
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

DOTTORATO DI RICERCA IN

COMPUTER SCIENCE AND ENGINEERING

CICLO 36

SETTORE CONCORSUALE: 09/H1
SETTORE SCIENTIFICO-DISCIPLINARE: ING-INF/05

Learning With Limited Data

Presentata da:
Adriano CARDACE

Coordinatore di Dottorato:
Prof.ssa Ilaria BARTOLINI

Supervisore:
Prof. Luigi DI STEFANO

ESAME FINALE ANNO 2024

i

UNIVERSITÀ DI BOLOGNA

Abstract
Facoltà di Ingegneria ed Architettura

Dipartimento di Informatica - Scienza e Ingegneria

Dottorato di Ricerca

Learning With Limited Data

by Adriano CARDACE

In recent years, Deep Learning techniques have demonstrated remarkable achievements
across various Computer Vision tasks, frequently surpassing human capabilities. Never-
theless, these data-driven methodologies often demand large volumes of annotated data,
necessitating laborious and costly manual annotation procedures. The objective of this thesis
is to introduce novel methods designed to mitigate this challenge by harnessing knowledge
obtained from diverse domains or tasks, even in the presence of limited annotations. This
challenge is commonly known as the Transfer Learning problem. Our exploration will delve
into the forefront of Transfer Learning, with a predominant emphasis on the advancement
of techniques for Domain Adaptation in diverse computer vision tasks. This research jour-
ney begins with a comprehensive investigation into 2D Semantic Segmentation, and we
demonstrate how other tasks such as Depth Estimation and Edge Detection can enhance the
adaptability of models across different visual domains. Subsequently, the exploration extends
to the realm of 3D point cloud classification, where the challenges posed by diverse domain
shifts are addressed once again exploiting auxiliary tasks such as shape reconstruction or
recent Self-Supervised techniques. The proposed works for 2D Semantic Segmentation and
3D point cloud classification lay the foundation for the development of novel frameworks
aimed at tackling the challenging task of multi-modal Domain Adaptation for 3D Semantic
Segmentation, where multiple sensors such as RGB cameras and LiDARs are available. Fi-
nally, we shed some light on a new exciting and emerging topic which is solving common
vision tasks on Neural Fields, which are an emerging paradigm used to represent signals
such as images or 3D shapes. We will specifically focus on the 3D scenario, and in the context
of Transfer Learning, show for the first time how acting directly on Neural Fields allows
the possibility to transfer knowledge among different representations such as from 3D point
clouds to meshes.

ii

Acknowledgments

I am profoundly grateful for the support and guidance I have received throughout my
Ph.D. journey, and I would like to express my deepest appreciation and gratitude to my
supervisors, Prof. Luigi Di Stefano and Prof. Samuele Salti. They have been a constant source
of inspiration and encouragement in this difficult and at the same time exciting journey.
Their commitment to my personal and professional development has played a pivotal role in
shaping my career and I will never forget it.

A huge thanks to my colleagues at the CVLab as well, who helped me live this experience
in the best possible way. Thank you, guys, for making my Ph.D. much simpler and funnier.

Let me conclude in Italian to spend some final words for my family and friends.
Grazie ai miei genitori e a mio fratello, che mi hanno sempre sostenuto in questo percorso e

non mi hanno mai fatto mancare nulla. Senza voi questo traguardo sarebbe stato impossibile.
Un grazie infinite anche ai miei amici, che riescono sempre a rendere tutto più leggero e a

farmi sorridere in qualunque momento.
Infine, ci tengo particolarmente a ringrazie Lucy, il mio bellisismo cane che mi ha accom-

pagnato lungo tutto il percorso, passando ore ed ore, notte e giorno, sempre fedelmente al
mio fianco.

iii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 The Transfer Learning Problem . 1
1.2 Notation and Formal Definition of Transfer Learning 3
1.3 Structure of the thesis . 5

I Transfer Learning for 2D Semantic Segmentation 9

2 Initial Remarks 10
2.1 Related works . 11

2.1.1 Transfer Learning and Task Transfer . 11
2.1.2 Domain Adaptation . 11
2.1.3 Multi-task Learning . 12
2.1.4 Task Transfer and Domain Adaptation 12
2.1.5 Semantic Segmentation Datasets . 12

3 Transfer Features Across Tasks and Domains. 14
3.1 Extended AT/DT . 15

3.1.1 Feature Alignment Across Domains . 15
3.1.2 Feature alignment across tasks . 16

3.2 Experimental Settings . 17
3.3 Experimental Results . 20

3.3.1 Depth to Semantics . 20
3.3.2 Semantics to Depth . 21

3.4 Additional Experiments . 22
3.4.1 Contribution of Taux and NDA Loss . 22
3.4.2 Effectiveness of edge detection as auxiliary task 23
3.4.3 Importance of simultaneous training of N1, N2 and Daux 23
3.4.4 Alignment strategies for N1 . 25

iv

3.4.5 Aligning N2 features . 25
3.4.6 Aligning G1→2 features . 26

3.5 Conclusions . 27

4 Plugging Monocular Depth into Unsupervised Domain Adaptation 29
4.1 Method . 30

4.1.1 D4 (Depth For UDA) . 31
4.1.2 DBST (Depth-Based Self-Training) . 34

4.2 Experiments . 36
4.2.1 Implementation Details . 36
4.2.2 Results . 37
4.2.3 Ablation study . 39

4.3 Conclusions . 40

5 Exploiting Shallow Features for Sharp Segmentation Mask 41
5.1 Method . 43

5.1.1 Low-level adaptation . 43
5.1.2 Data Augmentation for Self-Training 45
5.1.3 Training Procedure . 46

5.2 Implementation . 47
5.2.1 Architecture . 47
5.2.2 Training Details . 48

5.3 Experiments . 48
5.3.1 Datasets . 48
5.3.2 Synthetic-to-real adaptation . 48
5.3.3 Cross-city adaptation . 50
5.3.4 Ablation Studies . 50
5.3.5 Performance Along Class Boundaries 51
5.3.6 Comparison with other data augmentations 51
5.3.7 Displacement map visualization . 52

5.4 Conclusions . 53

II Domain Adaptation for 3D Data 54

6 Initial Remarks 55
6.1 Related Works . 56

6.1.1 Unsupervised 3D Domain Adaptation 56
6.1.2 Deep Learning for Point Clouds Reconstruction 56
6.1.3 UDA Datasets for Point Cloud Classification and Segmentation 56

v

7 RefRec: Pseudo-labels Refinement via Shape Reconstruction 58
7.1 Method . 59

7.1.1 Pseudo-labels Warm-up . 60
7.1.2 Pseudo-labels Refinement . 61
7.1.3 Self-training . 63

7.2 Experiments . 66
7.2.1 Implementation details . 66
7.2.2 Results . 66
7.2.3 Ablation studies . 68

7.3 Conclusions . 69

8 Self-Distillation for Unsupervised 3D Domain Adaptation 70
8.1 Method . 72

8.1.1 Preliminaries . 73
8.1.2 Self-distillation . 73
8.1.3 Pseudo-labels initialization . 75
8.1.4 Self-training and pseudo-labels refinement 76

8.2 Experiments . 78
8.2.1 Results . 78

8.3 Conclusions . 82

III Domain Adaptation for multi-modal Data 83

9 Initial Remarks 84
9.1 Related Works . 85
9.2 Multi-Modal Datasets for 3D Semantic Segmentation 85

10 Enanching Multi-Modal 3D Semantic Segmentation with Depth Completion 87
10.1 Introduction . 87
10.2 Method . 89

10.2.1 Preliminaries . 89
10.2.2 Depth Completion . 90
10.2.3 LiDAR Data Augmentation . 93
10.2.4 Learning Process . 95

10.3 Experiments . 96
10.3.1 Implementation Details and Datasets 96
10.3.2 UDA Results . 97
10.3.3 Additional Studies . 97

10.4 Conclusions . 100

vi

11 On the Complementarity of 2D and 3D Networks for Multi-Modal Semantic Seg-
mentation 101
11.1 Introduction . 101
11.2 Method . 102

11.2.1 Base 2D/3D Architecture . 103
11.2.2 Depth-based 2D Encoder . 104
11.2.3 RGB Based 3D Network . 105
11.2.4 Learning Scheme . 106

11.3 Experiments . 107
11.3.1 Implementation details . 107
11.3.2 UDA results . 107
11.3.3 Domain Generalization results . 109
11.3.4 Ablation Studies . 110

11.4 Conclusions . 111

IV Neural Fields for 3D data 112

12 Initial Remarks 113
12.1 Related Works . 113

12.1.1 Deep learning on 3D shapes. 113
12.1.2 Neural fields. 114

13 Deep Learning on Implicit Neural Representations of Shapes 116
13.1 Introduction . 116
13.2 Learning to Represent INRs . 118
13.3 Deep Learning on INRs . 121
13.4 Concluding Remarks . 126

14 Neural Processing of Tri-Plane Hybrid Neural Fields 128
14.1 Introduction . 128
14.2 Tri-plane hybrid neural fields . 131

14.2.1 Preliminaries . 131
14.2.2 Tri-plane analysis . 132
14.2.3 Architectures for neural processing of tri-plane neural fields 134

14.3 Tasks on Neural fields . 135
14.3.1 Neural field classification . 135
14.3.2 Neural field 3D part segmentation . 137
14.3.3 Different architectures for tri-plane processing 138

14.4 Concluding remarks and limitations . 139

vii

15 Final Remarks 140

V Appendices 144

A Deep Learning on Implicit Neural Representations of Shapes 145
A.1 Individual INRs vs. Shared Network Frameworks 145
A.2 Obtaining INRs from 3D Discrete Representations 149
A.3 Reconstructing Discrete Representations from INRs 151
A.4 inr2vec Encoder and Decoder Architectures . 152
A.5 Motivation Behind inr2vec Encoder Design . 154
A.6 Experimental Settings . 154
A.7 Implementation, Hardware and Timings . 158
A.8 Testing on Original Discrete 3D Representations 159
A.9 Alternative Architecture for inr2vec . 159
A.10 Additional Qualititative Results . 160
A.11 Effectiveness of Using the Same Initialization for INRs 169
A.12 t-SNE Visualization of inr2vec Latent Space . 171
A.13 Ablation on INRs Size . 172
A.14 Shape Retrieval and Classification on DeepSDF Latent Codes 172
A.15 Shape Generation: Additional Comparison . 174
A.16 INR Classification Time: Extended Analysis . 174

B Neural Processing of Tri-Plane Hybrid Neural Fields 177
B.1 Learning tri-plane neural fields . 177
B.2 Explicit reconstruction from neural fields . 179

B.2.1 Sampling explicit representations . 179
B.2.2 Examples of reconstructions by tri-planes 182
B.2.3 Comparison between reconstructions by neural field processing frame-

works . 182
B.3 Voxel grid hybrid neural fields . 183
B.4 Deeper investigation on the tri-plane and MLP content 184

B.4.1 Is the MLP alone enough for reconstruction? 184
B.4.2 Is the MLP alone enough for classification? 185
B.4.3 Tri-plane channel visualizations . 186
B.4.4 Channel order investigation . 186
B.4.5 Additional visualizations . 187

B.5 Implementation details . 187
B.5.1 Datasets . 187

viii

B.5.2 Benchmark . 187
B.5.3 Architectures . 188
B.5.4 Training . 189
B.5.5 Random initialization . 189

B.6 Training and inference time . 189
B.7 Tri-plane ablations . 190
B.8 Evaluating on the original discrete 3D representations 192
B.9 Study on the memory occupation of neural fields 192

Bibliography 197

1

Chapter 1

Introduction

1.1 The Transfer Learning Problem

Deep learning has revolutionized Computer Vision in recent years. The success can be
largely attributed to the undeniable effectiveness of Convolutional Neural Networks (CNNs)
[12, 13, 14] and more recently Transformers [15]. These models have remarkable performance
when trained on high-quality annotated training data. Moreover, the availability of numerous
pre-trained models allows for the reuse of these networks as feature extractors, enabling the
resolution of complex tasks with minimal effort. For example, in a classification problem, one
can utilize standard network architectures like ResNet[14] or VGG [13] and train them using
their own dataset, potentially yielding excellent results if the data are accurately annotated.
These capabilities can be effectively utilized to tackle various complex tasks that demand a
comprehensive understanding of images, such as semantic segmentation, depth estimation,
and many more. In 2014, noteworthy advancements were made by [16], that achieved
state-of-the-art outcomes by simply employing a linear SVM classifier on top of a CNN.
However, thus far, most approaches have tackled each task independently, involving the
collection of a dataset, training of the model, and subsequent testing. But what if we could
transfer the knowledge gained from a previous task to a new one? Or train our network in
a specific domain and deploy it in another? After all, humans tend to learn progressively,
building upon past knowledge. In a way, we aim to make these algorithms more human-like.
Leveraging previously acquired knowledge can be beneficial in several ways. For instance,
collecting large datasets for tasks like semantic segmentation is often impractical. To this
end, it is essential to develop strategies that exploit synthetic datasets to save both time
and money. Transferring knowledge presents a significant challenge for computers, and
despite ongoing efforts by researchers to push the boundaries of Deep Learning, we are
still far from achieving human-level capabilities. In the realm of Machine Learning, the task
of transferring knowledge is commonly referred to as Transfer Learning (TL). This area of
research is expansive and dynamic, with roots in Computer Vision before the rise of Deep
Learning. Before delving into the specific focus of this thesis, which is Transfer Learning in
the context of Domain Adaptation (DA) and Task Transfer (TT), it is essential to briefly clarify

Chapter 1. Introduction 2

some fundamental concepts that will be utilized throughout this dissertation. Depending on
the available data, different variations of machine learning problems can arise, and the most
common ones are as follows:

• Supervised Learning: under the supervised setting, we are given input-label pairs, and
the goal is to learn a mapping function between input and labels. A simple example is
image classification, in which the input is an image and the label is the class it belongs
to.

• Unsupervised Learning: In this scenario, the absence of labels makes it challenging
to assign categories. The main objective is to develop a feature space that effectively
represents the distinctive qualities of the input data. This is achieved by optimizing
an objective function without relying on any form of annotations. Typical tasks in this
context include clustering and anomaly detection.

• Semi-Supervised Learning: These algorithms aim to learn from both labeled and un-
labeled samples. The underlying assumption is that both types of samples are drawn
from the same or similar distribution, allowing them to be utilized together to enhance
performance. In many real-world scenarios, we often encounter situations where only a
small portion of the data is labeled, while a vast amount remains unlabeled. Therefore,
it becomes crucial to employ techniques that can effectively leverage both labeled and
unlabeled data to maximize learning potential.

• Self-Supervised Learning: Self-supervised learning is a relatively recent learning tech-
nique where the training data is labeled autonomously. While it can be considered
a type of supervised learning, the key distinction lies in the fact that the datasets are
not manually annotated by humans. Instead, they are automatically labeled through
a surrogate task. By designing a complex task that provides free labels, it becomes
possible to learn high-quality features that can be applied to the intended target task.
An example of such a task is image rotation, where the input image is rotated, and
the model predicts the degree of rotation. Solving these types of tasks requires a deep
understanding of high-level semantics. Consequently, the model learns representations
that can subsequently be utilized to address downstream problems. Self-Supervised
Learning is sometimes referred to as Weak-Supervised Learning.

Transfer Learning can be employed in all the aforementioned settings as these concepts
are independent of each other. To provide an intuitive and general example of the Transfer
Learning problem, let’s consider a scenario where our goal is to develop a model capable of
performing semantic segmentation, which involves assigning pixel-wise labels to different
objects in an image, such as buildings, trees, cars, pedestrians, and traffic lights. An example of

Chapter 1. Introduction 3

such a dataset in the autonomous driving field is the Cityscapes dataset [17]. However, when
we deploy the same model on another dataset, such as Kitti [18], we encounter significant
performance degradation. The reason behind this poor performance is that the domain
has changed. Despite both datasets representing street scenes, there are variations such as
the different type of buildings or cars, and lighting conditions, among other factors, which
affect the model’s ability to generalize. This is where Domain Adaptation comes into play.
Domain Adaptation is a specific sub-discipline of Transfer Learning that addresses these
types of scenarios. In case no forms of annotations are available for the target domain, we
specifically talk about Unsupervised Domain Adaptation (UDA). Moreover, Transfer learning
can also involve the Task Transfer (TT) problem [19], i.e., on exploiting supervised data to
tackle multiple tasks in a single domain more effectively by leveraging on the relationships
between the learned representations. Thereby, in many of the approaches we introduce in the
next chapters, we focus on merging DA and TT by explicitly addressing a cross-domain and
cross-task problem where on one source domain (e.g., synthetic data) we have supervision
for many tasks, while in another target one (e.g., real data) annotations are available only for
a specific task while we wish to solve many.

1.2 Notation and Formal Definition of Transfer Learning

Let’s now give a formal definition of Transfer Learning and introduce some common
notation that will be used throughout this thesis. For the adopted notation, we closely
follow most of the surveys about Transfer Learning [20] [21]. A domain D consists of a
feature space X and a marginal probability distribution P(X), where X = {x1, ..., xn} ∈ X .
We may consider X as our training data. If the domain consists of RGB images with size
W × H × C, we have a three-dimensional feature space of size W × H × C, i.e., the space
of the possible three-channels images that can be generated. A dataset can be thought of
as a small volume inside this huge feature space. For example, all the natural images, lie
in a specific portion of this multi-dimensional feature space, and we are only interested in
modeling its marginal probability distribution P(X). For a given domain D = {X , P(X)},
a task T is defined by two components, T = {Y , f (·)}, where Y is the label space and
f (·) an objective predictive function that under a probabilistic perspective can be seen as
the conditional probability distribution P(Y|X). In the classical supervised setting, P(Y|X)

can be learned directly from the labeled data {xi, yi}, where xi ∈ X and yi ∈ Y . We can
generalize to the situation in which we have two domains, the source domain with sufficient
labeled data Ds = {Xs, P(X)s}, and the target one with a small amount of labeled data or no
annotated data Dt = {Xt, P(X)t}. Dt can thereby be decomposed in two sets: the labeled
part, Dtl, and the unlabeled part, Dtu. The entire target domain is Dt = Dtl ∪ Dtu. Each
domain is coupled with its corresponding task: the former is T s = {Y s, P(Ys|Xs)}, and the

Chapter 1. Introduction 4

latter is T t = {Y t, P(Yt|Xt)}. The previous definition gives a general framework that can be
instantiated in different settings to obtain several cases. For example, if we fix Ds = Dt and
T s = T t, we are in the traditional Supervised Learning case. In general, since both domain
and task are composed by two elements, we have in total four possibilities:

1. The two datasets are different because the feature space is different: X s ̸= X t. A typical
example can be digit recognition. The source domain only contains one channel images,
while in the test domain, we have to classify colored digits.

2. The difference between the two datasets is caused by a distribution shift: P(Xs) ̸= P(Xt).
Fig. 1.1 illustrates such scenario. In a simplistic two-dimensional feature space, we have
images belonging to the same class (the digits 5) that are occupying different portions of
the feature space. Hence, training a classifier on domain A, and applying it on domain
B, would lead to very poor performance.

FIGURE 1.1. Distribution shift

3. Tasks divergence is caused by a label space discrepancy: Y s ̸= Y t. A typical example of
this case is face recognition, because in the source domain, we may have some faces,
while in the target domain, we would like to recognize other people as depicted in
Fig. 1.2

4. The conditional probability distribution of source and target tasks are different: P(Ys|Xs) ̸=
P(Yt|Xt). This case appears quite often in practice. This happens for example when we
train a model for image classification on a balanced dataset, while the test set is strongly
unbalanced.

The four previous cases are not exclusive and can also appear together as is often the case
in real-world problems. Again, in the autonomous driving scenario, we may have at our

Chapter 1. Introduction 5

FIGURE 1.2. Different label space

disposal additional sensing information such as depth maps for both the source and the
target domain. if we want to solve semantic segmentation in the target domain by exploiting
such data, we are in a situation in which both the tasks (label space discrepancy) and the
domains (different feature space) differ.

1.3 Structure of the thesis

This dissertation aims to introduce novel Transfer Learning algorithms capable of trans-
ferring knowledge across diverse domains and tasks. This research encompasses various
applications, such as 2D semantic segmentation, 3D point cloud classification, and multi-
modal semantic segmentation. The chosen order of these topics is deliberate and strategically
designed. Firstly, we focus on 2D UDA for semantic segmentation, a well-studied field within
the UDA literature [22, 23, 24, 25, 26, 27]. Following our contributions in this domain, we
analyze and propose novel UDA algorithms for 3D point cloud classification [28, 29, 30].
Next, we investigate 3D semantic segmentation from multi-modal data (i.e., RGB and LiDAR
scans). This task can be considered the culmination of the previous two steps and only few
approaches delt with this complex scenario [31, 32, 33]. Notably, 3D semantic segmentation
using multi-modal data presents substantial challenges and necessitates a comprehensive
understanding of the prior topics before tackling its intricacies.

Finally, while Transfer Learning remains the primary focus of this thesis, an additional
chapter is dedicated to Neural Fields. This emerging topic has gained significant interest
within the computer vision community. In this context, we present two works exploring how
to perform standard Deep Learning tasks on this novel representation. Although Neural
Fields have not yet been investigated concretely in the context of Transfer learning, they hold
immense potential as a unified framework for representing various 3D data forms. To this

Chapter 1. Introduction 6

end, we present in the last chapter some preliminary results on transferring knowledge across
modalities i.e., classifying Neural Fields of point clouds with a network trained on neural
fields of meshes. By introducing these works, we hope to inspire further research towards
leveraging neural Fields in Transfer Learning problems.

To summarize, the structure of the thesis is as follows:
Part 1 - Domain Adaptation for 2D Semantic Segmentation. We propose here two lines

of research in this area. The first two works focus on how to exploit different tasks such
as depth estimation, to improve the performance of a segmentation model in the Domain
Adaptation scenario. In the last work instead, we focus on how to obtain better segmentation
masks at object boundaries when the model has to be tested in a different domain.

• Chapter 3 - Learning Good Features to Transfer Across Tasks and Domains. In this
work [4] we introduce a set of strategies to constrain the learned feature spaces so that
the transfer of such features across tasks and domains can be considerably improved.

• Chapter 4 - Plugging Self-Supervised Monocular Depth into Unsupervised Domain.
In all previous works, the domain shift has always been addressed by focusing on the
differences between the two domains. This gap is usually addressed in the input space,
feature space, or output space. However, a different perspective can also be introduced,
and in this work presented in [2], we investigate whether it is possible to boost UDA
performance for 2D semantic segmentation by transferring knowledge learned from
another task.

• Chapter 5 - Shallow Features Guide Unsupervised Domain Adaptation for Semantic
Segmentation at Class Boundaries. Previous UDA methods for 2D semantic segmenta-
tion can correctly segment out coarse blobs of large elements in a scene such as cars or
buildings, failing however in providing pixel-wise accurate segmentation masks. Our
approach presented in [34], exploits shallow features of a CNN encoder to refine the
coarse segmentation.

Part 2 - Domain Adaptation for 3D Point Cloud Classification. In this part, we specifically
address UDA for Point Cloud Classification, and we propose two novel methods that focus
mainly on the Self-training step for boosting performance on the target domain.

• Chapter 7 - RefRec: Pseudo-labels Refinement via Shape Reconstruction for Unsuper-
vised 3D Domain Adaptation. In this chapter, we present RefRec [1], a novel algorithm
that relies on the self-training protocol to learn domain-specific decision boundaries and
reduce the negative impact of mislabelled target samples, showcasing the effectiveness
of pseudo-labels for this important problem.

• Chapter 8 - Self-Distillation for Unsupervised 3D Domain Adaptation. This chapter
reports a novel UDA algorithm introduced in [5]. Here, we focus on obtaining a

Chapter 1. Introduction 7

discriminative feature space for the target domain enforcing consistency between a
point cloud and its augmented version. We then propose a novel iterative self-training
methodology that exploits Graph Neural Networks (GNNs) in the UDA context to
refine pseudo-labels.

Part 3 - Domain Adaptation for multi-modal Semantic Segmentation. Here, we combine
the knowledge acquired with the previously proposed methods and investigate UDA for
multi-modal data that involves both 2D and 3D sensors.

• Chapter 10 - Boosting Multi-Modal Unsupervised Domain Adaptation for LiDAR
Semantic Segmentation by Self-Supervised Depth Completion. In this chapter, we
propose a novel multi-modal UDA method that leverages depth completion as an
auxiliary task to align features extracted from 2D images across domains.

• Chapter 11 - Exploiting the Complementarity of 2D and 3D Networks to Address
Domain-Shift in 3D Semantic Segmentation. In this chapter, we introduce MM2D2D[6],
a two-branches architecture that processes 2D and 3D information independently. We
explain why this design choice is effective and then show how this architecture can
be improved to make the multi-modal semantic segmentation more robust to domain
shift.

Part 4 - Neural Fields. Neural Fields have emerged in the last few years as a powerful
tool to encode continuously a variety of different signals like images, videos, audio and
3D shapes. When a single Multi-Layer perception (MLP) is used to parametrize a Neural
Field, we usually refer to them as Implicit Neural Representations (INRs) In the last part of
this thesis, we introduce the first work that shows how to effectively process INRs to solve
common downstream tasks. Then, in the last chapter, we go beyond the concept of INRs
and consider also other hybrid parametrizations for Neural Fields to solve downstream tasks
more effectively. Moreover, this representation enables the possibility to perform preliminary
experiments in the context of Transfer Learning.

• Chapter 13 - Deep Learning on Implicit Neural Representations of Shapes Since INR
are parametrized as neural networks, it is not clear whether and how it may be possible
to feed them into deep learning pipelines aimed at solving a downstream task. Here, we
put forward this research problem and propose inr2vec, a framework that can compute
a compact latent representation for an input INR in a single inference pass. We verify
that inr2vec can embed effectively the 3D shapes represented by the input INRs and
show how the produced embeddings can be fed into deep learning pipelines to solve
several tasks by processing exclusively INRs.

• Chapter 14 - Neural Processing of Tri-Plane Hybrid Neural Fields Using a single
neural network to parametrize a neural field to solve downstream tasks still holds

Chapter 1. Introduction 8

many limitations, such as being significantly inferior to those achieved by processing
explicit representations, e.g., point clouds or meshes. In the meantime, hybrid rep-
resentations, in particular based on tri-planes, have emerged as a more effective and
efficient alternative to realize neural fields, but their direct processing has not been
investigated yet. In this Chapter, we show that the tri-plane discrete data structure
encodes rich information, which can be effectively processed by standard deep-learning
machinery. We define an extensive benchmark covering a diverse set of fields such as
occupancy, signed/unsigned distance, and, for the first time, radiance fields. While
processing a field with the same reconstruction quality, we achieve task performance
far superior to frameworks that process large MLPs and, for the first time, almost on
par with architectures handling explicit representations.

9

Part I

Transfer Learning for 2D Semantic
Segmentation

10

Chapter 2

Initial Remarks

Semantic segmentation is the task of classifying each pixel of an image. Nowadays,
Convolutional Neural Networks can achieve impressive results in this task but require huge
quantities of labeled images at training time [35, 36, 37, 38]. A popular trend to address this
issue concerns leveraging computer graphics simulations [89] or game engines [39] to obtain
automatically synthetic images endowed with per-pixel semantic labels. Yet, a network
trained on synthetic data only will perform poorly in real environments due to the so-called
domain-shift problem. In the last few years, many Unsupervised Domain Adaptation (UDA)
techniques aimed at alleviating the domain-shift problem have been proposed in literature.
These approaches try to minimize the gap between the labeled source domain (e.g. synthetic
images) and the unlabeled target domain (e.g. real images) by either hallucinating input
images, manipulating the learned features space or imposing statistical constraints on the
predictions [26, 40, 41, 42].

At a more abstract level, UDA may be thought of as the process of transferring more
effectively to the target domain the knowledge from a task solved in the source domain. This
suggests that it may be possible to improve UDA by transferring also knowledge learned
from another task to improve performance in the real domain. In fact, the existence of tightly
related representations within CNNs trained for different tasks has been highlighted since the
early works in the field [43], and it is nowadays standard practice to initialize CNNs deployed
for a variety of diverse tasks, such as, e.g., object detection [44], semantic segmentation [45]
and monocular depth estimation [46], with weights learned on Imagenet Classification [47].
The notion of transferability of representations among CNNs trained to solve different visual
tasks has been formalized computationally by the Taskonomy proposed in [19]. Later, [48]
has shown that it is possible to train a CNN to hallucinate deep features learned to address
one task into features amenable to another task related to the former by means of a transfer
function. In Chapter 3, we exploit the framework introduced in [48], and we build upon two
intuitions. First, the transfer function itself suffers from the domain shift. Second, solving
multiple tasks in a multi-task learning scenario can help to enrich the feature representation
and hence help to boost performance. Following this line of research, in Chapter 4, we
specifically focus on exploiting monocular depth estimation to learn useful features to boost

Chapter 2. Initial Remarks 11

the performance of any existing UDA method. Finally, in Chapter 5, we again take advantage
of an auxiliary task such as edge detection to propose a low-level feature adaptation stage
that leads to more accurate segmentation masks in the target domain.

2.1 Related works

2.1.1 Transfer Learning and Task Transfer

Collecting training data is often expensive, time-consuming, or even unrealistic in many
scenarios. Many works have tackled this problem by exploiting the existence of a relationship
between the weights of CNNs trained for different tasks [49]. In particular, [50] showed
that this strategy, referred to as transfer learning, can lead to better results than using
random initialization even if applied on quite diverse tasks. Transfer learning has become a
common practice, for instance, in object detection, where networks are usually initialized with
Imagenet [51] classification weights [52, 53, 54, 55]. Additional insights on the transferability
of learned representations between different visual tasks were provided in [19], where
the authors present Taskonomy, a computational approach to represent a taxonomy of
relationships among visual tasks. Along similar lines, [56] proposed to exploit the correlation
between known supervised tasks and novel target tasks, in order to predict the parameters of
models deployed to solve the target tasks starting from the parameters of networks trained
on the known tasks.

2.1.2 Domain Adaptation

Domain adaptation techniques aim at reducing the performance drop of a model de-
ployed on a domain different from the one the model was trained on [57]. Throughout the
years, adaptation has been performed at different levels. Early approaches tried to model
a shared feature space relying on statistical metrics such as MMD [58, 59]. Later, some
works proposed to align domains by adversarial training [60, 61, 62]. Recently [63] noticed
that, for classification tasks, aligning feature norms to an arbitrarily large value results in
better transferability across domains. Generative adversarial networks [64] have also been
employed to perform image-to-image translation between different domains [65, 66, 67],
and, in particular, to render cheaply labeled synthetic images similar to real images from
a target domain. However, when dealing with dense tasks such as semantic segmentation,
feature-based domain adaptation approaches tend to fail. Thus, several approaches to ad-
dress domain adaptation for dense tasks, such as semantic segmentation [68, 42, 69, 70, 71,
72, 73, 74, 75, 76, 77] or depth estimation [78, 79, 80] have been proposed recently. Akin to
UDA methods, we learn from a labeled source domain to perform well on a different target

Chapter 2. Initial Remarks 12

domain. However, unlike the classical UDA setting, we assume the existence of an additional
task where supervision is available for both domains.

2.1.3 Multi-task Learning

The goal of multi-task learning is to solve many tasks simultaneously. By pursuing this
rather than solving the tasks independently, a neural network may use more information to
obtain more robust and reliable predictions. Many works try to tackle several tasks jointly [81,
82, 83, 84]. For example, [83] showed that by learning to correctly weigh each task loss, multi-
task learning methods can outperform separate models trained individually. [70, 84] show
how learning multiple perception tasks jointly while enforcing geometrical consistency across
them can lead to better performances for almost all tasks. Recently, [85] proposes a method to
improve the performances of multiple single-task networks by imposing consistency across
them during training. Finally, Taskonomy [19] investigates the relationship between the
deployed tasks to accomplish multi-task learning effectively.

2.1.4 Task Transfer and Domain Adaptation

Most existing approaches address independently either task transfer or domain adaptation.
Yet, a few works have proposed to tackle these two problems jointly. [86] was the first paper to
propose a cross-tasks and cross-domains adaptation approach, considering as tasks different
image classifications problems. UM-Adapt [87], instead, learns a cross-task distillation
framework with full supervision on the source domain and deploys such framework on
the target domain in a fully unsupervised manner, while minimizing adversarially the
discrepancy between the two domains.

2.1.5 Semantic Segmentation Datasets

As explained in Sec. 1.1, we aim at transferring knowledge from a source domain to a
target domain. Since collecting a large amount of labeled data is often time-consuming and
expensive for tasks such as semantic segmentation, the source domain is typically obtained
leveraging computer graphics. This not only provides the advantage of collecting data in
a convenient way, but it also allows the possibility to extract different forms of supervision
such as depth maps that can be used at training time to boost UDA algorithms. Examples of
such datasets that will be used in the next chapters are GTA5 [88] and SYNTHIA [89]. The
former is one of the largest available synthetic datasets for autonomous driving scenarios,
and it contains 24,966 annotated images of 1914 × 1052 resolution extracted from the popular
video-game Grand Theft Auto V (GTAV). As regards as SYNTHIA, multiple subsets have
been released with different characteristics. In Chapter 4, we adopt the SYNTHIA VIDEO

Chapter 2. Initial Remarks 13

SEQUENCES (SYNTHIA-SEQ) subset as video sequences are required to train our method,
while for the experiments in Chapter 5 we utilize the SYNTHIA-RAND-CITYSCAPES (SYN-
THIA) subset, which is a collection of 9,400 synthetic images with resolution 1280 × 760. For
the experiment conducted in Chapter 3, we even collect our own synthetic dataset exploiting
the Carla simulator [90], which is composed of 3500, 500, and 1000 images for training, vali-
dation, and testing respectively. The real dataset used in this dissertation for addressing UDA
for 2D semantic segmentation are instead the Cityscapes dataset [91] and the NTHU [92].
The Cityscapes dataset is a high-quality collection of real images of 2048 × 1024 resolution
acquired in several German cities. It is composed of 2975 and 500 images for the training
and validation split, respectively. The NTHU dataset is a collection of images taken from
four different cities with 2048 × 1024 resolution: Rio, Rome, Tokyo, and Taipei. For each city,
3200 unlabeled images are available for the adaptation phase, and 100 labeled images for the
evaluation.

14

Chapter 3

Transfer Features Across Tasks and
Domains.

This chapter expands upon the foundations laid by the AT/DT framework [48]. Before
delving into our own contributions, we briefly summarize the key concepts of this prior work.
At a high level, AT/DT tries to transfer features learned across tasks within a source domain
in a supervised fashion, and then apply this mapping to a target domain, where only partial
supervision is available. The key point is that the source domain can be synthetic, hence easy
and cheap to generate, even with labels for complex tasks. More specifically, the core idea
is to lean a mapping function G1→2 (colored in yellow in Fig. 3.1) in feature space between
two tasks in a given domain, so that the same mapping can be applied in another domain.
More precisely, the architecture foresees a classical encoder-decoder architecture that is used
to solve independently T1 and T2. These two networks are referred as to N1 = D1(E1(x))
(red network in Fig. 3.1) and N2 = D2(E2(x)) (green network in Fig. 3.1) respectively. Since
we assume to have complete supervision for T1, N1 is trained with images belonging to both
domains. N2 is of course only trained with synthetic images since we do not have labels
for B in T2. Up to this point, we obtained an encoder E1(x) capable of extracting depth
features f1 = E1(x) given both real and synthetic images, and an encoder E2(x) capable of
encoding deep semantic features f2 = E2(x). The final step is thereby to train the transfer
network G1→2 to map depth features into semantic segmentation features: G1→2 : f1 → f2.
Considering that N2 is trained on A, and due to the domain shift, E2(x) can only work
reasonably well on the domain it has been trained on. Hence, G1→2 is optimized on A as
well.

To solve T2, we can now extract depth features from a natural image, convert them into
features for the downstream task and feed them to the corresponding decoder. The whole
protocol can be summarized in the following steps:

1. Learn to solve task T1 on domains A and B.

2. Learn to solve task T2 on domain A.

3. Train G1→2 on domain A.

Chapter 3. Transfer Features Across Tasks and Domains. 15

𝑥𝐵

𝑥𝐴
𝑥𝐴 ො𝑦2

𝐴

𝑥𝐴

𝑥𝐵

ො𝑦2
𝐵

1 – Solve 𝑻𝟏 on domain 𝑨 and 𝑩 2 – Solve 𝑻𝟐 on domain 𝑨

3 – Train Transfer network 𝑮𝟏→𝟐 on domain 𝑨 4 – Apply 𝑮𝟏→𝟐 to solve 𝑻𝟐 on domain 𝑩

𝑦1
𝐵

𝑦2
𝐴

ො𝑦1
𝐴

ො𝑦1
𝐵

𝑦1
𝐴

𝐿𝑇𝑟

𝑬𝟏
𝑨∪𝑩

𝑮𝟏→𝟐
𝑨

𝑮𝟏→𝟐
𝑨

𝑬𝟏
𝑨∪𝑩

𝑬𝟏
𝑨∪𝑩

𝑫𝟏
𝑨∪𝑩

𝑬𝟐
𝑨

𝑫𝟐
𝑨

𝑫𝟐
𝑨

𝑬𝟐
𝑨

FIGURE 3.1. AT/DT framework [48]

4. Apply G1→2 to solve T2 on domain B.

We describe in the next sections the additional improvement made to AT/DT to achieve
better transferability across tasks and domains. A graphical overview of the additional
improvements is depicted in Fig. 3.2.

3.1 Extended AT/DT

3.1.1 Feature Alignment Across Domains

In order to achieve good performances, it is crucial to make G1→2 generalize well in a
target unseen domain B even if trained only source data from A. Domain Adaptation (DA)
literature already offers several ways to accomplish this. One may act on the input space [66],
on the feature space [62] or on the output space of the network [93]. In our case though, both
input and output space of G1→2 are high dimensional latent spaces and, as reported in [93],
unsupervised domain adaptation techniques tend to fail when applied to such spaces for
dense tasks. However, we can address the domain shift directly on the input space of G1→2

since in our framework it boils down to the feature space of N1, where partial alignment is
already achieved by simultaneous supervised training on A and B. We can further diminish
the domain-shift between the two feature spaces by regularizing them, enforcing that f1

features extracted from E1 in A and B have similar L2 norms across channels. We preserve

Chapter 3. Transfer Features Across Tasks and Domains. 16

𝐸1

𝐸2

𝑓1
𝑨

𝑓2
𝑨 𝑓1→2

𝑨

𝐺1→2

ℒ𝑇𝑟

Training 𝑵𝟏 e 𝑵𝟐

Training 𝑮𝟏→𝟐 Inference

𝐸1 𝑓1
𝑩

𝑓1→2
𝑩 𝐷2 ො𝑦2

𝑩

𝐺1→2

ℒ𝒯1(𝑦1
𝐴, ො𝑦1

𝐴)

ℒ𝒯1(𝑦1
𝐵 , ො𝑦1

𝐵)

ℒ𝒯2(𝑦2
𝐴, ො𝑦2

𝐴)
ℒ𝑎𝑢𝑥(𝑦2𝑎𝑢𝑥

𝐴 , ො𝑦2𝑎𝑢𝑥
𝐴)

ℒ𝑎𝑢𝑥(𝑦1𝑎𝑢𝑥
𝐵 , ො𝑦1𝑎𝑢𝑥

𝐵)

ℒ𝑎𝑢𝑥(𝑦1𝑎𝑢𝑥
𝐴 , ො𝑦1𝑎𝑢𝑥

𝐴)

𝑥𝑩

ො𝑦1
𝑨

ො𝑦1
𝑩

ො𝑦2
𝑨

𝑓1
𝑩

𝐸1 𝐷1

𝑓2
𝑨𝐸2 𝐷2

𝑓1
𝑨

ℒ𝑁𝐷𝐴

𝐷𝑎𝑢𝑥

ො𝑦1𝑎𝑢𝑥
𝑨

ො𝑦1𝑎𝑢𝑥
𝑩

ො𝑦2𝑎𝑢𝑥
𝑨

𝑁1

𝑁2

𝑥𝑨

𝑥𝑨

𝑥𝑨

𝑥𝑩
FIGURE 3.2. Features alignment strategies across tasks and domains. We train jointly the networks
N1, N2 and a shared auxiliary decoder Daux. We train N1 to solve T1 on images from domains A
and B using a supervised loss LT1 for T1 alongside a novel feature Norm Discrepancy Alignment
loss LNDA which helps better aligning the features computed by N1 across the two domains. We
train N2 using a supervised loss LT2 for T2 on images from B. Daux is trained to solve an auxiliary
task Taux using the loss Laux and based on the features computed by E1 on images from A and B
as well as by E2 on images from B.

spatial information while calculating the norms assuming that the two domains contains
scenes with similar structure (as it is the case for autonomous driving applications). To
visualize this property we select a synthetic domain A CARLA [90], and a real domain B
Cityscapes [91]. Then, we count for each pixel location the number of occurrences of each
class. We show the result of this experiment in Fig. 3.3, using a viridis colormap to display
these occurrency maps for each class and for both domains A and B. We can clearly see that
the maps have a structure similar across domains, e.g., building are concentrated in the top
image regions.

Thereby, starting from features f A
1 and f B

1 of dimensions H × W × C, where H, W and C
are the height, width and channels of the feature maps respectively, we calculate the L2 norm
along the C axis and we minimize the absolute difference between each spatial location i, j
along the H and W dimensions. Formally our NDA Loss is defined as follows:

LNDA =
1

W × H

H

∑
i=1

W

∑
j=1

||| f A
1i,j
||2 − || f B

1i,j
||2| (3.1)

3.1.2 Feature alignment across tasks

We have previously shown a practical solution to improve the generalization across
domains of our mapping. However, we want to go a step further and align features also
across tasks to ease the learning of a mapping function. We believe that, f1 should contain as

Chapter 3. Transfer Features Across Tasks and Domains. 17

A B A B A B A B

Road Sidewalk Wall Fence
A B A B A B A B

Person Pole Vegetation Vehicle
A B A B A B

Traffic Signs Building Sky

FIGURE 3.3. Spatial Priors Similarities Across Domains. Considered the semantic segmentation
task, we compute the number of occurrences of each class at each pixel location for both domains.
Domain A is CARLA, B is Cityscapes. We visualize the occurrence maps with a viridis colormap.

much information as possible, even if they are not strictly needed to solve T1, because they
could be useful for T2. For this reason, while training networks for T1, we simultaneously
train a decoder to solve an auxiliary task Taux to enrich representations. However, though
multi-task learning of T1 and Taux can help to encode more relevant information in the T1

features f1, it does not guarantee that the decoder D2 used at inference time on the transferred
features from T1 to T2, f1→2, can make proper use of them if it has been trained only to solve
T2 in isolation. Taux can be used to this end and learn to solve it with the same decoder Daux

also from features f2 computed by E2.
In detail, given auxiliary task labels YA

aux and YB
aux for A and B, we train N1 and N2

simultaneously with an auxiliary decoder Daux using an auxiliary loss Laux. Therefore, we
obtain auxiliary predictions in the following way: yaux,k = Daux(Ek(x)), k ∈ [1, 2]. Again, we
feed images of both domains through E1, while we pass only images from A through E2. We
do not pass images belonging to B through E2 while training Daux since this would be the
only supervision for E2 on B and it may skew E2 output to be more effective on Taux than on
T2.

3.2 Experimental Settings

Tasks. We fix T1 and T2 to be monocular depth estimation or semantic segmentation.
These two visual tasks can be addressed using the same base architecture and changing
only the final layer. Semantic segmentation is solved by minimizing a cross-entropy loss,
monocular depth estimation by minimizing a L1 loss. We select edge detection as our Taux

since this task has many advantages. First, from an implementation point of view, it can
be solved using again the same decoder as T1 and T2. Second, since our main goal is to

Chapter 3. Transfer Features Across Tasks and Domains. 18

FIGURE 3.4. Two task transfer scenarios: on the left, the depth-to-semantic case; the opposite
on the right. Red circles highlight image details that are needed to perform the second task
but are not present in the first one. We propose to incorporate relevant details of the scene
within deep features by exploiting an auxiliary edge detection task, with the aim of making these
representations easier to transfer across tasks and domains.

improve the transferability of features among tasks, we force features for T1 to contain as
many details as possible of the scene, even if they are not strictly needed to solve T1. To
make a concrete example, we can think about the case of T1 being depth estimation and T2

semantic segmentation. Features f1 used to compute depth can ignore boundaries between
semantically distinct regions of the image that are not needed to correctly predict depth, as
shown in Fig. 3.4 (e.g., legs or tires touching the ground, or between street signs and poles).
Therefore, even if fed to a perfect G1→2, f1 may not contain all the information needed to
restore the semantic structure of the image. By solving edge detection, instead, we force
the network to extract additional information from the image, not normally encoded when
training depth features in isolation. We define Laux as a L2 loss for training the edge decoder.

Datasets. To assess our contributions, we set A and B to be the synthetic and real datasets,
respectively. We use as A a collection of images generated with the Carla simulator, while as
B the Cityscapes dataset. We generate a new version of the Carla dataset w.r.t. the one used
to evaluate the original AT/DT to reduce the gap between synthetic and real scenes. For each
image, we store the associated depth and semantic labels easily provided by the simulator.
Since for the Cityscapes dataset only the semantic labels are provided, we use depth maps
obtained with the SGM stereo algorithm [94], by filtering the erroneous predictions in the
generated disparities with a left-right consistency check. This can be considered as an added
value because it shows the ability to transfer knowledge when learning from noisy labels,
although a stereo setup is required. Finally, we use a pre-trained state-of-the-art neural

Chapter 3. Transfer Features Across Tasks and Domains. 19

network[95] (trained on datasets different from A and B) as an off-the-shelf black-box edge
detector to extract the edges from both A and B to be used as proxy labels when learning Taux.

Architecture. We use the same architecture as described in [48] to solve each task. The
two encoders are also used to capture good features for edge detection, which is solved using
Daux, which shares the same architecture as the decoders used in N1 and N2. G1→2 is a simple
CNN made out of 6 pairs of convolutional and batch normalization layers with kernel size
3 × 3 which, differently from the original AT/DT version, do not perform any downsampling
or upsampling operation.

Evaluation protocol. During the first step of the training, i.e., training N1 and N2, we
found to be extremely relevant to monitor the performance of the two networks. Indeed, we
have observed that the more effective is N2 on the downstream task, the higher is the final
performance of our method and that the same reasoning may be applied on N1 when trained
on A and B: better results lead to a superior domain adaptation method.

During the training phase of the transfer network, the model is evaluated on the validation
set of Carla. Of course, it is possible that the global optimum for Carla is not the global
optimum for Cityscapes. Yet, we cannot use data from the target domain neither for hyper-
parameters tuning nor for early stopping, because these data would not be available in a
real-case scenario. Therefore, the Cityscapes validation set is only used at test time to measure
the final performances of our adaptation method.

FIGURE 3.5. From left to right: RGB input image of domain A , depth prediction from N1, edges
from f1, semantic segmentation from N2 and edges from f2. Task features f1 and f2 encode richer
details than strictly needed to solve either task as we can recover all edges from both of them.

3.3 Experimental Results

We provide results for two different settings: transferring features from depth estima-
tion to semantic segmentation (Sec. 3.3.1) as well as from semantic segmentation to depth
estimation (Sec. 3.3.2).

In both scenarios, as already mentioned, we used edge detection as an auxiliary task,
motivated by the idea that both semantic segmentation and depth estimation can benefit

Chapter 3. Transfer Features Across Tasks and Domains. 20

A B Method R
oa

d

Si
de

w
al

k

W
al

ls

Fe
nc

e

Pe
rs

on

Po
le

s

Ve
ge

ta
ti

on

Ve
hi

cl
es

Tr
.S

ig
ns

Bu
ild

in
g

Sk
y

mIoU Acc

Carla CS Source 78.99 38.81 1.34 5.80 24.02 24.47 71.98 52.23 5.57 65.17 59.10 38.86 78.58
Carla CS AT/DT 90.57 48.46 7.37 12.27 41.16 31.90 81.96 72.77 23.44 77.85 76.33 51.28 87.57

CS CS Transfer Oracle 89.69 48.05 11.46 29.58 59.68 35.84 85.83 85.57 34.03 78.17 85.54 58.50 88.84
- CS Oracle 96.74 78.28 29.26 40.78 72.39 51.28 90.69 91.94 58.92 86.33 89.23 71.44 93.90

TABLE 3.1. Experimental results of Dep. → Sem. scenario. Source stands for N2 trained on A and
tested on B, Transfer Oracle represents G1→2 trained only on B, Oracle refers to N2 trained and
tested on B. Best results highlighted in bold.

FIGURE 3.6. Qualitative results of the Dep. → Sem. scenario. From left to right: RGB image,
ground truth, baseline trained only on domain A, ours.

Chapter 3. Transfer Features Across Tasks and Domains. 21

from edge information. Fig. 3.5 shows that with our multi-task learning protocol, we are able
to restore all the details of the scene from both f1 and f2, proving that N1 and N2 learned to
encode richer information than strictly needed to solve T1 and T2.

Lower is better Higher is better
A B Method Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

Carla CS Source 0.7398 15.169 14.774 0.641 0.406 0.650 0.781
Carla CS AT/DT 0.3928 4.9094 12.363 0.444 0.372 0.757 0.923

CS CS Transfer Oracle 0.2210 2.2962 9.032 0.275 0.669 0.914 0.972
- CS Oracle 0.1372 1.6214 8.566 0.244 0.816 0.938 0.976

TABLE 3.2. Experimental results of Sem. → Dep. scenario. Source stands for N2 trained on A and
tested on B, Transfer Oracle represents G1→2 trained only on B, Oracle refers to N2 trained and
tested on B. Best results highlighted in bold.

FIGURE 3.7. Qualitative result of the Sem. → Dep. scenario. From left to right: RGB image,
ground truth, baseline network trained only on domain A, ours.

3.3.1 Depth to Semantics

In this setup, denoted as Dep. → Sem., the goal of our framework is to transform depth
features into semantic segmentation features. This mapping is learned using Carla as domain
A and Cityscapes as domain B. We report results in Tab. 3.1: the first row shows results
obtained with no adaptation (i.e., training N2 on Carla and testing it directly on Cityscapes),
while from the second row we can see that our final framework yields 51.28% mIoU and
87.57% Acc with an improvement of +12.48% and +8.99% respectively in terms of mIoU and
Acc wrt to the baseline.

Furthermore, as we are transferring features from another task, it is worth trying to
investigate on the upper bound in performance due to the inherent transferability of the

Chapter 3. Transfer Features Across Tasks and Domains. 22

features between the two tasks. Thereby, we train G1→2 using only Cityscapes to learn a
mapping function in a supervised fashion as explained in Sec. 3.1.2 on B and testing on the
validation set of B. These results are shown in the third row of the table (denoted as Transfer
Oracle): given a transfer architecture, there seems to be an upper bound in performance due
to the nature of the two tasks, which in the considered setting amounts to a 58.5% mIoU. Thus,
our proposal shows a gap that is only about -7.2% mIoU. We also report the performance of
N2 trained on B and tested on B to show the absolute upper bound (last row of the table,
denoted as Oracle).

Some qualitative results dealing with the Dep. → Sem. scenario are depicted in Fig. 3.6. It
is possible to appreciate the overall improvement of our method wrt the baseline, either in
flat areas (e.g., roads, sidelwalks and walls), in objects shapes (e.g., cars and persons) or in
fine-grained details (e.g., poles and traffic signs).

3.3.2 Semantics to Depth

In this setup, which we define as Sem. → Dep., the goal of our framework is to transform
semantic features into depth features. This mapping is learned using Carla as domain A and
Cityscapes as domain B.

Results are reported in Tab. 3.2. Similarly to the Dep. → Sem. scenario, in the first row
we show results with no adaptation (denoted as Source), while the second row presents
the ones obtained with our framework. In Fig. 3.7, we show some qualitative results of the
Sem. → Dep. scenario. While predictions look quite noisy in the background, we can see
a good improvement in the foreground area thanks to our method. Shapes are recovered
almost perfectly, both for big and small objects, even with difficult subjects like the crowd
in the bottom row. Additionally, our method enables a remarkable enhancement of the
prediction smoothness.

3.4 Additional Experiments

In the following sections, we study the effectiveness of each implementation choice.

3.4.1 Contribution of Taux and NDA Loss

We start by studying the effect of introducing in our framework the auxiliary task and the
NDA Loss, analyzing their contribution either when used separately or combined together.
The second and the third row of Tab. 3.3 report results obtained in the Dep. → Sem. setting
respectively when integrating in our method exclusively the auxiliary task (i.e., edge detection)
or the NDA loss. We can see that both techniques bring in an improvement of about +2% in

Chapter 3. Transfer Features Across Tasks and Domains. 23

A B Ed
ge

N
D

A

R
oa

d

Si
de

w
al

k

W
al

ls

Fe
nc

e

Pe
rs

on

Po
le

s

Ve
ge

ta
ti

on

Ve
hi

cl
es

Tr
.S

ig
ns

Bu
ild

in
g

Sk
y

mIoU Acc

Carla CS 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90
Carla CS ✓ 90.12 48.90 4.18 11.63 37.40 31.98 82.34 71.50 15.11 78.04 80.61 50.16 87.21
Carla CS ✓ 91.21 50.16 5.14 13.78 36.99 32.10 77.72 73.38 23.47 76.67 72.67 50.30 86.77
Carla CS ✓ ✓ 90.57 48.46 7.37 12.27 41.16 31.90 81.96 72.77 23.44 77.85 76.33 51.28 87.57

TABLE 3.3. Ablation study in the Dep. → Sem. scenario. Best results highlighted in bold. Edge
refers to the framework trained with our details-aware features. NDA refers to the framework
trained with our NDA loss.

terms of mIoU wrt to the plain version of AT/DT (first row). Interestingly, though, from the
last row of the table we can see that edge detection and the NDA loss result complementary
when combined, providing an overall improvement of +3.34% mIoU.

Fig. 3.8 presents some zoomed-in qualitative results: we can see how small details such
as poles or car shapes are recovered with our method wrt results obtained without Taux and
NDA loss.

FIGURE 3.8. Zoomed results in a Dep. → Sem. scenario. From left to right: plain AT/DT without
edge and NDA, our complete framework, ground truth. We notice how our method is able to
recover fine-grained details of the output.

3.4.2 Effectiveness of edge detection as auxiliary task

In this section, we show empirically that the choice of the proper auxiliary task is key to
the performance of our framework.

In both the Dep. → Sem. and the Sem. → Dep. scenarios, we proposed to use edge
detection as an auxiliary task because it captures information about the shapes of the objects
in the input images, and allows for the straightforward computation of proxy labels. To
validate this design choice, we tested our framework in the Dep. → Sem. setting, using Daux

to simply reconstruct the input images both from f1 and f2, i.e., the classical autoencoder

Chapter 3. Transfer Features Across Tasks and Domains. 24

Aux Task R
oa

d

Si
de

w
al

k

W
al

ls

Fe
nc

e

Pe
rs

on

Po
le

s

Ve
ge

ta
ti

on

Ve
hi

cl
es

Tr
.S

ig
ns

Bu
ild

in
g

Sk
y

mIoU Acc

None 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90
Autoencoder 90.68 50.12 7.45 9.08 31.40 29.43 78.72 68.51 12.95 74.67 75.68 48.07 86.31
Edge detection 90.12 48.90 4.18 11.63 37.40 31.98 82.34 71.50 15.11 78.04 80.61 50.16 87.21

TABLE 3.4. Comparison between autoencoder and edge detection as auxiliary tasks in the
Dep. → Sem. scenario. Best results highlighted in bold.

setting (results in Tab. 3.4). Interestingly, using a reconstruction task as the auxiliary task
achieves comparable performances in terms of mIoU over plain AT/DT. We believe that the
autoencoder is a trivial task that does not require the extraction of informative features about
the image, therefore not providing any additional cues to the downstream task.

3.4.3 Importance of simultaneous training of N1, N2 and Daux

In our experiments, we use edge detection as an auxiliary task and train a shared decoder
Daux to reconstruct edges of the input image from features extracted by both E1 and E2. In
fact, we argue that this procedure should force E1 to encode in the extracted features also
edges that are not necessary for T1 but could be relevant for T2. Besides, we believe that
simultaneous training of N1, N2 and Daux is crucial to encourage features coming from E1

and E2 to encode edge information in the same way, making it easier to learn G1→2.
In Tab. 3.5 we report the ablation study conducted to validate these intuitions. We consider

the Dep. → Sem. scenario using the Carla dataset as domain A and Cityscapes as domain B.
The four rows of the table represent the following training schemes:

1. We report the results obtained by plain AT/DT (i.e., trained without Taux and NDA loss)
as a baseline.

2. We first train N1 and Daux on both A and B. Then, we train N2 on A. Finally, we train
G1→2 on features extracted by E1 and E2 on domain A.

3. We train N1 and a first D1
aux on both A and B. Then, we train N2 and a second D2

aux on
A. Finally, we train G1→2 on features extracted by E1 and E2 on domain A

4. Our proposed method with a simultaneous training of N1, N2 and a shared Daux.

The introduction of edge detection as auxiliary task helps in every scenario. In fact, if we
use Daux only during training of N1 (second row), we already see an increase of 0.6% in the
overall mIoU. We believe that this is explained by the presence of edge details (not strictly
necessary to solve T1 but relevant for T2) in features extracted by E1. However, G1→2 can

Chapter 3. Transfer Features Across Tasks and Domains. 25

method R
oa

d

Si
de

w
al

k

W
al

ls

Fe
nd

ce

Pe
rs

on

Po
le

s

Ve
ge

ta
ti

on

Ve
hi

cl
es

Tr
.S

ig
ns

Bu
ild

in
g

Sk
y

mIoU Acc

plain AT/DT 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90
Separate (N1 + edge), N2 87.24 43.30 3.08 10.17 41.77 29.04 81.81 72.35 16.58 77.10 73.10 48.69 85.89
Separate (N1 + edge), (N2 + edge) 88.83 47.31 7.10 8.59 44.53 30.99 83.24 73.54 18.05 78.10 69.66 49.99 86.72
Simultaneous (N1 + N2 + edge) 90.12 48.90 4.18 11.63 37.40 31.98 82.34 71.50 15.11 78.04 80.61 50.16 87.21

TABLE 3.5. Ablation study on the use of edge detection as auxiliary task. Best results highlighted
in bold. See text for a detailed explanation of the training protocol used in each row.

E1 Align. R
oa

d

Si
de

w
al

k

W
al

ls

Fe
nc

e

Pe
rs

on

Po
le

s

Ve
ge

ta
ti

on

Ve
hi

cl
es

Tr
.S

ig
ns

Bu
ild

in
g

Sk
y

mIoU Acc

None 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90
Adv. 89.89 46.01 4.22 11.89 38.20 30.65 77.00 63.68 12.99 74.35 81.16 48.19 85.42
NDA 91.21 50.16 5.14 13.78 36.99 32.10 77.72 73.38 23.47 76.67 72.67 50.30 86.77

TABLE 3.6. Comparison between NDA loss and adversarial training to align E1 features. Best
results highlighted in bold.

have difficulties in adapting f1 into f2 when the edge information is not explicitly present in
f2. This is confirmed by the result in the third row of the table, where an additional increase
of 1.3% in the overall mIoU is attained by using two different Daux (one during training of
N1 and one during training of N2). Finally, the best results in terms of mIoU and Acc are
achieved by our method, i.e., when simultaneously training N1, N2 and a shared Daux. This
shows the benefit of encoding in the same way the edge information in f1 and f2 to enforce
feature alignment across tasks.

3.4.4 Alignment strategies for N1

An alternative way to align N1 features between domains to ease the transfer process and
favor the generalization of G1→2, is to apply the widely used adversarial training in feature
space. In our settings, this can be done by adding a critic that must discriminate whether
the features produced by E1 come from A or B. Thus, the encoder E1 not only has to learn
a good feature space for its task, but it is also asked to fool the critic. Afterward, we can
proceed to learn a mapping function G1→2 among tasks as usual. In Tab. 3.6 we compare
this standard DA methodology to our NDA loss. Adversarial training (second row) does
not introduce significant improvements over not performing DA for T1 (first row, it even
lowers the pixel-wise accuracy), while constraining the features extracted by E1 in a norm
aligned space (third row) significantly increases both metrics with respect to the baseline.
Our intuition is that although adversarial training can be useful for domain alignment, it
alters the learned feature space with the goal of fooling the critic, and due to the instability of

Chapter 3. Transfer Features Across Tasks and Domains. 26

adversarial learning, this training objective can lead to worse performances on the current
task. Our NDA loss on the other hands, acts as a simple regularizer that tries to favor the
generalization of the network, thereby it directly helps the network to perform better in the
specific tasks.

3.4.5 Aligning N2 features

E2 Align. R
oa

d

Si
de

w
al

k

W
al

ls

Fe
nc

e

Pe
rs

on

Po
le

s

Ve
ge

ta
ti

on

Ve
hi

cl
es

Tr
.S

ig
ns

Bu
ild

in
g

Sk
y

mIoU Acc

plain AT/DT 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90
Adv. 89.36 46.03 5.59 8.22 36.45 25.44 75.15 72.29 12.69 74.12 75.79 47.38 85.31
NDA 44.94 23.82 3.81 2.09 30.74 24.21 42.08 68.84 11.69 35.67 11.10 27.18 56.17

TABLE 3.7. Results of aligning output space of E2 in a Dep. → Sem. scenario. Best results
highlighted in bold.

We tried to perform feature alignment across domains also on the features f2 extracted by
E2, by either deploying adversarial training or imposing our NDA loss. The idea is to favor
the generalization of G1→2 by making not only alignment in its input space (i.e., the features
produced by E1, aligned with our NDA loss) more homogeneous, but also its output space,
i.e., the features produced by E2. However, the setting is not completely symmetric: when
learning E2, we do not have supervision available for B, and the only loss shaping the feature
space for its images is the alignment loss. We believe this to be the reason why aligning N2

features turned out always detrimental to performance, as shown in Tab. 3.7 and discussed
below.

