
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN

COMPUTER SCIENCE AND ENGINEERING

Ciclo 36

Settore Concorsuale: 09/H1 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

Settore Scientifico Disciplinare: ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE 
INFORMAZIONI

A LANGUAGE-BASED SOFTWARE ENGINEERING APPROACH FOR CYBER-
PHYSICAL SWARMS

Presentata da: Gianluca Aguzzi

Supervisore

Mirko Viroli

Esame finale anno 2024

Coordinatore Dottorato

Ilaria Bartolini



Abstract

Italiano

I sistemi IT sono sempre più pervasivi e interconnessi, spinti dall’esplosione dei
dispositivi IoT e dagli avanzamenti nel edge-cloud computing, con un impatto
crescente sulla società e sull’economia. Una visione moderna di tali sistemi è
quella di Cyber-Physical Swarm (CPSW): un grande insieme di dispositivi com-
putazionali distribuiti e profondamente integrati nel mondo fisico che, interagendo
localmente con altri simili, esibiscono un comportamento collettivo.

Il lavoro di tesi si concentra quindi sulle sfide d’ingegneria uniche per i CPSWs,
in particolare nella gestione della complessità derivante dall’intelligenza collettiva
emergente in questi sistemi. Per affrontare questi problemi, viene introdotto un
approccio chiamato language-based incentrato su aggregate computing—modello
di programmazione top-down che nasce per descrivere comportamenti collettivi
su larga scala. Questo paradigma è stato scelto perché facilita la progettazione
di comportamenti auto-organizzanti, che sono cruciali per il funzionamento effi-
ciente e resiliente di questi sistemi. L’adozione di un approccio language-based
ha portato a progressi significativi sia in metodi ibridi–che combinano soluzioni
dichiarative e sub-simboliche–sia in approcci ingegneristici standard per i CPSWs.
In particolare, sono stati identificati due principali aspetti su cui concentrarsi sug-
li aspetti ingegneristici: pattern di progettazione–ovvero le soluzioni riutilizzabili
ai problemi comuni in un determinato contesto–e gli aspetti della piattaforma–
cioè l’infrastruttura sottostante che supporta il software aggregato. Per quanto
riguarda il primo, sono stati sviluppato nuovi algoritmi, API e metodologie di
progettazione. Per il secondo, si è agito a livello di distribuzione ed esecuzione
collettiva. Parallelamente, è stato esplorato come l’apprendimento possa essere
integrato nel paradigma di riferimento attraverso una roadmap. Quindi, è sta-
to efficacemente combinato l’apprendimento in aggregate computing sia a livello
di pattern, con lavori basati sull’apprendimento rinforzato multi-agente, specifi-
camente con la progettazione di programmi collettivi e con un nuovo algoritmo
chiamato field-informed reinforcement learning, sia a livello di piattaforma con un
nuovo approccio che mira a creare schedulers distribuiti per il calcolo collettivo.

ii



Per corroborare i risultati e fornire supporto allo sviluppo, è stato anche proget-
tato uno strumento per la gestione della programmazione di applicazioni ibride
chiamato ScarLib.

In definitiva, l’obiettivo della ricerca è fornire un approccio olistico per
l’ingegnerizzazione e il deployment efficace di CPSWs su larga scala, adattabili
e robusti.

Parole chiave – cyber-physical swarms, programmazione aggregata, auto-
organizzazione, ingegneria del software language-based, intelligenza collettiva, in-
tellingenza di sciame, apprendimento automatico, apprendimento per rinforzo mul-
ti agent.

iii



English

IT systems are becoming increasingly ubiquitous and interconnected, driven by
the rise of Internet of Things (IoT) devices and advancements in edge-cloud com-
puting. This evolution is having a growing impact on society and the econ-
omy. An advanced perspective on these systems identifies them as Cyber-Physical
Swarm (CPSW), which consist of large networks of interconnected distributed
computational devices deeply embedded in the physical world, exhibiting collec-
tive behaviors.

This thesis explores the unique engineering challenges associated with these
systems, focusing particularly on managing the complexities arising from their col-
lective intelligence and large-scale nature. To address these challenges, this work
introduces a language-based approach centered on aggregate computing, which is a
top-down programming paradigm designed to describe large-scale collective behav-
iors. This paradigm was chosen because it facilitates the design of self-organizing
behaviors, which are crucial for the efficient and resilient operation of CPSWs.
Adopting a language-based approach has led to significant advancements in both
hybrid methods–combining declarative and sub-symbolic solutions–and standard
engineering approaches. Specifically, we identified two major facets to focus on en-
gineering aspects: design patterns–i.e., the reusable solutions to common problems
within a given context–and the platform aspects–i.e., the underlying infrastructure
that supports the aggregate software. Regarding the former, we have developed
new algorithms, APIs, and design methodologies. For the latter, we have taken
action at the deployment and collective execution levels. Concurrently, we have
explored how learning can be integrated into our paradigm of reference through
a roadmap. We have effectively combined machine learning with aggregate com-
puting both at the pattern level, with work based on many-agent reinforcement
learning, specifically collective program sketching and a novel algorithm called
field-informed reinforcement learning, and at the platform level with an innovative
approach that aims to create distributed schedulers for collective computation. To
corroborate the findings and provide development support, we have also designed
a tool for managing the programming of hybrid applications called ScarLib.

Ultimately, the goal of this research is to provide a holistic approach for the
effective design and deployment of large-scale, adaptable, and robust CPSWs.

Keywords – cyber-physical swarms, aggregate programming, language-based soft-
ware engineering, self-organization, collective intelligence, swarm intelligence, ma-
chine learning, many-agent reinforcement learning.

iv



For those who find harmony in complexity.

v



Acknowledgements

I always told myself that I would write these acknowledgements only at the end of
my academic journey. However, it seems I may never want to leave this world, so
the time has come to thank all the dear people who have been with me throughout
this long journey. I want to emphasize that whatever I am, have done, and will
do, is all thanks to you: I have merely done what needed to be done, and you have
been my guide. I am endlessly grateful to you all.

First and foremost, I must thank my family for always standing by me, even
when it seemed like I was lost. In particular, I want to thank my mom for teaching
me what it means to love, my dad for showing me the meaning of dedication
and sacrifice, and my grandparents—grandfather Giuseppe for his kindness and
grandmother Rosa for her boundless dedication to work, for the meals prepared,
and for her zest for life. A special thanks go to my older brother Cristiano; one
of the most brilliant people I know. He always encouraged me to do my best and
to never give up, he has been a shining star in my darker moments—you are the
best, keep it up!

I would also like to thank my lifelong friends, Giovanni, Cri, and Sonia. They
have seen so many versions of me and still accept me–I do not know how they
manage! You have been by my side in tough times, providing lightness, and for
that, I sincerely thank you. I hope you continue to tolerate my craziness. A
special thanks go to Mone and Pedro who made me feel at home and believed in
me during my university years–you are like brothers to me! A note of gratitude
also goes to Jo, my roommate for these last few months, for helping me through
difficult times–I apologize for all the therapy sessions you have had to endure!
I would like to express my sincere gratitude to my colleagues in Area 4.0. Our
exhilarating launches and absurd discussions have made difficult times easier to
navigate. I assure you that I will continue to make coffee, even when I sometimes
lose my composure. Last but not least, I want to thank Marta–my muse and my
reference point for so many years. Much of who I am today is thanks to her. I am
still not as radiant as I would like to be, but some of the light I do have comes
from the years spent with her. Thank you for everything. A special thanks to my
second family, the Luffarelli–thank you for loving me as a son. You will forever be

vi



in my heart.
Turning to the scientific side, I want to express my boundless gratitude to my

three main mentors: proff. Mirko Viroli, Roberto Casadei, and Danilo Pianini.
To you, I want to dedicate this quote that I read while writing this thesis:“having
access to people smarter than yourself is a blessing.” Mirko exemplifies the kind of
professor people aspire to be–his dedication, love for his work, and ongoing enthu-
siasm have always pushed me to give my best, because “there are no alternatives
to excellence”. Roberto has been a reference for my work since my bachelor’s the-
sis, he is for me like a lighthouse guiding me through stormy seas–his advice, work
ethic, and endless abilities are something I have always aspired to. A special thank
you to Danilo, who has given me so much not just technically and scientifically but
also encouraged me to be a better version of myself (in his atypical methods). Ad-
ditionally, the cohesive group of researchers in Cesena exists primarily due to his
unconventional and continuous efforts (e.g., the mandatory Friday Sthop), there-
fore I must extend another heartfelt thank you to him for that. Special mentions
go to Alessandro Ricci for his dedication to teaching and his endless curiosity,
and to Giovanni Ciatto, who despite his outward cynicism, shows rare love for his
work and displays a humanity hard to find in academia. My only regret is that he
beats me badly at Mario Kart. I would also like to thank my students, especially
Davide, Angelo, Francesco, and Giacomo. You have taught me much more than I
have imparted to you–I hope I’ve shared some of my joy for this work and given
you some valuable guidance. A special note also goes to Nico, you have helped
me a lot in this last period of my PhD. Conversations with you consistently enrich
my perspective and inspire positive change in my work and thinking! I hope to
live up to being a good example for you, just as my mentors have been for me.
Give more value to the sentence: Conversations with you always leave me with
something good

Further, thanks go to my first office colleagues: dott. Angelo Croatti and prof.
Sara Montagna, who were my go-to people in the initial dark months related to
COVID of my PhD at our PS Lab. Thank you to prof. Lukas Esterle for hosting
me in Aarhus and guiding me attentively. Moreover, during my time abroad, I felt
at home thanks to all my dormitory colleagues. You made those three beautiful
months better. I would also like to extend my gratitude to the researchers with
whom I have engaged in thoughtful discussions, including Stefano Mariani, Mirco
Musolesi, Guido Salvaneschi, Andrea Omicini, Giorgio Audrito, Giovanni Delnevo,
and Morten From Elvebakken. To those not explicitly mentioned, your time and
insights have been invaluable in my growth.

In closing, many friends with whom I have shared memorable moments have
not been explicitly acknowledged. To you–from my hometown, to those who were
with me in the early stages of my academic journey, and to those who have stood

vii



by me even in the final tough months of my doctoral studies–each of you has left an
indelible imprint on my life. I earnestly hope that I have been able to contribute
something meaningful to your lives, just as you have enriched mine.

viii



Contents

Abstract ii

1 Introduction 1
1.1 Research Background and Context . . . . . . . . . . . . . . . . . . 1
1.2 Overview and Contribution . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Reference 8

I Background 10

2 Cyber-Physical Swarms 11
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Vision examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Wild-fire monitoring in extensive forests . . . . . . . . . . . 13
2.2.2 Crowd steering . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Autonomous vehicles . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Related concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Macro-programming 24
3.1 The Essence of Macroprogramming . . . . . . . . . . . . . . . . . . 25
3.2 Conceptual Framework . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Macroprogramming: Definition and Basic Concepts . . . . . 26
3.2.3 Historical Evolution and Context . . . . . . . . . . . . . . . 27

3.3 Aggregate computing . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Field-based Programming Model . . . . . . . . . . . . . . . 31

ix



3.3.3 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Reinforcement Learning 48
4.1 Single-agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . 51
4.1.2 Find a policy given an MDP . . . . . . . . . . . . . . . . . . 52
4.1.3 Find a policy without an MDP . . . . . . . . . . . . . . . . 55
4.1.4 Policy Gradient Methods . . . . . . . . . . . . . . . . . . . . 57
4.1.5 Approximate Solutions . . . . . . . . . . . . . . . . . . . . . 59
4.1.6 Wrap up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Multi-agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.1 Stochastic games . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.2 Taxonomies . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.3 Solutions for MARL . . . . . . . . . . . . . . . . . . . . . . 67
4.2.4 Wrap up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Many-agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.1 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.2 Solutions for many-agent reinforcement learning (ManyRL) . 72

4.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

References 77

II Engineering Cyber-Physical Swarms 87

5 Patterns: Sensing-driven Clustering in Swarms 88
5.1 Field-based Concurrent Processes . . . . . . . . . . . . . . . . . . . 90
5.2 Resilient Dynamic Cluster Formation . . . . . . . . . . . . . . . . . 92
5.3 Sensing-Driven Clustering . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.3 Adaptive Centroid-based Clustering on Numeric Values . . . 97
5.3.4 Adaptive Clustering Meta-Algorithm . . . . . . . . . . . . . 98

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4.1 Scenario Description . . . . . . . . . . . . . . . . . . . . . . 102
5.4.2 Evaluation Goals . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4.3 Simulation Framework . . . . . . . . . . . . . . . . . . . . . 104
5.4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

CONTENTS x



5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.5.1 Swarm-based Environment Monitoring . . . . . . . . . . . . 115
5.5.2 Related Clustering Models and Problems . . . . . . . . . . . 115
5.5.3 Related Work on Sensing-based Clustering . . . . . . . . . . 117
5.5.4 Related Approaches and Programming Models . . . . . . . . 118
5.5.5 Related Field-based Algorithms . . . . . . . . . . . . . . . . 118

5.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Patterns: Dynamic Decentralization Domains 121
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2 Decentralized situation recognition and action: a case study . . . . 123

6.2.1 Requirements and abstractions . . . . . . . . . . . . . . . . 124
6.3 Dynamic Decentralization Domains in Practice . . . . . . . . . . . . 126
6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 129
6.4.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . 129

6.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 Patterns: Coordinated Movements and Decision Making 133
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 API Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.2.1 Movement blocks . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2.2 Flocking blocks . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.2.3 Leader-based blocks . . . . . . . . . . . . . . . . . . . . . . 139
7.2.4 Team formation blocks . . . . . . . . . . . . . . . . . . . . . 139
7.2.5 Pattern formation blocks . . . . . . . . . . . . . . . . . . . . 140
7.2.6 Swarm Planning blocks . . . . . . . . . . . . . . . . . . . . . 141

7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3.1 Case Study: Find and Rescue . . . . . . . . . . . . . . . . . 143
7.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8 Language: Reactive-based collective computations 150
8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.1.1 Self-organization Engineering Approaches . . . . . . . . . . . 152
8.1.2 Functional Reactive Programming . . . . . . . . . . . . . . . 153

8.2 FRASP Programming Model . . . . . . . . . . . . . . . . . . . . . . 156
8.2.1 System Model and (Reactive) Execution Model . . . . . . . 156
8.2.2 Programming Abstractions and Primitives . . . . . . . . . . 157
8.2.3 Paradigmatic Examples: Self-Healing Gradient & Channel . 159

CONTENTS xi



8.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.3.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.3.3 Implementation details . . . . . . . . . . . . . . . . . . . . . 164

8.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.4.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 167
8.4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 169

8.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9 Platform: Deployment of Cyber-Physical Swarms applications 174
9.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

9.1.1 Pulverized aggregate computing . . . . . . . . . . . . . . . . 176
9.1.2 Multi-tier programming and ScalaLoci . . . . . . . . . . . . 177

9.2 Multi-tier pulverised aggregate computing . . . . . . . . . . . . . . 179
9.2.1 Pulverized architecture in ScalaLoci . . . . . . . . . . . . . . 180
9.2.2 Definition of deployment kinds . . . . . . . . . . . . . . . . . 180
9.2.3 Integration with aggregate programming . . . . . . . . . . . 183

9.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
9.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

References 187

III Learning in Cyber-Physical Swarms 201

10 Research Roadmap for Hybrid aggregate Computing 202
10.1 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

10.1.1 Goals and Means . . . . . . . . . . . . . . . . . . . . . . . . 204
10.1.2 Patterns: learning aggregate computing (AC) algorithms . . 205
10.1.3 Platform: learning execution strategies and adaptations . . . 206
10.1.4 Platform: learning system structures and re-structuring . . . 207

10.2 Opportunities and Challenges . . . . . . . . . . . . . . . . . . . . . 208
10.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

11 Patterns: Collective Program Sketching 211
11.1 Aggregate Programs Improvement through reinforcement learning

(RL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
11.2 Motivation: Building blocks Refinement . . . . . . . . . . . . . . . 213
11.3 Learning Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
11.4 Reinforcement learning-based gradient block . . . . . . . . . . . . . 216

CONTENTS xii



11.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
11.5.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . 218
11.5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 219

11.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

12 Patterns: Field-informed Reinforcement Learning 222
12.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 224

12.1.1 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . 224
12.1.2 Problem formalization . . . . . . . . . . . . . . . . . . . . . 226
12.1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

12.2 Approach Description . . . . . . . . . . . . . . . . . . . . . . . . . . 227
12.2.1 Architecture, fields and aggregate dynamics . . . . . . . . . 227
12.2.2 Learning algorithm . . . . . . . . . . . . . . . . . . . . . . . 228

12.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
12.3.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
12.3.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
12.3.3 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . 233
12.3.4 Test phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
12.3.5 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
12.3.6 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
12.3.7 Discussion and Results . . . . . . . . . . . . . . . . . . . . . 235

12.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

13 Platform: Distributed Schedulers for Collective Computations 239
13.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . 240
13.2 Aggregate Platform Improvement Through Reinforcement learning . 241

13.2.1 Learning Setting . . . . . . . . . . . . . . . . . . . . . . . . 242
13.2.2 Reinforcement learning to Reduce Energy Consumption . . . 243

13.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
13.3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 245
13.3.2 Discussion and Results . . . . . . . . . . . . . . . . . . . . . 247
13.3.3 On practical applicability . . . . . . . . . . . . . . . . . . . 251

13.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

14 Platform: Toolkit for Hybrid Aggregate Computing 253
14.1 Software Description . . . . . . . . . . . . . . . . . . . . . . . . . . 254

14.1.1 Core abstraction . . . . . . . . . . . . . . . . . . . . . . . . 255
14.1.2 ScaFi-Alchemist integration . . . . . . . . . . . . . . . . . . 257
14.1.3 DSL for learning configurations . . . . . . . . . . . . . . . . 258
14.1.4 Tool usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

14.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

CONTENTS xiii



14.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
14.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

14.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
14.3.1 Many Agent simulators: . . . . . . . . . . . . . . . . . . . . 263
14.3.2 Multi-Agent Deep RL libraries: . . . . . . . . . . . . . . . . 263

14.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

References 266

15 Conclusion 274
15.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
15.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

CONTENTS xiv



List of Figures

1.1 Graphical overview of the thesis contributions with the reference to
the thesis structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Overview of Cyber-Physical Swarm (CPSW) and its related concepts 12
2.2 Taxonomy of Cyber-Physical Swarm (CPSW) w.r.t related Systems 20

3.1 Overview of macroprogramming . . . . . . . . . . . . . . . . . . . . 25
3.2 High-level behaviour of an agent in an aggregate system . . . . . . 30
3.3 Field Calculus abstract syntax extracted from [Vir+18a]. . . . . . . 31
3.4 The aggregate programming stack . . . . . . . . . . . . . . . . . . . 35
3.5 Resilient coordination operators . . . . . . . . . . . . . . . . . . . . 36
3.6 Gradient computation in a sparse and dense network of devices.

