

DOTTORATO DI RICERCA IN

COMPUTER SCIENCE AND ENGINEERING

Ciclo 36

Settore Concorsuale: 09/H1 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

Settore Scientifico Disciplinare: ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE
INFORMAZIONI

NOVEL TECHNIQUES FOR HARNESSING SYMBOLIC AND STRUCTURED
INFORMATION INTO MACHINE LEARNING

Presentata da: Mattia Silvestri

Supervisore

Michele Lombardi

Esame finale anno 2024

Coordinatore Dottorato

Ilaria Bartolini

Abstract

In recent years, we have assisted to a new spring of Artificial Intelligence (AI). This transformation
has been characterized by a shift from the symbolic methods prevalent in the last century to a focus
on sub-symbolic techniques, driven by the remarkable achievements of deep learning in areas such as
computer vision and natural language processing. The renewed interested in AI is attributed to two
pivotal factors: the advent of powerful, dedicated hardware like graphical processing units and tensor
processing units, providing the computational power necessary for training complex deep learning models,
and the enormous data availability in the age of big data. The latter, especially augmented by the
widespread adoption of Internet of Things (IoT) technologies, has led to an abundance of data from
diverse sources, particularly sensor measurements, fueling the application of machine learning and deep
learning in various industrial scenarios.

Despite the successes of sub-symbolic, data-driven methods, recent years have seen a growing
inclination towards hybrid models that synergize symbolic and sub-symbolic approaches. This trend
stems from several inherent limitations in purely data-driven systems. Firstly, these systems often
redundantly learn concepts that are already part of common knowledge or are well-understood by domain
experts. This redundancy raises the question of how to prevent machine learning algorithms from
re-learning these established concepts. Secondly, data-driven methods may struggle to adhere to specific
constraints, such as those dictated by natural laws or user-imposed rules, whereas symbolic methods
can manage these constraints more easily. Lastly, the black-box nature of sub-symbolic methods poses
challenges in terms of interpretability and explainability, in contrast to the more transparent symbolic
approaches.

In the context machine learning and deep learning, these challenges have given rise to the emergent
field of informed machine learning. This new domain aims to exploit the strengths of both symbolic and
sub-symbolic methods by formalizing and incorporating existing task-specific knowledge into traditional
machine learning workflows. The goal is to create systems that are not only more efficient and reliable
but also more interpretable and adaptable to various constraints.

The core objective of this thesis is to explore and advance the field of informed machine learning. It
presents innovative algorithms within this domain and conducts a thorough investigation of existing
methodologies. The applications of these algorithms are explored in two significant areas of AI: predictive
modeling and decision support systems. To validate the practical utility of these algorithms, the thesis
undertakes a comprehensive empirical evaluation. This evaluation encompasses real-world application
as well as abstract problems commonly used in the scientific community to investigate practical use
cases. The findings from these studies provide concrete evidence of the effectiveness of informed machine
learning solutions in addressing the highlighted challenges. Moreover, the thesis demonstrates how
informed machine learning can significantly enhance the capabilities and applicability of sub-symbolic
methods by effectively harnessing diverse forms of existing knowledge.

Table of contents

List of figures 7

List of tables 11

Research activities and publications 13

1 Introduction 15

2 Background 17
2.1 Optimization under constraints . 17

2.1.1 Constrained Satisfaction Problems . 18
2.1.2 Constrained Optimization Problems . 18

2.2 Optimization under Uncertainty . 20
2.3 Machine Learning . 21

3 Informed Machine Learning 27
3.1 Algebraic equations . 30
3.2 Differential equations . 32
3.3 Logic rules . 35
3.4 Simulation results . 36
3.5 Bayesian networks . 38
3.6 Declarative formulation of an optimization problem . 39

3.6.1 Solver-as-a-layer . 42
3.6.2 Surrogate loss functions . 45

4 Use cases 47
4.1 Energy Management System . 47
4.2 Predictive Maintenance . 49

4.2.1 Oil and gas facility . 50
4.3 Resistor Capacitor circuit for Thermal Modeling . 51
4.4 Combinatorial Optimization . 52

5 Knowledge injection methods to improve predictive models 55
5.1 External model integration . 55

5.1.1 Preliminary analysis . 58
5.1.2 Experimental results on the integration methodology 66

6 Table of contents

5.2 Universal Differential Equation for data-driven discovery of ODEs 69
5.2.1 Experimental analysis . 70

6 Knowledge Injection Methods to Enhance Decision Support Systems 75
6.1 Injecting Constraints Propagators in Neural Networks 75
6.2 Empirical Analysis . 79

6.2.1 Training Set Size and Empirical Information . 83
6.3 UNIFY: a Unified Policy Designing Framework for Solving Integrated CO and ML Problems 85

6.3.1 Key Problem Elements and Notation . 86
6.3.2 unify formalization . 88
6.3.3 Generalization . 90
6.3.4 unify: an Application to an EMS and a Production Scheduling Problem 95

6.4 Score Function Gradient Estimation to Widen the Applicability of DFL 101
6.4.1 SFGE applications to linear and non-linear optimization problems 103

7 Conclusions 111

A Theoretical Results on Score Function Gradient Estimation 113

B Additional Results on SFGE for DFL 115

Bibliography 119

List of figures

3.1 Informed machine learning pipeline. 27
3.2 Schematic overview of the PINNs computation. 32
3.3 An example of KBANN. Gray lines represent learnt propositions, absent from the initial

ruleset. 35
3.4 Comparison between the SimKern and a traditional ML workflow, as described in [1] . . 37
3.5 A low fidelity simulator can be incorporated in the architecture of a neural network. . . 38
3.6 A simple Bayesian network and the resulting decomposition of the joint probability

distribution. 39
3.7 Overview of the Bayesian network-based decision support system developed in [2] (image

from [2]). 39
3.8 Illustrative example on how the prediction error might affect the dowstream task loss

(image from [3]). 40
3.9 Schematic overview of a DFL pipeline. F denotes the feasible region and f the problem

objecitve function. 41
3.10 Solver-as-a-layer (upper) and surrogate loss (lower) DFL approaches. 42
3.11 Feasible region (left) and task loss (right) for the illustrative ILP. θ are the parameters of

the ML model. 43

4.1 Schematic example of an EMS. 48
4.2 Simplified schema of the oil and gas facility. Dark blue, light blue and yellow lines are the

flows of respectively the oil, water and gas. 51

5.1 First integration schema of the external model. 56
5.2 Second integration schema of the methodology. 56
5.3 Third integration schema. 57
5.4 Other viable integration schemas derived from the proposed methodology. 58
5.5 The histogram of the stabilization column temperature values. 59
5.6 A representative example of anomalous events that may occur during a day. 60
5.7 Architecture of the designed alarm detection system. 61
5.8 Average R2 score and the Mean Absolute Error for the MLP and CNN architectures on

the 4 datasets. 64
5.9 ROC curve for the binary classification problem. 65
5.10 Pareto frontier results for the neural architectures. 66
5.11 The external model is used to collect surrogate measurements of the RVP. 67

8 List of figures

5.12 Prediction errors on the real data. From left to right: linear regression model, external
model and the external model plus the adapter. 67

5.13 Example of an anomaly affecting the only reboiler. 68
5.14 UDE training time as a function of the number of iterations per time step of the Euler

method. 72
5.15 Average and standard deviation of the AE as a function of the number iterations per time

step of the Euler method. 72
5.16 Linear coefficients and predictions error as a function of the EOH. 73

6.1 Methods comparison for different λ values on the PLS-12 on a dataset generated from
10,000 solutions pool and with full constraints injection. 80

6.2 Methods comparison for different λ values on the PLS-12 on a dataset generated from
10,000 solutions pool and with rows constraints injection. 80

6.3 Methods comparison for different problem dimensions and full constraints injection. . . 81
6.4 Methods comparison for different problem dimensions and full constraints injection when

the training set size is reduced to the 10% of the initial size. 82
6.5 Methods comparison for different problem dimensions and rows constraints injection when

the training set size is reduced to the 10% of the initial size. 83
6.6 Effect of solutions pool size reduction. 84
6.7 High-level overview of the approach, in the case of the EMS example. 87
6.8 UNIFY decomposition for the training and inference problems. 90
6.9 Schematic view of the tuning algorithm. 93
6.10 Optimality gap of the state-of-the-art tuning approach and the unify methods w.r.t.

the computational time. 97
6.11 In this figure we show how demanding constraints satisfaction to the downstream solver

greatly improves over a full end-to-end RL method and safety-layer. 98
6.12 Optimality gap on the WSMC problem and the solution time of the predict-then-optimize

approach w.r.t. the number of scenarios. 99
6.13 Illustration of a DFL loss with non-informative derivatives () smoothed by predicting a

Gaussian over the parameters with increasing variances (≤ ≤). The larger the variance,
the more the loss gets smoothed, but the less it resembles the original piecewise-constant
task loss. 102

6.14 The relative post-hoc regret and normalized runtime at inference time of SFGE and
PFL+SAA on the WSMC of size 10 × 50, for a ρ = 5 (left) and ρ = 10 (right). 108

6.15 Comparison between SFGE and PFL+SAA on the KP-50 with stochastic item weights,
for ρ = 5 (left) and ρ = 10 (right). 109

B.1 Left: validation regret on the KP-50 w.r.t. the number of epochs when multiple predictions
ŷ are sampled for the same x. Right: test relative regret on the KP-50 when σ is contextual
(predicted std dev) and a trainable parameter (trainable), compared with the state-of-the-
art SPO. 115

B.2 Validation relative regret during training of SFGE with and without standardization on
the KP-50 . 116

List of figures 9

B.3 Total number of optimization problems solved by SFGE during training w.r.t. the
mini-batch size used in stochastic gradient descent. 117

B.4 Test relative regret w.r.t. the mini-batch size used in stochastic gradient descent. 117

List of tables

5.1 Comparison between mini-batch and full-batch methods. 71

6.1 Number of soft constraints violations per generated solution. 85
6.2 Examples of real-world problems that can be tackled with unify and their components. 87
6.3 EMS grounding for the main problem elements in the approach 96
6.4 WSMC grounding for the main problem elements in the approach 96
6.5 PFL, SFGE and SPO results on the linear and quadratic KP. 104
6.6 PFL, SFGE and PO results on the fractional KP. We did not report the Feas. rel.

PRegret for very high Infeas. ratio. 105
6.7 MLE and SFGE results on the KP-50 with uncertain weights. We did not report the

Feas. rel. PRegret for very high Infeas. ratio. 106
6.8 PFL and SFGE results on the WSMC of different sizes and for different penalty coefficient

values. We did not report the Feas. rel. PRegret for very high Infeas. ratio. 107

Research activities and publications

Research activities

• As a junior researcher, I was involved in the KINeMA project co-funded by the Bi-rex competence
center (https://bi-rex.it/). KINeMA stands for “Knowledge Integration in Neural Networks for
e-Maintenance”. The goal of the project was to apply cutting-edge informed machine learning
methods in the realm of predictive maintenance. My role in this project was multifaceted: I
not only contributed to developing the core research idea but also played a pivotal role in the
development of a working prototype, bridging the gap between theoretical research and practical
application.

• During the mandatory period abroad, I visited the research group of the professor Tias Guns at KU
Leuven. This experience was crucial for enhancing my expertise in methods that integrate learning
with optimization. It also provided a fertile ground for developing new ideas about incorporating
prior knowledge of combinatorial optimization problems into machine learning frameworks. The
fruitful outcome of this collaboration is elaborated in section 6.4 of my thesis.

List of pubblications In the following, I will list the publications resulted from my research activity:

• Silvestri, Mattia, Michele Lombardi, and Michela Milano. “Injecting domain knowledge in neural
networks: a controlled experiment on a constrained problem.” Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research: 18th International Conference, CPAIOR
2021, Vienna, Austria, July 5–8, 2021, Proceedings 18. Springer International Publishing, 2021.

• Silvestri, Mattia, et al. “Supervised Anomaly Detection in Crude Oil Stabilization.” PAIS 2022.
IOS Press, 2022. 114-127.

• Silvestri, M., De Filippo, A., Ruggeri, F., and Lombardi, M. (2022, June). “Hybrid Offline/Online
Optimization for Energy Management via Reinforcement Learning”. In International Conference
on Integration of Constraint Programming, Artificial Intelligence, and Operations Research (pp.
358-373). Cham: Springer International Publishing.

• Silvestri, M., Baldo, F., Misino, E., Lombardi, M. (2023). “An Analysis of Universal Differential
Equations for Data-Driven Discovery of Ordinary Differential Equations”. In: Mikyška, J.,
de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds)
Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10476.
Springer, Cham. https://doi.org/10.1007/978-3-031-36027-5_27

https://bi-rex.it/

14 List of tables

• Mattia Silvestri and Senne Berden and Jayanta Mandi and Ali İrfan Mahmutoğulları and Maxime
Mulamba and Allegra De Filippo and Tias Guns and Michele Lombardi. “Score Function Gradient
Estimation to Widen the Applicability of Decision-Focused Learning”. ICML 2023 Workshop
on Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and
Simulators, 2023, https://openreview.net/forum?id=ty046JUllZ.

• Silvestri, M., De Filippo, A., Lombardi, M., and Milano, M. (2022). “UNIFY: a Unified Policy
Designing Framework for Solving Constrained Optimization Problems with Machine Learning”.
arXiv preprint arXiv:2210.14030. (Under review).

https://openreview.net/forum?id=ty046JUllZ

Chapter 1

Introduction

In a broad sense, AI aims to build machines capable of solving problems typically requiring human
intelligence, such as playing games, solving equations, image recognition, and understanding natural
language. Humans learn to solve new problems through experience and by reasoning about previously
solved challenges. However, learning is a multifaceted task that necessitates both sensory and reasoning
capabilities. For instance, when solving mathematical equations, we first recognize the written digits
and symbols, then we rely on prior algebraic knowledge to solve the problem.

Informed machine learning emerges as a response to the limitations of traditional data-driven AI.
While conventional machine learning (ML) algorithms excel at pattern recognition and predictive
modeling, they often lack the depth and context that come from established domain knowledge. Informed
ML seeks to bridge this gap by integrating external, validated knowledge into the ML process. Consider
the challenge of solving algebraic equations from images: an informed ML solution might employ a deep
learning model to recognize digits and symbols from images, followed by a symbolic engine to solve
the resulting equations. This example underscores the promise of informed ML but also highlights the
complexity in its implementation.

The first challenge in implementing informed ML lies in defining and formalizing knowledge. Within
AI and computer science, knowledge transcends mere data or information; it embodies a set of validated
entities, concepts, and relations, rigorously established and authenticated. Techniques for formalizing
this knowledge vary, ranging from logical constructs to algorithmic representations, each tailored to the
unique requirements of the task at hand.

Furthermore, knowledge is heterogeneous and originates from diverse sources. Algebraic equations
and logic rules, for instance, might represent world and commonsense knowledge, while differential
equations describe complex systems and natural laws. In industrial facilities, expertise may be encoded as
causal relationships between different components. This diversity poses a significant challenge: devising
a unified approach to integrate these varied forms of knowledge into sub-symbolic methods.

Another key challenge is determining the optimal way to inject knowledge into an ML algorithm. ML
pipelines are articulated in four main steps: 1) training data; 2) hypothesis set; 3) learning algorithm;
and 4) final hypothesis. The integration of knowledge can vary depending on its source and form, and
may affect different steps of the pipeline.

This thesis investigates the adoption of different forms of knowledge, injected at various stages of an
ML workflow, with the aim of enhancing predictive models and decision support systems. In the realm
of predictive models, we empirically validate innovative informed ML methodologies, with a particular

16 Introduction

emphasis on physics-informed ML, balancing empirical accuracy with scientific interpretability. Practical
applications are explored through challenges in industrial predictive maintenance, such as in oil and gas
facilities, where leveraging expert knowledge is crucial to effectively manage complex machinery.

We also highlight the declarative formulation of optimization problems as a valuable source of
knowledge. A tighter integration between learning and optimization emerges as an effective solution to
enhance decision support systems. The thesis introduces a novel framework that marks a significant leap
in this area, demonstrating how the fusion of ML with combinatorial optimization techniques can lead
to more sophisticated, effective decision support tools. Practical applications in Energy Management
Systems are explored, revealing the intricate balance required in decision-making under uncertainty.
These real-world scenarios, along with abstract but challenging problems like the knapsack and weighted
set multi-cover problems, serve as grounds for demonstrating the efficacy of informed ML in the context
of decision support systems.

The thesis is structured as follows. Chapter 2 provides the background necessary for understanding
informed ML techniques, encompassing ML, constrained optimization, and optimization under uncertainty.
Chapter 3 introduces informed ML and the state-of-the-art approaches, focusing on knowledge represented
as algebraic equations, differential equations, logic rules, simulation results, Bayesian networks, and
the declarative formulation of an optimization problem. Chapter 4 presents the use cases that will
be investigated, namely an Energy Management System, an oil and gas facility, an RC-circuit for
thermal modeling, and some abstract but challenging combinatorial optimization problems. The main
contributions of the thesis begin with Chapter 5, where we depict a novel methodology for integrating
prior knowledge in the form of external black-box models. We then deeply investigate the physics-
informed ML framework in terms of accuracy and interpretability. Chapter 6 presents novel informed
ML techniques for decision support systems. The first approach distills knowledge into the weights
of a neural network to speed up the decision process during inference. We then describe unify, a
general framework that incorporates knowledge of optimization problems into the learning step of an
ML algorithm. Finally, we present a specific instance of the unify framework. Chapter 7 provides final
conclusions and discussion.

Chapter 2

Background

In this chapter, we present an overview of three foundational research areas central to the innovative
work discussed in this thesis: optimization with constraints, optimization under uncertainty, and machine
learning.

Optimization with constraints addresses the challenge of identifying the optimal solution within a set
of choices while adhering to specific limitations or requirements. Optimization under uncertainty extends
the concept by acknowledging the inherent unpredictability present in many practical scenarios. These
methods enable robust decision-making in domains such as finance, logistics, and energy management,
where variables can exhibit high volatility and unpredictability. Machine learning represents a paradigm
shift from traditional problem-solving approaches. By leveraging historical data, machine learning
empowers systems to learn from experience, discover patterns, and excel at predictive tasks that often
elude human analysis.

In this thesis, we harness the power of optimization with constraints and optimization under
uncertainty as decision support systems to tackle complex challenges, including energy management and
production scheduling. Simultaneously, machine learning serves as a predictive tool, enhancing human
decision-making by providing valuable insights based on historical data.

2.1 Optimization under constraints

From a high-level perspective, constrained optimization involves identifying the optimal values for a set
of variables, referred to as the solution, that minimize or maximize a cost or profit function. However,
not all values are allowed; in other words, not all solutions are feasible. The feasible solutions must
satisfy a set of constraints that restrict the space of values we explore, known as the feasible region.

In real-world scenarios, various problems emerge. For instance, a manufacturing company seeks to
minimize production costs while meeting customer demands. An Energy Management System must
allocate the minimum-cost power flows from different sources while satisfying user loads. A logistics
company needs to schedule a fleet of vehicles to complete its delivery tasks while minimizing total travel
times. These examples illustrate the breadth of constrained optimization problems, sparking significant
interest in the research community to develop methods that efficiently explore the feasible region to find
optimal solutions.

18 Background

Formally, constrained optimization involves solving the following problem:

x⋆ = arg min
x∈F(x)

f(x) (2.1)

Here, z ∈ Z with Z denoting the domain of the variables, f : Z → R represents the objective function
(cost or profit), and F(z) ⊆ Z is the feasible region.

Over time, optimization problems under constraints have been classified into different categories
based on the form of the function f and the feasible region F . This classification aims to develop
dedicated methods for each category. In the following sections, we provide a non-exhaustive review of
these different classes of problems and methods, directing interested readers to additional references.

2.1.1 Constrained Satisfaction Problems

Constrained satisfaction problems (CSPs) represent a specific instance of the optimization problem
outlined in eq. (2.1). In CSPs, the primary objective is to identify solutions, if they exist, that satisfy
a given set of constraints. Notable examples of CSPs include the scheduling problem, which involves
optimizing the utilization of limited resources for task completion (e.g., job scheduling on processors),
and the maximum cut problem. The latter entails partitioning an undirected graph into two sets of
vertices to maximize the number of edges between them—a problem with applications in network design
and production scheduling.

Formally, CSPs are characterized by the triplet ⟨X, D, C⟩, where X is the set of variables, Xi ∈
Di, ∀i ∈ |X|, and C is the set of constraints defining feasible solutions. CSPs are usually solved via
search techniques, with backtracking and local search being widely adopted. Backtracking maintains a
list of feasible candidates while incrementally constructing a solution. In case of failure (e.g., when the
domains of all variables are empty), it restarts the search with a new candidate until a solution is found
or the search space is exhausted. Local search explores the solution space through variable assignment
changes.

CSP techniques often leverage methods to intelligently reduce the space of feasible solutions for
efficient search. Constraint propagators, for instance, prune variable domains while ensuring consistency
in possible assignments. Propagators can achieve consistency at three levels: node consistency, where
every unary constraint on a variable must be satisfied by all values in its domain; arc consistency,
indicating that a variable is arc-consistent with another if every value in its domain is consistent with
at least one value in the other variable’s domain according to all constraints; and path consistency, a
generalization of arc consistency involving the comparison of a pair of variables with a third one.

This sub-section provides a concise overview of CSPs, and for a more in-depth discussion, interested
readers are referred to [4]. It’s important to note that CSP methods focus solely on finding solutions
that satisfy the given constraints. In contrast, in the more general constrained optimization setup (and
in many practical scenarios), preferences may exist among feasible solutions based on an evaluation
function. The subsequent sub-section describes various classes of such problems and the techniques that
can effectively address them.

2.1.2 Constrained Optimization Problems

Conversely to CSPs, constrained optimization problems (COPs) require finding the set of feasible
solutions that optimize an objective function. Due to their numerous applications and the computational

2.1 Optimization under constraints 19

complexity challenges, substantial research activity has been devoted to developing efficient methods to
solve these problems, particularly within the operations research (OR) community. Formally, a COP
involves solving the following problem:

min
z

f(z) (2.2)

s.t. gi(z) ≤ 0 ∀i = 1, . . . , I (2.3)
hj(z) = 0 ∀j = 1, . . . , J (2.4)

where z is the set of decision variables, f : Z −→ R is the objective function, and I and J are, respectively,
the number of inequality and equality constraints. Depending on the structure of the objective function
and feasible region, dedicated methods have been developed to solve these problems more efficiently.
Below, we provide an overview of the classes of COPs along with their properties and challenges.

Convex Optimization Convex optimization problems [5] constitute a special case of COPs where
the objective function f is convex, the inequality constraints gi, ∀i = 1, . . . , I are convex functions, and
the equality constraints are affine transformations, i.e., hj = aj · z − bj ∀j = 1, . . . , J , with aj as a
vector and bj as a scalar. Convex optimization problems possess the following properties: 1) every
local minimum is a global minimum, 2) the set of optimal solutions is convex, and 3) if the objective
function is strictly convex, the problem admits at most one optimal solution. While convex optimization
is generally NP-hard, many problems admit polynomial-time algorithms in practice, such as the Interior
Point method [6].

Linear Programming Linear programming (LP) problems are a special case of convex optimization
where the objective function, disequality, and equality constraints are all affine, and the feasible region
is defined by a polyhedron. An LP problem can be formulated as:

min
z

cT z (2.5)

s.t. Gz − h ≤ 0 ∀i = 1, . . . , I (2.6)
Az − b = 0 ∀j = 1, . . . , J (2.7)

where z ∈ Rn, and c ∈ Rn is the cost vector. Since LP is a special case of convex optimization, it retains
the same properties. LP problems are combinatorial, with the set of feasible solutions being finite since,
if an optimal solution exists, it will be attained at a vertex of the polyhedron. Moreover, LP problems
are solvable in polynomial time, and various optimization algorithms, such as the Simplex algorithm,
the ellipsoid method and Karmarkar’s algorithm [7] exist.

Quadratic Programming Problems where the feasible region is a polyhedron, but the cost function
is quadratic, are referred to as quadratic programming (QP) problems and can be formulated as follows:

min
z

1
2zT Qz + qT z (2.8)

s.t. Gz − h ≤ 0 ∀i = 1, . . . , N (2.9)
Az − b = 0 ∀j = 1, . . . , M (2.10)

20 Background

where z ∈ Rn, Q ∈ Rn×n is the quadratic cost matrix, and q ∈ Rn is the linear cost vector. QP problems
are solved using interior point methods or extensions of the Simplex algorithm.

Integer Linear Programming and Mixed Integer Linear Programming So far, we have
considered only continuous decision variables. Many real-world optimization problems involve integer
decision variables to model resources that are discrete by nature. Problems where the cost function and
the equality and inequality constraints are affine functions, and the decision variables are integer values,
are referred to as integer linear programming (ILP) problems [8] and can be formulated as follows:

min
z

cT z (2.11)

s.t. Gz − h ≤ 0 ∀i = 1, . . . , I (2.12)
Az − b = 0 ∀j = 1, . . . , J (2.13)
z ∈ Zn (2.14)

In general, we can have both integer and continuous variables, resulting in the more general mixed
integer linear programming (MILP) problems. Due to integrality constraints, the feasible region is
no longer convex, and thus, they do not retain the properties of convex optimization. The methods
previously listed can not be applied to solve this class of problems, and dedicated branch-and-bound
algorithms are instead used in this setup.

2.2 Optimization under Uncertainty

In the previous section, we focused on problems with perfect information, where all parameters are
known at decision time. These problems are typically referred to as deterministic problems. However,
many real-world optimization problems involve a degree of uncertainty. For instance, in an Energy
Management System, the energy provided by renewable resources is highly uncertain and uncontrollable
(e.g., photovoltaic panels affected by weather); in vehicle fleet routing, the travel times might be
uncertain due to traffic conditions and new customers might appear during the travel; another notable
example is finance where the asset prices are highly stochastic and uncontrollable. In this scenario,
some optimization problem parameters are treated as random variables (e.g., photovoltaic production or
customers’ locations) with associated probability distributions, which may even be unknown.

Despite having numerous applications, optimization under uncertainty poses significant challenges.
Ideally, one would optimize for every possible outcome, leading to large-scale or even intractable problems.
One simplified approach to tackle such problems involves disregarding uncertainty and assuming that
all parameters are deterministic. However, this is not feasible when uncertainty significantly impacts
solution accuracy, necessitating dedicated methods.

There are two main classes of approaches to dealing with uncertainty in optimization problems [9]
[10] [11]: robust and stochastic optimization. Robust optimization aims to optimize for the worst-case
scenario without assuming knowledge of the distribution that models uncertainty. In contrast, stochastic
optimization algorithms optimize the expected value of the objective function, assuming knowledge
of the probability distribution. For example, in an Energy Management System we might opt for a
stochastic optimization solution: uncertainty stems from uncontrollable deviations of the renewable
energy resources productions which provide low price energy and the goal is to minimize the expected

2.3 Machine Learning 21

cost. At the same time, due to the availability of flexible energy sources (e.g. combined heat and power
generator) we are less concerned about the worst-case scenario. Conversely, in the engineering field,
for example when designing a mechanical structure, we aim at dealing with severe variations in the
material properties and operating conditions. Robust optimization is computationally tractable for many
uncertainty sets and problem types, making it appealing. However, when uncertainty can be adequately
modeled and reformulation is computationally feasible, stochastic optimization is generally preferred as
it typically provides better solution quality.

Stochastic optimization often involves multiple stages, where at each stage, a subset of uncertain
elements is revealed, and decisions must be made. Two-stage stochastic programming requires determining
two sets of optimal decisions—one for the first stage and another for the second stage (often referred
to as recourse actions). The first stage decisions are made before uncertainty is revealed, and recourse
actions are applied afterward to recover from feasibility issues due to partial information from the first
stage. For instance, in a vehicle routing problem, if travel times exceed expectations, rescheduling the
route may be required. The overall objective is to minimize the first stage cost and the expected value
of the second one.

A notable approach widely used for stochastic programming is the Sample Average Approximation
(SAA) [12] [13]. In SAA, probability distributions of random variables are approximated by drawing
a finite set of samples, yielding a set of realizations called scenarios. The approach involves solving a
deterministic version of the problem with a copy of the decision variables for each scenario, allowing
estimation of the expected cost by averaging the contributions from each copy. SAA provides high-quality
solutions with a sufficiently large number of sampled scenarios but comes with a significant computational
cost, posing scalability issues.

2.3 Machine Learning
Machine Learning (ML) [14] [15] [16], a pivotal subbranch of AI, eschews explicit programming to solve
complex tasks. Instead, it learns from experience, building statistical models to predict outcomes from
given inputs. These models are trained on historical data, which may be structured (like tabular data
and time series) or unstructured (such as images, text, and audio). ML also encompasses learning from
interactions within an environment that provides feedback.

In recent years, neural networks have become a popular tool for solving problems typically addressed
by ML algorithms. The perceptron [17], a fundamental unit of neural networks, was conceived in
the mid-20th century. However, neural networks have gained prominence only recently, thanks to
technological advancements in the hardware and the avilability of a vast amount of data. These
technological breakthroughs have revived interest in neural networks, stimulating new research and
discoveries in the field.

Deep learning [18], a subset of ML, has gained attention for tackling complex tasks. “Deep learning”
refers to complex neural architectures, with multiple layers and interconnections, that simulate how
the brain works. This approach is effective in complex perceptual tasks like vision, natural language
understanding, and speech recognition.

The extensive literature on ML and deep learning is beyond this the scope of this section. For a
comprehensive overview, additional references are recommended [14] [15] [16] [18].

ML algorithms are broadly classified into three main approaches: 1) supervised learning, 2) unsuper-
vised learning, and 3) reinforcement learning. In this section, we will provide a brief overview of these

22 Background

approaches since some of the concepts are useful for a better understanding of the work realized within
the scope of this thesis.

Supervised learning In supervised learning, the objective is to learn a mapping function f : X −→ Y ,
where X ∈ Rn represents an input vector (information), and Y ∈ Rm is a target vector (desired outcome).
Supervised learning assumes access to a dataset D = {(xk, yk)}K

k=1, where each (xk, yk) is an example,
and K is the number of available examples—a representative sample of the true underlying distribution
P (X, Y).

Supervised learning is further categorized into classification, when the output belongs to a finite set
of categories, or regression, when the output is numerical.

Given a candidate set h ∈ H, where h : X −→ Y , finding the optimal hypothesis h∗ for the mapping
f is known as training. Formally, this is expressed as:

h∗ = arg min
h∈H

{
K∑

k=1
L(yk, ŷk)

}
(2.15)

Here, ŷ = h(xk; θ), and L is a loss function measuring the dissimilarity between model predictions and
desired outcomes. Common loss functions include categorical cross-entropy for classification and mean
squared error (MSE) for regression.

When H consists of parameterized models h(x; θ) ∈ H with parameters θ, eq. (2.15) becomes:

θ∗ = arg min
θ

{
K∑

k=1
L(yk, h(xk; θ))

}
(2.16)

Supervised learning finds practical applications in various domains, including computer vision (e.g.,
object detection in images), natural language processing (e.g., sentiment analysis, argumentation mining,
machine translation), and time series forecasting.

Unsupervised learning While supervised learning assumes knowledge of the desired outcome,
unsupervised learning [19] operates with input features alone, lacking any associated labels. From a
probabilistic standpoint, instead of estimating the conditional distribution p(y|x; θ), as commonly done in
supervised learning, unsupervised learning seeks to estimate p(x; θ) conditioned solely on the parameters
θ.

Unsupervised learning is widely employed for discovering patterns in data. One prominent application
is clustering, where similar data points are grouped into clusters sharing similar properties. It finds
utility across diverse fields, including computer vision (e.g., grouping pixels for image segmentation),
natural language processing (e.g., text categorization, topic modeling), and market analysis (customers
segmentation, targeted advertising), among others.

Another prevalent application of unsupervised learning is dimensionality reduction. This involves
projecting high-dimensional input features into a smaller space that retains the main properties of
the data. This approach facilitates data interpretation and is often used as a pre-processing step for
supervised models, aiming to enhance their accuracy.

Practical applications include genomics, where dimensionality reduction is employed to analyze
gene expression data, given the simultaneous measurement of thousands of genes; signal processing, to
separate signals into distinct sources; and in natural language processing, where dimensionality reduction

2.3 Machine Learning 23

techniques capture the contextual meaning of words in a lower-dimensional space, enabling more efficient
processing of textual data.

Reinforcement Learning The goal of reinforcement learning (RL) consists of training an agent to
maximize a reward signal received from an environment with which the agent interacts. RL differs from
supervised learning since the agent is not explicitly instructed on how to act. Instead the behavior is
inferred from the interactions with the environment and by observing the actions outcome. Even if
labels are not provided, it is not a subset of unsupervised learning: finding hidden patterns may be
useful to increase the reward but it is not a key part of the paradigm.

An RL system consists of two main entities: an agent and an environment. The environment is a
structured framework that simulates the dynamics and constraints of the real-world scenario relevant to
the task, providing the agent with the necessary context and challenges for learning and decision-making.
Its internal state is accessible through observations. The observations capture only salient features of
the environment state and might not reflect the state in its entirety, i.e. some features might be hidden
from the outside.

The agent is the entity interacting with the environment through actions and capable of processing
the observations. Some examples are: a robot capable of moving, grabbing and leaving objects; a
self-driving cars, with sensors and cameras, which takes the driving decisions; an Energy Management
System that schedules the optimal power flows while minimizing the cost; a recomendation system that
provides the user with personalized content and aims at maximizing the attractibility of a product; a
non-player characters in videogames.

The actions model the outcome of the agent and how it affects the environment’s internal state.
RL does not pose strict restriction on what actions are but they are usually classified between discrete
and continuous: discrete actions are represented with a set of finite choices, while continuous ones
are associated with numeric values. For example, a robot movement might be modeled as a discrete
set of four possible actions (up, down, right, left) or as two-dimensional continuous vector (speed and
direction).

Beside the agent and the environment, other elements of an RL system are the policy, the value-
function and, optionally, a model of the environment. While the reward represents short-term evaluation
of the agent’s behavior, the value-function represents the long-term desirability of a given state. Value-
functions take into account not only the current reward but also the possible future states and rewards.
The policy represents the agent’s behavior: given the current state, it establishes which action should be
performed, and it is formally defined as a function πθ : S −→ A, with parameters θ, where S and A are
respectively the states and actions spaces. In general, it’s stochastic, meaning that can be represented
as probability distribution over states and actions, but it can also be deterministic. Finally, the model
of the environments allows the RL agent to infer additional information about it; for example it may be
able to predict next state before acting.

