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Abstract
Binary Neural Networks at the Edge

Lorenzo Vorabbi

In the last decade, Artificial Intelligence demonstrated to achieve great advance-
ments in many areas such as (but not limited to) Computer Vision, Natural Lan-
guage Processing, Reinforcement Learning, and Autonomous Driving. Nowadays,
AI systems potentially overcome the intelligence observed in human beings as the
ambition of developing AI models with cognitive, learning, and problem-solving
abilities is the driving force in AI research and development. Achieving this goal
would imply the creation of highly sophisticated AI systems capable of generalizing
knowledge, learning from diverse data sources, and exhibiting a level of adaptability
and creativity comparable to human intelligence. Most of the performance improve-
ments obtained by AI systems have been reached by increasing the complexity and
memory footprint of the models, leading to solutions whose deployment is most of
the time prevented on resource-constrained hardware. Even though many works
in literature addressed the problem of compressing and reducing the computational
overhead of a neural network, a lot of effort is still required to successfully deploy a
complex AI solution on tiny/embedded devices.

Additionally, current AI solutions achieve poor performances at adapting incremen-
tally to new data. This phenomenon, named catastrophic forgetting, happens natu-
rally in Deep Learning architectures when a classical training algorithm, such as
backpropagation, is applied. By learning through a sequence of experiences incre-
mentally, where the model cannot access old training data, the model knowledge
falls resulting in the forgetting of past samples.

During my Industrial PhD activity, pursued at University of Bologna and Datalogic,
I investigated the optimization of neural network inference and continual learning
on edge devices, because they are central to guarantee good performances of the
edge and tiny devices produced by Datalogic. AI technology could considerably
empower the capabilities of such devices but many hardware and processing con-
straints have to be satisfied. Many challenges persist to deploy models on embed-
ded systems that can solve complex tasks and the main activity of this work was
aimed to simplify and reduce the computational flow and the memory bottlenecks,
while preserving the original performance accuracy of the model. This research fo-
cused on the exploitation of extremely low-bit-width models, adopting the Binary
Neural Networks, which use only 1-bit to represent weights and activations. Binary
networks are naturally suitable to be accommodated on low-power devices as they
replace the expensive multiply-and-accumulate operation with bit-wise arithmetic,
which is more efficient.

Furthermore, we proposed novel techniques to allow the incremental learning of a
binary neural network directly on-device, as this is the standard scenario of many
real-world applications. On-device learning remains a formidable challenge, espe-
cially when dealing with devices that have limited computational capabilities and
models that use low bit-width representation like binary neural networks. This the-
sis will focus on the applicative aspects that embrace continual learning approaches
and binary neural networks to allow the deployment of practical deep learning ap-
plications in real-world scenarios.
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Outline

Chapter 1 introduces the concepts and motivations of this research activity, outlining
the requirements and constraints of real-world applications addressed by Datalogic
devices. In particular, it points out the pros and cons of a deep learning approach in-
troducing some of the state-of-the-art techniques adopted to compact and compress
a deep learning model.

Chapter 2 describes the Binary Neural Networks by considering several aspects that
have driven the advancements and improvements of 1-bit networks. This chapter
represents the background knowledge of methods and approaches used for binary
networks adopted in the next chapters.

Chapter 3 describes our contributions to the improvement and simplification of data
flow of binary networks. In particular, it introduces a technique that reduces the bit-
width of binary convolution outputs to 8-bit, removing floating-point computation.
Additionally, this chapter describes a method to binarize the input layer of a binary
network more efficiently than state-of-the-art solutions.

Chapter 4 considers the on-device learning (using a continual learning approach)
use case applied to binary neural networks. The literature lacks of contributions
that consider the combination of these topics and this chapter details the solutions
we proposed to continuously train binary networks adopting ad-hoc quantization
schemes.

Chapter 5 discusses some real-world applications that can be improved by adopt-
ing the techniques presented in this thesis. In particular, it shows the advantages
achievable by adopting binary neural networks for the detection and localization of
two-dimensional codes, which is a processing-intensive task with a challenging la-
tency constraint. Additionally, it reports also two continual learning scenarios that
need to continuously adapt a binary model on-device.

Eventually, conclusions and future challenges are discussed in Chapter 6.
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Chapter 1

Introduction

The success of Deep Neural Networks (DNNs) in various high-impact applications
over the past decade has been remarkable. These applications include object classifi-
cation [20], speech recognition [43], computer vision [72], natural language process-
ing [135], self-supervised learning [12], reinforcement learning [99], robotics [79],
autonomous driving [27], games [126], and sustainable artificial intelligence [94].

However, the increasing size of state-of-the-art neural networks has led to signif-
icant challenges in terms of storage and computation requirements. For example,
GPT-3, a leading model for natural language processing, contains a massive 175
billion parameters, resulting in a huge training cost. Training such models is only
feasible through extensive parallelization, requiring thousands of GPU units. This
presents significant financial and environmental implications, as the training pro-
cedure of GPT-3 alone costs approximately 12 million for a single instance of the
model. Even pioneer neural network architectures ([72, 50]) pose great challenges
due to their large parameter counts, making them impractical for deployment on
resource-constrained platforms such as embedded devices, mobile phones, or small-
scale robotic platforms.

To address these challenges, several studies focused on techniques for reducing the
size, inference cost, and training cost of large-scale DNNs without sacrificing perfor-
mance. These techniques include quantization [146, 113], knowledge distillation [55,
106], neural architecture search [87] (NAS), low-rank compression, and weight prun-
ing [48], among others. These methods aim to make DNNs more practical and effi-
cient for deployment on various platforms.

Furthermore, each application field requires a certain level of adaptability over time
that neural networks have to fulfill because the real world is complex and changes
constantly. The ability of a neural network model to adapt to new data collected
over time is usually referred to as incremental learning or continual learning (CL). The
main obstacle that limits the continuous adaptability of the models even nowadays
is a phenomenon known as catastrophic forgetting. Catastrophic forgetting occurs
when a model is trained incrementally and leads to poor performance accuracy over
samples seen in the past.

1.1 Deep Learning (DL)

The success of neural networks took over 50 years to materialize because deep net-
works required three foundational technologies to become viable: large sets of train-
ing data, effective techniques to learn parameters, and high-speed hardware to make
the duration of training feasible. Before ImageNet [119], there simply were not large
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enough public datasets to support deep networks. However, the large size of Im-
ageNet introduced other problems, one of which was how to compute optimal pa-
rameters given so many training images. Traditional solvers that directly compute
parameters based on the entire dataset were too computationally inefficient to scale
to ImageNet proportions. Fortunately, by adopting the Stochastic Gradient Descent
(SGD) technique, it is possible to iteratively adapt network parameters to minimize
the loss function. SGD operates on small batches of random samples at a time and
computes updates of a network’s parameters via gradient calculation that reduces
error on that batch. When run on a large dataset for many epochs, the parameters
slowly improve and the loss descends to a local minimum. Unfortunately, training
a network using SGD often requires hundreds of epochs and, when each epoch con-
sists of processing a million images, the prospect of training and adjusting a deep
network becomes prohibitive, and would likely be completely infeasible on a CPU.
Since 2007, Nvidia released CUDA, allowing the training of the neural networks di-
rectly on GPUs, that massively parallelize computation and provide a huge speed-
up of the training time. Since AlexNet [72], deep neural networks (DNNs) have
proliferated quickly and today dominate most machine learning applications across
various domains such as computer vision, natural language processing, and signal
processing.

Deep learning is usually referred to as neural networks having more than three lay-
ers, i.e., more than one hidden layer. Nowadays, DNNs are built around the concept
of constructing a hierarchy of hundreds, or even thousands of layers. The deep
structure can learn high-level features and generalize better than shallower neural
networks. The layers placed at the early stages of the model can be interpreted as
low-level feature extractors, such as lines and edges. In subsequent layers, these fea-
tures are combined into higher-level features until the last layer which aggregates
all previous information to predict the final output of the network (e.g. classification
of an object in the scene). Some of the key aspects that contributed to the popularity
and widespread adoption of deep learning are listed below:

• High-dimensional learning. In contrast to classical techniques that often rely
on manually engineered features, hard to generalize even across similar tasks,
Deep Learning can capture and learn representations that better generalize.
DL can learn directly from high-dimensional space of data without any hu-
man intervention or intermediate step of dimension reduction. This feature is
crucial in real-world applications, such as computer vision tasks.

• End-to-end training. The primary goal of DL is to minimize a loss function
representing the distance between the network output and the expected result.
This is implemented through an iterative procedure that uses the gradient in-
formation to descend towards a loss function minimum. This process, where
the gradient of the loss function is passed back across all layers of the network
is referred to as backpropagation. Many variations of this technique have been
proposed but the core idea remains substantially unaltered.

• Data eager. A key concept in DL is that the performance of a model is closely
connected to the quantity of data available for training. Adding more train-
ing data is often more beneficial than investing time in designing new learning
techniques. The availability of data (that covers adequately the input varia-
tions) usually constitutes a key factor for the achievement of good performance
accuracy.
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1.1.1 Convolutional Neural Networks (CNNs)

Input Image

Convolutional layers

High-level featuresLow-level features

FIGURE 1.1: Example of feature extraction using deep neural networks. The feature
maps computed by each convolutional layer contain features of increased complexity

as data goes deeper into the network.

Convolutional neural networks emerged from studying the brain’s visual cortex,
and they have been used in image recognition since the eighties. The widespread
adoption of CNNs in computer vision tasks is intrinsically connected to visual pro-
cessing, as the concept of applying a "sliding window" fits many application scenar-
ios, such as digits recognition [75]. In the last years, the increase in computational
power and the amount of training data available significantly pushed the research
on CNNs [38, 39, 118, 51], which are nowadays a fundamental building block in
a visual recognition system. CNNs are a special type of DNNs that are composed
of multiple convolutional layers. In such networks, each layer produces a higher
level of abstraction of its input data, called feature map. The feature maps extracted
by each convolutional layer go from low to high level as data go deeper into the
network, as shown in Figure 1.1. Compared to more traditional multi-layer per-
ceptrons, CNNs extract useful information by sliding a kernel of weights (learned
at training time and shared for all input neurons) on the input data. In a convolu-
tional layer, the neurons are not connected to every single input neuron, but only to
those that belong to the receptive field, i.e. are local w.r.t. the considered neuron. The
number of kernel parameters is related only to the kernel and input/output channel
sizes, reducing the total number of weights. In 2012, Krizhevsky et al. [71] published
a ground-breaking work, CNN-based, by outperforming conventional methods on
a large-scale dataset, such as Imagenet. The authors showed that a convolutional
neural network was able to learn useful representations on such high-dimensional
data by adopting a simple training technique. Convolutional layers are particularly
suited for computer vision applications as they exploit local information to extract
useful information. Nowadays, CNNs are widely employed in a multitude of appli-
cations and thousands of papers have been written on this topic.

1.1.2 Training versus Inference

The distinction between training and inference in the context of neural networks is
crucial as they require different computational needs. Specifically, training involves
refining the network’s learnable parameters through an iterative process on a dataset
(often large), taking several hours to multiple days to achieve the desired accuracy.
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This phase is resource-intensive and the hardware used usually involves the usage of
expensive GPUs (or TPUs) that require high power consumption. Most of the time,
to train very huge and deep models, training is performed in the cloud or powerful
local servers.

In contrast, once trained, the network is used for inference, which can happen both
in the cloud or at the edge. In real-world applications, it is often desirable to exe-
cute DNN inference directly at the edge near the sensors. Edge processing allows
to maintain privacy of data avoiding the costs related to the cloud. The focus on
optimizing inference, as opposed to training, is justified by several factors. While
training is a one-time cost, inference scales with the usage of the application. As a
result, the optimization of inference speed and model size is of paramount impor-
tance, especially given the widespread use of trained models in various applications.

The focus on inference optimization is driven by the need for efficient and scalable
deployment of models in real-world scenarios. The techniques presented in this the-
sis are primarily addressed to improve the speed and reduce the model size during
inference. An efficient inference pass opens the door to accommodate CNNs on tiny
embedded devices and also enables the chance to apply an incremental learning ap-
proach directly on devices. On-device learning represents a fundamental milestone
for DNNs as it allows to automatically adapt a model to new data, directly at the
edge, which would foster significantly the DNNs spread. Unfortunately, training at
the edge imposes severe limitations and constraints that must be addressed to reach
a good compromise between hardware resource utilization and processing load, as
reported in Chapter 4.

1.1.3 Optimization techniques to reduce computation

As introduced in previous sections, DNNs can reach human-level capabilities but
at the cost of significant computational complexity. To reach these superior perfor-
mances, in recent years, DNNs stacked thousands of layers resulting in longer and
complex training procedures. As a result, such deep models are difficult to deploy
on embedded platforms that cannot provide enough memory and computation re-
sources. Luckily, as reported by Sze et al. [129], deep neural networks are over-
parameterized, i.e. redundant neurons are present, and by removing the neurons
that do not contribute to an improvement in the accuracy of results it is possible to
reduce model complexity. To achieve efficient and accurate DNNs it is necessary
to rethink the design, training, and deployments of DNNs. A large part of the lit-
erature addressed previous limitations by improving the efficiency of DNNs (lower
latency, memory footprint, and energy consumption) while preserving accuracy and
generalization. Network optimization techniques can be substantially divided into
several groups: 1) designing efficient architectures, 2) designing architectures con-
sidering hardware constraints, 3) knowledge distillation, 4) network quantization,
and 5) network pruning.

For the relevance of the topics covered in this thesis, in the next paragraphs, we
cover quantization and pruning strategies, respectively.
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Quantization

Quantization is the process of mapping discrete values belonging to a large in-
put set into output values belonging to a smaller countable set. In DNNs, quan-
tization is a technique used to reduce the size of a model by converting its high-
precision floating-point weights to lower-precision representations, such as 16-bit
or 8-bit floating-point or fixed-point formats. This conversion leads to improve-
ments in model size, inference speed, and resource utilization without compromis-
ing accuracy significantly. Quantization is particularly beneficial for reducing mem-
ory bandwidth requirements and enhancing cache utilization during model deploy-
ment. Additionally, quantization can be employed to simplify and optimize the com-
putational pipeline of large-scale models, that are anyway too big to fit embedded
devices. For instance, large language models (LLMs) can achieve excellent perfor-
mance on various tasks [12, 157] but their huge memory footprint and computa-
tional overhead increase the deployment cost and energy consumption. By quantiz-
ing both weights and activations using low-bit integers [153], it is possible to reduce
GPU memory requirements and speed up the processing-intensive operations.

Quantization approaches vary based on the model, requiring prior knowledge and
extensive fine-tuning for successful implementation. Challenges and trade-offs arise
in terms of accuracy and model size, especially with low-precision integer formats
like 4-bit fixed-point, which can have a limited dynamic range and lead to accuracy
loss during conversion from higher-precision floating-point representations.

Assuming to have a neural network with L layers, whose learnable parameters (de-
noted as θ) and hidden activations (denoted as hi for layer i) stored in floating point
precision, the goal of quantization is to reduce the precision of both θ weights and hi
intermediate activations to low-precision, with minimal loss of accuracy.

A common quantization function [62, 103] Q (·) used in DNNs is expressed as fol-
lows:

Q (r) = Int
( r

S

)
− Z (1.1)

where r is the real-valued input, S is the real-valued scaling factor, Z is the integer
zero point, and Int (·) approximates a real value to an integer value with a round-
ing operation. Equation 1.1 is known as uniform quantization because the quantized
values are equally spaced, as depicted in Figure 1.2. The inversion of Equation 1.1,
known as dequantization, can be used to recover r real values from Q (r) quantized
values, as reported below:

r̃ = S (Q (r) + Z) (1.2)

Recovered r̃ values do not match exactly the original r values due to the rounding
operation.

The scaling factor S uniformly divides the range of real values, as reported below:

S =
β − α

2b − 1
(1.3)

where [α, β] denotes the range of real values and b is the quantization bitwidth. In
order to compute the scaling factor S, the range [α, β] must be determined through
a process named calibration. When α ̸= −β the Equation 1.3 is referred to as asym-
metric quantization, as it changes the zero representation between real and quantized
values (Figure 1.3). In asymmetric quantization, a typical choice for the parameters
is α = rmin, β = rmax. By choosing α = −β, Equation 1.3 is referred to as symmetric
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FIGURE 1.2: Uniform quantization function. Real values of r are mapped into low-
precision quantized values (marked with red dots) Q (r). The distance between quan-
tized red values is constant in uniform quantization. The green plot represents the
quantization function that converts values from floating-point to integer representa-

tion (the corresponding red dots).

quantization, as it preserves the zero point representation (Figure 1.3). In symmetric
quantization, a common choice is to set −α = β = max (|rmax| , |rmin|). Asymmetric
quantization better exploits the quantized range than symmetric quantization when
adopted to quantize unbalanced data, such as outputs of the ReLU activation func-
tion. On the other side, symmetric quantization simplifies the computation as it sets
Z = 0, resulting in:

Q (r) = Int
( r

S

)
(1.4)

= 2 = + 20

127 +1270

Symmetric Quantization

= 1.5 = + 2.50.50

128 +1270Z

Asymmetric Quantization

FIGURE 1.3: On the left it is illustrated an example of symmetric quantization (using
a restricted range of [−127,+127]) that preserves zero representation. On the right an

example of asymmetric quantization.



1.1. Deep Learning (DL) 7

The determination of the clipping range [α, β] is typically executed statically both
for weights and activations as the dynamic determination of the range for the ac-
tivations is too computationally expensive. The range for weights can be statically
determined at the end of the training by freezing the parameters before inference.
For activations, the range is calculated by feeding the network with a series of cali-
bration samples and computing the resulting range for each activation that needs to
be quantized.

The quantization of weights and activations inevitably introduces approximations
that could degrade model accuracy. It is therefore necessary to slightly change quan-
tized values. This can be achieved by retraining the model, through a process called
Quantization-Aware Training (QAT), or performed without re-training, referred to
as Post-Training Quantization (PTQ). Both processes are illustrated in Figure 1.4.

Model Pre-trained

Quantization

Retraining

Quantized Model

Training dataset

Model Pre-trained

Range determination

Quantization

Quantized Model

Calibration data

Quantization-Aware Training Post-Training Quantization

FIGURE 1.4: Flow chart of the steps required to perform Quantization-Aware Training
(on the left) and Post-Training Quantization (on the right).

Quantization-aware training is a technique that simulates the quantization process
during model training, helping to prepare the model for quantization. In QAT, for-
ward and backward passes are executed on floating-point values which have been
approximated using Equations 1.1 and 1.2. The execution of backward passes using
floating-point precision is essential as quantized gradients could lead to zero gradi-
ent updates with high error. In QAT the Equation 1.1 is not differentiable and even
worse, its gradient is zero almost everywhere. A common approach used to address
this issue is to approximate the gradient of Equation 1.1 with the Straight Through
Estimator [9] (STE), which substantially ignores the quantization operation by ap-
proximating gradient with the identity function. STE plays a central role also in
Binary Neural Networks and it is further discussed in Section 2.2. The main draw-
back of QAT is the computation effort required to retrain the model. This process
could require hundreds of epochs to recover floating-point accuracy.

A valuable alternative to QAT is represented by Post-Training Quantization, which
quantizes weights and activations without any post-training phase [6, 17, 22, 33, 34,
35, 36, 52, 59, 77, 80, 97, 104, 125]. Unlike QAT, which necessitates a large portion of
the training dataset, PTQ can be applied to use cases where the availability of data is
limited or unbalanced. However, PTQ, as it uses a limited set of training data, yields
lower accuracy compared to QAT.

