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Abstract

In the ever-evolving landscape of computing, the integration of Artificial Intelligence has
become pervasive, empowering applications with unprecedented capabilities. However, as the
scope of AI expands, so do the challenges associated with resource constraints, particularly
in the realm of intelligent and distributed Edge Applications. This thesis delves into the
intersection of two concepts—Frugality and Serverless paradigms—aiming to revolutionize the
deployment and functionality of intelligent agents on constrained devices.

Distributed Computing in all its facets is discussed, addressing the main challenges related
to device heterogeneity and seamless networking management. Experimental contributions
in edge industrial scenarios are presented [26], confirming the practical application of digital
twin technology. In addition, a smart routing approach is novelly presented [27] showcasing
the beneficial application of AI on Distributed Computing tasks.

The exploration extends to intelligent and distributed Edge Applications, where the fusion
of AI and decentralized computing offers unlimited potential for swift responsiveness and re-
strained energy consumption. Understanding the importance of power efficiency in constrained
environments, this thesis places a particular emphasis on the trade-off between performance
and power consumption. Greener and more sustainable approaches to Distributed Learning
are proposed [10, 180], taking into account power consumption in Federated Learning round
planning strategies.

Then, we address the challenges related to data constrained scenarios. Privacy and Trust re-
lated issues are addressed in a Federated Learning setting proposing a novel contribution [175].
Additionally, considering the scarcity of data and model complexity, we introduce an ensem-
bling of weak autoregressor as a striking solution for traffic volume forecasting [181].

During the exploration at the intersection of AI, frugality, and Serverless Computing,
we then focus our attention on those cases where networking conditions are unstable and
unreliable. Following the Split Computing paradigm we present a distilled encoder [183]
capable of challenging the performance of deeper neural networks, enabling realtime semantic
compression on mobile devices.
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Chapter 1

Frugality Middleware Technologies for
Edge and Fog Computing

Resource constrained scenarios represent one of the main challenges of nowadays Software
Engineering. High level Design Patterns [91] for Object Oriented architectures give systems
reusability and extensibility characterists meant for handling outstanding computing capabili-
ties in sub-optimal networking conditions and with abundant energy budgets. In those cases,
Service Oriented Architecture (SOA) [259] emerges as the well-established cornerstone. Given
the ample availability of resources, the primary focus revolves around data access control,
transparent usage, and maintainability. These aspects rightfully take center stage in the pursuit
of effective solutions for systems operating in resource-rich environments.

The integration of Cloud Computing [267] and DevOps [76] practices further elevates the
transparency and modularity of existing solutions. On one side Cloud Computing offers a
flexible and on-demand resource pool, enabling diverse applications to seamlessly adapt to
fluctuating workloads. On the flip side, Continuous Delivery (CD) and Continuous Integration
(CI) offered by DevOps ensure the perpetual accessibility of remote services, simplifying the
day-to-day tasks of insiders. Thanks to those advancements, everyone from all over the world
is now capable of consuming fresh multimedia content with high Quality of Service (QoS)
requirements.

All these advancements raise a paradigm-shifting question: where does this data come from?
Considering that the greatest part of downstream internet traffic is composed of images and
videos [11, 84] it is reasonable to infer that data-centers do not serve as the primary data sources.
Usually both Human to Machine (H2M) and Machine to Machine (M2M) take place at the
edges of the network where the level of computational capabilities, network quality and energy
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budgets decrease dramatically. Here high level programming languages are replaced by lower
ones and the applicability of transparent frameworks is limited by a careful thriftiness in terms
of floating-point operations per second (FLOPS), bandwidth and power usage. As the total
number of connected sensors and devices grows [12, 65] the current way employed to collect
and process data will be ineffective in handling the incoming amount of information transferred
over the network. New requirements in terms of energy awareness must be addressed in a more
distributed and flexible way, taking into account Edge [237] and Fog [289] technologies to
tackle Big Data [268] related concerns. Stringent demands for low latency and high-quality
services necessitate a computational shift toward the network’s peripheries, aligning with the
locations of end-users and data sources.

In this context, Big Data and Artificial Intelligence [114] can be viewed as two comple-
mentary facets of a coin. Progressing with one while neglecting the other is impractical, as
Big Data stands as one of the most valuable assets of our times and Artificial Intelligence
serves as the means to unlock its immense potential. The symbiotic relationship between
these two domains is essential for harnessing the full capabilities of data-driven insights and
advancing technological frontiers. As is often the case in engineering endeavors, superior
results typically incur higher costs. In the context of AI applications, its promising high-level
outcomes bring an added strain on existing infrastructures, which are tasked with ensuring the
continual availability of both local and remote services across the network. In these scenario,
moving as much computation as possible to the Edge appears to be the only viable solution.

These two trends–increased transparency facilitated by Cloud Computing and reduced la-
tency provided by Edge Computing–collide in the realm of Fog Computing scenarios. a diverse
array of heterogeneous devices, each possessing varying communication and computation
capabilities, constitute the backbone of the infrastructure. While the modularity inherent in
Cloud architectures might be desirable on one front, its universal applicability is not entirely
feasible in this context. The reason lies in the necessity for more optimized strategies when
managing limited resources within the Fog Computing paradigm. Therefore, it is imperative to
emphasize the application of AI technologies at the edges of the network. This must be exe-
cuted with a keen awareness of resource constraints, ensuring that the computational expenses
associated with substantial additional processing remain constrained. Furthermore, there is the
need to encapsulate the intricacies of optimization strategies, aligning them with the Serverless
paradigm [47]. This cohesive approach aims to establish a Cloud Continuum that seamlessly
bridges the gap between more powerful and resource-constrained devices.
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This thesis embarks on a comprehensive exploration of the evolving landscape of comput-
ing, with a central focus on the integration of Artificial Intelligence (AI) and its impact on
resource-constrained environments, particularly in the domain of intelligent and distributed
Edge Applications. The first part of the thesis delves into the core concepts of Transparent Fru-
gality and the fusion of AI with Edge and Fog Computing, respectively. The former advocates
for optimal resource efficiency in AI functionalities, while the latter explores novel approaches
to enhance frugality in the context of edge devices. By delving into these dimensions, the
research aims to uncover innovative approaches that not only enhance frugality but also navigate
the intricate landscape of performance-energy tradeoffs in a way that does not compromise
the expected intelligence and responsiveness of modern applications. Then, we introduce a
groundbreaking proposition of an energy-aware serverless paradigm tailored for intelligent
agents on constrained devices, redefining the conventional boundaries of serverless computing
to address unique challenges. In this context, Federated Learning [25, 154, 285] is used as a
practical use case to explore the multi-dimensional trade-off between resource optimization and
QoS performance. Lastly, both theoretical insights and practical solutions, with the ultimate
goal of shaping the future of intelligent computing in resource-constrained environments. The
overarching theme throughout the thesis is the pursuit of a more efficient, transparent, and
frugal integration of AI, laying the foundation for intelligent applications at the edge of our
computing landscape.

1.1 Structure of the Thesis

Following a concise introduction to the motivations driving this thesis, this chapter succinctly
outlines the unique contributions made by the candidate that surpass the current state of the art.
The subsequent sections of this document draw upon content from papers that have been either
published or are currently under review.

Chapter 2 provides background information about Distributed Computing and computation
offloading, with a literature review of the principal challenges about microservice orchestration
in resource constrained setting. The applicability of the digital twin (DT) approach within
industrial IoT environments is considered, presenting a novel middleware for dynamically and
seamlessly managing network resources in edge industrial environments.

Chapter 3 focuses on the symbiotic interplay between AI-enhanced applications and Edge
environments. The main definitions about Frugality and energy aware AI are provided with
references to the current state of the art. Both AI for Edge and AI on Edge [68] are taken into
account, proposing experimental contributions for each scenario.
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Chapter 4 focuses on another pivotal aspect of Frugaly: AI with limited data. In the broad
context of AI-applications Big Data [269] availability persists as a mandatory requirement
across the majority of use cases. Unfortunately rich and meaningful dataset are not always
accessible, and even when present they comes with a very high price. This section explores
Small Data approaches as an alternative to canonical ones, tackling privacy related issues when
limited data are distributed across participants and how low complexity algorithms can in those
cases outperform deeper neural networks. The section features two experimental contributions:
one centered on a blockchain-based privacy framework and the other applying low-complexity
algorithms in the context of smart city traffic prediction.

Chapter 5 explores the beneficial consequences of Semantic Compression and Split Com-
puting as a Frugality-oriented technique for power and bandwidth saving. A middleware for
containerized and ML-based computer vision applications is originally introduce as a real
world use case testing scenario. Model quantization [99] and Knowledge Distillation [117]
are employed here to further optimize resource usage on edge devices with limited computing
capabilities.

Chapter 6 serves as the conclusion of this thesis, providing a comprehensive summary
of the research findings. It not only encapsulates the key insights derived from the present
work but also elucidates the most promising avenues for future research, both from a broader
perspective and specifically stemming from the author’s undertaken efforts.

1.2 Challenges

In the ever-evolving landscape of computing, two distinct challenges emerge as pivotal consid-
erations for system architects and developers alike. The first challenge centers on the perpetual
trade-off between achieving higher performance and managing resource consumption efficiently.
This delicate balancing act poses a conundrum: as we strive to enhance system performance,
the corresponding increase in resource utilization, including power consumption and potential
scalability constraints, becomes an inevitable consequence. Navigating this trade-off becomes
crucial, requiring thoughtful optimization strategies that align performance goals with the
available resources, striking a harmonious equilibrium between efficiency and capability. This
is particularly true when limited capabilities in terms of computation, communication and
available energy come into play. Efficient algorithms, lightweight processing, and intelligent
power management strategies become indispensable tools in addressing this challenge.

The second challenge delves into the intricacies of optimization and transparency within
the targeted software architectures. Here, the focus lies on streamlining software layers by
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minimizing unnecessary components and eschewing the temptation of introducing excessive
"syntactic sugar". This approach aims to cultivate a more transparent and comprehensible
software structure while fostering optimization. In practice, it involves the judicious use of high-
level APIs to leverage backbone services, emphasizing simplicity and clarity in design without
sacrificing performance. The goal is to create systems that are not only efficient and scalable
but also transparent and maintainable, thereby addressing the multifaceted demands of contem-
porary computing environments. By successfully navigating these dual challenges, developers
can craft systems that deliver optimal performance, resource utilization, and maintainability in
the face of the ever-increasing complexities inherent in modern computing paradigms.

1.3 Contributions beyond the state of the art

Conceptual Contributions:

• In [27] and in Chapter 2 we explore the major contributions available in Fog and Cloud
applications for Industrial IoT [38], delving into finer details the concept of Digital
Twin (DT) [24] as an innovative technology expected to transform the industrial and
manufacturing ecosystems. In addition, the recent state of the art about Software-
defined networking (SDN) [277] is originally presented. Here AI applicability for traffic
management is considered for anomaly detection and packet routing policies.

• Novelly, in Chapter 3 we analyse the state-of-the-art the Frugal [104] and Green [230]
AI directions under a two-dimensional agenda: analyzing separately the interplay of AI
for Edge and AI on Edge. On one side we delve into the application of AI to distributed
computing problems. While on the other side, the trade-off between minimal resource
utilization and optimal performance spans across the current literature highlighting the
most remarkable and novel contributions.

Experimental Contributions:

• In [26] we propose a novel Application-driven Digital Twin Networking (ADTN) middle-
ware to support the twofold objective of simplifying the interaction with heterogeneous
distributed industrial devices and of dynamically managing network resources. Here
we discuss the support for adopting the Digital Twin (DT) abstraction, emphasizing
its role in simplifying interactions with physical devices through Simple Digital Twins
(SDTs). These SDTs serve as protocol gateways, facilitating communication with devices
via various protocols. Additionally, the concept of Composed Digital Twins (CDT) is
introduced, highlighting the representation of complex industrial applications as dynamic
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coordination among multiple SDTs. The deployment of SDTs on edge nodes is proposed,
with each node managing multiple SDTs related to neighboring devices, creating a multi-
hop multi-path topology. This approach aims to simplify network resource management
by utilizing a high-level representation of industrial applications to dynamically and
autonomously manage resources within production sites. Ultimately, this solution proved
on a real testbed to enhance the efficiency and safety of industrial networks by enabling
faster configuration for different applications within a production site or across multiple
sites. Chapter 2 is partially based on this work.

• In [27] we highlight the need for enhanced safety and security measures in modern net-
working industrial environments, emphasizing the importance of IEC 62443 zones and
conduits [151] for clear separation and communication security. To address challenges
in implementation, the Digital Twin approach is proposed for zones and conduits, simpli-
fying the definition and management of inter-machine security requirements. The use
of an intelligent reasoner is recommended for real-time monitoring and reconfiguration,
allowing for a dynamic trade-off between security and performance, with demonstrated
feasibility and efficiency in industrial environments.

• In [180] we introduce a groundbreaking distributed framework designed to collect real-
time and detailed process metrics for intelligent process management. Our focus lies in
exploring pertinent FL round planning strategies, which are categorized as either static,
involving a predetermined number of iterations, or dynamic, where the iteration count is
decided at runtime based on trade-offs between model accuracy and energy expenditure.
To substantiate the efficacy of our approach, we outline the design of an experimental
testbed. This testbed demonstrates the implementation of an Energy-Aware Federated
Learning (EFL) process using authentic data, highlighting the capabilities of our solution
in terms of metric collection and adaptive planning based on the observed data. Chapter 3
focuses on the main challenges in that direction presenting the experimental contribution
we developed in relationship with the current state of the art.

• In [10] we introduce EneA-FL an innovative scheme, termed EneA-FL, for serverless
smart energy management. This novel approach dynamically adapts to optimize the
training process, promoting seamless interaction between Internet of Things (IoT) devices
and edge nodes. The proposed middleware incorporates a containerized software module
that efficiently manages the interaction of each worker node with the central aggregator.
EneA-FL makes informed decisions about node inclusion in subsequent training rounds
by monitoring local energy budgets, computational capabilities, and target accuracy.
This intelligent approach effectively balances the tripartite trade-off between energy
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consumption, training time, and final accuracy. Through a series of extensive experiments
across diverse scenarios, our solution showcases impressive results, achieving a notable
reduction of between 30% and 60% in energy consumption compared to popular client
selection approaches in the literature. Furthermore, it proves to be up to 3.5 times more
efficient than standard Federated Learning solutions.

• In [175] a groundbreaking blockchain-based architecture to establish Trustworthy Feder-
ated Learning as a Service (FLaaS). Our solution integrates blockchain, smart contracts,
and a Decentralized Oracle Network (DON) to create a collaborative and secure AI
model training system resilient to attacks from both the server and malicious participants.
To ensure the validation process’s integrity, we design a novel protocol relying on smart
contracts and the DON. The DON dynamically supplies the smart contract with a subset
of the validation dataset. Furthermore, we put forth a weighted aggregation strategy that
considers each participant’s trust level. Taking into account their historical performance
in preceding rounds, each client is assigned a trust level, enhancing the fairness and
reliability of contributions in the federated learning framework.

• In [183] we introduce and extensively evaluate Furcifer, an innovative middleware frame-
work for Computer Vision tasks. Tailored to seamlessly adapt to the computing demands
of highly dynamic environments, Furcifer transparently monitors the underlying system’s
state and dynamically predicts the feasibility of (Edge Computing) EC, (Local Comput-
ing) LC, and (Split Computing) SC [173] configurations. The core of Furcifer adopts
a novel containerized approach, enabling low-overhead transitions between computing
modalities and data processing modules. Notably, Furcifer achieves a context switch
latency of less than 2ms and utilizes minimal storage – approximately 7GB upon instan-
tiation with less than 0.3% transmitted over the network during runtime. The system
monitoring module introduces minimal overhead and embeds algorithms for lightweight
and efficient system state analysis. Our evaluation, focusing on Object Detection (OD) as
a use case, involves over 250 experiments with various wireless technologies, showcasing
Furcifer’s ability to dynamically adapt configurations. Results demonstrate a remarkable
2x reduction in energy consumption, a 30% increase in mean Average Precision com-
pared to static LC, and a three-fold rise in frame per second rate compared to static EC
full offloading. Furthermore, Furcifer’s highly optimized SC module surpasses state-of-
the-art practical EC and SC configurations in certain parameter regions, emphasizing the
significance of SC in the array of available computing configurations.





Chapter 2

Computing Paradigms Close to the Edge,
Challenges and Possible Solutions

In the contemporary landscape of information technology, data stands as the primary commod-
ity, and the possession of larger datasets often translates into increased value for data-centric
businesses. As per the International Data Corporation (IDC), the volume of digital data sur-
passed 1 zettabyte in 2010 [92], and since 2012, a staggering 2.5 exabytes of new data are
generated daily [176].

With the escalating velocity and volume of data, the conventional approach of transferring large
datasets from IoT devices to the cloud faces efficiency challenges and, in certain instances,
becomes impractical due to bandwidth limitations. Simultaneously, the emergence of time-
sensitive and location-aware applications, such as patient monitoring, real-time manufacturing,
self-driving cars, drone swarms, and cognitive assistance, presents a scenario where the distant
cloud infrastructure struggles to meet the ultra-low latency requirements and provide location-
aware services. Additionally, the scalability of cloud solutions may be inadequate to handle the
vast amount of data generated by these applications. Furthermore, privacy concerns in specific
applications make sending data to the cloud an unviable solution, necessitating alternative
strategies for data processing and storage closer to the source.

To tackle the challenges posed by high-bandwidth, geographically-dispersed, ultra-low la-
tency, and privacy-sensitive applications, there is an imperative need for a computing paradigm
situated closer to connected devices. Both industry [43] and academia [36] have proposed Fog
computing to address these issues and fulfill the demand for a computing paradigm in proximity
to connected devices. Fog computing serves as a bridge between the cloud and IoT devices,
facilitating computing, storage, networking, and data management on network nodes situated
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close to IoT devices. This implies that computation, storage, networking, decision-making, and
data management occur along the path between IoT devices and the cloud as data moves from
IoT devices to the cloud. The research community has also introduced other similar computing
paradigms such as mist computing [72, 89], cloud of things [5], and cloudlets [18, 198], all
aimed at addressing the aforementioned challenges in various ways.

In Section 2.1 we delve into a comparative analysis of Fog computing and its counterparts,
illustrating the inherent advantages of Fog computing across diverse use cases. The primary
obstacles hindering the widespread adoption of Edge computing are meticulously enumerated
and scrutinized. These challenges encompass issues of trust and authentication, the imperative
need for eco-friendly Fog computing solutions, scalability concerns, considerations regarding
bandwidth optimization, and promising direction towards intelligent and autonomous policy
management on the Edge. Moreover, a groundbreaking approach, termed Frugality, is in-
troduced as a disruptive solution. Section 2.2 focuses on the adoption of the Digital Twin
paradigm as a way to apply frugality in heterogeneous IIoT environments. Then, in Section 2.3
we present our novel contribution for intelligent and autonomous packet routing.

2.1 From the Cloud to the Far Edge

In the ever-evolving landscape of computing paradigms, the journey from centralized cloud
environments to the far edge represents a transformative shift that aligns with the evolving
demands of contemporary applications. This section explores the paradigm shift from cloud
to the far edge, delving into emerging computing models that bring processing capabilities
closer to connected devices. We will navigate through Fog Computing, edge computing, and
other related paradigms, examining their distinctive features, advantages, and implications for
the future of computing architecture. As we traverse this landscape, we uncover how these
advancements are reshaping the way applications are deployed, managed, and optimized in the
era of pervasive connectivity and data-driven innovations.

2.1.1 Traditional Cloud Computing

Cloud computing has played a pivotal role in extending the accessibility and capabilities of com-
puting, storage, and networking infrastructure to various applications. The National Institute of
Standards and Technology (NIST) defines Cloud Computing as a model that facilitates ubiq-
uitous, on-demand network access to shared computing resources [179]. Cloud data centers,
characterized by large pools of highly accessible virtualized resources, offer dynamic reconfig-
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urability to accommodate scalable workloads. This adaptability is particularly advantageous for
cloud services, which often adopt a pay-as-you-go cost model [262]. The pay-as-you-go cost
model enables users to conveniently access remote computing resources and data management
services, paying only for the resources they consume. Major cloud providers, including Google,
IBM, Microsoft, and Amazon, play a crucial role by furnishing and provisioning expansive
data centers to host these cloud-based resources. This approach not only enhances flexibil-
ity but also aligns with a more cost-effective and scalable utilization of computing infrastructure.

Cloud computing encompasses four primary deployment models: private cloud, commu-
nity cloud, public cloud, and hybrid cloud [179]. Private clouds are tailored for singular entities,
ensuring high privacy and configurability, resembling traditional company-owned server farms
but lacking the pay-as-you-go cost model. Community clouds serve a collective user base, with
decentralized ownership shared among multiple organizations within the community. Public
clouds, offered by providers like Amazon, IBM, Google, and Microsoft, are widely popular,
easy to maintain, and cost-effective, although they may lack full customization. Hybrid clouds
combine various deployment types, offering finer control over virtualized infrastructure through
standardized or proprietary technology [247].

The cloud offers a spectrum of services, categorized as infrastructure, platform, and soft-
ware (IaaS, PaaS, SaaS) - see Table 2.1 as a reference - catering to the diverse needs of
application developers. In the realm of Infrastructure as a Service (IaaS), cloud consumers
gain direct access to IT infrastructures encompassing processing, storage, and networking
resources [70] inside a virtualized and isolated environment. In the platform as a service
(PaaS) model, cloud providers furnish a scalable and managed environment encompassing
not only the underlying infrastructure but also tools and services for developers to build, test,
and deploy applications efficiently. PaaS abstracts complexities associated with infrastructure
management, allowing developers to focus primarily on application code and functionality. This
model accelerates the development lifecycle by offering ready-made services such as databases,
development frameworks, and runtime environments, enabling developers to create and deploy
applications without being burdened by the intricacies of infrastructure configuration. Software
as a Service (SaaS) is a Cloud Computing service model where users access and utilize fully
functional software applications over the internet, eliminating the need for local installations
and maintenance. In the SaaS model, the cloud provider manages all aspects of the software,
including infrastructure, maintenance, updates, and security. SaaS is particularly advantageous
for businesses, offering cost-effective solutions, streamlined workflows, and efficient access
to a wide range of applications without the complexities of traditional software management.
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In terms of infrastructure control, IaaS provides the highest level of control, enabling users to
manage virtualized infrastructure components such as servers, storage, and networking. While
this grants flexibility, it also entails greater responsibility for users in terms of configuration
and maintenance. Any additional layer increases the overhead over the infrastructure and may
result in more complex management tasks.

Resource provisioning and limitations

The demand for cloud resources is another relevant aspect. This can be highly dynamic,
leading to challenges with fixed resource allocation that can result in either over-provisioning
or under-provisioning, as illustrated in Fig. 2.1. Cloud Computing’s fundamental principle
revolves around provisioning precisely the necessary resources based on demand. This in-
volves leveraging virtualization for on-demand application deployment and employing resource
provisioning to effectively manage hardware and software in cloud data centers. The topic
of resource provisioning is extensively explored in Cloud Computing [42, 48, 122, 243, 292],
given its significance in optimizing performance and cost. Due to the inherent difficulty in
accurately predicting service usage from tenants, most cloud providers adopt a pay-as-you-go
payment model. This approach allows providers to be flexible in resource provisioning, en-
suring that clients only pay for the actual amount of resources they consume, aligning with
the core tenets of efficiency and cost-effectiveness in Cloud Computing. The concept of cloud

Table 2.1: In summary, IaaS focuses on managing infrastructure components, PaaS abstracts even more
of the underlying infrastructure to provide a platform for application development, and SaaS offers fully
managed applications delivered over the internet. The classification is based on the level of abstraction
and the extent of control and responsibility delegated to users or handled by the cloud provider within
the application stack.

On-Premises IaaS PaaS SaaS

Application Application Application Application
Data Data Data Data

Runtime Runtime Runtime Runtime
Middleware Middleware Middleware Middleware

OS OS OS OS
Virtualization Virtualization Virtualization Virtualization

Server Server Server Server
Storage Storage Storage Storage

Networking Networking Networking Networking

RED: managed by User
BLUE: managed by Vendor/Service provider
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Figure 2.1: Shaded regions of (a) Over provisioning with resource underutilization; (b) Case 1 of under
provisioning with compromised potential revenue from end-users; (c) Case 2 of under provisioning with
attrition of cloud end-users.

provisioning involves three distinct cases [188], each depicting different scenarios related to
resource allocation:

• Over provisioning with resource under utilization: This case illustrates a situation where
cloud resources are allocated in excess of actual demand. Consequently, there is under
utilization of resources, leading to inefficiency and increased operational costs.

• Under provisioning with compromised potential revenue from end-users: In this scenario,
the cloud resources provided fall short of the actual demand, resulting in under provi-
sioning. Part of the user demand is unmet, leading to compromised potential revenue
from end-users. This situation emphasizes the importance of accurately aligning resource
allocation with user requirements to avoid revenue loss.

• Under provisioning with attrition of cloud end-users: The shortfall in resources may lead
to dissatisfaction among users, causing them to discontinue their engagement with the
cloud service.

While Cloud Computing initially aimed at providing ubiquitous access to computing resources,
the latency associated with accessing cloud-based applications might be impractical for cer-
tain mission-critical or low-latency-sensitive applications. The surge in data generation at
the network edge necessitates cloud resources to be closer to where data is produced. The
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demand for high-bandwidth, geographically-dispersed, low-latency, and privacy-sensitive data
processing has led to the emergence of computing paradigms closer to connected devices. Fog
computing, proposed by both industry and academia, addresses these requirements by bringing
computing resources closer to the edge. To facilitate a detailed comparison among various Fog
Computing-related paradigms, we introduce different computing models, starting with Fog
Computing.

2.1.2 Edge Computing: Demystifying an Umbrella Term

Edge computing extends the capabilities of connected devices, enhancing the management,
storage, and processing power of generated data. Edge computing is strategically positioned at
the edge of the network in close proximity to Internet of Things (IoT) devices. It is important
to note that the edge is not directly on the IoT devices but is typically within one hop [238].
Although, in local IoT networks, the edge may be more than one hop away from IoT devices.
OpenEdge Computing Whitepaper [60] defines edge computing as computation conducted at
the network’s edge through small data centers that are in close proximity to users. The primary
vision for edge computing is to furnish compute and storage resources close to users in an open
standards and ubiquitous manner. This paradigm plays a crucial role in the IoT landscape by
intelligently filtering, preprocessing, and aggregating IoT data through cloud services deployed
near IoT devices [212]. Edge computing excels in addressing issues such as privacy, latency,
and connectivity. Due to its proximity to users, latency in edge computing is typically lower
than Cloud Computing, provided sufficient local computation power is available. Service
availability is also higher in edge computing as connected devices are not constrained by the
limitations of traditional mobile computing resources or the wait times associated with highly
centralized platforms. Edge computing incorporates small data centers, contributing to higher
service availability. Furthermore, edge computing can expand its computing capabilities be-
yond MACC by adopting hybrid architectures that integrate peer-to-peer and cloud computing
models. This flexibility positions edge computing as a versatile and powerful paradigm in the
evolving landscape of connected devices and IoT.

It is important to note that terms like edge computing, cloudlets, fog computing, and mist
computing (discussed in at the end of Section 2.1.5) are sometimes used interchangeably in
literature, given their shared use of the term "Edge". In the telecommunications industry, the
term "Edge" typically refers to 4G/5G base stations, RANs, and ISP access/edge networks.
However, in the context of the Internet of Things (IoT) landscape [212], the term "Edge"
pertains to the local network housing sensors and IoT devices. Essentially, the Edge represents
the immediate first hop from IoT devices, such as WiFi access points or gateways, rather than



2.1 From the Cloud to the Far Edge 15

the IoT nodes themselves. As addressed in Section 2.1.5, when computation occurs on the
IoT devices directly, this paradigm is termed mist computing. Notably, General Electric [79]
highlights the distinction between fog computing and edge computing. Fog computing primar-
ily concerns interactions among edge devices like RANs, base stations, or edge routers, while
Edge Computing focuses on the technology associated with connected things, such as WiFi
access points.

2.1.3 Fog Computing: Between the Cloud and End-Devices

The term "Fog computing" was introduced in 2012 by researchers associated with Cisco Sys-
tems [36, 97]. However, the idea of processing application logic and data at the edge is not
a recent development. The concept of Edge computation had already surfaced around the
2000s [278]. Additionally, a related concept known as cloudlets was put forth in 2009 [131].
Both Cloudlets and Fog computing represent advancements of a similar concept, emphasiz-
ing processing at the edge level. While Cloudlets find application in mobile networks, Fog
computing is specifically tailored for connected devices such as IoT, aligning with the broader
concept of the Internet of Things [102]. These technological developments signify an evo-
lution in computing paradigms, with a shift towards decentralized processing at the edge
to enhance efficiency and responsiveness in diverse application scenarios. Fog computing
and edge computing, although sharing the common objective of moving computation and
storage closer to the network edge and end-nodes, are distinct paradigms. According to the
OpenFog Consortium [43], Fog Computing is hierarchical and offers a comprehensive range
of computing, networking, storage, control, and acceleration capabilities across the entire
spectrum from cloud to devices. In contrast, edge computing tends to be confined to computing
at the edge, without the broader scope encompassed by fog computing. (Refer to Fig. 2.2)
In addition, as better explanation about the differences between Fog and Cloud Computing
[56] clarifies that "fog is inclusive of cloud, core, metro, edge, clients, and things." Fog com-
puting aims to establish a seamless continuum of computing services from the cloud to the
end devices, avoiding the treatment of network edges as isolated computing platforms. The
vision for fog computing is that of a horizontal platform capable of supporting common fog
computing functions across various industries and application domains, extending beyond
traditional telecommunications services [44]. This distinction underscores the hierarchical
and inclusive nature of fog computing in contrast to the more localized focus of edge computing.

Another definition of Fog computing, comes from the OpenFog Consortium [43]. Here it
is defined as a system-level architecture that horizontally distributes computing, storage, con-
trol, and networking functions. This distribution occurs along a continuum from the cloud to
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Figure 2.2: Analyzing fog computing and its associated computing paradigms concerning their position-
ing and proximity to the core cloud.

connected devices. Unlike vertical platforms that isolate applications in silos, Fog Computing’s
horizontal approach allows for the dispersion of computing functions across various platforms
and industries. While a vertical platform may excel in supporting a specific application type, it
lacks consideration for interactions between different vertically-focused platforms. Beyond
its horizontal architecture, Fog Computing offers a flexible platform tailored to address the
data-driven requirements of operators and users. Its primary objective is to provide robust
support for the Internet of Things. Fog computing serves as a crucial link connecting the
cloud and end devices, such as IoT nodes. It achieves this by facilitating computing, storage,
networking, and data management on network nodes situated in close proximity to IoT devices.
Consequently, the processes of computation, storage, networking, decision-making, and data
management extend beyond the confines of the Cloud and unfold along the path from IoT
devices to the cloud. This distributed approach ensures that these operations occur preferably
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in close proximity to the IoT devices themselves. As an example, in Intelligent Transportation
Systems (ITS) [8], the compression of GPS data can take place at the edge, occurring before
the transmission of data to the cloud.