In the first row, we report the results provided by plain AT/DT (no NDA, no aux), in the
second those obtained by adversarial training on the features f2 using the same procedure as
described in the previous section for f1. We can observe that not only adversarial training
does not improve (like adversarial training applied to E1) but it even decreases the overall
mIoU of 0.7% compared to the baseline. Finally, in the third row, we report the results
obtained by our NDA loss on f2, like we did successfully on f1: the NDA loss destroys the
feature space of T2 when applied in this context, as vouched by the drop of 20% in the overall
mIoU wrt to plain AT/DT.

We formulate the following hypothesis to explain these results: both adversarial training
and NDA perform a comparison between fA2 and f B2 . While fA2 are shaped also by the
supervision of T2, f B2 are evolved only according to the additional loss we impose, as we do
not have supervision for T2 on B. However, E2 is shared across domains, and therefore may
be pushed to produce worse representations for both domains while it tries to accomplish
the adversarial objective or the NDA loss minimization for B. If this happens, mappings

Chapter 3. Transfer Features Across Tasks and Domains. 27

Input Align. Output Align. R
oa

d

Si
de

w
al

k

W
al

ls

Fe
nc

e

Pe
rs

on

Po
le

s

Ve
ge

ta
ti

on

Ve
hi

cl
es

Tr
.S

ig
ns

Bu
ild

in
g

Sk
y

mIoU Acc

- NDA 42.97 19.60 2.31 1.36 4.21 15.74 18.42 11.77 7.19 36.72 38.99 18.12 43.63
- Adv 90.80 48.91 6.16 11.84 35.32 30.29 78.78 71.17 18.51 75.66 75.03 49.32 86.43
- NDA + Adv 91.03 48.93 6.14 12.24 35.91 31.05 77.93 70.28 16.65 75.50 74.47 49.10 86.28
NDA Adv 90.67 49.49 5.54 12.29 36.73 28.49 78.28 70.19 22.05 76.47 76.35 49.69 86.73
NDA - 91.21 50.16 5.14 13.78 36.99 32.10 77.72 73.38 23.47 76.67 72.67 50.30 86.77

TABLE 3.8. Results of aligning input and output space of G1→2 in a Dep. → Sem. scenario. Best
results highlighted in bold.

learned by G1→2 from fA1 to fA2 will hallucinate worse features for T2 on B. To understand
why adversarial training leads to a small decrease in performances compared to the use of
NDA loss, we ought to consider that adversarial training implies a discriminator that cannot
be easily fooled by totally degenerated features, while, without any additional constrain from
task supervision, the NDA loss can yield totally collapsed representations.

3.4.6 Aligning G1→2 features

Although feature alignment did not turn out beneficial when training N2, one may still
expect to obtain better hallucinated features if the representations obtained when transferring
fA1 and f B1 are aligned. We empirically found out that even though output space aligning
strategies deployed when training G1→2 can lead to improvements in performance, input
space alignment using our NDA loss deployed when training N1 is more effective than them.
Moreover, combining input and output space alignment techniques does not lead to further
improvements. We performed this ablation study in the Dep. → Sem. scenario using Carla as
A and Cityscapes as B. Results of these experiments are reported in Tab. 3.8.

First, we applied our NDA loss to the output space of G1→2. Similarly to the previous
section, we notice that, without having supervision on B, the representations extracted
from G1→2 for its images collapsed into a single value, yielding a drastic drop in transfer
performance (row 1). We also tried to align the output-space features by training G1→2

alongside a discriminator in an adversarial fashion. We wanted to fool the discriminator
in order to generate indistinguishable features from A or B. We noticed that this strategy
allow us to reach good overall performances with a 49.32 mIoU on Cityscapes (second row).
Moreover, we thought that as adversarial training provides supervision on B, using the NDA
loss in combination with adversarial loss could avoid feature collapse for B while reaching
a better overall alignment between A and B. However, we notice that the combination of
the two losses lead us to slightly worse results than adversarial training only (rows 2 vs 3).
Finally, since we noticed that using adversarial loss on the output space lead us to good
overall performances, we tested the combination of input space alignment, through NDA
loss applied when training N1, and output space alignment, through adversarial training for

Chapter 3. Transfer Features Across Tasks and Domains. 28

G1→2. However, the combination of these two methods achieves worse performance than
using only NDA alignment loss on input space (rows 5 vs 6).

3.5 Conclusions

We have introduced a framework able to effectively transfer knowledge between different
tasks by learning an explicit mapping function between deep features. This mapping function
can be parametrized by a neural network and shows interesting generalization capabilities
across domains. To further ameliorate performance we have proposed two novel feature
alignment strategies. At a domain level, we showed that the transfer function presented
in our framework can be boosted by making its input space more homogeneous across
domains with our simple yet effective NDA loss. At a task level, instead, we reported how
deep features extracted for different tasks can be enriched and aligned with the introduction
of a shared auxiliary task, which we implemented as edge detection in our experiments.
We reported good results in the challenging synthetic to real scenario while transferring
knowledge between the semantic segmentation and monocular depth estimation tasks. Our
proposal is complementary to the whole domain adaptation literature and might be integrated
with it.

29

Chapter 4

Plugging Monocular Depth into
Unsupervised Domain Adaptation

Inspired by previous findings, we argue that monocular depth estimation could be an
excellent task to gather additional knowledge useful to address semantic segmentation in the
Unsupervised Domain Adaptation (UDA) settings. First of all, a monocular depth estimation
network makes predictions based on 3D cues dealing with the appearance, shape, relative
sizes, and spatial relationships of the stuff and things observed in the training images. This
suggests that the network has to predict geometry by implicitly learning to understand the
scene semantics. Indeed, other works [97, 98, 99] show that a monocular depth estimation
network obtains better performances if forced to learn a semantic segmentation task jointly.
Moreover, previous experiments in [48] show that depth can help semantics alike. Indeed, it
is possible to learn a mapping in both directions between features learned to predict depth
and per-pixel semantic labels. It is also worth observing how depth prediction networks tend
to extract accurate information for regions characterized by repeatable and simple geometries,
such as roads and buildings, which feature strong spatial and geometric priors (e.g. the
road is typically a plane in the bottom part of the image) [100, 101, 102, 103]. Therefore, on
the one hand, predicting accurately the semantics of such regions from depth information
alone should be possible. On the other, a semantic network capable of reasoning on the
scene geometry should be less prone to mistakes caused by appearance variations between
synthetic and real images, the key issue in UDA for semantic segmentation.

Despite the above observations, injection of geometric cues into UDA frameworks for
semantic segmentation has been largely unexplored in literature, except for a few propos-
als, which either assume the availability of depth labels in the real domain [104], a very
restrictive assumption, or can leverage on depth information only in the synthetic domain
due to availability of cheap labels [105, 106, 107]. In this respect, we set forth an additional
consideration: nowadays, effective self-supervised procedures allow for training a monocular
depth estimation network without the need for ground-truth labels [101, 108, 109].

Based on the above intuitions and considerations, in this chapter, we show that thanks to
self-supervision, we can deploy depth information from both synthetic and unlabelled real

Chapter 4. Plugging Monocular Depth into Unsupervised Domain Adaptation 30

Ltir𝐷4Ltir
Stuff and
Things

Stuff and
Things

𝐷4

FIGURE 4.1. D4 can be plugged seamlessly into any existing method to improve UDA for Semantic
Segmentation. Here we show how the introduction of D4 can ameliorate the performance of two
recent methods like Ltir [27] and Stuff and Things [96].

images in order to inject geometric cues in UDA for semantic segmentation. Purposely, we
adapt the knowledge learned to pursue depth estimation into a representation amenable to
semantic segmentation with [48]. As the geometric cues learned from monocular images
yield semantic predictions that are often complementary to those attainable by current UDA
methods, as illustrated in Fig. 4.1 we realize our proposal as a depth-based add-on, dubbed D4
(Depth For), which can be plugged seamlessly into any UDA method to boost its performance.

Finally, we also follow a recent trend in UDA for semantic segmentation, the Self-Training
(ST), which consists of further fine-tuning the trained network by its predictions [110, 111,
112, 113, 114, 115]. We propose a novel Depth-Based Self-Training (DBST) approach, which
deploys once more the availability of depth information for real images to build a large and
varied dataset of plausible samples to be deployed in the Self-Training (ST) procedure.

We will show that our framework can improve many state-of-the-art methods by a large
margin in two UDA for semantic segmentation benchmarks, where networks are trained
either on GTA5 [88] either or SYNTHIA VIDEO SEQUENCES [89] and tested on Cityscapes
[91]. Moreover, we show that our DBST procedure enables us to distill the whole framework
into a single ResNet101 [116] and achieve state-of-the-art performance.

4.1 Method

In Unsupervised Domain Adaptation (UDA) for semantic segmentation one wishes to
solve semantic segmentation in a target domain, B, though labels are available only in another
domain, referred to as source domain A. In the following, we describe the two ingredients to
better tackle this problem. In Sec. 4.1.1 we show how to use AT/DT to transfer information
from self-supervised monocular depth to semantic segmentation and merge this knowledge
with any UDA method (D4-UDA, Depth For UDA). Then, in Sec. 4.1.2 we introduce a Depth-
Based Self-Training strategy (DBST) to further improve semantic predictions while distilling
the whole framework into a single CNN.

Chapter 4. Plugging Monocular Depth into Unsupervised Domain Adaptation 31

FIGURE 4.2. From top to bottom: ground truth, semantics from depth, semantics by LTIR [27]. The
semantic labels predicted from depth are more accurate than those yielded by UDA methods in
regularly-shaped objects (such as the wall in the left image and the sidewalk in the right one), whilst
UDA approaches tend top perform better on small objects (see the traffic signs in both images).

4.1.1 D4 (Depth For UDA)

Semantics from Depth. As explained above we want to use AT/DT to transfer knowledge
from depth to semantic. However, AT/DT assumes the availability of ground-truth labels for
the first task (depth estimation in this setting) also in B (real images), or at least a stereo setup.
As pointed out previously, this assumption does not comply with the standard UDA for
semantic segmentation problem formulation, which pertains availability of semantic labels
for source images (A) alongside with unlabelled target images (B). To address this issue we
propose here to rely on depth proxy-labels attainable from images belonging to both A and B
without the need for any ground-truth information. In particular, we propose to deploy one
of the recently proposed deep neural networks, such as [101], that can be trained to perform
monocular depth estimation based on a self-supervised loss that requires the availability of
raw image sequences only, i.e. without ground-truth depth labels. Thus, we will follow the
following protocol. First, we train a self-supervised monocular depth estimation network
on both A and B. Then, we use this network to generate depth proxy-labels for both domains.
Finally, we train AT/DT following the protocol exposed in AT/DT using the previously
computed depth proxy-labels to train N1. In the following, we will refer to such predictions
as semantics from depth because they concern semantic information extracted from features
amenable to perform monocular depth estimation.

Chapter 4. Plugging Monocular Depth into Unsupervised Domain Adaptation 32

RGB

𝑈𝐷𝐴𝑖

DISTILL
FINAL MODEL

RGB and PSEUDO LABELS

𝐷4-𝑈𝐷𝐴𝑖 𝐷𝐵𝑆𝑇

⨁

FIGURE 4.3. Overview of D4. RGB images are first processed by two different semantic segmenta-
tion engines to produce complementary predictions that are then combined by a weighted sum
that accounts for the relative strengths and weaknesses of the two engines (Eq. (4.3)). During
the next step, referred to as DBST, predictions from D4-UDAi are used to synthesize augmented
samples by mixing portions of different images according to depth and semantics. The augmented
samples are exploited to train a final model, so as to distill the whole pipeline into a single
network.

Combine with UDA. Fig. 4.2 compares semantic predictions obtained from depth by the
protocol described in the previous sub-section and from a recent UDA method. The reader
may observe a clear pattern: predictions from depth tend to be smoother and more accurate
on objects with large and regular shapes, like road, sidewalk, wall and building. However, they
turn out often imprecise in regions where depth predictions are less informative, like thin
things partially overlapping with other objects or fine-grained structures in the background.
As UDA methods tend to perform better on such classes (see Fig. 4.2), our D4 approach is
designed to combine the semantic knowledge extracted from depth with that provided by any
chosen UDA method in order to achieve more accurate semantic predictions.

Depth information helps on large objects with regular shapes, which usually account for
the majority of pixels in an image, and a whole dataset alike. On the contrary, UDA methods
perform well in predicting semantic labels for categories that typically concern much smaller
fractions of the total number of pixels in an image and dataset, like e.g. the traffic signs in
Fig. 4.2. This orthogonality suggests that a simple yet effective way to combine the semantic
knowledge drawn from depth with that provided by UDA methods consists of a weighted
sum of predictions, with weights computed according to the frequency of classes in A (the
domain where semantic labels are available). As weights given to UDA predictions (wuda)
should be larger for rarer classes, they can be computed as:

wuda = [w1
uda, . . . , wC

uda] where wi
uda =

1
ln(δ + f i)

(4.1)

Chapter 4. Plugging Monocular Depth into Unsupervised Domain Adaptation 33

method R
oa

d

Si
de

w
al

k

Bu
ild

in
g

W
al

ls

Fe
nc

e

Po
le

T-
lig

ht

T-
si

gn

Ve
ge

ta
ti

on

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

Bu
s

Tr
ai

n

M
ot

or
bi

ke

Bi
cy

cl
e

mIoU Acc

AdaptSegNet [93] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.6 32.5 35.4 3.9 30.1 28.1 42.4 85.6
D4-AdaptSegNet + DBST 93.1 53.0 85.1 42.8 27.3 35.8 43.9 18.5 85.9 39.0 89.9 63.0 31.6 86.6 39.8 36.7 0 42.4 35.0 50.0 90.3

MaxSquare [24] 88.1 27.7 80.8 28.7 19.8 24.9 34.0 17.8 83.6 34.7 76.0 58.6 28.6 84.1 37.8 43.1 7.2 32.2 34.5 44.3 86.9
D4-MaxSquare + DBST 92.9 51.2 84.7 43.5 22.2 35.7 42.5 20.0 86.2 42.0 90.0 63.7 33.0 86.9 45.5 50.9 0 42.2 41.4 51.3 90.3

BDL [22] 88.2 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5 89.2
D4-BDL + DBST 93.2 52.6 86.4 44.1 31.2 36.5 42.4 36.1 86.3 41.0 89.8 63.3 37.4 86.3 42.8 57.8 0 40.3 37.9 52.9 90.7

MRNET [118] 90.5 35.0 84.6 34.3 24.0 36.8 44.1 42.7 84.5 33.6 82.5 63.1 34.4 85.8 32.9 38.2 2.0 27.1 41.8 48.3 88.3
D4-MRNET + DBST 93.2 51.6 86.1 45.9 24.5 37.9 47.4 40.4 85.3 37.5 89.6 64.7 39.8 85.8 41.1 53.2 8.9 17.1 33.4 51.7 90.0

Stuff and things* [96] 90.2 43.5 84.6 37.0 32.0 34.0 39.3 37.2 84.0 43.1 86.1 61.1 29.9 81.6 32.3 38.3 3.2 30.2 31.9 48.3 88.8
D4-Stuff and things + DBST 93.3 54.0 86.5 46.4 32.3 37.7 45.2 39.5 85.5 39.4 90.0 63.7 32.8 85.5 32.0 39.5 0 37.7 35.5 51.4 90.5

FADA [119] 92.5 47.5 85.1 37.6 32.8 33.4 33.8 18.4 85.3 37.7 83.5 63.2 39.7 87.5 32.9 47.8 1.6 34.9 39.5 49.2 88.9
D4-FADA + DBST 93.9 58.2 86.4 45.9 29.6 36.9 44.6 27.0 86.3 39.4 90.0 64.9 41.0 85.8 34.6 51.2 9.9 24.2 37.3 52.0 90.7

LTIR [27] 92.9 55.0 85.3 34.2 31.1 34.4 40.8 34.0 85.2 40.1 87.1 61.1 31.1 82.5 32.3 42.9 3 36.4 46.1 50.2 90.0
D4-LTIR + DBST 94.2 59.6 86.9 43.9 35.3 36.9 45.7 36.1 86.2 40.6 90.0 65.9 38.2 84.4 33.3 52.4 13.7 46.2 51.7 54.1 91.0

TABLE 4.1. Results on GTA5→Cityscapes. When available, checkpoints provided by authors are
used. * denotes method retrained by us.

where C denotes the number of classes and f i = ni

tot denotes their frequencies at the pixel
level, i.e.,the ratio between the number ni of pixels labelled with class i in A and the total
number tot of labelled pixels in A. Akin to common practice, we set the constant δ to 1.02
in our experiments. Eq. (4.1) is the standard formulation introduced in [117] to compute
bounded weights inversely proportional to the frequency of classes. Accordingly, weights
applied to semantic predictions drawn from depth (wdep) are given by:

wdep = [w1
dep, ..., wC

dep] where wi
dep = 1 − wi

uda. (4.2)

Thus, at each pixel of a given image, we propose to combine semantics from depth and
predictions yielded by any chosen UDA method as follows:

ŷ f = wdep · ϕT(ŷdep) + wuda · ϕT(ŷuda), (4.3)

where ŷ f is the final prediction, ŷdep and ŷuda are the logits associated with semantics from
depth and the selected UDA method, respectively, ϕT denotes the softmax function with a
temperature term T that we set to 6 in our experiments.

As illustrated in Fig. 4.3, the formulation presented in Eq. (4.3) and symbolized as
⊕

can be used seamlessly to plug semantic information extracted from self-supervised monoc-
ular depth into any existing UDA method. We will refer to the combination of a given
UDA method with our D4 with the expression D4-UDA. Experimental results reported in
Sec. 4.2.2 show that, indeed, all recent s.o.t.a. UDA methods do benefit significantly from the
complementary geometric cues brought in by D4.

Chapter 4. Plugging Monocular Depth into Unsupervised Domain Adaptation 34

FIGURE 4.4. The rightmost column is a training sample synthesized by copying pixels from left
column into the central one. Pixels are chosen according to their semantic class and stacked
according to their depths (third row). For example, the two small persons in the left pair are
copied behind the one in the middle column. The white pixels in the depth maps represent areas
that cannot be copied into other samples due to their depth being too large.

4.1.2 DBST (Depth-Based Self-Training)

We describe now our proposal to further improve semantic predictions and distill the
knowledge of the entire system into a single network easily deployable at inference time.
First, we predict semantic labels for every image in B by our whole framework (i.e. D4
alongside a selected UDA method, referred to as D4-UDA); then, we use these labels to train
a new model on B. This procedure, also known as Self-Training [120], has become popular in
recent UDA for semantic segmentation literature [110, 111, 112, 113, 114, 115] and consists
of training a model by its own predictions, referred to as pseudo-labels, sometimes through
multiple iterations. The novelty of our approach concerns the peculiar ability to leverage on
the depth information available for the images in B to generate plausible new samples.

Running D4-UDA on B yields semantic pseudo-labels for every image in B. Yet, as
described in Sec. 4.1.1 (Semantics from Depth), each image in B is also endowed with a depth
prediction, provided by a self-supervised monocular depth estimation network.

We can take advantage of this information to formulate a novel depth-aware data aug-
mentation strategy whereby a portion of images and corresponding pseudo-labels are copied
onto others so as to synthesize samples for the Self-Training procedure. The crucial difference

Chapter 4. Plugging Monocular Depth into Unsupervised Domain Adaptation 35

between similar approaches presented in [121, 122] and ours consists of the deployment of
depth information to steer the data augmentation procedure toward generating plausible
samples. Indeed, a first intuition behind our method deals with semantic predictions being
less accurate for objects distant from the camera: as such predictions play the role of labels
in Self-Training, we are led to prefer picking closer rather than distant regions in order to
generate training samples. Moreover, we reckon certain kinds of objects, like e.g. persons,
vehicles, poles, traffic signs, to be more plausibly transferable across different images as they
tend to be small and less bound to specific spatial locations. For example, a piece of road or
building from another image would more unlikely merge seamlessly into a given one with
respect to a pedestrian or vehicle.

Given N randomly selected images xn from B, with n ∈ {1, . . . , N}, paired with semantic
pseudo-labels sn and depth predictions dn, we augment x1, by copying on it pixels from
the set X src = {x2, · · · , xN}. For each pixel of the augmented image we have N possible
candidates, one from x1 itself and N − 1 from the images in X src. We filter such candidates
according to two criteria: the predicted depth should be lower than a threshold t and the
semantic prediction should belong to a predefined set of classes, C∗. Hence, we define the set
of depths of the filtered candidates at each spatial location p as:

Dp = {dn
p | dn

p < t ∧ sn
p ∈ C∗} n ∈ {1, . . . , N}. (4.4)

In our experiments, for each image the depth threshold t is set to the 80th percentile of
the depth distribution, so as to avoid selecting pixels from the farthest objects in the scene,
while C∗ contains classes: pole, traffic light, traffic sign, person, car, rider, truck, bus, train,
motorbike, bicycle, wall and fence, which we found more amenable to synthesize plausible
training samples. Then, we synthesize a new image xz and corresponding pseudo-labels sz,
by assigning at each spatial location p the candidate with the lowest depth, so that objects
belonging to different images do overlap plausibly into the synthesized one:

xz
p = xk

p sz
p = sk

p (4.5)1, Dp = ∅

n s.t. dn
p = minDp, Dp ̸= ∅

(4.6)

In Fig. 4.4 we depict our depth-based procedure to synthesize new training samples,
considering, for the sake of simplicity, the case where N is 2.

Hence, with the procedure detailed above, we synthesize an augmented version of B, used
to distill the whole D4-UDA framework into a single model by a Self-Training process. This
dataset is much larger and exhibits more variability than the original B. Due to its reliance
on depth information, we dub our novel technique as DBST (Depth-Based Self-Training). The

Chapter 4. Plugging Monocular Depth into Unsupervised Domain Adaptation 36

Method Sk
y

Bu
ild

in
g

R
oa

d

Si
de

w
al

k

Fe
nc

e

Ve
ge

ta
ti

on

Po
le

C
ar

T-
Si

gn

Pe
rs

on

Bi
cy

cl
e

T-
Li

gh
t

mIoU Acc

AdaptSegNet* [93] 75.6 78.0 89.7 28.5 3.4 76.0 28.5 85.1 27.2 55.3 46.6 0 49.5 86.9
D4-AdaptSegNet + DBST 88.0 80.2 95.1 66 .8 5.7 80.4 33.2 87.3 33.2 60.9 52.4 0 56.9 90.7

MaxSquare* [24] 72.4 79.2 89.2 36.0 4.6 75.7 31.5 84.9 30.7 55.8 45.8 8.6 51.2 87.3
D4-MaxSquare + DBST 88.1 80.1 95.0 66.6 6.0 79.4 34.4 86.7 36.3 60.8 47.2 8.4 57.4 90.6

MRNET* [118] 84.6 79.7 93.9 56.3 0 80.5 35.4 88.9 27.2 59.4 56.3 0 54.5 90.0
D4-MRNET + DBST 88.3 79.0 95.0 67.0 5.9 78.6 36.2 86.7 31.0 60.6 47.5 0 56.3 90.2

TABLE 4.2. Results on the SYNTHIA-SEQ→Cityscapes benchmark. * denotes method retrained
by us.

results reported in Sec. 4.2.2 prove its remarkable effectiveness, both when used as the final
stage following D4 as well as when deployed as a standalone Self-Training procedure applied
to any other UDA for semantic segmentation method.

4.2 Experiments

4.2.1 Implementation Details

Network Architectures. We use Monodepth2 [101] to generate depth proxy-labels for
the procedure described in Sec. 4.1.1. We change the AT/DT framework with respect to the
one used in [48] to this new setting by deploying the popular Deeplab-v2 [123] for depth
estimation and semantic segmentation networks. Both networks consist of a backbone and
an ASPP module [123], which substitute, respectively, the encoder and decoder used in [48].
The backbone is implemented as a dilated ResNet50 [124]. We also use the transfer function
without the downsampling and upsampling operations. More precisely, the transfer function
is realized as a simple 6-layer CNN with kernel size 3 × 3 and Batch Norm [125]. Following
the recent trend in UDA for semantic segmentation [93, 24, 22, 118, 96, 119, 27], during DBST
we train a single Deeplab-v2 [123] model, with a dilated ResNet101 pre-trained on Imagenet
[126] as backbone.

Training Details. Our pipeline is trained on one NVIDIA Tesla V100 GPU with 16GB
of memory. In every training and test phase, we resize input images to 1024×512, with the
exception of DBST, when we first perform random scaling and then random crop with size
1024×512. During DBST we use also color jitter to avoid overfitting on the pseudo-labels.
The depth and the transfer network are optimized by Adam [127] with batch size 2 for 70 and
40 epochs, respectively, while the semantic segmentation network is trained by SGD with
batch size 2 for 70 epochs.The final model obtained by DBST is trained again with SGD, batch
size 3 and for 30 epochs. We adopt the One Cycle learning rate policy [128] in every training,

Chapter 4. Plugging Monocular Depth into Unsupervised Domain Adaptation 37

Method UDA D4-UDA UDA + DBST D4-UDA + DBST

AdaptSegNet [93] 42.4 46.7 46.0 50.0
MaxSquare [24] 44.3 48.0 48.1 51.3

BDL [22] 48.5 49.6 51.7 52.9
MRNET [118] 48.3 49.6 50.0 51.7

Stuff and Things* [96] 48.3 49.1 50.4 51.4
FADA [96] 49.3 49.9 51.4 52.0
LTIR [27] 50.2 51.1 53.1 54.1

TABLE 4.3. Impact on performance of the two components of our proposal (D4, DBST) when
applied separately or jointly to selected UDA methods on GTA5→Cityscapes. * indicates that the
method was retrained by us. Results are reported in mIoU.

setting the maximum learning rate to 10−4 but in DBST, where we use 10−3. To conduct our
experiments, e use two synthetic datasets: GTA5 and SYNTHIA. Since our method requires
video sequences to train Monodepth2 [101], we use the split SYNTHIA VIDEO SEQUENCES
(SYNTHIA-SEQ) in the experiments involving the SYNTHIA dataset. As for real images, we
leverage on the Cityscapes dataset [91].

4.2.2 Results

We report here experimental results obtained in two domain adaptation benchmarks,
i.e. GTA5→Cityscapes and SYNTHIA-SEQ→Cityscapes, which show how the combination
with our D4 method allows to boost performance of recent UDA for semantic segmentation
approaches.

GTA5→Cityscapes. Tab. 4.1 reports results on the most popular UDA benchmark for
semantic segmentation, i.e. GTA5→Cityscapes, where methods are trained on GTA5 and
tested on Cityscapes. We selected the most relevant UDA approaches proposed in the
last years [93, 24, 22, 118, 96, 119, 27], using training checkpoints provided by authors
whenever available. We report per-class and overall results in terms of mean intersection
over union (mIoU) and pixel accuracy (Acc), when each method is either used stand-alone or
deployed within our proposal (i.e. D4 + DBST). The reader may notice how every recent UDA
method does improve considerably if combined with our proposal, despite the variability
of their stand-alone performances. Indeed, Adaptsegnet [93], which yields about 42% in
terms of mIoU, reaches 50% when embedded into our framework. Likewise, LTIR [27],
currently considered one of the s.o.t.a. UDA methods, improves in mIoU from 50.2% to
54.1%. Analyzing Tab. 4.1 more in detail, we can observe that our method produces a general
improvement for all classes, although we experience a certain performance variability for
some of them (such as train, motorbike and bicycle), probably due to noisy pseudo-labels
used during DBST. Conversely, our method yields consistently a significant gain on classes

Chapter 4. Plugging Monocular Depth into Unsupervised Domain Adaptation 38

FIGURE 4.5. From left to right: RGB image, prediction from UDA method, prediction from D4-
UDA + DBST, GT. The top two rows deal with GTA5→Cityscapes, the other two with SYNTHIA-
SEQ→Cityscapes. Selected methods are, from top to bottom: LTIR [27], BDL [22], MaxSquare [24]
and MRNET [118]. In all these examples our proposal can ameliorate dramatically the output of
the given stand-alone method, especially on classes featuring large and regular shapes, like road
in rows 1-3, sidewalk in rows 2-4 and wall in row 2.

characterized by large and regular shapes, namely road, sidewalk, building, wall and sky, which
validates our intuition on the effectiveness of a) the geometric cues derivable from depth to
predict the semantics of these kind of objects and b) the methodology we propose to leverage
on these additional cues in UDA settings. This behavior is also clearly observable from a
qualitative perspective in Fig. Fig. 4.5. Finally, we point out that, to the best of our knowledge,
the performance figure obtained by D4-LTIR + DBST, i.e. 54.1% mIoU (last row of Tab. 4.1)
establishes the new state-of-the-art for the GTA5→Cityscapes benchmark.

SYNTHIA-SEQ→Cityscapes. Akin to common practice in literature we present results
also on the popular SYNTHIA dataset. Due to our pipeline requiring video sequences to

Method D4-UDA Self-Training DBST

D4-BDL [22] 49.6 50.1 52.9
D4-MRNET [118] 49.6 50.3 51.7

D4-Stuff and Things [96] 49.1 49.4 51.4
D4-FADA [119] 49.9 50.0 52.0

D4-LTIR [27] 51.1 51.5 54.1

TABLE 4.4. Comparison between DBST and baseline Self Training. Results are reported in terms
of mIoU on GTA5→Cityscapes.

Chapter 4. Plugging Monocular Depth into Unsupervised Domain Adaptation 39

train the self-supervised monocular depth estimation network, we select the SYNTHIA
VIDEO SEQUENCES split for training and the Cityscapes dataset for testing. We will refer
to this setting as to SYNTHIA-SEQ→Cityscapes. To address SYNTHIA-SEQ→Cityscapes
we re-trained the UDA methods for which the code is available and the training procedure
is more affordable in terms of memory and run-time requirements, namely AdaptSegNet
[93], MaxSquare [24] and MRNET [118]. The results in Tab. 4.2 show that all the selected
UDA approaches exhibit a substantial performance gain when coupled with our proposal,
with a general improvement in all classes. In particular, similarly to the results obtained in
GTA5→Cityscapes, we observe a consistent improvement for classes related to objects with
large and regular shapes (as depicted also in Fig. 4.5), with the only exception of a slight
performance drop for the class building when using MRNET [118] (last row of Tab. 4.2). We
argue that our approach is relatively less effective with MRNET [118] as, unlike AdaptSegNet
[93] and MaxSquare [24], it yields already satisfactory results in those classes which are
usually improved by the geometric clues injected by D4.

4.2.3 Ablation study

Impact of the individual contributions. In Tab. 4.3, we analyze the impact on the perfor-
mance yielded by the two main contributions of this approach, i.e. injection of geometric cues
into UDA methods by D4 and DBST. Purposely, we select the GTA5→Cityscapes benchmark
and, for each of the UDA methods considered in Tab. 4.1, we report the mIoU figures obtained
by a) using the stand-alone UDA method, b) combining it with D4, c) applying DBST directly
on the stand-alone method and d) embedding the method into our full pipeline. Thus, we
can observe that each of our novel contributions allows for improving the performance of
the most recent UDA methods by a large margin. Moreover, as shown in the last column of
Tab. 4.3, when deployed jointly so as to realize our whole proposal, D4 and DBST further
enhance the performances of any selected method suggesting that they are complementary.

Effectiveness of DBST. In Tab. 4.4 we compare our DBST against an alternative Self-
Training procedure. We select five UDA methods with appealing performances on GTA5→Cityscapes
and combine each of them with our D4, reporting the obtained mIoU figures in the second
column. Seeking a viable Self-Training algorithm, we considered those originally proposed
together with each method. Yet, we found experimentally that none of the original Self-
Training procedure could yield a further performance improvement. This can be explained
by the fact that these Self-Training algorithms rely on modeling the uncertainty of the original
method for which they are designed and this tends to fail when UDA methods get merged
with D4. This leads us to consider a baseline Self-Training procedure, which consists of
simply fine-tuning the model by its own predictions on the images of the target domain.
Thus, in Tab. 4.4 we compare this baseline Self-Training to DBST (third and fourth column

Chapter 4. Plugging Monocular Depth into Unsupervised Domain Adaptation 40

respectively). The figures in Tab. 4.4 highlight how our DBST procedure consistently provides
a much larger performance improvement than the considered baseline Self-Training. As the
only difference between the two procedures concerns the dataset employed in the fine-tuning
process, the results in Tab. 4.4 prove the effectiveness of DBST in generating a large and
varied set of plausible training samples more amenable to Self-Training than the original
images belonging to the target domain.

4.3 Conclusions

We have shown how to exploit self-supervised monocular depth estimation in UDA
problems to obtain accurate semantic predictions for objects with strong geometric priors
(like roads and buildings). As all recent UDA approaches lack such geometric knowledge,
we designed our method as a depth-based add-on, pluggable into any UDA method to boost
performances. Finally, we employed self-supervised depth estimation to realize an effective
data augmentation strategy for self-training. Our work highlights the possibility of exploiting
auxiliary tasks learned by self-supervision to better tackle UDA for semantic segmentation,
paving the way for novel research directions.

41

Chapter 5

Exploiting Shallow Features for Sharp
Segmentation Mask

In the last few years, several UDA techniques have been proposed for the task of semantic
segmentation [42, 23, 70, 129, 26, 130]. However, all these methods ignore the main goal of
semantic segmentation, which is to obtain sharp prediction masks and only focus on the
feature adaptation part. For this reason, previous works can correctly segment out coarse
blobs of large elements in a scene such as cars or buildings, while they provide inaccurate
segmentation masks along class boundaries as shown in Fig. 5.1. On the other hand, in the
supervised semantic segmentation setting, a large number of works focus on obtaining sharp
predictions [131, 132, 133, 134, 135]. This is commonly done by better integrating low-level
features into high-level features since modern segmentation architectures discard spatial
information with down-sampling operations such as max-pooling or strided convolution due
to memory and time constraints. Following the supervised setting, we argue that this line of
research should also be pursued for the UDA case to obtain sharp predictions across domains
even though target labels are not available. Our approach also leverages on low-level features
to reach this goal, and we introduce a novel low-level adaptation strategy specifically for the
UDA scenario. More precisely, we enforce the alignment of low-level features by exploiting
an auxiliary task that can be solved for both domains in a self-supervised fashion, intending
to make them more transferable. By doing this, we enable the possibility to exploit shallow
features to refine the coarse segmentation masks for both the source and target domains. To
achieve this, we estimate a 2D displacement field from the aligned shallow features that,
for each spatial location of the predicted coarse feature map, specifies the direction where
the representation for that patch is less ambiguous (i.e. at center of the semantic object).
Our intuition is that when the coarse feature map is bi-linearly up-sampled to regain the
target resolution, the feature representation of those patches corresponding to semantic
boundaries in the input image is mixed up, as it contains semantic information belonging to
different classes. Thanks to the estimated 2D displacement field, however, we refine each
patch representation according to the features coming from the center of the object, which are
less prone to be influenced by other classes as they lay spatially far from boundaries. This

Chapter 5. Exploiting Shallow Features for Sharp Segmentation Mask 42

Input Ours Others

FIGURE 5.1. Given in input an RGB image (left-most column), our model produces sharp pre-
dictions along class boundaries (central column), while a model trained on translated images
(right-most column) exhibits severe noise.

process will be referred later as the feature warping process.
Finally, as done in the previous chapter, we exploit once again self-training. However in

this chapter, we are specifically interested in preserving the information at the boundaries
rather than naively masking low-confident pixels, and we propose a novel data augmentation
that allows us to preserve useful information such as the boundaries of an object. In fact, due
to the low confidence of the network in the target domain, pseudo-labels along edges are
usually masked by previous methods, resulting in further performance degradation along
class boundaries due to the lack of supervision during the self-training process. Thus, we
employ a class-wise erosion filtering algorithm that allows us to synthesize new training
samples in which only the inner body of the target objects is preserved and copied into other
images. By doing this, all pixels have supervision, and the network is trained to classify
correctly edges also in the target domain.

Chapter 5. Exploiting Shallow Features for Sharp Segmentation Mask 43

Conv1 Conv2 Conv3 Conv4 ASPP

𝐴𝑐
𝑏𝑢

𝐴𝑐

𝐴𝑓

Ƹ𝑒

𝐷 ො𝑦

𝐴

𝐴

FIGURE 5.2. Illustration of our architecture in the adaptation step. Given an RGB input image, the
network learns to extract semantic edges from shallow features. From the same feature map, a 2D
displacement map is estimated in order to guide the warping of down-sampled deep features,
which lacks of fine-grained details.

5.1 Method

Our proposed framework comprises several components, as depicted in Fig. 5.2. A
standard backbone (yellow branch) produces a coarse feature map Ac from an image. A
semantic edge extractor (top purple branch) estimates semantic edges ê, given the activation
map A produced by the first convolutional block of the backbone. The same shallow features
are processed by another convolutional block (bottom red branch) to obtain a 2D displacement
map, D. Then, Ac is up-sampled to the same size as D and it is refined according to D to
produce a fine-grained feature map A f . Finally, one last convolutional block that acts as
a classifier is applied to produce a C-dimensional vector for each pixel, with C being the
number of classes, and a final bi-linear up-sampling yields a prediction map of the same size
as the input. We detail each component in the following subsections.

5.1.1 Low-level adaptation

Learning transferable shallow features. We introduce an auxiliary task to push the
network to learn domain-invariant features that include details on object boundaries already
from early layers. Given the feature map A, a convolutional block γ is applied to predict an
edge map ê. Ground truths e are obtained by the Canny edge detector [136] applied directly
on semantic annotations for the source domain and on pseudo-labels for the target domain,
so that only semantic boundaries are considered. A binary-cross entropy loss is minimized

Chapter 5. Exploiting Shallow Features for Sharp Segmentation Mask 44

for batches including images from both domains:

ê = γ(A),

Ledge =
H

∑
h

W

∑
w

e(h,w) log ê(h,w)

+ (1 − e(h,w)) log
(

1 − ê(h,w)
) (5.1)

Hence, we enforce the auxiliary semantic edge detection task for the very first layers of the
network only, rather than, as in typical multi-task learning settings such as [137, 138, 139], at
a deeper level, where features are more task-dependent. We believe this design choice to be
key for a good generalization for three reasons. First, trying to solve this task from shallow
layers guides the network to explicitly reason about object shapes from the beginning, rather
than solely texture and colors as typically done by CNNs [140]. Second, solving an auxiliary
task for both domains forces the network to learn a shared feature representation, which
naturally leads to aligned distributions. Consequently, the displacement field generated from
the shallow features is effective also in the target domain, and it can be directly exploited at
a deeper level to recover fine-grained details. Finally, the peculiar choice of semantic edge
detection is directly beneficial to estimate a displacement field that mainly focuses on edges,
making the following warping process more effective where the network is uncertain.

Feature warping. One of the contributions of our method is to refine the bi-linearly
up-sampled coarse feature map Ac, hereafter Abu

c , to obtain a fine-grained feature map
A f that better captures the correct class for pixels laying in the boundary regions. The
refinement is guided by a 2D displacement field D obtained from the domain-invariant
shallow features computed by the first convolutional block of the backbone. The displacement
field indicates for each location of Abu

c where the network should look to recover the correct
class information, namely the direction that better characterizes that patch. We estimate the
2D displacement map D by applying a convolutional block to the aligned shallow features A
that are aligned as described above.

Our intuition is that, due to the unavoidable side-effect of the down-sample operations in
the forward pass, the representation of those elements in Ac whose receptive field includes
regions at class boundaries in the original image, contains ambiguous semantic information.
Indeed, when Ac is bi-linearly up-sampled, patches that receive contributions from ambigu-
ous coarse patches inherit such ambiguity. However, in the higher resolution feature map
Abu

c it may be possible to compute a better, unambiguous representation for some of the
patches, i.e.,those now laying entirely in a region belonging to one class. The correct semantic
information may be available in the nearby high-resolution patches closer to the semantic
blob centers. Thus, each feature vector at position p on a standard 2D spatial grid of Abu

c , is
mapped to a new position p̂ = p + D(p), and we use a differentiable sampling mechanism

Chapter 5. Exploiting Shallow Features for Sharp Segmentation Mask 45

FIGURE 5.3. Given a target image prediction pair (top-left) and a source training pair (top-right),
we select classes such as person (bottom-left) and apply our class-wise data augmentation pipeline
to synthesise a new training pair (bottom-right). The selected shapes are eroded before being
pasted.

[141] to approximate the new feature vector representation for that patch:

A f (p) = ∑
pl∈N (p̂)

wpl A
bu
c (pl) (5.2)

where wpl , are the bi-linear kernel weights obtained from D and N the set of neighboring
pixels. Hence, Eq. (5.2) defines a backward warping operation in feature space, where A f is
obtained by warping Abu

c according to D. Finally, the fine-grained feature map A f is fed to
the classifier to obtain the final prediction that is up-sampled by a factor of 2 to regain the
input image resolution. We minimize the cross entropy loss using annotations for the source
domain and pseudo-labels for the target domain:

Lsem =
H

∑
h=1

W

∑
w=1

C

∑
c=1

y(h,w,c) log ŷ(h,w,c) (5.3)

5.1.2 Data Augmentation for Self-Training

Inspired by [142, 143, 144, 122], we use a pre-trained model to select objects based on
predictions on target images and paste them over source images (see Fig. 5.3). Peculiarly,
our self-training approach relies on a data augmentation process that selects objects from the
target scenes rather than the source ones as done [122]. Although selecting source objects

Chapter 5. Exploiting Shallow Features for Sharp Segmentation Mask 46

may be useful to reduce the unbalanced distributions of classes, it is a sub-optimal choice
since the network would be still trained to identify shapes and details peculiar to the source
domain, which are different to those found at inference time for the target images. We instead
use pseudo-labels to cut objects from the target scenes and paste them into source or target
images, forcing the network to look for these patterns on both domains. However, due to
the inherent noise of pseudo-labels we need to filter out noisy predictions. In particular, we
aim at removing object boundaries as they typically exhibit classification errors and tend to
be localized rather inaccurately. Given a target image xt and its associated predictions ŷt,
we compute a binary mask Bc for each class c ∈ C∗, where C∗ denotes a random subset of
the considered classes. We exclude classes such as "road" and "building" to avoid occlusion
of the whole scene and to counteract the unbalanced distributions of classes, and only use
object instances such as "car" and "poles". This categorization is similar to the one used in
[96], and can be easily adapted to different datasets. For each spatial location p, Bc has value
1 if p is assigned to class c, 0 otherwise. Then, we apply an erosion operation, ⊖, with a 5 × 5
structuring element k to each class mask Bc. To obtain the set of pixels to be copied from
the target image to a randomly selected source image we apply the union set operator to all
masks:

B =
⋃

c∈C∗
Bc ⊖ k, (5.4)

xp =

xp
t , Bp = 1

xp
s , Bp = 0

, yp =

ŷp
t , Bp = 1

yp
s , Bp = 0

(5.5)

The new synthesised training pairs are very often enriched with fine-grained details from
the target domain. Indeed, as shown in Fig. 5.3, thanks to our data augmentation pipeline,
only the inner part of an object is preserved while edges are discarded, producing sharp
pseudo-labels even at class boundaries. The whole data augmentation process is applied
offline before training, therefore it does not have any impact on the training time.

5.1.3 Training Procedure

The whole pipeline can be summarised in 3 simple steps. We start with the initialization
step to train our baseline model (i.e. the yellow backbone of Fig. 5.2) on the source domain
only. We follow standard practices [22, 96, 145, 146, 147] and, for synthetic-to-real adaptation,
we utilize domain-translated source images provided by [22]. We deploy this baseline to
produce pseudo-labels for the target domain and obtain an augmented mixed dataset as
detailed in Sec. 5.1.2.

Chapter 5. Exploiting Shallow Features for Sharp Segmentation Mask 47

Then, we perform the adaptation step: we train the model illustrated in Fig. 5.2 that
empowers our additional modules for low-level alignment as explained in Sec. 5.1.1. It is
important to highlight that the proposed data augmentation extracts objects from only target
images and pastes them on images on both domains. Hence, at this stage, the training is done
simultaneously in both domains. The training loss is as follows:

L = Lsem + λLedge (5.6)

with λ set to 0.1 in all experiments.
Finally, we use the predictions from the model trained in the previous step to synthesise

new training pairs by following again the procedure detailed in Sec. 5.1.2. This allows us to
distill the knowledge and the good precision along the class boundaries of the previously
enhanced model into a lighter segmentation architecture as the one used in the first step. We
do this to avoid the introduction of additional modules at inference time. Differently from
the adaptation step, however, we apply our data algorithm using solely images from the
target domain. Indeed, as we are now at the third and final stage, we expect pseudo-labels to
be less noisy compared to the previous step, and training only on the target domain allows to
capture domain-specific characteristics. We denote this third step as the distillation step.

method IT ST R
oa

d

Si
de

w
al

k

Bu
ild

in
g

W
al

ls

Fe
nc

e

Po
le

T-
lig

ht

T-
si

gn

Ve
ge

ta
ti

on

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

Bu
s

Tr
ai

n

M
ot

or
bi

ke

Bi
cy

cl
e

mIoU
AdaptSegNet [23] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.6 32.5 35.4 3.9 30.1 28.1 42.4
MaxSquare [24] 88.1 27.7 80.8 28.7 19.8 24.9 34.0 17.8 83.6 34.7 76.0 58.6 28.6 84.1 37.8 43.1 7.2 32.2 34.5 44.3
BDL [22] ✓ ✓ 88.2 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
MRNET [118] ✓ ✓ 90.5 35.0 84.6 34.3 24.0 36.8 44.1 42.7 84.5 33.6 82.5 63.1 34.4 85.8 32.9 38.2 2.0 27.1 41.8 48.3
Stuff and things [96] ✓ ✓ 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2
FADA [119] ✓ 92.5 47.5 85.1 37.6 32.8 33.4 33.8 18.4 85.3 37.7 83.5 63.2 39.7 87.5 32.9 47.8 1.6 34.9 39.5 49.2
LTIR [27] ✓ ✓ 92.9 55.0 85.3 34.2 31.1 34.4 40.8 34.0 85.2 40.1 87.1 61.1 31.1 82.5 32.3 42.9 3 36.4 46.1 50.2
Yang et al. [147] ✓ ✓ 91.3 46.0 84.5 34.4 29.7 32.6 35.8 36.4 84.5 43.2 83.0 60.0 32.2 83.2 35.0 46.7 0.0 33.7 42.2 49.2
IAST [148] ✓ 93.8 57.8 85.1 39.5 26.7 26.2 43.1 34.7 84.9 32.9 88.0 62.6 29.0 87.3 39.2 49.6 23.2 34.7 39.6 51.5
DACS† [122] ✓ 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
Ours ✓ ✓ 91.9 48.9 86.0 38.6 28.6 34.8 45.6 43.0 86.2 42.4 87.6 65.6 38.6 86.8 38.4 48.2 0.0 46.5 59.2 53.5

TABLE 5.1. Results on GTA5→Cityscapes. † denotes models pre-trained on MSCOCO [149] and
ImageNet [47]. IT: Image Translation; ST: Self-Training.

5.2 Implementation

5.2.1 Architecture

To assess fairly our contributions, we use a similar setup to the one of the previous chapters
which is also adopted by previous works [23, 24, 22, 118, 96, 119, 27]. Indeed, we employ the
Deeplab-v2 [36] architecture, with a dilated ResNet101 pre-trained on ImageNet [47] for both
the initialization step and the distillation step.

Chapter 5. Exploiting Shallow Features for Sharp Segmentation Mask 48

method IT ST R
oa

d

Si
de

w
al

k

Bu
ild

in
g

W
al

ls
*

Fe
nc

e*

Po
le

*

T-
lig

ht

T-
si

gn

Ve
ge

ta
ti

on

Sk
y

Pe
rs

on

R
id

er

C
ar

Bu
s

M
ot

or
bi

ke

Bi
cy

cl
e

mIoU mIoU*
AdaptSegNet [23] 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7
MaxSquare [24] 77.4 34.0 78.7 5.6 0.2 27.7 5.8 9.8 80.7 83.2 58.5 20.5 74.1 32.1 11.0 29.9 39.3 45.8
BDL [22] ✓ ✓ 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4
MRNET [118] ✓ ✓ 83.1 38.2 81.7 9.3 1.0 35.1 30.3 19.9 82.0 80.1 62.8 21.1 84.4 37.8 24.5 53.3 46.5 53.8
Stuff and things [96] ✓ ✓ 83.0 44.0 80.3 - - - 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 - 52.1
FADA [119] ✓ 84.5 40.1 83.1 4.8 0.0 34.3 20.1 27.2 84.8 84.0 53.5 22.6 85.4 43.7 26.8 27.8 45.2 52.5
LTIR [27] ✓ ✓ 92.6 53.2 79.2 - - - 1.6 7.5 78.6 84.4 52.6 20.0 82.1 34.8 14.6 39.4 - 49.3
Yang et al. [147] ✓ ✓ 82.5 42.2 81.3 - - - 18.3 15.9 80.6 83.5 61.4 33.2 72.9 39.3 26.6 43.9 - 52.4
IAST [148] ✓ 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 49.8 57.0
DACS† [122] ✓ 80.6 25.1 81.9 21.5 2.6 37.2 22.7 24.0 83.7 90.8 67.6 38.3 82.9 38.9 28.5 47.6 48.3 54.8
Ours ✓ ✓ 90.4 51.1 83.4 3.0 0.0 32.3 25.3 31.0 84.8 85.5 59.3 30.1 82.6 53.2 17.5 45.6 48.4 56.9

TABLE 5.2. Results on SYNTHIA→Cityscapes. † denotes models pre-trained with MSCOCO [149]
and ImageNet [47]. IT: Image Translation; ST: Self-Training. The 13 classes with ∗ are used to
compute mIoU∗.

5.2.2 Training Details

Our pipeline is implemented in PyTorch [150] and trained on a single NVIDIA 2080Ti
GPU with 12GB of memory. We train for 20 epochs in the first two steps, while we set the
number of epochs to 25 for the final distillation with batch size 4 in all cases. We use random
scaling, random cropping at 1024 × 892, and color jittering in our data augmentation pipeline.
Akin to previous works, we freeze Batch-Normalization layers [151] while performing the
initialization and adaptation step. For the last step, instead, we activate these layers. We
adopt the One Cycle learning rate policy [128] for each training, with a maximum learning
rate 10−3 and SGD as optimizer.

5.3 Experiments

5.3.1 Datasets

We test our method on both synthetic-to-real and real-to-real adaptation. We set GTA or
SYNTHIA as source datasets and Cityscapes as target for the former setting, while we use
Cityscapes as source and the NTHU as target for the latter.

5.3.2 Synthetic-to-real adaptation

To test our framework, we follow standard practice [23, 110, 22, 118, 152, 24] and report the
results for the synthetic-to-real adaptation in the GTA5→Cityscapes and SYNTHIA→Cityscapes
benchmarks in Tab. 5.1 and Tab. 5.2 respectively. We obtain state-of-the-art performance in
the former setting, surpassing also recent methods such as [148] that perform many iterations
of self-training. We also improve over [122] for GTA5→Cityscapes, which, differently from

Chapter 5. Exploiting Shallow Features for Sharp Segmentation Mask 49

City Method ST ro
ad

si
de

w
al

k

bu
ild

in
g

lig
ht

si
gn

ve
g.

sk
y

pe
rs

on

ri
de

r

ca
r

bu
s

m
ot

or

bi
ke

mIoU (%)

Rome

Source only 85.9 40.0 86.0 9.0 25.4 82.4 90.5 38.8 25.9 81.6 52.0 48.7 6.7 51.9
CBST [110] ✓ 87.1 43.9 89.7 14.8 47.7 85.4 90.3 45.4 26.6 85.4 20.5 49.8 10.3 53.6

AdaptSegNet [23] 83.9 34.2 88.3 18.8 40.2 86.2 93.1 47.8 21.7 80.9 47.8 48.3 8.6 53.8
MaxSquare [24] 80.0 27.6 87.0 20.8 42.5 85.1 92.4 46.7 22.9 82.1 53.5 50.8 8.8 53.9

FADA [119] ✓ 84.9 35.8 88.3 20.5 40.1 85.9 92.8 56.2 23.2 83.6 31.8 53.2 14.6 54.7
Ours ✓ 89.4 48.2 87.5 26.3 37.2 83.1 90.7 55.2 42.1 84.8 66.6 59.2 11.1 60.1

Rio

Source only 80.4 53.8 80.7 4.0 10.9 74.4 87.8 48.5 25.0 72.1 36.1 30.2 12.5 47.4
CBST [110] ✓ 84.3 55.2 85.4 19.6 30.1 80.5 77.9 55.2 28.6 79.7 33.2 37.6 11.5 52.2

AdaptSegNet [23] 76.2 44.7 84.6 9.3 25.5 81.8 87.3 55.3 32.7 74.3 28.9 43.0 27.6 51.6
MaxSquare [24] 70.9 39.2 85.6 14.5 19.7 81.8 88.1 55.2 31.5 77.2 39.3 43.1 30.1 52.0

FADA [119] ✓ 80.6 53.4 84.2 5.8 23.0 78.4 87.7 60.2 26.4 77.1 37.6 53.7 42.3 54.7
Ours ✓ 86.6 63.3 82.3 10.3 19.8 73.9 88.4 57.5 41.3 78.1 51.5 40.0 19.4 54.8

Tokyo

Source only 86.0 38.8 76.6 11.7 12.3 80.0 89.5 44.9 28.0 71.5 4.7 27.1 42.2 47.2
CBST [110] ✓ 85.2 33.6 80.4 8.3 31.1 83.9 78.2 53.2 28.9 72.7 4.4 27.0 47.0 48.8

AdaptSegNet [23] 81.5 26.0 77.8 17.8 26.8 82.7 90.9 55.8 38.0 72.1 4.2 24.5 50.8 49.9
MaxSquare [24] 79.3 28.5 78.3 14.5 27.9 82.8 89.6 57.3 31.9 71.9 6.0 29.1 49.2 49.7

FADA [119] ✓ 85.8 39.5 76.0 14.7 24.9 84.6 91.7 62.2 27.7 71.4 3.0 29.3 56.3 51.3
Ours ✓ 87.8 41.0 79.6 20.3 24.2 80.2 90.0 62.3 30.8 74.0 6.4 32.7 50.0 52.4

Taipei

Source only 85.0 38.1 82.2 17.8 8.9 75.2 91.4 23.9 19.6 69.2 45.9 49.4 16.0 47.9
CBST [110] ✓ 86.1 35.2 84.2 15.0 22.2 75.6 74.9 22.7 33.1 78.0 37.6 58.0 30.9 50.3

AdaptSegNet [23] 81.7 29.5 85.2 26.4 15.6 76.7 91.7 31.0 12.5 71.5 41.1 47.3 27.7 49.1
MaxSquare [24] 81.2 32.8 85.4 31.9 14.7 78.3 92.7 28.3 8.6 68.2 42.2 51.3 32.4 49.8

FADA [119] ✓ 86.0 42.3 86.1 6.2 20.5 78.3 92.7 47.2 17.7 72.2 37.2 54.3 44.0 52.7
Ours ✓ 95.6 78.9 94.3 45.9 70.3 93.0 96.2 63.3 51.3 90.5 83.6 84.8 56.5 55.7

TABLE 5.3. Results for the Cross-City experiments. ST: Self-Training.

GTA Synthia
Step IT ST A W D mIoU mIoU

Initialization ✓ S 47.3 41.6

Adaptation
✓ ✓ S , T 49.8 43.5
✓ ✓ ✓ S , T 52.0 46.4
✓ ✓ ✓ ✓ S , T 52.6 46.9

Distillation ✓ ✓ ✓ T 53.5 48.4
Oracle T 63.8 65.1

TABLE 5.4. Ablation studies on GTA5→Cityscapes (second-to-last) and SYNTHIA→Cityscapes
(last) columns. IT: image translation; ST: Self-Training; W: low-level adaptation; A: Data Augmen-
tation; D: Training domain.

all other methods, pre-trains the baseline network not only on ImageNet[47] but also on
MSCOCO[149]. We argue that pre-training on more tasks and real annotated data notably im-
proves the baseline performance of the synthetic-to-real benchmark. For GTA5→Cityscapes,
we note that, thanks to our low-level adaptation, we can boost performances for fine-detailed
classes such as Bicycle and Motorcycle. Regarding SYNTHIA→Cityscapes, we obtain com-
petitive performance, showing that our method can work also in this challenging scenario
in which the source synthetic domain exhibits many bird’s-eye views that are very different
from the one in Cityscapes. Indeed our method is only slightly inferior to IAST[148] and
again superior to [122] that performs a similar data augmentation.

Chapter 5. Exploiting Shallow Features for Sharp Segmentation Mask 50

5.3.3 Cross-city adaptation

We report in Tab. 5.3 our performance for the real-to-real setting. Our proposal shows great
results, confirming the generalization properties of our contributions in diverse settings. We
improve performance with respect to previous works for all the cities. Our model achieves
60% in mIoU in Rome, which is likely the most similar to the German cities used in the
Cityscapes dataset. Nonetheless, we achieve strong results even for more distant domains,
e.g. as in the case of Taipei, improving by 7.8% with respect to the model trained only on the
source domain. For the Cross-city adaptation setting, differently from the other settings, we
use images of both domains in our distillation step to exploit the perfect annotations available
in the similar source domain.

5.3.4 Ablation Studies

In this section, we analyze the contribution provided by each component of our framework
and motivate our design choices. In Tab. 5.4 we detail the results for both GTA5→Cityscapes
and SYNTHIA→Cityscapes. The first row reports the performance obtained using only
translated source domain images. This is nowadays a common building block of many UDA
frameworks, and we also consider it our baseline on which we build our pipeline. In the
adaptation section instead, we isolate both our contributions and use the model trained in
the initialization step to extract pseudo-labels for the target domain as explained in Sec. 5.1.2
and train on both domains simultaneously. When applying a naive self-training strategy (i.e.
training directly on pseudo-labels) we already obtain a significant boost (+2.5% and +1.9%)
respectively. However, when deploying the proposed data augmentation (row 3), we observe
an even greater boost: +4.8% for both settings. This clearly demonstrates the effectiveness
of our data augmentation and its applicability to diverse scenarios. Then, applying the
proposed low-level adaptation (row 4) also yields an additional contribution overall: about
+0.6% on top of the data augmentation version. We argue that is noticeable, especially when
performances are already high, as in our case, and the strongest competitors are all within
a narrow window. Finally, in row 5, we distill our full model (i.e. row 4) into a simple
Deeplab-v2 for efficient inference time and apply once again the proposed data augmentation.
Remarkably, this further improves performance with respect to the distilled model and avoids
the typical pseduo-labels overfitting behavior when employing many steps of self-training.

Moreover, to motivate our intuition that shallow features are amenable to guide the
warping process, we compare the results obtained by applying our adaptation step in the
GTA5→Cityscapes setting at the three different levels of the backbone before the last module
achieving 52.6%, 51.6%, and 51.8% mIoU for layers Conv1, Conv2, and Conv3 respectively.
Thus, the best result is achieved by using the first convolutional block of the architecture,
while on Conv2 and Conv3 results are comparable (see Fig. 5.2 for layer names).

Chapter 5. Exploiting Shallow Features for Sharp Segmentation Mask 51

5.3.5 Performance Along Class Boundaries

4 6 8 10 12 14 16 18 20
Trimap Width (pixels)

30

35

40

45
m

ea
n

IO
U

(%
)

StuffAndThings
AdaptSegNet
IAST
LTIR
MRNET
Ours

FIGURE 5.4. mIOU on GTA5→Cityscapes as a function of trimap band width around class
boundaries.

In this section, we test the segmentation accuracy with the trimap experiment [153, 154,
155, 156] to quantify the accuracy of the proposed method along semantic edges. Specifically,
we evaluate in terms of mIoU pixels within four bandwidths (4, 8, 16, 20 pixels) around class
boundaries (trimaps). We first compare our final model against other frameworks in Fig. 5.4.
We observe that our method is more accurate w.r.t. all other competitors in all the tested
bandwidths, validating our main goal which is improving precision along class boundaries.
We also highlight that although the green line is obtained from a distilled model (row 5 of
Tab. 5.4), that does not include the additional modules presented in Sec. 5.1.1, it is still able to
maintain strong performances at semantic boundaries thanks to the precise pseudo-labels
extracted from the adaptation step. Then, we assess in Fig. 5.5 how our contributions affect
performances on semantic boundaries. To this end, we repeat the same trimap experiment
using the intermediate steps of our pipeline i.e. rows 2, 3, and 4 of Tab. 5.4. When applying all
our contributions (purple line), we are able to improve by a large margin over the self-training
strategy (black line) confirming that the additional modules account for an improvement
along semantic edges. Furthermore, activating the low-level adaptation strategy maintains
its improvements along semantic edges over the data augmentation only version (cyan line),
leading to better pseudo-labels for the distillation step.

5.3.6 Comparison with other data augmentations

We compare our data augmentation, one of our main contributions, with the one intro-
duced in [122]. More specifically, we apply this data augmentation in the adaptation step

Chapter 5. Exploiting Shallow Features for Sharp Segmentation Mask 52

4 6 8 10 12 14 16 18 20
Trimap Width (pixels)

34

36

38

40

42

44

46

48
m

ea
n

IO
U

(%
)

ST
ST + A
ST + A + W

FIGURE 5.5. mIOU on GTA5→Cityscapes as a function of trimap band width around class
boundaries. We report results for the three versions of the adaptation step of Tab. 5.4.

as in row 3 of Tab. 5.4, i.e. without the low-level adaptation modules to isolate the data-
augmentation effect. We augment target images by randomly pasting objects from the source
domain, using the open source implementation of [122]. With this strategy, we only obtain
51.0% in terms of mIoU, while with our technique the mIoU raises to 52.2%, confirming
our intuition that looking for target instances is more effective than forcing the network to
identify source objects as done [122] during the self-training step.

5.3.7 Displacement map visualization

In this section, we analyze the displacement map learned by the model. As Fig. 5.6
shows, the 2D map that guides the warping process is consistent with our intuition that the
displacement is more pronounced at the boundaries, while areas within regions such as the
body of a person are characterized by a low displacement (i.e. white color). Moreover, we
can appreciate that when the warping is applied according to the estimated displacement
field (top-right), the contours of small objects such as poles, traffic signs, and persons are
better delineated (bottom-right). On the other hand, in the bottom-left mask, these objects
are coarsely segmented when using a segmentation model train with translated images only.
We also highlight that the displacement field is agnostic to semantic class (it only considers
boundaries), and even though it captures other kinds of edges (i.e. not only semantic ones), it
leads to computing an average of patches belonging to the same class.