The deployment of a quantized model can happen using directly the integer-only
quantization or by simulating quantization. In the first case, a real quantized graph is
deployed where all the operations are executed using integer arithmetic (e.g. 8-bit)
and it can provide memory-saving and processing speed-up. Instead, the simulated
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quantization generates a fake quantized graph where model weights are stored us-
ing integer precision, but the computationally expensive convolutions and matrix
multiplications are performed using floating point precision. So, fake quantized
graphs cannot provide good efficiency as they require to quantize/dequantize ac-
tivations before each floating-point operation. Additionally, the execution of the
graph requires more memory as all the intermediate activations have to be stored
using floating-point precision. Nevertheless, fake quantization can be employed in
scenarios that are bandwidth-bound rather than compute-bound. The comparison
between integer-only and fake quantization graphs is depicted in Figure 1.5 (more
detailed discussions on this topic can be found in [103, 37]).

INT 8-bit

Dequantization

Multiplication

Input (8-bit) Weights (8-bit)

Accumulation

Activation

FP 32-bit

FP 32-bit

FP 32-bit

INT 8-bit INT 8-bit

Multiplication

Input (8-bit) Weights (8-bit)

Accumulation

Activation

INT 16-bit

INT 32-bit

INT 8-bit

INT 8-bit

Quantization Quantization

INT 32-bit

INT 8-bit

FP 32-bit

Integer-Only QuantizationFake Quantization

FIGURE 1.5: Comparison of the steps required in simulated quantization (Left) and
integer-only quantization (Right).

Pruning

Network pruning involves the removal of redundant parameters or neurons that do
not significantly contribute to the accuracy of results. Research on network prun-
ing can be broadly categorized into sensitivity calculation and penalty-term meth-
ods [116] and recent works have shown continued interest and improvements in
both categories or a combination of them. New pruning techniques have also been
developed, and modern approaches can be classified based on various aspects, in-
cluding whether pruning is structured or unstructured (depending on whether the
pruned network is symmetric or not), neuron and connection pruning (based on the
pruned element type), and static versus dynamic pruning. In the latter, the distinc-
tion between static and dynamic pruning lies in when the pruning steps are per-
formed, offline for static pruning, while dynamic pruning occurs during runtime.

Magnitude-based pruning, introduced by Han et al. [48], involves iteratively remov-
ing weights below a certain threshold, fine-tuning the network, and repeating the
process until accuracy begins to degrade. The method was applied to various net-
works, including LeNet [75] on MNIST, as well as AlexNet [72] and VGG16 [127]
on ImageNet. The results showed that the number of weights could be significantly
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reduced without sacrificing accuracy. The study emphasized the benefits of itera-
tive pruning, showing that earlier layers are more sensitive to pruning, and iterative
pruning is more effective than one-shot pruning. Pruning a weight means setting
it to zero generating a sparse weight representation that can lead both to memory
reduction and processing speed-up. Han et al. achieved an impressive 40× com-
pression rate reduction on AlexNet and VGG16. Additionally, Guo et al. [45] noted
a limitation of magnitude pruning, where important weights might be prematurely
removed. To address this, they proposed Dynamic Network Surgery (Dyn Surg),
maintaining a mask indicating which weights to remove or retain in each training
cycle.

In the realm of pruning, methods that operate at the granularity of filters and chan-
nels offer advantages over those dealing with sparse-weight matrices, as the former
can leverage existing optimizations in many toolkits without requiring specialized
libraries or hardware for sparse matrices. Approaches to filter and channel pruning
generally fall into three categories:

• Data-dependent channel pruning methods: These methods operate on the
premise that when presented with different inputs, output channels (or feature
maps) should exhibit variations since they are designed to detect discrimina-
tive features.

• Data-independent pruning methods: These techniques utilize properties of
filters and output channels, such as the proportion of zeros present, to deter-
mine which filters and channels should be pruned. These methods do not rely
on specific data but focus on inherent characteristics.

• Optimization-based channel approximation pruning methods: These meth-
ods employ optimization techniques to reconstruct filters that approximate the
output feature maps. The goal is to recreate filters that capture the essential in-
formation conveyed by the original ones, allowing for more informed pruning
decisions.

Compared to quantization, pruning requires in general optimized libraries to take
advantage of the sparse weight matrices and a specific hardware support [63, 19,
111] to be effective, as tensor processing unit or general purpose SIMD do not of-
fer dedicated instructions. Mixing quantization with pruning can guarantee good
speed-up improvements (3 − 4×), as shown by Han et al. [48].

1.2 Datalogic Use Cases

Datalogic is a company that produces and sells devices used to automatically cap-
ture and identify data, operating in many market segments, such as retail, health
care, transportation, logistics, and manufacturing. A representative set of Data-
logic products is reported in Figure 1.6. Some of them (Powerscan, Hand-Scanner,
QuickScan, Rida and Memor) are battery-powered, therefore requiring efficient pro-
cessing to increase battery duration (adopting a low-power embedded CPU). In-
stead, other devices (such as AV series) employing more powerful CPUs, are cable-
powered as they are used to analyze a huge amount of data with real-time con-
straints. All the devices shown in Figure 1.6 are equipped with an input sensor
used to extract information from the scene: 1D/2D CMOS or CCD sensors but also
3D cameras. In general, the requirements (specific for each application/product) of
depth-of-field (DOF) and field-of-view (FOV) force the adoption of high-resolution
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Powerscan Hand-Scanner QuickScan Rida Halogen

Memor Gryphon Magellan AV series

FIGURE 1.6: Example of devices produced by Datalogic.

input sensors that are processing-hungry. The data-processing step usually repre-
sents the most critical part of Datalogic devices that must be efficient and optimized
to reduce latency. By leveraging AI technology it would be possible to increase the
performance of the devices but accurate considerations must be made. AI cannot
slow down the actual processing even though could increase the accuracy of the re-
sults. Therefore, the scope of this work is focused primarily on deploying efficient
deep neural networks on Datalogic devices. On such devices, which are usually lim-
ited in terms of memory, power (many devices are battery-powered), and computing
capabilities, the deployment of neural network models can be challenging. Indeed,
considering the barcode decoding scenario, even the low-end devices usually have
to process images, having a resolution of 1280× 1024, at a frame rate varying from 30
to 60 frames per second. In a simple use case scenario, with a frame rate of 30 fps, the
time budget available to analyze each video stream image is around 30 milliseconds.
Considering an off-the-shelf shallow model, such as MobileNet [57, 121, 70] or Effi-
cientNet [130, 131], the inference time of its 8-bit quantized version (using technique
introduced in section 1.1.3) on a Raspberry Pi 3B is around 3001 milliseconds for an
input image resolution of 224 × 224, as reported in [40]. This means that a huge
speed-up is required to equip Datalogic devices with AI technology without adopt-
ing additional dedicated hardware such as a Tensor Processing Unit (TPU), ASIC,
or FPGA that would increase the overall cost and power of the system. In Chapter
5, we present some real-world applications running on edge devices showing some
preliminary details and solutions using the techniques reported in Chapters 3 and 4.

1.2.1 Open Issues in DNNs

Despite the aforementioned advantages of DNNs and CNNs, some other negative
aspects persist, by preventing the deployments of such models on Datalogic’s de-
vices (Figure 1.6). In particular, the most important investigated within this thesis
are reported below:

1Single thread computation using TF Lite with XNN-Pack.
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• Computationally inefficiency. Deep Learning is computationally very de-
manding, requiring consistent computational power and time to train deep
architectures. Even though many powerful GPUs (or specialized hardware
such as TPU) are available for the training of large models, the deployment of
such models on edge or embedded devices is still challenging because of a lack
of resources. Neural networks are usually trained using 32-bit floating-point
computation which is more inefficient compared to fixed-point computation.
Moreover, many embedded CPUs are not equipped with floating-point units
(FPUs) resulting in prohibitive forward pass timings. Some optimization tech-
niques, such as quantization, have been adopted to speed up the computation
but the processing load is still not acceptable for many industrial-embedded
applications. In Chapter 3, some optimization techniques that allow to speed
up Binary Neural Networks are introduced.

• Memory demanding. Deep Learning relies on a deep sequence of layers used
to extract features to be propagated along the model. The memory necessary to
execute the training and the inference is often too high to accommodate these
models on embedded devices. The reduced volatile memory (RAM) available
on such tiny systems usually does not fit the memory constraints, limiting or
even preventing the usage of neural networks.

• Poor availability of frameworks for on-device training. Many inference en-
gines, used to execute forward pass of neural networks, are available on the
market, such as Tensorflow Lite, OpenVINO, ONNX Runtime and STMicro-
electronics X-Cube-AI or NanoEdgeAI. They can handle many kinds of layers
supporting both floating-point and fixed-point computation. Unfortunately,
they completely miss the necessary implementations to execute efficient on-
device training. This limitation prevents the deployment of models that can
continuously learn on-device.

• Lack of adaptability. Despite the great improvements achieved in recent years,
DNNs still reach poor performances when applied to the target application
that inevitably differs from the training data. To face the continual learning
challenges offered by real-world use cases, a DNN should be able to distill
or eventually learn the core skills or concepts necessary to reach a goal. Ide-
ally, neural networks should be able to incrementally improve when unknown
data or problems are encountered. Unfortunately, Deep Learning and the it-
erative learning procedure (gradient-based) are not sufficient to achieve this
level of adaptability and DNNs usually incur in the catastrophic forgetting issue.
This research field, applied to efficient and quantized models, has been only
marginally addressed in the literature. In Chapter 4, some continual learning
solutions that work in combination with binary neural network models are
presented.

To address previous DNN limitations, many strategies have been proposed but un-
fortunately, when a low-power device is used to accommodate a quite computation-
ally demanding task with challenging processing constraints, state-of-the-art tech-
niques are not sufficient to guarantee good performances, and further optimizations
are requested.
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1.2.2 Contributions of this thesis

Binary Neural Networks (Chapter 2) demonstrated to be a valid solution to de-
ploy models on tiny low-power devices as they do not require the multiply-and-
accumulate operation, relying exclusively on bitwise and popcount arithmetic. Ad-
ditionally, BNNs heavily reduce the memory footprint of the models as they need
to use only 1-bit for weights and activations. Therefore, BNNs represent a valid al-
ternative to off-the-shelf models such as MobileNet, to be incorporated within Dat-
alogic devices as they reach good speed-up preserving an accuracy comparable to
non-binary models.

Pushing further research into binary neural networks is a fundamental element in
empowering Datalogic devices with AI technology. Therefore, to facilitate the adop-
tion of deep learning-based solutions within Datalogic products, extending them be-
yond the current predominant use of traditional and hand-crafted computer vision
algorithms, the next points require to be addressed:

• Efficiency in BNN data flow. Despite the great advancements proposed in the lit-
erature, only a few works proposed solutions benchmarked on real embedded
devices without using dedicated hardware such as FPGA or TPU. Most of the
solutions proposed rely on floating-point computation to execute non-binary
layers, therefore mixing quantized (binary) with floating-point computation.
By improving BNN data flow it is possible to further reduce inference time
and remove the constraint of using a floating-point unit, not available on many
tiny devices (Section 3.1).

• Fully-binary model. Almost all the works on BNNs do not binarize the input
layer of the model as the binarization of the first layer usually introduces a
high accuracy gap compared to the equivalent model with the input layer
in floating-point. The binarization of the first layer offers the opportunity
to completely remove floating-point calculus allowing a simpler deployment
on FPGA or ASIC devices, as the floating-point unit usually dominates the
amount of silicon chip used (Section 3.2).

Furthermore, real-world applications require a certain level of adaptability to the
constantly changing environment. The ability of the systems to adapt their behav-
iors represents a crucial feature for the widespread adoption of such devices. Many
works in literature addressed the incremental or continual learning task but only a
few of them focused on low bit-width efficient models. Putting effort into making
a model computationally efficient is important as much as letting it adapt to new
data acquired. The continual learning solution, to be employed in real-world appli-
cations, should investigate the following points, all related to the so-called on-device
learning (as reported in Chapter 4):

• Operate with limited memory available. Training a model requires much more
memory compared to the model memory footprint (weights) [83]. To avoid
the catastrophic forgetting issue, a useful technique adopted is to replay past
samples when learning new data. This approach requires additional mem-
ory to store past samples, further increasing the total memory demand. On
embedded devices such memory amount is often challenging and ad-hoc op-
timization is requested to fit the constraints.

• Learn with a truly-quantized model. Network training is executed with floating-
point precision to guarantee enough precision in gradients computation and
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update. Unfortunately, models deployed on embedded devices are usually
quantized (or binarized) to be more efficient. Improving model adaptability
by learning with quantized weights and activation represents a great challenge
that requires investigations to balance the trade-offs.

• Handle unknown scenarios. A system deployed on real devices should have the
capability to handle unexpected scenarios and tasks. If a system is restricted
to a specific setting then it is challenging for the system to learn and act au-
tonomously and effectively.
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Chapter 2

Binary Neural Networks (BNNs)

Binary Neural Networks (BNNs) are a specific type of neural network where the
activations and weights in all hidden layers, usually except for the input and out-
put layers, are represented with 1-bit values. BNNs can be seen as a highly com-
pressed variant of NN (including Convolutional Neural Networks, CNNs), as they
share the same structure but differ in the precision of their activations and weights.
BNNs specifically focus on the technique of binarization, which involves converting
32-bit activations and weights into 1-bit values. This binarization process is used
both to reduce the storage requirements of the model and also to minimize ma-
trix computation costs by utilizing XNOR and popcount operations. Research by
Rastegari et al. [113] has demonstrated that BNNs could achieve memory savings 32
times greater and perform convolution operations 58× faster than their 32-bit CNN
counterparts. In traditional CNNs, a significant portion of computational costs is
attributed to matrix multiplication within the convolution operation. The basic con-
volution operation, excluding bias, can be mathematically expressed as:

Z = I ⊛W, (2.1)

where I and W represent the activations and weights, respectively, while Z is the
output. This multiplication involves a significant number of floating-point opera-
tions, including both multiplication and addition, which can increase latency during
neural network inference. To address this issue, Courbariaux et al. [23] proposed the
first vanilla BNN architecture, reported in the next section.

An artificial neural network requires two fundamental processes: forward propa-
gation and backward propagation. Forward propagation involves the information
flow from the input layer (located on the left side) to the output layer (located on
the right side) as depicted in Figure 2.1. This process is also referred to as model
inference, where the network makes predictions based on the given input. On the
other hand, backward propagation entails the movement of information from the
output layer (right) back to the input layer (left), as shown in Figure 2.1. This pro-
cess is responsible for fine-tuning the model’s weights through a technique known
as gradient descent.

Sections 2.1 and 2.2 specifically delve into the functioning of BNN during forward
propagation and backward propagation, respectively.
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FIGURE 2.1: BNN vs. CNN.

2.1 Forward Propagation

The neural cell serves as a fundamental computational unit in the forward propa-
gation of a neural network. In contrast to the 32-bit Convolutional Neural Network
(CNN), the neural cell in the Binary Neural Network (BNN) incorporates binariza-
tion step for the input activations (I) and weights (W) prior to the convolution op-
eration. This binarization step aims to represent the floating-point values of the
activations and weights using a single bit. Figure 2.2 illustrates the disparity in com-
putation steps within a neural cell along the forward path between the naive BNN
and the 32-bit CNN. The sign function (Equation 2.2) is widely adopted to binarize
both weights and activations:

sign (x) =
{
+1 i f x ≥ 0
−1 otherwise.

(2.2)

After binarization, the binary weights (Equation 2.3) and activations (Equation 2.4)
can be expressed respectively as:

BW = sign (W) (2.3)

BI = sign (I) . (2.4)

By using Equations 2.3 and 2.4 we can express the binary convolution operation as:

𝑍 = 𝑊 ∗ 𝐼 + 𝑏 𝑌 = 𝑓 𝑍Input 𝑰 Output 𝒀

Convolution Activation

Step 2Step 1

32- bit Conv layer

𝑍 = 𝐵𝑊 ∗ 𝐵𝐼 + 𝑏 𝑌 = 𝑓 𝑍Input 𝑰 Output 𝒀

Convolution Activation

Step 3Step 1

1- bit Conv layer

𝐵𝑊 = 𝑠𝑖𝑔𝑛 𝑊
𝐵𝐼 = 𝑠𝑖𝑔𝑛 𝐼

Sign Extraction

Step 2

FIGURE 2.2: Internal steps of a 32-bit CNN neuron compared to a naive BNN cell.
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XNOR

-5

POPCOUNT

FIGURE 2.3: Naive BNN forward propagation compared to 32-bit CNN. Popcount
operation refers to Equation 2.6.

Binary Activations BI Binary Weights BW XNOR Results %

−1 (0) −1 (0) +1 (1)
−1 (0) +1 (1) −1 (0)
+1 (1) −1 (0) −1 (0)
+1 (1) +1 (1) +1 (1)

TABLE 2.1: BNN XNOR operations

BZ = BI ⊛ BW = sign (I)⊛ sign (W) . (2.5)

Because BI and BW possible values are −1,+1, the output of the binary multiplica-
tion corresponds to the result of XNOR, as shown in Table 2.1. This result allows
us to replace the expensive matrix multiplication of Equation 2.5, with a lightweight
bitwise XNOR and popcount operation. The complete formula that uses XNOR and
popcount to compute the binary convolution is expressed in Equation 2.6

BZ = popcount (XNOR (BW , BI)) ∗ 2 − Nsize, (2.6)

popcount returns the number of bits set to 1 and is already available on all modern
CPUs (ARM, Intel). Nsize is the input size of the XNOR operation; in Figure 2.3 is
equal to 9. Figure 2.3 shows a comparison of the convolution operation between a
standard CNN and a BNN.
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2.2 Backward Propagation

The binarization function 2.2 is not differentiable, and even worse, is zero almost
everywhere. So, the traditional gradient descent method based on a backward prop-
agation algorithm would not work for learning the binary weights. To overcome
this challenge, Courbariaux et al. [23] utilize the technique known as the straight-
through estimator (STE) [133, 9] to learn binary weights during backward propaga-
tion, as reported below:

STE (x) =
{

1, i f x ≥ −1 and x ≤ 1
0 otherwise.

(2.7)

Using Equation 2.7, the gradient of the sign function is ignored and the incoming
gradient is passed through as if the derivative of the sign function was the Iden-
tity function. the formula 2.7 also clips the gradient values when the input tensor
exceeds the range −1,+1, as suggested in [58].

Figure 2.4 provides an illustration of the process of learning binarized weights in a
Binary Neural Network. During BNN training, each layer’s real weights are retained
and updated using STE. Upon completion of training, binarized weights are saved,
and the real weights are discarded.

In spite of the faster inference speed and smaller weight sizes exhibited by naive Bi-
nary Neural Network [23], its accuracy performance is considerably lower compared
to full-precision Convolutional Neural Networks in the initial stages. This discrep-
ancy can be attributed to the significant loss of information resulting from parameter
binarization, which includes binary activations and binary weights. To mitigate this
concern, several optimization approaches have been introduced in recent years. In
the subsequent section, we categorize and examine these methods.
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𝑆𝑖𝑔𝑛 𝑥 = ቊ
+1, 𝑥 ≥ 0
−1, 𝑥 < 0

𝐴𝑝𝑝𝑟𝑜𝑥 𝑥 = ቐ
−1, 𝑥 < −1
𝑥, −1 ≤ 𝑥 ≤ +1
+1, 𝑥 > +1

Sign𝑰 𝑩𝑰

STE

𝑺𝑻𝑬 𝒙 =
𝜕𝐴𝑝𝑝𝑟𝑜𝑥 𝑥

𝜕𝑥
= ቊ

1, −1 ≤ 𝑥 ≤ +1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

FIGURE 2.4: Backward pass approximation as suggested in [58].
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2.3 Binary Neural Network Optimization

To provide an up-to-date overview of the latest advancements in Binary Neural Net-
work models, multiple optimization and improvement techniques have been pro-
posed. These enhanced solutions can be categorized into five distinct categories, as
depicted in Figure 2.5: (1) quantization error minimization, (2) improvement of the
loss function, (3) gradient approximation, (4) network topology structure, and (5)
training strategy and tricks.