RL algorithms are mainly adopted to solve sequential decision-making problems by relying on the
Markov decision process (MDP) mathematical formulation. Formally, a fully-observable MDP is defined
by a tuple (S, A, p, r, γ), where S is the set of states, A is the set of actions, p(·|s, a) is the probability
distribution of next states, r(·|s, a) is the probability distribution of the reward and γ ∈ [0, 1], called
discount factor, controls the impact of future rewards.

The sequential decision making problem is then cast down to a recurrent process where the RL
agent interacts with the environment by performing actions according to the policy π. Consequently,

24 Background

these actions provoke the agent’s state transitions. The learning process is then formulated as the
maximization problem of cumulative rewards along state-action trajectories τ , dictated by π.

J(θ) = Eτ∼pθ(τ)

[
T∑

t=1
γtr(st, at)

]
(2.17)

pθ(τ) = pθ(s1, a1, . . . , sT , aT) = p(s1)
T∏

t=1
πθ(at|st)p(st+1|st, at) (2.18)

where T is the trajectory time horizon.
RL algorithms can be classified into two main categories: model-free and model-based RL. Model-free

algorithms try to find the optimal policy π∗ such that the expected cumulative discounted reward from
the initial state st=1 is maximized. The idea of model-based RL is to learn the model of the environment,
i.e. the transition probabilities p(·|s, a), rather than the optimal policy and then use the learned model
to choose the optimal actions.

Within the model-free family, policy gradient algorithms are widely used when the actions space is
continuous. One such an example is REINFORCE [20]: given a parametric policy πθ, the parameters θ

are optimized by gradient ascent to directly maximize J(θ):

∇θJ(θ) = Eτ∼πθ(τ)

[(
T∑

t=1
∇θ log πθ(at|st)

)(
T∑

t=1
r(st, at)

)]
(2.19)

Policy gradient algorithms are known to suffer from high variance. Several non-mutually exclusive
solutions can be employed to mitigate this issue, such as baseline subtraction to correctly isolate
positive actions. Among the possible baselines, actor-critic (AC) methods are particularly effective
in reducing variance. Instead of using a state-dependent baseline, one can reduce the variance by
computing the advantage of taking an action at in state st. The advantage is defined as Aπ(st, at) =
r + γVπ(st+1) − Vπ(st), where Vπ(st) = Eπ [J(τ)|s = st] is the value function, r is the reward and st+1 is
the next state. Thus, the actor is represented by the policy, whereas the value function acts as the critic.

Conversely, value-function methods aim at estimating the optimal value-function or the advantage-
function which is then used to choose the optimal action at each state. Notable examples of this class of
RL algorithms are Q-learning and SARSA.

Modern RL approaches take advantage of deep learning models as powerful tools for representation
learning [21]. More precisely, neural networks are employed to approximate the policy πθ and Vθ(·). The
scientific community usually refers to this research field as deep reinforcement learning (DRL).

Conclusions

This chapter provided a foundational overview of three research fields: optimization with constraints,
optimization under uncertainty, and machine learning. Each of these domains offers unique insights and
tools for tackling complex problems in various fields.

In optimization with constraints, we explored how optimal solutions can be identified within predefined
boundaries, emphasizing the importance of efficient methods to navigate and exploit the feasible
region. This category encompasses constrained satisfaction problems, addressed through constrained

2.3 Machine Learning 25

programming techniques, and constrained optimization problems, typically tackled using methods from
operations research.

Optimization under uncertainty highlighted the challenges and methodologies for dealing with
unpredictable elements in decision-making processes. The concepts of robust and stochastic optimization
underscore the need for strategies that can adapt and perform well under various conditions. We
described the Sample Average Approximation method as a notable stochastic programming approach.

Finally, ML showed us the power of data-driven approaches in understanding and solving complex
tasks. The rise of neural networks, deep learning, and RL techniques underlines a significant shift
towards systems capable of learning and evolving, pushing the boundaries of what can be achieved
through computational intelligence.

Chapter 3

Informed Machine Learning

In our daily life, we continuously cite and rely on the concept of “knowledge”. But what is knowledge?
How can we assess knowledge of something? What are the origin and nature of knowledge? Epistemology
[22] [23] is the science that addresses these questions. However, there are still no unique and universally
endorsed answers, and research and debate are ongoing.

In the scope of this thesis, we will focus on knowledge from a computer science perspective. We
define knowledge as a set of entities, concepts, and relations between them that have been validated by
trusted authorities or via an empirical protocol. In the context of ML, we refer to prior knowledge as a
source of knowledge that is separated from the learning algorithm and the training data. Despite being
external to the usual ML pipeline, it is clear that prior knowledge is a valuable resource for learning
solutions from experience.

The discipline that studies ML algorithms by explicitly integrating prior knowledge is referred to as
informed machine learning. A formal and clear definition of informed ML is provided in [24]: “Informed
machine learning describes learning from a hybrid information source that consists of data and prior
knowledge. The prior knowledge comes from an independent source, is given in formal representations,
and is explicitly integrated into the machine learning pipeline ”

Figure 3.1 illustrates a schematic representation of an informed ML pipeline, highlighting the process
of deriving a mapping function f from an input domain X to a target domain Y . This mapping
encapsulates various learning paradigms: in supervised learning, it addresses regression or classification

Figure 3.1: Informed machine learning pipeline.

28 Informed Machine Learning

tasks, mapping input features (domain X) to labels (domain Y). In the unsupervised paradigm, the
same input domain X leads to either clusters (domain Y in clustering tasks) or a reduced input space (in
dimensionality reduction). RL differs slightly, as X represents the observation space, while Y corresponds
to the action space. The data, or “experience”, feeding into this model encompasses diverse formats
such as images, textual content, tabular structures, and time series. While supervised learning pairs
each input feature x with a corresponding label y, unsupervised learning operates solely on the input x.
RL adds another layer, combining observations with rewards, but it does not provide an optimal action
as part of the target.

The core of the ML pipeline consists of the following steps:

1. Training data. The data are preprocessed to make them digestible by the algorithm.

2. Hypothesis set. As also previously described in section 2.3, a candidate set of hypotheses H is
identified, from which the optimal model is chosen.

3. Learning algorithm. The learning algorithm aims to find the optimal hypothesis h∗ from the
candidate set H.

4. Final hypothesis. The output of the learning algorithm is then selected as the solution for the
problem.

Informed ML techniques are classified based on three dimensions: 1) the knowledge source, 2) the
knowledge representation, and 3) the step of the ML pipeline where knowledge is integrated. In the
following, we provide a short description of each dimension.

Knowledge source As previously mentioned, the knowledge source is validated by a trusted group
of individuals from a specific domain. It can originate from science, world common sense, or human
experts. The source of knowledge is broad and heterogeneous, and the validation process can be formal
or informal, explicit or implicit.

The most common source of knowledge is science, encompassing many disciplines like physics, maths,
chemistry, engineering, and technology. Scientific knowledge is usually well-established through empirical
procedures and formalized in natural laws or algebraic equations that are easy to integrate into an ML
pipeline.

Another readily available source of knowledge stems from the world surrounding us, i.e. facts and
experiences from everyday life that we implicitly acquire. It usually refers to objects and concepts, and
the relations among them. While world knowledge is an extensive and readily verifiable resource, its
formalization into a format that is easily interpretable by ML algorithms can be challenging.

The final major category of knowledge is expert knowledge, which is acquired through years of
specialized work in particular fields. This form of knowledge is especially prevalent in engineering, where
practitioners develop a deep understanding of specific systems through extensive professional experience.
While undeniably valuable, expert knowledge is relatively scarce, often residing with a limited number
of individuals. Furthermore, it frequently takes an informal or implicit form, rooted in intuition rather
than well posed laws or equations.

Knowledge representation The knowledge representation is the formalization used as an interface
with the ML algorithm. In the following, we will briefly overview the most widespread knowledge
representations employed in informed ML (some of them are depicted in fig. 3.1).

29

A differential equation is a mathematical equation that involves one or more derivatives of an
unknown function. They are usually employed to describe how a function or a system of functions change
over time or space. Differential equations are classified into various categories depending on the highest
order of the derivatives involved or whether the functions are linear or not, but two of them are the
most common: ordinary differential equations (ODEs) and partial differential equations (PDEs). ODEs
involve derivatives with respect to a single independent variable, for example, time when describing a
dynamical system. On the other hand, PDEs involve derivatives with respect to multiple independent
variables, e.g., Navier-Stokes equations used to model fluid dynamics.

Logic rules [25] [26] are fundamental principles that allow the formalization of knowledge about
entities and their relationships. Logic rules ensure consistency and validity in reasoning and inference.
A rule consists of boolean expressions combined with operators such as or, and, and negation.

An algebraic equation is a mathematical statement that asserts the equality of two algebraic expres-
sions. Algebraic expressions are combinations of variables, constants, and mathematical operations like
addition, subtraction, multiplication, division, and exponentiation. Algebraic equations are used to
describe relationships between quantities and to find values of variables that satisfy the given equation.
Notable examples are the physics laws but also the declarative formulation of an optimization problem.

Probabilistic graphical models are frequently used to model cause-effect relations, especially for expert
knowledge. One such an example are Bayesian networks [27]: a probabilistic graphical model capable of
handling incomplete data and update beliefs with new evidence.

Simulators play a crucial role in replicating physical phenomena that are challenging to reproduce in
real-world settings, like fluid dynamics. These tools serve as approximate yet precise representations
of physical systems. They involve solving a system of complex equations via numerical solvers. The
flexibility of simulators is further highlighted by their ability to be configured with various parameters,
enabling detailed exploration and analysis of specific scenarios.

Knowledge integration Informed ML techniques inject prior knowledge into one of the four steps of
the classical ML pipeline. Informed ML methods that act on the training data usually augment the
available dataset via simulation or expert feedback. When acting on the hypothesis set, the goal is to
find good candidates based on the available knowledge, e.g., when classifying images, employing neural
architectures designed for grid-like input data (e.g., convolutional neural networks [28] [29]). Many
approaches focus on the learning part of the ML pipeline, for example, by adding regularization terms
to the loss function to encode a well-established rule. Finally, informed ML methods might alter the
final hypothesis, forcing it to reflect the prior knowledge.

Symbolic knowledge integration In this thesis, our focus is on symbolic knowledge—knowledge
formalized through symbols and rules, which is both comprehensible to humans and easy to manipulate
by machines. For instance, an optimization problem can be formalized by a domain expert in a declarative
manner. Likewise, algebraic and differential equations are effective tools for depicting complex systems
in a format amenable to human understanding. Moreover, logic programming offers a suite of symbols
and rules for encapsulating general concepts and commonsense knowledge.

The integration of symbolic knowledge in the inference phase of ML models is relatively straightfor-
ward, typically involving the evaluation of outputs from both the ML model and the symbolic engine.
However, the true challenge lies in training ML models to effectively leverage symbolic knowledge.
This endeavor faces numerous obstacles. For instance, neural networks are commonly trained via

30 Informed Machine Learning

backpropagation [30], necessitating differentiable operations. Yet, computing gradients for operations
that handle symbolic knowledge is often complex. Furthermore, the training stability of data-driven
methods may be compromised by the incorporation of prior knowledge, demanding cautious approach.

Given the diverse origins of symbolic knowledge, the research community has proposed specific
integration methodologies. The subsequent sections of this chapter will summarize state-of-the-art
informed ML techniques that utilize symbolic knowledge, categorizing them based on the type of
representation, namely: 1) algebraic equations, 2) differential equations, 3) simulation results, 4) Bayesian
networks and 5) declarative formulation of an optimization problem.

3.1 Algebraic equations

One effective method to inject knowledge in the form of algebraic equations into an ML algorithm
involves incorporating a regularization term in the loss function. This modification impacts the learning
stage of the pipeline. This solution is frequently adopted in physics to inject some well-known laws. In
supervised learning scenarios, eq. (2.15) is adapted as shown below:

h∗ = arg min
h∈H

{
λs

K∑
k=1

Ls(yk, ŷk) + λpLp(f(xk))
}

(3.1)

In this equation, Ls denotes the standard supervised learning component (such as MSE or categorical
cross-entropy), while Lp represents the regularization term, designed to align predictions with physical
laws. The weights λs and λp correspond to the supervised and physics-informed components, respectively.

For instance, [31] introduced Physics-guided Neural Networks (PGNNs), which incorporate physics
knowledge in the form of algebraic equations as a regularization term in the loss function, specifically
for lake temperature modeling. This method leverages the principle that water density increases
monotonically with depth. Consequently, for any two depths d1 and d2 at a given timestep t, where
d1 < d2, the following inequality must hold:

ρ[d1, t] − ρ[d2, t] ≤ 0

Considering a grid with nd depth levels and nt timesteps, the density difference for consecutive depths
di and di+1 (where di < di+1) is calculated as:

∆[i, t] = ρ̂[di, t] − ρ̂[di+1, t]

A positive value in ∆[i, t] indicates a violation of the physical law. Thus, the regularization term is
defined as:

Lp(ρ̂) = 1
nt(nd − 1)

nt∑
t=1

nd−1∑
i=1

max(0, ∆[i, t])

This approach exemplifies how algebraic equations can model simple physical properties such as
monotonicity and feasible ranges [32]. Notably, physics-informed regularization provides a form of
weak supervision, making it particularly valuable for datasets where human annotations are scarce or
challenging to obtain. For example, [33] demonstrates the feasibility of training CNNs for computer
vision tasks without explicit supervision. They utilized the parabolic equation of free fall to detect

3.1 Algebraic equations 31

objects, applying the equation yi = y0 + v0(i∆t) + a(i∆t)2, where yi is the object’s height, y0 and v0 are
its initial height and speed, a = −9.8m/s2 is the acceleration due to gravity, i is the frame index, and
∆t is the duration between frames.

However, adding a regularization term is not the sole approach to embed physics knowledge in the
form of algebraic equations during learning. An alternative strategy involves formulating these equations
as constraints. For instance, [34] [35] [36] describe various methodologies. [35], specifically, augments a
linear support vector machine (SVM) classifier with prior knowledge encapsulated in polyhedral sets
corresponding to each class. These sets, defined by a series of equality and inequality constraints,
represent regions within the input space. Similarly, [36] translates nonlinear known implications into
linear inequalities, subsequently solving the learning problem as a LP problem.

An alternative approach to integrate algebraic equations into ML algorithms involves encoding these
equations directly into the ML model’s architecture. This method effectively constrains the hypothesis
set H. For instance, Lu et al. [37] incorporated physics laws into the intermediate layers of a neural
network, targeting applications in electrochemical micro-machining. Similarly, Ramamurthy et al. [38]
utilized physics-based knowledge combined with the concept of the mean of multiple computations [39]
to enhance the sample efficiency of a RL agent designed for robotic tasks.

The data preparation stage in ML pipelines extends beyond merely considering the dataset size; it
crucially involves the selection and engineering of input features. Algebraic equations offer a method to
enrich the dataset with new features that encapsulate physical properties or constraints. A pertinent
example of this is found in the work of Ladičký et al. [40]. By relying on the Navier-Stokes equations,
they expanded the initial feature vector to include additional features such as viscosity, pressure, surface
tension, and incompressibility. This enriched feature set enabled them to efficiently train a regression
forest [41], significantly reducing the computational resources required to predict subsequent frames in a
fluid simulation process.

Algebraic equations are also used to incorporate symbolic knowledge provided by an expert [32, 36].
For instance, constraints like monotonicity or feasible ranges are typically represented algebraically. In
[32], constraints are added to the loss function as:

arg min
h∈H

L(y, h(x)) + λDLD(h(x)), (3.2)

where x and y denote input and target features, L is the standard supervised loss, and LD represents
the domain knowledge loss, weighted by λD.

In [36], the authors present a distinct approach, employing polynomial regression where the hypothesis
set is defined by:

ŷθ(x) =
∑

|α|≤m

θαxα, (3.3)

with α = (α1, . . . , αD) and total degree m ∈ N. Monotonicity constraints are enforced by controlling the
sign of partial derivatives:

σj
∂ŷθ(x)

∂xj
≥ 0, ∀j ∈ J, x ∈ X, (3.4)

where σj ∈ {−1, 0, 1} indicates the desired monotonicity for coordinate j.
This section explores integrating algebraic equations into ML algorithms, primarily through regu-

larization in the loss function and constraints formulation. Examples include Physics-guided Neural
Networks for lake temperature modeling and polynomial regression with monotonicity constraints. These

32 Informed Machine Learning

Figure 3.2: Schematic overview of the PINNs computation.

methods enable adherence to physical laws and expert knowledge, enhancing prediction accuracy and
interpretability. Additionally, the use of algebraic equations in data preparation and feature engineering
is highlighted, illustrating their broad applicability in ML pipelines.

3.2 Differential equations

Differential equations play a pivotal role in describing the dynamics of systems evolving over time and
space and are extensively used in physics. These equations are primarily utilized in two steps of ML
pipelines: to enhance the learning process and to define custom architectures that incorporate prior
physics knowledge.

An early attempt to solve differential equations with neural networks is provided in [42]. The solution
is computed as the sum of two terms: the first term satisfies the initial and boundary conditions whereas
the second term is provided by a neural network which is trained to satisfy the differential equation.
The method has been applied to both ordinary and partial differential equations.

A seminal contribution to the fusion of differential equations and neural networks are Physics-Informed
Neural Networks (PINNs), as introduced by Raissi et al. [43]. In this framework, a neural network
is trained in a supervised manner to predict the state of a dynamical system. The authors consider
nonlinear differential equations of the general form:

u(t, x) + N [u, λ] = 0, s.t x ∈ Ω, t ∈ [0, T] (3.5)

where u(t, x) represents the system state at time t and x is the observable vector within domain Ω ⊂ Rd.
The nonlinear operator N [·, λ] is parameterized by λ, and t ∈ [0, T] denotes the time interval. An
illustrative example is the resistor-capacitor circuit with a constant voltage generator which is described
by a simple ODE: N [u, λ] = λ (V0 − u(t)), with λ = 1

τ and τ = R · C representing the circuit’s time
constant, V0 is the voltage of the source and u(t) is the voltage value at time t.

PINNs primarily serve two functions: 1) computing data-driven solutions of partial differential
equations, and 2) discovering partial differential equations in a data-driven manner.

3.2 Differential equations 33

For continuous time models with known parameters λ, the first task is addressed by using PINNs as
follows. The PINN is defined by:

f(t, x) = u(t, x; θ) + N [u] (3.6)

Here, u(t, x; θ), approximating the system state, is represented by a neural network with parameters θ.
The loss function is then given by:

L(θ) = 1
Nu

|u(t(i)
u , x(i)

u ; θ) − u(i)|2 + 1
Nf

|f(t(i)
u , x(i)

u ; θ)|2 (3.7)

where
{

t
(i)
u , x

(i)
u , u(i)

}Nu

i=1
are the initial and boundary training data for u(t, x), and

{
t
(i)
f , x

(i)
f

}Nf

i=1
are

collocation points for f(t, x).
In discrete time models, Runge-Kutta numerical solvers [44] can be applied to Eq. 3.5 to obtain the

system state at the next timestep, un+1, as:

un
i = un+ci + ∆t

q∑
j=1

aijN [un+cj], i = 1, . . . , q, (3.8)

un
q+1 = un+1 + ∆t

q∑
j=1

bjN [un+cj] (3.9)

where un+cj (x) = u(tn + cj∆t, x) for j = 1, . . . , q. The specific numerical solver employed is dependent
on the chosen parameters aij , bj , and cj , which define the time stepping scheme. The neural network
computes

[
un+c1(x), . . . , un+cq (x), un+1], and the output of the PINN is

[
un

1 (x), . . . , un
q (x), un

q+1(x)
]
.

The second task that PINNs can achieve is the data-driven discovery of partial differential equations,
specifically identifying the parameters λ that optimally align with the observed data. In this context,
the PINN formulates the function:

f(t, x; θ, λ) = u(t, x; θ) + N [u; λ] (3.10)

Here, the state u(t, x; θ) is approximated using a neural network, and λ denotes the set of parameters
within the PINN. The optimization process involves training not only the neural network parameters
θ but also the PINN parameters λ, by minimizing the loss function 3.7. Considering the RC circuit
example, the PINN is expressed as:

f(t, x; θ, λ) = u(t, x; θ) + 1
τ

(V0 − u(t, x; θ)) (3.11)

where λ = {τ, V0} are the trainable parameters of the PINN.
In the study conducted by Yang et al. [45], physics knowledge is integrated into generative models

in the form of differential equations. Specifically, the conditional probability distribution of the model,
given the latent variable, is constrained by established physical laws. This relationship is represented as
follows:

p(u|x, t, z), z ∼ p(z), s.t. u(t) + N [u] = 0 (3.12)

In this formulation, p(u|x, t, z) denotes the conditional probability distribution of the state variable
u given the observable features x, time t, and latent variable z. The latent variable z follows the
distribution p(z), and the constraint u(t) + N [u] = 0 embeds the physics law into the generative model.

34 Informed Machine Learning

In the preceding discussion, the focus has been on deterministic models. However, quantifying the
model’s confidence in the solutions of differential equations is often a critical concern. Addressing this,
Zhu et al. [46] propose a novel approach that involves the physics-constrained training of a probabilistic
model. This methodology aims to estimate distributions of possible solutions rather than a single
solution, thereby providing a measure of uncertainty and confidence in the model’s predictions.

So far, our focus has been on physics-informed ML methods that leverage differential equations to
augment the learning phase in ML pipelines. Differential equations can be seamlessly integrated into the
hypothesis set, for instance, through the development of specialized neural architectures. This concept
is extensively discussed in literature [47] [48] [49] [50] [51].

A particularly noteworthy instance is Thermal Neural Networks (TNNs) [51]. In TNNs, complex
thermal models are substituted with more manageable lumped-parameter thermal networks (LPTNs).
LPTNs, while defined by a set of simple ODEs, incorporate prior knowledge about geometry and material
properties. Remarkably, certain unknown terms in TNNs are estimated using a universal approximator,
like a neural network. Due to their simplified structure, TNNs facilitate real-time estimations, finding
practical applications in temperature prediction for electric power systems [52] [53] and electric machines
[54] [55] in automotive and automation industries. A TNN is mathematically represented as:

Ci(θ(t))dθi

dt
= Pi(θ(t)) +

∑
j∈Mi

θj − θi

Ri,j(x(t)) +
n∑

j=1

θ̃j − θi

Ri,j(x(t)) (3.13)

Here, C symbolizes the thermal capacitance, P the power loss, and Ri,j the bidirectional thermal
resistance between nodes i and j of the thermal model, with x(t) being the observable features at time
t and θ the temperature at time t, where M = {1, 2, . . . , m}. Sources for which the temperature is
measurable during operations (such as ambient temperature) are incorporated as ancillary nodes whose
temperature is θ̃. In TNNs, the thermal resistances Ri,j and capacitances Ci are estimated using neural
networks. As evidenced in [51], TNNs not only enhance predictive accuracy relative to purely black-box
models but also offer superior interpretability.

A more direct approach involves employing a neural architecture that reflects the differential equation
modeling the system under study. In this spirit, [47] employs a convolution-deconvolution neural network
to address the task of forecasting sea surface temperature, which is modeled using advection-diffusion
equations. The design of this approach is versatile, enabling its application to a diverse broad range of
transportation problems governed by advection-diffusion principles.

Similarly, [48] introduces Deep Lagrangian Networks (DeLaN), a neural network architecture that
integrates Lagrangian mechanics directly through the Euler-Lagrange equation, which is a second-order
ODE. Although DeLaN does not achieve state-of-the-art results, it demonstrates increased robustness
and sample efficiency. Furthermore, it facilitates real-time robot tracking control tasks.

In a similar spirit, [50] integrates rigid body dynamics into a neural model through a linear comple-
mentarity problem (LCP) [56], providing an analytical method for differentiating through the optimal
solution of the LCP. This integration leads to the creation of a completely differentiable end-to-end
simulator.

This section explores the integration of differential equations into ML algorithms, highlighting
their use in enhancing learning processes and defining custom architectures. Early examples include
Physics-Informed Neural Networks for solving differential equations and predicting system states, and
Physics-guided Neural Networks that incorporate physical laws as regularization terms in supervised

3.3 Logic rules 35

Figure 3.3: An example of KBANN. Gray lines represent learnt propositions, absent from the initial
ruleset.

learning. The section also discusses how differential equations facilitate the creation of specialized
neural architectures, like Thermal Neural Networks, which estimate complex thermal models using
simplified ODEs. Additionally, it covers approaches like Deep Lagrangian Networks (DeLaN) that embed
mechanical principles directly into neural network architectures for tasks such as real-time robot control.

3.3 Logic rules

Logic rules serve as pivotal tools in representing worldly concepts and commonsense knowledge. They
articulate properties of objects (e.g., SQUARE(x) =⇒ POLYGON(x) ∧ SIDES(x,4)) and relationships
(e.g., isDaughterOf(Anna, Bob) ⇐⇒ isFatherOf(Bob, Anna)). In ML, these rules are predomi-
nantly integrated into the hypothesis set or the learning algorithm of an ML pipeline.

Two principal strategies exist for incorporating logic rules into the model architecture: neuro-symbolic
methods [57–62] and statistical relational learning [63–71].

A pioneering neuro-symbolic method, Knowledge-based Artificial Neural Network (KBANN), trans-
lates a set of rules into a neural network structure. It uses positively/negatively weighted connections to
represent existing/negated relations, respectively. Hidden units in this network are relations absent from
the initial rule set. These weights are further refined through the learning process. Figure 3.3 shown
an example of KNANNs where the given ruleset is {A =⇒ B ∧ ¬C, B =⇒ C }, and gray lines are
additional connections that do not reflect the initial set of rules. While KBANN focuses on propositional
logic, subsequent advancements like CILP [58] and CILP++ [59] extend support to first-order logic.

Statistical relational learning [68], probabilistically integrates logic rules into the hypothesis set.
A notable method within this domain is Markov logic networks (MLNs) [66], which employ Markov
networks—undirected probabilistic graphical models with nodes representing random variables and edges
denoting relations. MLNs blend probabilities into knowledge, articulated through first-order logic rules,
with each predicate assigned a weight indicating its likelihood.

Closely aligned with MLNs is Probabilistic Soft Logic [67], distinguished by two key features. Firstly,
it relaxes boolean truth values to the continuous interval [0, 1]. Secondly, it permits first-order formulas
in conjunctive forms. These modifications render the inference process a convex optimization, thereby
enhancing computational efficiency.

36 Informed Machine Learning

A recent innovation in statistical relational learning is DeepProbLog [69]. Building upon the
probabilistic logic language ProbLog [72], DeepProbLog incorporates neural models to represent some
grounded facts. It enables joint training of neural networks and probabilistic fact parameters through
gradient descent, leveraging examples for learning.

Another prevalent application of logic rules in informed ML occurs during the learning phase, often
through a regularization term [73–78]. Semantic Based Regularization (SBR) enables an ML model to
concurrently learn from perceptual data and prior knowledge. This prior knowledge is derived from first-
order logic rules, which are transformed into a continuous format using fuzzy logic [79, 80] and t-norm
functions. Such a transformation allows training with gradient-based algorithms and backpropagation.
Differing from traditional logic where predicates are binary ({0, 1}), fuzzy logic permits continuous values
within the interval [0, 1]. A t-norm is defined as a function t : [0, 1] × [0, 1] → [0, 1], characterized by
continuity, commutativity, associativity, monotonicity, and having the neutral element 1. In continuous
representation, these logic rules are incorporated as a regularization term in the loss function, yielding
the loss:

L(f) = ∥f∥2
H +

H∑
h=1

λh(1 − ϕh(f)), (3.14)

where ϕh(f), with 0 ≤ ϕh(f) ≤ 1 and h = 1, . . . , H, represents the t-norm form of the logic rules, and
λh is the weight for the h-th constraint. Equation (3.14) is applicable even in the absence of labeled
data (unsupervised setting), simply by enforcing the fuzzy logic rules.

Hu et al. [77] proposed a model to learn knowledge confidence jointly with the neural network. In their
later work [78], they introduced an iterative student-teacher learning framework. In this framework, the
teacher neural network is derived from projecting the student network into a rule-regularized subspace.
The student network is trained to balance between emulating the teacher’s output and accurately
predicting the true label.

This section explores the integration of logic rules, a key representation of word concepts and
commonsense knowledge, into ML pipelines. We examine two primary integration strategies: neuro-
symbolic methods, such as KBANN and its advancements, which translate logic rules into neural network
structures; and statistical relational learning, notably Markov logic networks and Probabilistic Soft Logic,
which probabilistically blend logic rules with hypotheses. More recently, DeepProbLog integrates neural
models into probabilistic logic for joint training. Additionally, we discuss the use of Semantic Based
Regularization for concurrent learning from data and knowledge, employing fuzzy logic and t-norm
functions for continuous logic rule representation. This approach highlights the sophisticated application
of rule-regularized ML models in both supervised and unsupervised learning settings, advancing the
field of informed ML.

3.4 Simulation results

Simulation software and tools are extensively used in physics to run experiments that are challenging to
replicate in real-world settings. They are usually modeled by an human expert by relaying on a mix
of algebraic and differential equations. The output from these simulations serves as a valuable source
of knowledge, which can be effectively integrated into ML pipelines, often enhancing the training data
[1, 81–85].

3.4 Simulation results 37

Figure 3.4: Comparison between the SimKern and a traditional ML workflow, as described in [1]
.

Simulation results can be used to generate additional input features. In [1], instead of relying
solely on raw training samples, the authors execute multiple simulations for each sample, subsequently
calculating a similarity score based on the outcomes. According to the experimental results with various
ML algorithms, this simulation-based similarity matrix yields a more distinct separation of data samples
in the input space compared to using raw features alone.

When real data are scarce or expensive to collect, simulation outputs can serve as a more consistent
and reliable target. For instance, [31] employs simulations in lake temperature modeling to supplement
missing historical data.

However, the simulation process can be computationally demanding. In such cases, the simulation’s
output may become the target feature, enabling the training of an ML algorithm to mimic the simulation
process [82]. The resultant surrogate model can match the accuracy of the original simulator while
operating at a significantly faster rate.

In robotics, acquiring real-world labeled data is often expensive or impractical thus preventing deep
neural networks from learning and generalizing effectively. In a scenario where one can rely entirely on
synthetic data for training, [83] explores how CNNs can learn the trajectories of toy wooden blocks using
data generated through a 3D game engine. Their experimental analysis reveals that these networks
are capable of generalizing to real-world images and previously unseen conditions, such as varying the
number of blocks.

In many real-world scenarios, a non-negligible discrepancy may exist between true and simulated
data distributions. To bridge this gap, [85] introduces SimGAN, an approach inspired by generative
adversarial networks (GANs) [86]. This method aims to enhance the realism of simulator-generated
images. SimGAN consists of two networks: a refiner, which strives to improve the simulated images, and
a discriminator that classifies images as real or simulated having access to real but unlabeled images.
SPIGAN [81] is similar to SimGAN, but it additionally leverages physics knowledge by accessing the
simulator’s internal information about the world.

Besides generating additional data, simulator can be employed as a part of the neural architecture
[87] [88] [89], as shown in fig. 3.5. This approach is particular helpful when the simulator is not very
accurate and only a small amount of data are available.

38 Informed Machine Learning

Figure 3.5: A low fidelity simulator can be incorporated in the architecture of a neural network.
.

Simulation tools, integral in physics for replicating complex experiments, are increasingly utilized
in ML pipelines, often enhancing training data with their outputs modeled through algebraic and
differential equations. These simulations not only provide additional input features and reliable targets
for scenarios with limited real data but also aid in creating efficient surrogate ML models. Techniques like
SimGAN and SPIGAN have been developed to reconcile differences between simulated and real-world
data, improving realism and accuracy. Furthermore, simulations are sometimes integrated directly into
neural network architectures, particularly beneficial when data is scarce or simulations lack precision.

3.5 Bayesian networks

Bayesian networks are probabilistic graphical models that allow to formalize causal relations. A Bayesian
network is a directed acyclic graph (DAG) where each node represents a random variable and the edges
encode conditional dependencies. Formally, for a set of random variables {X1, X2, . . . , Xn}, a Bayesian
network represents the joint probability distribution as:

P (X1, X2, . . . , Xn) =
n∏

i=1
P (Xi|Parents(Xi))

where Parents(Xi) are the nodes with edges directed towards Xi. A simple illustrative example is
depicted in fig. 3.6.

The literature is rich with works that employ Bayesian networks in informed ML [2] [90] [91] [92] [93]
[94]. In the field of clinical medicine, where data can be scarce and the development of a full data-driven
approach is not always viable, Bayesian networks have shown notable applicability. For instance, in
[2], the authors design a decision support system for clinical settings that integrates expert knowledge
with empirical data, demonstrating the practical value of Bayesian networks in complex decision-making
scenarios. As depicted in fig. 3.7, expert knowledge and meta-analysis are used to define the structure of
a Bayesian network, whose parameters are then learned leveraging the available data.

Besides clinical medicine, incorporating prior knowledge in Bayesian networks finds application in
industrial problems, where expert knowledge is usually gathered thanks to many years spent working
on a specific system. For example, [93] explores the combination of principal knowledge and empirical

3.6 Declarative formulation of an optimization problem 39

Figure 3.6: A simple Bayesian network and the resulting decomposition of the joint probability distribu-
tion.

Figure 3.7: Overview of the Bayesian network-based decision support system developed in [2] (image
from [2]).

data into a Bayesian network to identify the quality characteristics of mechanical products. Similarly,
[94] investigates the fusion of expert knowledge and Bayesian networks for risk and safety analysis in
the chemical and process industry, while [95] demonstrates how Bayesian networks can improve the
efficiency and accuracy of production processes in semiconductor manufacturing.

Due to the lack of statistical expertise, the expert knowledge belief’s might be biased [96]. To
compensate for this limitation, [90] proposes designing Bayesian networks while preserving the expected
value, independent of the expert judgment, of the random variables in the available dataset. This
approach not only mitigates the bias inherent in expert opinions but also enhances the explanatory
capabilities of models in complex domains like medicine and industry, providing a more robust framework
for decision-making under uncertainty.

In summary, Bayesian networks offer a flexible and robust framework for incorporating expert
knowledge in various fields, effectively handling the inherent uncertainty in complex systems. Their
applications range from clinical decision support to industrial process optimization, demonstrating their
versatility and importance in data-driven decision-making.

3.6 Declarative formulation of an optimization problem
Optimization problems are typically defined by human experts in a declarative manner, specifying
decision variables, constraints, and an objective function to be minimized or maximized. This formulation
provides structured source knowledge and delineates the properties of an optimal solution.

OR methods efficiently explore the solution space of these problems. However, the computational
complexity of many optimization problems, particularly NP-hard ones, exponentially increase with the
size of the input (number of decision variables). Despite this, state-of-the-art OR methods can often
find optimal solutions within reasonable, albeit sometimes really long, time.

