. (a) MIS: Distribution of the energies
of the possible bitstrings for the graph of 6 nodes (shown in the inset, nodes in
red correspond to one solution). The red bar to the left highlights the two solution
bitstrings of the MIS problem on such graph. (b) Max-Cut: Distribution of the
energies of the possible bitstrings for the graph of 10 nodes (shown in the inset,
nodes in red correspond to one solution). The red bar highlights the two solution
bitstrings of the Max-Cut problem on such graph.

tion f(0) that is in general expensive to evaluate [SLA12]. The algorithm can be
summarized as follows: (i) it treats the objective function f as a random function by
choosing a prior (also called surrogate model) for f. Several choices for the surro-
gate model are possible [SSW*10], in this work we adopt the so-called Gaussian
process [RWO05]. (i) The prior is then updated through the likelihood function by
gathering observations of f and therefore forming the posterior distribution. (iit) The
posterior distribution is finally used to construct an auxiliary function, called acqui-
sition function, that is in general cheap to evaluate. The point where the acquisition
function is maximized gives the next point where f will be evaluated [Fra18]. See
Appendix AT for an overview of Bayesian terminology.

Since Bayesian optimization requires no previous knowledge on f, it appears to be a
well-suited technique for optimizing the parameters of a variational circuit running
on NISQ devices. In the following sections we describe the Gaussian process, the
optimization routine and the acquisition function in detail.

3.2.1 Gaussian process

Since the function f(8) (8 € A C RY) to be optimized is unknown, we may think of
it as belonging to a random process, i.e. an infinite collection of random variables
defined for every point & € A. A random process is called Gaussian if the joint
distribution of any finite collection of those random variables is a multivariate normal
distribution defined by a mean function p(6) and covariance (or kernel) function
k(6, 8') [RW05]. The mean function is the expected value of the function f, while the
kernel estimates the deviations of the mean function from the value of f:

u(6) = EIf(0)] 36)
k(6. 6') = E|((6) — p(O))(F(8)) — u(6), 37)
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where E denotes the expectation w.r.t. the infinite collection of functions belonging to
the random process. Conceptually, the mean encloses the knowledge of the function
f to reconstruct while k represents the uncertainty we have on such reconstruction.

Since we assume f to be smooth, we choose for k the Matérn kernel, a stationary
kernel [RWO05] that depends on the distance between the points 8 and &', defined
as

o SO "

where ||-|| is the 2-norm and ¢?, gf, and ¢ are three hyperparameters characterizing
the Gaussian process. The hyperparameter o defines the variance of the random
variables and ¢ is a characteristic length-scale which requlates the decay of the
correlation between points: in the limit of £ — oo all points are equally correlated,
for £ — 0 all points are uncorrelated. The noise parameter o3, is a value added to
the diagonal accounting for random fluctuations around the true value of f(6).

k(6,0) = o’

3.2.2 Bayesian optimization algorithm

The main steps of the algorithm for Bayesian optimization can be summarized in
the pseudocode in Algorithm 1 (see also Appendix A.1.1 for details).

Algorithm 1: Pseudo-code for Bayesian optimization

Set the prior on f as a Gaussian process;

Evaluate f at Ny different points 6;;

Define the initial training set D = {(6;, f(6,))} 2

Compute the hyperparameters o?, O,ZV, ¢ based on D;

Set the quess for the minimum of f to f,, = min[{f(6)} 2]

while n < NBAYES do

Update the posterior distribution on f using the training set D;
Compute the acquisition function with the updated posterior;

Find @ that maximizes the acquisition function;

Evaluate f(6);

if £(6) < f, then
‘ Set the guess for the minimum of f to f,, = f(6);
end
Append (B, f(8)) to D;
Compute the new hyperparameters a’, v,
Increment n;

end
return f,

The optimization starts by a warm-up phase where a number Ny, of evaluations
of the objective function f is performed. These evaluations take place at randomly
chosen values of the points 6; and are collected in the training set D = {(6;, y; =
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f(@l-))}lN:VX of the optimization. Given the set D, we define the design matrix © =
(81,...,0y,) with the points and the vector y € R™ with the observations via
y=(yr, ..., yn,) We form the covariance matrix K € RNw*Mv by evaluating the
covariance function in Eq. (3./) for each pair of points 8;, 0, € © via

I<[j = /((9,, 91), (39)

where K; ; denotes the (i, j) element of the matrix K. The hyperparameters entering
the kernel function (Eq.(3.8)) are optimized at this step, as explained in Sec. 3.2.4.

The training set will be used at each step of the optimization to incorporate the
acquired knowledge in the Gaussian process. This happens in two steps. First, the
Gaussian process prior is conditioned on the observations in D [RW05]. Conditioning
is equivalent to a Bayesian step in which we multiply the prior with the likelihood,
thus obtaining a posterior distribution (see Appendix A.1). Thanks to the properties
of Gaussian distributions, the posterior is still described by a Gaussian process
multinomial distribution but it is characterized by a posterior mean p/ and covariance
k' given by

=k (K+al) "y (3.10)
kK'=k(0,0)—k" (K+dil)" «

Here, O is a generic point in A and k is a column vector formed by evaluating the
covariance function k between the generic point 8 and all the points in ©, t.e. its j-th
element is k; = k(0, 0;). Eq. (3.10) shows that the new mean is a linear combination
of the observations y.

3.2.3 Acquisition Function

The next step in the Bayesian optimization is computing the acquisition function,
whose maximum gives the next point at which to evaluate the objective function. A
common choice of acquisition function is the Expected Improvement (El): this function
suggests which points, on average, improve on f,, the most [Fra18] This choice
corresponds to defining the acquisition function EI(6) = E[u(0)] as the average
value of the utility function u(8) = max(0, f,, — f(0)] such that the lower f(6) is with
respect to the current minimum, the larger the utility u(6) will be.

By considering that f(0) is a Gaussian process, we can obtain an analytical expres-
sion for EI(6) as
EIB) = d(2)(f,, — 1) + d(2)K, (3.12)

where 1/ and k" are obtained for the point 8 by using Egs. (3.10) and (3.11); ®(-) and
¢(:) are respectively the cumulative distribution function and the probability density
function of the standard normal distribution and the quantity z is defined as z = (f,,—
t/)/k’. The two terms in Eq. (3.12) represent the trade-off between exploitation and
exploration: the first term, being proportional to the difference between the current
minimum and the mean value of the posterior, brings the optimization towards points
with lower 1" whereas the second one promotes points with larger k’, L.e. with higher
uncertainty. The point @ that maximizes the acquisition function is then added to
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the training set D and the algorithm'’s loop is repeated (as written in Algorithm 1).
Its value is found by using the differential evolution algorithm [PSL06], a population-
based meta—heuristic search algorithm (see Appendix A.2.1 for details).

3.2.4 Hyperparameters

We are now only left with the task of picking the best hyperparameters o?, g3, ¢
for the Matérn kernel. This is typically done by considering the marginal likeli-
hood [RWO05] (and Appendix A.1T)

ply|©) = / plylf, ©)p(f|O)df 313

where the prior p(f|®) and the likelihood p(y|f, ©) are Gaussian and the marginal-
ization is done over the function values f. Given the Gaussian nature of the likelthood
and the prior, a closed form of the log marginal likelthood can be obtained (for the
standard derivation of this formula see for example [RWO05]):

1
logp(y|®) = —5y" - (K + o) "+ y
1
—5 log det(K + oxl) (3.14)
N
) log 2s7.

where N is the number of observations in the design matrix ©. In Eq. (3.14), the
first term specifies how well the process fits the data, the second term instead
acts as a regularization factor on the elements of the kernel matrix. When fitting
the Gaussian process to a new set of points, the best hyperparameters (32, 52, ?)
can be found by maximizing the log marginal likelthood in Eq. (3.14). For the
optimization of log p(y|®), we use the quasi-Newton method L-BFGS [LN89] with
multiple restarting points which proved to be efficient on the flat landscape of the
likelihood (see Appendix A.1.1 for details).

3.3 Simulations Results

In this section we apply the Bayesian optimization to the QAOA parameters. We
consider two well-known combinatorial problems defined on graphs, the Max-Cut
and the Max Independent Set.

3.3.1 QAOA at low vs. large depth

We start by looking at the QAOA at depth p = 1 for the 6 nodes graph. It corre-
sponds to a shallow circuit that depends only on two parameters 6; = (y;, B1). We
consider the MIS problem, and we plot the landscapes of both the energy E(64)
and the fidelity F(6,) (Fig. 3.2(a) and (b), respectively) for values of y;, By € [0, 7]
due to the symmetry of the problem. We see that the landscape of the energy,
which is the function to minimize, is rather flat with two global maxima and minima,
corresponding to the best solutions possible at p = 1.
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Figure 3.2: QAOA at p = 1. (a) Landscape of the energy E(6+) obtained on the
6 nodes graph solving the MIS problem. The red cross indicates the angles corre-
sponding to the final state |8¢) with largest fidelity. (b) Landscape of the fidelity
F(64). (c) Squared amplitudes of the two states |8¢), |6r). The solution bitstrings
are highlighted in red. Values of the qubits are given in the order shown in the
inset of Fig. 3.1(a).

Interestingly, we find that the QAOA state |6g) = ) , a,.r |z), corresponding to the
parameters which minimize the energy, is not the state |6g) = ) , a,r|z) with
largest fidelity. To see how they differ we plot the squared amplitudes |a, £|> and
|, F|? of both states in Fig. 3.2(c) as histograms. The fidelity of |6f) w.rt. the
solution |z*) is, as expected, much larger than that one of |6g), yet the latter has
a lower energy because it has many non zero amplitudes along excited states with
low energy. This unravels the problem of optimizing the QAOA parameters by only
looking at the energy E(6). There is a large concentration of excited states with
energy comparable to the energy of the ground state, as shown in the histograms of
panels (a) and (b) of Fig. 3.1. It is difficult to increase the amplitude corresponding
to the solution when many other states can contribute with low values of the energy.

The difference between lowest energy and highest fidelity points is guaranteed to
disappear theoretically for p — oo. For this reason, we apply Bayesian optimization
to the problem and we show in Fig. 3.3 that the approximation ratio and fidelity
both tend to 1 for p ~ 12. Yet, we already see a good performance at p = 4 where
R ~ 0.7 and we have F ~ 0.5 meaning about a 50% chance of measuring the
solution on the state obtained with QAOA.
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Figure 3.3: Results increasing depth. Average approximation ratio (plotted as
1—R) and fidelity F for increasing values of circuit depth from 1 to 12 over 50 runs.
Shaded areas correspond to one standard deviation. Results were obtained on the
0 nodes graph of Fig. 3.1(a).

3.3.2 Comparing resources

Increasing the depth of a variational circuit increases the number of parameters that
must be optimized. In turn, this is expected to increase the number of calls to the
quantum circuit needed to reach a good approximate solution, which is a problem
in the current NISQ era, since running a quantum circuit can be costly due to both
state preparation routines and re-calibrations of the device.

For the noiseless circuit, it is very clear (see Figure 3.4) that the Bayesian approach
can mitigate this problem better than any other tested techniques, from different
points of view (such as number of calls, number of steps, number of measurements).
Let us stress that this approach gives a fidelity that is always higher than the
other methods at a fixed number of steps (and fixed p, see Figure 3.4c). All the
simulations were run on python. The quantum circuit was simulated using the
qutip package [JNN13], the Bayesian optimization part was built by expanding the
class GaussianProcessRegressor of scikit-learn [PV( 11| and the other global
optimizers were implemented using the standard scipy.optimize class [VGO™20]

3.3.3 Slow Measurements

The energy E(0) is obtained by measuring the QAOA state after running the circuit:
we refer to these two operations combined together as a “shot”. By measuring on
the Z basis at each shot we get a bitstring, and we calculate its classical energy
associated to the combinatorial problem. The precision in the reconstruction of
E(0) depends on the number of shots Ns. Since we consider this as a multinomial
sampling problem we expect the variance of the reconstructed energy to depend on
Ns'. In many scenarios of NISQ devices it is necessary to balance Ns with the
desired standard deviation. For this reason, we compare the average approximation
ratio obtained with the exact energy (simulated) with the energy reconstructed with
a limited number of shots.