Adavantages of Fog over Cloud

A commonly cited example to distinguish between fog and Cloud Computing revolves around
the support for latency-sensitive applications while maintaining satisfactory quality of service
(QoS). Fog nodes, strategically positioned near IoT source nodes, significantly reduce latency
compared to traditional Cloud Computing. Although this example underscores the intuitive
appeal of Fog Computing, it is important to note that latency-sensitive applications represent
just one facet of the diverse range of applications that justify the adoption of Fog Computing.
Unlike centralized cloud data centers, nodes in Fog Computing are dispersed in less centralized
locations, offering a wide geographical presence in substantial numbers. In Fog Computing,
security measures need to be implemented at the edge or in dedicated locations of fog nodes, in
contrast to the centralized security mechanisms employed in dedicated buildings for cloud data
centers. The decentralized nature of Fog Computing allows devices to either function as Fog
Computing nodes themselves (e.g., a car acting as a fog node for onboard sensors) or utilize
fog resources as clients of the fog. This decentralized deployment model enhances flexibility
and responsiveness in catering to a variety of computing needs.

The primary distinctions between cloud and Fog Computing stem from the scale of hard-
ware components associated with these computing paradigms. Cloud computing offers high
availability of computing resources with relatively high power consumption, while Fog Com-
puting provides moderate availability of computing resources at lower power expenditure [133].
Cloud computing typically relies on extensive data centers, whereas Fog Computing makes use
of smaller-scale servers, routers, switches, gateways, set-top boxes, or access points. Due to
the compact nature of Fog Computing hardware, it can be located in closer proximity to users.
Fog computing plays a pivotal role in enabling devices to measure, monitor, process, analyze,
and react by distributing computation, communication, storage, control, and decision-making
closer to IoT devices [43]. This approach offers numerous advantages across various industries,
including but not limited to energy management, manufacturing, transportation, healthcare,
and smart cities. The application of Fog Computing in these sectors enhances efficiency,
responsiveness, and real-time processing capabilities, contributing to the optimization and
advancement of diverse industrial processes and services.

The distinctions and trade-offs between cloud and Fog Computing prompt the question of
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which one to choose. However, it is crucial to recognize that fog and Cloud Computing are not
mutually exclusive; rather, they complement each other. The integration of cloud and Fog Com-
puting allows for the optimization of services utilized by connected devices, creating a synergy
that enhances overall performance. Federation between fog and cloud introduces advanced
capabilities for data aggregation, processing, and storage. For instance, in a stream processing
application, the fog can efficiently filter, preprocess, and aggregate traffic streams from source
devices. Simultaneously, queries demanding heavy analytical processing or archival results can
be directed to the cloud. An orchestrator, acting as a mediator, can facilitate the collaboration
between cloud and fog. A fog orchestrator, for instance, can establish an interoperable resource
pool, deploy and schedule resources for application workflows, and control quality of service
(QoS) [272]. The incorporation of Software-Defined Networking (SDN) [145, 232, 276] em-
powers fog service providers with greater control over the network configuration, especially
when managing a multitude of fog nodes responsible for data transfer between the Cloud
and IoT devices. This collaborative approach leverages the strengths of both Fog and Cloud
computing, optimizing the overall performance and responsiveness of connected systems.

Radio Access Networks (RAN) and Fog

Fog computing seamlessly integrates into mobile technologies through the concept of fog Radio
Access Networks (F-RAN), providing a dynamic and efficient approach to network architecture.
F-RAN leverages computing resources at the edge, enhancing performance in various ways,
such as caching content for quicker retrieval and reducing the load on the front-haul. This
integration is particularly relevant in the context of 5G-related mobile technologies [129].
F-RAN can be instrumental in optimizing content delivery and overall network efficiency. In
contrast, Cloud Radio Access Network (C-RAN) takes a centralized control approach over
F-RAN nodes. It utilizes virtualization to decouple base stations within a cell from their base-
band functions, achieving greater flexibility and efficiency [52]. C-RAN involves deploying
numerous low-cost Remote Radio Heads (RRHs) connected to a Base Band Unit (BBU) pool
through front-haul links. Both F-RAN and C-RAN are well-suited for mobile networks with
base stations and are considered as viable options for 5G deployments. Importantly, their
implementation contributes to a more energy-efficient form of network operation, aligning with
the broader goals of sustainability and resource optimization [201].

Figure 2.3 presents a classification of computing paradigms associated with Fog comput-
ing and illustrates the scope overlap among them. This figure serves as a visual representation
of our comparison of Fog Computing and its related computing paradigms. To aid in under-
standing, Table 2.2 provides a list of acronyms used in this figure and throughout the paper. In
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Figure 2.3: Fog-related Computing Paradigms. We define four unstructured knowledge integration
mechanisms. A knowledge mapping mechanism is an instance of each knowledge integration mechanism.
Lastly, knowledge validation defines three major requirements concerning the integration of unstructured
knowledge.

the subsequent discussion, we explore these related computing paradigms in the order of their
trend, highlighting how certain paradigms have paved the way for the emergence of others.

Table 2.2: Acronyms referring to Figure 2.3

IoT Internet of Things CC Cloud Computing
MC Mobile Computing FC Fog Computing
EC Edge Computing MEC Multi-access Edge Computing
MCC Mobile Cloud Computing MACC Mobile ad hoc Cloud Computing
CoT Cloud of Things mist Mist Computing

2.1.4 Mobile Device Constraints at the Network Edge

The progress in Fog and Cloud Computing has been significantly influenced by the founda-
tional work laid down during the development of Mobile Computing. Mobile computing [13],
also known as nomadic computing, involves carrying out computing tasks through portable
devices like laptops, tablets, mobile phones or embedded devices. This paradigm has paved
the way for creating pervasive and context-aware applications, exemplified by features such
as location-based reminders. At its core, Mobile Computing envisions adaptation within an
environment characterized by low processing power and sporadic, limited network connectivity.
The zenith of Mobile Computing technologies predates the emergence of Cloud Computing.
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Numerous fundamental challenges inherent to Mobile Computing, including user mobility,
network heterogeneity, and low bandwidth, were addressed in the literature before 2000. So-
lutions to these challenges have been found through advancements such as robust caching
mechanisms, improvements in transmission hardware and protocols, and the development of
efficient compression algorithms [85]. However, owing to the evolving demands of connected
consumer devices and the increasing complexity of modern computing challenges, Mobile
Computing alone may not be sufficient. This recognition has prompted the subsequent evolution
and integration of fog and Cloud Computing paradigms to address the contemporary needs of a
highly connected and data-intensive environment.

Fog and Cloud Computing have transformed the landscape of computing by liberating compu-
tation from the confines of local networks, effectively expanding the scale and scope of mobile
computing. In traditional mobile computing, mobile devices can establish connectivity through
technologies like Bluetooth [33], WiFi [167], ZigBee [158], and cellular protocols [14]. In con-
trast, Fog and Cloud Computing demand more resource-intensive hardware with virtualization
capabilities. Security measures in mobile computing are typically implemented directly on
the mobile devices themselves. In terms of available resources, if compared to fog and Cloud
Computing, Mobile Computing is inherently more resource-constrained. However, recent years
have witnessed substantial advancements in mobile hardware and wireless protocols, narrowing
the resource gap considerably. These improvements have enhanced the capabilities of mobile
computing, making it more robust and aligning it more closely with the evolving demands of
contemporary computing environments. The strength main of Mobile Computing lies in its
distributed computing architecture. Distributed applications benefit from this decentralized
approach as mobile devices do not require a centralized location to operate. However, Mobile
Computing comes with several drawbacks, including significant resource constraints, the deli-
cate balance between autonomy and interdependence (prevalent in all distributed architectures),
communication latency issues, and the necessity for mobile clients to efficiently adapt to
changing environments [227].

Mobility:

The ability to change locations while connected to the network increases the volatility of some
information. Certain data considered static for stationary computing becomes dynamic for
mobile computing. For example, a stationary computer can be configured statically to prefer the
nearest server, but a mobile computer needs a mechanism for determining which server to use.
As volatility increases, cost-benefit trade-off points shift, calling for appropriate modifications
in the design. For example, a highly volatile data object has fewer uses per modification.
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For such objects it makes little sense to cache the data. As another example, consider static
information, which is often managed by hand; to handle higher rates of change, automated
methods are required. However, even where such methods exist, they may be ill-suited for the
dynamism of mobile computing. Mobility introduces several problems: A mobile computer’s
network address changes dynamically, its current location affects configuration parameters as
well as answers to user queries, and the communication path grows as it wanders away from a
nearby server.

Power Consumption:

Batteries are the largest single source of weight in a portable computer. While reducing battery
weight is important, too small a battery can undermine the value of portability by causing users
to recharge frequently, carry spare batteries, or use their mobile computers less. Minimizing
power consumption can improve portability by reducing battery weight and lengthening the life
of a charge. Power consumption of dynamic components follows the following proportionality:

Power_consumption ∝ C×V 2 ×F (2.1)

Where:

• C is the capacitance of the circuit. This can be reduced by greater levels of VLSI
integration [23] and multi-chip module technology [87];

• V is the voltage swing, which can be optimized by redesigning chips to operate at lower
voltages;

• F is the clock frequency. This can be minimized by trading computational speed for
power savings. To retain more computational power at lower frequencies, processors are
being designed that perform more work on each clock cycle.

Power conservation in Mobile Computing is not only achieved through thoughtful design
but also through efficient operational strategies. Power management software plays a crucial
role in conserving power by selectively powering down individual components when they
are idle. For example, this may involve spinning down the internal disk, turning off screen
lighting or spin down the internal disk drive after it has been idle for just a few seconds [75].
Applications can also contribute to power conservation by adopting practices that reduce their
consumption of computation, communication, and memory resources. This can be achieved by
adjusting their operational behavior to perform periodic operations less frequently [184], thereby
amortizing the start-up overhead and minimizing the overall energy consumption. Efficient
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power management at both the hardware and software levels is essential for optimizing the
energy efficiency of mobile computing devices.

Low Bandwidth and Bandwidth Variability

Wireless networks inherently offer lower bandwidth compared to wired networks, necessitating
careful consideration of bandwidth consumption in Mobile Computing designs. The deliverable
bandwidth per user is influenced by the number of users sharing a cell, and the network’s
capacity can be evaluated based on its bandwidth per cubic meter. Two primary approaches can
be employed to enhance this value:

• Maintaining Multiple Cells at Different Frequencies: This approach, while more
flexible, is constrained by the available range of frequencies in the electromagnetic
spectrum for public consumption;

• Limiting Transmission Ranges: By restricting transmission ranges, more cells can fit
into a given area. This approach is preferred for its simplicity, reduced power require-
ments, and potential decrease in signal corruption. Transceivers covering smaller areas
may achieve higher bandwidth.

Additionally, various techniques such as compression, logging (consolidating multiple short
requests into larger ones), perfecting (anticipating files that will be needed soon), and write-back
caching can help mitigate the impact of low bandwidth. Intelligent scheduling of communi-
cations further enhances system performance. Mobile Computing designs must contend with
more significant variations in network bandwidth compared to traditional designs. An effective
design should be adaptable to the currently available resources, offering users a variable level of
quality. As a mobile element moves out of the range of one network transceiver, it seamlessly
switches to another. Furthermore, there may be locations where users can access multiple
transceivers operating on different frequencies.

Disconnections:

Wireless communication’s susceptibility to disconnection poses a significant challenge in the
design of successful Mobile Computing systems. Design strategies can focus on allocating
resources to handle disconnections more elegantly or preventing them from occurring. In envi-
ronments prone to frequent disconnections, it may be more effective for the mobile computer
to function as a stand-alone unit rather than a mobile terminal. This involves splitting the
application and user interface across the network. For wide-area networks, where round-trip
Remote Procedure Call (RPC) [193] delays can be costly in terms of wasted processor clock
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cycles, operating asynchronously can make round-trip latencies and brief disconnections less
expensive. Synchronous systems offer advantages such as a simpler design, implementation,
and debugging. However, asynchronous models yield higher performance since the receiver
does not block while waiting for requested data. Caching techniques [221] can enhance the
performance of weakly-connected and disconnected operations. Still, preserving cache coher-
ence under weak connectivity can be costly. The Coda file system addresses this challenge
by maintaining cache coherence at multiple levels of granularity and utilizing callbacks. In
the Coda solution, fast cache validation is achieved by comparing version stamps maintained
by clients and servers, preserving validity through callbacks. This approach offers a trade-off
between the precision of invalidation and the speed of validation.

Address Migration:

As individuals move, their Mobile Computers will utilize different network access points, or
"addresses." However, current networking protocols are not inherently designed to handle
dynamically changing addresses. Active network connections typically cannot be seamlessly
moved to a new address. Once an address for a host name is known to a system, it is usually
cached with a long expiration time, and there is often no mechanism to invalidate outdated
entries. In the Internet Protocol, for instance, a host IP name is closely tied to its network
address; changing locations implies acquiring a new IP name. Human intervention is commonly
needed to coordinate address usage. To communicate with a Mobile Computer, messages must
be sent to its most recent address. As Mobile Computers change locations, they utilize different
network access points or "addresses." Several techniques can be employed to determine the
current network address of a mobile unit [270]:

• Selective Broadcast: If a Mobile Computer is known to be in a set of cells, a message
could be broadcasted to these known cells, asking the required mobile unit to reply with
its current network address;

• Central Services: A logically centralized database holds the current addresses of all
mobile units. Whenever a Mobile Computer changes its address, it sends a message to
update the database;

• Home Bases: This is essentially a more centralized approach where only a single server
knows the current location of a Mobile Computer;

• Forwarding Pointers: This method involves placing a copy of the new address at the
old location. Each message is then forwarded along the chain of pointers leading to the
Mobile Computer. This approach requires an active mechanism.



24 Computing Paradigms Close to the Edge, Challenges and Possible Solutions

These drawbacks often render Mobile Computing unsuitable for current applications that
demand low-latency or robustness, or that require large amounts of data to be generated, pro-
cessed, and stored on devices. The challenges posed by resource constraints, adaptability to
changing conditions, and communication latency can limit the applicability of Mobile Comput-
ing in scenarios where real-time responsiveness and extensive data processing capabilities are
crucial.

2.1.5 Other Computing Paradigms

In addition to Mobile Computing, Cloud Computing, and Fog Computing, several other
computing paradigms contribute to the diverse landscape of information technology. Each
paradigm addresses specific challenges and offers unique advantages. In the following section
we delve into finer details of possible alternatives to aformentioned computing strategies.

Mobile Cloud Computing

As Cloud Computing matured, it seamlessly integrated with Mobile Computing, giving rise to
a valuable synergy known as Mobile Cloud Computing (MCC). In MCC, both data storage and
data processing occur outside of the mobile device, expanding the reach of mobile computing
applications beyond smartphones to a much broader spectrum of mobile subscribers [71]. The
National Institute of Standards and Technology (NIST) extends this definition to encompass
mobile devices, describing cloud computing as the synergy among IoT devices, mobile devices,
and cloud computing that facilitates data-intensive and CPU-intensive applications in IoT envi-
ronments [192]. Applications in MCC span various domains, including crowdsourcing [46],
healthcare, sensor data processing (e.g., optical character recognition and image processing),
and task offloading [215, 224]. A notable feature is the ability to dynamically partition mo-
bile applications at runtime, enabling computationally intensive components to be adaptively
offloaded to the cloud [34]. This dynamic offloading enhances the overall performance and
capabilities of mobile applications, leveraging the resources and scalability provided by cloud
computing infrastructure.

In the realm of Mobile Cloud Computing (MCC), the resources within mobile devices can
harness the capabilities of resource-rich cloud services. This paradigm involves a substantial
shift of computation from mobile devices to the cloud, offering several advantages. MCC
is particularly adept at running computation-intensive applications, contributing to increased
battery life for mobile devices. MCC brings together characteristics from both mobile com-
puting and cloud computing, providing a unique blend of capabilities. By combining the
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objectives of these two paradigms, MCC ensures high availability of computing resources, a
departure from the resource-constrained nature of traditional mobile computing. This expanded
resource availability facilitates the emergence of high-computation applications, such as mobile
augmented reality. The availability of cloud-based services in MCC is significantly higher than
that of standalone mobile computing. Much like cloud computing and fog computing, MCC
relies on cloud services to execute high-computation tasks. Notably, computation in MCC can
be managed by both mobile devices and the cloud. Similar to cloud computing, security in
MCC must be provisioned for both mobile devices and the cloud. This ensures a comprehensive
security framework, addressing potential vulnerabilities in both local mobile environments and
the broader cloud infrastructure. The synergistic integration of mobile computing and cloud
computing in MCC contributes to enhanced computational capabilities, resource availability,
and overall performance for mobile applications.

MCC, despite its advantages, inherits certain limitations from both mobile computing and
cloud computing. Firstly, the centralized architecture in MCC, while efficient for sharing
computation resources, may not align well with applications that prioritize the widespread
presence of devices. The concentration of computation resources in a centralized manner might
not be ideal for scenarios where device pervasiveness is a crucial consideration. Secondly, both
cloud computing and MCC rely on cloud-based services, necessitating continuous Internet
connectivity for access through WAN connections. This persistent requirement for an Internet
connection poses a challenge, as applications running on these platforms demand uninterrupted
access to the Internet. Unlike traditional mobile computing, where computation predominantly
occurs on the device, MCC shifts the majority of computation to the cloud. This shift introduces
connectivity challenges that were not prevalent in the context of standalone mobile comput-
ing, highlighting the dependence on a consistent and reliable network connection for optimal
performance.

Mobile Ad Hoc Cloud Computing

Despite the widespread applicability of Mobile Cloud Computing (MCC), this paradigm may
not always be suitable for scenarios lacking infrastructure or a centralized cloud. In such situa-
tions, an ad hoc mobile network presents itself as a viable alternative. Ad hoc mobile networks
consist of nodes that dynamically form temporary networks through routing and transport
protocols, representing the most decentralized form of a network [126]. In this context, mobile
devices within an ad hoc mobile network create a highly dynamic network topology that must
adapt to the continuous joining or leaving of devices. Within an ad hoc mobile network, mobile
devices can collaboratively form clouds that serve networking, storage, and computing purposes.
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This variant, known as Mobile Ad Hoc Cloud Computing (MACC) [288], finds application in
diverse scenarios such as disaster relief, group live video streaming, and unmanned vehicular
systems. MACC harnesses the collaborative potential of ad hoc mobile networks to create
transient clouds, offering a decentralized yet resourceful computing environment for dynamic
and resource-constrained scenarios.

Mobile Ad Hoc Cloud Computing (MACC) stands apart from traditional cloud computing,
primarily owing to the ad hoc nature of its resources. In MACC, mobile devices serve as
versatile entities, acting as data providers, storage units, and processing devices. Notably, these
mobile devices within a mobile ad hoc cloud network take on the additional responsibility of
routing traffic among themselves due to the absence of a dedicated network infrastructure. By
collaboratively pooling local mobile resources to create an ad hoc cloud, MACC provides a
reasonably high level of computation. This distinctive approach differs from the user focus,
architectural principles, and connectivity models prevalent in conventional cloud computing.
MACC and MCC differ in hardware utilization, service access methods, and user proximity.
In MACC, computation takes place directly on mobile devices, contrasting with MCC where
computation occurs at a distance from mobile devices. MACC operates solely on mobile
devices, while MCC necessitates the presence of large-scale data centers for cloud computing,
alongside mobile devices. This distinction results in MACC offering robust computation power
but potentially facing higher latency challenges in MCC. Security considerations in MACC are
confined to mobile devices, whereas in MCC, ensuring trust may pose challenges without a
secure collaboration framework. Lastly, in MACC, services are exclusively accessed through
connected mobile devices using technologies such as Bluetooth, WiFi, and other cellular
protocols. This underscores the intrinsic differences in the hardware architecture, security
implementation, and service accessibility methods between these two computing paradigms.

While fog computing exhibits versatility across a spectrum of devices, Mobile Ad Hoc Cloud
Computing (MACC) excels in scenarios characterized by highly decentralized and dynamic
network topologies where a reliable Internet connection is not assured. The decentralized
nature of connected devices in MACC surpasses that of fog computing, enabling the formation
of a more dynamic network. This is particularly advantageous in environments with sparsely
connected devices or networks that undergo constant changes. An illustrative example of this
dynamic capability is evident in ad hoc networks designed for peer-to-peer file sharing [127].
In such instances, the inherent decentralization and adaptability of MACC prove advantageous,
making it a suitable choice for scenarios where network connections are unpredictable and
subject to frequent changes.
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Mobile Ad Hoc Networks

Mobile Ad Hoc Networks (MANETs) [15, 29] are comprised of mobile host devices connected
to each other in a single hop without the need for base stations [195]. Mobile Ad Hoc Networks
(MANETs) are characterized by the presence of mobile nodes that have the freedom to move in
and out of the network. The nodes, which can be devices such as cell phones, laptop computers,
personal electronic gadgets, MP3 players, and PCs, constitute the network and possess mobility.
These nodes are versatile, functioning as hosts, routers, or both simultaneously. They have the
ability to establish connections with each other, forming diverse and ad hoc network topologies.
One key feature of MANET nodes is their self-configuring capability, allowing them to set
up connections swiftly without the need for any pre-existing infrastructure [256]. This self-
configuring nature enhances the adaptability of MANETs, making them suitable for dynamic
environments where the network topology may change frequently and where the establishment
of traditional infrastructure is impractical or unavailable. Unlike MANETs, which form
dynamic networks without necessarily constituting a cloud, Mobile Ad Hoc Cloud Computing
(MACC) involves the collaborative pooling of computing and storage resources among mobile
devices. While MANETs do not inherently form resource pools, various solutions developed
for MANETs, such as redundancy and broadcasting, can be adapted and applied to MACC. In
resource-constrained environments, peers within MACC may find it beneficial to pool their
resources, especially when faced with computationally demanding tasks that may exceed the
capabilities of a single mobile device. An illustrative use case for this collaborative resource
pooling is seen in unmanned vehicular systems comprising multiple unmanned vehicles and
traffic devices.

Multi-Access Edge Computing

Mobile Cloud Computing (MCC) represents an expansion of mobile computing leveraging
the capabilities of cloud computing. Similarly, Multi-Access Edge Computing (MEC) serves
as an extension of mobile computing through edge computing. According to the definition
by the European Telecommunications Standards Institute (ETSI), MEC is a platform that
delivers IT and cloud-computing capabilities within the Radio Access Network (RAN) in
4G and 5G, situated in close proximity to mobile subscribers [101]. While initially termed
"mobile edge computing," MEC has evolved to encompass a broader spectrum of applications
beyond tasks specific to mobile devices. Illustrative examples of MEC applications include
video analytics, connected vehicles, health monitoring, and augmented reality. MEC enhances
edge computing by furnishing computing and storage resources in the vicinity of low-energy,
resource-constrained mobile devices. This allows RAN operators to integrate edge computing
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functionality seamlessly into existing base stations. Similar to edge computing, MEC can
employ small-scale data centers with virtualization capabilities. The computing resources
available in MEC, influenced by its underlying hardware, are moderate compared to the scale
of cloud computing. Additionally, MEC supports low-latency applications, and its real-time
access to radio and network information enables the delivery of personalized and contextualized
experiences to mobile subscribers.

Both edge computing and Multi-Access Edge Computing (MEC) services operate at the
edge of the Internet, functioning seamlessly even with limited or no Internet connectivity. MEC,
however, establishes connectivity through a Wide Area Network (WAN), WiFi, and cellular
connections, while edge computing can generally establish connectivity through various means
such as Local Area Network (LAN), WiFi, and cellular networks. The operational focus of
MEC differs notably from Mobile Cloud Computing (MCC) research. MCC research predomi-
nantly explores the dynamics between cloud service users (on mobile devices) and cloud service
providers, while MEC research centers around the infrastructure provided by Radio Access
Network (RAN) operators. The anticipated integration of MEC with the emerging 5G platform
is expected to yield significant benefits [123]. In turn, 5G is perceived as a facilitator for MEC,
offering lower latency, higher bandwidth among mobile devices, and extensive support for
diverse mobile devices with finer granularity. MEC enhances accessibility to edge computing
for a broad spectrum of mobile devices, ensuring reduced latency and more efficient mobile core
networks [251]. It facilitates the deployment of mission-critical, delay-sensitive applications
over the mobile network [123]. MEC integrates Software-Defined Networking (SDN) and
Network Function Virtualization (NFV) capabilities alongside 5G technologies. SDN enables
the efficient management of virtual networking devices through software APIs [137], while
NFV contributes to reduced deployment times for networking services through virtualized
infrastructure. Through the incorporation of SDN and NFV, network engineers, and potentially
enterprise application developers, can devise their orchestrator, aimed at coordinating resource
provisioning across multiple layers [187].

Cloudlet Computing

Proposed by Carnegie Mellon University, cloudlet computing represents a distinct direction
in mobile computing that shares similarities with both Mobile Cloud Computing (MCC) and
Multi-Access Edge Computing (MEC), while also addressing some of the limitations of MCC.
A cloudlet is essentially a trusted, resource-rich computer or a cluster of computers with a
robust Internet connection, strategically positioned to serve nearby mobile devices [228]. Oper-
ating as small-scale data centers, akin to miniature clouds, cloudlets are typically positioned
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just one hop away from mobile devices. The core concept behind cloudlet computing is to
offload computational tasks from mobile devices to Virtual Machine (VM)-based cloudlets
located at the edge of the network [110]. Although current research in cloudlet computing is
predominantly led by academia, it holds significant potential for applications in domains such
as wearable cognitive assistance and web applications. Cloudlet computing can be envisioned
as the middle tier within a three-tier continuum: mobile device-cloudlet-cloud. Given their
nature as small clouds in close proximity to mobile devices, cloudlet computing could be
orchestrated by cloud service providers seeking to make their services more accessible to
mobile devices. Network infrastructure owners, like AT&T or Nokia, can empower cloudlets
with virtualization capabilities, situate them closer to mobile devices, and do so with smaller
hardware footprints compared to the extensive data centers employed in traditional cloud
computing. While cloudlets may offer more moderate computing resources due to their smaller
footprint, they bring about lower latency and energy consumption when compared to traditional
cloud computing. The focus of cloudlet computing is to cater to devices in the local area,
offering a viable solution for specific use cases.

Mist Computing

Mist computing emerged in the past as addition to the computing landscape, targeting the
extreme edge of connected devices – the endpoints. This paradigm encompasses decentralized
computing at the most extreme edge, directly involving the Internet of Things (IoT) devices
themselves, and is designed with future self-aware and autonomic systems in mind [64, 205].
Positioned as the initial computing layer in the IoT-fog-cloud continuum, mist computing is
often informally referred to as "IoT computing" or "things computing". IoT devices within the
realm of mist computing can range from wearables and mobile devices to smartwatches and
smart fridges. Unlike Mobile Ad Hoc Cloud Computing (MACC), mist computing extends
computation, storage, and networking across the fog through the IoT devices. Essentially,
mist computing acts as a superset of MACC, encompassing scenarios where networking is not
necessarily ad hoc, and devices may not be mobile device. In [241], researchers propose the
utilization of nearby mobile devices as a cloud computing environment for storage, caching,
and computing purposes. The focus is on reducing the load on traditional WiFi infrastructures
for video dissemination applications. The study involves spectators at a sports event organizing
themselves into WiFi-Direct groups, exchanging video replays locally, and bypassing the
central server and access points. This study exemplifies mist computing, where IoT devices not
only function as "thin clients" but also as "thin servers". Other applications of mist computing
include preserving user data privacy through local processing [222] and efficiently deploying
virtualized instances on single-board computers [190].



30 Computing Paradigms Close to the Edge, Challenges and Possible Solutions

Cloud of Things

Another concept closely related to mist computing is the Cloud of Things (CoT) [7], in which
IoT devices collectively form a virtualized cloud infrastructure. While mist computing involves
computation directly on IoT devices, possibly through message exchange and not necessarily
in a pooled resource cloud, Cloud of Things focuses on performing computation over a cloud
created by pooling the resources of IoT devices. Abdelwahab et al. [7] introduce the idea
of Cloud of Things as a service for sensing, utilizing edge nodes as cloud agents situated in
proximity to IoT nodes. The proposal involves dynamically scaling existing cloud resources
(compute, storage, and network) by leveraging the sensing capabilities of IoT devices. Edge
nodes act as cloud agents near the edge to discover, virtualize, and establish a cloud network
of IoT devices (CoT). This network forms a geographically distributed infrastructure, with
cloud agents continuously discovering resources of IoT devices and aggregating them as cloud
resources. CoT facilitates remote sensing and in-network distributed processing of data. For
example, a cloud user could monitor pollution levels in cities based on real-time data from
temperature and CO2 concentration sensors in vehicles, ensuring defined accuracy. The CoT
framework is scalable to IoT networks, supports heterogeneity among IoT devices and edge
computing nodes, and serves as the foundation for sensing-as-a-service using fog computing.

In addition to CoT, another concept presented in [134] is PClouds (personal clouds), which en-
compasses distributed networked resources derived from both local/personal and remote/public
devices and machines. PClouds aim to serve end users even in scenarios where remote cloud
resources are either absent or challenging to access due to insufficient network connectivity. An
innovative idea akin to Cloud of Things and MACC is introduced in [226], where the authors
propose Cloudrone. This concept involves deploying ad hoc micro cloud infrastructures in the
sky using low-cost drones, single-board computers, and lightweight OS virtualization technolo-
gies. The drones form a cloud computing cluster in the sky, provisioning cloud services closer
to the user even in the absence of terrestrial infrastructure to access remote clouds. Similar to
Cloud of Things, the concept of Femtoclouds has been introduced to leverage the computational
capabilities and pervasiveness of underutilized mobile devices. Femtoclouds utilize clusters of
devices often co-located in places like schools, public transit, or malls. Finally, [109] proposes
a hybrid edge-cloud workload management scheme for the efficient management of resources
and tasks in femtoclouds, aiming to provide low-latency services.
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2.1.6 Digital Twins for Frugal and Efficient Industrial IoT Networking

The adoption of the Internet of Things (IoT) is currently spreading in industrial environments.
Complex Industrial IoT (IIoT) applications stem from the joint exploitation of multiple and
heterogeneous devices adopting multiple protocols and data formats both co-located in the same
plant and remotely spread in different locations. Such devices need to coordinate their activities
to support industrial operations (e.g., manufacturing and assembly) with stringent quality of
service (QoS) and safety critical requirements. The combination of IoT with the industrial
ecosystem has recently revitalized the concept of digital twin (DT) as an innovative technology
expected to transform industrial and manufacturing ecosystems. Promising improvements
are expected to offer new innovative solutions reducing costs, monitoring assets, optimizing
maintenance, reducing downtime, and enabling the creation of intelligent connected products.
As stated in [108], a DT can be defined as a comprehensive software representation of an
individual physical device including its properties, conditions, and behavior throughout the
life-cycle of the object. These novel twin-oriented manufacturing systems are characterized by
the possibility of supporting and handling the massive heterogeneity of siloed distributed im-
plementations together with protocols and data flows originating from different manufacturing
and enterprise services [108, 206].

In this challenging context, network heterogeneity represents a critical element to efficiently
handle complex industrial environments and may also significantly limit the design and deploy-
ment of Distributed computing applications. DTs, consumers, and services should be unaware
of the complexity behind their communications and should be resilient to re-configuration and
dynamic orchestration. The layering and separation of functionalities represent a key element,
1) to decouple the networking infrastructure from upper layers and; 2) to dynamically control
the communications according to applications and context requirements, e.g., the creation
of a segregated and secured network shared only by a group of selected DTs and target data
consumers.