40 Informed Machine Learning

Figure 3.8: Illustrative example on how the prediction error might affect the dowstream task loss (image
from [3]).

ML techniques have emerged as a promising tool to develop efficient heuristics [97, 98]. These
methods, often employing deep neural networks, are trained to directly output optimal solutions in a
supervised fashion or to optimize the objective function via RL [98–103]. However, they require extensive
data, struggle with combinatorial structures, and have limited generalizability to larger instances [104].
Moreover, the inherent combinatorial nature of problems is often obscured in the learned function, posing
interpretability challenges.

An alternative approach involves using neural networks to enhance heuristic algorithms [105–107]
or to aid the search process [108–112]. While the former aligns with end-to-end methodologies, the
latter more effectively utilizes problem formulations by integrating with existing solvers. Notably, these
methods assume complete knowledge of the problem at solution time.

In real-world constrained optimization problems, certain parameters of the model might be unknown
at solution time. For instance, in package delivery problems, travel times might be uncertain due to traffic
and weather conditions. Similarly, in production scheduling, customer demands are often unpredictable
and influenced by factors like the time of year or inflation rates. In such scenarios, ML models can
estimate these unknown parameters based on observable features.

In a typical ML workflow, models are trained to maximize accuracy, which involves minimizing
the MSE in regression problems or the categorical cross-entropy in classification problems, thereby
aligning predictions closely with ground-truth values. However, this approach overlooks the influence of
prediction errors on the loss incurred in the subsequent optimization task, i.e., the cost associated with
the optimization problem.

Figure 3.8 illustrates this concept. Consider a problem where the objective is to choose between two
solutions (edges) to minimize cost, formulated as the following binary LP:

min c1z1 + c2z2

s.t. z1 + z2 = 1

3.6 Declarative formulation of an optimization problem 41

Figure 3.9: Schematic overview of a DFL pipeline. F denotes the feasible region and f the problem
objecitve function.

Here, the edge costs are functions of an observable feature x. The relation between the input feature
and the cost of the first edge is represented by circles, and for the second edge by squares in the figure.
The optimal decision policy, as deduced from the figure, involves selecting the second edge if x ≤≈ 1.2,
and the first edge otherwise. Employing a simple linear regression model as a predictor would result in
errors due to the polynomial nature of the relationship between x and edge costs. Such errors, depicted
in the top right chart of fig. 3.8, hinder the identification of the optimal policy.

The lower part of fig. 3.8 demonstrates two different predictive models. Although these models
exhibit non-zero prediction errors, possibly higher than the previous model, they successfully identify
the optimal decision policy. This is because these models were trained by incorporating knowledge of the
optimization problem, focusing on minimizing the task loss (i.e., c1x1 + c2x2) rather than maximizing
accuracy [3]. Training an ML model to minimize the task loss introduces challenges, which have been
extensively explored in the field of decision-focused learning (DFL) [113]. DFL contrasts with traditional
prediction-focused learning (PFL), which aims at maximizing model accuracy.

A primary challenge in DFL is computing the derivative of the task loss to train the predictive
model using gradient descent. The derivative of the task loss can be expressed using the chain rule of
differentiation as follows:

dL(z⋆(ω̂), ω)
dθ

= dL(z⋆(ω̂), ω)
dz⋆(ω̂) · dz⋆(ω̂)

dω̂
· dω̂

dθ
(3.15)

where ω̂ and ω represent the predicted and ground-truth optimization problem parameters, respectively,
and θ denotes the ML model’s trainable parameters. Calculating the first and last terms of the chain
is straightforward: L is usually differentiable with respect to the solution z⋆(ω̂), and the term dω̂

dθ can
be computed using automatic differentiation tools like TensorFlow [114] or PyTorch [115]. However,
computing the second term dz⋆(ω̂)

dω̂ is challenging for two reasons: 1) the mapping ω̂ → z⋆(ω̂) (i.e.,
computing the optimal solution) may lack a directly differentiable closed-form expression; 2) for many
practical optimization problems (e.g., LP, ILP, MILP), this mapping is either non-differentiable or its
gradient is zero, hindering gradient-based optimization.

The subsequent sections provide an overview of DFL methods addressing these challenges, categorized
into two main approaches (schematically depicted in fig. 3.10: 1) treating the optimization solver as
a layer within a neural network architecture; 2) employing surrogate losses that compute dL(z⋆(ω̂),ω)

dω̂

without explicitly requiring the derivative of the solution process. For a comprehensive survey, readers
are referred to [113].

42 Informed Machine Learning

Figure 3.10: Solver-as-a-layer (upper) and surrogate loss (lower) DFL approaches.

3.6.1 Solver-as-a-layer

Amos et al. [116] pioneered the integration of an optimization solver as-a-layer of a deep neural network.
Their methodology, named OptNet, embeds QP problems, as defined in eq. (2.8). The core concept
involves employing implicit differentiation of the Karush-Kuhn-Tucker (KKT) optimality conditions [5].
This approach enables the computation of exact gradients of the optimal solution z⋆ with respect to the
parameters of the optimization problem. The gradients are obtained by solving the following system of
linear equations: Q GT AT

D(λ⋆)G D(Gz⋆ − h) 0
A 0 0


 dz

dλ

dv

 =

 −dQz⋆ − dq − dGT λ∗ − dAT v∗

−D(λ∗)dGz⋆ + D(λ∗)dh

−dAz⋆ + db


Here, λ and v represent the Lagrangian multipliers, while D denotes a diagonal matrix. Additionally,
the authors developed a batch QP solver optimized for GPUs, demonstrating reduced computation
time compared to traditional commercial solvers like Gurobi [117] and Cplex [118] used in this setup.
As a practical illustration of its utility, OptNet was successfully applied to solving Sudoku puzzles
without prior knowledge of the game’s rules, showcasing generalization capabilities in comparison to a
conventional end-to-end CNN architecture.

Following the seminal work of Amos et al. [116], several notable extensions have emerged. Konishi
et al. [119] employ gradient boosting algorithm [120] as predictive model. This model, trained in an
end-to-end manner, requires the computation of the second-order derivative of the solution, adding a
layer of complexity to the approach. Concurrently, Agrawal et al. [121] developed a methodology for
differentiating through conic programs, leveraging similar principles to those of [116]. Building upon this,
in their subsequent work [122], they proposed a more generalized solver for convex optimization problems,
further broadening the applicability and scope of optimization within deep learning architectures.

The methodologies previously outlined address the issue of differentiating through the arg min
mapping. However, these approaches encounter limitations when applied to combinatorial problems,
such as LP, ILP or MILP. In these cases, the gradient of the task loss is typically undefined or zero. To

3.6 Declarative formulation of an optimization problem 43

Figure 3.11: Feasible region (left) and task loss (right) for the illustrative ILP. θ are the parameters of
the ML model.

illustrate this issue, consider the following ILP:

min c1z1 + c2z2

s.t. z1 + z2 ≤ 2
z1 ≥ 0, z2 ≥ 0
z ∈ Z

In this scenario, the cost vector c = (c1, c2) is not known a priori and must be estimated. The feasible
region of this problem, as shown on the left side of fig. 3.11, is finite due to the integer nature of the
decision variables. The right side of fig. 3.11 depicts how the task loss L(z, ĉ) = ĉT z may vary for
a single sample. A minor alteration in the predictions can lead to a discrete change in the optimal
solution within the feasible set. These changes are graphically represented at the steps of L, where the
function becomes discontinuous and, consequently, non-differentiable. In regions where the prediction
modifications do not change the solution, L remains constant, resulting in its gradient being zero.

In LP problems, the optimal solution often lies in the vertices of the feasible region [123], presenting
a major challenge in DFL. To address this, Wilder et al. [124] augment the linear objective function
with the Euclidean norm of the decision variables, formulating the objective as:

z⋆(c) = arg max
z

cT z − µ∥z∥2
2,

creating a continuous mapping ĉ → z⋆(ĉ). The ML model is trained to predict the cost vector c using
backpropagation in the framework of [116]. Rather than the objective function, the task loss is the
regret, defined for minimization problems as:

Regret(z⋆(ĉ, c)) = f(z⋆(ĉ), c) − f(z⋆(c), c), (3.16)

a concept first introduced in [3].
Mandi et al. [125] introduce a differentiable LP solver based on log-barrier regularization. Assuming

an unknown cost vector c, the parametrized LP problem is:

z⋆(ĉ) = arg min
z

ĉT z + λ
∑

i

zi (3.17)

s.t. Az = b, (3.18)

44 Informed Machine Learning

where the solver approximates the LP’s homogeneous self-dual (HSD) embedding using an interior point
method. Since it solves an LP, this method is computationally more efficient than [124] (which involves
solving a QP).

Similar approaches, employing regularization to make solvers differentiable, are used in other works
for sorting, ranking [126], and multi-label classification problems [127].

For ILP problems, [124] suggests dropping the integrality constraints, treating the resulting LP as
described earlier. Extending this, Ferber et al. [128] introduce Mipaal (MILP as a Layer) for general
MILP problems, using cutting plane methods to align the solutions of the LP and corresponding MILP.
While Mipaal improves performance in terms of regret, it introduces scalability issues due to the cut
generation process.

Besides regularization techniques, an alternative approach to enabling differentiation through solvers
in DFL involves smoothing the objective function by randomly perturbing the predictions [129–131].

Pogančić et al. [129] use a linear interpolation as a perturbation for the mapping ĉ → z⋆(ĉ). This is
achieved by interpolating between the points ĉ and ĉ + δ dL(z⋆(ĉ))

dz |z=z⋆(ĉ). Given the derivative of the
loss with respect to the solution, dL(z⋆(ĉ))

dz⋆(ĉ) , the derivative of the loss with respect to the cost vector is:

dL(z⋆(ĉ))
dĉ

≈
(

z⋆

(
ĉ + δ

dL(z⋆(ĉ)
dz⋆(ĉ)

)
− z⋆(ĉ)

)
. (3.19)

This method has been applied to various problems where the input is an image rather than the problem
formulation, such as the shortest path problem in Warcraft II images [132], a traveling salesman problem
with flag images, and a min-cost perfect matching problem on MNIST images [133].

Sahoo et al. [130] propose using the negative identity matrix for the gradient dz⋆(ĉ)
dĉ during backprop-

agation. They address the issue of instability in scale-invariant optimization problems by projecting the
cost vector ĉ onto the unit sphere.

Berthet et al. [131] present a different approach by modeling the conditional distribution p(z|c),
employing the reparametrization trick [134, 135] for generating samples. They perturb c with a random
vector ϵη̃, where η̃ is sampled from a probability distribution η and ϵ is a temperature value. The
perturbed solution z⋆

ϵ is considered a sample from p(z|c) for a given ϵ. The derivative of z⋆
ϵ can be

estimated via Monte Carlo sampling:

dz⋆(c)
dc

= − 1
ϵM

M∑
m=1

z⋆(c + ϵη(m))ν′(η(m))T . (3.20)

Similarly, Niepert et al. [136] also model the conditional distribution p(z⋆|c) but use the Sum-of-Gamma
distribution for noise generation.

In conventional approaches, predictive models are constrained to estimating the cost vector and do
not allow training in a DFL manner to predict unknown parameters within constraints. To address this
limitation, Paulus et al. [137] introduced CombOptNet, a novel method that integrates an ILP solver
into the architecture of deep neural networks. This integration allows for the simultaneous prediction of

3.6 Declarative formulation of an optimization problem 45

both cost vectors and constraint parameters. The authors propose the following proxy function:

P∆k
(A, b) =


min

j
dist(aj , bj ; y) if y′

k is feasible and y′
k ̸= y,∑

j

Jaj · y′
k > bjKdist(aj , bj ; y′

k) if y′
k is infeasible,

0 if y′
k = y or y′

k /∈ Y,

(3.21)

where dist represents the Euclidean distance between a point and a hyperplane and J·K are the Iverson
brackets. Here, y′

k = y + ∆k is defined as an integer point adjacent to y, oriented in the direction of
dy =

∑n
k=1 λk + ∆k, with ∆k ∈ {−1, 0, 1}n, and λk ≥ 0 are scalar values.

3.6.2 Surrogate loss functions

The methods illustrated in the previous section enable the computation of exact or approximated
values of dz⋆(ĉ)

dĉ , which can be integrated as a layer in a deep neural architecture. In contrast, the
methods described in this section approximate the value of dL(z⋆(ĉ),c)

dĉ where L is the regret as defined in
Equation 3.16. These approaches require the availability of ground-truth cost vectors in the training
data.

One seminal DFL work is the Smart “Predict, Then Optimize” (SPO) approach by Elmachtoub et al.
[3]. They propose the SPO+ loss as a convex upper bound on the regret:

LSPO+(z⋆(ĉ)) = 2ĉT z⋆(c) − cT z⋆(c) + max
z∈F

{cT z − 2ĉT z} (3.22)

The SPO+ loss has a useful subgradient given by:

z⋆(c) − z⋆(2ĉ − c) ∈ ∂LSPO+ (3.23)

which can be utilized to train the ML model via gradient descent.
Mulamba et al. [138] adopt the noise contrastive estimation (NCE) concept [139], which involves

discriminating true data from noise data. In the DFL context, they train a ML model to predict ĉ that
leads the optimal solution and avoid the non-optimal solutions. Their loss function is defined as:

LNCE(ĉ, c) =
∑
z′∈S

f(z⋆(c), ĉ) − f(z′, ĉ) (3.24)

where z′ ∈ S represents the set of non-optimal solutions. Notably, LNCE does not require the computation
of z⋆(ĉ) or its gradient.

The same authors propose an alternative based on self-contrastive estimation (SCE) [140], where the
model’s most likely output is contrasted against the ground-truth solution:

LSCE(ĉ, c) =
∑
z′∈S

f(z⋆(c), ĉ) − f(z′, ĉ) (3.25)

where

z′ = arg min
z∈S

f(z, ĉ) (3.26)

46 Informed Machine Learning

Mandi et al. [141] develop a surrogate loss function based on pairwise learning to rank [142]. The
model is trained to predict ĉ so that for every pair (z⋆(c), z′), where z′ ∈ S, the rankings are consistent
for both ĉ and c. The loss function, which includes a margin Θ > 0, is:

LPairwise(ĉ, c) =
∑
z′∈S

max (0, Θ + (f(z⋆(c), ĉ) − f(z′, ĉ))) (3.27)

They further extend this approach to the listwise learning to rank framework. The loss is the cross-entropy
between the probability distributions induced by ĉ and the ground-truth c:

LListwise(ĉ, c) = − 1
|S|

∑
x′∈S

pr(x′|c) log pr(x′|ĉ) (3.28)

Recent research has shifted focus to surrogate loss functions in the context of problems with unknown
parameters in constraints [143]. In [143], the authors introduce the concept of post-hoc regret. Given the
uncertainty of the true feasible region at the time of solution, a correction function, z⋆(ω̂) → z⋆

corr(ω̂, ω), is
required. This function projects the estimated solution, z⋆(ω̂), into the true feasible region. Additionally,
a non-negative penalty is imposed for this correction. The post-hoc regret, PReg(ω̂, ω), is then formulated
as follows:

PReg(ω̂, ω) = obj(x⋆
corr(ω̂, ω)) − obj(x⋆(ω), ω) + Pen(x⋆(ω̂) → x⋆

corr(ω̂, ω)) (3.29)

Hu et al. develop correction and penalty functions specifically for linear packing and covering prob-
lems. Furthermore, they extend the method proposed by Mandi et al. [125] by deriving the implicit
differentiation of ∂PReg(ω̂,ω)

∂θ , where θ denotes the parameters of the neural network.
In a subsequent work, [144] they generalize the Branch and Learn framework [145] to train linear

predictive model, via coordinate descent [146], to estimate unknown parameters in the constraints.
However, the approach is applicable only for recursively solvable problems.

Since some of these methods are solver-free, they do not only bypass gradient-related issues but also
offer computational efficiency as computing the optimal solution can be expensive.

This section delves into the integration of optimization problems with ML, emphasizing how declarative
formulations (e.g. decision variables, constraints, and objective functions) can augment data-driven
methods. A pivotal advancement in this field is DFL, which redirects the training emphasis of ML
models from maximizing accuracy to minimizing task loss, an essential consideration for real-world
scenarios. This shift necessitates sophisticated techniques such as incorporating optimization solvers
into neural network structures and employing surrogate losses for approximating task loss derivatives.
These methods enable more effective and interpretable ML solutions for intricate optimization tasks.
While scalability remains a challenge in DFL, recent developments in solver-free approaches have shown
promising outcomes. Additionally, there is a growing interest in extending DFL scope beyond predicting
cost vectors to include estimating parameters within constraints. Section 6.4 will introduce a promising
method that significantly broadens DFL applicability.

Chapter 4

Use cases

Before delving into the details of the designed methods, we will first provide a formal description of the
use cases involved.

The first one is an Energy Management System that can be framed as a sequential decision-making
problem under uncertainty. Finding the optimal power flows is difficult due to uncertainty in energy
production and user demands.

The second use case is a predictive maintenance task which requires to monitor an oil and gas facility
to anticipate faults or anomalies. The main challenge here is the presence of a complex equipment with
several components. On the other hand, a lot of knowledge is available in the form expertise of the plant
operator and the components’ vendor.

We then investigate a synthetic resistor-capacitor circuit which is often used to model thermal
systems.

The last set of problems that we consider are the knapsack and weighted set multi-cover problems.
Despite being abstract, they have been studied for a long time in the OR community and thus they
provide solid bechmarks. Moreover, they find grounding in many practical use cases, as further detailed
in the dedicated section.

For the Energy Management System and the abstract combinatorial optimization problems, the
source of knowledge is the declarative formulation of the problems themselves that we will leverage for a
tighter integration with the ML models.

4.1 Energy Management System

In recent years, power distribution networks have undergone a significant transformation, shifting away
from traditional centralized power stations toward the adoption of distributed energy resources (DERs).
Unlike conventional power stations, DERs offer modularity and proximity to the locations they serve.
DERs draw power from different sources, namely flexible and reliable power sources, e.g. thermal loads,
but also highly uncertain ones, such as photovoltaic or wind plants (or more generally renewable energy
sources). The inherent variability and unpredictability of these renewable systems necessitate intricate
coordination and decision-making processes, typically managed through the implementation of smart
grids.

48 Use cases

Figure 4.1: Schematic example of an EMS.

Within the context of this thesis, we employ the term “Energy Management System” (EMS) to
denote the framework responsible for optimizing the allocation of the most cost-effective power flows
from various DERs and, if applicable, an energy storage unit, which can accumulate surplus energy
for future use. Our EMS framework aligns with the one proposed in earlier works such as [147, 148],
accommodating exogenous uncertainty. This uncertainty arises from uncontrollable deviations in planned
consumption loads and the presence of renewable energy sources (RES).

Based on actual energy prices and on the availability of DERs, the EMS needs to decide: 1) how
much energy should be produced; 2) which generators should be used for the required energy; 3)
whether the surplus energy should be stored or sold to the energy market. Decisions need to be taken
and implemented at fixed intervals, the stages, (e.g. every 15 minutes), so that power balance can
be maintained to prevent grid failure. This results in tight restrictions on the response time for any
decision-making policy. Furthermore, power flows to and from individual generators and the storage
system are subject to capacity constraints that restrict their utilization. Provided that power balance is
maintained, the EMS goal is to minimize the cost over one day of operation since several key pieces
of information (e.g. grid energy prices) are provided with a daily frequency. Typically, historical data
in the form of past energy prices, forecasted and actual power generation, and user load demands are
available for analysis.

The EMS framework presents an ideal opportunity to explore the integration of knowledge into ML
pipelines: some elements are known explicitly (e.g., constraints on power flows and their balance, cost of
buying/selling energy) and can be formulated in a declarative fashion, whereas others are only in implicit
form (e.g., renewable energy generation) but they can be inferred from data via training an ML model.
At the same time, the task is challenging due to the uncertainty that affects some of the power sources
and user demands. As an additional restriction, the uncertainty is assumed to be non-anticipative and
exogenous, meaning that only past load and demands may affect the future values and that decisions
have no impact on the uncertain elements.

For the EMS, it is possible to account for the explicit problem elements by relying on declarative
optimization. In particular, we can model the cost function and the constraints via the following LP,
similarly to what was done by [147]. For stage k we have:

4.2 Predictive Maintenance 49

arg min
z(k)

m∑
i=2

c
(k)
i z

(k)
i (4.1)

s.t.
m∑

i=1
z

(k)
i = x

(k)
load (4.2)

li ≤ z
(k)
i ≤ ui ∀i = 1..m (4.3)

0 ≤ x
(k)
storage − ηz

(k)
1 ≤ q (4.4)

z
(k)
i ∈ R ∀i = 1..m (4.5)

The decision variables z
(k)
i correspond to the power flows from (for a positive sign) or to (for a negative

sign) each power generator, the grid, and the storage system. There is a linear cost associated with every
power flow, except for the storage system, which is associated with index 1. The costs change over each
interval, but they are known at planning time (since they are communicated one day ahead). The net
energy produced must match the observed demands, i.e. x

(k)
load. All flows must satisfy lower and upper

physical bounds, i.e. li and ui. We have li ≥ 0 for every unit except for the grid, since selling energy
is always an option. The energy level in the storage system cannot be negative and cannot exceed its
capacity q. The charging rate η depends on the time interval length and the storage system efficiency.

The LP we have presented can provide feasibility guarantees (assuming the physical limits from/to
the grid are large enough) and optimize the cost for a single stage. It can also be solved quickly enough
that latency constraints are not an issue. However, the model is totally myopic: it lacks any mechanism
to anticipate future load, energy production, and costs. In particular, the model will never store energy
in preparation for price spikes, since, within a single stage, using energy to satisfy demand or selling to
the grid is always more efficient than moving it to the storage system.

4.2 Predictive Maintenance
In an industrial facility, the necessity for maintenance operations arises both to prevent potential faults
and to address faults that have already occurred. The task of determining the optimal schedule for
these maintenance operations is inherently challenging, as both the maintenance operations themselves
and the subsequent repairing actions can entail significant costs. Three primary strategies are typically
employed in this context:

• Prescriptive maintenance. In this approach, maintenance operations are scheduled at a frequency
that minimizes the probability of faults occurring. While this strategy effectively reduces the
incidence of faults, it comes at a high cost due to the frequency of operations.

• Reactive maintenance. This strategy foregoes scheduled maintenance operations entirely, with
repairing actions only being initiated in response to a detected fault. While this approach saves
time and reduces the cost associated with scheduled maintenance, it may result in a higher number
of unexpected faults.

• Predictive maintenance. Under this strategy, a minimal maintenance schedule is established based
on the estimated condition of the facility’s components. The objective is to minimize maintenance
operations without incurring in any faults.

50 Use cases

The field of predictive maintenance has been under study for numerous years, but the emergence of
advanced technologies, such as ML, has significantly enhanced its efficacy. ML algorithms can serve as
predictive models for various tasks, including:

• Early failure detection. The output is 1 if the model predicts that a failure will occur within a
certain amount of time; 0 otherwise.

• Anomalous behaviour detection. Even when the model lacks specific knowledge about the nature
of an impending failure, it can identify unusual behavior patterns that might indicate an anomaly.

• Remaining Useful Life (RUL). This task involves regression, where the model’s goal is to predict
how much longer a machinery component can be used before it needs replacement.

In the scope of this thesis, we focused on two use cases: a real-world oil and gas facility and an
abstract RC circuit system that can be adopted to model thermal components.

4.2.1 Oil and gas facility

Oil and gas extraction is a complex process involving extensive facilities comprising numerous intercon-
nected components. Any faults or malfunctions in this intricate system not only result in economic losses
but can also pose environmental and safety risks to nearby communities. Consequently, the prevention
of anomalies assumes paramount importance in this industry.

During the course of my Ph.D. research, I was involved in a national project where I applied informed
ML algorithms to enhance the operational efficiency of an oil and gas facility. The facility in question
was operated by a prominent multinational corporation headquartered in Italy. To respect confidentiality
and protect sensitive information, the name of the corporation will remain anonymous throughout this
discussion, and it will be simply referred to as “company”.

The goal of the aforementioned facility is the extraction of hydrocarbons from underground reservoirs.
In this operational context, oil and gas retrieved from the reservoirs are channeled from the wells
through a gathering network to a stabilization facility. The role of this facility is to separate the oil,
gas, and water phases, bringing them to stable conditions and subsequently directing them toward
downstream processing facilities. These downstream processes can include refining for the oil component
and integration into the gas distribution network for the gas components, among others.

While the stabilization process itself may be relatively straightforward, its successful execution is
challenged by the frequent fluctuations in process conditions. These variations arise from several factors:

1. Well drilling and expansion. During the initial production phase of the oil and gas field, new wells
are drilled, which leads to changes in the quantity of oil and gas that must be processed.

2. Evolution over the field’s lifecycle. Over the field’s operational lifespan, individual wells tend to
produce an increasing amount of water alongside the oil. This shift alters the composition of the
hydrocarbon stream and subsequently impacts the process conditions.

3. Intermittent well interventions. Periodically, wells are taken out of the production stream for
various reasons, such as conducting well production tests or implementing production optimization
measures like solvent jobs. These actions further contribute to the dynamic nature of the operating
conditions of the plant equipment.

4.3 Resistor Capacitor circuit for Thermal Modeling 51

Figure 4.2: Simplified schema of the oil and gas facility. Dark blue, light blue and yellow lines are the
flows of respectively the oil, water and gas.

The process for handling the oil extracted from the wells involves a sequence of three vessels,
functioning as gravity separators. Due to the distinct densities of oil, water, and gas, specific separation
actions occur within each vessel. A portion of the gas rises to the top part of each separator (depicted
as yellow streams in fig. 4.2), while the water in the oil descends to the bottom part of the separators
(represented as light blue streams). Meanwhile, the oil proceeds from one separator to the next one
(indicated by dark blue streams). Importantly, these separators operate at progressively decreasing
pressures, enabling the removal of additional gas with each successive stage.

Following the third separator, the oil is directed to an oil stabilization column. The oil enters the
upper section of the column, traverses multiple plates, proceeds to a further separator for the removal
of residual water, and then passes through additional plates at the column’s base. Here, it encounters
two reboilers that heat the oil. The heating process at the column’s base induces an upward flow of
vapor, which interacts with the descending oil on the plates, aiding in the removal of any remaining gas.
Finally, the oil is cooled and stored in tanks.

A critical parameter in this process is the residual vapor pressure of the oil stored in the tanks,
known as the reid vapor pressure (RVP). It is imperative that the RVP remains lower than the ambient
pressure (1 bar) to prevent gas release within the tanks. A value exceeding 1 bar indicates a failure to
meet the stabilization requirements, while a very low RVP (e.g., 0.2 – 0.6 bar) suggests waste of energy,
resulting in over-stabilization of the oil.

In this context, precise control of the temperature at the column’s base is of paramount importance.
The temperature must be sufficiently high to achieve an RVP below 1 bar while being low enough to
avoid excessive energy consumption and over-stabilization. The temperature at the base of the column
is controlled through the use of reboilers, which heat the oil via thermal exchange between hot vapor
and oil through a tubing system. Both the quantity and temperature of the vapor can be regulated to
maintain the desired temperature at the column’s base.

4.3 Resistor Capacitor circuit for Thermal Modeling

Ordinary differential equations (ODEs) are mathematical equations that involve derivatives of a single
independent variable. They are a fundamental tool used to model dynamic systems. One practical
example of such systems includes electric circuits with resistors and capacitors. In particular, resistor-

52 Use cases

capacitor (RC) circuits with constant voltage sources find applications beyond electromechanics, such as
thermal modeling [52, 53, 55, 149].

Thermal modeling plays a crucial role in predictive maintenance scenarios where real-time temperature
measurements are essential to prevent irreparable damages (e.g. electric power systems). However,
developing highly accurate thermal models can be computationally expensive. RC circuit models offer a
cheaper yet accurate alternative, requiring only knowledge of the shape and material of the components
involved. These considerations motivated us to incorporate experiments of informed ML techniques in
the context of RC circuit systems.

In a RC circuit, the state evolution is described by the following ODE:

dVC(t)
dt

= 1
τ

(Vs − VC(t)) (4.6)

where VC(t) is the capacitor voltage at time t, Vs is the voltage provided by the generator, and τ is the
time constant which defines the circuit response. Despite being relatively simple, this ODE allows to
investigate physics-informed ML techniques, as we will see in section 5.2.

4.4 Combinatorial Optimization

Within the scope of this thesis, we focused on two combinatorial optimization problems: the knapsack
(KP) and the weighted set multi-cover (WSMC). Although these problems are abstract, they have a rich
history in OR and find widespread real-world applications.

Knapsack The KP [150] is a well-known NP-complete ILP problem with numerous practical appli-
cations such as portfolio optimization, cargo loading, and cutting stock, among others. The primary
objective in the KP is to select a subset of items from a given set that maximizes their total value while
adhering to a specified budget constraint. The formulation is:

max
∑
j∈J

vjzj (4.7)

∑
j∈J

wjzj ≤ c (4.8)

z ∈ {0, 1} (4.9)

where vj and wj are respectively the value and weight for the j-th item, c is the budget/capacity
constraint, zj is 1 if the j-th item is selected and 0 otherwise.

Beside the classical formulation, we also considered a stochastic version where either the capacity
or the item weights are stochastic and unknown at solution time thus requiring recourse actions. For
example, in a production scheduling problem, the items weights might follow a random probability
distribution, such as a Poisson distribution.

Formally, this scenario can be framed as a two-stage stochastic optimization problem with recourse
actions. It involves solving the first stage problem by incorporating an estimate of the unknown
parameters in the model formulation. Subsequently, after uncertainty is revealed, we solve the second
stage by employing a recourse action if the first stage solution was not feasible. The recourse action
allow to add/remove items although at the price of respectively reduced value and higher cost. This

4.4 Combinatorial Optimization 53

penalty approach is actually employed in real-world scenarios; for instance, in a cargo loading problem,
if the capacity is exceeded, we might incur additional costs for disposing of the exceeded items.

The problem is formulated as follows:

max
z,u+,u−

∑
j∈J

(
cjzj + 1

ρ
vju+

j − ρvju−
j

)
(4.10)

s.t.
∑
j∈J

wj(zj + u+
j − u−

j) ≤ C (4.11)

z ≥ u− (4.12)
z + u+ ≤ 1 (4.13)
u+, u− ∈ {0, 1} (4.14)

where u+ and u− are respectively the selected/removed items during the second stage, w is the realization
of the items weights and ρ > 1 is the penalty coefficient.

Weighted Set Multi-cover The WSMC is a simplified version of a production scheduling problem.
Formally, we assume a factory can manufacture products out of a universe I. Products can be built only
in specific combinations, each associated with a different construction cost and represented as sets over
I. Its formulation is:

min
∑
j∈J

cjzj (4.15)

∑
j∈J

ai,jzj ≥ yi ∀i ∈ I (4.16)

zj ≥ 0, zj ∈ Z ∀j ∈ J (4.17)
(4.18)

Similarly as for the KP, we considered a two-stage stochastic version of the problem where the
demands are uncertain. Unmet demands can still be satisfied by buying additional products but at
a higher cost. Our goal is to meet customer demands d (by either manufacturing or buying) while
minimizing the total cost. Formally, this is a two-stage stochastic optimization problem with recourse
actions. The problem can be modeled via the following MILP:

min
∑
j∈J

cjzj +
∑
i∈I

ρsi (4.19)

∑
j∈J

ai,jzj ≥ yi(1 − wi) ∀i ∈ I (4.20)

(wi = 1) =⇒ si ≥ di −
∑
j∈J

ai,jzj ∀i ∈ I (4.21)

zj ≥ 0, zj ∈ Z ∀j ∈ J (4.22)
si ≥ 0, wi ∈ {0, 1} ∀i ∈ I (4.23)

While the vector of decision variables z specifies how many units of each set should be manufactured, the
additional vector of variables s represents how many units should be bought. Equation (4.20) specifies

54 Use cases

that all estimated demands should be met unless the “flag variable” wi for the respective item is raised,
i.e. wi = 1. In this case, the indicator constraint in Equation (4.21) forces the si variable to be larger
than the unmet demand. The objective combines the cost of manufacturing each set (built using the cj

coefficients) with that of buying items (with the ρ coefficient).

Chapter 5

Knowledge injection methods to
improve predictive models

In this chapter, we explore knowledge integration approaches developed or investigated during my
research activity, specifically tailored to enhance predictive models. The first part focuses on informed
ML methods designed to improve the capabilities and accuracy of predictive models. In the second part,
we delve into the balance between interpretability and accuracy by focusing on specific informed ML
technique that leverages physics knowledge.

The rest of the chapter is organized as follows. In the first section, we describe a general methodology
for integrating a blackbox model into a custom ML pipeline. Before delving into the results for the
aforementioned methodology, we present a preliminary analysis and an anomaly detection system that
we developed for the facility under investigation. In the remaining part of the chapter, we introduce
and provide experimental insights into the physics-informed ML algorithm that was the subject of our
analysis.

5.1 External model integration

In various practical applications, leveraging a blackbox model, whose internal details are inaccessible yet
valuable, is common practice. Consider a large facility with numerous components, often provided from
vendors rather than being internally manufactured. These external models are a valuable form of prior
knowledge and might be characteristic curves describing component behavior, simulators or even ML
models trained on undisclosed data (due to sensitive information concerns, for instance). Integrating
such external models becomes essential when their encapsulated knowledge is otherwise unavailable, or
obtaining similar knowledge is prohibitively expensive.

This situation raises crucial questions: How can we effectively utilize the knowledge from these
external models as they are? How can we seamlessly integrate them into a custom facility’s operational
model? To address these challenges, there is a need for a methodology that enables an easy integration
of external models into the operational framework of a specific facility.

General idea The idea behind the methodology is relatively simple: regardeless its nature, the
external model E is described by the equation y = f(x), where x and y are respectively the input and

56 Knowledge injection methods to improve predictive models

Figure 5.1: First integration schema of the external model.

Figure 5.2: Second integration schema of the methodology.

output variables, and f is a function that maps each x ∈ X to the corresponding y ∈ Y . This approach
is very flexible since it allows to integrate either white or black boxes with custom data-driven models.

In the subsequent part of this section, we present a variety of schemas that exemplify the application
of this methodology and enable to address the aforementioned challenges. Although the source of
knowledge remains constant, each schema may impact a different stage of the ML pipeline, highlighting
the flexibility and generality of the methodologies.

Schema n.1 In industrial plants, particularly with the widespread adoption of IoT solutions, data
collection is mainly realized through sensor measurements. However, this approach is not always feasible,
as certain measurements may require human intervention. This scenario presents several challenges and
limitations: data collected can be noisy and scarce, and the collection operation itself might be costly.
When a specific measurement is valuable and cannot be ignored, it becomes imperative to devise an
economical and efficient method to obtain it.

