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Abstract

The aim of this thesis is to generalize some well-known concepts in proba-
bility and statistics from the standard ring to the non-idempotent semi-ring
(R+,⊕h,⊗h), where pseudo-sum ⊕h and ⊗h are defined by a suitable func-
tion h, called generator.
In the first part of this dissertation, we introduce the notions of pseudo-
independence with respect to a pseudo-additive fuzzy measure and of pseudo-
moment generating functions, showing that the classical results concerning
moment generating functions of a vector of independent random variables
and of their sum extend to pseudo-moment generating functions if the ran-
dom variables involved are pseudo-independent. Moreover, we prove that
pseudo moment generating functions, and more in general pseudo-analysis,
can be particularly efficient in characterizing a new class of bivariate random
vectors that we call ”pseudo-Schur constant” family, which represents an ex-
tension of the well-known Schur-constant class.
In the second part of this thesis, we give a generalization of strong and weak
bivariate lack-of-memory properties, substituting into their associated func-
tional equations the standard product by the pseudo one ⊗h: we call the
distributions satisfying them pseudo strong and weak distributions. After
characterising the pseudo weak distribution in full generality, we study the
induced dependence structure of the underlying lifetimes and that of the
residual ones. Moreover, we show that the distributions satisfying pseudo
lack-of-memory properties coincide with the solutions of suitable generaliza-
tions of Kaminsky (1983) and Marshall and Olkin (2015) functional equa-
tions; finally, we analyse several examples of pseudo weak distributions that
may be used in life insurance and we give a non-life insurance application to
LOSS and ALAE modelling problem.
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Chapter 1

Introduction

Pseudo-analysis is based on the structure of general semirings where a pseudo-
sum ⊕ and a pseudo-product ⊗ substitute and generalize the usual sum and
multiplication. In the particular case of a non-idempotent semiring, it has
been proved that these pseudo-operations are identified by a continuous and
invertible function through which both operations can be expressed, id est

x⊕h y = h(h−1(x) + h−1(y)), (1.1)

and
x⊗h y = h(h−1(x) h−1(y)), (1.2)

x, y ∈ [0,∞), where h : [a, b] → [0,∞) is a continuous and strictly increasing
function, see Mesiar and Rybárik (1995) and Pap (1995). For the main lit-
erature about pseudo-calculus and pseudo-integral, we refer to Zhang et al.
(2022).
The aim of this thesis, which is divided in two parts, is to generalize some
well-known concept in statistics and in probability from the standard ring to
the non-idempotent semiring (R+,⊕h,⊗h), where pseudo sum ⊕ and pseudo
product ⊗ are given by (1.1) and (1.2) respectively.
Fuzzy measure can be used to account for uncertainty and ambiguity. In
the first part of the dissertation, we consider a measurable space provided
with a fuzzy measure assuming values in a given semiring and we intro-
duce a definition of pseudo moment-generating function that is in line with
the pseudo-Laplace transform introduced in Pap and Ralévic (1998), but
considering a more general class of exponential functions obtained through
distortions. Since the fuzzy measures we are dealing with assume values in
a semiring, we introduce the concept of pseudo-independence and we show
that the classical results concerning moment generating functions of a vector
of independent random variables and of their sum extend to pseudo-moment
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generating functions and to a more general type of aggregation of random
variables if the latter are pseudo-independent.
This setup allows to characterize a new class of distributions that represent
an extension of the Schur-Constant distributions. We recall that a bivariate
vector (X, Y ) is Schur-Constant if its joint survival function F̄X,Y satisfies
the following equation:

F̄X,Y (x, y) = S(x+ y), x, y > 0, (1.3)

where S is a convex survival function (see, for instance, Barlow and Mendel,
1992, Caramellino and Spizzichino, 1994, Nelsen, 2005). A continuous Schur-
constant random vector can be completely characterized in terms of V =
X + Y and of an uniform random variable U independent of V (see for in-
stance Chi et al., 2009). Moreover, in Kozlova and Salminen (2004) and,
later, in Ta and Van (2017), a characterization of Schur-constant random
vector is provided in terms of its joint moment-generating function.
In this thesis, we consider random vectors with survival function of type (1.3)
where the standard sum is replaced by the pseudo sum (1.1): we call them
”pseudo-Schur constant” random vectors, showing that their dependence
structure is of Archimedean type and extending the above mentioned charac-
terizations of Schur-constant random vectors in terms of pseudo-operations
and pseudo-analysis.
In the second part of the thesis, we consider a generalization of bivariate
lack-of-memory properties introduced in the seminal paper by Marshall and
Olkin (1967). We recall that a distribution satisfies standard lack-of-memory
property in strong version if

F̄X,Y (s1 + t1, s2 + t2) = F̄X,Y (s1, s2) F̄X,Y (t1, t2), ∀s1, s2, t1, t2 ≥ 0 (1.4)

and in weak version if

F̄X,Y (s1 + t, s2 + t) = F̄X,Y (s1, s2) F̄X,Y (t, t),∀s1, s2, t ≥ 0. (1.5)

Marshall and Olkin show that the unique distribution satisfying the for-
mer is F̄X,Y (x, y) = e−λ1x−λ2y, λ1, λ2 > 0 and that the unique distribution
with exponential marginal survival function for which the latter holds true
is F̄X,Y (x, y) = e−λ1x−λ2−λ0 max(x,y), λi > 0, i = 1, 2, 3.

Muliere and Scarsini (1987) generalized the functional equation (1.5) by
substituting the standard sum + by the pseudo sum ⊕ given by (1.1). Simi-
larly, in this thesis, we replace the standard product in (1.4) and (1.5) by the
pseudo product ⊗ given by (1.2), obtaining the following functional equa-
tions:

F̄X,Y (s1 + t, s2 + t) = F̄X,Y (s1, s2)⊗h F̄X,Y (t1, t2), s1, s2, t1, t2 ≥ 0 (1.6)
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and

F̄X,Y (s1 + t, s2 + t) = F̄X,Y (s1, s2)⊗h F̄X,Y (t, t), s1, s2, t ≥ 0. (1.7)

After finding sufficient and necessary conditions under which the solutions
of (1.6) and (1.7) are bivariate survival functions, we focus on the latter, that
we call pseudo weak distribution. We show that, for a suitable choice of the
generator h and of the marginal survival functions, we recover the distribu-
tion obtained in Marshall and Olkin (2015) as the solution, with Gompertz
marginal survival functions, of a functional equation that is an extension to
the bivariate case of Kaminsky’s functional equation.
In Ghurye and Marshall (1984), the authors show that the distribution
of the vector (X1, . . . , Xn) satisfying standard weak lack-of-memory prop-
erty can be completely characterised in terms of the random variables U =
min(X1, . . . , Xn) and W̄ = (X1 − U, . . . , Xn − U); moreover, for n = 2, they
derive the distribution of (U, W̄ ,N), where N = 1X1>X2 − 1X1<X2 : for distri-
butions satisfying (1.7), we find the joint distribution of the vector (U, W̄ ,N),
but we do not achieve a complete characterization.
In Block and Basu (1974), in a bivariate setting, an alternative character-
ization of the standard weak distribution is given in terms of the random
variables U and V = X − Y : in this case, we give a complete characteriza-
tion of pseudo weak distribution in terms again of U and V .
Moreover, we investigate the dependence structure of pseudo weak distribu-
tion, determining its singularity and its Kendall distribution function in full
generality and studying the upper and lower dependence coefficients for some
specific choices of the marginal survival functions and of the generator h.
Then, we generalize Kaminsky (1983) and Marshall-Olkin’ (2015) functional
equations and we show that their solutions coincide with the solutions of the
functional equations that define pseudo lack-of-memory properties. Moreover
we study the dependence structure of residual lifetimes vector, investigating
how it changes as the threshold t varies through the analysis of the Kendall
distribution function and of the tail dependence coefficients.
After giving sufficient conditions under which a function is sub-multiplicative
or super-multiplicative in the unit interval, we discuss possible applications
to insurance modelling. First, we study the dependence structure of bivari-
ate distributions obtained as distortions of sub-multiplicative functions and
we’ll look at the impact they have in pricing some well-known insurance con-
tracts written on residual lifetimes. Moreover, as an explanatory example, we
consider the bivariate LOSS-ALAE (Allocated Loss Adjustment Expenses)
modelling problem in actuarial science, considering the dataset of 1500 gen-
eral liability claims randomly chosen from late settlement lags provided by
US Insurance Services Office.
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Assuming that the vector of LOSS and of a scalar transformation of the cor-
responding ALAE follows pseudo weak distribution, we select the best joint
distribution among several ones by log-likelihood optimization: it turns out
that the generator obtained is super-multiplicative, meaning that probability
of high joint losses is significant for the insurance company. Finally, we com-
pute some well-known risk measures and premiums for different reinsurance
contracts written on LOSS and ALAE.



Chapter 2

Preliminaries and State of Art

In this section we will introduce the main concepts and results concerning
semirings, pseudo-calculus, fuzzy measures and pseudo-integrals, that will be
used in the rest of the thesis; moreover, we will give some results about tail
dependence of distorted copulas that will be used in Chapter 4. Definition
and extension of bivariate lack-of-memory properties are also presented.

2.1 Pseudo-Calculus

In this section we will introduce the main concepts and results concerning
semirings, pseudo-calculus, fuzzy measures and pseudo-integrals, that will be
used in the sequel.

2.1.1 Semirings

Semirings have been widely studied and applied to many fields (see for ex-
ample Golan, 1992). A binary operation ⊕ on the interval [a, b] ⊆ [−∞,∞],
endowed with a metric d, is a pseudo-addition if it is commutative, non-
decreasing, associative and with a neutral element denoted by 0 ∈ [a, b].
Similarly, a binary operation ⊗ on [a, b] is a pseudo-multiplication if it is
commutative, positively non-decreasing, id est ,

x ≤ y → x⊗ z ≤ y ⊗ z ∀z ∈ [a, b],

associative and with unit element 1 ∈ [a, b]. If we further assume that ⊗
is distributive with respect to ⊕, then the structure ([a, b],⊕,⊗) is called a
semiring.

7
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We can distinguish between three cases of semirings based on the fact
that these pseudo-operations are idempotent or not (see, among the others,
Zhang and Pap, 2020, and Zhang et al., 2022).

1. Both pseudo-operations ⊕ and ⊗ are idempotent. In this case, we may
have two possible representations of these operations.

(a)

x⊕ y = sup(x, y) (2.1)

and

x⊗ y = inf(x, y); (2.2)

in this case, the associated metric is given by d(x, y) = | arctan(x)−
arctan(y)|.

(b)

x⊕ y = h(sup(h−1(x), h−1(y)))

and

x⊗ y = h(inf(h−1(x), h−1(y))),

where h : [a, b] → [0,M ], with M ∈ (0,∞). In this case, the
associated metric is given by d(x, y) = |h−1(x)− h−1(y)|.

2. ⊕ is idempotent but ⊗ is non-idempotent:

x⊕ y = sup(x, y)

and

x⊗h y = h(h−1(x) h−1(y)),

where h : [a, b] → [0,∞). In this case, the associated metric is given by
d(x, y) = |h−1(x)− h−1(y)|.

3. It has been proven in Mesiar and Rybarik (1995) that the semi-ring
([a, b],⊕,⊗) is non-idempotent if and only if there exists a continuous
strictly increasing bjection h : [a, b] → [0,∞) such that

x⊕h y = h(h−1(x) + h−1(y)) (2.3)

x⊗h y = h(h−1(x) h−1(y)). (2.4)

In this case, the associated metric is given by d(x, y) = |h−1(x) −
h−1(y)|.
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Throughout the thesis, we’ll work with a non-idempotent semiring as in case
3. and we will consider the following class of functions:

G = {h : h is a strictly increasing bjection of R+with h(1) = 1} ;

the elements of G will be called ”generators”.

In this chapter, we will use the notation ⊕h and ⊗h in order to specify
the dependence on h. Clearly, when h = id in (2.3) and in (2.4), we recover
the standard sum and the standard product respectively.

Starting from the pseudo-sum defined in (2.3), the pseudo-difference ⊖h

is given by

x⊖h y = h
(
h−1(x)− h−1(y)

)
, x ≥ y ≥ 0,

see Jain (2022). Similarly, for pseudo-division ⊘, we have:

x⊘h y = h
(
h−1(x) : h−1(y)

)
, for x ≥ 0, y > 0.

By the same way, starting from the pseudo-product in (2.4), the pseudo-
power of a number x ∈ (a, b] is given by

x⊗hα = h
(
[h−1(x)]α

)
, x ≥ 0

with α > 0 if x ≥ 0 and with α ∈ R if x > 0.

In the sequel we will consider also a non-commutative extension of the
pseudo-sum (2.3). Given k, k1, k2 ∈ G, we define the non-commutative sum
operator (see for instance Pap and Vivona, 2000) as

x k1
k
⊕k2 y = k(k−1

1 (x) + k−1
2 (y)), x, y ∈ R+. (2.5)

Remark 2.1.1. Clearly, the triplet (k, k1, k2) identifies a sum operator, up
to a multiplicative constant: that is, for all c > 0, if k̂(x) = k(cx), k̂1(x) =
k1(cx), k̂2(x) = k2(cx), then (k, k1, k2) and (k̂, k̂1, k̂2) define the same addi-
tion operator.

Similarly as for the commutative case, we can define the generalized
pseudo-difference as

x k1

k
⊖k2 y = k(k−1

1 (x)− k−1
2 (y)), x ≥ k1 ◦ k−1

2 (y), y ∈ R+. (2.6)



10

2.1.2 Pseudo-Derivatives

An important tool in pseudo-calculus is the pseudo-derivative of a function
(see Ralevic, 2007, among the others).

Definition 2.1.1. Let f : D ⊂ R → R+ be a differentiable and non-
decreasing function. Let h ∈ G be a differentiable generator in R+ with
h′(t) ̸= 0 for all t ∈ R+ that generates the semiring (R̄+,⊕h,⊗h). Then we
define the pseudo-derivative of f at x ∈ D by:

⊕hd

dx
f(x) = h

(
d

dx

[
h−1 ◦ f(x)

])
.

By iteratively applying the above definition, if f and h are n times differ-
entiable with dn

dnt
[h−1 ◦ f ] (t) non-negative, we get an expression for the n-th

pseudo derivative of f , that is

⊕hdn

dnx
f(x) = h

(
dn

dnx

[
h−1 ◦ f(x)

])
.

2.1.3 Fuzzy Measures

In this section we introduce the notion of fuzzy measure (see, among the
wide literature, the seminal paper of Choquet, 1953, and Teran, 2023).

Definition 2.1.2. Let (Ω,F) be a measurable space. A set function m :
F → [0, 1] is called a fuzzy measure if it satisfies the following properties:

1. m(∅) = 0,

2. m(A) ≤ m(B), whenever A ⊆ B, A,B ∈ F ,

3. for every monotone sequence {Ai}i=1,2,... ⊂ F , lim
i→∞

m(Ai) = m
(
lim
i→∞

Ai

)
.

If m(Ω) = 1, m is called ”regular”.

In what follows, given h ∈ G and the semiring (R+,⊕h,⊗h), we will focus
on a suitable sub-class of fuzzy measures that satisfies the σ − ⊕h-additive
property.

Definition 2.1.3. Let (Ω,F) be a measurable space and m be a fuzzy mea-
sure. m is σ −⊕h-additive if

m

(
∞⋃
n=1

An

)
=

+∞
⊕h
n=1

m(An)

for any sequence {An}∞n=1 ⊂ F with Ai ∩ Aj = ∅ for i ̸= j.



11

In order to specify the σ − ⊕h-additivity of m, we will use the notation
mh. By Definitions 2.1.2 and 2.1.3, the set function h−1 ◦mh : F → [0, 1] is
an additive measure on the space (Ω,F) and a σ−⊕h-additive fuzzy measure
is a distorted measure.

2.1.4 Pseudo-Integrals

The following construction of pseudo-integrals can be found in Zhang et al.
(2022). Given a semiring (R+,⊕,⊗) with metric d and a measure space
(Ω,A,m), where m is a σ-⊕h-additive measure, a function f : X → [0,∞)
is said to be measurable if f−1(B) = {x ∈ X : f(x) ∈ B} ∈ A for each B,
where B is a Borel subset of R+. The characteristic function of a set A ⊆ Ω
with values in our semi-ring is defined by 1A(x) = 1 for x ∈ A and 0 for
x ̸∈ A. A step measurable function is a mapping e : Ω → [0,∞) with the
following representation

e = ⊕n
i=1ai ⊗ 1Ai

, (2.7)

where ai ∈ [0,∞) and where Ai ∈ A, i = 1, 2, ..., n is a sequence of pairwise
disjoint sets.
The pseudo-integral of a non-negative step function e : Ω → [0,∞), defined
in (2.7), with respect to m over A ∈ A, is given by∫ ⊕

A

e⊗ dm = ⊕n
i=1ai ⊗m(A ∩ Ai).

The pseudo-integral of a non-negative measurable function f : Ω → [0,∞)
with respect to m over A ∈ A is defined by∫ ⊕

A

f ⊗ dm = sup

{∫ ⊕

A

e⊗ dm : e ≤ f, e ∈ S(X)

}
where S(X) is the set of all step function from Ω to [0,∞). In the case of
a non-idempotent semi-ring, the pseudo integral of f with respect to a σ-⊕
additive measure mh reduces to∫ ⊕h

Ω

f ⊗h dmh = h

(∫
Ω

h−1 ◦ f d(h−1 ◦mh)

)
. (2.8)

In case of a regular fuzzy measure mh, the pseudo-expectation of a random
variable X in (Ω,F) with non-negative values is given by

Ẽmh [X] =

∫ ⊕h

Ω

X ⊗h dmh = h
(
EP [h−1 (X)

])
, (2.9)
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where EP denotes the standard expectation with respect to the probability
P = h−1 ◦mh, see Agahi and Dehnavi (2021).

2.2 Distorted Copulas

We briefly recall here the conditions that a copula C must satisfy.