In Figure 3.6a, the output from executing a gradient program is
presented, with the source node positioned in the bottom-left corner.
Figure 3.6b displays the execution of a gradient program in a dense
network, where the source node is situated in the top-left corner.
The intensity of the colour serves as a gauge for proximity, with
redder hues indicating closer distances. . . . . . . . . . . . . . . . . 37

3.7 High-level architecture of the ScaFi toolkit. . . . . . . . . . . . . . . 42
3.8 Design of the core of ScaFi (DSL). . . . . . . . . . . . . . . . . . . 42
3.9 An Alchemist simulation example . . . . . . . . . . . . . . . . . . . 46

4.1 Overview of the RL framework. . . . . . . . . . . . . . . . . . . . . 50
4.2 General schema of policy iteration (left) and value iteration (right) 53
4.3 Overview of the RL algorithms. . . . . . . . . . . . . . . . . . . . . 61
4.4 Overview of the multi-agent reinforcement learning (MARL) frame-

work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Overview of the MARL taxonomies. . . . . . . . . . . . . . . . . . . 64
4.6 Overview of the MARL learning paradigms. . . . . . . . . . . . . . 65

5.1 Examples of the dynamics of multiple concurrent gradient processes. 93

xv



5.2 Graphical representation of temperature field distributions used in
the simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Snapshots of simulation executions during the sensing-driven clus-
tering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Overview of simulation results in different clustering scenarios . . . 111
5.5 In-depth analysis of good clustering results. . . . . . . . . . . . . . 112
5.6 Main examples of bad clustering results . . . . . . . . . . . . . . . . 120

6.1 Overview of the dynamic decentralization domains approach . . . . 125
6.2 Scala implementation of the dynamic decentralization domains API 128
6.3 FloodWatch simulation snapshots . . . . . . . . . . . . . . . . . 130
6.4 FloodWatch simulation . . . . . . . . . . . . . . . . . . . . . . . 131
6.5 FloodWatch risk evolution . . . . . . . . . . . . . . . . . . . . . 132

7.1 MacroSwarm: architecture overview. . . . . . . . . . . . . . . . . 136
7.2 Overview of swarm behaviours expressible with MacroSwarm. . . 141
7.3 Examples of the supported patterns. From left to right: line forma-

tion, v-like formation, and circular formation. . . . . . . . . . . . . 142
7.4 MacroSwarm graphical simulations example . . . . . . . . . . . . 144
7.5 Quantitative plots of the simulated scenario in MacroSwarm. . . 147

8.1 The reactive dataflow graph corresponding to the channel example. 163
8.2 Architecture of Functional Reactive Approach to Self-organization

Programming (FRASP). . . . . . . . . . . . . . . . . . . . . . . . . 164
8.3 Design of FRASP Domain Specific Language (DSL). . . . . . . . . 166
8.4 Evaluation scenarios implemented with FRASP . . . . . . . . . . . 167
8.5 Simulation results of FRASP simulations . . . . . . . . . . . . . . . 172
8.6 behaviour of the channel in response to changes in a destination . . 173

9.1 Pulverization model and corresponding ScalaLoci specification. . . . 181
9.2 Examples of pulverized architectures. . . . . . . . . . . . . . . . . . 182

10.1 The aggregate computing stack . . . . . . . . . . . . . . . . . . . . 203
10.2 Overview of the research roadmap for combined aggregate comput-

ing with machine learning . . . . . . . . . . . . . . . . . . . . . . . 204

11.1 Integration of reinforcement learning (RL) within the AC control
architecture for collective program synthesis . . . . . . . . . . . . . 212

11.2 Reinforcement Learning schema used in program synthesis simulations214
11.3 Performance of our RL-based gradient algorithm with velocity =

20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

12.1 Phenomenon covering overview . . . . . . . . . . . . . . . . . . . . 224

LIST OF FIGURES xvi



12.2 High-level description of Field-Informed Reinforcement Learning
(FIRL) approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

12.3 Simulations of the case study scenario in Alchemist for FIRL. . . . 229
12.4 Training results of FIRL. . . . . . . . . . . . . . . . . . . . . . . . . 237
12.5 Quantitative test results of FIRL . . . . . . . . . . . . . . . . . . . 237
12.6 Coverage of two zones using the different modes of the controller. . 238

13.1 Description of the general scheme of RL applied to the execution
platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

13.2 Pareto front varying the w parameter in the scheduling scenario . . 247
13.3 Scheduling dynamics after the learning phase . . . . . . . . . . . . . 248
13.4 Simulation results of Q-learning applied to schedule aggregate com-

putations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
13.5 Shows the average error and the average ticks during the learning

episodes of Swap scenario. . . . . . . . . . . . . . . . . . . . . . . 250
13.6 Error and energy saving percentage (see Section 13.3.1) as nodes vary.250

14.1 ScaRLib main modules . . . . . . . . . . . . . . . . . . . . . . . . . 255
14.2 ScaRLib core architecture . . . . . . . . . . . . . . . . . . . . . . . 256
14.3 Examples of developed System dynamics in ScaRLib . . . . . . . . 257
14.4 ScaRLib alchemist-scafi architecture . . . . . . . . . . . . . . . . 258
14.5 cohesion collision reward function . . . . . . . . . . . . . . . . . . . 262
14.6 Cohesion and collision experiment results . . . . . . . . . . . . . . . 263
14.7 Snapshots of the learned policy in ScaRLib . . . . . . . . . . . . . . 264
14.8 The performance of the learned policy in ScaRLib . . . . . . . . . . 264

LIST OF FIGURES xvii



Listings

5.1 ScaFi pseudo-code of the clustering meta-algorithm . . . . . . . . . 101
8.1 Gradient implemented with FRASP . . . . . . . . . . . . . . . . . . 160
8.2 Channel implemented with FRASP . . . . . . . . . . . . . . . . . . 161
11.1 ScaFi-like pseudocode description (implemented in the simulation)

for value-based RL algorithm applied AC. state, update, reward
are block specific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

xviii



Chapter 1

Introduction

Contents
1.1 Research Background and Context . . . . . . . . . . . . 1

1.2 Overview and Contribution . . . . . . . . . . . . . . . . 2

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Research Background and Context

Computation is everywhere. This statement is not just a catchy phrase but a reflec-
tion of our current reality, shaped by the accelerated development of information
technology. Indeed, computation has been seamlessly integrated into our everyday
lives, so much so that it often goes unnoticed. Its ubiquitous presence transcends
traditional boundaries, not just in professional settings but also in our homes,
transportation systems, and even our bodies, as proved by wearable technologies.
This phenomenon is most prominent in the explosion of Internet of Things (IoT)
devices. According to recent statistics 1, there are currently over 15 billion IoT
devices globally, and this number is expected to surpass 30 billion by the year
2030.

The widespread adoption of computational technologies kicks off a transforma-
tive phase for the IT landscape, starting from the edge of the network where con-
nected devices are becoming more sophisticated and efficient. These edge devices
are not merely passive data collectors but are now capable of localized computa-
tion (thus cyber-physical), storage, and analytics. Moving towards the core, cloud

1https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide

/

1

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/


infrastructures are also undergoing significant metamorphosis. Traditional central-
ized data centres are evolving into a more distributed, decentralized, and dynamic
architecture to meet the ever-changing demands of users and applications.

In this context, the term edge-cloud continuum suitably encapsulates the cur-
rent IT landscape. It symbolizes a fluid environment where the edge and the cloud
are not isolated silos but exist as two poles on a spectrum.

This fluid computational landscape is backed by contemporary theories like
ubiquitous [Wei99], pervasive [SM03], everyware [Gre10], and collective [Abo16]
computing. These paradigms collectively announce an era where computation is
not confined to specific devices but emerges as an integrated capability across a
vast, interconnected ecosystem in which a vast array of simple devices interact in
a decentralized fashion, leveraging their collective might to accomplish intricate
tasks often far beyond the capability of individual units. Drawing from natu-
ral systems, it is striking how these intricate computational networks mimic the
complex collective behaviours seen in nature. For example, certain social insects,
like ants and bees, display remarkable examples of resilient, effective, and efficient
self-organizing systems. Such natural phenomena serve as powerful metaphors for
understanding and conceptualizing the self-organizing properties within computa-
tional systems.

These observations have culminated in the formulation of the concept of Cyber-
Physical Swarms (CPSWs), an ensemble of heterogeneous computational entities
deeply integrated with the physical world which, locally interact with each other,
producing a collective outcome. This heterogeneous nature enriches the system’s
adaptability, robustness, and overall performance, thereby enabling it to solve
problems in a more nuanced manner. Instances of CPSWs are becoming increas-
ingly prevalent and varied, seen not only in the realm of swarm robotics but also
in human crowd dynamics and the field of IoT devices. In each of these cases, the
core principles remain consistent: the employment of self-organizing mechanisms
to achieve collective goals in an efficient, resilient, and adaptable manner.

1.2 Overview and Contribution

Addressing the engineering challenges of CPSW requires innovative approaches,
as traditional device-centric and bottom-up methodologies fall short. The com-
plexities involved in these swarms stem from a myriad of factors, including the
nuanced interaction between local and global dynamics, the intricacies associ-
ated with distributed control systems, the evolving landscape of IT architectures,
and significant scalability considerations. Given these multifaceted challenges,
this thesis introduces a comprehensive language-based approach that incorporates
robust models, cutting-edge techniques, and pioneering algorithms. The objec-

CHAPTER 1. INTRODUCTION 2



tive is to streamline the design and deployment of self-organizing behaviours in
CPSWs that are both predictable and adaptable. This is achieved by integrating
established manual design methodologies, namely aggregate computing [BPV15],
with cutting-edge advances in machine learning, such as multi-agent reinforcement
learning (MARL) [BBD08]. This hybrid approach aims to harness the strengths of
both paradigms to create a more robust, efficient, and scalable CPSW framework.

The research underpinning this work draws from a wide array of interdisci-
plinary fields, such as swarm robotics [Bra+13], multi-agent systems [DKJ18], col-
lective adaptive systems [Fer15], field-based coordination [MZ06], and multi-agent
reinforcement learning. By synthesizing insights from these diverse domains, the
proposed approach aims to offer a holistic solution for the effective engineering
and deployment of Cyber-Physical Swarm (CPSW).

Problem statement

The current state-of-the-art solutions in both automatic and manual design are lim-
ited in handling the complexities arising from the collective intelligence of CPSW.
While the former may offer gold-standard solutions through a “learn-by-doing” ap-
proach, they often struggle to generalize across different scenarios. On the other
hand, manual solutions may excel in modularity and declarative design but fre-
quently fall short when it comes to managing complex environmental conditions.

Research questions

RQ1: What is the right model for engineering such applications?

A model serves as a simplified representation of reality, tailored for a specific
purpose. In the realm of CPSW, it is important that the model encapsulates
the system’s collective stance, enabling both its design and deployment. Con-
sequently, this thesis has devoted considerable effort to devising a model that
is both general—applicable across various systems— and specific—capable
of reflecting the unique demands of CPSW.

RQ2: Does a hybrid approach that combines both automatic and manual design
offer any advantages?

The hybrid methodology represents an innovative strategy to overcome the
inherent drawbacks of purely automatic or manual designs. This approach
seeks to amalgamate the scalability of automatic design with the flexibility
of manual design. Given its pioneering nature, this thesis has thoroughly
investigated the hybrid approach’s benefits and limitations, assessing its fea-
sibility for engineering CPSW.

CHAPTER 1. INTRODUCTION 3



RQ3: Are there specific requirements for CPSW that differentiate them from other
large-scale distributed systems?

the unique requirements of CPSW, as opposed to other large-scale dis-
tributed systems, primarily stem from its collective aspect. Thus, elucidating
CPSW’s particular needs is vital for identifying the shortcomings of exist-
ing solutions and for advancing new strategies that effectively address these
challenges.

RQ4: How does the engineering of these applications influence the design process
for collective controllers?

The engineering facet of CPSW plays a pivotal role in the creation of collec-
tive controllers. In this context, the design process is not just about creating
a controller but also about ensuring that it is capable of adapting to the sys-
tem’s collective dynamics. Therefore, understanding the interplay between
engineering and design is crucial for creating effective collective controllers.
In this thesis, we have addressed these research questions through a combi-
nation of theoretical and practical investigations.

Contributions

The thesis contributes to an area called “language-based engineering” (Figure 1.1),
where models, algorithms, machine learning solutions, and tools are constructed
around a specific programming language within a given context. In the realm of
software engineering, a language-based approach is fundamentally concerned with
describing solutions using high-level abstractions provided by a specific program-
ming language. One of the unique attributes of this methodology is its domain-
specific nature. In essence, it starts by establishing a reference framework, con-
structs the necessary abstractions to articulate the possible behaviours of a given
application, and then employs a Domain-Specific Language (DSL) to formulate
solutions. For this dissertation, we have selected CPSW as our broad reference
class of systems. We observed that the existing paradigm of aggregate comput-
ing (AC) is particularly well-suited for describing emergent behaviours straight-
forwardly and effectively. This suitability arises from the top-down nature of AC
and its capacity to express self-organizing emergent behaviours. Building on this
foundation, we adopted a layered approach to bridge the gaps between aggregate
computing and the broader domain of reference. In this endeavour, we initially
sought to identify the facets to target in order to close this gap, which can be
broadly categorized into platform, language, and design patterns. At the platform
level, we considered all aspects related to executing and deploying a program writ-
ten in the reference language. At the language level, we aimed to determine if

CHAPTER 1. INTRODUCTION 4



any unique features are particularly relevant to CPSW. These choices could also
be influenced by platform-specific factors, such as the optimal way to run a cer-
tain program. Finally, above the language layer, we attempted to identify a set
of design patterns, encompassing algorithms, APIs, and libraries, that could be
effective in describing collective behaviours in CPWS. Then, we have utilized both
standard engineering techniques–proposing new programming models specifically
tailored for the intricacies of CPWS and identifying patterns that bring program-
mers closer to this complex landscape–as well as unconventional methods. The
latter, which we term as “hybrid,” is based on the facets identified above and
consists in integrating Artificial Intelligence techniques to either enhance certain
aspects of the existing solutions (i.e., improve the efficiency of collective compu-
tation) or improve the learning process itself (i.e., reduce the learning time of a
given problem). Lastly, this research offers a modern perspective on software en-
gineering, made increasingly relevant by the advent of large language models like
GPT [FC20] and LLaMa [Tou+23]. The role of such AI models in assisting and
guiding the software development process can no longer be ignored, signalling a
new era where human programmers are augmented by intelligent systems capable
of facilitating more effective development strategies. Specifically, our contributions
toward a hybrid approach include:

1. developing a comprehensive roadmap for integrating aggregate computing
with machine learning;

2. introducing a collective program synthesis method to establish robust self-
organizing behaviours;

3. proposing a distributed scheduling solution to accelerate the convergence of
collective structures expressed through aggregate computing;

4. presenting a novel multi-agent reinforcement learning technique, termed
“field-informed reinforcement learning”, designed to create robust dis-
tributed controllers for large-scale computations;

5. creating a tool called ScaRLib, which supports hybrid aggregate comput-
ing by combining state-of-the-art deep learning libraries with the aggregate
computing toolchain.

Meanwhile, contributions toward standard engineering approaches include:

1. introducing a novel programming language called FRASP, which is designed
to facilitate the engineering of self-organizing behaviours in CPSW;

2. developing a set of ‘swarm-like’ patterns for coordinated movement, dis-
tributed sensing and sensing-based clustering;

CHAPTER 1. INTRODUCTION 5



Platform
Deployments strategies and execution policies to execute AC scripts

Chapter 9, 10

Patterns
Set of high-level behaviours which close the gap between AC and CPSW

Chapter 5, 6, 7

Language
Aggregate Computing

Engineering Cyber-
Physical Swarms

Part II

Sketching
Chapter 12

Schedulers
Chapter 11

Field-informed RL
Chapter 13

Ro
ad

m
ap

Chap 10

Top down global-to-local
approach to program self-

organising behaviour
Chap 8

Enhance the state-of-the-art in
aggregate computing to effectively
address the complexities in CPSw Tools

Chapter 14

Learning in Cyber-Physical
Swarms 
Part III

Combination of declarative
programming approach with sub-

symbolic AI

Language-Based Software Engineering
Models, algorithms, and tools are built around a target programming paradigm

against a specific domain

Background
Part I

Cyber-
Physical Swarms

Chapter 2

Macro
Programming

Chapter 3

Reinforcement
Learning
Chapter 4

Figure 1.1: Graphical overview of the thesis contributions with the reference to
the thesis structure.

3. A novel architecture for deployment on the edge-cloud continuum through a
multi-tier pulverized architecture.

1.3 Thesis structure

This thesis is organized as follows. Chapter 1 sets the stage by presenting an ex-
haustive overview of the research context, elucidating the critical role of language-
based engineering in complex systems. This chapter also provides an outline of
the thesis, enumerating its key contributions and thematic structure.

Part I lays the groundwork by diving into the theoretical pillars that sustain
both standard and hybrid approaches in this domain. It comprises Chapter 2,
which articulates the specific characteristics and challenges posed by CPSWs,
and Chapter 3, which offers an in-depth explanation of the aggregate comput-
ing paradigm and its associated programming model. Finally, Chapter 4 provides
an exhaustive overview of the current landscape of reinforcement learning, setting
the stage for the terminologies and concepts deployed in subsequent chapters.

CHAPTER 1. INTRODUCTION 6



Part II focuses on the practical engineering aspects pertaining to CPSWs.
It starts with Chapter 5, introducing a groundbreaking algorithm designed for
sensing-based clustering that has applications in collective decision-making. Next,
Chapter 6 unveils a design pattern adept at encapsulating collective decision-
making processes influenced by environmental variables. Chapter 7 elaborates
on a pioneering API for enabling coordinated movement and collective choices.
Furthermore, Chapter 8 presents an innovative programming model engineered
specifically for CPSWs, aiming to enhance the efficiency of collective computa-
tions. Finally, Chapter 9 expounds a contemporary deployment strategy that
employs aggregate computing across the edge-cloud continuum.

Part III focuses on hybrid learning methodologies applicable to CPSWs. Chap-
ter 10 sketches a comprehensive roadmap for the unification of aggregate comput-
ing and machine learning. Chapter 11 introduces a groundbreaking technique for
synthesizing collective programs. In addition, Chapter 12 presents an inventive
approach to reinforcement learning within CPSWs, grounded in field calculus.
Chapter 13 details a cutting-edge strategy for distributed scheduling in these com-
plex systems. Concluding this part, Chapter 14 introduces an advanced toolkit
designed for hybrid aggregate computing, leveraging state-of-the-art deep learning
libraries.