By allowing real time monitoring of underlying resources, DTs enable proactive interven-
tion on manufacturing facilities, optimizing interventions and maintenance costs. By doing
so, resource-constrained devices can be employed in very simple and with low computational
overhead tasks further expanding the applicability of frugality in distributed computing scenar-
ios. Even mobile devices with limited communication and computation capabilities can serve
as sensors and actuators because collected metrics help the DT to map the real world state of
the systems and allows real time interventions. Anomaly detection [50] within this context
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exemplifies DT-enabled frugality, with the aim of minimizing machinery replacement costs and
reducing infrastructure downtime.

Digital Twins in Frugality Based Applications: SOTA Approaches and Applications

The DT research area is attracting a wide interest involving a multitude of diverse and ap-
proaches related, e.g., to big data analytics [218], behavioral modeling [244], ontology defi-
nition [249], specific device mirroring [246]. In this fragmented context, the industrial world
and in particular the Industrial Internet of Things Consortium is proposing a shared reference
architecture [168, 248] taking into account DT relationships, composition, and main services
(e.g., prediction, maintenance, safety). It also covers different production stages and use cases,
in particular related to manufacturing [146] and product design [264]. However, the limitations
of proposed solutions are mainly related to the adoption of a centralized DT management (often
deployed only on Cloud infrastructure) where a unique entry point is responsible to maintain
twin instances and by moving the integration responsibilities to external modules or connectors.
Furthermore, DTs are not in charge of supporting or handling the heterogeneity associated with
the connected devices. This missing role feeds the creation of unnecessary substrates of domain
specific technologies and legacy interaction forms. In this context, edge processing has already
shown its fundamental role to effectively and efficiently handle IoT heterogeneity through the
introduction of intermediate proxies and hubs, responsible to manage objects and data streams
through centralized approaches. Despite these advancements, the adoption of DTs on the edge
is still under-explored and represents a novel research area, including the seamless integration
of data and services in heterogeneous systems. Authors in [88] describe the importance of
bringing DTs on the edge by highlighting the relevant interest in this new research field and its
experimentation. In [58] the authors present two interesting initial evaluations of edge DTs
in the specific contexts of blockchain technologies and the social internet of things (SIoT). In
[165], instead, the authors propose a different and significant point of view by incorporating
DTs into edge networks to support real-time federated learning with reduced communication
costs.

In this context, SDN has emerged as the key technology for dynamically managing network
configurations in response to real-time insights provided by DTs. Considering fog and edge
computing, [197] proposes to exploit SDN to deliver and deploy new services in IoT environ-
ments in a faster and more cost-effective manner. The SDN approach can be also adopted
together with Blockchain, e.g., to deliver a fully distributed Cloud architecture based on Fog
nodes [236] or to improve the credibility and authenticity of nodes while addressing the issues
associated with the fact that the SDN controller represents a single point of attack [94]. Finally,
SDN is fruitfully adopted to support load balancing in Fog environments.
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By focusing on industrial environments, SDN has emerged in the communication research
and industrial fields of IIoT [265] primarily to manage switches of closed environments such as
datacenters and department networks via the OpenFlow protocol. More recently, [155] focused
on the adoption of the SDN paradigm in the context of IIoT to dispatch packets with different
delay constraints in a per-flow tailored manner, by considering time deadlines, traffic load
balances, and energy consumption. Similarly, [140] adopted SDN to efficiently manage the
interplay between edge and cloud environments by considering energy efficiency, bandwidth,
and latency. Finally, some efforts have focused on edge IoT scenarios with industrial wireless
sensor networks. For instance, [30] manages both transmission scheduling and node mobility
allowing to ensure bounded end-to-end delays. [258] aims at improving industrial performance
by adopting end-to-end QoS control. To this purpose, it adopts a unique SDN instance for IoT
environments consisting of wireless and wired segments, by exploiting 6TiSCH as industrial
IoT and open network platform allowing to orchestrate every network segment. Compared
with this previous work, our solution adopts SDN to dynamically exploit the communication
mechanisms most suitable to current application requirements, ranging from native IP to more
articulated ones based on packet content [28]. In addition, it takes advantage of IETF Sensor
Measurement Lists (SenML) data format [135] enriched packet payload to efficiently enforce
fine-grained content-based traffic flow rules, allowing to better satisfy per-application QoS
requirements.

2.1.7 Supporting Fog and Edge Computing with Artificial Intelligence

Managing resources in computing, particularly in the context of Fog and Edge computing,
presents a complex challenge due to factors such as resource limitations, heterogeneity, dynamic
workloads, and the unpredictable nature of these environments. In addressing this challenge,
a growing trend towards leveraging Artificial Intelligence (AI) and Machine Learning (ML)
solutions arises. AI/ML methods, particularly those capable of making semi-autonomous
decisions like reinforcement learning, appear promising for tackling resource management in
Fog computing. However, these algorithms bring their own set of challenges, including high
variance [37], issues related to explainability [41], and the need for continual learning [260].
The ever-changing dynamics of Fog and Edge environments demand adaptive solutions that
can learn in real-time, adjusting to the evolving computing landscape.

Container orchestration systems are increasingly turning to Machine Learning algorithms
to model and predict the behavior of multi-dimensional performance metrics. By harnessing
these insights, there is potential to enhance the quality of resource provisioning decisions,
particularly in response to the evolving workloads in complex environments. The cloud com-
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puting landscape, characterized by diverse and dynamic workloads in large-scale systems,
poses a challenge for automating the orchestration process, especially for complex and hetero-
geneous workloads. Unlike traditional cloud computing platforms, where heuristic policies
are common in container orchestrators, there is a growing need to optimize these policies
considering the diversity of workload scenarios and Quality of Service (QoS) requirements. As
application management in cloud platforms becomes more complex, cloud service providers
are increasingly motivated to optimize container orchestration policies by integrating machine
learning techniques [281]. A machine learning-based optimization engine employs machine
learning models to characterize workloads and analyze performance. It utilizes monitoring
data and system logs obtained from the orchestrator to build these models. The engine can
then leverage the generated behavior models and prediction results to make future resource
provisioning decisions. It may be integrated into the orchestrator or exist independently. The
key components of this optimization engine include:

• Workload Modeler: This component is specifically crafted for machine learning-based
workload characterization. It meticulously analyzes input application workloads, identi-
fying their essential characteristics to inform subsequent modeling;

• Performance Analyzer: Utilizing machine learning algorithms, this component gener-
ates comprehensive behavior models for both applications and the system. It achieves
this by processing monitoring data from the Orchestrator, encompassing both application
and infrastructure levels;

• Predictor: The Predictor component forecasts workload volumes or application/system
behaviors based on the models derived from the Workload Modeler and Performance
Analyzer. The prediction results can be seamlessly transmitted to either the Orchestrator
or the Decision Maker;

• Decision Maker: This component amalgamates the behavior models and prediction
results received from the aforementioned components. It employs specific machine
learning-based optimization methods/schemes to generate precise resource provisioning
decisions, which are then fed back into the Orchestrator.

AI-enhanced orchestration: SOTA Approaches and Applications

In 2016, resource utilization prediction for containerized applications saw the application of
ARIMA [185] and nearest neighbor (NN) [291] algorithms. ARIMA, a dynamic stochastic
process developed in the 1970s, excels at forecasting non-stationary time series by discerning
seasonal differences. On the other hand, NN operates as a proximity search method, identifying
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the candidate closest to a given point. Widely used in time series prediction, both ARIMA and
NN found their initial application in container orchestration, specifically predicting resource uti-
lization metrics like CPU, memory, and I/O. However, during this phase, the application models
were relatively straightforward, focusing solely on the time series patterns of infrastructure-level
resource metrics.

In 2017, Shah et al. [233] pioneered the application of the long short-term memory (LSTM)
model for dependency analysis of microservices. LSTM, rooted in neural network principles,
excels in classifying, processing, and forecasting time series data. Distinguishing itself from
traditional feedforward neural networks, LSTM incorporates feedback connections to enhance
its performance, proving effective in applications such as handwriting and speech recognition.
The model proposed assessed both the internal connections among microservice units and the
time series patterns of resource metrics. Additionally, anomaly detection was integrated into the
LSTM model to identify abnormal behaviors in resource utilization or application performance.
In a parallel effort, Cheng et al. [54] leveraged Gradient Boosting Regression (GBR), capable
of ensembling multiple weak prediction models (e.g., regression trees) to create a more robust
model. They applied GBR for predicting resource demand in workload characterization.

In the pursuit of scaling microservices, Xu et al. [282] employed a model-free Reinforcement
Learning (RL) method, specifically Q-Learning. Q-Learning involves learning the action-value
function to evaluate the reward associated with taking an action in a given state. One notable
advantage of Q-Learning is its ability to achieve the expected reward without relying on a
predefined model of the environment. In this context, Xu et al. utilized Q-Learning to generate
vertical scaling plans. The objective was to make optimal scaling decisions that minimize
resource wastage and computation costs, all while ensuring Service Level Agreement (SLA)
assurance.

In the realm of resource provisioning, Deep Reinforcement Learning (DRL) found its ini-
tial application in the domain of task scheduling. Bao et al. [21] developed a DRL framework
for batch processing job placement, utilizing an Artificial Neural Network (ANN) model to
capture the mapping relationship between workload features, system states, and corresponding
job placement decisions. The Actor-Critic RL algorithm was employed to train the ANN model,
generating optimal scheduling decisions that minimized performance interference between
co-located batch jobs. Their solution, compared to traditional heuristic scheduling policies
like bin packing, exhibited significant performance improvement on a Kubernetes cluster,
particularly in terms of overall job execution time. Furthermore, DRL was also utilized to
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address the computation offloading problem in fog-cloud environments in Reference [252].
Building upon a Markov Decision Process (MDP) model simulating the interactions of the
offloading process at scale, the deep Q-Learning method optimized migration decisions by
minimizing time overhead, energy usage, and computational costs. To explore the efficiency
of hybrid scaling mechanisms, Rossi et al. [219, 220] leveraged model-based RL models to
compose a mixture of horizontal and vertical scaling operations for monolithic applications,
aiming to minimize resource usage, performance degradation, and adaptation costs.

In 2020, researchers proposed several Reinforcement Learning (RL)-based scaling approaches,
incorporating hybrid Machine Learning (ML) models. Qiu et al. [207] applied the Support
Vector Machine (SVM) model for the analysis of microservices dependencies, identifying key
components prone to resource bottlenecks and performance degradation. To prevent severe
violations of service level objectives (SLO), they employed the Actor-Critic method to make
optimal resource assignment decisions through horizontal scaling for these identified compo-
nents. The approach was implemented and validated on a Kubernetes cluster, demonstrating
significant performance improvements compared to Kubernetes’s autoscaling approach. Ad-
ditionally, Sami et al. [223] fused Markov Decision Process (MDP) and SARSA models to
develop a horizontal scaling solution for monolithic applications within fog-cloud environ-
ments. SARSA generated optimized scaling decisions through model training based on the
MDP model, simulating scaling scenarios with fluctuating workloads and considering resource
availability in fog environments.

After exploring various computing strategies and providing an overview of intelligent Digital
Twins in the Industrial IoT sector, the subsequent sections propose two different middlewares.
The first one focuses on the transparent management of distributed network resources through
edge located DTs, while the second one illustrates the beneficial application of AI-based packet
routing provided by our SDN orchestrator.
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2.2 Application-Driven DT Networking (ADTN) Middleware

[26] introduced the ADTN middleware, which employs semantically enriched SDTs on edge
nodes and centralized CDTs for flexible orchestration, aiming to reduce management complex-
ity in heterogeneous industrial environments. The middleware utilizes an application-aware
SDN solution with multiple traffic forwarding techniques to optimize the tradeoff between
packet expressiveness and efficient dispatching. While the proposed solution shows feasi-
bility and efficiency, the article suggests further investigations into providing a wide set of
preconfigured SDTs for various industrial protocols, developing CDTs based on high-level
representations, and addressing challenges related to enforcing network rules in the presence
of competing industrial applications. We designed, developed, and experimentally evaluated
the original ADTN middleware that supports the dynamic aggregation and configuration of
heterogeneous and sparse industrial equipment, represented as a single business unit. In other
words, products and services are, respectively, crafted and supported by an aggregation of
things, e.g., sensors, actuators, and simple devices, and their dynamic and flexible orchestration
is optimized by an SDN-based cross-layer approach taking into consideration application-driven
indications together with QoS requirements and network configuration adaptation capabilities.
The ADTN middleware is responsible to handle and effectively orchestrate scalable and reliable
communications among physical devices, DTs, and modules with respect to a dynamic set of
application-driven rules and indications coming from external authorized services. In partic-
ular, primary ADTN components are the simple digital twin (SDT) on the edge side and the
composed digital twin (CDT) on the CR side (see Fig. 2.4). SDT is a software agent running at
the edge layer providing an effective one-to-one mirroring of a physical IoT device through
the digitalization and cloning of all its features and functionalities. Each SDT maintains the
communication and synchronization with the associated counterpart creating a standardized and

Figure 2.4: Primary components of the ADTN middleware.
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uniform abstraction of the device to enable interoperability and cooperation of devices, services,
and applications. Furthermore, the SDT can extend the original device’s behavior in terms
of supported protocols, integrating with external services, and managing how incoming and
outgoing packets are exchanged and internally processed. In other words, the SDT provides the
opportunity of dynamically augmenting the information coming from physical things through
the conveniently reformatting/pre-processing of headers and payloads or the introduction of
additional metadata.

CDT is a software component in the CR layer shaping the digital representation of a new
entity capable to aggregate multiple SDTs at the same time to efficiently model complex
distributed applications and behaviors. In real deployment environments, physical devices
are often a composition of different heterogeneous components, and things from different
edge locations can participate in common application goals, such as the various tools in the
smartphone assembly example. The ability - denoted as Composability - of grouping different
objects into an aggregated one and then observing and controlling the behavior of the resulting
object (as well as the individual entities) represents a strategic feature for DT design and
development. Thanks to the standardization and homogeneity obtained through the use of
SDTs, a CDT has the ability to easily compose and aggregate multiple twins while abstracting
the complexity of a larger system and focusing only on a few application-oriented relevant
status and behaviors. In addition to SDTs, the edge layer is composed of:

• STD-Manager (SDT-M): with the responsibility of configuring, instantiating, and
handling the life-cycle of SDTs. Each edge node hosts an independent SDT-M associated
with the middleware to create and maintain an active virtual replica for physical devices
the edge node is directly connected to. The SDT-M performs SDT advertising and
receives SDT configuration commands by remotely interacting with the CDT Manager;

• SDN Control Agent (S-CA): residing on host nodes together with the SDT-M. S-CA
remotely interacts with the CR (and in particular the SDN Controller, see below) to send
information about edge node computational, memory, networking characteristics, and
its current state. Moreover, S-CA receives from the CR the traffic engineering rules
to apply to the local edge node with the goal of optimizing packet management in an
application-driven manner.

In addition to CDTs, the CR layer is composed of:

• CDT Manager (CDT-M): a software component orchestrating the creation and manage-
ment of CDTs, according to application-driven rules and specifications. CDT-M actively
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communicates with deployed and active S-CAs to gather information about available
physical devices and about supported features of related SDTs. The CDT-M is also
responsible to push and dynamically adapt CDTs’ configurations to shape their behavior
and how they can react to context variations detected by active SDTs;

• SDN Controller (S-Ctrl): which i) receives per-edge node networking data from S-CAs,
with the goal of generating the whole network topology, and ii) remotely distributes and
activates traffic engineering rules, based on CDT QoS requirements.;

• Application-driven Network Manager (ANM): the entry point of the whole solution
allowing technicians to add/remove and de/activate CDTs (via CDT-M) and to manage
the whole topology (via S-Ctrl). To this purpose, ANM actively interacts with the local
CDT-M to get the set of running CDTs and related QoS requirements and with the local
S-Ctrl to manage remote edge nodes and require them to properly tune network resources
to activate traffic management rules, e.g., to achieve the desired delay, jitter, and/or
throughput.

Fine-Grained Application-Driven QoS Management

Each SDT hosted on an edge node is uniquely identifiable and reachable through a dedicated
logical name or a distinctive identifier, e.g., logic-name:port such AS:1234), able to hide its
actual IP address, thus allowing to route traffic flows and packets while reducing networking
complexity. To this purpose, the developed ADTN middleware exploits the SDN-based mul-
tilayer routing (MLR) approach, specifically supporting network management in edge-based
multihop deployment environments [28]. MLR allows to exploit, even at the same time, differ-
ent routing strategies and mechanisms suitable for applications with heterogeneous features
and requirements. Based on its centralized point of view, S-Ctrl dynamically determines and
configures the proper MLR forwarding mechanism, ranging from traditional IP and sequence-
based overlays to more articulated forwarding solutions based on the inspection of payload
content types and values. In particular, the SDN-enabled MLR approach allows to exploit the
same network topology even at the same time by different industrial applications (represented
by different CDTs) to dispatch traffic flows based on native IP, overlay networking information,
and payload content. Moreover, MLR allows the exploitation of the multihop and multipath
network by supporting an overlay network that distinguishes edge nodes based on fixed unique
identifiers rather than with time-varying private IP addresses.

S-Ctrl adopts four different network management approaches, by also considering the payload
type. To this purpose, S-Ctrl and S-CAs identify three packet types: Video, carrying frames
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provided by surveillance cameras, Vibration, representing the data provided by the drill, and
Info, logs generated by the conveyor, the assembler, and the checker. In case there is no network
congestion, network management rules are not activated and thus packets are dispatched in a
best effort manner. In case S-Ctrl identifies low network congestion, S-Ctrl enables on S-CAs a
network management rule dropping packets with probability (percentage/100)hopCount (with
hopCount > 0) and percentage set to 25%, 33%, and 33% for Info, Video, and Vibration
packets, respectively. Of course, this rule only applies to packets tagged as droppable. For
instance, according to the Smartphone Assembly policies and Listings 1 and 2, Vibration
packets can be dropped only in case no anomalies have been detected. Let us note that by
dropping packets based on the hop count, the probability of dropping a packet along a multihop
path is

pathLength

∑
hopCount=1

(
percentage

100
)hopCount (2.2)

and with pathlength → ∞ the overall probability a packet is dropped is 33% and 50% if
percentage is set to 25% and 33% respectively. In this manner we achieve the notable effect of
adopting a simple dropping mechanism that can be applied on each edge node in a stateless
manner, while imposing a limit to the percentage of packets that can be dropped.

Experimental setup and Evaluation

Achieved performance results are based on our working Java prototype of the ADTN mid-
dleware that we have developed not only to demonstrate the feasibility and the efficiency of
the presented model, but also to provide the community with a working solution to foster the
research in this field. The source code of the adopted libraries and implementations has been
released as Open Source project1. In particular, we analyzed two different aspects. The first one
relates to the investigation of SDT performance in terms of i) SenML data enrichment delay and
ii) its impact on the twin forwarding delay between data producers and consumers. The second
aspect is about how our ADTN middleware dynamically manages network configurations in
relation to application requirements and network state.

In the former case, involved tests have been conducted on ten independent runs consider-
ing an uncongested network, a target set of 10000 messages with IoT smart objects and DTs
using MQTT as protocol, and an average payload size of 100 bytes. SDTs are implemented
using Java and the WLDT library, a modular software stack based on a shared multi-thread
engine able to effectively implement DT behaviour and to define its mirroring procedures, data

1https://github.com/DSG-UniFE/ramp

https://github.com/DSG-UniFE/ramp
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Figure 2.5: Message delay at increasing message rate while applying the proposed QoS management
solution.

processing, and the interaction with external applications. Implemented SDTs are executed
as independent processes, but can also be easily packed as containers to run on virtualized
environments and microservices. In order to evaluate the SDT’s suitability to different hardware
profiles, we tested the implementation both on an high specs Linux edge node (i7 Intel CPU
and 32 GB of RAM) and on a Raspberry Pi (RPi) Model B board with 700 MHz CPU, 128 MB
of RAM and a 10/100 Mbps Ethernet connectivity.

In the latter case, we focused on the capacity of the ADTN middleware to dynamically intro-
duce new networking policies depending on the congestion level of the network, by activating
different traffic management rules on an intermediary edge node To this purpose we made
measurements over a test-bed composed by N1, N2, and N3, three high specs RPis (Model
3B+ with 1 Gb RAM and 1.4GHz 64-bit quad-core processor). N1 and N2 are connected via
100 Mbps Ethernet, N2 and N3 via 10 Mbps IEEE 802.11. N1 acts as SDT and sends data
(with 100 bytes payload), while N3 is the receiver and N2 plays the role of the intermediary
edge node. At the beginning, N2 is configured with no network congestion rule and N1 sends
data at 150 msg/sec. Then, N1 increases the message rate by 500 msg/sec every 12 s. As
Fig. 2.5 shows, at about 12 s, the receiver notices a packet latency greater than the 150 ms
threshold ms and informs S-Ctrl about it. Then, S-Ctrl informs S-CA on N2 to activate the
low network congestion, i.e., the intermediary edge node has to discard or delay part of Video
and Vibration messages. Network congestion lowers for a while and N3 receives packets at
reduced latency. However, the message rate keeps increasing and at about 25 s N3 notices a
latency greater than 300 ms and again it interacts with S-Ctrl to trigger the activation of the
medium network congestion. This rule further increases the amount of dropped and delayed
packets, limiting the overall packet latency. Finally, at about 36 s the latency becomes greater
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than 450 ms. The receiver informs S-Ctrl about the current situation and the latter activates
the high network congestion rule, thus imposing sender and receiver to communicate via OS
routing instead of the overlay network. Note that while performing the procedure to switch to
OS routing the sender keeps sending packets, thus even after the receiver has notified the high
latency to S-Ctrl some packets are still sent via the overlay network, and thus some packets
still present high latency. In this case the network latency considerably lowers, but with the
drawback of reduced traffic management at the application level, since N2 is not able to access
the payload of traversing packets anymore.

Discussion:

The results presented above demonstrate that the ADTN middleware is able, on the one hand,
to enrich packets in a very efficient manner also providing a uniformed standard data layer and,
on the other hand, to dynamically manage traffic flows in an application-driven manner also
considering the current state of the network. In particular, we found that the additional overhead
imposed by SDTs to format and enrich the packet payload in the SenML syntax is very limited,
largely justified by the advantages of greatly improving the QoS management features of traffic
flows via articulated and fine-grained network rules on intermediary edge nodes. However, it
is worth noting that while experimental results prove that the ADTN middleware provides an
efficient high level interface for DT management, they do not show how our solution behaves
in terms of other highly demanding QoS requirements, e.g., scalability, privacy awareness, and
reliability. Therefore, based on the encouraging results already obtained, we are now working
on the development of a full-fledged industrial pilot.

2.3 ML-based Orchestration for Security and Performance
Optimization in Industrial Environments

In contemporary industrial networking environments, integrating Operation Technology and
Information Technology necessitates a focus on ensuring both operational safety and security.
However, their practical implementation often relies on error-prone human-centric procedures
by technicians, lacking an integrated plant-wide perspective. To address these challenges, our
approach emphasizes the application of intelligent reasoning to monitor and actively reconfigure
the environment, ensuring the fulfillment of security requirements while optimizing the trade-
off between security and performance. Our prototype-based performance results demonstrate
the feasibility and efficiency of our solution under stringent industrial requirements, showcas-
ing flexibility in creating new configurations and satisfying low-latency requirements. Our
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prototype-based performance results demonstrate the feasibility and efficiency of our solution
under stringent industrial requirements, showcasing flexibility in creating new configurations
and satisfying low-latency requirements. In particular, our ML orchestrator proved capable of
creating a new configuration in less than 2.5 s on a typical edge node with a medium load.

Secure Intelligent Digital Twins (SIDI) architecture

Our SIDI middleware exploits ZDT and CDT definitions by considering performance in terms
of bandwidth and latency as well as security in terms of adopted ciphering algorithm and key
length. In addition, we originally differentiate among Network DTs (NDTs) and Asset DTs
(ADTs) to provide a virtualized representation of the underlying architecture, with the formers
for machines and digital services and the latters for network elements (either physical or virtual)
allowing inter-zone communication. The middleware of four primary modules:

• ADT & NDT Managers (ANM): it is in charge of handling the creation, coordina-
tion, and dynamic management of ADTs and NDTs. ANM instances can be deployed
also on connected edge nodes to support DTs remote deployment in case of strict la-
tency constraints or if it is require to locally communicate with edge equipment and
applications;

• Conduit & Zone Manager (CZM): allowing OT technicians to de/activate CDTs and
specify available ZDTs starting from incoming “high level” requirements and com-
mands, e.g., “Create a new conduit between Zone A and Zone B with High QoS level”.
CZM communicates with deployed ANMs to retrieve information about active DTs and
properly populate defined zones or to create conduits according to the target mapped
requirements;

• Metrics Collector: gathering all the available metrics coming from active components at
different abstraction levels. For instance, it receives the status of available computational
nodes (e.g., CPU, memory and bandwidth usage), real-time network information coming
from NDTs (e.g., delay, throughput, and packet loss), and assets’ metrics from ADTs
(e.g., requests per second, average response time, and exceptions). All the collected
information are used by the RICM (see below) to dynamically manage ADTs and NDTs,
thus to enforce provided requirements;

• Reasoning Engine & Intelligent Context Manager (RICM): training a Machine
Learning model on the data collected by the Metric Collector to obtain a predictor able to
forecast the next state of the network taking into account the current one and the possible
routes. It is also in charge of selecting routes better satisfying the QoS requirements
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Figure 2.6: SIDI middleware architecture highlighting main components

declared at IBN level (see Section 4.2). RICM acts as a predictor for the future behavior
of the network and as a dynamic policy manager at the same time. By doing so, it is able
to react to unpredictable and undesirable states by itself, without any kind of manual
update of human operators.

The SIDI middleware is designed to enhance operational efficiency and scalability, reducing
reliance on human intervention and minimizing errors. It facilitates dynamic orchestration and
automation, particularly supporting artificial intelligence techniques. The Intelligent Context
Manager collaborates with a Metrics Collector and a Reasoning Engine to dynamically forward
packets based on conduit policies, learning network behavior and selecting optimal routes
for satisfying Quality of Service (QoS) requirements. By collecting real-time metrics and
predicting packet latency, the system can proactively avoid undesired congestions and prioritize
QoS requirements. The potential extension involves moving certain components to edge nodes
for distributed decision-making and delegating resource-intensive operations to a centralized
node.

Implementation Insights and Experimental Evaluation

We have proved the feasibility and efficiency of the proposed approach by setting up and imple-
menting a testbed composed of 4 constrained devices. In our testbed, each node hosts a Docker
instance and two containers, one holding the application logic and handling the connection
and the communication with the other nodes and another one exporting resource usage metrics
to the Intelligent Context Manager. For the application level container we choose NodeJs as



2.3 ML-based Orchestration for Security and Performance Optimization in Industrial
Environments 45

Figure 2.7: (a) Classical rule based routing without packet dropping; (b) Test 2: Classical rule based
routing with packet dropping; and (c) Test 3: Machine Learning (ML) enhanced routing.

developing framework since very efficient and lightweight and we adopted Prometheus and
Node-exporter for resource monitoring. Prometheus is an open-source monitoring solution for
highly dimensional data. It provides high level APIs to obtain the data collected by querying
the system with a specific query language called PromQL. Node-exporter is a monitoring tool
container which collects resource usage metrics from client nodes in a passive way, without
spoiling the data collection process with additional monitoring overhead.

We run three different tests where 30% of packets are sent over route R1 and the remaining
70% over route R2 while the sending frequency constantly increases from 100 pkt/s to 1000
pkt/s. During the first test, no latency saving policies are applied, while the following two tests
have been done with a maximum latency requirement equal to 300 ms. As a consequence,
Fig. 2.7(a) shows as the maximum latency reaches 400 ms without any kind of reaction from
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the Controller Node. Fig. 2.7(b) illustrates a second test where static routing rules are applied
to reduce the overall latency. Once latency reaches 300 ms the receiver node drops 35% of
traversing packets. As it can be seen, this leads to lower latency for a transitional state, but
after that, the network is not able to keep up with the increasing packet frequency even with
some artificial packet loss addition. In this case, despite the maximum latency requirement is
satisfied for some time, the solution leads to a considerable information loss and it is not robust
to the dynamic evolution of the current state of the network. On the other hand, Fig. 2.7(c)
shows the results achieved in a third test where the Controller Node benefits from the support
of the Reasoning Engine which predicts the expected latency depending on a specific route
choice. The Intelligent Context Manager is then able to select the route corresponding to the
lower latency value. In this case, when the latency reaches 300 ms the majority of packets is
forwarded over R1, prioritizing lower latency over security and leading to an average latency
equal to 275 ms, well below the predefined maximum threshold.

Achieved results show how the SIDI middleware (based on a Machine Learning enhanced
policy manager) is able to change the network behavior before a real congestion takes place,
autonomously. In addition, no compromises in terms of information loss have to be adopted to
guarantee the satisfaction of QoS requirements. The third test exploits the predictive capabilities
of the Reasoning Engine. It implements a K-Nearest Neighbors ML model trained with a
data-set containing five different simulations with 5000 forwarded packets each. The model
has been developed with the scikit-learn python framework [200], a well-known package for
classical and efficient predictive data analysis. Data coming from both the application container
and the resource monitoring container are merged for each node to model the state of each
ADT in terms of resource usage, current packet frequency, and corresponding final latency.
Thanks to the uniform interface provided by the underlying SIDI architecture the Reasoning
Engine can model the future state of the network in a transparent way for the human operator.
Furthermore, a new and more complex ML model will benefit from the transparency offered
by the networking layer and can be added and compared with minimal additional effort. By
delving into finer details, the data-set has been divided into training and test sets to have four
simulations for training and the remaining for testing. During the training process, the model
has been cross-validated by training on three simulations and validated on the fourth iteratively
four times. The resulting model reaches a test accuracy of about 87% and can prioritize the R1
route over R2 successfully. The model evaluation has been done by considering both Rooted
Mean Squared Error for hyperparameters validation and Mean Absolute Percentage Error for
the final accuracy score. An exhaustive grid search has been used to tune the model by selecting
the best k value for the number of neighbors to consider. It identified k = 3 as the best value,
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meaning that to predict the latency related to a single packet the metrics of the closest three
packets have to be taken into account.

The SIDI middleware leverages the Digital Twin (DT) approach to create virtualized rep-
resentations of machines and network elements, facilitating the definition of inter-machine
security requirements. The reasoner, based on DTs, dynamically monitors and reconfigures
machines and network elements to ensure requirements are met. Performance results from
the open-source prototype show feasibility, advantages, and efficiency, but real-world valida-
tion in industrial environments is necessary. Future work involves testing in more complex
scenarios, integrating with an actual industrial testbed, addressing limitations in the machine
learning model, and exploring the trade-offs of using virtualized network functions in industrial
environments for enhanced flexibility.





Chapter 3

Energy-Efficient Frugal Approaches for
Constrained Devices in Distributed
Learning

Edge AI refers to the practical implementation of Artificial Intelligence (AI) in real-world
devices, involving the execution of AI computations near users at the network edge rather
than in centralized cloud data centers. This chapter offers a comprehensive analysis of AI
methodologies and capabilities in the context of edge computing, exploring the transition to
Edge AI and providing insights into various paradigms of edge computing. In particular, it
delves into the deployment of AI algorithms and models on resource-constrained edge devices,
illustrating their applications in IoT scenarios such as autonomous vehicles, smart homes,
industrial automation, healthcare, and surveillance. Additionally, the chapter addresses the use
of machine learning algorithms optimized for resource-constrained environments, highlighting
key challenges and potential research directions for the future development of Edge AI.