Definition 2.2.1. A function C : [0, 1] × [0, 1] → [0, 1] is called a copula if
and only if:

1. C(0, y) = C(x, 0) = 0, x, y ∈ [0, 1]

2. C(x, 1) = C(1, x) = x, x ∈ [0, 1]

3. C(x2, y2) + C(x1, y1) ≥ C(x2, y1) + C(x1, y2), 0 ≤ x1 ≤ x2 ≤ 1, 0 ≤
y1 ≤ y2 ≤ 1.

Given a copula C and an increasing bijection ϕ : [0, 1] → [0, 1], the
function Cϕ : [0, 1]× [0, 1] → [0, 1] defined by

Cϕ(x, y) = ϕ(C(ϕ−1(x), ϕ−1(y))), x, y ∈ [0, 1]

is called distortion or transformation of a copula by means of ϕ. We define

I = {f : f is an increasing bjection of [0, 1]}; (2.10)

moreover, we say that ϕ ∈ I(C) if and only if the distortion of the copula C
by means of ϕ is still a copula.
It is obvious that all the distortions of a copula C through ϕ ∈ I satisfy
conditions 1. and 2. in Definition 2.2.1, but not necessarily property 3.: in
the case in which 3. is not satisfied, Cϕ is a semi-copula but not a copula (see
Bassan and Spizzichino, 2001, Durante and Sempi, 2005). Conditions on ϕ
under which the distorted copula Cϕ is still a copula have been widely studied
in the literature. In Durante and Sempi (2005) and in Klement et al. (2005),
it has been proven that convexity of ϕ is a sufficient condition to guarantee
that Cϕ is still a copula; further results have been obtained in Durante et al.
(2010). In fact, therein, the authors show that, for any ϕ ∈ I(C) and ψ ∈ I,
if ϕ ◦ ψ−1 is convex, then ψ ∈ I(C). Moreover, they prove that, if ψ ∈ I(C)
and ϕ ∈ I(C), then the convex combination αψ + (1− α)ϕ ∈ I(C), for any
α ∈ [0, 1].
Statistical properties of distorted copulas Cψ have been also analysed. Inves-
tigation of how the dependence structure of distorted copulas changes after
application of a distortion can be found in Tran et al. (2016); the following
results for tail dependence of distorted copulas have been proven in Durante
et al. (2010).
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Proposition 2.2.1. Let C be a copula with finite lower tail dependence co-
efficient λL(C). Moreover, let ψ ∈ I(C). Then, if

lim
t→0+

ψ(t)

tα
= b ∈ (0,+∞)

for some α > 0, then λL(Cψ) = (λL(C))
α.

Proposition 2.2.2. Let C be a copula with finite upper tail dependence co-
efficient λU(C). Moreover, let ψ ∈ I(C). Then, if

lim
t→1−

1− ψ(t)

(1− t)α
= b ∈ (0,+∞)

for some α > 0, then λU(Cψ) = 2− (2− λU(C))
α.

In the case of a regularly varying distortion at 0+, the following proposi-
tion in Sepanski (2020) also holds true.

Proposition 2.2.3. Let C be a copula with finite lower and upper tail de-
pendence coefficients. Let ϕ ∈ I(C). Then:

1. If ϕ(x) is regularly varying at 0+ with index α > 0, then λL(Cϕ) =
(λL(C))

α.

2. If 1−ϕ(1−x) is regularly varying at 0+ with index β > 0, then λU(Cϕ) =
2− (2− λL(C))

β.

2.3 Standard Lack-of-Memory Properties

In this section, we will focus on bivariate distributions with absolutely con-
tinuous marginal survival functions.
A survival distribution Ḡ satisfies the standard univariate lack-of-memory
property if and only if

Ḡ(s+ t) = Ḡ(s)Ḡ(t), s, t ≥ 0. (2.11)

The unique survival function satisfying the above functional equation is well
known and is given by Ḡ(x) = e−λx, λ > 0.
Definitions of bivariate standard lack-of-memory properties have been given
in the seminal paper of Marshall and Olkin (1967).
A bivariate survival function Ḡ satisfies strong bivariate lack-of-memory
property if and only if

Ḡ(s1 + t1, s2 + t2) = Ḡ(s1, s2)Ḡ(t1, t2), s1, s2, t1, t2 ≥ 0 (2.12)
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and the unique survival function satisfying the above functional equation is
given by

G(x, y) = e−λ1x−λ2y, x, y ≥ 0 (2.13)

for some λ1, λ > 0.
Similarly, a bivariate survival function Ḡ satisfies the weak bivariate lack-of-
memory property if and only if

Ḡ(s1 + t, s2 + t) = Ḡ(s1, s2) Ḡ(t, t), s1, s2, t ≥ 0. (2.14)

The solution of the above functional equation is given by

Ḡ(x, y) =

{
e−λyḠ1(x− y), x ≥ y

e−λxḠ2(y − x), x < y
, (2.15)

where Ḡ1, Ḡ2 are univariate survival functions of positive and absolutely
continuous random variables and λ is a positive constant. However, the
function (2.15) is a survival function if and only if{

λ ≤ g1(0) + g2(0)
∂ log(gi(z))

∂z
≥ −λ, ∀z ≥ 0, i = 1, 2

, (2.16)

where gi(z) = −∂Ḡi(x)
∂x

, see theorem 5.1 in Marshall and Olkin (1967). The
two conditions of the system above guarantee that the probability mass on
the line x = y is between 0 and 1 and that the function (2.15) is absolutely
continuous in the region {(x, y) : x ≥ 0, y ≥ 0, x ̸= y}.
The unique solution of (2.14) with marginal survival exponential distributions
is given by

ḠX,Y (x, y) = e−γ1x−γ2y−γ3 max(x,y), x, y ≥ 0 (2.17)

with γi > 0, i = 1, 2, 3: this is the distribution of the vector

(X, Y )
d
= (min(T1, T3),min(T2, T3)) (2.18)

where Ti are independent exponentially distributed random variables. Obvi-
ously, (2.17) has constant marginal failure rates, restricting its usefulness for
practical needs. As a response, other solutions of (2.14) with non-exponential
marginals have been introduced (see, among the others, Block and Basu,
1974). An important contribution to the topic has been given in Kulka-
rni (2006): therein, the author suggests a class of bivariate distributions
satisfying standard weak lack-of-memory property having increasing or/and
decreasing marginal failure rates, but with same restrictions needed.



15

Moreover, Li and Pellerey (2011) introduce the Generalized MO model con-
sidering non-exponential independent random variables Ti, i = 1, 2, 3 in
(2.18): however, the corresponding joint distributions do not satisfy lack-
of-memory property; further extension of their model has been performed in
Mulinacci (2018). Finally, in Pinto and Kolev (2015), it is assumed that indi-
vidual shocks T1 and T2 are dependent, but still independent of the common
shock: the resulting joint distribution may satisfy lack-of-memory property
or not according to the value of the parameters chosen.

Distributions satisfying standard weak lack-of-memory property have been
widely studied in the literature: we will present here two characterizations of
these distributions which will be used in the sequel. The first characterization
has been given in section 3 in Ghurye and Marshall (1984).

Proposition 2.3.1. The survival distribution function Ḡ of the vector X̄ =
(X1, X2, . . . , Xn) satisfies standard weak lack-of-memory property if and only
if there exist random variables U and W̄ = (W1,W2, . . . ,Wn) such that

1. X̄ = Uē + W̄ , where ē = (1, 1, . . . , 1) is the n-th dimensional unit
vector;

2. U and W̄ are independent;

3. P (min(W1, . . . ,Wn) = 0) = 1;

4. U has an exponential distribution.

The authors actually show that U = min(X1, . . . , Xn); moreover, in the
bivariate case, they show that the random variables U = min(X1, X2) and
N = 1X1>X2 − 1X1<X2 are independent.
Another characterization of the same family of distributions, in a bivariate
setting, can be found in Block and Basu (1974).

Proposition 2.3.2. Let (X, Y ) be a random vector with absolutely continu-
ous bivariate distribution Ḡ. Then Ḡ satisfies standard weak lack-of-memory
property if and only if, for U = min(X, Y ) and V = X − Y , there exists
λ > 0 such that

1. U and V are independent;

2. U has exponential distribution with parameter λ;
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3.

P (V ≤ t) =

{
G1(t) +

g1(t)
λ

if t ≥ 0

1−G2(−t)− g2(−t)
λ

if t < 0
,

where G1, G2 are the marginal cumulative distribution functions of X
and Y respectively and gi(x) = G

′
i(x), x ≥ 0.



Chapter 3

Pseudo-Moment Generating
Functions: Application to
Pseudo-Schur Constant
Random Vectors.

In this chapter, we introduce the notions of pseudo- independence and of
pseudo-moment generating functions, showing that the classical results con-
cerning moment generating functions of a vector of independent random vari-
ables and of their sum can be extended to pseudo-moment generating func-
tions if the random variables involved are pseudo-independent. Moreover,
we prove that pseudo-moment generating functions, and more in general
pseudo-analysis, can be particularly efficient in characterizing a new class of
bivariate random vectors that we call ”pseudo-Schur constant” family, which
represents an extension of the well-known Schur-constant class.
The results of this chapter are published in an even more general setup in
Mulinacci and Ricci (2024).

3.1 Random Variables and Pseudo-Independence

In this section we introduce the notion of pseudo-independence as an exten-
sion of the classical notion of independence.

3.1.1 Fuzzy Cumulative Distribution Functions

Let (Ω,F) be a measurable space. A function X is a random variable in R
if and only if X−1(Λ) ∈ F for any subset Λ of the Borel sigma-algebra of

17
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R. Given (Ω,F ,m), where m is a regular fuzzy measure, we can associate
to any random variable X the function FX(x) = m (X ≤ x), ∀x ∈ R. The
function FX satisfies all the properties of a standard cumulative distribution
function but it doesn’t identify the regular fuzzy measure induced by X on
(R,B (R)). If instead, we consider a regular σ−⊕h-additive fuzzy measuremh

with generator h ∈ G, then the σ −⊕h-additive fuzzy measure µFX
h induced

by FX on (R,B (R)) is defined through

µFX
h ((a, b]) = FX(b)⊖h FX(a)

on intervals of type (a, b] and then extended to B(R) taking into account that

h−1 ◦ µFX
h ((a, b]) = h−1 ◦ FX(b)− h−1 ◦ FX(a)

and that h−1 ◦ µFX
h extends to a unique probability on (R,B (R)).

Notice that the cumulative distribution function of X with respect to the
probability P = h−1 ◦mh is F P

X(x) = h−1 ◦ FX(x).

Exactly as for the univariate case, given the random vector (X, Y ), if
FX,Y (x, y) = mh(X ≤ x, Y ≤ y) for x, y ∈ R is the joint fuzzy cumulative dis-
tribution function, then the joint cumulative distribution function of (X, Y )
with respect to the probability P = h−1◦µh is F P

X,Y (x) = h−1◦FX,Y (x, y). As
for the additive case, the joint fuzzy cumulative distribution function can be
written in terms of the fuzzy marginal ones and of the semi-copula that links
them (see Durante and Sempi, 2005, and Durante and Spizzichino, 2010, for
the notion of semi-copula and related results). In the particular case in which
the fuzzy measure is σ-⊕h-additive, then the semi-copula S(u, v) associated
to FX,Y is linked to the copula C(u, v) associated to F P

X,Y in the following
way:

S(u, v) = h
(
C(h−1(u), h−1(v)

)
; (3.1)

if h is convex, then S is indeed a copula function (see Proposition 2.8 in
Durante and Spizzichino, 2010, and related comments).

3.1.2 Pseudo-Independence

The definition of pseudo-independence is obtained substituting the standard
product by the pseudo one in the usual definition of independence.

Definition 3.1.1. Let (Ω,F ,m) be a measurable space provided with a regu-
lar fuzzy measure m. Given h ∈ G, we say that A,B ∈ F are h-independent
if and only if

m (A ∩B) = m (A)⊗h m (B) . (3.2)
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Clearly, dealing with regular fuzzy measures, two different generators that
coincide on the interval [0, 1] define the same relation in (3.2). According to
Definition 3.1.1, it is natural to introduce the notion of pseudo-independence
between random variables. If X and Y are two real valued random variables
defined on (Ω,F ,m), where m is a regular fuzzy measure and h ∈ G is a
generator, they are said to be h-independent if and only if

m (X ∈ B1, Y ∈ B2) = m (X ∈ B1)⊗h m (Y ∈ B2) (3.3)

for all B1, B2 ∈ B(R).
The notion can be extended to more than two events and to more than

two random variables exactly as for classical independence.

If, in addition, we assume a σ − ⊕h-additive fuzzy measure mh, equation
(3.3) can be rewritten as

h−1 ◦mh (X ∈ B1, Y ∈ B2) = h−1 ◦mh (X ∈ B1) · h−1 ◦mh (Y ∈ B2)

for all B1, B2 ∈ B(R), so (3.3) holds true if and only if X and Y are indepen-
dent with respect to the probability P = h−1 ◦mh. As a consequence, (3.3)
is equivalent to

mh (X ≤ x, Y ≤ y) = mh (X ≤ x)⊗h mh (Y ≤ y) (3.4)

for all x, y ∈ R. In terms of fuzzy cumulative distribution functions, (3.4)
can be rewritten as

FX,Y (x, y) = FX(x)⊗h FY (y) (3.5)

and S(u, v) = u⊗h v is the associated semi-copula.

Clearly, FX,Y in (3.5) is a joint cumulative distribution function if and
only if u⊗hv for u, v ∈ [0, 1] is a copula. It is well-known that an Archimedean
copula can be written in multiplicative and in an additive form as

u⊗h v = ϕ
(
ϕ−1(u) + ϕ−1(v)

)
(3.6)

where ϕ(t) = h (e−t), and that (3.6) is indeed a copula if and only if ϕ(0) = 1,
lim
t→+∞

ϕ(t) = 0 and ϕ is continuous, non-increasing and convex on [0,+∞) (see

for instance Theorem 2 in McNeil and Nešlehová, 2009, or Nelsen, 2006).
Since h ∈ G, we have that ϕ satisfies the required properties if and only if
additionally h(e−x) is convex.

Remark 3.1.1. If we consider the idempotent product (2.2) instead of the
pseudo product (1.2), equation (3.5) becomes

FX,Y (x, y) = min(FX(x), FY (y)),

which is the joint cumulative distribution function corresponding to perfect
positive dependence between X and Y .



20

3.2 Pseudo-Moment Generating Function

In this section we will generalize the notion of moment generating function
(both at the univariate as well as at the bivariate level) considering the more
general setup introduced in Section 2.1. Given the extreme generality and
flexibility of the framework that assumes a general semiring and a fuzzy
measure, we start introducing a general notion of exponential function based
on which the moment generating function will be defined.

3.2.1 Pseudo-Exponential Functions

The exponential function is characterized as the solution of some specific
functional or differential equations. When considering the analogous func-
tional and differential equations expressed in terms of pseudo-operations and
pseudo-derivatives, we obtain different functions that, clearly, degenerate to
the standard exponential function when the involved generators coincide with
the identity function.

Proposition 3.2.1. Let h ∈ G, k ∈ S and f : R+ → R+. Then

f(x⊕k y) = f(x)⊗h f(y) (3.7)

for all x, y ∈ R+ if and only if f(x) = h(ak
−1(x)), a > 0.

Proof. (3.7) is equivalent to

f ◦ k(k−1(x) + k−1(y)) = h
(
h−1 ◦ f(x) · h−1 ◦ f(y)

)
,

from which, setting u = k−1(x) and v = k−1(y), we get

h−1 ◦ f ◦ k(u+ v) = h−1 ◦ f ◦ k(u) · h−1 ◦ f ◦ k(v),

which is true if and only if h−1 ◦ f ◦ k(x) = ax for some a > 0, and the
conclusion trivially follows.

In the setting of the semiring (R+,⊕h,⊗h), that is when k = h, the result-
ing pseudo-exponential function consistent with it is the function f(x) =

h
(
ah

−1(x)
)
.

When k(x) = x we obtain the function f(x) = h(ax), that, when a = e, is
the solution of the following pseudo-differential equation.



21

Proposition 3.2.2. Let f : R → R+ be a differentiable and non-decreasing
function. Then

f(x) =
⊕hd

dx
f(x) (3.8)

if and only if f(x) = h (ex).

Proof. By definition of pseudo-derivative, equation (3.8) is equivalent to

h−1(f(x)) =
d

dx

[
h−1 ◦ f(x)

]
that holds true if and only if h−1 ◦ f(x) = ex.

Since the above pseudo-exponential functions will be used in the sequel
in the specific case a = e, given (h, k) ∈ G × S, we use the notation

exph,k(x) = h(ek
−1(x)). (3.9)

3.2.2 Pseudo-Moment Generating Functions

Based on the pseudo-exponential function of type (3.9), which depends on the
specific choice of h ∈ G and k ∈ S, we can define a family of pseudo-moment
generating functions, parametrized by the pair (h, k) ∈ G × S.

Definition 3.2.1. Let (h, k) ∈ G × S and (Ω,F ,mh) be a measurable space
provided with a regular σ-⊕h-additive fuzzy measure mh. Let X be a non-
negative random variable. We define the (h, k)-pseudo-moment generating
function as

M
(h,k)
X (t) = Ẽmh

[
exp⊗ht

h,k (X)
]
, (3.10)

where exp⊗ht
h,k (t) =

(
exph,k(t)

)⊗ht.

Remark 3.2.1. When k(x) = x, Definition 3.2.1 corresponds to the defini-
tion of the pseudo-Laplace transform in Pap and Ralević (1998); therein, the
authors introduce also the pseudo Laplace transform when the standard sum
and the standard product are replaced by (2.1) and (2.2) respectively.

By (2.9), the (h, k)-pseudo-moment generating function defined in (3.10)
can be easily rewritten as

M
(h,k)
X (t) = Ẽmh [h(etk

−1(X))] = h(EP[etk
−1(X)]) =

= h(MP
k−1(X)(t)) =M

(h,id)

k−1(X)(t)
(3.11)
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where MP
k−1(X) is the standard moment-generating function of k−1(X) with

respect to the probability P = h−1 ◦mh.
So, M

(h,k)
X and MP

k−1(X) share the same domain and M
(h,k)
X identifies the σ-

⊕h-additive regular fuzzy measure induced by X on R+.

An explicit expression for M
(h,k)
X can be trivially recovered in the cases in

which we are dealing with random variables whose transformation through
k−1 has a known standard moment generating function.

Example 3.2.1. If, under P = h−1 ◦mh, k
−1(X)

d
= Poi(λ), then, clearly,

M
(h,k)
X (t) = h(eλ(e

t−1)), while, if, under P = h−1 ◦ mh, k
−1(X)

d
= Γ(α, µ),

then M
(h,k)
X (t) = h(µα(µ− t)−α), t < µ.

Given a non-negative random variable X, we define its n-th pseudo-
moment as Ẽmh [X⊗hn] (when it is finite) that can be determined using the
pseudo moment-generating function via pseudo-differentiation.

Proposition 3.2.3. Let X be a non-negative random variable on (Ω,F ,mh)

so that M
(h,h)
X is defined in a neighborhood of 0. Then, for n ∈ N,

⊕hdn

dtn
M

(h,h)
X (t)

∣∣∣∣
t=0

= Ẽmh [X⊗hn]. (3.12)

Proof. By applying the n-th pseudo differentiation to (3.11) with k = h, we
have that

⊕hdn

dtn
M

(h,h)
X (t) = h

(
dn

dtn
MP

h−1(X)(t)

)
.

But

dn

dtn
MP

h−1(X)(t)

∣∣∣∣
t=0

= EP[(h−1(X))n] = h−1
(
Ẽmh

[
h
((
h−1(X)

)n)])
,

from which the conclusion follows.

3.2.3 Joint Pseudo-Moment Generating Function

In this subsection we will extend the definition of pseudo-moment generating
function to random vectors, in line with the classical case.