Finally, Chapter 15 synthesizes the thesis contributions, drawing conclusions
and laying out avenues for future research in this evolving field.

CHAPTER 1. INTRODUCTION 7



Reference

[Abo16] Gregory D. Abowd. “Beyond Weiser: From Ubiquitous to Collective
Computing”. In: Computer 49.1 (2016), pp. 17–23. doi: 10.1109
/MC.2016.22. url: https://doi.org/10.1109/MC.2016.22.

[BBD08] Lucian Busoniu, Robert Babuska, and Bart De Schutter. “A com-
prehensive survey of multiagent reinforcement learning”. In: IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applica-
tions and Reviews) 38.2 (2008), pp. 156–172.

[BPV15] Jacob Beal, Danilo Pianini, and Mirko Viroli. “Aggregate Program-
ming for the Internet of Things”. In: Computer 48.9 (2015), pp. 22–
30. doi: 10.1109/MC.2015.261. url: https://doi.org/10.1109
/MC.2015.261.

[Bra+13] Manuele Brambilla et al. “Swarm robotics: a review from the swarm
engineering perspective”. In: Swarm Intelligence 7 (2013), pp. 1–41.

[DKJ18] Ali Dorri, Salil S Kanhere, and Raja Jurdak. “Multi-agent systems:
A survey”. In: Ieee Access 6 (2018), pp. 28573–28593.

[FC20] Luciano Floridi and Massimo Chiriatti. “GPT-3: Its nature, scope,
limits, and consequences”. In: Minds and Machines 30 (2020), pp. 681–
694.

[Fer15] Alois Ferscha. “Collective adaptive systems”. In: Adjunct Proceedings
of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing and Proceedings of the 2015 ACM Interna-
tional Symposium on Wearable Computers. 2015, pp. 893–895.

[Gre10] Adam Greenfield. Everyware: The dawning age of ubiquitous comput-
ing. New Riders, 2010.

[MZ06] Marco Mamei and Franco Zambonelli. Field-based coordination for
pervasive multiagent systems. Springer Science & Business Media,
2006.

8

https://doi.org/10.1109/MC.2016.22
https://doi.org/10.1109/MC.2016.22
https://doi.org/10.1109/MC.2016.22
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261


[SM03] Debashis Saha and Amitava Mukherjee. “Pervasive Computing: A
Paradigm for the 21st Century”. In: Computer 36.3 (2003), pp. 25–
31. doi: 10.1109/MC.2003.1185214. url: https://doi.org/10.1
109/MC.2003.1185214.

[Tou+23] Hugo Touvron et al. “Llama: Open and efficient foundation language
models”. In: arXiv preprint arXiv:2302.13971 (2023).

[Wei99] MarkWeiser. “The Computer for the 21st Century”. In: SIGMOBILE
Mob. Comput. Commun. Rev. 3.3 (July 1999), pp. 3–11. issn: 1559-
1662. doi: 10.1145/329124.329126. url: https://doi.org/10.11
45/329124.329126.

REFERENCE 9

https://doi.org/10.1109/MC.2003.1185214
https://doi.org/10.1109/MC.2003.1185214
https://doi.org/10.1109/MC.2003.1185214
https://doi.org/10.1145/329124.329126
https://doi.org/10.1145/329124.329126
https://doi.org/10.1145/329124.329126


Part I

Background

10



Chapter 2

Cyber-Physical Swarms

What is a Cyber-Physical Swarm
(CPSW)?
What are the main characteristics of
CPSWs?
How do CPSWs differ from other sys-
tems?
– RQ1, RQ3

Contents
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Vision examples . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Wild-fire monitoring in extensive forests . . . . . . . . . 13

2.2.2 Crowd steering . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Autonomous vehicles . . . . . . . . . . . . . . . . . . . . 15

2.3 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Related concepts . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . 23

This section aims to elucidate the concept of Cyber-Physical Swarms, distinguish
systems that align with our conceptual framework (an overview is given in Fig-
ure 2.1), and identify research domains grappling with analogous challenges.

2.1 Overview

The term refers to a network of computational nodes working in concert to ad-
dress collective problems, akin to naturally occurring swarm phenomena —in the

11



Cyber-Physical
Swarms
A coordinated network of
intelligent, interconnected devices
designed to collaboratively
execute complex tasks.

Openess

Large scale

Self-
organisation

Collective
Intelligence

Cyber-
Physical

Distributed
Control

Heterogeneity Behaviour
Homogeneity

Swarm
Robotics

Feature
Swarm

Intelligence

Inspired by

Collective
Adaptive
System

Figure 2.1: Overview of Cyber-Physical Swarm (CPSW) and its related concepts

following will be also referred to as “swarm” systems or “swarm-like” systems.
The architecture of these systems comprises a large array of interconnected nodes,
numbering in the hundreds or thousands. Importantly, these networks are open,
implying that the total node count is not predetermined. As a result, the emer-
gent collective behaviour should exhibit scale-independence, ensuring that the same
programmatic logic applies across small and expansive networks alike. In these sys-
tems, each node is tethered to a physical entity through sensors and can influence
its environment via actuators. This integration of computational and physical ele-
ments justifies the term “cyber-physical”. The nodes may exhibit heterogeneity in
hardware or other attributes, yet they maintain a homogeneous local behaviour,
executing identical local algorithms. Nodes operate with a focus on collective
goals, as opposed to individualistic or selfish objectives, thereby adhering to a col-
laborative ethos. However, each node can still have local objectives, which are not
necessarily aligned with the global ones. Given that centralization is not feasible,
the architecture relies on distributed control mechanisms. While modern com-
puting paradigms such as cloud or edge infrastructures are applicable, the system
must be capable of swift local responses.

In concluding, it is pertinent to clarify that the focus of this study is on the
macro-level behaviours of the swarm, rather than the micro-level interactions.
Rather than characterizing the collective through emergent properties, the inten-
tion is to define a globally desirable structure.

In the subsequent section, the concept of CPSWs will be elucidated through a
range of examples. These will encompass both existing and prospective applica-
tions to provide a comprehensive understanding of the field.

CHAPTER 2. CYBER-PHYSICAL SWARMS 12



2.2 Vision examples

2.2.1 Wild-fire monitoring in extensive forests

Canada is renowned for its lush forests, which cover approximately one-third of the
nation’s landmass, making it one of the countries with the largest forested areas
globally. These green expanses are not only a source of natural beauty but also play
a crucial role in maintaining ecological balance. However, the increasing impact of
climate change has led to a surge in wildfires, causing widespread devastation to
both local flora and fauna. Consider for instance the 2023 wildfires, which burned
over 43 million acres, that is about 5% of the entire forest area of Canada [Wik23b].

To address this pressing issue, there is a growing consensus on the need for
proactive and localized interventions. Specialized monitoring systems are essential
for keeping tabs on vulnerable regions, especially given the impracticality of relying
solely on human observation due to the vastness of these areas. One innovative
solution might be the deployment of a sophisticated network of environmental
sensors, strategically placed to monitor temperature, humidity, and other fire-
prone conditions. These sensors might be complemented by a swarm of drones
equipped with advanced imaging and data collection capabilities.

The system operates through ongoing collaboration between ground-based sen-
sors and aerial drones. The drones provide a bird’s-eye view of the landscape, al-
lowing for real-time monitoring of a wide array of nodes across large geographical
expanses. This integrated approach enables the early detection of potential fire
hazards, thereby facilitating the pre-emptive mobilization of emergency services.

However, the implementation of such a comprehensive monitoring system
comes with its own set of challenges. Each sensor or drone has a limited oper-
ational range and can only provide a partial view of the overall system. Therefore,
robust data fusion algorithms are necessary to merge information from multiple
sources into a cohesive and actionable overview. Environmental conditions are also
highly dynamic, requiring the system to adapt in real-time to changing variables
such as wind speed, temperature fluctuations, and precipitation levels.

In specific regions where the risk is elevated —such as areas with active fires
or reduced visibility due to smoke or fog—there may be a need for deploying ad-
ditional sensors and drones. Given that drones have limited battery life and need
to be recharged, the system must be capable of self-organizing to ensure uninter-
rupted monitoring. This is particularly challenging considering that the number of
deployed devices could easily exceed thousands of units across the extensive area
of interest.

Moreover, the system must be highly responsive to emergency conditions. This
necessitates that each device, whether a sensor or a drone, should be equipped with
edge computing capabilities for performing local analyses. These local analyses can

CHAPTER 2. CYBER-PHYSICAL SWARMS 13



then be used to trigger collective alarms, ensuring immediate action is taken to
mitigate the risk of wildfires.

2.2.2 Crowd steering

Concert venues (or public events like soccer matches) are often filled with an en-
ergetic and enthusiastic crowd, eager to enjoy live performances. These events
can attract tens of thousands of attendees, making crowd management a critical
concern for both safety and enjoyment. However, traditional methods of crowd
control, such as barriers and security personnel, are increasingly proving to be in-
adequate in the face of evolving challenges like sudden surges or emergencies. Take,
for example, the 2019 stampede at the San Carlo Place in Turin, where a sudden
downpour led to chaotic movements among the crowd, resulting in thousands of
minor injuries and three deaths [Wik23a].

To address this complex issue, there is a growing interest in leveraging technol-
ogy for more effective crowd steering. One promising approach might be to equip
each attendee with smart bracelets or utilize their smartphones, both of which
have computational capabilities. These devices can communicate only with each
other, forming a dynamic and adaptive network.

The system functions through real-time data exchange between the individ-
ual devices. The individual smart devices provide a “ground-level” perspective,
allowing for a granular understanding of crowd behaviour.

This collaborative approach enables the system to identify potential issues
before they escalate. For instance, if a particular section of the venue becomes
too crowded, the system can send alerts or directions to the smart devices in that
area, advising attendees to move to less crowded sections. This facilitates the
proactive redistribution of the crowd, thereby averting potential safety hazards.

However, implementing this advanced crowd-steering system is not without
challenges. Each smart device only has a limited computational capacity and can
provide just a partial view of the overall crowd dynamics. Therefore, sophisticated
algorithms are needed to aggregate this fragmented data into a comprehensive
and actionable overview. Additionally, the system must be able to adapt rapidly
to changing conditions, such as sudden weather changes or unexpected incidents
during the concert.

In specific situations where immediate action is required–such as medical emer-
gencies or security threats–there may be a need to send targeted alerts or instruc-
tions to specific groups of attendees. Given that smart devices have limited battery
life, the system must also self-organize to prioritize critical alerts and instructions,
ensuring that crowd management remains effective throughout the event.

Moreover, the system must be highly responsive to real-time conditions. This
necessitates that each smart device should compute locally, allowing for point-wise

CHAPTER 2. CYBER-PHYSICAL SWARMS 14



decision-making. These local analyses can then trigger collective actions, such as
coordinated movements or emergency evacuations, ensuring that immediate and
effective measures are taken to maintain crowd safety.

2.2.3 Autonomous vehicles

In a not-so-distant future where human-driven cars have become a thing of the
past, cities will be bustling with swarms of autonomous vehicles. These self-
driving cars will revolutionize urban transportation, offering a safer and more
efficient means of getting from one place to another. Indeed, considering the
current situation, where the number of accidents and traffic jams is increasing (only
in 2023, there were over 5 million accidents worldwide1), this is a very appealing
scenario.

However, the complexity of managing these autonomous fleets is far from triv-
ial, especially during peak hours or special events. Take for example Tokyo, where
on average it is estimated that over 1 million cars enter the metropolitan area
every day2.

To tackle this intricate challenge, there is a growing emphasis on the need
for advanced management systems capable of steering these autonomous vehicles
effectively. Each vehicle will be equipped with powerful onboard computers and
an array of sensors, enabling them to communicate not only with a centralized
traffic management system but also with each other.

The system will operate through continuous data exchange between individual
cars and strategically located infrastructure sensors. These sensors monitor various
parameters such as traffic flow, road conditions, and even weather. Autonomous
cars provide a “street-level” perspective, allowing for real-time adjustments to
routing algorithms and speed controls.

This collaborative approach enables the system to pre-empt potential bottle-
necks and accidents. For instance, if a major sporting event ends, causing a sudden
influx of ride requests, the system can dynamically reroute cars to manage the in-
creased demand efficiently. This proactive approach minimizes congestion and
enhances overall traffic flow.

However, the deployment of such a sophisticated system is fraught with chal-
lenges. Each autonomous car has a limited sensor range and can only offer a
partial view of the overall traffic landscape. Therefore, advanced machine learn-
ing algorithms are essential to integrate this fragmented data into a cohesive and
actionable real-time model. Additionally, the system must be capable of adapting

1https://www.forbes.com/advisor/legal/car-accident-statistics/
2https://www.statista.com/statistics/1191368/shutoko-average-daily-traffic-v

olume/

CHAPTER 2. CYBER-PHYSICAL SWARMS 15

https://www.forbes.com/advisor/legal/car-accident-statistics/
https://www.statista.com/statistics/1191368/shutoko-average-daily-traffic-volume/
https://www.statista.com/statistics/1191368/shutoko-average-daily-traffic-volume/


quickly to changing conditions, such as road closures, accidents, or even fluctuating
demand patterns.

In specific scenarios where immediate action is required–like emergency vehicle
passage or sudden road closures–there may be a need to prioritize certain routes or
vehicles. Given that each car operates on a finite energy source, the system must
self-organize to ensure that cars with lower battery levels are routed to charging
stations without disrupting the overall traffic flow.

2.3 Characteristics

Drawing from the overview and the diverse examples provided, several distinct
characteristics emerge that set CPSWs apart from other large-scale distributed
systems. These unique traits not only define the essence of CPSWs but also pose
specific challenges in their design and implementation. Each of these characteris-
tics will be discussed in detail below.

Scale CPSWs are inherently scalable, often comprising hundreds or even thou-
sands of interconnected nodes. The behaviour scale independence ensures that the
same programmatic logic can be applied across networks of varying sizes, making
them highly adaptable to different application scenarios. In doing this, is essential
to capture the right collective abstraction that allows both to help the developers
to think in terms of the collective behaviour and to effectively design the collective
behaviour itself.

Device heterogeneity While the nodes in a CPSW may possess varying hard-
ware capabilities and attributes, they are engineered to operate cohesively. In-
teroperability stands as a fundamental requirement for these systems, particularly
because they often incorporate a diverse array of devices manufactured by different
vendors. In today’s IoT landscape, semantic interoperability presents a significant
challenge. Devices from various vendors might employ divergent communication
protocols or data formats, complicating the task of achieving seamless interaction.
This heterogeneity is not limited to communication protocols; it also extends to
computational power, sensor types, and other attributes. Such diversity introduces
an additional layer of complexity in system design, necessitating the identification
of a common framework that enables effective communication and collaboration
among the devices.

Behaviour homogeneity Despite the diverse hardware configurations, nodes
within a CPSW display consistent behaviour at the local level. They run the same
local algorithms, thereby achieving the system’s collective objectives. However,

CHAPTER 2. CYBER-PHYSICAL SWARMS 16



it is important to clarify that “homogeneous behaviour” does not imply that all
nodes do the same thing at the same time. Indeed, given the system’s inherently
distributed and extensive: the input received by one node differs from that of
another far from it, leading to variations in local behaviour.

Distributed control Centralized control mechanisms are often impractical in
CPSWs due to their scale and complexity. In a centralized system, a single con-
troller manages the behaviour of all agents, necessitating high computational power
and introducing a single point of failure. This becomes increasingly challenging
when dealing with CPSWs that comprise a large scale of highly distributed agents.
Any failure or delay in the central controller could lead to system-wide disruptions.

In contrast, distributed control algorithms decentralize the decision-making
process, allowing nodes to make local decisions based on their immediate envi-
ronment and information from neighbouring nodes. This approach offers several
advantages:

• scalability: as the system grows, the computational burden is distributed
across multiple nodes, making it easier to scale;

• fault tolerance: since there is no single point of failure, the system can
continue to operate even if some nodes fail;

• adaptability: distributed control algorithms are often more flexible, en-
abling the system to adapt to changing conditions without requiring global
recalibration;

• efficiency: local decision-making can often lead to more efficient utilization
of resources, as nodes can make decisions that are optimal for their specific
conditions;

• reduced latency: decisions can be made more quickly when they are pro-
cessed locally, which is crucial for real-time applications where delays can
have significant consequences.

Self-organization One feature of CPSWs is their ability to self-organize. Nodes
can dynamically adapt to changing conditions, reconfiguring themselves to main-
tain system integrity and performance. This is particularly important in sce-
narios where the environment is unpredictable or hostile. To be more precise,
self-organization is defined as a dynamical and adaptive process where systems
acquire and maintain structure themselves, without external control. It can be
also denoted as a property “to arrange several elements into a purposeful sequen-
tial or spatial (or both) order or structure”. Therefore, self-organization is an
autonomous, robust, and flexible process that seeks an increase of order [DH04].

CHAPTER 2. CYBER-PHYSICAL SWARMS 17



Openness CPSWs are typically open systems, meaning that the total node
count is not predetermined. New nodes can join or leave the network dynami-
cally, requiring the system to be flexible enough to accommodate these changes
without compromising its functionality.

Collective intelligence The nodes in a CPSW work collaboratively to achieve
common goals, displaying a form of collective intelligence [NKC+09]. This is facili-
tated by advanced algorithms that enable the system to learn from its environment
and adapt its behaviour accordingly. Through decentralized decision-making pro-
cesses, each node contributes its unique computational resources and sensory data,
leading to a more robust and resilient system. This collective approach allows for
enhanced efficiency, as the system can dynamically allocate tasks and resources
based on real-time needs and constraints. The collective intelligence exhibited by
the nodes also enables fault tolerance and self-healing capabilities. If one node
encounters a failure or is compromised, the remaining nodes can recalibrate and
reorganize to continue functioning effectively. Moreover, the collective intelligence
is not static; it evolves over time as the system interacts with its environment,
making it possible to handle unforeseen challenges and complex scenarios.

Therefore, collective intelligence in CPSW is not merely a by-product but a
crucial feature that substantially enhances the system’s adaptability, resilience,
and overall performance.

Cyber-physical interactions The term “cyber-physical” aptly describes the
integration of computational and physical elements in CPSWs. Each node is usu-
ally connected to a physical entity via sensors and can influence its environment
through actuators. This seamless integration is crucial for applications that re-
quire real-time interaction with the physical world, such as industrial automation,
healthcare monitoring, and autonomous vehicles.

The sensors collect various types of data– ranging from temperature and pres-
sure to more complex measurements like vibration or chemical composition– which
is then processed and analysed by the computational components. These insights
enable the nodes to make informed decisions and execute actions via actuators,
which might include motors, valves, or other control mechanisms. The end-to-end
loop from sensing to actuation ensures a high degree of responsiveness and adapt-
ability, allowing the system to cope with dynamic and unpredictable conditions
effectively.