Chapter 5. Exploiting Shallow Features for Sharp Segmentation Mask 53

FIGURE 5.6. Top left: input target image. Top right: estimated 2D displacement. Bottom left:
semantic map from a model trained on translated images. Bottom Right: Our results, improved
on class boundaries by using the warping module. Colors and lightness in the middle indicate the
warping direction with the corresponding intensity.

5.4 Conclusions

We proposed a novel framework for UDA for semantic segmentation that explicitly
focuses on improving accuracy along class boundaries. We have shown that we can exploit
domain-invariant shallow features to estimate a displacement map used to achieve sharp
predictions along semantic edges. Jointly with a novel data augmentation technique that
preserves fine edge information during self-training, our approach achieves better accuracy
along class boundaries w.r.t. previous methods.

54

Part II

Domain Adaptation for 3D Data

55

Chapter 6

Initial Remarks

Properly reasoning on 3D geometric data such as point clouds or meshes is crucial for
many 3D computer vision tasks, which are key to enabling emerging applications like
autonomous driving, robotic perception, and augmented reality. In particular, assigning the
right semantic category to a set of points that represent the surface of an object is a required
skill for an intelligent system in order to understand the 3D scene around it. Such a problem
referred to as shape classification, was initially addressed by hand-crafted features [157, 158, 159],
while, with the advances in deep learning, recent proposals learn features directly from 3D
point coordinates by means of deep neural networks [160, 161, 162, 163, 164, 165, 166, 167, 168,
169]. Although data-driven approaches can achieve impressive results, they require massive
amounts of labeled data to be trained, which are cumbersome and time-consuming to collect.
Typically, 3D deep learning methods use synthetic datasets of CAD models, e.g.,ModelNet40
[170] or ShapeNet [171], to harvest a large number of 3D examples. While synthetic datasets
enable 3D deep learning, they create a conundrum. On the one hand, shape classifiers trained
on ModelNet are very effective on synthetic data, as witnessed by performance saturation on
standard benchmarks [172, 173]. On the other hand, though, they are not able to transfer their
performance to real-world scenarios [172], where point cloud data are usually captured by
RGB-D or LiDAR sensors [174, 175]. This limitation severely restricts the deployment of 3D
deep learning methods in real-world applications. In light of the aforementioned rationale,
this dissertation introduces two innovative domain adaptation methodologies designed to
enhance the transfer of knowledge to an unlabeled target domain. In line with the previous
chapters on 2D data, we examine again the usage of auxiliary tasks. More specifically, in
Chapter 7, we leverage 3D point cloud reconstruction as a supplementary task. Conversely, in
Chapter 8, we advocate the utilization of a self-supervised task to boost performance within
the target domain.

Chapter 6. Initial Remarks 56

6.1 Related Works

6.1.1 Unsupervised 3D Domain Adaptation

Only few papers discuss Unsupervised Domain Adaptation for point cloud classification.
Among these, PointDAN [28] is a seminal work that proposes to adapt a classical 2D domain
adaptation approach to the 3D world. Specifically, they focus on the alignment of both
local and global features, building their framework upon the popular Maximum Classifier
Discrepancy (MCD) [176] for global feature alignment. Differently, [29, 30] leverage on
Self-supervised learning (SSL) to learn simultaneously distinctive features for both the source
and target domains. Similarly, [29] also relies on SSL, and introduces a novel pretext task to
learn strong features for the target domain as well.

6.1.2 Deep Learning for Point Clouds Reconstruction

With the recent advances in deep learning several methods for point cloud reconstruction
have been suggested. A seminal work in this area [177] proposes a new auto-encoder
architecture for point clouds using the permutation invariant operator introduced in [160].
AtlasNet [178] and FoldingNet [179] propose a plane-folding decoder to learn to deform points
sampled from a plane in order to reconstruct the input surface. TearingNet [180] takes
inspiration from [179, 178] and presents a tearing module to cut regular 2D patch with holes,
or into several parts, to preserve the point cloud topology. In [181], the authors reconstruct
the point clouds by training a generative adversarial network (GAN) on the latent space of
unpaired clean synthetic and occluded real point clouds. We take inspiration from the finding
of [177] and leverage the expressive power of point cloud auto-encoders to pre-train our
shape classifier and learn a global shape descriptor deployed for pseudo-labels refinement.

6.1.3 UDA Datasets for Point Cloud Classification and Segmentation

The standard dataset used for UDA for point cloud classification is PointDA-10 [28],
which consists of three subsets that share the same ten classes of three popular point clouds
classification datasets: ShapeNet [171], ModelNet40 [182] and ScanNet [174]. This allows to
define six different scenarios that involve synthetic-to-synthetic, synthetic-to-real and real-to-
synthetic adaptation. ModelNet-10 consists of 4,183 training and 856 testing point clouds,
that are extracted from synthetic 3D CAD models. Similarly, ShapeNet-10 features synthetic
data only. It is the largest and most varied among the three datasets, and it comprises
17,378 training and 2,492 testing samples. ScanNet-10 is the only real datasets among these
three, and it consists of 6,110 and 1,769 training and testing point clouds, respectively. It
has been obtained from multiple real RGB-D scans. For this reason, it exhibits several forms

Chapter 6. Initial Remarks 57

of noise such as errors in the registration process and occlusions. A second additional real
dataset that will be used for our experiments is ScanObjectNN [172] which is composed
of 2902 3D scans from 15 categories. Similarly to ScanNet-10, it represents a challenging
scenario due to the high diversity with respect to synthetic datasets and the presence of
artifacts such as non-uniform point density, missing parts and occlusions. Several variants
of the ScanObjectNN dataset are provided. As in [29], we select the OBJ_ONLY split which
contains only foreground vertices. As regards the problem of part segmentation, there is no
established setting in the literature and we refer to [29] as a reference since it is the only work
performing synthetic-to-real adaptation from ShapeNetPart [183] to ScanOBJ-BG, wich is
another split from ScanObjectNN. The task is solved only for the chair class, which comprises
4 components to segment: Seat, Back, Base, Arm.

58

Chapter 7

RefRec: Pseudo-labels Refinement via
Shape Reconstruction

Classification feature space Reconstruction feature space

Table Chair

Chair Cabinet

Cabinet

Chair

Chair

Table

Cabinet

FIGURE 7.1. Feature space of a classifier (left) and a reconstruction auto-encoder (right). A
classifier trained on source shapes only (blue) may not be effective on target shapes (orange) and
assign wrong pseudo-labels. An auto-encoder, instead, tends to cluster similar shapes together in
the learned embedding, such that its features can be used as global shape descriptors to correct
wrong pseudo-labels.

UDA has its roots in 2D computer vision, where a multitude of methods have been
proposed [184]. Among them, the most widespread approach pertains globally aligning
the feature distributions between the source and target domain. This is the paradigm also
leveraged by methods tackling UDA for 3D data, either explicitly, by designing losses and
models to align features [28], or implicitly, by solving a self-supervised task on both the
source and target domains with a shared encoder [29, 30]. We argue that, when moving from
a synthetic CAD dataset to a real-world one, feature alignment can only lead to sub-optimal
solutions due to the large differences between the two domains. Indeed, acquiring objects
in cluttered scenes results oftentimes in partial scans with missing parts due to occlusions.
Moreover, registration errors arising when fusing multiple 2.5D scans [185] to obtain a full
3D shape, alongside noise from the sensor, resulting in less clean and geometrically coherent

Chapter 7. RefRec: Pseudo-labels Refinement via Shape Reconstruction 59

shapes than CAD models. Therefore, the shape classifier may need to ground its decision on
new cues, different from those learned on the source domain, where the clean full shape is
available, to correctly classify target samples.

To let the classifier learn such new cues, we propose RefRec (Refinement via Reconstruction),
a novel framework to perform unsupervised domain adaptation for point cloud classification.
Key to our approach is reliance on pseudo-labels [186] and self-training, wich we introduced
and exploited in the previuos chapters as well. As usual however, the pseudo-labels obtained
from a model trained on the source domain may be wrong due to the domain shift (as shown
in Fig. 7.1-left) and a target domain classifier naively trained on them would underperform.
Therefore, our key contribution concerns effective approaches to refine pseudo-labels. We
propose both an offline and an online refinement, i.e., before training and while training
on pseudo-labels. Both refinements are based on the idea that similar shapes should share
similar labels. To find similar shapes, we match global shape descriptors, i.e., the embedding
computed by an encoder given the input shape. Here we make another key observation,
illustrated in Fig. 7.1: the space of features learned by a classifier is organized to create linear
boundaries among different classes, but it is not guaranteed -nor meant- to possess a structure
where similar shapes lay close one to another, especially for target samples which are not seen
at training time. Hence, such features are not particularly effective if used as global shape
descriptors. In contrast, teaching a point cloud auto-encoder to reconstruct 3D shapes is an
effective technique to obtain a compact and distinctive representation of the input geometric
structures, as proven by recent proposals for local and global shape description [179, 178, 187,
188], which, in our setting, can be trained also on the target domain since it is learned in an
unsupervised way. By leveraging on such properties of the reconstruction latent space, in the
offline step we focus on reassigning the pseudo-labels of target samples where the source
domain classifier exhibits low confidence, while in the online step, we compute prototypes
[189], i.e., the mean global descriptors on the target domain for each class, and we weight
target pseudo-labels according to the similarity of the input shape to its prototype. Peculiarly,
by using reconstruction embeddings trained also on the target domain to compute prototypes,
we avoid the domain shift incurred when using the classifier trained on the source domain
as done by previous 2D methods [190]. In the online refinement step, we also leverage the
standard training protocol of 2D UDA methods based on mean teacher [191] to improve the
quality of pseudo-labels as training progresses.

7.1 Method

As in the classical UDA setting, we assume the availability of a labeled source domain S =

{(xi
s ∈ Xs, yi

s ∈ Ys)}ns
i=1, and a target domain T = {xj

t ∈ Xt}nt
j=1, whose labels {yj

t ∈ Yt}nt
j=1

are, however, not available. As in standard UDA settings [57], we assume to have the same

Chapter 7. RefRec: Pseudo-labels Refinement via Shape Reconstruction 60

one-hot encoded label space Ys = Yt = Y = {0, 1}k and the same input space Xs = Xt (i.e.,
point clouds with {x, y, z} coordinates) but with different distributions Ps(x) ̸= Pt(x), e.g.,
due to source data being synthetic while target data being real or due to the use of different
sensors. The final classifier for a point cloud x can be obtained as a composite function
Ω = Φ ◦ Ψ, with Φ : X → Rd representing the feature extractor and Ψ : Rd → [0, 1]k the
classification head, which outputs softmax scores p̂ ∈ [0, 1]k. When one-hot labels are needed,
we further process softmax scores with Λ : Rk → Y to obtain the label corresponding to the
largest softmax score, with such value providing also the confidence associated with the label
prediction. Although the largest softmax is a rather naive confidence measure, we found it to
work satisfactorily in our experiments. Our overall goal is to learn a strong classifier Ωt for
the target domain even though annotations are not available therein.

An overview of our method is depicted in Fig. 7.2. It encompasses three major steps:
warm-up, pseudo-labels refinement, and self-training. The purpose of the first step, described
in Sec. 7.1.1, is to train a model effective on target data by using labeled source data and
unlabelled target data. Once trained, this model provides the initial pseudo-labels. These are
refined offline in the second step, described in Sec. 7.1.2, in order to partially reduce the errors
in pseudo-labels due to the limited generalization of the source classifier to the target domain.
Finally, in the last step, detailed in Sec. 7.1.3, we introduce an effective way of exploiting
pseudo-labels during self-training by combining a domain-specific classifier with an online
pseudo-labels weighting strategy that exploits prototypes computed in the target domain.

7.1.1 Pseudo-labels Warm-up

The first step of our pipeline seeks to produce good initial pseudo-labels, which, after
refinement, can be used to train the final classifier on the source domain and the target domain
augmented with pseudo-labels. The warm-up step is very important, as the effectiveness of
self-training is directly related to the quality of pseudo-labels. To obtain good initial pseudo-
labels, we focus on pretraining and data augmentation, with the aim of reducing overfitting
on source data. Pre-training is largely adopted also in UDA for image classification, where
ImageNet pre-training is a standard procedure [190, 192, 193] that learns powerful features
able to generalize to multiple domains and alleviates the risk of overfitting when training
solely on data coming from the source distribution. Differently from UDA in the 2D world,
however, here we focus on unsupervised pre-training. This is particularly attractive for the
UDA context, where no supervision is available for the target domain. In fact, inspired by
recent advances on representation learning for 3D point clouds, which have demonstrated
the effectiveness of unsupervised techniques for learning discriminative features [179, 178,
187, 188], we propose to use point cloud reconstruction as unsupervised pre-training for our
backbone. The key advantage of such pre-training is the possibility to capture discriminative

Chapter 7. RefRec: Pseudo-labels Refinement via Shape Reconstruction 61

features also for the target domain since unsupervised pre-training can be conducted on both
domains simultaneously. Moreover, it learns a feature extractor Φrec which can be deployed
also to refine labels effectively, as we do in the following steps of our pipeline.

We follow the same strategy proposed in [177], and use a standard PointNet [160] back-
bone as Φrec to produce a global d-dimensional descriptor of the input point cloud. This
latent representation is then passed to a simple decoder made out of 3 fully connected layers
that tries to reconstruct the original shape. During training, we minimize both the Chamfer
Discrepancy (CD) LCD and Earth Mover’s distance (EMD) LEMD [194] as loss functions [177].
Additionally, as mentioned above, data augmentation is a key ingredient to improve general-
ization, especially for the synthetic-to-real adaptation case, since 3D real scans always exhibit
occlusions and non-uniform point density. For this reason, when performing synthetic-to-real
adaptation, we apply a data augmentation procedure similar to that proposed in [195] in
order to simulate occlusions.

To conclude warm-up, we train a new classifier Ωw = Φw
cls ◦ Ψw on the source dataset

with a classical cross-entropy loss. Importantly, Φw
cls and Φrec have the same architecture and

the weights θ of the backbone Φw
cls are initialized with those learned for Φrec. We then use Ωw

to obtain pseudo-labels {ŷj
t = Λ(Ωw(xj

t)}nt
j=1) alongside their confidence scores.

We may, in principle, exploit these pseudo-labels to perform self-training in the target
domain. However, even if we rely on unsupervised pre-training and data augmentation to
boost performance on the target domain, they are still noisy. Indeed, due to the domain gap,
only a small portion of the pseudo-labels can be considered reliable, while the majority of
the samples are assigned wrong labels that could lead to poor performance when applying
self-training. Hence, in the next step, we refine the initial pseudo-labels obtained in the
warm-up step by leveraging on Φw

rec.

7.1.2 Pseudo-labels Refinement

To refine pseudo-labels, we exploit the confidence computed by the classifier Ωw and
split pseudo-labels in the two disjoint sets of highly confident predictions, denoted as E (i.e.,
easy split), and uncertain ones, denoted as H (i.e., hard split). We first build E by selecting
the g=10% most confident predictions on the target samples for each class. We perform
this operation class-wisely to obtain a sufficient number of examples for each class and to
reproduce the class frequencies in E . H is composed by all the remaining target samples. One
of the key ideas behind RefRec is to utilize the embedding of the reconstruction backbone
Φrec, instead of Φw

cls, to improve the labels of the samples in H. We conjecture that since Φw
cls

has been trained only on the source domain, its embeddings are not discriminative for the
target domain, and more importantly there are no guarantees that objects belonging to the
same class, yet coming from different domains, would lay close in the feature space. Hence,

Chapter 7. RefRec: Pseudo-labels Refinement via Shape Reconstruction 62

Pseudo-labels Warm-up Offline Refinement Self-training & Online Refinement

…

Teacher

Student

refine

FIGURE 7.2. RefRec comprises three steps. First, in the pseudo-labels warm up step, we train a
reconstruction network Φrec on both source and target domains. The weights of the encoder are
used to initialize the backbone Φw

cls of a classifier, that is then trained on the source domain. In
the refinement step, we use the classifier to split target samples into the easy (E) and hard (H)
sets according to their confidence and refine them by performing nearest neighbor queries in the
auto-encoder feature space. Finally, in the self-training step, we train a target-specific classifier Ψt
by refined pseudo-labels and online pseudo-labels obtained with the mean teacher architecture
[191].

we assign new pseudo-labels to target samples according to similarities in the feature space
of Φrec.

We first seek to expand the set of easy examples E by finding in the feature space of Φrec

the nearest neighbor in H for each sample of E and vice versa. To refine pseudo-labels for
samples in H, we adopt a well-known technique employed for surface registration [187,
196, 188] and accept only reciprocal nearest neighbor matches, i.e., pairs of samples that are
mutually the closest one in the feature space: if one sample h ∈ H is the nearest neighbour in
H of a sample e ∈ E and e is, in turn, the nearest neighbor of h in E , we move h to the easy
split and label it according to the pseudo-label of e. At the end of this procedure, we obtain a
refined set of easy examples E r.

We then try to refine the pseudo-labels for the samples left in H exploiting E r. In particular,
we select K-nearest neighbors (K = 3 in our experiments) in the refined set E r for each
remaining sample h ∈ H, and assign the new pseudo-label to h by majority voting. When
there is no consensus among the K neighbors, we assign the pseudo-label of the closest one.
This produces the refined set of hard examples Hr. It is important to note that the entire
process is applied offline before the self-training step, as illustrated in Fig. 7.2, and the absence
of hard thresholds in all the refinement steps facilitates the applicability of the proposed
method across datasets.

Chapter 7. RefRec: Pseudo-labels Refinement via Shape Reconstruction 63

7.1.3 Self-training

FIGURE 7.3. Samples from cabinet. First row: intra-class variability between domains (ModelNet
and ScanNet). Second row: intra-class variability in ScanNet.

When performing synthetic-to-real adaptation and vice-versa, the gap between the two
distributions could be large and difficult to reduce even in case of perfect supervision. As a
matter of example, Fig. 7.3 shows how shapes, such as cabinets, may look very different across
domains (first row) as well as within a domain (second row). A high intra-class variability
can be somehow dealt with in a supervised setting, but it is harder to handle when noisy
supervision in the form of pseudo-labels must be used. Hence, in this setting, it is difficult
for a neural network to find common features for shapes belonging to the same class across
domains. We address this issue by adopting domain-specific classification heads together
with online pseudo-labels refinement while performing the self-training step that concludes
our pipeline.

Domain-specific classification heads. To tackle intra-class variability across domains, we
deploy a shared encoder Φcls, initialized using the weights from Φrec, and attach two domain-
specific classification heads, Ψs and Ψt, for the source and target domain, respectively. The
benefit of having a target-specific head (right) versus a single head trained on both domains
(left) is highlighted in Fig. 7.4.

When using a single classification head, the model tries to separate classes for both
domains simultaneously, which may lead to a non-optimal decision boundary. Indeed, due
to the high intra-class variability across the domains it is not possible to find a single decision
boundary to correctly separate all samples for both, leading to some wrongly classified
samples. When employing two domain-specific heads, instead, the model can learn two
more effective boundaries.

Chapter 7. RefRec: Pseudo-labels Refinement via Shape Reconstruction 64

Target domain class A
Source domain class A

Target domain class B
Source domain class B Source domain decision boundary

Target domain decision boundary
Single head decision boundary

AB

A

B

FIGURE 7.4. Single head vs domain-specific classification heads. When a single head is deployed
(left side), it may not be possible to find a linear decision boundary that correctly classifies both
classes for the source and target domain. When domain-specific classification heads are deployed,
the model can focus on each domain separately and learn more effective decision boundaries
(right side).

Although domain-specific classification heads have been already explored in UDA for
image classification [197], in RefRec we can apply them in a unique way, which makes them
more effective, as it will been shown in our ablation studies. In particular, we train the first
head Ψs on the source domain mixed with E r, while we supervise the second head using
target data only, i.e., both E r and Hr. By doing this, we force both heads to correctly classify
the easy split, which contains the most confident predictions, i.e., the set of target samples
already more aligned with the source domain. Thereby, training with this strategy does
not reduce performance on the source domain while it enforces a partial feature alignment
across domains. At the same time, by only feeding target data to Ψt, we let the model define
target-specific boundaries, alleviating the negative impact of the intra-class variability across
domains.

Online pseudo-labels refinement. Even when using domain-specific classification heads,
the intra-class variability on the target domain can still affect the model performance. To deal
with this issue we adopt an online pseudo-labels refinement and weighting strategy. The key
intuition behind online refinement is that, as training progresses, our classifier better learns
how to classify the target domain thanks to the pseudo-labels and thus we can progressively
improve the pseudo-labels by exploiting such freshly learned knowledge. Purposely, we
exploit the mean teacher [191] of our model in order to obtain online pseudo-labels ỹt:

ỹt = Λ(Ψ̃s(Φ̃cls(xt)) + Ψ̃t(Φ̃cls(xt))) (7.1)

Chapter 7. RefRec: Pseudo-labels Refinement via Shape Reconstruction 65

It is important to note that Φ̃cls, Ψ̃s, and Ψ̃t are never updated trough gradient back-
propagation, as they consist of simple temporal exponential moving averages (EMA)of
their student counterparts [191]. At each training step, we feed one batch of samples from
{S , E r} and one batch from {E r,Hr} to train Φcls ◦ Ψs and Φcls ◦ Ψt, respectively. As for the
source classifier, we train it by the standard cross-entropy loss with labels for the source
domain and the pseudo-labels ŷt obtained from the refinement step for E r:

Ls = Lce(ps, ys) + Lce(pt, ŷt) (7.2)

We instead exploit both the refined (ŷt) and the on-line (ỹt) pseudo-labels when training the
target classifier:

Lt = (1 − αit)ztLce(pt, ŷt) + αitztLce(pt, ỹt) (7.3)

where αit is a weighting factor that starts from 0 (use only refined pseudo-labels) and increases
at every iteration up to 1 (use only online pseudo-labels). Intuitively, when self-training starts,
we trust the previously refined pseudo-labels and thus give more weight to the first term of
Eq. (7.3) as the mean teacher is not reliable yet. As training goes on, we progressively trust
more the output of the mean teacher, i.e., ỹt, and so give more weight to the second term.
zt is instead a weighting factor that accounts for the plausibility of the pseudo-label. zt is
computed for each target sample exploiting once again the embedding of Φrec. In particular,
before the self-training step, we compute the class-wise prototypes η(k) ∈ Rd as the class-wise
average of the target features in the easy split:

η(k) =
∑xt∈E r Φrec(xt) ∗ 1(ŷt,k == 1)

∑xt∈E r 1(ŷt,k == 1)
(7.4)

where ŷt,k is the k-entry in ŷt. We only consider E r as it contains the most reliable pseudo-
labels for the target domain. We then obtain the confidence score for each sample by simply
computing the softmax of the opposite of the distance between the current embedding of xt

and the prototype of the class k assigned to it in its online pseudo-label, k = arg maxk′ ỹt,k′ :

zt =
exp

(
−∥Φ̃cls(xt)− η(k)∥2

)
∑k′ exp

(
−∥Φ̃cls(xt)− η(k′)∥2

) . (7.5)

Hence, zt forces the loss to ignore samples that are far from the expected prototype. In fact,
when a sample has a very different representation from the expected class prototype, either
the pseduo-label is wrong or the input point cloud is an outlier in the target distribution, and
dynamically weighting it less in the self-training process allows for learning a better classifier.

Chapter 7. RefRec: Pseudo-labels Refinement via Shape Reconstruction 66

7.2 Experiments

We evaluate our method on two standard datasets for point cloud classification: PointDA-
10 [28] and ScanObjectNN [172].

7.2.1 Implementation details

As done in all previous 3D DA methods [28, 29, 30], we use the well-known PointNet
[160] architecture. In particular, we use the standard PointNet proposed for point cloud
classification for all our backbones Φw

cls, Φcls, and Φrec. It produces a 1024-dimensional global
feature representation for each input point cloud. We train the reconstruction network for
1000 epochs in the unsupervised pre-training step [177], while we train only for 25 epochs
when training classification networks in each step of our pipeline. We set to 0.0001 both
learning rate and weight decay. We train with batch size 16 using AdamW [198] with
cosine annealing [199] as optimizer. The framework is implemented in PyTorch [150], and is
available at https://github.com/CVLAB-Unibo/RefRec. At test time, we use the target classifier
Φcls ◦ Ψt ◦ Λ in the target domain.

Method
ModelNet to ModelNet to ShapeNet to ShapeNet to ScanNet to ScanNet to

AvgShapeNet ScanNet ModelNet ScanNet ModelNet ShapeNet

No Adaptation 80.2 43.1 75.8 40.7 63.2 67.2 61.7

PointDAN [28] 80.2 45.3 71.2 46.9 59.8 66.2 61.6
DefRec [30] 80.0 46.0 68.5 41.7 63.0 68.2 61.2
DefRec+PCM [30] 81.1 50.3 54.3 52.8 54.0 69.0 60.3
3D Puzzle [29] 81.6 49.7 73.6 41.9 65.9 68.1 63.5
RefRec (Ours) 81.4 56.5 85.4 53.3 73.0 73.1 70.5

Oracle 93.2 64.2 95 64.2 95.0 93.2

TABLE 7.1. Shape classification accuracy (%) on the PointDA-10 dataset. For each method, we
report the average results on three runs. Best result on each column is in bold.

Method
ModelNet to

ScanObjectNN

No Adaptation 49.6
PointDAN [28] 56.4
3D Puzzle [29] 58.5

RefRec (Ours) 61.3

TABLE 7.2. Shape classification accuracy (%) on the ScanObjectNN dataset. For each method, we
report the average results on three runs. Best result is in bold.

7.2.2 Results

We report and discuss here the results of RefRec, and compare its performance against
previous work as well as the baseline method trained on the source domain and tested on the

https://github.com/CVLAB-Unibo/RefRec

Chapter 7. RefRec: Pseudo-labels Refinement via Shape Reconstruction 67

target domain (referred to as No Adaptation). For each experiment, we provide the mean
accuracy obtained on three different seeds. Since in UDA target annotations are not available,
we never use target labels to perform model selection and we always select the model that
gives the best result on the validation set of the source dataset.

PointDA-10. We summarize results for each benchmark in Tab. 7.1. Overall, our proposal
improves by a large margin the previous state-of-the-art methods. Indeed, on average we
obtain 70.5% against the 63.5% obtained by 3D puzzle [29], which is an improvement of
7% in terms of accuracy. From Tab. 7.1, it is also possible to observe how our method is
consistently better than previous works in the synthetic-to-real adaptation scenario, which
we consider the most important for practical applications. Compared to DefRec+PCM [30],
which obtains 50.3 in the ModelNet→ScanNet setting, we improve by 6.2%. As regards
ShapeNet→ScanNet, we obtain 53.3, surpassing by 0.5% DefRec+PCM again. Moreover,
we highlight how RefRec seems to be the only framework able to generalize well to all
adaptation scenarios. In fact, when comparing our proposal to DefRec+PCM which was the
strongest method for the synthetic-to-real case, we also improve by a large margin in cases
such as ShapeNet→ModelNet and ScanNet→ModelNet, where DefRec+PCM seems to fail.
Finally, the ability of RefRec to handle large distribution gaps is also confirmed by the large
improvements in the real-to-synthetic cases. Indeed, we observe a +7.1% improvement for
ScanNet→ModelNet and +4.1% for ScanNet→ShapeNet.

Experiment ModelNet to ModelNet to ShapeNet to ShapeNet to ScanNet to ScanNet to
AvgTraining data Offline ref. ShapeNet ScanNet ModelNet ScanNet ModelNet ShapeNet

S , E ,H 82.2 51.7 80.4 43.4 64.7 70.0 65.4
S , E 82.8 49.6 79.0 43.8 64.1 69.8 64.9

S , E r,Hr ✓ 79.1 57.3 85.6 50.7 70.1 69.1 68.7

TABLE 7.3. Ablation study on the effect of offline refinement. We report the average shape
classification accuracy (%) on three runs.

Experiment ModelNet to ModelNet to ShapeNet to ShapeNet to ScanNet to ScanNet to
AvgΨs Ψt EMA Online ref. ShapeNet ScanNet ModelNet ScanNet ModelNet ShapeNet

S E r,Hr 79.5 55.3 84.7 49.3 72.0 68.5 68.2
S , E r E r,Hr 79.3 56.9 84.7 51.6 71.7 69.0 68.9
S , E r E r,Hr ✓ 80.3 54.2 83.2 52.7 72.8 71.6 69.1
S , E r E r,Hr ✓ ✓ 81.4 56.5 85.4 53.3 73.0 73.1 70.5

TABLE 7.4. Ablation study on the effect of the self-training strategy and online refinement. We
report the average shape classification accuracy (%) on three runs.

ScanObjectNN. In Tab. 7.2 We report the results for the challenging ModelNet−→ScanObjectNN
adaptation task. On this challenging benchmark, we achieve 61.3%, which is 2.8% better than
the previous state-of-the-art result.

Chapter 7. RefRec: Pseudo-labels Refinement via Shape Reconstruction 68

7.2.3 Ablation studies

To validate the importance of our design choices, we conduct some ablation studies on
both the pseudo-labels refinement process and the self-training strategy.

Pseudo labels refinement. In Tab. 7.3, we show the effect of our refinement process. When
performing self-training with the initial, unrefined pseudo-labels produced by the classifier Ψs

after the warm-up step (first row), we obtain an overall accuracy of 65.4%. Conversely, when
we apply our descriptor matching approach aimed at pseudo-labels refinement (third row),
the accuracy increases to 68.7%. This confirms our intuition that using the reconstruction
network allows to capture similarities among shapes in feature space and consequently to
improve the pseudo-labels. Moreover, we compare self-training using the most-confident
pseudo-labels only (second row) against self-training with the refined pseudo-labels (third
row). The improvement given by the refinement approach (+3.8%) suggests that only using
the most confident pseudo-labels is not enough to reach good performance.

Self-training strategy. In Tab. 7.4, we show the effectiveness of our strategy to perform
self-training and ablate our design choices compared with other reasonable alternatives.
When deploying the domain-specific classification heads, and training Ψs solely with source
data (first row), results are worse than when we train Ψs with both source and E r (second
row). This is more evident for the synthetic-to-real adaptation and vice versa, where partial
alignment in feature space is more difficult to attain. Indeed in all four cases, forcing Ψs

to correctly classify the target easy split is beneficial. On the other hand, for the synthetic-
to-synthetic case, performances remain stable. This is an expected behaviour since the
decision boundaries in these easy adaptation scenarios should not vary significantly across
domains. Finally, in the last two rows, we ablate the effect of the mean teacher and the online
refinement, respectively. The mean teacher only gives a marginal contribution (+0.2%), while
its combination with our online refinement accounts for a 1.4% improvement.

Method
ModelNet to ModelNet to ShapeNet to ShapeNet to ScanNet to ScanNet to

AvgShapeNet ScanNet ModelNet ScanNet ModelNet ShapeNet

No Adaptation 80.2 43.1 75.8 40.7 63.2 67.2 61.7
Warm-up 81.3 51.4 78.9 43.8 59.7 67.5 63.7
Multi-task 80.6 45.4 78.9 46.0 63.9 67.4 63.7
Self-train multi-
task

81.2 46.9 76.3 47.7 66.0 66.5 64.1

RefRec (Ours) 81.4 56.5 85.4 53.3 73.0 73.1 70.5

TABLE 7.5. Ablation study on the effect of pre-training. We report the average shape classification
accuracy (%) on three runs.

Warm-up vs SSL. Finally, we aim to shed some light on the importance of unsupervised
pre-training, i.e., warm-up, compared to SSL, which is so far the most studied approach to
UDA for point cloud classification. In Tab. 7.5, we compare our warm-up step (second row),
which exploits unsupervised pre-training, with a multi-task approach as done in [29, 30]
(multi-task, third row), where the SSL task of shape reconstruction is solved by an auxiliary

Chapter 7. RefRec: Pseudo-labels Refinement via Shape Reconstruction 69

head. For a fair comparison, we adopt in both cases our data augmentation in the synthetic-
to-real setting, and train the multi-task architecture for 150 epochs, as done in [29] and [30],
since no pre-training is applied. Although a simple comparison between such baselines
does not establish a clear winner (63.7 on average in both cases), we observe a remarkable
difference after the self-training stage. Indeed, when comparing the classifier self-trained
with pseudo-labels obtained with the multi-task approach (fourth row) against the classifier
self-trained with refined pseudo-labels (last row), and applying the mean teacher in both
cases, we observe a remarkable gap (+7%).

7.3 Conclusions

We improved the state of the art in UDA for point cloud classifications. We showed how
solving 3D UDA by means of self-training with supervision from robust pseudo-labels is a
superior paradigm with respect to the established way of tackling it by multi-task learning.
Key contributions we make are effective ways to refine pseudo-labels, offline and online, by
leveraging shape descriptors learned to solve shape reconstruction on both domains, as well
as a carefully designed self-training protocol based on domain-specific classification heads
and improved supervision by an evolving mean teacher. We hope our results will call for
more explorations around the use of pseudo-labels and self-training in this emerging area of
research.

70

Chapter 8

Self-Distillation for Unsupervised 3D
Domain Adaptation

The main line of research in 3D UDA for point cloud classification focuses on learning an
effective feature space for the target domain by means of auxiliary tasks such as point cloud
reconstruction [30, 200], 3D puzzle sorting [29] and rotation prediction [201]. These tasks are
referred as auxiliary since they do not directly solve the main task, but at the same time, they
are useful to learn features for the target domain without the need of annotations. Although
such techniques considerably improve over the baseline (i.e., training only on source data),
the design of such tasks is not trivial and typically lead to sub-optimal solutions. It requires
identifying one that can drive the network to learn representations discriminative enough to
perform classification in the target domain effectively.

Despite the fact they force some degree of alignment between the features computed on
objects from the two domains, such auxiliary tasks do not explicitly steer the network to learn
discriminative representations amenable to classification in the target domain. For instance,
if we train a network to reconstruct shapes, we will get similar point cloud embeddings for
similar 3D shapes. However, two point clouds could represent objects that, though similar in
shape, do belong to different categories, e.g., a cabinet and a bookshelf. As a consequence,
relying on reconstruction to perform domain adaptation can align features between the two
domains, with similar shapes embedded close one to each other regardless of their domain,
but the decision boundaries learnable from the labeled source samples may not discriminate
effectively between target samples belonging to different classes. This is also shown in [30],
where a simple denoising autoencoder for point clouds only slightly improves performance
over the baseline. We reckon that similar considerations apply to the other auxiliary tasks
proposed in the literature as they pursue cross-domain feature alignment based on a learning
objective that does not ensure cross-domain class discriminability. We support this claim by
comparing our proposal with previous works in the experimental section.

In this paper instead, we take inspiration from a recent self-supervised approach, DINO
[202], to learn more discriminative representations for the target domain by constraining a
sample and a strongly augmented version of itself to be classified similarly. This is typically

Chapter 8. Self-Distillation for Unsupervised 3D Domain Adaptation 71

: Strongly Augmented source Data

S ′′

Supervised Classification Feature Distillation

S ′′

Aligned feature space

S ′′ : Target Data : 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 : 𝑇𝑎𝑟𝑔𝑒𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

FIGURE 8.1. Proposed UDA method. We combine a supervised training of strongly augmented
source data with a self-distillation approach that aims at clustering target shapes unsupervisedly.
The combination of these two approaches leads to an alignment in feature space across domains.

achieved through self-distillation, a methodology where the output of a neural network is
compared with the output obtained from a mean teacher i.e., a temporal exponential moving
average of the weights of the network itself (EMA) [191]. As shown in [202] this training
methodology allows for clustering together samples of the same class. However, differently
from DINO, we apply self-distillation for the first time in the 3D UDA context, where samples
are point clouds, and the main goal is to reduce the gap between representations of two
different domains rather than only learning a well-clustered feature space for a single domain.
We believe that self-distillation is particularly suited for point cloud domain adaptation due to
peculiar 3D data augmentations such as translation, occlusion and point-wise noise that can
easily bridge the gap between source and target domain. By exploiting such augmentations
to strongly augment source data and by enforcing inter-class discriminability for the target
domain via self-distillation, we are able to obtain a shared aligned feature space across
domains. The overall idea is illustrated in Fig. 8.1. Moreover, one major limitation of DINO
that hinders its wide adoption is mode collapse [202], and previous works usually adopt
multiple tricks and hyper-parameters such as clustering constraints [203], predictor [204]
and contrastive losses [205] that are difficult to apply and tune in other contexts. In this
work, we show how this paradigm can be applied without such tricks to UDA for point
cloud classification, where mode collapse is prevented by simultaneously training a classifier
on labeled source data that inherently separates the feature space according to semantic
categories.

In the second step of our proposal, following recently published works in the field

Chapter 8. Self-Distillation for Unsupervised 3D Domain Adaptation 72

EMA

f ′ f ′′

FIGURE 8.2. Illustration of our framework. Left: weakly and strongly augmented point clouds are
generated with two transformation functions f ′ and f ′′ for both domains. The weakly augmented
shapes are fed to an exponential moving average (EMA) encoder, the teacher Φ̃, while the
strongly augmented are processed by the student Φ. A consistency loss is applied between the
corresponding embeddings. Right: the whole target dataset is processed by a GCN G online
during self-training to iteratively refine and update pseudo-labels

[206, 201, 200, 207], we make use of self-training, an iterative methodology that exploits the
predictions of a pre-trained model (pseudo-labels) to provide partial supervision on the target
domain as well. However, pseudo-labels are noisy and their naive use typically leads to
overfitting of the dominant classes of the source domain as shown in [208, 209]. The strategy
proposed by [206] to refine them requires offline training of an additional network for this
purpose and the definition of hand-crafted rules based on k-NN queries, limiting its general
applicability, while [201] adopted a standard procedure borrowed from the 2D world [210].
As a further contribution of our work, we take a different path and propose to use Graph
Neural Networks (GNNs) [211] to refine pseudo-labels online during self-training. Our main
intuition is that by using a GNN, pseudo-labels are obtained by considering relationships
between all target samples in the dataset rather than on single samples in isolation. This
allows for reasoning at the dataset-level and enables to correct misclassified samples and
thus refine pseudo-labels. Moreover, the target feature space is clustered thanks to the self-
distillation, thus each node of the graph is likely to be connected to samples of the same
category. Hence, the GNN can improve the pseudo-labels by reasoning on a neighborhood of
samples sharing the same class. This procedure can be done online during training with the
graph structure evolving over time, thus avoiding pseudo-labels overfitting.

8.1 Method

Our framework is divided into two main steps: self-distillation (Sec. 8.1.2) and self-training
with pseudo-labels refinement (Sec. 8.1.3 and Sec. 8.1.4). The overall pipeline is depicted in

Chapter 8. Self-Distillation for Unsupervised 3D Domain Adaptation 73

Fig. 8.2. We start introducing the notation and a brief review of the basic concepts about
GNNs.

8.1.1 Preliminaries

Notation. As in the previous case, we consider the problem of UDA for point cloud
classification, i.e., given a point cloud with N elements x ∈ RN×3 we aim at learning a neural
network Ω : x → [0, 1]K that takes an input example x and produces a K-dimensional vector
representing the confidence scores for K classes. Such a point cloud classifier consists of two
components: Ω = Φ ◦ Ψ. The first is a feature extractor network, Φ : R3 → RD, producing
g ∈ RD, i.e., a D-dimensional global feature descriptor for the shape, the second is small
MLP Ψ : RD → RK followed by a softmax operator which maps g to a vector of confidence
scores p̂ ∈ [0, 1]K. Finally, the class predictions can be obtained by the argmax operator
Λ : RK → Y . As it is peculiar in UDA settings, we have at our disposal a source domain with
labels S = {(xi

s ∈ Xs, yi
s ∈ Ys)}ns

i=1, and a target domain T = {xj
t ∈ Xt}nt

j=1, where the point
clouds are unlabeled. Our objective is to obtain a classifier able to make correct predictions
on T .

Background on GNNs. Graph Neural Networks (GNNs) are models designed to process
graphs, i.e., sets of nodes that are optionally joined one to another by edges representing
relationships. GNNs are a powerful tool to process unstructured data thanks to their ability to
update the representations of each node by aggregation of information from the neighbouring
nodes. An undirected graph G is represented as a tuple (V , E), where V is the set of N vertices
vi ∈ V , and E is the set of edges. The graph topology is determined by the adjacency matrix
A ∈ RN×N, with Ai,j = 1 if two nodes i and j are connected. Among the many architectures
of GNNs [211], in this work, we adopt the Graph Convolutional Networks (GCNs) [212],
which propagate the information between each layer according to the following propagation
rule:

H(l+1) = σ
(

D̃− 1
2 ÃD̃− 1

2 H(l)W(l)
)

(8.1)

where Ã = A + I represents the adjacency matrix with self-connections, I is the identity
matrix, D̃ii = ∑j Ãij acts as a scaling factor and W(l) is a layer-specific trainable weight
matrix. The aggregation rule is followed by a non-linear activation function σ(·) such as
ReLU. Note that matrix H(l) deals with the l-th layer of the network, each row i representing
the feature vector of a node vi ∈ V in that layer. We refer the reader to [211] for a more
detailed discussion.

Chapter 8. Self-Distillation for Unsupervised 3D Domain Adaptation 74

8.1.2 Self-distillation

In this section, we present the self-distillation module that we use in both steps of our
pipeline. The purpose of this component is to distill good features for the target domain
unsupervisedly, so that a discriminative feature space directly useful for classification can
be learned even though no direct supervision is available in T . Our main intuition is that
learning a clustered feature space that minimizes the distance among variations of the
same cloud from the target domain, while simultaneously learning decision boundaries
amenable to classification thanks to a carefully augmented source domain, is key to obtaining
good pseudo-labels to be deployed in the self-training process. Indeed, without enforcing
compactness in the feature space, it is more likely that, due to the domain gap, target samples
are spread across the different categories defined by the decision boundaries of the classifier.
This is undesirable since it would lead to excessive noise in pseudo-labels.

To achieve our goal, we use two data augmentation functions f ′, f ′′ : RN×3 → RN×3 that
take as input a point cloud x and return a weakly augmented (x′) and a strongly augmented
point cloud (x′′) respectively. Then, we adopt a self-distillation paradigm, where we train
a student encoder Φ to match the output of a teacher encoder Φ̃. In particular, we match
two global shape descriptors, g̃ = Φ̃(x′) and g = Φ(x′′), computed by feeding a weakly
augmented point cloud x′ to the teacher and the strongly augmented version x′′ to the
student.

By taking inspiration from [202], we design the student and the teacher to output proba-
bility distributions over D dimensions, denoted by q and q̃, respectively. These probabilities
can be obtained by normalizing the output of the two encoders, i.e., g and g̃, with a softmax
function:

q(g, τ) =
exp(g/τ)

∑D
d=1 exp

(
g(d)/τ

) ,

q̃(g̃, τ̃) =
exp(g̃/τ̃)

∑D
d=1 exp

(
g̃(d)/τ̃

) (8.2)

where τ > 0 and τ̃ > 0 are the two temperature parameters which control the sharpness
of the output distributions for the student and the teacher, respectively. Differently from
[202], we don’t require any complex scheduling for the temperature parameters, and we just
empirically set them to 0.5 by observing the model performance on the source domain for the
ModelNet→ScanNet experiment and set it to the same value for all the others. To force the
embedding of the augmented point cloud to match that computed for the original one, we
minimize the cross-entropy:

Lsd(g̃, g) = −q̃(g̃, τ̃) log q(g, τ) (8.3)

by running backprop on the student network Φ, while the weights of the teacher are updated

Chapter 8. Self-Distillation for Unsupervised 3D Domain Adaptation 75

by computing an exponential moving average of those of the student. Please note that both
networks share the same architecture but have different weights. We employ an EMA as a
teacher network since it is a convenient way to provide robust and stable features throughout
the training process without the need of training another network [191, 213].

Data augmentation and transformation functions. To implement f ′ and f ′′, we use
a set of common data augmentation techniques for point clouds such as: jittering, elastic
deformation [214], scaling along the three axes. More specifically, to obtain the weakly
augmented point cloud x′, we only use jittering, while for the strongly augmented x′′, we
employ all the above transformations. Additionally, when performing synthetic-to-real
adaptation, we also include random point removal [195].

Interestingly, the same 3D transformations can be used to simulate the target distribution
given source data. In fact, although it is not possible to exactly predict the shift between
two domains, one can approximate the nuisances that affect the target data through aggres-
sive data augmentation. For example, when performing UDA between different synthetic
domains, shapes may have similar geometric elements but with different styles [215, 216],
which can be mimicked by object distortions or elongation and scaling. Similarly, when
moving from a synthetic domain to a real one, it is reasonable to assume that shapes within
the same class will appear similar to CAD models but will have missing components due to
occlusions, and point coordinates will be affected by the noise-originated in the acquisition
process. Therefore, as shown in Fig. 8.2 (left), at training time we augment the source data
by re-utilizing the transformation function f ′′, with the goal of minimising the gap between
the two domains in the input space and seamlessly obtain a better alignment also in the
feature space. Applying such well-designed augmentations to source data combined with
our distillation technique is beneficial to the student model. Intuitively, by distillation we aim
at clustering target samples, while by data augmentation we force source clusters, naturally
obtained with a classification loss, to be aligned with the target ones.

8.1.3 Pseudo-labels initialization

In the first step of our method, we exploit the self-distillation module presented in the
previous section to obtain an initial set of pseudo-labels for the target domain. In particular, as
shown in Fig. 8.2 (left), we train a classifier Ω = Φ ◦ Ψ on top of the student feature extractor
and fed with augmented source data. We use the cross entropy loss:

Lce(x′′s , ys) = −ys log Ω(x′′s) (8.4)

Simultaneously, we feed to the encoder Φ batches of source and target point clouds strongly
augmented with the transformation function f ′′, while Φ̃ receives the weakly augmented
versions, and minimize Eq. (8.3) to learn the desired clustered feature space for the data of

Chapter 8. Self-Distillation for Unsupervised 3D Domain Adaptation 76

the target domain. After training, the initial set of pseudo-labels is computed by feeding
each target sample xi

t into Ω and selecting the class with the highest confidence score:
ŷi

t = Λ(Ω(xi
t)).

8.1.4 Self-training and pseudo-labels refinement

In the second step, we exploit and refine the previously obtained pseudo-labels. We do
this by alternating self-training and refinement in an iterative procedure.

Self-training. In this step we train our classifier Ω = Φ ◦ Ψ leveraging pseudo-labels,
starting from scratch if it is the first iteration. To do so, we first split the pairs of target samples
and associated pseudo-labels (xi

t, ŷi
t) into two disjoint sets, i.e., Ŷtc and Ŷtn, associated with

confident and non-confident pseudo-labels, respectively, and with the former initialized to
the empty set. The sets will be useful to realize the iterative procedure outlined at the end of
the section. We then train Φ and Ψ using self-distillation and supervision for both domains,
with supervision for the target coming from pseudo-labels:

L = −Lce(x′′s , ys)− λLce(x′t, ŷt)−Lsd(x′′, x′)

where λ =

1, ŷt ∈ Ŷtc

0.2, ŷt ∈ Ŷtn
.

(8.5)

Note that, as in the previous step, Lsd acts on both domains.
Refinement. Naively using pseudo-labels as done in the previous step typically leads to

ignoring the classes that are underrepresented in the source domain and to obtain sub-optimal
performance on the target domain due to noise in the pseudo-labels [217, 218]. Hence, we
run self-training only for a few epochs and then refine the pseudo-labels exploiting a GCN.
Our intuition is that, by leveraging on a global view of the target dataset, the GCN can better
disambiguate hard cases compared to the initial pseudo-labels provided by the classifier,
which, on the other hand, takes its decision on each input sample in isolation. For instance,
even if few samples of a rare class are tightly connected (i.e. node with high degrees), it is
likely for their confidence to be high as in their neighbourhood only nodes with the same
class are present. The role of the GCN is therefore twofold: it corrects pseudo-labels; it
decides which pseudo-labels should be considered confident and thereby moved from Ŷtn

into Ŷtc. We obtain the graph G by considering all samples in the target domain, as shown in
Fig. 8.2 (right), and we build the adjacency matrix A based on the cosine similarity between
the global shape embeddings g:

Ai,j =

1,
⟨gi,gj⟩

∥gi∥∥gj∥ > ϵ

0, otherwise
(8.6)

Chapter 8. Self-Distillation for Unsupervised 3D Domain Adaptation 77

with ϵ being a similarity threshold empirically set to 0.95 so that the node degree (the average
number of neighbours for each node of the graph) is roughly 10. This is necessary for
memory constraints, as the required memory to train a GCN is highly affected by this hyper-
parameter. Inspired by [219], we equip each node in G with the embedding g as well as with
the prediction provided by the classifier Ω, i.e., the vector p̂. These two pieces of information
provide the GCN with cues concerning both the geometric structure as well as the semantic
class of the object. For example, it may be the case that two point clouds have similar
embeddings and yet belong to different classes. This occurs frequently when considering a
real domain, where an occluded chair with a missing back could easily be misclassified as a
table or the back itself with missing legs can be confused for a monitor. Hence, providing the
GCN with the additional information on the probability distribution among the K classes can
help it attain more accurate pseudo-labels for target samples featuring similar embeddings.
Then, we compute the input to the GCN as

H(0) = Φ(Xt) + Ω(Xt)WD (8.7)

where Xt is the set of all target samples and WD ∈ RK×D is a learnable projection matrix that
projects the output distribution over K classes in a D-dimensional space.

Afterward, following Eq. (8.1), we stack three graph convolutional layers where the last
acts as a node classifier that returns a matrix of size nt × K. The GCN is optimized with
a classical cross-entropy loss computed over all target samples, Ŷtn ∪ Ŷtc, without taking
into account the confidence on their pseudo-labels. It is worth noticing that, the predictions
Ω(Xt), i.e., part of the input to the GCN, do not necessarily match the Ŷtn ∪ Ŷtc pseudo-labels.
However, the GCN can just learn to output the same probability vector Ω(Xt), discarding
part of the input features [219], and consequently failing in generalizing at test time due to
label leakage. Hence, we randomly mask (i.e., set to zero) 20% of the inputs Ω(Xt) at training
time.

Finally, after training, we exploit the GCN to extract confident samples, i.e., the top θ

predictions for each class, update the corresponding pseudo-labels with the output of the
GCN, and move them from Ŷtn into Ŷtc.

Iterative training. We argue that the topology of the graph highly influences the output of
the GCN. As the encoder improves its embeddings with multiple rounds of self-training, also
thanks to the self-distillation process, pseudo-labels become better and better since the graph
structure improves. Hence, we plug the previous steps into an iterative learning process,
where we repeat:

a) self-train with Eq. (8.5) Φ and Ψ for e epochs using self-distillation and supervision for
both domains, with supervision for the target coming from pseudo-labels;

b) build G and train the GCN to refine pseudo-labels;

Chapter 8. Self-Distillation for Unsupervised 3D Domain Adaptation 78

Method
ModelNet to ModelNet to ShapeNet to ShapeNet to ScanNet to ScanNet to

AvgShapeNet ScanNet ModelNet ScanNet ModelNet ShapeNet

No Adaptation 80.5 41.6 75.8 40.0 60.5 63.6 60.3

PointDAN 80.2 45.3 71.2 46.9 59.8 66.2 61.6
DefRec+PCM 81.1 50.3 54.3 52.8 54.0 69.0 60.3
3D Puzzle 81.6 49.7 73.6 41.9 65.9 68.1 63.5
RefRec 81.4 56.5 85.4 53.3 73.0 73.1 70.5
(Ours) 83.4 61.6 77.3 57.7 78.6 79.8 73.1

Oracle 93.2 66.2 95 66.2 95.0 93.2
TABLE 8.1. Shape classification accuracy (%) on the PointDA-10 dataset with PointNet. For each
method, we report the average results on three runs. Best result on each column is in bold.

c) update current pseudo-labels, moving the top θ predictions of the GCN for each class
from Ŷtn to Ŷtc.

To gradually increase the size of Ŷtc, θ starts from 0 and grows to 1 to include more and more
samples during training. At test time, the GCN as well as the teacher encoder Φ̃ can be simply
discarded, with Ω being the only network required to perform inference. Although the GCN
can potentially be used at test time to obtain better performance, we discard it as this would
introduce additional requirements such as keeping the whole training set in memory, and
computing the neighborhood of each test sample.

8.2 Experiments

To show the effectiveness of our method, we compare it against state-of-the-art methods
for UDA for point cloud classification such as [206, 200, 207], using two different backbones
for our feature extractors: PointNet [160] and DGCNN [167]. Furthermore, we compare with
a baseline i.e., a simple model trained only on the source domain without any adaptation,
and an oracle model, which instead assumes to have all target data available. The former
constitutes the lower-bound in terms of performance, while the latter is considered as the
upper-bound since all target data can be utilized. Finally, we also conducted an experiment
on the challenging task of part segmentation to show how our method can be extended to
different tasks than point cloud classification. In this case, we adopt the setting introduced in
[29], which is the only method performing adaptation on such a task for the synthetic-to-real
scenario.

8.2.1 Results

Classification. We report in Tab. 8.1 and Tab. 8.2 our results with PointNet and DGCNN,
respectively. For PointNet, we establish overall the new state-of-the-art with 73.1% in terms

Chapter 8. Self-Distillation for Unsupervised 3D Domain Adaptation 79

Method
ModelNet to ModelNet to ShapeNet to ShapeNet to ScanNet to ScanNet to

AvgShapeNet ScanNet ModelNet ScanNet ModelNet ShapeNet

No Adaptation 83.3 43.8 75.5 42.5 63.8 64.2 62.2

PointDAN 83.9 44.8 63.3 45.7 43.6 56.4 56.3
DefRec+PCM 81.7 51.8 78.6 54.5 73.7 71.1 68.6
GAST † 84.8 59.8 80.8 56.7 81.1 74.9 73.0
GLRV 85.4 60.4 78.8 57.7 77.8 76.2 72.7
ImplicitPCDA 86.2 58.6 81.4 56.9 81.5 74.4 73.2
(Ours) 83.9 61.1 80.3 58.9 85.5 80.9 75.1

Oracle 93.9 78.4 96.2 78.4 96.2 93.9 80.5

TABLE 8.2. Shape classification accuracy (%) on the PointDA-10 dataset with DGCNN. For each
method, we report the average results on three runs. Best result on each column is in bold. †
Denotes a more powerful variant of DGCNN and results are obtained by performing checkpoint
selection on the test set.

of accuracy. We also note that our framework achieves the best results in 5 out of 6 settings,
with a big gap in ModelNet→ScanNet and ShapeNet→ScanNet (+5.1% and +4.4%) that
are the most challenging scenarios as they involve synthetic-to-real UDA. In particular,
we highlight the result obtained in ModelNet→ScanNet (61.6%), which is, roughly, only
5% less than the oracle. We also observe remarkable improvements when addressing the
opposite case i.e., real-to-synthetic (last two columns). This demonstrates the capability
of our framework to deal with large domain shifts. As regards as synthetic-to-synthetic
UDA, we observe good performance in ModelNet→ShapeNet, while we are the second-best
model in ShapeNet→ModelNet. We attribute the gap with RefRec to the peculiarity of
ShapeNet→ModelNet, where the source domain is a complex dataset while the target is a
simple one with shapes clearly distinguishable among classes i.e., objects with similar shapes
do belong to the same class. In such specific scenarios, reconstruction-based approaches such
as RefRec shine since the auxiliary task of reconstructing a point cloud naturally tends to
form well-shaped clusters in feature space that are amenable for classification.

Furthermore, we repeat the same experiments using DGCNN as our main backbone. We
achieve again state-of-the-art results (75.1%), showing the generality of our approach towards
other architectures. Overall, we observe a similar trend w.r.t. Tab. 8.1, with an increase in
performance in almost all configurations w.r.t. previous works.

Part Segmentation. Although our main goal is to propose a method that aims at solving
UDA for point cloud classification, our method can be easily extended to more challenging
tasks such as part segmentation, which consists of assigning to each vertex of the shape
one object category. As done for point cloud classification, we perform a first step of self-
distillation to distill good features for the target domain unsupervisedly. We then simply
adapt the self-training step by considering each vertex of the input shape as a node in the

Chapter 8. Self-Distillation for Unsupervised 3D Domain Adaptation 80

Part Segmentation: ShapeNetPart → ScanOBJ_BG
Method Seat Back Base Arm Avg.
Source only 67.85 45.60 84.89 14.87 53.30
3D Puzzle [29] 65.70 49.11 85.91 21.40 55.53
Self-dist (ours) 71.1 79.3 65.2 37.0 63.2
(ours) 74.7 82.7 67.9 37.7 65.7

TABLE 8.3. Per part and average mIoU (%) of chair segmentation for ShapeNetPart to ScanOBJ-BG.

Step ce sd kd
ModelNet to ModelNet to ShapeNet to ShapeNet to ScanNet to ScanNet to

AvgShapeNet ScanNet ModelNet ScanNet ModelNet ShapeNet

PL init
✓ 80.5 41.6 75.8 40.0 60.5 63.6 60.3
✓ ✓ 82.1 57.2 77.6 55.0 71.0 72.1 69.2
✓ ✓ 79.6 54.0 79.2 53.2 53.9 70.0 65.0

TABLE 8.4. Ablation study for the first step of our framework. ce: cross-entropy loss on source
domain sd: self-distillation loss Eq. (8.3) in feature space used to train the pseudo-labels model;
kd: standard knowledge distillation loss [220] in output space. We report the average results on
three runs.

graph. In this case, the node representation consists of a local feature vector extracted from
the main backbone, which is a PointNet as in [29]. The whole graph is theoretically composed
of all points of all shapes in the dataset. However, keeping all vertices in memory would
be impractical and we perform the procedure explained in Sec. 8.1.2 by considering 20000
points of the whole dataset for each refinement iteration. Results are reported in Tab. 8.3.
The evaluation metric is the mean Intersection-over-Union (mIoU), which is computed for
each part Q for all the samples of the chair class. Then, the average across parts is reported.
First, we observe that our full framework (last row) surpasses by more than 10% the previous
method (second row). Furthermore, we highlight the effectiveness of self-distillation for the
part segmentation task. Indeed, when only performing the first step of our pipeline (third
row of Tab. 8.3), we already overcome [29] by 7.7%.

Self-distillation vs knowledge distillation. In Tab. 8.4, we ablate our self-distillation
strategy and also compare it to an obvious alternative, i.e., applying Eq. (8.3) in output space.
In this case, the self-distillation loss in Eq. (8.3) is applied on the output of the classifier
rather than the feature vector of the backbone. This protocol is similar to the knowledge
distillation paradigm [220] that uses soft pseudo-labels. While we observe in both cases an
improvement over the baseline trained only on source data (first row), the improvement
is twice as large when self-distillation is deployed, which demonstrates the importance of
working in feature space. Moreover, the large improvement in absolute terms (+8.9% on
average) attained by using self-distillation shows its effectiveness in reducing the domain
gap, validating our intuition to use it to tackle UDA. Interestingly, we observe a different
behaviour for ShapeNet→ModelNet. This is again likely due to the peculiarity of the setting.
With the source domain being much larger and richer than the target one, it is plausible that
pseudo-labels in output space are quite accurate, and therefore more effective in this case.

Chapter 8. Self-Distillation for Unsupervised 3D Domain Adaptation 81

Step st ref sd
ModelNet to ModelNet to ShapeNet to ShapeNet to ScanNet to ScanNet to

AvgShapeNet ScanNet ModelNet ScanNet ModelNet ShapeNet

Adaptation
✓ 82.7 59.3 74.9 56.4 77.1 77.8 71.4
✓ ✓ 83.4 60.9 78.2 56.3 77.9 79.4 72.7
✓ ✓ ✓ 83.4 61.6 77.3 57.7 78.6 79.8 73.1

TABLE 8.5. Ablation for the second step of our algorithm. st: self-training with pseudo-labels of
the last row of Tab. 8.4 model; sd: self-distillation loss in the adaptation step; ref: refinement of
pseudo-labels with GCN. We average results on three runs.

The model trained with self-distillation is used to extract the initial set of pseudo-labels for
our method, as well as for all the self-training variants compared in Tab. 8.5. Finally, we
highlight how the results obtained with self-distillation are clearly superior in all scenarios
on average to those attained by competitors based on self-supervised learning tasks, e.g.,
row 2 (DefRec) and 3 (3D puzzle) of Tab. 8.1, that are based on a reconstruction and a 3D
puzzle pretext task, respectively. This provides empirical support for our claim on the higher
effectiveness of self-distillation with respect to auxiliary tasks for 3D UDA.

Self-training strategies. In Tab. 8.5, we perform an ablation study on the second step of
our pipeline. We start by applying the simplest strategy to perform self-training (first row),
i.e., using all pseudo-labels of the target domain together with the labels from the source
domain to train a single classifier. This provides competitive results (71.4%), which is already
better than the previous state-of-the-art model (70.5%), again showcasing the effectiveness of
self-distillation to obtain pseudo-labels for UDA. When activating also the proposed online
refinement that iteratively improves pseudo-labels thanks to the global reasoning of the GCN
(second row), we appreciate another large improvement compared to the naive self-training,
which validates the importance of the proposed iterative refinement. Finally, in the last row,
we report the results attained by activating self-distillation also in the adaptation step, which
leads to the best performance and is the model used in all other experiments. As a further
validation of the importance of the design decisions in our framework, we plot the training
curves of the synthetic-to-real ModelNet→ScanNet in Fig. 8.3. The curves represent the test
accuracy on the target domain during training. The red plot shows the behaviour of the
naive self-training, which corresponds to row 1 of Tab. 8.5. On the other hand, the blue lines
represent the training curves obtained with our full model, i.e., last row of Tab. 8.5. We can
appreciate that, after a certain number of steps, the blue line is always above the red line.
This is clear evidence that in our full model, pseudo-labels are improved over time, while
in the naive case, the model starts to overfit, leading to a plateau. We also wish to point out
that such behaviour is key to a good UDA method because, in the absence of target labels to
perform validation, it is basically impossible to decide when to stop the training process.