Let (h, k1, k2) ∈ G×S2 and (X1, X2) be a R+×R+-valued random vector
defined on (Ω,F ,mh) where mh is a regular σ-⊕h-additive fuzzy measure.
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We define

M
(h,k1,k2)
X1,X2

(s, t) = Ẽm
[
exp⊗hs

h,k1
(X1)⊗h exp

⊗ht
h,k2

(X2)
]

(3.13)

the ”(h, k1, k2)-pseudo joint moment generating function”.
Exactly as for the one-dimensional version, we have that

M
(h,k1,k2)
X1,X2

(s, t) = h
(
MP

k−1
1 (X1),k

−1
2 (X2)

(s, t)
)
=

=M
(h,id,id)

k−1
1 (X1),k

−1
2 (X2)

(s, t),
(3.14)

where MP
U,W (s, t) is the standard moment generating function of the ran-

dom vector (U,W ) with respect to P = h−1 ◦ mh. Similarly as in the

one-dimensional case, M
(h,k1,k2)
X1,X2

and MP
k−1
1 (X1),k

−1
2 (X2)

share the same domain

and M
(h,k1,k2)
X1,X2

identifies the σ-⊕h-additive regular fuzzy measure induced by
(X1, X2) on R+ × R+ since the dependence structure between X1 and X2 is
the same as that of k−1

1 (X1) and k
−1
2 (X2).

As the classical moment generating function of two independent random
variables decomposes into the product of the marginal moment generating
functions, the (h, k1, k2)-pseudo-moment generating function in (3.13) of two
h-independent random variables can be written as the pseudo-product ⊗h of
the one-dimensional corresponding (h, ki)-pseudo-moment generating func-
tions, i = 1, 2, as we show in the following proposition.

Theorem 3.2.1. Let (k1, k2) ∈ S2 and X1 and X2 be non-negative random
variables on (Ω,F ,mh). They are h-independent if and only if

M
(h,k1,k2)
X1,X2

(s, t) =M
(h,k1)
X1

(s)⊗hM
(h,k2)
X2

(t) (3.15)

and this is true for all choices of (k1, k2) ∈ S2.

Proof. By (3.14) and (3.11) and the fact that h-independence is equivalent
to P = h−1 ◦mh-independence, we have that

M
(h,k1,k2)
X1,X2

(s, t) = h
(
MP

k−1
1 (X1),k

−1
2 (X2)

(s, t)
)
=

= h
(
MP

k−1
1 (X1)

(s) ·MP
k−1
2 (X2)

(t)
)
=

= h
(
h−1(M

(h,k1)
X1

(s)) · h−1(M
(h,k2)
X2

(t))
)
.
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Example 3.2.2. Let X1 and X2 be h-independent so that, under P = h−1 ◦
mh, k

−1
i (Xi) is Bernoulli distributed with parameter πi, i = 1, 2. Then, by

Theorem 3.2.1,

M
(h,k1,k2)
X1,X2

(s, t) = h
(
(etπ1 + 1− π1)(e

tπ2 + 1− π2)
)
.

In the standard probability case, the moment generating function of the
sum of two independent random variables decomposes into the product of
the corresponding one-dimensional moment generating functions. A sim-
ilar result can be obtained for a general non-commutative pseudo-sum of
h-independent random variables.

Proposition 3.2.4. Let h ∈ G, k1, k2 ∈ S and X1 and X2 be two h-
independent and non-negative random variables on (Ω,F ,mh). Then, for
any k ∈ S,

M
(h,k)

X1k1

k
⊕k2

X2

(t) =M
(h,k1)
X1

(t)⊗hM
(h,k2)
X2

(t). (3.16)

Proof. Since

M
(h,k1,k2)
X1,X2

(t, t) = Ẽmh

[
h
(
et(k

−1
1 (X1)+k

−1
2 (X2))

)]
=

= Ẽmh

[
h

(
e
tk−1

(
X1k1

k
⊕k2

X2

))]
=

=M
(h,k)

X1k1

k
⊕k2

X2

(t),

the conclusion follows from Proposition 3.2.1.

From (3.16), depending on the choice of the generators, we can obtain
several interesting particular cases:

1. If k = k1 = k2 = id, we get

M
(h,id)
X1+X2

(t) =M
(h,id)
X1

(t)⊗hM
(h,id)
X2

(t) (3.17)

that is the equivalent of the statement of Theorem 3 in Pap and Ralević
(1998) where the authors extend the relationship between Laplace trans-
form and convolution to the pseudo-Laplace transform and the pseudo-
convolution.

2. If h = id,
M

(id,k)

X1k1

k
⊕k2

X2

(t) =M
(id,k1)
X1

(t) ·M (id,k2)
X2

(t)

that corresponds to the case in which the underlying fuzzy measure is
indeed a probability.
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3. In the semiring framework, that is when h = k = k1 = k2 ∈ G, we
obtain

M
(h,h)
X1⊕hX2

(t) =M
(h,h)
X1

(t)⊗hM
(h,h)
X2

(t).

Example 3.2.3. Here we will provide some examples of the above cases.

• If, under P = h−1 ◦ mh, for i = 1, 2, k−1
i (Xi) is Poisson distributed

with parameter λi, with X1 and X2 h-independent, then

M
(h,k)

X1k1

k
⊕k2

X2

(t) = h(e(λ1+λ2)(e
t−1)).

In particular, if h(x) = eθx−1
eθ−1

, θ ̸= 0 and ki = id, i = 1, 2 and k = id
we get

M
(h,id)
X1+X2

(t) =
exp

(
θe(λ1+λ2)(e

t−1)
)
− 1

eθ − 1
.

While, if, under P = h−1 ◦ mh, for i = 1, 2, k−1
i (Xi) is Gamma

distributed, that is k−1
i (Xi)

d
= Γ(αi, µ), with X1 and X2 h-independent,

then
M

(h,k)

X1k1

k
⊕k2

X2

(t) = h(µα1+α2(µ− t)−(α1+α2)).

• Let h(x) = eθx−1
eθ−1

, θ ̸= 0. Let X1 and X2 be h-independent and as-

sume that, under P = h−1 ◦ mh, h
−1(Xi) is Bernoulli distributed with

parameter πi, i = 1, 2. Then

M
(h,h)
X1⊕hX2

(t) =
eθ(e

tπ1+1−π1)(etπ2+1−π2) − 1

eθ − 1
.

The first pseudo moment of X1 ⊕h X2, using equation (3.12), is given
by

Ẽmh [X1 ⊕h X2] =
eθ(π1+π2) − 1

eθ − 1
.
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3.2.4 Pseudo-Moment Generating Functions and De-
pendence Structure

As discussed at the end of subsection 3.1.1, there is a one-to-one correspon-
dence between the semi-copula associated to a vector (X1, X2) with respect
to the σ-⊕h-additive fuzzy measure mh and the copula associated with re-
spect to the probability P = h−1 ◦mh (see formula (3.1)). Choosing in the
appropriate way k1, k2 ∈ S, we will show that we can separate, in the ex-
pression of the pseudo-joint moment generating function, the contribution
of the marginal fuzzy distributions from that of the dependence structure.
Let (Ω,F ,mh) with mh σ-⊕h-additive regular fuzzy measure and (X1, X2)
a random vector with values in R+ × R+. We assume that with respect to
P = h−1 ◦ mh, its joint cumulative distribution function is, for x, y > 0,
F (x, y) = C (FX1(x), FX2(y)), where C is a copula and FXi

, i = 1, 2 are
the corresponding marginal cumulative distributions that we assume to be
strictly increasing on R+.

Let G be a benchmark cumulative distribution function with G(0) = 0
and strictly increasing on R+. If ki(x) = F−1

Xi
◦ G(x) ∈ S for i = 1, 2, then,

for every z > 0, Fk−1
i (Xi)

(z) = G(z). It follows that, if under P the cumu-

lative distribution function of the vector (V1, V2) is given by FV1,V2(x, y) =
C (G(x), G(y)), then

M
(h,k1,k2)
X1,X2

(s, t) = h
(
MP

k−1
1 (X1),k

−1
2 (X2)

(s, t)
)
=

= h
(
MP

V1,V2
(s, t)

)
=

=M
(h,id,id)
V1,V2

(s, t) .

This way, in M
h,F−1

X1
◦G,F−1

X2
◦G

X1,X2
, we have separated the marginal distributions

from the dependence structure, since M
(h,id,id)
U,V depends only on the latter.

Example 3.2.4. In the particular case in which the random variables are
h-independent and the reference distribution G is the exponential one with
parameter equal to 1, for ki(x) = F−1

Xi
(1− ex), i = 1, 2, we get

M
(h,k1,k2)
X1,X2

(s, t) =M
(h,k1)
X1

(s)⊗hM
(h,k2)
X2

(t) = h

(
1

(1− s)(1− t)

)
, s, t < 1.
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3.3 Pseudo-Schur Constant Random Vectors

In this section we show that some characterization of Schur-constant ran-
dom vectors can be extended to a more general family of random vectors
with Archimedean dependence using pseudo-operations and pseudo-integrals.
More precisely, we show that the tools related to pseudo-fuzzy measures can
be used to provide characterization results for the underlying probability
measure.

We start recalling the notion of Schur-constant bivariate random vec-
tor (see, among the others, Barlow and Mendel, 1992, Caramellino and
Spizzichino, 1994, Nelsen, 2005 and Chi et al., 2009).

Given a probability space (Ω,F ,P), let X and Y be two continuous pos-
itive random variables. Then the random vector (X, Y ) is Schur-constant if
and only if there exists a convex survival function S such that

F̄X,Y (x, y) = P (X > x, Y > y) = S(x+ y), ∀(x, y) ∈ R+ ×R+. (3.18)

The definition implies that the random vector is exchangeable with survival
marginal distribution S and survival copula of Archimedean type with gen-
erator S.

Remark 3.3.1. Substituting into equation (3.18) the standard sum by the
idempotent one (2.1), we get

F̄X,Y (x, y) = S(sup(x, y)),

which is the bivariate survival function of a random vector with perfectly
positive dependent components with common marginal survival function S.

Starting from the general non-commutative pseudo-sum defined in (2.5), we
generalize (3.18) considering joint survival distributions of type

F̄X,Y (x, y) = S

(
xk1

k
⊕k2 y

)
, (3.19)

where k, k1, k2 ∈ S and S is a survival function such that S ◦ k is convex. A
random vector (X, Y ) with survival distribution (3.19) will be called ”pseudo-
Schur-constant”.

We notice that representation (3.19) is not unique. In addition to Remark
2.1.1, we have that, if k, k̂, k1, k2 ∈ S, and S and Ŝ are univariate survival
distribution functions, then

S

(
xk1

k
⊕k2 y

)
= Ŝ

(
xk1

k̂
⊕k2 y

)
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if and only if Ŝ(z) = S ◦k◦ k̂−1(z). It can be easily checked that the family in
(3.19) coincides with the family of survival distributions of positive random
pairs (X, Y ) with marginal survival distributions F̄X(x) = S ◦ k ◦ k−1

1 (x)
and F̄Y (y) = S ◦ k ◦ k−1

2 (y), respectively, and survival copula function of
Archimedean type with generator S ◦ k.

Remark 3.3.2. Notice that

F̄X,Y (x, y) = S

(
xk1

k
⊕k2 y

)
= F̄X(x)⊗ψ F̄Y (y)

with ψ ∈ G such that ψ(t) = S ◦ k(− ln t) for t ∈ [0, 1] and F̄X,Y can be
interpreted as the fuzzy survival distribution function of (X, Y ) with respect
to a σ-⊕ψ additive measure µψ under which X and Y are ψ-independent.

As a consequence of Remark 3.3.2 and Theorem 3.2.1 we obtain the fol-
lowing characterization and decomposition:

Proposition 3.3.1. (X, Y ) is a pseudo-Schur constant random vector under
P with survival function (3.19) if and only if there exists ψ ∈ G and a σ-⊕ψ

additive measure µψ that generates the same joint fuzzy survival distribution
function and under which

M
(ψ,k1,k2)
X,Y (s, t) =M

(ψ,k1)
X (s)⊗ψ M

(ψ,k2)
Y (t).

Proposition 5.7 in Kozlova and Salminen (2004) (see also Theorem 2.5
in Ta and Van (2017) for an alternative proof) provides a characterization
of the Schur-constancy of a random vector (X, Y ) in terms of the moment
generating function of the sum X + Y . More precisely, it states that (X, Y )
is Schur-constant if and only if there exists a random variable Z with the
same distribution as X + Y such that, for all s, t < 0, s ̸= t

E
[
esX+tY

]
=

∫ s
t
E
[
erZ
]
dr

s− t
.

This result can be generalized to pseudo-Schur-constant random vectors using
the pseudo-moment generating functions defined in (3.10) and (3.13) and the
pseudo-integral given in (2.8).

Theorem 3.3.1. (X, Y ) is a pseudo-Schur-constant random vector with joint
survival distribution function (3.19) if and only if there exists h ∈ G such that
under mh = h ◦ P, for all s, t < 0,

M
(h,k1,k2)
X,Y (s, t) =


(∫ ⊕h

(s,t)
M

(h,k)
Z ⊗h dLh

)
⊘h h(t− s), s < t(∫ ⊕h

(t,s)
M

(h,k)
Z ⊗h dLh

)
⊘h h(s− t), s > t,

(3.20)
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where Z
d
= Xk1

k
⊕k2 Y and where Lh = h ◦ L with L the Lebesgue measure

on the real line. If there exists h ∈ G for which (3.20) is true, then (3.20)
holds true for all h ∈ G.

Proof. Clearly, (3.19) is equivalent to the fact that (k−1
1 (X), k−1

2 (Y )) is a
Schur-constant random vector with survival function S ◦ k. Thanks to the
mentioned result in Kozlova and Salminen (2004) and Ta and Van (2017),
we have that (3.19) is equivalent to

MP
k−1
1 (X),k−1

2 (Y )
(s, t) =

1

t− s

∫ t

s

MP
V (r)dr, s, t < 0, s ̸= t,

where V
d
= k−1

1 (X) + k−1
2 (Y ). Then, given any h ∈ G and considering the

σ-⊕h-additive fuzzy measure mh = h ◦ P , by (3.14) and (3.11),

M
(h,k1,k2)
X,Y (s, t) = h

(
1

t− s

∫ t

s

MP
V (r) dr

)
=

= h

(
1

t− s

∫ t

s

h−1
(
M

(h,k)
Z (r)

)
dr

)
and the thesis trivially follows from (2.8).

An immediate consequence of this result is that, for v < 0,

M
(h,k1)
X (v) =M

(h,k2)
Y (v) =

[∫ ⊕h

(v,0)

M
(h,k)
Z (r)⊗h dLh

]
⊘h h(−v). (3.21)

Since the distribution of Z depends on both k1 and k2 while each marginal
pseudo-moment generating function depends only on one of them, the marginal
distributions ofX and Y only depend on Z through the dependence structure
between X and Y .
From (3.20) and (3.21) we have that

M
(h,k1,k2)
X,Y (s, t) =

{
h
( −t
t−s

)
⊗hM

(h,k2)
Y (t)⊖h h

( −s
t−s

)
⊗hM

(h,k1)
X (s), t < s

h
( −s
s−t

)
⊗hM

(h,k1)
X (s)⊖h h

( −t
s−t

)
⊗hM

(h,k2)
Y (t), t > s

and the joint pseudo-moment generating function can be written in terms of
the marginal pseudo-moment generating functions.

It is well known that (X, Y ) is a continuous Schur-constant random vector
if and only if there exist a random variable U uniformly distributed in the
interval (0, 1) and a positive random variable V such that

(X, Y )
d
= (U V, (1− U) V ), (3.22)
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with U independent of V and V
d
= X + Y (see, for example, Theorem 2.1 in

Chi et al., 2009). (3.22) can be generalized to the case in which (X, Y ) is a
pseudo-Schur constant random vector, by considering the non-commutative
pseudo-sum in place of the classical sum and the pseudo-multiplication in
place of the standard one, as we show in the following Proposition.

Proposition 3.3.2. (X, Y ) is a pseudo-Schur constant random vector with
survival function (3.19) with k1, k2 ∈ G if and only if there exists a random
variable W with values in (0, 1) and cumulative distribution function k−1

1

such that

(X, Y )
d
=

(
W ⊗k1 Z1,

(
1k1

k2
⊖k1 W

)
⊗k2 Z2

)
, (3.23)

where Z1
d
= Xk1

k1
⊕k2 Y and Z2

d
= Xk1

k2
⊕k2 Y are both independent of W .

Proof. Thanks to (3.22), the fact that (k−1
1 (X), k−1

2 (Y )) is a Schur-constant
random vector is equivalent to(

k−1
1 (X), k−1

2 (Y )
) d
= (U V, (1− U) V ) ,

with U uniformly distributed in (0, 1) and independent of V
d
= k−1

1 (X) +
k−1
2 (Y ). Then, we have

(X, Y )
d
= (k1 (U V ), k2 ((1− U) V ))) ,

that is equivalent to

(X, Y )
d
= (k1(U)⊗k1 Z1, k2(1− U)⊗k2 Z2) ,

where Z1
d
= Xk1

k1
⊕k2 Y , Z2

d
= Xk1

k2
⊕k2 Y and the conclusion follows.

Remark 3.3.3. In the semiring framework, that is when only one genera-
tor h ∈ G is involved, we obtain exactly the same results as for the Schur-
constant case, just substituting the standard addition and multiplication with
the pseudo-ones. More precisely, if h ∈ G, the following conditions are equiv-
alent:

• under P, (X, Y ) is distributed according to the survival distribution
function

F̄ (x, y) = S (x⊕h y) , x, y ≥ 0 (3.24)

or, equivalently, under mh = h ◦ P, according to the fuzzy survival
distribution

F̄ (x, y) = Ŝ (x⊕h y) , x, y ≥ 0

where Ŝ = h ◦ S;
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• the joint pseudo-moment generating function with respect to mh = h◦P
is of the form

M
(h,h,h)
X,Y (s, t) =


[∫ ⊕

(s,t)
M

(h,h)
Z (r)⊗h dLh

]
⊘h h(t− s), when s < t[∫ ⊕

(t,s)
M

(h,h)
Z (r)⊗h dLh

]
⊘h h(s− t), when s > t

with Z
d
= X ⊕h Y and Lh = h ◦ L where L is the Lebesgue measure on

the real line;

• under mh = h ◦ P, there exist a continuous random variable W with
fuzzy cumulative distribution function FW (ω) = ω, for 0 ≤ ω ≤ 1, and

a random variable Z
d
= X ⊕h Y such that W and Z are h-independent

and
(X, Y )

d
= (W ⊗h Z, (1⊖hW )⊗h Z).

Notice that (3.24) coincides with the time-transformed exponential model in-
troduced in Bassan and Spizzichino (2005).

Remark 3.3.4. Analogous characterizations to those provided in Theorem
3.3.1 and Proposition 3.3.2 can be obtained for pseudo-Schur constant dis-
crete positive random variables by extending the corresponding results for
Schur-constant discrete positive random vectors proved in Kolev and Muli-
nacci (2022).
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Chapter 4

A Generalization of
Lack-of-Memory Properties

In this chapter, we’ll give a generalization of bivariate lack-of-memory proper-
ties, in strong and weak versions: in particular, we’ll analyse the dependence
structure of the distribution satisfying generalised bivariate weak lack-of-
memory property and we’ll give two possible characterizations of it.

4.1 Pseudo Lack-of-Memory Properties

In this section, we generalize univariate and bivariate lack-of-memory prop-
erties by substituting in the associated functional equations the standard
product by the pseudo one. In order to do that, we’ll consider generators
belonging to the class of functions I, see (2.10). From now on, since the
pseudo product will depend always on h, by ⊗ we’ll mean ⊗h: we notice
that the functions h(x) and h(xα), α > 0 define the same pseudo product, as
we show in the following lemma.