Additionally, cyber-physical integration offers the ability for remote monitoring
and control, thus expanding the operational scope and adaptability of the system.
For instance, operators can receive real-time data and adjust system parameters
without needing to be physically present, thereby reducing both risks and opera-

CHAPTER 2. CYBER-PHYSICAL SWARMS 18



tional costs.
Furthermore, the cyber aspect of CPSWs often incorporates cloud computing

and edge computing solutions. Cloud computing allows for the storage and analysis
of large volumes of data, while edge computing provides low-latency processing
capabilities closer to the source of data generation. The harmonious blend of
cloud and edge computing caters to both large-scale data analytics and real-time
processing requirements, thus elevating the system’s performance and utility.

In summary, the term “cyber-physical” encapsulates a sophisticated blend of
computational intelligence and physical interaction. The seamless integration of
these elements requires a modern computing paradigm, making CPSWs highly
versatile and robust.

2.4 Related concepts

MAS Swarm Robotics CAS CPSW
Scale Dozens Hundreds Thousands Thousands

Capabilities Heterogeneous Homogeneous Heterogeneous Heterogeneous
Behaviours Heterogeneous Homogeneous Heterogeneous Homogeneous
Control Centralized/Distributed Centralized/Distributed Distributed Distributed

Cyber-Physical Yes/No Yes Yes/No Yes

Table 2.1: Summarized comparison between MAS, Swarm Robotics, CAS and
CPSW

This section will discuss some of the related concepts that are closely aligned
with CPSWs summarized in Figure 2.2 and Table 2.1.

Multi-Agent Systems In the realm of computational systems, a CPSW can
be closely related to a Multi-Agent System (MAS), with a specific emphasis on
being a many-agent system. In a MAS, multiple autonomous agents interact with
each other to achieve specific objectives. These agents are capable of sensing their
environment, making decisions based on their observations, and then acting upon
those decisions. The key difference in a CPSW is the scale and the integration
of physical components, such as sensors and actuators, which allows for real-time
interaction with the environment.

In a CPSW, agents are not just virtual entities but are tethered to physical
components, making them cyber-physical agents. These agents continuously en-
gage in a cycle of repeated sensing, computation, communication, and actuation
to achieve collective behaviours.

One of the significant challenges in designing a CPSW is the high stochastic
of the environment. Unlike controlled settings where outcomes can be predicted

CHAPTER 2. CYBER-PHYSICAL SWARMS 19



Multi-Agent Systems

Collective Adaptive
Systems

Cyber-physical
Swarms

Swarms
Robotics

Figure 2.2: Taxonomy of Cyber-Physical Swarm (CPSW) w.r.t related Systems

with a high degree of accuracy, CPSWs often operate in dynamic and unpredictable
environments. This makes it nearly impossible to pre-program optimal behaviours
for all agents. The agents must, therefore, be capable of adapting their behaviours
in real time based on their sensory inputs and the inputs from other agents in the
network. This requires sophisticated algorithms that can handle uncertainty and
make near-optimal decisions in real time.

Moreover, the agents in a CPSW are designed to work collaboratively to achieve
collective goals, rather than pursuing individual objectives. This is in contrast to
some MAS where agents might have conflicting goals. In a CPSW, the focus is
on achieving a form of collective intelligence through distributed computing and
decision-making. Agents share information and coordinate their actions to solve
complex problems that are beyond the capabilities of any single agent.

In summary, while CPSWs share similarities with MAS in terms of multi-
agent interaction and decision-making, they extend the concept by incorporating
large-scale, cyber-physical integration, and a focus on collective intelligence. The
challenges in designing CPSWs are manifold, ranging from handling the stochastic
nature of the environment to ensuring robust and adaptive collective behaviours.

Swarm intelligence It is a branch of collective intelligence with an interdis-
ciplinary field that draws inspiration from the collective behaviours observed in

CHAPTER 2. CYBER-PHYSICAL SWARMS 20



social animals, such as ants, birds, and fish, to develop computational algorithms
and systems. Initially, the focus was primarily on swarm robotics, where the objec-
tive was to create robotic systems that could emulate the complex behaviours seen
in natural swarms. The methodology employed is fundamentally bottom-up. De-
signers and researchers study the behaviours of individual animals in their natural
habitats to understand the rules or heuristics they follow. These individual be-
haviours are then modelled computationally to observe how they contribute to the
emergence of collective intelligence in a swarm. One seminal concept that emerged
from this line of inquiry is stigmergy [DBT00]. Stigmergy is a form of indirect com-
munication and coordination where agents in a swarm interact with each other by
modifying a shared environment, rather than through direct communication.

In recent years, the focus of swarm intelligence has evolved to concentrate more
on algorithmic aspects. Researchers have started to leverage the principles of col-
lective behaviour to develop optimization algorithms that can solve complex com-
putational problems. These algorithms are particularly useful in scenarios where
traditional optimization methods are computationally expensive or fail to find op-
timal solutions within a reasonable time frame. Some of the most well-known al-
gorithms that have emerged from Swarm Intelligence research include Ant Colony
Optimization (ACO) [DMC96], Particle Swarm Optimization (PSO) [KE95], and
Flock of Starling Optimization (FSO) [FS11]. Each of these algorithms has its
own set of rules and heuristics, modelled after the specific animal behaviours they
are inspired by, and they have been applied successfully in various domains such
as network design, resource allocation, and data clustering.

While these optimization algorithms offer valuable methodologies and have
broad applicability, they are not the central focus of this thesis. Differently, the
focus is on harnessing the principles of swarm intelligence to develop artificial
systems that can achieve similar collective behaviours through mechanisms of self-
organization. Unlike traditional swarm intelligence algorithms that often aim to
mimic nature, this thesis draws inspiration from natural systems to understand
the fundamental principles that make these systems robust, scalable, and adaptable.
The ultimate goal is to exploit these principles to design and implement artificial
swarm systems that can operate effectively and efficiently in complex, dynamic,
and potentially hostile environments.

Swarm robotics Historically, the field of swarm robotics has its roots in the
early approaches to swarm intelligence. Over time, it has evolved to become the
engineering arm of swarm intelligence, focusing on the practical aspects of building
and maintaining swarm systems. The overarching goal of swarm engineering is to
establish a rigorous methodology for the entire lifecycle of a swarm robotics system,
from conceptualization to operation and maintenance [Bra+13].

CHAPTER 2. CYBER-PHYSICAL SWARMS 21



In traditional swarm robotics, the primary focus is on robots that are au-
tonomous, situated, and operate under no central control. These robots are de-
signed to interact with each other and their environment to achieve collective
goals. CPSW extends this paradigm to include other “swarm-like” systems that
may not necessarily involve robots. Examples include crowds of people in public
spaces, large-scale IoT networks, and smart city infrastructures. These systems
share many similarities with swarm robotics, such as the need for autonomy, lo-
calized decision-making, and collective behaviour, but they also present unique
challenges and opportunities.

One of the most promising avenues for extending the principles of swarm
robotics to these other domains is the emerging field of automatic design [FB16].
In automatic design approaches, the control logic for the agents in the swarm is
not manually programmed but is instead derived through optimization techniques
such as genetic algorithms or multi-agent reinforcement learning. These methods
aim to optimize a global utility function that captures the overall objectives of the
swarm. This is particularly appealing for CPSWs, where the complexity and scale
of the system make manual programming impractical.

In summary, the principles and methodologies developed in swarm robotics
provide a strong foundation for the engineering of CPSWs. However, the unique
challenges and complexities of CPSWs require further innovation. By leveraging
the principles of swarm intelligence, we can create a more robust, adaptable, and
intelligent CPSWs that can operate effectively in a wide range of applications and
environments.

Collective adaptive systems Collective adaptive systems (CAS) are a broad
class of systems composed of agents (potentially heterogeneous) capable of adapt-
ing to environmental conditions while striving to achieve a collective goal through
the emergence of individual node cooperation. Typically, individual units are sim-
ple and draw strong inspiration from natural systems. In these systems, which
are adaptive by nature, there is interest in incorporating self-* properties (in fact,
these CAS are sometimes discussed as collective self-adaptive systems). These
properties include self-healing, self-optimization, and self-configuration. Self-
healing refers to the system’s ability to recover from failures without human in-
tervention. Self-optimization means the system can improve its performance over
time based on feedback. Self-configuration allows the system to adapt to changing
conditions without requiring manual adjustments. These self-* properties con-
tribute to the system’s overall resilience and efficiency.

CPSW can be understood as a specialized subset of the broader CAS. This
specialization arises from two key distinguishing characteristics: i) the involved
entities are not merely digital but also have a cyber-physical nature, integrating

CHAPTER 2. CYBER-PHYSICAL SWARMS 22



both computational and physical elements, and ii) despite the heterogeneous na-
ture of the devices within the system, their behaviour manifests uniformly. These
unique attributes have a profound impact on the system’s design methodology,
which is why this thesis specifically focuses on this subclass of systems.

2.5 Final Remarks

Cyber-Physical Swarm (CPSW) represent a specialized subset of Collective Adap-
tive Systems (CAS), distinguished by their cyber-physical nature and homogeneous
behaviour despite device heterogeneity. Drawing from the principles of swarm
intelligence, multi-agent systems, and swarm robotics, CPSW offer a promising
avenue for tackling complex, large-scale problems in a variety of domains, from
environmental monitoring to crowd management and autonomous transportation.

The unique characteristics of CPSW, such as scale, device heterogeneity, be-
haviour homogeneity, and self-organization, not only define their essence but
also pose specific challenges and opportunities in their design and implementa-
tion. These challenges necessitate innovative approaches in automatic design, dis-
tributed control, and self-organization.

This thesis aims to contribute to the understanding and engineering of CPSW
by exploring these challenges and proposing methodologies that leverage the princi-
ples of collective behaviour to design systems that are robust, scalable, and adapt-
able.

CHAPTER 2. CYBER-PHYSICAL SWARMS 23



Chapter 3

Macro-programming

What is macroprogramming?
Why is it important?
What is aggregate computing?
What is the execution model of aggregate
computing?
– RQ1, RQ4

Contents
3.1 The Essence of Macroprogramming . . . . . . . . . . . 25

3.2 Conceptual Framework . . . . . . . . . . . . . . . . . . . 26

3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Macroprogramming: Definition and Basic Concepts . . 26

3.2.3 Historical Evolution and Context . . . . . . . . . . . . . 27

3.3 Aggregate computing . . . . . . . . . . . . . . . . . . . . 28

3.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Field-based Programming Model . . . . . . . . . . . . . 31

3.3.3 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . 47

Macroprogramming, as a paradigm, has emerged as a pivotal approach in the
realm of large-scale distributed systems. It offers a unique perspective, allow-
ing developers to express the macroscopic behaviour of a collective system. This
chapter delves into the intricacies of macroprogramming, its historical evolution,
and its significance in the modern computational landscape, leading to aggregate
computing–a novel macro-programming approach for programming collective self-
organizing behaviours in highly scalable and distributed systems.

24



Environment

Micro
program

Macro 
program

micro
level

macro
level

Constructs

Goal

Macro Abstractions Macro Observables

effects/
emergentsabstractions

Macro to micro

Figure 3.1: Overview of macroprogramming, inspired from [Cas23]

3.1 The Essence of Macroprogramming

Macroprogramming [Cas23] emphasizes the overarching behaviour of a system,
abstracting the intricacies of individual components. The primary motivation be-
hind macroprogramming is to simplify the design and development of collective
systems. By providing a higher-level perspective, it allows developers to address
system-wide concerns without getting buried by the details of individual compo-
nents. Indeed, developers should focus solely on the system’s overall behaviour,
rather than worrying about its technological details, individual component capa-
bilities, or communication protocols. This not only streamlines the development
process but also ensures that the system’s behaviour is consistent and predictable.

In essence, macroprogramming is about seeing the forest for the trees. It recog-
nizes that while individual components (or trees) are essential, understanding and
managing their collective behaviour (or the forest) is of paramount importance.
This perspective is particularly relevant in today’s interconnected world, where
systems often comprise numerous components that need to work in harmony.

Furthermore, macroprogramming leverages macro-level abstractions, such as
collective states, groups, or spatiotemporal patterns. These abstractions provide a
structured way to think about and design systems, ensuring that they are both
robust and adaptable. By focusing on these higher-level abstractions, macropro-
gramming allows for a more intuitive and efficient approach to system design,

CHAPTER 3. MACRO-PROGRAMMING 25



making it an indispensable tool in the modern developer’s toolkit. Figure 3.1
provides an overview of the idea behind this paradigm.

3.2 Conceptual Framework

3.2.1 Preliminaries

Macroprogramming addresses the challenge of programming the behaviour of a
computational system S, composed of multiple computational entities. Given two
entities A and B within this system, there are three primary modes to influence
their behaviour to promote properties ascribable to S:

1. altering their context, indirectly influencing them—e.g., a change in sensor
A might subsequently affect B;

2. interaction, such as triggering their behaviour—e.g., if A is an actuator, its
actions might influence B;

3. setting their behaviour to produce certain global outcomes when activated.

The term “program” refers to an abstract description executable by a computa-
tional entity. Modes (1) and (2) allow an external entity C to influence A or B,
and consequently S.

3.2.2 Macroprogramming: Definition and Basic Concepts

Macroprogramming is defined as an abstract paradigm for programming the
macroscopic behaviour of systems of computational entities. As a paradigm, it
is an approach rooted in a mathematical theory or a set of coherent principles.
The foundational principles of macroprogramming include:

• micro-macro distinction: recognizing two primary system levels – macro
(global structures) and micro (computational entities);

• macroscopic perspective: focusing on the system’s macroscopic aspects, con-
sidering micro-level entities from a global perspective;

• microprogram: the result of macroprogramming deployment is a program
executed by individuals reaching the macroscopic perspective;

• macro-to-micro mapping : implementing how a macro program is executed
by the system, defining a logic to map macro instructions to micro-level
behaviours.

CHAPTER 3. MACRO-PROGRAMMING 26



Particularly, the concept of micro-macro levels is common in various scientific areas
including social sciences and artificial intelligence. In programming, particularly in
macroprogramming, the micro and macro dimensions are defined by specific design
boundaries. Micro entities have computational behaviour and can be autonomous,
active, or reactive. They interact with other micro-entities and can include agents,
actors, objects, and microservices. Macro entities can be categorized as macro-
level observables and macro-level constructs. Macro-level observables are high-level
system behaviours that may be hard to deduce from micro-level states. The goal
of a microprogram is generally a function of these macro-level observables. Macro-
level constructs are abstractions that can affect the behaviour of two or more
micro-level entities. The challenge in macroprogramming is to effectively map
these macro-level constructs to micro-level entities. The notion of ‘emergence’ is
key to understanding the relationship between the micro and macro levels.

Another essential aspect is the concept of “collectives”, which are groups of
similar entities that share common traits, goals, or mechanisms for interaction.
Examples of collectives include a group of co-located workers or a swarm of drones.
These entities within a collective usually share common goals and interaction mech-
anisms, although differences among them can enhance collective capabilities. Het-
erogeneous collectives, which include diverse elements like humans, robots, and
sensors, also exist and can be managed through macroprogramming. However,
heterogeneity complicates macroprogramming by emphasizing individual perspec-
tives and widening the gap between macro-level and micro-level considerations.

Finally, macroprogramming often employs a declarative approach, focusing on
specifying what the goal of a computation is rather than detailing how to achieve
it. Declarative programming allows for the abstraction of elements like function
evaluation order, theorem proving, and data access specifics. The aim is to offer
high-level abstractions that capture system-wide concerns and can be conveniently
mapped to component-level issues. Because these assumptions are often specific
to a particular application area, macroprogramming languages usually manifest as
Domain-Specific Languages (DSLs).

3.2.3 Historical Evolution and Context

The historical roots of macroprogramming can be traced back to the pioneer-
ing work of Newton and Welsh [NW04]. Their research laid the foundation for
the application of macroprogramming in the domain of Wireless Sensor Networks
(WSNs). These networks, characterized by embedded units equipped with pro-
cessing, communication, and sensing capabilities, presented unique challenges that
necessitated a macroscopic view for effective data processing and logic description.
The emphasis was on capturing the collective behaviour of these sensor nodes,
ensuring efficient data aggregation, processing, and communication. WSNs were

CHAPTER 3. MACRO-PROGRAMMING 27



among the first systems that required a departure from traditional programming
paradigms. Given the distributed nature of these networks and the limited re-
sources of individual sensor nodes, there was a pressing need to optimize both
computation and communication. Macroprogramming emerged as a solution, al-
lowing developers to focus on the overall behaviour of the network rather than the
intricacies of individual nodes.

As technology evolved, so did the applications of macroprogramming. The rise
of the Internet of Things (IoT) in the subsequent years brought forth a plethora
of interconnected devices, each with its own set of capabilities and functions. The
complexity of these systems further underscored the importance of a macroscopic
approach. Macroprogramming principles were adapted and refined to cater to the
diverse requirements of IoT ecosystems. Furthermore, the emergence of Cyber-
Physical Systems (CPSs) and spatial computing [Bea+12] introduced new chal-
lenges and opportunities for macroprogramming. These systems, which integrate
computational processes with physical entities, demanded a holistic approach to
ensure seamless interaction and coordination. Macroprogramming, with its empha-
sis on collective behaviour and high-level abstractions, proved to be an invaluable
tool in this context. This research trend culminates with the advent of aggre-
gate computing [BPV15], a novel macroprogramming approach for programming
collective self-organizing behaviours in highly scalable and distributed systems.

3.3 Aggregate computing

Field-based coordination [Vir+19] is an approach where computation leverages a
notion of computational fields (fields for short) [War89; MZL04; Vir+19], namely,
distributed data structures evolving in time and associating locations with val-
ues. The approach originates from previous work like Warren’s artificial potential
fields [War89] and co-fields from Mamei et al. [MZL04]. In particular, in co-fields,
computational fields represent contextual information, locally sensed by the agents
and repeatedly distributed by the agents themselves or the infrastructure according
to a propagation rule.

In this work, by field-based coordination we mean a specific programming and
computational model, also known as aggregate computing in literature [BPV15],
which is surveyed in [Vir+19]. In this model, collective and self-organising be-
haviour is programmed through a composition of functions operating on fields
mapping a set of individual agents (rather than environment locations) to com-
putational values. Therefore, fields can be used to associate a certain domain of
agents with what they sense, the information they process, and actuation instruc-
tions for operating in the environment. Fields are computed locally to the agents
but are subject to a global viewpoint: so, e.g., a field of velocity vectors can be seen

CHAPTER 3. MACRO-PROGRAMMING 28



as a movement command for an entire swarm, or a field of double can denote what
an entire swarm perceives in a certain environment. To understand field-based
computing, two essential parts have to be considered: the system model and the
programming model. Their interplay is what allows the local actions of the agents
to yield emergent collective behaviour.