We show in Fig. 3.5 such comparison with a number of shots Ns equal to 1024,
128, 64, 16, 4. Looking at the approximation ratio R (Fig. 3.5(a)) we see that taking
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Figure 3.4: Comparison among optimizers. (a) The plot shows the average number
of calls N¢ to the quantum circuit of each optimizer in order to obtain the same
approximation ratio as the Bayesian optimization. (b) - (c) Average approximation
ratio (plotted as 1—R) and fidelity during the optimization with the different methods
at p = 7 over 30 runs. Shaded areas correspond to one standard deviation. Results

are obtained on the 10 nodes graph of Fig. 3.1(b).

Ns = 128 shots reduces R by 5% w.r.t. Ns = 1024 and going to Ns = 64 reduces
it by a further 5%. This behaviour then stops and even reverses its trend. In fact,
we even see an average increase going from Ns = 16 to 4. This is understandable
since the reconstruction of the energy with as little as 4 shots is not indicative of the
real energy of the state. Specifically, from a final QAOA state we might sample the
solution bitstring 2, 3 or even 4 times out of 4 and the expectation of the energy on
these three samplings would be very different. This behaviour is indeed confirmed
also by the fidelity in Fig. 3.5(a) which follows the same trend as the approximation
ratio.

(a) (b) ©

0.54 ——y 0 |

041" il !

031 = 1071
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0.1 ".___——.’ 3 - k~cmcl noise

10 4 fit
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Figure 3.5: Slow measurements. (a) Average approximation ratio (plotted as 1—R)
and fidelity (F) as a function of the number of shots Ns. The 1/Ns = 0 points
indicates the exact evaluation of the energy E(8). Shaded areas correspond to one
standard deviation. (b) Kernel noise a3, learned by fitting the data at each step of
the optimization for different number of shots Ns. (c) Average kernel noise learned
by the Gaussian process as a function of Ns (blue circles). The plot also shows a
linear fit (~ 1/N'1, orange line) of the logarithm of the data.

To have a better understanding of how the algorithm adapts to the sampling noise,
we look at the kernel noise parameter g, which is learned by the Gaussian process
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Figure 3.6: Approximation ratio R and fidelity F for different values of the quan-
tum noise ogpn. The noise is simulated by adding random Gaussian noise with
mean zero and standard deviation opn to the variational parameters (y,8). The
plot shows the effects of the noise opn on the final obtained approximation ratio
R (fidelity F) as a function of the QAOA depth p for different opn. Shaded areas
correspond to one standard deviation. The results are obtained on the graph with
10 nodes in Fig. 3.1(b).

during the fitting at each step of the optimization (see Appendix 3.2.4 for details on
the noise hyperparameter). The plot in Fig. 3.5(b) shows that, after an initial phase,
the kernel noise sets at a specific value at around 400 steps. In addition to that, the
lower the number of shots the larger the noise parameter learned. In fact, by fitting
the average kernel noise found at the end of the training (Fig. 3.5(c)) we obtain
that o, follows a power law with Ng"'. This trend is comparable to the expected
trend for the variance Ng' of the reconstruction of the energy. This shows that the
Gaussian process adapts to sampling noise.

3.3.4 Noise Simulation

Another relevant issue in the state-of-the-art NISQ devices are the sources of quan-
tum noise which can interfere with the quantum circuit. Every device has different
sources of noise depending on the underlying technology. In order to simulate
it without specifying the device technology we add random noise on every QAOA
parameter. In this way Eq. (3.2) for the Max-Cut problem is modified as:

P o
|9> _ |_| ol Y BiXi €[Z<‘J> Vz(l'j)ZtZ/ | _|_>’ (31 5)
(=1

where B} and y,([’j) act differently on every qubit/edge of the graph at every layer
because they are affected by Gaussian random noise with mean zero and standard
deviation ogn. The noise model we are considering, although very simplified, can
be considered as an example of coherent control errors that can be caused e.g. by
gate over-rotations due to gate-time mis-calibrations. In Fig. 3.6 we plot R and
F as a function of depth at different values of ooy on the 10 nodes graph for the
Max-Cut problem.
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By increasing ogn and p, we expect to obtain a worse approximation ratio R because
the error accumulates along the circuit as the number of parameters grows. Indeed,
as we can see in the figure, from p > 5 the obtained R decreases w.r.t. the noiseless
case, decreasing even by 20% for p = 9 with ooy = 0.1. Considering ooy =
0.001,0.01, both R and F grow/remain stable up to p = 7 which indicates that, for
shallow circuits, Bayesian optimization is robust against noise.

We care to stress that the case opn = 0.1 was considered in order to show the
effect of an exponential growth of machine noise. Realistically, a Gaussian white
noise with variance 0.1 affecting each of the parameters (in range [0, 77|, see Ap-
pendix A.1.1), would completely destroy the state preparation. In fact at p = 9 the
fidelity F is the same as p =1 (Fig. 3.0).

We compare the results of our algorithm with the second best performing algorithm
of Fig. 3.4, basin-hopping. It is clear that when subjected to noise this algorithm
performs poorly: considering the approximation ratio, basin-hopping shows barely
any improvement with respect to the depth of the circuit with the results starting
to plummet from p = 3 (Fig. 3.6). Most importantly, the fidelity peaks at p = 3
with £ =~ 0.15 (Fig. 3.6) and then remains contained under this value. About the
seemingly increase in fidelity with the noise that can be seen at p = 3, we also
notice that the behaviour inverts going up to p = 7 so we do not consider it
relevant and assume that this means that the results are too random and basin-
hopping is thus non-reliable. The poor performance in terms of fidelity confirms
that basin-hopping, while being an effective algorithm in the noise-free scenario —
visible thanks to the high, yet costly, performance at ooy = 0 (cf. Fig. 3.4) — is not
apt for optimization in the presence of noise. This is probably due to the fact that
basin-hopping is a global optimizer that exploits a local gradient-based optimization
routine (see Appendix A2). Calculating gradient in the presence of noise is in fact
non-optimal since even a small variation of the parameters can impact greatly the
evaluation of the function, returning a gradient that does not represent the local
structure of the landscape.
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4 | QAOA with Bayesian
Optimization on Rydberg Atoms

In this chapter we introduce quantum computation with neutral atoms, one of the
many technologies that is currently being investigated to implement a quantum
computer or, better, a Quantum Processing Unit (QPU). The reason for this multitude
of methods is that each technology presents pros and cons and at the moment they
all seem comparable to one another. In this chapter we present this type of platforms,
focusing on how they can be used for an analog version of QAOA.

The core part is presenting the data we collected from running the Bayesian Opti-
mization on the Rydberg QPU of the company PASQAL which was one of the main
goals of my PhD. We start by explaining how to run QAOA in the Analog computa-
tlon context that is allowed at PASQAL highlighting the main differences with the
digital approach to QAOA presented in the first section.

4.1 Quantum computing on a Neutral atoms device

The main advantages brought in with this method, to cite a few, are: the possibility
to manipulate the positions of the atoms with ease, mediated with tweezers both in
2D and 3D [BLdAL"18], and ability to create entanglement between qubits.

In this promising technology, an array of atoms is trapped with tweezers and the
electron living in the most excited state is allowed to transition between two states.
This two states system is considered as a qubit. The main properties of this qubit is
that it does not interact with its nucleus and it can be coupled to a state with large
excitation that prevent two qubits close to each other to be excited at the same
time. This is the so called Rydberg blockade effect and it can be exploited to create
entanglement between qubits. By applying a set of laser pulses to the qubits, we
can show how to perform the basic gates of quantum computation and thus perform
standard ‘digital’ quantum computation. In a similar way we can also perform
‘analog’ quantum computation by applying pulses to all the qubits at the same time.
In particular, these architecture gives the possibility to manipulate the positions of
the atoms with ease, mediated with tweezers both in 2D and 3D [BLdL*18] and
scaling possibility in the order of the thousands [SWM10] These properties have
attracted much interest by both academia and companies [HBS™20] It was, in
fact, shown that Rydberg atoms are able to simulate quantum phases of hundreds
of sites [SLK*21] [CBB*23] up to 256 [EWL"21], and to perform algorithms as
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quantum optimization [ADL 23, EKC22].

Rubidium atoms

The core component of quantum computation is the qubit, in the Rydberg atoms
platforms of PASQAL, a qubit is made with a Rubidium atom. Rubidium’'s atomic
number is 37 with electronic configuration 5s', so its energy levels are completely
filled and has one single electron in the 5S shell. The isospin is [ = 3/2 and the
angular momentum is / = £1/2. This gives an hyperfine structure of F = J+/=1,2
which identifies the two splitting states of the groundstate. These two excited states
of the atom are taken as reference for the |0) and |1) state. The atoms/qubits are
both positioned and controlled with light. The valence electron is also coupled to
a highly excited state |r), usually with energy number 60. This is the Rydberg
state that allows to create entanglement between qubits as shown in the following
section.

Rydberg blockade

A Rydberg atom is an atom where one or more electrons are pushed to a very high
energetic quantum number n. In the case of rubidium we go from 5s state to 70s
state. In this regime there can be a strong Van der Waals coupling between two
excited electrons. So, imagine a situation where an electron in a groundstate |g)
like the rubidium 5s is coupled to an external field with a Rabi Frequency Q) which
makes it jump to the Rydberg state |r). If we have two electrons at distance R and
we excite the groundstate |gg) to |rr) we will have a Van der Waals term Cg/R°
(with G5 = 4000 in rubidium at 5s) which makes the energy of |rr) larger than
the other combinations like |gr) (which are not effected by the distance R). This
makes it impossible to reach the state |rr) with the Rabi frequency and thus it is not
accessible. Consequently, the two electrons system oscillates between |gg) and an
entangled pair |gr)+ |rg) with enhanced Rabi frequency v/2Q. This happens in the
regime where the Van der Waals interaction term is larger than the energy of the
Rabi frequency, that is AQ << Gg/R® which happens when the distance between
electrons is R << R, with R, = (G/hQ)"®.

The main difference from other QC platforms [HBS™20), like superconducting, is that
the register of qubits in neutral atom systems is created at the beginning of the
computation and destroyed at the end. For this reason we can follow three main
steps of computation:

e Register preparation
e Quantum processing: Digital and Analog
e Readout measurement

The three operations combined require about 200 ms giving a not so large repetition
rate in the order of 1 ~ 5Hz, the quantum processing only 100 microseconds or less.
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Figure 4.1: Setup of the quantum computer. Three light sources control the qubits:
red light traps the qubits, purple light are the optical tweezers that rearrange their
position, green light is the fluorescence camera. Credit for the picture: [HBS™20]

411 Register loading and Readout

We start with a dilute vapor of Rubidium inside an ultra-high vacuum system at
room temperature. Then a cold ensemble of 10° atoms in 1 mm? volume is prepared.
After that, a trapping laser system isolates every atom at a distance of about one
micrometer (red light in Fig. 4.1), each atom is controlled by an optical tweezer.

The camera (green light) tells the luminescence of each atom to see where they are.
The atoms are moved by the tweezers from site to site with a 99% success rate. An
algorithm decides what moves to make to design a desired shape on the fly. The
tweezers action takes about 1 ms.

Register Readout Reading the state of qubits is done with a camera that gives
green fluorescence to |0) state qubits while |1) state qubits result dark. The effi-
ciency of this operation is reported to be of 98.6% [HBS*20] in the white paper by
PASQAL, comparable to superconducting quantum computers.

4.1.2 Digital vs Analog Quantum processing

State-of-the-art platforms are currently running algorithms in two modes: digital
and analog. The main difference is that the former entails acting on single qubits or
couple of qubits at the same time while the latter means acting on all the qubits at
the same time. At the moment of writing and running the experiment on the PASQAL
machine only the analog approach was implemented so we will focus mostly on the
latter. A third option, measurement-based, is the main topic of the remain of the
chapter.

