Assimilating artificial intelligence in organizations: a qualitative investigation of the adoption and implementation challenge

Toniolo, Korinzia (2024) Assimilating artificial intelligence in organizations: a qualitative investigation of the adoption and implementation challenge, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Management, 35 Ciclo.
Documenti full-text disponibili:
[img] Documento PDF (English) - Accesso riservato fino a 13 Maggio 2026 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (2MB) | Contatta l'autore

Abstract

Artificial Intelligence (AI) is predicted to contribute $15 trillion to the global economy by 2030, establishing it as a crucial General-Purpose Technology. However, the implementation of AI in businesses has not kept pace with the advancements in its research and the surrounding excitement. This has prompted the need for in-depth studies exploring the dynamics of its adoption and utilization by organizations. This dissertation contributes to the technology and innovation management literature with two main objectives: (1) identifying factors that influence organizations' decisions to adopt AI technologies and (2) examining how the technology implementation process is altered when organizations integrate AI. Initially, the research reviews existing models of technology adoption and implementation, pinpointing gaps in the current understanding of AI integration into business practices and advocating for new theoretical perspectives to comprehend its organizational impacts. Empirical investigation follows, based on primary data collected through exploratory interviews and multiple case studies, as detailed in Chapter 3. The findings, elaborated in Chapters 4 and 5, extend frameworks like Technology-Organization-Environment and Technology-Organization-People. The initial part of the research validates the importance of established factors such as relative advantage and management support, while also identifying unique AI-specific factors like the need for data infrastructure and technology understandability. The latter part of the dissertation delves into how AI implementation unfolds within companies. It reveals that the interplay between firms' implementation strategies, their relationship with AI vendors, and the gradual increase in AI awareness at various organizational levels significantly influences the implementation outcomes, moving beyond the simple dichotomy of success and failure. Overall, this work enhances our understanding of AI's role in organizational transformation and lays the groundwork for further academic and practical investigations.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Toniolo, Korinzia
Supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
artificial intelligence, technology adoption, technology implementation, innovation management, multiple case studies
URN:NBN
Data di discussione
27 Giugno 2024
URI

Altri metadati

Gestione del documento: Visualizza la tesi

^