Chapter 8. Self-Distillation for Unsupervised 3D Domain Adaptation 82

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

0.54

0.56

0.58

0.6

0.62

Step

A
cc
u
ra
cy

FIGURE 8.3. Test accuracy on target domain during training on ModelNet→ScanNet. Our model
(Blue) consistently improves pseudo-labels during training differently from a simple self-training
strategy in which pseudo-labels are fixed (Red).

8.3 Conclusions

In this chapter, we explored a novel strategy to learn features on the target domain
without the need of annotations. We first proposed to guide the network to learn a clustered
feature space for the target domain and preserve discriminability suitable for classification.
In addition, we introduced a novel refinement strategy that is able to globally reason on
the target domain by means of GNN and to correct misclassified samples during training.
Combining the two contributions, allowed to establish the state-of-the-art in the reference
benchmarks. Finally, we showed how these contributions can be used for more challenging
tasks such as part segmentation.

83

Part III

Domain Adaptation for multi-modal Data

84

Chapter 9

Initial Remarks

LiDAR semantic segmentation is the task of assigning a class label to each point of a 3D
scan gathered by Light Detection and Ranging (LiDAR) sensors. These devices can record ac-
curate depth information regardless of the lighting conditions, making them a reliable source
of information for autonomous driving. However, LiDAR data is colorless, unstructured, and
sparse. Consequently, scene understanding using only LiDARs is extremely challenging. Yet,
nowadays, autonomous vehicles are commonly equipped also with other sensors, such as
RGB cameras. For this reason, the research community has recently developed multi-modal
approaches [221] exploiting both these modalities. However, akin to other tasks, multi-modal
LiDAR segmentation networks suffer from the domain shift problem, i.e. models struggle
to generalize to environments different from the training one. A straightforward solution
would be to gather more and more annotated data in many scenarios. However, this process
is cumbersome and time-consuming. As an example, annotating a point cloud acquired
in an urban environment of 100m3 needs from 1.5 to 4.5 hours by human annotators with
3D expertise [222]. Once again, we can rely on UDA techniques to address this problem.
However, only a few proposals deal directly with LiDAR semantic segmentation task [223],
and even fewer try to exploit multiple modalities such as RGB images and LiDAR point
clouds [31, 33] in the UDA scenario. In the latter setup, referred to as multi-modal UDA
for LiDAR segmentation, one can leverage both modalities as sources of information. The
standard approach processes them by means of two networks, one processing the 2D images
and the other the 3D point clouds. To this end, XMUDA [31] proposed a benchmark and a
two-branches architecture that uses a cross-modal loss on each domain independently forcing
predictions extracted from 3D points and the corresponding 2D pixels to be similar in the
same domain. Despite the effectiveness of this approach, we argue that it mainly focuses on
the alignment across modalities rather than the actual alignment across domains. DsCML
[33] performs a step forward in domain alignment, employing adversarial training to align
multi-modal features also between domains. However, adversarial learning is notoriously
unstable in segmentation tasks, especially when applied to deep features, leading to variable
performance. In Chapter 10, we follow closely the research line of this dissertation and

Chapter 9. Initial Remarks 85

explore how auxiliary tasks such as depth completion, can be effectively utilized for multi-
modal UDA for LiDAR segmentation. In Chapter 11 instead, we look at the same problem
from a different perspective. More specifically, we propose to exploit the multi-modal nature
of the input data to make the two branches proposed in [31] more robust to the domain shift.

9.1 Related Works

Point Cloud Semantic Segmentation. 3D data can be represented in several ways such as
point clouds, voxels, and meshes, each with its pros and cons. Similarly to pixels in 2D, voxels
represent 3D data as a discrete grid of the 3D space. This representation allows using convo-
lutions as done for images. However, performing a convolution over the whole 3D space is
memory-intensive, and it does not consider that many voxels are usually empty. Some 3D
CNNs [224, 225] rely on OctTree [226] to reduce the memory footprint but without addressing
the problem of manifold dilation. SparseConvNet [227] and similar implementations [228]
address this problem by using hash tables to convolve only on active voxels, allowing the
processing of high-resolution point clouds with only one point per voxel. Aside from cubic
discretization, some approaches [229, 230] employ cylindrical voxels. Other methods address
the problem with sparse point-voxel convolutions [231]. Differently, point-based networks
process directly each point of a point cloud. PointNet++ [161] extract features from each point,
and then extract global and local features by means of max-pooling in a hierarchical way.
Many improvements have been proposed in this direction, such as continuous convolutions
[168] or lightweight alternatives [232]. In this work, we select SparseConvNet [227] as our
3D network as done by other works in the field [31, 33, 221, 233] since it is suitable for 3D
semantic segmentation of large scenes.

Multi-Modal Learning for 3D UDA. While the majority of works consider UDA for se-
mantic segmentation of images, fewer approaches have been proposed for the 3D counterpart,
with only a limited number of works addressing the problem of UDA for LiDAR Segmen-
tation [234, 235]. Very recently, some works have addressed the challenging multi-modal
segmentation task from LiDARs and RGB sensors [31, 33]. XMUDA [31] is the first work
that focuses on UDA in the above setting, defining a benchmark and presenting a baseline
approach that employs a loss to align features across modalities. DsCML [33] is the first
to explicitly address alignment across domains in this setup employing an adversarial loss,
which however may lead to extremely variable performances.

9.2 Multi-Modal Datasets for 3D Semantic Segmentation

We evaluate our proposal using two different versions of the same dataset. More precisely,
in Chapter 10, we follow the setting established in xMUDA [31] and test our method on

Chapter 9. Initial Remarks 86

three different scenarios: day-to-night, country-to-country, and dataset-to-dataset. The first
two settings leverage the NuScenes [236] dataset which consists of 1000 driving scenes in
total, each of 20 seconds, with 40k annotated point-wise frames taken at 2Hz. The former
exhibits severe light changes between the source and the target domain, while the latter
covers changes in the scene layout. For the day-to-night, the RGB images exhibit a severe
gap due to the different lighting conditions, while the LiDAR shows small differences being
the same sensor. For the country-to-country scenario, the sensor setup is the same, but
objects may have different appearances as two different cities are involved. In both settings,
adaptation is performed on five categories: vehicle, pedestrian, bike, traffic boundary, background.

The third and most difficult scenario is the dataset-to-dataset case, which is realized
by adapting from A2D2[237] to SemanticKITTI [222] and comprises both a large change
in the sensors setup and in appearance. The A2D2 dataset is composed of 20 drives, with
a total of 28,637 frames. As the LiDARs sensor is very sparse (16 layers), all three front
LiDARs are used. All frames of all sequences are used for training, except for the sequence
20180807_145028 which is left out for testing. The SemanticKITTI dataset features a large-
angle front camera and a 64-layer LiDAR. Scenes from 0, 1, 2, 3, 4, 5, 6, 9, 10 are used
for training, scene 7 as validation, and 8 as a test set. For this adaptation setup, only the
ten classes that are in common along the two datasets are used: car, truck, bike, person, road,
parking, sidewalk, building, nature, other-objects. In Chapter 11 instead, we follow the benchmark
introduced in [32] which introduced a refined version of the NuScenes dataset mentioned
above and it includes one more additional interesting scenario. More precisely, for the day-to-
night and country-to-country scenarios, each framework is now evaluated under 6 different
classes vehicle, driveable_surface, sidewalk, terrain, manmade, vegetation. Finally, in addition to
the same country-to-country scenario detailed above, the authors of [32] also introduce a
fourth challenging scenario that foresees adaptation from synthetic to real data, and it is
implemented by adapting from VirtualKITTI [238] to SemanticKITTI. VirtualKITTI consists of
5 driving scenes obtained with Unity and simulating the SemanticKITTI dataset. Following
[32], we also test on 6 shared classes between the 2 datasets which are: vegetation terrain,
building, road, object, truck, car. It is important to note in all cases, LiDAR point clouds and
camera are synchronized and calibrated so that the projection between a 3D point and its
corresponding 2D image pixel can always be computed. Furthermore, only 3D points visible
from the camera are used for both training and testing.

87

Chapter 10

Enanching Multi-Modal 3D Semantic
Segmentation with Depth Completion

10.1 Introduction

In this chapter, we explore how depth completion can be used as an auxiliary task to
make the features of the 2D network more similar between domains and as a powerful data
augmentation technique for the 3D network. To this end, we argue that to complete sparse
depth inputs, a network needs to infer the geometrical structure of the scene, e.g., understand
the shape of cars or that the road is flat. Unlike 2D appearance, which may be extremely
different across domains due to environmental variables such as light and weather, or 3D
scans, which may differ because of LiDAR patterns and densities, the 2D depth structure is
similar, e.g., roads appear in the bottom part of the image and are flat independently of the
domain, as it can be seen in the Completed Depth row of Fig. 10.1, left column. Following
the above reasoning, a depth completion network trained jointly on the source and target
data should extract features robust to the domain shift. Moreover, the geometrical structures
are tightly linked to the semantics of the scene [239], thus training a network for depth
completion should also push the features to be discriminative for the semantic segmentation
task. We leverage these intuitions and we project the 3D points to the image plane to obtain a
sparse depth map. Then, we train a multi-task 2D network to jointly segment the RGB source
images and complete the sparse depths on both domains, forcing target features to be robust
to the domain shift and discriminative for semantic segmentation. However, to the best of
our knowledge, no depth completion model can be trained solely on the same LiDAR input
without additional data such as ground truth dense depth maps or video sequences. Thus, we
propose a simple yet effective self-supervised technique to train a depth completion network
without external data. Finally, we propose to exploit the estimated dense depth maps as
a powerful data augmentation technique in the source domain to boost the performance
of the 3D network. To do so, we project each pixel back to the 3D space and assign the
most confident 2D predictions as proxy labels to the corresponding 3D points. We add new
annotated points to the source LiDAR point clouds by looking at class-specific confidence

Chapter 10. Enanching Multi-Modal 3D Semantic Segmentation with Depth Completion88

Depth

Completion

C
o
m

p
le

te
d

D
ep

th
R

G
B

Source Target

S
p

a
rse D

ep
th

C
o
m

p
le

te
d

D
ep

th

Source

2
D

 C
o

n
fid

en
t

L
a

b
els

LiDAR

A
u

g
m

en
te

d

L
iD

A
R

2D: Complete to Align 3D: Complete to Augment

S
p

a
rs

e

D
ep

th

L
iD

A
R

Depth

Completion

R
G

B

FIGURE 10.1. Our multi-modal UDA framework for LiDAR segmentation exploits self-supervised
depth completion as an auxiliary task. As completed depths are similar between domains, training
a network for 2D segmentation and depth completion pushes source and target features to be
more robust to domain shift. Moreover, we can use these depths as a data augmentation for the
labeled LiDAR point clouds.

Chapter 10. Enanching Multi-Modal 3D Semantic Segmentation with Depth Completion89

2D
Network

3D
Network

Projected

So
ur

ce
Ta

rg
et R

G
B

Po
in

t
C

lo
ud

Projected

2D Semantic
Segmentation

//
Depth

Completed

LiDAR
Augmenting

3D Semantic
Segmentation

LxM

Ldepth + smooth

Lseg

Target Only

Source Only

Loss Target Only

Loss Source Only

Source and Target

Lseg

LxM
Lseg

3D
 G

T

 S
em

an
tic

R

G
B

Po
in

t
C

lo
ud

Augmented 3D
GT Semantic

Augmented
Point Cloud // Stop Gradient

FIGURE 10.2. Framework Overview. First, the 2D network outputs a densified depth map and
2D semantic labels, then these data are used to augment the ground truth on the source domain to
improve the performance of the 3D network.

percentiles, thereby obtaining much denser 3D clouds with annotations, as shown in the
bottom-right part of Fig. 10.1.

10.2 Method

Given a LiDAR scan and the corresponding RGB images for both domains, our goal is
to solve 3D semantic segmentation on the target domain. Supervision is provided only for
sparse 3D points of the source domain. Our framework dubbed Complete to Segment (CtS),
is depicted in Fig. 10.2.

10.2.1 Preliminaries

Given a 2D image, x2D, and a corresponding 3D point cloud, x3D, we define as y3D the
semantic label for each 3D point. Assuming LiDARs measurements to be expressed in the
camera reference frame and the availability of the intrinsic camera matrix, we can project
each 3D point into the image plane. A sparse depth map, D3D→2D, can be easily obtained by
assigning the value of z to each corresponding pixel (u, v). Then, we can assign the 3D label
to the corresponding 2D pixels obtaining a sparse 2D semantic map, y3D→2D. We denote as S
the source domain, for which annotations are available, and as T the target domain, where no
annotations are accessible. Thus, we specify by subscripts s and t whether the data belong to
S or T respectively. Our full dataset is composed of: i) images, x2D

s and x2D
t ; ii) point clouds,

x3D
s and x3D

t ; iii) semantic labels for points clouds, y3D
s .

Two-streams architecture. Following the standard approach in this setup [31, 33], we
deploy a two-streams architecture that processes 2D and 3D data independently. As argued
in [31], having two networks is important to obtain modality-specific predictions which can
be fused together effectively. Indeed, the final predictions are obtained by averaging the

Chapter 10. Enanching Multi-Modal 3D Semantic Segmentation with Depth Completion90

predictions of the 2D and 3D branches. The proposed multi-task 2D network is described
in Sec. 10.2.2. Regarding the 3D network, similarly to [31, 33], we use SparseConvNet [227],
with voxel size 5 cm to ensure that at most one point is inside each voxel.

Supervised Learning. We supervise both 2D and 3D networks using the cross-entropy
loss on the source domain:

Lseg(xs, ys) = − 1
N

N

∑
n=1

C

∑
c=1

y(n,c)
s log P(n,c)

xs (10.1)

with (xs, ys) being either (x2D
s , y3D→2D

s) or (x3D
s , y3D

s), C denoting the number of classes, N
the number of labeled points in a mini-batch, and Pxs the prediction of the 2D or 3D semantic
network depending on the modality of xs.

Cross Modal Learning. As highlighted in [31] it is important that the two branches
communicate, so that each of the two modalities can take advantage of the other. Given a
pair of corresponding 2D-3D points, we apply a mechanism similar to [33], though without
deformable convolution. In particular, given a squared patch centered in a 2D point, we force
the predictions of each pixel in the patch to be similar to that of the corresponding 3D point
with a KL loss. This cross-modal loss denoted as LxM, is applied by means of auxiliary heads
that are trained to mimic the output of the main classifier of the other modality. In this way,
the main classifier is simultaneously influenced by the features learned by the other network
while keeping its strength. We rely on this simple mechanism to establish a strong baseline as
a starting point on which we develop.

Inputs Completed Depths

RGB Sparse Depth All Skips Few Skips Few Skips + Input Filter.

FIGURE 10.3. Depth Completion Ablation. From left to right: the RGB image, the input sparse
depth, the depth completed using all the skip connections from the depth encoder, the depth
completed using only skip connections 1

8 and 1
16 , the depth completed applying also input filtering.

Sparse depth maps are dilated for visualization purposes.

10.2.2 Depth Completion

Our proposal is based on the following considerations. First, 2D depth maps are similar
across domains, e.g., the bottom part of the image is smooth, cars have the same 3D shapes
regardless of the time of the day, etc. Second, depth structures such as edges or blobs are
tightly correlated to semantic segmentation, indeed we can easily recognize that a car is in the
scene only by looking at the depth map. Finally, correlations between depth and semantics

Chapter 10. Enanching Multi-Modal 3D Semantic Segmentation with Depth Completion91

are similar across domains, e.g., a road is typically a plane or the sky is far away. Based on
the above intuitions, in our work, we consider depth completion as an auxiliary task to make
the features of the 2D network similar between domains, while at the same time preserving
discriminability for semantic segmentation for the target domain. Specifically, given a 3D
scan, we project the 3D points into the image plane to obtain a sparse depth map. Then, we
train a multi-task 2D network jointly to segment the source images and complete the sparse
depth map on both domains, naturally forcing target features to be robust to the domain shift
and discriminative for semantic segmentation. Unluckily, current state-of-the-art techniques
for depth completion [240, 241] all require either to be trained with dense depth ground truth
or auxiliary information such as video sequences[242, 243]. As we can leverage only single-
view sparse depths as supervision, we propose a novel technique to achieve this goal. In the
next sections, we first define our multi-task architecture for semantic and depth completion,
then we describe the training protocol to pursue self-supervised depth completion.

2D Depth Completion and Semantic Network. We modify a standard U-Net [38] with
backbone ResNet34 for 2D semantic segmentation by introducing a multi-scale depth encoder
and decoder. The latter takes in input depth features at 1

8 , 1
16 scales, and RGB features at 1

2 ,
1
4 , 1

8 and 1
16 to output a dense depth map. Multi-scale depth feature maps from the depth

decoder are then leveraged by the semantic segmentation decoder to output semantic classes.
A schematic visualization of the 2D network is shown in Fig. 10.4.

Depth supervision. We supervise the depth branch by means of the LiDAR depth
points provided as input. We employ the L1 loss alongside edge-aware smoothness [100],
described by Eq. 10.2 and Eq. 10.3, respectively, where D is the dense output depth map,
Muv = D3D→2D

uv > 0 is a mask of valid reprojected depth points and Nm is the number of
valid points in M.

Ldepth(x2D, D3D→2D) =
1

Nm

Nm

∑
u,v

|Duv − D3D→2D
uv | · Muv (10.2)

Lsmooth(x2D) =
1

Nm

Nm

∑
u,v

(|δuD|e−|δux2D| + |δvD|e−|δvx2D|) (10.3)

We penalize abrupt depth changes in areas other than RGB edges through the Lsmooth

term. This strategy has been proven to be effective in self-supervised depth-from-mono [100].
However, by supervising with the LiDAR depth points provided in input, the network can
simply learn the identity function. As described before, we limit the usage of high-resolution
skip connections from the depth encoder to prevent this behaviour, i.e., we use only skip
connections at a 1

8 and 1
16 of the input resolution. By comparing columns 3 and 4 of Fig. 10.3

we note the importance of this choice.
Input filtering. Depth completion frameworks are usually trained without any kind of

filtering of the sparse depth provided in input [244, 245, 240]. However, when the sparse

Chapter 10. Enanching Multi-Modal 3D Semantic Segmentation with Depth Completion92

FIGURE 10.4. 2D Network for Depth Completion and Semantic Segmentation. It is composed of a
sparse depth encoder and an RGB encoder, the depth decoder takes features at multiple scales
from both to output a densified depth map. The segmentation head leverages the multi-scale
features of the depth decoding step to output semantic segmentation labels.

input depths are obtained through re-projection from a LiDAR sensor, large areas may be
affected by errors due to occlusion between the LiDAR sensor and the RGB camera. This
issue yields regions where depth measurements of occluded objects mix together, typically
at the borders of objects standing in front of a background far behind, as shown in Fig. 10.5
(middle column). Usually, depth completion networks can learn to cope with this issue, if not
excessively prominent, when a cleaned and denser depth ground truth is available. However,
when self-supervising the network by the LiDAR itself, these inconsistencies worsen the
completion performance. To filter out the occluded depth points, we follow the coarse yet
simple and fast approach proposed by [246]: for each depth point d of the projected LiDAR
D3D→2D, we take into account the other valid depth points inside a patch LF(d) of size
F × F and compute the minimum m(d) = min{y : y ∈ LF(d), y > 0}, then we apply a
threshold over the error between the minimum and the depth value to filter out the outliers
|m(d)− d|/m(d) < λ f , with λ f = 0.1, obtaining a filtered depth, as shown in Fig. 10.5 (3rd
column). We set F = 9 in this work. Applying this filtering step to the sparse input depths
improves the densified outputs provided by our depth completion network, as shown in
Fig. 10.3 (last column).

Output filtering. Finally, we argue that the densified depth map really depends on the

Chapter 10. Enanching Multi-Modal 3D Semantic Segmentation with Depth Completion93

RGB Input Sparse Depth Filtered Input

FIGURE 10.5. Example of input filtering to remove occluded pixels. From left to right: RGB image,
sparse depth obtained from input LiDAR, filtered depth in input to our 2D network.

spatial distribution of the valid depth measurements. Even though LiDAR sensors usually
output an almost homogeneous distribution of sparse points, large areas of the image can
lack them at all, e.g., the sky, reflective or absorbent surfaces, as well as objects too far away.
In these regions, the depth completion network will likely yield wrong predictions that are
not good to be projected back into the 3D point cloud, which is needed for the LiDAR data
augmentation strategy described in the next section. To filter these regions out, we employ
the following strategy. First, we set pixels with invalid depth measurements in the input
LiDAR to zero (white pixels in the top-right image of Fig. 10.6). Then, we apply a max pool
with a large kernel size of size λp and stride 1 to the input sparse LiDAR obtaining a dilated
depth map. We use λp equal to 17. In the dilated depth map, pixels with a large invalid
neighborhood will have a depth equal to zero. We then select pixel coordinates with a depth
equal to zero, and we filter out pixels at the same coordinates from the completed depth map
produced by our 2D network (white part of the bottom-right figure in Fig. 10.6).

10.2.3 LiDAR Data Augmentation

Thanks to depth completion, we obtain dense depth maps that can be exploited to boost
the performance of the 3D network. Assuming that LiDAR measurements are in the camera
reference frame and intrinsic parameters of the RGB camera are known, we can project back
each 2D pixel into the corresponding 3D point. Potentially, we can use all these 3D points
to increase the number of samples in input to the 3D network. In this way, we alleviate
the severe sparsity problem of LiDAR point clouds, and at the same time, we reduce the

Chapter 10. Enanching Multi-Modal 3D Semantic Segmentation with Depth Completion94

RGB Input Sparse Depth

Completed Depth Filtered Output Depth

FIGURE 10.6. Output filtering to remove large areas without valid LiDAR measurements. From
top to bottom, from left to right: RGB image, sparse input depth, completed depth map, filtered
output.

overfitting on the source input scanning pattern that can be different from the target one.
However, to fully exploit the potential of the completed depth map, we ought to be able to
assign a label to each new point. We do this by relying on the output of the 2D backbone as
the 2D network has an inductive bias that pushes pixels in the same neighbourhood to be
classified similarly, even with sparse supervision, thus producing dense semantic predictions.
However, naively projecting all pixels to obtain a 3D point cloud leads to a huge input that
would make the training impractical. Moreover, not all semantic predictions are correct,
especially for the target domain. For these reasons, we lift proxy labels from 2D to 3D only
for data from the source domain, where the network is trained supervisedly. Then, we select
points based on a class-wise confidence-level strategy. Given a 2D dense semantic prediction
P2D

xs , for each pixel location, we apply the argmax operator to obtain the predicted semantic
class, and we use the max operator on the logits after softmax to obtain a per-pixel confidence
map as done in several other works [110, 22]. Then, for each class c, we sort predictions based
on their confidence scores and we maintain a random 2% among the 10% most confident
pixels. In this way, we take into account the class distribution and select pixels for all classes,
including rarer ones. Thus, we generate new points and proxy labels only for the source
domain, respectively ˜x3D

s and ˜y3D
s . A visualization of this augmentation is illustrated in

Fig. 10.7. The original labeled LiDAR (left column) only covers a small fraction of the whole
image, while our method allows us to synthesize new correctly labeled points (right column).

Chapter 10. Enanching Multi-Modal 3D Semantic Segmentation with Depth Completion95

LiDAR GT Augmented LiDAR GT

FIGURE 10.7. Effect of our LiDAR augmentation on A2D2 (top) and Nuscenes-USA (bottom).
Left: GT LiDAR projected in 2D. Right: Augmented LiDAR with new labeled points, projected
over 2D images. Colors indicate semantic class.

10.2.4 Learning Process

The framework is optimized in an end-to-end manner by the following objective function:

L = Lseg(x2D
s , y3D→2D

s) (10.4)

+ Lseg(x3D
s , y3D

s) + Lseg(
˜x3D
s , ˜y3D

s)

+ λsLxM(x2D
s , x3D

s) + λtLxM(x2D
t , x3D

t)

+ λdLdepth(x2D
s , D3D→2D

s) + λgLsmooth(x2D
s)

+ λdLdepth(x2D
t , D3D→2D

t) + λgLsmooth(x2D
t)

Where λ parameters are the weights applied to each loss component. We keep these hyper-
parameters fixed for all settings. Note that, Lseg(

˜x3D
s , ˜y3D

s) is only activated after a certain
amount of steps Naug, as we need depth completion to be strong enough to reach a low error
in its predictions and the 2D segmentation to be reasonably accurate in the source domain.
Moreover, when synthesizing the new 3D points ˜x3D

s from the completed depths, we avoid
gradient propagation back to the 2D network from the 3D network.

Chapter 10. Enanching Multi-Modal 3D Semantic Segmentation with Depth Completion96

D
ay

->
N

ig
ht

Source Only CtS Ground Truth
U

SA
->

Si
ng

ap
or

e
A

2D
2-

>K
itt

i
Input

Pedestrian Bike Vehicle Traffic Boundary Background

Unlabeled Road Car Truck Bike Parking Person Nature Other Objects Sidewalk Building

FIGURE 10.8. Qualitatives Adaptation Results. Left to right: Input images, source-only predictions,
CtS predictions, and GT.

10.3 Experiments

10.3.1 Implementation Details and Datasets

We use the same data augmentation pipeline as our competitors, i.e., random horizontal
flipping and color jittering for 2D images, vertical axis flipping, random scaling, and random
3D rotations for the 3D scans. Augmentations are done independently for each branch.
We train with batch size 8, alternating batches of source and target domain. The smallest
dataset is repeated to match the length of the other. We use Adam optimizer, we initialize the
learning rate at 0.001 and divide by 10 at the iterations 80k and 90k. We train for 100k steps.
We use λs, λt, λd, λg equals to 0.8, 0.1, 0.1, 0.01 respectively. We selected these parameters
based on training loss values, without performing a grid search. We use the same values for
all our experiments. We evaluate our framework in the same way as our two competitors
xMUDA[31] and DsCML[33] on three standard benchmarks used for multi-modal domain
adaptation that provide three different scenarios: day-to-night, country-to-country, and
dataset-to-dataset. The first two settings leverage the NuScenes [236] dataset by means of
the Day/Night and USA/Singapore splits. In the former, the RGB images exhibit a severe
gap due to the different lighting conditions, while the LiDAR shows small differences being
the same sensor. For the latter, the sensor setup is the same, but objects may have different
appearances as two different cities are involved. The dataset-to-dataset case is realized by
adapting from A2D2[237] to SemanticKITTI [222], which comprises both a large change in
the sensors setup and in appearance.

Chapter 10. Enanching Multi-Modal 3D Semantic Segmentation with Depth Completion97

10.3.2 UDA Results

We report in Tab. 10.1 our results. We detail for each method the mean Intersection
over Union (mIoU) for each modality independently (2D and 3D), and we also show the
score obtained by averaging the 2D and 3D scores after Softmax as done by our competitors
(Avg). We also report results from [33] for uni-modal domain adaptation techniques applied
to each modality independently as a reference. To provide more reliable results in this
multi-modal setup, we report the average of three different runs, using the official code 1

provided by the authors. We highlight that we used the same number of steps, optimizers,
and hyper-parameters for our competitors as well as for our method to be fair. Trainings
require approximately one day for the USA → Singapore and Day → Night setups, and three
days for A2D2 → SemanticKITTI on an NVIDIA 3090 RTX GPU. Model selection is done as
in our competitors by selecting the best on the validation domain of the target domain, and
reporting results on the test set. Our method achieves state-of-the-art performance across all
scenarios and modalities. In particular, CtS shines in the Day → Night adaptation scenario,
where the RGB domain gap is larger. In this setting, in fact, we improve by 1.9% for the
2D branch and by 1.6% in terms of mIoU when comparing with the best previous model.
When averaging the predictions from both 2D and 3D branches, which is the real and final
objective, we observe an even larger improvement of 5,3% (Avg column). We attribute this
to the completion auxiliary task, which is able to guide the network to classify each pixel
by also reasoning on the 3D cues learned by solving the depth completion task. On USA →
Singapore, we also observe good results, especially for the 2D branch where we obtain a large
3.4% improvement. This means that the proposed depth completion auxiliary task is also
beneficial in the presence of a smaller RGB domain gap. As regards A2D2 → SemanticKITTI,
we improve by 0.6%, 2.6%, and 0.9% the previous best multi-modal framework for 2D, 3D,
and Avg respectively. In this setting, where the LiDAR sensor is completely different across
domains, we substantially improve the performance of the 3D network. This is due to the
proposed 3D augmentation, which is indeed able to avoid overfitting of the source pattern
and at the same time reduce the sparsity of the LiDAR input.

10.3.3 Additional Studies

Ablation of contributions. In Tab. 10.2 we ablate the effect of our contributions consider-
ing both USA → Singapore and Day → Night. In the first row, we report the results of our
baseline architecture, where we employ the cross-modal loss LxM between the two modalities
as done in [33] but without the deformable convolutions. In the second row, we activate
depth completion as an auxiliary task, and we observe a large boost for the 2D network for
both scenarios: +5,1% and +2,3% respectively. This confirms that forcing the network to

1https://github.com/leolyj/DsCML, https://github.com/valeoai/xmuda

Chapter 10. Enanching Multi-Modal 3D Semantic Segmentation with Depth Completion98

Modality Method USA → Singapore Day → Night A2D2 → SemanticKITTI
2D 3D Avg 2D 3D Avg 2D 3D Avg

Baseline (Source only) 53.2 46.8 61.2 41.8 41.4 47.6 36.4 37.3 42.2

Uni-modal

MinEnt [152] 53.4 47.0 59.7 44.9 43.5 51.3 38.8 38.0 42.7
CyCADA [152] 54.9 48.7 61.4 45.7 45.2 49.7 38.2 43.9 43.9
AdaptSegNet [23] 56.3 47.7 61.8 45.3 44.6 49.6 38.8 44.3 44.2
CLAN [247] 57.8 51.2 62.5 45.6 43.7 49.2 39.2 44.7 44.5

Multi-modal*

xMUDA [31] 57.2 51.6 61.1 48.9 45.6 52.9 39.0 43.4 44.9
DsCML [33] 58.5 52.3 62.3 47.5 45.2 53.0 38.9 40.1 43.2
DsCML + CMAL [33] 57.5 51.0 61.9 46.9 36.2 49.2 27.4 33.3 33.6
CtS (Ours) 61.9 52.4 63.6 50.8 47.2 58.3 39.6 46.0 45.8

TABLE 10.1. Results for 3D semantic segmentation with both uni-modal and multi-modal adapta-
tion methods. We report performance for each network stream in terms of mIoU. ‘Avg’ column
denotes the obtained by taking the mean of the 2D and 3D predictions. * indicates the mean of
three different runs with different seeds.

USA → Singapore Day → Night
2D-C 3D-A mIoU mIoU

2D 3D Avg 2D 3D Avg
56.2 51.3 61.8 48.2 42.8 52.8

✓ 61.3 51.0 62.1 50.5 45.4 54.2
✓ 56.5 52.6 60.5 49.5 45.8 53.0

✓ ✓ 61.9 52.4 63.6 50.8 47.2 58.3

TABLE 10.2. Ablation studies for the proposed contributions. 2D-C: 2D completion, 3D-A:
Augmentation for 3D network.

reason about the depth structures of the input image helps to generalize better. Moreover, we
can observe that our first contribution already improves the overall performance (Avg) by
0.3% and 1.4% respectively. When only activating the LiDAR augmentation, we expect the
3D branch to observe a larger improvement as we are specifically tackling the 3D modality.
Indeed, we note a +1.6% for USA → Singapore and +0.4% for Day → Night in terms of
mIoU when comparing the performance of this model (third row) with our baseline. Since
this augmentation step needs a dense depth map, in this case, we exploit a separate depth
completion network pre-trained with our self-supervised methodology. Thereby, the 2D
semantic network is not multi-task. When activating all contributions, we obtain the best
average results. In Fig. 10.8, we depict a qualitative comparison of a source-only model with
our proposal.

Auxiliary tasks alternatives. A plausible alternative to injecting 3D cues into the learning
process is to use monocular depth estimation as an auxiliary task. To compare depth comple-
tion with this solution, we implement a network with a single encoder that processes RGB
images and two decoders, one that predicts each pixel semantic label, and one to estimate
depth as done for the depth completion task. The model is then optimized in the same way
i.e., by applying Eq. (10.2) and Eq. (10.3) on both domains and Eq. (10.1) only for the source
one. We compare this variant with the proposed auxiliary task in Tab. 10.3. We observe that

Chapter 10. Enanching Multi-Modal 3D Semantic Segmentation with Depth Completion99

USA → Singapore Day → Night

2D architecture mIoU mIoU
2D 3D Avg 2D 3D Avg

Depth from Mono 57.4 49.7 60.2 38.4 45.1 43.7
Completion 61.3 51.0 62.1 50.5 45.4 54.2

TABLE 10.3. Comparison with different auxiliary tasks.

Supervision Method RMSE ↓ (mm) MAE ↓

GT Depth

‡ NLSPN [245] 788.00 199.50
‡ PENet [244] 791.62 242.25
‡ PackNet [249] 1027.32 356.04

StD [242] 878.56 260.90
Photometric StD [242] 1384.85 358.92+ LiDAR
Photometric StD [242] 1901.16 658.13

LiDAR CTS (depth only) 1788.37 506.86

TABLE 10.4. Results on the validation split of KITTI Depth Completion. GT: ground truth,
Photometric: photometric loss on videos, LiDAR: sparse depths from input LiDAR. ‡: evaluated
using officially released weights.

depth completion performs better across all modalities in both Day → Night and USA →
Singapore. This is due to the fact that to solve the task of monocular depth estimation, the
network has to rely on RGB features that do not provide any additional improvements if
the gap in the RGB space is too large. On the other hand, we argue that depth completion
networks can focus also on the geometry of the scene in input and not only on RGB images
to solve the task, and this is important to improve generalization on the target domain.

Quantitative results on depth completion. Although we mainly employ depth com-
pletion as an auxiliary task, we investigate the quality of completed depths also from a
quantitative point of view. In Table 10.4, we compare our self-supervised approach with
state-of-the-art supervised depth completion methods that leverage the dense ground-truth
of the KITTI-Depth-Completion split[248], and with methods that exploit video sequences
[242]. Despite being trained with the input LiDAR only, our performances are still com-
parable. Indeed, our method has a Mean Absolute Error (MAE) only 300mm higher than
the state-of-the-art supervised method [245] (row 1 vs 7), and performs better than [242]
when using only the photometric loss on video sequences (row 6 vs 7). The quality of our
completed depth maps can be assessed by looking at the results in Fig. 10.9.

Chapter 10. Enanching Multi-Modal 3D Semantic Segmentation with Depth Completion100

RGB Sparse Depth Completed Depth
N

ig
ht

K
IT

TI

FIGURE 10.9. Depth completion qualitative results. From left to right, RGB, sparse depth from
LiDAR, and completed depth.

10.4 Conclusions

We have shown that depth completion is an effective auxiliary task to improve generaliza-
tion for the 2D network. Furthermore, we propose to exploit completed depths to augment
the source LiDAR to achieve better results. We believe that this task could be even more
useful when applied to online adaptation, where video sequences can be available and could
be used to obtain better 3D geometries, and consequently a better semantic understanding.

101

Chapter 11

On the Complementarity of 2D and 3D
Networks for Multi-Modal Semantic
Segmentation

11.1 Introduction

As we have seen from the previous chapter, all the approaches for multi-modal 3D
semantic segmentation [31, 32, 33, 221, 233] leverage a peculiar two-branch 2D-3D architecture,
in which images are processed by a 2D convolutional network, e.g., ResNet [14], while point
clouds by a 3D convolutional backbone, e.g., SparseConvNet [227]. By processing each
modality independently, each of the two branches focuses on extracting features from its
specific signal (RGB colors or 3D structure information) that can be fused effectively due
to their inherent complementarity in order to produce a better segmentation score. Indeed,
averaging logits from the two branches provides often an improvement in performance,
e.g., a mIoU gain from 2% to 4% in almost all experiments in [31]. Although we agree that
each modality embodies specific information, such as color for images and 3D coordinates
for point clouds, we argue that the complementarity of the features extracted by the two
branches is also tightly correlated to the different information processing machinery, i.e., 2D
and 3D convolutions, which makes networks focusing on different areas of the scene with
different receptive fields. Indeed, in Fig. Fig. 11.1, given a point belonging to the red car, we
visualize the effective receptive field [250] of the 2D and 3D networks (red ellipses). As we
can clearly see from the receptive fields in the right part of the figure, the features extracted
by the 3D network mainly leverage points in a 3D neighborhood, i.e., include points of the
car surface. In contrast, the features extracted by the 2D network look at a neighborhood
in the 2D projected space, and thus they depend also on pixels of the building behind the
car, which are close in image space but far in 3D. We argue that this is one of the main
reasons why the features from the two branches can be fused so effectively. Based on the
above intuition, we propose to feed 3D and RGB signals to both networks as this should not
hinder the complementarity of their predictions, with the goal of making the network more

Chapter 11. On the Complementarity of 2D and 3D Networks for Multi-Modal Semantic
Segmentation

102

2D Network
Project

Sample

3D Network

Aux Classifier 2D

Aux Classifier 3D

Main Classifier 2D

Main Classifier 3D

(N, F2D)

(N, F3D)

(N, C)

(N, C)

(N, C)

(N, C)

LxM

LxM

Lseg

Lseg

FIGURE 11.1. Framework overview. The RGB image and the sparse depth map obtained from
the projection of the corresponding point cloud are fed to a custom 2D architecture to extract
point-wise features. The same point cloud and sampled colors from the RGB image are given in
input to the 3D Network. Then, two main classifiers output the main predictions to be used at test
time. Moreover, two auxiliary classifiers are used at training time only to allow the exchange of
information across branches.

robust to the change of distributions between the training and the test scenarios. Feeding
both branches with both modalities would make: i) the 2D network more robust to domain
shifts, as depth information (z coordinates of point clouds projected into image space) is
more similar across different domains, as shown in several papers [105, 251, 107, 104, 48, 252];
ii) the 3D network more capable of adapting to new domains thanks to RGB information
associated with each point which allows learning better semantic features for the target
domain, when this is available, using Unsupervised Domain Adaptation (UDA) approaches.
Thus, we propose a simple architecture for multi-modal 3D semantic segmentation consisting
of a 2D-3D architecture with each branch fed with both RGB and 3D information. Despite its
simplicity, our proposal achieves state-of-the-art results in multi-modal UDA benchmarks,
surpassing competitors by large margins, as well as significantly better domain generalization
compared to a standard 2D-3D architecture [32].

11.2 Method

Setup and Notation. The notation is very similar to the one in the previous chapter as we
tackle the same problem. We define input source samples {x2D

s , x3D
s } ∈ S and target samples

{x2D
t , x3D

t } ∈ T , with x2D being the 2D RGB image and x3D the corresponding point cloud,
with 3D points in the camera reference frame. Note that x3D contains only points visible
from the RGB camera, assuming that the calibration of the two sensors is available for both
domains and does not change over time. We assume the availability of annotations y3D

s only
for the source domain for each 3D point. We also have at our disposal the unlabeled samples

Chapter 11. On the Complementarity of 2D and 3D Networks for Multi-Modal Semantic
Segmentation

103

FIGURE 11.2. Depth comparison during daylight or night. Differently, from the RGB image (left
column), a sparse depth map obtained by projecting a LiDAR scan into the image plane is not
affected by the light conditions.

from the target domain. Our goal is to obtain a point-wise prediction N × C for x3D
t , with

N and C being the number of points of the target point cloud and the number of classes,
respectively.

11.2.1 Base 2D/3D Architecture

We build our contributions upon the two independent branches (2D and 3D) architecture
proposed in [32]. The 2D branch processes images to obtain a pixel-wise prediction given x2D

and it consists of a standard 2D U-Net[38]. On the other hand, the 3D branch takes in input
point clouds to estimate the class of each point of x3D and it is implemented as a 3D sparse
convolutional network [227]. Thanks to the fact that 2D-3D correspondences are known, 3D
points can be projected into the image plane to supervise the 2D branch, as supervision is
provided only for the sparse 3D points. We denote the 3D semantic labels projected into 2D
with the symbol y3D→2D. As argued by [32], such design choice allows one to take advantage
of the strengths of each input modality, and final predictions can be obtained by averaging the
outputs of the two branches to achieve an effective ensemble. In our work, we adopt the same
framework, and we give an intuitive explanation of why this design choice is particularly
effective. In particular, we reckon that the two predictions are complementary not only for the
input signals being different but also for the fact the two branches focus on different things to
determine their final predictions. Indeed, 3D convolutions produce features by looking at
points that are close in the 3D space, while the 2D counterparts focus on neighboring pixels in
the 2D image plane. Therefore, given corresponding 2D and 3D points, the two mechanisms
implicitly produce features containing complementary information. In the right part of Fig.

Chapter 11. On the Complementarity of 2D and 3D Networks for Multi-Modal Semantic
Segmentation

104

FIGURE 11.3. 2D Network of our framework. It is composed of a depth encoder and an RGB
encoder to process the two inputs independently. The segmentation decoder leverages the multi-
scale features of both encoders to predict semantic segmentation labels.

Fig. 11.1 we visualize the Effective Receptive Fields (ERF) [250] of a 2D U-Net with backbone
ResNet34[14] and of a 3D U-Net with backbone SparseConvNet[227]. It is worth highlighting
that we do not focus on the theoretical but on the effective receptive field, which is computed
by analyzing the real contribution of each input point to the final prediction (the hotter
the color intensity in the visualization, the larger the point contribution). Comparing the
re-projected 2D ERF into 3D and the 3D ERF we can clearly appreciate that the 2D network
focuses on sparse 3D regions, i.e., from the car to the building in the background, while the
3D counterpart reasons on a local 3D neighborhood (only car points). With this intuition in
mind, we argue that by feeding the RGB signal to the 3D network, and the 3D information
to the 2D backbone, we would still obtain complementary features that can be effectively
fused together. Moreover, it is well-known that employing depth information as input to 2D
segmentation networks can make it more robust to domain shift [253, 252]. At the same time,
we posit that the 3D network with RGB information may be able to extract better semantic
features. Differently from previous approaches that employ two independent architectures,
based on the above considerations, we propose our multi-modal, two-branch framework
named MM2D3D. In Sec. 11.2.2 we show how a point cloud can be used to obtain a stronger
and more suitable input signal for the 2D network. Similarly, in Sec. 11.2.3 we describe our
multi-modal 3D network.

11.2.2 Depth-based 2D Encoder

In this section, we focus on how we can use point clouds to make a 2D segmentation
architecture more robust to domain shift. Inspired by [253, 252], we propose to use depth

Chapter 11. On the Complementarity of 2D and 3D Networks for Multi-Modal Semantic
Segmentation

105

maps as an input signal that is less influenced by the domain gap. As we can observe from
the two depth maps in Fig. 11.2, it is hard to understand which one was captured during
day or night. At the same time, some objects such as the car can be distinguished by only
looking at depths (bottom right of the second depth map). Thus, depth maps provide useful
hints to solve the task of semantic segmentation. Given these considerations, we argue that
exploiting such invariant information may alleviate the domain shifts and can be used to
extract discriminative features for the segmentation task. At a first glance, injecting 3D cues
into the 2D branch may seem redundant as the 3D network already has the capability to
reason on the full 3D scene. However, given that the two networks have very different
receptive fields, we can exploit such additional and useful information without the risk of
hindering the complementarity of the two signal streams. Assuming point clouds expressed
in the camera reference frame and the availability of the intrinsic camera matrix, we can
project the original 3D point cloud to obtain a sparse depth map. In practice, the value of
the z axis is assigned to the pixel coordinate (u, v) obtained by projecting a 3D point into
the image plane. Similarly to [253], to process both inputs, we modify the 2D encoder of the
2D U-Net architecture by including an additional encoder to process the sparse depth maps
obtained from the point cloud. As can be seen in Fig. 11.3, the two streams i.e. one for the
RGB image and the other for the sparse depth map, are processed independently. Then, the
concatenated depth and RGB features are processed by a decoder, composed of a series of
transposed convolutions and convolutions in order to obtain semantic predictions of the same
size as the input image. Moreover, features from layers of 1

2 to 1
16 of the input resolution are

concatenated using skip connections with the corresponding layer of the decoder. This simple
design choice allows semantic predictions to be conditioned also on the input depth signal,
without altering the RGB encoder that provides useful classification features. Furthermore,
without altering the RGB encoder, we can take advantage of a pre-trained architecture on
ImageNet [47] as done by our competitors.

11.2.3 RGB Based 3D Network

In this work, we focus on the 3D convolutional network, SparseConvNet [227], as it can
segment large scenes efficiently. In this network, the initial point cloud is first voxelized such
that each 3D point is associated with only one voxel. Then, rather than processing the entire
voxel grid, these models work with a sparse tensor representation ignoring empty voxels for
the sake of efficiency. The network associates a feature vector to each voxel, and convolutions
calculate their results based on these features. A standard choice for the voxel features is
to simply assign to it a constant value, i.e., 1. Although these strategies have been shown
to be effective [221, 254], the feature vector can be enriched to make it even more suitable
for semantic segmentation. Based on our intuition of the different receptive fields, we can

Chapter 11. On the Complementarity of 2D and 3D Networks for Multi-Modal Semantic
Segmentation

106

borrow information from the other modality to improve the performance of each branch, still
preserving 2D-3D feature complementarity. Thus, we use RGB colors directly as features for
each voxel of the SparseConvNet. Moreover, we design a simple yet effective strategy to let
the 3D network decide whether to use or not this information. More specifically, the original
RGB pixel values are fed to a linear layer that predicts a scalar value α to be multiplied by the
color vector. For instance, learning this scaling could be useful in the UDA scenario, where
we can train on unlabelled target samples, to discard RGB colors in case they do not provide
any useful information, e.g., dark pixels in images acquired at night time.

11.2.4 Learning Scheme

Supervised Learning. Given the softmax predictions of the 2D and 3D networks, P2D and
P3D, we supervise both branches using the cross-entropy loss on the source domain:

Lseg(xs, ys) = − 1
N

N

∑
n=1

C

∑
c=1

y(n,c)
s log P(n,c)

xs (11.1)

with (xs, ys) being either (x2D
s , y3D→2D

s) or (x3D
s , y3D

s).
Cross-Branch Learning. To allow an exchange of information between the two branches,

[32] and [33] add an auxiliary classification head to each one. The objective of these additional
classifiers is to mimic the other branch output. The two auxiliary heads estimate the other
modality output: 2D mimics 3D (P2D→3D) and 3D mimics 2D (P3D→2D). In practice, this is
achieved with the following objective:

LxM(x) = DKL(P
(n,c)
x ||Q(n,c)

x) (11.2)

= − 1
N

N

∑
n=1

C

∑
c=1

P(n,c)
x log

P(n,c)
x

Q(n,c)
x

with (P, Q) ∈ {(P2D, P3D→2D), (P3D, P2D→3D)} where P is the distribution from the main
classification head which has to be estimated by Q. Note that in Eq. (11.2), x can belong to
either T or S . This means that, in the UDA scenario, Eq. (11.2) can also be optimized for T ,
forcing the two networks to have consistent behavior across the two modalities for the target
domain as well without any labels.

Self-Training. Only in the UDA scenario, where unlabelled target samples are available,
as done by [32], we perform one round of Self-Training [110] using pseudo-labels [255].
Specifically, after training the model with Eq. (11.1) for the source domain and Eq. (11.2) on
both domains, we generate predictions on the unlabeled target domain dataset to be used as
pseudo ground truths, ŷt. Following [32], we filter out noisy pseudo-labels by considering

Chapter 11. On the Complementarity of 2D and 3D Networks for Multi-Modal Semantic
Segmentation

107

only the most confident predictions for each class. Then, we retrain the framework from
scratch the model minimizing the following objective function:

L = Lseg(xs, ys) + λtLseg(xt, ŷt) (11.3)

+ λxsLxM(xs) + λxtLxM(xt)

11.3 Experiments

11.3.1 Implementation details

We use the same data augmentation pipeline as our competitors, which is composed of
random horizontal flipping and color jittering for 2D images, while vertical axis flipping,
random scaling, and random 3D rotations are used for the 3D scans. It is important to note
that augmentations are done independently for each branch. We implement our framework
in PyTorch using two NVIDIA 3090 GPU with 24GB of RAM. We train with a batch size of
16, alternating batches of source and target domain for the UDA case and source only in DG.
The smaller dataset is repeated to match the length of the other. We rely on the AdamW
optimizer [198] and the One Cycle Policy as a learning rate scheduler [128]. We train for
50, 35, 15, and 30 epochs for USA → Singapore, Day → Night, v. KITTI → Sem. KITTI, and
A2D2 → Sem. KITTI respectively. As regards the hyper-parameters, we follow [32] and set
λs = 0.8, λt = 0.1, λxs = 0.1, λxt = 0.01 in all settings without performing any fine-tuning on
these values.

11.3.2 UDA results

Following previous works in the field [32, 33], we evaluate the performance of a model
on the target test set using the standard Intersection over Union (IoU) and select the best
checkpoint according to a small validation set on the target domain. In Tab. 11.1, we report
our results on the four challenging UDA benchmarks explained in ??. For each experiment,
we report two reference methods: a model trained only on the source domain, named Baseline
(Source Only); a model trained only on the target data using annotations, representing the
upper bound that can be obtained with real ground-truth, namely Oracle. We note that these
two models employ the two independent stream architecture of [32]. In the columns Avg,
we report the results obtained by the mean of the 2D and 3D outputs after softmax which
is the final output of our multi-modal framework. For the sake of completeness, we also
report the results of each individual branch (2D and 3D only). We compare our method
with both Uni-modal and Multi-Modal approaches. In particular, we mainly focus on a

Chapter 11. On the Complementarity of 2D and 3D Networks for Multi-Modal Semantic
Segmentation

108

Modality Method USA → Singapore Day → Night v.KITTI → Sem.KITTI A2D2 → Sem.KITTI
2D 3D Avg 2D 3D Avg 2D 3D Avg 2D 3D Avg

Baseline (Source only) 58.4 62.8 68.2 47.8 68.8 63.3 26.8 42.0 42.2 34.2 35.9 40.4

Uni-modal
MinEnt [152] 57.6 61.5 66.0 47.1 68.8 63.6 39.2 43.3 47.1 37.8 39.6 42.6
Deep logCORAL [256] 64.4 63.2 69.4 47.7 68.7 63.7 41.4 36.8 47.0 35.1 41.0 42.2
PL [257] 62.0 64.8 70.4 47.0 69.6 63.0 21.5 44.3 35.6 34.7 41.7 45.2

Multi-modal
xMUDA [31] 64.4 63.2 69.4 55.5 69.2 67.4 42.1 46.7 48.2 38.3 46.0 44.0
DsCML* [33] 52.9 52.3 56.9 51.2 61.4 61.8 31.8 32.8 34.8 25.4 32.6 33.5
MM2D3D (Ours) 71.7 66.8 72.4 70.5 70.2 72.1 53.4 50.3 56.5 42.3 46.1 46.2

Oracle 75.4 76.0 79.6 61.5 69.8 69.2 66.3 78.4 80.1 59.3 71.9 73.6

TABLE 11.1. Results for UDA for 3D semantic segmentation with both uni-modal and multi-
modal adaptation methods. We report performance for each network stream in terms of mIoU.
‘Avg’ column denotes the obtained by taking the mean of the 2D and 3D predictions. * indicates
trained by us using official code.

comparison with xMUDA[32] and DsCML[33], as they are the current s.o.t.a. methods for
UDA in our multi-modal setting. In particular, for the latter, we use the official code provided
by the authors 1 to retrain the model on the new more exhaustive benchmark defined by [32].
Overall, we note how our contributions largely improve results over competitors across all
settings and modalities. In USA → Singapore, we observe a large boost in both branches, and
on average we report a +3% (third row of the Multi-modal section). The large improvement
(+7.3%) for the 2D model, suggests that the depth cues injected into a common 2D decoder
can be quite useful even if the light conditions are similar across domains. In Day → Night,
we observe a remarkable +15% for the 2D branch, which in turn raises the average score to
+4.7% when compared with the previous best model. We attribute this boost in performance
to the depth encoder, which is able to provide useful hints when the RGB encoder has to
deal with large changes in light conditions. Remarkably, our network surpasses even the
performance of the two independent streams Oracle. Indeed, as discussed in Sec. 11.2.2, the
sparse depth is able to give useful details for the task of semantic segmentation. Moreover,
thanks to the fact that the cross-modal loss Sec. 11.2.4 is optimized for both domains, the
network lean to use both encoders to make the final predictions, leading to more robust
performance when the encoder receives a less informative RGB signal. In the challenging
synthetic-to-real case (v. KITTI → Sem. KITTI), we also notice consistent improvements in
both branches. We highlight that even though RGB colors are likely the main source of the
domain gap, they are still useful to obtain a stronger 3D model (+3.6%). In the A2D2 →
Sem. KITTI setting, where the sensors setup is different, we still benefit from the depth hints
provided to the 2D network, and on average, our method surpasses by 2.2% xMUDA. In
general, we highlight that though we employed both modalities in the 2D and 3D branches,
the Avg performances are better than those of each individual branch, supporting our core
intuition. In Fig. 11.4, we report some qualitative results obtained with our framework.

1https://github.com/leolyj/DsCML

https://github.com/leolyj/DsCML

Chapter 11. On the Complementarity of 2D and 3D Networks for Multi-Modal Semantic
Segmentation

109

Method USA → Singapore Day → Night v.KITTI → Sem.KITTI A2D2 → Sem.KITTI
2D 3D Avg 2D 3D Avg 2D 3D Avg 2D 3D Avg

xMUDA* [31] 58.7 62.3 68.6 43.0 68.9 59.6 25.7 37.4 39.0 34.9 36.7 41.6
MM2D3D (Ours) 69.7 62.3 70.9 65.3 63.2 68.3 37.7 40.2 44.2 39.6 35.9 43.6

TABLE 11.2. Results for 3D for semantic segmentation in the Domain Generalization setting.
We report performance for each network stream in terms of mIoU. ‘Avg’ column denotes the
obtained by taking the mean of the 2D and 3D predictions. * indicates trained by us using official
code.

FIGURE 11.4. Qualitative examples of the proposed framework in the UDA scenario. From
left to right: RGB images, point cloud segmentations projected into 2D for visualization purpose
of the baseline source only model, our method, and the ground truth respectively. From top to
bottom: the four different adaptation scenarios. Comparisons are provided for the target domain.

11.3.3 Domain Generalization results

In this section, we test our contributions in the Domain Generalization setting, in which
the target data cannot be used at training time. For this study we consider XMUDA [32]
as our baseline two-branch 2D-3D method, and we show that our simple contribution can
boost generalization performances. Results are reported in Tab. 11.2. To implement this
experiment we keep the same hyper-parameters as used in the UDA scenario. We retrain [31]
using the official code, but without the target data. Also in this setting, we observe overall
large improvements. We believe that this can be ascribed especially to the introduction of
the depth encoder, which helps to achieve a better generalization. Evidence of this is well
observable in the Day → Night, where the 2D performance increases from 43% to 65.3%
in terms of mIoU, but also for USA → Singapore and (v. KITTI → Sem. KITTI), where we
achieve +11% and +12 respectively. In the Day → Night scenario, the 3D branch experiences
a drop in performance. We think that it is related to the large domain shift of RGB images.
Differently from the adaptation scenario in which we can train directly on the unlabeled

Chapter 11. On the Complementarity of 2D and 3D Networks for Multi-Modal Semantic
Segmentation

110

Method Depth RGB USA → Singapore Day → Night v.KITTI → Sem.KITTI A2D2 → Sem.KITTI
2D 3D Avg 2D 3D Avg 2D 3D Avg 2D 3D Avg

xMUDA [32] 64.4 63.2 69.4 55.5 69.2 67.4 42.1 46.7 48.2 38.3 46.0 44.0
MM2D3D (Ours) ✓ 69.5 64.0 69.6 71.3 69.9 72.8 52.6 40.3 53.7 41.7 44.8 45.9
MM2D3D (Ours) ✓ ✓ 71.7 66.8 72.4 70.5 70.2 72.1 53.4 50.3 56.5 42.3 46.1 46.2

TABLE 11.3. Modality-wise ablation of the proposed framework in the UDA scenario. Depth
indicates the usage of the additional sparse depth encoder, while RGB denotes the introduction of
the RGB information in the 3D network.

MM2D3D (Ours) 71.7 66.8 72.4 70.5 70.2 72.1 53.4 50.3 56.5 42.3 46.1 46.2

xMUDA [32] + PL 67.0 65.4 71.2 57.6 69.6 64.4 45.8 51.4 52.0 41.2 49.8 47.5
MM2D3D (Ours) + PL 74.3 68.3 74.9 71.3 69.6 72.2 55.4 55.0 59.7 46.4 48.7 50.7

MM2D3D (Ours) + Fusion x x 74.0 x x 71.0 x x 60.4 x x 48.8

TABLE 11.4. Self-training Analysis. Results with different self-training strategies in the UDA
scenario.

target data to counteract this problem, in the generalization scenario, it influences badly the
3D performance. However, we note that our final Avg prediction still outperforms xMUDA.

11.3.4 Ablation Studies

Modality-wise analysis. In Tab. 11.3, we ablate our contributions starting from the model
proposed by [31] in the UDA scenario. We start by activating our depth-based network,
introduced in Sec. 11.2.3. The performance boost given by our proposal is remarkable across
all settings. In cases such as Day → Night, where the RGB gap is larger, the depth cues injected
with skip connections to the semantic decoder greatly enhance performances in the target
domain (+15.8% for 2D and +5.4% in "Avg). We note also a consistent improvement for the
remaining settings, in particular, we highlight a +10.5% for the 2D scores on the challenging
synthetic-to-real adaptation benchmark (v. KITTI → Sem. KITTI). Furthermore, when feeding
RGB colors to the 3D network (last row of Tab. 11.3), we observe improved performances
in almost all settings. The largest improvement is observed in the synthetic-to-real setting,
where we achieve a +10% in terms of mIou for the 3D, which in turn increased the average
score from 53.7% to 56.5%. Better performance is also achieved for both the 3D network and
the average score for A2D2 → Sem. KITTI.

Self-Training. In this section, we compare different self-training strategies and report
results in Tab. 11.4. As explained in Sec. 11.2.4, for the self-training protocol we first need
a model trained on the source domain to produce the pseudo-labels for the target domain
in the second round. We report in the first row of Tab. 11.4 the performance of this starting
model to better appreciate the effectiveness of self-training. First, we note how thanks to
our contributions, for USA → Singapore, Day → Night, and v. KITTI → Sem. KITTI we
already surpass xMUDA[31] on the Avg column even without the usage of pseudo-labels.
When pseudo-labels from the 2D and the 3D branches are used to supervise the 2D and
the 3D network respectively, we establish new state-of-the-art performances for all four

Chapter 11. On the Complementarity of 2D and 3D Networks for Multi-Modal Semantic
Segmentation

111

settings in the average predictions (third row). Furthermore, in the fourth row of Tab. 11.4,
we deploy the strategy proposed in [31], where point-wise features from the two networks
are concatenated and used to train a unique classifier). In this case, we observe mixed results,
indicating that this self-training strategy is not necessarily better across all settings when
compared to the standard self-training protocol.

11.4 Conclusions

We shed some light on the complementarity of recent and emerging 3D-2D architectures
for 3D semantic segmentation. We provide an intuitive explanation based on the notion of the
effective receptive field of why processing data with these two networks grants orthogonal
predictions that can be effectively fused together. Based on this, we propose to feed both
modalities to both branches. Despite the simplicity of our approach, we establish new state-
of-the-art results in four common UDA scenarios and demonstrate superior generalization
performance over the baseline 2D-3D architecture. A limitation of our work is that our
method is purely multi-modal, and it requires both modalities and a valid calibration across
sensors at test time. An interesting future direction is to investigate how our approach may
generalize to other multi-modal 2D-3D architectures for semantic segmentation.

112

Part IV

Neural Fields for 3D data

113

Chapter 12

Initial Remarks

In accordance with the introductory objectives of this thesis, our primary focus centers on
Transfer Learning, with a specific emphasis on Unsupervised Domain Adaptation. However,
we aspire to enhance the breadth of this work by incorporating supplementary chapters that
delve into seminal studies on Neural Fields. These chapters, although somewhat far from the
core theme of Transfer Learning, are included to provide the reader with a comprehensive
understanding of the potential intersections between Neural Fields and our primary research
focus. Recognizing that Neural Fields represent a relatively recent development within
the vision community, especially for 3D applications, we acknowledge that the direct link
between Neural Fields and transfer learning may appear somewhat loose. Nevertheless,
given the escalating interest in this field, we are confident that the value of Neural Fields will
become increasingly evident over time also for other topics such as Transfer Learning.

In Chapter 13, we begin with a thorough introduction to the general concept of Implicit
Neural Representation (INR), which is a specific parametrization of a Neural field that uses a
single Multi-Layer-Perceptron (MLP) to represent a field. Subsequently, we introduce a novel
framework for representation learning for the processing of INRs of 3D shapes. Finally, in
Chapter 14, we propose to use a different parametrization and a new approach to process
Neural Fields. In this chapter, we also showcase preliminary experiments within the realm of
Transfer Learning, specifically emphasizing the transference of knowledge across modalities,
such as from point clouds to meshes.