For a quantum computer to be universal it needs to correctly implement single qubit
arbitrary rotations and an entangling gate like CNOT because they virtually realize
any possible quantum circuit.

Single qubit rotation
The beams interact with the atoms and are controlled by three parameters:

1. Rabi Frequency Q: is the strength of the laser, it is proportional to the am-
plitude of the laser electric field and the electric dipole of the qubit;
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Figure 4.2: Implementation of the CNOT with 3 pulses. (a) the sequence of pulses
that creates entanglement. Pulse 1 and 3 act on the control qubit applying a
rotation while pulse 2 acts on the target qubit with a full 2s rotation. (b) Inserting
a CZ between consecutive Hadamard gates produces a CNOT gate. Credit for the
picture: [HBS"20]

2. Detuning 0: the difference between the qubit resonance and the field frequen-
cies;

3. Relative phase ¢.

Applying this laser to a qubit produces an overall Hamiltonian acting on qubit g;:

Hy, = hQ(t)[cos((/))axl — s'm((p)agl_] — ho(t)o;, = hQ(t) - 0; (4.1)

q

where Q(t) = (Q(t) cos(¢), Q(t) sin(¢), 0(t)). This means that if we put the phase
equal to zero ¢ = 0 and make the pulse time-independent Q(t) = Q, we have

H, = hQai, — hooy, (4.2)

which corresponds to a rotation around the vector (), 0, —0), on the X — Z plane
of the Bloch Sphere. We can also generate other one-qubit gates acting with a
constant Q pulse for a time 7

e NOT GATE: Simply put 0=0 and Q1 = ;
e HADAMARD: Setting ¢ = 0, 0 = Q and Q7 = 77/2.

CNOT

CNOT is implemented on Rydberg atoms by creating first a CZ gate and adding to
Hadamard gates. Consider two qubits at a distance lower than the Rydberg radius.
Both are coupled to a pulse with an Q Rabt frequency that puts a qubit in |0) in
oscillation with |r). It was shown [HBS20] that we need only 3 pulses to create
the CZ gate: a s rotation on the control qubit (the first one), a 27 rotation of the
target and then another s on the control. See Fig 4.2 for more details.
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4.1.3 Analog Quantum Processing

In the analog framework we couple the qubits only to the groundstate-Rydberg
transitions, therefore we only address two states: the groundstate, the |0) state,
and the Rydberg state, that will be from now on called |1). All the qubits receive
the same pulse that couple the |0) and the Rydberg state. This results in an evolution
of the whole register under the effective Ising Hamiltonian:

h X C6
H(t) = zo(t)ZUj —h5(t)an+ZEn,-nj (4.3)
j j i+ U
where n; = (14 07)/2 is the state occupancy of the Rydberg state. The first

two terms are induced by the laser and can be adjusted by changing its intensity
and frequency, for spins they correspond to the interaction with, respectively, the
perpendicular and parallel component of an external magnetic field which makes
the spin turn according to the Larmor precession. The third term is once again due
to the Van der Waals interaction that prevents neighbouring atoms to both have
an electron in the |r) = |1) state. Clearly, it takes the same form of the usual
interaction between spins of the Ising model.

In analog mode there is no freedom in accessing single qubits, thus it all boils down
to deciding the frequency Q, 9, ¢ of the laser and its duration. We will give more
details on this in Sec. 4.2.

41.4 Noise Sources

Quantum computers like the Rydberg atoms QPU are isolated to perform com-
putations. Therefore, performing quantum computation means to deal with many
sources of noise that greatly affect efficiency. We will present here the most signif-
icant sources that can also be simulated on the open-source package developed by

PASQAL: Pulser [SGD*22].

Doppler damping

Since the atoms are cooled to a temperature in the order of T ~ 50uK they experi-
ence a Doppler-shifted detuning frequency. At the simulation level this is obtained
by adding a random noise to the detuning 0 acting on each qubit. The noise is
generated from a normal distribution centered at zero with deviation op. Then
the detuning of each qubit is modified by adding this qubit-specific noise. The op
standard deviation is calculated as:

KsT
op = Kerr Ve (4.4)
with KEFF = 8.7um™", kg is the Boltzmann constant, M = 1.45 x 10~ is the
mass of Rubidium® and T is the temperature. The default temperature is T = 50uK
which gives gp = 0.60014.
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Amplitude

This dumps down the value of the amplitude (Q) on each qubit depending on its
distance from the center of the graph, which is where the laser is pointing for a
global pulse. The position dependent modification to Q is given by:

()2
Q) =Q x e x e W (4.5)
where € ~ N(1, 10*3), wg is the laser waist and r is the distance. We can calculate
that this amplitude error decreases Q(r) by 5% for qubits placed at least 33p/m away
from the origin. This will not be a problem for the graphs considered in this work
that at the most distance about 20um from the center of the beam.

SPAM

With SPAM we mean "State preparation and Measurement’ errors, the ones that
we tackled the most in this work. For the state preparation part there is always a
probability n of not loading correctly the initial state of each qubit. At the simulation
level, for every qubit a random number is extracted from O to 1, if it is less than n then
that qubit becomes a bad atom. A bad atom is an atom which is simply excluded
from the simulation, so it does not receive a sequence and it is not measured.

For the measurement part we have two sources of error:

e False positives: an atom in |0) is mistakenly seen as in |1). We associate the
€ parameter to this error.

e False negatives: an atom in |1) is mistakenly seen as in |0). We associate the
€’ parameter to this error.

common values obtain through calibration of the PASQAL's QPU even at the moment
of the experiments are € ~ 5% and €' ~ 8 — 10%.

Dephasing and Depolarizing channels

There is a final component of effective noise channels not due to the lasers or the
preparation scheme but to the interaction with the environment. The simulation of
this noise sources requires to use the density matrix representation of the state
and to solve the noisy Lindblad equation instead of the Schrodinger’s one. The two
main sources of this noise are:

e Dephasing channel: it represents the loss of coherence (the non-diagonal
terms in the density matrix) and is implemented with random Z rotations
happening with probability p.

e Depolarizing channel: a more generic error representing the interaction with
the environment that erases the quantumness of the state. At the simulation
level is represented by an evolution that evolve the density matrix to the
completely mixed state with probability p.
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4.1.5 Pros and Cons
The use of Rydberg blockade introduces two advantages then:

1. Large connectivity, which brings lower overhead in the number of qubits
with respect to general nearest neighbour structures such as superconducting
qubits;

2. Easy implementation of 2-qubits and more-than-2 qubits gates like Toffoli
(which requires only 7 pulses);

3. Less computation time (1MHz clock for the computation);
Other advantages already mentioned are:
1. Possibility of arranging the qubits in 2D or 3D shapes;

2. High scalability in the number of qubits, limited only by the number of avail-
able optical tweezers.

The negative side of this platform are mainly:

1. Low repetition rate, that is currently in the order of the Hz making it very
costly, in terms of time, to make many acquisitions of the final state.

2. Measurement error which influences greatly the reconstruction of the wave-
function with many bitstrings wrongly measured.

3. Destructive measurement, at the moment of writing the only measurement
allowed consists in getting rid of all the qubits in Rydberg and measuring the
remaining ones on the ground-state. This completely destroys the state of the
system.

4.2 Analog QAOA on Rydberg atoms

The purpose of this section is to show the optimization loop that was implemented
on the real machine and understand how QAOA needs to be modified when run
in analog mode. This means applying the same pulse to every qubit and thus not
being able to compile precisely the Hamiltonian that we want. Nevertheless, there
is @ way around that: considering problems that are directly encoded in the atoms’
evolution.

The experimental loop of QAOA is represented in Figure 4.3. The main functioning
runs exactly in the same way: a set of parameters is fed to the quantum part of
the algorithm and a value proportional to the energy of the system is given back
compared to the simulations performed in Chapter 3. In addition to that, we have
to consider a few intermediate steps, in particular the problem, the graph loading,
the sequence of pulses, the measurements of the state and the post processing of
the statistics.
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Repeat for
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Figure 4.3: QAOA loop. We start with the MIS problem defined on a chosen graph.
The optimization loop consists in the quantum part and the classical part. In the
quantum part, we start loading qubits on the register in positions that encode the
graph of our problem, apply a sequence of pulses with parametric duration, acquire
the state through measurements and repeat this for a number of shots. From all the
measurement we construct a statistic of the final state, we apply a post-procedure
if necessary and extract the energy. The parameters and energy are then fed to
Bayesian Optimization.

421 The MIS problem

We decided to tackle the MIS problem, introduced in Chapter 3. There are multiple
reasons for this. The first one is that the Rydberg blockade naturally prevents
neighbouring qubits to be excited at the same time and this is also a condition of
the MIS problem. This cuts down also a portion of the Hilbert space that would not
hold the solution state.

The second one is that QAOA needs the alternation of the problem Hamiltonian
and the mixing Hamiltonian, since we are in analog mode we cannot pick a driving
Hamiltonian that suits us. Luckily, MIS is an ideal problem because the Raman
pulse induces an evolution by a Hamiltonian such as:

Hy=06) oal+U> niny, (4.6)
i (Lj)€E

with n; = (1 + 0;)/2, which is the quantum translation of the MIS problem classical

Hamiltonian, tLe.:
Hwis = ZXL' +U Z XiX;
i (ij)eE

4.2.2 Graph Loading

As we have seen in Sec. 4.1.1 to load qubits into the platform means to isolate each
qubit in a optical tweezer and as we know this process has a success rate of 50%
meaning that the optical tweezer is either empty or filled with one atom. After the
loading the atoms are generally rearranged to the desired positions. In our project,
we need to reproduce a graph in the atoms’ platform. That means that we need each
node in the graph to be represented by an atom and all the neighbouring nodes to
have the same distance, in order to experience the same Rydberg blockade.
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Figure 4.4: Layout and graphs Triangular layout (left) with 60 traps. (right) Some
of the graphs used for simulation and for RUN1T and RUN2 (see Sec. 4.4) loaded on
the triangular layout of traps on the left.

A convenient way to do this is with a trap layout that is already set to a specific
geometry. For our experiment we decided to use a triangular lattice trap layout,
which is shown in the upper corner of Figure 4.4. To create a graph, we only need
to decide the traps of the triangular layout.

For the simulation and the experiment we used graphs with an increasing number
of qubits from 4 to 10, the N = 6 was used both in simulation and in the experiment
while N = 11 was used only in the experiment because the full simulation of noise
is very memory-demanding. The graphs are shown in Figure 4.4.

4.2.3 The sequences

The pulses available for analog quantum computation are the Raman and the Ryd-
berg pulses and were introduced in chapter 4. Both pulses have global addressing
meaning they address all the qubits at the same time. The difference is that the
Raman pulse applies a phase to each qubit, whereas the Rydberg pulse also intro-
duces a o, rotation on the qubits. The pulses can be shaped with varying Q(t), o(t)
but we decided to keep them constant in time for simplicity.

As it is customary in QAOA we decided to add an initial driving Rydberg pulse with
a total angle of ;1. With a selected constant () = 2ot MHz this means that the initial
pulse lasts for 250 ns. This is similar (but not equivalent due to the interaction term)
to initializing all the qubits to |+). Following that, we alternate the Raman and the
Rydberg pulse p times where p = [0, 5] for parametric times: 67, 65. Thus, we have
the customary 2p parameters of QAOA, the Rydberg pulse being always the last
one before measurement because adding a phase would not affect it. An example
sequence showing a QAOA instance of depth 1 is shown in Fig. 45
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Figure 4.5: Example sequence. Sequence sent to the Rydberg global channel
addressing all the qubits. The Q) pulse (green) is coupled to and drives the transition
from the ground state |0) to the Rydberg state |r). The detuning pulse (purple)
applies a phase to the qubits. On the x axis we have the time. A typical instance of
QAOA corresponds to a set of parameters deciding the length of this two alternated
pulses repeated for p times.