To address this need, we developed an integration schema that impacts the final hypothesis step
of the ML pipeline and enables fast and cost-effective estimation of hard-to-measure quantities. The
concept, as illustrated in fig. 5.1, is simple yet highly effective: an external model E serves as a proxy to
estimate the value of interest. If E is not overly complex, querying it is more economical than conducting
laborious hand measurements. Moreover, if the external model accurately captures the component’s
behavior, its estimates can even surpass the accuracy of field-collected values, which are susceptible to
noise.

Schema n.2 Ideally, the external model exhaustively encapsulates all necessary knowledge. For
instance, a vendor might train a data-driven model to represent a component across a wide range of
operational conditions. When trained to optimize an accuracy metric (such as minimizing the MSE), the
model inherently considers the entire spectrum of input working conditions as equally relevant. However,
in practical integration within a specific facility, the component often operates within a narrower range
of conditions.

5.1 External model integration 57

Figure 5.3: Third integration schema.

In such cases, the emphasis might be on achieving higher accuracy within this plant-specific operational
range, with less concern about performance in the broader spectrum. To address this, we developed
the integration methodology outlined in fig. 5.2. Here, we employ an in-house model A to enhance the
outcomes of the external model by generating predictions Y ′ aligned with the plant-specific working
conditions. As this approach modifies the model architecture, it constrains the initial set of hypotheses we
draw before learning. This integration approach preserves flexibility as it neither necessitates updating
E nor requires knowledge of its internal representation.

Schema n.3 In anomaly detection tasks, the objective is not only to detect ongoing anomalies but
also to identify the source of the anomalous behavior. Returning to the example of a large facility,
it is often essential to understand which components are malfunctioning. We differentiate between
global anomalies, which simply indicate unexpected behaviors in the facility, and localized anomalies,
which provide a more detailed identification of the involved components. To design such a sophisticated
anomaly detection system, we leverage not only the external model but also a valuable source of human
knowledge: the interconnections between the entities within the system, provided by an expert. As
depicted, in fig. 5.3, by leveraging these interconnections, we can design a Bayesian network that reflects
the causal dependencies, where each node is a component.

Similar to the previous schema, we depict an architecture (and thus an hypothesis set) that reflects
these causal relations. Since the external model describe the ideal behaviors, we can use them to estimate
the probability P (X) of an observed variable or to compute the conditioned probability P (Y |X) of
the outcome Y given X. Low probabilities are associated with anomalous or very unlikely working
conditions and by combining these probability values with the Bayes theorem, we can effectively localize
faulty components.

In the context of the Bayesian network depicted in Figure 5.3, the joint probability distribution of
variables X, Y , and Z can be expressed as P (X, Y, Z) = P (X) · P (Y |X) · P (Z|Y). When this joint
probability is low, examining the values of the conditional probabilities helps identify the nature of the
anomaly. Common scenarios include:

• When P (X, Y, Z) is low, and both P (X) and P (Z|Y) are high, but P (Y |X) is low, the likely source
of anomaly is E2. Generally, if all conditional probabilities are high except one, this suggests a
localized anomaly in the system.

• If P (X, Y, Z) is low and P (X), P (Z|Y), and P (Y |X) are all low, it indicates a more widespread
issue across the network, pointing to a global anomaly.

These patterns assist in pinpointing the source of anomalies within the system associated with the
Bayesian network.

58 Knowledge injection methods to improve predictive models

Figure 5.4: Other viable integration schemas derived from the proposed methodology.

Other integration schemas With the sole goal of demonstrating the generality and flexibility of the
integration methodologies, we present an additional set of schemas that were not directly implemented
in this thesis. A schematic overview is provided in fig. 5.4.

In Schema 4, the external model is not utilized to make predictions but to determine the input X

that results in a desired outcome Y . This approach is useful for computing the value of a controllable
variable that produces a specific outcome.

Schema 5 is closely related to Schema 2: the objective is to achieve more accurate predictions Y ′ for
the specific system where the component is installed. The in-house model E is trained to rescale the
input features X to a new range X ′ that aligns with the facility-specific operational conditions. This
approach is beneficial when the operational conditions lie at the boundaries of the benchmark.

If the in-house model is data-driven, the availability of sufficient data is critical for its development.
Unfortunately, in many practical scenarios, data collection is challenging, resulting in scarce facility data.
As demonstrated in Schema 6, we outline an integration schema where the external model E is utilized
to generate new data synthetically. This enables us to augment the available training data with new
ones and enhances the efficiency of the training process.

This section addresses integrating blackbox models, which encapsulate valuable external knowledge,
into ML pipelines for practical applications. Key methodologies include treating any external model
E as a function y = f(x), which allows its seamless integration into various stages of the ML pipeline.
Demonstrated through several schemas, this approach enhances operational models in settings like
industrial facilities, where external models are used for tasks such as estimating hard-to-measure
quantities, enhancing model outcomes for specific operational conditions, and sophisticated anomaly
detection using Bayesian networks. These integration techniques underscore the flexibility in utilizing
external knowledge across diverse scenarios, from proxy estimations and model adaptation to anomaly
localization and synthetic data generation for training enhancement.

5.1.1 Preliminary analysis

The methodology outlined in the previous section was applied to the oil and gas facility introduced in
chapter 4. Before applying the methodology, we performed a preliminary analysis of the data and we
designed an anomaly detection system capable of alerting the plant operator before the value of the

5.1 External model integration 59

Figure 5.5: The histogram of the stabilization column temperature values.

column bottom temperature leaves an acceptable range. These preliminary data analyses and the design
of an anomaly detection system played a crucial role in acquiring valuable insights about the system
and served as the foundation for the subsequent development of informed ML techniques for this specific
application.

In particular, we implemented a data-driven solution based on a predictive model as its core, plus
preprocessing and postprocessing modules. Preprocessing transforms the input data so that it is digestible
by the predictive models. During the postprocessing step, raw predictions are aggregated to obtain a
more robust alarm signal, and a multi-objective quality criterion allows the operator to balance the
sensitivity and specificity of the system. For the predictive core, we consider a variety of solutions
including regression and classification approaches, operating with both sequence and aggregated data.
Moreover, models are retrained over time to account for concept drift and evolving operating conditions.

In the investigated oil and gas facility, the RVP is an indicator of stabilization quality and thus of
eventual anomalies. Unfortunately, real-time measurements of the RVP are not available since it is
measured twice a day by human operators. However, according to domain experts, the temperature at
the bottom of the column can be used as a proxy, since the two are highly correlated. Low temperatures
are associated with high RVP values, whereas high temperatures lead to over-stabilization of the oil. In
the considered scenario, a temperature within the [140, 180]°C range is considered acceptable. Its value
can be controlled through the reboilers, which heat the oil through the thermal exchange of hot vapor
and the oil across a tubing system.

As per the previous considerations, the temperature of the bottom of the column provides a natural
target for an alarm system. It is therefore important to characterize its behavior in the context of the
facility under investigation.

We start by inspecting the distribution of the temperature values: the histogram from fig. 5.5 shows
this is not too far from being Normal, with a mean and a standard deviation of respectively 167°C and
6.8°C and a few outlier values at around 120°C (likely related to plan maintenance events). It can also
be seen that the lower bound of the safe interval (140°C) is almost never passed, whereas the upper
bound (180°C) is exceeded a non-negligible number of times. The temperature rarely reaches values
close to 200°C, due to the control systems operating on the plant.

Finally, we attempt a characterization of anomalous events (i.e. out of bounds temperature). In
fig. 5.6, we see an example that is representative of the issues that may affect the facility:

• Multiple anomalies may occur on the same day.

60 Knowledge injection methods to improve predictive models

Figure 5.6: A representative example of anomalous events that may occur during a day.

• Anomalies may have different duration.

• Instances of multiple anomaly events are more probable when the temperature hovers around
180◦C, indicating an going state of alarm.

• As shown in the timeframe 00:00 AM-03:00 AM, the temperature may overcome the desired bounds
in different intervals which are relatively close in time. It is important to decide when they are
classified as different anomalies and when they are assigned to the same one.

Overall, this is a practical scenario that is complex to handle, thus making the design of a well-behaving
alarm system far from trivial.

The goal of this preliminary task was to developed a data-driven system designed to alert the user
when the oil temperature at the bottom of the stabilization column is expected to be outside a specified
[tmin, tmax] interval over the next τ minutes. The idea is that, if we are able to notify the plant operators
with a proper advance, they may adopt suitable containment measures.

In principle, an ML model could be used to obtain predictions about the temperature behavior in
the considered time frame and then to directly warn the operator. More realistically, the predictions
would need to be postprocessed to improve the robustness and sensitivity of the alarm signal. Since
mistakes (both false alarms and missed anomalies) are unavoidable, such a postprocessing step should
be flexible enough to accommodate priorities determined by the plant operator.

The general architecture of our alarm detection method is depicted in fig. 5.7. Data (either historical
or real-time) are collected from remote sensors installed on the plant and stored via an architecture that
records the measurements from the field. The collected data undergo a preprocessing step to make them
digestible for a data-driven approach. Finally, raw predictions require a postprocessing step to generate
an alarm signal that is easily interpretable by and manageable for the human operator.

In the remainder of the section, we will provide additional details about the building blocks of our
method, namely data preprocessing, predictive model, and alarm signal generation, and after that the
results of the experimental analysis.

Preprocessing During the preprocessing step, raw data from the plant are cleaned and transformed so
as to make them digestible by the predictive modules. While certain preprocessing steps are applicable
to both regression and classification models, and are independent of the specific predictive model, others
are tailored to the nature of the task or the characteristics of the model being employed.

5.1 External model integration 61

Figure 5.7: Architecture of the designed alarm detection system.

We start by enumerating a list of common practices and then we proceed by describing specific
preprocessing steps. As a first step, we perform missing value imputation, so that we are not later
constrained to choose predictive models that can handle them. Additionally, certain ML algorithms,
such as neural networks, necessitate the standardization of input features to operate optimally within
canonical ranges. To achieve this standardization, we apply a uniform scaling transformation to all input
variables. As a result, all the input features are centered on zero and have unit variance.

We then proceed by describing a task-specific preprocessing step. We previously highlighted that
plant dynamics are relatively slow, and that oil takes a non-negligible time to move between components.
For this reason, feeding synchronous input measurements runs the risk of missing any delayed effect due
to this mechanism. Luckily, a preprocessing step can be used to re-align the input data so as to keep
into account the delayed responses of the stabilization column temperature. Specifically, if we refer to
the m-dimensional input as x, where each input feature xj has a delayed response with lag ∆t′

j and we
want to predict the stabilization column temperature with an advance τ then the result of the alignment
operation will be:

x
(t)
j := x

(t−max(τ,∆t′
j))

j ∀j ∈ {1, . . . , m} (5.1)

This procedure temporally aligns each input feature based on the delayed response without exceeding
the necessary prediction advance.

The alignment operation holds particular significance in the context of regression models. In contrast,
in a classification scenario, our predictions typically pertain to a relatively extended forward interval
([t, t + τ]), which inherently accommodates the consideration of delayed responses. The delayed values
are identified via a time-lagged correlation analysis between the input features and the stabilization
column temperature; for simplicity, we use the (lagged) Pearson correlation coefficient:

ρXY∆t
= σXY∆t

σXσY∆t

(5.2)

where ∆t is the time lag. As we are working with time-series data, a crucial aspect of the design involves
making thoughtful choices about how to manage the input for the predictive model. Two natural options
are:

• Feeding the predictive model with a sequence of input data, corresponding to a reasonably long
time window.

• Using aggregation function (e.g. common moment statistics such as mean and standard deviation)
to extract meaningful features in the preprocessing step.

Both these solutions can be effective but they require a predictive model that handles the specific data
format.

62 Knowledge injection methods to improve predictive models

Predictive models From an ML perspective, the core predictive task within our system can be
categorized into two distinct approaches:

• Regression. This involves predicting future temperature values τ time units ahead. This task is
more challenging, requiring the estimation of specific temperature values well in advance to enable
timely actions by the operator.

• Classification. This entails determining if the temperature will be within (class 0) or outside (class
1) a predefined safe range in the next τ time units. While less granular than regression, it aligns
more closely with our primary task of ensuring temperatures remain within safe boundaries.

Given the operational context and initial experiments, our focus is primarily on developing classifi-
cation models. These models are designed to indicate whether temperatures are likely to exceed safe
limits, rather than providing detailed temperature predictions. We adopted neural architectures for their
robust performance, but our methodology is not confined to this type of algorithm.

For the regression task, we formulate the problem as learning a function f : X(t) → Y (t+τ), where
X(t) ∈ Rm represents the input features at time t, and Y (t+τ) is the target temperature value at time
t+τ . The training of neural networks for this task is supervised, requiring a dataset D = {(x(i), y(i))}N

i=0,
with each x(i) being the input features and each y(i) being the corresponding target temperature value.

In the classification scenario, the task is binary, aiming to predict whether temperature values will
remain within a safe range. The dataset for this task is labeled as anomalous or non-anomalous based
on whether the temperature exceeds safe limits at any point from [t, t + τ]. Here, the function to learn is
f : X → Y , where X ∈ Rm consists of input features, and Y is a binary class indicating anomaly. The
dataset for this task is similarly structured to the regression scenario, but with binary targets indicating
anomaly status.

The choice of input format is crucial and depends on the model’s design. If the sequence input is
selected, the data will be in the form of m × w matrices, where w is the window length, and m is the
number of input features. This format is particularly suited for models like 1-dimensional CNNs, which
can exploit the sequential nature of the data. Alternatively, for models designed for aggregated data,
the input is a vector X ∈ Rq, where q = m · u and u is the number of computed statistics (e.g., mean,
standard deviation) for each feature. This aggregated format can be more suitable for models that do
not inherently process sequential data.

Alarm signal generation The primary objective of our system is to generate an alarm signal that is
both easily interpretable by field operators and aligns with business needs. Defining an effective alarm
requires considering several factors:

• Both missed detections and false alarms are detrimental from a business perspective. Operators
should be alerted only when necessary, as investigating a potential danger is costly. Additionally,
frequent false alarms can lead to distrust in the system.

• Technicians do not continuously monitor the alarm system, so multiple closely-timed predictions
can be aggregated into a single alarm signal.

• The lead time provided by anomaly detection should be sufficient for effective intervention and
repairs.

5.1 External model integration 63

To meet these requirements, we developed a method to transform raw predictions into interpretable
alarms. While our approach primarily utilizes binary classifier predictions, it can be adapted to regression
scenarios, such as by applying a threshold to the model’s predictions. This method incorporates several
parameters and operations:

• Validation Undershoot: Groups individual predictions to form a coarser-grained alarm signal.
This parameter determines the number of predictions considered when validating an alarm.

• Threshold: The required proportion of anomalous predictions within a group (determined by the
validation undershoot) to trigger an alarm.

• Anomaly Undershoot: Defines the interval within which two anomalous temperature readings
are considered part of the same anomaly. Alternatively, it can specify the required separation
between anomalies for them to be classified as distinct.

• Alarm Undershoot: Recognizes that operators are not constantly monitoring the system.
Anomalies separated by sufficient time are treated as different alarms.

• Minimum Advance: Ensures that alarms provide enough lead time for operators to effectively
respond to potential issues.

• Blurred Area: While strict safe boundaries are used for classifying data, evaluation can be more
flexible. Ground truth values within ∆T °C of the boundaries are excluded during evaluation to
avoid overemphasizing minor anomalies and affecting the evaluation score.

Experimental analysis Training and evaluation were conducted using real data acquired from sensor
measurements at the facility. We used historical data from the period 2018/10/01 to 2019/10/31,
sampled every 5 minutes. The dataset was segmented into four periods, each spanning 10 months, with a
one-month overlap created by shifting the start date for each segment. This segmentation was designed
to evaluate model robustness under changing operational conditions over time, anticipating potential
distributional shifts in the data. Periodic retraining of the model might be necessary, and based on input
from domain experts, it is believed that the plant’s operational conditions evolve gradually. Therefore, a
monthly retraining schedule is considered sufficient to address these changes.

For each of the four segments, the initial 8 months of data were used for training, while the
subsequent 2 months were evenly divided between validation and testing. In the data aggregation phase
of preprocessing, and in agreement with domain expert insights, we calculated the mean, standard
deviation, and the average difference between consecutive values over a 20-minute window, reflecting the
plant’s dynamics.

The evaluation is based on the alarm signal methodology described earlier. For this, the validation,
anomaly, and alarm undershoot parameters are set at 5, 10, and 5 minutes, respectively. We implemented
a threshold of 1 and required a minimum advance of 5 minutes. Temperature values in the range
[175, 180[°C are excluded from the evaluation. Throughout this section, we will refer to true alarms,
false alarms, and missed anomalies as True Positives (TP), False Positives (FP), and False Negatives
(FN), respectively.

Considering the business perspective, both FP and FN are significant, and our aim is to minimize
them jointly. Defining an a priori balance between FP and FN can be challenging; hence, we adopted a
Pareto frontier analysis approach during model selection. This method allows us to present a set of

64 Knowledge injection methods to improve predictive models

Figure 5.8: Average R2 score and the Mean Absolute Error for the MLP and CNN architectures on the
4 datasets.

solutions, enabling the user to choose based on specific business requirements. The threshold for binary
classification notably influences the Pareto analysis, as increasing it reduces FPs but raises FNs. Finding
an optimal threshold balance is crucial.

Our training and evaluation procedure includes the following steps:

1. Select a ML algorithm, identify hyperparameters for tuning, and determine their candidate values.

2. Randomly split the dataset into training, validation, and test sets.

3. Train model instances for each candidate hyperparameter set on the training set, and compute FP
and FN on the validation set. Discard non-Pareto optimal candidates.

4. For each remaining hyperparameter set, train a new model instance on a dataset formed by
appending the validation set to the training set.

5. Perform final evaluation on the test set, assessing both the quality and robustness of Pareto optimal
solutions identified during validation. Model robustness is confirmed if test set results align closely
with those from the validation set.

The hyperparameter search resulted in relatively simple architectures. The MLP comprises three
hidden layers with 24, 12, and 6 units each, ReLU activation function, and L2-regularization. The
CNN consists of a single convolutional layer with 8 filters, a kernel size of 3, and ReLU activation,
followed by two fully-connected layers with 12 and 6 units, ReLU activation, and L2-regularization. In
binary classification tasks, both architectures utilize a sigmoid function at the output layer. Neural
networks were trained for up to 100 epochs, with a batch size of 512. Training stops if no improvement
in the validation set loss is observed after 3 epochs. Network parameters are optimized using the Adam
optimizer with a learning rate of 0.001.

We first present preliminary results for a regression model, which guide our decision to focus on
the classification approach. The models are evaluated for prediction advances up to 25 minutes. Due
to the dataset’s imbalance, we separately compute the mean absolute error (MAE) and R2-score for
anomalous and non-anomalous examples. The results, as shown in fig. 5.8, indicate that the MLP

5.1 External model integration 65

Figure 5.9: ROC curve for the binary classification problem.

and CNN accuracy deteriorates rapidly for anomaly ground truth examples as the prediction advance
increases.

Given the regression model’s unreliability in estimating anomalous temperature values, we shifted
our efforts to the classification formulation. In binary classification, the receiver operating characteristic
(ROC) curve is a classic metric for evaluating models, plotting the false positive rate (FPR) against
the true positive rate (TPR). Figure 5.9 demonstrates that the MLP nearly achieves ideal performance,
whereas the CNN slightly surpasses a random classifier. However, relying solely on the ROC curve for
evaluation might lead to disregarding the CNN, despite it being inferior to the MLP in this metric. Yet,
this single metric does not suffice for our specific use case, where the objective is to balance minimizing
both FPs and FNs while meeting business requirements.

To cater to this need, we introduce a business-oriented validation framework utilizing Pareto frontier
analysis. The binary classification threshold significantly influences FP and FN rates, hence our
analysis concentrates on this hyperparameter. However, this evaluation can be extended to include all
hyperparameters. We present results for the neural architectures with threshold values ranging from
0.1 to 0.9, incremented by 0.1. A singular evaluation metric is inadequate for this task; therefore, we
assess not only FP and FN values but also the robustness of the models. Robust models should yield
consistent results across both validation and test sets if the Pareto optimal solutions are valid.

For a fair comparison between the validation and test sets, we normalize FN and FP values.
Specifically, FN is normalized by the total number of anomalies, and FP by the total number of days,
based on the respective set. This normalization results in two distinct metrics: the “FN ratio” and “FP
per day.”

Results for the MLP and CNN across all datasets are depicted in fig. 5.10. The Pareto optimal
solutions computed on the validation set are marked with red points, while the corresponding test
set values are indicated in gold. Solutions on both sets are connected by red lines, with shorter lines
denoting greater robustness in results. Contrary to the ROC curve analysis, the results here are more
consistent, underscoring the limitations of traditional metrics for our specific problem. Notably, for both
models, by tolerating as few as 4 FP every 10 days, we can achieve almost 0 FN.

However, it is important to highlight the MLP’s marginally superior performance over the CNN. In
most cases, the MLP’s solutions on the test set closely mirror those on the validation set, indicating robust

66 Knowledge injection methods to improve predictive models

Figure 5.10: Pareto frontier results for the neural architectures.

performance. On the other hand, the CNN demonstrates some instances of performance deterioration
from validation to test set, suggesting less consistency in results.

5.1.2 Experimental results on the integration methodology

To evaluate the effectiveness of our methodology, we implemented the integration schemas using real-
world data obtained from the oil and gas facility described earlier. Due to the unavailability of a
vendor-provided model, we emulated its behavior by training a ML predictor on simulation data. The
simulation process allowed us to gather data across a wide spectrum of operational conditions, including
scenarios not encountered in the actual facility. This simulation-based approach serves as a surrogate
benchmarking process comparable to what a vendor might conduct.

In our experimental analysis, we considered two instances of the external model, each associated
with distinct tasks:

• Stabilization Process. This includes separators, the stabilization column, and the reboiler. For
this instance, we required a predictive model capable of estimating the RVP, a key measure of oil
stabilization effectiveness.

• Reboiler. Focusing specifically on the reboiler, we needed a separate model to predict the outlet
temperature since its role is crucial in heating the oil properly.

In the remainder of this section, we present experimental evidence of the successful application of
the integration methodology to: 1) the estimation of the RVP, 2) in-house adaptation of the external
model, and 3) the detection of localized anomalies.

Estimate of the RVP As an application of the first integration approach outlined in section 5.1,
we successfully achieved the objective of estimating the RVP. The goal is to gather cost-effective
RVP measurements, a task often assigned to human operators and known to be time-consuming. For
the surrogate external model, we trained a feedforward fully-connected neural network on 75% of
the simulation data (with 20% reserved for validation). Following hyperparameter tuning, the best
performance was achieved with a relatively simple architecture, consisting of a single hidden layer with 8

5.1 External model integration 67

Figure 5.11: The external model is used to collect surrogate measurements of the RVP.

Figure 5.12: Prediction errors on the real data. From left to right: linear regression model, external
model and the external model plus the adapter.

units and a ReLU activation function. The prediction errors of this model are depicted in the left-hand
side of fig. 5.11.

As illustrated in the right-hand side of fig. 5.11, while the model captures the overall trend of the
RVP, it exhibits a non-negligible estimation error. Nevertheless, our primary concern is not the precise
value of the RVP but rather whether it falls within the interval of 60-100 kPa, indicating effective oil
stabilization. In this context, our integration schema remains valuable, enabling us to leverage the
external model for a rough yet cost-effective estimate.

In-house adaptation of the external model The aim of the second integration schema described
in section 5.1 is to train an in-house model capable of adapting the external model to the facility-specific
operating conditions. To empirically demonstrate the effectiveness of this approach, we focused on the
reboiler as it was provided by a vendor. The external model employed here is a single-layer neural
network with 8 units and a ReLU activation function, trained on simulation data, as detailed in the
previous paragraph.

As depicted in the middle plot of fig. 5.12, the external model accurately captures the trend but
consistently underestimates the outlet temperature values, implying a translation of its predictions
relative to the true values. To address this, we utilized an offset as the adapter, defined as Y ′ = Y + b,
where b represents the offset and is trained on the available data. We also considered a scenario with
extremely limited data, using only 10 contiguous data points as the training set. To evaluate the
method’s effectiveness, we compared it with a linear regression model trained exclusively on the 10 data
points. Both models were then assessed on the remaining data.

68 Knowledge injection methods to improve predictive models

Figure 5.13: Example of an anomaly affecting the only reboiler.

Results are reported in fig. 5.12, highlighting that the dataset is not sufficiently large and variable
for learning a robust linear regression model. Conversely, the adapter demonstrates its effectiveness by
appropriately translating the external model predictions to align with the correct values. While in this
case the adapter function is simple, the experimental results provide a proof of concept for more complex
situations where the adapter function could, in principle, be nonlinear.

Detecting Localized Anomalies In the last integration methodology, we propose to identify localized
anomalies by relying on the Bayesian networks. Referring with X and Y respectively to the input
and output of the reboiler, we thus need probabilistic models that are capable of predicting: 1) the
probabilities P (X) of observing a specific value of X, 2) the joint probability P (X, Y) of observing a
specific value of X and Y and 3) the conditioned probabilities P (Y |X) of observing a specific value of
Y given the value of X.

For P (X) and P (X, Y), we employ the kernel density estimation (KDE) algorithm. For P (Y |X), we
assume that data are distributed according to a Normal distribution N (µ, σ) where the mean µ and
the standard deviation σ are outputs of a neural network. We trained both the KDE and the neural
network (with the same architecture as for the previous methods) on the simulation data and treated
them as vendor-provided models. We then used these models to compute the probabilities values P (X),
P (X, Y) and P (Y |X). Given these values, there are three possible scenarios:

1. If P (X, Y), P (X) and P (Y |X) are low then an anomaly is occurring and it involves the whole
facility.

2. If only P (X, Y) and P (X) are low, then the anomaly pertains to the upstream part of the plant.

3. If only P (X, Y) and P (Y |X) are low then an anomaly is occurring in the only reboiler.

In fig. 5.13, we show an example of a possible non-ideal behavior affecting the reboiler. The joint
probability P (X, Y) is low, indicating something anomalous is affecting the plant. At the same time,
P (X) is relatively high, whereas P (Y |X) is low. This aligns with the third scenario previously described:
we can thus hypothesize that the reboiler does not have the ideal behavior. Due to the lack of ground-
truth data, we cannot conclude whether our hypothesis is correct. However, it demonstrates how this
methodology allows fine-grained anomaly detection.

5.2 Universal Differential Equation for data-driven discovery of ODEs 69

Discussion Large industrial facilities typically comprise extensive equipment with numerous inter-
connected components, presenting significant challenges in developing predictive maintenance solutions
based on ML algorithms. However, a wealth of knowledge is often available in the form of expert insights,
sourced from human operators in the field or the expertise of component vendors.

In this section, we outline a mathematical framework that enables the incorporation of a general
blackbox component into a ML pipeline. The versatility of the framework is demonstrated by allowing
various integration schemas with different purposes, impacting different steps of the pipeline. More-
over, experimental analysis reveals that the method enhances predictive performances and introduces
capabilities not easily achieved via standard approaches.

The methodology has been successfully demonstrated on simple static equipment, but future works
could address complex pieces of equipment, such as large turbine-driven multiple-stage compressors. As
part of future research directions, it would be interesting to extend the analysis to a larger number of
components or, owing to its generality, to investigate the methodology in different industrial facilities.

5.2 Universal Differential Equation for data-driven discovery
of ODEs

Universal Differential Equations (UDEs) were first proposed in [151]. The formulation relies on embedded
universal approximators to model forced stochastic delay PDEs in the form:

N [u(t), u(α(t)), W(t), Uθ(u, β(t))] = 0 (5.3)

where u(t) is the system state at time t, α(t) is a delay function, and W(t) is the Wiener process.
N [·] is a nonlinear operator and Uθ(·) is a universal approximator parameterized by θ. The UDE
framework incorporates physical knowledge in the hypothesis set, and it is general enough to express
other frameworks that combine physics and ML models. For example, by considering a one-dimensional
UDE defined by a neural network, namely u′ = Uθ(u(t), t), we retrieve the Neural Ordinary Differential
Equation framework [106, 152, 153].

UDEs are trained by minimizing a cost function Cθ defined on the current solution uθ(t) with
respect to the parameters θ. The cost function is usually computed on discrete data points (ti, yi)
which represent a set of measurements of the system state, and the optimization can be achieved via
gradient-based methods like ADAM or stochastic gradient descent (SGD).

In the scope of this thesis, we propose to employ UDEs for data-driven discovery of ODEs and
we investigate their interpretability. More specifically, we restrict our analysis to dynamical systems
described by ODEs with no stochasticity or time delay. The corresponding UDE formulation is:

u′ = f(u(t), t, Uθ(u(t), t)) (5.4)

where f(·) is the known dynamics of the system, and Uθ(·, ·) is the universal approximator for the
unknown parameters. As cost function, we adopt the MSE between the current approximate solution
uθ(t) and the true measurement y(t), formally:

Cθ =
∑

i

∥uθ(ti) − y(ti)∥2
2 . (5.5)

70 Knowledge injection methods to improve predictive models

We consider discrete time models, where the differential equation in (5.4) can be solved via numerical
techniques. Among the available solvers, we rely on the Euler method, which is fully differentiable
and allows for gradient-based optimization. Moreover, the limited accuracy of this first-order method
enlightens the effects of the integration technique on the unknown parameter approximation.

Our analysis starts from a simplified setting, in which we assume that the unknown parameters are
fixed. Therefore, the universal approximator in Equation (5.4) reduces to a set of learnable variables,
leading to:

u′ = f(u(t), t, θ) (5.6)

We consider two approaches to learn Equation (5.6). Given a set of state measurements y in the
discrete interval [t0, tn], the first approach, mentioned by [43] and named here full-batch, involves 1)
applying the Euler method on the whole temporal series with y(t0) as the initial condition, 2) computing
the cost function Cθ, and 3) optimizing the parameters θ via full-batch gradient-based methods. An
alternative approach, named mini-batch, consists of splitting the dataset into pairs of consecutive
measurements (y(ti), y(ti+1)), and considering each pair as a single initial value problem. Then, by
applying the Euler method on the single pair, we can perform a mini-batch training procedure, which
helps in mitigating the gradient vanishing problem [154]. Conversely to the full-batch approach,
which requires data to be ordered and uniform in observations, the mini-batch method has less strict
requirements and can be applied also to partially ordered datasets.

5.2.1 Experimental analysis

The UDE framework is extensively employed in applied sciences for estimating the evolution of dynamical
systems and for data-driven discovery of differential equations. Despite numerous proposed variants
and investigations into various applications, a detailed analysis of the framework’s capabilities and
limitations is absent in the literature.

Using the RC circuit system as a use case, we performed a preliminary analysis, focused on ODE, by
addressing 4 questions of scientific interests:

1. How does the training procedure affect the accuracy of predictions and the efficiency of the training
itself? To address this question, we conducted a comparison between the full-batch and mini-
batch. The mini-batch offers distinct advantages over the full-batch. Firstly, it can be applied
to partially ordered time series. Secondly, it does not need to consider the whole input data as a
single initial value problem, thereby preventing the development of very deep neural architectures,
which are challenging to train.

2. How does the solver accuracy impact the approximation of unknown parameters? In the UDE
framework, the model is trained to predict the system’s evolution accurately by learning an
approximation of the unknown parameters, minimizing the cost function Cθ. The formulation
relies on the integration method to approximate the system state u(t). However, the numerical
solver may introduce approximation errors affecting the entire learning procedure. Since the Euler
method is a first-order method, its error depends on the number of iterations per time step used
to estimate the value of the integral. Thus, our analysis allows for direct control over the trade-off
between execution time and solver accuracy.

3. How accurately can UDE approximate an unknown functional dependence? Leveraging the universal
approximator in Equation (5.4), the UDE framework can learn not only fixed values for unknown

5.2 Universal Differential Equation for data-driven discovery of ODEs 71

Table 5.1: Comparison between mini-batch and full-batch methods.

Vs τ Vc(t) Time

mini-batch 0.027 ± 0.013 0.163 ± 0.101 0.021 ± 0.010 9.21 ± 39.49
full-batch 0.018 ± 0.021 0.200 ± 0.081 0.014 ± 0.020 26.19 ± 5.69

parameters but also functional relationships between them and observable variables. Consequently,
we express system parameters as functions of observable variables and investigate the capabilities
of UDE in function reconstruction.

4. Can we leverage the known dynamics of the system under analysis to design the data collection
process and enhance approximation accuracy? Since UDE is as a data-driven approach, it is
crucial to explore its effectiveness under diverse data samplings. Simultaneously, we can utilize the
knowledge of the differential equation to assess whether the collected samples are adequate for
accurately learning the system parameters.

Evaluation and experimental setup. We evaluate the model accuracy by relying on two metrics:
the absolute error (AE), to evaluate the estimation of the parameters, and the root mean squared error
(RMSE), to study the approximation of the dynamic system state. For each experiment, we perform 100
trials, normalize the results, and report mean and standard deviation.

Training Procedure We conduct a comparative analysis between the full-batch and mini-batch
methods to determine their accuracy and efficiency. High-precision simulation is employed to generate
RC circuit data, with an initialization of Vc(0) = 0. We sample 100 values for Vs and τ within the ranges
[5, 10] and [2, 6], respectively. Data is generated using the analytical solution of Equation 4.6. From
each resulting curve, we sample 10 data points (Vc(t), t), equally spaced in the temporal interval [0, 5τ].

We assess the accuracy of UDE in approximating unknown parameters and the system state, tracking
the total computation time required for convergence. Notably, the mini-batch has an advantage over
the full-batch: the latter predicts the entire state evolution given only the initial state u0, while
the former reconstructs the state evolution with intermediate values. To ensure a fair comparison,
predictions of the mini-batch are fed back to the model to forecast the entire temporal series with only
u0.

As illustrated in Table 5.1, both full-batch and mini-batch accurately approximate Vs and Vc(t)
whereas the approximation of τ exhibits a non-negligible error. Notably, full-batch requires almost
three times the computational time to converge. Given the similar estimation accuracy of both methods,
we conclude that mini-batch is a more efficient method for training UDE compared to full-batch.
Consequently, we employ the mini-batch in the remaining experiments.

Solver Accuracy In the context of ODE discovery, our focus is on approximating unknown system
parameters. Despite an overall accurate estimation of the system state, the previous analysis results
indicate that the UDE framework does not achieve high accuracy in approximating system parameters.
This model inaccuracy may stem from the approximation error introduced by the integration method.
To investigate the impact of solver accuracy on the approximation of unknown parameters, we conduct
tests with different levels of solver accuracy by increasing the number of iterations between time steps in

72 Knowledge injection methods to improve predictive models

Figure 5.14: UDE training time as a function of the number of iterations per time step of the Euler
method.

the integration process. A higher number of iterations per time step of the Euler method is expected to
yield more accurate solutions of the ODE; however, this comes at the cost of increased computational
time, as shown in Figure 5.14.