Lemma 4.1.1. The functions h : [0, 1] → [0, 1] and ĥ : [0, 1] → [0, 1] generate
the same pseudo product, id est

a⊗h b = a⊗ĥ b, ∀a, b ∈ [0, 1],

if and only if there exists α > 0 such that h(x) = ĥ(xα),∀x ∈ [0, 1]. In fact,

a⊗h b = a⊗ĥ b, ∀a, b ∈ [0, 1]

is equivalent to

ĥ−1(a)ĥ−1(b) = ĥ−1(h(h−1(a) h−1(b))).

33
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Setting x = h−1(a), y = h−1(b), we have

ĥ−1(h(x)) ĥ−1(h(y)) = ĥ−1(h(x y)). (4.1)

Now let us define g(x) = ĥ−1(h(x)), then equation (4.1) becomes

g(x)g(y) = g(xy).

The solution of the latter is well-known and is given by g(x) = xα, for some
α ∈ R, meaning that h(x) = ĥ(xα). The fact that α must be larger than 0
comes from the fact that h and ĥ must be increasing functions in [0, 1].

4.1.1 Univariate Pseudo Lack-of-Memory Property

Definition 4.1.1. We say that a survival distribution F̄ satisfies the uni-
variate pseudo lack-of-memory property if

F̄ (s+ t) = F̄ (s)⊗ F̄ (t), s, t ≥ 0, (4.2)

where ⊗ is the pseudo product given in Equation (2.4).

It is trivial to prove that the solution of the functional equation (4.2) is
given by

F̄ (x) = h(e−λx) = exph(λx), λ > 0. (4.3)

A random variable with survival distribution function (4.3) will be called
”pseudo exponential” random variable with parameter λ.

Remark 4.1.1. Notice that any univariate survival distribution satisfies the
pseudo lack-of-memory property with respect to a suitable pseudo product.
In fact, let H̄ be a univariate survival function: then it satisfies the pseudo
univariate lack-of-memory property with respect to h(x) = H̄(− log x).

Remark 4.1.2. Substituting into equation (2.11) the standard product by the
idempotent product (2.2), we get the following functional equation:

F̄ (x+ t) = inf(F̄ (x), F̄ (t)). (4.4)

However, the solution of the function above is not a bivariate survival func-
tion. In fact, let us consider the value of F̄ (t) for some t > 0: after n
iterations, we have

F̄ (t) = F̄

(
t

2
+
t

2

)
= F̄

(
t

2

)
= · · · = F̄

(
t

2n

)
.

If we fix t and we let n → ∞, F̄
(
t
2n

)
→ 1, meaning that F̄ (t) = 1 for any

t > 0, so F̄ is not a survival function of a real-valued random variable.
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4.1.2 Bivariate Pseudo Strong Lack-of-Memory Prop-
erty

Similarly, we now generalize the bivariate strong lack-of-memory property.

Definition 4.1.2. A bivariate distribution F̄ satisfies the bivariate pseudo
strong lack-of-memory property if

F̄ (s1 + t1, s2 + t2) = F̄ (s1, s2)⊗ F̄ (t1, t2),∀s1, s2, t1, t2 ≥ 0. (4.5)

The solution of the above functional equation is given by

F̄ (s, t) = h(exp(−λ1s− λ2t)) = exph(λ1s+ λ2t), λ1, λ2 > 0. (4.6)

In fact, (4.5) is equivalent to

h−1(F̄ (s1 + t1, s2 + t2)) = h−1(F̄ (s1, s2)) h
−1(F̄ (t1, t2)) :

setting F̄ (x, y) = h(Ḡ(x, y)), we obtain equation (2.12), whose solution is
given by (2.13). Now, let us consider the following function:

C̄(u, v) = F̄ (F̄−1
1 (u), F̄−1

2 (v)) =

= h(h−1(u)h−1(v)) = u⊗ v :
(4.7)

the function (4.7) is the survival copula of the distribution (4.6) if and only
if h−1(x) is log-concave, id est log(h−1(x)) is concave. Moreover, setting
ϕ(t) = h(e−t), it is possible to show that C̄(u, v) = ϕ(ϕ−1(u)+ϕ−1(v)), which
is a copula if and only if ϕ is convex, see Nelsen (2006): this is equivalent to
the log-convexity of h−1.

Remark 4.1.3. Survival functions of type (4.6) have been identified in Propo-
sition 3.1 in Genest and Kolev (2021), with ψ(x) = h(e−x), according to the
notation therein.
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4.1.3 Bivariate Pseudo Weak Lack-of-Memory Prop-
erty

The generalization of the bivariate weak lack-of-memory property is obtained
substituting into equation (2.14) the standard product by the pseudo one.

Definition 4.1.3. A bivariate distribution F̄ satisfies the bivariate pseudo
weak lack-of-memory property if

F̄ (s1 + t, s2 + t) = F̄ (s1, s2)⊗ F̄ (t, t), ∀s1, s2, t ≥ 0. (4.8)

It can be easily verified that the solution of the functional equation given
in Definition 4.1.3 is:

F̄ (x, y) = h(Ḡ(x, y)) =

=

{
h
(
e−λyḠ1(x− y)

)
x ≥ y

h
(
e−λxḠ2(y − x)

)
x < y

=

=

{
exph(λy)⊗ F̄1(x− y) x ≥ y

exph(λx)⊗ F̄2(y − x) x < y
,

(4.9)

where Ḡ satisfies standard weak-lack-of-memory property, with Ḡ1, Ḡ2, F̄1

and F̄2 marginal univariate survival functions of non-negative random vari-
ables such that F̄i(x) = h(Ḡi(x)), i = 1, 2.
Let us consider the following function C̄F : [0, 1]× [0, 1]:

C̄F (u, v) =

= F̄ (F̄1
−1
(u), F̄2

−1
(v)) =

= h(e−λF̄2
−1

(v)Ḡ1(F̄1
−1
(u)− F̄−1

2 (v))1F̄1
−1

(u)−F̄−1
2 (v)≥0+

+ e−λF̄
−1
1 (u)Ḡ2(F̄2

−1
(v)− F̄−1

1 (u))1F̄2
−1

(v)−F̄−1
1 (u)≥0) =

= h(C̄G(h−1(u), h−1(v))),

(4.10)

where

C̄G(u, v) =

= e−λḠ
−1
2 (v)Ḡ1(Ḡ

−1
1 (u)− Ḡ−1

2 (v))1u<v+

+ e−λḠ
−1
1 (u)Ḡ2(Ḡ

−1
2 (v)− Ḡ−1

1 (u))1u≥v.

(4.11)

By theorem 2.1 in Klement et al. (2005), the function above is a survival
copula if C̄G is a survival copula and if h is a strictly increasing and convex
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bjection of the unit interval; in that case, due to Sklar theorem, the function
(4.9) is a survival distribution.
However, for our purposes, we want that F̄ is a bivariate survival function,
regardless of the fact that Ḡ is a bivariate survival function or not: sufficient
and necessary conditions under which F̄ is a bivariate survival function are
given in the following Proposition.

Proposition 4.1.1. Let F̄1 and F̄2 be twice differentiable univariate marginal
survival functions and let h be a twice differentiable generator with h

′
(x) >

0,∀x ∈ [0, 1]. Then (4.9) is a survival function if and only if{
∂2F̄ (x,y)
∂x∂y

≥ 0 ∀x ≥ 0, y ≥ 0 x ̸= y

λ ≤ f1(0)+f2(0)

h′ (1)

, (4.12)

where fi(x) = −F̄ ′
i (x), i = 1, 2. Moreover, if λ < f1(0)+f2(0)

h′ (1)
, the distribution

has a singularity along the line x = y with probability mass f1(0)+f2(0)

λh′ (1)
− 1.

Proof. Under the considered assumptions, the second mixed derivative ∂2F̄
∂x∂y

is well-defined. When x > y, we have F̄ (x, y) = h(e−λyh−1(F̄1(x− y))), so∫ ∞

0

∫ x

0

∂2F̄

∂x∂y
dy dx =

∫ ∞

0

∂F̄ (x, y)

∂x

∣∣x
y=0

dx

=

∫ ∞

0

(
−h′(exp(−λx))exp(−λx)

h′(1)
f1(0) + f1(x)

)
dx =

=
h(exp(−λx))f1(0)

h′(1)λ
− F̄1(x)

∣∣∞
x=0

= 1− f1(0)

λh′(1)
;

(4.13)

by the same way of reasoning, if x < y, we have that∫ ∞

0

∫ y

0

∂2F̄

∂x∂y
dx dy = 1− f2(0)

λh′(1)
. (4.14)

Hence, if the vector (X, Y ) ∼ F , it follows that

P (X = Y ) = 1−
(
1− f1(0)

λh′(1)

)
−
(
1− f1(0)

λh′(1)

)
=

=
f1(0) + f2(0)

λh′(1)
− 1,

(4.15)

which is non-negative if and only if the last condition of the system (4.12)
holds true: the fact that it is smaller than 1 comes from the fact that (4.13)
and (4.14) are positive due to the first condition of the system (4.12).
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In the rest of the thesis, we’ll work under the assumptions given in Propo-
sition 4.1.1.

Remark 4.1.4. The singularity mass does not depend on the generator h
but only on the function Ḡ satisfying functional equation (2.14) from which
F̄ is obtained as a distortion. In fact, recalling that Ḡi(x) = h−1(F̄i(x)), i =

1, 2, it is easy to verify that f1(0)+f2(0)

λh′ (1)
− 1 = g1(0)+g2(0)

λ
− 1, where gi(z) =

−Ḡ′
i(z), i = 1, 2.

Remark 4.1.5. Let us suppose that the distribution of (X, Y ) satisfies pseudo
weak lack-of-memory property: then the distribution of the vector (aX, aY ), a >
0 satisfies pseudo weak lack-of-memory property too.

In fact,

F̄aX,aY (x, y) = P [aX > x, aY > y] =

=

{
h
(
e−λ(

y
a
)h−1

(
F̄1(

x−y
a

))
, x ≥ y

h
(
e−λ(

x
a
)h−1

(
F̄2(

y−x
a

))
, x < y

:

then it immediately follows that

F̄aX,aY (x+ t, y + t) = F̄aX,aY (x, y)⊗ F̄aX,aY (t, t),

so F̄aX,aY satisfies functional equation (4.8). Furthermore,

∂2F̄aX,aY (x, y)

∂x∂y
=

1

a2
∂2F̄X,Y (x̂, ŷ)

∂x, ∂y
,

where x̂ = x
a
and ŷ = y

a
; finally, P (aX, aY ) = P (X = Y ), so, if F̄X,Y is a

survival function, then F̄aX,aY is a survival function too.

In the case in which F̄ is not absolutely continuous, we can analyse how
the probability mass is distributed on the line x = y.

Proposition 4.1.2. Let F̄ be a survival function satisfying Definition 4.1.3.
Then, under the same assumptions of Proposition 4.1.1, we have

P (X = Y,X ≥ t) = exph(λt)

(
f1(0) + f2(0)

λh′(1)
− 1

)
. (4.16)

Proof. Since

P (X = Y,X ≥ t) = F̄ (t, t)− P (X > Y ≥ t)− P (Y > X ≥ t)
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and F̄ (t, t) = exph(λt), we have

P (X > Y ≥ t) =

∫ +∞

t

∫ x

t

∂2F̄ (x, y)

∂x∂y
dy dx =

=

∫ ∞

t

∂F̄ (x, y)

∂x

∣∣x
y=t

dx =

=

∫ ∞

t

−h′
(e−λx)e−λx

f1(0)

h′(1)
dx+

+ h
′
(e−λth−1(F̄1(x− t))) e−λt

f1(x− t)

h′(h−1(F̄1(x− t)))
dx =

= h(e−λt)

(
1− f1(0)

λh′(1)

)
.

By the same way of reasoning,

P (Y > X ≥ t) = h(e−λt)

(
1− f2(0)

λh′(1)

)
,

from which the conclusion follows trivially.

We now provide an example in which F̄ is a survival function satisfying
(4.8) but Ḡ = h−1(F̄ ) is not a survival function too.

Example 4.1.1. Let h(x) =
(
eθx−1
eθ−1

)β
and let F̄1(x) = F̄2(x) = h((1+x)−α),

with α > 0, β > 1, θ > 0 and max
(
α + 1

β
, α+1+αβ

β+1

)
≤ λ ≤ min(α + 1, 2α).

Then the function F̄ satisfying definition 4.1.3 with marginals F̄1, F̄2 is given
by

F̄X,Y (x, y) =

=

(
eθe

−λy(1+x−y)−α − 1

eθ − 1

)β

1x≥y+

+

(
eθe

−λx(1+y−x)−α − 1

eθ − 1

)β

1x<y.

Moreover, let us consider the function Ḡ(x, y) = h−1(F̄X,Y (x, y)), that is
given by

Ḡ(x, y) = e−λy(1 + x− y)−α1x≥y + e−λx(1 + y − x)−α1x<y :
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then its second mixed derivative g(x, y) is given by

g(x, y) =
α · (−λy + (x+ 1)λ− α− 1) e−λy

(−y + x+ 1)α+2 1x>y+

+
α · (−λx+ (y + 1)λ− α− 1) e−λx

(−x+ y + 1)α+2 1x<y.

Under the conditions on the parameters stated above, we have that, when
(x, y) → (0+, 0+), g(x, y) → −α(α + 1 − λ) < 0, so g is not a density
function.
Now let us consider the second-mixed derivative of the function F̄ on the
set {(x, y) : x > y ≥ 0}: setting u = e−λy, k = x − y, with 0 < u ≤ 1,
0 < k <∞, after some algebra, we have

∂2F̄

∂x∂y

(
k − log(u)

λ
,− log(u)

λ

)
=

= C(u, k){θ[βeθu(1+k)−α − 1](λ+ λk − α)u+

+ [eθu(1+k)
−α − 1](λ+ λk − α− 1)(1 + k)α},

(4.17)

where C(u, k) = αβθu
(eθ−1)β

eθu(1+k)
−α

[euθ(1+k)
−α −1]β−2 (1+k)−2α−2 > 0. Under

the conditions on the parameters stated above, the function (4.17) is non-
negative if k ≥ α+1

λ
− 1,∀u ∈ (0, 1], so let us focus on the case in which

0 < k < α+1
λ

− 1.
For this purpose, we define ρ(k) = θ(λ+λk−α), γ(k) = (1+k)α(λ+λk−α−1)
and z(k) = θ(1 + k)−α: since 0 < k < α+1

λ
− 1 and λ ≥ α, we can easily see

that ρ(k) ≥ 0, z(k) > 0 and γ(k) < 0. Basically, we need that the function

w(u, k) = ρ(k)(βeuz(k) − 1)u+ γ(k)(euz(k) − 1) (4.18)

is non-negative in the set
{
(u, k) : 0 < u ≤ 1, 0 < k < α+1

λ
− 1)

}
. But its first

partial derivative with respect to u is non-negative in that rectangle, implying
that the infimum of w(u, k) on that set is obtained as u→ 0+ and it is equal
to 0. Similar results hold when x < y.
So we conclude that F̄ is a survival function but, under the same conditions
on the parameters, Ḡ is not a survival function.

In general, if F̄ satisfies the pseudo weak bivariate lack-of-memory prop-
erty with generator h, its marginal survival functions F̄1, F̄2 do not necessarily
satisfy univariate pseudo lack-of-memory property with the same generator
h (see Remark 4.1.1).
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It is well-known that the only distribution satisfying bivariate standard weak
lack-of-memory property with marginals satisfying univariate standard lack-
of-memory property is the exponential Marshall-Olkin distribution with sur-
vival function (2.17). A similar result can be found for the pseudo version of
the lack-of-memory properties, as we show in next Proposition.

Proposition 4.1.3. Let h : [0, 1] → [0, 1] be a generator such that h−1(x) is
log-concave. The only distribution satisfying pseudo bivariate weak lack-of-
memory property, with generator h, with marginal survival functions satis-
fying pseudo univariate lack-of-memory property with the same generator h,
is

F̄X,Y (x, y) =

=

{
exph(λy)⊗ exph(γ1(x− y)), x ≥ y

exph(λx)⊗ exph(γ2(y − x)), x < y
=

= exph(λ1x+ λ2y + λ0max(x, y)),

(4.19)

with 0 < max(γ1, γ2) ≤ λ ≤ γ1 + γ2 and with λ1 = λ − γ2, λ2 = λ − γ1 and
λ0 = γ1 + γ2 − λ.

The survival function (4.19) can be obtained from the following construc-
tion based on a shock model. In fact, let us consider three random variables
Z1,Z2 and Z3 with marginal survival functions F̄Zi

(x) = exph(λix), i = 1, 2, 3
such that

P [Z1 > z1, Z2 > z2, Z3 > z3] = exph(λ1z1)⊗ exph(λ2z2)⊗ exph(λ3z3),

meaning that the associated copula is Archimedean with generator ψ(t) =
h(e−t). Furthermore, let us consider the random variables X = min(Z1, Z3)
and Y = min(Z2, Z3). Then

P [X > x, Y > y] = P [Z1 > x,Z2 > y,Z3 > max(x, y)] =

= h(exp(−λ1x− λ2y − λ3max(x, y)) =

= exph(λ1x+ λ2y + λ3max(x, y)),

(4.20)

which is exactly the survival function we obtained in (4.19). Survival func-
tions of the type (4.19) belong to a sub-class of the functions identified by
equation (1) in Mulinacci (2018), with, according to the notation therein,
G(x) = exph(x) and Hi(x) = λix, i = 1, 2, 3.
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Example 4.1.2. Let h(x) = eθx−1
eθ−1

and let F̄i(x) = e−γix, i = 1, 2: then the
function

F̄ (x, y) =

=
exp{e−λy log((eθ − 1)e−γ1(x−y) + 1)} − 1

eθ − 1
1x≥y+

+
exp{e−λx log((eθ − 1)e−γ2(y−x) + 1)} − 1

eθ − 1
1x<y

(4.21)

is a survival function satisfying (4.8) if

max(γ1, γ2) ·max

(
1,
eθ − 1

θeθ

)
≤ λ ≤ (γ1 + γ2)(e

θ − 1)

θeθ
.

Using the conditional distribution method, see Nelsen (2006), we generate
data from this distribution with parameters γ1 = 0.5, γ2 = 0.6 and λ = 0.645.
In Figure 1, we show the scatterplots from (4.21) for three different values of
the parameter θ.
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Figure 4.1: Scatterplots from (4.21). Top Left: θ = 0.01. Bottom: θ = 0.1.
Top Right: θ = 1.
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4.2 Properties and Characterizations of Pseudo

Weak Distribution

In the spirit of Ghurye and Marshall (1984), as for the case of pseudo lack-
of-memory property, we get the following result.