There are other specifics of the PASQAL's architecture that were taken into account
for the optimization of the sequences:

e The minimum pulse is 100 ns. This is because even for a constant pulse there
is a ramp time during which the signal frequency increases from 0 to the
desired value;

e The maximum length of a pulse was set to 1000ns. This is because with
Q = 251 MHz a pulse of 1 ps corresponds to a 2 angle.

e The total sequence of pulses cannot exceed 4000 ns due to decoherence (3750
considering the initial pulse). This does not affect the choice of parameters at
low depth (p = 1,2) but for p > 3 we had to constrain minimization with the
inequality ), 0 <= 3750.

All in all, we decided to restrict the depth to a maximum of p = 5, that is 10
parameters and the parameter search was limited by the linear constraint just
mentioned.

4.2.4 State reconstruction

The final state of a circuit is obtained with a fluorescence image that shows green
spots for each qubit int the |0) state while the qubits on |1) (that is, the Rydberg
state |r) are lost and therefore) will be dark. As already explained above there is
an important source of error at readout that can affect greatly the signal. At the
time of launching the experiments there was a € ~ 5% of false positive (mistaking
a 0 for a 1) and almost € ~ 10% of false negative (mistake 1 for a 0). In the next
section we will see how simulations and the real experiment were affected by this
noise and how we dealt with it. This will introduce a simple post-processing step
inside the optimization loop shown in Fig. 4.3.

Another element restricting our research was the number of shots available in total.
When working on a time budget it is important to select a priori how many shots to
use to reconstruct the energy of the state. Our analysis of Bayesian Optimization in
Chapter 3 showed us that we can go very low with the number of circuit repetition.
This is a good sign since we have a limited number of shots and the repetition rate
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of PASQAL platform is in the order of 1 ~ 3 Hz. We only need to check if this holds
also in the Rydberg atom’s case: for this reason we ran simulations and ran the
optimization with as few shots as 16 per step.

4.3 Simulation Results

We end the chapter with a set of results that combine the Bayesian Optimization
with the Rydberg platform introduced in this chapter. We present two sets of results:
simulations and experiment. The simulations were run using Pulser [SCD*22:
the open-source python package of PASQAL developed for simulating sequences
of pulses on registers of neutral atoms and especially to simulate the specifics
platforms that the company offers. The experiment, instead, shows the results we
obtained running a set of sequences and optimization loop on the real platforms in
collaboration with the team of PASOQAL.

The simulations were ran to gain intuition on how the optimization works on the
Rydberg's QPU. During optimization we keep track of many parameters related both
to the quantum state and the Bayesian Optimization. In this first part of the results
we only concentrate on the state and plot what we call the QAOA parameters. We
defined them as:

e Approximation Ratio R, We define it as
R = E(0)/Ey

, where E(6): is the energy obtained running QAOA with parameters 6 and
Eq is the energy of the solution. We often use also the inverse approximation
ratio 1 — R;

e Fidelity F: calculated as

F = (4(8)[5)

where |Sp) is an eigenstate in the computational basis representing the solu-
tions bitstring (or a superposition of multiple ones if the solution is not unique)

e Solution Ratio Sr: it is defined as

p(So)
S, =
p(Sond)

where p(Sp) is the probability of measuring the solution state |Sp), while
p(Syna) the probability of the second most likely state. Therefore S, is a
measure of how much the solution stands out between the other states. S, €
[1,inf[ if Sp is the most measured state, we set it to 0 otherwise by choice.

First of all, we are interested in seeing how the algorithm scales with the system
size. For this reason we averaged the QAOA parameters for 10 runs with number
of qubits varying in N € [4,10] — some of the graphs are shown in Fig. 44 — and
plotted the results in 4.0.

By comparing the approximation ratio R, the fidelity F and the solution ratio S, we
notice a diminishing performance with the increase of the number of qubits. This
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Figure 4.6: QAOA simulated on Pulser at different graph sizes. Averaged

R:approximation ratio, F:fidelity and S,:solution ratio (explained in the text) over 10
runs at different graph sizes N € [4,10].

is not surprising since a bigger graph means a more difficult optimization and the
presence of noise increases its effect when enlarging the graph. The simulations
were ran considering 10 initial training points and 190 steps of optimization with
1028 shots. The parameters R and F do not increase much after the 90" step
contrary to S, that for the specific cases of N =5,6,9 even doubles in the second
half of the optimization.

We compare QAOA results also for different number of shots shown in Figure 4.7.
From this results we see that it is possible (if not even better) to optimize with a
lower number of shots. Yet, the fact that the 1028 shots optimization (which we
assume to be an almost loyal reconstruction of the real state) has always a worse
performance than the others means that the state reconstruction with few-shots has
a tendency to over-estimate the energy.

4.4 Experiment Results

We now turn to the results obtained directly to the real QPU of PASQAL. We were
allocated 18 total hours of computation, the QPU at PASQAL at the moment of
writing run at a rate that oscillates from 1 ~ 5 Hz, the results we gathered were
ran with an effective rate of 0.86 ~ 1.15 Hz. In total we were allowed to use
approximately ~ 70000 shots. We decided to split them into three parts:

e RUN 1: 2 hours (6168 shots) to run specific sequences of pulses to check if
the results are aligned with the simulations

e RUN 2: 6 hours (14080 shots) to run a few closed-loops of optimization

e RUN3: 12 hours (50000 shots) to run the optimization on a large graph

/79



CHAPTER 4. QAOA WITH BAYESIAN OPTIMIZATION ON RYDBERG ATOMS

R Fidelity Solution ratio
16
I
0.8 e 0.7 4
_’j 14
Iz,
071 | 0.6 12
0.6 0.5 1 o 10 4
0.5 4 0.4 8 1
B 6 B
0.4 0.3
0.3 1 41
0.2 1 shots=16
7] 2 shots=64
029 _| —— shots=256
= 01 —— shots=1028
T T T T T T T T T T 0- T T T T T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Steps Steps Steps

Figure 4.7: QAOA simulated on Pulser at different number of shots. Averaged
R:approximation ratio, F:fidelity and S,:solution ratio (explained in the text) over 10
runs at different numbers of shots 2%, 2°, 28,210

4.41 RUN1: Sequences

In RUNT we picked 6 sequences on the N =06 and N = 11 graphs, 3 sequences on
each. This data were obtained from the simulations. We decided for sequences that
would have a large solution ratio to see if the solution would be so evident also
with the real noise from the machine.

We sum up the information on each sequence in Table 4.1, the details are explained
in the caption. As you can see, the depth varies from 1 to 4.

The data gathered from the experiment is just the measured bitstring at 4 equally
spaced time steps during the sequence of pulses. This was done to allow us to
control what was happening during the run of the pulses. We plot the results in
Figure 4.8 for all the sequences of Table 4.1. On the left we show the inverse
approximation ratio 1 — R during the sequence: simulated with/without noise (con-
tinues/dashed lines) and from the experimental data (four dots). We see that the
experimental data is in accordance with the simulated noisy signal but they both
differ vastly from the simulated noiseless sequence.

The approximation ratio even exceeds 1, meaning that many states with positive
energy are being measured, even though they are prohibited by Rydberg blockade.
This means that either the condition is not respected or that noise is strongly
affecting the signal. An effective, yet tragic, measure is to erase 50% of the measured
bitstring that have higher energy, as measured with the classical Hamiltonian of the
MIS problem (3.5). In this way we get rid of all (or most of) the states in which
Rydberg blockade is violated, assuming it is due to noise both during the evolution
and, in particular, at measurement. The effect of this discard are shown on the
right column of Figure 4.8. We see that the refined data presents perfect agreement
between simulation and experiment.
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H ID  GRAPH DEPTH SHOTS SEQ RATIO H
N1 Diamond 1 1028 250,520, 692 5.667
N2 Diamond 2 1028 (250,200, 200, 352, 800] 14.833
N3 Diamond 4 1028  [250,200, 500, 444, 200, 200, 432, 416, 200]  8.667
N4 Butterfly 1 1028 250,492, 628] 2.166
N5 Butterfly 3 1028 (250,428, 200, 648, 652, 200, 200] 4166
N6 Butterfly 3 1028 (250,200, 584, 200, 412, 232, 620] 1.375

Table 4.1: Sequences sent for RUN1 Each sequence of pulses alternates a global
detuning pulse with 0 = 7 and a global pulse with Q = 27 MHz. SHOTS is the
number of decided shot for the sequence, N QUBITS is the dimension of the graph,
NOISE: if the sequence was obtained from noise simulations or not, PULSES: the
sequence of pulses, RATIO: ratio of the measured solution MIS compared to the
second most measured value.
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Figure 4.8: Simulation vs Experiment: sequences (left) Approximation ratio of the
six sequences of Table 4.1. Dashed/continuous line is the simulation without/with
noise, dots are the experimental data. (right) Same sequences data but discarding
50% of the bitstrings with largest energy.
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Figure 4.9: Discard Analysis (left) The approximation ratio 1 — R during the run of
sequence N3. (middle) Same data but discarding the 20% most energetic bitstrings,
(right) Same with 50%

Since a 50% means losing many measurements and we do not have many at disposal,
we settled on a value of discard percentage to use with a qualitative analysis. This
is shown in Figure 4.9 where we compare the results from the experiment (the four
points for each sequence) with the simulation of the same sequence discarding 20%
and 50% of the most energetic bitstrings. We ended up deciding for a 20% discard.

4.4.2 RUN 2: Loops

We ran full closed loops after implementing the discard percentage of 20% at each
optimization step. The RUNZ2 part of the experiment comprehends 3 loops and its
purpose is to prove that Bayesian Optimization is valid for this type of platforms.
The properties of each loop are summed up in Table 4.2. We picked the graph with
N =6 and N = 11. Two loops were ran with 32 measurements per step and one
with 64 measurements. This was done mainly for two reasons: avoid using too
much computational time and testing the capabilities of Bayesian Optimization at
low-shot rate. For this reason the 3 loops account for only 6 hours of computation.

H ID Loop N Total points Actual points SHOTS/step TOT shots H

L1 ) 110 87/ 32 2784

L2 ) 110 96 04 0144

L3 11 110 93 32 2976
10T - - - 11904

Table 4.2: Parameters of the loops performed on the machine for RUNZ2.

During optimization we keep track of the relevant information about the quantum
state at each step |((6)). This includes the QAOA parameters presented in the pre-
vious section along with the Bayesian Optimization parameters. For the Bayesian
Optimization we keep track of

e Kernel parameters: recall that the kernel with noise (defined in Chapter 3) is
given by

14 V316 - 9|] Lol

k(6,0) = o’ ; ovl (4.7)
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Figure 4.10: Loops ran on the QPU with N = 6 and N = 11 shots: QAOA
parameters. Parameters during optimization for the loops L1, L2 and L3 described
in Table 4.2. From left to right: approximation ratio, fidelity and solution ratio. The
continuous line represent the best point obtained so far during optimization.

where

— constant ¢ is parameter that sets the amplitude of the correlation be-
tween points,

— correlation length ¢ is a parameters that controls to which distance points
are considered correlated by the Gaussian process,

— noise oy, is a parameter added to the kernel's diagonal to account for
noise in the energy of the unknown function,

e [ q: distance between two consecutive sampled points, to check if the al-
gorithm is under exploration of the landscape or exploitation (sampling points
close to each other).

The approximation ratio is proportional to the parameter being optimized: the en-
ergy, and thus is the main parameter to be considered. By looking at the data
obtained from the QPU during the loop in Figure 4.10 we see that the final approx-
imation ratio reaches level around 0.2 for the loops on the N = 6 graph and about
0.4 for N = 11. This data alone does not give us much information, for this reason
we plotted also the fidelity and the solution ratio as defined above.

For L1 and L2 we obtained large values for both energy and fidelity, with fidelities
around 40% meaning a 40% chance to measure the solution bitstring and solution
ratio Sr ~ 7 which means that the solution stands out in the state. The results are
not so neat for L3 but we still obtain a fidelity around 8% and solution ratio ~ 1.8,
the poorer quality is due to the dimension of the graph of course.
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Figure 4.11: Loops ran on the QPU with N = 6 and N = 11: Bayesian opti-
mization parameters. Parameters during optimization for the loops L1, L2a dn L3
described in Table 4.2. From left to right: ¢ the correlation length, g% kernel noise
and D; ;11 distance between consecutive points.