2.3.1 Quantization Error Minimization

Scaling Factor

To mitigate the information loss that occurs during the binarization of 32-bit values
to 1-bit values by means of the sign function, Rastegari et al. [113] proposed the use
the channel-wise scaling factors for both activations and weights in their XNOR-Net
approach. As a result, Equations 2.4 and 2.3 are modified to incorporate these scaling
factors, represented by α and β. The revised equations are as follows:

BI = α ∗ sign (I) (2.8)

BW = β ∗ sign (W) , (2.9)

where α and β are:

α =
1
n
∥I∥L1

, (2.10)

β =
1
m

∥W∥L1
, (2.11)

n and m are the number of elements in I and W, respectively. Therefore Equation 2.1
can be re-written for binary operations as:

BZ = BI ⊛ BW = (α ∗ sign (I))⊛ (β ∗ sign (W)) = (α ∗ β) ∗ (sign (I)⊛ sign (W)) .
(2.12)

In addition to the approach proposed by Rastegari et al., Bulat et al. [15] proposed
an improvement to XNOR-Net, named XNOR-Net++, where the contribution of ac-
tivations and weights is merged into a single scaling factor as reported in Equation
2.12:

BZ = (BI ⊛ BW)⊙ Γ. (2.13)

The authors proposed to construct Γ in four different methods but the one that
achieves the best accuracy is the following:

Γ = α ⊗ β ⊗ γ, α ∈ RBZ ,β ∈ RIout ,γ ∈ RWout , (2.14)
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• Reduce information loss when sign
function is applied

Quantization Error
Minimization

• Add custom loss or regularization
functions

Loss Function
Improvement

• Approximate gradient during backward
pass to retain more information

Gradient
Approximation

• Improve network topology by utilizing
ad-hoc schemas suitable for BNNs

Network topology
improvement

• Reduce BNN accuracy drop by 
adopting specific training tricksTraining strategy

FIGURE 2.5: BNN optimization solutions.

where ⊗ represents the outer product and α, β and γ are learnable parameters. Zhao
et al. [160] introduced a novel method called DA-BNN (Data-Adaptive Binary Neu-
ral Network). This method is designed to generate an adaptive amplitude based
on spatial and channel attention to better approximate real-values output features
using 1-bit convolutions.

Quantization Function

In addition to using sign functions for activation and weight binarization, several
works have introduced alternative methods to quantize parameters belonging to the
values {−1;+1}. These methods include DoReFa-Net [161], UniQ [108], Quantization-
Networks [151], and DSQ [41], which proposed k-bit methods for parameter quan-
tization, including binarization. These 1-bit methods offer a different approach to
binarizing parameters compared to the use of sign functions. SI-BNN [142] intro-
duced an approach that suggests binarizing activations to the range of [0;+1] and
binarizing weights to the range of [−1;+1] as a means to alleviate information loss.
Liu et al. [90] proposed ReActNet, which employs the RSign as a binarization func-
tion. It incorporates channel-wise learnable thresholds, expressed below:

Bj
I = rsign

(
I j
)
=

{
+1, i f I j > αj

−1, i f I j ≤ αj,
(2.15)

where I j is a real-valued activation on the jth channel and αj is a per-channel learn-
able threshold. ReActNet replaces the binary convolution of Equation 2.5 with the
following expression:

BZ = (rsign (I)⊛ sign (W))⊙ α, (2.16)
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where α represents a channel-wise scaling factor of weights. The derivative
∂rsign(I j)

∂αj

can be computed through the chain rule as:

∂rsign
(

I j)
∂αj = −1. (2.17)

Instead, the derivative
∂rsign(I j)

∂I j is approximated considering a piece-wise polyno-
mial function as:

react (a) =


−1 i f I < −1

2I + I2 i f − 1 ≤ I < 0
2I − I2 i f 0 ≤ I < 1

1 otherwise,

(2.18)

∂react (I)
∂I

=


2 + 2I i f − 1 ≤ I ≤ 0
2 − 2I i f 0 ≤ I < 1

0 otherwise.
(2.19)

Xu et al. [150] proposed the Rectified Clamp Unit (ReCU), which is a weights stan-
dardization method that aims to address the inherent trade-off between minimiz-
ing quantization error and maximizing information entropy in BNN. As reported in
their work, ReCU is defined as follows:

recu (W) = max
(

min
(

W, Q(τ)

)
, Q(1−τ)

)
, (2.20)

where Q(τ) and Q(1−τ) represent the τ quantile and 1 − τ quantile of W, respec-
tively. After applying balancing, weight standardization, and the Rectified Clamp
Unit (ReCU) to the weight parameter W, the generalized probability density function
(PDF) of W can be expressed as follows:

f (W) =


1
2b exp

(
−|W|

b

)
i f |W| < Q (τ)

1 − τ i f |W| = Q (τ)
0 otherwise,

(2.21)

where b is computed using the following:

b = mean (|W|) , (2.22)

mean (|·|) returns the mean of the absolute values w.r.t. the inputs. The gradient of
weights is computed by means of the chain rule and employing the STE approxi-
mation for sign extraction 2.7. The derivative of the ReCU activation function with
respect to the input I is given by the gradient of the piecewise polynomial function,
as reported below:

∂L
∂sign (I)

=
∂L

∂sign (I)
· ∂sign (I)

∂I
≈ ∂L

∂sign (I)
· ∂F (I)

∂I
, (2.23)
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where

∂F (I)
∂I

=


2 + 2I i f − 1 ≤ I < 0
2 − 2I i f 0 ≤ I < 1

0 otherwise.
(2.24)

Lin et al. [85] proposed SiMaN, an angle alignment objective, known as sign-to-
magnitude, to constrain weight binarization to the values of [0;+1]. Tu et al. [134]
introduced AdaBin, an optimal binary set of weights and activations for each layer.

Activations/weights distribution

In contrast to directly optimizing the binarization process in the convolution layer,
several approaches directly focus on optimizing and reshaping activations and weights
distribution before the binarization step, such as Qin et al., [112], Shen et al., [123],
Yang et al., [152], Lin et al., [84], Kim et al., [67], and Li et al., [81]. Additionally,
Hou et al., [56] proposed a proximal Newton algorithm that directly minimizes the
loss w.r.t. the binarized weights. Li et al. [82] proposed a recursive binary quanti-
zation technique to mitigate information loss. Wang et al. [145] suggested utilizing
a reinforcement learning model to explore channel-wise interactions by applying
channel-wise priors on the intermediate feature maps using the interacted bitcount
function. Han et al. [47] introduced a training approach where the binarization func-
tion predicts the binarized weights through supervision noise learning. He et al. [53]
constructed a proxy matrix to reduce weights quantization error by preventing bi-
nary regularizations directly on the latent floating-point values.

2.3.2 Loss Function Improvement

In order to mitigate the accuracy drop observed in BNNs compared to real-valued
networks, several methodologies have been proposed. Essentially, all proposed so-
lutions try to regulate the activation distribution, expressed as:

Ltotal = LCE + λLDL, (2.25)

where LCE represents the standard cross-entropy loss for deep neural network train-
ing, LDL is the distribution loss for acquiring the appropriate binarization, and λ
serves to balance the impact of the two types of losses. By incorporating this sup-
plementary loss, the trained neural network can effectively overcome the aforemen-
tioned challenges as reported below. For instance, Tang et al. [132] introduced the
How-to-Train approach, where the usual L2 regularization function (which encour-
ages the weights to be closed to zero) is replaced by ad-hoc regularization term that
forces the weights to be bipolar. Darabi et al. [24] developed the BNN-RBNT tech-
nique by introducing a new regularization function that encourages weights to be
closed to binary values adding trainable scaling factors to the regularization term.
Ding et al. [29] introduced BNN-DL which proposes to use the distribution loss to
regularize the activations. Additionally, Xu and Cheung [149] put forth the CCNN
approach by adding a L2 regularization term to weights scaling factors. Moreover,
Gu et al. [44] proposed BONN adopting multiple bayesian losses to simultaneously
optimize the network in both continuous and discrete spaces. Lin et al. [84] intro-
duced RBNN which considers the angle between the full-precision and binarized
weight vectors within the loss function. Shang et al. [122] presented LCR, propos-
ing to keep the Lipschitz continuity as a regularization term, improving the model
robustness.
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2.3.3 Gradient Approximation

The sign function’s (Equation 2.2) derivative output is zero, which causes the weights
to remain unchanged during back-propagation. One way to approximate sign gra-
dients is by utilizing STE (Equation 2.7). However, STE fails to update weights
near the boundaries of -1 and +1, affecting the back-propagation’s updating abil-
ity. To address this issue, several methodologies have been proposed. For example,
Sakr et al. [120] introduced GB-Net, which employs true gradient-based learning
with parametrized clipping functions (PCF) and scaled binary activation functions
(SBAF) to train BNN. The SBAF is expressed as

SBAF (x) = α × 1x>0, (2.26)

where α represents a scaling parameter and 1x>0 denotes the indicator function.
Instead, the PCF is expressed as:

PCF (x) = min
(

max
( x

m
+

α

2
, 0
)

, α
)

, (2.27)

where m is the slope parameter. Similarly, Darabi et al. [24] proposed BNN-RBNT,
which utilizes a backward approximation based on the sigmoid function. The pro-
posed binarization function is expressed as follows:

SSβ (x) = 2σ (βx) [1 + βx {1 − σ (βx)}] , (2.28)

where σ (x) is the sigmoid function and β regulates the rate at which the activation
function approaches the values −1 and +1 as the input increases.

Liu et al. [88] presented Bi-Real Net, which uses a polynomial steps function to ap-
proximate the forward sign function as follows:

bireal (I) =


−1 i f I < −1

2I + I2 i f − 1 ≤ I < 0
2I − I2 i f 0 ≤ I < 1

1 otherwise
(2.29)

∂bireal (I)
∂I

=


2 + 2I i f − 1 ≤ I ≤ 0
2 − 2I i f 0 ≤ I < 1

0 otherwise.
(2.30)

The forward propagation of Bi-Real Net is the same as Equation 2.5. Xu and Che-
ung [149] introduced a derivation estimator to approximate their binarization func-
tion in CCNN. In particular, they adopted the sign 2.2 and the unit step (reported
below) function for weight and activation binarization respectively.

H (x) =
{

1 i f x ≥ 0
0 otherwise.

(2.31)

The authors of [149] proposed as the derivative of the sign function a piece-wise
linear function whose range is in [−0.5;+0.5] as follows:

dsign (x)
dx

≈
{

4 − 8 |x| i f − 0.5 ≤ x ≤ +0.5
0 otherwise.

(2.32)
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The derivative of H(x) is obtained through a long-tailed higher-order approximation
function with a range in [−1;+1]. The piecewise function proposed is the following:

dH (x)
dx

≈


2 − 4 |x| i f − 0.4 ≤ x ≤ +0.4

0.4 i f 0.4 < |x| ≤ 1
0 otherwise.

(2.33)

Qin et al. [112] and Lin et al. [84] independently designed a dynamic gradient esti-
mator that adjusts the gradient approximation during the training process in IR-Net
and RBNN, respectively. Specifically, IR-Net proposed a binarization function de-
fined as follows:

g (x) = k ∗ tanh (kx)
k = max

( 1
t , 1

)
, Tmin = 10−1, Tmax = 102

t = Tmin ∗ 10
i
N ∗log

(
Tmax
Tmin

)
,

(2.34)

where i is the current epoch on training and N is the total number of training epochs.
Wang et al. [142] developed SI-BNN, which utilizes a gradient estimator with two
trainable parameters on top of STE. Kim et al. [66] quantitatively analyzed differ-
entiable approximation functions and proposed using the gradient of the smoothed
loss function to estimate the gradient in BinaryDuo. Xu et al. [148] introduced FDA,
which utilizes a combination of sine functions in the Fourier frequency domain to
estimate the gradient of sign functions. Figures 2.6 and 2.7 provide a summary of
BNN techniques that propose gradient approximation methodologies.

2.3.4 Network Topology Structure

Binarization involves converting activations and weights to the set {−1;+1}. This
process effectively regularizes the data, leading to an unexpected change in the data
distribution post-binarization. Adjusting the network structure offers a promising
solution for accommodating these distribution changes. A simple reordering of the
layers in the network can enhance the performance of the binary neural network.
Alizadeh et at. [2] noted that most binarization studies have repositioned the pool-
ing layer. Placing the pooling layer immediately after the convolutional layer helps
prevent information loss resulting from max pooling after binarization. Experiments
have demonstrated a significant improvement in accuracy due to this reordering. In
addition to the pooling layer, the placement of the batch normalization layer also
significantly impacts the stability of the training in binary neural networks. Wang
et al. [143] and Cai et al. [18] inserted a batch normalization layer before all quanti-
zation operations to rectify the data. This transformation ensures that the quantized
input adheres to a stable distribution, often close to Gaussian, thus maintaining rea-
sonable mean and variance values and leading to a smoother training process.

In contrast with previous approaches, Liu et al. [88] proposed to directly modify
the network structure instead of adding new layers. Bi-Real Net connects the full-
precision feature maps across layers to the subsequent network, effectively adjusting
the data distribution through structural transformation. Mishra et al. [98] devised
Wide Reduced-Precision Networks (WRPN), which increase the number of filters in
each layer, thereby reforming the data distributions.

Zhu et al. [163] proposed the Binary Ensemble Neural Network (BENN) that lever-
ages the ensemble method to fit the underlying data distributions. Liu et al. [86]
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FIGURE 2.6: Shapes of forward and backward passes.

proposed circulant filters (CiFs) and a circulant binary convolution (CBConv) to en-
hance the capacity of binarized convolutional features, with circulant backpropaga-
tion (CBP) proposed to train the structures. Additionally, Shen et al. [123] appended
a gated residual to compensate for information loss during the forward process.

Bulat et al. [13], Kim et al. [65], Zhu et al. [162], and Bulat et al. [14] used designed
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NAS methods to search for BNNs architectures to compare accuracy performance
with other BNNs with similar model sizes that are binarized from classic networks
such as ResNet.

Inspired by MobileNet-v1, Phan et al. proposed MoBiNet-Mid [110] and Binarized
MobileNet [109], new BNN architectures with high accuracy performance, fewer op-
erations, and lighter model sizes. Bethge et al. [10](MeliusNet) and Liu et al. [90](Re-
ActNet) designed new architectures that can beat the accuracy rate of full-precision
lightweight MobileNet with fewer OPs computation cost.

Chen et al. [21] replaced the batch normalization (BatchNorm) with scaling factor,
and ReActNet without BatchNorm still has a competitive classification top-1 accu-
racy on the ImageNet dataset. Zhang et al. [159] extended ReActNet’s topology by
re-balancing the blocks of networks and designing a two 1-bit activation scheme to
improve feature learning, with a competitive top-1 prediction result on the ImageNet
dataset compared to full precision MobileNet-v2. Eventually, Redfern et al. [115] de-
signed a customized structure for ImageNet classification with a lower model size
compared to MeliusNet and ReActNet.

Zhang et al. [158] suggested establishing a connection between the unquantized in-
put activations and the output of the Conv and BN combination with a shortcut.
Unlike ReActNet [90], the authors recommended incorporating the Dynamic PReLU
(DPReLU) after the residual addition, followed by multiplying the output by the re-
sult of a Sqeeze-and-Excitation (SE) block, 4-bits quantized.
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Shi et al [124] introduced a replaceable convolution module called RepConv. This
module enhances feature maps by replicating the input or output along the channel
dimension by β times, without incurring additional costs on the number of param-
eters and convolutional computation. Falkena et al. [32] proposed to substitute the
sign (·) binarization function, which is an information bottleneck, with a learnable
activation binarizer (LAB) that enables the network to learn a fine-grained binariza-
tion kernel per layer. Lee et al. [76] proposed a BNN design named INSTAnce-aware
threshold BNN (INSTA-BNN), which dynamically controls the quantization thresh-
old in an input-dependent or instance-aware manner. The main representative set
of BNN structures is reported in Figure 2.8.
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2.3.5 Tricks and strategy for training Binary Neural Networks

There are several different training schemes and techniques that can impact the final
accuracy of Binary Neural Networks (BNNs). For instance, Dong et al. [30] pro-
posed a stochastic quantization algorithm that gradually trains and quantizes BNN
to compensate for quantization error.
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Liu et al. [88] used trainable parameters based on pre-trained real value networks
and replaced the ReLU activation function with the Hard Tanh function. Tang et
al. [132] replaced ReLU activation with the PReLU function and explored the influ-
ence of learning rate on the accuracy of the final trained BNN.

Xu et al. [147] introduced filter pruning for BNN. Diffenderfer et al. [28] designed a
scheme to learn highly accurate BNNs simply by pruning and randomly quantizing
weighted full precision CNN, inspired by the Lottery Ticket Hypothesis.

Wang et al. [145] trained simultaneously a reinforcement graph model and a BNN to
alleviate binarization inconsistency. Martinez et al. [95] designed a two-step training
strategy that applies the transfer teaching method by learning from a real value pre-
train network.

Alizadeh et al. [2] explored the impact of pooling, optimizer, and learning rate ini-
tialization for training BNN. Helwegen et al. [54] and Pham et al. [108] separately
proposed new optimizers for BNN training. Liu et al. [89] investigated and designed
a new training scheme based on Adam optimizer to improve Real-to-Bin [95] and Re-
ActNet’s [90] performance. Kim et al. [66] proposed a two-stage training scheme to
decouple a ternary-activation network into a two-binary-activation BNN network.
Ajanthan et al. [1] applied mirror descent to optimize BNN’s optimizer.

Laydevant et al. [73] and Wang et al. [141] explored BNN training directly on the
edge, using respectively Equilibrium Propagation and low-memory/energy train-
ing schemes. Livochka et al. [91] proposed a transfer training and initialization
scheme for BNN using the stochastic relaxation approach to improve accuracy on
the small-scale CIFAR-10 [71] dataset. Wang et al. [144] proposed a new method to
further compress and accelerate BNN in FPGA (more detailed solutions on this can
be found in [78, 128]) based on the observation of the binary kernels in BNN. These
different training strategies and techniques contribute to the advancement and im-
provement of Binary Neural Networks, each offering unique approaches to address
the challenges and limitations of BNNs.
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Chapter 3

Improving BNN Inference

In this chapter, we describe our contributions to the optimization of the inference
forward pass for a binary neural network. Specifically, the chapter introduces a new
method (section 3.1) to reduce the inference time of a BNN by removing most of
the floating-point computation. Later, in section 3.2, we present our solution used
to fully-binarize a neural network by binarizing also the input layer. The method
presented in Section 3.1 has been presented at TinyML EMEA Innovation Forum 2022,
while the research detailed in Section 3.2 has been published in [137].

3.1 Optimizing data-flow in Binary Neural Networks

The binarization approach, introduced in Chapter 2, has shown that a CNN model
can be quantized to 1-bit thus achieving a remarkable speedup compared to the full
precision network. Unfortunately, as reported in Section 2.3.3, the aggressive quan-
tization can make BNNs less accurate than their full-precision counterparts. Many
techniques have been proposed to fill the gap between 1-bit and 32-bit networks. To
prevent the generation of feature maps of lower quality and capacity, produced by
1-bit layers, a combination of binary and floating-point layers is usually adopted.
Unfortunately, each time a binary layer is connected to a floating-point one, the effi-
ciency of the pipeline is compromised by input/output layer data type conversion.
In addition, the internal parallelism of a binary layer depends on the encoding of the
accumulator, which is often maintained at 32 bits to prevent overflow. To overcome
the previous issue, we propose several optimizations that allow training a BNN with
an inter-layer data width of 8 bits. Moreover, even if 8-bit quantization of weights
and activations of a neural network is a well-known topic, as reported in [62], in
BNNs, 8-bit quantization is not widespread and the Batch Normalization (BN) layer
is usually executed in floating point arithmetic using off-the-shelf inference engines
[155, 8]. In contrast, we show that the quantization of the BN layer and the reduced
width size of the accumulator inside the binary operator can lead to a substantial
speed-up of the 1-bit layer (binary operation + BN).