Proposition 4.2.1. Let F̄X,Y be the bivariate survival function of (X, Y ) sat-
isfying pseudo weak lack-of-memory property; moreover, let W̄ = (W1,W2) =
(X − U, Y − U), where U = min(X, Y ). Then:

1. P (min(W1,W2) = 0) = 1;

2. U has a pseudo exponential distribution with parameter λ;

3. N = 1X>Y − 1X<Y and U are independent;

4. The joint distribution of U and the vector W̄ is given by

P (U ≥ u, W̄ ≥ w̄) =

=


exph(λu), w1 ≤ 0, w2 ≤ 0

exph(λu)⊗ F̄1(w1)
(
1− r1(w1)

λ

)
, w1 > 0, w2 ≤ 0

exph(λu)⊗ F̄2(w2)
(
1− r2(w2)

λ

)
, w1 ≤ 0, w2 > 0

0, w1 > 0, w2 > 0

,

where F̄i(x) = h(Ḡi(x)), i = 1, 2 and ri is the hazard rate of the survival
distribution Ḡi, i = 1, 2.

Proof. 1. holds true for the same reasons given in Ghurye and Marshall
(1984).
For 2., since F̄X,Y satisfies pseudo weak lack-of-memory property,

F̄U(u) = P (X ≥ u, Y ≥ u) = F̄X,Y (u, u) = h(e−λu), u ≥ 0.

Regarding 3., let us start with the case in which N = 1: then, by (4.9),

P (N = 1, U ≥ u) = P (X > Y ≥ u) =

∫ ∞

u

∫ x

u

∂2F̄

∂x∂y
dy dx =

=

∫ ∞

u

−h′
(e−λyḠ1(x− y))e−λyg1(x− y)

∣∣x
y=u

dx =

= h(e−λu)

(
1− g1(0)

λ

)
.

(4.22)
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Using equation (4.13), P (N = 1) =
(
1− g1(0)

λ

)
, so (4.22) rewrites

P (N = 1, U ≥ u) = P (U ≥ u) P (N = 1).

Similar results hold for N = −1. In the case in which N = 0,

P (U ≥ u,N = 0) = P (X = Y ≥ u) = h(e−λu)

(
g1(0) + g2(0)

λ
− 1

)
,

thanks to (4.16); the conclusion follows taking into account that P (N =

0) =
(
g1(0)+g2(0)

λ
− 1
)

by (4.15). For part 4., it is trivial to show that, if

w̄ = (w1, w2), F̄(U,W̄ )(u, w̄) = h(e−λu) if w1, w2 ≤ 0 and that F̄(U,W̄ )(u, w̄) = 0
if w1, w2 > 0: for this reason, we focus on the cases in which w1 > 0 and
w2 ≤ 0 and w1 ≤ 0 and w2 > 0.
For w1 > 0 and w2 ≤ 0, we have that:

P (U ≥ u, W̄ ≥ w̄) = P (X ≥ u, Y ≥ u,X − Y ≥ w1) =

= P (X ≥ w1 + u, u ≤ Y ≤ X − w1) =

=

∫ ∞

u+w1

∫ x−w1

u

∂2F̄

∂x∂y
dy dx =

=

∫ ∞

u+w1

(
−h′

(e−λyḠ1(x− y))g1(x− y)e−λy
∣∣x−w1

y=u

)
dx =

= h(e−λuḠ1(w1))

(
1− g1(w1)

λḠ1(w1)

)
=

= exph(λu)⊗ F̄1(w1)

(
1− r1(w1)

λ

)
.

(4.23)

Similarly, if w2 > 0 and w1 ≤ 0, we have

P (U ≥ u, W̄ ≥ w̄) = exph(λu)⊗ F̄2(w2)

(
1− r2(w2)

λ

)
. (4.24)

Similarly, in the next Proposition, we extend the result given in Proposi-
tion 2.3.2 given in Block and Basu (1974) to bivariate survival distributions
satisfying the pseudo weak lack-of-memory property.

Proposition 4.2.2. Let FX,Y be the bivariate survival function of the vector
(X, Y ); moreover, let U = min(X, Y ) and V = X − Y . Then F̄X,Y satisfies
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pseudo weak lack-of-memory property if and only if

P (U ≥ u, V ≥ v) =

=

exph(λu) + h(e−λuḠ2(−v))
(

g2(−v)
λḠ2(−v) − 1

)
, u ≥ 0, v ≤ 0

h(e−λuḠ1(v))
(
1− g1(v)

λḠ1(v)

)
, u ≥ 0, v > 0

.
(4.25)

Proof. Let us start with the case v < 0. We have:

P (U ≥ u, V ≥ v) =

= P (u ≤ Y < X) + P (X = Y ≥ u)+

+ P (X ≥ u,X < Y ≤ X − v).

The first probability is already known from equation (4.22), while the second
one is given by (4.16), so we need to compute only the last one. We get

P (X ≥ u,X < Y ≤ X − v) =

=

∫ ∞

u

∫ x−v

x

∂2F̄X,Y (x, y)

∂x∂y
dy =

=

∫ ∞

u

h
′
(e−λxḠ2(y − x))(−λe−λxḠ2(y − x)+

+ e−λxg2(y − x))
∣∣x−v
y=x

dx =

= h(e−λuḠ2(−v))
(

g2(−v)
λḠ2(−v)

− 1

)
+ h(e−λu)

(
1− g2(0)

λ

)
.

Overall,

P (U ≥ u, V ≥ v) = h(e−λu) + h(e−λuḠ2(−v))
(

g2(−v)
λḠ2(−v)

− 1

)
.

If v > 0, by equation (4.23),

P (U ≥ u, V ≥ v) = h(e−λuḠ1(v))

(
1− g1(v)

λḠ1(v)

)
.

Conversely, let us suppose that (4.25) holds true. If 0 < x ≤ y, we have that

F̄X,Y (x, y) =

= P (X > x, Y > y,X ≥ Y ) + P (X > x, Y > y,X < Y ) =

= P (U + V > x, U > y, V ≥ 0)+

+ P (U > x,U − V > y, V < 0) =

= P (U > y, V ≥ 0) + P (U > x,U − V > y, V < 0) =

= P (U > y, V ≥ 0) + P (x < U < y, x− y < V < U − y)+

+ P (U > y, x− y < V < 0) + P (U > x, V ≤ x− y).
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From (4.25), P (U ≥ y, V ≥ 0) = h(e−λu)g2(0)
λ

. Moreover,

P (U > y, x− y < V < 0) =

=

∫ ∞

y

−λe−λuh′
(e−λuḠ2(−v)) Ḡ2(−v)

(
g2(−v)
λḠ2(−v)

− 1

) ∣∣0
x−y du =

= h(e−λyḠ2(y − x))

(
g2(y − x)

λḠ2(y − x)
− 1

)
− h(e−λy)

(
g2(0)

λ
− 1

)
;

similarly,

P (x < U < y, x− y < V < U − y) =

= h(e−λxḠ2(y − x))
g2(y − x)

λḠ2(y − x)
− h(e−λy)+

− h(e−λyḠ2(y − x))

(
g2(y − x)

λḠ2(y − x)
− 1

)
.

Finally,

P (U > x, V ≤ x− y) = h(e−λxḠ2(y − x))

(
1− g2(y − x)

λḠ2(y − x)

)
Summing up all the probabilities above, we get that

F̄X,Y (x, y) = h(e−λxḠ2(y − x)), 0 < x ≤ y;

similar results hold for x > y.
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4.3 Upper and Lower Tail Dependence Coef-

ficients of Pseudo Weak Distribution

Given a random vector (X, Y ) with copula C and marginal cumulative dis-
tribution functions FX and FY , we recall that the upper tail dependence
coefficient λU can be written as

λU = lim
u→1−

P [FX(X) > u| FY (Y ) > u] = lim
u→1−

1− 2u+ C(u, u)

1− u
;

analogously, the lower tail dependence coefficient λL is given by

λL = lim
u→0+

P [FX(X) < u| FY (Y ) < u] = lim
u→0+

C(u, u)

u
.

Thanks to (4.10), the survival copula associated to the survival dis-
tribution satisfying pseudo weak lack-of-memory property is CF (u, v) =
h(CG(h−1(u), h−1(v)). Setting Ḡ1 = Ḡ2 = Ḡ in (4.11), we have

C̄G(u, v) =

= e−λḠ
−1(v)Ḡ(Ḡ−1(u)− Ḡ−1(v))1u<v+

+ e−λḠ
−1(u)Ḡ(Ḡ−1(v)− Ḡ−1(u))1u≥v.

(4.26)

By the system of inequalities (2.16), we know that this is a survival copula

if and only if λ ≤ 2g(0) and ∂ log(g(z))
∂z

≥ −λ, ∀z ≥ 0.

Proposition 4.3.1. Let (X, Y ) be a random vector with survival copula C̄G

of type (4.26) and let g(x) = −Ḡ′
(x), x ≥ 0 such that λ ≤ 2g(0) and

∂ log(g(z))
∂z

≥ −λ, ∀z ≥ 0. Then:

1. λL = 0 if Ḡ is heavy tailed, id est limx→∞
Ḡ(x)
e−λx = +∞, ∀λ > 0.

2. λU = 2− λ
g(0)

.

Proof. For 1., we have

λL = lim
u→0+

C̄G(u, u)

u
= lim

u→0+

e−λḠ
−1(u)

u
.

Setting x = Ḡ−1(u), we have

λL = lim
x→∞

e−λx

Ḡ(x)
= 0.
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Regarding 2., we can write

λU = lim
u→1−

1− 2u+ C̄G(u, u)

1− u
= 2 + lim

u→1−

e−λḠ
−1(u) − 1

1− u
=

= 2 + lim
x→0+

e−λx − 1

1− Ḡ(x)
= 2− λ lim

x→0+

x

G(x)
,

from which the conclusion follows.

In the case in which the marginal distribution is light-tailed, the value of
the lower tail dependence coefficient depends on the functional form of the
distribution Ḡ.

Using Propositions 2.2.1 and 2.2.2, we are able to find the lower and
the upper tail dependence coefficients for different choices of the common
marginal survival functions and of the generator h, as shown in the following
Examples.

Example 4.3.1. Let (X, Y ) be a random vector satisfying bivariate pseudo-
weak lack-of-memory property with marginal survival functions F̄i(x) = exph(µx),
i = 1, 2, µ ≤ λ ≤ 2µ.
If h = id, we get the standard Marshall Olkin distribution: since Ḡi(x) =
e−µix, we can show that λL(C̄

G) = 0 if µ < λ ≤ 2µ and that λL(C̄
G) = 1 if

λ = µ.
Moreover, using Proposition 4.3.1, we can easily prove that λU(C̄

G) = 2− λ
µ
∈

[0, 1].

If h(x) = 1−
(

tan(θ(1−x))
tan(θ)

)β
,−π

2
< θ < 0, 0 < β < 1, then h is a convex bjec-

tion of the unit interval and condition given in Proposition 2.2.1 is satisfied
with α = 1 and with b = 2θβ

sin(2θ)
, implying that λL(C̄h) = λL(C̄

G).
Moreover, it satisfies also Proposition 2.2.2 with parameters α = β and

b =
(

θ
tan(θ)

)β
: so λU(C̄h) = 2−

(
λ
µ

)β
∈ [0, 1].

Example 4.3.2. Let (X, Y ) be a random vector satisfying bivariate pseudo-
weak lack-of-memory property with marginal survival functions F̄i(x) = h((1+
x)−γ), i = 1, 2, γ ≥ 1, γ + 1 ≤ λ ≤ 2γ.
If h = id, by Proposition 4.3.1, it follows that λL(C̄

G) = 0.
Moreover, using Proposition 4.3.1, we can easily prove that λU(C̄

G) = 2− λ
γ
∈

[0, 1]. If h(x) = 1−
(
eθ(1−x)−1
eθ−1

)β
, θ < 0, 0 < β < 1, then h is a convex bjec-

tion of the unit interval [0, 1] and condition given in Proposition 2.2.1 is

satisfied with α = 1 and with b = θβeθ

eθ−1
, implying that λL(C̄h) = λL(C̄

G) = 0.
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Moreover, it satisfies also Proposition 2.2.2 with parameters α = β and

b = θ
(eθ−1)β

: so λU(C̄h) = 2−
(
λ
γ

)β
∈ [0, 1].

Using conditional distribution method, we simulate data with parameters γ =
1.5, λ = 2.6 and θ = −1 from the survival distribution function

F̄X,Y (x, y) =

= 1−

(
eθ(1−(1+x−y)−γ) − 1

eθ − 1

)β

1x≥y+

+ 1−

(
eθ(1−(1+y−x)−γ) − 1

eθ − 1

)β

1x<y :

(4.27)

the scatterplots are given below for three different values of β.
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Figure 4.2: Scatterplots from (4.27). Top Left: β = 0.3. Bottom: β = 0.6.
Top Right: β = 0.9.
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4.4 Kendall Distribution Function of Pseudo

Weak Distribution

The Kendall Distribution function of a random vector (X, Y ) with cumulative
distribution F is defined as

K(t) = P (F (X, Y ) ≤ t), t ∈ [0, 1].

It turns out to be very useful to study dependence between the compo-
nents of a bivariate random vector. In the case of perfectly positive de-
pendence, K(t) = t,∀t ∈ [0, 1], while, in the case of independence, K(t) =
t− t log(t), ∀t ∈ (0, 1], see Joe (2014).
The Kendall tau is is a statistic used to measure the ordinal association
between two measured quantities. More precisely, let (X, Y ), (X1, Y1) and
(X2, Y2) be independent and identically distributed random vector with cu-
mulative distribution function F : then the Kendall tau of (X, Y ) is given
by

τ = P ((X1 −X2)(Y1 − Y2) > 0)− P ((X1 −X2)(Y1 − Y2) < 0).

The Kendall tau can be computed from the Kendall distribution function, id
est:

τ = 3− 4

∫ 1

0

K(t) dt,

see for example Genest and Rivest (2001). Basic properties of Kendall dis-
tribution functions are studied also in Nelsen et al. (2003).

In this section, we want to find an expression for the Kendall Distribution
Function associated to the survival function of type (4.9) in terms of Ḡi, i =
1, 2 and in terms of h.

Proposition 4.4.1. Let K be the Kendall distribution function associated
to the survival function (4.9). Let us assume that h is differentiable and that
Ḡi = h−1

(
F̄i
)
admits a density gi for i = 1, 2. Then

K(s) = s−H(h−1(s)) (4.28)

where

H(v) = h′ (v) v

[
2 ln (v) +

1

λ
(J1(v) + J2(v))

]
with

Ji(v) =

∫ Ḡ−1
i (v)

0

g2i (z)

Ḡ2
i (z)

dz, i = 1, 2.
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Proof. Since F̄ (x, y) = h
(
Ḡ(x, y

)
) we have

P
(
F̄ (X, Y ) ≤ s

)
= P

(
Ḡ(X, Y ) ≤ h−1(s)

)
.

Let zs = − 1
λ
ln (h−1(s)) be the solution of Ḡ(x, x) = h−1(s) and let D1 and

D2 be defined as

D1 =
{
(x, y) : 0 ≤ y ≤ zs, zs ≤ x ≤ y + Ḡ−1

1

(
h−1(s)eλy

)}
and

D2 =
{
(x, y) : 0 ≤ x ≤ zs, zs ≤ y ≤ x+ Ḡ−1

2

(
h−1(s)eλy

)}
:

then

K(s) = F̄1(zs) + F̄2(zs)− P ((X, Y ) ∈ D1)− P ((X, Y ) ∈ D2)− F̄ (zs, zs) =

= F̄1(zs) + F̄2(zs)− P ((X, Y ) ∈ D1)− P ((X, Y ) ∈ D2)− s.

Noticing that

P(X > x|Y = y) f2(y) = −∂F̄ (x, y)
∂y

= −h′(Ḡ(x, y))∂Ḡ(x, y)
∂y

and evaluating it in x = y + Ḡ−1
1

(
h−1(s)eλy

)
, we have

P((X, Y ) ∈ D1) =∫ zs

0

[
P (X > zs|Y = y)− P

(
X > y + Ḡ−1

1

(
h−1(s)eλy

)
|Y = y

)]
f2(y) dy =

=

∫ zs

0

(
h′(h−1(s))

[
−λh−1(s) + e−λyg1

(
Ḡ−1

1

(
h−1(s)eλy

))]
+

− ∂F̄ (zs, y)

∂y

)
dy = −F̄ (zs, zs) + F̄1(zs)− λh′(h−1(s))h−1(s)zs+

+ h′(h−1(s))

∫ zs

0

e−λyg1
(
Ḡ−1

1

(
h−1(s)eλy

))
dy =

= −s+ F̄1(zs) + h′(h−1(s))h−1(s) ln
(
h−1(s)

)
+

+
1

λ
h′(h−1(s))h−1(s)

∫ Ḡ−1
1 (h−1(s))

0

g2i (z)

Ḡ2
1(z)

dy

,

where, in the last integral, we have substituted z = Ḡ−1
1

(
h−1(s)eλy

)
.

The probability P((X, Y ) ∈ D2) can be obtained similarly.

We now recover an expression for the Kendall distribution function for
some choices of h and Ḡi, i = 1, 2: since the standard weak lack-of-memory
property can be recovered from the pseudo one when h = id, Proposition
4.4.1 allows to recover Kendall Distribution Function also in the classical
setting.
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Example 4.4.1. Let Ḡi(x) = e−αix, i = 1, 2 and h(x) = x, with max(α1, α2) ≤
λ ≤ α1 + α2, then it is possible to verify that

K(t) = t

(
1− log(t)

(
2− α1 + α2

λ

))
.

Example 4.4.2. Let Ḡi(x) = (1 + x)−αi , i = 1, 2 and h(x) = x, with
max(α1, α2) + 1 ≤ λ ≤ α1 + α2, then it is possible to verify that

K(t) = t

(
1− 2 log(t)− α2

1(1− t
1
α1 ) + α2

2(1− t
1
α2 )

λ

)
.

Example 4.4.3. Let Ḡi(x) = (1 + x)−α, i = 1, 2 and h(x) = e−γ(x
− 1

α−1),
with α + 1 ≤ λ ≤ 2α and γ ≥ α + 1, then it is possible to verify that

K(t) =

= t

(
1− 2γ

(
1− log(t)

γ

)(
α

λ

(
1−

(
1− log(t)

γ

)−1
)

− log

(
1− log(t)

γ

)))
.



Chapter 5

Kaminsky Type Functional
Equations for Residual
Lifetimes and Insurance
Applications

In this chapter, we will generalize Kaminski (1983) and Marshall and Olkin
(2015) functional equations and we will show that the solutions of the latter
coincide with the survival functions satisfying pseudo lack-of-memory prop-
erties. After studying the dependence structure of residual lifetimes, we will
give formulas for insurance products written on the vector of residual life-
times when the latter follows pseudo weak distribution and we will analyse,
for pure explanatory purposes, some particular examples. An application of
pseudo weak lack-of-memory property to LOSS ALAE insurance modelling
problem is also given.

5.1 Kaminsky andMarshall-Olkin Functional

Equations

In the following, we will denote by F̄Xt the survival function of the univariate
residual lifetime Xt = X − t|X > t and by F̄X̄t

the survival function of the
bivariate residual lifetime X̄t = X − t, Y − t|X > t, Y > t for some t ≥ 0.
Let X be a non-negative continuous random variable with Gompertz distri-
bution, with survival function

F̄ (x) = exp(−a(ebx − 1)), x ≥ 0, (5.1)

53
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for some a, b > 0. It is easy to check that the function F̄ (x) satisfies the
functional equation

F̄Xt(x) = [F̄ (x)]ξ(t), x ≥ 0, t ≥ 0 (5.2)

with ξ(t) = ebt.More generally, the following result given in Kaminsky (1983)
holds.