In Figure 4.11 we plot the parameters of the optimizer. These parameters help us
interpret some of the results of the previous figure. For example the series of equal
approximation ratio points at the beginning of L2 optimization are due to the fact
that BO cannot find a suitable correlation length for the data obtained up to that
point. The value remains in fact minimum for almost half of the optimization. This
might be due to some noisier points sampled that brought large variations in the
energy. The noise parameters is indeed stuck on the maximum value, signaling very
noisy results and thus preventing optimization.

Overall, this first run with three loop allowed us to decide that the number of shots
is probably too low to correctly perform optimization, considering also the discard
of 20% of the bitstrings.

4.4.3 RUN3: Final loop

By combining the knowledge gained with the first two runs we finally ran one last
optimization loop on an even bigger graph of N = 15 qubits shown in Figure 4.12
at depth p = 5. The optimization was successful, in the same picture we show the
final state that was sampled and where the solution bitstring was measured more
often than all the other ones.

The loop was run using all the remaining shots which were in the order of 50 000.
We decided to run 100 steps of optimization with 20 initial points of training at 450
shots per step. Considering the discard of 20% we are optimizing with 360 effective
shots. We summed up the results in Figure 4.13 where we show only the relevant
parameters. The plots show a comparison between the optimization on the QPU
and a simulation of the same loop.

The parameters show us a well performed optimization loop. We can in fact agree
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that the approximation ratio descends practically monotonically and the fidelity
improves multiple times. On the optimizer side, the correlation length keep rising,
meaning that BO keeps exploring the landscape for better points at each step,
without necessarily stopping on one. This is seen also on the distance D; ;.1 between
consecutive points that alternates larger distances in the order of the hundreds
with few local distances in the order of the tens. This pattern is exactly typical of
Bayesian Optimization that concentrates on an area and if not satisfied jumps to
another part of the landscape.

The same characteristics can be noted also on the simulated loop. The main differ-
ence between the two is the noise level, we can see that in both scenario it settles
around a specific value which is double in the real scenario compared to the sim-
ulation. This means that even if we accounted for noise in the simulation the real
source of noise in the QPU was larger and thus affected more strongly the results.

We can say with confidence that we would have gotten even better results with more
steps of optimization, this is what the trend in the parameters clearly indicates. Yet,
a solution ratio of 1.8 was reached, which is not trivial given the dimension of the
graph and the limited number of runs available.
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5 | Measurement Based Quantum
Computation

In this chapter we want to show an approach to quantum computation with Ryd-
berg atoms that deviates from the standard analog or digital approaches because it
is based on projective measurements: Measurement Based Quantum Computation
(MBQC). We will start by introducing MBQC in its original form, that is the cluster
state formulation and then present the correlation space approach that was devel-
oped to exploit states different from the cluster state. The latter is the premise of
the work developed by [Cré22] in which they showed that a dimer state made on
Rydberg atoms can be used as resource for quantum computation using only a spe-
cific set of measurements that are currently available on state-of-the-art Rydberg
atoms’ platforms.

Our purpose is to show the resources needed to perform MBQC on the dimer state
on a neutral atom’s platform. Therefore, we will show the basic functioning of
this approach taken from [Cré22] and then add our contribution which consists in
improving the scheme and produce an estimation of the resources needed for a
generic algorithm like Deutsch-Jozsa. The research in this chapter sums up the
work that | brought on during a six-months internship at the company PASQAL.

5.1 Cluster state quantum computation

Measurement Based Quantum Computation (MBQC) is a framework for computa-
tlon using only an initial entangled state and projective measurements. It was first
developed by Raussendorf and Briegel under the name of 7-Way Quantum Com-
puter [RBO1b, RBBO1] because the measurements are performed with a specific
order creating computation along lines of qubits in one specific space direction.

This computation happens in three steps. First, given a graph of N qubits, a cluster
state [BRO1] is created by applying CZ gate to each qubit pair connected by an
edge, |®) = [. CZ.|++)®". The cluster state is part of the more general family
of graph states [RB0Ta] and it has strong entanglement requirements [BRO1] that
makes it hard to create even though we have some small experimental realizations,
including with neutral atoms [MCW*03, BLS"22]. Secondly, consecutive one-qubit
measurement on different basis are applied to qubits. Finally, the correction of
possible errors arising from this computation is performed.
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An enlightening example for this type of computation is the teleportation a quantum
state from one qubit to another. Let us call |C|>>L/J the cluster state created with one
qubit in a state ¢y = a|0) + B|1) and the second one in the |+) state, that is after
being entangled the system is in the state:

), = al0+) + B[1-) (5.1)

Now, we measure along X the first qubit and let us assume we obtain an eigenvalue
x = 0/1 if the qubit ends up on |%). This entails that the state was projected by a
projector P, like so:

1t

Picl)y = %) (=l [al0+) + B[1-) ]

++) £ Bl+—)
Yal+)=B[-)]
yHZ )

|
Q

(5.2)

_F

H

The result is that we are able to transport the information of a qubit, Le. its state,
along a chain of entangled qubits only by performing measurements.

Qubit rotations The intuition between the previous example can be extended into
operations on qubits and creating entanglements between them. It is pretty straight-
forward to show that any single qubit gate € SU(2) can be applied to a specific
qubit by using a total of 5 qubits and 4 measurements. In fact, let us assume we
can measure qubits along the basis:

Bylg) = {'0> rerll 0= ew'”} 53)

V2 V2

where j is the qubit on which you apply the measurement on and we consider
outcome s; = 0,1 if the first/second state is measured. To apply a generic rotation
Ur € SU(2) we can decompose it in its Euler angles:

Ur(a) = Ugl(e, n, &) = U (S)U,(n)Uy(€) (5.4)

and we create the initial state by applying the entangling operation of the cluster
state to the state | + + + +) where |¢) is the state on which we wish to act with
Ug(a). After this we measure:

1. B1(0) (which is X on the first qubit)
2. By (1) e)

3. Bs((=1)7n)

4. By ((=1)774)

and the final qubit is found in the state

UrUg(a) ) with Uy = g2 sig=itss (5.5)
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1 Logical Transport 44— >

) |¥) .
Measurement Basis
o B Y
2. General U(2) rotations — desy—~0 2 XI f\ -2 = x
) Ul a o el
U = Rx(a)Rz(8)Rx (7) A - 0=y
3. CNOT Cate |p) 1 ety ——
I CNOT|y¢)
l)e

Figure 5.1: 1-Way QC. Summary of the three operations that allow MBQC to be
universal. Logical transport means being able to transport the quantum state of a
qubit to another (teleportation). A general U(2) rotation along with CNOT are then
sufficient to perform any algorithm.

CNOT gate A CNOT gate, to reproduce entanglement, requires only 4 qubits and
2 measurements along X [Tab11]. By combining any Ug(a) with a CNOT any circuit
can be represented, in this way the so called "1-Way Quantum Computation’ scheme
was proven to be universal for quantum computation. A summary of this operations
is shown in Figure 5.1.

Pros and Cons Two advantages of this method are the fact that all Clifford gates
can be applied virtually at the same time and it allows us to rethink quantum com-
putation beyond the digital basis approach, for example forming gates that have
no counterpart, like the famous bit-reversal gate [RBB01] Since its invention in
the early 2000s many ideas and research field were born stemming from to this
method. To cite a few, the proof of its equivalency to another teleportation-based
approach [CLNO5], the development of Measurement Calculus [DKP07] to generalize
and simplify the languages of quantum computation with the 1-Way computer, the
invention of ZX-calculus and finally a Measurement Based Quantum Error Correc-
tion scheme [RHGO0].

The drawbacks of this method is that it starts from a cluster state which is compli-
cated to create experimentally. The first realization [Wei21] of a cluster state was
done by Mandel et al. in the Bloch group [MGW*03] using collision between atoms
but the technology of local addressing was not ideal for the task. Another prepara-
tion of a cluster state with Rydberg atoms was performed by Lukin et al. [BLS"22].
In this implementation they are able to transport qubits maintaining entanglement
efficiently, thus they prepare the 1D cluster state on 12 qubits. Most efforts have not
improved much more on this and the research on the topic has been focusing mostly
on the theoretical aspects. These technical difficulties favoured the developments
of other approaches like the one we see in the next section and protagonist of our
research.
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5.2 Correlation space approach

Inspired by the tensor-network interpretation of MBQC [VCO04] a novel schemes,
called the correlation space approach [GE07, GESPCO07], was proposed. This ap-
proach stems from the search of resource states that can emerge as groundstates
of local Hamiltonians (the cluster state arises from a 5-body interacting Hamil-
tonian [Nie03)). Differently from cluster-state (or 1-Way) MBQC - in which the
physical qubits used for measurements are also the qubits of computation — this
new approach uses physical qubits for measurements but the computation happens
in the virtual Hilbert space of their tensor-network representation. This new ap-
proach was relevant because it can be proven that other states beyond the cluster
state are universal for quantum computation through measurements only.

The recipe for correlation space MBQC (CS-MBQC) is simple:
1. we write the state in its PEPS/tensor-network representation
2. the boundary vectors in the virtual space are interpreted as qubit states

3. the measurements on the physical sites of the resource state induce unitary
operations in the virtual space on the boundary vectors.

Understanding this topic requires knowledge of tensor networks and matrix product
state (MPS) representations. Their explanation is outside the scope of this work
so we will briefly introduce the topic with the use of examples, for a complete
introduction see [CPGSV21].

MPS representation The purpose of an MPS is to write each coefficient of a
quantum state of a many-body system like this:

d—1
W)= > sy [S1S2SN) (5.6)

51,52,...5,\/=O
into contractions of matrices:

d—1

W)= > (RIAMsN]. - Allsi][L) [s1, 52, sw) (5.7)

51,52,...sn=0

In equations (5.6), (5.7) the state |sy,s,,...,Sn) represents a chain of N sites, each
with d degrees of freedom. Afs;] is a set of d matrices defined for each site i and
|R),|L) are two boundaries vector used to perform the contraction. By equaling the
two equations we obtain

Asy.s9,.sn — <R| A/\/[S/\/] .. .A1 [51] |L> (58)

which sums up everything we need to know about MPS. It is a set of matrices (plus
2 boundary vectors) constructed specifically so that their d¥ possible contractions
correspond to the d" coefficient of the wavefunction |\V).

Two examples might be useful:
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e (HZ state. By inspection we can check that the N qubits GHZ state:

1 o .
|GHZ)=\/d_NZ|t,L ..... i), (5.9)

i=0

can be put in MPS form by taking matrices with dimension D = 2 which is
called the bond dimension:

Aol = (o o) =0yl A== (0 F) =l e

It is easily interpretable because A[0JA[1] = 0, thus the only two contractions
which give a nonzero value are Ali|Ali]. .. Ali]

e [he W state. The state

WY =1[100...) +]010...) + - 4+ [0...001) (5.11)
can be cast in MPS form with
Aol= (5 §) =10+ mal A= (5 o) =mor 612

This is also easy to interpret, if the state of a qubit is O, its matrix is the
tdentity so it has no impact in the contraction of all the matrices, whereas A[1]
acts on |1) and flip it to |0). Thus using |R) = [0) and |L) = |1) we get that
any combination of qubits with more than one "1" becomes null and the one
with only one "1" are contracted to (R|A1]|L) = 1.