Figure 5.15: Average and standard deviation of the AE as a function of the number iterations per time
step of the Euler method.

For this experiment, we use the same data generated for the Training procedure experiment. In
Figure 5.15, we present the approximation error of the UDE framework when applying the Euler method
with an increasing number of steps. As anticipated, in both use cases, increasing the precision of the
Euler method leads to more accurate estimation of ODE parameters until reaching a plateau after 10
iterations per time step.

Functional Dependence and Data Sampling In real-world scenarios, the dynamical systems often
depend on a set of external variables, or observables, influencing the system’s behavior. These elements
can include environmental conditions or control variables that affect the evolution of the system state.
For example, since the RC circuit is often used to model thermal heating of mechanical components, such
as rotating equipment, the temperature value might depend on some observables such as the external
forces or the ambient temperature. As a preliminary analysis, we thus investigate the UDE framework

5.2 Universal Differential Equation for data-driven discovery of ODEs 73

Figure 5.16: Linear coefficients and predictions error as a function of the EOH.

in the presence of observables, assuming a linear dependency between the independent and dependent
variables.

In particular, we consider a controlled setup where τ is a linear function of a continuous input variable
x changing over time, defined as τ(x) = ax, where a and x are scalar values. Unlike previous experiments,
we assume Vs to be known and equal to 1 to focus our analysis on the accuracy of approximating the
linear relationship. Since the value of τ changes over time, we cannot rely on the analytic solution of
Equation (4.6) to generate data. Therefore, we generate samples from one time step to the next by
using a high-resolution integration method, namely the Euler method with 10, 000 iterations per time
step. In the generation process, the linear coefficient a is randomly sampled from a uniform probability
distribution in the interval [2, 6], and the observable x is initialized to 1 and updated at each time step
according to the equation:

x(t) = x(t − 1) + ϵ, with ϵ ∼ U[0,1].

This procedure allows reasonable variations of τ to prevent physically implausible data. During the
learning process, considering the results from the Solver Accuracy experiment, we use 10 iterations per
time step in the Euler method as a trade-off between numerical error and computational efficiency.

In this set of experiments, our focus is on evaluating the UDE accuracy in approximating the unknown
linear dependence. The resulting absolute error in the approximation of the linear coefficient a is
0.24 ± 0.27, indicating that the model is not correctly approximating the functional dependence.

Given that UDE is a data-driven approach, we hypothesize that the estimation errors may arise from
data quality. Since we simulate the RC circuit using a highly accurate integration method resolution,
we can assume that data points are not affected by noise. However, the sampling procedure may have
a relevant impact on the learning process. The time constant τ determines how quickly Vc(t) reaches
the generator voltage Vs, and its impact is less evident in the later stages of the charging curve. Thus,
sampling data at different time intervals may affect the functional dependence approximation.

To investigate how data sampling affects the linear coefficient estimation, we generate 10 data points
in different temporal regions of the charging curve, considering intervals of the form [0, EOH], where
EOH ∈ (0, 5τ] refers to the end-of-horizon of the measurements. Since τ changes over time, we consider
the maximum as a reference value to compute the EOH. As shown in Figure 5.16, the linear model
approximation is more accurate when data points are sampled in an interval with EOH ∈ [1.5τ, 3τ],
where Vc(t) reaches approximately 77% and 95% of Vs, respectively. With higher values of EOH, the

74 Knowledge injection methods to improve predictive models

sampled data points are closer to the regime value Vs, and the impact of τ is less relevant in the system
state evolution. Thus, the learning model can achieve high prediction accuracy of Vc(t) without correctly
learning the functional dependence.

Discussion In this section, we provide an in-depth analysis of the UDEs framework for solving the
data-driven discovery of ODEs. Our experimental findings demonstrate that the mini-batch gradient
descent is faster than the full-batch version without compromising final performance. We highlight
challenges that arise when combining data-driven approaches and numerical integration methods, such
as discrepancies in accuracy between state evolution prediction and system parameter approximations.
We investigate integration method precision as a potential source of error and discuss the trade-off
between approximation accuracy and computational time. Additionally, we explore the significance of
the data collection process in achieving higher parameter approximation accuracy. In summary, our
analysis reveals that interpretability is not straightforward when using UDE. The blackbox model may
have a negative impact, and therefore, the training data collection and learning approach should be
carefully designed.

Several future works are viable. To name a few: i) testing different numerical integration solvers
(e.g., higher-order Runge-Kutta), ii) considering the unknown parameters to be stochastic, rather than
deterministic, iii) extending the analysis to PDEs or stiff equations.

Chapter 6

Knowledge Injection Methods to
Enhance Decision Support Systems

Decision support systems aim to facilitate or improve strategic decisions made by human operators.
Consider the example of a logistics company tasked with scheduling a fleet of vehicles for delivering a
large quantity of products. Finding a cost-effective route is a complex task and is challenging for a human
alone due to several reasons: 1) the number of potential solutions is prohibitively large, 2) travel times
might be unknown and need estimation, 3) new customers might emerge. An ML model can assist the
logistics company by addressing some of these challenges: a predictive model can estimate travel times
and handle uncertainties arising from new customers. However, ML struggles with combinatorial decision
spaces, while combinatorial optimization algorithms provides more effective techniques to address this
challenge.

If we can find a way to effectively integrate learning methods with combinatorial optimization, we
would be able to tackle all the aforementioned challenges. In this chapter, we describe a methodology to
exploit the declarative formulation of an optimization problem into ML workflows. We start by describing
a first integration attempt where only a part of the solution process (i.e. constraints propagators) is
distilled in the neural network weights, showing advantages and drawbacks. We then present a new
unification framework named, unify, for methods that combine learning and combinatorial optimization.
We demonstrate that our method is a generalization of approaches widely used for decision support
systems, such as DFL, constrained RL, hybrid offline/online optimization, and stochastic optimization.
In the last part of the chapter, we introduce a specific instance of unify developed during my research
activity, which widens the applicability of DFL.

6.1 Injecting Constraints Propagators in Neural Networks

Given enough data, DNNs are capable of learning complex input-output relations with high accuracy.
Recent work has shown how this applies also to the solution process of CSPs, at least to some degree:
examples include the approach from [155], relying on a pool of solutions, or RL approaches inspired
by [102], relying on solution checkers/evaluators. This class of approaches, while still not close to the
state of the art in combinatorial decision making, may have advantages in terms of robustness and when
implicit soft or hard constraints are present. For example, course timetables often need to take into

76 Knowledge Injection Methods to Enhance Decision Support Systems

account both explicit constraints (e.g. preferences, capacities) and informal agreements or manually
enforced rules.

For CSPs, informed ML allows to leverage well-defined sources of symbolic knowledge at training,
which cannot however be easily exploited at search time, e.g. particularly expensive (e.g. NP-hard)
propagators [156]. In this context, a deep learning approach may learn to satisfy such constraints without
the need for a propagator at search time.

In this section, we will describe a method that trains a network for identifying variable-value
assignments that are likely to be feasible. We will assume the availability of both implicit knowledge
(from data), and explicit symbolic knowledge that can be accessed prior to the search process.

Rather than tackling a real-world problem directly, we perform experiments in a controlled setting,
with the aim to gauge the potential of the approach and identify the key challenges. The idea, in the
spirit of [157], is to test the ground before starting the complex and time-consuming endeavor of applying
such methods in a real-world use case.

In detail, we use as a benchmark the Partial Latin Square (PLS) completion problem, which requires
to complete a partially filled n × n square with values in {1..n}, such that no value appears twice on any
row or column. Despite its simplicity, the PLS is NP-hard, unless we start from an empty square, it has
practical applications (e.g. in optical fiber routing), and serves as the basis for more complex problems
(e.g. timetabling). We focus on the only PLS due to its clear structure, availability of multiple solutions
that can be easily generated, and its single defining parameter (size).

Using a classical constrained problem as a case study grants access to symbolic domain knowledge
(the declarative formulation), and facilitates the generation of empirical data (problem solutions). This
combination enables controlled experiments that are impossible to perform on real-world datasets.

As a baseline, we train on a pool of solutions a problem-agnostic, data-driven, approach. We then
devise a simple method to extract multiple training examples from a finite set of solutions, and we
define a technique, building over Semantic Based Regularization, [158] to inject at training time domain
knowledge coming from constraint propagators. We then adjust the amount of initial data (empirical
knowledge) and of injected constraints (domain knowledge) and assess the ability of the approach to
identify feasible assignments.

Baseline method The analysis that we aim to perform requires a data-driven technique that can
solve a constrained problem, with no access to its structure. In the approach from [159], a neural
network is used to learn how to extend a partial variable assignment so as to retain feasibility. Despite
its limited practical effectiveness, this method shares the best properties of constraint acquisition (no
explicit problem information), without being restricted to constraints expressed in a classical declarative
language.

This last approach was chosen as our baseline, since it represents (to the best of our knowledge) the
data driven method for constraint problems that requires the least amount of problem knowledge. In
particular, it requires neither information about the problem constraints (like e.g. [155]), nor a fully
known (or at least evaluable) problem model like all RL approaches.

The baseline approach is based on training a neural network to extend a partial assignment (also
called a partial solution) by making one additional assignment, so as to preserve feasibility. Formally,
the network is a function:

f : {0, 1}m → [0, 1]m (6.1)

6.1 Injecting Constraints Propagators in Neural Networks 77

Algorithm 1 Deconstruct(x)
1: D = ∅
2: while ∥x∥1 > 0 do
3: Let y = 0 # zero vector
4: Select a random index i such that xi = 1
5: Set xi = 0, set yi = 1
6: Add the pair (x, y) to D
7: return D

whose input and output are m dimensional vectors. Each element in the vectors is associated to a
variable-value pair ⟨zj , vj⟩, where zj is the associated variable and vj is the associated value. We refer
to the network input as x, assuming that xj = 1 iff zj = vj . Each component fj(x) of the output is
proportional to the probability that pair ⟨zj , vj⟩ is chosen for the next assignment. This is achieved in
practice by using an output layer with m neurons with a sigmoid activation function. The setup makes
no assumptions on the constraint structure but requires a fixed problem size and variables with finite
domains.

Dataset Generation Process. The input of each training example corresponds to a partial solution
x, and the output to a single variable value assignment (represented as a vector y using a one-hot
encoding). The training set is constructed by repeatedly calling the randomized deconstruction procedure
of Algorithm 1 on an initial set of full solutions (referred to as solution pool). Each call generates a
number of examples that are used to populate a dataset. At the end of the process, we discard multiple
copies of identical examples. Two examples may have the same input, but different output, since a single
partial assignment may have multiple viable completions.

Unlike [159], here we sometimes perform multiple calls to Algorithm 1 for the same starting solution.
This simple approach enables to investigate independently the effect of the training set size and of the
actual amount of empirical knowledge (the size of the solution pool).

Training and Knowledge Injection. The basic training for the NN is the same as for neural
classifiers. Since the network output can be assimilated to a class, we process the network output
through a softmax operator, and then we use as a loss function the categorical cross-entropy H.
Additionally, we inject domain knowledge at training time via an approach that combines ideas of SBR
and constraint programming.

Without loss of generality, we assimilate domain knowledge to a constraint propagator, in the sense that
it can be used to flag specific variable-value pairs as either feasible or infeasible. In our experimentation,
we indeed use a classical propagator (forward checking) as the source of symbolic knowledge.

Formally, given a constraint (or a collection of constraints) C, here we will treat its associated
propagator as a multivariate function such that Cj(x) = 1 iff assignment zj = vj has not been marked
as infeasible by the propagator, while Cj(x) = 0 otherwise. Given that, we formulate three different
approaches to augment the loss function with an SBR inspired term.

The first one relies on the usual assumption that pruned values are supposed to be provably infeasible.
Given an example ⟨x, y⟩, we have:

Lnegative
sbr (x) =

m−1∑
j=0

((1 − Cj(x)) · fj(x)) (6.2)

78 Knowledge Injection Methods to Enhance Decision Support Systems

Algorithm 2 feastest(X, C, h)
1: J∗ = arg maxj|Cj (x)=1{hj(x)} {Most likely assignments}
2: Select j∗ uniformly at random from J∗

3: Set xj∗ = 1
4: if solve(x, Cpls, hrnd) ̸= ⊥ then
5: return 1 {Globally feasible}
6: else
7: return 0 {Globally infeasible}

i.e. increasing the output of a neuron corresponding to a pair flagged as infeasible incurs in a penalty
that grows with fj(x).

For the other two methods, we just acknowledge that the domain knowledge may be incomplete,
discouraging provably infeasible pairs, and encouraging the remaining ones. The only difference is in
the cost function. In one instance the cost function is the binary cross-entropy, since for each partial
solution there may exist many global viable completions, and the SBR inspired term is:

Lbce
sbr(x) =

m−1∑
j=0

(Cj(x) · log(fj(x)) + (1 − Cj(x)) · log(1 − fj(x)) (6.3)

In the other case instead we employ the MSE as cost function for the SBR-inspired regularization:

Lmse
sbr (x) =

m−1∑
j=0

(Cj(x) − fj(x))2 (6.4)

Our full loss is hence given by:

L(x, y) = H

(
1
Z

f(x), y

)
+ λLsbr(x) (6.5)

where Z is the partition function and the scalar λ controls the balance between the cross-entropy term
H and the SBR term, i.e. the amount of trust we put in the incomplete domain knowledge. Since
we assume the domain knowledge/propagator to be incomplete, there is a risk of injecting incorrect
information into the model. In practice, this is balanced by the presence of the categorical cross-entropy
term in the loss: only the single pair that comes from the deconstruction of a full solution will be
associated with a non-null component, and this pair is guaranteed to be globally feasible.

The method can be applied for all known propagators with discrete, finite domain, variables. By
adapting the structure of the SBR term, it can be made to work for important classes of numerical
propagators (e.g. those that enforce Bound Consistency).

Evaluation and Knowledge Injection. We evaluate the approach via a constraint solver, a classical
PLS model, and a randomized search strategy. Formally, we assume access to a function solve(x, C, h),
where x is the starting partial assignment, C is the considered (sub)set of problem constraints, and h is
a probability estimator for variable-value pairs (e.g. our trained NN). The function runs a depth-first
search using the Google or-tools [160] constraint solver: the variable-value pair for the left branch is
chosen at random with probabilities proportional to h(x′), where x′ is the current state of assignments.
The solve function returns either a solution, or ⊥ in case of infeasibility.

6.2 Empirical Analysis 79

Our main evaluation method tests the ability of the NN to identify individual assignments that are
globally feasible, i.e. that can be extended into full solutions. This is done via Algorithm 2, which
1) starts from a given partial solution; 2) relies on a constraint propagator C (if supplied) to discard
some of the provably infeasible assignments; 3) uses the NN to make a (deterministic) single assignment;
4) attempts to complete it into a full solution (taking into account all problem constraints, i.e. Cpls).
Replacing the NN with a uniform probability estimator provides an uninformed search strategy. We
repeat the process on all partial solutions from a test set and collect statistics. This approach is identical
to one of those in [159], with one major difference, i.e. the ability to use a constraint propagator for
“correcting” the output of the probability estimator. This enables us to assess the impact of using the
offline knowledge directly during the search, something that is allowed in our controlled setting, but
that would be impossible (e.g.) with an actual simulator.

Unlike in typical ML evaluations, accuracy is not a meaningful metric in our case, as it is tied to the
(practically irrelevant) ability to replicate the same sequence of assignments observed at training time.
Incidentally, accuracy is very low when measured in the traditional way in all our experiments.

6.2 Empirical Analysis

In this section we discuss our experimental analysis, which is designed around three key questions:

Q1: Does injecting knowledge at training time improve the network’s ability to identify feasible assign-
ments?

Q2: What is the effect of adjusting the amount of available empirical knowledge?

Q3: Can knowledge injection improve the ability to satisfy constraints in a soft fashion, i.e. in terms of
the number of violations?

While Q1 and Q2 focus on the feasibility of individual assignments, Q3 assumes that some degree
of infeasibility can be tolerated. We present a series of experiments in our controlled use case that
investigate such research directions. Details about the rationale and the setup of each experiment are
reported in dedicated sections, but some common configurations can be immediately described.

We perform different experiments on 7 × 7, 10 × 10 and 12 × 12 PLS instances, resulting respectively
in input and output vectors with 343, 1000 and 1728 elements. For all the experiments, we use a
feed-forward, fully-connected neural network with three hidden layers, each with 512 units having ReLU
activation function. This setup is considerably simpler than the one we used in [159], but manages to
reach very similar results. We employ the Adam optimizer from Keras-TensorFlow 2.0, with default
parameters. We use a batch size of 2048 for experiments on the PLS-7, whereas we adopt a batch size of
50,000 for the ones on PLS-10 and PLS-12.

Regularization methods comparison and λ-tuning As a first step to evaluate the impact of
knowledge injection at training time, we compare the regularization methods and evaluate how the λ

value affects the performance of each of them. We focus on the PLS-12, which is the greatest dimension
among the ones examined in this work so that advantages and limitations for each method can easily
emerge. We refer as negative, bce and mse to the methods which respectively employ the SBR-inspired
loss functions described in eq. (6.2), eq. (6.3) and eq. (6.4).

80 Knowledge Injection Methods to Enhance Decision Support Systems

Figure 6.1: Effect of the injection of the all constraints at training time comparing the regularization
methods for different λ values, on the PLS-12.

Figure 6.2: Effect of the injection of the only rows constraints at training time comparing the regularization
methods for different λ values, on the PLS-12.

The evaluation concerns whether injecting domain knowledge at training time may help the neural
network in the identification of feasible assignments, assuming the same knowledge is not available at
search time. We also assume in this instance that a large number of historical solutions is available.

This experimentation is motivated by practical situations in which: 1) a domain expert has only
partial information about the problem structure, but a pool of historical solutions is available; 2) some
constraints (e.g. from differential equations or discrete event simulation) cannot be enforced at search
time. In detail, the training set is generated using the deconstruction approach from Algorithm 1,
starting from a set of 10,000 PLS solutions, 75% of which are used for training and the remaining
ones for testing. Each solution is then deconstructed exactly once, yielding a training set of 1,000,000
examples. An additional validation set of 5,000 partial solutions is adopted to assess the improvements
during training via the feastest procedure, using the network as the heuristic h and an empty set of
constraints as C (no propagation when choosing the assignment to be checked). Since this computation
is really expensive, we perform the assessment every 10 epochs. If for 10 successive checks the best
global feasibility ratio found so far is not improved then we stop the training.

For each regularization approach, we train two neural networks: one trained with knowledge about
row constraints and another trained with knowledge about row and column constraints. For the first
network, we use the SBR-inspired methods (and a forward checking propagator) to inject knowledge

6.2 Empirical Analysis 81

Figure 6.3: Full constraints injection at training time on different problem dimensions.

that both assigning a variable twice and assigning a value twice on the same row is forbidden. For the
second one, we do the same, applying the forward checking propagator also to column constraints (i.e.
no value can appear twice on the same column). Due to the use of an incomplete propagator, both the
networks make use of incomplete knowledge.

In addition, we train a model-agnostic neural network that lacks even the basic knowledge that a
variable cannot be assigned twice, since this is not enforced by our input/output encoding, and must
infer that from data.

We evaluate the resulting approaches via the feastest procedure, using the separated test set
as X, the trained networks as h, and an empty set of constraints (i.e. no propagation at test time).
We compare them with methods that randomly choose an assignment with an uniform probability
distribution but that can rely on a set of constraints C during the evaluation. We consider the two
scenarios in which C is the set of the row constraints (rnd-rows) and the one in which C is the set of
column and row constraints (rnd-full). These methods are representative of the behavior (at each
search node) of a constraint programming solver having access to either only row constraints or the full
problem definition. It allows us to gauge the ideal effect of the offline symbolic knowledge.

Finally, we consider a very pessimistic baseline, referred to as rnd, which again randomly chooses
an assignment with an uniform probability distribution but does not rely on the propagation of any
constraints (i.e. C is the empty set). We then produce “feasibility plots” that report on the x-axis the
number of assigned variables (filled cells) in the considered partial solutions and on the y-axis the ratio
of suggested assignments that are globally feasible. Since rnd-rows and rnd-full methods are the
only ones that can rely on online constraints propagation, we have highlighted them using solid lines.

In fig. 6.1, we show results when all the constraints are employed by the forward checking constraints
propagator, whereas in fig. 6.2 we do not propagate the columns constraints. The balance between
learning the constraints from empirical data and the forward checking propagator is tuned by λ: reducing
its value means giving more emphasis on the global feasible assignments obtained by deconstruction of
the complete solutions rather than on the incomplete knowledge. We report results for λ equal to 10, 1
and 0.1. For all the λ values, the negative approach’s behavior is hardly distinguishable from rnd.
A reasonable explanation is that it encourages the network to keep the output the lowest as possible
instead of discouraging the network to make provably infeasible assignments. Since this approach is not
effective at all, we do not consider it for further analysis.

82 Knowledge Injection Methods to Enhance Decision Support Systems

Figure 6.4: Full constraints injection at training time when the dataset is reduced to the 10% of its
initial size.

We choose the best λ parameters for the bce and mse regularization methods with the aim of distilling
the constraints propagator in the neural network’s weights, finding a tradeoff between learning from
correct knowledge and the incomplete one. Considering the overall performance, the mse regularization
method provides better results with λ = 1, so this value is chosen for the successive analysis. The bce
approach provides the best performance with λ = 10.

Despite in fig. 6.2 lower values of λ provide better feasibility ratios, these results are not preferable
since they make the regularization not effective, i.e. the methods collapse to agn. The bce method
provides a little improvement over the mse one but, as we will see when answering question 2, it is not
robust when only a limited amount of empirical knowledge is available.

Domain Knowledge at Training Time for different problem dimensions Unlike the previous
section, here we extend the analysis to the PLS of dimensions 7 and 10, considering the only mse and
bce regularization methods together with their best λ values. The datasets are generated as described
in the previous section, yielding training sets of size 350, 000 and 700, 000 for respectively the PLS-7 and
PLS-10.

In fig. 6.3, we show results when all the constraints are employed by the forward checking constraints
propagator. As long as the problem size is small enough, agn performs considerably better than
rnd-full, even if no propagation is employed at evaluation time: this is symptomatic of the network
actually managing to learn the problem constraints from the available data, which (unlike the propagator
output) is guaranteed feasible. As the problem size grows, the gap decreases, until it almost disappears
for PLS-12.

For PLS-7, injecting incomplete symbolic knowledge appears to have an adverse effect, as it biases
the network toward trusting too much the incomplete propagator. With a large problem dimension
(i.e. PLS-12) the benefits introduced by knowledge injection become more visible, especially when
using the bce regularization method. The decreasing performance of the data driven methods is likely
a consequence of the training set size staying constant, in the face of a search space that becomes
increasingly large. In all cases, the feasibility ratio is high for almost empty and almost full squares,
with a noticeable drop when ∼60% of the square is filled. The trend may be connected to a known
phase transition in the complexity of this problem [161].

6.2 Empirical Analysis 83

Figure 6.5: Rows constraints injection at training time when the dataset is reduced to the 10% of its
initial size.

6.2.1 Training Set Size and Empirical Information

Next, we proceed to tackle Question 2, by acting on the training set generation process. In classical ML
approaches, the amount of available information is usually measured via the training set size: this is a
reasonable approach since the number of training examples has a strong impact on the ability of an
ML method to learn and generalize. We performed experiments to probe the effect of the training set
size on the performance of the data-driven approaches: the training sets are reduced to the 10% of the
initial size, i.e. 35, 000, 70, 000 and 100, 000 for respectively PLS of size 7, 10 and 12.

In fig. 6.4 and fig. 6.5, we show results when respectively all the constraints and the only rows
constraints are injected via the regularization methods. In this case, knowledge injection at training
time has a dramatic effect: the agn approach is very sensitive to the available number of examples and
it has a great drop in performance. Despite being less pronounced, the bce method has a major drop in
performance too. Instead, the mse approach provides much more robust results.

In our setup, we have also the possibility to apply the deconstruction process multiple times, so
that the number of different examples that can be obtained from a single solution grows with the
number of possible permutations of the variable indices (i.e. O(n2!) for the PLS). The approach opens
up the possibility to generate large training sets from very few starting solutions. This is scientifically
interesting since the “actual” empirical information depends on how many solutions are available; it
is also very useful in practice since in many practical applications only a relatively small number of
historical solutions exists.

The results of this evaluation are shown in Figure 6.6 for a solution pool of 100 elements, rather
than the original 10,000. Due to the bad results provided with the reduced datasets, we do not further
investigate the bce regularization approach but we examine the only mse method. For this analysis, we
collapse the feasibility results of the neural network trained with full knowledge injection (referred to as
mse-full) and of the network trained without the columns constraints knowledge injection (mse-rows)
in a single plot. The size of the generated training set is comparable to the original. Despite the
dramatically reduced number of training solutions, the mse-rows and mse-full methods perform really
close to respectively rnd-rows and rnd-full, i.e. they behave similarly to what the propagator would
if employed at search time. Instead, the performance of the agn drops dramatically, stressing again its
sensitivity to the available empirical information.

84 Knowledge Injection Methods to Enhance Decision Support Systems

Figure 6.6: Effect of reducing the solution pool size from 10,000 to 100.

From a practical point of view, it seems that injecting constraints during training can be a very
effective strategy when only a small number of training solutions is available. Constraint injection tends
to be redundant if the same type of propagation can be performed at search time, but can be very useful
in cases when this is not possible.

Constraint Violation Assessment In the last set of our experiments, we investigate the effectiveness
of the trained neural networks at guiding a search process toward solutions that are close to being
feasible, but not necessarily so. This is equivalent to treating constraints as soft and may be of practical
relevance on overconstrained problems (e.g. many real-world timetabling applications). This setup tends
to be more challenging for the ML models, since chains of variable-value assignments may lead to partial
solutions that are remarkably different from those observed at training time.

In detail, we used each trained neural network as a value selection heuristic in depth-first search,
once again for PLS of sizes 7, 10 and 12; we used for this experiment a fixed variable ordering. As a
baseline for the comparison, we consider (uniformly) random value selection referred to as rnd, while
for the neural networks we select a random value with probability proportional to the network output.
We generate a fixed number of solutions (500) from an empty square, rather than starting from partially
filled ones. When generating the solutions, we never propagate the entirety of the PLS constraints: this
setup serves as a controlled experiment for use cases where some constraints are either unknown or
cannot be enforced at search time. We measure the degree of feasibility of the generated solutions by
quantifying the violations for the constraints that were not propagated at search time. For this purpose,
we measure violations by counting how many times a value is not appearing exactly once in the same
row or column, depending on which constraint is being considered.

We train two model-agnostic neural networks: one on the dataset obtained by random deconstruction
of 10,000 solutions (referred to as agn-10k) and the other one on the dataset obtained by multiple
random deconstructions of 100 solutions (referred to as agn-100). Similarly, we train two neural
networks with knowledge injection at training time of all the constraints by means of the mean squared
error version of the SBR-inspired method and the forward checking propagator (referred to as sbr-10k
and sbr-100). Neither row nor column constraints are propagated during the search, and therefore we
count the violations of both in the final solutions.

6.3 UNIFY: a Unified Policy Designing Framework for Solving Integrated CO and ML Problems 85

Table 6.1: Number of soft constraints violations per generated solution.

rnd agn-10k sbr-10k agn-100 sbr-100
rows cols rows cols rows cols rows cols rows cols

PLS-7 29 29 11 9 4 3 20 20 4 4
PLS-10 61 61 28 25 8 7 52 53 7 7
PLS-12 88 88 56 53 22 30 70 76 17 20

Results are shown in table 6.1: the SBR-inspired approach allows to significantly reduce the number
of violations, and it achieves very similar results even when only a small amount of empirical knowledge
is available. The agn approach performs considerably better than rnd, as long as a large pool of
solutions is available, but the gap narrows when trained on examples generated from 100 solutions.
It is interesting to see how, when constraints are interpreted in a soft fashion, injecting full problem
knowledge at training time has a much more robust effect compared to the analysis in section 6.2.

6.3 UNIFY: a Unified Policy Designing Framework for Solving
Integrated CO and ML Problems

Throughout my research, I played a key role in developing a unification framework for a family of existing
ML and CO approaches, referred to as unify. This approach assumes access to problem knowledge
in the form of both a declarative formulation (an objective function and a set of constraints) and data
(either historical or from a simulator). The framework is built upon the decomposition of the policy into
two components: an unconstrained ML model and a CO problem. This decomposition facilitates a more
effective training step. The interface between these components involves a set of “virtual” parameters in
the CO problem model, serving as an additional (potentially useful) design handle.

Our method can be intuitively understood using a motorsport analogy. In such a setting, the vehicle
control unit can adapt the input received from the rider (e.g. accelerating, breaking, stirring) to account
for conditions such as weather, asphalt grip, and reservoir capacity. This simplifies the task faced
by the driver, who can then focus on planning trajectories, dealing with other racers, and long-term
strategy. Similarly, in our decomposition the CO problem (the vehicle control unit) exploits the explicit
information to generate actionable decisions at each stage and to guarantee constraints satisfaction;
the ML model (the driver) “pilots” the CO problem by adjusting some of its modeling parameters (e.g.
costs or constraint thresholds), with the goal of optimizing robustness and long-term behavior.

Since the approach is based on a decomposition, multiple learning and optimization methods can
be used for its implementation. In our presentation, we emphasize the use of RL for the learning task,
due to its ability to handle both non-differentiable loss functions and sequential decision problems. Any
CO technique can be used to tackle the optimization problem, such as mathematical programming
(including mixed-integer approaches) or constraint programming. In addition to introducing unify, we
demonstrate how the method can address problems typically tackled with DFL, constrained RL, algorithm
configuration, and stochastic optimization, and incorporates additional properties and functionality.
While unify cannot be expected to exceed the performance of all the methods it can replicate, it
represents a strict improvement in terms of flexibility and applicability.

86 Knowledge Injection Methods to Enhance Decision Support Systems

6.3.1 Key Problem Elements and Notation

In the most general case, our method targets problems with the following properties:

1) Multiple decision stages, referred to as a sequence of stage indices {k}T
k=1. The notation T

represents the end of the planning horizon, and it might be infinite for decision processes that need
to run indefinitely. A decision stage may represent one working day in a production scheduling
context or a 15-minute time interval in an EMS.

2) Observables available at each stage, referred to as vector of values x(k). These might represent
information that is useful for making decisions (e.g., power generation and demand forecasts for
the next state), for evaluating the impact of past decisions (e.g., actual power generation and
forecast), for making predictions (e.g., weather at the current stage), or for describing the system
state (e.g. current level of a storage device).

3) Uncertainty, affecting the values of the observable and represented via a probability distribution
P , i.e. x ∼ P . While we make no specific assumption on the distribution, its properties (e.g.,
non-anticipative or exogenous) can affect which solution methods can be employed to deploy our
formulation.

4) Decisions to be taken for each stage, referred to as vectors of variables z(k). The variables might
represent how many items to produce in a day, the power-flows for a 15 minute interval in an EMS,
which donor-patient pairs to select for surgery in an organ transplant program, etc. We make no
assumption on the domain of z(k), meaning that in the general case, even the vector size may not
be fixed.

5) Hard constraints for each stage, which define the feasible values for the decision variables. We
represent such constraints as a set, whose definition depends on the values of the observables:
formally, we have that z(k) ∈ C(x(k)), with C(·) being a set-valued function. We assume without
loss of generality1 that the feasible set can be defined based on the observables for the current
stage (e.g. the constraints may require a power balance).

6) An immediate cost function, referred to as f , which specifies the cost incurred in stage k + 1
depending on the decisions at stage k, and on the observable at stages k and k + 1 (i.e. the
previous state and how uncertainty unfolds). Formally, we have that the cost incurred at stage
k + 1 is given by f(x(k), x(k+1), z(k)). For example, the function may measure the total profit we
get at stage k + 1 depending on the observed demand (in x(k+1)), by selling items produced (z(k))
and stored (in x(k)) at stage k. We assume the goal is to minimize the expected cost over all the
decision stages.

Knowledge about the constraints and the cost function can typically be obtained in explicit form by
talking to domain experts, while information about the uncertainty distribution P is typically available
in implicit form, through collections of historical data.

As stated, the list is meant to define the most general conditions for the application of our method.
A practical use case can (and typically will) introduce additional restrictions, e.g., a limited number of
stages, a focus on exogenous uncertainty, or a deterministic cost function f . Similarly, not all terms in

1If this is not true, the observables can be redefined so as to capture all relevant information (typically with
adverse effects on scalability).

6.3 UNIFY: a Unified Policy Designing Framework for Solving Integrated CO and ML Problems 87

Problem Stages Observables Uncertainty Decisions Constraints Cost

EMS Time
intervals

Past demands
and production

True demands
and
production

Power
flows

Power
balance
and limits

Power
flows
cost

Production
scheduling

Production
days

Customer
information,
time of the year

True product
demands

Molds
to use

Molds
availability

Manifacture
cost

Table 6.2: Examples of real-world problems that can be tackled with unify and their components.

Figure 6.7: High-level overview of the approach, in the case of the EMS example.

x(k) might be relevant for defining the constraint set C(x(k)) or the cost f(x(k), x(k+1), z(k)). Table 6.2
gives an overview of the key elements of the use cases we illustrated in the previous section, from the
perspective of our analysis.

The main idea in unify is to extend an optimization approach by allowing an external component to
guide its behavior. Doing this requires introducing a mechanism for enabling communication between
such a component and the optimization solver. This is achieved in unify by adjusting the value of
certain parameters in the optimization problem. Such parameters can be either 1) chosen from those
naturally present in the formulation or 2) introduced ad-hoc for this purpose. In both cases, the selected
parameters remain interpretable (since they are employed in a symbolic model), but only in a loose
sense (since they are determined by a problem-agnostic component): for this reason, we refer to them as
virtual parameters.

So far we have introduced an abstract external component that tunes the virtual parameters. In
unify, such a component consists of a ML model, as shown in Figure 6.7. In particular, we introduce a
ML model h, whose role is to predict the optimal virtual parameters y(k) at stage k given the current
observation x(k), i.e. y(k) = h(x(k)).

Our design choice is motivated by a few observations: 1) ML is naturally well-suited to deal with
uncertainty; 2) predictions made by ML models are contextual, meaning that in our case they can change
depending on the observed x(k) values; 3) once trained, a ML model can very efficiently perform inference
on unseen examples. Alternative options for the external component, such as blackbox optimization, do
not provide the same advantages.