Here, the focus is in the implementation of AI models directly on edge devices, considering
the execution of both the training and inference phases of AI models, by emphasizing the
synergy between devices, edge computing, and the cloud. Related to this chapter, in Section 3.1
we will try to clarify the concept of Edge Intelligence and the main obstacles to its adoption
in real-world settings. By introducing greener and more sustainable ways for distributed
intelligence we focus our attention on the usage of frugality for energy optimization. In this
direction, Section 3.2 and Section 3.3 introduce experimental contributions, incrementally.
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3.1 Edge AI: When Intelligence Moves Towards the Edge

Recent advancements in key dimensions have facilitated the successful deployment of AI
models at the edge [279]. Key foundations for generalized machine learning have been es-
tablished through progress in neural networks and various AI domains. Organizations are
increasingly recognizing the feasibility of training and operational deployment of AI models
at the edge [152]. Massively distributed computing capacity is essential for AI at the edge,
utilizing recent developments in massively parallel GPUs for running neural networks [280].
The exponential growth in data volume, propelled by the proliferation of IoT-connected de-
vices [211], has paved the way for implementing AI models across various industries. The
widespread availability of sensors, smart cameras, robotics, and other data-gathering tools
enables the integration of AI in diverse applications [98]. Furthermore, the enhanced speed,
reliability, and security brought by 5G/6G are contributing to the advancement of IoT [9].
According with [68] the main driving indicators in terms of QoS in Edge Intelligence are:

• Performance: performance metrics primarily encompass training loss and inference
accuracy, pivotal for assessing AI models. Despite the shift in computational scenarios
from cloud clusters to a harmonized system involving devices, edge, and cloud, these
criteria remain crucial.;

• Cost: cost considerations typically include computation cost, communication cost, and
energy consumption. Computation cost reflects the demand for computing resources,
such as CPU cycle frequency and allocated CPU time. Communication cost involves
communication resource requirements like power, frequency band, and access time. Min-
imizing delay (latency) caused by allocated computation and communication resources is
also a focal point. Given the limited battery capacity of mobile devices, efficient energy
consumption is vital. Cost reduction is a key goal, with edge computing aiming for
substantial reductions in delay and energy consumption, addressing critical challenges
for realizing 5G;

• Privacy: n the context of heightened concerns about data leaks [177], privacy preserva-
tion has gained significant attention. Federated learning, which aggregates local machine
learning models from distributed devices while preventing data leakage, has emerged as
a solution. Privacy is closely linked with security and is associated with the robustness of
middleware and software in edge systems;

• Efficiency: high efficiency is crucial for achieving excellent performance with minimal
overhead. Improving existing algorithms and models, especially for AI on the edge,
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Figure 3.1: The focus on AI-enhanced applications at the Edge of the network.

is driven by the pursuit of efficiency. Approaches such as model compression, condi-
tional computation, and algorithm asynchronization have been proposed to enhance the
efficiency of training and inference in deep AI models;

• Reliability: system reliability ensures uninterrupted operation throughout prescribed
periods, a key determinant of user experience. In the context of edge intelligence, system
reliability gains prominence for AI on the edge due to the distributed and synchronized
nature of model training and inference. Local users participating in these processes
face a significant probability of failure due to issues like wireless network congestion,
emphasizing the importance of reliability.

The integration of edge computing and artificial intelligence (AI) has given rise to the
concept of edge intelligence, driven by the need for quick analysis of large volumes of data and
extracting insights. Currently, there is no universally accepted definition of edge intelligence,
leading researchers to propose their own interpretations. For instance, Zhou et al. [296] argue
that edge intelligence goes beyond merely running AI models on edge servers or devices;
instead, it involves a collaborative approach between edge and cloud computing. They define
six levels of edge intelligence, ranging from cloud-edge co-inference (level 1) to full on-device
processing (level 6). Another definition by Zhang et al. [293] characterizes edge intelligence as
the capability enabling edges to execute AI algorithms.
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AI on the Edge: SOTA Approaches and Applications

As mentioned earlier, optimizing communication efficiency is crucial for Federated Learning,
especially when transitioning it to the edge. The primary objective is to minimize the number
of communication rounds, as updating the global model may face challenges when local
devices are offline or the network is congested. Numerous efforts concentrate on reducing
communication overhead for Federated Learning, with model compression being a key strategy.
Compressing trained models without compromising inference accuracy is a highly effective
approach. For instance, in [144], structured updates and sketched updates are proposed to
decrease uplink communication costs. Structured updates involve learning the local update
from a restricted lower-dimensional space, while sketched updates compress the uploaded
model before transmission to the central server.

Bonawitz et al. [35] introduced a communication-efficient secure aggregation protocol
specifically tailored for high-dimensional data. The protocol exhibits robustness by tolerating
up to 33.3% of participating devices failing to complete the protocol. In a related work, it is
noted that Deep Neural Networks (DNNs) are often overparameterized, featuring significant
redundancy in their weights. The proposed solution involves pruning, a technique that compen-
sates for the loss in performance. The article suggests a retraining-after-pruning scheme, where
the DNN is retrained on new data while the pruned weights remain constant. This scheme
effectively reduces resource occupation while maintaining learning accuracy.

In the healthcare sector, IoT solutions have been pivotal in the evolution of health man-
agement systems, facilitating efficient tracking of agents such as patients, medical practitioners,
and resources. This transformative approach is referred to as the Internet of Health Things
(IoHT) [255]. A critical component of IoHT is the utilization of wearable sensors, which
collect health-related parameters at various time intervals. These data are then processed to
drive the development of intelligent e-healthcare applications. In [128] the resulting health
monitoring process involves training with a deep learning network and the elimination of
weak classifiers through feature ensemble computation. The system’s efficiency is evaluated
through MATLAB-based experimental analysis, achieving an accuracy of up to 98.7%. Future
enhancements include optimizing techniques and implementing feature selection approaches to
further refine the monitoring process.

The work introduced in [74] proposes a novel online approach based on deep learning
and transfer learning concepts to create a computational intelligence framework for Internet
of Health Things (IoHT) devices. This user-friendly framework enables easy addition of
images and platform training, making it accessible even to individuals without programming or
image processing expertise. Trials demonstrated rapid project setup by users with no technical
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background. The proposed approach is validated using three medical databases for stroke type
classification, lung nodule malignancy classification, and melanocytic lesion classification.
The framework achieves high accuracy, reaching 91.6% accuracy in stroke and lung nodule
databases and 92% accuracy in skin images databases. The results highlight the framework’s
efficiency and reliability, showcasing its potential to assist medical professionals in quickly and
accurately analyzing complex medical examinations through a collaborative IoT platform.

In recent years, the integration of Internet of Things (IoT) solutions has transformed tra-
ditional homes into smart living spaces, offering a myriad of automated and interconnected
services. This subsection explores the innovative applications of IoT in provisioning smart
home services, encompassing the automatic control of domestic appliances, alarm generation,
security controls, and the development of comprehensive Internet-connected systems. From
enhancing convenience to improving security, IoT technologies have reshaped domestic living,
paving the way for a more efficient and interconnected future in our homes.

Gavrila et al. [96] introduce an architecture for seamlessly integrating a Smart Home
(SH) environment with an HbbTV-enabled television set and consumer’s handheld devices,
such as smartphones and tablets. Leveraging the HbbTV 2.0.1 Companions Screen and
Multimedia Synchronization framework, the proposed solution acts as a central hub for audio
and video broadcasting services, home automation, and various devices within the Smart Home.
The architecture, designed to be standard-compliant and platform-independent, demonstrates
successful hardware implementation and is validated through subjective tests based on mean
opinion score (MOS). The results indicate that the accurate design of hybrid services through
HbbTV can enhance the Quality of Experience (QoE) perceived by users in the unified TV and
Smart Home services.

An intelligent and multi-objective framework for managing residential loads in smart homes
is introduced in [51]. This framework utilizes an IoT-based controller to efficiently handle
home loads and promptly issues alerts in case of any detected malfunction within the household
appliances. Considering the context of smart homes, it acknowledges the potential risks posed
by cyberattacks, which not only affect the functionality of the home but also pose threats to the
safety and well-being of the occupants.

The integration of IoT has significantly enhanced agricultural production by improving the
quality of agricultural products, reducing labor costs, and enabling more efficient farm man-
agement practices. Hu et al. [121] address the importance of precise crop disease diagnosis in
agricultural research and production. The traditional identification of coarse-grained diseases
in crops is deemed insufficient, as treatment methods vary within different grades of the same



54 Energy-Efficient Frugal Approaches for Constrained Devices in Distributed Learning

disease. To address this, the study proposes an IoT system that integrates IoT technology and
deep learning for fine-grained disease identification in crops. The system automatically detects
diseases and communicates diagnostic results to farmers. The proposed multidimensional
feature compensation residual neural network (MDFC-ResNet) model enhances fine-grained
disease identification by considering species, coarse-grained disease, and fine-grained disease
dimensions. The compensation layer, employing a compensation algorithm, fuses results
from multidimensional recognition. Experimental results demonstrate that MDFC-ResNet
outperforms other popular deep learning models, providing better recognition accuracy and
practical guidance in agricultural production activities.

The study proposed in [295] an autonomous agricultural system to address labor shortages
in agriculture while enhancing productivity. The system incorporates a ground-level mapping
and navigation system using computer vision (Mesh-SLAM algorithm) and the Internet of
Things (IoT). The three-layered system includes robot vehicles for frame collection, edge
nodes for image feature data edge computing, and a cloud layer for general management and
deep computing. The Mesh-SLAM algorithm efficiently maps the farm in 3D, and the IoT
architecture allows scalability and flexibility. Evaluation results indicate superior mapping and
localization precision, making the system feasible for practical implementation in real farms by
balancing cost and performance.

The Internet of Things (IoT) holds significant potential for Intelligent Transportation Sys-
tems (ITS), contributing to the creation of a smart, safe, reliable, and sustainable transportation
network. This is achieved through the collection and analysis of traffic and mobility-related
data using IoT technologies in ITS [297]. The study conducted by Ke et al. [141]explores the
use of edge computing in smart parking surveillance, focusing on parking occupancy detection
through real-time video feeds. The system employs a carefully designed processing pipeline,
considering flexibility, online surveillance, data transmission, detection accuracy, and system
reliability. It incorporates edge-based artificial intelligence, implementing an enhanced single
shot multibox detector (SSD) and additional algorithms for optimal efficiency and accuracy.
Field tests conducted in an actual parking garage demonstrate promising results, achieving
over 95% accuracy in real-world scenarios. The proposed smart parking surveillance system is
seen as a crucial element for smart cities and a foundation for future applications in intelligent
transportation systems.

Philip et al. [202] address real-time Internet of Things (IoT) applications, specifically
focusing on smart traffic control scenarios involving autonomous vehicles making decisions
on lane velocities. The study decomposes the problem as an unconstrained network utility
maximization problem and proposes a consensus-based, constant step-size gradient descent
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algorithm to achieve a near-optimal solution. The analysis emphasizes the delay-accuracy trade-
off, measuring delay in terms of the number of iterations required for scheduling operations
within an acceptable tolerance. The algorithm’s operation under quantized message passing
is also explored. Simulations, incorporating microscopic traffic flow behavior, compare the
proposed solution with traditional and state-of-the-art intersection management techniques.

The Internet of Things (IoT) embodies the idea of everyday objects connecting us to the
IoT era. The spatial characteristics of surrounding objects serve as the control mechanism for
IoT functionality. Essentially, the spatial changes in an object represent the essence of IoT
responsiveness. For instance, variations in crop spatial patterns signify the needs and charac-
teristics of agricultural production. Similarly, the spatial dynamics of human movement can
trigger alerts in security and monitoring systems. This consideration prompts the exploration
of the "Internet of Spatial Things (IoST)" concept [78, 225]. Ghosh et al. [100] propose a
mobility-driven cloud-fog-edge collaborative real-time framework, Mobi-IoST, designed for
IoT systems with a back-end cloud. The framework leverages IoT, Edge, Fog, and Cloud layers,
treating IoT and edge devices as moving agents in a 2-D space. By analyzing spatio-temporal
mobility data and contextual information, Mobi-IoST employs machine learning algorithms
for real-time prediction of agent locations. The framework features hierarchical processing,
utilizing an IoT-Edge-Fog-Cloud architecture for improved real-time application Quality of
Service (QoS). It effectively predicts agent locations, reducing delays and power consumption
by approximately 23-26% and 37-41%, respectively, compared to existing mobility-aware task
delegation systems, with an accuracy of approximately 93%.

Koh et al. [143] present a novel location spoofing detection algorithm named Enhanced Lo-
cation Spoofing Detection using Audibility (ELSA) for geo-spatial tagging and location-based
services in the Internet of Things (IoT). ELSA operates at the backend server and is designed
to be implemented seamlessly with existing IoT systems. Utilizing a statistical decision theory
framework and two-way time-of-arrival (TW-TOA) information, ELSA incorporates implicit
audibility information to enhance location spoofing attack detection rates. The algorithm
employs a generalized likelihood ratio test for verifying device locations and demonstrates su-
perior performance, as evidenced by extensive simulations on synthetic and real-world datasets,
outperforming conventional non-audibility-aware approaches in terms of detection and false
alarm rates.

Exploring the intricate relationship between AI for/on the Edge, Section 3.1.1 focuses on
more sustainable AI based solution and contributions from the current state of the art highlight-
ing the main challenges in terms of performance and optimization tradeoffs.
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3.1.1 Green and Frugal AI

AI, already integral to numerous systems, is poised to become even more pervasive with the
rapid ascent of wearable devices and the Internet of Things. In traditional machine learning
applications, emphasis is placed on achieving high-quality results, necessitating substantial
data collection and computational resources for model building. However, in various scenarios,
establishing large centralized data repositories is unfeasible or impractical. For instance, in
personal health, privacy concerns may impede the sharing of detailed personal data. In these
cases, an ideal solution involves performing machine learning directly on wearable devices,
introducing significant computational challenges, such as the limitation of smartwatch battery
capacity.

Paradoxically, deep learning draws inspiration from the exceptionally energy-efficient
human brain. However, the substantial computational costs associated with deep learning pose
challenges for academics, students, and researchers, particularly those in emerging economies,
limiting their participation in advanced research endeavors. For these reasons, recent studies
such as the one conducted in [231], have started questioning the current Red AI trend proposing
a more Green AI paradigm. The term Red AI refers to AI research that aims to improve accuracy
by using massive computational power, by essentially “buying” stronger results with more
resources. In their work, the authors first provide an empirical study showing the prevalence of
Red AI articles over energy saving approaches, surveying 60 papers from top AI conferences
over the period of 2018-2019 period. They report that about 80% of sampled papers targeted
accuracy over efficiency, by prioritizing the final result over the potential lower impact of less
performing solutions. The mathematical representation of this concept is formulated thought
the Equation of Red AI, as follows:

Cost(R) α E ×D×H (3.1)

where Cost(R) is the cost of a single ML experiment, E is the cost of processing a single
example, D is the size of the training data-set and H is the number of experiments to determine
the hyperparameters to be employed.

Energy Sustainable AI: SOTA Approaches and Applications

Driven by a common sense for a greener AI, different works have pursued this direction. As
an example, a framework meant to track the impact of ML is introduced in [115]: the authors
propose a solution combining different metrics, such as training and inference time, to estimate
the amount of carbon emissions in Reinforcement Learning. They used specific tools provided
by hardware vendors to monitor CPU and GPU power draw, in particular they employed Intel’s
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RAPL tool with the powercap interface for CPU energy monitoring and Nvidia’s nvidia-smi
for GPU power consumption estimation. These tools provide real-time energy consumption
feedback for a limited range of supported CPU models. In [286] the authors address the
problem of an energy-efficient resource allocation in the FL process, formulating it as an
optimization problem where the goal is to minimize the total energy consumption of the system
under latency constraints. The solution is assessed with 50 users, uniformly distributed in a
square area of size 500mx500m with a base station (BS) located at its centre. They proved
the consistency of the optimized algorithm comparing it with canonical FL. The work done
demonstrated the higher efficiency of the proposed solution in terms of completion time and
energy consumption.

A hierarchical EFL solution is proposed in [161] where the authors illustrate an iterative
and partial, weighted aggregation process used to speed up the ensembling phase and to reduce
energy costs. They show that their HierFedAvg, an extension to the classic FedAvg algorithm,
achieves faster convergence on both IID and non-IID samples. They perform their experiments
on the MNIST and CIFAR-10 datasets, showing that HierFedAvg simultaneously reduces the
model training time and the energy consumption of the end-devices.

Early endeavors in frugal learning focused on compressing the training set, represented
as a decision table, onto resource-constrained devices. This approach, currently flourishing
in the realm of binary decision diagrams pioneered by Minato et al. [186], involves mapping
the training set into structures like Field Programmable Gate Arrays (FPGAs) [150]. Another
remotely related line of work explores approximate knowledge bases [83], addressing scenarios
with large or complex knowledge bases (KB). This method aims to construct lower (KBL)
and upper (KBU) bounded KBs, creating approximations for KB decisions based on whether
KBL(x) is true, KBU(x) is false, or the result is unknown. Another field within Machine
Learning connected to frugality is online learning, where examples are processed one at a
time [103]. The critical challenge is associated with potential changes in the sample distribution
and the subsequent adjustment of the hypothesis. The trade-off revolves around the number of
examples employed by the learner: detecting distribution changes early (discarding outdated
examples) while maintaining robustness against example noise. Additionally, certain online
algorithms for high-speed data streams opt to use only a subsample of available examples to
expedite training [73].

Some approaches in Machine Learning aiming for frugal decision-making adopt a two-step
process. Initially, a potentially computationally expensive model is learned, followed by the
simplification of this model in various ways while retaining its predictive accuracy as much as
possible. In [107], for instance, features associated with a linear classifier having low absolute
weight values are considered poorly relevant or redundant, leading to their removal, potentially
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through an iterative process. Busa-Fekete et al. [31] focus on the extensive set of hypotheses
acquired during a boosting process. Traditionally, these hypotheses contribute to the final
decision through voting. However, it is possible to selectively prune the set of hypotheses in
an example-dependent manner, transforming the ensemble into a Directed Acyclic Graph. An
illustrative example is provided by Urban et al. [257], focusing on compressing deep neural net-
works [32]. In this scenario, a substantial ensemble of large and deep neural networks, known
as the "teacher" is trained from a specific dataset E. This ensemble is employed to label a much
larger set of samples E. In their work, Urban et al. [257] demonstrate that by utilizing this new
training set, which consists of samples from E along with their corresponding teacher labels,
it is possible to train a shallow neural network with equivalent performance as the teacher,
achieving significant reductions in the number of weights, although the process may not be
strictly considered frugal. This process is currently know as Knowledge Distillation [117].

In the subsequent sections, we originally propose two different frameworks shedding light on
the integration of AI technologies in energy constrained environments comparing achieved
results against the current state of the art.

3.2 Towards Energy-Aware Federated Learning: Adaptive
Round Planning for A Distributed Learning

Taking the initial stride towards an energy-conscious AI process, we take Federated Learning
(FL) as a state of the art use case and we introduce an innovative distributed framework designed
to collect real-time and detailed process metrics for intelligent process management. Within
this context, we explore pertinent FL round planning strategies, which are categorized as
static (involving a fixed number of iterations) and dynamic (determined at runtime based on
trade-offs between model accuracy and energy expenditure). To substantiate our approach, we
outline the blueprint of an experimental testbed that demonstrates an Energy-Aware Federated
Learning (EFL) process implemented on actual data. The testbed highlights the capabilities
of our solution in terms of metric collection and subsequent adaptive planning. Filling the
existing gap, we present the design of a novel distributed framework capable of collecting
accurate (worker) energy expenditure and learning-centric metrics at each FL round. The
framework comprises state-of-the-art technological building blocks, purposely integrated to
enable advanced and energy-aware FL process orchestration capabilities. To validate the
approach, we rely on a heterogeneous experimental testbed, and conduct a distributed learning
process employing a realistic dataset. The preliminary evaluation results reported in this paper
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highlight the potential advantage in terms of overall energy consumption reduction and the
suitability of an adaptive learning framework capable of autonomous evaluations of the most
appropriate trade-off to apply between accuracy and energy expenditure.

Framework architecture

To the purpose of providing an innovative FL framework with energy awareness as described
in the previous section, we describe the main components of our system:

• The AI Engine, a core module of the framework that provides support for the main
ML libraries and allows the development of use case specific AI models. It handles the
distributed weight update phase while keeping the overall overhead as low as possible by
taking into consideration the energy consumption measured by participating nodes.

• The monitoring module provides a complete and real-time state update from workers in
terms of current energy consumption and accuracy score achieved.

• The planner (orchestrator) is the entity in change of actuating the rules designed for FL
round management, the control logic of the process.

The design of our solution allows each module to be easily extendable and integrated within
existing frameworks and libraries.

The AI Engine handles the coordination of workers over the learning rounds through RPC
interaction. The action-oriented nature of this architectural style coincides with purpose of
EFL of reducing as much as possible the amount of information shared among the learners.
This choice is also confirmed by similarity with some other widespread FL frameworks, which
have followed the same direction. PySyft [4], Tensorflow Federated [166] and Flower [132] are
some relevant examples of RPC adoptions. To this end, we have decided to integrate Flower,
an open-source, easy to extend library, and with very limited demand of runtime resources to
support its execution. Flower implements the main aggregation strategies for the ensembling
and provide easy-to-use APIs for worker communication with the central server. It wraps
the main ML libraries like Tensorflow, Pytorch and Scikit-learn while allowing a transparent
embedding of customized ML models developed from scratch. In order to complete the learning
aggregation, Flower requires a static minimum amount of workers and a fixed number of rounds.
The server waits until all the workers are available and triggers the local learning for each of
them. The model update is synchronous, and the main aggregation algorithm is FedAverage,
a tensor version of weights averaging. A few well-known vendors have instead decided to
move towards lazier connection between server and clients, by adopting a REST approach. For
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instance, NVIDIA Clara Imaging is REST-based and is a computational platform that eases the
development and the deployment of intelligent medical imaging workflows. About RPC, all
the frameworks listed above integrate a variant of the canonical RPC, called Google Remote
Procedure Call (gRPC). gRPC is a framework for implementing RPC APIs via HTTP that aims
to reduce communication overhead thanks to the parsing of descriptive manifest polyglot (i.e.,
implemented with different technologies) scenarios. In fact, gRPC employs protocol buffers
rather than JSON XML manifests as the interface language for serialization and transmission.
By doing so, the resulting protocol is more lightweight and flexible if compared with the
canonical RPC transmission pipeline.

The monitoring module enables ML experiment reproducibility and logging. The information is
collected by exploiting and integrating a state-of-the-art MLOps tool. MLOps, which stands for
Machine Learning Model Operationalization Management, aims to reproduce in the ML area
the same advantages driven by DevOps in distributed systems deployments. At the beginning
of the ML research area or in only research-oriented deployment scenarios, ML models were
only tested and developed in isolated experimental systems: then, when the targeted result was
considered achieved (e.g., the training phase was considered sufficient and adequate), the model
was deployed in the production environment as a canonical remote service. Nowadays, in many
AI-enabled industry scenarios, the old and simple deployment pipeline described above exhibits
its non-negligible weaknesses. In fact, once an ML model is deployed, it has to be maintained
and updated, otherwise it will lead to a degeneration of accuracy over time (e.g., because of
changes in the real-life data that cannot be seen during the model training). In addition, since
the same model architecture has to be shared among all the workers, the same framework and
same package versions have to be reproducible on each participating node. To this end, we
select MLFlow as MLOps framework for supporting the whole ML life-cycle [1]. MLFlow is
open source, container friendly, widely used and frequently updated. It consists of four different
modules: MLFlow Tracking to record and query experiments, ML Projects to package the code
in a reproducible format, MLFlow Models to deploy ML models in diverse serving environ-
ments and a Model Registry to store and manage models in a central repository. Furthermore, it
provides a remote HTTP server endpoint to log ML parameters and results from distributed and
decentralized workers which is exactly what we aim to do in EFL. Our framework integrates the
ML metrics with energy monitoring information. Despite several different tools exist, almost
none of them keeps track of the real energy draw of the considered hardware components. In
fact, most of them base their reports on different metrics like CPU and GPU usage, network bit
rate and computation latencies. The only exceptions we found are NVIDIA-smi for real time
GPU power consumption and PowerTop for subprocess energy draw estimation [2]. To this end,
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Figure 3.2: Testbed layout and architecture.

we integrated PowerTop as the main source of power consumption information. PowerTop ob-
serves power consumption at hardware component level and allows VM energy monitoring, too.

The planner contains all the business logic for the FL dynamic management. Here, the metrics
collected by the monitoring module are evaluated over the time in a real-time process which
seeks a tradeoff as possible between energy consumption and target accuracy. It autonomously
computes an accuracy threshold, which varies over the time by considering a decay factor. The
accuracy target thus approaches the actual accuracy with the passing of rounds taking into
account the cumulative energy consumption over the Be budget. The container-based approach
allows our framework to be deployed on heterogeneous devices, like those that are widely
adopted in edge and IoT scenarios. By delving into finer implementation details, Figure 3.2
illustrates a deployment scenario, depicting all the components involved. An exemplary de-
ployment environment (which will be used for the evaluation testbed described in the following
parts of the paper) includes four worker nodes, an ensembler node, and an HTTP logging server
for training parameters tracking and results storing. MLFlow logging capability is used to keep
track of energy consumption metrics collected from the workers and the ensembler during
training and inference phase.

Flexible Support to Differentiated EFL Round Planning Strategies

Herein we discuss potential round planning strategies enabled by our framework, covering
also relevant trade-offs one needs to consider. Since the accuracy of the FL model mainly
grows with the number of learning rounds - as a coarse-grained approximation, it increases
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proportionally to the number of rounds - the total number of rounds is a relevant parameter
to tune in order to achieve a proper efficiency/accuracy trade-off. It is noteworthy to point
out, that none of the surveyed FL frameworks allows a user/developer to dynamically set the
number of rounds and workers, that are static parameters, and set to a predetermined value
before the beginning of the learning process. As a first distinction, it is useful to differentiate
between static and adaptive EFL round planning strategies. In the static EFL approach, the
number of workers for each round and the number of rounds are fixed; while in dynamic
EFL round planning, instead, these parameters can be tuned according to a desired strategy
during the learning phase. Regarding the adoption of the fixed approach, this relies on two
basic assumptions: the amount of energy consumed by each node has to be known since the
onset of the learning, and it has to be constant during the whole training phase. While the first
assumption can be potentially estimated depending on the complexity of the deployment, it is
not reasonable to a priori assume that energy consumption is constant for each round during
the training phase. From this basis, we opt for a more flexible and adaptive approach, taking
into account not only energy considerations, but also a level of desired model accuracy.

While preserving the general aspect of our study, without loss of generality, given the starting
static parameters: Be the total energy budget and Amin the minimal desired model accuracy; the
minimal accuracy target for the next round Amin(i) is dynamically computed as:

Amin(i) = Amin ·
(

1− Ei

Be

)
(3.2)

where Ei is the cumulative amount of energy consumed until round i.
In the current implementation, the target accuracy for each round is monotonically reduced

by a factor which is proportional to the ratio between the energy consumed until the current
round and the total energy budget. Intuitively, the more energy is consumed during a learning
round, the lower the resulting target accuracy to reach. It is noteworthy to point out that
more advanced process control logic could be envisioned, considering additional decision
variables and/or node selection strategies. This study is left as a future work. For completeness,
Algorithm 1 sketches the FL process governed by the above control logic. In this setting, the
training can be stopped even if the Amin is not reached because the Amin(i) ≤ Amin for each round
i.

Evaluation and Empirical Results

To assess the validity of our solution, here we present two different results. First, we assess the
capability of acquiring up-to-date information regarding power consumption. This is done to
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Algorithm 1: Energy Aware algorithm for round planning
Input: Amin, Be

1 keep_on_training = True ;
2 Amin(i) = Amin;
3 while keep_on_training == True do
4 FL distributed training();
5 Compute Ai;
6 Update Ei;
7 Amin(i) = Amin · (1− Ei

Be
);

8 if Ai >= Amin(i) or Ei >= Be then
9 keep_on_training = False;

validate the need for a more flexible and dynamic approach, considering energy consumption
as a process decision variable. Second, we adopt the process decision planning driven by
Equation 3.2, showcasing the reduction of the accuracy goal to a more energy saving target.
For the experimental assessment, we deploy a training process conducted on a real dataset

MAE traint in ft E
1 core VM 0.0255 11.2 s 8.900e-5 s 203mW
2 cores VM 0.0271 9.3 s 4.600e-5 s 237mW
4 cores VM 0.0305 7.4 s 6.900e-5 s 674mW
4 cores Pi 0.0217 12.5 s 9.730e-4 s 1.3W

Ensembler 0.0322 - 1.300e-5 s 0.3W

Table 3.1: Experimental results with 10 learning rounds

containing solar power plant data presented in [3]. In specific, the dataset includes solar power
plant data collected in India over a 34 days period, where each sample corresponds to the
amount of energy produced by the electrical inverter connected to a singular solar panel. We
preprocess the data, splitting the original one accordingly to the inverter id parameter, in order
to have four different datasets fed to each of the workers. This simulates the collection and the
processing of local data on the inverter node.

The worker training process adopts a stochastic gradient descent regressor developed with
scikit-learn, estimating the amount of energy which will be produced at a future point in time by
the local inverter. In order to better mimic a realistic edge case scenario, the testbed is composed
of heterogeneous nodes. Specifically, of four worker nodes, three of them are virtual machines,
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Figure 3.3: Target and actual MAE value in relationship with the required energy consumption.

while the fourth is a real hardware device, a Raspberry model 3. In terms of computational
power, VMs are equipped with one, two, and four CPU cores respectively; the Raspberry Pi,
instead, is equipped with a Broadcom BCM2837 64bit Quad Core Processor. Regarding the
first assessment, Table 3.1 shows the parameters collected by our framework, in particular MAE
(Mean Absolute Error) as an indicator of the accuracy of the model; E is the amount of energy
consumed by the device over the rounds; traint and in ft are the training and the inference time,
respectively.

Lastly, we checked how our framework adjusts its accuracy goal at each learning round
accordingly with Formulae 3.2 while still achieving an acceptable accuracy level. To this end,
we consider MAE as an accuracy performance indicator to minimize and we summed up the
total amount of energy consumed by workers and the ensembler required to reach a certain
MAE score. For the experiment we set Be, the overall energy budget, to 20 Watts; and Amin,
which is here indicated as a maximum MAE accepted, to 0.025. In specific, Amin and Be values
have been empirically fixed to the MAE score and the corresponding energy demand recorded
by training the same distributed model architecture on a centralized node.
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Figure 3.3 shows the target MAE and the actual MAE in relationship with the cumulative
energy consumption at round i. As it can be observed, the two lines intersect at round ten, when
the current MAE is equal to 0.032, and the cumulative energy consumption over rounds is equal
to 17.45 Watts. As a result, the aggregated model finds a sub-optimal solution in a dynamic
way by setting a compromise level between the initial accuracy target and a one which is less
impactful on the overall energy consumption.