AKLT as resource state The celebrated AKLT state [AKLT87] is the groundstate
of the bilinear biquadratic spin-1 chain and was the starting point for the develop-
ment of MPS representations. We will show directly on this state how the MPS
representation allows for quantum computation in the correlation space. For this
state we have 3 physical degrees of freedom at each site corresponding to a spin 1
particle with spins 0,1, 2. It is represented by an MPS with matrices of dimension
2 x 2 such that:

Al = H
1
All= 510001
1
A2l = =10
with boundary vectors:
L) =|R) = 0) 513)

Now we measure the first site from the right in the spin basis and we might obtain
0,1 or 2. Let us say we measured s = 0, this means that in the MPS the matrix of
the first site collapses to A([0] = H. Since the right boundary vector is |R) = |0)
we have that the MPS representation of this chain transforms as:
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which means that we now have a new boundary right-vector that switched from
the |0) state to the |+) because it received the action of the gate H, meaning the
contraction with the matrix A[0]

This simple result tells us that in the space of the MPS the boundary vector is
acted upon with unitary transformation and thus is like a qubit that evolves under
a quantum circuit. This correspondence is due to the fact that even if the physical
system has 3 degrees of freedom on each site, since the bond dimension is 2 in the
correlation space we have a logical qubit undergoing computation.

This reasoning can be extended to other types of measurements [GEO7]. Let us
define measurement along a generic direction ¢ on the plane spanned by |1) and

i ; ; I i} it
|2) as thg pI OJeCtLOh onto the basis states [+¢) = {5 |1 Y e®[2)} then by definition
the matrix of the site collapses to:

Aol = (I AN = 02 A2 = 5 [1 ] =sem 619

which is equivalent to applying an Hadamard gate followed by a phase gate S(¢). In
this way it is proven straightforwardly that any rotation of SU(2) can be performed
on a logical qubit [GESPCO7].

521 CS-MBQC on Rydberg Atoms

State-of-the-art platforms of Rydberg atoms can perform projections on multiple
qubits by moving them from the simulation plane to a computation plane and
shining and measuring the qubits before placing them back into the simulation
plane [BLdL"18]. This allows for three types of measurements (for more details
see [Cré22]) that we will use to build a framework of MBQC with Rydberg atoms:

e Measurement (l). An ensemble of two neighbouring atoms is represented by
the basis states:

>, > >}

where the green dots means that the atom is in the Rydberg state. If we
evolve the two atoms for time 7 = /A with A/Q = v/2/3 and we measure on
the Rydberg basis, the state is projected onto:

> >+ —->+%}

, depending on the outcome of the measurement.

e Measurement (Il). An ensemble of three atoms has basis:

> . >}
If we evolve them for T = 477/(3v/3Q) with A = 0 they are projected into [VLV21]:

1
SO>E>ERED) (5.16)
Where the signs depend on the measurements’ outcomes [Cré22].

92



CHAPTER 5. MEASUREMENT BASED QUANTUM COMPUTATION

Figure 5.2: Dimer state on the Kagome lattice with Rydberg atoms. On each edge
of the Kagome lattice we place an atom, in this way they form the Ruby lattice. If an
atom is on the Rydberg state (green dot) we consider that as a dimer. Credit: [Cré22].

e Measurement (lll). Involving only one atom: a far detuned laser A >> Q
applied for a time T which applies a phase of ¢ = At to the excited state |e).

A recent work [Cré22] proposed how to implement correlation space MBQC on a
groundstate made with Rydberg atoms. The resource state considered is the dimer
state on the Kagome lattice [MSP02] which is shown in Fig. 5.2. A dimer is any
edge that connects to excited vertices on a lattice whereas a covering is the state
formed by all the dimers arranged so that every vertex is touched by exactly one
dimer. Thus, a dimer state is the superposition of all possible dimer coverings of a
lattice.

On a Rydberg machine we can place the atoms on the edges of the Kagome lattice
(which form the Ruby lattice) and consider a dimer being signaled by and excited
state (Fig. 5.2). In this case the dimer state is the superposition of all coverings of
the Ruby lattice. To understand the method proposed in [Cré22] we start by writing
the PEPS representation of the dimer state:

0o - 0 + 1 + 0o +
D <) B ()
- 1 - 0 - + 1
1 1T+ 1T - 0 -
B B B B
+ 1 + 0 -0 + 0
e (f) (9) (h)
(5.18)

The state in (5.17) is created by grouping atoms in group of 6 forming a bow-ties
of 6 physical qubits. Each of them has 2° possible states with only 8 of them being
physically possible due to the Rydberg constraint on the Kagome lattice. We show
the allowed states configurations in (5.18).
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For each allowed state we define a tensor with bond dimension 4. These tensors
can be chosen freely with the constraint that the contraction of all the tensors needs
to always return a dimer covering. Exploiting this freedom, we create this tensors
as operators acting on pairs of qubits, as it is customary in the correlation space
approach [GCESPCO07, GEO7]. For example, tensor (5.18)(a) is chosen like so:

0 -
(><) = =) I (=10 (5.19)

- 1

and can be interpreted as an operator acting on two logical qubits from top to
bottom. It can be checked directly that the choice made in (5.18) is such that the
only combinations of tensors that do not contract to zero are dimer coverings.

Following this line of reasoning, we can interpret the red wires in (5.1/) as logical
qubits and the consecutive measurements from top to bottom as quantum circuit
operations. To show that universal quantum computation is possible under this
premises, in [Cré22] they create three sequences of measurements, combining mea-
surement (1), (Il) and (lll) above. Each of these sequences projects a single bow-tie
into a superposition of states, and thus tensors in the PEPS space, which correspond
to these three operations:

e Decoupling gate Dy: it performs H on both logical qubit;

e Rotation gate D,: it performs R,(¢) to either the right or left qubit with a
success rate of 50% depending if we measure Pr =0 or 1;

e Entangling gate Q between the two qubits

Following the notation of [Cré22], the action of each of the three set of measurements
can be represented as quantum gates acting on the left, right or both computational
wires:

Shdh (b (5

Details on these gates and how they are created can be found in Appendix B. The
relevant detail is that the rotation gate Dy is applied only when the measurement
outcome is Pr = 1 as previously stated.

5.3 Extension of the model

We now present our contribution to this work. In the first part of this section we show
possibilities and limits of this scheme by acting at the pulses and measurements
level. In the following part we show all the conventional and original gates that can
be created.
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5.3.1 More measurement gates

Creation of a deterministic gate The D, gate has the issue of not being deter-
ministic. Let us start by applying the sequence of this gate with the exception of
dephasing by ¢ the right-most qubit in the bow-tie instead of the left-most one.
Contrarily to what stated in [Cré22] we do not obtain Ry(¢) on the right but R,(¢)
instead:

D, >3 |=[HI[H] | (5.21)
R (o)

In which we renamed the gate in order to make explicit the qubit that receives the
¢ phase. The gate R,, similarly to R,, allows for universal quantum computation
since R,(m/4), also known as the T gate, is non-Clifford. In the same fashion as
before the gate is dependent on the measurement of P; and it is thus effective only
50% of the time.

We show now all the possible single qubit rotations that can arise according to the
qubit that is dephased. For the sake of simplicity we do not show the initial H
gates that are given for granted:

- [l | [0 ><h)= |

Dw = | [RP=(¢)], (5.22)

i Ba-{as

The fact that some configurations (such as number 1 and 5) produce the same
rotation on the same qubit but depending on Pr or P, hints that there might be a
way to produce a deterministic gate. That is indeed the case, by direct calculation
we are in fact able to obtain the following, deterministic gates:

D, $5<] (523)
) 5|

As specified in the last equation this solves the problem of the stochastic gates since
measuring either Pr or P, will always lead to the same gate being applied. By
combining other pairs of Eq. (5.22) we would always encounter a non-deterministic
output: the application of the gate or the correct angle phases. Therefore, we
discard them.

D,

O
<

1]
S

-
S

R (¢

We can also extend the same reasoning to combination of 3, 4, 5 or all the gates in
Eq. (5.22). First of all, it can be noticed that any odd number of combinations will
always produce uncertainty. That means that either you end up with a probabilistic
phase (—)P*"t or gate /?XP@/PL((p). Second of all, if we consider dephasing every qubit
and thus taking a superposition of all the gates would cancel the action of either
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R, or R, according to P, or Pg. So this case it is not interesting. Finally, we can
build a quadruplet by combining the pairs of Eq. (5.23), in particular we can rotate
the two logical qubits by different angles at the same time, in fact:

|
=| RXI((/)) B /?T(cp) I (5.24)

where we defined the gate as Dy, as an extension of the previous D, and where
the purple dots represent a phase of ¢ and the red ones of ¢, respectively.

More on the entangling gate We can analyze further the potential of also the
entangling gate Q. First, it is easy to show that gate Q can be implemented in
an identical version with the control and target qubits inverted. We call this gate
Q— and it can be derived by dephasing a different set of initial qubits. That is, we
follow the same steps in Appendix B but we start by applying a phase 7 to the
qubits as shown in the left side of Eq. 5.25, and obtain the gate:

(5.25)

This gate will turn out useful for the definition of a new operation in the next Section.

Non-unitarity of other gates It is important to notice that in order to apply a set of
gates on the logical qubit, i.e. a unitary matrix, the scheme allows for only two op-
tions. The first one is to produce a superposition of 4 of the 8 tensors (5.18). In order
for this superposition to represent a unitary operation on the logical space, each of
the possible combinations of incoming qubits needs to appear once. That means that
the allowed superpositions include tensors (5.18)(c,d,g,h) or tensors (5.18)(a,b,ef) (cf.
the derivation of Dy and Dy in Appendix B). In this case, we can only act with local
gates on the logical qubits (such as H in the Dy bow-tie and rotations in the R,
bow-tie).

The second option is to produce a superposition of all the 8 tensors (5.18). In order
for this operation to act as a unitary on the correlation space the phases need to
be adjusted accordingly as shown for example in Eq. (5.25) (a simple superposition
without specific phases would not create a unitary matrix). In this way, entangle-
ment between the two logical qubits is created.

It can be checked directly that any other superposition of tensors will not produce a
unitary operation on the incoming logical qubits. This reduces the number of signif-
icant combinations of measurements we can perform and concludes our discussion
on improvements.

5.3.2 Rewriting rules and additional gates

In this part we introduce a new graphical representation of gates that allows for
easier comprehension of the algorithms constructed in the next section. We also
show how to construct some more elaborated gates by exploiting the nature of
MBQC in this framework.
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Decoupling gate The decoupling gate Dy acts almost trivially on the logical space
qubits. To allow easier comprehension of this scheme we introduce a new graphical
visualization of this gate:

(5.26)

The convexity of the top and bottom edges indicates which gates can be concate-
nated with this one. That is, only gate with concave edges. In fact two decoupling
gates cannot be applied consecutively to the same logical qubits. The double edge
means where the H gates are positioned and clearly in does not matter for the Dy
gate.

Single Qubit rotations We showed in the previous section how to perform a ro-
tation of a logical qubit with the set of measurements D,. With one bow-tie we
can perform the rotations R, to the left-most qubit and/or R, to the right-most.
Following the new notation we define the gates:

o =

o - (0. 5

[ [
which clearly state which rotation is happening on which qubit. Thanks to the
permutation rules HR, = R,H we can exchange the action of the R, and R, by
switching the H gates at the bottom. This creates the following three gates:

Consider now that you want to act on the left qubit with a R, rotation without
having H gates to deal with. This can be done by inserting two decoupling gate
before the rotation gate and this gives a new rule:

ﬁ
The gate on the rhs. of this equation has two important features: the double edge
is gone because the H gates of the Lh.s. simplified and the top is convex, signifying

that it can only be preceded by a concave gate. Finally, in order to apply R, we
can exploit the relations:

Ry(p) = /?Z( —

b, <]

(5.27)

(5.30)

(5.31)

R.(5)
Ry(¢) = Re( — )R( O)R. g) (5.32)
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CNOT gate To obtain a CNOT from the entangling gate Q of our MBQC scheme,
we get rid of the initial two H gates (this can be done by acting with the decoupling
gate on the left and right qubits). Then, we call the resulting gate Q*:

10 0 1
1 {0 =11 0
* = 9:_
Slo 110 (5:33)
2 10 0 —1

in which we neglected momentarily the X on the second qubit and explicited its
matrix form. We can see that the gate Q* acts a the transformation from the digital
basis to the Bell basis U8Bl Interestingly, in [BdV08] they work out a decom-
position of Us'=Bel that allows us to go from Q* to CNOT. In fact, the following
equivalences hold:

Q" = U= = RI(=Z)VSWAPR! () VSWAP R} () R

CNOT = Rg)(—g)/?@(—g)Rf)(g)\/SWAPRS)(ﬁ)\/svaPR;”(ﬁ

Q
|\)|:]

(5.34)

in which the superscript represent the qubit on which the rotation acts, whereas
the VSWAP necessarily acts on both qubits. By direct inspection of Egs. (5.34) we
find the relation connecting Q* to CNOT is:

CNOT = K10°K, (5.35)

where Kj and K; are a set of single qubit rotations:

Tl

Ky = R (——)R<2>(

X

) (5.36)

I\)

K = RO(S ) (5.37)

SWAP gate A SWAP gate has a simple decomposition in terms of three consecu-
tive CNOT gates in which the middle one has the target and control qubits inverted.
This means that given the sequence that implements a CNOT shown above we only
need to repeat it three times adding two decoupling gates in the middle.