Unlike in classical ML tasks such as supervised learning, the ML model should not be trained for
maximum accuracy. On the one hand, the model output consists of virtual parameters, which may lack
a real-world counterpart, and therefore any ground truth value. However, our overall goal is not to
make accurate predictions but rather to lead to optimal decisions. Therefore, our ML model should in
principle be trained to minimize the decision cost of the overall policy.

88 Knowledge Injection Methods to Enhance Decision Support Systems

6.3.2 unify formalization

We now revisit from a formal perspective the concepts we have just introduced, with the goal to define a
general and technically sound method.

Solution Approach as a Policy Using terminology borrowed from sequential decision-making, the
process of choosing a decision vector z(k) based on the observables x(k) can be viewed as the application
of a policy. Formally, this is defined as a function:

π : (x; θ) 7→ z ∈ C(x) (6.6)

where we have that x is the vector of observables, z the vector of decisions, and C(x) the feasible set.
The requirement z ∈ C(x) implies that any viable policy is expected to consistently satisfy all the
constraints defined for a single decision stage.

The term θ represents a set of training parameters that can be used to adjust the function behavior.
These should not be confused with the virtual parameters in our decomposition, which will be formally
discussed later in this section. The θ parameters should be chosen to minimize the long-term cost of the
decisions, based on the available information about uncertainty. We can therefore formulate the training
problem as:

arg min
θ∈Θ

Eτ∼P

[
T∑

k=1
γkf(x(k), x(k+1), z(k))

]
with: z(k) = π(x(k); θ)

(6.7)

where f is the cost function for a single stage and τ refers to a trajectory, i.e. to a sequence of observables
and (feasible) decisions, i.e. τ = {x1, z1, x2, z2, . . . xT , zT , xT +1}.

The probability of a trajectory is given by the distribution P , which (in practical applications) will
likely be approximated via a collection of historical data or via a simulator. The term T is the end of
horizon, and it can be infinite if the sequence is not upper-bounded. In this case, the discount factor γ

should be strictly lower than 1, while γ should be equal to 1 for decision problems over a finite horizon.
Once training has been performed and an optimal parameter vector θ∗ has been found, the decision-

making problem can be solved by repeatedly observing x(k), querying π(x(k); θ∗) to obtain a decision
vector z(k), and deploying the decisions to move to the next step.

Decomposition to Simplify the Training Problem Solving the training problem from Equa-
tion (6.7) directly is very challenging without making additional assumptions, since the distribution
P will typically be approximated via a large dataset, the decisions are expected to be always feasible,
and the decision space can be complex or combinatorial. Formally, in unify the monolithic policy is
reformulated as:

π(x; θ) = g(x, h(x; θ)) (6.8)

where h(x; θ) is a ML model and g(x, y) corresponds to the solution of a constrained optimization
problem. Both components take as input the observation x. The ML model is the only component in the
decomposition whose behavior is affected directly by the training parameters θ; its output corresponds
to the virtual parameters previously discussed. The virtual parameters serve as an additional input to
the CO problem function, thus allowing the ML model to adjust its behavior. The formal definition for

6.3 UNIFY: a Unified Policy Designing Framework for Solving Integrated CO and ML Problems 89

the g function is as follows:
g(x, y) ≡ arg min

z∈C̃(x,y)
f̃(x, y, z) (6.9)

where the cost and constraint functions f̃(x, y, z) and C̃(x, y) need to be defined when formulating the
decomposition. Both terms are related to the original cost and constraint function, but they are also
different in some important aspects.

First, f̃ and C̃ depend on the virtual parameter vector y, which allows the ML model to alter the
optimal solution of Equation (6.9). In practice, it is enough to make only one of the two terms explicitly
dependent on y.

Second, the cost function f̃ does not use the next-stage observables as input. This has the effect
of making the g function myopic, but it is also necessary to perform inference in practice, i.e. to
evaluate Equation (6.8) and obtain a decision vector for the current stage. One way to define the f̃

function consists in: 1) starting from the original cost function f ; 2) neglecting any term linked to future
information (e.g. actual demand values in production scheduling); and 3) introducing terms linked to
the virtual parameters (e.g. the cost for power flows from/to the storage system in our EMS example).

Third, the set C̃(x, y) should imply the feasibility of the decision vector (i.e. the output of g)
according to the original constraints. This is necessary for the policy to satisfy Equation (6.6) and can
be formalized as:

z, y ∈ C̃(x) ⇒ z ∈ C(x) (6.10)

In practice, the property can be enforced either 1) by retaining the same constraints as the original
problem, i.e. C̃(x, y) = C(x), as in the case of our EMS example, or 2) by incorporating the virtual
parameters in a conservative fashion (e.g. temporal buffers over deadline constraints, or reduction factors
over capacity constraints).

Defining the virtual parameters y, the cost function f̃(x, y, z), and the constraint function C̃(x, y)
are the major design decisions when grounding our method on a practical use case.

Reformulated Training Problem With the decomposed policy reformulation, the training problem
becomes:

arg min
θ∈Θ

Eτ∼P

[
T∑

k=1
γkf(x(k), x(k+1), z(k))

]
with: z(k) = g(x(k), y(k)) and: y(k) = h(x(k); θ)

(6.11)

Equation (6.11) is considerably easier to solve than Equation (6.7), since the decomposition allows
one to partition the elements of complexity in the original problem and handle them via distinct, more
appropriate techniques: the CO problem (which can be solved via mathematical programming or similar
techniques) is in charge of ensuring feasibility and exploring a complex decision space; the ML model
handles uncertainty and long-term feasibility; both components contribute to cost optimization.

The main challenge when solving Equation (6.11) is the fact that g(x(k), y(k)) is defined through
an arg min operator. In many practical cases, such as LPs or combinatorial problems, the decision
vector may change in discrete steps in response to arbitrarily small changes in the virtual parameter
vector, thus making g(x(k), y(k)) piecewise constant and non-differentiable. Thankfully, optimizing over

90 Knowledge Injection Methods to Enhance Decision Support Systems

functions with these properties is a much better-understood topic, thanks to recent developments in
DFL, and decades of research in both black box optimization and RL.

Figure 6.8: UNIFY decomposition for the training and inference problems.

In fact, Equation (6.11) can be mapped to a traditional RL problem by a simple change in perspective.
At training time, the solution of the CO problem can be seen as part of the environment and the virtual
parameter vector y(k) is viewed as the RL agent “action” for the k-th stage. Conversely, at inference
time the ML model and the CO problem are components of a single policy (as already discussed). The
two different viewpoints are depicted in Figure 6.8.

Formally, we can perform training as for a MDP ⟨X, Y, P +, R, P 1, γ⟩ where: the set of possible states
corresponds to the set X of possible observables; the set of possible decisions corresponds to the set Y

of possible virtual parameters; the probability of the initial state P 1 is simply given by P (x1); and γ is
the discount factor. Finally, the probability of the next state and the reward are defined as:

P +(x(k+1) | x(k), y(k)) = P (x(k+1) | x(k), g(x(k), y(k))) (6.12)
R(x(k+1), x(k), y(k)) = f(x(k), x(k+1), g(x(k), y(k))) (6.13)

In other words, they are respectively the probability of the next observable given the current decision
vector z(k) = g(x(k), y(k)), and the corresponding cost. As a major benefit, this mapping enables one to
use any RL algorithm for policy training in unify.

6.3.3 Generalization

The main appeal of our method lies in its ease of use (since it can be implemented by relying on standard
RL libraries) and most of all its versatility. In particular, unify can be used to tackle problems that are
typically addressed via ad-hoc approaches. Additionally, in some cases unify actually subsumes the
existing methods. In this section, we will discuss how the method can be configured for several such
scenarios, the benefits it can bring, and under which conditions existing approaches should instead be
preferred.

Decision Focused Learning In the “predict, then optimize” paradigm, the objective is to estimate
a subset of the optimization problem parameters that are unknown at solution time. For instance,
in vehicle routing problems, it might involve estimating travel times, or in a production scheduling
problem, predicting item demands to define the optimal scheduling plan. Unlike the goal of maximizing
accuracy, DFL aims to train an ML model to minimize (or maximize) the task loss, representing the cost
of the solution instantiated by the prediction. Given that obtaining a highly accurate model is often

6.3 UNIFY: a Unified Policy Designing Framework for Solving Integrated CO and ML Problems 91

challenging, DFL allows for the exploitation of the limited representational capacity of the ML model.
The idea gained attention after the seminal work by [162], and it is well covered in a recent survey [163].
In practice, DFL methods address the following problem:

arg min
θ∈Θ

Ex,y∗∼P [f(x, y∗, z∗)] (6.14)

with: z∗ = arg min
z

{f(x, y, z) | z ∈ C} (6.15)

and: y = h(x; θ) (6.16)

where y is the ML model estimate of the unknown optimization problem parameters, z∗ is the optimal
solution of the problem instantiated by the predictions y, and y∗ are the ground truth problem parameters.
While the original approach was limited to QP, subsequent works have tackled linear and combinatorial
problems, either in an approximate fashion via continuous relaxations [124], or in an exact fashion by
assuming a fixed feasible space and linear costs [3, 164]. Outer and inner relaxations have also been used
to improve scalability [165, 166]. unify can be employed to address the DFL problem, as formulated in
eq. (6.16), with the following grounding: 1) the problem has a single stage, i.e., T = 1; 2) the virtual
parameters correspond to y in eq. (6.16), representing the estimated optimization problem parameters;
3) the unfolded uncertain values are the ground-truth parameters, denoted as x(k+1) = y∗; 4) The
feasible set C̃ is fixed and equal to the feasible set C of the original problem; 5) the objective function
f̃(x, x(k+1), z(k)) is exactly f(x, y∗, z∗); 6) the distribution P is approximated by using a training set.

This specific grounding of unify preserves several key benefits provided by DFL techniques. Notably,
since the ML model is trained to minimize the task loss similar to DFL, unify enables improvements
in solution quality compared to “predict, then optimize” approaches. This improvement is achieved
by trading off computational cost at training time for faster inference. Analogously to DFL, unify
allows the adoption of simpler ML models that are faster to evaluate and easier to verify using formal
methods. The approach has a few additional properties, thanks to its flexibility. In particular, support
for non-linear cost functions and soft constraints is seldom found in the DFL literature, and the problem
of including estimated parameters in the constraints is still largely open. Moreover unify supports
sequential decision-making problems whereas classical DFL approaches typically focus on single stage
problems.

Not all the DFL approaches admit a unify grounding, e.g. methods based on surrogate losses such as
[167]. Techniques in this class have been shown to provide advantages in terms of convergence speed and
solution quality, meaning that, in cases where they are applicable, relying on them might be preferable
than using the RL-based unify implementation that we will adopt later in this paper.

Constrained RL Constrained RL addresses the fundamental task of training a policy to maximize a
reward function while adhering to a set of constraints. These constraints may involve safety considerations,
natural laws, or limitations on resource availability. This setup is common in various real-world scenarios.
For instance, a self-driving car aims to reach its destination quickly and cost-effectively without causing
harm to other vehicles or pedestrians, and without violating traffic regulations. Similarly, a drone may
strive to achieve maximum speed without causing damage to itself, and a robot might need to complete
a task within a specified time frame and without depleting its battery.

The aforementioned examples represent just a few instances of constrained RL applications and
numerous instances exist beyond robotics and automation. Thanks to its flexibility, unify can solve the

92 Knowledge Injection Methods to Enhance Decision Support Systems

constrained RL problem. Formally, the constrained RL problem can be formulated as follow:

arg min
θ∈Θ

Eτ∼P

[
T∑

k=1
γkf(x(k), x(k+1), z(k))

]
(6.17)

with: z(k) = π(x(k); θ) (6.18)
s.t.: z(k) ∈ C(x(k)) (6.19)

where τ is a trajectory sampled from a probability distribution P , f is the reward function, π is the
RL agent, z(k) and x(k) are respectively the action and observation at timestep k, and C(x(k)) is the
set of constraints. The constrained RL problem is similar to eq. (6.11). However, while with unify we
can flexibly demand constraints satisfaction via the decomposition, in constrained RL the agent directly
outputs the decisions. This connection allows us to easily ground constrained RL into our framework by
setting g = π.

Many constrained RL approaches enforce constraint satisfaction via a projection step in the decision
space. In other words, once a baseline policy has provided the decision vector, this is projected into
the feasible space by minimizing the Euclidean distance. Such a step is often presented as a “safety
layer” on top of a neural network policy [168]. This technique can guarantee constraint satisfaction in a
scalable way.

The safety layer approach for constrained RL can be replicated in unify by grounding the method
as follows:

arg min
θ∈Θ

Eτ∼P

[
T∑

k=1
γkf(x(k), x(k+1), z(k))

]
(6.20)

with: z(k) = arg min
z

{∥z − y(k)∥2
2 | z ∈ C(x)} (6.21)

and: y(k) = h(x(k); θ) (6.22)

When tackling traditional DFL problems, the main design choices are: 1) the virtual parameter vector
y(k) is in the same space as the decision vector; this is the case since in constrained RL the ML agent is
still in charge of producing actual decisions. Then, 2) the cost function for the CO problem is a (squared)
Euclidean distance or some other kind of metric; 3) the feasible set for the CO problem is the same as
for the overall problem, i.e. C̃(x) = C(x). Another strategy, investigated by [169], enforces constraints
by adding a projection step after gradient updates; the projection adjusts the policy weights so that
the decision vector becomes feasible, as in the projected gradient method [170]. This approach is more
numerically stable, but also more computationally expensive, due to the large number of parameters
typically present in many ML models. This class of approaches can be seen as approximately solving
eq. (6.7).

unify retains all the key properties of constrained RL: 1) decisions are feasible by construction w.r.t.
constraints defined for single stages; 2) fast inference, since the training cost is payed only once; 3) there
is no need for the agent to have access to detailed problem knowledge. At the same time, it provides
additional benefits: when available, symbolic knowledge can be easily exploited and the projection can
be task-specific rather than task-agnostic. Moreover, the ability to decouple virtual parameters from
actual decisions makes it much easier to handle complex decision spaces (e.g. combinatorial ones): for
example, the ML model might output expected preferences, which a CO problem might use to compute

6.3 UNIFY: a Unified Policy Designing Framework for Solving Integrated CO and ML Problems 93

Figure 6.9: Schematic view of the tuning algorithm.

a stable matching. Most techniques designed for RL can potentially be employed for unify, either
directly or with some adaptation. In our experiments we limit ourselves to the advantage actor-critic
(A2C) algorithm, leaving this area open for investigation.

Integrated Offline/Online Optimization Many real-world problems consist of two distinct phases.
During an offline phase, long-term “strategic” decisions are obtained via expensive but accurate ap-
proaches. Conversely, during a subsequent online phase, “operational” decisions are scheduled within
strict time constraints and usually over multiple steps, requiring computational-efficient but often
approximated methods. For example, in vehicle routing problems, we might plan the route in advance
and then adjust it when new customers appear. In room allocation problems, we might revise an
allocation solution whenever new rooms suddenly become available or unavailable.

While for many years these two phases have been addressed separately, recently there has been an
increasing interest in a tighter integration between them [171]. In [172] the authors tackle the EMS
problem described in Chapter 4. They use the LP from Equation (4.1) as a fast heuristic to handle
online decisions, then compensate for the LP being myopic by: 1) introducing a virtual cost parameter
for the storage system; and 2) adding an offline parameter tuning step, based on stochastic optimization.

The tuning process can be applied provided that uncertainty is exogenous and the online problem is
convex. The method requires stating the KKT optimality conditions for the online model to obtain a set
of constraints that characterize any solution that is compatible with the behavior of the online heuristic.
Such constraints are incorporated in a mathematical program built using the SAA, which is then solved
to obtain a schedule for the parameter over all online decision stages. The offline problem can be solved
in an exact fashion: in this case, the parameter values are guaranteed to be optimal, within the limits
of the sampling noise. The overall approach is referred to as tuning and its behavior is schematically
depicted in Figure 6.9.

The key behavior of approaches in this class can be replicated in unify by grounding the framework
as follows:

arg min
y∈Y

Eτ∼P

[
T∑

k=1
γkf(x(k), x(k+1), z(k))

]
(6.23)

with: z(k) = arg min
z

{f̃(x(k), y(k), z) | z ∈ C̃(x)} (6.24)

Through this formulation we are not able to fully exploit unify potential. The CO problem here plays
the role of the online heuristic. There is a single, major, restriction w.r.t. the general method: namely,
there is no ML model and the optimization is performed directly over the virtual parameter vector y.

94 Knowledge Injection Methods to Enhance Decision Support Systems

To fully exploit the unify formulation, we can re-introduce the ML model. When configured in this
fashion, unify retains many of the key properties of the existing offline/online integration approaches.
Moreover, we introduce additional benefits by making the method adaptable to characteristics of the
current instance, or to information that unveils itself at online decision time (both captured via the
observable vector x(k)). Nonetheless, while tuning assumes the online optimization problem is convex,
unify does not pose restriction.

Conversely to existing approaches like tuning, the grounding of unify for integrated offline/online
optimization problems admits two alternative schemas depending on the output of the ML model h. The
first solution frames the problem in the same way traditional hybrid offline/online optimization problems
do: h simultaneously predicts the virtual parameters for all the stages, i.e., y(1,...,k) = h(x(1,...,k)). We
refer to this approach as single-step. The second alternative involves predicting one virtual parameter
at a time in a sequential fashion and leveraging the outcome of the uncertainty, i.e., y(k) = h(x(k), x+(k)).
This approach is referred to as sequential. While intuitively the sequential method should always
be favored, in the experimental section, we will demonstrate an application on the EMS that shows this
is not always the case.

Stochastic Optimization The area of stochastic optimization [9] also aims at improving robustness in
single- or multi-stage decision-making problems. Most stochastic optimization algorithms rely on Monte
Carlo methods to approximate expected values and assess constraint satisfaction. The SAA has long
been a staple of the field; its convergence rate in the context of combinatorial problems was eventually
provided in [13]. The SAA has been combined with Benders decomposition to address two-stage decision
problems, leading to the family of L-shaped methods for stochastic optimization [173, 174]. Multi-stage
decision problems have been often approximated as a sequence of 2-stage problems in so-called online
anticipatory algorithms [175], and solved once again via L-shaped methods. The connection between
multi-stage stochastic optimization and MDP is instead exploited directly by the method from [176].

The single-stage stochastic optimization problem can be formulated as:

arg min
y∈Y

Ex+∼P

[
f(x, x+, z∗)

]
with: z∗ = arg min

z
{f(x, y, z) | z ∈ C(x)}

(6.25)

We can thus ground single-stage stochastic optimization in unify following these steps: 1) since there is
a single decision stage, the summation from eq. (6.11) is absent and the notation x replaces x(k) and x+

replaces x(k+1); 2) since the focus is on a single instance, there is no need to compute the expectation
over x; 3) the virtual parameters can be assimilated to future values for the uncertain elements, so they
can appear where x+ is expected. 4) A ML model is absent and optimization is performed directly on y,
i.e. we use a single, “virtual” scenario for decision-making; multiple samples are still used for evaluating
the actual decision cost. Finally, 5) the cost function and constraints for the CO problem are the same
as for the original problem, i.e. f̃(x, y, z) = f(x, y, z) and C̃(x, y) = C(x).

Two-stage stochastic problems expand on single-stage ones by introducing recourse actions that can
be taken reactively once uncertainty is revealed. Unlike multi-stage problems, where all decisions are
similar in nature (e.g., donor-patient matching, power flows, etc.) the recourse actions can be radically
different from the first-stage decisions (e.g., buying products to satisfy unmet demand vs. deciding how
many products to manufacture).

6.3 UNIFY: a Unified Policy Designing Framework for Solving Integrated CO and ML Problems 95

Two-stage stochastic optimization can be grounded in unify by viewing the recourse actions as
part of the decision variables, i.e. z = (zfirst-stage, zrecourse). Then, z∗ will specify values for both of the
first-stage variables and the recourse ones; recourse variables in z∗ will be ignored at deployment time
since they have no immediate impact (as it is typically done in two-stage stochastic programming). The
result is similar to the one already discussed: decision-making at deployment time is performed w.r.t. a
single scenario, which is optimized at training time over a larger number of sampled scenarios. Using
unify rather than traditional stochastic optimization algorithms retains its key property, i.e. improved
solution quality w.r.t. myopic approaches. Despite stochastic optimization approaches can provide very
high-quality solutions for individual problem instances, provided that enough samples are used, as a
major drawback, their scalability is limited, mostly as a result of sampling.

Conversely, unify improves scalability by relying on a single “virtual” scenario and thus removing
the main bottleneck that makes stochastic optimization more computationally expensive than its
deterministic counterpart. Performing sampling only during cost evaluation also enables leveraging
parallelization for a faster computation of the expected value. Scalability can be further improved by
adding back the ML model so that there is no need to re-optimize y for every new problem instance.
Moreover, unify naturally supports endogenous uncertainty. As a side effect, using unify may slightly
overconstrain the decision process, since it can yield only solutions that can be defined based on a single
scenario.

6.3.4 unify: an Application to an EMS and a Production Scheduling Problem

In section 6.3, we formally introduced unify from a theoretical standpoint. In this section, we will
experimentally showcase the effectiveness of unify in two use cases, extensively illustrated in chapter 4: a
real-world EMS and a simplified production scheduling problem, namely the WSMC. The first part of the
section is dedicated to illustrate the groundings for these two problem. Then, through our experimental
evaluation, we will illustrate how to: 1) define the virtual parameters by either choosing existing problem
parameters or introducing new ones and augmenting the solver with clairvoyant capabilities; 2) easily
handle constraints in RL by delegating constraint satisfaction to a CO solver; 3) design an RL-based
DFL approach; 4) improve scalability in stochastic optimization.

unify grounding on the EMS In the EMS case, handling control of any of the existing parameters
to the external component (e.g. li, ui, η) might lead to the violation of a critical constraint. We can
however introduce an ad-hoc parameter that allows the external component to alter the problem solution
without affecting short-term feasibility. In particular, we will associate a virtual cost y(k) to the storage
system, leading to the following modified LP:

arg min
z(k)

y(k)z
(k)
1 +

m∑
i=2

c
(k)
i z

(k)
i (6.26)

s.t.
m∑

i=1
z

(k)
i = x

(k)
load (6.27)

li ≤ z
(k)
i ≤ ui ∀i = 1..m (6.28)

0 ≤ x
(k)
storage − ηz

(k)
1 ≤ q (6.29)

z
(k)
i ∈ R ∀i = 1..m (6.30)

96 Knowledge Injection Methods to Enhance Decision Support Systems

Element Notation EMS Grounding
Decision stages {k}T

k=1 15-minute intervals over one day (T = 96)
Observables x(k) energy level in the storage systems for stage k (i.e.

x
(k)
storage), RES production and load for stage k (i.e.

x
(k)
load, x

(k)
res), forecast for RES production and load for

stage k + 1 (i.e. x
(k)
loadf , x

(k)
resf)

Uncertainty P uncontrolled deviations from production and load forecast
Decisions z(k) power flow from/to each generator and the storage system
Constraints C(x(k)) power balance of the energy system, upper/lower bounds

for the power flows
Cost function f(x(k), x(k+1), z(k)) cost/profit of generating, buying, or selling energy for one

stage

Table 6.3: EMS grounding for the main problem elements in the approach

Element Notation WSMC Grounding
Decisions stages — a single decision stage
Observables (current) x generic information correlated to future demands
Observables (future) x+ actual value of the customer demands
Uncertainty P the distribution for both x and x+, in particular P (x)

and P (x+ | x)
Decisions z how many units to manufacture for each set of products

(i.e. zfirst−stage), estimated number of products to buy
(i.e. zrecourse)

Constraints C(x) absent (demands can always be satisfied by buying prod-
ucts)

Cost function f(x+, x, z) cost of both manufactured and bought items

Table 6.4: WSMC grounding for the main problem elements in the approach

Where we assume without loss of generality that z
(k)
1 refers to the flow to/from the storage unit. Now,

by giving a negative value to y(k) it is possible to provide an incentive for the optimization model to fill
the storage system, for example, to prepare for a forthcoming peak in the grid energy price. In other
words, while the optimization problem is still largely unchanged (and still very easy to solve), it can now
exhibit anticipatory behavior by adjusting the value of the virtual parameters.

We consider two versions of this problem. In both cases, the grounding of the unify method is the
one specified in Table 6.3. Moreover, the CO problem is defined via the LP in eqs. (6.26) and (6.30),
i.e. the version where a virtual cost was associated with the storage system. The two versions differ
in terms of how the ML model is used. In the first version, referred to as sequential, the ML model
focuses on individual decision stages, so that it can take advantage of observed information as soon as it

6.3 UNIFY: a Unified Policy Designing Framework for Solving Integrated CO and ML Problems 97

Figure 6.10: Optimality gap of the state-of-the-art tuning approach and the unify methods w.r.t. the
computational time.

becomes available, including the storage energy level. The ML model output is the virtual cost for the
storage system at the current stage, i.e. y(k).

In the second version, referred to as all-at-once, we assume a full schedule for the virtual costs
needs to be provided one day in advance. In this case, the ML model input still includes forecasts (since
they are also made available one day in advance), but it lacks information about the storage energy
level. The ML model is only evaluated once, then power flow decisions are taken as usual in a sequential
fashion. This setup is still practically meaningful, and it leads to a hybrid setting where the problem
has a single decision stage when viewed from a RL perspective: in fact, according to fig. 6.8, once the
ML model has provided the full virtual cost sequence {y(k)}T

k=1, the rest of the multi-stage process can
be seen as part of the reward computation.

unify grounding on the WSMC The grounding of unify for the EMS is exhaustively described in
table 6.4. For the virtual parameters we chose a simple yet effective design choice. We chose parameters
that already appear in the optimization problem, i.e. the y vector specifies the value of the demand for
the products that can be manufactured. However, it is crucial to consider them as “virtual” since they
do not reflect ground-truth demands or any statistical value (e.g., mean or quantile).

Offline/Online Integration using unify In this section, we demonstrate that unify can replicate
the offline/online integration approach based on the idea of tuning virtual parameters. Experiments
are run on the EMS use case, where we employ unify to tune the virtual cost y(i) of the optimization
model described in eqs. (6.26) to (6.29). Intuitively, by associating a negative cost to storage we can
provide an incentive for the CO problem to accumulate energy, in preparation for forthcoming spikes in
the grid energy price.

We consider both the sequential and the all-at-once versions of the problem described in the
previous section. We use unify to solve both versions of the problem and refer to the two approaches
respectively as unify-all-at-once and unify-sequential. The two methods are equivalent to those
we proposed in [177], which indeed can be considered an application-specific grounding of the unify
framework. As a baseline, we use the state-of-the-art tuning approach from [172], which solves the

98 Knowledge Injection Methods to Enhance Decision Support Systems

Figure 6.11: In this figure we show how demanding constraints satisfaction to the downstream solver
greatly improves over a full end-to-end RL method and safety-layer.

all-at-once version of the problem by relying on a mathematical program. Notably, this approach
provably converges to the best possible non-clairvoyant solution, as the number of samples used to
approximate uncertainty grows. However, scalability issues prevent its usage with a large number
of samples. The method also requires the online decision problem to be convex, thus limiting its
applicability.

We also compare the performance to that of a clairvoyant solution (referred to as oracle), to
provide an optimistic reference for the solution quality. This approach is obtained by simply instantiating
eqs. (6.26) to (6.29) for all decision stages, replacing all parameters with their actual realizations.
Similarly to [177], we compare the methods ensuring they have access to the same computation time.
Since the time execution of tuning is constant, we chose this value as the time limit for training the
other methods and plot its results as a horizontal line. In fig. 6.10, we show the optimality gap w.r.t.
the computation time. As also highlighted in [177], exploiting the sequential nature of the problem does
not provide clear benefits, possibly due to a suboptimal training solution, so that unify-sequential
yields slightly lower-quality solutions compared to unify-all-at-once.

Both the unify approaches performed remarkably well, with unify-all-at-once beating the state-
of-the-art tuning method. Intuitively, the additional scalability provided by our framework enables
collecting a much higher variety of samples, which was enough to compensate for the use of a suboptimal
approach (RL) to tackle the training problem. Additionally, unify does not require convexity for the
online problem, making it more broadly applicable.

Constraints in RL In section 6.3.3 we showed how unify can be used to deal with hard constraints
and combinatorial decision spaces in RL. Similarly to safety-layer approaches, unify handles constraints
by applying a constrained optimization step on top of the output of a ML model. Unlike safety layer
approaches, however, the ML model is not in charge of producing a decision vector, but rather of
“piloting” the CO solver by adjusting the values of virtual parameters.

For this experiment, we rely again on the EMS benchmark. In this case, any feasible solution
policy must satisfy hard constraints at each decision stage, i.e. the flow bounds and the power balance

6.3 UNIFY: a Unified Policy Designing Framework for Solving Integrated CO and ML Problems 99

Figure 6.12: Optimality gap on the WSMC problem and the solution time of the predict-then-optimize
approach w.r.t. the number of scenarios.

restrictions. We compare the unify-sequential from Section 6.3.4 with two approaches from the
literature, plus the clairvoyant oracle that serves as an optimistic reference. In particular, we train
a full end-to-end DRL algorithm to provide a solution, by learning constraints satisfaction only from
the reward signal (i.e. via reward shaping); we refer to the approach as RL. In this setup, designing
the reward function is not trivial because it should provide a good trade-off between finding good
solutions and exploring the feasible space. Projection-based DRL algorithms (e.g. safety layer) provide
an alternative to full end-to-end methods when dealing with constraints: we have experimented with a
safety layer implementation [168] for the EMS and we will refer to it as safety-layer.

As shown in Section 6.3.3, both safety-layer and unify-sequential can be considered instances
of our unify framework, but they have a critical difference: in safety-layer the projection step can
fix infeasible decisions, but this is done in a cost-agnostic fashion and the RL agent still needs to output
a meaningful decision vector. Conversely, in unify-sequential the CO problem is capable of handling,
at least partially, much of the problem elements, including the cost and constraints for a single stage.
The ML model needs to guide such problem-specific solver by means of the virtual storage costs, which
is arguably a simpler task.

In the upper and lower parts of fig. 6.11, we respectively show the optimality gap of all the methods
and the number of failed episodes of rl due to constraints violations. In the early stages of training, rl
never completes a full episode. It then progressively learns to satisfy constraints but, conversely, the cost
of the solutions found increases. On the other hand, safety-layer converges very quickly but the final
solution cost is very close to the one provided by rl. unify-sequential quickly converges as well, and
it also improves the previous methods by a significant margin. These experimental results demonstrate
that RL can benefit from a policy decomposition that properly balances learning and optimization.

Stochastic Optimization Solving stochastic optimization problems can be incredibly challenging. As
mentioned in section 6.3.3, SAA methods are widely adopted in this field but they can be computationally
expensive. In this section, we will show how unify can be used to improve the robustness of the
downstream solver by performing a set of experiments on the WSMC.

100 Knowledge Injection Methods to Enhance Decision Support Systems

As a baseline approach to ensure robustness, we employ the SAA algorithm based on Monte Carlo
sampling that relies on the following optimization model:

min
∑
j∈J

cjzj + 1
|Ω|

∑
ω∈Ω

∑
i∈I

ρsi,ω (6.31)

∑
j∈J

ai,jzj ≥ di,ω(1 − wi,ω) (6.32)

∀i ∈ I, ω ∈ Ω

wi,ω = 1 =⇒ si,ω ≥ di,ω −
∑
j∈J

ai,jxj (6.33)

∀i ∈ I, ω ∈ Ω
zj ≥ 0 (6.34)
wi,ω ∈ [0, 1] (6.35)
si,ω ≥ 0 (6.36)
z, w ∈ Z (6.37)

where ω ∈ Ω are the sampled scenarios. If we increase Ω we also increase robustness but, at the same
time, we drastically increase the computational complexity and thus reduce scalability.

More specifically, we compared three approaches: 1) stochastic optimization: SAA approach where
scenarios are sampled directly from the training set. This method lacks contextual information and
does not provide instance-dependent scenarios. 2) predict-then-optimize: SAA approach which relies
on instance-specific samples by querying a Poisson probabilistic model trained for maximum likelihood
estimation. This approach has an advantage over simple stochastic optimization as it utilizes the ML
model, but its robustness improves with an increase in the number of sampled scenarios. 3) unify
implementation: the ML model is trained to minimize the cost and is inherently more robust without
relying on the SAA. This intrinsic robustness allows it to achieve similar performance to predict-then-
optimize with a large number of samples. It is worth highlighting that the comparison favors the
predict-then-optimize method since it is designed by assuming exact knowledge of the type of probability
distribution whereas the unify implementation makes no such assumption.

Results are shown in fig. 6.12. In the upper part of the figure, we report the optimality gap of the
three methods on a separate set of instances w.r.t. the number of sampled scenarios. Both the simple
the stochastic algorithm and predict-then-optimize approaches benefit from increasing the number of
scenarios. On the other side, the unify implementation does not depend on it, because it directly predicts
the demand values that are plugged into the optimization model. Despite the advantage previously
discussed, the predict-then-optimize approach surpasses unify only when at least ∼ 50 scenarios are
used in the downstream stochastic optimization model. In the lower part of the figure, we show the
runtime required by predict-then-optimize as a multiple of the runtime of unify, w.r.t. to the number
of scenarios. As we can see, to obtain better results, predict-then-optimize requires more than 200
times the computation of unify. We can thus conclude that a smart implementation of unify is a
cheaper alternative to a SAA method for improving the robustness of the solver when tackling stochastic
optimization problems.

6.4 Score Function Gradient Estimation to Widen the Applicability of DFL 101

Discussion We designed the experimental analysis of unify to clarify its versatility, despite its core
idea is remarkably simple. More importantly, we would like to enlight how the framework blurs the
line between approaches that have been investigated mostly in isolation, thus highlighting opportunities
for cross-fertilization. For example, DFL and RL share a few key challenges (differentiating black-box
or piecewise constant functions), suggesting that many ideas developed for one of the two fields could
be adapted to the other. Similarly, drawing ties from ML to offline/online integration and stochastic
optimization could open the way for more scalable approaches, while retaining the key advantages of
such techniques (e.g. convergence and feasibility guarantees).

Finally, prior knowledge plays a crucial role in unify when designing the virtual parameters. On the
one hand, this is a non-trivial challenge for the method designer, since it requires an understanding of
both ML and constrained optimization methods. On the other, however, choosing the semantics and
size for y offers a rare opportunity to configure which aspects of the original problem are delegated to
the ML model and which ones to the CO problem.

Making y more similar to a vector of decisions makes the approach closer to RL, and it might be
better suited for use cases where declarative models are hard to craft. Using just a few key parameters
in y (as we did in our EMS example) goes in the opposite direction, and allows one to capitalize on
explicit problem knowledge in cases where this is available.