Most prior work on BNNs emphasizes overall network accuracy; in contrast, we
aim to preserve initial accuracy while improving efficiency. Besides many efforts
to develop more efficient and accurate architectures, a few works have provided
benchmarks on real devices such as ARM processors. Based on the analysis pro-
vided in [8], the fastest inference engines for binary neural networks, with proven
benchmarks (Section 4 of [8]), are LCE and DaBNN. Our contributions, (graphically
highlighted in Figure 3.1a and 3.1b) reported in this section, can be summarized as
follows:
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• A novel training scheme is proposed to improve the data flow in the BNN
pipeline (Section 3.1.1); specifically, we introduce a clipping block to shrink
the data width from 32 to 8 bits while simultaneously reducing the internal
accumulator size.

• we provide (Section 3.1.1) an optimization of the Batch Normalization layer
when executed after a binary operation that decreases latency and simplifies
deployment.

• we optimize the Binary Direct Convolution method for ARM instruction sets
(Section 3.1.1).

To prove the effectiveness of the proposed optimizations, in Section 3.1.2 we provide
experimental evaluations that show the speed-up relative to state-of-the-art BNN
engines like LCE [8] and DaBNN [155].

3.1.1 Data-Flow Optimizations

As illustrated in Figs. 3.1a and 3.1b (a), the most commonly used BNN architec-
tures (e.g., VGG and ResNet) have four essential blocks in each convolution/fully-
connected (CONV/FC) layer: sign (binarization), XNOR, popcount and Batch Nor-
malization (BN). Since the weights, inputs, and outputs are all binary, the traditional
multiply-and-accumulate operation is replaced by XNOR and bit counting (i.e., pop-
count). XNOR and popcount are usually fused to improve efficiency. The use of
Batch Normalization after each binarized layer is very important in BNNs because it
makes the optimization landscape significantly smoother; this smoothness induces
a more predictive and stable behavior of the gradients, allowing for faster training.
Figures 3.1a and 3.1b (b and c) point out our proposed BNN optimizations during
training and inference. Before discussing them in detail, we show the data-flow bot-
tlenecks that affect existing solutions and then describe how to reduce them.

In Figures 3.2a and 3.2b we report an example of binary convolutional layer out-
puts for a VGG and a ResNet model. The ranges of activation values after popcount
(green histograms) exceed the interval [−128;+127] 1, so adopting an 8-bit encod-
ing would lead to overflow. To prevent such a data loss, most of the existing BNN
frameworks (including [8, 155]) encode such data in a 32-bit floating point. On the
other hand, the ranges of values after BN (red histograms in Figure 3.2) are more
limited.

We propose to accumulate the popcount output with 8-bit integers (using saturation
arithmetic) through a two-stage training procedure, which is designed to preserve
model accuracy. In the next subsection, we show how to apply this technique to
VGG and ResNet models.

Two-stage Clipping

Our training procedure selectively executes or skips a clipping operation at each bi-
nary layer (row b of Figs. 3.1a and 3.1b, blue blocks). A two-stage training method is
introduced to avoid accuracy loss when clipping is enabled: during the first warm-
up stage, the model is trained without any range constraints, while in the second
stage (details are reported in Algorithm 1) the network is trained with the clipping

1We consider the symmetric quantization interval [−127;+127] because this choice enables a sub-
stantial optimization opportunity, as reported in Appendix B of [62].



3.1. Optimizing data-flow in Binary Neural Networks 33

(A) VGG style block.

(B) ResNet style block.

FIGURE 3.1: a) Standard BNN blocks are used in [113] and [88]. b) BNN block with
output convolution clipping used during training. c) Optimized BNN block adopted
during inference. Popcount operation is performed using saturation arithmetic to
keep the data width to 8 bits at inference time. BN is replaced by a comparison in

case a, while in b BN is 8-bit quantized.
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(A) VGG Small output layers

(B) ResNet output layers

FIGURE 3.2: Example of output distributions after binary convolution. a, refers to a
VGG style network while b to a ResNet architecture. Green shows the distribution

before the BN layer and red afterward.
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Algorithm 1 Second stage training procedure for BNNs

1: Input: The full-precision weights W; the input training dataset
2: Output: BNN model with convolution output clipped
3: Initialize network weights W
4: repeat

{Forward Propagation}
5: for l = 1 to L do
6: Binarize floating point weights: W l

bin = sign
(
W l)

7: Binarize floating point features of previous layer: Fl−1
bin = sign

(
Fl−1)

8: Compute binary convolutions features: Fl
out = Fl−1

bin ∗ W l
bin

9: Clip Fl
out values to interval [−127;+127] with: Fl

out clipped =

max
(
min

(
127, Fl

out
)

,−127
)

10: Perform Batch Normalization: BN
(

Fl
out clipped

)
= γl Fl

out clipped−µl

σl + βl

11: end for
{Backward Propagation}

12: for l = 1 to L do
13: Compute gradients based on the binarization weights W l

bin, clipped convo-

lutions Fl
out clipped and batch normalization output BN

(
Fl

out clipped

)
14: Update full-precision weights W l

15: end for
16: until Convergence

block enabled. Based on the high accuracy reached at the end of the first training
stage, in the second training stage the model better tolerates clipping 8-bit quantiza-
tion; we experimentally found that this approach preserves the accuracy of a model
that does not contain clipping.

Batch Normalization Optimization

The BN layers after the clipping are also optimized/8-bit quantized to further in-
crease the data flow of the inference pipeline. The Batch Normalization layer scales
and shifts the output of the CONV/FC layer as follows:

BN
(

Fl
out

)
= γ

Fl
out − µ

σ
+ β (3.1)

where γ, µ, σ and β are learned parameters and Fl
out is the output feature of layer l

that is the input of BN function.

The BN optimization depends on the network model: VGG or ResNet. In both cases,
we show that it is possible to keep the inter-layer data type to 8-bit with appropriate
changes to the binary layer structure.

• VGG style block. When the BN layer is inserted in a pipeline similar to Figure
3.1a, where the following block is still binary, the BN operation can be sim-
plified by replacing multiplication and division in Equation 3.1 with a simple
comparison with a threshold τ. The simplification of Equation 3.1 leads to:
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FIGURE 3.3: a): 8-bit symmetric quantization procedure that reserves fractional/inte-
ger bits based on the range of input 32-bit floating point values. b): implementation
of the BN layer with 8-bit quantization using an internal 16-bit representation to pre-

serve accuracy.

sign
(

BN
(

Fl
out

))
=

{
+1 i f BN

(
Fl

out
)
≥ 0

−1 otherwise

γ
Fl

out−µ
σ + β ≥ 0 ⇒ τ

.
= µ − β σ

γ

sign
(

BN
(

Fl
out

))
=

{
+1 i f Fl

out ≥ τ else − 1
(
when γ

σ ≥ 0
)

−1 i f Fl
out ≤ τ else + 1

(
when γ

σ < 0
)}

(3.2)

The threshold τ of Equation 3.2 can be computed offline and easily quantized
to 8 bits in order to exploit the output features of layer l. Therefore, when
multiple BNN modules are stacked, Batch Normalization can be replaced by a
threshold comparison according to Equation 3.2. Even if BN can be replaced
with a threshold comparison, 8-bit data flow is still important because it allows
to accumulate the binary xnor and popcount operations directly on 8-bit using
saturation arithmetic instead of the standard 32-bit.

• ResNet style block. When a BNN block is placed in a ResNet style pipeline,
followed by an addition operator, Figure 3.1b, the BN layer can be executed
with both scaling and bias factors to 8 bits. As reported in Figure 3.3, the in-
ternal data representation of a quantized BN layer is expanded to 16-bit to
preserve accuracy during quantization but the input/output data type still re-
mains within 8 bits. The iterative quantization procedure we adopted is sym-
metric and keeps unaltered the zero point representation, as reported in Al-
gorithm 2. The procedure iterates over the BN floating-point layers and, for
each one: computes the quantization scale, quantizes, freezes the weights, and
retrains the remaining layers.
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Algorithm 2 Procedure to quantize the BN floating point layers in a BNN model
where convolution output is clipped.

1: Input: The full-precision weights W; the input training dataset
2: Output: BNN model with BN float layers replaced by 8-bit quantized version
3: for l = 1 to L do
4: if l is BN floating point then
5: Compute range of features Fl

out as: Rangel =
[
min

(
Fl

out
)

; max
(

Fl
out

)]
{lN is the number of layer variables (4 for BN)}

6: for h = 1 to lN do
7: Compute range of variable wl

h as: Rangewl
h
=

[
min

(
wl

h

)
; max

(
wl

h

)]
{1 bit is reserved for sign}

8: Compute bits used for range as: RangeBitswl
h

=

clip
(⌈

log2

(
max

(
abs

(
Rangewl

h
[0]

)
,
(

Rangewl
h
[1]

)))⌉
, 0, 15

)
9: Compute number of bits used for fractional part as: FracBitswl

h
= 15 −

RangeBitswl
h

10: end for
11: Select the Integer part (range) for all N weights as: RangeBitswl =

max
(

RangeBitswl
h

)
12: Select the Fractional part for all weights as: FracBitswl = 15 − RangeBitswl

13: for h = 1 to lN do
14: Add quantization noise to floating point weights wl

h as: wl
qh

=
1

FracBitswl
round

(
2FracBitswl ∗ wl

h

)
15: Replace wl

h with wl
qh

16: end for
17: Freeze wl weights and retrain the model {Export the quantized weights of

layer l for deployment}
18: for h = 1 to lN do
19: wl

quantizedh
= round

(
2FracBitswl ∗ wl

qh

)
20: end for
21: end if
22: end for
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FIGURE 3.4: The 7 × 7 input image with 3 different channels (denoted by color) is
convolved with two separate kernels to obtain a 5 × 5 output with two output chan-
nels. To better exploit the SIMD 128-bit registers a different memory layout for kernel

is devised:
[
outchannels, H f ilter, W f ilter, inchannels

]
.

Binary Direct Convolution optimization on ARM

The GEneral Matrix Multiplication (GEMM) is a widely adopted method to effi-
ciently implement convolutions. However, as reported in [156], the GEMM ap-
proach increases the memory footprint of the model, making a model’s porting to
an embedded device more difficult. Furthermore, GEMM routines are not always
optimized for convolutions on ARM devices, in particular ARMv8 (64-bit ARM ar-
chitecture) and its relevant operations such as vcount and addv.

vcount takes an N-byte vector as input and outputs an N-byte vector containing the
number of 1s present in each input byte. addv takes an N-byte vector as input and
outputs the sum of the N bytes as one single value.

Inspired by [156] and [155] we propose a hybrid direct binary convolution (see Fig-
ure 3.4) that uses both the addv instruction and the common add operations. The
binary convolution is usually composed of three different steps: binarization/bit-
packing, padding, and convolution. [155], executes these steps in a sequential way.
In contrast, we devise a more cache-friendly approach that collapses the previous
steps in one operation executed with tiling. We also devise a different kernel mem-
ory layout that better fits ARMv8 SIMD processing instructions, as illustrated in
Figure 3.4.

The implementation details of our binary convolution are reported in Figure 3.5. The
operation Extract sign bit executes the binarization, bit-packing, and padding. Then,
the (bit-wise) XNOR output is consumed by the popcount operation (vcnt 8-bit wise,
add and addv). On the ARM architecture, the latter can be implemented with vcount
and a sequence of additions (addv instructions). We decided to implement several
pair-wise additions and only a final addv instruction (which is more expensive). The
entire convolution process does not provide intermediate outputs but instead pro-
cesses the input data as a whole. It is worth noting that the clipping operation can
be obtained for free on ARM devices by exploiting its saturation arithmetic; all the
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FIGURE 3.5: The 3 × 3 × 128 input patch is convolved (XNOR + popcount) with one
kernel through the Extract sign bit, XNOR, and then popcount operations. Popcount
is performed using vcnt, summing in pairs the vcnt output, and the last step uses the
addv operation. TL (top left), TM (top middle), TR (top right), and ML (middle left)

indicate the position of elements inside the 3 × 3 patch.

addition operations (add and addv) can be limited to the fixed range [−127;+127]
by simply adding the postfix q to the operations and executing max to avoid −128
value.

3.1.2 Experimental Results

In this section, we first evaluate the efficiency result of our approach compared to
the state-of-art BNN frameworks such as LCE and DaBNN; the comparison is car-
ried out on real hardware devices like Raspberry Pi Model 3B and 4B with 64-bit
OS. Then, we present various accuracy benchmarks of the proposed two-stage train-
ing procedure focusing on CIFAR-10, SVHN, and ImageNet, and on two different
architectures: VGG and Resnet-18.

Efficiency Analysis

To validate the efficiency of our method we focused on the convolution macro-block
(to extend the results reported in [8] also to Raspberry Pi 3) of Figure 3.1 and com-
pared the efficiency of the proposed approach with LCE and DaBNN, which, to the
best of our knowledge, are the fastest inference engines for binary neural networks.

Our assessment was performed on ARMv8 platforms, Raspberry Pi 3B and 4B. We
implemented, differently from our predecessors, the convolution operation using
ARM NEON intrinsics instead of inline assembly. Intrisics allow to produce code
easier to maintain and automatically fits both ARMv7 and ARMv8 platforms with-
out losing appreciable performance compared to pure assembly code. In Figure 3.6
we compare implementations on targets Rpi 3B and 4B. Our solution shows a clear
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(A) Raspberry Pi 3 benchmark.

(B) Raspberry Pi 4 benchmark.

FIGURE 3.6: Latency evaluation of our method compared to DaBNN and LCE on
Raspberry Pi 3B (a) and 4B (b) devices.

performance improvement for single binarized convolutions for all kernels and, in-
cluding all the optimizations introduced in previous sections, accelerates binary con-
volution up to 1.91 and 2.73× compared to LCE and DaBNN with an average im-
provement of 1.46 and 1.61× respectively.

Accuracy Analysis

We evaluated two VGG-style networks (VGG-11 and VGG-Small) and a ResNet-18
for CIFAR-10 and SVHN. VGG-11 [147] and VGG-Small [154] are both high-capacity
networks for classification. Pre-trained binary models (BinaryResNetE18 and Bina-
ryDenseNet28) were adopted to evaluate the accuracy on ImageNet.

Results on CIFAR10 and SVHN. For CIFAR10 the RGB images are scaled to the
interval [−1.0;+1.0] and the following data augmentation was used: zero padding
of 4 pixels for each side, a random 32 × 32 crop and a random horizontal flip. No
augmentation is used at test time. The models have been trained for 140 epochs.
On SVHN the input images are scaled to the interval [−1.0;+1.0] and the follow-
ing data augmentation procedure is used: random rotation (±8 degrees), zoom
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Method Topology Bit-width CIFAR10 % SVHN %
BNN [23] VGGSmall [154] 32 FP 93.8 96.5

Main/Subs. Net. VGG11 [147] 32 FP 83.8 -
ResNet-18 [112] ResNet-18 32 FP 93.0 97.3

BNN VGGSmall 1-bit 89.9 96.5
XNOR-Net [113] VGGSmall 1-bit 82.0 96.5

Bop [54] VGGSmall 1-bit 91.3 -
BNN-DL [29] VGGSmall 1-bit 89.9 97.2

IR-Net [41] VGGSmall 1-bit 90.4 -
Main/Subs. Net. VGG11 1-bit 82.0 -
Bi-Real Net [88] ResNet-18 1-bit 89.3 94.7
ReActNet [90] ResNet-18 1-bit 91.5 95.7

ours VGGSmall 1-bit 88.8 96.1
ours VGG11 1-bit 83.7 95.5
ours ResNet-18 1-bit 90.3 95.3

TABLE 3.1: Accuracy comparison (top1) of our method with SOTA on CIFAR10 and
SVHN.

Method Topology Bit-width top1 % top5 %
XNOR-Net [113] ResNet-18 1-bit 51.2 73.2
Bi-Real Net [88] ResNet-18 1-bit 56.4 79.5

BinaryResNetE18 [11] ResNet-18 1-bit 58.1 80.6
BinaryDenseNet28 [11] DenseNet-28 1-bit 60.7 82.4

ours ResNet-18 1-bit 58.1 80.6
ours DenseNet-28 1-bit 60.7 82.4

TABLE 3.2: Accuracy comparison of our method with SOTA on ImageNet.

([0.95, 1.05]), random shift ([0; 10]) and random shear ([0; 0.15]). The models have
been trained for 70 epochs.

All the networks have been trained using the same training procedure without adopt-
ing additional distillation losses to further improve the accuracy of BNN models.

The accuracy achieved by the models is reported in Table 3.1 showing that the clip
operation does not substantially affect the overall accuracy and the two-stage clip-
ping allows to preserve the original accuracy. Figures 3.7, 3.8, 3.9 and 3.10 show the
training and validation curves on CIFAR10 and SVHN; we can note that a limited
number of epochs is necessary during the second training stage to recover accuracy.

Results on ImageNet. Tests were performed by using pre-trained binary versions
of ResNet18 and DenseNet28 [11] taken from zoo literature of Plumerai 2. Each BNN
module (refer to Figure 3.1) has been modified according to Figure 3.1b. Residual
blocks seem to be more robust to clipping compared to VGG style blocks (Results
are in Table 3.2).

3.1.3 Final Remarks on Data-Flow Optimization

In Section 3.1, it has been shown several optimizations in the BNN data flow that
achieve an overall speed-up of 1.91 and 2.73× compared to state-of-the-art BNNs

2https://docs.larq.dev/zoo/api/literature/
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(A) CIFAR10 first training stage curves.

(B) CIFAR10 second training stage curves.

FIGURE 3.7: Training loss and testing accuracy curves for VGG11 and VGGSmall on
CIFAR10 of the first and second training stages.
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(A) SVHN first training stage curves.

(B) SVHN second training stage curves.

FIGURE 3.8: Training loss and testing accuracy curves for VGG11 and VGGSmall on
SVHN of the first and second training stages.
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(A) CIFAR10 first training stage curves for ResNet-18.

(B) CIFAR10 second training stage curves for ResNet-18.

FIGURE 3.9: Training loss and testing accuracy curves for ResNet-18 on CIFAR10 of
the first and second training stages.

(A) SVHN first training stage curves for ResNet-18.

(B) SVHN second training stage curves for ResNet-18.

FIGURE 3.10: Training loss and testing accuracy curves for ResNet-18 on SVHN of
the first and second training stages.
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frameworks, LCE and daBNN, without any accuracy loss for at least one full-precision
model. Specifically, we introduced a clipping block that decreases the data width
from 32 bits to 8. Furthermore, we reduced the internal accumulator size of a binary
layer, usually 32-bit, to prevent data overflow without losing accuracy. Additionally,
we provided an optimization of the Batch Normalization layer that both reduces la-
tency and simplifies deployment. Finally, we presented an optimized implementa-
tion of the Binary Direct Convolution for ARM NEON instruction sets.