3.3 Serverless FL Orchestration on Heterogeneous and Con-
strained Devices

Despite the great strides made in terms of precision and privacy awareness, the real adoption
of FL in real-world scenarios, particularly in industrial deployment environments, is still an
open thread. This is mainly due to the additional complexity that stems from notoriously long
and costly development cycles when employing AI techniques on bandwidth-, computing-,
and energy-constrained nodes. At the same time, quickly developing edge AI applications
that are cloud-native, flexible, and secure has never been more important. Motivated by
these challenges, we address scenarios involving highly heterogeneous computing capabilities
and energy budgets, presenting EneA-FL, an innovative scheme for serverless smart energy
management. This approach dynamically adapts to optimize the training process and facilitates
seamless interaction between Internet of Things (IoT) devices and edge nodes. The proposed
middleware includes a containerized software module that efficiently manages the interaction
of each worker node with the central aggregator. EneA-FL, by monitoring local energy budgets,
computational capabilities, and target accuracy, makes informed decisions about the inclusion
of specific nodes in subsequent training rounds, effectively balancing the tripartite trade-off
between energy consumption, training time, and final accuracy. In extensive experiments
across diverse scenarios, our solution demonstrates impressive results, achieving 30% to 60%
lower energy consumption compared to popular client selection approaches in the literature,
while being up to 3.5 times more efficient than standard FL solutions. Crafted to tackle
the energy management challenges inherent in real-world FL deployment, this innovative
middleware streamlines the training and deployment of FL models across diverse IoT devices.
At its core, an orchestrator dynamically oversees the FL process, dispatching a containerized
environment to participant nodes for real-time monitoring of computing and networking
capabilities, energy budget, and local accuracy. The orchestrator autonomously evaluates the
effort required by each IoT client to meet specified QoS, minimizing the need for user or
developer intervention. Notably, EneA-FL introduces a dynamic coordination approach for
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participating nodes, optimizing energy efficiency. Tested across various clients and energy
requirements, including CPU- and GPU-enabled microcontrollers with limited resources, our
automated energy management scheme outperforms standard FL approaches.

Modelling Energy Consumption of FL Worker Nodes:

In a broad sense, if we denote E(i) as the energy consumption of a fog node i, and envision
the typical FL scenario comprising an arbitrary set of workers with a size of n and a single
aggregator node—where, ideally, all working nodes possess identical networking and computa-
tional capabilities—we can calculate the total system energy consumption Es by summing the
individual contributions of each worker and the aggregator node. Hence, we can express Es as:

Es = ∑
i

E(i) = n ·Ew +Ea,

where Ew denotes the energy consumption of a single worker, and Ea represents the energy
consumed during the aggregation process.

Upon delving deeper into the contribution of each node in a FL scenario, for a generic
worker w, the energy consumption Ew is directly proportional to the local model complexity,
denoted as Mc(w), and the size of the local dataset, referred to as Sd(w).

In a FL scenario, where all participating nodes share the same model architecture, the local
model complexity is uniform across workers:

Mc(w1) = Mc(w2) = . . .= Mc(wn−1) = Mc(wn) = Mc.

On the server side, for the aggregator node a, the computation Ea typically involves an
average-like operation, with a limited computational cost. However, this operation can become
expensive with a high number of tensors to be averaged. Therefore, Ea is directly proportional
to the number of workers, n.

The energy modeling scheme described above would be incomplete without an explicit
acknowledgment of the relationship between energy, latency, and accuracy. While the primary
goal of a FL pipeline is to achieve the highest possible accuracy while minimizing overall la-
tency, optimizing these constraints becomes more challenging in the presence of heterogeneous
working nodes.
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In an ideal scenario with low heterogeneity among participating nodes, the optimization
objectives would be straightforward:

min(∆Lat)≈ min(Mc)

max(Acc)≈ max(Mc)

min(Es)≈ min(Mc)

. (3.3)

In this case, minimizing Mc would benefit Ew, Ea, and ∆Lat. The only trade-off to consider
would be between Acc and Mc to minimize energy consumption while satisfying Quality of
Service (QoS) requirements.

However, the dynamic and erratic nature of the fog environment introduces a higher-dimensional
space of possible solutions. As each worker node may be involved in multiple tasks and may
have a dynamically changing percentage of bandwidth at its disposal over time, selecting a
specific node during the aggregation phase becomes challenging and can have negative impacts
not only on Acc and ∆Lat but also on Es. For this reason, selecting nodes dynamically over
training rounds becomes fundamental.

EneA-FL Architecture:

EneA-FL is the pioneering middleware that effectively combines the strengths of serverless and
fog computing, demonstrating its suitability for Federated Learning (FL) scenarios characterized
by the presence of highly dynamic and heterogeneous devices. EneA-FL comprises three core
modules (see Fig. 3.4 as a reference):

• Energon, built upon the well-established open-source toolkit Prometheus1, serves as
a Prometheus-compliant exporter designed for IoT and edge devices. It functions as a
container shipped to participating nodes, transparently collecting energy metrics indepen-
dently of the local operating system. Energon provides an endpoint for aggregators to poll
energy and network metrics, scraping data from various Linux-based microcontrollers.
Published as a Pypi package2, Energon enhances community accessibility to edge device
system metrics;

• Furcifer is an innovative container orchestrator facilitating communication among par-
ticipating nodes through an overlay network. Leveraging Docker DNS interface, it

1https://github.com/prometheus/prometheus
2https://pypi.org/project/energon-prometheus-exporter/

https://github.com/prometheus/prometheus
https://pypi.org/project/energon-prometheus-exporter/
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Figure 3.4: EneA-FL, serverless middleware architecture

establishes peer-to-peer communication between nodes and their corresponding con-
tainers within the cluster. Furcifer additionally equips each participating node with a
kernel-compliant, container-based application. Additional details about this module are
provided in Section 5.2;

• Magister serves as the policy manager, overseeing the aggregation process. It is re-
sponsible for selecting aggregation policies, determining participant clients for each
aggregation round, and deciding when the learning process meets specified Quality of
Service (QoS) requirements. Magister plays a crucial role in orchestrating the completion
of the learning process based on the satisfaction level of QoS requirements for the FL
application.

Energon: Transparent Energy Monitoring

Energon is a modular monitoring tool for IoT and edge devices. It keeps track of an extensible
set of system metrics about energy consumption, network channel quality, and resource utilisa-
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tion, among others. Collected metrics are compliant with the Prometheus exporting standard,
which was recognised as graduated project maturity level in 2016 by Cloud Native Comput-
ing Foundation, the open-source vendor-neutral hub of cloud-native computing. Diagnostic
information can be obtained by HTTP requests to the /metrics endpoint on the IoT device. This
allows both scanning with application-dependent business logic and a smooth interaction with
the Prometheus ecosystem.

The ubiquitous nature of Energon allows the user to monitor critical metrics and to make
real-time decisions at the application level, without generating any additional overhead for the
constrained devices. When it comes to system monitoring, one of the primary objectives is
to minimise the additional operations necessary to collect the desired metrics while the target
applications are running. Energon has been meticulously designed to ensure complete isolation
from the rest of the system. It operates independently and does not require any interaction
with the running applications, thereby eliminating any potential interference or performance
overhead caused by monitoring processes. Running as a separate process allows Energon
to efficiently collect the desired metrics and perform monitoring operations without being
tightly coupled to the application’s execution and its business logic. By adopting this approach,
Energon efficiently and seamlessly gathers essential metrics without impacting the performance
and behaviour of the monitored applications, making it an effective and non-intrusive solution
for system monitoring tasks. This helps developers focus solely on the development of their
applications without the need to worry about logging the device’s state for later historical
analysis or real-time decision-making.

In addition to raw data monitoring and exposition, Energon can be customised to send an
event when a specific condition is met. Inside our EneA-FL middleware, Energon plays the
central role of keeping the orchestrator updated about the current state of the monitored nodes,
thus allowing the policy manager (i.e., Magister) to select the best workers available in terms
of residual energy, instantaneous power consumption, and peer-to-peer communication quality.
About the querying interface, Energon wraps PromQL, the functional expression language
defined by Prometheus, with easier high-level REST APIs. Those JSON-based endpoints can
be further customised depending on QoS requirements. Scraped metrics can be stored locally
on the orchestrator side, as done inside EneA-FL, or they can be saved on a separate database
for later use—e.g., time series analysis for designing new better policies. All metrics are stored
as time series data identified by a metric name and a set of key-value pairs. Sharding and
federation are also possible with minimal additional settings.
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Magister: Context Aware Decision Making for the Edge

Within EneA-FL, Magister operates as a pivotal component of the container orchestrator,
responsible for optimizing the client selection policy based on individual worker states in
terms of system metrics and QoS satisfaction. Magister considers factors such as the energy
consumption of participating workers, the time required for local training procedures, and the
accuracy improvement compared to previous training epochs. At this stage, communication
aspects are not factored into the considerations.

At the onset of each federation round, Magister utilizes Furcifer to gather clients resource usage
information from Energon and subsequently selects clients based on the collected metrics. The
local training procedure remains unaffected by Magister, and upon receiving local updates from
the selected clients, Magister makes decisions on whether to continue or halt the distributed
training process, contingent on achieved QoS metrics. Consequently, our solution ensures that
the global model aggregation process remains unaffected. Magister thus serves as a flexible
client selection component that can seamlessly integrate with any custom training and aggrega-
tion mechanism for Federated Learning (FL). To delineate the efficacy of Magister’s intelligent
selection process, we analyze its impact on consumed energy, execution time, and accuracy
improvements in the worker selection process.

The novel worker selection approach introduced by EneA-FL involves optimizing the choice of
workers for each round of the federated learning (FL) process. The traditional selection function,
denoted as S {W }, is enhanced by Magister to smartly choose impactful nodes, minimizing
energy and time consumption while maintaining model performance. The approach considers
a history-dependent selection function S to intelligently select workers based on their past
contributions and reliability. To find the optimal selection function, the relationship between
the aggregated model’s performance and the energy/time spent is explored. The effectiveness
metric E combines energy, time, and performance metrics, allowing for the identification of
impactful workers.

In our pursuit of minimizing resource expenditure at the worker level while avoiding a shift
in computational burden to the aggregator node, we adopt a simplified approach that obviates
the need for solving the combinatorial optimization problem. To achieve this, we define an
effectiveness measure designed to assess the impact of the local model update from a worker wi

on the performance and resource consumption of the entire federation setup. The effectiveness
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metric is formulated as follows:
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Here, max{E(t)} represents the maximum energy spent by any worker at step t, i.e., max{E(t)}=
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updates from all workers except wi. Finally, α and β are hyperparameters that govern the
trade-off between the significance of energy consumption, time requirements, and the achieved
performance improvement.

Testbed and Experiment Preliminaries

The experiments are executed on a practical networking testbed featuring a diverse array of
heterogeneous edge devices, effectively emulating a real-world deployment environment with
varying computational capabilities. We leverage representative datasets from LEAF [44], en-
compassing diverse use cases in Computer Vision and Natural Language Processing domains.
Specifically, we choose two datasets, MNIST and Sent140, from LEAF to assess the viability
of our energy-aware Federated Learning selection across multiple tasks. MNIST, a distributed
version of the well-known MNIST dataset, is employed for image classification. In addition,
Sent140 comprises a corpus of 1,600,000 tweets obtained using the Twitter API for sentiment
analysis. Lastly, we incorporate the N-BaIoT dataset [178], which contains realistic traffic data
collected from 9 commercial IoT devices authentically infected by Mirai and BASHLITE.

Then, perform a comparison between the containerised FL training application and the execu-
tion at operating system level. This reveals notable similarities in their energy consumption,
with a slight difference of approximately 5% in terms of training time. As illustrated in Fig. 3.5,
both executions exhibit comparable energy usage, suggesting that the containerization process
does not have a significant impact on overall power consumption during training tasks. Con-
tainers, serving as self-contained entities encompassing application code and dependencies,
wield substantial influence on the responsiveness of IoT applications during initialization and
deployment. To gauge and compare startup latencies with and without GPU hardware accelera-
tion, we delve into the potential performance enhancements and resource optimization within
serverless architectures for IoT applications. This section meticulously examines the minimal
additional overhead introduced by containerization during training execution, with a focus on
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Figure 3.5: Comparison of power consumption of containerized workers vs OS level execution. (a) On
Sent140 dataset. (b) On N-BaIoT dataset.

assessing startup latencies across a spectrum of devices through over 100 startup cycles. We
first evaluate the energy consumption of a wide range of IoT devices commonly used in fog and
edge scenarios. In particular, we measure the energy consumption of our models on a Raspberry
Pi model 4, a Jetson Nano developer kit, a Jetson Xavier NX board, and a Jetson AGX Orin
developer kit. In addition, each of the Jetson boards has been tested with and without GPU
support to check the energy cost of hardware acceleration in IoT training processes. Startup
latencies across variously configured devices demonstrating that the incorporation of hardware
acceleration does not yield significantly higher delays. On average, the supplementary latency
attributed to hardware acceleration stands at a mere 5%–10%. Furthermore, across all devices
assessed, latencies consistently fall within the range of 200 ms to 300 ms, emphasizing the
negligible impact of containerization techniques on the overall efficiency of training execution.

Figure 3.6 visualizes the experiments conducted to gauge the energy consumption of all
devices across five training epochs. The Jetson AGX Orin developer kit emerges as the swiftest,
albeit exhibiting higher instantaneous power consumption. Conversely, the Jetson Nano without
GPU stands out as the slowest device, whereas the hardware-accelerated iteration of the device
proves to be the optimal compromise in balancing energy consumption and training time.

Effectiveness Parameter Space Exploration and Corresponding Results

To assess the impact of the hyperparameters α and β on the federation optimization, we conduct
experiments by varying their values between 0 and 1, and 0 and 100, respectively. We perform
10 federation optimization experiments for each combination of α and β , setting the number
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Figure 3.6: FL workers power consumption over tested devices. (a) On Sent140 dataset. (b) On N-BaIoT
dataset.

of federation rounds to 30. For each experiment, we record (i) overall energy consumption,
(ii) total execution time, and (iii) the number of rounds required to achieve convergence. Con-
vergence is defined as reaching 97% accuracy on the test set for the global model. In our
experiments, we identify that setting α to 0.6 and β to 40 represents the optimal configuration
for EneA-FL. This setup enables the system to consume only 1.3 MJ of energy, complete 30
federation rounds in 12.7 hours, and achieve convergence in 10.8 steps. Having obtained the
best α and β setup, we compare our proposed solution with the standard FL setup – which
relies on random node selection – and the OORT [149] and its extended version (OORTv2) [16]
in 3.2. The findings emphasize that Magister provides a favorable solution for reducing both
energy consumption and execution time when compared to all baselines. Importantly, Magister
achieves these improvements without affecting convergence time, measured as the number of
rounds required to reach 97% accuracy. In addition the EneA-FL policy vastly outperforms the
selected baselines, achieving higher accuracy over all datasets and showing a statistically signif-
icant higher longevity in terms of residual energy consumption. This is confirmed by observing

Table 3.2: Comparison with other state of the art solutions.

Approach Energy Time Rounds
Standard FL 4.6 MJ 28.5 h 9.7
OORT [149] 1.8 MJ 13.2 h 11.2
OORTv2 [16] 2.2 MJ 13.8 h 13.8

EneA-FL worst 2.1 MJ 14.1 h 10.7
EneA-FL best 1.3 MJ 12.7 h 10.8
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Fig. 3.8, where we depict the average distribution of selected devices over federation rounds
during MNIST training. On the x-axis, it is apparent that the baselines last for a maximum of 8
federation rounds, whereas EneA-FL extends to as many as 17 optimization rounds.

Then, we investigate the influence of the number of clients per round on the federation. We
explore the selection of n workers per round, allowing n to vary between 10 and 80. In total, the
federation comprises 100 devices, so n spans from choosing only a small subset of federation
workers to nearly selecting all of them. In more detail, the results related to energy consumption
are presented in 3.7. It is noteworthy that consistently outperforms all selection baselines for
nearly every value of n. For smaller n values, such as n = 30 and n = 40, EneA-FL requires
almost 30% less energy to achieve convergence to the same accuracy level. However, as n
increases, including more workers in the selection, Magister ends up choosing both efficient
and inefficient devices—given the limited number of efficient devices—thereby diminishing
the advantage of smart device selection.

Finally, we study the percentage of dead selected devices over the federation round, com-
paring EneA-FL with the selected baselines. We model the discharging process of devices
as an exponentially distributed event over the federation rounds that a device can complete
and set its average value to be equal to a random value between 1 and 5. Therefore, in this
experimental setup, each device belonging to the federation is capable of completing a variable
number of federation rounds, after which it discharges completely and stops sending updates
if selected. As depicted in Figure 3.9, the number of selected devices that cannot produce
updates initially increases in the first few steps of the federation process for both approaches. In
particular, the baselines continue selecting devices unable to produce updates, reaching peaks
of up to 80% of selected workers with drained batteries. In contrast, EneA-FL employs its
energy management approach, resulting in a stable percentage of selected workers with dead
batteries, always staying below 40%. This is achieved through the handicap given to devices
that do not produce any updates. Additionally, the energy management mechanism contributes
to a more rapid convergence of the federation, as updates are consistently produced by workers.
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Figure 3.7: Impact of the number of selected clients per round on energy consumption (a) and execution
time (b) for the MNIST dataset.

Figure 3.8: Worker lifetime comparison again other experimental contributions.

Figure 3.9: Worker discharge percentage analysis compared with baselines.





Chapter 4

From Big Data to Small Data: Practicing
Frugality in Constrained Data
Environments

It is very reasonable to think that we are going to witness an increasingly higher amount of
data collected to feed more complex predictive models. As a consequence, the current way
employed to collect and process data is going to be unfeasible to handle the incoming amount
of information transferred over the network. Despite the current enthusiasm for Big Data, some
studies have been discussing new paradigms based on learning partial differential equations
from "Small Data" instead of training over huge data-sets. As the study done by Maziar Raissi
et al. [210] has shown, it is possible to design learning machines with the ability to operate in
complex domains without requiring large quantities of data. From that perspective, a Small
Data approach satisfies both the requirements in terms of privacy awareness and incremental
improvement of ML models, segmenting the data distribution and grouping data-sets into
clusters with similar characteristics or profiles. In this sense, two different approaches can be
evaluated in order to increase the capabilities of a predictive model:

• Arbiter approach: a single entity has to weight the contribution of each participating
node basing its evaluation on previous prediction results.

• Combiner approach: a combiner can be seen as an entity in charge of learning and
applying a composition rule. This strategy aims to coalesce the predictions from the
participating node models by learning the relationship or correlation between these
predictions and the correct one. A combiner computes a prediction that may be entirely
different from any proposed by a single model, whereas an arbiter chooses one of the
ones already computed by the participating nodes.
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While the former comes with various limitations such as single point of failure and questionable
trust level of participants, the latter lacks a standard way to combine smaller models into a
comprehensive resulting ensemble.

In Section 4.1 we analyze the main challenges of AI applications in data constrained en-
vironments while exploring the current state of the art. In addition, this section encompasses
two experimental contributions compared with the state of the art: in Section 4.2, we introduce
a blockchain-enhanced FL framework aligned with the aforementioned Arbiter approach; and
in Section 4.3 we employ an ensemble of weak autoregressive algorithms for predicting traffic
patterns in the context of smart cities, more oriented towards the Combiner approach we just
discussed.

4.1 Challenges in Deploying AI in Constrained Data Envi-
ronments

In this section, we delve into Small Data existing methodologies as a substitute for traditional
approaches focusing on privacy concerns that arise when data is scarce and dispersed among
participants. Then, we explore how, in such scenarios, algorithms with lower complexity can
outperform deeper neural networks.

4.1.1 Trust in Distributed Learning

Traditional machine learning (ML) approaches, relying on centralized data processing, face
impracticality when dealing with diverse and substantial data from various locations. This chal-
lenge is notably highlighted by privacy concerns [191], and legal regulations, exemplified by
the European General Data Protection Regulation (GDPR) [81], create obstacles for centralized
ML methods due to the potential risk of data leaks. In response to these challenges, Federated
Learning (FL) emerges as a valuable solution. Unlike centralized ML, which typically relies
on cloud-based resources and involves sending data to a central entity, FL conducts training
directly on remote clients using their on-premises data. Each client independently trains a local
ML model with its data and subsequently transmits it to a server. The server aggregates all
received partial models according to a predefined strategy [25].

While FL addresses certain AI challenges, such as preserving privacy, it is not immune to
attacks, including model poisoning and inference attacks [245]. Trustworthiness remains a
significant concern, especially with the potential presence of malicious clients and servers that
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can negatively affect FL training and introduce backdoors [153]. Moreover, the traditional
FL architecture based on the client-server model suffers from a single point of failure, low
scalability, and susceptibility to tampering of the global model, leading to possible biases in
favor of some partial models over others [194]. In FL processes, ensuring transparency is
crucial for clients, particularly when there is a lack of complete trust among participants or
with the service provider. Concerns may arise regarding the node responsible for aggregating
models, which could introduce biases and favor certain updates over others. Additionally, there
is a need to verify the integrity of models submitted by clients, as malicious contributions
could compromise the overall performance of the global model or introduce backdoors [19].
Therefore, to facilitate collaboration among unknown clients effectively, service providers must
guarantee two key aspects: (i) fair treatment of all partial models without biases that could
favor specific contributions, and (ii) robust mitigation measures against malicious attempts to
manipulate the global model through a rigorous validation process for partial models.

Addressing Trust in Distributed Learning: SOTA Approaches and Applications

In the realm of privacy-preserving techniques for Federated Learning (FL), one prominent
approach is Differential Privacy (DP), as highlighted in the literature [271]. DP involves
introducing artificial noise to the partial model before transmitting it for aggregation. Striking
a balance between preserving privacy, as indicated by the level of noise introduced, and
maintaining satisfactory global model performance becomes crucial. Adjusting this tradeoff is
essential to ensure adequate privacy guarantees without compromising the overall efficiency
and convergence time of the training process. Another emerging avenue in FL focuses on
leveraging homomorphic encryption [199]. This encryption technique allows operations to be
conducted on encrypted data directly, eliminating the need for decryption before processing.
Clients encrypt their partial models before transmission, and the aggregation produces an
encrypted global model. Once decrypted, this model serves as a privacy-preserving solution
that clients can utilize without exposing sensitive information during the collaborative learning
process.

To enhance trustworthiness among participants in Federated Learning (FL), one approach
involves selecting clients based on their reputations and assigning weights to partial models
according to a trust score associated with each participant. Kang et al. [138] propose a method
that evaluates reputation stored on a consortium blockchain during the selection of FL training
participants. Reputation, in this context, is measured from the training task completion history,
considering past behaviors such as reliable or unreliable activities. While this approach is
tailored for mobile devices, it may face limitations in scenarios with a restricted number of
clients where discarding nodes in advance is not feasible. In such cases, all contributions,
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even from a small number of participants, can be valuable for improving the quality of the
global model. Cao et al. [45] introduce FLTrust, a Byzantine-robust FL method designed to
safeguard against malicious attacks. FLTrust achieves this by training a server model using a
small, manually collected clean training dataset as if it were a client. Trust scores are assigned
to each local model update based on its similarity with the server model update, and these
scores are utilized for weighting local model updates in the generation of the global model.
Despite its robustness against attacks, FLTrust has limitations related to the centralized server
and its dependency on the training dataset provided to the server. Additionally, there is a risk of
assigning low trust scores to honest clients that perform exceptionally well.

Other contributions already introduced the symbiotic interplay between FL and blockchain
as a power way to guarantee accountability and fairness. Lo et al. [164] leverage blockchain
technology to introduce accountability and enhance fairness in FL systems. By utilizing
blockchain, they ensure data-model provenance by storing hashed values of data, local model
versions, and global model versions. To address fairness concerns, the authors propose an
algorithm that dynamically samples training data from classes with poor representation, guided
by the inverse of the weight distribution observed in the dataset used for testing. Chen et al.
[53] introduce a decentralized FL framework based on blockchain technology, incorporating
a decentralized validation mechanism for partial models. In each round of FL training, a
subset of devices is chosen to serve as validators. These validators independently validate all
local updates using their respective local datasets. After examining the experimental results,
each validator casts votes to assess the legitimacy of each model. Aggregating votes from
multiple validators allows for the identification and removal of malicious devices associated
with negative model contributions. This approach enhances the robustness of the FL framework,
as the validation operations can be effectively conducted even in the presence of compromised
validators. Specifically in industrial IoT scenarios, Basset et al. [6] present Fed-Trust, a
blockchain-orchestrated edge intelligence framework for trustworthy cyberattack detection in
IIoT. However, their approach does not bring remarkable novelties in terms of validation of
partial models since the verification phase consists in allowing fog nodes to collect the block
comprising the partial models from all contributors to calculate the global model. In this work,
trustworthiness is intended as one of the main targets of cyberattacks for the IIoT that can be
protected through a distributed temporal convolution generative network.

TrustFed [213] is a fully decentralized cross-device FL framework based on blockchain
technology. It ensures fairness by utilizing statistical outlier detection techniques to identify and
remove malicious participants from the training distribution. TrustFed incorporates blockchain
and smart contracts to manage the reputations of participating devices. However, it’s important
to note that TrustFed’s approach may eliminate outliers, including contributions from clients
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that have achieved significantly better performance due to having larger local training sets than
other participants. Gao et al. [93] introduced SVeriFL, a novel protocol that leverages Boneh-
Lynn-Shacham (BLS) and multi-party security for verifying the integrity of partial models
contributed by clients and ensuring the correctness of their aggregation. However, similar to
previous approaches, the primary focus is on verifying the integrity rather than emphasizing the
quality of the submitted partial models. Additionally, the protocol relies on a trusted authority,
introducing an element of centralization and potential vulnerability. Li et al. [156] propose
a dynamic verification strategy to mitigate the influence of abnormal clients on the global
model. Similar to our work, the authors utilize a secondary server-side dataset to validate the
contributions of each client, only incorporating partial models that achieve satisfactory accuracy
in the aggregation process. However, their approach retains vulnerabilities associated with
using a centralized server for model aggregation. Despite recent advancements in techniques
ensuring the correctness of partial model aggregation without relying on blockchain and smart
contracts, these new approaches are still susceptible to a single point of failure that could
compromise the entire system.

4.1.2 Low Complexity Algorithms in Time Series Forecasting for Real-
World Scenarios

In the realm of statistics and machine learning, the bias-variance tradeoff characterizes the
inherent property of predictive models. It reveals that models with lower bias in parameter
estimation tend to exhibit higher variance of parameter estimates across diverse samples, and
conversely, models with higher bias often entail lower variance. This tradeoff encapsulates the
delicate balance and dilemma faced by practitioners—known as the bias-variance problem—in
attempting to simultaneously minimize these two types of errors. This challenge arises as a
hindrance preventing supervised learning algorithms from effectively generalizing beyond their
initial training set.

Bias, as a component of the bias-variance tradeoff, represents the error stemming from
erroneous assumptions within the learning algorithm. When bias is high, indicating overly
simplistic models, the algorithm may inadvertently overlook crucial relationships between
features and target outputs, resulting in a phenomenon known as underfitting [261]. On the
other side of the spectrum, variance, another facet of this tradeoff, manifests itself as an error
due to the algorithm’s sensitivity to minor fluctuations in the training set [112]. Elevated
variance, indicative of overly complex models, can cause the algorithm to excessively capture
the random noise present in the training data, deviating from the intended patterns and leading
to overfitting.
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There are four different reasons why it is then preferable to employ a simpler model over a
more complex one:

• Prevents Overfitting: Utilizing a simple model is advantageous in preventing overfitting,
particularly in high-dimensional datasets with an abundance of features. Overfitting
occurs when a model captures not only the genuine patterns in the data but also random
fluctuations, leading to reduced generalization performance.

• Interpretability: Simple models, with fewer features, enhance interpretability. In the
context of an overly complex model with numerous features, especially when these fea-
tures are correlated, understanding the model’s behavior becomes challenging. Simplicity
helps to obtain a clearer and more accessible interpretation.

• Computational Efficiency: Training a model in a lower-dimensional data set contributes
to computational efficiency. The execution of algorithms on simpler models demands
less computational time, offering practical advantages in scenarios where efficiency is
crucial.

• Higher Accessibility: Simple models are often more accessible to a broader audience.
Their straightforward structure and reduced complexity make them easier for stakehold-
ers, including non-experts, to comprehend and utilize. In addition, lower computing
capabilities are required to train simple models, making the cost associated with compu-
tational resources accessible to smaller players.

In this section, we delve into the potential advantages of employing low-complexity algo-
rithms over more intricate ones, such as deep neural networks. Our focus is directed towards
scenarios characterized by a limited dataset size, where the risk of overfitting a complex model
becomes more prominent.

Data Size and Model Complexity Tradeoff: SOTA Approaches and Applications

Choosing the most suitable model from a set of competing candidates is a common challenge in
real-world modeling. The definition of the "best" model is contingent upon its effectiveness in
serving a specific purpose related to a well defined dataset. Evaluation often involves comparing
the model’s simulations to observed data. Model selection methods are employed to identify
a balance between achieving a good fit with the data and maintaining an appropriate level of
model complexity. The diverse interpretations of model complexity inherent in various model
selection methods are pivotal, as they reflect distinct underlying objectives in the modeling
process.
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The process of fitting data involves not only aligning with known data but also anticipating
future, unknown data in forecasts [106, 273]. To do that, two different approaches are possible.
Knowledge can be incorporated within a model as physical or semi-physical equations [130]
or with the support of historical data collected in the past. Despite recent technological
advancements covering both of these cases, academia and industry are predominantly investing
time and resources on the second option. This preference stems from the fact that the completely
data-driven, and in some extreme cases, black box approach of Artificial Intelligence has already
outperformed humans in certain highly specific tasks.

As a consequence, Informed AI [263] describes the injection of prior knowledge into learn-
ing systems. Such knowledge often comes from domain-expert’s prior knowledge especially in
scientific and engineering domains. In robotics, simulation tools like ISAAC GYM [157], which
heavily rely on physical equations, are now used to generate synthetic data for AI-oriented
training processes when the available datasets are insufficient for Deep Reinforcement Learning
applications. In neural networks for climate prediction, physical laws are incorporated using
knowledge-based loss functions, illustrating the effectiveness of Informed AI for temperature
modeling [66]. In this approach, physical relationships between temperature, density, and
depth of water are utilized to design a physics-based loss function. The same technique has
been proposed in Autonomous Driving scenarios [274] leveraging additional, already existing
sources of knowledge is key to overcome the limitations of purely data-driven approaches.

In a different fashion, Generative AI [80] aims to solve the same lack of information.
StyleGAN [139] is a generative adversarial network (GAN) capable of unsupervised separation
of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic
variation in the generated images (e.g., freckles, hair) allowing the automated generation of
high-quality dataset.

While both Informed and Generative AI solves the scarcity of data problem in learning
pipelines, they do not minimize the computation required to train the final model. Actually,
the overall cost of the process is instead increased since an additional step is required at the
beginning of the pipeline. Ensemble is a general way of improving the accuracy and stability
of learning models, especially for the generalization ability on small datasets. The main idea
of a typical ensemble classification model consists of two steps: (i) generating classification
results using multiple weak classifiers, and (ii) integrating multiple results into a consistency
function to get the final result with voting schemes. Bagging [39], AdaBoost [111], random
forest [40], random subspace [118] and gradient boosting [86] are just some of the widely-used
ensemble classification methods.