Overall, choosing the virtual parameters can be thought of as a design handle that enables “partitioning”
the complexity of the original problem into either a ML or CO module. By managing this decision, it is
possible to make sure that each module is used according to its strengths, at the same time compensating
for known limitations.

6.4 Score Function Gradient Estimation to Widen the Applica-
bility of DFL

The last methodological contribution of this thesis is a specific instance of the unify in the context of
DFL. The main challenge of DFL is the non-informative gradients of the task loss when the downstream
optimization problem is combinatorial. State-of-the-art DFL methods overcome this, but are limited by
the assumptions they make about the structure of the problem (e.g., that the problem is linear) or by
the fact that they can only predict parameters that appear in the objective function.

During my research work, we addressed these limitations by predicting distributions over parameters
in order to smooth the loss, and adopting score function gradient estimation (SFGE) to estimate the
gradients and compute decision-focused updates to the predictive model. Our experiments show that by
using SFGE we can deal with problems with linear or nonlinear objectives, with or without integrality
constraints, and with unknown parameters that occur in the objective function, in the constraints, or in
both. On the other hand, we demonstrated that DFL methods, when cleverly leveraging the knowledge
of the optimization problem, typically yield superior results compared to more general approaches like
SFGE.

Deriving the Score Function Gradient Estimator for DFL The central challenge in DFL is that
when the task loss L depends on the outcome z⋆ of a combinatorial optimization procedure, it has zero-
valued gradients with respect to the predictive model’s parameters almost everywhere. Gradient-based

102 Knowledge Injection Methods to Enhance Decision Support Systems

ω

L

Figure 6.13: Illustration of a DFL loss with non-informative derivatives () smoothed by predicting a
Gaussian over the parameters with increasing variances (≤ ≤). The larger the variance, the
more the loss gets smoothed, but the less it resembles the original piecewise-constant task loss.

learning is thus uneffective. This can be seen when applying the chain rule:

∂L(z⋆(ŷ), y)
∂ω

= ∂L(z⋆(ŷ), y)
∂z⋆(ŷ)

∂z⋆(ŷ)
∂ŷ

∂ŷ

∂ω
(6.38)

The second factor, ∂z⋆(ŷ)
∂ŷ , measures the change in z⋆(ŷ) when ŷ changes infinitesimally. However, since

the problem is combinatorial, this change is zero almost everywhere. This in turn causes the entire
gradient ∂L(z⋆(ŷ),y)

∂ω to be zero almost everywhere.
To tackle this issue, we shift from training a model that makes point predictions ŷ, to a model that

predicts a vector θ that instantiates a distribution pθ(y). In other words, instead of predicting parameter
vectors, the model predicts distributions over parameter vectors. For instance, we may consider ŷ to be
sampled from a multivariate Gaussian distribution parameterized by its means µ and standard deviations
σ, which the predictive model is trained to predict, i.e., θ = (µ, σ).

By predicting the parameters θ of a distribution, the loss becomes an expectation:

L(θ, y) = Eŷ∼pθ(y)[L(z⋆(ŷ), y)] (6.39)

The motivation for this is that it removes the zero-gradient problem: by predicting distributions, the
gradient of the loss with respect to the output of the predictive model is not zero anymore. This is
illustrated in Figure 6.13, which shows how predicting a Gaussian distribution over parameters provides
a smooth proxy for the original piecewise-constant loss. However, although the resulting gradient is not
zero anymore, computing it is not trivial.

To train the predictive model, an estimate of ∂L(θ,y)
∂θ is needed. To compute such an estimate, we

SFGE (also known as the REINFORCE algorithm in the context of RL) [178]. Consider the following
derivation:

∇θL(θ, y) = ∇θEŷ∼pθ(y)[L(z⋆(ŷ), y)] (6.40a)

= ∇θ

∫
pθ(y)L(z⋆(ŷ), y)dŷ (6.40b)

=
∫

L(z⋆(ŷ), y)∇θpθ(ŷ)dŷ (6.40c)

=
∫

L(z⋆(ŷ), y)pθ(ŷ)∇θ log pθ(ŷ)dŷ (6.40d)

= Eŷ∼pθ(y)[L(z⋆(ŷ), y)∇θ log pθ(ŷ)] (6.40e)

6.4 Score Function Gradient Estimation to Widen the Applicability of DFL 103

In (6.40d), the log derivative trick is used. The validity of the interchange between integral and
differentiation is discussed in appendix A.

In the following, we prove the validity of bringing the gradient inward in (6.40c).
To get an estimation of this gradient that can effectively be used in training, the final gradient in

(6.40e) can be estimated using a Monte Carlo method, giving

∇θL(θ, y) ≈ 1
S

S∑
i=1

L(z⋆(ŷ(i)), y)∇θ log pθ(ŷ(i))

with ŷ(i) ∼ pθ(y)

(6.41)

with S as the total number of samples.
What sets this approach apart from existing DFL methods is its broad applicability within DFL,

driven by the fact that Eq. (6.41) assumes nothing about the optimization problem’s form, the location
of the predicted parameters, or the choice of task loss L. Furthermore, we consider problems where the
uncertain parameters appear only in the objective, or only in the constraints, or in both. The prediction
of distributions is introduced solely for the purpose of obtaining informative non-zero gradients. At
inference time, we still want to obtain point predictions from the model to feed into the optimization
problem. Therefore, at test time, we take the mean of the predicted distribution as parameters that we
feed into the optimization problem.

6.4.1 SFGE applications to linear and non-linear optimization problems

To demonstrate the generality and wide applicability of our approach, we conducted the experimental
analysis by focusing on three main research questions:

Q1) How does SFGE compare with prediction-focused learning (PFL) and state-of-the-art DFL ap-
proaches when predicting parameters only appearing the objective function?

Q2) How does SFGE compare with PFL and state-of-the-art DFL approaches when predicting parameters
that appear in the objective function and constraints?

Q3) How does SFGE fare against a PFL method that solves the problem as a two-stage stochastic
optimization problem at inference time?

In our experimental evaluations, when utilizing SFGE, we employ a linear regression model to
predict the mean of a Gaussian distribution, from which we draw one sample of ŷ per gradient estimation
(i.e., S = 1), which we found to work best in practice. The standard deviation of the distribution is
trainable but non-contextual (i.e., remains independent of the input features). Although we could train
a regression model to predict the standard deviation as well, in practice this does not provide additional
benefits.

Q1: Objective function parameters We start with the task of predicting parameters that appear
linearly in the objective function, since this is the setting most commonly considered in existing works.
More concretely, we use the 0-1 knapsack problem (KP) with 50 and 75 items, and the 0-1 quadratic
KP with 8 and 10 items, both with all item values unknown.

We generate synthetic data by introducing a mapping between input features and targets in the
same way as described in the shortest path experimental evaluation of Elmachtoub and Grigas [167],

104 Knowledge Injection Methods to Enhance Decision Support Systems

Table 6.5: PFL, SFGE and SPO results on the linear and quadratic KP.

Method Rel. regret MSE Epochs

KP-50

PFL 0.023 ± 0.006 2.88 · 104 ± 1.84 · 104 50.6 ± 42.0
SFGE 0.008 ± 0.001 1.28 · 105 ± 5.04 · 104 80.7 ± 10.9
SFGE (contextual std.dev) 0.007 ± 0.001 1.19 · 105 ± 3.34 · 104 91.4 ± 17.4
SPO 0.004 ± 0.001 4.71 · 104 ± 2.24 · 104 41.7 ± 11.6

KP-75

PFL 0.024 ± 0.004 2.87 · 104 ± 1.64 · 104 48.1 ± 69.3
SFGE 0.008 ± 0.001 1.26 · 105 ± 4.22 · 104 103.8 ± 14.7
SPO 0.004 ± 0.001 5.15 · 104 ± 2.42 · 104 54.3 ± 15.4

Quadratic KP-8

PFL 0.034 ± 0.015 2.35 · 104 ± 1.58 · 104 24.3 ± 4.61
SFGE 0.006 ± 0.003 1.06 · 105 ± 6.45 · 104 54.5 ± 14.9
SPO 0.005 ± 0.002 6.95 · 104 ± 4.09 · 104 29.9 ± 10.4

Quadratic KP-10

PFL 0.041 ± 0.011 2.37 · 104 ± 1.50 · 104 45.8 ± 64.0
SFGE 0.008 ± 0.002 8.46 · 104 ± 4.04 · 104 54.1 ± 13.1
SPO 0.006 ± 0.002 6.47 · 104 ± 3.26 · 104 30.7 ± 8.6

with a degree of model misspecification deg = 5, number of input features p = 5, and a noise half-width
ϵ̄ = 0.5. In this setup, Smart Predict-then-optimize (SPO) [167] provides state-of-the-art results and
will be used as reference DFL method for comparison. As a baseline, we employ a PFL model trained to
minimize the MSE between the predictions and the ground-truth values.

We generate 5 different datasets and for each consider 3 different splits among training, validation
and test sets with proportions of respectively 80%, 10% and 10%. All the methods are used to train a
linear regression model with stochastic gradient descent, Adam as optimizer, a learning rate of 0.005
and a batch size of 32 samples. The training is stopped when the validation regret (for SPO and SFGE)
or the validation MSE (for PFL) has not improved for 10 epochs.

The aggregated results are reported in table 6.5. In terms of MSE, the PFL method is the most
accurate, followed by SPO. With respect to relative regret, although SPO performs best, SFGE is
able to outperform PFL. In terms of convergence speed, SPO and PFL require a comparable number
of epochs whereas SFGE is slower by a non-negligible gap. We conclude that when the uncertainty
occurs solely in the objective, SFGE significantly outperforms the PFL method, but is still bested by
the state-of-the-art SPO method.

Q2: Constraint parameters We now direct our attention to the task of predicting parameters in
the constraints, a challenging problem that is not easily addressed by existing DFL methods.

To the best of our knowledge, Hu et al. [143] is the only method specifically designed to train a
predictive model via gradient descent to predict constraint parameters of linear packing and covering
problems within a DFL framework. Consequently, we compare it (which we refer to as P+O) with our
SFGE method on the fractional KP with 10 items, which is also used in their experimental evaluation.
In this benchmark, both the item values and the item weights are unknown and must be predicted. We
choose the same correction and penalty functions as in Hu et al. [143]: when the solution instantiated

6.4 Score Function Gradient Estimation to Widen the Applicability of DFL 105

Table 6.6: PFL, SFGE and PO results on the fractional KP. We did not report the Feas. rel. PRegret
for very high Infeas. ratio.

Method Rel. PRegret Feas. rel. PRegret Infeas. ratio MSE Epochs

capacity=50, ρ = 0

PFL 0.403 ± 0.015 0.107 ± 0.064 0.72 ± 0.15 99.1 ± 13.1 13.3 ± 2.9
P+O 0.377 ± 0.130 − 1.00 ± 0.0 9.8 · 105 ± 1.2 · 104 2.5 ± 1.9
SFGE (ours) 0.385 ± 0.008 − 1.00 ± 0.0 8.2 · 105 ± 6.8 · 105 13.4 ± 3.7

capacity=50, ρ = 1

PFL 0.501 ± 0.033 0.107 ± 0.064 0.72 ± 0.15 99.1 ± 13.1 13.3 ± 2.9
P+O 0.460 ± 0.162 0.380 ± 0.018 0.61 ± 0.02 3.8 · 105 ± 4.8 · 103 2.1 ± 1.9
SFGE (ours) 0.467 ± 0.016 0.177 ± 0.045 0.55 ± 0.10 7.9 · 105 ± 5.1 · 105 14.9 ± 4.7

capacity=50, ρ = 2

PFL 0.600 ± 0.077 0.107 ± 0.064 0.72 ± 0.15 99.1 ± 13.1 13.3 ± 2.9
P+O 0.492 ± 0.173 0.422 ± 0.009 0.42 ± 0.05 3.5 · 105 ± 3.8 · 103 1.6 ± 0.6
SFGE (ours) 0.512 ± 0.036 0.237 ± 0.092 0.46 ± 0.18 1.3 · 106 ± 9.3 · 105 16.8 ± 4.3

capacity=75, ρ = 0

PFL 0.353 ± 0.014 0.096 ± 0.058 0.72 ± 0.15 99.1 ± 13.1 13.3 ± 2.9
SFGE 0.337 ± 0.009 − 0.99 ± 0.01 6.20 · 105 ± 6.06 · 105 13.4 ± 4.1
P+O 0.332 ± 0.109 − 1.0 ± 0.0 9.8 · 105 ± 1.1 · 104 2.4 ± 1.4

capacity=75, ρ = 1

PFL 0.437 ± 0.023 0.096 ± 0.058 0.72 ± 0.15 99.1 ± 13.1 13.3 ± 2.87
SFGE 0.410 ± 0.010 0.172 ± 0.044 0.52 ± 0.09 9.41 · 105 ± 5.40 · 105 16.3 ± 3.8
P+O 0.405 ± 0.145 0.332 ± 0.013 0.617 ± 0.035 3.8 · 105 ± 4.5 · 103 1.8 ± 1.5

capacity=75, ρ = 2

PFL 0.522 ± 0.057 0.096 ± 0.058 0.72 ± 0.15 99.1 ± 13.1 13.3 ± 2.87
SFGE 0.436 ± 0.010 0.230 ± 0.081 0.40 ± 0.16 2.1 · 106 ± 1.53 · 106 20.8 ± 7.8
P+O 0.426 ± 0.149 0.378 ± 0.009 0.428 ± 0.025 3.5 · 105 ± 4.0 · 103 3.2 ± 2.0

by the prediction exceeds the capacity, items are proportionally removed (i.e., the selected knapsack is
scaled down) until the capacity constraint is satisfied. If the discarded amount of item i is ∆i, then the
penalty for removing it is ρvi∆i, where vi is the item’s value. We consider problem configurations with
a capacity of 50 and 75, and various penalty coefficients ρ = 0, 1, 2. To assess the performance of DFL
methods with highly misspecified models, we train a linear model to predict both the item weights and
costs of the fractional KP. We conduct experiments on 10 different training-validation-test splits, using
the same proportions as described in the previous section, along with the same hyperparameters.

The results are presented in Table 6.6. For each method, we report the relative post-hoc regret (Rel.
PRegret), the relative regret of solutions that do not require the correction action (Feas. rel. regret), the
ratio of solutions that require a correction action (Infeas. ratio), the MSE, and the number of epochs
before training is stopped. SFGE outperforms PFL in terms of relative post-hoc regret, while P+O
provides the best average performance but with a higher standard deviation; we can thus conclude that
SFGE provides a better worst-case relative post-hoc regret for this instance of the fractional KP. With
increasing ρ, the DFL methods become more conservative: the infeasibility ratio decreases, but at the
cost of a worse relative regret on the feasible solutions. Regarding convergence speed, P+O is the fastest,
whereas PFL and SFGE are slower and require a comparable number of epochs. As expected, in terms

106 Knowledge Injection Methods to Enhance Decision Support Systems

Table
6.7:

M
LE

and
SFG

E
results

on
the

K
P-50

w
ith

uncertain
weights.

W
e

did
not

report
the

Feas.
rel.

PRegret
for

very
high

Infeas.
ratio.

M
ethod

R
el.

P
R

egret
Feas.

rel.
P

R
egret

Infeas.
ratio

M
SE

E
pochs

50-item
s,

ρ
=

5

P
FL

0
.168

±
0
.036

0
.001

±
0
.001

0
.93

±
0
.03

7
.88

·10
4

±
4

.04
·10

4
34

.0
±

20
.3

C
om

bO
ptN

et
0
.189

±
0
.068

0
.008

±
0
.005

0
.91

±
0
.02

5
.26

·10
7

±
2
.26

·10
7

41
.0

±
13

.4
SFG

E
(ours)

0
.126

±
0

.015
-

0
.98

±
0
.02

3
.62

·10
5

±
5
.34

·10
4

136
.0

±
10

.8

50-item
s,

ρ
=

10

P
FL

0
.319

±
0
.081

0
.001

±
0
.001

0
.93

±
0
.03

7
.88

·10
4

±
4

.04
·10

4
34

.0
±

20
.3

C
om

bO
ptN

et
0
.400

±
0
.146

0
.008

±
0
.005

0
.91

±
0
.02

5
.26

·10
7

±
2
.26

·10
7

41
.0

±
13

.4
SFG

E
(ours)

0
.178

±
0

.019
-

0
.99

±
0
.01

3
.71

·10
5

±
6
.74

·10
4

128
.8

±
19

.2

50-item
s,

ρ
=

20

P
FL

0
.615

±
0
.174

0
.001

±
0
.001

0
.93

±
0
.03

7
.88

·10
4

±
4

.04
·10

4
34

.0
±

20
.3

C
om

bO
ptN

et
0
.822

±
0
.302

0
.008

±
0
.005

0
.91

±
0
.02

5
.26

·10
7

±
2
.26

·10
7

41
.0

±
13

.4
SFG

E
(ours)

0
.212

±
0

.022
-

0
.99

±
0
.01

3
.73

·10
5

±
6
.53

·10
4

119
.3

±
26

.1

6.4 Score Function Gradient Estimation to Widen the Applicability of DFL 107

Ta
bl

e
6.

8:
PF

L
an

d
SF

G
E

re
su

lts
on

th
e

W
SM

C
of

di
ffe

re
nt

siz
es

an
d

fo
r

di
ffe

re
nt

pe
na

lty
co

effi
ci

en
t

va
lu

es
.

W
e

di
d

no
t

re
po

rt
th

e
Fe

as
.

re
l.

PR
eg

re
t

fo
r

ve
ry

hi
gh

In
fe

as
.

ra
tio

.

M
et

ho
d

R
el

.
P

R
eg

re
t

Fe
as

.
re

l.
P

R
eg

re
t

In
fe

as
.

ra
tio

M
SE

E
po

ch
s

10
×

50
,ρ

=
1

P
F

L
2.

35
±

0.
85

−
0.

98
±

0.
01

1.
78

·1
05

±
3.

03
·1

04
35

.3
±

44
.2

C
om

bO
pt

N
et

3.
04

±
1.

20
−

1.
0

±
0.

0
8.

09
·1

06
±

5.
24

·1
06

49
.9

±
29

.5
SF

G
E

(o
ur

s)
1.

93
±

0.
50

−
0.

94
±

0.
05

3.
60

·1
05

±
5.

88
·1

04
70

.3
±

13
.1

10
×

50
,ρ

=
5

P
F

L
12

.2
0

±
4.

73
0.

03
4

±
0.

01
9

0.
96

±
0.

01
2.

01
·1

05
±

3.
55

·1
04

61
.5

±
82

.4
C

om
bO

pt
N

et
88

.8
0

±
34

.3
−

1.
0

±
0.

0
6.

34
·1

06
±

2.
64

·1
06

45
.8

±
13

.9
SF

G
E

(o
ur

s)
4.

86
±

1.
15

0.
66

5
±

0.
31

5
0.

65
±

0.
08

5.
54

·1
05

±
1.

25
·1

05
81

.4
±

16
.9

10
×

50
,ρ

=
10

P
F

L
22

.4
0

±
7.

90
0.

02
7

±
0.

04
1

0.
98

±
0.

01
2.

18
·1

05
±

7.
40

·1
04

72
.3

±
97

.5
C

om
bO

pt
N

et
37

4.
17

±
79

.0
−

1.
0

±
0.

0
9.

10
·1

06
±

3.
95

·1
06

34
.0

±
15

.7
SF

G
E

(o
ur

s)
7.

08
±

1.
29

1.
30

±
0.

53
0.

54
±

0.
14

7.
39

·1
05

±
2.

21
·1

05
67

.7
±

14
.4

108 Knowledge Injection Methods to Enhance Decision Support Systems

Figure 6.14: The relative post-hoc regret and normalized runtime at inference time of SFGE and
PFL+SAA on the WSMC of size 10 × 50, for a ρ = 5 (left) and ρ = 10 (right).

of MSE, PFL delivers the best performance, whereas SFGE and P+O perform worse and show similar
results. This makes sense, since SFGE and P+O train the model in a DFL fashion, rather than with
the goal of maximizing accuracy.

While P+O is limited to linear packing and covering problems, many real-world combinatorial
optimization problems involve integrality constraints and can be framed as ILP problems. Our SFGE
method makes no assumptions about the optimization problem’s structure, allowing it to be applied
to ILP problems without modification. To the best of our knowledge, the only method that allows
training a neural model in a DFL fashion to predict the constraint parameters of an ILP problem is
CombOptNet [137].

To evaluate SFGE’s performance when predicting parameters of constraints in an ILP problem,
we considered two problem setups: the KP with unknown item weights and WSMC with unknown
coverage requirements. To mimic a difficult-to-learn setting, we modeled the ground-truth relation
between features and targets stochastically. More concretely, the ground-truth targets are sampled
from a distribution whose parameters depend deterministically on the features. We assumed a Poisson
distribution for both the item weights and coverage requirements. The number of input features and
the degree of misspecification are the same as in the previous section. Since the ground-truth relation
between features and problem parameters is now modeled stochastically, for the PFL method we employ
the same probabilistic model used for SFGE: a Gaussian distribution whose mean is parameterized by a
linear regression model and whose standard deviation is trainable but non-contextual (i.e., independent
from the input features). This model is trained to maximize the likelihood (by minimizing the negative
log-likelihood) of the ground-truth parameters and not to minimize the task loss. The optimization
problem model and the recourse actions are the ones described in chapter 4.

We run experiments on the KP-50 and with ρ ∈ {5, 10, 20}. For the WSMC, the availability matrices
were generated following a set of guidelines by Grossman and Wool [179] that lead to realistic instances.
The set costs are generated uniformly at random from the range [1, 100].

6.4 Score Function Gradient Estimation to Widen the Applicability of DFL 109

Figure 6.15: Comparison between SFGE and PFL+SAA on the KP-50 with stochastic item weights, for
ρ = 5 (left) and ρ = 10 (right).

The results are presented in table 6.7 and table 6.8. SFGE significantly outperforms the other
methods in terms of relative post-hoc regret. In WSMC, SFGE tends to be conservative, resulting in a
higher relative regret for solutions that do not require the recourse action, especially with higher ρ values.
Conversely, in the case of the KP, even though SFGE consistently achieves better post-hoc regret, it
frequently resorts to recourse actions. One possible explanation for this phenomenon is that the option
of adding items during the second stage always remains available, albeit at a reduced value. PFL is more
accurate, though with a higher regret, and converges faster than the other methods, while CombOptNet
is the least accurate. Similarly to the previous experiments, SFGE has a slower convergence speed,
requiring a larger number of epochs.

Q3: PFL with stochastic optimization The ILP problems tackled in the last section involve
stochasticity in the ground-truth relation from features to problem parameters. The PFL model is
trained to map the true distribution and can be further leveraged by performing SAA at inference
time [13]. This involves collecting a set of instance-specific samples, which are subsequently used as
scenarios in the SAA algorithm to compute the optimal solution z⋆. This ideally improved solution is
then employed to calculate the post-hoc regret. We refer to this pipeline as PFL+SAA. In contrast,
as discussed in section 6.4, SFGE relies on stochasticity primarily to smooth the regret but does not
model the underlying distribution. Simultaneously, it inherently minimizes the expected value of perfect
information while only requiring a single sample during inference. Consequently, we compare these two
methods to explore the considerable scalability advantages of SFGE.

In figs. 6.14 and 6.15, we present the relative post-hoc regret (top row) and the log10 normalized
runtime (bottom row) during as functions of the number of sampled scenarios on the same ILP benchmarks
as in the previous section. While for the WSMC we were able to solve the optimization problem (with
scenarios) to optimality, in the case of the KP, we imposed a time limit of 30 seconds. This choice was
necessitated by the higher computational demands of the KP, primarily stemming from the significant
number of second-stage decision variables. The corresponding values for SFGE are drawn as horizontal
lines since they do not require sampling.

110 Knowledge Injection Methods to Enhance Decision Support Systems

As observed, with an increase in the number of scenarios, PFL+SAA generally improves on PFL in
terms of relative post-hoc regret, but requires higher computation time. Because PFL learns to predict
a distribution (a Gaussian) that is different from the true one (a Poisson), for high ρ values, PFL+SAA
struggles to catch up to SFGE: even when 100 and 75 samples are collected for respectively the KP with
unknown item weights and the WSMC, PFL+SAA does not surpass the performance of SFGE.

Discussion These experimental results showed that, when predicting parameters that appear in the
objective function, SFGE is not able to outperform the DFL state-of-the-art that cleverly leverage the
available knowledge, but still provides a major improvement over PFL approaches. On the other hand,
on ILPs with uncertainty in the constraints, SFGE demonstrated superior performance in terms of both
post-hoc regret and infeasibility ratio. Moreover, SFGE can be employed to dramatically reduce the
computation time required to obtain robust solution for stochastic optimization problems. However,
we did observe that it is slower in convergence speed in comparison. This issue was not unexpected
since SFGE is known to suffer from the problem of high variance. Standardization plays a crucial
role in addressing this issue. However, as part of future work, we plan to enhance our approach by
incorporating variance reduction techniques from the existing literature, e.g. by learning critic for the
post-hoc regret. Furthermore, we intend to expand our analysis to encompass problems where predictions
appear non-linearly in the objective function, such as those involving trigonometric, polynomial, or
exponential functions.

Chapter 7

Conclusions

This thesis presents novel informed ML methodologies, showcasing how various forms of knowledge can
be integrated into different stages of the ML pipeline, with a focus on enhancing predictive models and
decision support systems.

In the realm of predictive models, we propose a versatile mathematical framework to leverage prior
knowledge in the form of external black-box models. This approach, characterized by its generality,
allows for the integration of different types of black-boxes (e.g. general mathematical functions, other
ML models) at various pipeline stages, including augmenting training data, designing custom neural
architectures, and creating dedicated learning algorithms. The effectiveness of this methodology is
demonstrated through a predictive maintenance task in an oil and gas facility. While this research
currently focuses on a single application, future studies could explore its applicability to a broader range
of real-world scenarios.

We also delve into the UDE for data-driven discovery of ordinary differential equations. While UDE
aids in improving predictive accuracy, we identify its data-driven component as a potential barrier to
achieving fully interpretable physics parameters approximation. Our analysis offers valuable insights for
mitigating and controlling this undesirable behavior, exemplified by an experimental study on an RC
circuit system often used to model thermal components.

The second part of the thesis shifts focus to informed ML techniques for enhancing decision support
systems. We introduce a method that distills constraints propagators into the weights of a neural
network, proving particularly beneficial when knowledge acquisition is costly and feasible only during
training, not inference. This technique is validated using the PLS completion problem and controlled
experiments assessing the impact of progressively integrating knowledge and data.

Furthermore, we propose a more structured approach to incorporate knowledge into ML models
for decision support systems. The unify framework is designed as a unified solution integrating
ML with combinatorial optimization techniques, where knowledge is encapsulated in the declarative
problem formulation. This framework cleverly decomposes the problem, partitioning the complexity
and harnessing the strengths of both ML and combinatorial optimization. It effectively utilizes ML
for predicting unknown parameters and managing uncertainty, while the optimization solver adeptly
handles combinatorial input spaces and enforces constraints. An extensive evaluation on a real-world
Energy Management System and abstract combinatorial optimization problems demonstrates unify’s
versatility and effectiveness. While it outperforms existing methods in some cases, it also introduces
additional capabilities in others.

112 Conclusions

Additionally, we develop a specific instance of unify, namely score function gradient estimation
to widen the applicability of decision-focused learning. This variant opens new avenues for applying
decision-focused learning to challenging setups, such as predicting parameters appearing in constraints
and requiring recourse actions for recovering from feasibility, and stochastic optimization.

In conclusion, this thesis contributes significantly to the integration of symbolic knowledge into
ML algorithms for predictive models and decision support systems. Through extensive experimental
analysis on both synthetic and real-world problems, the effectiveness of the proposed methodologies
is substantiated. We highlight how informed ML offers versatile techniques for injecting knowledge
in various forms and phases of an ML workflow. While enhancing accuracy, symbolic knowledge also
improves interpretability, although sometimes requiring careful practices, especially in physics-informed
ML. This work underscores the importance of interpretability, hoping to inspire future research in this
field to place a stronger emphasis on it.

For decision support systems, we identify the declarative formulation of optimization problems as a
crucial source of symbolic knowledge, with the learning process being the most suitable phase for its
integration. The unify framework is presented as a general approach for this integration. While this
thesis provides a glimpse into unify’s potential, there are opportunities for further extensions, such
as addressing long-term or chance constraints and applying it to robust optimization. In the realm of
decision-focused learning, unify could enhance applicability to more complex, nonlinear optimization
problems, though scalability remains a challenge due to the requirement of solving multiple optimization
problems.

Appendix A

Theoretical Results on Score
Function Gradient Estimation

In this section, we prove the theoretical soundness of the method.
Recall the derivation of the gradient estimation:

∇θL(θ, y) = ∇θEŷ∼pθ(y)[L(z⋆(ŷ), y)] (A.1a)

= ∇θ

∫
pθ(ŷ)L(z⋆(ŷ), y)dŷ (A.1b)

=
∫

L(z⋆(ŷ), y)∇θpθ(ŷ)dŷ (A.1c)

=
∫

L(z⋆(ŷ), y)pθ(ŷ)∇θ log pθ(ŷ)dŷ (A.1d)

= Eŷ∼pθ(y)[L(z⋆(ŷ), y)∇θ log pθ(ŷ)] (A.1e)

The validity of the equations is trivial except for the interchange of the integral and gradient in (6.40c).
Mohamed et al. [178] states that the interchange is valid if:

(i) pθ(y) is continuously differentiable in its parameters θ,

(ii) pθ(ŷ)L(z⋆(ŷ), y) is both integrable and differentiable for all parameters θ, and

(iii) There exists an integrable function g(ŷ) such that supθ ||L(z⋆(ŷ), y)∇θpθ(ŷ)||1 ≤ g(ŷ), ∀ŷ.

For an arbitrary choice of probability density pθ and the loss function L, it is very difficult to check
that these three conditions hold (see, L’Ecuyer [180] or Glasserman [181] for a more detailed discussion).
Therefore, we make nonrestrictive assumptions to prove that the above conditions hold for our case.

First, assume that pθ is Gaussian, then (i) holds due to the smoothness of the density function. For
the univariate case:

pθ(y) = 1
σ

√
2π

e− 1
2 (y−µ

σ)2

where θ = (µ, σ). Then, The derivatives of the Gaussian distribution with respect to µ and σ are

y − µ

σ2 pθ(y) and
(

(y − µ)2

σ3 − 1
σ

)
pθ(y), (A.2)

114 Theoretical Results on Score Function Gradient Estimation

respectively. Both derivatives are continuous in their respective parameters, unless when σ = 0. This
condition could be easily avoided by adding a small constant to the predicted σ. Thus (i) holds. The
extension to multivariate cases is similar.

In order to show that (ii) holds, we can also assume that the post-hoc regret L(z⋆(ŷ), y) is bounded.
The first part of the post-hoc regret, the regret, is bounded if the feasible region of the optimization
problem is also bounded. We can also assume that the second part, the penalty, always gives a finite
value, since in practice there is no infinitely infeasible decision to correct. Then, since L is bounded, and
under the Gaussian assumption, the product pθ and L is integrable and differentiable for all parameters
θ. Hence (ii) holds under these assumptions.

To show (iii), first note that that ∇θpθ(ŷ) takes a finite value for all θ and it vanishes as θ → ±∞ for
a Gaussiian random variable. The univariate case is clear in (A.2) and the extension to the multivariate
case is similar. Therefore, ∇θpθ(ŷ) is bounded, i.e. there exists a (possibly large) positive real number
M(ŷ) depending on ŷ such that supθ ||∇θpθ(ŷ)||1 ≤ M(ŷ) for all ŷ.

Using the Cauchy–Schwarz inequality , we get:

||L(z⋆(ŷ), y)∇θpθ(ŷ)||1 ≤ L(z⋆(ŷ), y)||∇θpθ(ŷ)||1

for all θ and ŷ since L is a non-negative real-valued function. Taking the supremum of the both sides of
the equation with respect to θ, we get:

sup
θ

||L(z⋆(ŷ), y)∇θpθ(ŷ)||1 ≤ L(z⋆(ŷ), y) sup
θ

||∇θpθ(ŷ)||1

since the loss does not depend on θ. Then, we have:

sup
θ

||L(z⋆(ŷ), y)∇θpθ(ŷ)||1 ≤ g(ŷ) := L(z⋆(ŷ), y)M(ŷ)

where g is constant and hence integrable. Hence (iii) holds.

Appendix B

Additional Results on SFGE for DFL

Figure B.1: Left: validation regret on the KP-50 w.r.t. the number of epochs when multiple predictions
ŷ are sampled for the same x. Right: test relative regret on the KP-50 when σ is contextual (predicted
std dev) and a trainable parameter (trainable), compared with the state-of-the-art SPO.

Estimating the parameter distribution While we employ stochastic parameter estimates, it’s
important to note that they are a part of our smoothing approach and need not precisely reflect the
actual distribution of y. This realization underscores a few key points: 1) We opt for a Gaussian
distribution not because it perfectly represents the nature of y, but because it results in localized
smoothing and more representative gradients. 2) Since the standard deviation primarily serves as a
smoothing factor, our approach remains effective regardless of whether σ is trainable. Throughout
our research, we conducted experiments with various σ settings, including a constant σ, a trainable
non-contextual σ (the same for all examples), and a contextual σ (input-dependent). It was observed
that using a trainable standard deviation tends to yield the best results, while introducing contextuality
(i.e., σ(x)) did not yield significant advantages. In fig. B.1 (right), we present the relative regret of
SFGE on KP-50 with a contextual σ. The results obtained with the best hyperparameter configuration
closely resemble those achieved with a non-contextual σ setting.

116 Additional Results on SFGE for DFL

Figure B.2: Validation relative regret during training of SFGE with and without standardization on the
KP-50

Improving the gradient estimate Our training problem can be understood as:

argmin
θ

Ex,y∼p(x,y),ŷ∼pθ(ŷ|x) [L(z⋆(ŷ), y)] (B.1)

where the expectation on x, y is approximated via mini-batches, and the expectation on ŷ by sampling
from the smoothing distribution. The motivation for using a higher number of samples is to obtain a
good gradient for improved generalizability. First we want to highlight that we train using mini-batch
gradient descent, which introduces stochasticity through different batches. This inherent randomness
of mini-batch gradient descent contributes to generalizability even if only one sample is used for one
instance. Nevertheless, using more samples still might lead to more reliable gradients, but it also
requires solving more optimization problems per gradient descent step. In our research, we had indeed
investigated this trade-off: as shown in fig. B.1 (left), using more samples results in fewer training epochs,
not a faster training time since for each sample we need to solve an optimization problem.