3.2 Input Layer Binarization with bit-plane Encoding

Previous section 3.1 introduced some optimizations that can be used to speed up
the inference time of a BNN model. In this section, we present a solution used to
fully binarize a model. In fact, most of the BNNs do not fully exploit the benefits of
1-bit quantization, since they exclude from binarization the first and last layers that
normally work with fixed-point numbers. In general, the number of parameters and
the computational effort of the first layer is relatively low compared to intermediate
deep convolutional layers employed in VGG [127] or ResNet [50] models since in-
put data has typically fewer channels (e.g. color images have three channels). This
usually leads to deploy the first layer of BNN models using floating-point or quan-
tizing it using 8-bit; the consequence is that two different types of multipliers (8-bit
for the first layer, binary for the remaining), with different bit widths, are needed to
execute the computations leading to a solution which increases the power consump-
tion (8-bit multiplier requires more power than xnor) and consumes more hardware
resources (e.g. an FPGA design) than xnor gates. Conversely, the challenge of bi-
narizing both weights and activations in the input layer is due to the small number
of input channels [4]. Therefore, almost all the works addressing the binarization
of the first layer tried to increase the number of input channels to enrich data rep-
resentation. For instance, FBNA [4] proposes a two-step optimization scheme that
consists of binarization and pruning; during the binarization phase, the number of
input channels is increased by a factor 256× and then, during pruning, the lowest
bits of input data are dropped away. The constraint of FBNA is that the encoded
vector must be a power of two. BIL [31] attempts to directly unpack the 8-bit fixed-
point input data, called DBID, and add an additional binary pointwise convolutional
layer between the unpacked input data and the first layer to increase the number of
channels, dubbed as BIL. The authors of FracBNN [159] propose to use thermome-
ter encoding to transform a pixel to a thermometer vector (expanding each input
channel to 32 binary channels) that then is transformed to the {−1,+1} bipolar rep-
resentation.

In contrast with previous works where the number of input channels has been in-
creased, our method directly uses the fixed-point representation of a pixel. The re-
sults show that the proposed technique is competitive both in terms of efficiency and
accuracy. Our contributions to the binarization of the input layer can be summarized
as follows:

• we propose a general approach to binarize the first layer of a CNN using the
native 8-bit fixed-point inputs. We rearrange the 8-bit input data into 8 bit
planes, each bit plane is consumed by a binary depth-wise convolutional layer
which gives more importance (using a multiplier, actually a shift operation)
to the most significant bit planes. Finally, all feature maps are fused together
through an addition operator. The entire process, depicted in Figures 3.13 and
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FIGURE 3.11: (a) Standard scenario of BNNs where the first convolutional layer is
not binarized; weights and inputs are used in 8-bit/floating-point representation. (b)
Typical approach of the works that binarized the first layer F1 incrementing the num-
ber of input channels; in this case, the input expansion is actually an additional layer.
(c) Our approach, where depth-wise convolutions are applied to input bit-planes and

the resulting maps can replace the F1 layer, producing a more compact model.

3.14, does not rely on floating-point computation, resulting in more suitable to
be deployed on ASIC or FPGA systems.

• we show that the feature maps resulting from our bit-plane manipulations al-
low to skip the original3 F1 first network layer (see Figure 3.11c) with a minimal
accuracy loss, leading to a model which uses less BMACs.

• we evaluate our concept on three classification datasets (SVHN, CIFAR10, and
CIFAR100 [71]) showing that our solution outperforms all previous methods
introduced to binarize the input layer.

3.2.1 Method

A common CNN model employed for computer vision problems works with RGB
input images; it takes an input volume with three channels (H × W × C, where C
is the number of channels) and extracts the features using convolutional blocks. To
increase the receptive field of the network, a sequence of pooling operations is used.
Each input pixel p is usually a fixed-point integer with 8 bit precision, namely p =

∑7
m=0 xm · 2m.

In BNNs, typically the first layer (usually a convolutional one) is not binarized, all
the input pixels are processed using 8-bit weights, producing F1 output 8-bit feature
maps (Figure 3.11a). The previous works in literature that addressed the problem to
generate F1 binary feature maps, adopted different techniques to increase the num-
ber of input channels C ( generating a more sparse representation) in order to use
binary weights and inputs for layer F1; usually a good tradeoff between accuracy
and increment of first layer MACs is to wide the number of channels C by 32× [31,

3Before the addition of our depth-wise convolutions.
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159]. This process is depicted in Figure 3.11b, where the increment of input channels
leads to a bigger model footprint; in fact, a linear increment of the number of input
channels, linearly increases also the kernel parameters of a 2D convolutional layer.

The intuition behind our approach is that by extracting a different bit plane for each
bit position, the semantic spatial information is preserved for most of the high in-
dex bits (4 to 7), as shown in Figure 3.12b. Lower bit indexes (0 − 3) contain less
correlated spatial information of image pixels and, depending on the dataset, they
can be selectively omitted to further reduce the computational effort. The overall
diagram of our method is reported in Figures 3.13 and 3.14 and it is composed of the
following steps:

1. Bit Rearrangement: An input image I (W, H, C, where C is the number of
channels), having M bits for each pixel (usually 8), is rearranged into bit planes
(as shown in Figure 3.13a); each 8-bit input channel is decomposed into eight
1-bit planes. A bit plane x is a 1-bit map containing only the bit of index x for
all pixels (see Figure 3.12a). The bit-plane image bp corresponding to channel
c can be indicated as I (c, bp).

2. Feature Extraction: Each binary bit-plane is consumed by a binary depthwise
convolution layer that generates N feature maps for each bit plane, as reported
in Figure 3.13b. The output of feature extraction (FE ) step can be formulated
as:

FE (c, bp) = γ (c, bp)
(I (c, bp) ∗ W (c, bp) + b (c, bp))− µ (c, bp)

σ (c, bp)
+ β (c, bp)

(3.3)

where ∗ is the convolution operator, W (c, bp) and b (c, bp) represent the weights
of the depth-wise convolution while γ, µ, σ and β are the Batch Normalization
(BN) [60] parameters; Eq. 3.3 refers to a single feature map of depth-wise con-
volution, which is dependent on channel c and bit plane bp. In Eq. 3.3 the
non-linear activation function can be omitted because binarization of activa-
tion and weights already introduce non-linearity. The use of Batch Normal-
ization after each binary layer plays a key role in BNNs because it promotes a
smoother optimization process allowing a stable behavior of the gradients. BN
layer is usually executed in floating-point precision when mixed with binary
layers, but the authors of [139] proved that it can be executed in 8-bit fixed
point without accuracy loss.

3. Features Re-Weight: Following the intuition based on Figure 3.12b, where
high index bit planes preserve the spatial information of the image, this stage
re-weights the feature maps based on the bit plane index. Higher bit planes
are multiplied by higher scalar values. In order to simplify this stage, the mul-
tiplication can be replaced by a shift operation. The N feature maps of each bit
plane are shifted by the same quantity (namely a power of two).

4. Features Fusion: The re-weighted feature maps, corresponding to a different
8-bit input channel, are summed to combine the information encoded by dif-
ferent bit indexes and can be expressed as:
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(A) Bit Planes example
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(B) Bit Planes on CIFAR10, CIFAR100 and SVHN

FIGURE 3.12: a Example of bit plane representation for a 3 × 3 8-bit image. b Image
representation in bit planes. Each column refers to a bit index extracted from the
image; for representation purposes, bit 1 is converted to 255 while bit 0 remains 0. In

this example, all bit planes refer to channel G of RGB images.
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Method Type # MACs # weights MACs method
MACs Baseline

1 Speedup2

Baseline 8-bit HWCF2F1 CF2F1 1× 1×
DBID[31] 1-bit HWCMF2F1 CMK + F2F1K 8× 1.12×

BIL[31] 1-bit HWK
(
CM + F2F1

)
CKF2F1 10.8× 0.81×

Thermometer[159] 1-bit HWCKF2F1 CF2N1M 32× 0.27×
ours (P = 8, N1) 1-bit HWCPF2N1 CPF2N1 2.6× 3.42×
ours (P = 4, N1) 1-bit HWCPF2N1 CMF2N1 1.3× 6.84×
ours (P = 4, N2) 1-bit HWCPF2N2 CPF2N2 1× 9×

1 A lower ratio means a higher reduction of MACs.
2 According to [8] (Figure 2), the worst case speedup of binary convolution compared to 8-
bit is 9×.

TABLE 3.3: Comparison of the first layer MACs required by our method with respect
to the state-of-the-art solutions. Input data has a shape H ×W ×C (32 × 32 × 3) and a
precision of M bits; in this example, the first convolutional layer has F1 = (128) filters
with size F × F (3). The expansion channels is K = 32 for methods [31, 159]. The
depthwise multiplier of our method can be chosen as N1 =

⌊
F1
C

⌋
= 42. We conducted

our experiments using also a lower value, N2 = 32 instead of N1 and only 4 bits of
input pixels. P represents the number of bit planes extracted by step 3.13a.

FWF (c, bp) =
M

∑
i=0

FE (c, bp) · 2i (3.4)

In Eq. 3.4 the multiplication by 2i represents the re-weight of feature maps
that can be implemented with a shift operation. The sum instead can be im-
plemented by accumulating features over a 32-bit register; if the subsequent
layer extracts sign from inputs, then the 32-bit output maps can be reduced to
1-bit saving memory overhead. The N feature maps corresponding to a differ-
ent channel are concatenated to create a volume of N × 3 maps that is used to
feed the network, Figure 3.11c. Such volume of N maps can replace the first
layer of the CNN with almost no accuracy loss, as shown in Section 3.2.3, thus
reducing the complexity of the overall model. F1 requires a topology change
of the first network layer when its weights and inputs are binarized and the
expansion of depth-wise convolutions (Figure 3.13b) can be set up in order to
keep a number of feature maps equivalent to the layer F1.

Table 3.3 reports the MACs of different approaches used to binarize the input layer
of a CNN, reporting the theoretical speedup of the methods; our solution is clearly
competitive, in terms of MACs, with respect to the baseline (input not binarized)
and other existing approaches.

3.2.2 Implementation Details

We evaluate our method on three classification datasets: CIFAR10, CIFAR100, and
SVHN with different BNN architectures. For each model architecture, we tested
different state-of-the-art binarization techniques of the input layer; input binariza-
tion does not modify the other layers of the network, which remain unaltered. For
each dataset, we conducted our experiments with the same training procedure (same
number of epochs, optimizer, learning rate scheduling, loss function) for all topolo-
gies without adding distillation losses or special regularization to the overall loss
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(A) Bit Rearrangement

(B) Features Extraction

FIGURE 3.13: Binarization process of input layer. a shows the rearrangement phase
that extracts, for each bit position of the encoded pixel a bit plane. b shows the binary
depth-convolution block applied to each bit plane; the depth multiplier (N) is a hy-

perparameter and it is dataset and model dependent.
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(A) Features Re-Weight

(B) Features Fusion

FIGURE 3.14: Binarization process of input layer. a shows how to weigh differently
feature maps extracted from different bit planes; maps related to the most significant
bits receive a higher multiplication factor. In b, the feature maps related to the same

8-bit input channel are fused together through an addition.
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function. The binarization of weights and activations always happens at training
time using an approximation of the gradient (Equation 2.7 or derived solutions that
are model dependent) for sign function. The augmentation procedure for all datasets
is performed with floating-point arithmetic but, before feeding data to the network,
the input image is quantized using 8-bit fixed precision.
We adopted specific input data rescaling and augmentation procedure for each dataset
tested, as reported below:

CIFAR10 and CIFAR100 The RGB images are scaled to the interval [−1.0 ;+1.0]
and the following data augmentation was used: zero padding of 4 pixels for
each size, a random 32 × 32 crop and a random horizontal flip. No augmenta-
tion is used at test time. The models have been trained for 140 epochs.

SVHN The RGB input images are scaled to the interval [−1.0 ;+1.0] and the
following data augmentation procedure is used: random rotation (±8 degrees),
zoom ([0.95, 1.05]), random shift ([0; 10]) and random shear ([0; 0.15]). The
models have been trained for 70 epochs.

We evaluated the following networks:

VGG-Small[154] Network structure is the following: 2 × (128 − C3) + MP2 +
2× (256 − C3)+ MP2+ 2× (512 − C3)+ MP2+ FC1024+ FC1024+So f tmax4.
The VGG-Small model adopted uses the straight-through-estimator (STE) to
approximate the gradient on non-differentiable layers[58, 9].

VGG-11[147] Network structure is the following: 64−C3+ MP2+ 128−C3+
MP2+ 2× (256 − C3)+ MP2+ 2× (512 − C3)+ MP2+ 2× (512 − C3)+ MP2+
So f tmax. Even VGG-11 uses the STE estimator for binarization operation dur-
ing back-propagation.

BiRealNet[88] It is a modified version of classical ResNet that proposes to pre-
serve the real activations before the sign function to increase the represen-
tational capability of the 1-bit CNN, through a simple shortcut. Bi-RealNet
adopts a tight approximation to the derivative of the non-differentiable sign
function with respect to activation and a magnitude-aware gradient to update
weight parameters. We used two instances of the network, an 18-layer and a
34-layer Bi-Real net 5.

ReactNet[90] To further compress compact networks, this model constructs a
baseline based on MobileNetV1 [57] and add a shortcut to bypass every 1-bit
convolutional layer that has the same number of input and output channels.
The 3 × 3 depth-wise and the 1 × 1 point-wise convolutional blocks of Mo-
bileNet are replaced by the 3× 3 and 1× 1 vanilla convolutions in parallel with
shortcuts in React Net6. As for Bi-Real Net, we tested two different versions of
React Net: a 18-layer and a 34-layer.
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VGG-Small VGG-11 BiReal-18 BiReal-34 React-18 React-34

DBID[31](P = 8) 84.5 77.6 81.8 85.0 86.0 86.7
1st

BIL[31](P = 8) 82.0 78.9 81.3 82.2 84.0 83.5
Therm[159](K = 32) 84.2 80.1 85.2 85.3 86.6 86.6

ours(P = 8, N1) 85.9 79.1 87.7 88.5 89.9 90.2
baseline 89.2 84.7 89.1 89.3 90.6 90.6

DBID(P = 4) 83.6 76.8 74.9 83.7 83.7 85.3
2nd

BIL(P = 4) 80.9 82.4 80.8 82.3 82.7 83.4
Therm(K = 16) 83.8 79.6 84.7 85.9 86.5 86.8
ours(P = 4, N2) 85.0 78.3 86.9 87.7 88.5 89.0

baseline 88.3 83.7 87.4 88.3 88.8 89.1

TABLE 3.4: Top1 accuracy (%) results of test set on CIFAR10. In the first part we report
the result of the first test scenario (standard conditions); in the second half, the results
achieved in the second scenario (reducing the MACs of binarization of input layer).

VGG-Small VGG-11 BiReal-18 BiReal-34 React-18 React-34

DBID[31](P = 8) 94.5 92.2 94.3 95.1 94.9 95.1
1st

BIL[31](P = 8) 93.5 92.1 94.3 93.4 94.1 94.7
Therm[159](K = 32) 89.7 88.9 89.2 89.8 89.8 90.2

ours(P = 8, N1) 94.8 93.4 94.3 95.0 95.1 95.7
baseline 95.7 95.5 94.3 95.1 95.5 95.9

DBID(P = 4) 94.3 92.1 94.3 94.7 94.8 95.0
2nd

BIL(P = 4) 93.4 92.1 94.4 93.5 93.8 94.5
Therm(K = 16) 89.5 88.6 89.8 89.7 89.8 90.1
ours(P = 4, N2) 94.8 93.3 94.3 95.0 95.1 95.7

baseline 95.6 95.0 94.4 95.1 95.5 96.0

TABLE 3.5: Top1 accuracy (%) results of test set on SVHN.

3.2.3 Experimental Results

The validation of our solution has been accomplished through two different test
scenarios; in the first one, we compared the accuracy (measured on test set) of our
binarization method w.r.t. the state-of-the-arts input layer binarization approaches,
keeping unaltered the structure of the network except for the input data binarization
layer (first half of Tables 3.4, 3.5 and 3.6). In this first scenario, all the 8-bit planes
are exploited, layer F1 (Figure 3.11) is executed and our proposed solution is able to
reach a better accuracy compared to other input binarization methods, closing the
accuracy gap with the baseline.

In the second scenario, to further reduce the MACs of our solution, we propose an
optimization of our method that uses only the 4 most significant bits and reduces

4m × (n − CK) stands for m consecutive convolutional layers, each one with n output channels and
K kernel size. MP2 is the max pooling layer with subsample 2 while FCx is a fully-connected layer
having x neurons. So f tmax represents the last dense classification layer using softmax as activation.

5Refer to the following https://github.com/liuzechun/Bi-Real-net repository for all the de-
tails.

6Refer to the following https://github.com/liuzechun/ReActNet repository for all the details.

https://github.com/liuzechun/Bi-Real-net
https://github.com/liuzechun/ReActNet
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VGG-Small VGG-11 BiReal-18 BiReal-34 React-18 React-34

DBID[31](P = 8) 53.6 43.1 51.8 58.5 56.3 58.0
1st

BIL[31](P = 8) 50.0 42.9 52.7 56.0 55.4 55.5
Therm[159](K = 32) 53.0 43.5 57.2 57.1 57.4 57.9

ours(P = 8, N1) 56.5 46.0 58.7 60.6 61.7 62.9
baseline 60.6 52.3 63.4 65.0 64.9 65.3

DBID(P = 4) 52.3 41.8 50.5 56.5 55.2 56.7
2nd

BIL(P = 4) 49.5 42.0 52.1 54.5 52.1 53.6
Therm(K = 16) 52.1 42.6 56.7 54.5 56.8 58.6
ours(P = 4, N2) 54.8 44.5 57.7 59.6 60.2 62.0

baseline 60.3 50.3 60.0 61.7 62.0 63.4

TABLE 3.6: Top1 accuracy (%) results of test set on CIFAR100.

the depth-wise multiplier from N1 to N2 (the reduction to 4 bits is based on Figure
3.12b, that shows how the bit planes corresponding to less significant bits convey
less information). In the second half of tables 3.4, 3.5 and 3.6, we report the results
of the optimized version compared with other solutions properly modified in order
to compute an equivalent number of channels 7. As reported, our solution is able to
preserve the baseline accuracy using fewer input bits while the other methods get a
consistent accuracy drop when reducing input bits and binary channels.
Differently from other works, our solution re-weights the feature extracted by bit-
planes giving more importance to the features corresponding to the most signifi-
cant bit-planes; this stage contributes to scale down the footprint of our binarization
approach simplifying the deployment on resource-constrained devices (low-power
embedded CPUs). Furthermore, the accuracy of our method is higher than ther-
mometer encoding[159], which preserves the feature similarity after binarizing the in-
put layer, as pointed out by Anderson et al. [4].

3.2.4 Final Remarks on Input Binarization using bit-plane Encoding

In Section 3.2, it has been introduced a novel input layer binarization method that
reaches higher accuracy when compared to state-of-the-art solutions reducing the
gap to the baseline on average by 2.2 percentage points. Our solution is able to
preserve model accuracy when only 4 bits of input pixels are used in the input bi-
narization layer, proving to be more resource-constrained and device-friendly than
existing ones.

7For DBID, thermometer and baseline methods, we reduced to 32 the number of output channels
of layer F1; for BIL and ours, we skipped the layer F1 because the convolution operation is already
exploited within the input layer binarization process. For DBID, BIL, and ours we used only the 4 most
significant bits of input data. For thermometer we applied also a reduced expansion factor of K = 16.
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Chapter 4

Continual Learning with Binary
Neural Networks

In this chapter, we describe our solutions proposed to continually update a BNN
directly on-device in the context of Continual Learning (CL) targeting different ap-
plication tasks such as classification, regression, and segmentation. Specifically, the
chapter introduces a new method to continually update a binary model on-device
by proposing an ad-hoc quantization scheme (section 4.1) for the classification head.
Later, in section 4.2, we introduce a solution that, exploiting a latent replay mem-
ory (RM) to store past sample activations, retrains a small portion of convolutional
layers to increase model accuracy (compared to the approach of section 4.1). The
solution described in Section 4.1 has been published in [138] while the method de-
tailed in Section 4.2 has been published in [140] and awarded with the Best Industrial
Paper acknowledgement.