The authors of [17] approach the issue of assessing the uncertainty forecasts of climate
impacts on river streamflow and provide an impressive example of ensemble learning in
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climate change prediction. In comparison to 1964–1990, they examined ensemble estimates
of hydrological changes in the Alpine Rhine (Eastern Switzerland) for the short- and long-
term scenario years 2024–2050 and 2073–2099. Dzeroski et al. [77] explored the creation of
ensembles composed of heterogeneous classifiers using stacking. They demonstrated that, at
best, these ensembles perform comparably to selecting the best classifier from the ensemble
through cross-validation. The researchers introduced two novel stacking methods by extending
the approach with probability distributions and multiresponse linear regression. Their findings
indicated that the latter extension outperforms existing stacking approaches and even surpasses
the performance of selecting the best classifier through cross-validation.

In [189] authors suggest the integration of the Ensemble Model Output Statistics (EMOS),
a state-of-the-art technique, with an ensemble that undergoes adjustment through an autore-
gressive process fitted to the corresponding error series. This adjustment is achieved via a
spread-adjusted linear pool, specifically designed for temperature forecasts. The introduced
ensemble modification technique serves the dual purpose of adjusting the ensemble directly and
obtaining a comprehensive predictive distribution for the weather quantity. The experimental
results, demonstrated using temperature forecasts from the European Centre for Medium-Range
Weather Forecasts ensemble, showcase the effectiveness of the proposed approach in yielding
improved results compared to the basic (local) EMOS method. Pado et al. [204] present a
novel ensemble methodology for predicting long-term energy demand, integrating various
models such as auto-regressive integrated moving average, artificial neural network, and others.
Through rigorous comparisons, the proposed approach demonstrates a 22.3% decrease in mean
squared error and a 33.1% reduction in mean absolute percentage error compared to leading
models.

Employing autoregressive techniques, authors in [22] propose an ensemble of ARIMA
models [239] to predict the annual energy consumption in Iran. The results demonstrate that
the proposed hybrid patterns enhance the accuracy of single ARIMA model in predicting
energy consumption. Shahriari et al. [234] addresses the challenge of traffic volume prediction,
comparing non-parametric and parametric methods. While parametric methods, like ARIMA,
exhibit low accuracy, non-parametric methods are criticized for lacking theoretical support.
Their innovation lies in combining bootstrap with the ARIMA model, resulting in an ensemble
of ARIMA models (E-ARIMA) to enhance prediction accuracy while maintaining theoretical
adherence.

Specifically for traffic forecasting, the study conducted by Vinay et al. [95] focuses on
enhancing public transportation systems through improved road safety and traffic circulation
using Vehicular Ad-Hoc Networks and Intelligent Transportation Systems. The paper discusses
the application of ARIMA techniques, emphasizing the integration of short-range and long-
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range dependencies in historical traffic volume data. The analysis considers various types of
roads and evaluates the computational complexity of ARIMA. Empirical results reveal that
ARIMA-GARCH outperforms ARIMA and SARIMA [49] in road traffic prediction, demon-
strating stability in model order across different historical traffic volumes and types of roads.
Yao et al. [287] introduce a Spatial-Temporal Dynamic Network (STDN) to model the complex
spatial dependencies and temporal dynamics in teh city of New York. The empirical findings
from a real-world dataset reveal that the temporal dependency exhibits a daily and weekly
pattern; however, it is characterized by dynamic temporal shifting rather than strictly adhering
to periodic behavior.

In the following section, we novelly propose a blockchain based framework for improving trust
among FL participants. Subsequently, we address the trade-off between model complexity and
dataset size showcasing the superior performance of our weak autoregressors ensembling in a
real-world time series forecasting use case.

4.2 Blockchain-based Trustworthy Federated Learning

To enhance the overall trustworthiness of the FL process, we introduced TruFlaaS [175], a
framework designed to establish trust among third-party contributors to the FL process. Tru-
FlaaS introduces a novel validation strategy for aggregating partial models, leading to an
enhanced quality of the global model. Initially, we assign a trust level to each client, updated in
each round, to appropriately weigh their contributions.

The blockchain, smart contracts, validation set, and Decentralized Oracle Networks (DON)
form the key architectural components that contribute to achieving a trustworthy Federated
Learning as a Service (FLaaS) framework. A DON serves as a middleware layer facilitating
the secure and reliable delivery of off-chain validation data to the blockchain. The integration
of blockchain and smart contracts enhances participant trust in the Federated Learning (FL)
process. Specifically, a smart contract validates partial models using a validation set provided
by the DON. Subsequently, it aggregates contributions from clients, assigning weights based on
their level of trustworthiness. Honest participants are incentivized to engage, while malicious
adversaries face discouragement through penalization mechanisms. TruFLaaS exhibits the
flexibility required to cater to diverse client demands. To our knowledge, TruFLaaS stands
out as the first framework designed and implemented to instill trustworthiness in the FLaaS
paradigm, incorporating smart contracts and a DON for partial model validation in Federated
Learning. The main components of the system are (see Fig. 4.1 as a reference):



86 From Big Data to Small Data: Practicing Frugality in Constrained Data Environments

• Decentralized Oracle Network (DON), it is the most innovative component on the Ser-
vice Provider side. This serves as an intermediary layer between the service provider and
the blockchain. This architecture offers several advantages. Without a DON, validation
data would need to be directly published on the blockchain. However, this approach has
a downside, as all participants could potentially exploit the published validation data to
create a partial model, even if malicious, that successfully passes the validation phase. To
maintain the integrity and security of the Federated Learning (FL) process, it is crucial
that validation data is provided only after the prerequisites for aggregation have been
satisfied. For instance, in the context of predictive maintenance, a malicious client might
attempt to construct a partial model that performs well on validation data but fails to
accurately estimate the remaining useful lifetime (RUL) when it falls below a certain
threshold.

• Blockchain Node, the service provider must deploy blockchain nodes to guarantee
authentication and authorization. Clients have the option to either locally run a blockchain
node (as depicted in Fig. 4.1) or connect to one deployed by the service provider. The
choice between running a blockchain node locally and connecting to a proxy node hosted
by the service provider involves trade-offs. While running a local blockchain node
provides clients with direct visibility into FL processes, it may consume a considerable
amount of client resources. This could pose a challenge for clients with limited computing
power or storage capacity. Thus, the decision to run a blockchain node or connect
to a proxy node needs to carefully consider these trade-offs, allowing for a flexible
configuration that balances ease of use and resource consumption in FL.

• Validation set, the validation and aggregation of the global model are orchestrated
through a smart contract. The smart contract initiates by verifying the authorization
status of the client to participate in the current FL process. Subsequently, before validating
and aggregating partial models, the smart contract patiently waits until the specified
training requirements are met. For instance, if the aggregation strategy mandates that
all participants must contribute their updates, the smart contract remains in a waiting
state until all clients have submitted their partial models. It then triggers a request for the
validation set for the given round. As mentioned earlier, the validation set is supplied by
the service provider through a DON. Each partial model undergoes validation against the
acquired validation set, and those meeting the predetermined performance threshold are
incorporated into the aggregation phase.
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Figure 4.1: Trustworthy Federated Learning as a Service architecture.

Determining the Trust Level of Participating Nodes:

Each client, denoted as ci ∈ C , is attributed a trust level ti,l ∈ [0,1]. Trust models in Peer-to-
Peer (P2P) networks often differentiate trust towards a peer into direct and indirect categories.
Direct trust is grounded in prior interactions with that peer, while indirect trust is based on the
peer’s global reputation. The Transaction Acceptance Rate (TARi,l) is introduced as a measure,
defined as:

TARi,l =
TAi,l

Ti,l

where TAi,l is the number of accepted transactions, and Ti,l is the total number of transac-
tions related to the fl process. The Global Trust Value (GTi) is computed as:

GTi =
∑

N
j=1 ti, j
N

Here, trust levels are derived from clients’ participation in past or ongoing Federated
Learning (FL) processes. By leveraging both direct and indirect trust components, the trust
level is calculated using the formula:

ti,l =
GTi +TARi,l

2

These values undergo updates at each round through the dedicated smart contract (Fig. 4.2,
step 11). At this juncture, a decision is made on whether to revoke the vci,l from client ci if its
TARi,l fails to meet minimum requirements (i.e., falls below a predefined threshold). In each
round, the average TAR (µTAR) across all participants and the corresponding standard deviation
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(σTAR) are computed. It is then assessed whether, considering the number of remaining rounds,
a client can surpass the threshold set at µTAR −σTAR. If it fails to do so, the corresponding vci,l

is revoked, and the client is excluded from fl .

The reward ri,l assigned to each ci is then calculated as:

ri,l = bl
TARi,l

∑
N
j=1 TAR j,l

(4.1)

Such an incentive scheme fairly distributes bl according to the contributions of all the ci,l ∈ Cl .
For each ci,l , the contribution corresponds to its TARi,l . It is clear that, given ci,l,c j,l ∈ Cl , and
TARi,l > TAR j,l , it follows that ri,l > r j,l .

Step-by-step Validation and Aggregation Process:

After initiating a new fl or joining an existing one, a client is furnished with the requisite vci,l

to contribute to that training. The validation and aggregation workflow, depicted in Fig. 4.2,
involves the following steps, iterated for each round k:

1. Each ci,l ∈ Cl collects local data from deployed IoT/IIoT devices.

2. The data are employed to locally train a partial model mpk
i,l .

3. Each ci,l provides mpk
i,l and vpi,l , obtained by signing vci,l through its Decentralized

Identifier (DID), to scl , which validates and aggregates all partial models MPk
l .

4. scl forwards vpi,l to a smart contract responsible for authorizing participants.

5. This smart contract grants or denies access to fl . It jointly verifies the validity of vpi,l

and ensures that the embedded vci,l has not been revoked.

6. Before aggregating all partial models MPk
l , scl awaits until the aggregation requirements

are met and validates MPk
l against a validation set V k

l ⊂ Vl provided by a Decentralized
Oracle Network (DON) d.

7. d requests V k
l from s.

8. s provides V k
l to d. Ensuring that V z

l is distinct from V j
l for j < z prevents ci,l from

crafting mpz
i to achieve satisfactory performance on a known Vl [].

9. d returns V k
l to scl .



4.2 Blockchain-based Trustworthy Federated Learning 89

IoT/IIoT Devices Client Validation &
Aggregration Authorization Reputation Decentralized

Oracle Network Service Provider
1. Local data

2. Train partial
model

4. Authorize VC

5. Grant or deny

6. Get validation data 7. Get validation data

8. Validation data9. Validation data

10. Validate partial
models

11. Update reputations
12. Reputations

13. Aggregate partial
models14. Global model

3. Send partial model
+ VC

Figure 4.2: Validation and Aggregation process inside True-FlaaS

10. scl validates MPk
l against V k

l . To be accepted, a partial model must achieve perfor-
mance equal to or surpass a specific threshold. The interquartile range (IQR) method is
employed for outlier detection, offering robustness to extreme values.

11. Based on collected metrics, scl sends updated reputations to a smart contract used to
trace ti for each ci.

12. The smart contracts calculate all trust levels T k for each ci,l and return them to scl .

13. scl aggregates all validated mpk
i ∈ MPk

l , weighting them according to the corresponding
tk
i ∈ T k.

14. The global model mgk
l is provided to all ci,l .

Experiments and Corresponding Results:

To prove the effectiveness of True-FlaaS in real-world scenarios we tested our middleware
in two different industrial context: (i) the predictive maintenance use case, employing the
NASA Turbofan Jet Engine dataset [229] for engine degradation modeling and; (ii) the botnet
attack detection use case where we used the N-BaIoT dataset [178] containing real traffic
data gathered from 9 commercial IoT devices authentically infected by Mirai and BASHLITE.
We conducted multiple experiments, considering scenarios involving both honest clients with
limited datasets and malicious nodes. The malicious nodes had intentions to disrupt the training
process or introduce backdoors within the global model. Our evaluation included a comparison



90 From Big Data to Small Data: Practicing Frugality in Constrained Data Environments

of TruFLaaS against two counterparts: the conventional baseline (without validation mecha-
nisms) and TrustFed [213].

For each of the two datasets, we conducted three different sets of experiments. Initially,
we considered a scenario where the data distribution among honest clients was heterogeneous,
meaning that some nodes possessed more or fewer data samples than others. These experiments
were performed by varying the number of participants and incorporating different percentages
of nodes with varying data amounts.

Secondly, we delved into a specific case within the aforementioned scenario, where some
nodes lacked data for specific classes of events, defined as "rare cases." For instance, certain
smart manufacturing enterprises may not have experienced the breakdown of specific machinery
or have never been affected by particular types of attacks. In this experiment, focusing on the
predictive maintenance use case, we identified rare records based on the Remaining Useful
Life (RUL) values. We discriminated data records by tagging them as rare if they fell within a
low percentile of a pseudo-normal distribution, separating low RUL values from the others. To
accomplish this, we conducted statistical analysis and calculated the 10th percentile values for
both the training and validation sets. Given that NASA data do not follow a normal distribution,
we standardized the data to use the z-score table for calculating exact areas for any given
normally distributed populations.

Lastly, to evaluate the resilience of TruFLaaS against backdoor attacks, we performed
several experiments with varying percentages of malicious nodes. Similar to TrustFed, we
simulated the behavior of malicious nodes in these experiments by performing training on data
containing random noise.

For the heterogeneous data distribution experiments, TrustFed, selectively aggregates par-
tial models whose accuracy falls within a predefined interval determined by the neighborhood
of the mean and standard deviation. However, this approach may overlook clients with het-
erogeneous data distributions that produce high-quality partial models, surpassing the bounds
of the specified interval. In contrast, TruFLaaS discards partial models below its accuracy
threshold during validation but involves all partial models with accuracy exceeding the lower
bound of the mean and standard deviation during the aggregation phase. Figures 4.5 and 4.6
illustrate how TruFLaaS surpasses TrustFed by effectively identifying client contributions with
significantly larger datasets. TruFLaaS not only achieves the target accuracy faster than other
approaches but also exhibits a more pronounced advantage with an increasing number of nodes
possessing augmented data. In both cases experiments encompass accuracy comparison of
different node selection strategies with 0 nodes having augmented data (a), 10 nodes having
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augmented data (b), and 25 nodes having augmented data (c).

In the Rare Cases scenario, for the sake of fairness, we did not compare TruFLaaS with
TrustFed, as the latter does not differentiate handling rare cases, and our approach is expected
to outperform it by far. Figures 4.5 and 4.6 present the experimental results, considering
variations in the number of nodes without rare data and the strategy employed to exclude nodes
with subpar performance. In the predictive maintenance scenario, the first two strategies, i.e.,
excluding nodes with poor performance on the validation set comprising only rare cases and
excluding nodes with poor performance on the validation set mirroring the distribution of the
test set, exhibit superior performance compared to other aggregation strategies. For the botnet
attack scenario, our solution demonstrates resilience to an increasing number of nodes lacking
rare data. Notably, the accuracy remains unaffected even with a higher proportion of nodes
with heterogeneous datasets. All experiments conver accuracy comparison of different node
selection strategies with 0 nodes without rare data (a), 10 nodes without rare data (b), and 25
nodes without rare data (c).

For the Model Forging Attack set of experiments, Figures 4.7 and 4.8 vividly illustrate how
TruFLaaS exhibits greater robustness than TrustFed against model forging attacks while varying
the number of malicious nodes. This robustness stems from the fact that TrustFed, relying
on mean and standard deviation for outlier detection, becomes less accurate in the presence
of excessively large or small values. For instance, an outlier with notably poor performance
might significantly skew the total mean, leading TrustFed to accept outliers whose performance
should not be accepted under normal conditions. Furthermore, TrustFed’s approach, which does
not weigh partial models, results in the complete disruption of training when aggregating an
outlier. Notably, in the predictive maintenance experiment, TrustFed performs worse than the
baseline with 0 malicious nodes, possibly due to the removal of nodes achieving performances
much greater than the average. Conversely, TruFLaaS utilizes a more robust outlier detection
algorithm, consistently achieving similar performance across all scenarios. Additionally, by
employing weights based on the number of accepted transactions (i.e., level of trust), sporadic
errors during the validation process have minimal influence on the global model, preventing
disruption of the entire training process. These results provide valuable insights into the ro-
bustness of our proposal, demonstrating its effectiveness in protecting against model forging
attacks.
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Heterogeneous Data Distribution results:

Figure 4.3: Heterogeneous Data Distribution on NASA engine degradation dataset.

Figure 4.4: Heterogeneous Data Distribution on N-BaIoT botnet attack dataset.
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Heterogeneous Data Distribution on Rare Cases results:

Figure 4.5: Heterogeneous Data Distribution on Rare Cases over NASA engine degradation dataset.

Figure 4.6: Heterogeneous Data Distribution on Rare Cases over N-BaIoT botnet attack dataset.
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Model Forging Attack results:

Figure 4.7: Model Forging Attack on NASA engine degradation dataset.

Figure 4.8: Model Forging Attack on N-BaIoT botnet attack dataset.
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4.3 Modeling Vehicular Traffic in UFM Scenarios Through
Frugal Autoregression

The rapid deployment of sensing and communication technologies is facilitating the implemen-
tation of smart city applications, ushering in an era of data-driven modeling for various urban
processes. Among these, Urban Facility Management (UFM) has gained prominence for its
direct influence on the sustainability and development of cities.

The study we conducted in [181] deals with the predictive subsystem in charge of traffic
volume forecasting. This is responsible for generating near-to-mid term forecasts of the activity
index, providing UFM operators with a versatile decision-support system. In this context, we
present an analysis of the vehicular traffic component, a key element of the activity index, eval-
uating the accuracy of various predictive models and discussing their operational implications.
In this context, we present different prediction approaches, aimed at inferring autocorrelations
in the vehicular data by applying and comparing canonical statistic approaches, e.g., Weighted
Moving Average (WMA), autoregression techniques, e.g., AutoRegressive Integrated Moving
Average (ARIMA), Seasonal ARIMA (SARIMA), and deep learning enhanced regression mod-
els like Long Short Term Memory (LSTM) [119]. We assess the accuracy of the schemes using
realistic data, discussing the tradeoffs and operational considerations that emerge. In particular,
we show how the combination of a data segmentation approach and ARIMA outperforms both
WMA and LSTM deep learning regression by about 10% of accuracy score while achieving
comparable computation time.

A Real World Use Case:

The historical dataset covers a period from April 2019 to June 2020 in the city of Bologna (IT),
including the first lockdown phase announced in Italy (March 2020). The data are sourced by
an onboard blackbox, a multi-purpose and autonomous device, when pre-determined events
occur, e.g., vehicle engine turned on/off. The historical data comprises daily trips, delimited
by a start and stop latitude/longitude coordinate, along with some additional attributes used to
qualify a trip as follows:

• Trip and device identifier: numerical identifier of the trip and of the on-board device,
respectively.

• Start/End date/time: time/date when this trip was initiated i.e., corresponding to the
time/date the vehicle engine is turned on/off.
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Figure 4.9: Daily number of trips evolution in time.

• Start/End latitude/longitude: GPS coordinates denoting the place when this trip initiat-
ed/terminated.

• Average velocity: average speed in km/h of the trip.

In addition to the trip header data described above, in a separate file, the system receives and
digests intermediary, latitude/longitude, data points denoting intermediary trip events sensed by
the on-board device. In general, an intermediate data point is generated whenever a vehicle has
traversed 1km or 60seconds have passed since the last data generation.

The graph presented in Figure 4.9 depicts the daily trip volume derived from the dataset,
showcasing its temporal evolution. Utilizing the trip identifier within the datasets facilitates
the extraction of this information. The graph provides insights into the overall volume of trips,
further broken down into three distinct time intervals: 7-9 am, 12-2 pm, and 4-6 pm. Notably,
the sudden decline in traffic volume, commencing in March coinciding with the initiation of
lockdown measures following the first decree, is evident from the visualization.
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In our pursuit of an effective predictive model with scalability and operational value for
Urban Facility Management (UFM) operators, we have developed distinct algorithms to cater
to various operational needs:

• MTPM (Midterm Predictive Model): This model allows operators to schedule and
monitor future maintenance interventions in the midterm;

• STPM (Short-Term Predictive Model): Designed for short-term predictions, this
model enables operators to (re)schedule planned interventions promptly in response to
unexpected interferences in activity.

These approaches aim to deliver reasonably accurate predictions at different geographical
granularities, covering aspects such as the entire city road network or the traffic volumes on a
specific street. The system tracks data at a road-arch granularity allowing fine grained analysis
and forecasting on high and low traffic volumes areas of interest. Operationally, MTPM utilizes
11 historical months to predict the next one, while STPM is trained over the last week to predict
the trend for the next day. The algorithms have been tested both with and without weekend
days, yielding similar results in both scenarios.

Complexity Analysis Between Autoregression and DL-based Forecasting Techniques:

Regarding the choice of the algorithm to use, we considered ARIMA (Autoregressive Moving
Average), SARIMA (Seasonal Autoregressive Moving Average), and LSTM (Long Short-Term
Memory).

In terms of computational complexity, ARIMA is the less complex of these approaches [95].
Formally, its computation can be expressed as:

O(ARIMA) = O((N − p)× p2 +(N −q)×q2) (4.2)

Where:

• N is proportional to the dataset size;

• p and q are the two parameters of Moving Average and Autoregression, respectively.

In SARIMA, this is further added to by the periodicity component of the model, bringing
the overall complexity to:

O(SARIMA) = O(
Ls

∑
i=1

[(
N
Si
− pi)× p2

i +(
N
Si
− pi)×q2

i ]+ (N − p)× p2 +(N −q)×q2) (4.3)
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Where Si denotes the seasonality component.
Finally, regarding LSTM, being a deep neural network, its complexity is not directly linked

to the data distribution but rather to the depth of the network’s architecture and the number of
parameters to consider in regression. Mathematically, the complexity of a single sample can be
described as:

O(LST M) = O(
I

∑
i=1

(nc,i−1 × s2
c,i ×m2

c,i)) (4.4)

• I: Number of convolutional layers;

• nc: Number of convolutional kernels;

• nc, i−1: Proportional to the set of input variables;

• sc, i: Size of the convolutional kernel;

• mc, i: Proportional to the set of output variables.

Specifically in terms of complexity on the vehicular traffic dataset in the city area of
Bologna, it has been observed that

10×O(ARIMA)≈ 4O(SARIMA)×≈ O(LST M) (4.5)

Autocorrelation Analysis and Experimental Results:

Autocorrelation is commonly used in discrete time series to compare a signal with a delayed
copy of itself. This kind of analysis is the mathematical tool for finding repeating patterns which
are often obscured by noise or by outliers. Both MTPM and STPM employ an autocorrelation
strategy to predict over the aggregated and discrete data, respectively. We first checked the
the stationarity of dataset. In fact, ARIMA and SARIMA imply the stationarity hypothesis to
converge on time series values. The autocorrelation function (ACF) assesses the correlation
between observations in a time series for a set of lags and helps to determine if a function
is stationary or not. A lag is the window that has to be considered when computing the
autocorrelation value between two different samples. If a significant lag exists, then the
function presents a relevant pattern between the records at the same index of the lag value. On
the contrary, if no relevant ACF value exists, the function is not stationary and no autogressor
can be applied.

As shown in Fig. 4.10, ACF identifies 7 and its multiples as significant and positive lags
outside the confidence interval, hence the function is not stationary and neither autoregressive
nor moving average method can be applied. In this case, a common approach is to differentiate
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Figure 4.10: Graphical evaluation of ACF. Consistent recurrence of 7 and its multiples as lag values in
the autocorrelation function.

the function multiple times to change its time dependency, deleting the trend. The novelty
of the work done is that instead of differentiating the function, the data are split according
to the dependency between the same day of the week during the whole time series. In other
words, weekdays were grouped to have all the Mondays, Tuesdays, Wednesdays and so on,
together. Both the aggregated and the fine-grained (road) data were split according to the this
data segmentation strategy.

Then we evaluated model performance on aggregated data across ARIMA, SARIMA and
LSTM. The accuracy of the devised algorithms is measured by calculating the Mean Absolute
Percentage Error (MAPE) to take into account the magnitude of data in the residuals’ computa-
tion. Table 4.1 reports a day by day comparison between considered approached highlighting
ARIMA superior performance after segmenting the dataset into da of the week subsets.

We then extended our evaluation to fine-grained data. In this case we selected two stress of
the city in order to compare the performance of the best mode, ARIMA, in different scenarios.
In the first one we selected a street with a corresponding high data volume - 2000 vehicles a day
- and a secondary road with about 15 vehicles a day. As reported in the aggregated data scenario,
ARIMA outperforms SARIMA in all weekdays, with an overall percentage accuracy of 83.39%
for ARIMA and 48.32% for SARIMA. Another relevant consideration regards the performance
of MTPM over high and low volume traffic roads. Table 4.2 shows that ARIMAs’ percentage
accuracy on high traffic streets is on average a third higher when compared to the low traffic
streets. This is reasonable, as the higher the data volume, the smaller the impact of noise and
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Day ARIMA SARIMA LSTM
Mondays 94.78% 92.70% 91.63%
Tuesdays 97.94% 81.01% 73.56%

Wednesdays 96.45% 33.57% 78.21%
Thursdays 94.63% 75.99% 54.87%

Fridays 94.64% 75.97% 64.14%
Saturdays 94.24% 92.70% 83.47%
Sundays 91.51% 90.93% 87.38%

Table 4.1: ARIMA/SARIMA/LSTM accuracy: day of week comparison

outliers on the prediction when calculating the MAPE metric. In fact, the standard deviation
for high traffic street is much higher than the one for low traffic streets. More specifically, they
are 105.98 and 5.04, for high and low traffic volume roads, respectively.

ARIMA

Day High traffic Low traffic
Mondays 92.01% 54.25%
Tuesdays 91.96% 65.56%

Wednesdays 96.99% 72.36%
Thursdays 97.05% 78.31%

Fridays 98.64% 75.31%
Saturdays 95.66% 74.35%
Sundays 95.09% 78.47%

Table 4.2: ARIMA/SARIMA/LSTM accuracy: ARIMA percentage accuracy comparison between high
and low traffic volume roads.

Figure 4.2 illustrates the performance of ARIMA over SARIMA in a high(a) and low(b)
traffic scenario. As reported, ARIMA follows the trend with a reasonable accuracy, well placed
in the middle of the confidence interval. On the contrary, SARIMA predicts an increasing trend
which is not observed in the raw data.
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Figure 4.11: Models’ prediction comparison on (a) high and (b) low traffic volume streets.





Chapter 5

Communication Efficient Frugality for
Bandwidth-Constrained Environments

In the realm of Mobile Computing, the growing demand for mobile devices to run high
performance applications, coupled with the need to extend the battery life of handheld mobile
devices [147], highlights the importance of alternative computing strategies. Offloading
emerges as a powerful approach to prolong the operational duration of handheld mobile devices
by delegating certain application components to remote execution locations, such as servers in
data centers or cloud environments. The main concern in this case focuses on issues of relatively
high latency for applications sensitive to delays. Computation offloading encounters challenges,
particularly in the context of data migration among components. These challenges are often
exacerbated by wireless communication, which emerges as a dominant factor influencing the
overall execution time of applications. The time required to transfer data between a mobile
device and the server via a wireless link can significantly impact the overall execution time,
potentially causing deviations from time constraints. Therefore, the data transmission rate
between the mobile device and the server emerges as a critical factor influencing offloading
decisions in such scenarios.

Additionally, unreliable networking conditions are very likely to take place once node
mobility comes into play, introducing further complexities in maintaining stable and efficient
communication between nodes in a mobile environment. This limits the applicability of of-
floading to those environments where networking conditions are stable and predictable. As
a consequence it is often preferable to move the entire computational workload on mobile
devices leading to additional power constraints, as we already mentioned in Section 3.1.

In this section, we thoroughly delve into the various aspects of the offloading paradigm,
aiming to attain communication frugality in the face of challenging bandwidth requirements.
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Specifically, in Section 5.1, we scrutinize existing solutions utilized to surmount networking
constraints. In Section 5.2, we present Furcifer, a container-based framework designed for
semantic compression in Object Detection tasks.

5.1 Leveraging Networking Conditions As Opportunistic
Frugal Resources

Here we consider bandwidth as another limited resource available to mobile devices, alongside
energy and data constrains as done in Chapter 3 and Chapter 4, respectively. Local Computing
(LC) and Edge Computing (EC) stand as the primary pragmatic strategies for tackling the
wide array of heterogeneous tasks in the broad range of real-world scenarios centered on the
execution of complex data analysis and decision making algorithms. On the one hand, LC,
that is, the execution of the ML algorithm onboard a mobile device, investigates the optimal
symbiotic interplay between software applications and hardware components, aiming to harness
the available onboard resources in the utmost efficient manner possible. On the other hand,
EC, where the ML tasks are offloaded to a compute-capable device positioned at the network’s
edge, leverages high-performance communication and computing technologies to effectively
support real-time applications. While EC promises higher computational capabilities and
lower energy consumption to mobile systems, it requires a high capacity wireless link that
may be not consistently available due to the volatile nature of wireless channels, resulting in
unreliable computing services. Conversely, LC is a more reliable computing modality with near-
deterministic performance. However, the deployment of ML models on mobile devices comes
at the price of reduced lifetime due to high energy consumption and diminished performance
due to limited onboard resources.

Optimizing Full Edge Offloading: SOTA Approaches and Applications

Authors in [124] introduce an energy-efficient approach for meeting application execution
time requirements by employing a dynamic offloading algorithm based on Lyapunov opti-
mization [69]. The algorithm demonstrates low complexity in solving the offloading problem,
determining the software components to execute remotely based on available wireless network
connectivity. Performance evaluations indicate that the proposed algorithm outperforms exist-
ing methods, achieving energy savings while meeting application execution time constraints.
Additionally, to address diverse wireless conditions and ensure low-latency user interaction,
we propose an adaptive offloading algorithm. This dynamic algorithm leverages Lyapunov
optimization to offload specific computation tasks to a dedicated server based on real-time



5.1 Leveraging Networking Conditions As Opportunistic Frugal Resources 105

changes in the wireless environment. Comparative assessments show that our algorithm sur-
passes existing approaches, notably saving more energy, all while adhering to the execution
time constraints required by the mobile application.

Chun et al. introduce the CloneCloud framework in [59], designed to enhance both
performance and battery life of mobile devices by offloading resource-intensive components
to cloud servers. In the framework’s partitioning phase, static program analysis and program
profiling are combined to identify offloadable components while adhering to specific constraints,
such as executing methods that involve mobile sensors locally. The partitioning process operates
at the thread level granularity, leveraging static analysis to identify migration constraints and
profiling to establish a cost model for offloading and execution. Application partitioning and
integration occur at the application level. Upon the user’s attempt to launch a partitioned
application, the framework consults a database of pre-computed partitions, considering current
execution conditions like available network bandwidth and cloud resources. The outcome of
this verification is a partition configuration file, loaded by the application binary. This file
instruments the selected methods with migration capabilities.