3.3.1 System Model

We consider a network of computing and interacting agents situated in some envi-
ronment, compatible with the vision of Cyber-Physical Swarm (CPSW), therefore
considering the behavioural homogeneity and the cyber-physical aspect.

Structure. An agent is an autonomous entity equipped with sensors and
actuators, which serve as the interface towards a logical or physical environment.
From a logical point of view1, it also has state, a support for communicating with
other agents, and support for computing simple programs. An agent is connected
with other neighbour agents which collectively form its neighbourhood. The set of
neighbours depends on a neighbouring relationship, which is defined by designers
according to the application at hand and is subject to the constraints exerted
by the underlying physical network. A typical neighbouring rule is the one that
mimics physical connectivity; so, e.g., a robot is a neighbour of another robot if
it manages to send a message to the latter over the wireless channel. Another
typical neighbouring rule is the one based on spatial vicinity; so, e.g., a robot is
a neighbour of another robot if the infrastructure manages to deliver a message
from the former to the latter (e.g., using other robots as relays) and these two
robots are at an estimated distance smaller than a certain threshold (assuming a
distance can be estimated through proper technology).

Interaction Interaction happens by sending messages to neighbours, asyn-
chronously. Interaction can also happen in a stigmergic way, by perceiving and
acting upon the environment through sensors and actuators. The content of mes-
sages and when they are sent and received depends on the agent’s behaviour.
However, in general, as our goal is to model continuous collective behaviours or
self-organising systems, we remark that interaction would typically be frequent (in
relation to the problem and environment dynamics).

1Actually, such requirements may be relaxed by considering different execution strategies on
available infrastructure [Cas+20b].

CHAPTER 3. MACRO-PROGRAMMING 29



agent

Computation round

Context
evaluation

Aggregate
program

evaluation

Context
action

Scheduling
policy

Sensors

State

Inbound
Message box

Outbound
Message box

Actuators

neighbours

Aggregate
program

0 1

2

3

Figure 3.2: High-level behaviour of an agent in an aggregate system, taken
from [CAV21b]

Behaviour As per the above consideration, the behaviour of any individual
agent is best understood in terms of repeated action of execution rounds (see Fig-
ure 3.2), where each round consists of the following steps (though some flexibility
exists especially in the actuation part):

1. Context acquisition. The agent gathers its context by considering its pre-
vious state as well as the most recent sensor readings and messages from
neighbours.

2. Computation. The agent runs a computation against the acquired context,
yielding (i) an output describing potential actions; and (ii) a coordination
message containing all the information to be sent to neighbours for coordi-
nation at a collective level.

3. Actuation and communication. The agent performs the actions described by
the program output and dispatches the coordination message to the entire
neighbourhood.

By having every agent repeatedly run these sense-compute-act rounds, the whole
system fosters a self-organization process whereby up-to-date information (from
the environment and from the agents) is continuously incorporated and processed,
typically in a self-stabilising manner [Dol00].

CHAPTER 3. MACRO-PROGRAMMING 30



P ::= F e program

F ::= def f(x̄){e} function declaration

e ::= x | v | f(ē) | if(e){e}{e} | nbr{e} | rep(e){(x)→ e} expression

f ::= d | b function name

v ::= l | ϕ value

l ::= c(l̄) local value

ϕ ::= δ̄ 7→ l̄ neighbouring field value

Figure 3.3: Field Calculus abstract syntax extracted from [Vir+18a].

This system model provides a basic machinery for collective adaptive behaviour,
which however requires a proper description of the “local computation step”: this
is fostered by the field-based programming model (discussed in Section 3.3.2). A
field-based program steers the collective adaptive behaviour of a system, which
unfolds by having each agent in the system evaluate that program according to
the discussed round-based execution model. Notice that such a program specifies
both what local processing the agents must perform and what data they must
share with neighbours; also, notice that generally, the program does not affect
the round-based execution protocol—unless advanced forms of scheduling are de-
sired [Pia+21; ACV22a]. The distributed execution protocol may be provided by
a middleware, which will ensure that messages are exchanged and rounds properly
scheduled. The reader can refer to [Pia+21] and [Cas+22], respectively, for a more
comprehensive discussion on execution and deployment aspects.

3.3.2 Field-based Programming Model

Field Calculus (FC) was originally conceptualized in [VDB13] as a foundational
framework aimed at capturing essential elements in computational field languages.
These elements include field function definitions, functional interplay with fields,
time-based field changes, the building of field values from surrounding nodes, and
limiting computations to network sub-regions.

One of the distinctive aspects of field calculus is its dual interpretive nature.
On a local scale, the specification describes cyclic computations on individual
devices (i.e., the system model described above). Conversely, at the global level,
a field calculus expression maps each computational round for every device to its
corresponding space-time value. This inherent duality effectively bridges the gap
between individual device behaviour and the emergent global network behaviour, a

CHAPTER 3. MACRO-PROGRAMMING 31



claim supported by computational adequacy and abstraction properties as outlined
in [Aud+19a].

Figure 3.3 describes the abstract syntax for field calculus. In this syntax,
an overbar notation (ē) indicates a sequence of elements, namely ē stands for
e1, e2, . . . , en for some n > 1. When multiple overbar notations are used in the
same expression, they are assumed to have the same length and they are expanded
together, namely δ̄ 7→ l̄ stands for δ1 7→ l1, δ2 7→ l2, . . . , δn 7→ ln for some n > 1.
Keywords in this syntax include def for function definitions, if for conditional
expressions, and rep and nbr for specific field calculus operations related to time-
based state evolution and neighbour data sharing, respectively.

A typical field calculus program P comprises a series of function declarations F̄
followed by a main expression e, which collectively describes both global and local
system behaviour. An expression e can be:

• a variable x;

• a value v, which can be either:

– a local value l, defined through a constructor c applied to a sequence
of arguments l̄, such as boolean, number, string, etc.;

– a neighbouring field value ϕ, defined through a sequence of pairs δ̄ 7→ l̄,
where δ̄ is a sequence of neighbouring device (including itself) and l̄ is
a sequence of local values, e.g., a map of neighbouring devices to the
distance from them;

• a function application f(ē), where f is a function name and ē is a sequence
of expressions, e.g., f(x, v). It can be user defined, e.g., d(x), or built-in,
e.g., b(v);

• a branching expression if(e){e}{e}, where e is a boolean expression and e

is an expression, e.g., if(b(v)){d(x)}{v};

• a neighbourhood expression nbr{e}, which creates a neighbouring value map-
ping neighbours to their latest available result of evaluating e. In particular,
each device δ:

– shares its value of e with its neighbours, and

– evaluates the expression into a neighbouring value Φ, where Φ is a
function that maps each neighbour δ′ of δ to the latest evaluation of e
that has been shared from δ;

• A neighbourhood expression, denoted as nbr{e}, generates a mapping that
associates neighbours with their most recent evaluation results of e. Specif-
ically, for each device δ:

CHAPTER 3. MACRO-PROGRAMMING 32



– It disseminates its evaluation of e to its neighbours;

– It computes the expression into a neighbourhood value function Φ. This
function Φ maps each neighbouring device δ′ to the most recent evalu-
ation of e received from δ;

For example, nbr(humidity()) (where humidity() is a built-in sensor esti-
mating local humidity) would result in a neighbourhood value function Φ,
which maps each neighbour to the humidity level measured by that neigh-
bour. It is worth noting that in an if statement, sharing is confined to
devices within the same branch’s subspace. This is because devices in differ-
ent subspaces do not execute the same nbr(e) constructs;

• rep(e){(x) → e}, where e is an expression, x is a variable, and e is an ex-
pression. It simulates the dynamic evolution of the state over time intervals.
This construct extracts the previously computed value v from the complete
rep expression during the last evaluation cycle. For the initial evaluation,
the expression e1 is evaluated to provide the starting value of v. In subse-
quent rounds, v is updated based on the outcome of evaluating e2, where
each instance of x is substituted with v.

Within this suite of operations, the nbr and rep constructs serve distinct roles,
facilitating message exchanges between devices and managing states within the
iterative rounds of an individual device, respectively. These constructs are un-
derpinned by a data gathering mechanism enabled through a technique known
as alignment [Aud+16]. This ensures accurate message correspondence, eliminat-
ing the possibility of unintended message swapping between different instances of
nbr expressions, as well as preventing state memory interchange between differ-
ent instances of rep expressions. A significant implication of this is the isolated
execution of the two branches in an if statement within field calculus; a device
executing the then branch is unable to communicate with the else branch of a
neighbouring device, and vice versa.

3.3.2.1 Examples

The proposed model and language are quite simple and intuitive, yet it is expressive
enough to capture a wide range of collective behaviours. In the following, we
present a few examples of collective behaviours that can be expressed in this model.

Direct neighbour interaction (space) In the realm of aggregate computing,
one can effectively calculate spatial structures by utilizing the nbr construct. Con-
sider, for example, the task of computing the average temperature perceived by a

CHAPTER 3. MACRO-PROGRAMMING 33



device along with its neighbouring devices. This can be seamlessly implemented
through the nbr construct as shown below:

val totalTemperature = foldhood(0.0)(_ + )(nbr{temperature()})

val neighboursCount = foldhood(0)( + _)(nbr{1})

val averageTemperature = totalTemperature / neighboursCount

Here, foldhood is a built-in function designed for the aggregation of neighbour
values. It takes three parameters:

1. the neutral element, which serves as the initial value for the aggregation;

2. the aggregation function, which defines how the values should be combined;

3. the query to neighbours, which specifies what information is to be collected
from each neighbour.

Local field evolution (time) If with nbr we can collect information from the
neighbourhood, with rep we can evolve the state of the device over time. For
instance, consider the following example:

rep(0) { local => local + 1}

This expression initializes the state of the device to 0 and then increments it by
1 in each subsequent round, namely, it simulates a counter. Combining these
two operators, it is possible to create space-time patterns, such as the following,
that simulates a wave propagating in space. One such pattern is the self-healing
gradient.

Self-healing gradient (space-time) A gradient is a field that associates each
device in the system with its shortest distance to the nearest source device. A
self-healing gradient algorithm calculates this gradient field and autonomously
updates it to reflect alterations in the source set or network connectivity. This
algorithm is significant because it frequently serves as a component in more com-
plex self-organizing algorithms, such as those used for managing information flows,
gathering distributed data, and segmenting networks into regions. Using the field
calculus, this can be expressed as follows:

// distance from source region with nbrRange metric

def distanceTo(source) {

rep (Infinity) {

(dist) =>

mux (source) { 0 }

{ minHood(nbr{dist} + nbrRange()) }

}

}

CHAPTER 3. MACRO-PROGRAMMING 34



where mux is a conditional expression, minHood is a built-in function that returns
the minimum value in the neighbourhood, and nbrRange is a built-in function that
returns neighbouring field distance.

3.3.2.2 Aggregate programming stack

Figure 3.4: The aggregate programming
stack taken from [BPV15]

Building upon both theoretical in-
sights and pragmatic considerations,
aggregate programming introduces a
stratified architecture designed to sig-
nificantly ease the design, develop-
ment, and maintenance of intricate
distributed systems. This methodol-
ogy stems from three pivotal observa-
tions related to engineering sophisti-
cated coordination schemas:

• the composition of modules and
subsystems should be straight-
forward and transparent;

• various subsystems necessitate
distinct coordination mecha-
nisms that are context-sensitive,
varying according to regions and
temporal conditions;

• robust coordination mechanisms
should be encapsulated within abstractions, thereby obviating the need for
programmers to grapple with their underlying complexities.

Field calculus, along with its language incarnations, offers solutions for the
first two observations but falls short of ensuring resilience. Additionally, its math-
ematical rigour and concise syntax present challenges for straightforward program-
ming. Consequently, supplementary methodologies are indispensable for scaling
effectively with system complexity. These pattern have been identified in liter-
ate [BPV15] and are called resilient coordination operators (more details in Sec-
tion 3.3.2.3 and Section 3.3.2.4). Finally, on top of these operators, there are high-
level patterns that can be used to implement complex behaviours (more details in
Section 3.3.2.5) and high-level API for structuring domain-specific behaviour (e.g.,
crowd detection or coordinate movement in swarms). The overall stack is shown
in Figure 3.4.

CHAPTER 3. MACRO-PROGRAMMING 35



(a) Gradient-cast (G) (b) Collect-cast (C) (c) Sparse choice (S)

Figure 3.5: Resilient coordination operators

3.3.2.3 Resilient coordination operators

Throughout the development of aggregate computing, a consistent set of founda-
tional building blocks has emerged over the years (Figure 3.5). These building
blocks are known for their self-stabilizing properties–details on which will be dis-
cussed later–and they serve as the foundation for various high-level patterns in
aggregate computing.

Gradient-cast (G) — Figure 3.5a various forms of aggregation can be exe-
cuted along a distance gradient. This algorithm, called G, is tailored based on a
specific metric used for measuring increments or distances. It enables the trans-
fer of a particular field value from the source in an outward direction, evolving
according to a specified logic as it ascends the gradient:

def G(src, phi, acc, metric) =

rep((Double.MaxValue, phi)) { case (distance,value) => {

mux(src) {

(0.0, phi)

} {

minHoodPlus { (nbr(distance) + metric, acc(nbr(value))) }

}

}

}._2

Where minHoodPlus is a built-in function that returns the minimum value in
the neighbourhood, and nbr is a built-in function that returns neighbouring field
distance. The _._2 at the end of the expression is used to extract the second
element of the tuple. Figure 3.6 shows the gradient computation in a sparse and
dense network of devices. This operator serves as the foundation for a range of
gradient-based algorithms, such as “broadcast”. In the broadcast method, data is
disseminated along the gradient path:

def broadcast(source, field) =

G(source, field, acc = x => x, metric = nbrRange)

CHAPTER 3. MACRO-PROGRAMMING 36



(a) (b)

Figure 3.6: Gradient computation in a sparse and dense network of devices. In
Figure 3.6a, the output from executing a gradient program is presented, with
the source node positioned in the bottom-left corner. Figure 3.6b displays the
execution of a gradient program in a dense network, where the source node is
situated in the top-left corner. The intensity of the colour serves as a gauge for
proximity, with redder hues indicating closer distances.

Collect-cast (C) — Figure 3.5b in essence, G facilitates the flow of informa-
tion from originating devices to their broader environment, acting as a mechanism
for the spread or diffusion of values. Conversely, a secondary operation enables
data to flow from a widespread area to specific gathering points, aiding in de-
centralized sensing tasks. This is enabled by another generalized operator C – it
accumulates values along a potential field, getting the data from the lowest point
of the gradient up to the highest point, that is the centre of the potential field:

def C(potential, acc, phi, Null) = {

rep(phi) { v =>

acc(phi, foldhood(Null)(acc) {

mux(nbr(findParent(potential)) == mid()) {

nbr(v)

} {

nbr(Null)

}

})

}

}

def findParent(p) = {

mux(minHood { nbr(p) } < p) {

minHood { nbr { (p, mid()) } }._2

} {

Int.MaxValue

}

}

CHAPTER 3. MACRO-PROGRAMMING 37



Sparse choice (S) — Figure 3.5c the generic operator Sparse choice (S) allows
for the selective inclusion of devices to divide the network into distinct “responsi-
bility zones”. Essentially, it performs a leader election procedure. In this process,
a “grain” represents the average distance between two elected leaders, as defined
by a specific metric. It can be implemented as follows:

def S(grain, metric) = breakUsingUids(randomUid, grain, metric)

def breakUsingUids(uid, grain, metric) =

uid == rep(uid) { lead =>

val acc = (_) + metric

distanceCompetition(G(uid == lead, 0, acc, metric), lead, uid, grain, metric)

}

def distanceCompetition(d, lead, uid, grain, metric) = {

val inf = (Double.PositiveInfinity, uid._2)

mux(d > grain) { uid }

{

mux(d >= (0.5 * grain)) { // 0.5 is a constant used to avoid oscillations

inf

} {

minHood {

mux(nbr { d } + metric >= 0.5 * grain) {

nbr { inf }

} {

nbr { lead }

}

}

}}}

3.3.2.4 Behavioural Properties

The field calculus is architected as a universal language specifically tailored for
computations in spatially distributed systems. One of the most critical properties
studied within subsets of this core language is that of self-stabilization, which
ensures the system’s ability to autonomously reach a correct state [LLM15].Defined

formally within the context of the transition system N
act→ N representing network

evolution, self-stabilization guarantees that:

1. the program evaluation, given an eventually constant input, will converge to
a stable value at each device within a finite timeframe;

2. this stable value is solely determined by the current input values, thus miti-
gating any interference from transitory states.

Self-stabilizing algorithms are particularly robust in dynamically evolving systems,
reacting coherently to input changes without residual influence from prior states.

The study in [DV15] identifies an initial set of self-stabilizing fragments through
a ‘spreading operator’, which performs monotonic updates on neighbouring values
through a diffusion function. These fragments allow for versatile combinations with

CHAPTER 3. MACRO-PROGRAMMING 38



local operations, excluding explicit rep and nbr expressions. Nevertheless, this
framework supports several fundamental building blocks like distance estimation
and broadcast.

An expanded set of self-stabilizing fragments and building blocks are covered
in [Vir+18b]. This work proposes usage restrictions on rep statements to spe-
cific patterns: converging, acyclic, and minimising. These correlate with the three
primary building blocks: G, C, and T, each with distinct functionalities and ap-
plications. Moreover, the study delves into the notion of ‘equivalence and substi-
tutability’ for self-stabilizing programs. This concept not only allows for program
optimization through the substitution of more efficient equivalents but also pro-
vides a new lens for understanding self-stabilizing programs by abstracting their
transient behaviours.

The work establishes different semantic interpretations of a given program: op-
erational semantics (local viewpoint), denotational semantics (global viewpoint),
and eventual behaviour (limit viewpoint). Another perspective, termed as the
‘continuous viewpoint,’ is explored in [Bea+17]. This involves the convergence of
output values towards a continuous function, as the density of computing devices
in an area increases.

Taking cues from self-stabilization principles, the notion is relaxed to define
‘eventually consistent’ programs. These programs are expected to converge to a
limit continuously, barring a transient initial period, assuming that the inputs
remain constant beyond this initial period. This eventual consistency is demon-
strated for all programs expressible in the GPI calculus [Aud+18].

Lastly, contemporary work is beginning to examine the real-time performance
guarantees of field calculus programs [Aud+18]. Current validation approaches
primarily focus on ‘by construction’ proofs based on elementary building blocks or
restricted fragments of the calculus.

3.3.2.5 High-level patterns

Starting from the previously defined building blocks, it is possible to define high-
level patterns that can be used to implement complex behaviours. In the following,
we illustrate two of the most idiomatic in the context of aggregate computing,
which are the self-healing channel and the self-organising coordination regions
pattern.