12.1 Related Works

12.1.1 Deep learning on 3D shapes.

Due to their regular structure, voxel grids have always been appealing representations for
3D shapes and several works proposed to use 3D convolutions to perform both discriminative
[258, 259, 260] and generative tasks [261, 262, 263, 264, 265, 182]. The huge memory require-
ments of voxel-based representations, though, led researchers to look for less demanding

Chapter 12. Initial Remarks 114

alternatives, such as point clouds. Processing point clouds, however, is far from straightfor-
ward because of their unorganized nature. As a possible solution, some works projected the
original point clouds to intermediate regular grid structures such as voxels [266] or images
[267, 268]. Alternatively, PointNet [160] proposed to operate directly on raw coordinates
by means of shared multi-layer perceptrons followed by max pooling to aggregate point
features. PointNet++ [161] extended PointNet with a hierarchical feature learning paradigm
to capture the local geometric structures. Following PointNet++, many works focused on
designing new local aggregation operators [162], resulting in a wide spectrum of specialized
methods based on convolution [166, 269, 270, 271, 272, 273, 168], graph [274, 275, 167], and
attention [276, 277] operators. Yet another completely unrelated set of deep learning methods
have been developed to process surfaces represented as meshes, which differ in the way
they exploit vertices, edges and faces as input data [278]. Vertex-based approaches leverage
the availability of a regular domain to encode the knowledge about points neighborhoods
through convolution or kernel functions [279, 280, 281, 282, 283, 284, 285, 286]. Edge-based
methods take advantages of these connections to define an ordering invariant convolution
[287], to construct a graph on the input meshes [288] or to navigate the shape structure [289].
Finally, Face-based works extract information from neighboring faces [290, 291, 292, 293].
In Chapter 13, we explore INRs as a unified representation for 3D shapes and propose a
framework that enables the use of the same standard deep learning machinery to process
them, independently of the INRs underlying signal. Next, in Chapter 14, we go beyond the
concept of INR and use a different parameterization for Neural Fields that enables easier
processing and consequently leads to better performance.

12.1.2 Neural fields.

Recent approaches have shown the ability of MLPs to parameterize fields representing any
physical quantity of interest [294]. The works focusing on representing 3D data with MLPs
rely on fitting functions such as the unsigned distance [295], the signed distance [296, 297,
298, 299, 300], the occupancy [301, 302], or the scene radiance [303]. Among these approaches,
SIREN [304] uses periodic activation functions to capture high-frequency details. In this
thesis, we focus on 3D data represented as voxel grids, meshes and point clouds and we
adopt SIREN in Chapter 13 to demonstrate for the first time how downstream tasks can be
solved starting from this representation. More recently however, hybrid representations, in
which the MLP is paired with a discrete data structure, have been introduced within the
vision and graphic communities motivated by faster inference [305], better use of network
capacity [306] and suitability to editing tasks [307]. These data structures decompose the
input coordinate space, either regularly, such as for voxel grids [305, 308, 307], tri-planes
[309, 310, 311, 312], and 4D tensors [313], or irregularly, such as for point clouds [314], and

Chapter 12. Initial Remarks 115

meshes [315]. Following the success of this parameterization of Neural Fields, in Chapter 14
we investigate how to directly process hybrid fields to solve tasks such as shape classification
and 3D part segmentation and even NeRFs classification. We focus on tri-planes due to their
regular grid structure and compactness, which enable standard neural networks to process
them seamlessly and effectively.

Neural functionals. Several very recent approaches aim at processing functions parame-
terized as MLPs by employing other neural networks. MLPs are known to exhibit weight
space symmetries [316], i.e., hidden neurons can be permuted across layers without changing
the function represented by the network. Works such as DWSNet [317], NFN [9], and NFT
[318] leverage weight space symmetries as an inductive bias to develop novel architectures
designed to process MLPs. Both DWSNet and NFN devise neural layers equivariant to
the permutations arising in MLPs. In contrast, NFT builds upon the intuition of achieving
permutation equivariance by removing positional encoding from a Transformer architecture.
The framework proposed in Functa [319] relies on learning priors on the whole dataset with
a shared network and then encoding each sample in a compact embedding. In this case, each
neural field is parameterized by the shared network plus the embedding. In particular, Functa
[319] leverages meta-learning techniques to learn the shared network, which is modulated
with latent vectors to represent each data point. These vectors are then used to address both
discriminative and generative tasks. It is worth pointing out that, though not originally
proposed as a framework to process neural fields, DeepSDF [296] learns dataset priors by
optimizing a reconstruction objective through a shared auto-decoder network conditioned
on a shape-specific embedding. Thus, the embeddings learned by DeepSDF may be used
for neural processing tasks similar to Functa’s. All these previous works emerged after we
developed inr2vec which we will introduce in the next chapter. Therefore, in Chapter 14 we
introduce a thorough benchmark assessing all the pros and cons of each methodology.

116

Chapter 13

Deep Learning on Implicit Neural
Representations of Shapes

13.1 Introduction

Since the early days of computer vision, researchers have been processing images stored
as two-dimensional grids of pixels carrying intensity or color measurements. But the world
that surrounds us is three-dimensional, motivating researchers to try to process also 3D data
sensed from surfaces. Unfortunately, the representation of 3D surfaces in computers does
not enjoy the same uniformity as digital images, with a variety of discrete representations,
such as voxel grids, point clouds and meshes, coexisting today. Besides, when it comes to
processing by deep neural networks, all these kinds of representations are affected by peculiar
shortcomings, requiring complex ad-hoc machinery [161, 167, 278] and/or large memory
resources [258]. Hence, no standard way to store and process 3D surfaces has yet emerged.

Recently, a new kind of representation has been proposed, which leverages on the possibil-
ity of deploying a Multi-Layer Perceptron (MLP) to fit a continuous function that represents
implicitly a signal of interest [294]. These representations, usually referred to as Implicit
Neural Representations (INRs), have been proven capable of encoding effectively 3D shapes
by fitting signed distance functions (sdf) [296, 320, 297], unsigned distance functions (udf) [295]
and occupancy fields (occ) [301, 300]. Encoding a 3D shape with a continuous function parame-
terized as an MLP decouples the memory cost of the representation from the actual spatial
resolution, i.e., a surface with arbitrarily fine resolution can be reconstructed from a fixed
number of parameters. Moreover, the same neural network architecture can be used to fit
different implicit functions, holding the potential to provide a unified framework to represent
3D shapes.

Due to their effectiveness and potential advantages over traditional representations, INRs
are gathering ever-increasing attention from the scientific community, with novel and striking
results published more and more frequently [321, 322, 320, 323]. This lead us to conjecture
that, in the forthcoming future, INRs might emerge as a standard representation to store and

Chapter 13. Deep Learning on Implicit Neural Representations of Shapes 117

INRs provide an unified
representation for 3D shapes

inr2vec:
Embedding INRs

into compact latent codes

inr2vec embeddings
can be fed

to downstream tasks

Point
Cloud

Triangle
Mesh

Voxel
Grid

<INR0

<INR2

<INR3

<INR4

PART SEGMENTATION

UNCONDITIONED
GENERATION

SURFACE
RECONSTRUCTION

CLASSIFICATION

RETRIEVAL

COMPLETION

<INR1

INR

INR INR INR

FIGURE 13.1. Overview of our framework. Left: INRs hold the potential to provide an unified
representation for 3D shapes. Center: Our framework, dubbed inr2vec, produces a compact
representation for an input INR by looking only at its weights. Right: inr2vec embeddings can be
used with standard deep learning machinery to solve a variety of downstream tasks.

communicate 3D shapes, with repositories hosting digital twins of 3D objects realized only as
MLPs becoming commonly available.

An intriguing research question does arise from the above scenario: beyond storage and
communication, would it be possible to process directly INRs of 3D shapes with deep learning
pipelines to solve downstream tasks as it is routinely done today with discrete representations
like point clouds or meshes? In other words, would it be possible to process an INR of a 3D
shape to solve a downstream task, e.g., shape classification, without reconstructing a discrete
representation of the surface?

Since INRs are neural networks, there is no straightforward way to process them. Earlier
work in the field, namely OccupancyNetworks [301] and DeepSDF [296], fit the whole
dataset with a shared network conditioned on a different embedding for each shape. In
such formulation, the natural solution to the above mentioned research problem could be
to use such embeddings as representations of the shapes in downstream tasks. This is
indeed the approach followed by contemporary work [319], which addresses such research
problem by using as embedding a latent modulation vector applied to a shared base network.
However, representing a whole dataset by a shared network sets forth a difficult learning
task, with the network struggling in fitting accurately the totality of the samples (as we show
in Appendix A.1). Conversely, several recent works, like SIREN [304] and others [324, 325,
326, 327, 328] have shown that, by fitting an individual network to each input sample, one can
get high-quality reconstructions even when dealing with very complex 3D shapes or images.
Moreover, constructing an individual INR for each shape is easier to deploy in the wild, as
the availability of the whole dataset is not required to fit an individual shape. Such works
are gaining ever-increasing popularity and we are led to believe that fitting an individual
network is likely to become the common practice in learning INRs.

Thus, we investigate how to perform downstream tasks with deep learning pipelines on
shapes represented as individual INRs. However, a single INR can easily count hundreds of

Chapter 13. Deep Learning on Implicit Neural Representations of Shapes 118

thousands of parameters, though it is well known that the weights of a deep model provide a
vastly redundant parametrization of the underlying function [329, 330]. Hence, we settle on
investigating whether and how an answer to the above research question may be provided
by a representation learning framework that learns to squeeze individual INRs into compact
and meaningful embeddings amenable to pursuing a variety of downstream tasks.

Our framework, dubbed inr2vec and shown in Fig. 13.1, has at its core an encoder de-
signed to produce a task-agnostic embedding representing the input INR by processing only
the INR weights. These embeddings can be seamlessly used in downstream deep learning
pipelines, as we validate experimentally for a variety of tasks, like classification, retrieval, part
segmentation, unconditioned generation, surface reconstruction and completion. Interest-
ingly, since embeddings obtained from INRs live in low-dimensional vector spaces regardless
of the underlying implicit function, the last two tasks can be solved by learning a simple
mapping between the embeddings produced with our framework, e.g., by transforming the
INR of a ud f into the INR of an sd f . Moreover, inr2vec can learn a smooth latent space
conducive to interpolating INRs representing unseen 3D objects. Additional details and
code can be found at https://cvlab-unibo.github.io/inr2vec. Our contributions can be
summarised as follows:

• we propose and investigate the novel research problem of applying deep learning
directly on individual INRs representing 3D shapes;

• to address the above problem, we introduce inr2vec, a framework that can be used to
obtain a meaningful compact representation of an input INR by processing only its
weights, without sampling the underlying implicit function;

• we show that a variety of tasks, usually addressed with representation-specific and
complex frameworks, can indeed be performed by deploying simple deep learning
machinery on INRs embedded by inr2vec, the same machinery regardless of the INRs
underlying signal.

13.2 Learning to Represent INRs

The research question we address with this work is whether and how can we process
directly INRs to perform downstream tasks. For instance, can we classify a 3D shape that
is implicitly encoded in an INR? And how? As anticipated in Sec. 13.1, we propose to rely
on a representation learning framework to squeeze the redundant information contained in
the weights of INRs into compact latent codes that could be conveniently processed with
standard deep learning pipelines.

Our framework, dubbed inr2vec, is composed of an encoder and a decoder. The encoder,
detailed in Fig. 13.2, is designed to take as input the weights of an INR and produce a compact

https://cvlab-unibo.github.io/inr2vec

Chapter 13. Deep Learning on Implicit Neural Representations of Shapes 119

embedding

hidden layers

linear transforms:
• Weights
• Biases

Stack of weights and
biases

M
ax

 p
o

o
lin

g

sh
ar

ed

sh
ar

ed

sh
ar

ed

sh
ar

ed

inr2vec ENCODER

LINEAR
+

BATCH NORM
+

ReLU

=

FIGURE 13.2. inr2vec encoder architecture.

embedding that encodes all the relevant information of the input INR. A first challenge in
designing an encoder for INRs consists in defining how the encoder should ingest the weights
as input, since processing naively all the weights would require a huge amount of memory
(see Appendix A.5). Following standard practice [304, 324, 325, 326, 327], we consider INRs
composed of several hidden layers, each one with H nodes, i.e., the linear transformation
between two consecutive layers is parameterized by a matrix of weights Wi ∈ RH×H and a
vector of biases bi ∈ RH×1. Thus, stacking Wi and bi

T, the mapping between two consecutive
layers can be represented by a single matrix Pi ∈ R(H+1)×H. For an INR composed of L + 1
hidden layers, we consider the L linear transformations between them. Hence, stacking all the
L matrices Pi ∈ R(H+1)×H, i = 1, . . . , L, between the hidden layers we obtain a single matrix
P ∈ RL(H+1)×H, that we use to represent the INR in input to inr2vec encoder. We discard the
input and output layers in our formulation as they feature different dimensionality and their
use does not change inr2vec performance, as shown in Appendix A.9.

The inr2vec encoder is designed with a simple architecture, consisting of a series of linear
layers with batch norm and ReLU non-linearity followed by final max pooling. At each
stage, the input matrix is transformed by one linear layer, that applies the same weights to
each row of the matrix. The final max pooling compresses all the rows into a single one,
obtaining the desired embedding. It is worth observing that the randomness involved in
fitting an individual INR (weights initialization, data shuffling, etc.) causes the weights in the
same position in the INR architecture not to share the same role across INRs. Thus, inr2vec
encoder would have to deal with input vectors whose elements capture different information
across the different data samples, making it impossible to train the framework. However,
the use of a shared, pre-computed initialization has been advocated as a good practice when
fitting INRs, e.g., to reduce training time by means of meta-learned initialization vectors, as
done in MetaSDF [324] and in the contemporary work exploring processing of INRs [319],
or to obtain desirable geometric properties [297]. We empirically found that following such
a practice, i.e., initializing all INRs with the same random vector, favors the alignment of
weights across INRs and enables the convergence of our framework. In order to guide the

Chapter 13. Deep Learning on Implicit Neural Representations of Shapes 120

inr2vec: training

Linears
& Max Pool

Implicit
Decoder

unsigned distance function

INR

Linears
& Max Pool

inr2vec: inference

INR
(unseen)

FIGURE 13.3. Training and inference of our framework. Left: We consider shapes represented
as INRs. As an example, we show an INR fitting the udf of a surface. Center: inr2vec encoder is
trained together with an implicit decoder to replicate the underlying 3D signal of the input INR.
Right: At inference time, the learned encoder can be used to obtain a compact embedding from
unseen INRs.

inr2vec encoder to produce meaningful embeddings, we first note that we are not interested
in encoding the values of the input weights in the embeddings produced by our framework,
but, rather, in storing information about the 3D shape represented by the input INR. For this
reason, we supervise the decoder to replicate the function approximated by the input INR
instead of directly reproducing its weights, as it would be the case in a standard auto-encoder
formulation. In particular, during training, we adopt an implicit decoder inspired by [296],
which takes in input the embeddings produced by the encoder and decodes the input INRs
from them (see Fig. 13.3 center). More specifically, when the inr2vec encoder processes a
given INR, we use the underlying signal to create a set of 3D queries pi, paired with the values
f (pi) of the function approximated by the input INR at those locations (the type of function
depends on the underlying signal modality, it can be ud f in case of point clouds, sd f in case
of triangle meshes or occ in case of voxel grids). The decoder takes in input the embedding
produced by the encoder concatenated with the 3D coordinates of a query pi and the whole
encoder-decoder is supervised to regress the value f (pi). After the overall framework has
been trained end to end, the frozen encoder can be used to compute embeddings of unseen
INRs with a single forward pass (see Fig. 13.3 right) while the implicit decoder can be used, if
needed, to reconstruct the discrete representation given an embedding.

In Fig. 13.4a we compare 3D shapes reconstructed from INRs unseen during training
with those reconstructed by the inr2vec decoder starting from the latent codes yielded by the
encoder. We visualize point clouds with 8192 points, meshes reconstructed by marching cubes
[331] from a grid with resolution 1283 and voxels with resolution 643. We note that, though
our embedding is dramatically more compact than the original INR, the reconstructed shape
resembles the ground-truth with a good level of detail. Moreover, in Fig. 13.4b we linearly
interpolate between the embeddings produced by inr2vec from two input shapes and show
the shapes reconstructed from the interpolated embeddings. Results highlight that the latent

Chapter 13. Deep Learning on Implicit Neural Representations of Shapes 121

INPUT
INR

inr2vec
OUTPUT

P
O
IN
TS

M
ES
H

V
O
X
EL
S

INPUT
INR

inr2vec
OUTPUT

INPUT
INR

inr2vec
OUTPUT

(A) inr2vec reconstructions.

P
O
IN
TS

M
ES
H

V
O
X
EL
S

0 1interpolation factor

(B) inr2vec interpolations.

FIGURE 13.4. Properties of inr2vec latent space.

space learned by inr2vec enables smooth interpolations between shapes represented as INRs.
Additional details on inr2vec training and the procedure to reconstruct the discrete representations
from the decoder are in the Appendices.

13.3 Deep Learning on INRs

In this section, we first present the set-up of our experiments. Then, we show how several
tasks dealing with 3D shapes can be tackled by working only with inr2vec embeddings as
input and/or output. Additional details on the architectures and on the experimental settings are in
Appendix A.6.

General settings. In all the experiments reported in this section, we convert 3D discrete
representations into INRs featuring 4 hidden layers with 512 nodes each, using the SIREN
activation function [304].

We train inr2vec using an encoder composed of four linear layers with respectively 512,
512, 1024 and 1024 features, embeddings with 1024 values and an implicit decoder with
5 hidden layers with 512 features. In all the experiments, the baselines are trained using
standard data augmentation (random scaling and point-wise jittering), while we train both
inr2vec and the downstream task-specific networks on datasets augmented offline with the
same transformations.

Point cloud retrieval. We first evaluate the feasibility of using inr2vec embeddings of
INRs to solve tasks usually tackled by representation learning, and we select 3D retrieval
as a benchmark. We follow the procedure introduced in [171], using the Euclidean distance
to measure the similarity between embeddings of unseen point clouds from the test sets of
ModelNet40 [182] and ShapeNet10 (a subset of 10 classes of the popular ShapeNet dataset
[171]). For each embedded shape, we select its k-nearest-neighbours and compute a Precision
Score comparing the classes of the query and the retrieved shapes, reporting the mean
Average Precision for different k (mAP@k). Besides inr2vec, we consider three baselines to
embed point clouds, which are obtained by training the PointNet [160], PointNet++ [161]

Chapter 13. Deep Learning on Implicit Neural Representations of Shapes 122

ModelNet40 ShapeNet10 ScanNet10
Method mAP@1 mAP@5 mAP@10 mAP@1 mAP@5 mAP@10 mAP@1 mAP@5 mAP@10

PointNet [160] 80.1 91.7 94.4 90.6 96.6 98.1 65.7 86.2 92.6
PointNet++ [161] 85.1 93.9 96.0 92.2 97.5 98.6 71.6 89.3 93.7

DGCNN [167] 83.2 92.7 95.1 91.0 96.7 98.2 66.1 88.0 93.1
inr2vec 81.7 92.6 95.1 90.6 96.7 98.1 65.2 87.5 94.0

TABLE 13.1. Point cloud retrieval quantitative results.

Point Cloud Mesh Voxels
Method ModelNet40 ShapeNet10 ScanNet10 Manifold40 ShapeNet10

PointNet [160] 88.8 94.3 72.7 – –
PointNet++ [161] 89.7 94.6 76.4 – –

DGCNN [167] 89.9 94.3 76.2 – –
MeshWalker [289] – – – 90.0 –
Conv3DNet [258] – – – – 92.1

inr2vec 87.0 93.3 72.1 86.3 93.0

TABLE 13.2. Results on shape classification across representations.

and DGCNN [167] encoders in combination with a fully connected decoder similar to that
proposed in [332] to reconstruct the input cloud. Quantitative results, reported in Tab. 13.1,
show that, while there is an average gap of 1.8 mAP with PointNet++, inr2vec is able to
match, and in some cases even surpass, the performance of the other baselines. Moreover,
it is possible to appreciate in Fig. 13.5 that the retrieved shapes not only belong to the same
class as the query but present also the same coarse structure. This finding highlights how the
pretext task used to learn inr2vec embeddings can summarise relevant shape information
effectively.

Shape classification. We then address the problem of classifying point clouds, meshes and
voxel grids. For point clouds we use three datasets: ShapeNet10, ModelNet40 and ScanNet10
[174]. When dealing with meshes, we conduct our experiments on the Manifold40 dataset
[278]. Finally, for voxel grids, we use again ShapeNet10, quantizing clouds to grids with
resolution 643. Despite the different nature of the discrete representations taken into account,
inr2vec allows us to perform shape classification on INRs embeddings, augmented online
with E-Stitchup [333], by the very same downstream network architecture, i.e., a simple fully
connected classifier consisting of three layers with 1024, 512 and 128 features. We consider
as baselines well-known architectures that are optimized to work on the specific input
representations of each dataset. For point clouds, we consider PointNet [160], PointNet++
[161] and DGCNN [167]. For meshes, we consider a recent and competitive baseline that
processes directly triangle meshes [289]. As for voxel grids, we train a 3D CNN classifier that
we implemented following [258] (Conv3DNet from now on). Since only the train and test
splits are released for all the datasets, we created validation splits from the training sets in
order to follow a proper train/val protocol for both the baselines and inr2vec. As for the test
shapes, we evaluated all the baselines on the discrete representations reconstructed from the
INRs fitted on the original test sets, as these would be the only data available at test time in a
scenario where INRs are used to store and communicate 3D data. We report the results of

Chapter 13. Deep Learning on Implicit Neural Representations of Shapes 123

1-NNQUERY 2-NN 3-NN 4-NN

M
o
d
el
N
et
4
0

Sh
ap
eN

et
1
0

FIGURE 13.5. Point cloud retrieval qualita-
tive results. Given the inr2vec embedding
of a query shape, we show the shapes re-
constructed from the closest embeddings
(L2 distance).

2048 16K 32K 64K

Number of points

10 3

10 2

10 1

100

101

In
fe

re
nc

e
tim

e
(s

ec
)

-lo
g

sc
al

e- PointNet
PointNet++
DGCNN
inr2vec

FIGURE 13.6. Time required to classify
INRs encoding udf. For point cloud clas-
sifiers, the time to reconstruct the discrete
point cloud from the INR is included in the
chart.

the baselines tested on the original discrete representations available in the original datasets
in Appendix A.8: they are in line with those provided here. The results in Tab. 13.2 show
that inr2vec embeddings deliver classification accuracy close to the specialized baselines
across all the considered datasets, regardless of the original discrete representation of the
shapes in each dataset. Remarkably, our framework allows us to apply the same simple
classification architecture on all the considered input modalities, in stark contrast with all
the baselines that are highly specialized for each modality, exploit inductive biases specific
to each such modality and cannot be deployed on representations different from those they
were designed for. Furthermore, while presenting a gap of some accuracy points with respect
to the most recent architectures, like DGCNN and MeshWalker, the simple fully connected
classifier that we applied on inr2vec embeddings obtains scores comparable to standard
baselines like PointNet and Conv3DNet. We also highlight that, should 3D shapes be stored
as INRs, classifying them with the considered specialized baselines would require recovering
the original discrete representations by the lengthy procedures described in Appendix A.3.
Thus, in Fig. 13.6, we report the inference time of standard point cloud classification networks
while including also the time needed to reconstruct the discrete point cloud from the input
INR of the underlying ud f at different resolutions. Even at the coarsest resolution (2048
points), all the baselines yield an inference time which is one order of magnitude higher than
that required to classify directly the inr2vec embeddings. Increasing the resolution of the
reconstructed clouds makes the inference time of the baselines prohibitive, while inr2vec, not
requiring the explicit clouds, delivers a constant inference time of 0.001 seconds.

Point cloud part segmentation. While the tasks of classification and retrieval concern
the possibility of using inr2vec embeddings as a compact proxy for the global information
of the input shapes, with the task of point cloud part segmentation we aim at investigating
whether inr2vec embeddings can be used also to assess upon local properties of shapes. The
part segmentation task consists in predicting a semantic (i.e., part) label for each point of

Chapter 13. Deep Learning on Implicit Neural Representations of Shapes 124

Method in
st

an
ce

m
Io

U

cl
as

s
m

Io
U

ai
rp

la
ne

ba
g

ca
p

ca
r

ch
ai

r

ea
rp

ho
ne

gu
it

ar

kn
if

e

la
m

p

la
pt

op

m
ot

or

m
ug

pi
st

ol

ro
ck

et

sk
at

eb
oa

rd

ta
bl

e

PointNet [160] 83.1 78.96 81.3 76.9 79.6 71.4 89.4 67.0 91.2 80.5 80.0 95.1 66.3 91.3 80.6 57.8 73.6 81.5
PointNet++ [161] 84.9 82.73 82.2 88.8 84.0 76.0 90.4 80.6 91.8 84.9 84.4 94.9 72.2 94.7 81.3 61.1 74.1 82.3

DGCNN [167] 83.6 80.86 80.7 84.3 82.8 74.8 89.0 81.2 90.1 86.4 84.0 95.4 59.3 92.8 77.8 62.5 71.6 81.1
inr2vec 81.3 76.91 80.2 76.2 70.3 70.1 88.0 65.0 90.6 82.1 77.4 94.4 61.4 92.7 79.0 56.2 68.6 78.5

TABLE 13.3. Part segmentation quantitative results. We report the IoU for each class, the mean
IoU over all the classes (class mIoU) and the mean IoU over all the instances (instance mIoU).

INR

PART SEGMENTATION
DECODER

(A) Method.

INR

inr2vec DECODER
(RECONSTRUCTION)

inr2vec DECODER
(PART SEGMENTATION)

(B) Qualitative results.

FIGURE 13.7. Point cloud part segmentation.

a given cloud. We tackle this problem by training a decoder similar to that used to train
our framework (see Fig. 13.7a). Such decoder is fed with the inr2vec embedding of the
INR representing the input cloud, concatenated with the coordinate of a 3D query, and it is
trained to predict the label of the query point. We train it, as well as PointNet, PointNet++
and DGCNN, on the ShapeNet Part Segmentation dataset [334] with point clouds of 2048
points, with the same train/val/test of the classification task. Quantitative results reported in
Tab. 13.3 show the possibility of performing also a local discriminative task as challenging
as part segmentation based on the task-agnostic embeddings produced by inr2vec and, in
so doing, to reach performance not far from that of specialized architectures. Additionally,
in Fig. 13.7b we show point clouds reconstructed at 100K points from the input INRs and
segmented with high precision thanks to our formulation based on a semantic decoder
conditioned by the inr2vec embedding.

Shape generation. With the experiments reported above we validated that, thanks to
inr2vec embeddings, INRs can be used as input in standard deep learning machinery. In
this section, we address instead the task of shape generation in an adversarial setting to
investigate whether the compact representations produced by our framework can be adopted
also as medium for the output of deep learning pipelines. For this purpose, as depicted in
Fig. 13.8a, we train a Latent-GAN [335] to generate embeddings indistinguishable from those
produced by inr2vec starting from random noise. The generated embeddings can then be
decoded into discrete representations with the implicit decoder exploited during inr2vec
training. Since our framework is agnostic with respect to the original discrete representation
of shapes used to fit INRs, we can train Latent-GANs with embeddings representing point

Chapter 13. Deep Learning on Implicit Neural Representations of Shapes 125

N
O
IS
E

GENERATOR

DISCRIMINATOR

TRAINING
N
O
IS
E

GENERATOR

INFERENCE

SP
-G
A
N

O
C
C
N
ET

i
n
r
2
v
e
c

i
n
r
2
v
e
c

2xFC

2xFC

2xFC

(A) Method.

N
O
IS
E

GENERATOR

DISCRIMINATOR

TRAINING
N
O
IS
E

GENERATOR

INFERENCE

SP
-G
A
N

O
C
C
N
ET

i
n
r
2
v
e
c

i
n
r
2
v
e
c

2xFC

2xFC

2xFC

(B) Qualitative results.

FIGURE 13.8. Learning to generate shapes from inr2vec latent space.

clouds or meshes based on the same identical protocol and architecture (two simple fully
connected networks as generator and discriminator). For point clouds, we train one Latent-
GAN on each class of ShapeNet10, while we use models of cars provided by [301] when
dealing with meshes. In Fig. 13.8b, we show some samples generated with the described
procedure, comparing them with SP-GAN [336] on the chair class for what concerns point
clouds and Occupancy Networks [301] (VAE formulation) for meshes. Generated examples
of other classes for point clouds are shown in Appendix A.10. The shapes generated with
our Latent-GAN trained only on inr2vec embeddings seem comparable to those produced
by the considered baselines, in terms of both diversity and richness of details. Additionally,
by generating embeddings that represent implicit functions, our method enables sampling
point clouds at any arbitrary resolution (e.g., 8192 points in Fig. 13.8b) whilst SP-GAN would
require a new training for each desired resolution since the number of generated points must
be set at training time.

Learning a mapping between inr2vec embedding spaces. We have shown that inr2vec
embeddings can be used as a proxy to feed INRs in input to deep learning pipelines, and
that they can also be obtained as output of generative frameworks. In this section we move a
step further, considering the possibility of learning a mapping between two distinct latent
spaces produced by our framework for two separate datasets of INRs, based on a transfer
function designed to operate on inr2vec embeddings as both input and output data. Such
transfer function can be realized by a simple fully connected network that maps the input
embedding into the output one and is trained by a standard MSE loss (see Fig. 13.9a). As
inr2vec generates compact embeddings of the same dimension regardless of the input INR
modality, the transfer function described here can be applied seamlessly to a great variety of
tasks, usually tackled with ad-hoc frameworks tailored to specific input/output modalities.

Chapter 13. Deep Learning on Implicit Neural Representations of Shapes 126

TR
A

N
SFER

INR

INFERENCE

PAIRED inr2vec LATENT SPACES

TRANSFER

TRAINING

IN
C

O
M

P
LE

TE
(i

n
p

u
t)

C
O

M
P

LE
TE

(o
u

tp
u

t)
P

C
D

(i
n

tp
u

t)
M

ES
H

(o
u

tp
u

t)

8
xFC

8xFC

(A) Method.

TR
A

N
SFER

INR

INFERENCE

PAIRED inr2vec LATENT SPACES

TRANSFER

TRAINING

IN
C

O
M

P
LE

TE
(i

n
p

u
t)

C
O

M
P

LE
TE

(o
u

tp
u

t)
P

C
D

(i
n

tp
u

t)
M

ES
H

(o
u

tp
u

t)

8
xFC

8xFC

(B) Point cloud completion.

TR
A

N
SFER

INR

INFERENCE

PAIRED inr2vec LATENT SPACES

TRANSFER

TRAINING

IN
C

O
M

P
LE

TE
(i

n
p

u
t)

C
O

M
P

LE
TE

(o
u

tp
u

t)
P

C
D

(i
n

tp
u

t)
M

ES
H

(o
u

tp
u

t)

8
xFC

8xFC

(C) Surface reconstruction.

FIGURE 13.9. Learning a mapping between inr2vec latent spaces.

Here, we apply this idea to two tasks. Firstly, we address point cloud completion on the
dataset presented in [337] by learning a mapping from inr2vec embeddings of INRs that
represent incomplete clouds to embeddings associated with complete clouds. Then, we tackle
the task of surface reconstruction on ShapeNet cars, training the transfer function to map
inr2vec embeddings representing point clouds into embeddings that can be decoded into
meshes. As we can appreciate from the samples in Fig. 13.9b and Fig. 13.9c, the transfer
function can learn an effective mapping between inr2vec latent spaces. Indeed, by processing
exclusively INRs embedding, we can obtain output shapes that are highly compatible with
the input ones whilst preserving the distinctive details, like the pointy wing of the airplane in
Fig. 13.9b or the flap of the first car in Fig. 13.9c.

13.4 Concluding Remarks

We have shown that it is possible to apply deep learning directly on individual INRs
representing 3D shapes. Our formulation of this novel research problem leverages on a
task-agnostic encoder which embeds INRs into compact and meaningful latent codes without
accessing the underlying implicit function. Our framework ingests INRs obtained from
different 3D discrete representations and performs various tasks through standard machinery.
However, we point out two main limitations: i) Although INRs capture continuous geometric
cues, inr2vec embeddings achieve results inferior to state-of-the-art solutions ii) There is no
obvious way to perform online data augmentation on shapes represented as INRs by directly
altering their weights. In the future, we plan to investigate these shortcomings as well as
applying inr2vec to other input modalities like images, audio or radiance fields. We will also

Chapter 13. Deep Learning on Implicit Neural Representations of Shapes 127

investigate weight-space symmetries [338] as a different path to favour alignment of weights
across INRs despite the randomness of training. We reckon that our work may foster the
adoption of INRs as a unified and standardized 3D representation, thereby overcoming the
current fragmentation of discrete 3D data and associated processing architectures.

128

Chapter 14

Neural Processing of Tri-Plane Hybrid
Neural Fields

14.1 Introduction

A world of neural fields. Neural fields [294] are functions defined at all spatial coordinates,
parameterized by a neural network such as a Multi-Layer Perceptron (MLP). They have been
used to represent different kinds of data, like image intensities, scene radiances, 3D shapes, etc.
In the context of 3D world representation, various types of neural fields have been explored,
such as the signed/unsigned distance field (SDF/UDF) [296, 297, 320], the occupancy field
(OF) [301, 300], and the radiance field (RF) [339]. Their main advantage is the ability to obtain
a continuous representation of the world, thereby providing information at every point in
space, unlike discrete counterparts like voxels, meshes, or point clouds. Moreover, neural
fields allow for encoding a 3D geometry at arbitrary resolution while using a finite number
of parameters, i.e., the weights of the MLP. Thus, the memory cost of the representation and
its spatial resolution are decoupled.

Recently, hybrid neural fields [294], which combine continuous neural elements (i.e., MLPs)
with discrete spatial structures (e.g.,voxel grids [300], point clouds [314], etc.) that encode
local information, are gaining popularity due to faster inference [305], better use of network
capacity [306] and suitability to editing tasks [307]. In particular, the community has recently
investigated tri-planes [310], a type of hybrid representation whose discrete components are
three feature planes (xy, yz, xz), due to its regular grid structure and compactness. Tri-planes
have been deployed for RF [312] and SDF [309].

Neural processing of neural fields. As conjectured in Chapter 13, due to their advantages
and increasing adoption in recent years, neural fields may become one of the standard
methods for storing and communicating 3D information, i.e., repositories of digital twins of
real objects stored as neural networks will become available. In such a scenario, developing
strategies to solve tasks such as classification or segmentation by directly processing neural
fields becomes relevant to utilize these representations in practical applications. For instance,
given a NeRF of a chair, classifying the weights of the MLP without rendering and processing

Chapter 14. Neural Processing of Tri-Plane Hybrid Neural Fields 129

FIGURE 14.1. Left: Neural processing of hybrid neural fields allows us to employ well-established
architectures to tackle deep learning tasks while avoiding problems related to processing MLPs,
such as the high-dimensional weight space and the random initialization. Right: We achieve
performance better than other works on this topic, close to methods that operate directly on
explicit representations. without sacrificing the reconstruction quality of neural fields.

images would be faster, less computationally demanding, and more straightforward, e.g.,there
is no need to understand where to sample the 3D space as there is no sampling at all.

Earlier methods on the topic, such as Functa [319], approached this scenario with shared
networks trained on the whole dataset conditioned on a different global embedding for each
object. In this case, a neural field is realized by the shared network plus the embedding, which
is then processed for downstream tasks. However, representing a whole dataset with a shared
network is difficult, and the reconstruction quality of neural fields inevitably drops (see the
plot in Fig. 14.1). For this reason, later approaches such as inr2vec, NFN [9], NFT [318], and
DWSNet [317] propose to process neural fields consisting of a single large MLP, such as
SIREN [304], for each object. Although this strategy effectively maintains the reconstruction
capabilities of neural fields, task performance suffers due to the challenges introduced by the
need to handle MLPs, such as the large number of weights and the difficulty of embedding
inductive biases into neural networks aimed at processing MLPs.

Moreover, randomly initialized MLPs trained on the same input data can converge to
drastically different regions of the weight space due to the non-convex optimization problem
and the symmetries of neural weight spaces [338, 340]. Thus, identifying a model capable of
processing MLPs and generalizing among all possible initializations is not straightforward.
Previous works partially address these problems: inr2vec proposes an efficient and scalable
architecture, and bypasses the initialization problem by fixing it across MLPs; NFN, NFT,
and DWSNet design networks that are equivariant to weight symmetries. Nonetheless, all
previous methods processing neural fields realized as single MLPs achieve unsatisfying
performance, far from established architectures that operate on explicit representations,
e.g.,point clouds or meshes, as shown in Fig. 14.1 right.

Neural processing of tri-plane neural fields. To overcome the limitations of previous
approaches and given the appealing properties of hybrid representations, in this paper, we
explore the new research problem of tackling common 3D tasks by directly processing tri-
plane neural fields. To this end, we analyze the information stored in the two components

Chapter 14. Neural Processing of Tri-Plane Hybrid Neural Fields 130

of this representation, which comprises a discrete feature space alongside a small MLP, and
find out that the former contains rich semantic and geometric information. Based on this
finding, we propose to process tri-plane neural fields by seamlessly applying, directly on the
discrete feature space, standard neural architectures that have been developed and engineered
over many years of research, such as CNNs [14] or, thanks to tri-plane compactness, even
Transformers [15] (Fig. 14.1 left). Moreover, we note empirically that the same geometric
structures are encoded in tri-planes fitted on the same shape from different initializations
up to a permutation of the channels. Thus, we exploit this property to achieve robustness to
the random initialization problem by processing tri-planes with standard architectures that
are made invariant to permutation of the channels. We achieve much better performance
than all previous methods in classifying and segmenting objects represented as neural fields,
almost on par with established architectures that operate on explicit representations, without
sacrificing the representation quality (Fig. 14.1). Finally, we observe that tri-plane neural
fields for individual objects have a much better representation quality than shared network
frameworks, comparable to the use of a large MLP (see Fig. 14.1 and Sec. 14.2.2).

Summary of our contributions. Code can be found at https://github.com/CVLAB-Unibo/
triplane_processing.

• We set forth the new research problem of solving tasks by directly processing tri-
plane neural fields. We show that the discrete features encode rich semantic and geometric
information, which can be elaborated by applying well-established architectures. Moreover,
we note how similar information is stored in tri-planes with different initializations of the
same shape. Yet, the information is organized with different channel orders.

• We show that applying well-established architectures on tri-planes achieves much
better results than processing neural fields realized as a large MLP. Moreover, we reveal that
employing architectures made invariant to the channel order improves performance in the
challenging but more realistic scenario of randomly initialized neural fields. In this way, we
almost close the gap between methods that operate on explicit representations and those
working directly on neural representations.

• To validate our results, we build a comprehensive benchmark for tri-plane neural field
classification. We test our method by classifying neural fields that model various fields (UDF,
SDF, OF, RF). In particular, to the best of our knowledge, we are the first to classify NeRFs
without explicitly reconstructing the represented signal.

• Finally, as the tri-plane structure is independent of the represented field, we train a single
network to classify diverse neural fields. Specifically, we show promising preliminary results
of a unique model capable of classifying UDF, SDF, and OF, showcasing some preliminary
experiments in the realm of Transfer Learning as this is the main topic of this dissertation.

https://github.com/CVLAB-Unibo/triplane_processing
https://github.com/CVLAB-Unibo/triplane_processing

Chapter 14. Neural Processing of Tri-Plane Hybrid Neural Fields 131

14.2 Tri-plane hybrid neural fields

14.2.1 Preliminaries

Neural fields. A field is a physical quantity defined for all domain coordinates. We
focus on fields describing the 3D world, and thus on R3 coordinates p = (x, y, z). We
consider the 3D fields commonly used in computer vision and graphics, i.e., the SDF [296]
and UDF [295], which map coordinates to the signed an unsigned distance from the closest
surface, respectively, the OF [301], which computes the occupancy probability, and the RF
[339], that outputs (R, G, B) colors and density σ. A field can be modeled by a function, Φ,
parameterized by θ. Thus, for any point p, the field is given by q̂ = Φ(p; θ). If parameters
θ are the weights of a neural network, Φ is said to be a neural field. On the other hand, if
some of the parameters are the weights of a neural network, whereas the rest encode local
information within a discrete spatial structure, Φ is a hybrid neural field [294].

Tri-plane representation. A special case of hybrid neural fields, originally proposed in
[310], is parameterized by a discrete tri-plane feature map, T, and a small MLP network,
M (Fig. 14.2, left). T consists of three orthogonal 2D feature maps, T = (Fxy, Fxz, Fyz),
with Fxy, Fxz, Fyz ∈ RC×H×W , where C is the number of channels and W, H are the spatial
dimensions of the feature maps. The feature vector associated with a 3D point, p, is computed
by projecting the point onto the three orthogonal planes so to get the 2D coordinates, pxy, pxz,
and pyz, relative to each plane. Then, the four feature vectors corresponding to the nearest
neighbours in each plane are bi-linearly interpolated to calculate three feature vectors, fxy,
fxz, and fyz, which are summed up element-wise to obtain f = fxy + fxz + fyz, f ∈ RC.

Finally, we concatenate f with a positional encoding [339], PE, of the 3D point p and feed
it to the MLP, which in turn outputs the field value at p: q̂ = Φ(p; θ) = M([f, PE]). We
implement M with sin activation functions [304] to better capture high-frequency details.

Learning tri-planes. To learn a field, we optimize a (T, M) pair for each 3D object, starting
from randomly initialized parameters, θ, for both M and T. We sample N points pi and
feed them to T and M to compute the corresponding field quantities q̂i = Φ(pi; θ). Then,
we optimize θ with a loss, L, capturing the discrepancy between the predicted fields q̂i and
the ground truth yi, applying an optional mapping between the output and the available
supervision if needed (e.g.,volumetric rendering in case of RF). An overview of this procedure
is shown on the left of Fig. 14.2 and described in detail in Appendix B.1. We repeat this process
for each 3D shape of a dataset, thereby creating a dataset of tri-plane hybrid neural fields
(Fig. 14.2, right). We set C to 16 and both H and W to 32. We use MLPs with three hidden
layers, each having 64 neurons. We note that our proposal is independent of the learning
procedure, and, in a scenario in which neural fields are a standard 3D data representation,
we would already have datasets available.

Chapter 14. Neural Processing of Tri-Plane Hybrid Neural Fields 132

+ + =

interp

interp

interp

Observations

3D world

SDF/UDF/OF

RF

Tri-plane dataset

~

FIGURE 14.2. Left: Tri-plane representation and learning of each neural field. Right: Datasets are
composed of many independent tri-plane hybrid neural fields, each representing a 3D object.

14.2.2 Tri-plane analysis

We investigate here the benefits of tri-planes for 3D data representation and neural
processing. Firstly, we assess their reconstruction capability, which is crucial in a world where
neural fields may be used as a standard way to represent 3D assets. Secondly, we analyze
the information learned in the 2D planes and how to be robust to the random initialization
problem when handling tri-planes.

Reconstruction quality.
We assess the tri-plane reconstruction performance by following the benchmark intro-

duced in inr2vec. In Tab. 14.1, we present the quantitative outcomes obtained by fitting
SDFs and UDFs from meshes and point clouds of the Manifold40 dataset [278]. We compare
with neural fields employed in inr2vec inr2vec and alternatives based on a shared archi-
tecture, such as DeepSDF [296] and Functa [319]. Given the SDF and UDF fields learned
by each framework, we reconstruct the explicit meshes and point clouds as described in
Appendix B.2.1 and evaluate them against the ground-truths. To conduct this evaluation, we
sample dense point clouds of 16,384 points from both the reconstructed and ground-truth
shapes. We employ the Chamfer Distance [332] and the F-Score [341] to evaluate fidelity
to ground-truths. As for meshes, the tri-planes representation stands out with the lowest
Chamfer Distance (CD) (0.18 mm), indicating its excellent reconstruction quality despite
the relatively small number of parameters (only 64K). For point clouds, tri-planes produce
reconstructions slightly worse than inr2vec but still comparable, i.e., 0.21m vs 0.24mm CD. In
Appendix B.2.2 (Fig. B.7), we show reconstructions attained from tri-plane representations for
various types of fields. Moreover, in agreement with the findings of inr2vec, Tab. 14.1 shows
that shared network frameworks such as DeepSDF and Functa yield significantly worse
performance in terms of reconstruction quality. We finally point out how sharing the MLP
for all tri-planes is not as effective as learning individual neural fields (third vs second row).
These results support our intuition that reconstruction quality mandates hybrid neural fields
optimized individually on each data sample and highlight the importance of investigating
the direct neural processing of these representations. In Appendix B.2.3 (Fig. B.2, Fig. B.3),

Chapter 14. Neural Processing of Tri-Plane Hybrid Neural Fields 133

Mesh from SDF Point Cloud from UDF

Method Type # Params (K) CD (mm) F-score (%) CD (mm) F-score (%)

inr2vec Single 800 0.26 69.7 0.21 65.5
Tri-plane Single 64 0.18 68.6 0.24 60.7

Tri-plane Shared 64 1.57 42.9 3.45 33.3
DeepSDF [296] Shared 2400 6.6 25.1 5.6 5.7
Functa [319] Shared 7091 2.85 21.3 12.8 5.8

TABLE 14.1. Results of mesh and point cloud reconstruction on the Manifold40 test set. “Single”
and “Shared” indicate neural fields trained on each shape independently or on the whole dataset.

View Tri-plane (TA, MA) (TB, MB) (TA, MB) (Permuted TA, MB)
SD

F
U

D
F

R
F

FIGURE 14.3. Left: For three different hybrid neural fields (from top to bottom: SDF, UDF, RF)
we render a view of the reconstructed 3D object alongside the corresponding tri-plane feature
map. Right: From left to right, reconstructions of two (tri-plane, MLP) pairs with different
initializations, namely (TA, MA) and (TB, MB); the mixed pair (TA, MB); a channel permutation
of TA and MB.

we show the reconstructions obtained by tri-planes and the other approaches considered in
our evaluation.

Tri-plane content. To investigate how to directly process tri-plane neural fields, we
inspected the content of their discrete spatial structure by visualizing the features stored in
a plane alongside the view of the object rendered from the vantage point corresponding to
the plane. Examples of these visualizations are depicted in Fig. 14.3 (left) for various objects
such as a car, an airplane, and a bottle. To visualize features as a single image, displayed by a
viridis colormap, we take a sum across the feature channels at each spatial location. These
visualizations show clearly that the tri-plane spatial structure learns the object shape, i.e., it
contains information about its geometry. For this reason and further investigations reported
in Appendix B.4, we conjecture, and demonstrate empirically in subsequent sections, that to
tackle tasks such as classification and segmentation we can discard the MLPs and process
only the tri-plane structure of the neural fields. Remarkably, the regular grid structure of
tri-planes allows us to deploy popular and effective neural architectures, such as CNNs and

Chapter 14. Neural Processing of Tri-Plane Hybrid Neural Fields 134

Transformers. On the contrary, direct ingestion of MLPs for neural processing is problematic
and leads to sub-optimal task performance.

Random initialization. Furthermore, we investigate the effect of random initializations
on tri-plane neural fields. We note here that by “random initialization” we mean that each
(tri-plane, MLP) pair adheres to the same initialization scheme but has a different random
seed (see Appendix B.5.5). We find out empirically that the main difference between tri-plane
structures learned from different optimizations of the same shape lies in the channel order
within a feature plane. Indeed, we conducted experiments where we fit the same 3D shape
twice (see Fig. 14.3 (right)), starting from two random initializations of both the tri-plane
structure and the MLP weights. Although the geometric content of the two tri-planes is
similar, due to the different initialization, the tri-plane learned in the first run cannot be used
with the MLP obtained in the second (third column of Fig. 14.3, right side), and vice-versa.
However, it is always possible to find a suitable permutation of the channels of the first tri-
plane such that the second MLP can correctly decode its features (fourth column of Fig. 14.3,
right side), and vice-versa. We found the right permutation by a brute-force search based on
maximizing reconstruction quality. To make the search feasible, we used a smaller number of
channels, i.e., C = 8 rather than C = 16. Still, the experimental results in Sec. 14.3.1 support
our belief that the main source of variance across randomly initialized tri-plane optimizations
of the same shape consists of a permutation of the channel order.

Thus, unlike neural fields realized as MLPs, with tri-planes, it is straightforward to
counteract the nuisances due to random initialization by adopting standard architectures
made invariant to the channel order.

14.2.3 Architectures for neural processing of tri-plane neural fields

Based on the above analysis, we propose to process tri-planes with Transformers [15]. In
particular, we propose to rely on a Transformer encoder without positional encoding, which
is equivariant to token positions. By tokenizing tri-planes so that each token represents a
channel of a plane, such architecture seamlessly computes representations equivariant to the
order of the channels. Specifically, we unroll each channel of size H × W, to obtain a token
of dimension HW within a sequence of length 3C tokens. These tokens are then linearly
projected and fed into the Transformer. The output of the encoder is once again a sequence of
3C tokens.

For global tasks like classification, the output sequence is subsequently subjected to a
max pool operator to obtain a global embedding that characterizes the input shape. In our
experiments, this embedding is then processed through a stack of fully connected layers to
compute the logits. The way the tokens are defined, the absence of positional encoding, and
the final max pool operator allow for achieving invariance to the channel order. For dense

Chapter 14. Neural Processing of Tri-Plane Hybrid Neural Fields 135

tasks like part segmentation, instead, we also utilize the decoder part of Transformers. More
specifically, we treat the coordinates queries to segment as a sequence of input tokens to the
decoder. Each point p with coordinates (x, y, z) undergoes positional encoding [339] and is
then projected to a higher-dimensional space using a linear layer.

By leveraging the cross-attention mechanisms within the decoder, each input token
representing a query point can globally attend to the most relevant parts of the tri-planes
processed by the encoder to produce its logits. Additional details about the architectures,
including block diagrams, are reported in Appendix B.5.3.

14.3 Tasks on Neural fields

14.3.1 Neural field classification

Benchmark.
We perform extensive tests to validate our approach. In so doing, we build the first

neural field classification benchmark, where we compare all the existing proposals for neural
field processing on the task of predicting the category of the objects represented within the
field without recreating the explicit signal. Specifically, we test all methods on UDF fields
obtained from point clouds of ModelNet40 [182], ShapeNet10 [28], and ScanNet10 [28]; SDF
fields learned from meshes of Manifold40 [278]; OF fields obtained from voxels grids of
ShapeNet10. In addition, we provide for the first time classification results on neural radiance
fields (RF), learned from ShapenetRender [342]. See Appendix B.5.1 for more details on
the benchmark. Besides a simple MLP baseline, we compare with frameworks designed to
process neural fields realized as MLPs, i.e., inr2vec, NFN [9], NFT [318], and DWSNet [317].
These methods process single MLP neural fields, which we implement as SIREN networks
[304]. Differently from inr2vec, the MLPs in our benchmark are randomly initialized to simulate
real-world scenarios. Unlike all previous methods, ours processes individual tri-plane neural
fields, which are also randomly initialized. Moreover, we compare with frameworks where
neural fields are realized by a shared network and a small latent vector or modulation, i.e.,
DeepSDF [296] and Functa [319]. Whenever possible, we use the official code released by the
authors to run the experiments. Note that not all frameworks can be easily extended to all
fields. Therefore, we only test each framework in the settings that are compatible with our
resources and that do not require fundamental changes to the original implementations (see
Appendix B.5.2 for more details).

Results. As we can observe in Tab. 14.2, overall, shared architecture frameworks (DeepSDF
and Functa) outperform previous methods that directly operate on neural fields represented
as a single neural network.

Chapter 14. Neural Processing of Tri-Plane Hybrid Neural Fields 136

UDF SDF OF RF

Method Type Input ModelNet40 ShapeNet10 ScanNet10 Manifold40 ShapeNet10 ShapeNetRender

DeepSDF [296] Shared Latent vector 41.2 76.9 51.2 64.9 – –
Functa [319] Shared Modulation 87.3 83.4 56.4 85.9 36.3 –

inr2vec Single MLP 10.6 42.0 40.9 13.1 38.6 –
MLP Single MLP 3.7 28.8 36.7 4.2 29.6 22.0
NFN [9] Single MLP 9.0 9.0 45.3 4.1 33.8 87.0
NFT [318] Single MLP 6.9 6.9 45.3 4.1 33.8 85.3
DWSNet [317] Single MLP 56.3 78.4 62.2 47.9 79.1 83.1
Ours Single Tri-plane 87.0 94.1 69.1 86.8 91.8 92.6

TABLE 14.2. Test set accuracy for shape classification across neural fields. We compare several
frameworks capable of processing neural fields

However, we point out again that the reconstruction capability of such frameworks is poor,
as shown in Sec. 14.2.2. Conversely, previous methods that utilize individual neural fields
demonstrate superior reconstruction quality but struggle to perform effectively in real-world
scenarios where shapes need to be fitted starting from arbitrary initialization points. inr2vec
makes the assumption of learning all MLPs starting from the same initialization, and it does
not work when this initialization schema is not applied. Among the family of methods
that adopt layers equivariant and invariant to permutations of the neurons, only DWSNet
works on the large MLPs constituting our benchmark, though performance tends to be worse
than shared network approaches. Our method delivers the best of both worlds: it ingests
tri-planes neural fields, which exhibit excellent reconstruction quality while achieving the
best performance overall, often surpassing by a large margin all other methods, including
those relying on a shared neural field, e.g.,the accuracy on ScanNet10 is 56.4 for Functa vs 69.1
for our method. Hence, we can state confidently that our approach achieves the best trade-off
between classification accuracy and reconstruction quality. Finally, we highlight that our
proposal is effective with all the datasets and kinds of fields addressed in the experiments.

Comparison with explicit representations. In Tab. 14.3, we compare our method against
established architectures specifically designed to process explicit representations. For a fair
comparison, we reconstruct the explicit data from each field so that exactly the same shapes
are used in each experiment. Practically, we reconstruct point clouds, mesh, and voxel grids
from UDF, SDF, and OF, respectively. Then, we process them with specialized architectures,
i.e., PointNet [160] for point clouds, MeshWalker [289] for meshes, and Conv3DNet [258] for
voxel grids. As for RF, we render a multi-view dataset with 36 views for each object. Then, we
train 36 per-view ResNet50 [14] so as to ensemble the predictions at test time. We highlight
how our proposal, which can classify every neural field with the same standard architecture,
almost closes the performance gap with respect to specialized architectures designed to process
explicit representations. Noticeably, we show that NeRFs can be classified accurately from
the features stored in a tri-plane structure without rendering any images.

Towards universal tri-plane classification. Finally, to the best of our knowledge, we
implement for the first time a universal tri-plane classifier, i.e., a model which can be trained

Chapter 14. Neural Processing of Tri-Plane Hybrid Neural Fields 137

Method Input ModelNet40 ShapeNet10 ScanNet10 Manifold40 ShapeNet10 ShapeNetRender

Ours Tri-plane 87.0 94.1 69.1 86.8 91.8 92.6

PointNet [160] Point Cloud 88.8 94.3 72.7 – – –
MeshWalker [289] Mesh – – – 90.0 – –
Conv3DNet [258] Voxel – – – – 92.1 –
ResNet50 [14] Images – – – – – 94.0

TABLE 14.3. Comparison with explicit representations. Top: Test set accuracy of our neural field
processing method. Bottom: Standard networks trained and tested on explicit representations.

and tested with any kind of tri-plane hybrid neural field. Indeed, since the tri-plane structure,
as well as the neural processing architecture, are just the same, regardless of the kind of field,
we can seamlessly learn a unified model able to classify a variety of fields. For example, we
start from the meshes of the Manifold40 dataset and obtain the corresponding point clouds
and voxel grids so as to fit three different fields (SDF, UDF, and OF). Accordingly, we build
training, validation, and test sets with samples drawn from all three fields. More precisely, if
a shape appears in a set represented as an SDF, it also appears in that set as a UDF and OF.
Then, as reported in Tab. 14.4, we run classification experiments by training models on each
of the individual fields as well as on all three of them jointly. The results show that when a
classifier is trained on only one field, it may not generalize well to others. On the other hand,
a single model trained jointly on all fields not only works well with test samples coming from
each one, but it also outperforms the models trained individually on a single kind of field.

14.3.2 Neural field 3D part segmentation

We explore here the potential of our method in tackling dense prediction tasks like part
segmentation, where the goal is to predict the correct part label for any given 3D point.

In Tab. 14.5, we compare our method to inr2vec, which was trained on fields generated
from random initialization and is the only competitor capable of addressing the part seg-
mentation task. Our experiments were conducted by fitting UDF fields from point clouds
of 2048 points from the ShapeNetPart dataset [334]. As a reference, we present the results
obtained using specialized architectures commonly used for point cloud segmentation, like
PointNet, PointNet++, and DGCNN. As in inr2vec, all models are trained on the point clouds
reconstructed from the fitted fields.

We observe that our proposal outperforms inr2vec by a large margin, with improvements
of 20% and 16.7% for instance and class mIoU, respectively. Moreover, Tab. 14.5 demonstrates
once again that tri-planes are effective in substantially reducing the performance gap between
processing neural fields and explicit representations.

14.3.3 Different architectures for tri-plane processing

In Tab. 14.6, we compare several plausible alternatives to Transformers for processing
tri-planes, which have roughly the same number of parameters and have been trained with

Chapter 14. Neural Processing of Tri-Plane Hybrid Neural Fields 138

Train Test

UDF SDF OF UDF SDF OF

✓ 84.7 78.4 15.6
✓ 67.3 86.8 11.9

✓ 49.3 46.9 77.7
✓ ✓ ✓ 87.4 87.8 80.3

TABLE 14.4. Universal tri-plane classifier. Test set accuracy on Manifold40.

Method Input in
st

an
ce

m
Io

U

cl
as

s
m

Io
U

ai
rp

la
ne

ba
g

ca
p

ca
r

ch
ai

r

ea
rp

ho
ne

gu
it

ar

kn
if

e

la
m

p

la
pt

op

m
ot

or

m
ug

pi
st

ol

ro
ck

et

sk
at

eb
oa

rd

ta
bl

e

inr2vec MLP 64.2 64.5 57.9 72.9 67.8 56.4 67.6 48.4 81.6 70.6 55.5 88.8 51.5 87.2 64.7 40.1 58.4 62.5
Ours Tri-plane 84.2 81.3 83.0 80.2 87.4 76.6 90.2 68.2 91.6 85.9 82.1 95.0 70.7 94.4 81.9 59.0 73.4 80.9

PointNet [160] Point Cloud 83.1 78.96 81.3 76.9 79.6 71.4 89.4 67.0 91.2 80.5 80.0 95.1 66.3 91.3 80.6 57.8 73.6 81.5
PointNet++ [161] Point Cloud 84.9 82.73 82.2 88.8 84.0 76.0 90.4 80.6 91.8 84.9 84.4 94.9 72.2 94.7 81.3 61.1 74.1 82.3
DGCNN [167] Point Cloud 83.6 80.86 80.7 84.3 82.8 74.8 89.0 81.2 90.1 86.4 84.0 95.4 59.3 92.8 77.8 62.5 71.6 81.1

TABLE 14.5. Part segmentation results. Top: Implicit frameworks. Bottom: Methods on explicit
representation. In bold, best results among frameworks processing neural fields.

the same hyperparameters. As discussed previously, since tri-planes contain an informative
and regular discrete data structure and are compact, they can be processed with standard
architectures. Hence, we test an MLP, a ResNet50 [14], and two variants of PointNet all
with roughly the same parameters. A simple MLP that processes the flattened tri-planes
(row 1) severely underperforms with respect to the alternatives, likely due to its inability
to capture the spatial structures present in the input as well as its sensitivity to the channel
permutation caused by random initializations. A standard CNN like ResNet50, processing tri-
planes stacked together and treated as a multi-channel image of resolution W × H, is instead
equipped with the inductive biases needed to effectively process the spatial information
contained in the tri-planes (Fig. 14.3) and already delivers promising performance, although
it cannot cope with channel permutations.

In Tab. 14.6, we compare several plausible alternatives to Transformers for processing
tri-planes, which have roughly the same number of parameters and have been trained with
the same hyperparameters. As discussed previously, since tri-planes contain an informative
and regular discrete data structure and are compact, they can be processed with standard
architectures. Hence, we test an MLP, a ResNet50 [14], and two variants of PointNet all
with roughly the same parameters. A simple MLP that processes the flattened tri-planes

UDF SDF OF

Method Input ModelNet40 ShapeNet10 ScanNet10 Manifold40 ShapeNet10

MLP Tri-plane 41.6 84.2 55.8 40.2 79.1
CNN Tri-plane 82.2 92.1 63.4 82.5 88.4
PointNet Tri-plane 85.8 93.4 69.3 85.6 91.5
Spatial PointNet Tri-plane 32.3 65.4 51.3 37.0 54.7
Transformer Tri-plane 87.0 94.1 69.1 86.8 91.8

TABLE 14.6. Ablation study of architectures for tri-plane neural field classification

Chapter 14. Neural Processing of Tri-Plane Hybrid Neural Fields 139

(row 1) severely underperforms with respect to the alternatives, likely due to its inability
to capture the spatial structures present in the input as well as its sensitivity to the channel
permutation caused by random initializations. A standard CNN like ResNet50, processing tri-
planes stacked together and treated as a multi-channel image of resolution W × H, is instead
equipped with the inductive biases needed to effectively process the spatial information
contained in the tri-planes (Fig. 14.3) and already delivers promising performance, although
it cannot cope with channel permutations.

14.4 Concluding remarks and limitations

We have shown that tri-plane hybrid neural fields are particularly amenable to direct neu-
ral processing without sacrificing representation quality. Indeed, by feeding only the tri-plane
structure into standard architectures, such as Transformers, we achieve better classification
and segmentation performance compared to previous frameworks aimed at processing neural
fields and dramatically shrink the gap with respect to specialized architectures designed
to process 3D data represented explicitly. To validate our intuitions, we propose the first
benchmark for neural processing of neural fields, which includes the main kinds of fields
used to model the 3D world as well as all the published methods that tackle this very novel
research problem. Within our experimental evaluation, we show for the first time that NeRFs
can be effectively classified without rendering any images.

140

Chapter 15

Final Remarks

In this thesis, we explored the problem of Transfer Learning from several points of view.
In the first part, we mainly focused on 2D Semantic Segmentation and studied how its
relationship with other tasks such as Depth Estimation and Edge Detection can be exploited
to boost the model performance on unlabelled datasets.