Proposition 5.1.1. Let F̄ : R+ → [0, 1] be a non-increasing function. Then
the function F̄ (·) satisfies equation (5.2) for some b > 0 and for some func-
tion ξ : [0,∞) → [0,∞) not depending on x if and only if either:

1. the function F̄ (x) = e−bx and ξ(t) = 1;

2. the function F̄ (x) is the survival function of the Gompertz distribution
given by the equation (5.1) and ξ(t) = ebt;

3. the function F̄ (x) = ea(e
−bx−1) and ξ(t) = e−bt.

Notice that the solution of the functional equation (5.2) given by part
3. in proposition (5.1.1), called Negative Gompertz Distribution, is not a
univariate survival function since limx→∞ F̄ (x) ̸= 0, see Kolev (2016).

In Marshall and Olkin (2015), the following bivariate version of (5.2) is
considered:

F̄X̄t,s
(x, y) = F̄ (x, y)ϕ(t,s), (5.3)

for some ϕ : [0,∞)× [0,∞) → [0,∞). Therein, the authors prove that, if F̄
has Gompertz marginal survival functions, then

F̄ (x, y) = e−ξ(e
λ1x+λ2y−1),

with λi > 0, i = 1, 2 and ξ ≥ 1: this distribution is positively quadrant
dependent, id est F̄ (x, y) ≥ F̄ (x, 0)F̄ (0, y).
Moreover, in Marshall and Olkin (2015), the following weaker version of (5.3)
is also considered:

F̄X̄t
(x, y) = F̄ (x, y)ϕ(t), (5.4)

for some ϕ : [0,∞) → [0,∞). The authors prove that, if F̄X,Y has Gompertz
marginal survival functions, then the unique solution of the latter is given by

F̄X,Y (x, y) =

exp
(
−γ
(
eλy
(
1 + η1(eβ1(x−y)−1)

γ

)
− 1
))

x ≥ y

exp
(
−γ
(
eλx
(
1 + η2(eβ2(y−x)−1)

γ

)
− 1
))

x < y
, (5.5)
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which is a bivariate survival function if and only if
λ ≥ max(β1, β2)

λ(γ − 1) ≥ max(β1(η1 − 1), β2(η2 − 1))

λγ ≤ β1η1 + β2η2

,

with ϕ(t) = eλt.
Moreover, they show that, if λ = β1 = β2, then the distribution is positevely
quadrant dependent with non-negative correlation: independence is obtained
if we further assume that γ = η1 + η2.
In the case in which βi → 0, i = 1, 2, then the marginal survival functions are
exponential and Z = min(X, Y ) is exponentially distributed; if we further
assume that λ→ 0, then we obtain the bivariate exponential Marshall Olkin
distribution, see Marshall and Olkin (1967).

5.2 Generalization of Kaminsky’s Equation

In this section, we consider a generalization of univariate Kaminsky func-
tional equation (5.2) and of Marshall and Olkin bivariate functional equa-
tions (5.3) and (5.4) and we show that the solutions of the generalized func-
tional equations coincide with the survival functions satisfying pseudo lack-
of-memory properties.

5.2.1 Univariate Case

In what follows, we consider the generalization of Kaminsky’s equation

F̄Xt(x) = dt
(
F̄ (x)

)
, t, x ≥ 0 (5.6)

where, for every t ≥ 0, dt is a strictly increasing bijection of [0, 1] with
d0(x) = x. (5.6) represents a generalization of Kaminsky’s equation (5.2)
since the latter corresponds to the choice dt(x) = xϕ(t).

We know that a survival function F̄ satisfies univariate pseudo lack-of-
memory property if h(x) = F̄ (− log x), see Remark 4.1.1. It can be easily
verified that every survival function of a positive random variable satisfies
(5.6) for a suitable time dependent function dt.

Proposition 5.2.1. F̄ satisfies (5.6) if and only if it satisfies univariate
pseudo lack-of-memory property with h(z) = F̄ (− ln z). Moreover

dt(x) =
h (e−th−1(x))

h (e−t)
=
F̄
(
t+ F̄−1(x)

)
F̄ (t)

.
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5.2.2 Bivariate Strong Case

Let X̄s,t = [X − s, Y − t|X > s, Y > t] be the residual lifetimes vector of the
positive random vector (X, Y ).

The Marshall and Olkin (2015) functional equation (5.3) can similarly be
generalized to

F̄X̄s,t
(x, y) = ds,t

(
F̄ (x, y)

)
, t, x, s, y ≥ 0 (5.7)

where, for all s, t ≥ 0, ds,t is a strictly increasing bijection of [0, 1] with
d0,0(x) = x.

Following the same reasoning of the proof of Proposition 3.1 in Marshall
and Olkin (2015), we get the following result:

Proposition 5.2.2. A bivariate survival function F̄ , with marginal survival
distributions F̄1 and F̄2 satisfies (5.7) if and only if it satisfies bivariate
pseudo strong lack-of-memory property with generator h(x) = F̄1(− lnx).
Moreover,

ds,t(x) =
h (e−s−ath−1(x))

h (e−s−at)
=
F̄1

(
s+ ta+ F̄−1

1 (x)
)

F̄1 (s+ ta)
, (5.8)

where a > 0 is such that F̄2(z) = F̄1(az).

Proof. Let F̄ be a survival function satisfying bivariate pseudo strong lack-of-
memory property. Then F̄ (x, y) = h (e−x−ay) = F̄1 (x+ ay), for some a > 0
(see Lemma 4.1.1), and since

F̄X̄s,t
(x, y) =

F̄ (x, y)⊗h F̄ (s, t)

F̄ (s, t)
=
h
(
h−1

(
F̄ (x, y)

)
h−1

(
F̄ (s, t)

))
F̄ (s, t)

,

(5.7) follows under (5.8).

Let us now assume that (5.7) holds true. Setting y = t = 0, we get

F̄1(x+ s) = ds,0
(
F̄1(x)

)
F̄1(s);

moreover, setting x = s = 0, we get

F̄2(y + t) = d0,t
(
F̄2(y)

)
F̄2(t).

By Proposition 5.2.1,

ds,0(z) =
F̄1

(
s+ F̄−1

1 (z)
)

F̄1(s)
and d0,t(z) =

F̄2

(
t+ F̄−1

2 (z)
)

F̄2(t)
. (5.9)
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Now, setting x = t = 0 in (5.7) we get

F̄ (s, y) = ds,0
(
F̄2(y)

)
F̄1(s), s, y ≥ 0, (5.10)

while, setting y = s = 0, we get

F̄ (x, t) = d0,t
(
F̄1(x)

)
F̄2(t), x, t ≥ 0. (5.11)

Since the two expressions in (5.10) and (5.11) must coincide, we get

ds,0
(
F̄2(t)

)
F̄1(s) = d0,t

(
F̄1(s)

)
F̄2(t), s, t ≥ 0

that, by (5.9), gives

F̄1

(
s+ F̄−1

1

(
F̄2(t)

))
= F̄2

(
t+ F̄−1

2

(
F̄1(s)

))
.

Setting now r = F̄−1
2

(
F̄1(s)

)
, we obtain

F̄−1
1

(
F̄2(t+ r)

)
= F̄−1

1

(
F̄2(r)

)
+ F̄−1

1

(
F̄2(t)

)
, s, t ≥ 0,

from which

F̄−1
1

(
F̄2(z)

)
= az, z ≥ 0

for some a > 0. By substituting in (5.10), we get

F̄ (x, y) = F̄1 (x+ ay) (5.12)

and, setting h(x) = F̄1(− lnx), we reach the conclusion. Moreover, using

(5.12), we recover that ds,t(x) =
F̄1(s+at+F̄−1

1 (x))
F̄1(s+at)

.

5.2.3 Bivariate Weak Case

Let now X̄t = [X − t, Y − t|X > t, Y > t].
The generalized version of the Marshall and Olkin (2015) functional equa-

tion (5.4) is

F̄X̄t
(x, y) = dt

(
F̄ (x, y)

)
, t, x, y ≥ 0 (5.13)

where, for all t ≥ 0, dt is a strictly increasing bijection of [0, 1] with d0(x) = x.

The class of bivariate survival distribution functions satisfying a func-
tional equation of type (5.13) coincides with that of bivariate survival distri-
bution functions satisfying the pseudo weak lack of memory property, as we
show in next Proposition.
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Proposition 5.2.3. A bivariate survival function F̄ satisfies (5.13) if and
only if it satisfies bivariate pseudo weak lack-of-memory property with gen-
erator h(x) = F̄ (− ln(x),− ln(x)). Moreover,

dt(x) =
h (e−th−1(x))

h (e−t)
=
F̄ (t− ln(h−1(x)), t− ln(h−1(x)))

F̄ (t, t)
.

Proof. If F̄ satisfies the pseudo weak lack of memory property with respect
to a given generator h, then it can be easily verified that (5.13) holds true

with dt(x) =
h(e−th−1(x))

h(e−t)
.

Let us now assume that (5.13) holds true. Substituting y = x, we get

F̄X̄t
(x, x) = dt

(
F̄ (x, x)

)
, t, x ≥ 0,

that, if Z = min(X, Y ), is equivalent to

F̄Zt(x) = dt
(
F̄Z(x)

)
, t, x ≥ 0,

where F̄Z is the survival distribution of Z and Zt = [Z − t|Z > t]. By
Proposition 5.2.1, F̄Z satisfies univariate pseudo lack-of-memory property
with h(x) = F̄Z (− ln(x)) = F̄ (− ln(x),− ln(x)) and, necessarily, dt(x) =
h(e−th−1(x))

h(e−t)
. Hence, substituting in (5.13), we get

F̄ (x+ t, y + t) = h
(
e−th−1(F̄ (x, y))

)
=

= F̄ (t, t)⊗h F̄ (x, y).

As a consequence of the above result, we have that F̄ satisfies the pseudo
weak lack of memory property if and only if

F̄X̄t
(x, y) = ht

(
Ḡ(x, y)

)
, t, x, y ≥ 0, (5.14)

where

ht(x) =
h (e−tx)

h (e−t)
(5.15)

is a generator for every t ≥ 0.

Example 5.2.1. In Theorem 5.1 in Mulinacci (2018) it is shown that the
distributions family

Ḡα(x, y) =
(
α2e

cx + α1e
cy + (1− α1 − α2) e

c max(x,y)
)−α

=

=

{
e−αc y

(
α1 + (1− α1)e

c(x−y))−α , x ≥ y > 0

e−αc x
(
α2 + (1− α2)e

c(y−x))−α , 0 < x < y

(5.16)
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with α1, α2 ∈ (0, 1), α1+α2 ≤ 1 and α, c > 0 satisfies the standard weak lack
of memory property.
The marginal distributions are Ḡα,i(z) = (αi + (1− αi)e

cz)−α , i = 1, 2 with
hazard rates rα,i(z) = α · c(1− αi)

ecz

αi+(1−αi)ecz
, i = 1, 2.

Let Z be a strictly positive random variable and (X, Y ) a random vector
for which

P (X > x, Y > y|Z = α) = Ḡα(x, y).

This corresponds to assuming that Z is a common multiplicative stochastic
factor affecting r1,i, for i = 1, 2 and the parameter c. Then

F̄ (x, y) = P (X > x, Y > y) = E [P (X > x, Y > y|Z)] =
= E

[
ḠZ(x, y)

]
= E

[
ḠZ

1 (x, y)
]
=

= E
[
eZ·ln(Ḡ1(x,y))

]
=MZ

(
ln
(
Ḡ1(x, y)

))
where MZ is the moment generating function of the random variable Z. But
h(t) =MZ (ln(t)), satisfies the properties of a generator and

F̄ (x, y) = h
(
Ḡ1(x, y)

)
, α1, α2 ∈ (0, 1), α1 + α2 ≤ 1, c > 0

satisfies the pseudo weak lack of memory property with respect to the gener-
ator h(t) =MZ (ln(t)). In this case, the distortion function dt in Kaminsky-
type functional equation (5.13) is given by

dt(z) =
MZ(M

−1
Z (z)− 1)

MZ(−t)
.

We now consider some possible distributions for Z for which the moment
generating function is known in closed form.

1. Z gamma distributed, Γ (a, 1): MZ(u) = (1− u)−a, h(t) = (1− ln(t))−a,

t ∈ [0, 1] and dt(z) =
(
λt+z−

1
a

1+λt

)−a
, z ∈ (0, 1].

2. Z positive stable distributed, with parameter a ∈ (0, 1]: MZ(u) = e−|u|a,

h(t) = e−(ln(
1
t ))

a

, t ∈ [0, 1] and dt(z) =
e
−
(
λt+(− log(z))

1
a

)a

e−(λt)a , z ∈ (0, 1].

3. Z Sibuya distributed, with parameter a ∈ (0, 1]: MZ(u) = 1− (1− eu)a,

h(t) = 1− (1− t)a and dt(z) =
1−

(
1−e−λt+e−λt(1−z)

1
a

)a

1−(1−e−λt)a
, z ∈ [0, 1].
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4. Z distributed according to the logarithmic series distribution with pa-
rameter a > 0:
MZ(u) = − 1

a
ln (1 + (e−a − 1)eu), h(t) = − 1

a
ln (1 + (e−a − 1)t) , t ∈

[0, 1].
This generator can be reparametrized by setting θ = e−a−1 ∈ (−1, 0) in

the form h(t) = ln(1+θt)
ln(θ+1)

, t ∈ [0, 1], so dt(z) =
log(1+e−λt(ez log(θ+1)−1))

log(1+θe−λt)
, z ∈

[0, 1].

The dependence structure of distributions satisfying pseudo strong lack-
of-memory property is of Archimedean type and it is extensively studied
in the literature, so we focus on the dependence structure of distributions
satisfying pseudo weak lack-of-memory property.

5.3 Dependence Structure in the Bivariate

Weak Case

5.3.1 Parametric Families of Distortions

In this subsection, given a generator h, we will consider the family of gener-
ators of type

h̃c(x) =
h (cx)

h(c)
(5.17)

and we will analyze the dependence structure as a function of the parameter
c ∈ (0, 1]: notice that the original case of the generator h is obviously recov-
ered when c = 1. Families of generators of type (5.17) arise from the analysis
of residual lifetimes: in fact, (5.15) is of type (5.17) when c = e−t.

We want to study how the lower and the upper tail dependence coefficients
λL and λU change after applications of distortions of kind (5.17) in the case
in which the marginal survival functions are the same.

Let us start analyzing the corresponding lower tail dependence coefficient
λL(C̄hc), where

C̄hc(u, v) =
h
(
c CG

(
h−1(uh(c))

c
, h

−1(vh(c))
c

))
h(c)

and where C̄G is given by Equation (4.11). If Proposition 2.2.1 is satisfied
by the generator h for some α, b ∈ (0,+∞), then

lim
t→0+

h̃c(t)

tα
= lim

z→0+

cα

h(c)

h(z)

zα
=

cα

h(c)
b ∈ (0,+∞),
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meaning that, by the same Proposition,

λL(C̄h̃c) = λL(C̄h) =
(
λL(C̄

G)
)α
.

As for the upper tail dependence coefficient, λU(C̄h̃c), in order to apply
Proposition 2.2.2, we assume that h is continuously differentiable and we
analyze

lim
t→1−

1− h̃c(t)

(1− t)α
= lim

t→1−

c

αh̃(c)

h′(ct)

(1− t)α−1
.

There are three alternatives:

1. h′(c) ∈ (0,+∞): then lim
t→1−

1−h̃c(t)
(1−t)α = b ∈ (0,+∞) if and only if α = 1;

2. h′(c) = +∞: then, if lim
t→1−

1−h̃c(t)
(1−t)α = b ∈ (0,+∞), necessarily α < 1;

3. h′(c) = 0: then, if lim
t→1−

1−h̃c(t)
(1−t)α = b ∈ (0,+∞), necessarily α > 1.

So, for the upper tail dependence coefficient, the following proposition holds.

Proposition 5.3.1. Let C̄G be the copula (4.11) with upper tail dependence
coefficient λU(C̄G) and let h : [0, 1] → [0, 1] be a continuously differentiable
generator with h

′
(x) ∈ (0,∞) ∀x ∈ (0, 1): then λU(C̄h̃c) = λU(C̄G).

Moreover, from Proposition 4.4.1, we know that the general expression
for the Kendall’s function is given by

K(s) = s−Hh(h
−1(s))

where

Hh(v) = h′ (v) v

[
2 ln (v) +

1

λ
(J1(v) + J2(v))

]
with

Ji(v) =

∫ Ḡ−1
i (v)

0

g2i (z)

Ḡ2
i (z)

dz, i = 1, 2. (5.18)

Similarly, the expression of the Kendall’s function Kc associated to the
generator h̃c will be given by

Kc(s) = s−Hh̃c

(
h̃−1
c (s)

)
= s−Hh̃c

(
h−1(s h(c))

c

)
,
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where

Hh̃c
(v) = h̃′c (v) v

[
2 ln (v) +

1

λ
(J1(v) + J2(v))

]
=

=
ch

′
(cv)

h(c)
v

[
2 ln (v) +

1

λ
(J1(v) + J2(v))

] ,

where Ji, i = 1, 2 are given by equation (5.18).

5.4 Actuarial Applications

In survival analysis and in actuarial applications, we are interested in bivari-
ate residual lifetimes observed in the same time interval. For this reason, we
consider only distributions satisfying (5.13), that, we know, coincide with the
class of survival functions possessing pseudo weak lack-of-memory property.

5.4.1 Submultiplicative and Supermultiplicative Gen-
erators

It is well-known that distributions used in survival analysis do not satisfy
in general lack-of-memory property: in fact, the probability to survive ad-
ditionally t years for a component aged x is smaller than the probability to
survive t years for a new component. This is known as ”new better than
used” property. In the case in which ”new worse than used” property holds
true, the probability to survive additionally t years for a component aged x
is higher than the probability to survive t years for a new component.

In order to model these two situations in the bivariate case, we consider
generators h that are sub-multilplicative, id est,

h(xy) ≤ h(x) h(y),∀x, y ∈ [0, 1]

and super-multiplicative, id est

h(xy) ≥ h(x) h(y),∀x, y ∈ [0, 1].
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In fact, let us assume that F̄ (x, y) = h(Ḡ(x, y)) satisfies pseudo weak
lack-of-memory property, where Ḡ satisfies standard weak lack-of-memory
property. Then

F̄X̄t
(x, y) ≤ F̄X,Y (x, y)

if and only if h is sub-multiplicative in the interval [0, 1]. The opposite situ-
ation holds true in the case of supermultilplicative generators.
We now give sufficient conditions under which a function f is sub-multiplicative
in the unit interval [0, 1].

Proposition 5.4.1. Let f : [0, 1] → [0, 1] be a strictly increasing and concave
bjection such that f

′′′
(x) ≤ 0. Then f is sub-multiplicative in [0, 1].