Self-healing channel The self-healing channel pattern is a distributed compu-
tation that produces a path between two points in the network. This path is
resilient to the failure of intermediate nodes, and it is dynamically updated when
the network topology changes. This can be implemented leveraging mainly the G
operator as follows:

CHAPTER 3. MACRO-PROGRAMMING 39



def channel(source, destination, width) =

gradient(source) + gradient(destination)

<= distanceBetween(source, destination) + width

def distanceBetween(source, destination) =

broadcast(source, gradient(destination))

Self-Organising Coordination Regions (SCR) In a more advanced scenario,
one could employ the SCR design pattern. The core objective of the SCR pattern
is to partition a decentralized system into distinct spatial zones, each overseen by
a designated leader device. This leadership device is responsible for consolidating
data from other devices within its jurisdiction, and subsequently disseminating
decisions that enforce policies across the entire region.

For example, in a large-scale project aimed at monitoring and controlling tem-
perature, the SCR pattern allows the formation of uniformly sized regions. Within
these zones, devices collaboratively compute the area’s average temperature. Us-
ing this aggregated information, the system could trigger alarms, facilitating more
effective, coarse-grained analysis and intervention measures. This pattern is im-
plemented using the G, C and S operators as follows:

val leader = S(radius, nbrRange)

val potential = G(leader, 0.0, distance => distance + nbrRange)

val totalTemperature = C(potential, _ + _, temperature(), 0)

val nodeInArea = C(potential, _ + _, 1, 0)

val averageTemperature = totalTemperature / nodeInArea

val decision = ....

val leaderDecision = broadcast(leader, decision)

3.3.3 Tools

Proper software tooling is essential to new self-organising algorithms and variants
or extensions of the aggregate programming model, promoting scientific and tech-
nological progress. In the following, we present ScaFi–a Scala-based aggregate
programming framework–and Alchemist–a meta-simulator for aggregate comput-
ing.

3.3.3.1 ScaFi

ScaFi (Scala-Fields) is an aggregate programming toolkit that comprises an inter-
nal DSL (language and virtual machine) as well as supporting components for the
simulation and execution of aggregate systems.

CHAPTER 3. MACRO-PROGRAMMING 40



Software description ScaFi is a multi-module Scala project hosted on
GitHub2. It provides DSL and API modules for writing, testing, and running
aggregate programs, namely programs expressed according to the aggregate pro-
gramming paradigm [BPV15; Vir+19].

Software Architecture The high-level architecture of ScaFi is depicted in
Figure 3.7. It consists of the following main components:

• scafi-commons — provides basic abstractions and utilities (e.g., spatial and
temporal abstractions);

• scafi-core — provides an aggregate programming DSL (syntax, semantics,
and a virtual machine for evaluation of programs), together with a “standard
library” of reusable functions;

• scafi-stdlib-ext — provides extra library functionality that requires
external dependencies and is hence kept separated from the minimalist
scafi-core;

• scafi-simulator: provides basic support for simulating aggregate systems;

• scafi-simulator-gui—provides a GUI for visualizing and interacting with
simulations of aggregate systems;

• spala (“spatial Scala”—i.e., a general aggregate computing platform3) —
provides an actor-based aggregate computing middleware (independent of
the ScaFi DSL and potentially applicable to other aggregate programming
languages as well) based on the Akka toolkit [RBW15];

• scafi-distributed — ScaFi integration-layer for spala, which can be
leveraged to set up actor-based deployments of ScaFi-programmed systems.

ScaFi leverages the concept of an incarnation, namely a concrete “family of
types” [OZ05] that is progressively refined through inheritance, composed, and
finally instantiated into an object (cf. the Scala cake pattern [Hun13; OZ05])
which ultimately provides access to a type-coherent set of features.

Figure 3.8 provides an excerpt of the main Scala traits with some types and ob-
jects they define. Trait Core provides the abstract fundamental types: CNAME for
capability names, ID for device identifiers, Context for the input environment
of computation rounds, and Export for the outcomes of computation rounds.
Trait Language provides the syntax of the DSL in terms of methods, through

2https://github.com/scafi/scafi
3aggregate computing is rooted in spatial computing [Bea+12].

CHAPTER 3. MACRO-PROGRAMMING 41

https://github.com/scafi/scafi


SCAFI-CORE

SPALA
(AC PLATFORM)

SCAFI-TESTS

AKKA-CORE AKKA-REMOTING

SCAFI-SIMULATOR

SCAFI-SIMULATOR-GUI

SCAFI-STDLIB-EXT

SCAFI-DISTRIBUTED

SCAFI-COMMONS
(space-time abstractions)

DEMOS

depends on

Figure 3.7: High-level architecture of the ScaFi toolkit.

it.unibo.scafi

Incarnation

AggregateProgram


StandardSensors

def nbrRange(): D

def currentTime(): Time

...

SpatialAbstraction

P Space[E]D

TimeAbstraction

Time

Core

CNAME ID

Context
def selfId: ID

def exports(): Iterable[(ID,Export)]

def sense[T](ls: CNAME): Option[T]

def nbrSense[T](ns: CNAME)(nbr:ID): Option[T]

Export

def root[A](): A

Core

Engine

ContextImpl ExportImpl

factory : EngineFactory

Semantics

ExecutionTemplate

def round(ctx: Context): Export

RoundVM

Language

Constructs

def nbr[A](exp: => A): A

def rep[A](init: =>A)(f: (A)=>A): A

...

StandardLibrary     

BlockG BlockC

BlockS ...

Figure 3.8: Design of the core of ScaFi (DSL).

CHAPTER 3. MACRO-PROGRAMMING 42



interface Constructs. Trait Semantics and Engine implement the DSL con-
struct semantics, providing a template for AggregateProgram base class defined
in the Incarnation trait. The incarnation also exposes StandardSensors in
terms of, e.g., SpatialAbstraction’s and TimeAbstraction’s types for positions
(P), distances (P), and time. The StandardLibrary is provided by leveraging
what an incarnation provides, providing traits of functionality to be mixed into
AggregatePrograms.

Software Functionalities

Expressing aggregate programs through a Scala DSL Module
scafi-core exposes, through incarnations, an AggregateProgram trait that pro-
vides access to aggregate programming constructs—following a variant of the field
calculus [Aud+19b; Vir+19] formalized in [Cas+20a]. This single program defines
– from a global perspective – the collective adaptive behaviour of an entire ensem-
ble of computational devices. Besides the core constructs, this module also pro-
vides “standard library” traits providing access to reusable functions of aggregate
functionality. For instance, by mixing trait Gradients into an AggregateProgram

subclass, a developer gets access to gradient functions [Bea+08; Vir+18a], used to
continuously compute (over space and time) the self-healing field of minimum dis-
tances of each node from a set of source nodes. Several such traits are available to
provide other key building blocks for self-organising applications [WH07; Vir+18a]
(e.g., BlockG for gradient-wise information propagation, BlockC for gradient-wise
information collection, BlockS for sparse choice or leader election) or experi-
mental language features (e.g., the spawn function for concurrent aggregate pro-
cesses [Cas+21a; Tes+22], for modelling independent and overlapping aggregate
computations).

Virtual machine for the local execution of aggregate programs An
AggregateProgram instance is a function mapping a Context (the set of inputs
needed by an individual device to properly evaluate the program locally) to an
Export (the tree of values that has to be shared with neighbours to effectively
coordinate and promote the emergence of collective behaviours). Using this API,
a developer can integrate “aggregate functionality” into its system—what remains
to be specified are the details of the aggregate execution model and the commu-
nication among devices, that may change in different applications. Devices must
continuously run the aggregate program, but the scheduling of these computation
rounds can be tuned as the application needs [Pia+21]. Exports must be shared
with neighbouring devices to allow them to properly set up their Contexts, but
the network protocol to be used to do so can be selected independently of the

CHAPTER 3. MACRO-PROGRAMMING 43



program.

Simulation support In order to simulate an “aggregate system”, it is nec-
essary to:

1. define the set of computational devices that make up the aggregate, including
their sensors and actuators;

2. define the aggregate topology, i.e., some application-specific neighbouring re-
lationship from which the set of neighbours of each device can be determined;

3. define the aggregate program to be executed;

4. define a certain dynamics of the system by proper scheduling of computa-
tion rounds, and the environment by proper scheduling of changes in sensor
values.

Module scafi-simulator provides this basic support. It exposes some factory
methods to configure simulations properly (e.g., it supports ad-hoc and spatial
distance-based connectivity rules) and an API to run and interact with simula-
tions. Then, module scafi-simulator-gui provides a convenient graphical user
interface to launch and visually show simulations in execution. We remark that
these modules currently support basic simulation scenarios and are mainly meant
for quick experiments or as a starting basis for ad-hoc simulation frameworks.

Experimental or work-in-progress features: actor-based middleware
Regarding the construction of actual systems, ScaFi provides an actor-based imple-
mentation of the aggregate execution model [CV18], in the spala (Spatial Scala)
module, which is instrumental for integrating aggregate computing into existing
systems and distributed architectures [CV18]. Indeed, aggregate computing sys-
tems can be designed, deployed, and executed according to different architectural
styles and concrete architectures [Cas+20b]. So, ScaFi provides two main im-
plementations of the middleware, in package it.unibo.scafi.distrib.actor,
for purely peer-to-peer (sub-package p2p) and server-based designs (sub-package
server). The main abstraction is the DeviceActor, which exposes a message-
based interface for controlling and interacting with an individual logical node of
the aggregate system. Then, an object-oriented façade API is provided to set up
a system of middleware-level actors.

Features ScaFi has been used in aggregate computing-related re-
search [Cas+21a; Aud+22; ACV22b; CV19; Cas+19; CAV18; CAV21a;
Cas+21b; Cas+22; Aud+20], touching themes such as software engineering,

CHAPTER 3. MACRO-PROGRAMMING 44



computational models, and distributed systems/algorithms. The impact of ScaFi
can be understood in terms of existing and prospective contributions, discussed
in the following.

Interplay between programming language design and foundational
research The implementation of the ScaFi DSL has inspired a variant of the
field calculus which arguably supports easier embeddability into mainstream pro-
gramming languages [Cas+20a; Aud+20].

High-level programming models The previous discussion makes the case
for “DSL stacking” [HE10]. Indeed, by leveraging the aforementioned aggregate
process extension, it is possible to reduce the abstraction gap needed to implement
situated tuples [Cas+21b], which is a Linda-like model [Gel85] for coordinating
processes where tuples and tuple operations are situated in space. By mapping
high-level specifications into aggregate programs, it is sometimes straightforward
to develop resilient distributed implementations—as in [Aud+21], where transla-
tion rules from spatial logic formulas to field calculus expressions enable seamless
construction of decentralized monitors for such formulas.

Web-friendliness By leveraging Scala.js [Doe18], ScaFi can be easily ac-
cessed through JavaScript, which promotes cross-platform language design and
reuse of functionality in the browser (to support web applications without the
need of server-side components). This paved the path to ScaFi-Web [Agu+21], a
web playground for aggregate programming.

3.3.3.2 Alchemist

Alchemist4 [PMV13] is meta-simulator mainly designed for simulating complex
distributed systems in a rich variety of scenarios like swarm robotics [ACV23],
large-scale sensor networks [Agu+22], crowd simulation [BPV15], path planning,
and even morphogenesis of multi-cellular systems.

The simulator is meta in nature, as it is based on general abstractions that
can be mapped to specific use cases (i.e., incarnations). Inspired by biochemistry,
the meta-model consists of a set of nodes that exist in an environment and are
linked together by relationship rules. Each node contains a sequence of molecules
and reactions. A molecule represents a variable, which acts as a container for
data. Reactions instead are events that occur based on a set of conditions, and
are fired according to a time distribution, producing an effect that is described as
an action. This abstraction allows the simulator to be flexible and adaptable to

4http://alchemistsimulator.github.io/

CHAPTER 3. MACRO-PROGRAMMING 45

http://alchemistsimulator.github.io/


incarnation: scafi

network-model:

type: ConnectWithinDistance

parameters: [0.5]

deployments:

type: Grid

parameters: [-5,-5,5,5,0.25,0.25]

/*dynamics of the simulation*/

programs:

- program:

- time-distribution: 1

type: Event

actions:

- type: RunScafiProgram

parameters: [program]

- program: send

Listing (3.1) An Alchemist simulation ex-
ample.

Figure 3.9: An Alchemist simulation example. The simulation result on the right
is obtained by running the simulation described on the left.

a variety of use cases and node numbers (it could support thousands of nodes),
while maintaining a consistent underlying structure.

The Alchemist simulator features four incarnations: biochemistry, Sapere, Pro-
telis, and ScaFi, each with a different way of modelling molecules and actions. The
latter is the reference of this thesis since it supports the ScaFi Scala DSL the cur-
rent reference framework for aggregate computing in Scala.

Alchemist offers an effortless method for loading simulations. The process re-
quires a YAML file that includes essential parameters, such as the incarnation
type, neighbour connection model, and node deployment. In Figure 3.9, we have
provided an example YAML file that creates a simulation using the ScaFi incar-
nation (first row). It also defines the neighbourhood relationship based on fixed
distances (0.5 in this case), placing nodes in a fixed grid of size 10x10 starting
at -(5,5) and ending at (5,5), with a node-to-node distance of 0.25. Finally, it
loads the ScaFi program called “program”, which is evaluated at each node with
a frequency of 1.

CHAPTER 3. MACRO-PROGRAMMING 46



3.4 Final Remarks

Addressing collective adaptive behaviour is a long-standing research challenge in
the realm of complex systems. Macro programming has emerged as a promising
approach to bridge the abstraction gap between the problem space and the solution
space.

In this chapter, we provide an overview of the key concepts within this program-
ming paradigm and introduce aggregate computing—a specialized macro program-
ming technique for orchestrating collective self-organizing behaviours in highly
scalable and distributed systems. While this paradigm has already found applica-
tions in the field of CPSW, we identify several areas for further improvement:

• A high-level interface tailored for effectively programming behaviours specific
to the CPSW domain, such as movement, pattern formation, and collective
decision-making.

• Appropriate abstractions to facilitate the design and development of intricate
CPSW systems.

• Innovative algorithms to enable complex collective behaviours, like sensing-
driven clustering.

• Robust deployment strategies that accommodate modern, complex IT archi-
tectures.

• The incorporation of machine learning techniques to overcome current limi-
tations in the state-of-the-art foundational frameworks.

CHAPTER 3. MACRO-PROGRAMMING 47



Chapter 4

Reinforcement Learning

What is reinforcement learning?
What are the main models to solve rein-
forcement learning problems?
Can reinforcement learning be applied in
many-agent systems?
What are the taxonomies and the main
algorithms?
– RQ1

Contents
4.1 Single-agent . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Markov Decision Process . . . . . . . . . . . . . . . . . 51

4.1.2 Find a policy given an MDP . . . . . . . . . . . . . . . 52

4.1.3 Find a policy without an MDP . . . . . . . . . . . . . . 55

4.1.4 Policy Gradient Methods . . . . . . . . . . . . . . . . . 57

4.1.5 Approximate Solutions . . . . . . . . . . . . . . . . . . . 59

4.1.6 Wrap up . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Multi-agent . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Stochastic games . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 Taxonomies . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.3 Solutions for MARL . . . . . . . . . . . . . . . . . . . . 67

4.2.4 Wrap up . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Many-agent . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Formalization . . . . . . . . . . . . . . . . . . . . . . . . 71

48



4.3.2 Solutions for many-agent reinforcement learn-
ing (ManyRL) . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . 76

The concept of intelligence is as complex as it is intriguing, and it has been
a subject of philosophical inquiry, scientific exploration, and cultural curiosity for
centuries. Philosophers have debated on what constitutes intelligence, linking it to
reason, wisdom, and even morality. Despite these varied interpretations, defining
intelligence remains a challenge, even in the field of psychology. Several standard-
ized tests and scales attempt to measure intelligence, like the one developed by
Alan Turing [Tur50], but none manage to capture the complete essence of what it
means to be “intelligent”. Intelligence is often understood as the ability to learn,
reason, and adapt, among other cognitive abilities.

Among the myriad of perspectives on intelligence, learning stands out as a
fundamental component. From an evolutionary point of view, the ability to learn
is essential for survival. An organism that can adapt to its environment and
learn from experiences is likely to survive and reproduce. In the human context,
learning has been the cornerstone of development, be it mastering a language,
solving complex problems, or creating art.

This notion of learning is crucial in the realm of Artificial Intelligence (AI). If
intelligence involves learning, then replicating intelligence artificially would neces-
sarily entail enabling machines to learn. This hypothesis leads us to the exciting
and rapidly evolving domain of machine learning— a subset of AI that allows com-
puters to learn from data, rather than requiring them to be explicitly programmed
for specific tasks.

Machine learning encompasses various approaches and techniques that aim to
make machines learn. Broadly, these approaches can be categorized into super-
vised, unsupervised, semi-supervised, and reinforcement learning. Particularly, the
first three approaches are based on the idea of learning from data, where this data
can be labelled or unlabelled:

• supervised learning : this is the most straightforward approach, where a
model is trained on a labelled dataset. The model makes predictions or
decisions based on input data, and it is corrected when its predictions are
incorrect. Typical examples include classification and regression problems;

• unsupervised learning : unlike supervised learning, this approach does not in-
volve labelled data. The machine tries to learn the patterns and the structure
from the data without any supervision (e.g., clustering algorithms);

• semi-supervised : A middle-ground between supervised and unsupervised
learning, this approach utilizes both labelled and unlabelled data for training.

CHAPTER 4. REINFORCEMENT LEARNING 49



EnvironmentAgent

Action

Reward

State

Figure 4.1: Overview of the reinforcement learning (RL) framework.

The model learns to improve its predictions gradually.

Reinforcement learning (RL) sets itself apart from other methodologies by oper-
ating without the need for labelled data or supervision and through a sequen-
tial interaction between an agent and an environment employing a trial-and-error
strategy. Subsequent sections will delve into the nuances of this distinctive ap-
proach, starting from single-agent settings and then moving to multi-agent and
many-agent systems.

4.1 Single-agent

Reinforcement learning [SB18] serves as a universal framework that has been in-
spired by the cognitive processes underlying human learning. This paradigm has
proven to be highly effective for addressing control problems, which are essentially
tasks that require decision-making to achieve a particular outcome. The core fo-
cus of RL is on the sequential interactions that occur between an agent and an
environment (summarized in Figure 4.3). Agents are defined as entities capable of
performing actions, while the environment constitutes everything external to the
agents and beyond their immediate control.

During each discrete time step, denoted as t, an agent observes the current state
of the environment st (e.g., the robot position according to a GPS sensor). This
state encapsulates the set of all observable information at that particular moment.