We started from Chapter 3 by introducing a novel framework able to transfer knowledge
by learning a transfer function in feature space between two networks. In particular, this
mapping can be learned by means of a neural network and we proposed two effective ways
to facilitate the learning process of this function. First, we found that it is important to align
the features at the input level of the transfer function, and we implemented this strategy by
introducing the NDA (Norm Discrepancy Alignment) loss. Then, we demonstrated how
exploiting an additional auxiliary task, such as Edge Detection, that shares some fundamental
properties with the other two main tasks can further enrich the feature learned by the two
networks and ease the learning of the transfer function. As argued previously in Chapter 3,
this approach is complementary to other common Domain Adaptation techniques. Therefore,
we proposed in Chapter 4 an effective way to leverage this framework such that it can be
plugged seamlessly into other Domain Adaptation methods. At its core, the main idea is
to exploit Self-Supervised Monocular Depth Estimation to provide strong geometric priors
to improve the predictions of a Semantic Segmentation network that already applies some
alignment strategies but lacks geometric knowledge. Then, we implemented an effective
data augmentation strategy for Self-training that is once again based on the geometric cues
provided by the monocular depth estimation network. We believe that this synergy between
Depth Estimation and Semantic Segmentation (or other tasks in general) is key for obtaining
a model capable of working well in unseen scenarios. Indeed, many works followed this idea
[343, 344, 345] and have been able to further improve performance. Finally, in Chapter 5, we
focused on the core problem of Semantic Segmentation which is obtaining sharp segmentation
masks even on unllabeled datasets. To this end, we have shown that domain-invariant
features can be used to estimate a displacement map, that can be subsequently exploited to
refine the segmentation mask. Combined with a novel Self-training strategy that is specifically
designed to keep valuable information at the boundaries of an object, we have been able to

Chapter 15. Final Remarks 141

considerably improve performance along boundaries with respect to previous methods.
In the second part of the thesis, we examined the Transfer Learning problem applied to

3D data such as point clouds. This field has emerged in the last years and it is relatively
new compared to the much richer literature of UDA for 2D Semantic Segmentation. First,
in Chapter 7, we largely improved upon state-of-the-art UDA for point cloud classification
showing that Self-training can be quite effective in this scenario. In particular, we designed
a specific 3D strategy based on point cloud reconstruction that is able to refine effectively
pseudo-labels obtained from a previously pre-trained model. In Chapter 8, we went one
step further and inspired by popular and successful Self-Supervised techniques for 2D data,
we proposed a novel strategy to learn features on the target domain without the need for
annotations that preserve feature discriminability. We also leveraged the tools provided
by GNNs to implement a Self-training algorithm able to refine misclassified samples by
reasoning globally on the target domain.

As new ways of representing 3D data such as Neural Fields are emerging in the vision
community, it would be interesting to investigate whether these representations are more
suitable to tackle Transfer Learning. Some early works, such as [200], already provided
some hints on the usefulness of implicit representations for Domain Adaptation applied to
3D data, although more research should be conducted to clearly establish its advantages in
this field. With the hope of inspiring the reader on this aspect, we also included in Part IV
some recent developments on processing directly Neural Fields, which we believe could
provide a unified and a standalone representation method for continuous signal and 3D
more specifically. Hence, in Chapter 13, we presented inr2vec, a representation learning
framework that allows encoding the weights of a network representing a 3D shape into
a compact embedding, so that it can be used to solve common downstream tasks such as
point cloud classification or part segmentation. Nonetheless, inr2vec requires all networks
representing 3D shapes to be initialized in the same way to work correctly. For this reason, in
Chapter 14, we proposed to adopt tri-plane hybrid neural fields instead, and we demonstrated
that this representation is particularly amenable for direct processing without sacrificing
representation quality. With these additional chapters, we hope to stimulate further research
on investigating whether this representation can also be effective for Transfer Learning, and
we included some preliminary results showing that Neural Fields representing different
modalities such as point clouds, meshes and voxels can be used together to boost performance
for 3D shape classification, although within the same domain. This can be however already
seen as a form of Transfer Learning between different 3D representations. Indeed, thanks
to the Neural Field representation, we have shown that a classifier trained on Neural Field
obtained from point clouds can be used to classify Neural Fields representing meshes and
vice-versa.

We concluded our journey on the classical Transfer Learning problem in the third part

Chapter 15. Final Remarks 142

of this dissertation, where we merged the knowledge acquired in the two previous parts to
tackle a much more challenging and realistic adaptation scenario: UDA for Multi-Modal 3D
Semantic Segmentation. We exploited once again in Chapter 10 the synergy between depth
and segmentation to improve existing works. In particular, given the availability of multiple
sensors at the same time, we extracted depth maps from the LiDAR sensor and used Depth
Completion as an auxiliary task to boost the performance of the 2D network responsible for
estimating the segmentation mask given the corresponding RGB data. In turn, we exploited
the completed depth map, to also improve the 3D network by means of a novel Self-training
strategy. We further contribute to the field in Chapter 11 by studying the complementarity of
the 2D and 3D networks. Indeed, as examined in Chapter 10, the de-facto architecture for
addressing Multi-Modal Domain Adaptation foresees a two-branch model to process the two
inputs independently, to then merge the final segmentation mask at the end. Thus we shed
some light on this aspect and provide an intuitive explanation based on the notion of the
effective receptive field of why processing data with these two networks grants orthogonal
predictions that can be effectively fused together.

In conclusion, this thesis introduces various strategies to address the Transfer Learning
problem in the presence of limited annotation. The fundamental insight derived from this
dissertation is that, in such situations, exploring the relationships between different yet
related tasks holds great promise for achieving robust performance, even when dealing with
unlabeled datasets.

Looking ahead, we would like to suggest two potential avenues for further research in
this dynamic field. Firstly, delving into recent advancements in Self-supervised learning
techniques, such as [346, 347], presents an intriguing opportunity as these techniques show-
case notable effectiveness in learning robust features, even for dense tasks such as Semantic
Segmentation. Indeed, given that unlabeled data is frequently available in the target domain,
recent advancements in Self-supervised could be used to obtain more robust models.

A second interesting and more ambitious future direction is to investigate whether implicit
representations can be exploited to reduce the domain gap for 3D semantic segmentation.
Indeed, as emerged from this thesis and previous work in the literature, one of the main
problems in UDA for 3D Semantic Segmentation is the input representation. Although
the input data always consists of point clouds with xyz coordinates, many factors may
worsen the gap among the distributions. The most evident is probably the density of such
points. To alleviate this problem, an exciting direction to pursue is the possibility of using
implicit representations to decouple the input data (i.e. its content) from its representation.
This opens up the possibility of sampling the input signal at the desired resolution and
extracting representations that are domain-independent. A seminal work that can be used as
a starting point is [348], in which the authors propose to fit a neural field from LiDAR scans.
Following this line of research, another compelling direction would be to apply common

Chapter 15. Final Remarks 143

domain adaptation algorithms directly to Neural Fields. This strategy would have the great
advantage that it could be applied seamlessly to any kind of data since Neural Fields can
potentially represent any continuous signal.

144

Part V

Appendices

145

Appendix A

Deep Learning on Implicit Neural
Representations of Shapes

A.1 Individual INRs vs. Shared Network Frameworks

In this section, we aim to compare the representation power of individual INRs (i.e., one
network for each data point) with the one of frameworks adopting a single shared network
for the whole dataset, like DeepSDF [296], OccupancyNetworks [301] or [319]. The important
difference between such approaches and our method relies in the fact that in shared network
frameworks, the shared network and the set of latent codes are the implicit representation,
whose reconstruction quality is negatively affected by using a single network to represent the
whole dataset, as shown below. In our framework, instead, we decouple the representations
(INRs) from the embeddings used to process them in downstream tasks (yielded by inr2vec).
The quality of the representation is then entrusted to the individual INRs and inr2vec does
not influence it.

To compare the representation quality of individual INRs with the one of share network
frameworks, we fitted the SDF of the meshes in the Manifold40 dataset with OccupancyNet-
works [301], DeepSDF [296] and LatentModulatedSiren (i.e., the architecture used by the
contemporary work that addresses deep learning on INRs [319]). Then, we reconstructed
the training discrete meshes from the three frameworks and we compared them with the
ground-truth ones, performing the same comparison using the discrete shapes reconstructed
from individual INRs. To perform the comparison, we first reconstructed meshes and then
we sampled dense point clouds (16,384 points) from the reconstructed surfaces, doing the
same for the ground-truth meshes. We report the quantitative comparisons in Tab. A.1, using
two metrics: the Chamfer Distance as defined in [332] and the F-Score as defined in [341].

The comparison reported in the Tab. A.1a shows that both OccupancyNetworks and
LatentModulatedSiren cannot represent the shapes of the training set with a good fidelity,
most likely because of the single shared network that struggles to fit a big number of shapes
with high variability (∼10K shapes, 40 classes). At the same time, DeepSDF obtains really
poor scores, highlighting the difficulty of training an auto-decoder framework on a large and

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 146

Method train set
CD (mm) ↓ F-Score ↑

OccupancyNetworks 0.8 0.44
DeepSDF 11.1 0.14

LatentModulatedSiren 0.7 0.37
Individual INRs 0.3 0.50

(A) Train set.

Method test set
CD (mm) ↓ F-Score ↑

OccupancyNetworks 1.3 0.39
DeepSDF 6.6 0.25

LatentModulatedSiren 1.9 0.28
Individual INRs 0.3 0.49

(B) Test set.

TABLE A.1. Individual INRs vs. shared network frameworks. Comparison between discrete
meshes reconstructed from individual INRs and from shared network frameworks on Manifold40.

varied dataset. Individual INRs, instead, produce reconstructions with good quality, even if
we adopted a fitting procedure with only 500 steps for each shape.

Moreover, the approaches based on a conditioned shared network tend to fail in represent-
ing unseen samples that are out of the training distribution. Hence, in the foreseen scenario
where INRs become a standard representation for 3D data hosted in public repositories, lever-
aging on a single shared network may imply the need to frequently retrain the model upon
uploading new samples which, in turn, would change the embeddings of all the previously
stored data. On the contrary, uploading the repository with a new shape would not cause
any sort of issue with individual INRs, where one learns a network for each data point.

To better support our statements, in Tab. A.1b we report the comparison between shape
reconstructed from OccupancyNetworks, DeepSDF, LatentModulatedSiren and individual
INRs, using shapes from the test set of Manifold40, i.e., shapes unseen at training time. The
numbers show that both OccupancyNetworks and LatentModulatedSiren present a drop in
the quality of the reconstructions, indicating that both frameworks struggle to represent new
shapes not available at training time. Surprisingly, DeepSDF produces better scores on the
test set with respect to the results on the train set, but still presents a quite poor performance
in comparison with the other methods. Conversely, the problem of representing unseen
shapes is inherently inexistent when adopting individual INRs, as shown by the numbers in
the last row of Tab. A.1b, which are almost identical to the ones presented in Tab. A.1a.

We report in Fig. A.1 and Fig. A.2 the comparison described above from a qualitative
perspective. It is possible to observe that the visualizations confirm the results posted in
Tab. A.1, with shared network frameworks struggling to represent properly the ground-truth
shapes, while individual INRs enable high-fidelity reconstructions.

We believe that these results highlight that frameworks based on a single shared network
cannot be used as medium to represent shapes as INRs, because of their limited representa-
tion power when dealing with large and varied datasets and because of their difficulty in
representing new shapes not available at training time.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 147

GT Individual INRS OccNet DeepSDFLMS

FIGURE A.1. Individual INRs vs. shared network frameworks (train shapes). Qualitative
comparison of meshes from Manifold40 reconstructed from individual INRs or from shared
network frameworks, when dealing with training shapes. OccNet stands for OccupancyNetworks,
LMS stands for LatentModulatedSiren.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 148

GT Individual INRS OccNet LMS DeepSDF

FIGURE A.2. Individual INRs vs. shared network frameworks (test shapes). Qualitative
comparison of meshes from Manifold40 reconstructed from individual INRs or from shared
network frameworks, when dealing with shapes unseen during training. OccNet stands for
OccupancyNetworks, LMS stands for LatentModulatedSiren.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 149

A.2 Obtaining INRs from 3D Discrete Representations

In this section, we detail the procedure used when fitting INRs to create the datasets
used in this work. Given a dataset of 3D shapes we train a set of the same number of
MLPs, fitting each one on a single 3D shape. Every MLP is thus trained to approximate a
continuous function that describes the represented shape, the nature of the function being
chosen according to the discrete representation in which the shape is provided. We adopt
MLPs with multiple hidden layers of the same dimension as done in [304, 324, 325, 326, 327],
interleaved by the sine activation function, as proposed in [304], to enhance the capability of
the MLPs to fit the high frequency details of the input signal.

In its general formulation, an INR can be used to fit a continuous function f : Rin → Rout.
To do so, a training set composed of N points xi ∈ Rin with i = 1, 2, ..., N, paired with values
yi = f (xi) ∈ Rout, is exploited to find the optimal parameters θ∗ for the MLP that implements
the INR, by solving the optimization problem:

θ∗ = arg min
θ

1
N

N

∑
i=1

ℓ(yi, fθ(xi)), (A.1)

where fθ represents the function f approximated by the MLP with parameters θ and ℓ is a
loss function that computes the error between predicted and ground-truth values.

The output value fθ(xi) is computed as a series of linear transformations, each one
followed by a non-linear activation function (i.e., the sine function in our case), except the
last one. Considering a MLP m, the mapping between its layers L − 1 and L consists in
a linear transformation that maps the values hL−1

m ∈ RDL−1 from the layer L − 1 into the
values hL

m = ϕ(WL
mhL−1

m + bL
m) ∈ RDL of the layer L, with WL

m being the matrix of weights
∈ RDL×DL−1 , bL

m being the biases vector ∈ RDL , and ϕ(·) the non-linearity [304]. If we
now consider M MLPs used to fit M different INRs and the mapping between the layers
L − 1 and L, we can easily compute such mapping simultaneously for all the MLPs on
modern GPUs thanks to tensor programming frameworks. The mapping consists indeed
in a straightforward tensor contraction operation, where the values hL−1 ∈ RM×DL−1 of the
layer L − 1 are mapped to the values hL = WLhL−1 + bL ∈ RM×DL of the layer L, with
WL ∈ RM×DL×DL−1 and bL ∈ RM×DL . Extending this formulation to all the layers of the
chosen MLP architecture allows to fit multiple INRs in parallel.

In the following, we describe how we train MLPs to obtain INRs starting from point
clouds, triangle meshes and voxel grids.

Point clouds. The INR for a 3D shape represented by a point cloud P encodes the unsigned
distance function (ud f) of the point cloud P . Given a point p ∈ R3, the value ud f (p) is defined
as minq∈P ∥p − q∥2, i.e., the euclidean distance from p to the closest point q of the point
cloud. After preparing a training set of N points xi ∈ R3 with i = 1, 2, ..., N, coupled with

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 150

their ud f values yi ∈ R, the INR of the underlying 3D shape is obtained by training a MLP to
regress correctly the ud f values, with the learning objective:

Lmse =
1
N

N

∑
i=1

(yi − fθ(xi))
2, (A.2)

that consists in the mean squared error between ground-truth values yi and the predictions
by the MLP fθ(xi). An alternative objective is converting the ud f values yi into values ybce

i
continuously spanned in the range [0, 1], with 0 and 1 representing respectively the predefined
maximum distance from the surface and the surface level set (i.e., distance equal to zero).
Then, the MLP optimizes the binary cross entropy between such labels and the predicted
values, defined as:

Lbce = − 1
N

N

∑
i=1

ybce
i log(ŷi) + (1 − ybce

i)log(1 − ŷi), (A.3)

where ŷi = σ(fθ(xi)), with σ representing the sigmoid function. In our experiments, we
found empirically that this second learning objective leads to faster convergence and more
accurate INRs, and we decided to adopt this formulation when producing INRs from point
clouds.

Triangle meshes. Triangle meshes are usually adopted to represent closed surfaces. This
provides an additional information compared to the point clouds case, since the 3D space can
be divided into the portion contained inside and outside the closed surface. Thus, the INR of a
closed 3D surface represented by a triangle mesh can be obtained by fitting the signed distance
function (sd f) to the surface defined by the mesh. Given a point p ∈ R3, the value sd f (p) is
defined as the euclidean distance from p to the closest point of the surface, with positive sign
if p is outside the shape and negative sign otherwise. Similarly to the point clouds case, an
INR for a 3D shape represented by a triangle mesh can be obtained by pursuing the learning
objective presented in Eq. (A.2), using a training set composed of 3D points paired with
their sd f values. However, it possible to adopt a learning objective based on the binary cross
entropy loss reported in Eq. (A.3) also for triangle meshes, and we empirically observed the
same benefits. Hence, we adopt it also when fitting INRs on meshes. In this case, the sd f
values yi are converted into values ybce

i ∈ [0, 1], with 0 and 1 representing respectively the
predefined maximum distance inside and outside the shape, i.e., 0.5 represents the surface
level set.

Voxel grids. A voxel grid is a 3D grid of V3 cubes marked with label 1, if the cube is
occupied, and label 0 otherwise. In order to fit an INR on voxels, it is possible to learn to
regress the occupancy function (occ) of the grid itself. The training set, in this case, contains
V3 3D points that corresponds to the centroids of the cubes that compose the voxel grid.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 151

Being each of such points xi associated to a 0-1 label yi, it is straightforward to use a binary
classification objective to train the MLP that implement the desired INR. More specifically,
we adopt the learning objective defined as:

L f ocal = − 1
N

N

∑
i=1

α(1 − ŷi)
γyilog(ŷi) + (1 − α)ŷγ

i (1 − yi)log(1 − ŷi), (A.4)

where ŷi = σ(fθ(xi)), while α and γ are respectively the balancing parameter and the focusing
parameter of the focal loss proposed in [349]. We deploy a focal loss to alleviate the imbalance
between the number of occupied and empty voxels.

A.3 Reconstructing Discrete Representations from INRs

In this section we discuss how it is possible to sample 3D discrete representations from
INRs, which could be necessary to process the underlying shapes with algorithms that
need an explicit surface (e.g., Computational Fluid Dynamics [350, 351, 352]) or simply for
visualization purposes.

Point clouds from ud f . To sample a dense point cloud from an INR fitted on its ud f , we
use a slightly modified version of the algorithm proposed in [295]. The basic idea is to query
the ud f with points scattered all over the considered portion of the 3D space, projecting such
points onto the isosurface according to the predicted ud f values. In order to do that, let us
define fθ as the ud f approximated by the INR with parameters θ. Given a point p ∈ R3, it
can be projected onto the isosurface by computing its updated position ps as:

ps = p − fθ(p) ·
∇p fθ(p)∥∥∇p fθ(p)

∥∥ . (A.5)

This can be intuitively understood by considering that the negative gradient of the ud f
indicates the direction of maximum decrease of the distance from the surface, pointing
towards the closest point on it. Eq. (A.5), thus, can be interpreted as moving p along the
direction of maximum decrease of the ud f of a quantity defined by the value of the ud f
itself in p, reaching the point ps on the surface. One must consider, though, that fθ is only
an approximation of the real ud f , which leads to two considerations. On a first note, the
gradient of fθ must be normalized (as done in Eq. (A.5)), while the gradient of the real ud f
has norm equal to 1 everywhere except on the surface. Secondly, the predicted ud f value can
be imprecise, implying that p can still be distant from the surface after moving it according
Eq. (A.5). To address the second issue, the 3D position of ps is refined repeating the update
described in Eq. (A.5) several times. Indeed, after each update, the point gets closer and closer
to the surface, where the values approximated by fθ are more accurate, implying that the last

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 152

updates should successfully place the point on the isosurface. Given an INR fitted on the ud f
of a point cloud, the overall algorithm to sample a dense point cloud from it is composed of
the following steps. Firstly, we prepare a set of points scattered uniformly in the considered
portion of the 3D space and we predict their ud f value with the given INR. Then we filter
out points whose predicted ud f is greater than a fixed threshold (0.05 in our experiments).
For the remaining points, we update their coordinates iteratively with Eq. (A.5) (we found 5
updates to be enough). Finally, we repeat the whole procedure until the reconstructed point
cloud counts the desired number of points.

Triangle meshes from sd f . An INR fitted on the sd f computed from a triangle mesh
allows to reconstruct the mesh by means of the Marching Cubes algorithm [331]. We refer the
reader to the original paper for a detailed description of the method, but we report here a
short presentation of the main steps, for the sake of completeness. Marching Cubes explores
the considered 3D space by querying the sd f with 8 locations at a time, that are the vertices of
an arbitrarily small imaginary cube. The whole procedure involves marching from one cube
to the other, until the whole desired portion of the 3D space has been covered. For each cube,
the algorithm determines the triangles needed to model the portion of the isosurface that
passes through it. Then, the triangles defined for all the cubes are fused together to obtain the
reconstructed surface. In order to determine how many triangles are needed for a single cube
and how to place them, for each pair of neighbouring vertices of the cube, their sd f values are
computed and one triangle vertex is placed between them if such values have opposite sign.
Considering that the number of possible combinations of the sd f signs at the cube vertices is
limited, it is possible to build a look-up table to retrieve the triangles configuration for the
cube starting from the sd f signs at its eight vertices, combined in a 8-bit integer and used as
key for the look-up table. After the triangles configuration for a cube has been retrieved, the
vertices of the triangles are placed on the edges connecting the cube vertices, computing their
exact position by linearly interpolating the two sd f values that are connected by each edge.

Voxel grids from occ. In order to reconstruct voxel grids from INRs, we adopt a straight-
forward procedure. Each INR has been trained to predict the probability of a certain voxel to
be occupied, when queried with the 3D coordinates of the voxel centroid. Thus, a first step to
reconstruct the fitted voxels consists in creating a grid of the desired resolution V. Then, the
INR is queried with the V3 centroids of the grid and predicts an occupancy probability for
each of them. Finally, we consider as occupied only voxels whose predicted probability is
greater than a fixed threshold, which we set to 0.4, as we found empirically that it allows for
a good trade-off between scattered and over-filled reconstructions.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 153

INR embedding
(1024 values)

sh
ar

ed

LIN/BN/ReLU

LIN/BN/ReLU

LIN/BN/ReLU

sh
ar

ed

LIN/BN/ReLU

LIN/BN/ReLU

LIN/BN/ReLU

sh
ar

ed

LIN/BN/ReLU

LIN/BN/ReLU

LIN/BN/ReLU

sh
ar

ed

LIN/BN/ReLU

LIN/BN/ReLU

LIN/BN/ReLU

C
o

lu
m

n
-w

is
e

M
ax

 p
o

o
lin

g

FIGURE A.3. inr2vec encoder. With a series of linear transformations and a final column-wise max
pooling, the encoder maps the input weights matrix into a compact embedding. LIN/BN/ReLU
stands for a linear transformation, followed by batch normalization and ReLU activation function.

A.4 inr2vec Encoder and Decoder Architectures

In this section, we describe the architecture of inr2vec encoder, along with the one of the
implicit decoder used to train it (see Sec. 12.1.1).

Encoder. inr2vec encoder, detailed in Fig. A.3, consists in a series of linear transformations,
that maps the input INR weights into features with higher dimensionality, before applying
max pooling to obtain a compact embedding. More specifically, the input weights are
rearranged in a matrix with shape L(H + 1)× H, where H is the number of nodes in the
hidden layers of the MLP that implements the input INR and L is the number of linear
transformations between such hidden layers (i.e., the MLP has L + 1 hidden layers). The
matrix is obtained by stacking L matrices (one for each linear transformation), each one
with shape (H + 1)× H, being composed of a matrix of weights with shape H × H and a
row of H biases. In our setting, each MLP has 4 hidden layers with 512 nodes: the final
matrix in input to inr2vec encoder has shape 3 · (512 + 1)× 512 = 1539 × 512. In the current
implementation, the four linear mappings of the encoder transform each row of the input
matrix into features with size 512, 512, 1024 and 1024, obtaining, at each step, features matrices
with shape 1539 × 512, 1539 × 512, 1539 × 1024 and 1539 × 1024. Finally, the encoder applies
column-wise max pooling to compress the final matrix into a single compact embedding
composed of 1024 values. Between the linear mappings of the encoder, we adopt 1D batch
normalization and ReLU activation functions.

Decoder. The implicit decoder that we adopt to train inr2vec is presented in Fig. A.4. We
designed it taking inspiration from [296], since we need a decoder capable of reproducing
the implicit function of input INR when conditioned on the embedding obtained by the
encoder. Thus, the decoder takes in input the concatenation of the INR embedding with the
coordinates of a given 3D query. We adopt the positional encoding proposed in [339] to embed
the input 3D coordinates into a higher dimensional space to enhance the capability of the
decoder to capture the high frequency variations of the input data. The query 3D coordinates
are mapped into 63 values that, concatenated with the 1024 values that compose the INR
embedding, result in a vector with 1087 values as input for inr2vec decoder. Internally, the
implicit decoder is composed of 4 hidden layers with 512 nodes and of a skip connection that

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 154

IN
R

 e
m

b
ed

d
in

g

LI
N

EA
R

R
eL

U

LI
N

EA
R

R
eL

U

LI
N

EA
R

R
eL

U

LI
N

EA
R

R
eL

U

LI
N

EA
R

R
eL

U

LI
N

EA
R

+

positional
encoding

FIGURE A.4. inr2vec decoder. Our framework is trained with an implicit decoder, that maps an
INR embedding concatenated with a 3D query into the value of the implicit function at the query
coordinates.

projects the input 1087 values into a vector of 512 elements, that are summed to the features
of the second hidden layer before being fed to the transformation that bridges the second
and the third hidden layers. Finally, the features of the last hidden layer are mapped to a
single output, which is compared to the ground-truth associated with the input 3D query to
compute the loss. Each linear transformation of the decoder, except the output one, is paired
with the ReLU activation function.

A.5 Motivation Behind inr2vec Encoder Design

We designed inr2vec encoder with the goal of obtaining a good scalability in terms of
memory occupation. Indeed, a naive solution to process the weights of an input INR would
consist in an MLP encoder mapping the flattened vector of weights to the embedding of
the desired dimension. However, such approach would require a huge amount of memory
resources, since an input INR of 4 layers of 512 neurons would have approximately 800K
parameters. Thus, an MLP encoder going from 800K parameters to an embedding space
of size 1024 would already have a totality of ∼800M parameters. We report in Tab. A.2 a
detailed analysis of the parameters of our encoder with respect to the ones of an MLP encoder
by varying the input INR dimension. As we can notice the MLP encoder does not scale
well, making this kind of approach very expensive in practice, while inr2vec encoder scales
gracefully to bigger input INRs.

A.6 Experimental Settings

We report here a detailed description of the settings adopted in our experiments.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 155

INR hidden dim. INR #layers INR #params #params inr2vec encoder #params MLP encoder
512 4 ∼800K ∼3M ∼800M
512 8 ∼2M ∼3M ∼2B
512 12 ∼3M ∼3M ∼3B
512 16 ∼4M ∼3M ∼4B

1024 4 ∼3M ∼3.5M ∼3B
1024 8 ∼7M ∼3.5M ∼7.5B
1024 12 ∼11M ∼3.5M ∼12B
1024 16 ∼15M ∼3.5M ∼16B

TABLE A.2. Number of parameters of inr2vec encoder. Comparison between the number of
parameters of inr2vec encoder and the number of parameters of a generic MLP encoder.

INRs fitting. In every experiment, we fit INRs on 3D discrete representations using
MLPs having 4 hidden layers with 512 nodes each. We implement MLPs using sine as a
periodic activation function, as proposed in [304]. The procedure adopted to fit a single
MLP consists in querying it with 3D points sampled properly in the space surrounding the
underlying shape. The MLP predicts a value for each query and it’s trained by computing a
loss function between the predicted value and the ground-truth value of the fitted implicit
function (i.e., ud f for point clouds, sd f for meshes and occ for voxels). The set of training
queries is prepared according to different strategies, depending on the nature of the discrete
representation being fitted. For voxel grids, the set of possible queries consists of the 3D
coordinates of all the centroids of the grid. For point clouds and meshes, instead, queries
are sampled with different densities in the volume containing the fitted shape: indeed, for
each shape, we prepare 500K queries by taking 250K points close to the surface, 200K points
at a medium-far distance for the surface, 25K far from the surface and other 25K scattered
uniformly in the volume. The queries coordinates are computed by adding gaussian noise
to the points of the fitted point cloud or to points sampled uniformly from the fitted mesh
surface. More precisely, close queries are computed with noise sampled from the normal
distribution N (0, 0.001), medium-far queries with noise from N (0, 0.01), far queries with
noise from N (0, 0.1). The uniformly scattered queries are just computed by sampling each
of their coordinates from the uniform distribution U (−1, 1), being the considered shapes
normalized in such volume. As for the ground-truth values, for voxels they consist simply
in the occupied/empty label of the voxel associated to the query. For point clouds, for each
query we compute its ud f value by building a KDTree on the fitted point cloud and looking
for the closest point to the considered query (we used the Pytorch3D [353] implementation of
the KDTree algorithm). For meshes, finally, we compute the sd f of queries with the functions
provided in the Open3D library [354]1. For each of the considered modalities, at each step
of the fitting procedure, we randomly sample 10K pairs of queries/ground-truth values
from the precomputed ones, performing a total of 500 steps for each shape. Thanks to the
procedure detailed in Appendix A.2, we are able to fit up to 16 multiple MLPs in parallel,

1http://www.open3d.org/docs/latest/tutorial/geometry/distance_queries.html

http://www.open3d.org/docs/latest/tutorial/geometry/distance_queries.html

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 156

using Adam optimizer [355] with learning rate set to 1e-4. On a final note, we fixed the
weights initialization of the MLPs to be always the same, as we observed empirically this to
be key to convergence of inr2vec. This choice poses no limitation to the practical use of our
framework and has also been adopted in recent works [297, 324].

inr2vec training. According to what is described in Sec. 12.1.1, during training our
framework takes in input the weights of a given INR and is asked to reproduce the implicit
function fitted by the INR on a set of predefined 3D queries. Such queries are prepared
with the same strategies described in the previous paragraph and, similarly to what is done
while fitting INRs, at each step the training loss for inr2vec is computed on 10K queries
randomly sampled from a set of precomputed ones. In every experiment, we train inr2vec
with AdamW optimizer [356], learning rate 1e-4 and weight decay 1e-2 for 300 epochs,
one epoch corresponding to processing all the INRs that compose the considered dataset,
processing at each training step a mini-batch of 16 INRs. During training, we select the best
model by evaluating its reconstruction capability on a validation set of INRs. When training
on INRs obtained from point clouds, we compare the ground-truth set of points with the
ones reconstructed by inr2vec decoder. For voxels, we compare the input and the output grid
by comparing the point clouds composed by the centroids corresponding to occupied voxels.
As for what concerns meshes, we compare the clouds containing input and output vertices.
In all cases, the reconstruction quality is evaluated by computing the Chamfer Distance
between ground-truth and output point clouds, as defined in [332]. See Appendix A.3 of
this document for details on how to sample discrete 3D representations from the implicit
functions fitted by INRs and that inr2vec is trained to reproduce.

Shape classification. The classifier that we deploy on inr2vec embeddings is composed of
three linear transformations, mapping sequentially the input embedding with 1024 features
to vectors of size 512, 256 and, finally, to a vector with a number of values corresponding to
the number of classes of the considered dataset. The final vector is then transformed to a
probability distribution with the softmax function. We use 1D batch normalization and the
ReLU activation function between the classifier linear transformations. In all experiments,
the classifier is trained for 150 epochs, with AdamW optimizer [356] and weight decay 1e-2.
The learning rate is scheduled according to the OneCycle strategy [128], with maximum
learning rate set to 1e-4. At each training step, the classifier processes a mini-batch counting
256 embeddings. During training, we select the best model by computing the classification
accuracy on a validation set of embeddings. The best model is used after training to compute
the classification accuracy on the test set, obtaining the numbers reported in the tables.

Point cloud part segmentation. In order to tackle point cloud part segmentation starting
from inr2vec embeddings, we adopt a decoder similar to the one that we use for reconstruction
during inr2vec training. The part segmentation decoder, depicted in Fig. A.5, is fed with the
positional encoding of a 3D query together with the embedding of an input INR and predicts

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 157

LI
N

EA
R

R
eL

U

LI
N

EA
R

R
eL

U

LI
N

EA
R

R
eL

U

LI
N

EA
R

R
eL

U

LI
N

EA
R

R
eL

U

LI
N

EA
R

PA
R

T
SE

G
M

EN
TA

TI
O

N
 L

O
G

IT
S

+

positional
encoding

IN
R

 e
m

b
ed

d
in

g

cl
as

s
o

n
e-

h
o

t
en

co
d

in
g

FIGURE A.5. Part segmentation decoder. We train a decoder to predict the part segmentation
label of a given 3D query when conditioned on the embedding of the input INR and on the
one-hot encoding of the INR class.

a K-dimensional vector of segmentation logits for the given query, with K representing the
total number of parts of all the C available categories. Moreover, as done in previous work
[160, 161, 167], we concatenate an additional C-dimensional vector to the input of the part
segmentation decoder, conditioning the output of our decoder with the one-hot encoding
of the input INR class. We conduct our experiments on the ShapeNet Part Segmentation
dataset [334], which presents 16 categories labeled with two to five parts, for a total of 50 parts
(i.e., C=16 and K=50). According to a standard protocol [160, 161, 167], during training we
compute the cross-entropy loss function on all the K logits predicted by our decoder, while,
at test time, the final prediction is obtained considering only the subset of parts belonging
to the specific class of the input INR. The part segmentation decoder is trained with the
original point clouds available in the ShapeNet Part Segmentation dataset, where part labels
are provided for each point of each cloud. At test time, though, we test both our decoder and
the considered competitors on the point clouds reconstructed from the input INRs, since we
want to simulate the scenario of 3D shapes being available exclusively in the form of INRs.
Thus, the protocol to obtain a segmented point cloud starting from an input INR consists
in reconstructing the cloud first (see Appendix A.3) and then in assigning a part label to
each point of the reconstructed shape with our part segmentation decoder. When ground-
truth labels are required to compute quantitative results, we obtain them by comparing the
reconstructed cloud with the original one and assigning to each point of the reconstructed
shape the part label of the closest point in the original cloud. Our part segmentation decoder
is trained for 250 epochs with AdamW optimizer, OneCycle learning rate scheduling with
maximum value set to 1e-4, weight decay equal to 1e-2 and mini-batches composed of 256

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 158

embeddings, each one paired with 3D queries from the original point clouds during training
and from the ones reconstructed from the input INRs at test time. During training, we
compute the class mIoU on the validation split and save the best model in order to compute
the final metrics on the test set.

Shape generation. We perform unconditional shape generation by training Latent-GAN
[335] to generate embeddings indistinguishable from the ones produced by inr2vec on a
given dataset. This approach allows us to train a shape generation framework with the
very same architecture to generate embeddings representing INRs with different underlying
implicit functions, such as ud f for the point clouds of ShapeNet10 and sd f for the models of
cars provided by [301]. We conducted our experiments using the official implementation2,
setting all the hyperparameters to default. The generator network is implemented as a fully
connected network with two layers and ReLU non linearity, that map an input noise vector
with 128 values sampled from the normal distribution N (0, 0.2) to an intermediate hidden
vector of the same dimension and then to the predicted embedding with 1024 values (we
removed the final ReLU present in the original implementation). The discriminator is also a
fully connected network, with three layers and ReLU non linearity. The first layer maps the
embedding produced by the generator to a hidden vector with 256 values, which are then
transformed by the second layer into a hidden vector with 512 values, that are finally used
by the third layer, together with the sigmoid function, to predict the final score. According
to the original implementation, we trained one separate Latent-GAN for each class of the
considered datasets, using the Wasserstein objective with gradient penalty proposed in [357]
and training each model for 2000 epochs.

Learning a mapping between inr2vec embedding spaces. The transfer function between
inr2vec embedding spaces is implemented as a simple fully connected network, with 8
linear layers interleaved by 1D batch norm and ReLU activation functions. All the hidden
features produced by the linear transformations present the same dimension of the input
embedding, i.e., 1024 values. The final linear layer predicts the output embedding, which is
compared with the target one with a standard L2 loss. We train the transfer network with
AdamW optimizer, constant learning rate and weight decay both set to 1e-4, stopping the
training upon convergence, which we measure by comparing the shapes reconstructed by
the predicted embeddings with the ground-truth ones on a predetermined validation split.
Such validation metrics are used also to save the best model during training, which is finally
evaluated on the test set.

2https://github.com/optas/latent_3d_points

https://github.com/optas/latent_3d_points

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 159

Point Cloud Mesh Voxels
Method ModelNet40 ShapeNet10 ScanNet10 Manifold40 ShapeNet10

PointNet [160] 88.8 94.7 72.8 – –
PointNet++ [161] 91.0 95.2 76.3 – –

DGCNN [167] 91.6 94.0 75.1 – –
MeshWalker [289] – – – 90.6 –
Conv3DNet [258] – – – – 92.5

inr2vec 87.0 93.3 72.1 86.3 93.0

TABLE A.3. Shape classification results. We report here shape classification results when testing
on the original discrete representations of the test sets instead of reconstructing them from the
input INRs.

A.7 Implementation, Hardware and Timings

We implemented our framework with the PyTorch library, performing all the experiments
on a single NVIDIA 3090 RTX GPU. We created an augmented version of each considered
dataset, in order to obtain roughly ∼100K INRs, whose fitting requires around 4 days in the
current implementation. Training inr2vec requires another 48 hours, while all the networks
adopted to perform the downstream tasks on inr2vec embeddings can be trained in few
hours.

A.8 Testing on Original Discrete 3D Representations

In the experiments “Shape classification” and “Point cloud part segmentation”, we evalu-
ated the competitors on the 3D discrete representations reconstructed from the INRs fitted on
the test sets of the considered datasets, since these would be the only data available at test
time in a scenario where INRs are used to store and communicate 3D data. For completeness,
we report here the scores achieved by the baselines when tested on the original discrete
representations, without reconstructing them from the input INRs. Such results are presented
in Tab. A.3 for shape classification and in Tab. A.4 for part segmentation. We report in the
tables also the results obtained with our framework: they are the same reported in Tab. 13.2
for what concerns shape classification, since our classifier processes exclusively inr2vec em-
beddings, while they are different for part segmentation, as we use as query points for our
segmentation decoder those from the discrete point clouds reconstructed from input INRs
in Tab. 13.3 while we use those from the original point clouds in the experiment reported
here, as done for the competitors. The results reported in the tables show limited differences,
either positive or negative, with the ones presented in Sec. 13.3, mostly within the range of
variations due to the inherent stochasticity of training. There are few larger differences, like
DGCNN on ModelNet40 (+1.7 when tested on the original discrete representations) or on
ScanNet (-1.1 when tested on the original discrete representations), whose difference in sign
however suggests neither of the two settings is clearly superior to the other.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 160

Method in
st

an
ce

m
Io

U

cl
as

s
m

Io
U

ai
rp

la
ne

ba
g

ca
p

ca
r

ch
ai

r

ea
rp

ho
ne

gu
it

ar

kn
if

e

la
m

p

la
pt

op

m
ot

or

m
ug

pi
st

ol

ro
ck

et

sk
at

eb
oa

rd

ta
bl

e

PointNet [160] 83.0 78.8 80.5 77.9 78.3 74.4 89.0 68.3 90.1 82.2 80.7 94.7 63.1 91.7 79.3 58.2 72.7 81.0
PointNet++ [161] 84.4 82.8 81.7 86.5 85.2 78.6 90.2 77.9 91.2 84.4 83.2 95.4 72.0 94.6 83.3 64.2 75.6 80.9

DGCNN [167] 84.3 81.4 81.6 82.2 80.9 75.7 90.7 80.9 90.2 86.9 82.6 94.8 64.8 92.8 81.0 60.6 74.7 81.8
inr2vec 80.5 71.1 79.5 72.9 72.3 70.7 87.4 64.1 89.4 81.6 76.5 94.5 59.3 92.4 78.4 53.5 67.5 77.3

TABLE A.4. Part segmentation results. In this table we present part segmentation results when
testing on the original discrete representations of the test sets instead of reconstructing them from
the input INRs. We report the IoU for each class, the mean IoU over all the classes (class mIoU)
and the mean IoU over all the instances (instance mIoU).

A.9 Alternative Architecture for inr2vec

As reported in Sec. 12.1.1, inr2vec encoder takes in input the weights of an INR reshaped
in a suitable way, discarding the parameters of the first and of the last layers. In this section
we consider the possibility of processing all the weights of the input INR, including the
input/output ones. To this end, one must properly arrange the input/output parameters
since they feature different dimensionality from the ones of the hidden layers and cannot be
seamlessly stacked together with them. More specifically, the first layer of an INR consists
in a matrix of weights Win ∈ RH×D and in a vector of biases bin ∈ RH×1, with H being the
dimension of the hidden features of the INR and D being the dimension of the inputs (i.e., 3
in our case of 3D coordinates). The output layer, instead, is responsible of transforming the
final vector of hidden features to the predicted output, which is always a single value in the
cases considered in our experiments (i.e., ud f , sd f and occ). Thus, the last layer presents a
matrix of weights Wout ∈ R1×H and single bias bout. In order to include the input/output
parameters in the matrix P presented in input to inr2vec encoder (see Sec. 12.1.1), Win needs
to be transposed, obtaining a matrix with shape 3 × H, bin is transposed as done also for the
biases of all the other layers, Wout doesn’t need any manipulation and we decided to repeat
the single-valued bout H times. In this section, we compare the formulation presented in
Sec. 12.1.1 (reported as “hidden layers”) with the one proposed here (reported as “all layers”),
looking at the reconstruction capabilities of the two variants of our framework when trained
on ModelNet40. In Tab. A.5, we report both the F-score [341] and the Chamfer Distance (CD)
[332] between the clouds used to obtain the INRs presented in input to inr2vec and the ones
reconstructed from inr2vec embeddings, while in Fig. A.6 we show the same comparison
from a qualitative perspective. Results show that processing all the INR weights doesn’t
produce any significant difference with respect to ingesting only the weights of the hidden
layers. However, the latter variant provides a slight advantage in terms of F-score, simplicity
and processing time, motivating our choice to adopt it as formulation for inr2vec.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 161

Architecture F-Score ↑ CD (mm) ↓
hidden layers 57.41 3.1

all layers 56.76 3.1

TABLE A.5. Quantitative comparison between alternative inr2vec architectures. We compare
the reconstruction capability of inr2vec when processing only the weights of the hidden layers
(“hidden layers”) or all the weights (“all layers”) of the input INRs.

inr2vec
«hidden layers»

OUTPUT

INPUT
INR

inr2vec
«all layers»
OUTPUT

FIGURE A.6. Qualitative comparison between alternative inr2vec architectures. We compare
the reconstruction capability of inr2vec when processing only the weights of the hidden layers
(“hidden layers”) or all the weights (“all layers”) of the input INRs.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 162

INPUT
INR

inr2vec
OUTPUT

INPUT
INR

inr2vec
OUTPUT

INPUT
INR

inr2vec
OUTPUT

FIGURE A.7. inr2vec reconstructions when dealing with INRs fitted on point clouds. Compari-
son between discrete shapes reconstructed from the INRs presented in input to inr2vec (“INPUT
INR”) and the ones reconstructed from inr2vec embeddings (“inr2vec OUTPUT”).

A.10 Additional Qualititative Results

We report here additional qualitative results. In Fig. A.7, Fig. A.8 and Fig. A.9 we show
some comparisons between the discrete shapes reconstructed from input INRs and the
ones reconstructed from inr2vec embeddings. Fig. A.10, Fig. A.11 and Fig. A.12 present
smooth interpolations between inr2vec embeddings. In Fig. A.13 and Fig. A.14 we propose
additional qualitative results for the point cloud retrieval experiments. Fig. A.15 shows
qualitative results for point cloud part segmentation for all the classes of the ShapeNet
Part Segmentation dataset. Fig. A.16, Fig. A.17 and Fig. A.18 report shapes generated with
Latent-GANs [335] trained on inr2vec embeddings. Finally, Fig. A.19 and Fig. A.20 present
additional qualitative results for the experiments of point cloud completion and surface
reconstruction, tackled by learning a mapping between inr2vec latent spaces.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 163

INPUT
INR

inr2vec
OUTPUT

INPUT
INR

inr2vec
OUTPUT

INPUT
INR

inr2vec
OUTPUT

FIGURE A.8. inr2vec reconstructions when dealing with INRs fitted on meshes. Comparison
between discrete shapes reconstructed from the INRs presented in input to inr2vec (“INPUT
INR”) and the ones reconstructed from inr2vec embeddings (“inr2vec OUTPUT”).

INPUT
INR

inr2vec
OUTPUT

INPUT
INR

inr2vec
OUTPUT

INPUT
INR

inr2vec
OUTPUT

FIGURE A.9. inr2vec reconstructions when dealing with INRs fitted on voxel grids. Comparison
between discrete shapes reconstructed from the INRs presented in input to inr2vec (“INPUT
INR”) and the ones reconstructed from inr2vec embeddings (“inr2vec OUTPUT”).

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 164

0 1interpolation factor

FIGURE A.10. inr2vec latent space interpolation. Given two inr2vec embeddings obtained from
INRs fitted on point clouds, it is possible to linearly interpolate between them, producing new
embeddings that represent unseen INRs of plausible shapes.

0 1interpolation factor

FIGURE A.11. inr2vec latent space interpolation. Given two inr2vec embeddings obtained
from INRs fitted on meshes, it is possible to linearly interpolate between them, producing new
embeddings that represent unseen INRs of plausible shapes.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 165

0 1interpolation factor

FIGURE A.12. inr2vec latent space interpolation. Given two inr2vec embeddings obtained from
INRs fitted on voxel grids, it is possible to linearly interpolate between them, producing new
embeddings that represent unseen INRs of plausible shapes.

1-NNQUERY 2-NN 3-NN 4-NN

FIGURE A.13. Point cloud retrieval (ModelNet40). Qualitative results of the point cloud retrieval
experiment conducted on inr2vec latent space. We show the discrete shape reconstructed from the
query INR on the left and the discrete clouds reconstructed from the closest inr2vec embeddings
in the columns 2-5.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 166

1-NNQUERY 2-NN 3-NN 4-NN

FIGURE A.14. Point cloud retrieval (ShapeNet10). Qualitative results of the point cloud retrieval
experiment conducted on inr2vec latent space. We show the discrete shape reconstructed from the
query INR on the left and the discrete clouds reconstructed from the closest inr2vec embeddings
in the columns 2-5.

FIGURE A.15. Point cloud part segmentation. Qualitative results of the part segmentation
experiment conducted with our segmentation decoder conditioned on inr2vec embeddings.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 167
B
AT
H
TU

B
B
ED

B
O
O
KS
H
EL
F

C
A
B
IN
ET

C
H
A
IR

LA
M
P

FIGURE A.16. Shape generation (point clouds). We show point clouds reconstructed from
embeddings generated by a Latent-GAN trained on inr2vec embeddings (one model for each
class).

TA
B
LE

SO
FA

P
LA
N
T

M
O
N
IT
O
R

FIGURE A.17. Shape generation (point clouds). We show point clouds reconstructed from
embeddings generated by a Latent-GAN trained on inr2vec embeddings (one model for each
class).

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 168

FIGURE A.18. Shape generation (meshes). We show meshes reconstructed from embeddings
generated by a Latent-GAN trained on inr2vec embeddings.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 169

FIGURE A.19. Point cloud completion. Qualitative results of the point cloud completion experi-
ment conducted with a transfer network that learns a mapping between inr2vec latent spaces.

FIGURE A.20. Surface reconstruction. Qualitative results of the surface reconstruction experiment
conducted with a transfer network that learns a mapping between inr2vec latent spaces.

A.11 Effectiveness of Using the Same Initialization for INRs

The need to align the multitude of INRs that can approximate a given shape is a challeng-
ing research problem that has to be dealt with when using INRs as input data. We empirically
found that fixing the weights initialization to a shared random vector across INRs is a viable
and simple solution to this problem.

We report here an experiment to assess if order of data, or other sources of randomness
arising while fitting INRs, do affect the repeatability of the embeddings computed by inr2vec.
We fitted 10 INRs on the same discrete shape for 4 different chairs, i.e., 40 INRs in total. Then,
we embed all of them with the pretrained inr2vec encoder and compute the L2 distance
between all pairs of embeddings. The block structure of the resulting distance matrix (see
Fig. A.21) highlights how, under the assumption of shared initialization and hyperparameters,
inr2vec is repeatable across multiple fittings.

Seeking for a proof with a stronger theoretical foundation, we turn our attention to the
recent work git re-basin [340], where authors show that the loss landscape of neural networks
contain (nearly) a single basin after accounting for all possible permutation symmetries
of hidden units. The intuition behind this finding is that, given two neural networks that
were trained with equivalent architectures but different random initializations, data orders,
and potentially different hyperparameters or datasets, it is possible to find a permutation

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 170

of the networks weights such that when linearly interpolating between their weights, all
intermediate models enjoy performance similar to them – a phenomenon denoted as linear
mode connectivity.

Intrigued by this finding, we conducted a study to assess whether initializing INRs with
the same random vector, which we found to be key to inr2vec convergence, also leads to
linear mode connectivity. Thus, given one shape, we fitted it with two different INRs and
then we interpolated linearly their weights, observing at each interpolation step the loss value
obtained by the interpolated INR on the same batch of points. For each shape, we repeated
the experiment twice, once initializing the INRs with different random vectors and once
initializing them with the same random vector.

The results of this experiment are reported for four different shapes in Fig. A.22. It
is possible to note that, as shown by the blue curves, when interpolating between INRs
obtained from the same weights initialization, the loss value at each interpolation step is
nearly identical to those of the boundary INRs. On the contrary, the red curves highlight how
there is no linear mode connectivity at all between INRs obtained from different weights
initializations.

[340] propose also different algorithms to estimate the permutation needed to obtain
linear mode connectivity between two networks. We applied the algorithm proposed in their
paper in Section 3.2 (Matching Weights) to our INRs and observed the resulting permutations.
Remarkably, when applied to INRs obtained from the same weights initialization, the re-
trieved permutations are identity matrices, both when the target INRs represent the same
shape and when they represent different ones. The permutations obtained for INRs obtained
from different initializations, instead, are far from being identity matrices.

All these results favor the hypothesis that our technique of initializing INRs with the same
random vector leads to linear mode connectivity between different INRs. We believe that the
possibility of performing meaningful linear interpolation between the weights occupying

0.30

0.25

0.20

0.15

0.10

0.05

0.00

10

20

30

10 20 30

FIGURE A.21. L2 distances between inr2vec embeddings. For each shape, we fit 10 INRs starting
from the same weights initialization (40 INRs in total). Then we plot the L2 distances between the
embeddings obtained by inr2vec for such INRs.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 171

0.5 0.5

Interpolation Factor

Lo
ss

0 1

Interpolation Factor

Lo
ss

0 1

Interpolation Factor

Lo
ss

0 1

Interpolation Factor

Lo
ss

0 1

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

FIGURE A.22. Linear mode connectivity study. Each plot shows the variation of the loss function
over the same batch of points when interpolating between two INRs representing the same shape.
The red line describes the interpolation between INRs initialized differently, while the blue line
shows the same interpolation between INRs initialized from the same random vector. The yellow
stars represent the loss value of the boundary INRs.

the same positions across different INRs can be interpreted by considering corresponding
weights as carrying out the same role in terms of feature detection units, explaining why the
inr2vec encoder succeeds in processing the weights of our INRs.

This intuition can be also combined with the finding of another recent work [358], that
shows how the expressive power of SIRENs is restricted to functions that can be expressed as
a linear combination of certain harmonics of the first layer, which thus serves as basis for the
range of learnable functions.

As stated above, the evidence of linear mode connectivity between INRs obtained from
the same initialization leads us to believe that the weights of the first layer extract the same
features across different INRs. Thus, we can think of using the same random initialization as
a way to obtain the same basis of harmonics for all our INRs. We argue that this explains why
it is possible to remove the first layer of the INRs presented in input to inr2vec (as empirically
proved in Appendix A.9): if the basis is always the same, it is sufficient to process the layers
from the second onwards, that represent the coefficients of the basis harmonics combination,
as described in

A.12 t-SNE Visualization of inr2vec Latent Space

We provide in Fig. A.23 the t-SNE visualization of the embeddings produced by inr2vec
when presented with the test set INRs of three different datasets. Fig. A.23a shows this
visualization for INRs representing the point clouds from ModelNet40, Fig. A.23b for INRs
representing meshes from Manifold 40, and Fig. A.23c for INRs obtained from the voxelized
shapes in ShapeNet10.

The supervision signal adopted during the training of our framework does not entail any
kind of constraints with respect to the organization of the learned latent space. Indeed, this
was not necessary for our ultimate goal – i.e., performing downstream tasks on the produced
embeddings. However, it is interesting to observe from the t-SNE plots that inr2vec favors
spontaneously a semantic arrangement of the embeddings in the learned latent space, with

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 172

(A) ModelNet40 (points) (B) Manifold40 (meshes) (C) ShapeNet10 (voxels)

FIGURE A.23. t-SNE visualizations of inr2vec latent spaces. We plot the t-SNE components of the
embeddings produced by inr2vec on the test sets of three datasets, ModelNet40 (left), Manifold40
(center) and Shapenet10 (right). Colors represent the different classes of the datasets.

INRs representing objects of the same category being mapped into close positions – as shown
by the colors representing the different classes of the considered datasets.

A.13 Ablation on INRs Size

Fig. A.24 reports a study that we conducted to determine the size of the INRs adopted
throughout our experiments. More specifically, we considered three alternatives of SIREN,
all featuring 4 hidden layers but different number of hidden features, namely 128, 256 and
512 respectively.

In the figure we show how the three SIREN variants perform in terms of being able of
representing properly the underlying signal, which in this example is the orange plane on the
left. Since we needed to create datasets comprising a huge number of INRs, we considered
both the quality of the representation as well as the number of steps of the fitting procedure,
with the goal of finding the best trade-off between quality and fitting time.

The results presented in the figure highlight how a SIREN with 512 hidden features can
learn to represent properly the input shape in just 600 steps, while the other variants either
take longer (as in the case of 256 hidden features) or not obtain at all the same quality (when
using 128 hidden features).

This experiment enabled us to draw the conclusion that a SIREN with 4 hidden layers
and 512 hidden features is the proper tool to obtain a good quality INR in short time.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 173

GT

Number of
hidden features

Fitting
steps200 400 600 800 1000

12
8

25
6

51
2

FIGURE A.24. Comparison between different hidden sizes for INRs. We report the fitting steps
needed to obtain a good representation for INRs featuring different number of hidden features.

A.14 Shape Retrieval and Classification on DeepSDF Latent

Codes

In Appendix A.1 we show that frameworks that adopt a shared network to produce INRs
struggle to obtain a good representation quality, while individual INRs do not suffer of this
problem by design. In this section, we go one step further and consider the possibility of
peforming downstream tasks on the latent codes produced by DeepSDF [296].

In particular, we trained DeepSDF to fit the UDFs of our augmented version of Mod-
elNet40, composed of ∼100K point clouds. For a fair comparison, we set the dimension
of DeepSDF latent codes to 1024 – i.e., the same used for inr2vec embeddings. Then we
performed the experiments of shape retrieval and classification using DeepSDF latent codes,
with the same settings presented in Sec. 13.3 for our framework.

The results reported in Tab. A.6 highlight that the poor representation quality obtained
with DeepSDF – and shown to be an intrinsic problem with shared network frameworks in
Appendix A.1 – has a detrimental effect on the quantitative results, proving once again that
INR frameworks based on a shared network cannot be deployed as tool to obtain and process
INRs effectively.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 174

ModelNet40
Method mAP@1 mAP@5 mAP@10

PointNet [160] 80.1 91.7 94.4
PointNet++ [161] 85.1 93.9 96.0

DGCNN [167] 83.2 92.7 95.1
inr2vec 81.7 92.6 95.1

DeepSDF 69.8 85.4 89.8

ModelNet40
Method Accuracy

PointNet [160] 88.8
PointNet++ [161] 89.7

DGCNN [167] 89.9
inr2vec 87.0

DeepSDF 64.9

TABLE A.6. Comparison between inr2vec and DeepSDF. We report results in shape retrieval (left)
and shape classification (right) when using standard baselines, inr2vec embeddings or DeepSDF
latent codes.

A.15 Shape Generation: Additional Comparison

In Fig. 13.8b we show a qualitative comparison between shapes generated with our frame-
work (Sec. 13.3 - Learning a mapping between inr2vec embedding spaces.) and with competing
methods, i.e., SP-GAN [336] for point clouds and OccupancyNetworks [301] for meshes.

In Fig. A.25 we extend this comparison, by presenting samples obtained with our for-
mulation applied to the voxelized chairs of ShapeNet10 and comparing them with samples
produced by two additional methods that learn a manifold of individual INRs, namely GEM
[359] and GASP [360], for which we used the original source code released by the authors.
To generate the figure, despite the sampled shapes being voxel grids, we adopt the same
procedure used by GEM and GASP and reconstruct meshes by applying Marching Cubes to
extract the 0.5 isosurface.

Fig. A.25 show that all the considered methods can generate samples with a good variety
in terms of geometry. However, it is possible to observe how the qualitative comparison
favors the shape generated with inr2vec, which appear smoother than the ones generated by
GASP and less noisy than the samples produced by GEM.

A.16 INR Classification Time: Extended Analysis

We report here the extended analysis of the inference times reported in Fig. 13.6, where we
present the classification inference time needed to process ud f INRs by standard point cloud
baselines – PointNet [160], PointNet++ [161] and DGCNN [167] – and by inr2vec encoder
paired with the fully-connected network that we adopt to classify the embeddings (see ??).

The scenario that we had in mind while designing inr2vec is the one where INRs are the
only medium to represent 3D shapes, with discrete point clouds not being available. Thus, in
Fig. 13.6 for PointNet, PointNet++ and DGCNN we report the inference time including the
time spent to reconstruct the discrete cloud from the input INR. In Fig. A.26 and Tab. A.7,
for the sake of completeness, we report also the baselines inference times assuming the
availability of discrete point clouds, stressing however that this is unlikely if INRs become a
standalone format to represent 3D shapes.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 175

G
EM

G
AS

P
in
2v
ec

FIGURE A.25. Shape generation: qualitative comparison. We show samples generated with
GEM [359], GASP [360] and with our method.

Inference Time (seconds)
Method 2048 pts 16K pts 32K pts 64K pts
PointNet 0.001 0.002 0.003 0.007
PointNet* 0.171 1.315 2.609 5.230

PointNet++ 0.013 0.026 0.034 0.036
PointNet++* 0.185 1.293 2.672 5.287

DGCNN 0.158 1.285 4.788 19.26
DGCNN* 0.325 2.612 7.426 24.436

inr2vec 0.001 0.001 0.001 0.001

TABLE A.7. Time required to classify INRs encoding udf. All the times are computed on a gpu
NVidia RTX 2080 Ti. * indicates that the time to reconstruct the discrete point cloud from the INR
is included.

The numbers plotted in Fig. A.26 and reported in Tab. A.7 show clearly that our framework
presents a big advantage with respect to the competitors. Indeed, by processing directly INRs
– where the resolution of the underlying signal is theoretically infinite – inr2vec can classify
INRs representing point clouds with different numbers of points with a constant inference
time of 0.001 seconds.

The considered baselines, instead, are negatively affected by the increasing resolution
of the input point clouds. While the inference time of PointNet and PointNet++ is still
affordable even when processing 64K points, DGCNN gets drastically slow already at 16K
points. Furthermore, if point clouds need to be reconstructed from the input INRs, the
resulting inference time becomes prohibitive for all three baselines.

Appendix A. Deep Learning on Implicit Neural Representations of Shapes 176

2048 16K 32K 64K

10 2

100

In
fe

re
nc

e
tim

e
(s

ec
)

-lo
g

sc
al

e-

w/out pcd reconstruction

2048 16K 32K 64K

10 2

100

w/ pcd reconstruction

PointNet
PointNet++
DGCNN
inr2vec

Number of points

FIGURE A.26. Time required to classify INRs encoding udf. We plot the inference time of
standard baselines and of our method, both considering the case in which discrete point clouds
are available (left) and the one where point clouds must be reconstructed from the input INRs
(right).

177

Appendix B

Neural Processing of Tri-Plane Hybrid
Neural Fields

B.1 Learning tri-plane neural fields

In this section, we outline the procedure used to learn a single (tri-plane, MLP) pair,
denoted as (T, M), to create the datasets of hybrid neural fields. We note that, nonetheless,
our proposal is agnostic to how neural fields were trained, as, in the scenario we consider,
neural fields would be available as a standard data representation and ready to be processed.

To learn a field, we optimize the parameters θ of both T and M with a loss between the
reconstructed field q̂i and the sensor measurement yi. The optimized weights θ∗ are obtained
as follows:

θ∗ = arg min
θ

1
N

N

∑
i=1

L(α1(yi), α2(Φθ(pi)))

where Φ : R3 → Rd represents the field function defined by both the tri-plane and the MLP,
and L is a function that computes the error between predicted and ground-truth values,
with d = 1 when supervising the fitting process of UDF, SDF, or OF, while d = 4 for RF.
α1 represents the mapping from the sensor domain to the field, e.g.,from a mesh to its SDF,
which does not need to be differentiable. On the other hand, α2 represents a forward map
between the output of the field and the domain of the available supervisory signal and must
be a differentiable function (e.g.,α2 models volumetric rendering for RF). α1 and α2 can also be
identity functions, e.g.,this is the case for α2 when learning an SDF from a mesh, as supervise
directly with the field values. In the remainder of this section, we describe the steps required
to create our neural field datasets.

UDF from a point cloud. Given a point p ∈ R3, UDF(p) is defined as minr∈P ∥p − r∥2,
namely the Euclidean distance from p to the closest point r of the point cloud. For each shape,
we first sample 600K points and compute the corresponding ground truth UDF values qi.
Between these points, 100K are sampled on the surface, 250K close to the surface, 200K points

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 178

at a medium distance from the surface, 25K far from the surface, and an additional 25K scat-
tered uniformly in the volume. More precisely, close points are computed by corrupting the
point on the surface with noise sampled from the normal distribution N (0, 0.001), medium-
distance ones with noise from N (0, 0.01), and far-away ones with noise from N (0, 0.1). Then,
during the optimization process, we randomly select N = 50K points for each batch, apply
the interpolation scheme explained in Sec. 14.2.1, retrieve the correct feature vector from
the tri-plane, concatenate it with the positional encoding of p, and feed it to the MLP to
compute the loss. This procedure is repeated 1000 times. As for the training objective, we
do as in inr2vec, i.e.,we scale the UDF ground truth labels into the [0, 1] range, with 0 and 1
representing the maximum and minimum distance from the surface, respectively. We then
constrain predictions to be in that range through a final sigmoid activation function. Finally,
we optimize the weights of Φ using the binary cross entropy between the scaled ground truth
labels qi and the predicted field values q̂i:

Lbce = − 1
N

N

∑
i=1

qi log(q̂i) + (1 − qi) log(1 − q̂i) (B.1)

SDF from a mesh. Given a point p ∈ R3, SDF(p) is defined as the Euclidean distance
from p to the closest point of the surface, with positive sign if p is outside the shape and
negative sign otherwise. For watertight meshes, we can easily understand whether a point
lies inside or outside the surface by analyzing normals. We compute SDF ground truth values
si for 600K sampled points. Then, we compute the binary cross entropy loss of Eq. (B.1)
on N = 50K points. We found 600 optimization steps to be enough to achieve satisfying
reconstruction quality. Similarly to the UDF, the SDF values si are scaled into the [0, 1] range,
with 0 and 1 representing the maximum and minimum distance from the surface, respectively
and 0.5 representing the surface level set.