MAUI [61] operates as an offloading framework with a primary objective of optimizing
communication between smartphones and cloud services. It stands out as a highly dynamic
system due to its continuous profiling process. The framework adeptly conceals the intricacies
of remote execution from the mobile user, providing an illusion that the entire application
is running on the mobile device. In the initial phase, the MAUI profiler gauges the device
characteristics, and it persistently monitors both program and network characteristics throughout
the execution. This continuous monitoring is crucial since these characteristics may undergo
changes, and outdated or inaccurate measurements could lead to sub-optimal decisions by
MAUI. The offloading decisions in MAUI are made dynamically at runtime. The framework
determines which components should be executed remotely based on the real-time input from
the MAUI profiler. The decision-making process is facilitated by the MAUI solver, ensuring
that offloading choices align with the current state and requirements of the device and network.

Zhao et al. introduce the mirror server framework in [294], leveraging Telecommunication
Service Provider (TSP) based remote services. TSPs, as communication service providers,
primarily offer voice communication services, including landline telephone services. The
mirror server framework enhances smartphone capabilities by offering three distinct services:
computation offloading, security, and storage. The mirror server itself acts as a robust server
equipped with VM templates tailored for various mobile device platforms. A notable char-
acteristic of this framework in contrast with aforementioned contributions is that it does not
necessitate application partitioning, opting for the offloading of the entire application. In the
preparation phase, a new VM instance, referred to as the mobile mirror, is instantiated. The
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mirror server takes charge of the management and deployment of these mobile mirrors on a
computing infrastructure within the telecom network. Applications run within these mirror VM
instances, and the results are subsequently sent back to the Smartphone Mobile Device (SMD).
The framework employs an optimized offloading mechanism. However, it is important to note
that mirror servers are not specifically designed for extensive data processing. Consequently,
they can only provide limited services, such as file caching and file scanning, in contrast to the
broader range of services available in cloud data centers.

Xia et al. introduce the Phone2Cloud computation offloading framework in [275], aiming
to enhance the energy efficiency of smartphones and improve overall application performance.
Distinguishing itself from prior frameworks, this work focuses on a comprehensive quantitative
analysis of energy savings through both application and scenario experiments. Phone2Cloud
operates as a semi-automatic offloading framework, requiring manual modifications to appli-
cations during the preparation step to enable their execution on cloud servers. The offloading
decision-making process relies on static analysis, taking into account the user’s threshold for
delay tolerance. For applications tolerant to delays, the framework employs a straightforward
model that anticipates WiFi connectivity. The threshold is determined based on predictions for
delaying transfers, allowing more data to be offloaded over WiFi while adhering to the applica-
tion’s tolerance threshold [20]. Notably, the framework opts to wait for WiFi availability (only
if 4G savings are anticipated within the application’s delay tolerance) rather than immediately
initiating data transmission.

In [142], Kemp et al. introduce the Cuckoo framework designed for offloading smartphone
applications to a cloud server using a Java stub model. The primary goals of Cuckoo are to
enhance mobile performance and dynamic application partitioning. The framework seamlessly
integrates the Eclipse development tool with the open-source Android framework. During
the partitioning step, Cuckoo leverages the existing activity model in Android to distinguish
between intensive and non-intensive components of the application. This activity, responsible
for presenting a graphical user interface and binding to services, facilitates the offloading
of intensive components to any resource equipped with a Java Virtual Machine (JVM). In
the preparation phase, developers are required to write offloadable methods twice—once for
local computations and once for remote computations. To aid developers, a programming
model is provided, supporting dropped connections, local and remote execution, and packaging
all codes into a single compatible remote implementation. Cuckoo operates as a dynamic
offloading framework, making decisions at runtime and offloading well-defined components of
the application. If remote resources are unreachable (e.g., due to a lack of network connection),
the application can seamlessly execute on local resources (the mobile device).
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Context Aware Adaptation for Edge Intelligence: SOTA Approaches and Applications

Recent studies have investigated the benefits of context aware adaptation for specific tasks such
as 4k mobile Augmented Reality (AR) [214] and mobile video streaming [209] providing an
in depth overview of the set of optimization operations required to effectively deploy a self-
adaptive policy manager in real-world field experiments, where the level of added complexity
increases significantly if compared with theory-oriented setups.

Progressive adaptation to different Edge Intelligence contexts by using synthetic data [120]
or uncertainty-aware domain adaptation networks [105] proved to be a promising direction
when deploying an ML-based solution trained on state-of-the-art datasets in a real-world
scenario. Furthermore, employing strategies such as random exploration of optimal scaling
factors [283] can help alleviate the negative effects of source domain bias. An edge-assisted
Deep Learning based framework is proposed in [67], emphasizing the collaborative utilization
of mmWave radar and cameras to enhance system robustness, particularly in drone applications.

Offloading intelligent tasks to edge servers necessitates the low-latency transfer of information-
rich signals over wireless channels, and thus require high data rate wireless transceivers. In[172],
Matsubara Y. et. al. perform an analysis of the components of the total inference time in the
context of edge-assisted systems, which empirically demonstrates that the wireless channel
plays a major role in the end-to-end task latency. 5G communications are classified by the
ITU [116] as Reliable Ultra-Low Latency Communications (URLLC), which implies high
data rates compared to traditional Wi-Fi (2.4 GHz). Specifically, the 802.11ac standard [240]
uses new technologies such as a new operational bandwidth for base stations from 40MHz
to 80MHz, Multi User MIMO for simultaneous transmission and reception of packets, and
256-QAM modulation that improves the data rate when applied to EC systems. The use of 5G
communication technologies has been studied in the context of a wide range of applications.

For instance, Ren et.al [216] and Singh, Kiran et. al [242] demonstrate that collaboration
between the mobile, edge and cloud tiers supporting Web AR applications and QoS awareness
in cyber-physical systems leads to higher benefits when using 5G communication due to the
smaller time to transfer data between tiers. Yuan Z et.al. [290] and Dai C. et. al. [63] propose
systems and algorithms to improve EC communication for IoV and IoT applications. Although
the evaluation of the communication channel is particular to each application, both show that
5G communications enhance the ability of the system to meet the requirements of the ML task.
Particularly, Dai C. et. al. [63] compares the IEEE 802.11n and 802.11ac standards and show a
reduction in latency by nearly half the time as the number of EC requests increases when using
the latter.

To reduce the amount of data transferred over the network, such as images, data com-
pression [162] emerges as primary solution. Even constrained devices with very limited
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computing capabilities are capable of running lossy image compression (e.g. JPEG ISO
15444 standard [208]) methods in real-time, but fail to keep the same response time when
applying close-to-lossless [284] techniques. Many neural models for AI applications are com-
monly trained and evaluated using state-of-the-art datasets. In Computer Vision, for example,
COCO2017 [159] and Pascal VOC [82] are some of the most famous ones. However, these eval-
uations often overlook the significant performance degradation caused by image compression
[34, 57, 90, 203], which is inevitable in practical real time EC systems.

5.1.1 Semantic Compression for Informed Communication

Rooted in Shannon Information Theory [235], Semantic Compression aims to find the minimal
representation of a generic information at LEVEL-B, where similar semantic meaning could be
presented with various expressions (some more optimized that others) compared to LEVEL-A
where communication is not guided by prior knowledge (see Figure 5.1). Specifically, this
system includes the following parts:

• An information source that produces data to be transmitted to the destination. The
information is implied by various modalities (e.g., text, audio, image, video, and their
combinations). Data of different modalities are characterized by different levels of
information density and redundancy.

• A local knowledge base that provides additional guidance for the semantic transceiver.
This background knowledge base exists in various formats:

– Knowledge graph;

– Database;

– Trained parametric or non-parametric models;

It also provides a priori knowledge about the channel state information for both transmitter
and receiver. With the knowledge base, the semantic transmitter achieves effective
signal processing, which stresses the important parts of source data and matches the
characteristic of the channel as well.

• A semantic transmitter that operates on the source data to extract the semantics-related
features, which can be categorized into multiple semantic streams, each corresponding
to one type of semantic feature of source data. In addition, each semantic feature
corresponds to different semantic importance for specific tasks at the receiver, including
data recovery or downstream intelligent tasks, such as language translation and object
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detection. The features are further processed and unequally protected according to the
channel states.

• The technical transmitter, physical channel, and technical receiver operate on the semantic
feature sequence of each semantic stream in some way to produce signals suitable for
transmission over the physical channel. It can utilize the traditional separation-based
source and channel coding combined with modulation to produce digital signals. It
can also directly generate analog signals by using the emerging joint source channel
coding with deep neural networks. The technical receiver ordinarily performs the inverse
operation of that done by the technical transmitter, reconstructing the message from the
signal.

• The semantic receiver performs the inverse operation of that done by the semantic
transmitter, exploiting semantic fusion to reconstruct source data or directly execute
downstream intelligent tasks.

The semantic communication system incorporates a semantic transmitter that retrieves the
source semantic feature, guided by the background knowledge and the specific task intended
for execution at the receiver. Each compressed sequence X is linked to a set of S sequences
that are jointly typical with the provided X . In this context, all the source sequences within
this fan signify identical semantics. Although, in the traditional source coding perspective,
this merging of source typical sequences implies lossy compression, the incorporation of
background knowledge transforms it into a meaning-lossless process. This ensures the perfect
transmission of semantics or the complete execution of the task. Consequently, the number
of sequences within the compact semantic space is evidently less than that in the classical
compressed signal space.

Task-oriented Communication and Split Computing: SOTA Approaches and Applications

Task-oriented communication is a new paradigm that aims at providing efficient connectivity
for accomplishing intelligent tasks rather than reception of every transmitted bit. Liu et
al. [160] propose a task-oriented communication architecture tailored for end-to-end semantic
transmission. They utilize the adaptable semantic compression (ASC) method to compress
extracted semantics. Addressing scenarios with multiple users in a delay-intolerant system
poses a challenge. The authors emphasize the importance of balancing compression ratios
since higher ratios conserve channel resources but may induce semantic distortion, while lower
ratios demand more resources and risk transmission failure due to delay constraints. To address
this challenge, authors optimize both compression ratio and resource allocation to maximize
the probability of task success.
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Figure 5.1: Block diagram illustrating a semantic communication system designed to facilitate both
human-type communications (HTC) - LEVEL-B - and machine-type communications (MTC) - LEVEL-
A.

For text files, Kutay et al. [148] introduce semantic quantization and compression methods
for text, employing sentence embeddings and a semantic distortion metric to maintain meaning.
The results reveal significant savings (orders of magnitude) in the necessary number of bits
for message representation, with only minor accuracy loss compared to the semantic agnostic
baseline. The study compares the outcomes of the proposed approaches, indicating that resource
savings achieved through semantic quantization can be enhanced by incorporating semantic
clustering. Notably, the methodology exhibits generalizability, delivering excellent results
across various benchmark text classification datasets with diverse contexts.

While intelligent computer vision tasks remain a pivotal use case, the applicability of Edge
Intelligence faces limitations due to communication-related constraints. A promising insight
emerges, suggesting new approaches. Conventional image compression techniques primarily
cater to human perception rather than facilitating image analysis. Consequently, achieving
high performance requires transferring substantial data volumes over channels with limited
capacity. To address this issue, SC (also referred to as supervised compression in some contexts)
[113, 196] have recently emerged as a promising and viable alternative that achieves state-of-
the-art performance in computer vision tasks while effectively reducing bandwidth usage. The
idea is to incorporate encoder/decoder-like structures within the ML models themselves, and
use specialized training techniques to train task-oriented compressed representations [253, 254].
Knowledge Distillation [170, 171] is one of the tools used to maximize the effectiveness of SC
frameworks, where the altered model representation is trained to mimic the behavior of the
original model.
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Cunico et al. [62] present a significant advancement in split computing, addressing the
challenge of determining optimal points for dividing a deep neural network to accommodate
part of it on an embedded device and the remainder on a server. Unlike prior methods that
rely solely on architectural aspects, such as layer sizes, to identify potential split locations,
their approach considers the importance of individual neurons within the layers. A neuron is
deemed important if its gradient concerning the correct class decision is high. The proposed
Interpretable Split (I-SPLIT) procedure identifies suitable splitting points by predicting their
performance in terms of classification accuracy before actual implementation. Notably, I-SPLIT
demonstrates that the optimal splitting point in multiclass categorization depends on the specific
classes the network addresses. The effectiveness of I-SPLIT is validated through extensive
experiments on VGG16 and ResNet-50 networks across three datasets: Tiny-Imagenet-200,
notMNIST, and Chest X-Ray Pneumonia.

5.2 Furcifer: Container Based Context-Adaptation for Ob-
ject Detection

Modern real-time applications frequently integrate compute-intensive neural algorithms. Exist-
ing solutions either deploy highly-optimized Deep Neural Networks (DNNs) on mobile devices,
leading to higher energy consumption and lower performance, or offload the execution of larger,
higher-performance neural models to edge servers, requiring low-latency wireless data transfer.
The optimality of these configurations, in terms of energy consumption, task performance,
and latency, depends on time-varying variables like connection quality and system load. This
paper introduces Furcifer, a framework dynamically adapting the computing configuration
based on the perceived system state. Utilizing a container-based approach with low-complexity
predictors, Furcifer demonstrates generalizability across operating environments. The frame-
work also features a highly optimized split DNN model that achieves in-model supervised
compression and enhances task offloading. Experimental results for Object Detection under
diverse conditions, environments, and wireless technologies highlight Furcifer’s significant
benefits, including a 2x reduction in energy consumption, 30% higher mean Average Precision
score than pure local computing, and a notable three-fold increase in frame per second rate
compared to static offloading.

5.2.1 Computing Strategies Comparison:

The most popular metric used to evaluate OD is mean Average Precision (mAP), which
combines precision and recall values based on Intersection over Union (IoU) scores across
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Figure 5.2: Best performing computing modality and associated MD’s power consumption as a function
of signal strength and number of connected users.

various levels of confidence thresholds. Typically, mAP scores are obtained by testing the
algorithm on benchmark datasets such as COCO2017. However, when deploying an OD engine
in a real-world setting, various factors such as camera resolution or scaling factor alterations
come into play to determine the performance perceived by the application. Additional factors
such as model quantization and image compression also play a significant role. With these
in mind, we conduct an extensive evaluation of EC and LC, as well as Furcifer’s SC engine.
As MD, we select a Jetson Nano Dev Kit device, connected to a Jetson AGX Orin Dev Kit
that acts as ES. We choose this specific family of microcontrollers as MD and ES for our
tests for its efficient GPU hardware accelerated computing capabilities. To connect the MDs
and ES we use IEEE 802.11n [266] and IEEE 802.11ac Wi-Fi connections. At the ES, we
deploy a modified version of Faster R-CNN [217] with Res50 backbone as a feature extractor
testing various JPEG compression rates: 0%, 50%, and 70%. We also explore high-frame-rate
alternatives for LC. Specifically, we select a quantized FP16 version of YOLOv5 [136] and
SSD300, a customized adaptation of the Single Shot MultiBox Detector (SSD) [163] developed
by NVIDIA.

In our exploration of SC, we develop a specialized encoder-decoder architecture trained
using supervised compression and Faster R-CNN as a teacher model. Our design is based on
the model proposed in [174]. However, we optimized the original model by quantizing the
encoder to FP16 and running it with an optimized inference engine. In addition, we fine-tuned
the student model in order to match the camera resolution with the feature extractor upscaling
factor.
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OD Computing Configuration mAP FPS± std FPSmin FPSmax

EC_JPEG_0 37.051 3.29 ± 1.264 1.2 5.52
EC_JPEG_50 31.797 6.46 ± 3.007 1.89 10.01
EC_JPEG_70 29.476 6.66 ± 3.058 2.01 10.32

SC_FURCIFER 25.964 8.38 ± 1.992 4.96 11.72
LC_YOLOv5(FP16) 23.403 13.46 ± 0.261 11.89 13.89
LC_SSD300(FP16) 23.201 28.45 ± 0.635 27.83 33.12

Table 5.1: Mean Average Precision and FPS statistics depending on OD computing configuration

The data reported in Figure 5.2 and Table 5.1 provides a comparison of the frame per second
(FPS) and mAP obtained by each computing modality and model, whereas the figure shows
the computing modality achieving the best FPS rate and the associated power consumption
(MD only) as a function of signal strength (MD to ES channel) and the number of connected
users. The results show that the best mAP performance is obtained using EC without JPEG
compression - that is, the largest model running without image compression. Conversely, the
maximum frame rate is achieved by a quantized version of the original model deployed on
the MD. The figure illustrates how the optimal configuration is a function of the state of the
channel and how different options result in a different amount of power spent by the mobile
device. It should be pointed that this refers to the power consumed by MD and it does not take
into account the overall total energy consumed by the whole system. As demonstrated later,
Furcifer outperforms EC in terms of speed by achieving up to twice the FPS rate, all while
achieving a higher mAP score in low-channel quality scenarios compared to the LC models.

5.2.2 System Design and Architecture:

The quantitative indicators presented in the previous section emphasize how there is no absolute
winner among EC, SC, and LC even when considering a specific task, computing platforms,
and communication technology. Instead, the – time varying – state of the system, which
is influenced by mobility and load dynamics, determines the best computing configuration.
However, changing the computing modality in real-world deployments is technically non-
trivial. Furcifer realizes an adaptation engine composed of highly effective containerized
models whose activation is determined by a control module informed by comprehensive system
monitoring. While every element within the system holds a crucial role to enable adaptation to
context, the container-based Service-Oriented Architecture (SOA) nature of Furcifer enables
the independent deployment of each component. Furcifer tackles this obstacle by encapsulating
each computing strategy within a container. Such containerization bundles the code and its
dependencies, ensuring the ML application runs swiftly and reliably across diverse computing
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environments and facilitating a seamless transition between running ML models based on
specific context characteristics. We have implemented Furcifer approach to Object Detection
(OD) models as an ML task that is representative of real-time applications. In contrast with the
majority of existing academic frameworks, Furcifer integrates optimized low-level operations
in a transparent and easy-to-use manner by providing well-tuned high-level interfaces to the
application layer. Within this section, we provide an in-depth discussion of the main features of
each component while graphically representing the overall architecture and component unit in
Figure

From the Cloud the Edge: On-Demand Image Pulling

Before Furcifer, the adoption of containerized models on mobile devices was limited by the lack
of hardware acceleration support and excessive computational power required. Our middleware
integrates GPU-enabled capabilities offered by the original Docker runtime in a lightweight
version of the renowned container framework where unused modules were removed. Furcifer
provides a specialized container registry specifically designed for image compression and
storage. This registry stores well-tailored images optimized for each compatible device, which
are cached for future use based on the specific task the device is assigned. For each device type,
a subset of images shares identical interfaces with the operating system hypervisor. However,
these images differ at the application layer and user library level, adapting to the specific task
to be executed and the corresponding dependencies that are necessary.

This approach ensures minimal network usage, as only the final layer of the container
varies from the previous one, while the operating system platform and essential libraries
remain consistent. Notably, it is quite reasonable to expect that the operating system and the
majority of user libraries will remain unchanged when deploying a new model to address an
incoming task. By adopting this approach, the well-established concepts utilized in cloud
environments streamline the management and real-time adaptation of mobile and resource-
constrained devices. This shift of paradigm from the cloud to the edge empowers proactive
mechanisms that enable seamless adjustments in response to evolving context requirements. We
choose to apply containerization as a practical way to guarantee flexibility and fast reactiveness
of the framework to future environment states. Our evaluation of the size of resulting container
images reveals that less than 1% of the image comprises application-level files. This efficient
design enables the download of only the last layer of the image, which is equivalent in size to
the model itself. This approach minimizes network usage, since the model would anyway need
to be transferred no matter whether a containerized approach is used or not.

Figure 5.3 shows the memory footprint of Furcifer container images in the LC, SC and EC
configurations. Notably, the memory requirements for hardware acceleration dependencies
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Figure 5.3: Furcifer: Components on MD.

at both the platform and user library levels are about four times more extensive for LC and
SC compared to EC. Remarkably, the contribution of the application layer remains minimal
compared to the other components, reinforcing the viability of switching between containers on
demand. This is achieved by pulling only the necessary components, specifically the last layer
of the container image, thereby reducing unnecessary network usage and resource consumption.

Communication Interface and Protocol:

Deployed containerized models corresponds to a distinct and uniquely identified end point
on the MD. Those microservices interact with the central orchestrator through a REST API,
facilitating seamless communication and interaction while capitalizing on the advantages of
minimal communication overhead. It continuously monitors potential new connections and,
in the event of a connection loss, takes informed countermeasures to address the situation by
switching to a local computing strategy.

Furcifer’s REST APIs operate on a request-response TCP-based model, enabling the
framework to discern round-trip packet latencies. This functionality allows the introduction of
well-defined rules for filtering out requests characterized by excessive communication delays.
This mechanism ensures that the framework remains responsive and efficient, even in scenarios
where the network conditions might fluctuate. Exchanged messages are defined as follows:

• keep_alive: This message is sent periodically using a polling mechanism to ascertain the
presence of mobile devices within the same network.

• start/stop_OD: This message instructs the Mobile Device MD to initiate or terminate an
Object Detection task. When initiating a task, the message also specifies the preferred
computing strategy among LC, SC, and EC.
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• release_camera: Since the camera is a shared resource among deployed models on the
MD, this message prompts the MD to release the camera lock, enabling other models to
access the camera.

• set_target_frame_rate: This command sets the desired FPS rate for camera sampling
based on dynamic requirements defined at the application level. Recognizing the di-
rect correlation between higher FPS rates and increased power consumption, Furcifer
intelligently conserves energy and network resources when higher frequency camera sam-
pling is unnecessary, e.g., Vehicle-to-Vehicle (V2V) cameras in low-traffic environments
[250]).

• set_target_resolution: Recognizing that higher image resolution corresponds to in-
creased complexity in convolutional operations, extended processing time, and elevated
energy consumption, Furcifer offers the flexibility of dynamically defining camera reso-
lutions. This empowers the system to tailor image resolution to the specific demands of
the prevailing scenarios, ensuring a judicious trade-off between computational efficiency
and detection fidelity.

• set_compression_rate: If an EC configuration is used, the MD can opt to compress
captured images before transmitting them to the ES for final detection. This message spec-
ifies the desired compression rate, controlling the balance between reduced compression
for improved mAP score.

• get_metrics: This request explicitly prompts the MD to share its current performance
metrics. Those encompass the active model, the current FPS rate, instantaneous power
consumption, and the number of dropped frames due to excessive processing delays.

Furcifer’s Semantic Transmitter

Furcifer introduces a new SC engine tailored for resource-constrained devices, marking a
significant advancement in this real-world domain. Leveraging Faster R-CNN as the teacher
model, we use a modified version of the knowledge distillation process adopted in SC2
Benchmark [174] to design a compact encoder optimized for constrained devices. This encoder
serves a dual purpose: minimizing channel occupancy and effectively distributing computation
load between mobile devices and the edge server. Differently from the original model described
in [174] we optimized each tensor operation to exploit the parallel execution on the GPU.
We transform the canonical matrix operations into cuDNN tensor operations [55] and run the
model by building a TensorRT engine [55] for high performance inference optimization. In the
fine-tuning process, we employ preprocessing image upscaling transformation of 400 pixels,
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which is smaller than that of the original model, with a minimum height of 800 pixels. This
resolution adjustment is implemented to facilitate quicker inference on resource-constrained
devices.

The optimized encoder heavily relies on quantization and channel compression to reduce
execution time as much as possible. To enhance data compression, we strategically place a
one-channel bottleneck in the initial layers of the feature extraction segment of the network.
This choice leads to further data reduction, increasing the efficiency of the whole process.
Additionally, we incorporate INT8 quantization at the end of the encoder. This quantization
approach optimizes the representation of the data, contributing to both improved data compres-
sion and streamlined computation. The dynamic nature of the system is upheld by calculating
the scaling factor and zero point on a per-image basis as they are processed. These values are
then communicated to the decoder located at the ES, along with the resulting INT8 tensor from
the encoder inference process.

The incorporation of INT8 quantization and dequantization for the inference tensor on the
MD minimizes the influence of weight quantization within the encoder engine, which transitions
from FP32 to FP16. We confirm the negligible impact on mAP score testing Furcifer’s SC engine
on the COCO2017 dataset, obtaining 25.966 and 25.964 as mAP scores for FP32 and FP16,
respectively. Thus, the adoption of an FP16 quantized encoder on the mobile device delivers a
nearly twofold increase in processing speed compared to its FP32 counterpart, while preserving
about the same mAP score. This finding underscores the additional advantage of applying
quantization to SC encoders, which, unlike their LC counterparts, are already quantizing the
final encoding result to minimize channel occupancy. As a result, they are less susceptible
to mAP score reduction due to quantization. We remark how this optimization makes SC a
competitive option against optimized models for embedded devices, as demonstrated by our
results.

Pareidolia: Low-Complexity Similarity-Based Context Adaptation

Pareidolia, a concept rooted in human perception, reflects the inclination to perceive distinct,
often meaningful shapes or images within random or ambiguous visual patterns. It manifests
as a natural cognitive process, wherein the brain attempts to link novel ideas with existing
concepts. Leveraging already solved tasks, Furcifer leverages "pareidolia" as a context adapta-
tion approach. Each participating MD maintains a record of previously completed tasks. This
historical context empowers the node to discern which computing strategy aligns best with
the current system state by identifying analogous past scenarios. When a sufficiently similar
context is detected, the ES intervention may not be required. Conversely, if an analogous
context is not found, pertinent task details are shared with the ES to collaboratively determine
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the optimal model and computing configuration (EC, LC or SC) that best matches the current
system state. The Pareidolic Policy Manager (PPM), as defined, facilitates low-complexity
trend forecasting [125, 169]. It has demonstrated its effectiveness across a diverse range of
real-world scenarios, operating seamlessly without simplifications while reducing the minimal
additional burden on already limited computational capabilities. This predictive process is
specifically suited for constrained devices, requiring minimal additional burden on their already
limited computational capabilities. As a result of the interaction between the increasing number
of concurrent clients and the variability of network conditions, PPM forecasts the expected
number of FPS that the mobile device will achieve when employing each considered comput-
ing configuration. This predictive functionality enables PPM to anticipate the impact of each
strategy choice on FPS and tailor the decision accordingly. PPM forecasting capability comes
from a set of predictors which based on the current metrics collected by Energon are capable
of determine the resulting FPS rate the framework will achieve as a consequence of choosing
a specific computing configuration. Additional insights into this module and its performance
comparison against a more complex Deep Reinforcement Learning agent are discussed in
Section.

5.2.3 Experimental Evaluation over Different Networking Conditions:

In this section, we present and report the result of the experiments carried out using the
Furcifer framework. These experiments report relevant performance metrics on a broad range
of states and settings of the targeted deployment environment, including outdoor and indoor
ones covered with IEEE 802.11n and 802.11ac connectivity. Through this extensive set of
experiments, we aim to assess the ability of Furcifer to dynamically adapt the cloud continuum
configuration against system state dynamics. The dataset we collect comprises over 250 distinct
combinations of channel conditions (expressed as signal strength) and number of concurrent
client connections. Although indoor and outdoor experiments exhibit similar trends, indoor
scenarios tend to be characterized by a higher degree of unpredictability, which is primarily
due to the presence of obstacles that complicate signal propagation. As a result, the overall
channel quality is adversely affected, leading to more variable and less consistent performance
outcomes.

IEEE 802.11n Experiments:

First, we focus on the widely used Wi-Fi 801.11n standard. Our experimental setup features
a Jetson Nano DevKit as the mobile device equipped with a 640x480px USB webcam. In
indoor scenarios, we orchestrated the movement of the device along a designated path spanning
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approximately 20 meters. In outdoor scenarios, the path extends over a distance of 50 meters.
This deliberate variation allowed us to replicate a spectrum of signal strengths and network
dynamics, capturing the intricacies of both indoor environments and outdoor settings. For
each experimental run, we meticulously examine the system scalability across different user
scenarios. Specifically, we investigate the performance of the system, as the number of clients
varies between 1 and 20.

Figures 5.4a and 5.4b depict the FPS and error percentage metrics for SC and EC with
JPEG compression gain 0, 50 and 70% as a function of distance with a single connected
user. Within the indoor experiment settings (Figure 5.4a), there is a striking similarity in the
average FPS achieved by EC and SC, with the exception of the scenario involving no image
compression. Conversely, in the outdoor environment (Figure 5.4b), SC takes advantage of the
improved channel conditions compared to the indoor setting and achieves up to 2 additional
FPS. Importantly, it is worth noting that SC not only excels in FPS but also achieves a higher
mAP score compared to LC, showcasing its suitability in terms of both task performance and
frame processing speed.
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Figures 5.4c and 5.4d show performance metrics as the number of clients connected to ES
varies. Several notable trends emerge from this analysis. First, we observe an interesting pattern
regarding the impact of image compression techniques as the number of concurrent clients
increases. The failure rates associated with JPEG are dramatically larger compared to SC,
reaching up to 100% failure rate in some measurements. This result underscores the perils of
relying solely on image compression when dealing with a larger number of clients, highlighting
the potential limitations of this approach in dynamic and demanding network/server conditions.
On the contrary, SC achieves almost a steady 0% failure rate due to the small amount of network
and server resources used by this configuration. The resulting improved resilience of Furcifer
underlines the effectiveness of its context-aware approach, which enables SC to consistently
outperform EC in the range of tested network conditions.

IEEE 802.11ac Experiments:

The overhead in a wireless communication channel fluctuates based on the technology em-
ployed, thereby influencing the trade-off between computing and wireless communication
inherent in the SC and EC conditions. We extend the evaluation of Furcifer performance to
include IEEE 802.11ac. In these experiments, we replicated the same path for the MD, while
concurrently running increasing parallel connections of up to thirty clients. We use a Wi-Fi
network interface that supports the IEEE 802.11ac 5GHz protocol and establish a connec-
tion between the ES and MD over an 80 MHz band. Our Wi-Fi 5Ghz antennas also support
MU-MIMO technology which additionally improves the overall communication performance.

Figure 5.5 shows FPS rate as a function of the number of concurrent clients, ranging
from 10 to 30. All EC compression strategies benefit from improved connection capabilities,
outperforming SC when the number of clients is smaller than 10. Instead, when the number
of clients increases to 20 and 30, the additional load on ES penalizes EC over SC of about
40% in terms of the average FPS successfully processed over time. As shown in the analysis
that follows, the superior performance compared to ES when the system is under pressure is
due both to the decrease in channel usage and the effort of the server granted by SC. On the
contrary, when the full capacity of the network and server are available, SC is penalized by the
computing effort allocated to MD.

To better appreciate the impact of communications on the computing mode, we conduct a
comparative analysis between the IEEE 802.11n and 802.11ac Wi-Fi protocols. The results
shown in Figure 5.6 depict the FPS achieved as the number of connected clients increases.
We note how the improved data rates offered by the IEEE 802.11ac means that EC is the
winning solution up to a certain load level, whereas in IEEE 802.11n experiments, the superior
compression granted by SC results in the latter being the winning solution. However, this
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Table 5.2: Low complexity frame rate predictors

indoor outdoor indoor → outdoor
RMSE MAPE RMSE MAPE RMSE MAPE

EC_J0 0.27 7.30 0.37 10.69 0.58 20.37
EC_J50 0.50 7.86 0.59 9.25 0.71 15.37
EC_J70 0.47 7.48 0.53 7.68 0.81 15.98
SC 0.70 7.46 0.97 9.48 1.23 15.63

comparison is made with the same signal strength variability for EC and SC, moving the MD
along the same spatial trajectory.