CHAPTER 4. REINFORCEMENT LEARNING 50



The agent then proceeds to select an action at (e.g., the torque to be applied to
engines) in accordance with its policy π. A policy serves as a probabilistic mapping
that guides the agent in choosing actions based on the current state. Policies can
be simple lookup tables or complex neural networks. As a result of taking this
action, the environment transitions to a new state st+1 at the next time step t+1.
Simultaneously, the agent receives a reward rt+1, which is a quantitative measure
of the efficacy of the action taken, given the state of the environment.

The overarching objective of RL is to discover an optimal policy, denoted as
π∗, that aims to maximize the long-term return, or cumulative reward, G. This is
generally achieved through a trial-and-error learning process, where agents con-
tinually adapt their policies based on the rewards received.

This framework has found extensive applications in a diverse array of do-
mains. For example, RL has been used to create advanced algorithms for video
games [Aru+17], allowing for AI agents that can outperform human players. In
robotics [KBP13], RL algorithms are enabling machines to learn complex tasks
autonomously, from simple object manipulation to navigation in unstructured en-
vironments. It is also making significant inroads in networking, particularly in
routing algorithms where dynamic decision-making is crucial [Luo+19].

4.1.1 Markov Decision Process

This general framework is supported by Markov Decision Process
(MDP) [How60]— a mathematical model that describes the environment evolution
in sequential decision problems. A MDP consists of a tuple < S,A,P ,R > in
which:

• S denotes the set of states;

• A is the set of actions;

• P(st+1|st, at) define the probability to reach some state st+1 starting from st
and performing at (i.e. transition probability function);

• R(st, at, st+1) devise a probabilistic reward function.

In MDP, P is memory-less, namely the next environment state depends only on
the current state— that is the Markov property. Another important concept in
MDP is the return G defined as the discounted sum of reward a possible future
trajectory τ (i.e. a sequence of time steps):

Gt = rt + γrt+1 + γ2rt+2 + · · ·+ γT rt+T =
T∑

k=t

γk−trk (4.1)

CHAPTER 4. REINFORCEMENT LEARNING 51



Where 0 ≤ γ ≤ 1 is the discount factor, that is how much the future reward impacts
the long-term return. Based on the value of T , we can distinguish between episodic
and continuous tasks. The foster ones are characterized by a finite number of time
steps (e.g., a match of chess), while the latter ones are infinite (e.g., a robot that
should wander in an unknown environment).

Reinforcement learning goal

The RL goal can be expressed as the maximization of the expected long-term return
following a policy π:

J = Eπ

[
Gt

]
= Eπ

[ T∑
k=t

γt−krk

]
(4.2)

Particularly, in RL we want to find the optimal policy π∗ that maximizes J :

π∗ = argmax
π

J (4.3)

The equation essentially captures the trade-off between immediate and future re-
wards. The agent aims to select actions based on the policy π that will maxi-
mize this expected long-term return. The discount factor γ allows us to model
the agent’s consideration for future rewards and is a hyperparameter that can be
tuned based on the specific problem being solved.

4.1.2 Find a policy given an MDP

In the context of MDP, evaluating policies is crucial for identifying the optimal
one. Consequently, two essential concepts are introduced: the value function and
the Q-function. V π is the value function that evaluates how good (or bad) a state
is according to the long-term return following the policy π (expected value). It is
defined as:

V (s)π = Eπ

[
Gt|st = s

]
(4.4)

Qπ is the corresponding value function that evaluates state-action pairs:

Q(s, a)π = Eπ

[
Gt|st = s, at = a

]
(4.5)

Policies could be defined through value functions. In particular, a greedy policy
based on Q function is the one that always chooses the action with the highest
value in a certain state:

π(s) = argmax
a

(Q(s, a)) (4.6)

CHAPTER 4. REINFORCEMENT LEARNING 52



Figure 4.2: General schema of policy iteration (left) and value iteration (right)
taken from [SB18].

4.1.2.1 Dynamic programming

Dynamic programming is a family of algorithms that can be used to compute op-
timal policies given a model of the environment as an MDP. In particular, the
Bellman equation is a fundamental concept in dynamic programming. It is a recur-
sive equation that decomposes the value function into two parts: the immediate
reward obtained from the current state and the discounted value of the future
state. The Bellman equation for the value function is defined as:

V (s) =
∑
a∈A

π(a|s)
∑
s′∈S

P(s′|s, a)
[
R(s, a, s′) + γV (s′)

]
(4.7)

Similarly, the Bellman equation for the Q function is defined as:

Q(s, a) =
∑
s′∈S

P(s′|s, a)
[
R(s, a, s′) + γ

∑
a′∈A

π(a′|s′)Q(s′, a′)
]

(4.8)

The Bellman equation is the basis for many algorithms that solve MDP, two most
notable are value iteration and policy iteration (Figure 4.2).

4.1.2.2 Value iteration

Value iteration is an iterative algorithm used to compute the optimal value function
V ∗ and, consequently, the optimal policy π∗. The algorithm is particularly useful
when the state and action spaces are too large to solve directly through analytical
methods. It is based on the principle of optimality, which states that if an optimal
policy π∗ exists, then it must satisfy the Bellman optimality equation.

CHAPTER 4. REINFORCEMENT LEARNING 53



The algorithm starts by initializing V (s) for all states s to some arbitrary
values, often zeros. It then iteratively updates the value of each state s using
the Bellman optimality equation until the value function converges to V ∗. The
convergence is usually checked by measuring the difference between successive
value functions and comparing it against a small threshold ϵ:

Vk+1(s) = max
a∈A

∑
s′∈S

P(s′|s, a)
[
R(s, a, s′) + γVk(s

′)
]

(4.9)

The max operation ensures that the value function is updated to reflect the
best possible action at each state. The term γVk(s

′) represents the discounted
future rewards, and R(s, a, s′) is the immediate reward. The transition probability
P (s′|s, a) models the uncertainty in the environment.

After the value function has converged to V ∗, the optimal policy π∗ can be
extracted. The policy is determined by selecting the action that maximizes the
expected return in each state, as given by:

π∗(s) = argmax
a

∑
s′∈S

P (s′|s, a)
[
R(s, a, s′) + γV ∗(s′)

]
(4.10)

This policy is guaranteed to be optimal concerning the original MDP.

4.1.2.3 Policy Iteration

Policy iteration is another dynamic programming algorithm used for finding the
optimal policy π∗. Unlike value iteration, policy iteration consists of two main
steps: policy evaluation and policy improvement, which are repeated iteratively
until the policy converges to π∗:

• policy evaluation: in this step, the value function V π for the current policy
π is computed until it stabilizes. The update rule is:

Vk+1(s) =
∑
a∈A

π(a|s)
∑
s′∈S

P (s′|s, a)
[
R(s, a, s′) + γVk(s

′)
]

(4.11)

• policy improvement: after evaluating V π, the policy is updated to be greedy
with respect to V π:

π′(s) = argmax
a

∑
s′∈S

P (s′|s, a)
[
R(s, a, s′) + γV π(s′)

]
(4.12)

The algorithm then returns to the policy evaluation step, using the new policy π′,
and continues until the policy no longer changes.

CHAPTER 4. REINFORCEMENT LEARNING 54



4.1.3 Find a policy without an MDP

While dynamic programming methods like value iteration and policy iteration
offer powerful ways to find the optimal policy π∗, they come with a significant
limitation: the need for a complete model of the environment. Specifically, these
algorithms require knowledge of the transition probability function P and the
reward function R. In many real-world applications, these functions are either
unknown or too complex to model accurately. This is where model-free algorithms
come into play. In the following sections, we will discuss two such algorithms’
families: Monte Carlo methods and Temporal Difference methods.

4.1.3.1 Monte Carlo methods

Monte Carlo methods offer a way to find an optimal policy π∗ without requiring
a model of the environment. These methods rely on sampling sequences of states,
actions, and rewards from actual or simulated interactions with the environment.
By averaging these samples, the agent can estimate the value functions V (s) and
Q(s, a), which can then be used to improve the policy.

The core idea is to run multiple episodes, from start to finish, and then update
the value estimates based on the returns observed. The value of a state s or a state-
action pair (s, a) is estimated as the average of the returns that have followed that
state or state-action pair across multiple episodes.

V (s) =
1

N

N∑
i=1

G
(i)
t (4.13)

Q(s, a) =
1

N

N∑
i=1

G
(i)
t (4.14)

Where N is the number of times the state or state-action pair has been visited,
and G

(i)
t is the return following the i-th visit.

Once the value functions are estimated, the policy can be improved by making
it greedy concerning these estimated values. In this context, the exploration-
exploitation trade-off is crucial. In fact, the agent should explore the environment
to discover new states and actions that could lead to higher rewards, but it should
also exploit the knowledge it has already acquired to maximize the expected return.
Monte Carlo methods are particularly useful when the state and action spaces are
large, making it impractical to enumerate all possible state-action pairs. However,
they do require the episodes to be finite and can be computationally expensive
due to the need for multiple samples to obtain accurate estimates.

CHAPTER 4. REINFORCEMENT LEARNING 55



The Exploration-Exploitation Dilemma in Reinforcement Learning
The exploration-exploitation trade-off is a cornerstone challenge in reinforcement
learning algorithms. An agent must explore its environment to uncover new states
and actions that may yield higher rewards. Simultaneously, it needs to exploit its
existing knowledge to maximize the expected return. While this challenge pervades
many learning algorithms, it is especially prominent in model-free methods where
the agent learns a policy without having a predefined model of the environment.

Various strategies exist to navigate this dilemma. One of the most prevalent
is the ϵ-greedy policy. In this approach, the agent selects a random action with
probability ϵ and the action that is currently estimated to be the best with prob-
ability 1 − ϵ. The ϵ value is generally initialized to a small constant, such as
0.1 or 0.2, to ensure a reasonable balance between exploration and exploitation.
Mathematically, the policy is defined as follows:

π(a|s) =

{
ϵ

|A| + 1− ϵ if a = argmaxa∈AQ(s, a)
ϵ

|A| otherwise
(4.15)

A useful refinement of the ϵ-greedy strategy is to implement a decaying ϵ,
which starts at a higher value and is reduced over time. This adaptive approach
allows the agent to initially focus on exploration to a greater extent, then gradually
shift toward exploiting its accumulated knowledge as its value function estimates
stabilize.

4.1.3.2 Temporal difference methods

Temporal difference methods are a class of model-free and value-based algorithms
that allow the agent to learn optimal behaviour directly from its interactions with
the environment, without requiring a model. TD methods combine ideas from
both Monte Carlo methods and dynamic programming to provide a flexible and
powerful approach to reinforcement learning.

One of the simplest TD methods is TD-Learning [Sut88], which updates
the value function V (s) based on the temporal difference error δ, defined as
δ = R(s, a, s′) + γV (s′) − V (s). The value function is then updated using
V (s)← V (s) + αδ, where α is the learning rate.

Starting from this intuition two main approaches have been developed: Q-
learning [WD92] and SARSA [SB18].

Q-Learning Q-Learning is an off-policy TD algorithm that focuses on learning
the action-value function Q(s, a). The update rule for Q-Learning is:

Q(s, a)← Q(s, a) + α
[
R(s, a, s′) + γmax

a′
Q(s′, a′)−Q(s, a)

]
(4.16)

CHAPTER 4. REINFORCEMENT LEARNING 56



The algorithm is termed “off-policy” because it learns the value of the optimal
policy regardless of the policy being followed, thanks to the maxa′ term in the
update rule.

The Q-Learning algorithm is guaranteed to converge to the optimal action-
value function Q∗(s, a) as long as all state-action pairs are visited infinitely often
and the learning rate α is sufficiently small. For the same reason of decay ϵ-greedy
policy, it is also common to use a decaying learning rate, which starts at a higher
value and is reduced over time. The full algorithm can be found in Algorithm 1.

Algorithm 1: Q-Learning

Initialise: Q(s, a) = 0 for all s ∈ S, a ∈ A
repeat

for t = 0, 1, 2, . . . do
Observe current state st

if With probability ϵ then
Choose random action at ∈ A

else
Choose action at ∈ argmaxaQ(s

t, a)
end
Apply action at, observe reward rt and next state st+1

Q(st, at)← Q(st, at) + α [rt + γmaxaQ(s
t+1, a)−Q(st, at)]

end

until for every episode

SARSA SARSA (State-Action-Reward-State-Action) is an on-policy TD algo-
rithm. Unlike Q-Learning, SARSA takes into account the current policy π during
the learning process. The update rule for SARSA is:

Q(s, a)← Q(s, a) + α
[
R(s, a, s′) + γQ(s′, a′)−Q(s, a)

]
(4.17)

where a′ is the action taken under the current policy π.
Both Q-Learning and SARSA have their advantages and disadvantages. Q-

Learning tends to find the optimal policy faster but may be more sensitive to
noise. SARSA, being an on-policy method, is more conservative and tends to find
safer policies, especially when the policy involves some level of risk or uncertainty.

4.1.4 Policy Gradient Methods

While temporal difference methods and Monte Carlo methods focus on learning
value functions to derive optimal policies, policy gradient methods take a different

CHAPTER 4. REINFORCEMENT LEARNING 57



approach. They aim to directly optimize the policy π itself, rather than first
estimating value functions. This is particularly useful in environments with high-
dimensional action spaces, or continuous action spaces, where value-based methods
may struggle. Moreover, in this way, it is possible to learn stochastic policies, which
are often more robust and flexible than deterministic policies.

Policy gradient methods optimize the policy by ascending the gradient of the
expected return concerning the policy parameters θ. Mathematically, this can be
expressed as:

θ ← θ + α∇θJ(θ) (4.18)

where J(θ) is the expected return when following policy πθ, and α is the learning
rate.

One of the foundational algorithms in this category is the REINFORCE algo-
rithm [Sut+99]: it is one of the earliest and most straightforward policy gradient
methods. It estimates the gradient of the expected return by sampling trajec-
tories from the current policy πθ. After each episode, the algorithm adjusts the
policy parameters θ in the direction that increases the expected return. The core
equation for the REINFORCE algorithm is:

∇θJ(θ) = Eτ∼πθ

[
∞∑
t=0

∇θ log πθ(at|st)Gt

]
(4.19)

Here, τ represents a trajectory sampled from the policy πθ, and Gt is the return
from time t. A trajectory, or episode, is defined as a sequence of states, actions,
and rewards. The term ∇θ log πθ(at|st) is the log-likelihood gradient, and Gt serves
as a sample estimate for how good the action at is in state st.

The REINFORCE algorithm operates in an episodic setting, meaning it waits
until the end of each episode to update the policy. This makes it well-suited for
tasks where the episode termination is natural, such as games or tasks with a fixed
time horizon. REINFORCE is particularly useful when the action space is high-
dimensional or continuous, where traditional value-based methods like Q-Learning
may struggle. However, one drawback of REINFORCE is that it can have high
variance in its updates, which can make the training process unstable. Various
techniques, such as using a baseline or employing advanced variance reduction
methods, have been developed to mitigate this issue. Particularly, the actor-critic
architecture is a popular approach that combines the advantages of both value-
based and policy-based methods. In this paradigm, the policy is referred to as the
actor, while the value function is referred to as the critic. The actor is responsible
for selecting actions, while the critic evaluates the actions taken by the actor.

One popular extension of REINFORCE is proximity policy optimization
(PPO) [Sch+17]—the algorithm used for training the ChatGPT model. PPO

CHAPTER 4. REINFORCEMENT LEARNING 58



is a policy gradient method that aims to improve the stability of the training pro-
cess. It does so by limiting the size of the policy update at each iteration, which
prevents the policy from changing too much between updates.

4.1.5 Approximate Solutions

While the fundamental algorithms discussed in previous sections provide a strong
theoretical foundation for model-free RL, they often fall short in real-world appli-
cations. The primary challenges they face are:

• Curse of dimensionality: the state and action spaces in practical problems
can be so large that enumerating them becomes computationally infeasible.

• Partial observability: in many scenarios, the agent cannot fully observe
the entire state of the environment, making it difficult to make optimal
decisions.

To illustrate the curse of dimensionality, consider the seemingly simple game of
Go. The game’s state space consists of 2170 possible states, a number so astronom-
ical that it exceeds computational capabilities—especially when compared to the
estimated 1080 atoms in the observable universe.

Similarly, partial observability is a pervasive issue in real-world applications.
For example, a self-driving car perceives its environment through sensors, offering
only a limited, partial view of the world. This restricted perspective can signifi-
cantly impact the agent’s ability to make optimal decisions.

Given these challenges, approximate solutions become not just desirable but
often necessary. These solutions leverage function approximation techniques to
estimate value functions or policies. While they may sacrifice some theoretical
convergence guarantees, they offer a more practical approach to tackling com-
plex, high-dimensional, and partially observable problems commonly encountered
in real-world applications. In contemporary applications, neural networks have
emerged as the go-to function approximators due to their exceptional capability
to approximate complex, high-dimensional functions. Particularly, the combina-
tion of deep learning and reinforcement learning has led to significant advance-
ments in the field, in the so-called area of deep reinforcement learning. One of
the first and most influential works in this area was the Deep Q-Learning (DQL)
algorithm [Mni+13], which will be discussed in the next section.

4.1.5.1 Deep Q-Learning

Deep Q-Learning represent a landmark innovation in the field of deep reinforce-
ment learning, effectively combining the strengths of Q-Learning with the function

CHAPTER 4. REINFORCEMENT LEARNING 59



approximation capabilities of deep neural networks. DQL was initially designed
to master a variety of Atari 2600 games and has since been adapted for various
complex tasks.

The core idea behind DQL is to use a neural network as a function approxima-
tion for the Q-function in Q-Learning. The neural network, often referred to as the
Q-network, takes the environment state as input and outputs Q-values for each ac-
tion. Mathematically, the Q-network aims to approximate the optimal Q-function
Q∗(s, a) as closely as possible.

Q(s, a; θ) ≈ Q∗(s, a) (4.20)

where θ represents the parameters of the neural network. However, directly ap-
plying neural networks to Q-Learning presents challenges, primarily due to the
correlation between consecutive experiences and the non-stationary nature of the
data. DQL addresses these issues through two key innovations:

• Experience replay: DQL stores past experiences (s, a, r, s′) in a replay
buffer and samples mini-batches randomly during training. This decorrelates
the data and leads to more stable training.

• Target network: DQL introduces a separate, slowly updated target net-
work to calculate the target Q-values, reducing the overestimation bias and
improving stability.

The Q-value update equation in DQL is:

Q(s, a; θ)← Q(s, a; θ) + α
[
r + γmax

a′
Q(s′, a′; θ−)−Q(s, a; θ)

]
(4.21)

Where θ− are the parameters of the target network.

4.1.6 Wrap up

In conclusion, this section has provided a comprehensive overview of RL, beginning
with the formulation of the problem and the underlying mathematical framework.
We also explored various analytical solutions and key algorithms associated with
RL.