OF from a voxel grid. Given a point p ∈ R3, OF(p) is defined as the probability oi of
p being occupied. For voxel grids, the fitting process is straightforward, as each cube ci

can either be occupied (value 1) or empty (value 0). Thus, we can directly apply the binary
cross-entropy loss. We use the same protocol applied for point clouds and optimize for 1000
steps while sampling 50K points at each step. However, due to the high imbalance between
empty and full cells, we follow inr2vec and employ a focal loss [349]:

Lfocal = − 1
N

N

∑
i=1

β(1 − oi)
γci log(oi) + (1 − β)oγ

i (1 − ci) log(1 − oi)

with β and γ representing the balancing and focusing parameters, respectively.
RF from images. Given a point p ∈ R3, RF(p) [339] is a 4-dimensional vector containing

the (R, G, B) color channels and density σ of the point. To fit a RF, we rely on the NerfAcc

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 179

library [361]. Specifically, we implement a simplified version of NeRF that does not take into
account the viewing direction and consists of a (tri-plane, MLP) pair that predicts the four
field values. To render RGB images, we leverage the volumetric rendering implementation of
[361]. In particular, at each iteration, for a given camera pose, a batch of rays (128 in our case)
is selected with the corresponding RGB ground truth values and 3D points are sampled along
these rays. The coordinates of these points are then interpolated, as described in Sec. 14.2.1, to
extract features from the tri-plane and fed to the MLP, which in turn predicts the (R, G, B, σ)

values for each of them. Finally, by means of volumetric rendering, a final RGB vector color
is obtained and compared to the ground truth via a smooth L1 loss. Each RF is trained for
1500 steps.

B.2 Explicit reconstruction from neural fields

In this section, we discuss how to sample 3D explicit representations from neural fields
and show some examples of such reconstructions.

B.2.1 Sampling explicit representations

Point cloud from UDF. We generate a point cloud based on the corresponding UDF using
a slightly adapted version of the algorithm introduced by [295]. The fundamental concept
involves querying the UDF with points distributed throughout the specific region of the 3D
space under consideration. These points are then projected onto the isosurface based on their
predicted UDF values. For a given point p ∈ R3, its updated position pnew is determined as
follows:

pnew = p − Φ(p; θ)
∇pΦ(p; θ)

∥∇pΦ(p; θ)∥ (B.2)

where Φ(p; θ) represents the field value at point p which is approximated using the (T, M)

pair with parameters θ. It is important to note that the negative gradient of the UDF indicates
the direction of the steepest decrease in distance from the surface, effectively pointing towards
the nearest point on the isosurface. Eq. (B.2) can thus be interpreted as shifting point p along
the direction of maximum UDF decrease, ultimately arriving at point pnew on the surface.
However, it is crucial to observe that Φ serves as an approximation of the true UDF. This
raises two key considerations:

1. the gradient of Φ must be normalized, as illustrated in Eq. (B.2), whereas the gradient
of the actual UDF maintains norm 1 everywhere except on the surface;

2. the predicted UDF value can be imprecise, potentially resulting in point p remaining
distant from the surface even after applying Eq. (B.2).

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 180

Po
in

tc
lo

ud
s

fr
om

U
D

F
M

es
he

s
fr

om
SD

F
Vo

xe
ls

fr
om

O
F

Im
ag

es
fr

om
R

F

FIGURE B.1. Tri-plane reconstruction examples of point clouds from UDF, meshes from SDF,
voxels from OF, and images from RF (from top to bottom)

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 181

To address the second point, we refine pnew by iteratively repeating the update described
in Eq. (B.2). With each iteration, the point gradually approaches the surface, where the values
approximated by Φ become more accurate, eventually placing the point precisely on the
isosurface. The whole algorithm for sampling a dense point cloud from a given UDF entails
the following steps:

1. generate a set of points uniformly scattered within the specified region of 3D space and
predict their UDF values using the provided (T, M) pair;

2. discard points with predicted UDF values exceeding a fixed threshold (0.05 in our
experiments). For the remaining points, update their coordinates iteratively using
Eq. (B.2), typically requiring 5 updates for satisfactory results;

3. repeat the entire procedure until the reconstructed point cloud reaches the desired
number of points.

Triangle mesh from SDF. We employ the Marching Cubes algorithm [331] to construct a
mesh based on the corresponding SDF. The Marching Cubes process involves systematically
traversing the 3D space by evaluating the SDF at 8 locations simultaneously, forming the
vertices of a tiny virtual cube. This traversal continues until the entirety of the desired 3D
region has been covered. For each cube, the algorithm identifies the triangles necessary to
represent the portion of the isosurface passing through it. These triangles from all cubes
are then integrated to create the final reconstructed surface. To determine the number and
placement of triangles for an individual cube, the algorithm examines the SDF values at pairs
of neighbouring vertices within the cube. A triangle vertex is inserted between two vertices
with opposing SDF signs. Because the possible combinations of SDF signs at cube vertices
are limited, a lookup table is generated to retrieve the triangle configuration for a given cube.
This configuration is derived from the SDF signs at the eight vertices of the cube, which are
combined into an 8-bit integer and used as a lookup table key. Once the triangle configuration
for a cube is retrieved, the vertices of the triangles are positioned along the edges connecting
the cube vertices. This positioning is accomplished through linear interpolation of the two
SDF values associated with each edge.

Voxel grid from OF. To generate a voxel grid from its OF, we employ a straightforward
procedure. Each neural field is trained to estimate the likelihood of a specific voxel being full
when provided with the 3D coordinates of the voxel center. Consequently, the initial step
in reconstructing the fitted voxels involves constructing a grid with the desired resolution,
denoted as V. Then, the field is queried using the V3 centroids of this grid, and it produces
an estimated probability of occupancy for each centroid. Eventually, we designate voxels as
occupied only if their predicted probability surpasses a predefined threshold, which we have
empirically set to 0.4. This threshold selection has been determined through experimentation,

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 182

GT Tri-Plane DeepSDF FunctaInr2vec

FIGURE B.2. Reconstruction comparison for Manifold40 meshes obtained from SDF

as it strikes a suitable balance between creating reconstructions that are neither overly sparse
nor excessively dense.

Images from RF. Given a camera pose and intrinsic parameters, to render images from a
RF, we employ the same volumetric rendering scheme as in [361], outlined in Appendix B.1.
An overview of the procedure is the following: for each pixel location, we cast the corre-
sponding ray from the camera and sample 3D points along the ray. We feed these coordinates
to a (T, M) pair, obtaining the corresponding (R, G, B, σ) field values. Then, we compute the
volumetric rendering equation to calculate the final RGB value of the image pixel.

B.2.2 Examples of reconstructions by tri-planes

In Fig. B.1, we report some examples of point clouds, meshes, voxel grids and images
reconstructed from tri-plane neural fields fitted to UDFs, SDFs, OFs and RFs, respectively.
For all fields, we can observe a very good reconstruction quality.

B.2.3 Comparison between reconstructions by neural field processing

frameworks

In Fig. B.2 and Fig. B.3, we show reconstructions of point clouds and meshes obtained
by different frameworks used to process neural fields. We can notice that neural fields in
which the neural component is a shared network trained on the whole dataset, i.e. Functa

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 183

GT Tri-Plane DeepSDF Functainr2vec

FIGURE B.3. Reconstruction comparison for ModelNet40 point clouds obtained from UDF

Mesh from SDF

Method Type # Params (K) CD (mm) F-score (%)

Voxel Single 554 0.19 69.1
Tri-plane Single 64 0.18 68.6

TABLE B.1. Mesh reconstruction results on the Manifold40 test set (voxel grid vs tri-plane). We
compare hybrid representations employing tri-planes or voxel grids as discrete data structures.

and DeepSDF, cannot properly reconstruct the original explicit data. Conversely, methods
relying on fitting an individual network, either a large MLP (inr2vec) or a tri-plane and a
small MLP (ours), provide high-quality reconstructions.

B.3 Voxel grid hybrid neural fields

In this paper, we use tri-plane neural fields. However, other kinds of hybrid neural fields
may be considered plausible alternatives. Thus, we investigate the employment of voxel grid
hybrid neural fields. First, we analyze their reconstruction quality and memory footprint. We
report results on the Manifold40 test set in Tab. B.1. We observe that, compared to tri-planes,
voxel-based hybrid fields achieve comparable reconstruction accuracy but at the cost of a
much larger number of parameters, i.e.,554K vs 64K.

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 184

UDF SDF OF

Method Input ModelNet40 ShapeNet10 ScanNet10 Manifold40 ShapeNet10

CNN Tri-plane 82.2 92.1 63.4 82.5 88.4
3D CNN Voxel 83.7 91.6 68.1 81.1 85.2
Transformer Tri-plane 87.0 94.1 69.1 86.8 91.8

TABLE B.2. Neural field classification results (voxel grid vs tri-plane). We compare hybrid
representations employing tri-planes or voxel grids as discrete data structures.

Then, we also try to classify voxel grid hybrid neural fields. With our resources (an RTX
3090 GPU), we were not able to train the Transformer architecture used for tri-planes. Indeed,
using a voxel grid would require tokens of size 323 in our formulation (Transformer invariant
to the channel order), leading to prohibitive training resources. Thus, we employ a 3D CNN
(ResNet50-style). Results are reported in Tab. B.2. We can see that although processing voxels
with a 3D CNN is more expansive in terms of both storage and computation than processing
tri-planes with a 2D CNN, they achieve comparable classification performance (row 1 vs 2)
without a clear winner between the two approaches. Yet, thanks to their high compactness,
we can process tri-planes by Transformers, achieving significantly better performance (last
row). Finally, we highlight that though the performances yielded in this experiment by a
hybrid voxel-based approach are inferior to tri-planes, they are still much better than those
achievable by previous proposals (see Tab. 14.2), which vouches for the effectiveness of hybrid
approaches when it comes to processing neural fields without compromising reconstruction
accuracy.

B.4 Deeper investigation on the tri-plane and MLP content

In this section, our objective is to gain a deeper understanding of the information stored
in the tri-plane and the MLP.

B.4.1 Is the MLP alone enough for reconstruction?

The first question we aim to address is whether the MLP alone can serve as a neural
field capable of representing 3D shapes without relying on the features provided by the
tri-plane. As explained in Sec. 14.2, we utilize the 3D coordinates of a point to retrieve the
corresponding feature vector from the tri-planes. This latter is then concatenated with the
positional encoding of the coordinates. To examine whether the 3D coordinates and the MLP
alone are sufficient to obtain accurate outputs, we conduct an experiment where we shuffle
the tri-plane features along the spatial dimensions while preserving the channel orders. This
means that each point p will be associated with a different yet meaningful feature vector

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 185

FIGURE B.4. Tri-plane channel shuffling. Left: Mesh reconstructed from a SDF tri-plane neural
field. Right: Mesh reconstructed by spatially shuffling the features of the tri-plane while keeping
the original MLP.

from another 3D point. If the MLP is still capable of providing the correct output in this
scenario, it implies that all the geometric information of the underlying 3D shapes is likely
contained within the MLP, and the tri-plane is actually not necessary. Thus, we conducted
a reconstruction experiment of meshes from SDF, similar to that reported in Tab. 14.1. We
compared the reconstructed mesh with the ground truth by calculating the Chamfer Distance
and the F-score, using 16,384 points sampled from the surface. We note that when utilizing the
MLP with features shuffled spatially, we get significantly worse values for both the Chamfer
Distance and the F-score (2.9mm vs 0.16mm), which indicates poor reconstruction quality.
This is clearly visible in Fig. B.4. This outcome highlights that the MLP alone, without the
tri-plane features, is not capable of accurately reconstructing the original shape. Thus, we
believe that the tri-plane provides essential geometric information about the represented 3D
shape.

B.4.2 Is the MLP alone enough for classification?

We conducted additional experiments where we treated each MLP associated with a tri-
plane as input to a classification pipeline. We utilize various methods, including a simple MLP
classifier, as well as advanced frameworks such as NFT and inr2vec, which directly process
MLPs. In this case, we completely disregarded the information provided by the tri-plane. We
performed this experiment starting from random initialization. As shown in Tab. B.3, even
though MLPs used in tri-planes are smaller than those used in other experiments, we note
that directly classifying them leads to unsatisfying performances.

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 186

SDF

Method Input Manifold40

MLP MLP (Tri-plane) 4.3
NFN [9] MLP (Tri-plane) 4.1
NFT [318] MLP (Tri-plane) 4.1
inr2vec MLP (Tri-plane) 7.4

Ours Tri-plane 86.8

TABLE B.3. Classification of MLPs of tri-plane neural fields on the Manifold40 test set. Neural
fields were randomly initialized.

FIGURE B.5. Channel visualizations. We select one of the tri-planes and visualize all its 16
channels learned for an airplane.

B.4.3 Tri-plane channel visualizations

To understand what information is contained in different channels of a tri-plane feature
map, we try to visualize all of them for a fixed shape. Fig. B.5 shows all 16 channels of a
SDF tri-plane feature map of a SDF neural field representing an airplane. We can see that,
although values can change across channels, the overall shape is outlined and repeated in
each channel. This also motivates why a CNN network that is not invariant to the channel
order can work on such kind of input.

B.4.4 Channel order investigation

In this section, we further analyze the tri-plane channel content to highlight that the
main difference between two training episodes concerning the same shape boils down to a
permutation of the channel order. Thus, we conduct a similar experiment to that illustrated
in Fig. 14.3 with a tri-plane with only 8 channels. We visualize results in Fig. B.6, also
reporting the tri-plane channel visualization for both training episodes, A and B, as well as
the permutation that aligns the channels found in A to B. We discovered that permutation
by minimizing the reconstruction error. We can appreciate that after the permutation, the
corresponding channels contain similar features, resulting in the possibility of reconstructing
the shape with the MB.

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 187

B.4.5 Additional visualizations

In Fig. B.7, we show additional tri-plane visualization, similar to those of Fig. 14.3 (left).

B.5 Implementation details

B.5.1 Datasets

Regarding single MLP neural fields based on SIREN networks, we employ the same
datasets used in inr2vec with the same train/val/test splits for SDF, UDF, and OF. When
creating the tri-plane neural field datasets, we employ the original explicit datasets used to
create the inr2vec neural fields. We also follow the same offline augmentation protocol that
employs a non-uniform scaling along the three axes and then a re-normalization of the shape
into the unit sphere to reach roughly 100K shapes in total. Thereby, the same explicit data
is used to build the benchmark, while the only aspect that varies is the way to represent
the neural field, i.e.,MLP only vs (tri-plane, MLP). Finally, to learn RF, we adopt the dataset
introduced in [342]. This dataset contains renderings from 13 classes of ShapeNet, and for
each shape, 36 views are generated around the object and used to fit the RF. In this case, we
use the original dataset that accounts for 40511 shapes with no prior augmentation. For the
train/val/test splits, we randomly sample 80% of the objects for the training set and select
10% shapes for both the validation and test splits.

We additionally note that the ShapeNet10 and ScanNet10 datasets mentioned in the main
text are subsets of 10 (shared) classes of ShapeNet [171] and ScanNet [174], respectively,
originally proposed in [28].

B.5.2 Benchmark

In this section, we detail some implementation details and choices behind the results
reported in Tab. 14.2 by specifying how experiments were run for each one of our competitors.

DeepSDF. DeepSDF [296] was originally intended as a shared network architecture that
learns an SDF from a dataset of meshes. The results reported in Tab. 14.2 for Manifold40 [278]
were therefore obtained by running the code from the official repository to train the frame-
work for 100 epochs and compute the 1024-dimensional embeddings of training, validation,
and test set. A classifier (3 fully connected layers with ReLUs) was then trained on those
embeddings. For UDF results, instead, we trained the framework on point cloud datasets by
replacing the DeepSDF loss with the binary cross entropy of Eq. (B.1). Extensions to OF and
RF, however, are not as straightforward and were thus not included as part of our work.

inr2vec. inr2vec was trained on each point cloud, mesh, and voxel dataset for 100 epochs
via the official code and the resulting embeddings used to train a classifier (3 fully connected

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 188

layers with ReLUs). inr2vec deals with UDF, SDF, and OF; an extension to RF would not be
trivial thus it was not covered by our experiments.

DWSNet. [317] test their DWSNet architecture on neural fields representing grayscale
images. We modified their official neural field classification code to work with UDF, SDF,
OF, and RF, and trained their classifier (DWSNet + classification head) for 100 epochs.

NFN and NFT. We modified the official code for NFN [9] and NFT [318] to work with
UDF, SDF, OF, and RF, by using two hidden equivariant layers (16 channels each) followed
by an MLP classification head. We trained on each dataset for 80 epochs, by which time the
validation loss had stopped improving.

Functa. To perform experiments with the Functa framework [319], we start from the
original code provided by authors and adapt it to fit UDF, SDF, and OF. In particular, we
use a latent modulation of size 512. At each iteration, we use 10k points to compute the loss.
The inner loop of the meta-learning process is optimized for three iterations, and in total, we
optimize for 5e5 steps with batch size 2. After the training phase, the weights of the shared
network are frozen, and we execute the inner loop of the meta-learning protocol for three
steps to obtain the latent modulation vector for each field.

B.5.3 Architectures

We provide here some additional details regarding the Transformer architectures used
for classification and segmentation depicted in Fig. B.8. In both cases, the channels of the
tri-planes are flattened and linearly projected to 512-dimensional vectors and fed to the
Transformer encoder, which is the original Transformer encoder proposed in [15]. In our case,
the encoder consists of 4 heads with 8 layers each. The encoder produces a single embedding
for each tri-plane channel, and for classification, we use a max pool operator to achieve
invariance to the channel order and obtain a single global embedding. The classifier consists
of a single fully connected layer that yields the predicted probability distribution for the
input field. In total, the number of parameters is roughly 25M, which is very similar to the
number of parameters of a Resnet50. As regards part segmentation, we attach an additional
Transformer decoder composed of 2 parallel heads with 4 layers each. The decoder takes in
input the sequence of tokens from the encoder and the sequence of tokens obtained starting
from the coordinates query to be segmented. More precisely, each point is first encoded
using positional encoding from [339] that gives a 63-dimensional vector, and then we linearly
project it into a 512-dimensional vector. Finally, given an object to segment, we also attach the
one-hot encoding of its class (standard practice in part-segmentation). The decoder output
is a sequence of transformed tokens that are given in input to a single layer to predict the
final probability distribution. Note that we do not use the decoder auto-regressively as in the

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 189

original Transformer. We just compute a forward pass on a batch of query points to segment
all of them simultaneously. Hence, we also do not use masked attention at training time.

B.5.4 Training

We provide here additional training details. For classification, we use the same hyper-
parameters for all experiments. We adopt the AdamW optimizer [356], with the OneCycle
scheduler [128] with maximum learning rate of 1e-4, and train for 150 epochs with batch size
set to 256 using the cross entropy loss. We use a single NVIDIA RTX 3090 for all experiments.
At training time, we apply a random crop of size 30 × 30 to the tri-planes that have a resolu-
tion of 32 × 32. As for part segmentation, we use the same configuration as for classification,
although we train for 75 epochs with batch size 32. For training and testing, we use the same
protocol used by our competitors. Indeed, at training time, we use the cross entropy loss
function with all the object parts, although at test time, metrics are computed by selecting the
highest scores among the correct object parts for a given class.

B.5.5 Random initialization

Throughout the main paper, we use the term “random initialization” to differentiate our
setup from that considered in in2vec, where all neural fields are trained starting from the
same, albeit random, set of parameters, i.e. initial values of weights and biases are sampled
once and then used as the starting point to fit all MLPs. In our work, instead, we consider the
more realistic scenario in which each individual neural field is trained starting from a random
and different set of parameters. Nonetheless, when sampling initial values of weights and
biases for each shape, we do indeed follow the specific initialization scheme suggested for
SIRENs [304]. In other words, “random initialization” means that a different random set of
parameters, sampled according to the SIREN rules, is used to initialize each MLP. Tri-planes,
instead, are initialized with values sampled from a Gaussian distribution.

B.6 Training and inference time

In this section, we provide additional details on training and inference times, computed
on a single e NVIDIA RTX 3090.

Tab. B.4 shows a comparison between the times required to fit approximately 100K shapes
on the Manifold40 [278] training set for different methods. For neural fields consisting of an
MLP only and a (tri-plane, MLP) pair, denoted by “MLP” and “Tri-plane”, respectively, we
fit each shape for 600 steps. Functa was trained with the original hyperparameters for 500K
iterations for the meta-learning outer loop. DeepSDF was trained for 100 epochs. Notice how
tri-plane hybrid neural fields are the ones requiring the least amount of time to fit the dataset.

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 190

SDF

Method Time (hours) ↓
DeepSDF [296] 61
Functa [319] 120
MLP 80
Tri-plane 45

TABLE B.4. Training time comparison. Time required to fit approximately 100K shapes on the
Mandifold40 training set. Times are computed on a single NVIDIA RTX 3090.

UDF

Time (seconds) ↓
Method 2048 points 16K points 32K points 64K points

PointNet [160] 0.002 0.004 0.006 0.012
PointNet* [160] 0.099 0.764 1.388 2.793
Tri-plane 0.003 0.003 0.003 0.003

TABLE B.5. Inference time to classify an input shape. * indicates that the time to reconstruct the
point cloud from the neural field is included. Times are computed on a single e NVIDIA RTX
3090.

Tab. B.5 compares the inference time required to classify an input shape with different
strategies. The first row is the classification time of a PointNet processing a point cloud. In the
second row, we report the inference time of PointNet, assuming we do not have an explicit
point cloud available, namely PointNet*. In this case, the time includes reconstructing the
point cloud from the tri-plane neural field, which would be the only data available in our
scenario. Finally, the last row reports the time required by our method, i.e.,a Transformer
processing an input hybrid tri-plane neural field. We show times for different point cloud
resolutions (2048, 16K, 32K, 64K points). We notice that the inference time of our method is
constant along the resolution axis; in particular, our method is comparable to the PointNet at
low resolution, whereas it becomes increasingly faster as the resolution grows. Moreover, we
highlight that our method inference times w.r.t. to those of a PointNet directly processing
explicit point clouds are comparable at lower resolutions and even better at higher ones
(e.g.,0.003 Tri-plane vs 0.012 PointNet for 16K points).

B.7 Tri-plane ablations

This section provides additional ablations concerning the tri-plane structure and hyper-
parameters. Tab. B.6 shows that sharing the MLP across tri-planes leads to inferior results
in both classification and reconstruction on Manifold40 [278]. It is also worth highlighting

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 191

how sharing the MLP requires its availability at test time to create new neural fields, i.e.,to
create new test data, limiting the deployment scenarios of our methodology, which are in-
stead equivalent to those of discrete data structures when using a (MLP, triplane) pair for
each sample. Tab. B.7 provides a comparative analysis of classification and reconstruction
results on Manifold40 [278] between tri-planes with different resolution and/or number of
channels. Interestingly, the classification accuracy and reconstruction error are quite robust
to the number of channels and tri-plane resolution, which therefore are not critical design
hyperparameters.

SDF Mesh from SDF

Classification Reconstruction

Method Type Accuracy (%) ↑ CD (mm) ↓ F-score (%) ↑
Tri-plane Shared 84.7 1.57 42.9
Tri-plane Single 86.8 0.18 68.6

TABLE B.6. Shared vs individual MLP. Comparison of classification and reconstruction results of
tri-planes sharing all the same MLP vs when each tri-plane has its own individual MLP. Results
were computed on the Manifold40 test set.

SDF Mesh from SDF

Resolution Channels Accuracy (%) ↑ CD (mm) ↓ F-score (%) ↑
32 × 32 32 86.3 0.18 68.6
32 × 32 16 86.8 0.18 68.8
32 × 32 8 86.4 0.18 69.2
24 × 24 16 86.6 0.18 68.9
40 × 40 16 86.4 0.18 69.0

TABLE B.7. Ablation study of tri-plane resolution and number of channels. Second row is our
choice of tri-plane size. Results were obtained on the Manifold40 test set.

B.8 Evaluating on the original discrete 3D representations

In Tab. 14.3 of the main paper, we evaluate the competitors on the data reconstructed from
the tri-plane neural fields fitted on the test sets of the considered datasets since these would
be the only data available at test time in the scenario described in Sec. 14.1, and as proposed
in inr2vec, where neural fields are used to store and communicate 3D data. Nonetheless, we
compare the classification performance of methods operating on discrete data both when the
original data is used and when it is, instead, reconstructed from the corresponding neural
field. Tab. 14.3 shows slightly better results when the original data is used. However, the

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 192

Accuracy (%) ↑
Method Input ModelNet40 ShapeNet10 ScanNet10 Manifold40 ShapeNet10

Ours Tri-plane 87.0 94.1 69.1 86.8 91.8

PointNet [160] Point Cloud 88.8 94.3 72.7 – –
PointNet* [160] Point Cloud 88.8 94.7 72.8 – –
MeshWalker [289] Mesh – – – 90.0 –
MeshWalker* [289] Mesh – – – 90.6 –
Conv3DNet [258] Voxel – – – – 92.1
Conv3DNet* [258] Voxel – – – – 92.5

TABLE B.8. Explicit methods on reconstructed data vs original discrete data. Classification accu-
racy on the test set is reported. Top: our method, that processes (tri-plane) neural fields. Bottom:
Methods that process explicit discrete 3D data, either reconstructed from the corresponding neural
field (without *) or by operating directly on the original data (with *).

difference is small enough to prove that no significant loss of information occurs when storing
data with tri-plane neural fields.

B.9 Study on the memory occupation of neural fields

Dataset Representation Num Shapes Memory (GB)

ModelNet40 Point Cloud 110054 2.52
ModelNet40 Siren MLP (UDF) 110054 327.99
ModelNet40 Tri-plane (UDF) 110054 20.15

ShapeNet10 Point Cloud 103230 2.36
ShapeNet10 Siren MLP (UDF) 103230 307.65
ShapeNet10 Tri-plane (UDF) 103230 18.90

ScanNet10 Point Cloud 108360 2.48
ScanNet10 Siren MLP (UDF) 108360 322.94
ScanNet10 Tri-plane (UDF) 108360 19.84

Manifold40 Mesh 100864 10.79
Manifold40 Siren MLP (SDF) 100864 300.60
Manifold40 Tri-plane (SDF) 100864 18.47

ShapeNet10 Voxel 103230 25.20
ShapeNet10 Siren MLP (OF) 103230 307.65
ShapeNet10 Tri-plane (OF) 103230 18.90

ShapeNetRender Training Images 40511 204.45
ShapeNetRender Siren MLP (NeRF) 40511 120.73
ShapeNetRender Tri-plane (NeRF) 40511 7.42

TABLE B.9. Training dataset memory occupancy

Nowadays, datasets are typically made of data represented explicitly, e.g., a point cloud
dataset, a multi-view image dataset, and so on. However, in our vision, these datasets might

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 193

be replaced by their neural field counterparts, i.e.,each element would be represented as a
neural field. Thus, this section investigates the trade-off of using these novel representations
regarding memory occupancy.

First, we investigate the memory in GB required by each raw dataset employed in our
paper. We report the results in Tab. B.9 either by their original explicit representation or with
neural fields. As neural field representation, we show the SIREN MLP adopted inr2vec or
the tri-plane representation. We note that the tri-plane representation requires more memory
than point clouds and meshes (e.g.,ModelNet40 and Manifold40). Yet, the advantages of
using tri-plane representations stand out when compared with either voxels (ShapeNet10)
or images (ShapeNetRender). Notably, tri-planes take significantly less memory than Siren
MLPs.

However, we argue that the real advantages of using neural fields are related to the
memory occupied by the data being decoupled from its spatial resolution. Thus, in Fig. B.9,
we study the number of parameters required for different explicit representations compared
to those of neural fields by varying the spatial resolution of the data. We include all variables
required by an explicit representation in their parameter number, e.g.,each point of a point
cloud has 3 parameters: its 3 coordinates x, y, and z. The blue, red, and green lines represent
the parameters of the explicit, the SIREN MLP, and the tri-plane representation when changing
the resolution. Regarding meshes and point clouds, we notice that the space occupied by
tri-plane neural fields is slightly larger for the resolutions used in the datasets. However,
even with a point cloud of 21,333 points and a mesh with 14,222 faces, using tri-plane neural
fields to represent the data becomes advantageous. This is of utmost importance, considering
that real datasets could contain point clouds or meshes with many more points or faces
e.g.,Objaverse [362] features meshes with more than 107 polygons. The advantages are even
more significant in the case of voxel grids, in which the memory occupancy scales cubically
with the spatial resolution or NeRFs in which many training images per sample are required.
Finally, we point out that the representation with tri-plane neural fields is advantageous
compared to that with SIREN MLPs.

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 194

(TA, MA) (TB, MB) (TA, MB) (Permuted TA, MB)

TA channels

TB channels

Permuted TA channels

FIGURE B.6. Row 1: Reconstructions of different combinations of (tri-plane, MLP) pairs with
different initializations. Permuted TA means that the channels of TA are permuted in order to
minimize the reconstruction error when combined with MB. Rows 2–4: Channel visualizations.

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 195

FIGURE B.7. Additional visualizations. For each object, we visualize the explicit reconstruction
obtained from the hybrid neural field and one tri-plane feature map for three different fields, SDF,
UDF, and RF. We visualize features as the normalized sum of all channels with a viridis colormap.

Transformer
Encoder

FC

FC

FC

FC

sh
ar

ed

�atten

Classi�cation

Segmentation

FC

m
ax

 p
oo

l

Class logits
for tri-plane

Tr
an

sf
or

m
er

De
co

de
r

Class logits
for

FC~

class embedding

FIGURE B.8. Architecture for tri-plane processing

Appendix B. Neural Processing of Tri-Plane Hybrid Neural Fields 196

2048
(ShapeNet10)

21333 266666

Number of 3D Points

6144
64000

800000

Nu
m

be
r o

f P
ar

am
et

er
s

Point cloud vs Neural Field

Point cloud
SIREN MLP
Tri-plane

14222
6380

(Manifold40)

177777

Number of Triangles

64000
28710

800000

Nu
m

be
r o

f P
ar

am
et

er
s

Triangle Mesh vs Neural Field

Mesh
SIREN MLP
Tri-plane

0 40 9364
(ShapeNet10)

Voxel Grid Size

0
64000

800000

262144

Nu
m

be
r o

f P
ar

am
et

er
s

Voxel Grid vs Neural Field

Voxel
SIREN MLP
Tri-plane

24 x 24 x 36
86 x 86 x 36 224 x 224 x 36

 (ShapeNetRender)
H x W x NumImages

64000

800000

5419008

Nu
m

be
r o

f P
ar

am
et

er
s

NeRF Training Images vs Neural Field
Images
SIREN MLP
Tri-plane

FIGURE B.9. Number of parameters in relation to spatial resolution: neural fields vs explicit
representations

197

Bibliography

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Advances in Neural Information Pro-
cessing Systems 25. Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger.
Curran Associates, Inc., 2012, pp. 1097–1105.

[13] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for
Large-Scale Image Recognition”. In: International Conference on Learning Representations.
2015.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learn-
ing for Image Recognition”. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016). DOI: 10.1109/cvpr.2016.90. URL: http://dx.doi.org/10.
1109/cvpr.2016.90.

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is All you Need”. In: Advances
in Neural Information Processing Systems. Ed. by I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates,
Inc., 2017. URL: https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[16] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson.
“CNN Features off-the-shelf: an Astounding Baseline for Recognition”. In: CoRR
abs/1403.6382 (2014). arXiv: 1403.6382. URL: http://arxiv.org/abs/1403.6382.

[17] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. “The Cityscapes
Dataset for Semantic Urban Scene Understanding”. In: CoRR abs/1604.01685 (2016).
arXiv: 1604.01685. URL: http://arxiv.org/abs/1604.01685.

[18] Hassan Alhaija, Siva Mustikovela, Lars Mescheder, Andreas Geiger, and Carsten
Rother. “Augmented Reality Meets Computer Vision: Efficient Data Generation for
Urban Driving Scenes”. In: International Journal of Computer Vision (IJCV) (2018).

[19] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and
Silvio Savarese. “Taskonomy: Disentangling task transfer learning”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2018, pp. 3712–3722.

https://doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/cvpr.2016.90
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/1403.6382
http://arxiv.org/abs/1403.6382
https://arxiv.org/abs/1604.01685
http://arxiv.org/abs/1604.01685

Bibliography 198

[20] Sinno Jialin Pan and Qiang Yang. “A Survey on Transfer Learning”. In: IEEE Trans. on
Knowl. and Data Eng. 22.10 (Oct. 2010), pp. 1345–1359. ISSN: 1041-4347. DOI: 10.1109/
TKDE.2009.191. URL: https://doi.org/10.1109/TKDE.2009.191.

[21] Mei Wang and Weihong Deng. “Deep Visual Domain Adaptation: A Survey”. In: CoRR
abs/1802.03601 (2018). arXiv: 1802.03601. URL: http://arxiv.org/abs/1802.03601.

[22] Yunsheng Li, Lu Yuan, and Nuno Vasconcelos. “Bidirectional Learning for Domain
Adaptation of Semantic Segmentation”. In: 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2019). DOI: 10.1109/cvpr.2019.00710. URL:
http://dx.doi.org/10.1109/CVPR.2019.00710.

[23] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang, and
Manmohan Chandraker. “Learning to Adapt Structured Output Space for Semantic
Segmentation”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2018). DOI: 10.1109/cvpr.2018.00780. URL: http://dx.doi.org/10.1109/CVPR.
2018.00780.

[24] Minghao Chen, Hongyang Xue, and Deng Cai. “Domain Adaptation for Semantic
Segmentation With Maximum Squares Loss”. In: 2019 IEEE/CVF International Con-
ference on Computer Vision (ICCV) (2019). DOI: 10 . 1109 / iccv . 2019 . 00218. URL:
http://dx.doi.org/10.1109/ICCV.2019.00218.

[25] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,
Alexei Efros, and Trevor Darrell. “CyCADA: Cycle-Consistent Adversarial Domain
Adaptation”. In: Proceedings of the 35th International Conference on Machine Learning.
Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning
Research. PMLR, 2018, pp. 1989–1998. URL: http://proceedings.mlr.press/v80/
hoffman18a.html.

[26] Zuxuan Wu, Xintong Han, Yen-Liang Lin, Mustafa Gökhan Uzunbas, Tom Goldstein,
Ser Nam Lim, and Larry S. Davis. “DCAN: Dual Channel-Wise Alignment Networks
for Unsupervised Scene Adaptation”. In: Lecture Notes in Computer Science (2018),
pp. 535–552. ISSN: 1611-3349. DOI: 10.1007/978-3-030-01228-1_32. URL: http:
//dx.doi.org/10.1007/978-3-030-01228-1_32.

[27] Myeongjin Kim and Hyeran Byun. “Learning Texture Invariant Representation for
Domain Adaptation of Semantic Segmentation”. In: (2020). DOI: 10.1109/cvpr42600.
2020.01299. URL: http://dx.doi.org/10.1109/cvpr42600.2020.01299.

[28] Can Qin, Haoxuan You, Lichen Wang, C.-C. Jay Kuo, and Yun Fu. “PointDAN: A Multi-
Scale 3D Domain Adaption Network for Point Cloud Representation”. In: Advances in
Neural Information Processing Systems. 2019.

https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://arxiv.org/abs/1802.03601
http://arxiv.org/abs/1802.03601
https://doi.org/10.1109/cvpr.2019.00710
http://dx.doi.org/10.1109/CVPR.2019.00710
https://doi.org/10.1109/cvpr.2018.00780
http://dx.doi.org/10.1109/CVPR.2018.00780
http://dx.doi.org/10.1109/CVPR.2018.00780
https://doi.org/10.1109/iccv.2019.00218
http://dx.doi.org/10.1109/ICCV.2019.00218
http://proceedings.mlr.press/v80/hoffman18a.html
http://proceedings.mlr.press/v80/hoffman18a.html
https://doi.org/10.1007/978-3-030-01228-1_32
http://dx.doi.org/10.1007/978-3-030-01228-1_32
http://dx.doi.org/10.1007/978-3-030-01228-1_32
https://doi.org/10.1109/cvpr42600.2020.01299
https://doi.org/10.1109/cvpr42600.2020.01299
http://dx.doi.org/10.1109/cvpr42600.2020.01299

Bibliography 199

[29] Antonio Alliegro, Davide Boscaini, and Tatiana Tommasi. “Joint Supervised and
Self-Supervised Learning for 3D Real World Challenges”. In: 2020 25th International
Conference on Pattern Recognition (ICPR). IEEE. 2021, pp. 6718–6725.

[30] Idan Achituve, Haggai Maron, and Gal Chechik. “Self-Supervised Learning for Do-
main Adaptation on Point Clouds”. In: Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision. 2021, pp. 123–133.

[31] Maximilian Jaritz, Tuan-Hung Vu, Raoul de Charette, Emilie Wirbel, and Patrick
Pérez. “xMUDA: Cross-Modal Unsupervised Domain Adaptation for 3D Semantic
Segmentation”. In: CVPR. 2020.

[32] Maximilian Jaritz, Tuan-Hung Vu, Raoul De Charette, Émilie Wirbel, and Patrick Pérez.
“Cross-modal learning for domain adaptation in 3d semantic segmentation”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 45.2 (2022), pp. 1533–1544.

[33] Duo Peng, Yinjie Lei, Wen Li, Pingping Zhang, and Yulan Guo. “Sparse-to-dense
Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adapta-
tion for 3D Semantic Segmentation”. In: Proceedings of the International Conference on
Computer Vision (ICCV). IEEE, 2021.

[34] Adriano Cardace, Pierluigi Zama Ramirez, Samuele Salti, and Luigi Di Stefano. “Shal-
low Features Guide Unsupervised Domain Adaptation for Semantic Segmentation at
Class Boundaries”. In: 2022 IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV) (2022). DOI: 10.1109/wacv51458.2022.00207. URL: http://dx.doi.
org/10.1109/WACV51458.2022.00207.

[35] Evan Shelhamer, Jonathan Long, and Trevor Darrell. “Fully Convolutional Networks
for Semantic Segmentation”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 39.4 (2017), pp. 640–651. ISSN: 2160-9292. DOI: 10.1109/tpami.2016.
2572683. URL: http://dx.doi.org/10.1109/TPAMI.2016.2572683.

[36] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan
L. Yuille. “DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 40.4 (2018), pp. 834–848. ISSN: 2160-9292. DOI: 10.
1109 /tpami . 2017 .2699184. URL: http :/ / dx . doi . org / 10. 1109 / TPAMI . 2017 .
2699184.

[37] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello. “ENet: A
Deep Neural Network Architecture for Real-Time Semantic Segmentation”. In: CoRR
abs/1606.02147 (2016). URL: http://arxiv.org/abs/1606.02147.

https://doi.org/10.1109/wacv51458.2022.00207
http://dx.doi.org/10.1109/WACV51458.2022.00207
http://dx.doi.org/10.1109/WACV51458.2022.00207
https://doi.org/10.1109/tpami.2016.2572683
https://doi.org/10.1109/tpami.2016.2572683
http://dx.doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1109/tpami.2017.2699184
https://doi.org/10.1109/tpami.2017.2699184
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://arxiv.org/abs/1606.02147

Bibliography 200

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Net-
works for Biomedical Image Segmentation”. In: Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015 (2015), pp. 234–241. ISSN: 1611-3349. DOI: 10.1007/
978-3-319-24574-4_28. URL: http://dx.doi.org/10.1007/978-3-319-24574-
4_28.

[39] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. “Playing for
Data: Ground Truth from Computer Games”. In: Lecture Notes in Computer Science
(2016), pp. 102–118. ISSN: 1611-3349. DOI: 10.1007/978-3-319-46475-6_7. URL:
http://dx.doi.org/10.1007/978-3-319-46475-6_7.

[40] Yuhua Chen, Wen Li, and Luc Van Gool. “ROAD: Reality Oriented Adaptation for
Semantic Segmentation of Urban Scenes”. In: 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2018). DOI: 10.1109/cvpr.2018.00823. URL: http:
//dx.doi.org/10.1109/CVPR.2018.00823.

[41] Yang Zhang, Philip David, and Boqing Gong. “Curriculum Domain Adaptation for
Semantic Segmentation of Urban Scenes”. In: 2017 IEEE International Conference on
Computer Vision (ICCV) (2017). DOI: 10.1109/iccv.2017.223. URL: http://dx.doi.
org/10.1109/ICCV.2017.223.

[42] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell. “Fcns in the wild: Pixel-
level adversarial and constraint-based adaptation”. In: arXiv preprint arXiv:1612.02649
(2016).

[43] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. “How transferable are
features in deep neural networks?” In: Advances in neural information processing systems.
2014, pp. 3320–3328.

[44] Mingxing Tan, Ruoming Pang, and Quoc V Le. “Efficientdet: Scalable and efficient
object detection”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020, pp. 10781–10790.

[45] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. “Encoder-decoder with atrous separable convolution for semantic image
segmentation”. In: Proceedings of the European conference on computer vision (ECCV).
2018, pp. 801–818.

[46] Clement Godard, Oisin Mac Aodha, Michael Firman, and Gabriel Brostow. “Digging
Into Self-Supervised Monocular Depth Estimation”. In: 2019 IEEE/CVF International
Conference on Computer Vision (ICCV) (2019). DOI: 10.1109/iccv.2019.00393. URL:
http://dx.doi.org/10.1109/ICCV.2019.00393.

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-46475-6_7
http://dx.doi.org/10.1007/978-3-319-46475-6_7
https://doi.org/10.1109/cvpr.2018.00823
http://dx.doi.org/10.1109/CVPR.2018.00823
http://dx.doi.org/10.1109/CVPR.2018.00823
https://doi.org/10.1109/iccv.2017.223
http://dx.doi.org/10.1109/ICCV.2017.223
http://dx.doi.org/10.1109/ICCV.2017.223
https://doi.org/10.1109/iccv.2019.00393
http://dx.doi.org/10.1109/ICCV.2019.00393

Bibliography 201

[47] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. “ImageNet: A large-scale
hierarchical image database”. In: 2009 IEEE Conference on Computer Vision and Pattern
Recognition. 2009, pp. 248–255. DOI: 10.1109/CVPR.2009.5206848.

[48] Pierluigi Zama Ramirez, Alessio Tonioni, Samuele Salti, and Luigi Di Stefano. “Learn-
ing Across Tasks and Domains”. In: 2019 IEEE/CVF International Conference on Computer
Vision (ICCV) (2019). DOI: 10.1109/iccv.2019.00820. URL: http://dx.doi.org/10.
1109/ICCV.2019.00820.

[49] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu,
Hui Xiong, and Qing He. “A Comprehensive Survey on Transfer Learning”. In: arXiv
preprint arXiv:1911.02685 (2019).

[50] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. “How transferable are
features in deep neural networks?” In: Advances in neural information processing systems.
2014, pp. 3320–3328.

[51] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet: A
large-scale hierarchical image database”. In: 2009 IEEE conference on computer vision
and pattern recognition. Ieee. 2009, pp. 248–255.

[52] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “You only look once:
Unified, real-time object detection”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016, pp. 779–788.

[53] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. “Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 39.6 (2017), pp. 1137–1149. ISSN: 2160-9292.
DOI: 10.1109/tpami.2016.2577031. URL: http://dx.doi.org/10.1109/TPAMI.2016.
2577031.

[54] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. “Mask R-CNN”. In:
2017 IEEE International Conference on Computer Vision (ICCV) (2017). DOI: 10.1109/
iccv.2017.322. URL: http://dx.doi.org/10.1109/ICCV.2017.322.

[55] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C Berg. “Ssd: Single shot multibox detector”. In: European
conference on computer vision. Springer. 2016, pp. 21–37.

[56] Arghya Pal and Vineeth N Balasubramanian. “Zero-Shot Task Transfer”. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). June 2019.

[57] Mei Wang and Weihong Deng. “Deep visual domain adaptation: A survey”. In: Neuro-
computing 312 (2018), pp. 135–153. ISSN: 0925-2312. DOI: 10.1016/j.neucom.2018.05.
083. URL: http://dx.doi.org/10.1016/j.neucom.2018.05.083.

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/iccv.2019.00820
http://dx.doi.org/10.1109/ICCV.2019.00820
http://dx.doi.org/10.1109/ICCV.2019.00820
https://doi.org/10.1109/tpami.2016.2577031
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/iccv.2017.322
https://doi.org/10.1109/iccv.2017.322
http://dx.doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1016/j.neucom.2018.05.083
https://doi.org/10.1016/j.neucom.2018.05.083
http://dx.doi.org/10.1016/j.neucom.2018.05.083

Bibliography 202

[58] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. “Geodesic flow kernel for
unsupervised domain adaptation”. In: Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on. IEEE. 2012, pp. 2066–2073.

[59] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. “Learning Transferable
Features with Deep Adaptation Networks”. In: Proceedings of the 32nd International
Conference on Machine Learning. Vol. 37. Proceedings of Machine Learning Research.
PMLR, 2015, pp. 97–105.

[60] Yaroslav Ganin and Victor Lempitsky. “Unsupervised Domain Adaptation by Back-
propagation”. In: International Conference on Machine Learning. 2015, pp. 1180–1189.

[61] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand, and Victor Lempitsky. “Domain-adversarial
training of neural networks”. In: The Journal of Machine Learning Research 17.1 (2016),
pp. 2096–2030.

[62] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. “Adversarial discrimina-
tive domain adaptation”. In: Computer Vision and Pattern Recognition (CVPR). 2017.

[63] Ruijia Xu, Guanbin Li, Jihan Yang, and Liang Lin. “Larger Norm More Transferable:
An Adaptive Feature Norm Approach for Unsupervised Domain Adaptation”. In:
Proceedings of the IEEE International Conference on Computer Vision. 2019, pp. 1426–1435.

[64] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative adversarial nets”. In:
Advances in neural information processing systems. 2014, pp. 2672–2680.

[65] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. “Unpaired Image-
To-Image Translation Using Cycle-Consistent Adversarial Networks”. In: The IEEE
International Conference on Computer Vision (ICCV). Oct. 2017.

[66] Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip
Krishnan. “Unsupervised Pixel-Level Domain Adaptation with Generative Adver-
sarial Networks”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2017). DOI: 10.1109/cvpr.2017.18. URL: http://dx.doi.org/10.1109/
CVPR.2017.18.

[67] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. “Image-To-Image
Translation With Conditional Adversarial Networks”. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). July 2017.

[68] Fabio Pizzati, Raoul de Charette, Michela Zaccaria, and Pietro Cerri. “Domain bridge
for unpaired image-to-image translation and unsupervised domain adaptation”. In:
The IEEE Winter Conference on Applications of Computer Vision. 2020, pp. 2990–2998.

https://doi.org/10.1109/cvpr.2017.18
http://dx.doi.org/10.1109/CVPR.2017.18
http://dx.doi.org/10.1109/CVPR.2017.18

Bibliography 203

[69] Yang Zhang, Philip David, and Boqing Gong. “Curriculum domain adaptation for
semantic segmentation of urban scenes”. In: The IEEE International Conference on
Computer Vision (ICCV). 2017.

[70] Pierluigi Zama Ramirez, Alessio Tonioni, and Luigi Di Stefano. “Exploiting semantics
in adversarial training for image-level domain adaptation”. In: 2018 IEEE International
Conference on Image Processing, Applications and Systems (IPAS). IEEE. 2018, pp. 49–54.

[71] Wei-Lun Chang, Hui-Po Wang, Wen-Hsiao Peng, and Wei-Chen Chiu. “All about
structure: Adapting structural information across domains for boosting semantic
segmentation”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2019, pp. 1900–1909.

[72] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,
Alexei Efros, and Trevor Darrell. “CyCADA: Cycle-Consistent Adversarial Domain
Adaptation”. In: Proceedings of the 35th International Conference on Machine Learning.
Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning
Research. Stockholmsmässan, Stockholm Sweden: PMLR, Oct. 2018, pp. 1989–1998.

[73] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh Susskind, Wenda Wang, and
Russ Webb. “Learning from simulated and unsupervised images through adversarial
training”. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2017.

[74] Yiheng Zhang, Zhaofan Qiu, Ting Yao, Dong Liu, and Tao Mei. “Fully Convolutional
Adaptation Networks for Semantic Segmentation”. In: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2018). DOI: 10.1109/cvpr.2018.00712. URL:
http://dx.doi.org/10.1109/CVPR.2018.00712.

[75] Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain, Ser Nam Lim, and Rama Chel-
lappa. “Learning from Synthetic Data: Addressing Domain Shift for Semantic Seg-
mentation”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2018). DOI: 10.1109/cvpr.2018.00395. URL: http://dx.doi.org/10.1109/CVPR.
2018.00395.

[76] Fei Pan, Inkyu Shin, Francois Rameau, Seokju Lee, and In So Kweon. “Unsupervised
Intra-domain Adaptation for Semantic Segmentation through Self-Supervision”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020,
pp. 3764–3773.

[77] Myeongjin Kim and Hyeran Byun. “Learning Texture Invariant Representation for Do-
main Adaptation of Semantic Segmentation”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2020, pp. 12975–12984.

https://doi.org/10.1109/cvpr.2018.00712
http://dx.doi.org/10.1109/CVPR.2018.00712
https://doi.org/10.1109/cvpr.2018.00395
http://dx.doi.org/10.1109/CVPR.2018.00395
http://dx.doi.org/10.1109/CVPR.2018.00395

Bibliography 204

[78] Alessio Tonioni, Matteo Poggi, Stefano Mattoccia, and Luigi Di Stefano. “Unsuper-
vised Adaptation for Deep Stereo”. In: The IEEE International Conference on Computer
Vision (ICCV). Oct. 2017.

[79] Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. “T2Net: Synthetic-to-Realistic Trans-
lation for Solving Single-Image Depth Estimation Tasks”. In: The European Conference
on Computer Vision (ECCV). Sept. 2018.

[80] Alessio Tonioni, Fabio Tosi, Matteo Poggi, Stefano Mattoccia, and Luigi Di Stefano.
“Real-Time Self-Adaptive Deep Stereo”. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). June 2019.

[81] Iasonas Kokkinos. “UberNet: Training a Universal Convolutional Neural Network for
Low-, Mid-, and High-Level Vision Using Diverse Datasets and Limited Memory”. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017). DOI:
10.1109/cvpr.2017.579. URL: http://dx.doi.org/10.1109/CVPR.2017.579.

[82] Pierluigi Zama Ramirez, Matteo Poggi, Fabio Tosi, Stefano Mattoccia, and Luigi Di Ste-
fano. “Geometry meets semantics for semi-supervised monocular depth estimation”.
In: Asian Conference on Computer Vision. Springer. 2018, pp. 298–313.

[83] Roberto Cipolla, Yarin Gal, and Alex Kendall. “Multi-task Learning Using Uncertainty
to Weigh Losses for Scene Geometry and Semantics”. In: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2018). DOI: 10.1109/cvpr.2018.00781. URL:
http://dx.doi.org/10.1109/CVPR.2018.00781.

[84] Fabio Tosi, Filippo Aleotti, Pierluigi Zama Ramirez, Matteo Poggi, Samuele Salti,
Luigi Di Stefano, and Stefano Mattoccia. “Distilled semantics for comprehensive scene
understanding from videos”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2020.

[85] Amir R Zamir, Alexander Sax, Nikhil Cheerla, Rohan Suri, Zhangjie Cao, Jitendra
Malik, and Leonidas J Guibas. “Robust Learning Through Cross-Task Consistency”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 11197–11206.

[86] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. “Simultaneous deep
transfer across domains and tasks”. In: Proceedings of the IEEE International Conference
on Computer Vision. 2015, pp. 4068–4076.

[87] Jogendra Nath Kundu, Nishank Lakkakula, and R Venkatesh Babu. “UM-Adapt:
Unsupervised Multi-Task Adaptation Using Adversarial Cross-Task Distillation”. In:
Proceedings of the IEEE International Conference on Computer Vision. 2019, pp. 1436–1445.

https://doi.org/10.1109/cvpr.2017.579
http://dx.doi.org/10.1109/CVPR.2017.579
https://doi.org/10.1109/cvpr.2018.00781
http://dx.doi.org/10.1109/CVPR.2018.00781

Bibliography 205

[88] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. “Playing for
data: Ground truth from computer games”. In: European Conference on Computer Vision.
Springer. 2016, pp. 102–118.

[89] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M
Lopez. “The synthia dataset: A large collection of synthetic images for semantic
segmentation of urban scenes”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2016, pp. 3234–3243.

[90] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. “CARLA: An Open Urban Driving Simulator”. In: Proceedings of the 1st Annual
Conference on Robot Learning. 2017, pp. 1–16.

[91] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R Benenson, U. Franke,
S. Roth, and B. Schiele. “The Cityscapes Dataset for Semantic Urban Scene Under-
standing”. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2016.

[92] Yi-Hsin Chen, Wei-Yu Chen, Yu-Ting Chen, Bo-Cheng Tsai, Yu-Chiang Frank Wang,
and Min Sun. “No More Discrimination: Cross City Adaptation of Road Scene Seg-
menters”. In: ICCV. 2017.

[93] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang, and
Manmohan Chandraker. “Learning to Adapt Structured Output Space for Semantic
Segmentation”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2018).

[94] Heiko Hirschmuller. “Accurate and efficient stereo processing by semi-global match-
ing and mutual information”. In: Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on. Vol. 2. IEEE. 2005, pp. 807–814.

[95] Xavier Soria, Edgar Riba, and Angel Sappa. “Dense Extreme Inception Network:
Towards a Robust CNN Model for Edge Detection”. In: The IEEE Winter Conference on
Applications of Computer Vision (WACV ’20). 2020.

[96] Zhonghao Wang, Mo Yu, Yunchao Wei, Rogerio Feris, Jinjun Xiong, Wen-mei Hwu,
Thomas S. Huang, and Honghui Shi. “Differential Treatment for Stuff and Things:
A Simple Unsupervised Domain Adaptation Method for Semantic Segmentation”.
In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2020). DOI: 10.1109/cvpr42600.2020.01265. URL: http://dx.doi.org/10.1109/
cvpr42600.2020.01265.

[97] Jianbo Jiao, Ying Cao, Yibing Song, and Rynson Lau. “Look deeper into depth: Monoc-
ular depth estimation with semantic booster and attention-driven loss”. In: Proceedings
of the European Conference on Computer Vision (ECCV). 2018, pp. 53–69.

https://doi.org/10.1109/cvpr42600.2020.01265
http://dx.doi.org/10.1109/cvpr42600.2020.01265
http://dx.doi.org/10.1109/cvpr42600.2020.01265

Bibliography 206

[98] Marvin Klingner, Jan-Aike Termöhlen, Jonas Mikolajczyk, and Tim Fingscheidt. “Self-
supervised Monocular Depth Estimation: Solving the Dynamic Object Problem by
Semantic Guidance”. In: Lecture Notes in Computer Science (2020), pp. 582–600. ISSN:
1611-3349. DOI: 10.1007/978-3-030-58565-5_35. URL: http://dx.doi.org/10.
1007/978-3-030-58565-5_35.

[99] Vitor Guizilini, Rui Hou, Jie Li, Rares Ambrus, and Adrien Gaidon. “Semantically-
Guided Representation Learning for Self-Supervised Monocular Depth”. In: Proceed-
ings of the Eighth International Conference on Learning Representations (ICLR). 2020.

[100] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. “Unsupervised monocular
depth estimation with left-right consistency”. In: CVPR. 2017.

[101] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. “Digging into self-supervised
monocular depth estimation”. In: ICCV. 2019.

[102] Fabio Tosi, Filippo Aleotti, Matteo Poggi, and Stefano Mattoccia. “Learning monocular
depth estimation infusing traditional stereo knowledge”. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2019.

[103] Jamie Watson, Michael Firman, Gabriel J Brostow, and Daniyar Turmukhambetov.
“Self-Supervised Monocular Depth Hints”. In: ICCV. 2019.

[104] Kohei Watanabe, Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada. “Multichannel
Semantic Segmentation with Unsupervised Domain Adaptation”. In: Computer Vision
– ECCV 2018 Workshops (2019), pp. 600–616. ISSN: 1611-3349.

[105] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu Cord, and Patrick Perez
Perez. “DADA: Depth-Aware Domain Adaptation in Semantic Segmentation”. In:
2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2019). DOI: 10.1109/
iccv.2019.00746. URL: http://dx.doi.org/10.1109/ICCV.2019.00746.

[106] Kuan-Hui Lee, German Ros, Jie Li, and Adrien Gaidon. “Spigan: Privileged adversarial
learning from simulation”. In: International Conference on Learning Representations. 2019.

[107] Yuhua Chen, Wen Li, Xiaoran Chen, and Luc Van Gool. “Learning semantic segmenta-
tion from synthetic data: A geometrically guided input-output adaptation approach”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019,
pp. 1841–1850.

[108] Ravi Garg, Vijay Kumar BG, Gustavo Carneiro, and Ian Reid. “Unsupervised cnn
for single view depth estimation: Geometry to the rescue”. In: European Conference on
Computer Vision. Springer. 2016, pp. 740–756.

[109] Chao Zhou, Hong Zhang, Xiaoyong Shen, and Jiaya Jia. “Unsupervised Learning of
Stereo Matching”. In: ICCV. 2017.

https://doi.org/10.1007/978-3-030-58565-5_35
http://dx.doi.org/10.1007/978-3-030-58565-5_35
http://dx.doi.org/10.1007/978-3-030-58565-5_35
https://doi.org/10.1109/iccv.2019.00746
https://doi.org/10.1109/iccv.2019.00746
http://dx.doi.org/10.1109/ICCV.2019.00746

Bibliography 207

[110] Yang Zou, Zhiding Yu, Xiaofeng Liu, B. V. K. Vijaya Kumar, and Jinsong Wang.
“Confidence Regularized Self-Training”. In: 2019 IEEE/CVF International Conference on
Computer Vision (ICCV) (2019). DOI: 10.1109/iccv.2019.00608. URL: http://dx.doi.
org/10.1109/ICCV.2019.00608.

[111] Yang Zou, Zhiding Yu, Xiaofeng Liu, B.V.K. Vijaya Kumar, and Jinsong Wang. “Confi-
dence Regularized Self-Training”. In: The IEEE International Conference on Computer
Vision (ICCV). 2019.

[112] Zhedong Zheng and Yi Yang. “Rectifying Pseudo Label Learning via Uncertainty
Estimation for Domain Adaptive Semantic Segmentation”. In: International Journal of
Computer Vision (IJCV) (2020). DOI: 10.1007/s11263-020-01395-y.

[113] Qing Lian, Lixin Duan, Fengmao Lv, and Boqing Gong. “Constructing Self-Motivated
Pyramid Curriculums for Cross-Domain Semantic Segmentation: A Non-Adversarial
Approach”. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV)
(2019). DOI: 10.1109/iccv.2019.00686. URL: http://dx.doi.org/10.1109/ICCV.
2019.00686.

[114] Fei Pan, Inkyu Shin, Francois Rameau, Seokju Lee, and In So Kweon. “Unsupervised
Intra-Domain Adaptation for Semantic Segmentation Through Self-Supervision”.
In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2020). DOI: 10.1109/cvpr42600.2020.00382. URL: http://dx.doi.org/10.1109/
cvpr42600.2020.00382.

[115] Ke Mei, Chuang Zhu, Jiaqi Zou, and Shanghang Zhang. “Instance Adaptive Self-
Training for Unsupervised Domain Adaptation”. In: The European Conference on Com-
puter Vision (ECCV). 2020.

[116] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for
image recognition”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 770–778.

[117] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello. “ENet: A
Deep Neural Network Architecture for Real-Time Semantic Segmentation”. In: CoRR
abs/1606.02147 (2016). URL: http://arxiv.org/abs/1606.02147.

[118] Zhedong Zheng and Yi Yang. “Unsupervised Scene Adaptation with Memory Reg-
ularization in vivo”. In: Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence (2020). DOI: 10.24963/ijcai.2020/150. URL: http://dx.doi.
org/10.24963/ijcai.2020/150.

[119] Haoran Wang, Tong Shen, Wei Zhang, Lingyu Duan, and Tao Mei. “Classes Matter: A
Fine-grained Adversarial Approach to Cross-domain Semantic Segmentation”. In: The
European Conference on Computer Vision (ECCV). 2020.

https://doi.org/10.1109/iccv.2019.00608
http://dx.doi.org/10.1109/ICCV.2019.00608
http://dx.doi.org/10.1109/ICCV.2019.00608
https://doi.org/10.1007/s11263-020-01395-y
https://doi.org/10.1109/iccv.2019.00686
http://dx.doi.org/10.1109/ICCV.2019.00686
http://dx.doi.org/10.1109/ICCV.2019.00686
https://doi.org/10.1109/cvpr42600.2020.00382
http://dx.doi.org/10.1109/cvpr42600.2020.00382
http://dx.doi.org/10.1109/cvpr42600.2020.00382
http://arxiv.org/abs/1606.02147
https://doi.org/10.24963/ijcai.2020/150
http://dx.doi.org/10.24963/ijcai.2020/150
http://dx.doi.org/10.24963/ijcai.2020/150

Bibliography 208

[120] D. Lee. “Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method
for Deep Neural Networks”. In: Workshop on challenges in representation learning, ICML.
2013.