4.1 Binary Neural Networks and CWR*

In recent times, the integration of Artificial Intelligence into the Internet of Things
(IoT) paradigm [100, 3], enabling the provision of intelligent systems capable of
learning even within embedded or tiny devices, has garnered significant attention in
the literature. This trend has been facilitated by various factors, including the evolu-
tion of microchips, which have led to the availability of cost-effective chips in many
everyday objects. Additionally, the exploration of new learning paradigms, such as
Continual Learning (CL) [105, 96], has contributed to the development of techniques
for training neural networks continuously, on small data portions (denoted as expe-
riences) at a time, mitigating the issue of catastrophic forgetting [69]. In this manner,
a neural network, in contrast to the traditional machine learning paradigm, does not
learn from a single large dataset accessible entirely during the training phase but
rather from small data portions accessible gradually over time. This limited amount
of data needed by the training procedure effectively simplifies the adoption of a CL
training implementation on embedded devices.

Despite the keen interest of the scientific community, numerous challenges still per-
sist, rendering the utilization of deep learning models on devices particularly de-
manding. These challenges are primarily associated with the high computational
resources required by deep neural networks, even though based on CL strategies. In-
deed, embedded devices often have limited available memory, preventing the stor-
age of a vast amount of data. Furthermore, a powerful GPU is usually absent due
to cost, space constraints, and energy consumption. These competing needs have
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given rise in the last few years to a specific branch of machine learning and deep
learning called TinyML [5], focused on shrinking and compressing neural network
models with respect to the target device characteristics. One of the most extreme
TinyML approaches, is Binary Neural Networks (chapter 2), where a single bit is
used to encode weights and activations. However, almost no literature work ad-
dresses the problem of training (or tuning) such models on-device, a task which is
still more complex than inference because:

• quantization is known to affect back propagation and weights update

• popular inference engines (e.g. Tensorflow Lite, pytorch mobile, ecc.) do not
support model training

This work proposes on-device learning of BNN to enable continual learning of a
pre-trained model. We start from CWR* [93], a simple but effective continual learn-
ing approach that limits weight updates to the output head, and designs an ad-hoc
quantization approach that preserves most of the accuracy with respect to a float-
ing point implementation. We prove that several state of the art BNN models can
be used in conjunction with our approach to achieve good performance on classi-
cal continual learning dataset/benchmarks such as CORe50 [92], CIFAR10 [71] and
CIFAR100 [71].

4.1.1 Continual Learning

The classical deep learning approach is to train a model on a large dataset split into
several batches and then freeze it before deployment on edge devices; this does not
allow adapting the model to a changing environment where new classes (NC sce-
nario) or new items/variation of known classes (NI scenario) can appear over time.
Collecting new data and periodically retraining a model from scratch is not efficient
and sometime not possible because of privacy, so the CL approach is to adapt an
existing model by using only new data. Unfortunately, this is prone to forgetting old
knowledge, and specific techniques are necessary to balance the model stability and
plasticity[26].
In this work we focus on Single Object Recognition task addressing the two CL sce-
narios of NI and NC; in both cases, the learning phase of the model is usually split
in experiences, each one containing different training samples belonging or not to
known classes (this depends on the CL scenario).
Few works in the literature addressed the on-device learning task proposing solu-
tions to primarily reduce the memory requirement of the learning algorithm: Ren
et al. [117] brought the transfer learning task on tiny devices by adding a trainable
layer on top of a frozen inference model. Cai et al. [16] proposed to freeze the model
weights and retrain only the biases reducing the memory storage during forward
pass. Lin et al. [83] introduced a sparse update technique to skip the gradient compu-
tation of less important layers and sub-tensors. QLR-CL [114] relies on low-bitwidth
quantization (8-bit) to speed up the execution of the network up to the latent layer
and at the same time reduce the memory requirement of the latent replay vectors
from the 32-bit floating point to 8-bit. In addition, backpropagation is performed
with floating-point precision. In [101, 102], Nadalini et al. introduced a framework
to execute on-device learning on tiny devices using floating-point (32 and 16 bits)
computation.
The continual learning approach employed in this work, CWR*, mantains two sets
of weights for the output classification layer: cw are the consolidated weights used
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during inference while tw are the temporary weights that are iteratively updated
during back-propagation. cw are initialized to 0 before the first batch and then up-
dated according to Algorithm 3 (for more details see [93]), while tw are reset to 0
before each training mini-batch. CWR*, for each already encountered class (of cur-
rent training batch), reloads the consolidated weights cw at the beginning of each
training batch and, during the consolidation step, adopts a weighted sum based on
the number of the training samples encountered in the past batches and those of cur-
rent batch. The consolidation step has a negligible overhead and can be quantized
adopting the same quantization scheme used for CWR* weights. In CWR*, during
the first training experience (supposed to be executed offline) all the layers of the
model are trained but from the second experience, only the weights of the output
classification layer are adjusted during the back-prop stage, to simulate a real case
scenario (lines 7 - 10 of Algorithm 3).

Algorithm 3 CWR* pseudocode: Θ are the class-shared parameters. Both tw and
cw refer to the same layer index k of the model and are quantized according to the
scheme reported in section 4.1.2. Quantization of CWR* is fundamental to deploying
our solution on devices such as FPGA that could hardly accommodate a floating-
point implementation.

1: cwk = 0 {k is the index of the classification layer}
2: past = 0 {number of samples for each class i encountered}
3: init Θ random or from pre-trained model

{Bj is the mini-batch of index j}
4: for all training batch Bj do

5: twk [i] =
{

cwk [i] , if class i in Bj
0, otherwise

6: train the model with SGD;
7: if Bj = B1 then

{Θ is trained offline during first experience}
8: learn both Θ and twk
9: else

10: learn twk while keeping Θ fixed
11: end if

{consolidation step}
12: for all class i in Bj do

13: wpasti =
√

pasti
curi

, where curi is the number of patterns of class i in Bj

14: cwk [i] =
cwk [i]·wpasti+(twk [i]−avg(twk))

wpasti+1
15: pasti = pasti + curi
16: end for
17: test the model by using Θ and cwk
18: end for

4.1.2 Method

Gradients Computation

In this section we make explicit the weights update formula of the classification
layer; without loss of generality, a neural network M (·) is composed by a sequence
of k layers represented as:

M (·) = fwk

(
fwk−1 (· · · fw2 ( fw1 (·)))

)
(4.1)
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where wi represents the weights of the ith layer. In CWR* the temporary weights
twk (lines 8 and 10 of Algorithm 3) are updated according to Equations 4.9 and 4.10,
whose quantization is discussed in the next section. Denoting with ai and ai+1

1

the input and output activations of the ith layer respectively, with L the loss func-
tion, the backpropagation process consists in the computation of two different sets
of gradients: ∂L

∂ai
and ∂L

∂wi
.

In CWR* the on-device backpropagation algorithm is limited to the last layer which
can be considered a linear layer (with a non-linear activation function) with the fol-
lowing forward formula:

ak+1 = fk (ok+1) , ok+1 = akWk + bk (4.2)

where ak+1 represents the output of the neural network.

Considering a classification task (with M classes) with an unitary batch size, the
Cross-Entropy loss function is formulated as:

H (y, ak+1) = −
M−1

∑
i=0

yilog
(

ai
k+1

)
(4.3)

where yi represents the element of a one-hot encoded vector of ground truth and
ai

k+1 is the ith output activation sample. Using the softmax as activation for the last
layer, reported below:

ak+1
(
ot

k+1
)
=

eot
k+1

∑M
j=1 eoj

k+1

(4.4)

, the gradient formulas for the last classification layer can be expressed using the
chain rule:

∂H
∂Wk

=
∂H

∂ak+1

∂ak+1

∂ok+1

∂ok+1

∂Wk
(4.5)

∂H
∂bk

=
∂H

∂ak+1

∂ak+1

∂ok+1

∂ok+1

∂bk
(4.6)

The final expression for Eq. 4.5 using the Eq. 4.3 as loss function and 4.4 as non-linear
fk (·) is a well-known result, that can be easily derived:

∂H
∂Wk

= (ak+1 − y) ak (4.7)

∂H
∂bk

= (ak+1 − y) (4.8)

Using a stochastic gradient descent optimizer with learning rate η, the weights up-
date equation is:

1Note that the output ai+1 of level i corresponds to the input of level i + 1
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W i+1
k = W i

k − η (ak+1 − y) ak (4.9)

bi+1
k = bi

k − η (ak+1 − y) (4.10)

Therefore in CWR* the temporary weights twk (lines 8 and 10 of Alg. 3) are updated
according to Equations 4.9 and 4.10, whose quantization is discussed in the next
section.

Quantization Strategy

FIGURE 4.1: Double quantization scheme that uses a different quantization level for
weights/activations used in forward and backward pass.

Our approach considers two different quantizations: the former uses 1-bit (also
called binarization) to represent weights and activations employed by the pre-trained
backbone; the latter is used in the last classification layer, to quantize both forward
and backward operations. This solution both reduces the latency and simplifies the
adaptation of the model on new item/classes encountered.
In particular, for the last layer quantization we followed the scheme proposed in
[62] and implemented in GEMMLOWP library [61]. The quantized output of a 32-
bit floating point linear layer, reported in Eq. 4.2, can be represented as:

oint_q
k+1 = cast_to_int_q⌊sint_32

k

(
W int_q

k aint_q
k + bint_q

k

)
⌉ (4.11)

The quantization Eq. 4.11 depends on the number of the quantization q bits used
(8, 16, 32), · represents the quantized version of a tensor and sint_32 is the fixed-point
scaling factor having 32-bit precision, as shown in Figure 4.2. Similarly to previous
works [58, 98], we used the straight-through estimator (STE, Equation 2.7) approach
to approximate differentiation through discrete variables; STE represents a simple
and hardware-friendly method to deal with the computation of the derivative of
discrete variables that are zero almost everywhere.

Based on the results reported in [46, 25, 7], the quantization of the gradients in Equa-
tions 4.7 and 4.8 represents the main cause of accuracy degradation during training
and therefore we propose to use two separate versions of layer weights Wk, one with



60 Chapter 4. Continual Learning with Binary Neural Networks

FIGURE 4.2: Quantization scheme adopted using q bits for weights and activations.

low-precision (lp_q) and another with higher precision (hp_q). As shown in Figure
4.1, the idea is to use the lp_q version of the weights for the computations that have
strict timing deadlines (forward pass), while the hp_q version is adopted during the
weight update step (Equations 4.9 and 4.10), which has typically more relaxed tim-
ing constraints (it can be executed also as a background process). Every time a new
high-precision copy of weights is computed, a lower version is derived from it and
stored.

Gradient quantization inevitably introduces an approximation error that can affect
the accuracy of the model; to check the amount of approximation for different quan-
tization levels, for each mini-batch, we compute the Mean Absolute Error (MAE,
in percentage) between the floating point gradient and the quantized one for the
weight tensor of the CWR* layer (for the dataset CORe50 [92]). The MAE is then ac-
cumulated for all training mini-batches of each experience, as shown in Figure 4.3,
where a logarithmic scale is applied. In order to evaluate only the quantization er-
ror introduced, both floating-point and quantized gradients are computed starting
from the same W i

k weights (Eq. 4.9). The plot curves of Figures 4.3a and 4.3b re-
fer respectively to the quicknet [8] and realtobinary [95] models; it is evident that the
quantization error introduced using the lp_q with 8 bits is much larger compared
to higher quantization schemes (16/32 bits or floating point) whose gap w.r.t. the
floating point implementation is quite low, as pointed out in section 4.1.4.

4.1.3 Experiments

We evaluate the proposed approach on three classification datasets: CORe50, CI-
FAR10 and CIFAR100 with different BNN architectures. The BNN models employed
for CORe50 have been pre-trained on ImageNet [119] and taken from Larq reposi-
tory2; instead, the models used for CIFAR10 and CIFAR100 have been pre-trained on
Tiny Imagenet3. For each dataset, we conducted several tests using a different num-
ber of quantization bits with the same training procedure. Our work is targeting a
model that could continuously learn and therefore we limited the number of epochs
to 10 for the first experience and to 5 for the remaining. The results of Eq. 4.7 and 4.9
require the adoption of the Cross Entropy as loss function and the Stochastic Gra-
dient Descent (SGD) as optimizer; the choice of SGD is encouraged as it requires a
simple computation with a limited overhead compared to the Adam [68] optimizer.
The binarization of weights and activations always happens at training time using
an approximation of the gradient (STE introduced in Section 2.2 or derived solutions
that are model dependent) for sign function.

Hereafter we provide some details on the BNN models employed, the augmentation
pipeline and the CL protocols adopted for each dataset:

2https://docs.larq.dev/zoo/api/sota/
3http://cs231n.stanford.edu/tiny-imagenet-200.zip

https://docs.larq.dev/zoo/api/sota/
http://cs231n.stanford.edu/tiny-imagenet-200.zip
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FIGURE 4.3: Accumulation of gradient quantization errors (Mean Absolute Error in
percentage using a logarithmic scale) between quantized and floating-point versions
for each experience. During the first experience the gradient computation is always

executed in floating-point.
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CORe50 [92] It is a dataset specifically designed for Continuous Object Recog-
nition containing a collection of 50 domestic objects belonging to 10 categories.
The dataset has been collected in 11 distinct sessions (8 indoor and 3 outdoor)
characterized by different backgrounds and lighting. For the continuous learn-
ing scenarios (NI, NC) we use the same test set composed of sessions #3, #7 and
#10. The remaining 8 sessions are split in batches and provided sequentially
during training obtaining 9 experiences for NC scenario and 8 for NI. No aug-
mentation procedure has been implemented since the dataset already contains
enough variability in terms of rotations, flips and brightness variation. The
input RGB image is standardized and rescaled to the size of 128 × 128 × 3.

CIFAR10 and CIFAR100 [71] Due to the lower number of classes, the NC sce-
nario for CIFAR10 contains 5 experiences (adding 2 classes for each experience)
while 10 are used for CIFAR100. For both datasets the NI scenario is composed
by 10 experiences. Similar to CORe50, the test set does not change over the
experiences. The RGB images are scaled to the interval [−1.0 ;+1.0] and the
following data augmentation was used: zero padding of 4 pixels for each size,
a random 32× 32 crop and a random horizontal flip. No augmentation is used
at test time.

On CORe50 dataset, we evaluated the three binary models reported below:

Realtobinary [95] This network proposes a real-to-binary attention matching
mechanism that aims to match spatial attention maps computed at the output
of the binary and real-valued convolutions. In addition, the authors proposed
to use the real-valued activations of the binary network before the binarization
of the next layer to compute scaling factors, used to rescale the activations
produced after the application of the binary convolution.

Quicknet and QuicknetLarge[8] This network follows the previous works [88,
11, 95] proposing a sequence of blocks, each one with a different number of
binary 3 × 3 convolutions and residual connections over each layer. Transition
blocks between each residual section halve the spatial resolution and increase
the filter count. QuicknetLarge employs more blocks and feature maps to in-
crease accuracy.

For CIFAR10 and CIFAR100 datasets, whose input resolution is 32 × 32, we evalu-
ated the following networks (pre-trained on Tiny Imagenet):

BiRealNet[88] It is a modified version of classical ResNet that proposes to pre-
serve the real activations before the sign function to increase the represen-
tational capability of the 1-bit CNN, through a simple shortcut. Bi-RealNet
adopts a tight approximation to the derivative of the non-differentiable sign
function with respect to activation and a magnitude-aware gradient to update
weight parameters. We used the instance of the network that uses 18-layers4.

ReactNet[90] To further compress compact networks, this model constructs a
baseline based on MobileNetV1 [57] and add shortcut to bypass every 1-bit
convolutional layer that has the same number of input and output channels.
The 3 × 3 depth-wise and the 1 × 1 point-wise convolutional blocks of Mo-
bileNet are replaced by the 3 × 3 and 1 × 1 vanilla convolutions in parallel

4Refer to the following https://github.com/liuzechun/Bi-Real-net repository for all the de-
tails.

https://github.com/liuzechun/Bi-Real-net
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with shortcuts in React Net5. As for Bi-Real Net, we tested the version of React
Net that uses 18-layers.

Our tests were performed on both the NI and NC scenario (discussed in Section
4.1.1). Figures 4.4, 4.5 and 4.6 summarize the experimental results. On CORe50
dataset (Figure 4.4) NC scenario, the quantization scheme lp_8 gets a consistent ac-
curacy drop over the experiences showing a limited learning capability; instead, the
quantizations with lp_16 and lp_32 reach the same accuracy level of the floating
point model. A similar situation can be observed in the NI scenario with the ex-
ception of the QuicknetLarge model where the lower quantization schemes are not
able to increase the accuracy of the first experience. For datasets CIFAR10 and CI-
FAR100 (Figure 4.5 and 4.6) we find similar results for the NI scenario, where the
8-bit quantization scheme limits the learning capability of the model during the ex-
periences. Instead, in the NC scenario, both Bi-Realnet and Reactnet models with
lp_8 quantization, are able to reach an accuracy result close to the floating-point
model. From our analysis, it appears that the 8-bit quantization of the gradients lim-
its noticeably the learning ability of a binary model when employed in a continual
learning scenario for CWR* method. To reach an accuracy comparable to a floating
point implementation we devise the adoption of at least 16 bits both for lp and hp;
it is worth noting that the computational effort of 16 bits is anyway limited in CWR*
because the quantization is confined to the last classification layer.

4.1.4 Results and Remarks

On-device training (or adaptation) can play an essential role in the IoT, enabling
the large adoption of deep learning solutions. In this section, it has been evaluated
the implementation of CWR* on edge-devices, relying on binary neural networks as
backbone and proposing an ad-hoc quantization scheme. By using an 8-bit quanti-
zation bit width, the learning capability of the model degrades too much, while 16
bits represents a good compromise.

5Refer to the following https://github.com/liuzechun/ReActNet repository for all the details.

https://github.com/liuzechun/ReActNet
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(A) Quicknet

(B) QuicknetLarge

(C) Realtobinary

FIGURE 4.4: CORe50 accuracy results using different quantization methods.
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(A) Reactnet

(B) Bi-Realnet

FIGURE 4.5: CIFAR10 accuracy results using different quantization methods.
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(A) Reactnet

(B) Bi-Realnet

FIGURE 4.6: CIFAR100 accuracy results using different quantization methods.
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4.2 Enabling On-device Continual Learning with Binary Neu-
ral Networks and Latent Replay
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FIGURE 4.7: Continual Learning with latent replay memory. When using a BNN the
activations stored in the replay memory can be quantized to 1-bit.

The previous section 4.1 explored the possibility of training a BNN model on-device
by freezing the binary backbone and allowing the adaptation of only the last clas-
sification layer, where forgetting is mitigated by CWR* [93, 42]. Unfortunately, the
reported results are interesting but the final accuracy is significantly lower w.r.t. a
system where all the layers can be tuned. In this section, we present a solution that
enables on-device training while maintaining competitive performance. Specifically,
our approach leverages binary latent replay (LR) activations and an improved quan-
tization scheme that reduces the number of bits required for gradient computation.