5.2.4 PPM: Pareidolic Policy Management

In the previous sections, we demonstrated the need for the dynamic adaptation of the computing
configuration. We now evaluate the ability of Furcifer - and specifically its policy management
module - to provide adaptation capabilities without imposing a significant overhead. In terms
of energy consumption and optimal task performance, computing configurations can be clearly
ranked based on the MD perspective. In fact, EC does not impose any computing load to the MD
and achieves the best mAP thanks to the use of larger models. SC allocates minimal computing
effort to the MD and has the second best mAP. Finally, LC results in the largest energy intake
and worst performance. Thus, the decision engine has to evaluate the ability of the individual
computing configurations to achieve the desired FPS rate given the currently perceived system
state, and then select them in the order dictated by energy and mAP. To support such decision
process, we then build simple KNN regressors that take as input application context metrics
sush as: the inference time on the ES, the average round trip time, the communication channel
quality, and the current resource usage. This produces as output the predicted FPS rate for
each considered computing configuration, allowing PPM to anticipate the resulting Quality
of Service (QoS) of a particular action before executing it. We evaluate the regressors when
training and applying them in specific environments (e.g., indoor or outdoor), as well as on
their ability to generalize. The resulting loss metrics are reported in Table 5.2. It can be
observed that when these regressors are trained in the same context where they are applied, the
error is minimal (below 11% MAPE – Mean Absolute Percentage Error) across all computing
configurations. In the case of transfer learning, where models trained indoors are deployed
outdoors, the maximum loss value MAPE increases to 20%.
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Table 5.3: RMSE between percentage of OD computing configurations

target_FPS PPM DRL
4 7.848 87.210
5 2.287 104.979
6 21.875 123.547
7 32.552 101.824
8 36.892 75.419
9 7.465 78.375
10 24.045 69.928
11 58.593 71.310

RMSE 23.944 89.074

Adaptation Results:

We compare Furcifer performance with a static LC solution, which represents the only viable
option when the connection quality or system load cannot support the desired FPS rate.
Figure 5.7 shows the distribution of decisions made by Furcifer policy manager across the
spectrum of available cloud continuum strategies. It is important to note that our policy manager,
despite its low complexity, demonstrates the ability to match the configuration that an oracle
controller would implement. Table 5.3 reports the Root Mean Squared Error (RMSE) between
the percentage of choices made by Furcifer PPM low complexity policy manager and a baseline
DRL agent. The striking alignment between the decisions made by the Furcifer pareidolic
policy manager and the ground truth highlights the feasibility of deploying a low complexity
predictor deployed at MD, where more complex controllers may fail to train properly or
adequately generalize.

In the IEEE 802.11n configuration, Furcifer reduces the energy intake by approximately
80% while achieving an average mAP score increase of over 20% in comparison to LC. The
relevance of these outcomes is further amplified when using the IEEE 802.11ac protocol. In
this scenario, energy savings exceed 100%, and mAP consistently maintains a level above 20%
for all defined targets FPS. As Figure 5.8 shows, Furcifer can easily generalize, accurately
predicting the frame per second even when trained on an indoor environment and then tested
outdoor.
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Figure 5.4: IEEE 802.11n experiments: with one connected client (a) indoors and (b) outdoors, and
twenty connected clients (c) indoors and (d) outdoors. Performance metrics - FPS, fail percentage - as a
function of distance for SC and EC with 0%, 50%, and 70% JPEG compression gains. The lines in the
plots correspond to average metrics, while the shading represents variance.
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Figure 5.5: IEEE 802.11ac FPS rate metric: ten connected client (a) and twenty connected client (b) -
as a function of distance for SC and EC with JPEG compression gain 0, 50 and 70%. . The lines in the
plots correspond to average metrics, while the shade is the variance.
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Figure 5.6: Comparison between the 802.11n (a) and 802.11ac (b) Wi-Fi protocols, depicting the
FPS_fails score with an increasing number of concurrent clients.
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Figure 5.7: Choices distribution of considered computing configurations depending on target FPS rate
for the Ground truth oracle (a) and our Pareidolic Policy manager (b)
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Figure 5.8: mAP gain and Energy saving with IEEE (a) 802.11n and (b) 802.11ac Wi-Fi protocols





Concluding Remarks

This thesis has navigated the dynamic landscape of computing, particularly at the intersection
of Artificial Intelligence (AI), frugality, and serverless paradigms. Across different sections,
transparent frugality emerged as a guiding philosophy, aiming for optimal efficiency in re-
source utilization without compromising the richness of AI functionalities. We highlighted
the importance of addressing power efficiency in energy-constrained environments, proposing
greener and more sustainable approaches in distributed learning. The research has addressed
and provided solutions to the challenges associated with resource constraints in the deployment
of intelligent agents on constrained devices.

Beginning with cloud-native solutions, we have embraced various state-of-the-art (SOTA)
approaches for the transparent management of networking resources. Within this journey,
digital twins (DTs) [24] have served as a reference point, offering a foundation to achieve
transparency and efficiency in heterogeneous Industrial Internet of Things (IIoT) environments.
An impactful experimental contribution is showcased in edge and industrial scenarios [26],
validating the practical application of digital twin technology in handlig up to 1000msg/sec with
an average overall delay of 6ms. This illustration highlights the potential for attaining dynamic
and transparent management of communication resources in IoT environments. Furthermore, a
novel smart routing approach is introduced in [27], exemplifying the advantageous integration
of AI in computing tasks by routing incoming packets in less than 250ms while avoiding packet
dropping.

The initial constraint scrutinized in this thesis is power consumption. Skillfully navigat-
ing the delicate balance between performance and energy trade-offs, we delve into the critical
aspects of energy monitoring and optimization within edge-constrained and intelligent envi-
ronments. Moreover, the research introduces two environmentally conscious approaches to
distributed learning [10, 180], specifically considering power consumption in the planning
strategies for Federated Learning rounds. This comprehensive exploration aims to contribute to
the development of greener and frugality based practices in the realm of distributed learning,
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fostering efficiency and eco-friendly strategies in power-aware intelligent systems. Achieved
results include up to 60% of energy savings and 3.5 times faster convergence against popular
client selection approaches.
Continuing our exploration, we turn our attention to challenges associated with data-constrained
scenarios. In this context, we confront privacy and trust-related issues within a Federated Learn-
ing setting, presenting a novel contribution [175]. The resulting decentralized oracle networks
(DON) exhibited approximately 10% enhanced accuracy across three distinct privacy-critical
use cases. Moreover, acknowledging the scarcity of data and the intricacies of model com-
plexity, we propose an ensemble of weak autoregressors as an innovative solution for traffic
volume forecasting [181] with up to 98.64% prediction accuracy. This dual approach not only
addresses the pressing issues of privacy and trust in federated learning but also offers a frugal
yet effective strategy for forecasting in scenarios characterized by limited data and intricate
model dynamics.

In our exploration at the nexus of AI, frugality, and serverless computing, we finally redi-
rect our focus toward scenarios characterized by unstable and unreliable networking conditions.
Addressing the offloading of AI-based tasks, we adopt a communication-aware approach.
Embracing the Split Computing paradigm, we introduce a distilled encoder [183] that stands
poised to rival the performance of deeper neural networks. This distilled encoder facilitates
real-time semantic compression on mobile devices, thereby presenting a pragmatic solution
tailored to the challenges posed by unpredictable networking environments. The experimental
results underscore the superior performance of our middleware compared to both local and
edge computing. In particular, Furcifer achieves outstanding outcomes, showcasing a notable
2x reduction in energy consumption and a 30% additional mAP score gain compared to local
computing. Additionally, it achieves an impressive three-fold increase in the FPS rate compared
to edge computing.

Acknowledging the inherent limitations of this thesis, which are based on specific prelim-
inary experimental scenarios and assumptions, we argue that the comprehensive and unified
perspective presented here on Frugality-based techniques represents a practical step toward
embracing more sophisticated and intelligent systems in energy-, data-, and communication-
constrained environments.
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Looking ahead, given the additional computation brought by larger Machine Learning
models, our future work will be guided by two main assumptions:

(I) As the pendulum swings towards decentralization from centralized IT infrastructure,
there is a growing need for advanced and transparent optimization strategies. These strategies
are essential to support more complex Artificial Intelligence models at the Edge.

(II) Simultaneously, the larger size of data collected on the Edge will require more advanced
communication methods, especially in cases where local edge computing capabilities are
insufficient to locally process incoming data. AI-enhanced semantic communication holds the
promise of unlocking new possibilities, thereby pushing the boundaries of frugality in the realm
of intelligent and distributed computing.

For these reasons, our first focus will be on exploring optimization strategies for AI on the
Edge, aiming to minimize energy and data usage on constrained devices while prioritizing
transparency and usability. This exploration will involve a detailed analysis of the implications
of the "From the Cloud to the Edge" paradigm, assessing both its benefits and limitations,
especially regarding containerization in resource-limited scenarios. Secondly, we will extend
the task-aware compression method employed in Furcifer [183] from Object Detection to
various non-vision distributed tasks, with a focus on enhancing robustness and efficiency in
dynamically evolving environments.
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dan McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated
settings. arXiv preprint arXiv:1812.01097, 2018.

[45] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. FLTrust: Byzantine-
robust Federated Learning via Trust Bootstrapping, 2022.

[46] Giuseppe Cardone, Luca Foschini, Paolo Bellavista, Antonio Corradi, Cristian Borcea,
Manoop Talasila, and Reza Curtmola. Fostering participaction in smart cities: a geo-
social crowdsensing platform. IEEE Communications Magazine, 51(6):112–119, 2013.

[47] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. The rise of
serverless computing. Commun. ACM, 62(12):44–54, nov 2019.

[48] Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato. Optimization of resource provisioning
cost in cloud computing. IEEE transactions on services Computing, 5(2):164–177, 2011.

[49] Yacine Chakhchoukh, Patrick Panciatici, and Pascal Bondon. Robust estimation of
sarima models: Application to short-term load forecasting. In 2009 IEEE/SP 15th
Workshop on Statistical Signal Processing, pages 77–80, 2009.

[50] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM Computing Surveys, 41(3):1–58, July 2009.

[51] Arunava Chatterjee, Subho Paul, and Biswarup Ganguly. Multi-objective energy man-
agement of a smart home in real time environment. IEEE Transactions on Industry
Applications, 59(1):138–147, 2023.

[52] Aleksandra Checko, Henrik L Christiansen, Ying Yan, Lara Scolari, Georgios Kardaras,
Michael S Berger, and Lars Dittmann. Cloud ran for mobile networks—a technology
overview. IEEE Communications surveys & tutorials, 17(1):405–426, 2014.



136 Bibliography

[53] Hang Chen, Syed Ali Asif, Jihong Park, Chien-Chung Shen, and Mehdi Bennis. Robust
blockchained federated learning with model validation and proof-of-stake inspired
consensus. arXiv preprint arXiv:2101.03300, 2021.

[54] Yi-Lin Cheng, Ching-Chi Lin, Pangfeng Liu, and Jan-Jan Wu. High resource utilization
auto-scaling algorithms for heterogeneous container configurations. In 2017 IEEE 23rd
International Conference on Parallel and Distributed Systems (ICPADS), pages 143–150,
2017.

[55] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,
Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning,
2014.

[56] Mung Chiang, Sangtae Ha, Fulvio Risso, Tao Zhang, and I Chih-Lin. Clarifying fog
computing and networking: 10 questions and answers. IEEE Communications Magazine,
55(4):18–20, 2017.
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[151] Björn Leander, Aida Čaušević, and Hans Hansson. Applicability of the iec 62443
standard in industry 4.0 / iiot. In Proceedings of the 14th International Conference on
Availability, Reliability and Security, ARES ’19. ACM, August 2019.

[152] Khaled B. Letaief, Yuanming Shi, Jianmin Lu, and Jianhua Lu. Edge artificial intelli-
gence for 6g: Vision, enabling technologies, and applications. IEEE Journal on Selected
Areas in Communications, 40(1):5–36, January 2022.

[153] Khaled B. Letaief, Yuanming Shi, Jianmin Lu, and Jianhua Lu. Edge Artificial Intel-
ligence for 6G: Vision, Enabling Technologies, and Applications. IEEE Journal on
Selected Areas in Communications, 40(1):5–36, 2022.

[154] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning:
Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–
60, 2020.

[155] Xiaomin Li, Di Li, Jiafu Wan, Chengliang Liu, and Muhammad Imran. Adaptive
transmission optimization in sdn-based industrial internet of things with edge computing.
IEEE Internet of Things Journal, 5(3):1351–1360, June 2018.

[156] Yuanjiang Li, Yunfeng Chen, Kai Zhu, Cong Bai, and Jinglin Zhang. An Effective
Federated Learning Verification Strategy and Its Applications for Fault Diagnosis in
Industrial IoT Systems. IEEE Internet of Things Journal, 9(18):16835–16849, 2022.



146 Bibliography

[157] Jacky Liang, Viktor Makoviychuk, Ankur Handa, Nuttapong Chentanez, Miles Mack-
lin, and Dieter Fox. Gpu-accelerated robotic simulation for distributed reinforcement
learning, 2018.

[158] Shizhuang Lin, Jingyu Liu, and Yanjun Fang. Zigbee based wireless sensor networks
and its applications in industrial. In 2007 IEEE international conference on automation
and logistics, pages 1979–1983. IEEE, 2007.

[159] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James
Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft
coco: Common objects in context, 2014.

[160] Chuanhong Liu, Caili Guo, Yang Yang, and Nan Jiang. Adaptable semantic compres-
sion and resource allocation for task-oriented communications. IEEE Transactions on
Cognitive Communications and Networking, pages 1–1, 2023.

[161] Lumin Liu, Jun Zhang, S.H. Song, and Khaled B. Letaief. Client-Edge-Cloud Hierarchi-
cal Federated Learning. In IEEE ICC, pages 1–6, 2020.

[162] Luning Liu, Xin Chen, Zhaoming Lu, Luhan Wang, and Xiangming Wen. Mobile-edge
computing framework with data compression for wireless network in energy internet.
Tsinghua Science and Technology, 24(3):271–280, 2019.

[163] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C. Berg. SSD: Single shot MultiBox detector. In Computer
Vision – ECCV 2016, pages 21–37. Springer International Publishing, 2016.

[164] Sin Kit Lo, Yue Liu, Qinghua Lu, Chen Wang, Xiwei Xu, Hye-Young Paik, and Liming
Zhu. Towards Trustworthy AI: Blockchain-based Architecture Design for Accountability
and Fairness of Federated Learning Systems. IEEE Internet of Things Journal, pages
1–1, 2022.

[165] Yunlong Lu, Xiaohong Huang, Ke Zhang, Sabita Maharjan, and Yan Zhang.
Communication-efficient federated learning for digital twin edge networks in industrial
iot. IEEE Transactions on Industrial Informatics, 17(8):5709–5718, August 2021.

[166] M. Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[167] Ratul Mahajan, John Zahorjan, and Brian Zill. Understanding wifi-based connectivity
from moving vehicles. In Proceedings of the 7th ACM SIGCOMM conference on Internet
measurement, pages 321–326, 2007.



Bibliography 147

[168] Somayeh Malakuti and Sten Grüner. Architectural aspects of digital twins in iiot systems.
In Proceedings of the 12th European Conference on Software Architecture: Companion
Proceedings, ECSA ’18. ACM, September 2018.

[169] Yuyi Mao, Jun Zhang, and Khaled B. Letaief. Dynamic computation offloading for
mobile-edge computing with energy harvesting devices. IEEE Journal on Selected Areas
in Communications, 34(12):3590–3605, 2016.

[170] Yoshitomo Matsubara, Sabur Baidya, Davide Callegaro, Marco Levorato, and Sameer
Singh. Distilled split deep neural networks for edge-assisted real-time systems. In
Proceedings of the 2019 Workshop on Hot Topics in Video Analytics and Intelligent
Edges. ACM, October 2019.

[171] Yoshitomo Matsubara, Davide Callegaro, Sameer Singh, Marco Levorato, and Francesco
Restuccia. Bottlefit: Learning compressed representations in deep neural networks for
effective and efficient split computing. In 2022 IEEE 23rd International Symposium
on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pages 337–346,
2022.

[172] Yoshitomo Matsubara and Marco Levorato. Neural compression and filtering for edge-
assisted real-time object detection in challenged networks. In 2020 25th International
Conference on Pattern Recognition (ICPR), pages 2272–2279. IEEE, 2021.

[173] Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. Split computing and
early exiting for deep learning applications: Survey and research challenges. ACM
Comput. Surv., 55(5), dec 2022.

[174] Yoshitomo Matsubara, Ruihan Yang, Marco Levorato, and Stephan Mandt. Sc2 bench-
mark: Supervised compression for split computing, 2023.

[175] Carlo Mazzocca, Nicolò Romandini, Matteo Mendula, Rebecca Montanari, and Paolo
Bellavista. Truflaas: Trustworthy federated learning as a service. IEEE Internet of
Things Journal, 10(24):21266–21281, 2023.

[176] Andrew McAfee, Erik Brynjolfsson, Thomas H Davenport, DJ Patil, and Dominic
Barton. Big data: the management revolution. Harvard business review, 90(10):60–68,
2012.

[177] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera
y Arcas. Communication-efficient learning of deep networks from decentralized data,
2023.



148 Bibliography

[178] Yair Meidan, Michael Bohadana, Yael Mathov, Yisroel Mirsky, Asaf Shabtai, Dominik
Breitenbacher, and Yuval Elovici. N-baiot—network-based detection of iot botnet attacks
using deep autoencoders. IEEE Pervasive Computing, 17(3):12–22, 2018.

[179] Peter Mell, Tim Grance, et al. The nist definition of cloud computing. 2011.

[180] Matteo Mendula and Paolo Bellavista. Energy-aware edge federated learning for en-
hanced reliability and sustainability. In 2022 IEEE/ACM 7th Symposium on Edge
Computing (SEC), pages 349–354, 2022.

[181] Matteo Mendula, Armir Bujari, Luca Foschini, and Paolo Bellavista. A data-driven
digital twin for urban activity monitoring. In 2022 IEEE Symposium on Computers and
Communications (ISCC), pages 1–6, 2022.

[182] Matteo Mendula, Siavash Khodadadeh, Salih Safa Bacanli, Sharare Zehtabian, Has-
sam Ullah Sheikh, Ladislau Bölöni, Damla Turgut, and Paolo Bellavista. Interaction and
behaviour evaluation for smart homes: Data collection and analytics in the scaledhome
project. MSWiM ’20, page 225–233, New York, NY, USA, 2020. Association for
Computing Machinery.

[183] Matteo Mendula, Sharon L.G. Cotreras, Marco Levorato, and Paolo Bellavista. Furcifer:
a context adaptive middleware for real-world object detection exploiting local, edge, and
split computing in the cloud continuum. 2024.

[184] Amilcar Meneses-Viveros, Erika Hernández-Rubio, Sonia Mendoza, José Rodríguez,
and Ana Belem Márquez Quintos. Energy saving strategies in the design of mobile
device applications. Sustainable Computing: Informatics and Systems, 19:86–95, 2018.

[185] Yang Meng, Ruonan Rao, Xin Zhang, and Pei Hong. Crupa: A container resource
utilization prediction algorithm for auto-scaling based on time series analysis. In 2016
International Conference on Progress in Informatics and Computing (PIC), pages 468–
472, 2016.

[186] Shin-ichi Minato and Saburo Muroga. Binary Decision Diagrams. CRC Press, December
1999.

[187] Behzad Mirkhanzadeh, Ali Shakeri, Chencheng Shao, Miguel Razo, Marco Tacca,
Gabriele Maria Galimberti, Giovanni Martinelli, Marco Cardani, and Andrea Fumagalli.
An sdn-enabled multi-layer protection and restoration mechanism. Optical Switching
and Networking, 30:23–32, 2018.



Bibliography 149

[188] Bibhu Mishra, Ravi Hosur, Priya Nandihal, and Piyush Pareek. Cloud computing,
emerging computing technology of new age. International journal of health sciences,
05 2022.

[189] Annette Möller and Jürgen Groß. Probabilistic temperature forecasting based on an
ensemble autoregressive modification. Quarterly Journal of the Royal Meteorological
Society, 142(696):1385–1394, March 2016.

[190] Roberto Morabito. Virtualization on internet of things edge devices with container
technologies: A performance evaluation. IEEE Access, 5:8835–8850, 2017.

[191] Viraaji Mothukuri, Reza M Parizi, Seyedamin Pouriyeh, Yan Huang, Ali Dehghantanha,
and Gautam Srivastava. A survey on security and privacy of federated learning. Future
Generation Computer Systems, 115:619–640, 2021.

[192] National Institute of Standards and Technology (NIST). Mobile cloud computing.

[193] Bruce Jay Nelson. Remote procedure call. Carnegie Mellon University, 1981.

[194] Dinh C. Nguyen, Ming Ding, Quoc-Viet Pham, Pubudu N. Pathirana, Long Bao Le,
Aruna Seneviratne, Jun Li, Dusit Niyato, and H. Vincent Poor. Federated Learning
Meets Blockchain in Edge Computing: Opportunities and Challenges. IEEE Internet of
Things Journal, 8(16):12806–12825, 2021.

[195] Sze-Yao Ni, Yu-Chee Tseng, Yuh-Shyan Chen, and Jang-Ping Sheu. The broadcast
storm problem in a mobile ad hoc network. In Proceedings of the 5th annual ACM/IEEE
international conference on Mobile computing and networking, pages 151–162, 1999.

[196] Ewa Nowara and Daniel McDuff. Combating the impact of video compression on
non-contact vital sign measurement using supervised learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, Oct 2019.

[197] Jianli Pan and James McElhannon. Future edge cloud and edge computing for internet
of things applications. IEEE Internet of Things Journal, 5(1):439–449, February 2018.

[198] Zhengyuan Pang, Lifeng Sun, Zhi Wang, Erfang Tian, and Shiqiang Yang. A survey of
cloudlet based mobile computing. In 2015 International conference on cloud computing
and big data (CCBD), pages 268–275. IEEE, 2015.

[199] Jaehyoung Park and Hyuk Lim. Privacy-preserving federated learning using homomor-
phic encryption. Applied Sciences, 12(2):734, January 2022.



150 Bibliography

[200] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe,
Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-
learn: Machine learning in python, 2018.

[201] Mugen Peng, Shi Yan, Kecheng Zhang, and Chonggang Wang. Fog-computing-based
radio access networks: Issues and challenges. Ieee Network, 30(4):46–53, 2016.

[202] Bigi Varghese Philip, Tansu Alpcan, Jiong Jin, and Marimuthu Palaniswami. Distributed
real-time iot for autonomous vehicles. IEEE Transactions on Industrial Informatics,
15(2):1131–1140, 2019.

[203] Enrico Pomarico, Cédric Schmidt, Florian Chays, David Nguyen, Arielle Planchette,
Audrey Tissot, Adrien Roux, Stéphane Pagès, Laura Batti, Christoph Clausen, Theo
Lasser, Aleksandra Radenovic, Bruno Sanguinetti, and Jérôme Extermann. Statistical
distortion of supervised learning predictions in optical microscopy induced by image
compression. Scientific Reports, 12(1), March 2022.

[204] Francisco Prado, Marcel C. Minutolo, and Werner Kristjanpoller. Forecasting based on
an ensemble autoregressive moving average - adaptive neuro - fuzzy inference system –
neural network - genetic algorithm framework. Energy, 197:117159, April 2020.

[205] Jürgo S Preden, Kalle Tammemäe, Axel Jantsch, Mairo Leier, Andri Riid, and Emine
Calis. The benefits of self-awareness and attention in fog and mist computing. Computer,
48(7):37–45, 2015.

[206] Qinglin Qi and Fei Tao. Digital twin and big data towards smart manufacturing and
industry 4.0: 360 degree comparison. IEEE Access, 6:3585–3593, 2018.

[207] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Ravis-
hankar K. Iyer. FIRM: An intelligent fine-grained resource management framework for
SLO-Oriented microservices. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 805–825. USENIX Association, November 2020.

[208] Majid Rabbani and Rajan Joshi. An overview of the jpeg 2000 still image compression
standard. Signal processing: Image communication, 17(1):3–48, 2002.

[209] Waqas Ur Rahman, Choong Seon Hong, and Eui-Nam Huh. Edge computing assisted
joint quality adaptation for mobile video streaming. IEEE Access, 7:129082–129094,
2019.



Bibliography 151

[210] Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning
of nonlinear partial differential equations. Journal of Computational Physics, 357:125 –
141, 2018.

[211] Anindita Raychaudhuri, Anwesha Mukherjee, Debashis De, and Sukhpal Singh Gill.
Green Internet of Things Using Mobile Cloud Computing: Architecture, Applications,
and Future Directions, page 213–229. Springer International Publishing, 2022.

[212] Andrea Reale. A guide to edge iot analytics. International Business Machines,
https://www. ibm. com/blogs/internet-of-things/edge-iot-analytics (accessed: 2021),
2017.

[213] Muhammad Habib ur Rehman, Ahmed Mukhtar Dirir, Khaled Salah, Ernesto Damiani,
and Davor Svetinovic. TrustFed: A Framework for Fair and Trustworthy Cross-Device
Federated Learning in IIoT. IEEE Transactions on Industrial Informatics, 17(12):8485–
8494, 2021.

[214] Jie Ren, Ling Gao, Xiaoming Wang, Miao Ma, Guoyong Qiu, Hai Wang, Jie Zheng,
and Zheng Wang. Adaptive computation offloading for mobile augmented reality.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
5(4):1–30, December 2021.

[215] Ju Ren, Yaoxue Zhang, Kuan Zhang, and Xuemin Shen. Exploiting mobile crowd-
sourcing for pervasive cloud services: challenges and solutions. IEEE Communications
Magazine, 53(3):98–105, 2015.

[216] Pei Ren, Xiuquan Qiao, Yakun Huang, Ling Liu, Schahram Dustdar, and Junliang
Chen. Edge-assisted distributed dnn collaborative computing approach for mobile web
augmented reality in 5g networks. IEEE Network, 34(2):254–261, 2020.

[217] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks, 2016.

[218] Dominik Riemer. Feeding the digital twin: Basics, models and lessons learned from
building an iot analytics toolbox (invited talk). 2018 IEEE International Conference on
Big Data (Big Data), pages 4212–4212, 2018.

[219] Fabiana Rossi, Valeria Cardellini, and Francesco Lo Presti. Elastic deployment of soft-
ware containers in geo-distributed computing environments. In 2019 IEEE Symposium
on Computers and Communications (ISCC), pages 1–7, 2019.



152 Bibliography

[220] Fabiana Rossi, Matteo Nardelli, and Valeria Cardellini. Horizontal and vertical scaling
of container-based applications using reinforcement learning. In 2019 IEEE 12th
International Conference on Cloud Computing (CLOUD), pages 329–338, 2019.

[221] Sunitha Safavat, Naveen Naik Sapavath, and Danda B Rawat. Recent advances in
mobile edge computing and content caching. Digital Communications and Networks,
6(2):189–194, 2020.

[222] Ahmed Salem and Tamer Nadeem. Lamen: leveraging resources on anonymous mobile
edge nodes. In Proceedings of the Eighth Wireless of the Students, by the Students, and
for the Students Workshop, pages 15–17, 2016.

[223] Hani Sami, Azzam Mourad, Hadi Otrok, and Jamal Bentahar. Fscaler: Automatic
resource scaling of containers in fog clusters using reinforcement learning. In 2020
International Wireless Communications and Mobile Computing (IWCMC), pages 1824–
1829, 2020.

[224] Zohreh Sanaei, Saeid Abolfazli, Abdullah Gani, and Rajkumar Buyya. Heterogeneity
in mobile cloud computing: taxonomy and open challenges. IEEE Communications
Surveys & Tutorials, 16(1):369–392, 2013.

[225] Mohamed Sarwat. Spatial data systems support for the internet of things: challenges
and opportunities. SIGSPATIAL Special, 12(2):42–47, October 2020.

[226] Arjuna Sathiaseelan, Adisorn Lertsinsrubtavee, Adarsh Jagan, Prakash Baskaran, and
Jon Crowcroft. Cloudrone: Micro clouds in the sky. In Proceedings of the 2nd Workshop
on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, pages
41–44, 2016.

[227] Mahadev Satyanarayanan. Fundamental challenges in mobile computing. In Proceedings
of the fifteenth annual ACM symposium on Principles of distributed computing, pages
1–7, 1996.

[228] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies. The case
for vm-based cloudlets in mobile computing. IEEE pervasive Computing, 8(4):14–23,
2009.

[229] Abhinav Saxena, Kai Goebel, Don Simon, and Neil Eklund. Damage propagation
modeling for aircraft engine run-to-failure simulation. In 2008 International Conference
on Prognostics and Health Management, pages 1–9, 2008.



Bibliography 153

[230] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green ai. Commun.
ACM, 63(12):54–63, nov 2020.

[231] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green AI. Commun.
ACM, 63(12):54–63, nov 2020.

[232] Sandra Scott-Hayward, Sriram Natarajan, and Sakir Sezer. A survey of security in
software defined networks. IEEE Communications Surveys & Tutorials, 18(1):623–654,
2015.

[233] Syed Yousaf Shah, Zengwen Yuan, Songwu Lu, and Petros Zerfos. Dependency analysis
of cloud applications for performance monitoring using recurrent neural networks. In
2017 IEEE International Conference on Big Data (Big Data), pages 1534–1543, 2017.

[234] Siroos Shahriari, Milad Ghasri, S. A. Sisson, and Taha Rashidi. Ensemble of arima:
combining parametric and bootstrapping technique for traffic flow prediction. Transport-
metrica A: Transport Science, 16(3):1552–1573, January 2020.

[235] Claude Elwood Shannon. A mathematical theory of communication. The Bell system
technical journal, 27(3):379–423, 1948.

[236] Pradip Kumar Sharma, Mu-Yen Chen, and Jong Hyuk Park. A software defined fog
node based distributed blockchain cloud architecture for iot. IEEE Access, 6:115–124,
2018.

[237] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:
Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[238] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:
Vision and challenges. IEEE internet of things journal, 3(5):637–646, 2016.

[239] Robert H. Shumway and David S. Stoffer. ARIMA Models, page 75–163. Springer
International Publishing, 2017.

[240] Murtaza Ahmed Siddiqi, Heejung Yu, and Jingon Joung. 5g ultra-reliable low-latency
communication implementation challenges and operational issues with iot devices.
Electronics, 8(9):981, 2019.

[241] Pedro M Pinto Silva, Joao Rodrigues, Joaquim Silva, Rolando Martins, Luís Lopes, and
Fernando Silva. Using edge-clouds to reduce load on traditional wifi infrastructures and
improve quality of experience. In 2017 IEEE 1st International Conference on Fog and
Edge Computing (ICFEC), pages 61–67. IEEE, 2017.



154 Bibliography

[242] Kiran Deep Singh and Sandeep K Sood. Qos-aware optical fog-assisted cyber-physical
system in the 5g ready heterogeneous network. Wireless Personal Communications,
116(4):3331–3350, 2021.

[243] Sukhpal Singh and Inderveer Chana. Cloud resource provisioning: survey, status and
future research directions. Knowledge and Information Systems, 49:1005–1069, 2016.

[244] Jack Sleuters, Yonghui Li, Jacques Verriet, Marina Velikova, and Richard Doornbos.
A digital twin method for automated behavior analysis of large-scale distributed iot
systems. In 2019 14th Annual Conference System of Systems Engineering (SoSE). IEEE,
May 2019.
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