SWAP-CNOT (SNOT) gate Our framework, as much as MBQC in general, invites
us to go beyond the standard approach of digital computation. That is, it is not
always convenient to reproduce an algorithm by reproducing its elementary gates
with the MBQC scheme while rather utilize the MBQC to create new types of oper-
ations on qubits. That is exactly the idea behind the qubit-reversal gate presented
at the beginning.

The first non—trivial composition of gates that we can create is the consecutive ap-
plication of QO and and Q—, separated by a decoupling gate Dy (necessary due
to the topology of the bow-ties). This operator can be investigated with ZX-
calculus [CDO7]. Using the package pyzX [KW20], we can rewrite it as the following
circuit, which is much simpler and in fact is a SWAP-CNOT:
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= (o[ ] — _ (5.38)

The arrow means that the gates on the left were translated into /X-calculus and
fed to the optimizer of pyZX to produce the simplified version which corresponds

simply to a SWAP-CNOT.

5.3.3 Resource estimation of Algorithms

We now use the gates defined in the previous section to show how to implement
quantum algorithms. Firstly, we will show how measurements need to be combined
in order to obtain the desired gates that build up a digital computation algorithm and
then we will estimate the resources needed to perform Deutsch-Jozsa and Crover
on a Rydberg platform. We now define what we mean by resources:

1. Number of atoms
2. Number of pulses

3. Types of pulses. We divide pulses into driving pulses, the ones applied before
measurements and change of basis pulses, the ones applied to perform mea-
surement on other basis. The latter ones always come in pairs. The driving
pulses are 3 in total, corresponding to the three measurements described be-
fore. The change of basis in only one, used in the gates D and Gg to measure
in the |g) & |e) basis.

4. Types of measurements. Since we are allowed to measure only on the digital
basis by fluorescence we consider only one type of measurement and we will
omit it in the estimation.

5. Number of measurements. The number of fluorescence measurements

In these terms, we can sum up the resources needed to perform the three types of
measurements described in the previous section. The requirements by each gate
are summed up in table 5.1.

Deutsch-Josza

Deutsch—Jozsa (D]J) is a simple quantum algorithm developed to show an example
of quantum speedup. We have a binary function 1 : {0, 1} — {0, 1} that is either
balanced (half the bitstrings evaluate to 0 and half to 1) or constant (all bitstrings
evaluate to 0/1). The DJ algorithm understands if the function is balanced or constant
with only one run of the circuit. Figure 5.3 shows the DJ algorithm in its balanced
version. That is, if all the qubits are measured on the |0) state, the function is
balanced otherwise it is constant. It requires one ancilla qubit (g3 in Fig. 5.3) that
is entangled with all the computational qubits and then discarded.
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H Gate Atoms Meas. no. Change of basis Pulses no. Driving pulses no. H

D, 6 4 4 4
D, 6 4 4 6
DD, 6 4 4 8
0 6 2 0 5
M 6 1 0 0

Table 5.1: Resources needed per gate. Dy applies H to both qubits, D, rotate the
left/right one by Ry (@), Dy, rotates the left one by R((¢) and the right one by
R,(¢), O entangles the qubits, M is the measurement gate.

H Gate  Atoms Meas. no. Change of basis Pulses no. Driving pulses no. H

CNOT 30 18 160 29
SWAP 42 26 34 33
S-NOT 24 12 8 18

Table 5.2: Resources needed to run common gates in digital computation.

The only non-trivial part of the circuit is the series of CZ gates. We can imple-
ment it by repetitively entangle the ancilla qubit with its first neighbour and then
swapping them. The SNOT gate we created in the previous section does exactly
that. In addition to that, Hadamard gates appearing in the circuit are automatically
incorporated into our framework thanks to the decoupling gate (see Eq. (5.20)).

Go g1 g2 43 Qs

(5.39)

All in all, we can easily estimate the resources needed by a direct count of the gates
that we need to apply. We can calculate directly the number of atoms necessary.

a0 1] ]
- ]
a:: ] ]
qs Z :

Figure 5.3: Deutsch—Jozsa quantum circuit
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As it is clear from Fig. (add fig) there is need of the:
e decoupling gate per qubit: 6/N atoms
e S-NOT per computational qubit: 24(N — 1)
e measurement gate M: an additional 6(N — 1)

for a total of 36N — 30. For this reason we can confidently say that the algorithm
scales linearly with the number of qubits N. The other resources needed can be
estimated in a similar fashion and are synthesized in table 5.3.

H Algo.  Atoms  Meas. no. Change of basis Pulses no. Driving pulses no. H
H D) 36N —-10 18N —16 20N —16 33N =29 H

Table 5.3: Resources needed to run Deutsch—Jozsa algorithm.
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Conclusions

In this second part of the thesis we explored Rydberg atoms quantum computation
and optimization with a Bayesian approach. We started with a full chapter (Chap-
ter 3) on an optimization method: Bayesian optimization. This was done because
variational quantum algorithms have been the protagonists of the NISQ era but
there is often not enough focus on the classical part of optimization. In particular it
is hard to find an optimizer that can be ran only one time and produce concrete re-
sults, this is due to the many source noises on quantum computers and the presence
of barren plateaus. For these reason we first introduce Bayesian Optimization with
a series of theoretical (simulated) results on digital quantum computers that would
show that it can converge to the solution with: few calls to the quantum circuit, few
shots to evaluate the energy at every step and in the presence of noise as well.
These characteristics are essential for an optimizer to be ran on a computer with a
time budget as small as the one we had. The optimization problem we tackled is a
classical combinatorial problem on graph, the Max Independent Set (MIS) which is
perfect to exploit, in particular, the properties of Rydberg atoms’ QPUs.

We followed with Chapter 4, where we introduced the neutral atom platform and
its functioning, mainly referring to the structure of the quantum hardware owned
by the company PASQAL. In this chapter we showed the results of the experiment
run on PASQAL's QPU. With our limited time budget we were able only to run a
few sequences as initial benchmark and then run only 4 optimization loops once
each. For this reason we had to make very educated decisions. From the results on
the initial sequence we realised we could discard 20% of the measured bitstrings
in order to fight the measurement error present on the machine at the time, one of
the main sources of noise on the machine at the time of writing. This allowed us
to gain better results on the following loops. The results from the first three closed
optimization showed us we could find the solution to the MIS problem with good
agreement and only needing as few as 32 shots per step on a N = 6 qubits graph
and 64 shots on a N = 11 qubits graph.

For the final loop we decided to use all the remaining shots and thus perform a
full optimization of 100 steps and 450 shots per step on a N = 15 qubits graph.
This resulted in a perfect optimization almost in which the energy to minimize
decreases almost monotonically, a type of result that is difficult to obtain when
considering noise on such a large graph. The optimization was successful since
we were able to measure the solution with a good probability and it showed that
Bayesian Optimization does maintain the quality during the minimization that we
had showed in the previous Chapter.
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After showing our results of optimization in the context of both standard digital
and analog quantum computation we explored a new proposal for measurement-
based quantum computation on neutral atoms that was developed by [Cré22] and
we extended adding detailed contributions. MBQC is an alternative and yet almost
opposite way to perform computation because it consists in starting from an entangle
state and disentangle it by local projective measurements. After introducing this idea
we showed another approach that is based on the tensor network representation
of the states and allows us to perform the computation on many types of states of
interest also in many-body theory. The one selected by [Cré22] was the dimer state
created on Rydberg atoms by [SLK"21] and we showed how universal MBQC can be
implemented on such a state and some limitations like the fact that the rotation gate
had a success rate of 50%. We then added our contribution: we fixed the stochastic
problem of the rotation gate, invented a series of other possible gates, rewrote
the whole scheme in terms of macro-gate that encompass many measurements and
single qubit gates presenting the rules of this new language. This implementation
of MBQC implies non-destructive measurements, so it would not be suitable for the
current state of the technology we used for the experiment in chapter 4. However,
it is already available in other platforms developed for example by the Harvard
group [SLK*21]

This last point is exactly the one that might host some additional developments. The
fact that it is possible to perform quantum computation in this MBQC framework
on the dimer state suggests there might be some theoretical results that show why
this state allowed universal quantum computation. Another relevant topic is the
connection between the topological properties of the dimer state and the ability
to perform quantum computation. Although the theory connecting universal MBQC
and Symmetry Protected Topological States (SPTs) is solid showing strong results
in 1D [SWP™17] and open to interesting extensions in 2D [ROW™19], the connection
between intrinsic topological states like the dimer state and MBQC is completely
unexplored. Finally, the connection with Quantum Error Connection is also very
solid and as relevant as ever since we are, at the time of writing, said to be exiting
the NISQ era and entering the quantum corrected era. We can say with confidence
that whereas MBQC is not the main reference framework for today's Rydberg plat-
forms it is still interesting to consider for all the connections to quantum information
and many-body systems and also because as we showed in Sec. 5.3.3 the resources
needed scale in favour with the number of qubits.
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A | Details of Bayesian optimization

In this appendix we give a general overview of the Bayesian terms used in Chapter 3
and a detailed review of the algorithm we used in this work to perform the Bayesian
optimization for the QAOA.

A1 Overview of Bayesian terminology

The Gaussian process is a surrogate model which aims at reconstructing the land-
scape of optimization of an unknown function f(8). It is one of the two main ingre-
dients of the Bayesian optimization algorithm, along with the acquisition function.
We can now define the Bayesian terms used throughout Chapter 3.

1. Prior p(f). This distribution encapsulates the previous knowledge we have
about the target function f. Typically, it consists in a multivariate normal
distribution centered around 0 in which the covariance between points is
assigned by a kernel function like Eq.(3.8):

p(f) = N(0, k(x, x')). (A1)

To make an initial guess on our function we can sample a function f* from this
distribution. To do so, we choose a set of points © and evaluate:

£~ N(0, k(©,8)). (A2)

2. Likelthood p(y|f). This distribution represents the compatibility between the
prior p(f) and the observations y. In the context of Gaussian processes it is
defined by another Gaussian distribution.

3. Posterior p(fly). This describes the knowledge we have about f after having
collected some observations y = f(©). The aim of the Gaussian process is to
make the posterior generate functions as similar as possible to f. It is related
to the prior and likelihood through the Bayesian theorem:

p(y|f)p(f

ply|fp(f) (A3)
Py)

which states that a posterior distribution is proportional to their product. In

the context of Gaussian processes, the posterior is calculated from the prior
by an operation which is called conditioning, resulting in

plFly) ~ N K. (A4)

p(fly) =
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Where the new mean and covariance are defined in the text (Eqgs. (3.10), (3.11)).
From Eq. (A4) we see that the posterior is itself a Gaussian multivariate dis-
tribution. Therefore, we can sample functions f* as we do with the prior (A2)

but now their values will coincide with y at every point © where we sampled
f.