Pellegrini et al. [107] showed that a good accuracy/efficiency tradeoff in CL can be
achieved by continuously training only some convolutional layers (typically from 3
to 5), placed before the classification head. Replaying part of old data (stored in a re-
play memory or buffer), interleaved with new samples, was proved to be an effective
approach to mitigate catastrophic forgetting [69]. If past samples are stored as inter-
mediate activations (instead of raw data), the replay technique takes the name latent
replay [107] (see Figure 4.7). Latent replay is particularly interesting when combined
with BNN (as proposed in this section) since the latent activations can be quantized
to 1-bit, leading to a remarkable storage saving. Unfreezing some intermediate lay-
ers requires to back-propagate gradients along the model to update weights; on the
edge, the implementation of this process, usually referred to as on-device learning, re-
quires an efficient and lightweight back-propagation implementation, which is not
yet available in the most popular training frameworks. The reduction of bitwidths
during backward pass, made possible by a fixed point (many low-power CPUs are
not equipped with floating-point unit) implementation, can speedup the learning
phase but the tradeoffs between accuracy loss and efficiency need to be evaluated
with attention.

We propose a solution to combine the Continual Learning paradigm with training on
the edge using BNNs. Specifically, through the introduction of a back-propagation
and input binarization algorithm, we demonstrate how it is possible to continuously
tune a CNN model (including classification head and convolutional layers) with low
memory requirements and high efficiency. Our work represents a step beyond the
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classical quantization approach of BNNs published in the literature, where binariza-
tion is typically considered only during forward pass and a binary model is trained
using latent floating-point weights [54]. Some works showed [16, 83] good improve-
ments in reducing both the memory demand and the computational effort to enable
training on the edge, but they did not focus on the Continual Learning (CL) scenario,
which we primarily address. We conducted experiments with multiple BNN mod-
els, evaluating the advantages offered by the proposed methodology in comparison
to the method outlined in section 4.1, where only the classification head is tuned.

The main contributions of this section can be summarized as follows:

1. Reduced Replay Memory Requirement: our replay memory stores interme-
diate activations quantized to 1-bit allowing a relevant storage saving. We
investigate the trade-offs required to maintain model accuracy while simulta-
neously reducing memory consumption.

2. Improved Model Accuracy: by enabling the continual adaptation of inter-
mediate convolutional layers (besides the final classification head) our BNN-
based model significantly outperforms the closest previous solution [138].

3. Quantization of Backpropagation for Non-Binary layers: we introduce a quan-
tization approach for the back-propagation step in non-binary layers, enabling
the preservation of accuracy while eliminating floating-point operations.

4. Optimized Binary Weight Quantization: we present an optimized quantiza-
tion strategy tailored for binary weights, leading to a remarkable 8× reduction
in memory requirements. Binary layers are typically trained by storing latent
floating-point representations of weights that are subsequently binarized dur-
ing inference. Replicating this schema on-device would result in an unaccept-
able increase of memory usage and computational overhead.

5. Optimized Back-Propagation Framework: we implemented a comprehensive
back-propagation framework capable of supporting various quantization lev-
els both inference and back-propagation stages.

In the next sections we describe the latent replay mechanism (section 4.2.1) provid-
ing an estimation of the memory saved when applied to a binary layer, the quan-
tization approach (section 4.2.1) used for both forward and backward passes and
a comprehensive experimental evaluation (section 4.2.2), focusing on the accuracy
comparison w.r.t. the CWR* algorithm (section 4.2.2), the reduction of the storage
needed by the replay memory (section 4.2.2) and the efficiency in the backpropaga-
tion algorithm (section 4.2.2).

4.2.1 Method

In this section, we detail our contributions to efficiently deploy CL methods using
Latent Replay and BNNs. In particular, the CWR* approach (briefly summarized in
Algorithm 3) is used to correct class-bias in the classification head.

Continual Learning with Latent Replays

In Figure 4.7 we illustrate the CL process with Latent Replay. When new data be-
comes available, they are fed to the neural network that during the forward pass
produces their latent activations, which represent the feature maps corresponding
to a specific intermediate layer. We denote this layer as l (where l ∈ [0, L)), with L
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ward (q f ) and backward (qb) pass. Usually, trainable non-binary layers are Batch

Normalization [60], Addition and Concatenation layers.

representing the total number of layers within the model. Activations of new data
are joined (at minibatch level) with the replay activations (previously stored) and for-
ward/backward passes on the remaining layers, specifically those with index from
l + 1 to L − 1. To elucidate further, if BN denotes the minibatch size of the newly
acquired latent activations, a subset of replay vectors (BR) is extracted from the re-
play memory and merged, thus forming a minibatch of total size BT = BN + BR. In
contrast, the layers with an index less than l are maintained in a frozen state and are
not included in the learning process. After the conclusion of each training experi-
ence, the replay memory is updated by including samples from the last experience
and using class-balanced reservoir sampling [136], which ensures a double balanc-
ing: (i) in terms of samples per classes, (ii) in terms of samples from experience (see
Algorithm 4).

Quantization of activations and weights

Quantization techniques have gained widespread adoption to diminish the data size
associated with model parameters and the activations of layers. Employing quanti-
zation strategies enables the reduction of data bitwidth from the conventional 32-bit
floating-point representation to a lower bit-precision format, typically 8 bits or even
less, while typically incurring a negligible loss in accuracy during the forward pass
of the model. For the quantization of non-binary layers that need to be trained on-
device, we adopted the same approach proposed in section 4.1.2.

By representing the dynamic range of the activations at the i-th layer of the network
as

[
ai

min, ai
max

]
, we can define the quantized activations aq as:

ai
q = cast_to_q⌊ ai

Si
a
⌉, Si

a =
ai

max−ai
min

2q−1 (4.12)

where q denotes the number of quantization bits used (8, 16, 32), ai represents the
full-precision activations and ai

max, ai
min are determinated through calibration on the

training dataset. Weight quantization can be accomplished using an equation anal-
ogous to equation 4.12. However, as recommended in section 4.1, we utilize two
separate sets of quantization bits for both the forward and backward passes. For
binary layers, during the forward pass, binarization is executed using equation 2.2,
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Algorithm 4 Procedure used to populate the replay memory (RM). RM is initially
pre-populated using training samples of the first experience. The reservoir sam-
pling is used on a class basis to maintain the balance among different classes. This
approach prevents a skewed representation of classes within RM.

1: Input: N = max number of samples per class
2: Input: C = max number of classes
3: RMsize = C · N {C · N is the max size of RM populated during the first experi-

ence.}

4: for all on-device experience do
5: T is the number of classes
6: Mt = samples of class t
7: RMt = samples of class t already in RM

8: for t = 0 to T − 1 do
9: Bt = RMt ∪ Mt {# is the cardinality operator}

10: RMnew
t = apply Reservoir sampling to extract #RMt samples from Bt

11: remove not selected RMt samples
12: update RM with RMnew

t
13: end for
14: end for

# total weights LR shape
# B = binary

weights after LR
# NB = non-binary

weights after LR
B

B+NB

BiReal-18 11.2M (4, 4, 512) 7.0M 19K 99.7%
BiReal-18 11.2M (8, 8, 256) 10.1M 28K 99.7%
React-18 11.1M (4, 4, 512) 7.0M 18K 99.7%
React-18 11.1M (8, 8, 256) 8.3M 24K 99.7%

VGG-Small 4.6M (8, 8, 512) 2.3M 86K 96.4%
QuickNet 12.7M (7, 7, 256) 9.5M 36K 99.6%
QuickNet 12.7M (14, 14, 128) 11.9M 43K 99.6%

QuickNetLarge 22.8M (7, 7, 256) 14.2M 40K 99.7%
QuickNetLarge 22.8M (14, 14, 128) 21.3M 56K 99.7%

TABLE 4.1: The table represents a comparison of memory usage (# parameters) for
different BNN models. With B we report the number of binary weights that can be
updated during back-propagation; with NB the number of non-binary weights. The
choice of latent replay (LR) level is discussed in Section 4.2.2. It is worth noting that

the largest part of memory weights is used by binary weights.

as proposed in [23]. In backward pass, STE (Equation 2.7) computes the derivative
of sign as if the binary operation was a linear function. This approximation has been
further improved by other works [88, 90] and in general it is model dependent.

Quantized Backpropagation

Drawing upon the findings presented in the works of Gupta et al. [46], Das et al. [25],
and Banner et al. [7], it is evident that the quantization of gradients stands out as the
primary contributor to accuracy degradation during the training process. There-
fore, we advocate for a quantization scheme akin to that introduced in [138]. In
this scheme, we employ two distinct sets of quantization bits for the forward and
backward passes.
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The back-propagation algorithm operates in an iterative manner to calculate the gra-
dients of the loss function (denoted as L) with respect to the input al−1 for the layer
l:

gl =
∂L
∂al (4.13)

starting from the last layer. Every layer in the network is tasked with computing two
sets of gradients to execute the iterative update process. The first set corresponds to
the layer activation gradient w.r.t. the inputs, which serves the purpose of propa-
gating gradients backward to the previous layer. Considering a linear layer, where
al = W l · al−1 and ∂al

∂al−1 = W l , the gradients can be computed as follows:

gl−1 =
∂L
∂al ·

∂al

∂al−1 = W l gl (4.14)

The other set is used to update the weights of layer index l:

gl
w =

∂L
∂al ·

∂al

∂W l = al−1gl (4.15)

Based on Eq. 4.14 and 4.15, the backward pass requires approximately twice Multiply-
And-Accumulate (MAC) operations compared to the forward pass and therefore the
gradient quantization becomes essential to efficiently train neural network models
on-device. The quantization of weights and gradients (Eq. 4.14 and 4.15) is imple-
mented through Eq. 4.12 and can be visually summarized in Figure 4.8; as shown in
[7, 138], backward pass usually needs higher bitwidth to preserve the directionality
of the weight tensor and, based on that, we propose to use lower bitwidth during
forward pass (Figure 4.8, q f bits, green path) to minimize latency and more bits
for the backward pass to be more accurate in gradient representation (Figure 4.8,
qb bits, purple path). Considering the constrained memory resources available on
embedded devices, accurately estimating the memory requirements of the learning
algorithm becomes imperative. We can categorize memory into two distinct types:
the memory utilized by the CL method (e.g. the replay memory) and the memory
necessary to store intermediate tensors during the forward pass, which are subse-
quently used in the backpropagation, along with the model weights. In this context,
we will focus mainly on the latter aspect, particularly for binary layers where q f is
fixed at 1-bit while qb can vary depending on the desired level of accuracy. In Table
4.1, we present an assessment of the memory usage for representing binary weights
of trainable layers on-device. It is worth noting that binary weights, as indicated in
the fifth column of the same table, constitute a substantial portion of the total model
parameters. Consequently, reducing qb to 1-bit offers significant memory savings in
comparison to a more conventional approach where qb is set to 16 bits. The reduc-
tion in memory usage exhibits an almost linear relationship with the number of bits
utilized. We distinguish qb between binary and non-binary layers to apply different
quantization bitwidts, as elaborated in Section 4.2.2, which demonstrates that it is
feasible to maintain accuracy while significantly reducing qb for binary layers. De-
noting qbin

b and qnon−bin
b as the quantization settings for binary and non-binary layers,

respectively, in Section 4.2.2 we illustrate that setting qbin
b to 1-bit results in minimal

accuracy loss compared to higher quantization bitwidths.
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4.2.2 Experiments

We evaluate our methods on three classification datasets: CORe50[92], CIFAR10 [71]
and CIFAR100[71] with different BNN architectures. The BNN models employed
for CORe50 have been pre-trained on ImageNet through the Larq repository6; dif-
ferently, the models used for CIFAR10 and CIFAR100 have been pre-trained on Tiny-
ImageNet[74]. For each dataset, we conducted several tests using a different number
of quantization bits (both for forward and backward passes) with the same training
procedure. In addition to the work of section 4.1, in these experiments we kept dif-
ferent bitwidths for binary and non-binary layers because, as reported in Table 4.1,
memory of trainable binary weights is predominant.

The details about the BNN models characteristics, the dataset benchmarked and re-
lated CL protocols can be found at section 4.1.3. On CORe50 dataset, we evaluated
the Quicknet and QuicknetLarge models while on CIFAR10 and CIFAR100, whose
input resolution is 32 × 32, we evaluated Bi-Realnet and ReActnet. In this study we
did not include the Realtobinary [95] model, as it achieved notably lower accuracy
levels that were not aligned with our research objectives and goals.

In our experimental setup, we discovered that reducing the number of epochs in
each learning experience had minimal impact on model accuracy. Consequently, we
empirically set the number of epochs to 5, thus constraining the training time on-
device platform. Across all classification tasks, we utilized the Cross Entropy loss
function in conjunction with Stochastic Gradient Descent (SGD) as the optimizer.
The former was chosen due to its simplicity in derivative computation when com-
bined with the Softmax activation function. The latter was preferred for its compu-
tational efficiency, offering lower overhead compared to more complex algorithms
like Adam [68]. In our experiments, the ratio of BN to the batch size of the latent ac-
tivations sampled from the replay memory is set at 1/4. Both weight and activation
binarization were performed during training, including both the first training expe-
rience and on-device stages. This choice requires the implementation of a quantized
backward pass technique for all the non-differentiable functions, specifically the bi-
narization functions (using Eq. 4.14 and 4.12). To assess model accuracy during
on-device training, we developed the quantized backward steps for all layers em-
ployed by the previously described models.

Our experiments primarily concentrated on the NC scenario. As highlighted in
[107], the adoption of a latent replay memory did not significantly enhance model
accuracy in the NI context. Moreover, the NC scenario more closely resembles real-
world applications where the model’s recognition capability must be expanded to
accommodate new, previously unknown classes.

Accuracy comparison

To assess the accuracy of our solution, we initiated our evaluation by comparing
it with prior work, specifically BNN+CWR* [138](section 4.1.3), where only the fi-
nal classification layer is trained on-device, without employing a replay memory.
We conducted a series of tests with varying quantization bitwidths for both for-
ward and backward passes. In Figure 4.9a, 4.9b, 4.10a, 4.10b, 4.11a and 4.11b we

6https://docs.larq.dev/zoo/api/sota/

https://docs.larq.dev/zoo/api/sota/
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(A) Accuracy comparison of our solution (BNN+LR+CWR*) with previous work
BNN+CWR* [138] on CIFAR10 using Reactnet model.
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(B) Accuracy comparison of our solution (BNN+LR+CWR*) with previous work
BNN+CWR* [138] on CIFAR10 using Birealnet model.
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0 1 2 3 4 5 6 7 8 9
Experiences

0.15

0.25

0.35

Te
st

 A
cc

ur
ac

y 

Birealnet-18 on CIFAR100
BNN+CWR*-float
BNN+LR+CWR*-float
BNN+CWR*- 32-bit
BNN+LR+CWR*- 32-bit
BNN+CWR*- 16-bit
BNN+LR+CWR*- 16-bit
BNN+CWR*- 8-bit
BNN+LR+CWR*- 8-bit

(B) Accuracy comparison of our solution (BNN+LR+CWR*) with previous work
BNN+CWR* [138] on CIFAR100 using Birealnet model.



76 Chapter 4. Continual Learning with Binary Neural Networks

present accuracy comparisons between BNN+CWR* with the current method, de-
noted as BNN+LR+CWR*, across different datasets: CORe50, CIFAR10 and CI-
FAR100. Each figure illustrates the performance improvement of the new method
for all quantization settings tested, encompassing floating-point arithmetic, 32-bit,
16-bit and 8-bit quantized representations. It is noteworthy that, in this assess-
ment, we applied the same quantization bitwidths (qb) for both binary (qbin

b ) and
non-binary (qnon−bin

b ) layers during the backward pass, as BNN+CWR* does not dis-
tinguish these cases. The results consistently demonstrate that our BNN+LR+CWR*
approach outperforms previous results, not only when using floating-point arith-
metic but also for quantized implementations. This underscores the superior per-
formance achieved by BNN+LR+CWR*. In our solution, we observed that em-
ploying qb = 8 in BNN+LR+CWR* leads to a notable drop in accuracy compared
to higher quantization bitwidth settings, aligning with the outcomes obtained by
BNN+CWR*. This reaffirms the importance of using higher bitwidth representa-
tions during the backward pass to preserve model accuracy. Furthermore, the results
highlight the chance to replace the standard floating-point backpropagation with a
quantized version as the final accuracy is substantially comparable when enough
bits are employed (16 or 32). This possibility would drastically reduce the constraints
of deploying a similar solution on devices where the floating-point computation is
expensive (such as FPGA) or not possible (low-power microcontrollers). For the ex-
periments, we utilized LRsize = 1500 for CORe50, LRsize = 300 for CIFAR10 and
LRsize = 3000 for CIFAR100 as our replay memory sizes.

Reducing Storage in Latent Replay

The storage requirements of the latent replay memory are closely interlinked with
the bitwidths utilized to represent latent activations. As the bitwidths increase, so
does the memory footprint of LR. In our approach we capitalize on the 1-bit acti-
vations inherent to BNNs to significantly mitigate the need for high-memory stor-
age while maintaining a minimal accuracy gap, as depicted in Figure 4.12. Our
experiments demonstrate that BNN models can attain a minimal accuracy gap on
both CIFAR10 and CORe50 datasets, even when adopting 1-bit latent activations for
LR. This translates to a huge memory reduction of 32× when compared to using
floating-point latent activations. In our analysis, we considered various sizes for the
LR memory, with 15, 20 and 30 elements allocated for each class. Importantly, we
observed that the number of past samples in LR had a relatively minor impact on
model accuracy, with the accuracy loss being within 1%. Utilizing 1-bit latent activa-
tions for LR opens the possibility to scale up applications to accommodate thousands
of classes, as illustrated in Figure 4.12, thanks to the substantial reduction in memory
constraints achieved.

Splitting qb in qbin
b and qnon−bin

b

As highlighted in Table 4.1, the memory footprint of BNN weights is predominantly
occupied by trainable binary weights, encompassing nearly 100% of the memory.
Conventionally, a binary layer is trained using latent floating-point weights [54].
However, if we were to replicate this approach on the device, it would result in a
substantial increase in memory storage requirements during backpropagation stage,
as it would require setting qbin

b = 32 − bit. The quantization methodology proposed
in Section 4.2.1 offers a potential solution to mitigate this constraint by reducing qb to
8 bits. However, as depicted in Figure 4.13a and 4.13b, such a reduction in bitwidths
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Model Raspberry Binary Quantization Forward Backward Speedup
3B 4B q f qb (ms)

Mobilenetv2 [57] ✓ 8-bit float 340 134 1.0×
Quicknet [8] ✓ ✓ 1-bit 16-bit 160 55 2.2×

Mobilenetv2 [57] ✓ 8-bit float 225 90 1.0×
Quicknet [8] ✓ ✓ 1-bit 16-bit 105 38 2.2×

TABLE 4.2: Efficiency comparison of our method implemented on two different em-
bedded boards, i.e. Raspberry Pi 3B and 4B, using Mobilenetv2 and Quicknet model.

As shown, our solution achieves up to 2.2× speedup on the same platform.

would lead to a noticeable accuracy drop in the model. To address this challenge,
we evaluated the impact of distinct quantization levels for binary weights (qbin

b ) and
non-binary weights (qnon−bin

b ). Specifically, we experimented with representing qbin
b

using both 4 bits and 1 bit. Our findings, as shown in Figure 4.13, indicate that 4-
bit representation for binary layers does not introduce a substantial accuracy loss.
Moreover, employing a 1-bit representation of weights during the back-propagation
stage is feasible, as binary weights remain frozen during on-device learning. In this
scenario, the model still effectively preserves accuracy. This latest result carries sig-
nificant implications for on-device learning, as it reduces the computational burden
by requiring backward steps only for non-binary layers, primarily those employing
qnon−bin

b = 16 − bits, as observed in our experiments.