[121] Viktor Olsson, Wilhelm Tranheden, Juliano Pinto, and Lennart Svensson. ClassMix:
Segmentation-Based Data Augmentation for Semi-Supervised Learning. 2020. arXiv: 2007.
07936.

[122] Wilhelm Tranheden, Viktor Olsson, Juliano Pinto, and Lennart Svensson. “DACS: Do-
main Adaptation via Cross-Domain Mixed Sampling”. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV). 2021, pp. 1379–1389.

[123] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. “Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs”. In: IEEE transactions on pattern analysis and
machine intelligence 40.4 (2017), pp. 834–848.

[124] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. “Dilated Residual Networks”.
In: Computer Vision and Pattern Recognition (CVPR). 2017.

[125] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift”. In: Proceedings of the 32Nd
International Conference on International Conference on Machine Learning - Volume 37.
ICML’15. Lille, France: JMLR.org, 2015, pp. 448–456. URL: http://dl.acm.org/
citation.cfm?id=3045118.3045167.

[126] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet: A
large-scale hierarchical image database”. In: 2009 IEEE conference on computer vision
and pattern recognition. Ieee. 2009, pp. 248–255.

[127] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

[128] Leslie N. Smith and Nicholay Topin. “Super-convergence: very fast training of neural
networks using large learning rates”. In: Artificial Intelligence and Machine Learning for
Multi-Domain Operations Applications (2019). Ed. by TienEditor Pham. DOI: 10.1117/
12.2520589. URL: http://dx.doi.org/10.1117/12.2520589.

[129] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,
Alexei Efros, and Trevor Darrell. “CyCADA: Cycle-Consistent Adversarial Domain
Adaptation”. In: Proceedings of the 35th International Conference on Machine Learning.
Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning
Research. Stockholmsmässan, Stockholm Sweden: PMLR, 2018, pp. 1989–1998.

https://arxiv.org/abs/2007.07936
https://arxiv.org/abs/2007.07936
http://dl.acm.org/citation.cfm?id=3045118.3045167
http://dl.acm.org/citation.cfm?id=3045118.3045167
https://doi.org/10.1117/12.2520589
https://doi.org/10.1117/12.2520589
http://dx.doi.org/10.1117/12.2520589

Bibliography 209

[130] Wei-Lun Chang, Hui-Po Wang, Wen-Hsiao Peng, and Wei-Chen Chiu. “All About
Structure: Adapting Structural Information Across Domains for Boosting Semantic
Segmentation”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2019). DOI: 10.1109/cvpr.2019.00200. URL: http://dx.doi.org/10.1109/
CVPR.2019.00200.

[131] Yifu Chen, Arnaud Dapogny, and Matthieu Cord. “SEMEDA: Enhancing segmen-
tation precision with semantic edge aware loss”. In: Pattern Recognition 108 (2020),
p. 107557. ISSN: 0031-3203. DOI: 10.1016/j.patcog.2020.107557. URL: http://dx.
doi.org/10.1016/j.patcog.2020.107557.

[132] Tsung-Wei Ke, Jyh-Jing Hwang, Ziwei Liu, and Stella X. Yu. “Adaptive Affinity Fields
for Semantic Segmentation”. In: Lecture Notes in Computer Science (2018), pp. 605–621.
ISSN: 1611-3349. DOI: 10.1007/978-3-030-01246-5_36. URL: http://dx.doi.org/10.
1007/978-3-030-01246-5_36.

[133] Liang-Chieh Chen, Jonathan T. Barron, George Papandreou, Kevin Murphy, and Alan
L. Yuille. “Semantic Image Segmentation with Task-Specific Edge Detection Using
CNNs and a Discriminatively Trained Domain Transform”. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2016). DOI: 10.1109/cvpr.2016.492.
URL: http://dx.doi.org/10.1109/CVPR.2016.492.

[134] Jianlong Yuan, Zelu Deng, Shu Wang, and Zhenbo Luo. “Multi Receptive Field Net-
work for Semantic Segmentation”. In: 2020 IEEE Winter Conference on Applications
of Computer Vision (WACV) (2020). DOI: 10.1109/wacv45572.2020.9093264. URL:
http://dx.doi.org/10.1109/WACV45572.2020.9093264.

[135] Henghui Ding, Xudong Jiang, Ai Qun Liu, Nadia Magnenat Thalmann, and Gang
Wang. “Boundary-Aware Feature Propagation for Scene Segmentation”. In: 2019
IEEE/CVF International Conference on Computer Vision (ICCV) (2019). DOI: 10.1109/
iccv.2019.00692. URL: http://dx.doi.org/10.1109/ICCV.2019.00692.

[136] J Canny. “A Computational Approach to Edge Detection”. In: IEEE Trans. Pattern Anal.
Mach. Intell. 8.6 (June 1986), pp. 679–698. ISSN: 0162-8828. DOI: 10.1109/TPAMI.1986.
4767851. URL: https://doi.org/10.1109/TPAMI.1986.4767851.

[137] Timnit Gebru, Judy Hoffman, and Li Fei-Fei. “Fine-grained recognition in the wild:
A multi-task domain adaptation approach”. In: Proceedings of the IEEE international
conference on computer vision. 2017, pp. 1349–1358.

[138] Jinwoo Choi, Gaurav Sharma, Samuel Schulter, and Jia-Bin Huang. “Shuffle and
attend: Video domain adaptation”. In: European Conference on Computer Vision. Springer.
2020, pp. 678–695.

https://doi.org/10.1109/cvpr.2019.00200
http://dx.doi.org/10.1109/CVPR.2019.00200
http://dx.doi.org/10.1109/CVPR.2019.00200
https://doi.org/10.1016/j.patcog.2020.107557
http://dx.doi.org/10.1016/j.patcog.2020.107557
http://dx.doi.org/10.1016/j.patcog.2020.107557
https://doi.org/10.1007/978-3-030-01246-5_36
http://dx.doi.org/10.1007/978-3-030-01246-5_36
http://dx.doi.org/10.1007/978-3-030-01246-5_36
https://doi.org/10.1109/cvpr.2016.492
http://dx.doi.org/10.1109/CVPR.2016.492
https://doi.org/10.1109/wacv45572.2020.9093264
http://dx.doi.org/10.1109/WACV45572.2020.9093264
https://doi.org/10.1109/iccv.2019.00692
https://doi.org/10.1109/iccv.2019.00692
http://dx.doi.org/10.1109/ICCV.2019.00692
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851

Bibliography 210

[139] Yu Sun, Eric Tzeng, Trevor Darrell, and Alexei A. Efros. “Unsupervised Domain
Adaptation through Self-Supervision”. In: arXiv preprint arXiv:1909.11825 (2019).

[140] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wich-
mann, and Wieland Brendel. “ImageNet-trained CNNs are biased towards texture; in-
creasing shape bias improves accuracy and robustness.” In: International Conference on
Learning Representations. 2019. URL: https://openreview.net/forum?id=Bygh9j09KX.

[141] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and koray kavukcuoglu koray.
“Spatial Transformer Networks”. In: Advances in Neural Information Processing Systems.
Ed. by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran
Associates, Inc., 2015. URL: https://proceedings.neurips.cc/paper/2015/file/
33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf.

[142] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Youngjoon Yoo. “Cutmix: Regularization strategy to train strong classifiers with local-
izable features”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2019, pp. 6023–6032.

[143] Debidatta Dwibedi, Ishan Misra, and Martial Hebert. “Cut, Paste and Learn: Surpris-
ingly Easy Synthesis for Instance Detection”. In: Proceedings of the IEEE International
Conference on Computer Vision (ICCV). 2017.

[144] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D Cubuk, Quoc
V Le, and Barret Zoph. “Simple copy-paste is a strong data augmentation method for
instance segmentation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2021, pp. 2918–2928.

[145] Yi-Hsuan Tsai, Kihyuk Sohn, Samuel Schulter, and Manmohan Chandraker. “Domain
Adaptation for Structured Output via Discriminative Patch Representations”. In: 2019
IEEE/CVF International Conference on Computer Vision (ICCV) (2019). DOI: 10.1109/
iccv.2019.00154. URL: http://dx.doi.org/10.1109/ICCV.2019.00154.

[146] Sujoy Paul, Yi-Hsuan Tsai, Samuel Schulter, Amit K. Roy-Chowdhury, and Manmohan
Chandraker. “Domain Adaptive Semantic Segmentation Using Weak Labels”. In:
European Conference on Computer Vision (ECCV). 2020.

[147] Jinyu Yang, Weizhi An, Chaochao Yan, Peilin Zhao, and Junzhou Huang. “Context-
Aware Domain Adaptation in Semantic Segmentation”. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV). 2021, pp. 514–524.

[148] Ke Mei, Chuang Zhu, Jiaqi Zou, and Shanghang Zhang. “Instance Adaptive Self-
training for Unsupervised Domain Adaptation”. In: Lecture Notes in Computer Science
(2020), pp. 415–430. ISSN: 1611-3349. DOI: 10.1007/978-3-030-58574-7_25. URL:
http://dx.doi.org/10.1007/978-3-030-58574-7_25.

https://openreview.net/forum?id=Bygh9j09KX
https://proceedings.neurips.cc/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://doi.org/10.1109/iccv.2019.00154
https://doi.org/10.1109/iccv.2019.00154
http://dx.doi.org/10.1109/ICCV.2019.00154
https://doi.org/10.1007/978-3-030-58574-7_25
http://dx.doi.org/10.1007/978-3-030-58574-7_25

Bibliography 211

[149] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C. Lawrence Zitnick. “Microsoft COCO: Common Objects
in Context”. In: Lecture Notes in Computer Science (2014), pp. 740–755. ISSN: 1611-3349.
DOI: 10.1007/978-3-319-10602-1_48. URL: http://dx.doi.org/10.1007/978-3-
319-10602-1_48.

[150] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. “Py-
Torch: An Imperative Style, High-Performance Deep Learning Library”. In: Advances in
Neural Information Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc., 2019, pp. 8024–
8035. URL: http://papers.neurips.cc/paper/9015- pytorch- an- imperative-
style-high-performance-deep-learning-library.pdf.

[151] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. 2015.

[152] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu Cord, and Patrick Perez.
“ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic
Segmentation”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2019). DOI: 10.1109/cvpr.2019.00262. URL: http://dx.doi.org/10.1109/
CVPR.2019.00262.

[153] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. “Encoder-decoder with atrous separable convolution for semantic image
segmentation”. In: Proceedings of the European conference on computer vision (ECCV).
2018, pp. 801–818.

[154] Philipp Krähenbühl and Vladlen Koltun. “Efficient Inference in Fully Connected CRFs
with Gaussian Edge Potentials”. In: Advances in Neural Information Processing Systems
24 (2011), pp. 109–117.

[155] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. “Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs”. In: IEEE transactions on pattern analysis and
machine intelligence 40.4 (2017), pp. 834–848.

[156] Pushmeet Kohli, Philip HS Torr, et al. “Robust higher order potentials for enforcing
label consistency”. In: International Journal of Computer Vision 82.3 (2009), pp. 302–324.

https://doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/cvpr.2019.00262
http://dx.doi.org/10.1109/CVPR.2019.00262
http://dx.doi.org/10.1109/CVPR.2019.00262

Bibliography 212

[157] Michael Kazhdan, Thomas Funkhouser, and Szymon Rusinkiewicz. “Rotation invari-
ant spherical harmonic representation of 3 d shape descriptors”. In: Symposium on
geometry processing. Vol. 6. 2003, pp. 156–164.

[158] Kai O Arras, Oscar Martinez Mozos, and Wolfram Burgard. “Using boosted features
for the detection of people in 2d range data”. In: Proceedings 2007 IEEE international
conference on robotics and automation. IEEE. 2007, pp. 3402–3407.

[159] Samuele Salti, Federico Tombari, and Luigi Di Stefano. “On the use of implicit shape
models for recognition of object categories in 3d data”. In: Asian Conference on Computer
Vision. Springer. 2010, pp. 653–666.

[160] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. “Pointnet: Deep learning on
point sets for 3d classification and segmentation”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2017, pp. 652–660.

[161] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. “PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric Space”. In: NIPS. 2017.

[162] Ze Liu, Han Hu, Yue Cao, Zheng Zhang, and Xin Tong. “A closer look at local
aggregation operators in point cloud analysis”. In: European Conference on Computer
Vision. Springer. 2020, pp. 326–342.

[163] Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, and Shuguang Cui. “Pointasnl: Robust
point clouds processing using nonlocal neural networks with adaptive sampling”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020,
pp. 5589–5598.

[164] Qiangeng Xu, Xudong Sun, Cho-Ying Wu, Panqu Wang, and Ulrich Neumann. “Grid-
gcn for fast and scalable point cloud learning”. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 2020, pp. 5661–5670.

[165] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. “Relation-shape con-
volutional neural network for point cloud analysis”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2019, pp. 8895–8904.

[166] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. “Pointwise convolutional neu-
ral networks”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 984–993.

[167] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin
M Solomon. “Dynamic graph cnn for learning on point clouds”. In: Acm Transactions
On Graphics (tog) 38.5 (2019), pp. 1–12.

Bibliography 213

[168] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François
Goulette, and Leonidas J Guibas. “Kpconv: Flexible and deformable convolution for
point clouds”. In: Proceedings of the IEEE/CVF international conference on computer vision.
2019, pp. 6411–6420.

[169] Jiaxin Li, Ben M Chen, and Gim Hee Lee. “So-net: Self-organizing network for point
cloud analysis”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018, pp. 9397–9406.

[170] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. “3d shapenets: A deep representation for volumetric shapes”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015,
pp. 1912–1920.

[171] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. “Shapenet: An
information-rich 3d model repository”. In: arXiv preprint arXiv:1512.03012 (2015).

[172] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Thanh Nguyen, and Sai-
Kit Yeung. “Revisiting point cloud classification: A new benchmark dataset and
classification model on real-world data”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2019, pp. 1588–1597.

[173] Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, and Jia Deng. “Revisiting Point
Cloud Shape Classification with a Simple and Effective Baseline”. In: International
Conference on Machine Learning (2021).

[174] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and
Matthias Nießner. “Scannet: Richly-annotated 3d reconstructions of indoor scenes”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 5828–5839.

[175] Binh-Son Hua, Quang-Hieu Pham, Duc Thanh Nguyen, Minh-Khoi Tran, Lap-Fai Yu,
and Sai-Kit Yeung. “Scenenn: A scene meshes dataset with annotations”. In: 2016
Fourth International Conference on 3D Vision (3DV). IEEE. 2016, pp. 92–101.

[176] Kuniaki Saito, Kohei Watanabe, Y. Ushiku, and T. Harada. “Maximum Classifier
Discrepancy for Unsupervised Domain Adaptation”. In: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2018), pp. 3723–3732.

[177] Panos Achlioptas, O. Diamanti, Ioannis Mitliagkas, and L. Guibas. “Learning Repre-
sentations and Generative Models for 3D Point Clouds”. In: ICML. 2018.

[178] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan Russell, and Mathieu
Aubry. “AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation”. In:
Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2018.

Bibliography 214

[179] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. “Foldingnet: Point cloud auto-
encoder via deep grid deformation”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018, pp. 206–215.

[180] Jiahao Pang, Duanshun Li, and Dong Tian. “Tearingnet: Point cloud autoencoder to
learn topology-friendly representations”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2021, pp. 7453–7462.

[181] Xuelin Chen, Baoquan Chen, and Niloy J Mitra. “Unpaired Point Cloud Completion
on Real Scans using Adversarial Training”. In: International Conference on Learning
Representations. 2019.

[182] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. “3D ShapeNets: A deep representation for volumetric shapes”.
In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015,
pp. 1912–1920. DOI: 10.1109/CVPR.2015.7298801.

[183] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Duc Thanh Nguyen, and
Sai-Kit Yeung. Revisiting Point Cloud Classification: A New Benchmark Dataset and Classi-
fication Model on Real-World Data. 2019. arXiv: 1908.04616 [cs.CV].

[184] Wouter M Kouw and Marco Loog. “A review of domain adaptation without target
labels”. In: IEEE transactions on pattern analysis and machine intelligence 43.3 (2019),
pp. 766–785.

[185] Angela Dai, Matthias Nießner, Michael Zollöfer, Shahram Izadi, and Christian Theobalt.
“BundleFusion: Real-time Globally Consistent 3D Reconstruction using On-the-fly
Surface Re-integration”. In: ACM Transactions on Graphics 2017 (TOG) (2017).

[186] D. Lee. “Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks”. In: International Conference on Machine Learning (ICML)
Workshop. 2013.

[187] Haowen Deng, Tolga Birdal, and Slobodan Ilic. “Ppf-foldnet: Unsupervised learning
of rotation invariant 3d local descriptors”. In: Proceedings of the European Conference on
Computer Vision (ECCV). 2018, pp. 602–618.

[188] Riccardo Spezialetti, Samuele Salti, and Luigi Di Stefano. “Learning an effective equiv-
ariant 3d descriptor without supervision”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2019, pp. 6401–6410.

[189] Pedro H. O. Pinheiro. “Unsupervised Domain Adaptation with Similarity Learn-
ing”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018),
pp. 8004–8013.

https://doi.org/10.1109/CVPR.2015.7298801
https://arxiv.org/abs/1908.04616

Bibliography 215

[190] Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Hauptmann. “Contrastive Adap-
tation Network for Unsupervised Domain Adaptation”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2019, pp. 4893–4902.

[191] Antti Tarvainen and Harri Valpola. “Mean Teachers Are Better Role Models: Weight-
Averaged Consistency Targets Improve Semi-Supervised Deep Learning Results”. In:
Proceedings of the 31st International Conference on Neural Information Processing Systems.
NIPS’17. Long Beach, California, USA: Curran Associates Inc., 2017, pp. 1195–1204.

[192] Zhongyi Pei, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. “Multi-Adversarial
Domain Adaptation”. In: AAAI. 2018.

[193] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I. Jordan. “Deep Transfer
Learning with Joint Adaptation Networks”. In: Proceedings of the 34th International Con-
ference on Machine Learning - Volume 70. ICML’17. Sydney, NSW, Australia: JMLR.org,
2017, pp. 2208–2217.

[194] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. “The earth mover’s distance as
a metric for image retrieval”. In: International journal of computer vision 40.2 (2000),
pp. 99–121.

[195] Riccardo Spezialetti, Federico Stella, Marlon Marcon, Luciano Silva, Samuele Salti, and
Luigi Di Stefano. “Learning to Orient Surfaces by Self-supervised Spherical CNNs”.
In: Advances in Neural Information Processing Systems 33 (2020).

[196] Andy Zeng, Shuran Song, Matthias Nießner, Matthew Fisher, Jianxiong Xiao, and
Thomas Funkhouser. “3dmatch: Learning local geometric descriptors from rgb-d
reconstructions”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 1802–1811.

[197] Chuan-Xian Ren, Pengfei Ge, Peiyi Yang, and Shuicheng Yan. “Learning Target-
Domain-Specific Classifier for Partial Domain Adaptation”. In: IEEE Transactions
on Neural Networks and Learning Systems 32.5 (2021), pp. 1989–2001. ISSN: 2162-2388.
DOI: 10.1109/tnnls.2020.2995648. URL: http://dx.doi.org/10.1109/TNNLS.2020.
2995648.

[198] Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regularization”. In:
International Conference on Learning Representations. 2019. URL: https://openreview.
net/forum?id=Bkg6RiCqY7.

[199] Ilya Loshchilov and Frank Hutter. “SGDR: Stochastic Gradient Descent with Warm
Restarts”. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL:
https://openreview.net/forum?id=Skq89Scxx.

https://doi.org/10.1109/tnnls.2020.2995648
http://dx.doi.org/10.1109/TNNLS.2020.2995648
http://dx.doi.org/10.1109/TNNLS.2020.2995648
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Skq89Scxx

Bibliography 216

[200] Yuefan Shen, Yanchao Yang, Mi Yan, He Wang, Youyi Zheng, and Leonidas J. Guibas.
“Domain Adaptation on Point Clouds via Geometry-Aware Implicits”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022,
pp. 7223–7232.

[201] Longkun Zou, Hui Tang, Ke Chen, and Kui Jia. “Geometry-Aware Self-Training for
Unsupervised Domain Adaptation on Object Point Clouds”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). 2021, pp. 6403–6412.

[202] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bo-
janowski, and Armand Joulin. “Emerging Properties in Self-Supervised Vision Trans-
formers”. In: Proceedings of the International Conference on Computer Vision (ICCV). 2021.

[203] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. “Deep clus-
tering for unsupervised learning of visual features”. In: Proceedings of the European
Conference on Computer Vision (ECCV). 2018, pp. 132–149.

[204] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mo-
hammad Gheshlaghi Azar, et al. “Bootstrap your own latent: A new approach to
self-supervised learning”. In: arXiv preprint arXiv:2006.07733 (2020).

[205] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. “Unsupervised feature learn-
ing via non-parametric instance discrimination”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018, pp. 3733–3742.

[206] Adriano Cardace, Riccardo Spezialetti, Pierluigi Zama Ramirez, Samuele Salti, and
Luigi Di Stefano. “RefRec: Pseudo-labels Refinement via Shape Reconstruction for
Unsupervised 3D Domain Adaptation”. In: 2021 International Conference on 3D Vision
(3DV). IEEE. 2021.

[207] Hehe Fan, Xiaojun Chang, Wanyue Zhang, Yi Cheng, Ying Sun, and Mohan Kankan-
halli. “Self-Supervised Global-Local Structure Modeling for Point Cloud Domain
Adaptation With Reliable Voted Pseudo Labels”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2022, pp. 6377–6386.

[208] Zhedong Zheng and Yi Yang. “Unsupervised Scene Adaptation with Memory Regu-
larization in vivo”. In: Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence (2020).

[209] Yang Zou, Zhiding Yu, Xiaofeng Liu, B. V. K. Vijaya Kumar, and Jinsong Wang.
“Confidence Regularized Self-Training”. In: 2019 IEEE/CVF International Conference on
Computer Vision (ICCV) (2019).

Bibliography 217

[210] Yang Zou, Zhiding Yu, BVK Vijaya Kumar, and Jinsong Wang. “Unsupervised Do-
main Adaptation for Semantic Segmentation via Class-Balanced Self-Training”. In:
Proceedings of the European Conference on Computer Vision (ECCV). 2018, pp. 289–305.

[211] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip
S. Yu. “A Comprehensive Survey on Graph Neural Networks”. In: IEEE Transactions
on Neural Networks and Learning Systems 32.1 (2021), pp. 4–24. ISSN: 2162-2388.

[212] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convo-
lutional networks”. In: arXiv preprint arXiv:1609.02907 (2016).

[213] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. “Momentum con-
trast for unsupervised visual representation learning”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 9729–9738.

[214] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. “Open3D: A Modern Library for 3D
Data Processing”. In: arXiv:1801.09847 (2018).

[215] Zhaoliang Lun, Evangelos Kalogerakis, and Alla Sheffer. “Elements of style: learning
perceptual shape style similarity”. In: ACM Transactions on graphics (TOG) 34.4 (2015),
pp. 1–14.

[216] Kai Xu, Honghua Li, Hao Zhang, Daniel Cohen-Or, Yueshan Xiong, and Zhi-Quan
Cheng. “Style-content separation by anisotropic part scales”. In: ACM SIGGRAPH
Asia 2010 papers. 2010, pp. 1–10.

[217] Ke Mei, Chuang Zhu, Jiaqi Zou, and Shanghang Zhang. “Instance Adaptive Self-
training for Unsupervised Domain Adaptation”. In: Lecture Notes in Computer Science
(2020), pp. 415–430. ISSN: 1611-3349.

[218] Inkyu Shin, Sanghyun Woo, Fei Pan, and In So Kweon. “Two-Phase Pseudo Label Den-
sification for Self-training Based Domain Adaptation”. In: Lecture Notes in Computer
Science (2020), pp. 532–548. ISSN: 1611-3349.

[219] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu
Sun. “Masked Label Prediction: Unified Message Passing Model for Semi-Supervised
Classification”. In: Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence (IJCAI). 2021, pp. 1548–1554.

[220] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural
Network. 2015. arXiv: 1503.02531 [stat.ML].

[221] Xu Yan, Jiantao Gao, Chaoda Zheng, Chao Zheng, Ruimao Zhang, Shuguang Cui,
and Zhen Li. “2DPASS: 2D Priors Assisted Semantic Segmentation on LiDAR Point
Clouds”. In: European Conference on Computer Vision. Springer. 2022, pp. 677–695.

https://arxiv.org/abs/1503.02531

Bibliography 218

[222] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stach-
niss, and Jurgen Gall. “SemanticKITTI: A Dataset for Semantic Scene Understanding of
LiDAR Sequences”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV). 2019.

[223] Larissa T Triess, Mariella Dreissig, Christoph B Rist, and J Marius Zöllner. “A survey
on deep domain adaptation for lidar perception”. In: 2021 IEEE Intelligent Vehicles
Symposium Workshops (IV Workshops). IEEE. 2021, pp. 350–357.

[224] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. “Octnet: Learning deep 3d
representations at high resolutions”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017, pp. 3577–3586.

[225] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. “Octree generating net-
works: Efficient convolutional architectures for high-resolution 3d outputs”. In: Pro-
ceedings of the IEEE international conference on computer vision. 2017, pp. 2088–2096.

[226] Donald Meagher. “Geometric modeling using octree encoding”. In: Computer graphics
and image processing 19.2 (1982), pp. 129–147.

[227] Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. “3D Semantic
Segmentation with Submanifold Sparse Convolutional Networks”. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2018). DOI: 10.1109/cvpr.2018.
00961. URL: http://dx.doi.org/10.1109/CVPR.2018.00961.

[228] Christopher Choy, JunYoung Gwak, and Silvio Savarese. “4d spatio-temporal con-
vnets: Minkowski convolutional neural networks”. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2019, pp. 3075–3084.

[229] Xinge Zhu, Hui Zhou, Tai Wang, Fangzhou Hong, Yuexin Ma, Wei Li, Hongsheng Li,
and Dahua Lin. “Cylindrical and asymmetrical 3d convolution networks for lidar
segmentation”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2021, pp. 9939–9948.

[230] Yang Zhang, Zixiang Zhou, Philip David, Xiangyu Yue, Zerong Xi, Boqing Gong, and
Hassan Foroosh. “Polarnet: An improved grid representation for online lidar point
clouds semantic segmentation”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2020, pp. 9601–9610.

[231] Haotian Tang, Zhijian Liu, Shengyu Zhao, Yujun Lin, Ji Lin, Hanrui Wang, and Song
Han. “Searching efficient 3d architectures with sparse point-voxel convolution”. In:
European conference on computer vision. Springer. 2020, pp. 685–702.

https://doi.org/10.1109/cvpr.2018.00961
https://doi.org/10.1109/cvpr.2018.00961
http://dx.doi.org/10.1109/CVPR.2018.00961

Bibliography 219

[232] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki
Trigoni, and Andrew Markham. “Randla-net: Efficient semantic segmentation of large-
scale point clouds”. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2020, pp. 11108–11117.

[233] Inkyu Shin, Yi-Hsuan Tsai, Bingbing Zhuang, Samuel Schulter, Buyu Liu, Sparsh Garg,
In So Kweon, and Kuk-Jin Yoon. “MM-TTA: multi-modal test-time adaptation for 3d
semantic segmentation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2022, pp. 16928–16937.

[234] Christoph B Rist, Markus Enzweiler, and Dariu M Gavrila. “Cross-sensor deep domain
adaptation for LiDAR detection and segmentation”. In: 2019 IEEE Intelligent Vehicles
Symposium (IV). IEEE. 2019, pp. 1535–1542.

[235] Mrigank Rochan, Shubhra Aich, Eduardo R Corral-Soto, Amir Nabatchian, and Bing-
bing Liu. “Unsupervised domain adaptation in lidar semantic segmentation with
self-supervision and gated adapters”. In: 2022 International Conference on Robotics and
Automation (ICRA). IEEE. 2022, pp. 2649–2655.

[236] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang
Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. “nuscenes: A
multimodal dataset for autonomous driving”. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2020, pp. 11621–11631.

[237] Jakob Geyer, Yohannes Kassahun, Mentar Mahmudi, Xavier Ricou, Rupesh Durgesh,
Andrew S Chung, Lorenz Hauswald, Viet Hoang Pham, Maximilian Mühlegg, Se-
bastian Dorn, et al. “A2d2: Audi autonomous driving dataset”. In: arXiv preprint
arXiv:2004.06320 (2020).

[238] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. “VirtualWorlds as
Proxy for Multi-object Tracking Analysis”. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2016). DOI: 10.1109/cvpr.2016.470. URL: http:
//dx.doi.org/10.1109/CVPR.2016.470.

[239] Pierluigi Zama Ramirez, Matteo Poggi, Fabio Tosi, Stefano Mattoccia, and Luigi Di Ste-
fano. “Geometry meets semantics for semi-supervised monocular depth estimation”.
In: Asian Conference on Computer Vision. Springer. 2018, pp. 298–313.

[240] Xinjing Cheng, Peng Wang, and Ruigang Yang. “Depth estimation via affinity learned
with convolutional spatial propagation network”. In: Proceedings of the European Con-
ference on Computer Vision (ECCV). 2018, pp. 103–119.

https://doi.org/10.1109/cvpr.2016.470
http://dx.doi.org/10.1109/CVPR.2016.470
http://dx.doi.org/10.1109/CVPR.2016.470

Bibliography 220

[241] Sifei Liu, Shalini De Mello, Jinwei Gu, Guangyu Zhong, Ming-Hsuan Yang, and
Jan Kautz. “Learning Affinity via Spatial Propagation Networks”. In: Advances in
Neural Information Processing Systems. Ed. by I. Guyon, U. Von Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran As-
sociates, Inc., 2017. URL: https://proceedings.neurips.cc/paper/2017/file/
c22abfa379f38b5b0411bc11fa9bf92f-Paper.pdf.

[242] Fangchang Ma, Guilherme Venturelli Cavalheiro, and Sertac Karaman. “Self-supervised
Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular
Camera”. In: ICRA. 2019.

[243] Alex Wong and Stefano Soatto. “Unsupervised Depth Completion with Calibrated
Backprojection Layers”. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2021, pp. 12747–12756.

[244] Mu Hu, Shuling Wang, Bin Li, Shiyu Ning, Li Fan, and Xiaojin Gong. “PENet: Towards
Precise and Efficient Image Guided Depth Completion”. In: 2021 IEEE International
Conference on Robotics and Automation (ICRA). 2021, pp. 13656–13662. DOI: 10.1109/
ICRA48506.2021.9561035.

[245] Jinsun Park, Kyungdon Joo, Zhe Hu, Chi-Kuei Liu, and In So Kweon. “Non-local spa-
tial propagation network for depth completion”. In: European Conference on Computer
Vision. Springer. 2020, pp. 120–136.

[246] Andrea Conti, Matteo Poggi, Filippo Aleotti, and Stefano Mattoccia. “Unsupervised
confidence for LiDAR depth maps and applications”. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IROS. 2022.

[247] Yawei Luo, Liang Zheng, Tao Guan, Junqing Yu, and Yi Yang. “Taking a closer look at
domain shift: Category-level adversaries for semantics consistent domain adaptation”.
In: Proceedings of the Computer Vision and Pattern Recognition (CVPR). IEEE, 2019,
pp. 2507–2516.

[248] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke, Thomas Brox, and An-
dreas Geiger. “Sparsity Invariant CNNs”. In: 2017 International Conference on 3D Vision
(3DV). 2017.

[249] Vitor Guizilini, Rares Ambrus, Wolfram Burgard, and Adrien Gaidon. “Sparse Auxil-
iary Networks for Unified Monocular Depth Prediction and Completion”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2021.

[250] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. “Understanding the effec-
tive receptive field in deep convolutional neural networks”. In: Advances in neural
information processing systems 29 (2016).

https://proceedings.neurips.cc/paper/2017/file/c22abfa379f38b5b0411bc11fa9bf92f-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/c22abfa379f38b5b0411bc11fa9bf92f-Paper.pdf
https://doi.org/10.1109/ICRA48506.2021.9561035
https://doi.org/10.1109/ICRA48506.2021.9561035

Bibliography 221

[251] Suman Saha, Anton Obukhov, Danda Pani Paudel, Menelaos Kanakis, Yuhua Chen,
Stamatios Georgoulis, and Luc Van Gool. “Learning to Relate Depth and Semantics
for Unsupervised Domain Adaptation”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2021, pp. 8197–8207.

[252] Adriano Cardace, Luca De Luigi, Pierluigi Zama Ramirez, Samuele Salti, and Luigi
Di Stefano. “Plugging Self-Supervised Monocular Depth into Unsupervised Domain
Adaptation for Semantic Segmentation”. In: Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision. 2022, pp. 1129–1139.

[253] Caner Hazirbas, Lingni Ma, Csaba Domokos, and Daniel Cremers. “Fusenet: Incor-
porating depth into semantic segmentation via fusion-based cnn architecture”. In:
Computer Vision–ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan,
November 20-24, 2016, Revised Selected Papers, Part I 13. Springer. 2017, pp. 213–228.

[254] Cristiano Saltori, Fabio Galasso, Giuseppe Fiameni, Nicu Sebe, Elisa Ricci, and Fabio
Poiesi. “Cosmix: Compositional semantic mix for domain adaptation in 3d lidar
segmentation”. In: European Conference on Computer Vision. Springer. 2022, pp. 586–602.

[255] Dong-Hyun Lee. “Pseudo-Label : The Simple and Efficient Semi-Supervised Learning
Method for Deep Neural Networks”. In: ICML 2013 Workshop : Challenges in Represen-
tation Learning (WREPL) (July 2013).

[256] Pietro Morerio, Jacopo Cavazza, and Vittorio Murino. “Minimal-Entropy Correlation
Alignment for Unsupervised Deep Domain Adaptation”. In: International Conference on
Learning Representations. 2018. URL: https://openreview.net/forum?id=rJWechg0Z.

[257] Yunsheng Li, Lu Yuan, and Nuno Vasconcelos. “Bidirectional Learning for Domain
Adaptation of Semantic Segmentation”. In: CVPR. 2019.

[258] Daniel Maturana and Sebastian Scherer. “Voxnet: A 3d convolutional neural network
for real-time object recognition”. In: 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2015, pp. 922–928.

[259] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and Leonidas J
Guibas. “Volumetric and multi-view cnns for object classification on 3d data”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 5648–
5656.

[260] Shuran Song and Jianxiong Xiao. “Deep sliding shapes for amodal 3d object detection
in rgb-d images”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 808–816.

[261] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese.
“3d-r2n2: A unified approach for single and multi-view 3d object reconstruction”. In:
European conference on computer vision. Springer. 2016, pp. 628–644.

https://openreview.net/forum?id=rJWechg0Z

Bibliography 222

[262] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Abhinav Gupta. “Learning a
predictable and generative vector representation for objects”. In: European Conference
on Computer Vision. Springer. 2016, pp. 484–499.

[263] Danilo Jimenez Rezende, SM Eslami, Shakir Mohamed, Peter Battaglia, Max Jaderberg,
and Nicolas Heess. “Unsupervised learning of 3d structure from images”. In: Advances
in neural information processing systems 29 (2016).

[264] David Stutz and Andreas Geiger. “Learning 3d shape completion from laser scan data
with weak supervision”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2018, pp. 1955–1964.

[265] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. “Learn-
ing a probabilistic latent space of object shapes via 3d generative-adversarial model-
ing”. In: Advances in neural information processing systems 29 (2016).

[266] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and
Hongsheng Li. “Pv-rcnn: Point-voxel feature set abstraction for 3d object detection”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 10529–10538.

[267] Haoxuan You, Yifan Feng, Rongrong Ji, and Yue Gao. “Pvnet: A joint convolutional
network of point cloud and multi-view for 3d shape recognition”. In: Proceedings of the
26th ACM international conference on Multimedia. 2018, pp. 1310–1318.

[268] Lei Li, Siyu Zhu, Hongbo Fu, Ping Tan, and Chiew-Lan Tai. “End-to-end learning local
multi-view descriptors for 3d point clouds”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2020, pp. 1919–1928.

[269] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. “Spidercnn: Deep learning
on point sets with parameterized convolutional filters”. In: Proceedings of the European
Conference on Computer Vision (ECCV). 2018, pp. 87–102.

[270] Matan Atzmon, Haggai Maron, and Yaron Lipman. “Point Convolutional Neural
Networks by Extension Operators”. In: ACM Transactions on Graphics 37.4 (2018).

[271] Wenxuan Wu, Zhongang Qi, and Li Fuxin. “Pointconv: Deep convolutional networks
on 3d point clouds”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2019, pp. 9621–9630.

[272] Siqi Fan, Qiulei Dong, Fenghua Zhu, Yisheng Lv, Peijun Ye, and Fei-Yue Wang. “SCF-
Net: Learning spatial contextual features for large-scale point cloud segmentation”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, pp. 14504–14513.

Bibliography 223

[273] Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiaojuan Qi. “Paconv: Position adap-
tive convolution with dynamic kernel assembling on point clouds”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 3173–
3182.

[274] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. “Deepgcns: Can gcns
go as deep as cnns?” In: Proceedings of the IEEE/CVF international conference on computer
vision. 2019, pp. 9267–9276.

[275] Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and Jie Shan. “Graph at-
tention convolution for point cloud semantic segmentation”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, pp. 10296–10305.

[276] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and
Shi-Min Hu. “Pct: Point cloud transformer”. In: Computational Visual Media 7.2 (2021),
pp. 187–199.

[277] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. “Point
transformer”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2021, pp. 16259–16268.

[278] Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Jun-Xiong Cai, Jiahui Huang, Tai-
Jiang Mu, and Ralph R. Martin. “Subdivision-based Mesh Convolution Networks”.
In: ACM Transactions on Graphics 41.3 (Mar. 2022), pp. 1–16. ISSN: 1557-7368. DOI:
10.1145/3506694. URL: http://dx.doi.org/10.1145/3506694.

[279] Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst.
“Geodesic convolutional neural networks on riemannian manifolds”. In: Proceedings of
the IEEE international conference on computer vision workshops. 2015, pp. 37–45.

[280] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein. “Learning
shape correspondence with anisotropic convolutional neural networks”. In: Advances
in neural information processing systems 29 (2016).

[281] Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkhouser, Matthias Nießner, and
Leonidas J Guibas. “Texturenet: Consistent local parametrizations for learning from
high-resolution signals on meshes”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2019, pp. 4440–4449.

[282] Yuqi Yang, Shilin Liu, Hao Pan, Yang Liu, and Xin Tong. “PFCNN: Convolutional
neural networks on 3D surfaces using parallel frames”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 13578–13587.

[283] Niv Haim, Nimrod Segol, Heli Ben-Hamu, Haggai Maron, and Yaron Lipman. “Sur-
face networks via general covers”. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. 2019, pp. 632–641.

https://doi.org/10.1145/3506694
http://dx.doi.org/10.1145/3506694

Bibliography 224

[284] Jonas Schult, Francis Engelmann, Theodora Kontogianni, and Bastian Leibe. “Dualconvmesh-
net: Joint geodesic and euclidean convolutions on 3d meshes”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 8612–8622.

[285] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda,
and Michael M Bronstein. “Geometric deep learning on graphs and manifolds using
mixture model cnns”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 5115–5124.

[286] Dmitriy Smirnov and Justin Solomon. “HodgeNet: learning spectral geometry on
triangle meshes”. In: ACM Transactions on Graphics (TOG) 40.4 (2021), pp. 1–11.

[287] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel
Cohen-Or. “Meshcnn: a network with an edge”. In: ACM Transactions on Graphics
(TOG) 38.4 (2019), pp. 1–12.

[288] Francesco Milano, Antonio Loquercio, Antoni Rosinol, Davide Scaramuzza, and Luca
Carlone. “Primal-dual mesh convolutional neural networks”. In: Advances in Neural
Information Processing Systems 33 (2020), pp. 952–963.

[289] Alon Lahav and Ayellet Tal. “Meshwalker: Deep mesh understanding by random
walks”. In: ACM Transactions on Graphics (TOG) 39.6 (2020), pp. 1–13.

[290] Chunfeng Lian, Li Wang, Tai-Hsien Wu, Mingxia Liu, Francisca Durán, Ching-Chang
Ko, and Dinggang Shen. “Meshsnet: Deep multi-scale mesh feature learning for end-
to-end tooth labeling on 3d dental surfaces”. In: International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer. 2019, pp. 837–845.

[291] Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, and Yue Gao. “Meshnet: Mesh
neural network for 3d shape representation”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 33. 2019, pp. 8279–8286.

[292] Xianzhi Li, Ruihui Li, Lei Zhu, Chi-Wing Fu, and Pheng-Ann Heng. “DNF-Net: A deep
normal filtering network for mesh denoising”. In: IEEE Transactions on Visualization
and Computer Graphics 27.10 (2020), pp. 4060–4072.

[293] Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-Or. “Deep Geometric
Texture Synthesis”. In: ACM Trans. Graph. 39.4 (2020). ISSN: 0730-0301. DOI: 10.1145/
3386569.3392471. URL: https://doi.org/10.1145/3386569.3392471.

[294] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,
Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. “Neural
Fields in Visual Computing and Beyond”. In: arXiv preprint arXiv:2111.11426 (2021).

[295] Julian Chibane, Gerard Pons-Moll, et al. “Neural unsigned distance fields for implicit
function learning”. In: Advances in Neural Information Processing Systems 33 (2020),
pp. 21638–21652.

https://doi.org/10.1145/3386569.3392471
https://doi.org/10.1145/3386569.3392471
https://doi.org/10.1145/3386569.3392471

Bibliography 225

[296] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. “DeepSDF: Learning Continuous Signed Distance Functions for Shape Repre-
sentation”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2019). DOI: 10.1109/cvpr.2019.00025. URL: http://dx.doi.org/10.1109/
CVPR.2019.00025.

[297] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. “Implicit
Geometric Regularization for Learning Shapes”. In: International Conference on Machine
Learning. PMLR. 2020, pp. 3789–3799.

[298] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. “Scene representation
networks: Continuous 3d-structure-aware neural scene representations”. In: Advances
in Neural Information Processing Systems 32 (2019).

[299] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner,
Thomas Funkhouser, et al. “Local implicit grid representations for 3d scenes”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020,
pp. 6001–6010.

[300] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas
Geiger. “Convolutional occupancy networks”. In: European Conference on Computer
Vision. Springer. 2020, pp. 523–540.

[301] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and An-
dreas Geiger. “Occupancy networks: Learning 3d reconstruction in function space”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 4460–4470.

[302] Zhiqin Chen and Hao Zhang. “Learning implicit fields for generative shape modeling”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 5939–5948.

[303] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. “NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis”. In: ECCV. 2020.

[304] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon
Wetzstein. “Implicit neural representations with periodic activation functions”. In:
Advances in Neural Information Processing Systems 33 (2020), pp. 7462–7473.

[305] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. “KiloNeRF: Speeding
up Neural Radiance Fields with Thousands of Tiny MLPs”. In: 2021 IEEE/CVF Inter-
national Conference on Computer Vision (ICCV) (2021). DOI: 10.1109/iccv48922.2021.
01407. URL: http://dx.doi.org/10.1109/ICCV48922.2021.01407.

https://doi.org/10.1109/cvpr.2019.00025
http://dx.doi.org/10.1109/CVPR.2019.00025
http://dx.doi.org/10.1109/CVPR.2019.00025
https://doi.org/10.1109/iccv48922.2021.01407
https://doi.org/10.1109/iccv48922.2021.01407
http://dx.doi.org/10.1109/ICCV48922.2021.01407

Bibliography 226

[306] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, and Andrea
Tagliasacchi. “Derf: Decomposed radiance fields”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021, pp. 14153–14161.

[307] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. “Neural
Sparse Voxel Fields”. In: Advances in Neural Information Processing Systems. Ed. by H.
Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33. Curran Associates,
Inc., 2020, pp. 15651–15663. URL: https://proceedings.neurips.cc/paper_files/
paper/2020/file/b4b758962f17808746e9bb832a6fa4b8-Paper.pdf.

[308] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and
Angjoo Kanazawa. “Plenoxels: Radiance Fields without Neural Networks”. In: 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022). DOI:
10.1109/cvpr52688.2022.00542. URL: http://dx.doi.org/10.1109/CVPR52688.
2022.00542.

[309] Yiqun Wang, Ivan Skorokhodov, and Peter Wonka. PET-NeuS: Positional Encoding
Tri-Planes for Neural Surfaces. 2023. arXiv: 2305.05594 [cs.CV].

[310] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini
de Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. “Efficient Geometry-aware 3D Generative Adversarial
Networks”. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2022). DOI: 10.1109/cvpr52688.2022.01565.

[311] Rundi Wu and Changxi Zheng. “Learning to Generate 3D Shapes from a Single
Example”. In: ACM Transactions on Graphics (TOG) 41.6 (2022).

[312] Wenbo Hu, Yuling Wang, Lin Ma, Bangbang Yang, Lin Gao, Xiao Liu, and Yuewen
Ma. “Tri-MipRF: Tri-Mip Representation for Efficient Anti-Aliasing Neural Radiance
Fields”. In: ICCV. 2023.

[313] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. “TensoRF: Tensorial
Radiance Fields”. In: European Conference on Computer Vision (ECCV). 2022.

[314] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Carsten Stoll,
and Christian Theobalt. “Patchnets: Patch-based generalizable deep implicit 3d shape
representations”. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XVI 16. Springer. 2020, pp. 293–309.

[315] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang, Qing Shuai, Hujun Bao, and
Xiaowei Zhou. “Neural body: Implicit neural representations with structured latent
codes for novel view synthesis of dynamic humans”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021, pp. 9054–9063.

https://proceedings.neurips.cc/paper_files/paper/2020/file/b4b758962f17808746e9bb832a6fa4b8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b4b758962f17808746e9bb832a6fa4b8-Paper.pdf
https://doi.org/10.1109/cvpr52688.2022.00542
http://dx.doi.org/10.1109/CVPR52688.2022.00542
http://dx.doi.org/10.1109/CVPR52688.2022.00542
https://arxiv.org/abs/2305.05594
https://doi.org/10.1109/cvpr52688.2022.01565

Bibliography 227

[316] Robert Hecht-Nielsen. “On the algebraic structure of feedforward network weight
spaces”. In: Advanced Neural Computers. Elsevier, 1990, pp. 129–135.

[317] Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai
Maron. “Equivariant Architectures for Learning in Deep Weight Spaces”. In: Interna-
tional Conference on Machine Learning. 2023.

[318] Allan Zhou, Kaien Yang, Yiding Jiang, Kaylee Burns, Winnie Xu, Samuel Sokota, J Zico
Kolter, and Chelsea Finn. “Neural Functional Transformers”. In: Advances in neural
information processing systems 37 (2023).

[319] Emilien Dupont, Hyunjik Kim, SM Ali Eslami, Danilo Jimenez Rezende, and Dan
Rosenbaum. “From data to functa: Your data point is a function and you can treat it
like one”. In: International Conference on Machine Learning. PMLR. 2022, pp. 5694–5725.

[320] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. “Neural geomet-
ric level of detail: Real-time rendering with implicit 3D shapes”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 11358–11367.

[321] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. “Instant Neural
Graphics Primitives with a Multiresolution Hash Encoding”. In: ACM Trans. Graph.
41.4 (July 2022), 102:1–102:15. DOI: 10.1145/3528223.3530127. URL: https://doi.
org/10.1145/3528223.3530127.

[322] Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro,
and Gordon Wetzstein. “ACORN: Adaptive coordinate networks for neural scene
representation”. In: ACM Trans. Graph. (SIGGRAPH) 40.4 (2021).

[323] Hsueh-Ti Derek Liu, Francis Williams, Alec Jacobson, Sanja Fidler, and Or Litany.
“Learning Smooth Neural Functions via Lipschitz Regularization”. In: arXiv preprint
arXiv:2202.08345 (2022).

[324] Vincent Sitzmann, Eric Chan, Richard Tucker, Noah Snavely, and Gordon Wetzstein.
“Metasdf: Meta-learning signed distance functions”. In: Advances in Neural Information
Processing Systems 33 (2020), pp. 10136–10147.

[325] Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye Teh, and Arnaud Doucet.
“Coin: Compression with implicit neural representations”. In: arXiv preprint arXiv:2103.03123
(2021).

[326] Yannick Strümpler, Janis Postels, Ren Yang, Luc Van Gool, and Federico Tombari. “Im-
plicit Neural Representations for Image Compression”. In: arXiv preprint arXiv:2112.04267
(2021).

[327] Yunfan Zhang, Ties van Rozendaal, Johann Brehmer, Markus Nagel, and Taco Cohen.
“Implicit Neural Video Compression”. In: arXiv preprint arXiv:2112.11312 (2021).

https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127

Bibliography 228

[328] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Ragha-
van, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. “Fourier
features let networks learn high frequency functions in low dimensional domains”. In:
Advances in Neural Information Processing Systems 33 (2020), pp. 7537–7547.

[329] Jonathan Frankle and Michael Carbin. “The lottery ticket hypothesis: Finding sparse,
trainable neural networks”. In: arXiv preprint arXiv:1803.03635 (2018).

[330] Tejalal Choudhary, Vipul Mishra, Anurag Goswami, and Jagannathan Sarangapani.
“A comprehensive survey on model compression and acceleration”. In: Artificial
Intelligence Review 53.7 (2020), pp. 5113–5155.

[331] William E Lorensen and Harvey E Cline. “Marching cubes: A high resolution 3D sur-
face construction algorithm”. In: ACM siggraph computer graphics 21.4 (1987), pp. 163–
169.

[332] Haoqiang Fan, Hao Su, and Leonidas J Guibas. “A point set generation network for
3d object reconstruction from a single image”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017, pp. 605–613.

[333] Cameron R Wolfe and Keld T Lundgaard. “E-Stitchup: Data Augmentation for Pre-
Trained Embeddings”. In: arXiv preprint arXiv:1912.00772 (2019).

[334] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu,
Qixing Huang, Alla Sheffer, and Leonidas Guibas. “A Scalable Active Framework for
Region Annotation in 3D Shape Collections”. In: SIGGRAPH Asia (2016).

[335] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. “Learning
representations and generative models for 3d point clouds”. In: International conference
on machine learning. PMLR. 2018, pp. 40–49.

[336] Ruihui Li, Xianzhi Li, Ka-Hei Hui, and Chi-Wing Fu. “SP-GAN: Sphere-guided 3D
shape generation and manipulation”. In: ACM Transactions on Graphics (TOG) 40.4
(2021), pp. 1–12.

[337] Liang Pan, Xinyi Chen, Zhongang Cai, Junzhe Zhang, Haiyu Zhao, Shuai Yi, and
Ziwei Liu. “Variational relational point completion network”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 8524–8533.

[338] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. “The Role
of Permutation Invariance in Linear Mode Connectivity of Neural Networks”. In:
International Conference on Learning Representations. 2021.

[339] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. “Nerf: Representing scenes as neural radiance fields for view
synthesis”. In: European conference on computer vision. Springer. 2020, pp. 405–421.

Bibliography 229

[340] Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. “Git re-basin:
Merging models modulo permutation symmetries”. In: arXiv preprint arXiv:2209.04836
(2022).

[341] Maxim Tatarchenko, Stephan R Richter, René Ranftl, Zhuwen Li, Vladlen Koltun, and
Thomas Brox. “What do single-view 3d reconstruction networks learn?” In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, pp. 3405–
3414.

[342] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann.
“DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruc-
tion”. In: Advances in Neural Information Processing Systems. Ed. by H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Vol. 32. Curran
Associates, Inc., 2019. URL: https://proceedings.neurips.cc/paper_files/paper/
2019/file/39059724f73a9969845dfe4146c5660e-Paper.pdf.

[343] Suman Saha, Anton Obukhov, Danda Pani Paudel, Menelaos Kanakis, Yuhua Chen,
Stamatios Georgoulis, and Luc Van Gool. “Learning to Relate Depth and Semantics for
Unsupervised Domain Adaptation”. In: 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, June 2021. DOI: 10.1109/cvpr46437.2021.00810.
URL: http://dx.doi.org/10.1109/CVPR46437.2021.00810.

[344] Lukas Hoyer, Dengxin Dai, Qin Wang, Yuhua Chen, and Luc Van Gool. “Improving
Semi-Supervised and Domain-Adaptive Semantic Segmentation with Self-Supervised
Depth Estimation”. In: International Journal of Computer Vision 131.8 (May 2023),
pp. 2070–2096. ISSN: 1573-1405. DOI: 10.1007/s11263- 023- 01799- 6. URL: http:
//dx.doi.org/10.1007/s11263-023-01799-6.

[345] Qin Wang, Dengxin Dai, Lukas Hoyer, Luc Van Gool, and Olga Fink. “Domain
Adaptive Semantic Segmentation with Self-Supervised Depth Estimation”. In: 2021
IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Oct. 2021. DOI:
10.1109/iccv48922.2021.00840. URL: http://dx.doi.org/10.1109/ICCV48922.
2021.00840.

[346] Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao
Kong. “iBOT: Image BERT Pre-Training with Online Tokenizer”. In: International
Conference on Learning Representations (ICLR) (2022).

[347] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec,
Vasil Khalidov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-
Nouby, Mido Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang,
Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu,
Herve Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski.

https://proceedings.neurips.cc/paper_files/paper/2019/file/39059724f73a9969845dfe4146c5660e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/39059724f73a9969845dfe4146c5660e-Paper.pdf
https://doi.org/10.1109/cvpr46437.2021.00810
http://dx.doi.org/10.1109/CVPR46437.2021.00810
https://doi.org/10.1007/s11263-023-01799-6
http://dx.doi.org/10.1007/s11263-023-01799-6
http://dx.doi.org/10.1007/s11263-023-01799-6
https://doi.org/10.1109/iccv48922.2021.00840
http://dx.doi.org/10.1109/ICCV48922.2021.00840
http://dx.doi.org/10.1109/ICCV48922.2021.00840

Bibliography 230

“DINOv2: Learning Robust Visual Features without Supervision”. In: Transactions on
Machine Learning Research (2024). ISSN: 2835-8856. URL: https://openreview.net/
forum?id=a68SUt6zFt.

[348] Shengyu Huang, Zan Gojcic, Zian Wang, Francis Williams, Yoni Kasten, Sanja Fidler,
Konrad Schindler, and Or Litany. “Neural LiDAR Fields for Novel View Synthesis”.
In: 2023 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2023. DOI:
10.1109/iccv51070.2023.01672. URL: http://dx.doi.org/10.1109/ICCV51070.
2023.01672.

[349] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. “Focal loss for
dense object detection”. In: Proceedings of the IEEE international conference on computer
vision. 2017, pp. 2980–2988.

[350] Pierre Baque, Edoardo Remelli, Francois Fleuret, and Pascal Fua. “Geodesic convo-
lutional shape optimization”. In: International Conference on Machine Learning. PMLR.
2018, pp. 472–481.

[351] David JJ Toal and Andy J Keane. “Efficient multipoint aerodynamic design optimiza-
tion via cokriging”. In: Journal of Aircraft 48.5 (2011), pp. 1685–1695.

[352] Nobuyuki Umetani and Bernd Bickel. “Learning three-dimensional flow for interactive
aerodynamic design”. In: ACM Transactions on Graphics (TOG) 37.4 (2018), pp. 1–10.

[353] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin
Johnson, and Georgia Gkioxari. “Accelerating 3D Deep Learning with PyTorch3D”.
In: arXiv:2007.08501 (2020).

[354] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. “Open3D: A Modern Library for 3D
Data Processing”. In: arXiv:1801.09847 (2018).

[355] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

[356] Ilya Loshchilov and Frank Hutter. “Decoupled weight decay regularization”. In: arXiv
preprint arXiv:1711.05101 (2017).

[357] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. “Improved training of wasserstein gans”. In: Advances in neural information
processing systems 30 (2017).

[358] Gizem Yüce, Guillermo Ortiz-Jiménez, Beril Besbinar, and Pascal Frossard. “A Struc-
tured Dictionary Perspective on Implicit Neural Representations”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, pp. 19228–19238.

https://openreview.net/forum?id=a68SUt6zFt
https://openreview.net/forum?id=a68SUt6zFt
https://doi.org/10.1109/iccv51070.2023.01672
http://dx.doi.org/10.1109/ICCV51070.2023.01672
http://dx.doi.org/10.1109/ICCV51070.2023.01672

Bibliography 231

[359] Yilun Du, Katie Collins, Josh Tenenbaum, and Vincent Sitzmann. “Learning signal-
agnostic manifolds of neural fields”. In: Advances in Neural Information Processing
Systems 34 (2021), pp. 8320–8331.

[360] Emilien Dupont, Yee Whye Teh, and Arnaud Doucet. “Generative models as distribu-
tions of functions”. In: arXiv preprint arXiv:2102.04776 (2021).

[361] Ruilong Li, Hang Gao, Matthew Tancik, and Angjoo Kanazawa. “NerfAcc: Efficient
Sampling Accelerates NeRFs.” In: arXiv preprint arXiv:2305.04966 (2023).

[362] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt,
Ludwig Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. “Objaverse:
A universe of annotated 3d objects”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2023, pp. 13142–13153.

	Abstract
	Acknowledgments
	Introduction
	The Transfer Learning Problem
	Notation and Formal Definition of Transfer Learning
	Structure of the thesis

	I Transfer Learning for 2D Semantic Segmentation
	Initial Remarks
	Related works
	Transfer Learning and Task Transfer
	Domain Adaptation
	Multi-task Learning
	Task Transfer and Domain Adaptation
	Semantic Segmentation Datasets

	Transfer Features Across Tasks and Domains.
	Extended AT/DT
	Feature Alignment Across Domains
	Feature alignment across tasks

	Experimental Settings
	Experimental Results
	Depth to Semantics
	Semantics to Depth

	Additional Experiments
	Contribution of Taux and NDA Loss
	Effectiveness of edge detection as auxiliary task
	Importance of simultaneous training of N1, N2 and Daux
	Alignment strategies for N1
	Aligning N2 features
	Aligning G12 features

	Conclusions

	Plugging Monocular Depth into Unsupervised Domain Adaptation
	Method
	D4 (Depth For UDA)
	DBST (Depth-Based Self-Training)

	Experiments
	Implementation Details
	Results
	Ablation study

	Conclusions

	Exploiting Shallow Features for Sharp Segmentation Mask
	Method
	Low-level adaptation
	Data Augmentation for Self-Training
	Training Procedure

	Implementation
	Architecture
	Training Details

	Experiments
	Datasets
	Synthetic-to-real adaptation
	Cross-city adaptation
	Ablation Studies
	Performance Along Class Boundaries
	Comparison with other data augmentations
	Displacement map visualization

	Conclusions

	II Domain Adaptation for 3D Data
	Initial Remarks
	Related Works
	Unsupervised 3D Domain Adaptation
	Deep Learning for Point Clouds Reconstruction
	UDA Datasets for Point Cloud Classification and Segmentation

	RefRec: Pseudo-labels Refinement via Shape Reconstruction
	Method
	Pseudo-labels Warm-up
	Pseudo-labels Refinement
	Self-training

	Experiments
	Implementation details
	Results
	Ablation studies

	Conclusions

	Self-Distillation for Unsupervised 3D Domain Adaptation
	Method
	Preliminaries
	Self-distillation
	Pseudo-labels initialization
	Self-training and pseudo-labels refinement

	Experiments
	Results

	Conclusions

	III Domain Adaptation for multi-modal Data
	Initial Remarks
	Related Works
	Multi-Modal Datasets for 3D Semantic Segmentation

	Enanching Multi-Modal 3D Semantic Segmentation with Depth Completion
	Introduction
	Method
	Preliminaries
	Depth Completion
	LiDAR Data Augmentation
	Learning Process

	Experiments
	Implementation Details and Datasets
	UDA Results
	Additional Studies

	Conclusions

	On the Complementarity of 2D and 3D Networks for Multi-Modal Semantic Segmentation
	Introduction
	Method
	Base 2D/3D Architecture
	Depth-based 2D Encoder
	RGB Based 3D Network
	Learning Scheme

	Experiments
	Implementation details
	UDA results
	Domain Generalization results
	Ablation Studies

	Conclusions

	IV Neural Fields for 3D data
	Initial Remarks
	Related Works
	Deep learning on 3D shapes.
	Neural fields.

	Deep Learning on Implicit Neural Representations of Shapes
	Introduction
	Learning to Represent INRs
	Deep Learning on INRs
	Concluding Remarks

	Neural Processing of Tri-Plane Hybrid Neural Fields
	Introduction
	Tri-plane hybrid neural fields
	Preliminaries
	Tri-plane analysis
	Architectures for neural processing of tri-plane neural fields

	Tasks on Neural fields
	Neural field classification
	Neural field 3D part segmentation
	Different architectures for tri-plane processing

	Concluding remarks and limitations

	Final Remarks
	V Appendices
	Deep Learning on Implicit Neural Representations of Shapes
	Individual INRs vs. Shared Network Frameworks
	Obtaining INRs from 3D Discrete Representations
	Reconstructing Discrete Representations from INRs
	inr2vec Encoder and Decoder Architectures
	Motivation Behind inr2vec Encoder Design
	Experimental Settings
	Implementation, Hardware and Timings
	Testing on Original Discrete 3D Representations
	Alternative Architecture for inr2vec
	Additional Qualititative Results
	Effectiveness of Using the Same Initialization for INRs
	t-SNE Visualization of inr2vec Latent Space
	Ablation on INRs Size
	Shape Retrieval and Classification on DeepSDF Latent Codes
	Shape Generation: Additional Comparison
	INR Classification Time: Extended Analysis

	Neural Processing of Tri-Plane Hybrid Neural Fields
	Learning tri-plane neural fields
	Explicit reconstruction from neural fields
	Sampling explicit representations
	Examples of reconstructions by tri-planes
	Comparison between reconstructions by neural field processing frameworks

	Voxel grid hybrid neural fields
	Deeper investigation on the tri-plane and MLP content
	Is the MLP alone enough for reconstruction?
	Is the MLP alone enough for classification?
	Tri-plane channel visualizations
	Channel order investigation
	Additional visualizations

	Implementation details
	Datasets
	Benchmark
	Architectures
	Training
	Random initialization

	Training and inference time
	Tri-plane ablations
	Evaluating on the original discrete 3D representations
	Study on the memory occupation of neural fields

	Bibliography