4. Marginal likelthood p(y). Also called evidence, it is the normalization term in
Eqg. (A.3). In Bayesian inference it represents the total probability of generating
the observed samples f from the prior. It is indeed obtained integrating over
all possible function values f:

ply) = / plylFp(f)df. (A5)

Like the posterior distribution, it has a closed form in term of a multivariate
normal distribution. Thus, the maximization of its logarithm is used in Gaussian
processes to pick the best hyperparameters (as done in Sec. 3.2.4).

A.1.1 Review of Bayesian optimization algorithm

This algorithm is made out of three phases: warm-up, kernel optimization, acquisi-
tion function maximization and is summarized in Algorithm 1.

Warm-up — In the warm-up phase we start with a set of N}y = 10 points X = {QJ}jN:Vﬁ
with 8; € R? where d = 2p and p is the depth of the QAOA circuit. Each point
0, is a set of angles (y, B). These points are sampled from the latin hypercube of
bounds [0, 9. For each set of angles we estimate the energy of QAOA y; and we
create the design matrix © = (61, ..., 8y,) and the observation vector y with the
energies of the points ;. We also store the point with lowest energy as (6, f,). At
this step there is no calculation involving the Gaussian process which is currently
set to its prior: a multinomial gaussian distribution centered around zero.

Kernel optimization — In this part we look for the hyperparameters (&, ) which
maximize the marginal likelihood function p(y|®) (Eq. (3.14)). This optimization is
performed by repeating the L-BFGS [ N89] minimization on —p(y|©) for 10 times
and selecting the best parameters found. The parameters found at every step of the
optimization are plotted in panels (c) and (d) of Fig. A.2.

Acquisition function maximization — Once the hyperparameters are set the algorithm
exploits its knowledge and uncertainty of the data to propose a new point 8" with the
new parameters where we evaluate the QAOA circuit. This is done by maximizing
the expected improvement in Eq. (3.12).

The new point 8" maximizing the expected improvement is then added to the dataset
D and the algorithm is repeated. The procedure stops after Npayes iterations.
Fig. A'1 provides an illustrative example (with p =1, Ny =5, and Ngayes = 20) of
how the Bayesian method operates and moves through the landscapes.

A.2 Optimizers beyond Bayesian Optimization
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Figure A.1: Posterior and acquisition function during optimization. Here we plot
the posterior and the acquisition function at three different steps of the optimization:
(from left to right) at warm-up, after 10 steps and after 20 steps. In rows (a) and
(b) we plot respectively the mean p/(0) and the variance k’(6) of the posterior
while in row (c) the acquisition function EI(8) (see Egs. (3.10) - (3.12) in the text).
These data, obtained running the Bayesian optimization on QAOA with p = 1 on
the graph of Fig. 3.1(a), are shown as a function of the two variational parameters
0 = (y1,51). The red dots indicate the warm-up points (N = 5, in this case)
while the crosses are the points that have been selected by subsequent Bayesian
optimization steps as new candidate solutions (with a color scale from first (orange)
to last (pink)). At every Bayesian optimization step, 1/(6) encodes the knowledge of
the landscape of the function to optimize, while k’(8) contains the uncertainty. The
acquisition function EI(6) combines the information from ¢/ and k" and the position of
its maximum proposes the next possible optimal point. From these considerations,
we see that after 20 steps the mean p/(6) (row (a)) recreates the landscape (our
knowledge of £(67)) with more precision than at warm-up (compare with the real
energy landscape in Fig. 3.2(a)). In addition to that, EI(8) becomes more and more
flat in all the landscape except for a small area in the top right corner on the right
panel of (c). This means that the Gaussian process has acquired enough knowledge
from the data to converge to the energy minimum.
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Figure A.2: Parameters of Bayesian optimization at p = 2, 7. Plots of the pa-
rameters changing during Bayesian optimization for two runs with Ngayrs = 600
steps. (a) Approximation ratio R. (b) Fidelity . (c) Kernel constant 2. (d) Kernel
correlation length ¢. (e) Standard deviation of the expected improvement and (f)
average distance of the points of differential evolution at the last generation N7.

A.2.1 Differential evolution

Finding the point @ of the parameter space that maximizes the expected improve-
ment EI(B) (Eq. 3.12) is not an easy task since EI(8) can show a fairly flat land-
scape [SLAT2], in particular after many optimization steps (for example, see Fig. A.1(c)).

To compute the maximum of EI(6) in this work we use the differential evolution
algorithm [PSL06]. This is an evolutionary method in which populations of points
{6}, called generations, are iteratively obtained from the previous ones until conver-
gence. The algorithm starts by initializing a generation (a) and then the population
is updated following three main steps: (b) mutation, (c) cross-over and (d) selection.

(a) We choose as starting population Np = 15 - 2p points {61} where the index
i€ {1,..., Np} uniquely identifies the point within the belonging population, while
the index 1 indicates that the point belongs to the first generation g = 1. These
points are randomly generated on the latin 2p-cube of bounds [0, 7]’ and to each
point there is an associated expected improvement EI(6;1).

(b) For each 8,, (called parent point) in the population, the differential evolution
picks three random points, different from 8, 4, labelled by rg, r1, > within the corre-
sponding population, and creates a new point as:

Vig= 069 + M8, 4—6,4) (A.6)

where M € (0.5,1) is a hyperparameter that is selected randomly at every gen-

eration. Through Eq. A0 the differential evolution mutates and recombines the

population to create another set of parent points v, .

U) and v; 4 =
2p

g ..,\/lg) choosing randomly between their coordinates 9 and v/, for every

(c) A new point u; 4 (offspring point) is created from 6, = (6], ..., 67"
( 1

j=1....2p.
(

d) Finally, if Efu;q) > EI(B,,) the algorithm replaces 6, with u;, in the next
generation, otherwise 6, 4 is kept.
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Steps (b) through (d) are repeated for Ny generations g. The algorithm stops when
two convergence criteria are fulfilled: the standard deviation ogy of the population’s
expected improvement (see Fig. A.2(e)) and the average distance D among the popu-
lation points (see Fig. A.2(f)) are below a certain threshold (we set gpy = D = 1073).
When this happens, the point in the population with the maximum expected improve-
ment is selected as 8. We notice that the criterion on the distance guarantees that
in a flat landscape like the one of EI() the points do not get stuck on a plateau and
concentrate closer to a unique candidate maximum. Although the algorithm requires
many evaluations of El(u; 4) (as shown also in the main text) it is a valid algorithm
for finding the maximum within the flat landscape of the acquisition function.

A.2.2 Other optimizers

Basin-hopping —Basin-hopping is a global stochastic optimization algorithm [WD97].
It combines two steps: (i) a local optimization which proposes a candidate solution
and (ii) a perturbation of such candidate in order to make it hop to other basins
which might contain a global optimal point. The new point is accepted or rejected
according to a probability which depends on a “temperature” parameter. The “tem-
perature” parameter decreases with the iteration number so that, at the beginning,
new proposals are easily accepted while, at larger iterations, the algorithms be-
comes more and more selective. The algorithm runs for a fixed number of iterations
and the local optimizer used in this context is the gradient based BF (S algorithm.

Dual annealing — This global optimization algorithm is the generalized form of the
simulated annealing and it is paired with a local optimization which is performed
at the end of the annealing to refine the solution [XSFCO97] It is a variation of a hill
climbing algorithm in which a solution is randomly perturbed and the new proposed
point is accepted with a probability that depends on the difference in energy be-
tween the two points. This probability also depends on a “temperature” parameter
that, like in the basin-hopping case, decreases with the number of iterations in order
to converge to a candidate solution.
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B | Gates of Dimer State MBQC

All the sequences of measurements are applied to a single bow-tie of 6 qubits, and
we name its components like this:

L §<] R (B.1)

Cr

where L/R represent the left/right-most qubit and C; g represent the central left/right
pair of sites.

B.1  Decoupling Gate

We first need to show how to transport the state of the logical qubits without
affecting them. The sequence of measurements on a bow-tie that allows for transport
(no operation on the logical qubits) is:

1. Qubits L and R are measured in the |g) & |e) basis,
2. Apply phase shift of ¢ = Z to the lower qubits of Cr and C;.
3. Perform measurement (lll)

This projects the bow-tie on a superposition of states in which only the following
four are allowed:

1 1 0 A (R 0o —
<) <) <) (<) B2)
- 1 + 1 -0 + 0

where we are willingly ignoring phases that arise depending on the state measured.
Since computation is happening from top to bottom we can see that the following
transformation is being applied to the qubits (simply reading the incoming qubit
states and the outgoing ones):

[1+) = [=1)
|04+) — [+1)
[1=) = [-0)

) )

|0—) — |+0).
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To understand what gate is being applied we transform all states into the compu-
tational basis by applying H:

10) — |11)

D_ |00) — |01) (B.3)
11)  —[10)
|01) — |00)

from which it is easy to infer that there is only one X gate being applied to the
right qubit. Since we are not interested in residue Pauli gates (that can be later
corrected) the action of gate Dy is simply:

which, a part from a known H operation, does not act on the qubits and can be
eliminated with a subsequent application of H.

3.2 Single qubit rotation

In order to apply a single qubit rotation using the scheme proposed by [Cré22], it
suffices to add a phase y = ¢ phase to the left-most L qubit before applying the
same sequence of the decoupling gate. This generates the gate

_ (B5)
RI% ()

which corresponds to the application of R,(¢) to the L qubit according to the mea-
surement of P = 0,1. In case Pr = 0 the gate is identical to the decoupling
gate and the logical information of the qubits flows unchanged. Thus, the chance of
applying this gate is 50%.

The non deterministic aspect of this gate can be dealt with by repeating the same
measurement scheme until the rotation is applied. A simple argument in [Cré22]
shows that this adds a polynomial overhead on the number of measurements. That
is due to the fact that the chance of the gate to fail for k consecutive times scales
as o< 217

B.3 Entangling gate

To apply entanglement one possible sequence is:

1. Dephase by an angle 7 (denoted by a red dot) the following three qubits:

TSR (B.6)
Ch
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which means adding the phase only to the |1) state, that means we now have

the basis elements {>, &, —[®, —»} on the left and {, —<3, & <}

2. Now apply measurement scheme (Il) to obtain:

(D — p%pib + pr%D + XL/JiD) 57
RoR_4_ JRAR_4_ RR (B.7)

x(<]+/3T/3¢<+ x"prd X/9¢<])r
which is just the normal action of measurement (Il) but adding the pulses signs.

3. Each of the physical tensors ‘survives' this step and we found a state:

—XRpf[OXj , —XR/JIT?[OXS , (B.8)
- 1 -0
+pri[1><a ,x'ph [o><+j (B.9)
- + 1
—I—/J%pﬁxl?pf [j><} , —i—p%pix’?pf [j><+} , (B.10)
+ 1 + 0
+pfp’fopi[1><uJ , +pfpfop$[O><o} (B.11)
- 0 + 0

As before, we now collect the ones with the same input and call this operation Q:

0+
0~
1+
-

N —xRp’f |—0) + XL/J% |+1)

— =x"p{|=1) + pfpx'pt |+0)
— pipixRpR[+0) + xpi |=1)

N p%pix’?pf |+1) — pfpfopi |—0)

(B.12)

~ ~ ~ ~——

Visually we absorb the action of H at the beginning and end of gate Q and call it

Qo:

| | | |00) — —Xipg |10) + XZ/J%/JOJ)L
[ 0 ] _ [ O, } with Qg — |01) — —Lx Lp}? \1R1> + p7 pi ><LpT |00)
| | | [10) — pypx"pt[00) + xp [11)
111) — pipxRp101) — p¥pixtp||10)

(B.13)
Which can be cheked directly (we just removed the action of H on the left qubit
before applying the gate (to the left of the arrow) and to the right-one after applying
the gate (to the right of the arrow). Erasing all the phases introducted by Pauli
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errors we are left with Oy:

| 100) — [01) —[10)

L Qo }Z{ o } with O = 01) —[00) —|11)  _ B4
110) — [00) + [11)

] 111) — [01) + [10)

By shifting the lower H of O to the top and leaving behind the long string of Pauli
errors we are left with:

(B.15)
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