Efficiency Evaluation

To demonstrate the applicability of our approach on real-world embedded boards,
we provide an estimation analysis of the on-device performance. For this evalua-
tion, we select two popular boards commonly used in the IoT paradigm, both based
on the single-thread ARMv8 platform: Raspberry Pi 3B and Raspberry Pi 4B. Based
on the efficiency analysis reported in [8, 107], we report in Table 4.2 the inference and
backward timings of our BNN+LR+CWR* method compared to a non-binary solu-
tion (using a Mobilenetv2) [107]: the results obtained adopting Mobilenetv2 rely on
floating-point precision for layers from LR up to the classification head. The frozen
backbone is quantized using 8-bit (latent activations are stored with 8-bit precision)
and executed with Tensorflow-Lite. Instead, BNN+LR+CWR* employs Quicknet
model with the following quantization setting: q f = 8, qbin

b = 8, qnon−bin
b = 16; the

framework used to execute binary inference is LCE [8]. The image input size consid-
ered is 224× 224 and the batch size is 1. Our empirical evaluation for backward pass
shows that our BNN+LR+CWR* can achieve a minimum speedup of 2.2× compared
to a non-binary solution. In our evaluation we consider the worst-case scenario for
backward step by setting qbin

b = 8; instead, by setting qbin
b = 1, the speedup reported

in the last column of Table 4.2 should improve significantly.

4.2.3 Final Remarks

On-device training holds great potential in the realm of the IoT, as it can facilitate
the widespread adoption of deep learning solutions. In this study, our primary
focus was the implementation of Binary Neural Networks (BNNs) in combination
with Continual Learning algorithms, an approach not yet fully investigated in the
literature. In particular, we propose the use of the CWR* method with the sup-
port of a replay memory, implementing several customized quantization schemes
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tailored to alleviate memory constraints and computational bottlenecks during the
back-propagation stage. Summarizing, experimental achievements of this section
include the following:

• Reduced memory usage: we significantly reduced the memory storage re-
quired for replay memory by employing 1-bit latent activations, as opposed
to the state-of-the-art approach that employs 8-bit precision. A limited storage
requirement is a key element in addressing on-device training, especially with
embedded systems with a limited storage capability.

• Improved model accuracy: we improve the accuracy obtained across different
binarized backbones and the BNN+CWR* approach. Specifically, we reduce
the gap in performance that commonly affects BNNs by introducing a latent
replay approach as a safeguard against catastrophic forgetting.

• Efficiency in backpropagation: we minimize the computational effort related
to the backpropagation of the latent replay through a proper quantization scheme.
In this manner, we combine the good performance of the model with limited
computation requirements for the learning phase. This achievement, in com-
bination with reduced memory usage, paves the way for future on-device and
real-world training of learning systems.
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(A) Reactnet-18 on CIFAR10.
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(B) Quicknet on CORe50.

FIGURE 4.12: LR memory requirement using different quantization levels and corre-
sponding test set accuracy on CIFAR10 (a) and CORe50 (b). We considered 15, 20 and
30 elements for each class inside LR; for case (a) we adopted Reactnet-18 model while

in (b) we used Quicknet.
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FIGURE 4.13: qb memory requirement using different quantization bitwidths for
backward layer on CORe50 (a) and CIFAR10 (b).
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Chapter 5

Preliminary Results on Datalogic
Use Cases

This chapter describes some company use cases reporting preliminary results achieved
by adopting binary neural networks. BNNs remarkably increase the efficiency of the
products by reducing latency and memory, and the continual learning approaches
reported in Chapter 4 would allow the adaptation of Datalogic devices to a contin-
uously changing environment. Specifically, in Section 5.1 we present the localiza-
tion task of a two-dimensional code, named Datamatrix, which is typically a time-
consuming operation as a high-resolution input image has to be processed on a low-
power CPU. In Sections 5.2 and 5.3 we introduce a couple of product cases where
efficiency is mandatory, thus adopting BNNs, but the necessity to adapt the model to
new data pushes the development of on-device learning solutions for low-bit widths
models.

5.1 Datamatrix Detection

(A) Example of Code128 (B) Example of Datamatrix

FIGURE 5.1: Examples of 1D and 2D codes. Figure 5.1a represents a linear barcode,
where the red segment indicates the bars and spaces relative to the letter D. Figure
5.1b shows an example of datamatrix symbology. The red elle represents the finder

pattern of Datamatrix.

The core business of Datalogic is the automatic identification of items marked with
a code that can be represented as a sequence of vertical bars (sometimes named as
linear barcode) or as a two-dimensional grid. As shown in Figure 5.1, in the 1D bar-
code (Figure 5.1a) the information is encoded in the width of black bars and white
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Model Quantization Accuracy (%) Speed-up

Yolov5N 8-bit 95.3 1.0×
Custom BNN (ours) 1-bit 93.5 4.1×

TABLE 5.1: Acuracy and speed-up comparison of our custom BNN model with a
SOTA model (Yolov5 Nano) on our proprietary Datamatrix dataset measured on a

Raspberry Pi 3B.

spaces. Each combination of bars and spaces determines a specific codeword which
is mapped to a number or letter (symbology dependent). The height of the bars
guarantees a high information redundancy of the code and the number of bars is
correlated to the total encoded characters. Instead, the 2D code (Figure 5.1b), exploit-
ing both horizontal and vertical directions to embed data, results in higher encoding
capabilities. Unfortunately, the analysis of a two-dimensional grid is more complex
than sampling multiple lines across the vertical bars, leading to a more sophisticated
and time-consuming decoding pipeline. Datamatrix, characterized by a finder pattern
that is L-shaped, is the 2D symbology that requires the highest computational work-
load (shown in Figure 5.1b). Such a finder pattern is not very discriminative as the
L shape is quite common within an image acquired in the scenarios addressed by
Datalogic devices. Therefore, the localization process (the detection and validation
of a valid L-pattern) of the Datamatrix is used to evaluate many patterns candidates
for each image considered, substantially increasing the complexity and the compu-
tational workload for a low-power CPU that has to process high-resolution images,
such as 1280 × 1024.

The usage of deep neural networks can certainly facilitate and improve the localiza-
tion of Datamatrix code reaching state of the art results of accuracy, but the latency
constraint of 30fps is hard to satisfy even using a shallow 8-bit quantized model,
such as MobileNetv2 [121]. BNNs represent a valid alternative to consistently speed
up the localization process. For this evaluation, we used a private dataset of Datama-
trix samples having various sizes, scales, and resolutions. In Figure 5.2 we report a
subset of the Datamatrix samples captured using different contrast levels, rotations,
and textures. The network takes as input a sub-sampled version of the original im-
age and produces as output, a maps containing all the codes detected and other
parameters estimated, similar to the approach proposed in Yolov5 [64].

The BNN architecture employed is a custom and shallower version of Quicknet [8]
and ReactNet [90], properly modified to fit the latency constraint using the meth-
ods proposed in Chapter 3. In Table 5.1, we report the accuracy and the estimated
efficiency reached by our custom BNN architecture compared to the Yolov5 Nano
8-bit quantized. The preliminary results obtained by our BNN model achieve a re-
markable speed-up of 4.1× measured on a Raspberry Pi 3B with a minimal accuracy
loss of 1.8%, allowing the successful deployment of the BNN on many Datalogic de-
vices. For this evaluation, we employed a proprietary optimized inference engine
that supports both binary and non-binary layers.
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FIGURE 5.2: Examples of Datamatrix codes used to train our proprietary BNN model.
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5.2 Hazard Symbols Localization and Classification

FIGURE 5.3: Examples of Hazmat classes supported by our proprietary BNN model
used for localization and classification tasks.

Hazardous materials symbols, also known as warning symbols or safety symbols,
are visual indicators designed to convey information about potential hazards asso-
ciated with specific materials, locations, or objects. These symbols play a crucial
role in ensuring the safety of individuals, particularly in industrial, laboratory, and
public environments. Here are some common types of hazard symbols and their
meanings:

1. Chemical Hazard Symbols:

• Explosive: Indicates materials or substances that can explode.

• Flammable: Indicates materials that can catch fire easily.

• Oxidizing: Indicates substances that provide oxygen and may intensify
fires.

2. Biological Hazard Symbols: Warns of the presence of dangerous biological
substances.
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3. Radioactive Hazard Symbols: Indicates the presence of radioactive materials
emitting ionizing radiation.

4. Toxic Hazard Symbols: Indicates substances that are toxic and can cause harm.

These symbols are often standardized and regulated by national and international
organizations but a certain level of variability for each Hazard symbol class is al-
lowed. For instance, as shown in Figure 5.3, to specify that an object is flammable
(Figure 5.4), many choices are available. The standard is not restrictive as for the
barcode case and usually, every courier handles a customization for each Hazard
class symbol. In the Transportation and Logistic (T&L) market, the detection and
classification of all the Hazard symbols present on each parcel (to guarantee a high
level of safety) is one of the requirements that the devices used for traceability must
satisfy.

FIGURE 5.4: Example of a highly flammable Hazard symbol.

The variation of Hazard symbols, even within the same class, requires an automatic
solution that has to easily handle new customizations. This scenario represents a
good fit for a continual learning approach, specifically the New Classes. Practically,
in this scenario, a deep neural network model is pre-trained on the initial subset
of Hazard symbols. Before deploying the model, if a customer needs to recognize
new symbols, the new Hazards are collected (this process can be performed auto-
matically by using synthetic generation) into the experience 1. Next, the pre-trained
model is trained on the newly collected set of symbols using the approach reported
in Section 4.2. A subset of the symbols used to pre-train the model is used as initial
replay memory content. Whenever a new set of Hazards has to be added (a new
experience to execute), the previous process is repeated. The continuous learning
phase of the model does not impose strict constraints of latency as it is executed
only once for a new set of symbols but the inference of such a model on an embed-
ded device has to satisfy severe latency limitations. The adoption of a Binary Neural
Network can certainly reduce the processing load compared to an 8-bit quantized
model but ad-hoc quantization schemes need to be employed for a BNN (as reported
in Section 4.2).

The localization and classification of Hazard symbols can be accomplished using
many types of CNNs. In this evaluation, we considered the Yolov5 Nano 8-bit quan-
tized model, for the task of Section 5.1. The BNN architecture employed has a sim-
ilar structure to the one presented in Section 5.1. The Hazard dataset used contains
a collection of 60 symbols belonging to 25 categories. The same test set is used for
all experiences. The samples are split into batches and provided sequentially during
training obtaining 5 experiences. The first one with 40 symbols, and the remaining
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with 5 symbols each. For the BNN model, we used the quantization scheme pro-
posed in Section 4.2.1 setting q f = 8, qbin

b = 1 and qnon−bin
b = 16 as they ensure the

best trade-offs between accuracy and memory demand. Both the BNN and Yolov5N
models use a replay memory that stores 30 samples for each symbol class. In Fig-
ure 5.5 we present an accuracy comparison of our custom BNN model, denoted as
BNN+LR+CWR*, with a standard Yolov5N solution. The results demonstrate that
our binary model can reach a comparable accuracy to the 8-bit model while reducing
the memory demand of replay memory by 8×.
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FIGURE 5.5: Accuracy comparison of our custom BNN based on the method
BNN+LR+CWR* (Section 4.2.2) with a Yolov5N 8-bit quantized model.

5.3 Produce Classification

In retail applications there is an increasing request of smart solutions assisting the
customers at the self checkout or the cashiers on the attended checkout lanes. A
typical use case considered is reported in Figure 5.6, where a customer has to weigh
fruit, and the system, AI-powered, assists the user by displaying the most likely
produce candidates by analyzing the scene through a camera. When the system fails
a classification, the user can modify the choice and this interaction can be exploited
to continuously adjust the algorithm on new and fresh data.

This scenario presents many challenges as fruits and vegetables’ appearance can sig-
nificantly change over time. This task, similar to that of Section 5.2, can be addressed
using a continual learning approach. Differently from the previous section, this ap-
plication should be able to manage both items belonging to new classes (NC sce-
nario) and new instances of already known classes (NI scenario). In both scenarios,
the model is pre-trained on an initial dataset of samples, and then, when deployed
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INTERNAL Datalogic Confidential

FIGURE 5.6: Examples of a weight-scale used for produce recognition.

on the field, the system can monitor the classification accuracies and trigger new
training experiences when the performance accuracies degrade too much. The sys-
tem can exploit the user feedback as ground truth information to be used during
next experiences. Instead, when the classification is correct but the confidence is not
robust, it is possible to add the associated images to the experience set to improve
the classification score. When enough images have been collected, a continual learn-
ing experience is scheduled. In Figure 5.7 we report a subset of produce items used
in this evaluation.

Similar to the previous section, this task requires a fast inference time but it can tol-
erate higher latencies during the on-device back-propagation phase. Therefore, we
adopted the same BNN model of Section 5.2 comparing it with the Yolov5 Nano
model (8-bit quantized). The produce dataset used contains a collection of 50 differ-
ent items, split into 6 experiences for the NC scenario. The first one with 40 items,
and the remaining with 2. For the BNN model, we used the same quantization set-
tings of the previous section (q f = 8, qbin

b = 1 and qnon−bin
b = 16) and the replay

memory stores 30 samples for each class. In Figure 5.8 we present an accuracy com-
parison of the models considered, and these preliminary results show a minimal
accuracy gap between binary and non-binary models.
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FIGURE 5.7: Examples of fruits and vegetables used to train our proprietary BNN
model used for the classification task.
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FIGURE 5.8: Accuracy comparison of our custom BNN based on the method
BNN+LR+CWR* (Section 4.2.2) with a Yolov5N 8-bit quantized model.
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Chapter 6

Conclusions and Future Challenges

This chapter summarizes the contributions presented in this thesis. For each contri-
bution discussed, we explore the potential future research directions.

6.1 Efficiency of Binary Neural Networks

The techniques presented in Chapter 2 revise several model architectures, training
tricks, and loss function designs aimed at improving the accuracy of binary neural
networks. Even though plenty of literature work is available on this topic, only a few
works addressed the deployment of BNNs on real hardware devices. When running
on low-power embedded CPUs, it is fundamental the inference engine adopted to
guarantee a fast forward pass of the network. The fastest inference engines avail-
able on the market for BNNs are daBNN [155] and LCE [8]. While the former is
a custom implementation tailored to the layers used by Bi-Realnet [88], the latter
integrates optimized implementations for binary layers directly within Tensorflow
Lite. The necessity to further improve BNN model efficiency pushed the research of
this thesis. In Chapter 3 we detailed a technique to speed up the forward pass of a
BNN. In particular, it was shown in section 3.1.1, that data-flow constraints (section
3.1.1) of executing pipeline can be injected directly within the training procedure of
the network, effectively restricting output values of binary convolutions into the 8-
bit representation range. Additionally, to exploit previous achievement, in section
3.1.1 we proposed an optimization of the batch normalization layer when applied
to the output of a binary convolution. In section 3.1.1 we proposed our optimized
implementation of binary convolution for ARM NEON architectures. Overall, our
solutions achieved a speed-up of 1.91 and 2.73× compared to LCE and daBNN.

The BNN models covered in Chapter 2 and 3 typically exclude the first and last lay-
ers from binarization as it introduces a remarkable accuracy gap. This solution usu-
ally leads to deploying models where intermediate layers process 1-bit data while
input and last layers are executed in floating-point or 8-bit fixed-point arithmetic.
Such a choice usually increases power consumption and uses more hardware re-
sources when deployed on FPGA systems. To address such issues, in section 3.2 we
proposed a method to binarize the input layer of a BNN that reaches higher accuracy
when compared to state-of-the-art solutions, reducing the gap to the floating-point
baseline on average by 2.2 percentage points. Our method has proved to be more
resource-constrained and hardware-friendly than existing solutions, as reported in
Table 3.3.

Research directions As reported in Chapters 2 and 3, BNNs showed an impres-
sive accuracy improvement in the last years, substantially filling up the gap with
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corresponding floating-point models. One of the main challenges in BNN research
is to further improve model efficiency, by reducing computational bottlenecks. Real-
world applications, especially in the industrial environment, require a high accuracy
level that is hard to reach using a fully binarized model. We argue that binary neu-
ral network strategies should address this limitation to create an optimized binary
end-to-end pipeline. To validate our hypothesis, in Section 5.1, we report a company
use case where the usage of a BNN represents a promising solution to speed up a
processing-intensive application such as the Datamatrix detection and validation al-
lowing it to reach an accuracy comparable to a floating-point model. Additionally,
even though a multitude of binary architectures has been proposed, there is not yet
a standard methodology on how to build a binary model, based on the task to solve.
This aspect is tightly connected to the training procedure which is often elaborated
as it is usually split into two training stages (during the first one only weights are
binarized, in the second one also the activations) and it takes more epochs, com-
pared to floating-point models, to converge. Much more could be done to simplify
and speed up the long and sophisticated training procedure of BNNs allowing the
adoption of this technology to a broader set of applications.

6.2 Continual Learning at the Edge

Chapter 4 faces the challenges of on-device learning using a binary neural network.
Indeed, practical and real-world applications, like those presented in section 1.2, re-
quire optimized and fast processing pipelines, as those offered by BNNs, but at the
same time they have to adapt to new circumstances and environments. The huge
variety of everyday data is hard to capture with a single offline training, hence it
is more convenient to explore the chance to continually adapt a model when new
data is encountered, without incurring catastrophic forgetting. In literature, many
solutions have been proposed to address the continual learning use case but very
few of them considered the usage of very low bit-width models, such as binary net-
works. From the Datalogic company perspective, the necessity to investigate the
on-device learning within the context of BNNs is essential to guarantee a high level
of adaptability of the products.

In section 4.1, we presented our method to continually adapt a BNN model using
the CWR* approach, which is an efficient technique like DSLDA [49], to handle the
training phase. We explored the possibility of employing a frozen BNN backbone
with a classification head that could adapt to new classes or new samples of known
classes, by using an ad-hoc quantization scheme for back-propagation. We evaluated
the trade-offs over many benchmarks adopting multiple BNN architectures. We dis-
covered that the backward pass is more sensitive to low bit-width quantization as
the small gradient updates require enough precision to avoid the accuracy gap w.r.t.
the floating-point model. In section 4.2 we investigated the possibility of training a
BNN model on-device by adopting a replay memory, used to store old samples. The
replay memory mitigates the model forgetting of past samples but it also increases
the overall memory footprint (in addition to the one used for back-propagation). In
our solution, we do not store the raw input data but the activations corresponding
to an intermediate layer, denoted as latent replay layer, to minimize memory usage.
By combining this technique with BNNs it is possible to consistently decrease the
RM space if the activations of past samples are saved using only 1-bit. This opportu-
nity facilitates the deployment of continual learning solutions on edge devices, such
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as those produced by Datalogic. The employment of RM in addition to the quan-
tization scheme proposed to train binary and non-binary layers achieved superior
performances compared to the results of section 4.1.

Research directions The achievements reported in Chapter 4 showed promis-
ing results to effectively train BNNs on-device. One of the main challenges to fa-
cilitating on-device learning is the development of efficient and lightweight train-
ing frameworks that can support quantized back-propagation. Indeed, to satisfy
the constraints of efficiency and portability, the training framework cannot rely on
floating-point computation as it is not available on all hardware platforms and it
is more power-demanding compared to fixed-point arithmetic. We argue that the
availability of efficient on-device training frameworks would boost consistently the
diffusion of continual learning applications on edge devices. The preliminary results
on real-world applications, reported in sections 5.2 and 5.3, verify our assumptions
and enable the adaptation of binary models to new data directly on-device, pre-
serving the efficiency of such models, the privacy of data, and reducing the costs.
Additionally, to improve the accuracy achieved by continual learning approaches, it
is fundamental the ability to constantly train a model using unlabeled data. Even if
this is still an open field, the real-world applications on edge devices could benefit
from a large stream of data acquired by sensors and the combination of supervised
and unsupervised approaches should push this research direction.
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