As previously mentioned in the main body of the paper, we apply standardization to the regret within
a single mini-batch to enhance convergence speed by reducing gradient variance. The standardization is
computed as follows:

R̃ = R − µ

σ2 + ϵ

Here, R represents the regret, µ and σ denote the mean and variance of the regret within a mini-batch,
and ϵ = 10−8 is a small constant introduced to prevent numerical instability. To empirically demonstrate
the effectiveness of this standardization operation, we compare a model trained with SFGE with and
without the standardization of the regret within mini-batches. We conducted experiments on the KP-50
dataset, following the same evaluation procedure as described section 6.4. In fig. B.2, we present
a comparison of the validation relative regret between the two approaches, clearly illustrating that
standardization significantly improves convergence speed.

Since the choice of mini-batch size affects the results of standardization and, consequently, the variance
reduction, we conducted experiments with various batch sizes, specifically {2, 4, 8, 16, 32, 64, 128, 256, 512},
on the KP-50 dataset. We evaluated both the relative regret on the test set and the number of
optimization problems solved before reaching convergence. The latter experiment provides insights into

117

Figure B.3: Total number of optimization problems solved by SFGE during training w.r.t. the mini-batch
size used in stochastic gradient descent.

Figure B.4: Test relative regret w.r.t. the mini-batch size used in stochastic gradient descent.

the computational efficiency of different configurations, considering that solving a large optimization
problem can be challenging. As depicted in fig. B.3, increasing the batch size results in a larger number
of optimization problems required to reach convergence, as it necessitates more epochs. With a larger
batch size, the number of mini-batches decreases, reducing the number of optimization steps per epoch.
Overall, a batch size of 32 demonstrates the best trade-off in terms of computational cost and relative
regret.

Bibliography

[1] Timo M Deist, Andrew Patti, Zhaoqi Wang, David Krane, Taylor Sorenson, and David Craft.
Simulation-assisted machine learning. Bioinformatics, 35(20):4072–4080, 2019.

[2] Barbaros Yet, Zane B Perkins, Todd E Rasmussen, Nigel RM Tai, and D William R Marsh.
Combining data and meta-analysis to build bayesian networks for clinical decision support. Journal
of biomedical informatics, 52:373–385, 2014.

[3] Heyuan Liu and Paul Grigas. Online contextual decision-making with a smart predict-then-
optimize method. CoRR, abs/2206.07316, 2022. doi: 10.48550/arXiv.2206.07316. URL https:
//doi.org/10.48550/arXiv.2206.07316.

[4] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Programming,
volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006. ISBN 978-0-444-52726-4. URL
https://www.sciencedirect.com/science/bookseries/15746526/2.

[5] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[6] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex program-
ming. SIAM, 1994.

[7] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of
the Sixteenth Annual ACM Symposium on Theory of Computing, STOC ’84, page 302–311,
New York, NY, USA, 1984. Association for Computing Machinery. ISBN 0897911334. doi:
10.1145/800057.808695. URL https://doi.org/10.1145/800057.808695.

[8] Eva K. Lee and John E. Mitchell. Integer programming: branch and bound methodsInteger
Programming: Branch and Bound Methods, pages 1634–1643. Springer US, Boston, MA, 2009.
ISBN 978-0-387-74759-0. doi: 10.1007/978-0-387-74759-0_286. URL https://doi.org/10.1007/
978-0-387-74759-0_286.

[9] Warren B Powell. A unified framework for stochastic optimization. European Journal of Operational
Research, 275(3):795–821, 2019.

[10] Peter Kall, Stein W Wallace, and Peter Kall. Stochastic programming, volume 5. Springer, 1994.

[11] John R Birge and Francois Louveaux. Introduction to stochastic programming. Springer Science &
Business Media, 2011.

https://doi.org/10.48550/arXiv.2206.07316
https://doi.org/10.48550/arXiv.2206.07316
https://www.sciencedirect.com/science/bookseries/15746526/2
https://doi.org/10.1145/800057.808695
https://doi.org/10.1007/978-0-387-74759-0_286
https://doi.org/10.1007/978-0-387-74759-0_286

120 Bibliography

[12] Sujin Kim, Raghu Pasupathy, and Shane G Henderson. A guide to sample average approximation.
Handbook of simulation optimization, pages 207–243, 2015.

[13] Anton J Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. The sample average approxima-
tion method for stochastic discrete optimization. SIAM Journal on Optimization, 12(2):479–502,
2002.

[14] T. Mitchell. Machine Learning. McGraw-Hill New York, 1997.

[15] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[16] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

[17] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological review, 65(6):386, 1958.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[19] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning,
volume 4. Springer, 2006.

[20] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[22] Matthias Steup. Epistemology: Stanford encyclopedia of philosophy. Stanford Encyclopedia of
Philosophy, 2005.

[23] Linda Zagzebski. What is knowledge? The Blackwell guide to epistemology, pages 92–116, 2017.

[24] Laura Von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Giesselbach, Raoul
Heese, Birgit Kirsch, Julius Pfrommer, Annika Pick, Rajkumar Ramamurthy, et al. Informed
machine learning–a taxonomy and survey of integrating prior knowledge into learning systems.
IEEE Transactions on Knowledge and Data Engineering, 35(1):614–633, 2021.

[25] George S Boolos, John P Burgess, and Richard C Jeffrey. Computability and logic. Cambridge
university press, 2002.

[26] Robert S Boyer and J Strother Moore. A computational logic. Academic press, 2014.

[27] Judea Pearl. Causality. Cambridge university press, 2009.

[28] Laith Alzubaidi, Jinglan Zhang, Amjad J Humaidi, Ayad Al-Dujaili, Ye Duan, Omran Al-Shamma,
José Santamaría, Mohammed A Fadhel, Muthana Al-Amidie, and Laith Farhan. Review of deep
learning: Concepts, cnn architectures, challenges, applications, future directions. Journal of big
Data, 8:1–74, 2021.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography 121

[29] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne Hubbard,
and Lawrence Jackel. Handwritten digit recognition with a back-propagation network. Advances
in neural information processing systems, 2, 1989.

[30] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

[31] Anuj Karpatne, William Watkins, Jordan Read, and Vipin Kumar. Physics-guided neural networks
(pgnn): An application in lake temperature modeling. arXiv preprint arXiv:1710.11431, 2, 2017.

[32] Nikhil Muralidhar, Mohammad Raihanul Islam, Manish Marwah, Anuj Karpatne, and Naren
Ramakrishnan. Incorporating prior domain knowledge into deep neural networks. In 2018 IEEE
international conference on big data (big data), pages 36–45. IEEE, 2018.

[33] Russell Stewart and Stefano Ermon. Label-free supervision of neural networks with physics and
domain knowledge. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,
2017.

[34] Olvi L Mangasarian and Edward W Wild. Nonlinear knowledge-based classification. IEEE
Transactions on Neural Networks, 19(10):1826–1832, 2008.

[35] Glenn Fung, Olvi Mangasarian, and Jude Shavlik. Knowledge-based support vector machine
classifiers. Advances in neural information processing systems, 15, 2002.

[36] Martin von Kurnatowski, Jochen Schmid, Patrick Link, Rebekka Zache, Lukas Morand, Torsten
Kraft, Ingo Schmidt, Jan Schwientek, and Anke Stoll. Compensating data shortages in manufac-
turing with monotonicity knowledge. Algorithms, 14(12):345, 2021.

[37] Yanfei Lu, Manik Rajora, Pan Zou, and Steven Y Liang. Physics-embedded machine learning:
case study with electrochemical micro-machining. Machines, 5(1):4, 2017.

[38] Rajkumar Ramamurthy, Christian Bauckhage, Rafet Sifa, Jannis Schücker, and Stefan Wrobel.
Leveraging domain knowledge for reinforcement learning using mmc architectures. In Artificial
Neural Networks and Machine Learning–ICANN 2019: Deep Learning: 28th International Confer-
ence on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings, Part
II 28, pages 595–607. Springer, 2019.

[39] Ulrich Steinkühler and Holk Cruse. A holistic model for an internal representation to control the
movement of a manipulator with redundant degrees of freedom. Biological Cybernetics, 79(6):
457–466, 1998.

[40] L’ubor Ladickỳ, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross. Data-
driven fluid simulations using regression forests. ACM Transactions on Graphics (TOG), 34(6):
1–9, 2015.

[41] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[42] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000,
1998.

122 Bibliography

[43] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

[44] Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations. Cambridge
Texts in Applied Mathematics. Cambridge University Press, 2 edition, 2008.

[45] Yibo Yang and Paris Perdikaris. Physics-informed deep generative models. arXiv preprint
arXiv:1812.03511, 2018.

[46] Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data. Journal of Computational Physics, 394:56–81, 2019.

[47] Emmanuel De Bézenac, Arthur Pajot, and Patrick Gallinari. Deep learning for physical processes:
Incorporating prior scientific knowledge. Journal of Statistical Mechanics: Theory and Experiment,
2019(12):124009, 2019.

[48] Michael Lutter, Christian Ritter, and Jan Peters. Deep lagrangian networks: Using physics as
model prior for deep learning. arXiv preprint arXiv:1907.04490, 2019.

[49] Dimitris C Psichogios and Lyle H Ungar. A hybrid neural network-first principles approach to
process modeling. AIChE Journal, 38(10):1499–1511, 1992.

[50] Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J Zico Kolter. End-
to-end differentiable physics for learning and control. Advances in neural information processing
systems, 31, 2018.

[51] Wilhelm Kirchgässner, Oliver Wallscheid, and Joachim Böcker. Thermal neural networks: lumped-
parameter thermal modeling with state-space machine learning. Engineering Applications of
Artificial Intelligence, 117:105537, 2023.

[52] Marco Iachello, Viviana De Luca, Giuseppe Petrone, Natale Testa, Luigi Fortuna, Giuliano
Cammarata, Salvatore Graziani, and Mattia Frasca. Lumped parameter modeling for thermal
characterization of high-power modules. IEEE Transactions on Components, Packaging and
Manufacturing Technology, 4(10):1613–1623, 2014.

[53] Amir Sajjad Bahman, Ke Ma, Pramod Ghimire, Francesco Iannuzzo, and Frede Blaabjerg. A
3-d-lumped thermal network model for long-term load profiles analysis in high-power igbt modules.
IEEE Journal of Emerging and Selected Topics in Power Electronics, 4(3):1050–1063, 2016.

[54] Nicolas Bracikowski, Michel Hecquet, Pascal Brochet, and Sergey V Shirinskii. Multiphysics
modeling of a permanent magnet synchronous machine by using lumped models. IEEE Transactions
on Industrial Electronics, 59(6):2426–2437, 2011.

[55] Oliver Wallscheid and Joachim Böcker. Global identification of a low-order lumped-parameter
thermal network for permanent magnet synchronous motors. IEEE Transactions on Energy
Conversion, 31(1):354–365, 2015.

Bibliography 123

[56] Richard W. Cottle. Linear complementarity problemLinear Complementarity Problem, pages 1267–
1271. Springer US, Boston, MA, 2001. ISBN 978-0-306-48332-5. doi: 10.1007/0-306-48332-7_258.
URL https://doi.org/10.1007/0-306-48332-7_258.

[57] Geoffrey G Towell and Jude W Shavlik. Knowledge-based artificial neural networks. Artificial
intelligence, 70(1-2):119–165, 1994.

[58] Artur S Avila Garcez and Gerson Zaverucha. The connectionist inductive learning and logic
programming system. Applied Intelligence, 11:59–77, 1999.

[59] Manoel VM França, Gerson Zaverucha, and Artur S d’Avila Garcez. Fast relational learning using
bottom clause propositionalization with artificial neural networks. Machine learning, 94:81–104,
2014.

[60] Artur S d’Avila Garcez, Krysia Broda, and Dov M Gabbay. Neural-symbolic learning systems:
foundations and applications. Springer Science & Business Media, 2002.

[61] Artur d’Avila Garcez, Tarek R Besold, Luc De Raedt, Peter Földiak, Pascal Hitzler, Thomas Icard,
Kai-Uwe Kühnberger, Luis C Lamb, Risto Miikkulainen, and Daniel L Silver. Neural-symbolic
learning and reasoning: contributions and challenges. In 2015 AAAI Spring Symposium Series,
2015.

[62] Artur d’Avila Garcez, Marco Gori, Luis C Lamb, Luciano Serafini, Michael Spranger, and Son N
Tran. Neural-symbolic computing: An effective methodology for principled integration of machine
learning and reasoning. arXiv preprint arXiv:1905.06088, 2019.

[63] Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo
Thon, Gerda Janssens, and Luc De Raedt. Inference and learning in probabilistic logic programs
using weighted boolean formulas. Theory and Practice of Logic Programming, 15(3):358–401, 2015.

[64] Martin Schiegg, Marion Neumann, and Kristian Kersting. Markov logic mixtures of gaussian
processes: Towards machines reading regression data. In Artificial Intelligence and Statistics,
pages 1002–1011. PMLR, 2012.

[65] Mrinmaya Sachan, Kumar Avinava Dubey, Tom M Mitchell, Dan Roth, and Eric P Xing. Learning
pipelines with limited data and domain knowledge: A study in parsing physics problems. Advances
in Neural Information Processing Systems, 31, 2018.

[66] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learning, 62:107–136,
2006.

[67] Angelika Kimmig, Stephen Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. A short
introduction to probabilistic soft logic. In Proceedings of the NIPS workshop on probabilistic
programming: foundations and applications, pages 1–4, 2012.

[68] Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole. Statistical relational artifi-
cial intelligence: Logic, probability, and computation. Synthesis lectures on artificial intelligence
and machine learning, 10(2):1–189, 2016.

https://doi.org/10.1007/0-306-48332-7_258

124 Bibliography

[69] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming. Advances in neural information processing
systems, 31, 2018.

[70] Robin Manhaeve, Sebastijan Dumančić, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Neural probabilistic logic programming in deepproblog. Artificial Intelligence, 298:103504, 2021.

[71] Robin Manhaeve, Giuseppe Marra, and Luc De Raedt. Approximate inference for neural proba-
bilistic logic programming. In Proceedings of the 18th International Conference on Principles of
Knowledge Representation and Reasoning, pages 475–486. IJCAI Organization, 2021.

[72] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A probabilistic prolog and its
application in link discovery. In IJCAI 2007, Proceedings of the 20th international joint conference
on artificial intelligence, pages 2462–2467. IJCAI-INT JOINT CONF ARTIF INTELL, 2007.

[73] Michelangelo Diligenti, Soumali Roychowdhury, and Marco Gori. Integrating prior knowledge into
deep learning. In 2017 16th IEEE international conference on machine learning and applications
(ICMLA), pages 920–923. IEEE, 2017.

[74] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Broeck. A semantic loss function for
deep learning with symbolic knowledge. In International conference on machine learning, pages
5502–5511. PMLR, 2018.

[75] Michelangelo Diligenti, Marco Gori, and Claudio Sacca. Semantic-based regularization for learning
and inference. Artificial Intelligence, 244:143–165, 2017.

[76] Ming-Wei Chang, Lev Ratinov, and Dan Roth. Guiding semi-supervision with constraint-driven
learning. In Proceedings of the 45th annual meeting of the association of computational linguistics,
pages 280–287, 2007.

[77] Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov, and Eric Xing. Deep neural networks with
massive learned knowledge. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1670–1679, 2016.

[78] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. Harnessing deep neural
networks with logic rules. arXiv preprint arXiv:1603.06318, 2016.

[79] Vilém Novák. First-order fuzzy logic. Studia logica, 46:87–109, 1987.

[80] Petr Hájek. Metamathematics of fuzzy logic, volume 4. Springer Science & Business Media, 2013.

[81] Kuan-Hui Lee, German Ros, Jie Li, and Adrien Gaidon. Spigan: Privileged adversarial learning
from simulation. arXiv preprint arXiv:1810.03756, 2018.

[82] Julius Pfrommer, Clemens Zimmerling, Jinzhao Liu, Luise Kärger, Frank Henning, and Jürgen
Beyerer. Optimisation of manufacturing process parameters using deep neural networks as surrogate
models. Procedia CiRP, 72:426–431, 2018.

[83] Adam Lerer, Sam Gross, and Rob Fergus. Learning physical intuition of block towers by example.
In International conference on machine learning, pages 430–438. PMLR, 2016.

Bibliography 125

[84] Akshara Rai, Rika Antonova, Franziska Meier, and Christopher G Atkeson. Using simulation to
improve sample-efficiency of bayesian optimization for bipedal robots. The Journal of Machine
Learning Research, 20(1):1844–1867, 2019.

[85] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and Russell Webb.
Learning from simulated and unsupervised images through adversarial training. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 2107–2116, 2017.

[86] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

[87] Hong Seok Kim, Muammer Koc, and Jun Ni. A hybrid multi-fidelity approach to the optimal
design of warm forming processes using a knowledge-based artificial neural network. International
Journal of Machine Tools and Manufacture, 47(2):211–222, 2007.

[88] Fang Wang and Qi-Jun Zhang. Knowledge-based neural models for microwave design. IEEE
Transactions on Microwave Theory and Techniques, 45(12):2333–2343, 1997.

[89] Stephen J Leary, Atul Bhaskar, and Andy J Keane. A knowledge-based approach to response
surface modelling in multifidelity optimization. Journal of Global Optimization, 26:297–319, 2003.

[90] Anthony Costa Constantinou, Norman Fenton, and Martin Neil. Integrating expert knowledge
with data in bayesian networks: Preserving data-driven expectations when the expert variables
remain unobserved. Expert systems with applications, 56:197–208, 2016.

[91] David Heckerman, Dan Geiger, and David M Chickering. Learning bayesian networks: The
combination of knowledge and statistical data. Machine learning, 20:197–243, 1995.

[92] Nico Piatkowski, Sangkyun Lee, and Katharina Morik. Spatio-temporal random fields: compressible
representation and distributed estimation. Machine learning, 93:115–139, 2013.

[93] Tao tao Liu, Rui Liu, and Gui jiang Duan. A principle-empirical model based on bayesian
network for quality improvement in mechanical products development. Computers and Industrial
Engineering, 149:106807, 2020. ISSN 0360-8352. doi: https://doi.org/10.1016/j.cie.2020.106807.
URL https://www.sciencedirect.com/science/article/pii/S036083522030512X.

[94] Lida Huang, Tao Chen, Qing Deng, and Yuli Zhou. Reasoning disaster chains with bayesian
network estimated under expert prior knowledge. International Journal of Disaster Risk Science,
pages 1–18, 2024.

[95] Xiaodong Fang, Chan Chang, and Genggeng Liu. Using bayesian network technology to predict
the semiconductor manufacturing yield rate in iot. The Journal of Supercomputing, 77:9020–9045,
2021.

[96] Sindhu R Johnson, George A Tomlinson, Gillian A Hawker, John T Granton, and Brian M Feldman.
Methods to elicit beliefs for bayesian priors: a systematic review. Journal of clinical epidemiology,
63(4):355–369, 2010.

https://www.sciencedirect.com/science/article/pii/S036083522030512X

126 Bibliography

[97] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
2021.

[98] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural
information processing systems, 28, 2015.

[99] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems, 30, 2017.

[100] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2018.

[101] Iddo Drori, Anant Kharkar, William R Sickinger, Brandon Kates, Qiang Ma, Suwen Ge, Eden
Dolev, Brenda Dietrich, David P Williamson, and Madeleine Udell. Learning to solve combinatorial
optimization problems on real-world graphs in linear time. In 2020 19th IEEE International
Conference on Machine Learning and Applications (ICMLA), pages 19–24. IEEE, 2020.

[102] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

[103] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing systems,
31, 2018.

[104] Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the
travelling salesperson problem requires rethinking generalization. Constraints, 27(1-2):70–98, 2022.

[105] Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In International conference on learning representations, 2019.

[106] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[107] Jean-Baptiste Mairy, Yves Deville, and Pascal Van Hentenryck. Reinforced adaptive large neighbor-
hood search. In The Seventeenth International Conference on Principles and Practice of Constraint
Programming (CP 2011), page 55. Springer Berlin/Heidelberg, Germany, 2011.

[108] Andrea Lodi and Giulia Zarpellon. On learning and branching: a survey. Top, 25:207–236, 2017.

[109] Quentin Cappart, Emmanuel Goutierre, David Bergman, and Louis-Martin Rousseau. Improving
optimization bounds using machine learning: Decision diagrams meet deep reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 1443–1451,
2019.

[110] Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and Andre A
Cire. Combining reinforcement learning and constraint programming for combinatorial optimization.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 3677–3687,
2021.

Bibliography 127

[111] Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming:
Learning to cut. In International conference on machine learning, pages 9367–9376. PMLR, 2020.

[112] Félix Chalumeau, Ilan Coulon, Quentin Cappart, and Louis-Martin Rousseau. Seapearl: A
constraint programming solver guided by reinforcement learning. In Integration of Constraint
Programming, Artificial Intelligence, and Operations Research: 18th International Conference,
CPAIOR 2021, Vienna, Austria, July 5–8, 2021, Proceedings 18, pages 392–409. Springer, 2021.

[113] Jayanta Mandi, James Kotary, Senne Berden, Maxime Mulamba, Victor Bucarey, Tias Guns, and
Ferdinando Fioretto. Decision-focused learning: Foundations, state of the art, benchmark and
future opportunities. arXiv preprint arXiv:2307.13565, 2023.

[114] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[115] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

[116] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pages 136–145. PMLR, 2017.

[117] Gurobi Optimization, LLC. Gurobi Optimization, LLC, 2023. URL https://www.gurobi.com. 31st
December 2023.

[118] IBM Corp. IBM ILOG CPLEX Optimization Studio, 2023. URL https://www.ibm.com/products/
ilog-cplex-optimization-studio. 31st December 2023.

[119] Takuya Konishi and Takuro Fukunaga. End-to-end learning for prediction and optimization with
gradient boosting. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 191–207. Springer, 2020.

[120] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: a statistical
view of boosting (with discussion and a rejoinder by the authors). The annals of statistics, 28(2):
337–407, 2000.

[121] Akshay Agrawal, Shane Barratt, Stephen Boyd, Enzo Busseti, and Walaa M Moursi. Differentiating
through a cone program. arXiv preprint arXiv:1904.09043, 2019.

[122] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico
Kolter. Differentiable convex optimization layers. Advances in neural information processing
systems, 32, 2019.

[123] Mokhtar S Bazaraa, John J Jarvis, and Hanif D Sherali. Linear programming and network flows.
John Wiley & Sons, 2011.

[124] Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-
focused learning for combinatorial optimization. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 1658–1665, 2019.

https://www.gurobi.com
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio

128 Bibliography

[125] Jayanta Mandi and Tias Guns. Interior point solving for lp-based prediction+ optimisation.
Advances in Neural Information Processing Systems, 33:7272–7282, 2020.

[126] Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast differentiable sorting
and ranking. In International Conference on Machine Learning, pages 950–959. PMLR, 2020.

[127] Brandon Amos, Vladlen Koltun, and J Zico Kolter. The limited multi-label projection layer. arXiv
preprint arXiv:1906.08707, 2019.

[128] Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. Mipaal: Mixed integer program
as a layer. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
1504–1511, 2020.

[129] Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differen-
tiation of blackbox combinatorial solvers. In International Conference on Learning Representations,
2019.

[130] Subham Sekhar Sahoo, Anselm Paulus, Marin Vlastelica, Vít Musil, Volodymyr Kuleshov, and
Georg Martius. Backpropagation through combinatorial algorithms: Identity with projection
works. arXiv preprint arXiv:2205.15213, 2022.

[131] Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
Bach. Learning with differentiable pertubed optimizers. Advances in neural information processing
systems, 33:9508–9519, 2020.

[132] Jean Guyomarch. Warcraft II Open-Source Map Editor, 2017. URL http://github.com/war2/
war2edit. 31st December 2023.

[133] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[134] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[135] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In International conference on machine learning,
pages 1278–1286. PMLR, 2014.

[136] Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit mle: backpropagating through
discrete exponential family distributions. Advances in Neural Information Processing Systems, 34:
14567–14579, 2021.

[137] Anselm Paulus, Michal Rolínek, Vít Musil, Brandon Amos, and Georg Martius. Comboptnet:
Fit the right np-hard problem by learning integer programming constraints. In International
Conference on Machine Learning, pages 8443–8453. PMLR, 2021.

[138] Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey,
and Tias Guns. Contrastive losses and solution caching for predict-and-optimize. arXiv preprint
arXiv:2011.05354, 2020.

http://github.com/war2/war2edit
http://github.com/war2/war2edit

Bibliography 129

[139] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 297–304. JMLR Workshop and Conference Proceedings,
2010.

[140] Ian J Goodfellow. On distinguishability criteria for estimating generative models. arXiv preprint
arXiv:1412.6515, 2014.

[141] Jayanta Mandi, Vıctor Bucarey, Maxime Mulamba Ke Tchomba, and Tias Guns. Decision-focused
learning: through the lens of learning to rank. In International Conference on Machine Learning,
pages 14935–14947. PMLR, 2022.

[142] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages
133–142, 2002.

[143] Xinyi Hu, Jasper CH Lee, and Jimmy HM Lee. Predict+ optimize for packing and covering lps
with unknown parameters in constraints. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 3987–3995, 2023.

[144] Xinyi Hu, Jasper CH Lee, and Jimmy HM Lee. Branch & learn with post-hoc correction for
predict+ optimize with unknown parameters in constraints. In International Conference on
Integration of Constraint Programming, Artificial Intelligence, and Operations Research, pages
264–280. Springer, 2023.

[145] Xinyi Hu, Jasper Lee, Jimmy Lee, and Allen Z Zhong. Branch & learn for recursively and iteratively
solvable problems in predict+ optimize. Advances in Neural Information Processing Systems, 35:
25807–25817, 2022.

[146] Emir Demirovic, Peter J Stuckey, Tias Guns, James Bailey, Christopher Leckie, Kotagiri Ramamo-
hanarao, Jeffrey Chan, et al. Dynamic programming for predict+ optimise. In AAAI, pages
1444–1451, 2020.

[147] D. Aloini, E. Crisostomi, M. Raugi, and R. Rizzo. Optimal power scheduling in a virtual power
plant. In 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid
Technologies, pages 1–7, Dec 2011.

[148] Allegra De Filippo, Michele Lombardi, and Michela Milano. How to tame your anticipatory
algorithm. In Proceedings of the 28th International Joint Conference on Artificial Intelligence,
pages 1071–1077, 2019.

[149] Alfonso P Ramallo-González, Matthew E Eames, and David A Coley. Lumped parameter models
for building thermal modelling: An analytic approach to simplifying complex multi-layered
constructions. Energy and Buildings, 60:174–184, 2013.

[150] Silvano Martello and Paolo Toth. Knapsack problems: algorithms and computer implementations.
John Wiley & Sons, Inc., 1990.

130 Bibliography

[151] Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit
Supekar, Dominic Skinner, Ali Ramadhan, and Alan Edelman. Universal differential equations for
scientific machine learning. arXiv preprint arXiv:2001.04385, 2020.

[152] Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
42a6845a557bef704ad8ac9cb4461d43-Paper.pdf.

[153] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential
equations for irregular time series. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
6696–6707. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf.

[154] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.

[155] Hong Xu, Sven Koenig, and TK Satish Kumar. Towards effective deep learning for constraint
satisfaction problems. In Proc. of CPAIOR, pages 588–597. Springer, 2018.

[156] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint programming. Elsevier,
2006.

[157] Sascha Van Cauwelaert, Michele Lombardi, and Pierre Schaus. Understanding the potential
of propagators. In Laurent Michel, editor, Integration of AI and OR Techniques in Constraint
Programming - 12th International Conference, CPAIOR 2015, Barcelona, Spain, May 18-22, 2015,
Proceedings, volume 9075 of Lecture Notes in Computer Science, pages 427–436. Springer, 2015.
doi: 10.1007/978-3-319-18008-3_29. URL https://doi.org/10.1007/978-3-319-18008-3_29.

[158] Michelangelo Diligenti, Marco Gori, and Claudio Saccà. Semantic-based regularization for
learning and inference. Artificial Intelligence, 244:143 – 165, 2017. ISSN 0004-3702. doi:
https://doi.org/10.1016/j.artint.2015.08.011. URL http://www.sciencedirect.com/science/article/
pii/S0004370215001344. Combining Constraint Solving with Mining and Learning.

[159] Andrea Galassi, Michele Lombardi, Paola Mello, and Michela Milano. Model agnostic solution of
csps via deep learning: A preliminary study. In Willem-Jan van Hoeve, editor, Proc. of CPAIOR,
pages 254–262, Cham, 2018. Springer International Publishing.

[160] Google OR-Tools. https://developers.google.com/optimization. Accessed: [December 2023].

[161] Carla P Gomes, Bart Selman, et al. Problem structure in the presence of perturbations. AAAI/IAAI,
97:221–226, 1997.

[162] Priya Donti, Brandon Amos, and J Zico Kolter. Task-based end-to-end model learning in stochastic
optimization. Advances in neural information processing systems, 30, 2017.

https://proceedings.neurips.cc/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf
https://doi.org/10.1007/978-3-319-18008-3_29
http://www.sciencedirect.com/science/article/pii/S0004370215001344
http://www.sciencedirect.com/science/article/pii/S0004370215001344
https://developers.google.com/optimization

Bibliography 131

[163] James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-end
constrained optimization learning: A survey. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal,
Canada, 19-27 August 2021, pages 4475–4482. ijcai.org, 2021. doi: 10.24963/ijcai.2021/610. URL
https://doi.org/10.24963/ijcai.2021/610.

[164] Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek.
Differentiation of blackbox combinatorial solvers. In ICLR 2020 : Eighth International Conference
on Learning Representations, 2020.

[165] Jayanta Mandi and Tias Guns. Interior point solving for lp-based prediction+optimisation. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors,
Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://
proceedings.neurips.cc/paper/2020/hash/51311013e51adebc3c34d2cc591fefee-Abstract.html.

[166] Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey,
and Tias Guns. Contrastive losses and solution caching for predict-and-optimize. In Zhi-Hua
Zhou, editor, Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pages 2833–2840. ijcai.org,
2021. doi: 10.24963/ijcai.2021/390. URL https://doi.org/10.24963/ijcai.2021/390.

[167] Adam N Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management Science, 68
(1):9–26, 2022.

[168] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerík, Todd Hester, Cosmin Paduraru, and
Yuval Tassa. Safe exploration in continuous action spaces. CoRR, abs/1801.08757, 2018. URL
http://arxiv.org/abs/1801.08757.

[169] Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
constrained policy optimization. In International Conference on Learning Representations, 2019.

[170] Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and trends® in Optimization,
1(3):127–239, 2014.

[171] Allegra De Filippo, Michele Lombardi, and Michela Milano. The blind men and the elephant:
Integrated offline/online optimization under uncertainty. In IJCAI, 2020.

[172] Allegra De Filippo, Michele Lombardi, and Michela Milano. Integrated offline and online decision
making under uncertainty. Journal of Artificial Intelligence Research, 70:77–117, 2021.

[173] Richard M Van Slyke and Roger Wets. L-shaped linear programs with applications to optimal
control and stochastic programming. SIAM journal on applied mathematics, 17(4):638–663, 1969.

[174] Gilbert Laporte and François V Louveaux. The integer l-shaped method for stochastic integer
programs with complete recourse. Operations research letters, 13(3):133–142, 1993.

[175] Pascal Van Hentenryck and Russell Bent. Online stochastic combinatorial optimization. The MIT
Press, 2006.

https://doi.org/10.24963/ijcai.2021/610
https://proceedings.neurips.cc/paper/2020/hash/51311013e51adebc3c34d2cc591fefee-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/51311013e51adebc3c34d2cc591fefee-Abstract.html
https://doi.org/10.24963/ijcai.2021/390
http://arxiv.org/abs/1801.08757

132 Bibliography

[176] Luc Mercier and Pascal Van Hentenryck. Amsaa: A multistep anticipatory algorithm for online
stochastic combinatorial optimization. In International Conference on Integration of Artificial
Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming, pages
173–187. Springer, 2008.

[177] Mattia Silvestri, Allegra De Filippo, Federico Ruggeri, and Michele Lombardi. Hybrid offline/online
optimization for energy management via reinforcement learning. In International Conference on
Integration of Constraint Programming, Artificial Intelligence, and Operations Research, pages
358–373. Springer, 2022.

[178] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient
estimation in machine learning. J. Mach. Learn. Res., 21(132):1–62, 2020.

[179] Tal Grossman and Avishai Wool. Computational experience with approximation algorithms for
the set covering problem. European journal of operational research, 101(1):81–92, 1997.

[180] Pierre L’Ecuyer. Note: On the interchange of derivative and expectation for likelihood ratio
derivative estimators. Management Science, 41(4):738–747, 1995.

[181] Paul Glasserman. Gradient estimation via perturbation analysis, volume 116. Springer Science &
Business Media, 1990.

	2c4c3e65-8203-4ab3-834e-0119caf3a103.pdf
	Table of contents
	List of figures
	List of tables
	Research activities and publications
	1 Introduction
	2 Background
	2.1 Optimization under constraints
	2.1.1 Constrained Satisfaction Problems
	2.1.2 Constrained Optimization Problems

	2.2 Optimization under Uncertainty
	2.3 Machine Learning

	3 Informed Machine Learning
	3.1 Algebraic equations
	3.2 Differential equations
	3.3 Logic rules
	3.4 Simulation results
	3.5 Bayesian networks
	3.6 Declarative formulation of an optimization problem
	3.6.1 Solver-as-a-layer
	3.6.2 Surrogate loss functions

	4 Use cases
	4.1 Energy Management System
	4.2 Predictive Maintenance
	4.2.1 Oil and gas facility

	4.3 Resistor Capacitor circuit for Thermal Modeling
	4.4 Combinatorial Optimization

	5 Knowledge injection methods to improve predictive models
	5.1 External model integration
	5.1.1 Preliminary analysis
	5.1.2 Experimental results on the integration methodology

	5.2 Universal Differential Equation for data-driven discovery of ODEs
	5.2.1 Experimental analysis

	6 Knowledge Injection Methods to Enhance Decision Support Systems
	6.1 Injecting Constraints Propagators in Neural Networks
	6.2 Empirical Analysis
	6.2.1 Training Set Size and Empirical Information

	6.3 UNIFY: a Unified Policy Designing Framework for Solving Integrated CO and ML Problems
	6.3.1 Key Problem Elements and Notation
	6.3.2 unify formalization
	6.3.3 Generalization
	6.3.4 unify: an Application to an EMS and a Production Scheduling Problem

	6.4 Score Function Gradient Estimation to Widen the Applicability of DFL
	6.4.1 SFGE applications to linear and non-linear optimization problems

	7 Conclusions
	A Theoretical Results on Score Function Gradient Estimation
	B Additional Results on SFGE for DFL
	Bibliography