Proof. Let us define g : [0, 1]× [0, 1] as

g(u, v) = f(uv)− f(u)f(v) :

then f is sub-multiplicative in [0, 1] if and only if g is non-positive. On the
sides of the square [0, 1] × [0, 1], g is equal to 0, so it is sufficient to prove
that there are not maximum points inside the square. The second partial
derivative with respect to u is non-negative, in fact

∂2g(u, v)

∂2u
=

= v2f
′′
(uv)− f(v)f

′′
(u) ≥ f(v)[f

′′
(uv)− f

′′
(u)] ≥ 0,

using concavity of f , decreasingness of f
′′
and noticing that a strictly in-

creasing and concave function lies above the bisector of the first quadrant in
the interval [0, 1]. Since ∂2g

∂2u
is non-negative, there are no maximum points

inside the square, meaning that g(u, v) ≤ 0 ∀(u, v) ∈ [0, 1]× [0, 1].

Similarly, we find sufficient conditions under which a function f is super-
multiplicative in the unit interval [0, 1].

Proposition 5.4.2. Let f : [0, 1] → [0, 1] be a strictly increasing and convex
bjection such that f

′′′
(x) ≥ 0 and f(x) ≥ x2, ∀x ∈ [0, 1]. Then f is super-

multiplicative in [0, 1].

Example 5.4.1. Let f(x) = 3x−x3
2

. Then f is a generator and it is sub-
multiplicative since it satisfies conditions given in Proposition 5.4.1.

Example 5.4.2. Let f(x) = sin(θx)
sin(θ)

, 0 < θ < π
2
. Then f is a generator and it

is sub-multiplicative since it satisfies conditions given in Proposition 5.4.1.
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Example 5.4.3. Let f(x) = 1
4
x3 + 1

2
x2 + 1

4
x. Then f is a generator and it

is super-multiplicative since it satisfies conditions given in Proposition 5.4.2.

Furthermore, we notice that a function h is sub-multiplicative (super-
multiplicative) in [0, 1] if and only if the function g(t) = log(h(e−t)), t ≥ 0 is
sub-additive (super-additive): this allows us to consider the following well-
known lemma about super-additive and sub-additive functions.

Lemma 5.4.1. Let g : R+ → R be a continuous and convex (concave) func-
tion such that g(0) ≤ 0 (g(0) ≥ 0), then g is super-additive (sub-additive).

We now show two applications of this lemma.

Example 5.4.4. Let us consider the generator f(x) = 4 arctan(x)
π

. The func-
tion g(x) = log(4)− log(π) + log(arctan(e−x)) is a concave function, then by
lemma 5.4.1 g(x) is sub-additive, so f(x) is sub-multiplicative.

Example 5.4.5. Let f(x) = log(θx+1)
log(θ+1)

, θ > 0, so g(x) = log[log(θe−x + 1)]−
log[log(θ + 1)]. It follows that

d2g

d2x
=
θex · (ln (θe−x + 1)− θe−x)

(ex + θ)2 ln2 (θe−x + 1)

in fact, it can be proven that the function z(x) = log(θe−x + 1) − θe−x <
0,∀x ∈ R, so the second derivative of g is negative, hence g(x) is sub-additive
and f(x) is sub-multiplicative.

Example 5.4.6. Let us consider the generator f(x) = e−γ(x
−1−1), γ > 0.

The function g(x) = γ(1 − ex) is a concave function, then by lemma 5.4.1
g(x) is sub-additive, so f(x) is sub-multiplicative.

Example 5.4.7. Let us consider the generator f(x) = (θx−1+1−θ)−1, θ > 0.
The function g(x) = − log(θex + 1 − θ) is a concave function if and only
if 0 < θ < 1, then by lemma 5.4.1 g(x) is sub-additive, so f(x) is sub-
multiplicative if 0 < θ < 1. Viceversa, g(x) is a convex function if and
only if θ > 1, then by lemma 5.4.1 g(x) is super-additive, so f(x) is super-
multiplicative if θ > 1.
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5.4.2 Examples

We study some examples of bivariate distributions that are generated by
submultiplicative distortions: we will show that pseudo weak lack-of-memory
can be used to model both positive and negative dependence.

Example 5.4.8. Let (X, Y ) be a random vector satisfying bivariate pseudo-
weak lack-of-memory property with distorted marginal survival functions Ḡi(x) =

(1 + x)−α, α > 0, i = 1, 2, and with generator h(x) = 1 −
(
eθ(1−x)−1
eθ−1

)β
, θ <

0, β > 0. Then the function

F̄X̄t
(x, y) =

=
1

1−
(
eθ(1−e−λt)−1

eθ−1

)β
1−

(
eθ(1−e

−λt(1+x−y)−α) − 1

eθ − 1

)β
 1x≥y+

+
1

1−
(
eθ(1−e−λt)−1

eθ−1

)β
1−

(
eθ(1−e

−λt(1+y−x)−α) − 1

eθ − 1

)β
 1x<y

(5.19)

is a survival function if and only if α + 1 ≤ λ ≤ 2α, α ≥ 1 and 0 < β ≤
1, with P (X = Y ) = 2α

λ
− 1 independent of β. The plot of the Kendall

distribution function of the vector of residuals X̄t for different values of t
and of the parameter β, setting α = 1.5, λ = 2.6 and θ = −1, is given in
Figure 5.1: it can be seen that dependence decreases strongly for t = 0 when
β increases, while the dependence for t = 1.5 and t = 3 is more stable with
respect to β. Since h satisfies Proposition 2.2.1 with α = 1, we have that the
lower tail dependence coefficient of (X, Y ) is the same of X̄t and of the copula
C̄G. Moreover, since h satisfies Proposition 2.2.2 with h

′
(x) ∈ (0,∞) ∀x ∈

(0, 1) and h
′
(1) = +∞ and since 0 < β ≤ 1, due to Proposition 5.3.1 and

results given in Example 4.3.1, λU(C̄X̄t
) = λU(C̄G) ≤ λU(C̄h). Notice that

the singularity along the line x = y is equal to 2
13
.
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Figure 5.1: Kendall distribution function of of X̄t for t = 0, t = 0.5 and
t = 1. Top Left: β = 0.3. Bottom: β = 0.6. Top Right: β = 0.9.

The distortion functions ht(x) for different values of β and t are shown
in Figure 5.2.
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Figure 5.2: Distortion Functions ht(x) for t = 0, t = 0.5 and t = 1. Top Left:
β = 0.3. Bottom: β = 0.6. Top Right: β = 0.9.

Moreover, in table 5.1, the values of the Kendall tau for the same values of
β and t discussed before are given: it can be seen that the level of dependence
decreases strongly when t = 0.5 or when t = 1 with respect to the case in
which t = 0.
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t β 0.3 0.6 0.9

0 0.6 0.31 0.09
0.5 -0.06 -0.07 -0.08
1 -0.11 -0.12 -0.12

Table 5.1: Kendall Tau for different values of β and t

Example 5.4.9. Let (X, Y ) be a random vector satisfying bivariate pseudo-
weak lack-of-memory property with distorted marginal survival functions Ḡi(x) =

e−µx, i = 1, 2, µ > 0 and with generator h(x) = 1−
(

tan(θ(1−x))
tan(θ)

)β
,−π

2
< θ <

0, β > 0. Then the function

F̄X̄t
(x, y) =

=
1

1−
(

tan(θ(1−e−λt))
tan(θ)

)β
(
1−

(
tan(θ(1− e−λte−µ(x−y)))

tan(θ)

)β)
1x≥y+

+
1

1−
(

tan(θ(1−e−λt))
tan(θ)

)β
(
1−

(
tan(θ(1− e−λte−µ(y−x)))

tan(θ)

)β)
1x<y

(5.20)

is a survival function if and only if µ ≤ λ ≤ 2µ and 0 < β ≤ 1, with P (X =
Y ) = 2µ

λ
− 1. The plot of the Kendall distribution function of the vector of

residuals X̄t for different values of t and of the parameter β is given in Figure
5.3, setting µ = 0.5, λ = 0.75 and θ = −1: it can be seen that dependence is
positive for any values of β and of t and that the distance between the curves
falls as β increases. Moreover, since h satisfies Propositions 2.2.1 and 2.2.2
with h

′
(x) ∈ (0,∞), ∀x ∈ (0, 1) and h

′
(1) = +∞, conclusions about lower

and upper tail dependence coefficients are the same as those given in Example
5.4.8. The singularity along the line x = y is constant over t and over β and
it is equal to 1

3
.



68

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

Kendall distribution Function

x

K_ind(x)
K(x)
K_0.1(x)
K_1(x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

Kendall distribution Function

x

K_ind(x)
K(x)
K_0.1(x)
K_1(x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

Kendall distribution Function

x

K_ind(x)
K(x)
K_0.1(x)
K_1(x)

Figure 5.3: Kendall distribution function of of X̄t for t = 0, t = 0.1 and
t = 1. Top Left: β = 0.7. Bottom: β = 0.8. Top Right: β = 0.9.

The plot of the distortion functions ht(x) for different values of β and t
is given in Figure 5.4.
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Figure 5.4: Distortion Functions ht(x) for t = 0, t = 0.1 and t = 1. Top Left:
β = 0.7. Bottom: β = 0.8. Top Right: β = 0.9.

Moreover, in table 5.2, the values of the Kendall tau for the same values of
the parameters β and t assumed before are given.
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t β 0.7 0.8 0.9

0 0.42 0.36 0.31
0.1 0.29 0.28 0.27
1 0.29 0.28 0.27

Table 5.2: Kendall Tau for different values of β and t

5.4.3 Life Insurance Pricing Formulas

In the following, we will provide formulas for the expected present value of
some well-known insurance contracts written on couples of residual lifetimes
X and Y , aged r and s respectively, assuming that the distribution of X
and Y satisfies pseudo weak lack-of-memory property with marginal survival
functions F̄1 and F̄2. In the following, we will denote by ρ the instantaneous
interest rate.
First, we consider a pure endowment contract that pays 1 if X and Y are
both larger than t. Its expected present value is given by

tĒr,s = e−ρtF̄X,Y (t, t) = e−ρth(e−λt). (5.21)

The joint survivor annuity is an insurance contract that provides an income
as long as both individuals are alive: its expected present value, in continuous
time, is given by

ār,s = E

[∫ ∞

0

1{X>t,Y >t} e
−ρt dt

]
=

=

∫ ∞

0

F̄X,Y (t, t) e
−ρt dt =

∫ ∞

0

h(e−λt) e−ρt dt.

. (5.22)

In the case of joint survivor annuity deferred of u years, we have

u|ār,s = E

[∫ ∞

u

1{X>t,Y >t} e
−ρt dt

]
=

=

∫ ∞

u

F̄X,Y (t, t) e
−ρt dt =

∫ ∞

0

ĥu(e
−λz)h(e−λu) e−ρ(z+u) dz =

= uĒr,s

∫ ∞

0

ĥu(e
−λz) e−ρz dz = uĒr,s ār+u,s+u,

where

ĥu(x) =
h(e−λux)

h(e−λu)
. (5.23)
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The last survivor annuity is an insurance contract that provides an income
to the policyholders upon the second death: its expected present value, in
continuous time, is given by

ār,s = E

[∫ ∞

0

(
1{X>t} + 1{Y >t} − 1{X>t,Y >t}

)
e−ρt dt

]
=

=

∫ ∞

0

(F̄1(t) + F̄2(t)− F̄X,Y (t, t)) e
−ρt dt =

=

∫ ∞

0

(F̄1(t) + F̄2(t)) e
−ρt dt− ār,s.

(5.24)

In the case of last survivor annuity deferred of u years, we have

u|ār,s = E

[∫ ∞

u

(
1{X>t} + 1{Y >t} − 1{X>t,Y >t}

)
e−ρt dt

]
=

=

∫ ∞

u

(F̄1(t) + F̄2(t)− F̄X,Y (t, t)) e
−ρt dt =

=

∫ ∞

0

(F̄1(z + u) + F̄2(z + u))e−ρ(z+u) dz+

− uĒr,s ār+u,s+u.

(5.25)

For the sake of simplicity and for pure explanatory purposes, we will analyse
some fictitious examples of joint distribution satisfying pseudo weak lack-
of-memory property with sub-multiplicative generators and with identical
marginal survival functions of X and Y : due to Remark 4.1.5, X and Y are
measured in a given unit of time. In the following, we will set the instanta-
neous interest rate ρ equal to 0.04.



71

Example 5.4.10. Let (X, Y ) be a random vector satisfying bivariate pseudo-
weak lack-of-memory property with distorted marginal survival functions Ḡi(x) =

(1+a(ebx−1))−1, a, b > 0, i = 1, 2 and with generator h(x) = log(θx+1)
log(θ+1)

, θ > 0.
Then the function

F̄X,Y (x, y) =

=

ln

(
θe−yλ

a·(eb·(x−y)−1)+1
+ 1

)
ln (θ + 1)

1x≥y +

ln

(
θe−xλ

a·(eb·(y−x)−1)+1
+ 1

)
ln (θ + 1)

1x<y

(5.26)

is a survival function if 2ab ≥ λ ≥ b and 0 < a ≤ 1. The marginal survival
function is concave in x = 0 if a < θ+1

θ+2
. Setting a = 0.55, b = 0.5, λ =

0.55 and θ = 40, the marginal expected value, the variance and the Kendall
tau for different values of t are given in Table 5.3: as expected, since h is
submultiplicative, the expected value of Xt decreases with t.

t τ E[Xt] V AR[Xt]

0 0.3 5.46 11.9
1.5 0.28 4.79 9.97
3 0.27 4.17 8.4

Table 5.3: Kendall Tau, Marginal Expected Value and Variance for different
values of t

The plot of the common marginal survival function for the same values of the
parameters, with different values of t, is given in Figure 5.5: it can be seen
that it is concave for small values of the independent variable.
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Figure 5.5: Marginal survival function of X and Y in the domain (0, 20)
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The plots of the Kendall distribution function of the vector of residuals
X̄t and of the distortion functions ht(x) for different values of t are given
in Figure 5.6: it can be seen that the two variables show positive association
and that this dependence decreases slightly as t increases.
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Figure 5.6: Kendall Distribution Function of X̄t and Functions ht(x) for
t = 0, t = 1.5 and t = 3

Using distribution (5.26), for the same values of the parameters a and b, the
expected present value of joint and last survivor annuity for different values
of λ, computing integrals (5.22) and (5.24) numerically, are shown in Table
5.4: the value of the joint survivor annuity decreases while the value of the
last survivor annuity increases as λ increases due to singularity effect.

λ Joint Survivor Annuity Last Survivor Annuity P (X = Y )
0.5 3.98 5.48 1

10

0.525 3.81 5.65 1
21

0.55 3.66 5.8 0

Table 5.4: Expected present value of joint and last survivor annuity for
different values of λ, using distribution (5.26) with θ = 40

The same computations are repeated for joint and last survivor annuities
deferred of 1.5 years and 3 years and results are shown in Tables 5.5 and 5.6.
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λ Joint Survivor Annuity Last Survivor Annuity P (X = Y )
0.5 2.66 4.06 1

10

0.525 2.5 4.22 1
21

0.55 2.36 4.37 0

Table 5.5: Expected present value of joint and last survivor annuity deferred
of 1.5 years for different values of λ, using distribution (5.26) with θ = 40

λ Joint Survivor Annuity Last Survivor Annuity P (X = Y )
0.5 1.69 2.84 1

10

0.525 1.55 2.98 1
21

0.55 1.42 3.1 0

Table 5.6: Expected present value of joint and last survivor annuity deferred
of 3 years for different values of λ, using distribution (5.26) with θ = 40

The plots of the Kendall distribution function of the vector of residuals
X̄t and of the functions ht(x) for different values of t and θ are given in
Figure 5.7 and 5.8, setting a = 0.9, b = 1.5 and λ = 2.7: it can be noticed
that dependence decreases when β increases and it increases slightly when t
increases.
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Figure 5.7: Kendall distribution function of of X̄t for t = 0, t = 0.5 and
t = 1. Top Left: θ = 1. Bottom: θ = 10. Top Right: θ = 20.
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Figure 5.8: Distortion Functions ht(x) for t = 0, t = 0.5 and t = 1. Top Left:
θ = 1. Bottom: θ = 10. Top Right: θ = 20.

Example 5.4.11. Let (X, Y ) be a random vector satisfying bivariate pseudo-
weak lack-of-memory property with generator h(x) = e−γ(x

−1−1), γ > 0 and

distorted marginal survival functions Ḡi(x) =
(
1 + ξ

γ
(eβx − 1)

)−1

, ξ, β >

0, i = 1, 2. Then the function

F̄X,Y (x, y) =

= e−ξe
yλ·(eβ·(x−y)−1)−γeyλ−γ1x≥y + e−ξe

xλ·(eβ·(y−x)−1)−γexλ−γ1x<y
(5.27)

is a survival function if and only if λ ≥ β, β(1 − ξ) ≥ λ(1 − γ) and 2βξ ≥
λγ. This is the same distribution obtained in Marshall and Olkin (2015)
with common marginal survival functions. The common marginal survival
function is concave in 0 if ξ < 1. Setting β = 0.35, γ = 0.17, ξ = 0.09 and
λ = 0.37, the marginal expected value, the variance and the Kendall tau for
different values of t are shown in Table 5.7.

t τ E[Xt] V AR[Xt]

0 -0.12 6 7.06
1.5 -0.09 4.77 5.58
3 -0.06 3.67 4.12

Table 5.7: Kendall Tau, Marginal Expected Value and Variance for different
values of t

The plot of the common marginal survival function for the same values of
the parameters, with different values of t, is given in Figure 5.9: it can be
noticed that it is concave in the neighborhood of 0.
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Figure 5.9: Marginal survival function of X and Y in the domain (0, 20)

The plots of the Kendall distribution function and of the distortion func-
tions ht(x) for different values of t are given in Figure 5.10: it can be seen
that the two random variables show positive association and that dependence
increases slightly as t increases.
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Figure 5.10: Kendall Distribution Function of X̄t and Functions ht(x) for
t = 0, t = 1.5 and t = 3

Using distribution (5.27), for the same values of the parameters β, γ and
ξ, the expected present values of joint and last survivor annuity for different
values of λ and of the deferment period are given in Tables 5.8, 5.9 and 5.10.

λ Joint Survivor Annuity Last Survivor Annuity P (X = Y )
0.35 4.11 6.33 1

17

0.36 4 6.43 1
34

0.37 3.91 6.53 1
629

Table 5.8: Expected present value of joint and last survivor annuity for
different values of λ, using distribution (5.27).
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λ Joint Survivor Annuity Last Survivor Annuity P (X = Y )
0.35 2.73 4.88 1

17

0.36 2.63 4.98 1
34

0.37 2.54 5.08 1
629

Table 5.9: Expected present value of joint and last survivor annuity with
deferment period equal to 1.5 years for different values of λ, using distribution
(5.27).

λ Joint Survivor Annuity Last Survivor Annuity P (X = Y )
0.35 1.61 3.54 1

3

0.36 1.52 3.63 8
27

0.37 1.44 3.71 29
111

Table 5.10: Expected present value of joint and last survivor annuity with
deferment period equal to 3 years for different values of λ, using distribution
(5.27).

Example 5.4.12. Let (X, Y ) be a random vector whose distribution satisfies
bivariate pseudo-weak lack-of-memory property with marginal survival func-
tions Ḡi(x) = e−µx, µ > 0, i = 1, 2 and with generator h(x) = (1 − θ +
θx−1)−1, θ > 0. Then the function

F̄X,Y (x, y) =

=
1

θeµ·(x−y)+yλ − θ + 1
1x≥y +

1

θeµ·(y−x)+xλ − θ + 1
1x<y

(5.28)

is a survival function if and only if µ ≤ λ ≤ 2µ and θ ≥ 1
2
. If, additionally,

1
2
≤ θ ≤ 1, we have that h is submultiplicative, as shown in Example 5.4.7.

Unfortunately, the common marginal survival function is not concave in 0
for any values of the parameters. Setting µ = 0.2, λ = 0.4 and θ = 0.51,
the marginal expected value, the variance and the Kendall tau for different
values of t are given in Table 5.11.
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t τ E[Xt] V AR[Xt]

0 -0.18 6.87 81.14
1.5 -0.1 6.46 73.84
3 -0.06 6.13 68.13

Table 5.11: Kendall Tau, Marginal Expected Value and Variance for different
values of t

The plot of the common marginal survival function for the same values of
the parameters, with different values of t, is given in Figure 5.11: as pointed
out before, the marginal survival function is always convex.
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Figure 5.11: Marginal survival function of X and Y in the domain (0, 20)

The plots of the Kendall distribution function and of the distortion functions
ht(x) are shown in Figure 5.12: it can be seen that the two variables show
negative dependence and that dependence increases slightly as t increases.
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Figure 5.12: Kendall Distribution Function of X̄t and Functions ht(x) for
t = 0, t = 1.5 and t = 3

Using distribution (5.28), for the same values of the parameters µ and
θ, the expected present values of joint and last survivor annuity for different
values of λ, computing integrals (5.22) and (5.24) numerically, are given in
Table 5.12.
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λ Joint Survivor Annuity Last Survivor Annuity P (X = Y )
0.35 3.46 7.63 1

7

0.375 3.25 7.83 1
15

0.4 3.07 8.01 0

Table 5.12: Expected present value of joint and last survivor annuity for
different values of λ, using distribution (5.28) with θ = 0.51

The same computations are repeated for joint and last survivor annuities
deferred of 1.5 years and 3 years and results are shown in Tables 5.13 and
5.14.

λ Joint Survivor Annuity Last Survivor Annuity P (X = Y )
0.35 2.19 6.2 1

7

0.375 2 6.39 1
15

0.4 1.83 6.56 0

Table 5.13: Expected present value of joint and last survivor annuity deferred
of 1.5 years for different values of λ, using distribution (5.28) with θ = 0.51

λ Joint Survivor Annuity Last Survivor Annuity P (X = Y )
0.35 1.33 4.93 1

7

0.375 1.18 5.08 1
15

0.4 1.04 5.22 0

Table 5.14: Expected present value of joint and last survivor annuity deferred
of 3 years for different values of λ, using distribution (5.28) with θ = 0.51
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The plots of the Kendall Distribution Function of (5.28) and the distortion
functions ht(x) with λ = 0.4, µ = 0.2, for different values of t and θ, are
given in Figures 5.13 and 5.14: it can be seen that with θ = 0.5 dependence
is negative, while with θ = 3 dependence is positive. Moreover, dependence
slightly increases as t increases.
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Figure 5.13: Kendall distribution function of X̄t for t = 0, t = 1.5 and t = 3.
Top Left: θ = 0.5. Bottom: θ = 1.5. Top Right: θ = 3.
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Figure 5.14: Distortion functions ht(x) for t = 0, t = 1.5 and t = 3. Top
Left: θ = 0.5. Bottom: θ = 1.5. Top Right: θ = 3.
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5.5 Non-Life Insurance Applications

5.5.1 Modelling Bivariate Losses and Reinsurance Prod-
ucts

Let (X, Y ) be a bivariate vector of losses for an insurance company. It can
be noticed that, if the distribution of (X, Y ) satisfies pseudo weak lack-of-
memory property and if h is submultiplicative, then

P (X > x+ t, Y > y + t) ≤ P (X > x, Y > y)P (X > t, Y > t),

but, if h is supermultiplicative, then

P (X > x+ t, Y > y + t) ≥ P (X > x, Y > y)P (X > t, Y > t) :

the latter case corresponds to a riskier situation for the insurance company,
since joint extreme losses may occur more frequently with respect to the for-
mer case.
Now we provide the expected value of different re-insurance products through
which the insurance company may reduce its exposure.

First, we consider the following excess-of-loss reinsurance product in which
the re-insurance company is asked to pay the excess-of-loss with respect to
a given retention level: more precisely, the re-insurance function is given by

g(X, Y ) =

{
X + Y − 2t if X > t, Y > t

0 otherwise
, (5.29)

for some t ≥ 0. The expected value of this product is given by:

E [(X + Y − 2t)1X>t,Y >t] = E [(X − t)1X>t,Y >t] +

+ E [(Y − t)1X>t,Y >t] = (E[X − t|X > t, Y > t]+

+ E[Y − t|X > t, Y > t])P (X > t, Y > t) =

= h(e−λt)

∫ ∞

0

(
ĥt(Ḡ1(z)) + ĥt(Ḡ2(z))

)
dz =

= h(e−λt)

∫ ∞

0

(
d̂t(F̄1(z)) + d̂t(F̄2(z))

)
dz,

(5.30)

where

d̂t(x) =
h(e−λth−1(x))

h(e−λt)
. (5.31)
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Moreover, we consider an insurance product that allows the insurer to
recover the amount min(X, Y )− t provided that X and Y are larger than a
retention level t, with reinsurance function given by

g(X, Y ) =

{
min(X, Y )− t if X > t, Y > t

0 otherwise
. (5.32)

Since P [min(X, Y ) − t > z|X > t, Y > t] = P [X − t > z, Y − t > z|X >
t, Y > t] = F̄X̄t

(z, z), we have:

E [(min(X, Y )− t)1X>t,Y >t] =

= E[min(X, Y )− t|X > t, Y > t]P (X > t, Y > t) =

= h(e−λt)

∫ ∞

0

ĥt(e
−λz) dz =

∫ ∞

t

h(e−λz) dz.

Finally, we consider an insurance product that allows the insurer to recover
the amount max(X, Y )−t provided that X and Y are larger than a retention
level t, with reinsurance function given by

g(X, Y ) =

{
max(X, Y )− t if X > t, Y > t

0 otherwise
. (5.33)

Noticing that max(X, Y )− t = X − t+ Y − t−min(X − t, Y − t), we have
that the expected value of (5.33) is given by

E[(max(X, Y )− t)1X>t,Y >t] =

= h(e−λt)

∫ ∞

0

(
ĥt(Ḡ1(z)) + ĥt(Ḡ2(z))− ĥt(e

−λz)
)
dz =

= h(e−λt)

∫ ∞

0

(
d̂t(F̄1(z)) + d̂t(F̄2(z))− ĥt(e

−λz)
)
dz.

The main advantage of pseudo weak lack-of-memory property with re-
spect to the strong one is the flexibility in the choice of the marginal survival
functions: the main disadvantage is the fact that the threshold t is the same
for both components of the vector of losses. For this reason, since X and Y
may be not homogeneous in scale, it is reasonable to assume that the vector
(X, σY ) satisfies pseudo weak lack-of-memory property for a certain σ > 0
with marginal survival functions F̄1 for X and F̄2 for Y : it can be shown
that, in this case, the survival function of (X, Y ) is given by

F̄X,Y (x, y) =

{
h
(
e−λσyh−1(F̄1(x− σy))

)
if x ≥ σy

h
(
e−λxh−1(F̄2(y − x

σ
))
)
if x < σy

. (5.34)
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5.5.2 LOSS ALAE Application

Various processes in non-life insurance involve correlated pairs of variables,
such as the claim Loss and the claim Allocated Loss Adjustment Expenses
(ALAE), which include for example lawyers’ fees and claims investigation ex-
penses. Expensive claims generally need some time to be settled and induce
considerable costs for the insurance company, so we expect some positive
dependence between losses and their associated ALAE. The data we use in
this section can be downloaded freely from ”copula” package of the statistical
software R and contain the LOSS and the ALAE of 1500 claims of a non-life
insurance company: in this application, we consider only uncensored data,
omitting 34 entries, and we will denote the Loss by X and the corresponding
ALAE by Y , assuming that the distribution of the vector (X, σY ) satis-
fies pseudo weak lack-of-memory property. Estimation is performed in two
steps: first, we estimate the best marginal distributions for X and Y , then
we estimate the remaining parameters of the joint distribution of (X, σY ).
Paramater estimations for some non-negative continuous distributions for X
and Y are given in the following table.

Distribution Parameters BIC
Exponential λ = 2.43 ∗ 10−5 34879
Gamma α = 5.06 ∗ 10−1,

β = 1.23 ∗ 10−5

35296

Pareto α = 1.24, s =
1.62 ∗ 105

35083

Weibull a = 6.35 ∗
10−1, b = 2.83 ∗
104

34907

Table 5.15: Results for marginal distribution of X
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Distribution Parameters BIC
Exponential λ = 8.32 ∗ 10−5 30476
Gamma α = 0.68, β =

5.66 ∗ 10−5

31324

Pareto α = 2.35, s =
15876

31050

Weibull a = 0.739, b =
8731

31211

Table 5.16: Results for marginal distribution of Y

So, according to the BIC criterion, the best marginal distributions for
X and Y are exponential distributions, with parameters λ1 = 2.43 ∗ 10−5

and λ2 = 8.32 ∗ 10−5 respectively. Substituting into equation (5.34) F̄i(x) =
e−λix, i = 1, 2, we have

F̄X,Y (x, y) =

{
h
(
e−λσyh−1(e−λ1(x−σy))

)
if x ≥ σy

h
(
e−λxh−1(e−λ2(y−

x
σ
)
)
if x < σy

. (5.35)

We already know that the function (5.35) is not always a bivariate survival
function: however, for three different functional forms of h, we give sufficient
conditions on the parameters such that (5.35) is a bivariate survival function,

setting λ = −G′
1(0) −

G
′
2(0)

σ
, where Ḡi(x) = h−1(e−λix), i = 1, 2 in order to

make P (X = Y ) = 0.

Example 5.5.1. Let us consider the generator h(x) = eθx−1
eθ−1

: then Ḡi(x) =

h−1(e−λix) = log((eθ−1)e−λix+1)
θ

, λi > 0, i = 1, 2. The associated survival func-
tion F̄ is given by

F̄ (x, y) =

{
exp{e−λσy log((eθ−1)e−λ1(x−σy)+1)}−1

eθ−1
if x ≥ σy

exp{e−λx log((eθ−1)e−λ2(y−
x
σ )+1)}−1

eθ−1
if x < σy

.

The second mixed derivative of F̄ is non-negative in the region {x ̸= σy, x ≥
0, y ≥ 0} if λ ≥ max

(
λ1,

λ2
σ

)
. Considering also singularity condition, we

need that (
λ1 +

λ2
σ

)
(eθ − 1)

θeθ
≥ max

(
λ1,

λ2
σ

)
.
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Example 5.5.2. Let us consider h(x) = (1 − θ + θx−1)−1, θ > 0: then
Ḡi(x) = h−1(e−λix) = θ(eλ1x − 1 + θ)−1, λi > 0, i = 1, 2. The associated
survival function F̄ is given by

F̄ (x, y) =

{
(eλσy(eλ1(x−σy) − 1 + θ) + 1− θ)−1 if x ≥ σy

(eλx(eλ2(y−
x
σ
) − 1 + θ) + 1− θ)−1 if x < σy

.

The second mixed derivative of F̄ is non-negative in the region {x ̸= σy, x ≥
0, y ≥ 0} if λ ≥ max(λ1,

λ2
σ
) and θ ≥ 1. Considering also singularity condi-

tion, we need that

λ1 +
λ2
σ

θ
≥ max

(
λ1,

λ2
σ

)
, θ ≥ 1.

Example 5.5.3. Let us consider h(x) = (x+1)θ−1
2θ−1

: then Ḡi(x) = h−1(e−λix) =

((2θ − 1)e−λix + 1)
1
θ − 1, λi > 0, i = 1, 2. The associated survival function

F̄ is given by

F̄ (x, y) =


{
(e−λσy [((2θ−1)e−λ1(x−σy)+1)

1
θ −1]+1

}θ

−1

2θ−1
if x ≥ σy{

(e−λx[((2θ−1)e−λ2(y−
x
σ )+1)

1
θ −1]+1

}θ

−1

2θ−1
if x < σy

.

The second mixed derivative of F̄ is non-negative in the region {x ̸= σy, x ≥
0, y ≥ 0} if λ ≥ max(λ1,

λ2
σ
) and

max(λ1,
λ2
σ
)

λ
≤ θ ≤ 1. Overall, we need that(

λ1 +
λ2
σ

)
21−θ(2θ − 1) ≥ max

(
λ1,

λ2
σ

)
, θ ≤ 1.

We compare the performance of the generators given above in the follow-
ing table.

h θ̂ σ̂ BIC
(1− θ + θx−1)−1 1.61 2.8 61034
(x+1)θ−1

2θ−1
1 3.01 61209

eθx−1
eθ−1

1.05 2.81 61113

Table 5.17: Log-likelihood for different choices of h

According to the results, the best generator h for our dataset is h(x) =
(1− θ + θx−1)−1, with θ ≈ 1.61: for this value of θ, the generator is convex
and, by Example 5.4.7, it is also super-multiplicative, meaning that

F̄ (x+ t, y + t) ≥ F̄ (x, y)F̄ (t, t).
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Moreover, in the case of the second generator, applying constrained opti-
mization of log-likelihood, we get θ = 1, implying that standard lack-of-
memory property holds true. From now on, we will consider only the gener-
ator (1− θ + θx−1)−1, with θ = 1.61 and σ = 2.8.

The Kendall Tau obtained simulating 10000 pair of observations is 0.309,
very close to the actual sample value of 0.315. Moreover, let Kt(x) the
Kendall Distribution Function of the vector X − t, Y − t

σ
|X > t, Y > t

σ
:

looking at the plot of the Kendall Distribution Function, we can see that the
two variables show strong positive dependence and that dependence increases
as the threshold t increases.
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Figure 5.15: Kendall Distribution Function of X − t, Y − t
σ
|X > t, Y > t

σ
for

t = 0, t = 5000 and t = 20000

Now let us consider the vector (X − t+ Y − t
σ
|X > t, Y > t

σ
). First, we can

notice that

F̄X−t,Y− t
σ
|X>t,Y > t

σ
(x, y) = P (X > x+ t, σY > t+ σy|X > t, σY > t) =

= d̂t(F̄(X,σY )(x, σy)).

Moreover,

P

(
X + Y − t− t

σ
> z
∣∣X > t, Y >

t

σ

)
=

= −
∫ z

0

∂1F̄X−t,Y− t
σ
|X>t,Y > t

σ
(x, z − x) dx+ P

(
X − t > z|X > t, Y >

t

σ

)
=

= d̂t(F̄X,σY (x, 0))−
∫ z

0

d̂
′

t(F̄X,σY (x, σ(z − x)) ∂1F̄X,σY (x, σ(z − x)) dx.

(5.36)

So we can recover implicitly the value-at-risk of the random variable X +
Y − t− t

σ
|X > t, Y > t

σ
as a function of the threshold t, as we show in Figure

5.16.
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Moreover, using (5.36), we can recover the mean-excess function of the
random variable X + Y − t − t

σ
|X > t, Y > t

σ
: its graph is given in Figure

5.17.
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We can notice that the mean-excess function and the 95% value-at-risk in-
creases as the threshold t increases, meaning that the distribution of X + Y
is heavy tailed.
Finally, using net equivalence principle, we compute the re-insurance pre-
mium Π for an excess-of-loss reinsurance with the following re-insurance
function {

X + Y − t− t
σ
, if X > t, Y > t

σ

0 otherwise
: (5.37)

the plot of Π for different thresholds t is given in Figure 5.18.
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Figure 5.18: Re-Insurance Premium as a function of threshold t (Data in
Thousands of Euros)

Similarly, we compute the reinsurance premiums for contracts of type (5.32)
and (5.33) with threshold t for X and t

σ
for Y , comparing their values in

Figure 5.19.
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Figure 5.19: Re-Insurance Premium for different contracts as a function of
threshold t (Data in Thousands of Euros)

As expected, the reinsurance premium for the excess-of-loss policy (5.37) is
larger than the premium written on the maximum between X− t and Y − t

σ
,

provided that X > t and Y > t
σ
; similar results hold for the policy written

on the maximum with respect to the policy written on the minimum.
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Chapter 6

Conclusions

The aim of this thesis was to generalize some well-known concepts in proba-
bility from the standard ring to the so called ”g-semiring”, where pseudo sum
and pseudo product are written in terms of a function, called ”generator”.

In the first part of this thesis, assuming a measurable space provided
with a pseudo-additive fuzzy measure, we have generalized the concept of
independence (that we call pseudo-independence) substituting into the well-
known definition of independence the standard product by the pseudo one.
Then, we have given a generalization of univariate and bivariate moment
generating function (that we call univariate and bivariate pseudo moment
generating function) and we have shown that the properties of standard mo-
ment generating function valid for independent random variables still hold
for the pseudo moment generating function in the case of pseudo-independent
random variables.
Finally, we have considered a generalization of Schur-constant distribution
(that we call pseudo Schur-constant distribution) substituting into its defi-
nition the standard sum by a non-commutative version of pseudo-sum: two
characterizations of pseudo Schur-constant distributions, one in terms of dis-
tribution and the other in terms of bivariate pseudo moment generating func-
tion, have been given.

In the second part of the thesis, we have generalized lack-of-memory prop-
erties in strong and weak version (we call them pseudo strong and weak lack-
of-memory properties) substituting into the associated functional equations
the standard product by the pseudo one. After finding sufficient and neces-
sary conditions under which the solutions of the new functional equations are
bivariate survival functions, we have focused on the distribution satisfying
pseudo weak lack-of-memory property: we have proved that it may have a
singularity along the line x = y, determining its Kendall distribution func-

89
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tion in full generality and studying tail dependence for specific choices of the
generator and of the marginal survival functions.

Moreover, we have generalized Kaminsky (1983) and Marshall and Olkin
(2015) strong and weak functional equations for residual lifetimes, showing
that the solutions of these generalized functional equations coincide with the
class of functions satisfying pseudo lack-of-memory properties. Furthermore,
after studying the dependence structure of residual lifetimes, we have given
sufficient conditions under which a generator is sub-multiplicative or super-
multiplicative in the unit interval and we have analysed the impact that some
distributions satisfying pseudo weak lack-of-memory property, generated by
sub-multiplicative functions, have on the value of some well-known insurance
contracts.

Finally, we have considered an application to the LOSS ALAE insurance
modelling problem: assuming that the distribution of the vector of LOSS
and of a suitable scalar transformation of ALAE follows pseudo weak lack-
of-memory property, we have estimated the best joint distribution, we have
analysed the dependence structure between LOSS and ALAE and we have
determined the reinsurance premiums for different reinsurance contracts un-
der net equivalence principle.
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