Reinforcement learning algorithms can be categorized along multiple dimen-
sions (summarized in Figure 4.3). One primary distinction is between model-free
and model-based algorithms. In the former, there is no need for a model of the envi-
ronment, allowing the algorithm to learn directly through interaction. In contrast,
model-based algorithms require an MDP to compute the optimal policy. Another
important categorization is whether an algorithm is on-policy or off-policy. On-
policy algorithms optimize the same policy that is used for exploration, whereas

CHAPTER 4. REINFORCEMENT LEARNING 60



Reinforcement
Learning

Model-based

Model-free

Value-based

Policy search

Q-Learning SARSA

REINFORCE

Deep Q-Learning

Actor Critic

Off-policy

On-policy

Figure 4.3: Overview of the RL algorithms.

off-policy algorithms utilize two separate policies during the learning process, com-
monly referred to as the behaviour and target policies. RL algorithms can be
broadly divided based on what they aim to learn. The primary categories here are
value-based and policy gradient methods, although hybrid approaches also exist
that combine elements of both, like actor-critic. Lastly, RL algorithms can be cat-
egorized based on whether they use a tabular or approximate approach. Tabular
methods store the value function in a table, while approximate methods leverage
function approximation techniques, such as neural networks, to estimate the value
function.

This overview serves as a basis for the multi-agent and many-agent RL algo-
rithms, because most of the algorithms that we will discuss in the following sections
are based on the concepts presented here.

4.2 Multi-agent

In the evolving landscape of RL, the concept of multi-agent reinforcement learning
(MARL) [Tan93a; Gu+21; OH19] (Figure 4.4) stands as a natural extension of
the foundational RL principles. While traditional RL generally focuses on the
interactions between a single agent and an environment, MARL broadens the scope
to include multiple agents, each with its own objectives, policies, and decision-
making processes.

The basic setting in MARL comprises multiple agents interacting either coop-
eratively, competitively, or in a mixed fashion within a shared environment—more
details in the following sections. Each agent i observe its the environment state
sit, select actions a

i
t according to its policy πi, and receive rewards rit+1. However,

in MARL, an agent’s actions can directly or indirectly influence the states and re-

CHAPTER 4. REINFORCEMENT LEARNING 61



EnvironmentAgent 0 ... Agent N

Figure 4.4: Overview of the MARL framework.

wards of other agents, thereby increasing the complexity of the learning problem.
The key challenge in MARL is to develop robust algorithms that enable agents to
learn optimal policies in these complex, often non-stationary, environments. Clas-
sic RL algorithms often require modifications to accommodate the multi-agent
setting. For instance, the concept of a joint action space, a state space extended
to multiple agents, and a composite reward function are essential considerations.

4.2.1 Stochastic games

The formalization of MARL typically extends the standard Markov Decision Pro-
cess (MDP) framework to account for multiple agents. One of the most straight-
forward extensions is the Markov Game, also called Stochastic games [NS03]. In
this formalization, each agent has its own state, action, and reward function, and
the joint actions of all agents determine the transition dynamics and rewards:

S = ⟨N ,S,A1, . . . ,AN ,P ,R1, . . . ,RN⟩ (4.22)

Where:

• N is the number of agents. With N = 1 we have a single-agent setting, while
with N >> 2 we have a many-agent setting.

CHAPTER 4. REINFORCEMENT LEARNING 62



• S is the environment state space. The environment is then considered to be
fully observable.

• Ai is the action space of agent i. We denote the joint action space as A =
A1 × . . .×AN .

• P : S ×A→ ∆(S) is the joint transition probability function. For each time
step t, P is a function of the joint action at ∈ A and the current state st ∈ S,
and returns the probability of transitioning to the next state st+1 ∈ S.

• Ri : S × A × S → R : is the reward function for agent i. The joint reward
function is defined as R = R1 + . . .+RN .

The game can be described sequentially as follows:

1. At each time step t, each agent i observes the current state sit.

2. Each agent i selects an action ait according to its policy πi.

3. The joint action at = (a1t , . . . , a
N
t ) is executed, and the environment transi-

tions to the next state st+1 according to the transition probability function
P .

4. Each agent i receives a reward rit+1 according to the reward function Ri.

It is important to note that in these games, actions from all agents are exe-
cuted simultaneously, and each agent’s reward is a function of the joint action
taken by all agents. In many real-world scenarios, assuming the availability of a
global system state is impractical. As such, an often-employed extension to the
traditional Stochastic Game model is the Partially Observable Stochastic Game
(POSG) [LW22]. This extension can be formally represented as follows:

POSG = ⟨N ,S,A1, . . . ,AN ,P ,R1, . . . ,RN ,O1, . . . ,ON ,O⟩ (4.23)

Here, the primary divergence from the conventional Stochastic Game is the intro-
duction of observation functions Oi : S → Oi, which maps the environment state
to the observation space of agent i. Consequently, the agents’ policies are now pa-
rameterized by their respective observation spaces Oi rather than the global state
space S. This alteration significantly influences both the algorithmic approaches
and the complexities involved in solving POSGs.

CHAPTER 4. REINFORCEMENT LEARNING 63



MARL

Learning
Paradigm Policy

Task Communication

Centralised

Independent

CDTE

Cooperative

Competitive

Mixed

Explicit

Implicit

Homogenous

Heterogenous

Figure 4.5: Overview of the MARL taxonomies.

4.2.2 Taxonomies

In single-agent settings, the focus of learning configurations is primarily on algo-
rithmic aspects, such as whether an approach is value-based or relies on policy
search, or whether it operates on-policy or off-policy. However, the landscape be-
comes more complex when multiple agents are involved. In such multi-agent set-
tings, several dimensions must be considered to appropriately classify algorithms
and approaches. Various surveys [Gu+21; OH19] have attempted to categorize the
diverse classes of algorithms specifically designed for multi-agent scenarios. Each
of these surveys emphasizes a unique characteristic or aspect of the problem under
consideration. This section endeavours to outline various dimensions along which
multi-agent algorithms can be categorized (Figure 4.5). The objective is to pro-
vide a framework for situating the algorithms that will be discussed in subsequent
sections, particularly those that pertain to the many-agent perspective. Note that
the following taxonomies are not mutually exclusive, and many algorithms can be
classified along multiple dimensions.

4.2.2.1 Learning Paradigms

One possible categorization of multi-agent algorithms is based on the learning
paradigm (summarized in Figure 4.6). In this context, the learning paradigm refers
to how agents learn their policies. The field of multi-agent learning has historically
been dominated by two primary approaches: independent learning and centralized
learning. In independent learning, each agent learns its own policy concurrently
and independently of the other agents in the environment [Tan93b]. In contrast,
centralized learning involves a single learning entity that constructs a joint policy

CHAPTER 4. REINFORCEMENT LEARNING 64



Act

Perceive only

Learn

Figure 4.6: Overview of the MARL learning paradigms.

to control all agents.
Independent learning excels in scalability but often results in unstable learning

dynamics due to the non-stationarity of the environment. This non-stationarity
stems from the concurrent learning of multiple agents, making it challenging to
learn effective policies. On the other hand, centralized learning benefits from
environmental stability owing to the global view it maintains. However, it suffers
from scalability issues due to the exponential growth of the state and action spaces
as the number of agents increases. To illustrate, consider a system comprising N
agents, each capable of taking M actions. In a centralized framework, the number
of possible joint actions would be MN . For instance, with N = 100 and M = 2,
the number of joint actions would be an astronomical 2100.

Recognizing the limitations of both independent and centralized learning
paradigms, recent research has proposed a compromise: Centralized Training with
Decentralized Execution (CTDE) [Low+17]. In this approach, agents are trained
using a global view of the environment to learn a distributed policy. Indeed, during
execution, each agent relies solely on its local observations to select actions. This
hybrid method is particularly advantageous in partially observable environments:
agents can learn a policy influenced by global states during the training phase
while requiring only local observations for decision-making during execution.

4.2.2.2 Task type

Aside from how the agent learns, another important distinction involves what the
agent should learn. The task type can be cooperative, competitive, or mixed.

CHAPTER 4. REINFORCEMENT LEARNING 65



Cooperative In cooperative tasks, agents are geared towards a common objec-
tive, aiming to maximize a shared reward. Formally, this is represented as a unified
reward function for all agents, given by:

R0 = R1 = . . . = RN = R (4.24)

Here, the objectives of all agents are perfectly aligned, necessitating coordination
and collaboration among them to achieve the shared goal. Such cooperative scenar-
ios are often encountered in the domain of CPSW, where inter-agent coordination
is crucial for realizing collective outcomes effectively and efficiently.

Competitive In competitive tasks, agents operate under divergent objectives,
and the reward function is usually tailored to each agent’s performance. This can
be formally expressed in two-player games as:

R0 = −R1 (4.25)

In this framework, the agents have conflicting goals, creating a competitive land-
scape where each agent aims to maximize its reward.

Mixed In mixed tasks, agents operate under both cooperative and competitive
dynamics. This is often encountered in real-world scenarios, where agents may
have both shared and divergent objectives. This is the most general setting, and
it is often the most challenging to solve.

4.2.2.3 Policy type

Another crucial aspect to explore is the nature of the policy that an agent ought
to learn. Although numerous classifications of policies exist—ranging from deter-
ministic to stochastic, centralized to decentralized, and joint to individual—this
thesis places special focus on distinguishing between homogeneous and heteroge-
neous policy family.

Homogeneous Policies In the context of homogeneous policies, all agents share
a common policy. The learning process aims to identify a single, unified policy
applicable to all agents. This is particularly prevalent in cooperative tasks where
agents must collaborate to achieve a collective objective. Utilizing a single policy
across all agents often simplifies the learning process and enhances coordination
among the agents. Moreover, is particularly suitable for scenarios where agents are
interchangeable and indistinguishable, making it possible to use the same policy in
different agent populations.

CHAPTER 4. REINFORCEMENT LEARNING 66



Heterogeneous Policies Conversely, in the realm of heterogeneous policies,
each agent possesses its distinct policy. The learning algorithm is tasked with
discovering a unique policy tailored to each agent. This approach, even if it can
be also used in the context of cooperative tasks, is especially useful in competitive
environments, where agents have disparate objectives and strive to optimize their
rewards. Employing unique policies for each agent allows for the development
of diverse strategies and behaviours, accommodating the complex dynamics of
competitive settings.

4.2.2.4 Communication

Another important dimension to consider is whether agents are allowed to com-
municate with each other. In many real-world scenarios, agents are capable of
exchanging information with other agents in the environment. This communica-
tion can be explicit, such as through the exchange of messages, or implicit, such
as through the observation of other agents’ actions.

In contrast, in other scenarios, agents are not allowed to communicate with
each other. This is often the case in competitive settings, where agents are not
permitted to share information. This restriction is often imposed to increase the
complexity of the problem and to encourage the development of more sophisticated
strategies.

4.2.3 Solutions for MARL

Addressing the intricacies and challenges inherent in MARL requires the design
and implementation of sophisticated algorithms and frameworks capable of nav-
igating a complex landscape shaped by multi-agent interactions, a diverse range
of tasks, and varied learning paradigms. Over the years, a plethora of methodolo-
gies have emerged to confront these obstacles. Specifically, this thesis provides a
comprehensive overview of approaches rooted in the RL domain.

A significant body of literature instead focuses on game-theoretical perspec-
tives, which predominantly address scenarios involving a limited number of agents
engaged in competitive tasks. Such approaches often incorporate concepts of equi-
librium and convergence towards stable policies, typically framed within the con-
text of Nash equilibrium. However, in practice, the pursuit of equilibrium often
fails to yield satisfactory results, as it does not necessarily lead to agents learn-
ing optimal policies. Consequently, a substantial portion of the literature eschews
equilibrium-centric views, opting instead to develop algorithms aimed at effective
policy learning, even in the absence of formal proofs guaranteeing convergence to
an equilibrium.

CHAPTER 4. REINFORCEMENT LEARNING 67



4.2.3.1 Tabular Methods

The first era of multi-agent reinforcement learning (MARL) algorithms primarily
relied on tabular methods, based on variation of Q-Learning and SARSA. These
methods are essentially extensions of single-agent tabular algorithms adapted for a
multi-agent setting. In this section, we will briefly discuss some of the most popular
tabular algorithms, laying the groundwork for the discussion of more advanced
approaches in subsequent sections.

Distributed Q-Learning is a straightforward extension of the traditional Q-
Learning algorithm designed for multi-agent systems. In this approach, each agent
maintains its own Q-table and updates it based on its local observations and
rewards. while this method allows for decentralized learning, it often struggles with
issues related to coordination and convergence to global optima. The algorithm is
particularly useful in scenarios where communication between agents is limited or
not possible. However, it may not always guarantee convergence to the optimal
joint policy, especially in complex environments where coordination between agents
is crucial.

Hysteretic Q-Learning [MLF07] is a more recent addition to the family
of tabular MARL algorithms. It addresses some limitations of Distributed Q-
Learning, particularly in the context of cooperative multi-agent systems. In Hys-
teretic Q-Learning, each agent employs two learning rates for updating its Q-
values, depending on whether the received reward is better or worse than expected.
Formally, the update rule is:

δ ← r −Qi(ai)

Qi(ai)←

{
Qi(ai) + αδ if δ ≥ 0

Qi(ai) + βδ else

This dual learning rate mechanism allows for more flexible and efficient coordina-
tion among agents. Experimental results have shown that Hysteretic Q-Learning
not only converges faster but also achieves comparable performance to centralized
methods with significantly less computational overhead.

QD-Learning [KMP13] is a distributed version of the traditional Q-Learning
algorithm tailored for multi-agent systems. Unlike centralized approaches, QD-
Learning allows agents to engage in the learning process autonomously through
local communication and computation. Each agent maintains a sequence of Q-
matrices, and the Q-values for each state-action pair evolve in a collaborative

CHAPTER 4. REINFORCEMENT LEARNING 68



distributed manner. Specifically, the Q-values are updated according to a formula
that incorporates both local one-stage costs and information from neighbouring
agents.

The primary objective of QD-Learning is to minimize a network-averaged in-
finite horizon discounted cost. The algorithm achieves this by ensuring that each
agent learns the value function based on locally accessible stochastic processes
and one-stage cost processes. The agents collaborate using local processing and
mutual information exchange, aiming to reach a consensus on the desired value
function and the corresponding optimal control strategy. In terms of performance,
QD-Learning has been shown to achieve optimal learning performance asymptot-
ically, under minimal connectivity assumptions on the underlying communication
graph. It has also been found to have a negligible asymptotic convergence rate
loss compared to centralized Q-Learning making it a robust choice for distributed
multi-agent systems. The update rule for QD-Learning is:

Qn
i,u(t+ 1) = Qn

i,u(t)− βi,u(t)
∑

l∈Ωn(t)

(Qn
i,u(t)−Qn

l,u(t))

+ αi,u(t)

(
cn(xt, ut) + γmin

v∈U
Qn

xt+1,v
(t)−Qn

i,u(t)

)
where βi,u(t) and αi,u(t) are weight sequences adapted to the filtration Fn(t),

and cn(xt, ut) is the local one-stage cost.

4.2.3.2 Approximate methods

The tabular methods discussed in the previous section are often impractical in
real-world scenarios, as they require the storage of a Q-table for each agent. This
can be computationally infeasible, especially in complex environments with large
state and action spaces. To address this issue, a variety of approximate methods
have been developed, leveraging function approximation techniques to estimate the
Q-values or policies. The following are the most popular approximate methods for
MARL, a complete overview however is out of the scope of this thesis and can be
found in [OH19].

Counterfactual Multi-Agent (COMA) [Foe+17] is an actor-critic method
specifically designed for cooperative multi-agent systems. Unlike traditional meth-
ods that rely on decentralized policies, COMA employs a centralized critic during
the learning phase to estimate the Q-function. This centralized critic takes into
account the global state or the joint action-observation histories, making it more
effective in complex environments.

One of the key innovations in COMA is the introduction of a counterfactual
baseline to address the challenge of multi-agent credit assignment. In cooperative

CHAPTER 4. REINFORCEMENT LEARNING 69



settings where joint actions produce global rewards, it becomes difficult for indi-
vidual agents to understand their contribution to the team’s success. The counter-
factual baseline marginalizes a single agent’s action while keeping the other agents’
actions fixed, thereby providing a more accurate estimate of each agent’s contri-
bution. Another advantage of COMA is its computational efficiency. It employs
a critic that allows the counterfactual baseline to be computed in a single forward
pass, thereby reducing the computational burden.

COMA has been evaluated in complex scenarios like StarCraft unit microman-
agement and has shown significant improvements over other multi-agent actor-
critic methods. It is particularly useful in environments with high stochasticity,
large state-action spaces, and delayed rewards.

Multi-Agent Proximal Policy Optimization (MAPPO) [Yu+21] is an
extension of the widely-used Proximal Policy Optimization (PPO) algorithm,
adapted for cooperative multi-agent systems. Unlike traditional methods that
often rely on off-policy learning algorithms, MAPPO is an on-policy method that
has shown to be surprisingly effective in multi-agent settings.

MAPPO employs a centralized value function during the training phase to
estimate the Q-values. This centralized critic can take into account global state
information, allowing MAPPO to follow a CTDE structure. This is particularly
useful in complex environments where the state and action spaces are large, as it
allows for more effective policy updates.

One of the standout features of MAPPO is its sample efficiency, that means the
ability to learn from a few samples. Despite being an on-policy method, MAPPO
is competitive or even superior to off-policy methods in terms of both final returns
and sample efficiency. MAPPO also benefits from the robustness and stability of
the underlying PPO algorithm. It requires minimal hyperparameter tuning and
does not necessitate any domain-specific algorithmic modifications or architectures
to achieve strong performance. This makes it a versatile and practical choice for
a wide range of multi-agent environments.

QMIX [Ras+18] is a value-based method designed to address the challenges
in multi-agent reinforcement learning (MARL).

It is based on the idea of factorisation, which involves decomposing the joint
action-value function into a set of individual value functions. This factorisation
allows for the extraction of decentralized policies that are consistent with the
centralized training.

The architecture of QMIX consists of individual agent networks and a mixing
network. Each agent network estimates an individual value function Qa, while
the mixing network combines these into a joint action-value function Qtot. A

CHAPTER 4. REINFORCEMENT LEARNING 70



key feature of QMIX is the monotonicity constraint, which ensures that the joint
action-value function is monotonic in the individual agent value functions. This
allows for the extraction of decentralized policies that are consistent with the
centralized training. QMIX is particularly effective in environments where the
joint action spaces grow exponentially with the number of agents. It employs
a mixing network with positive weights to enforce the monotonicity constraint,
thereby ensuring that decentralized policies can be easily extracted. This makes
QMIX computationally efficient and scalable, as it avoids the need for storing a
Q-table for each agent.

4.2.4 Wrap up

In this section, we have provided an overview of MARL functional for this thesis
perspective, beginning with the formulation of the problem and the underlying
mathematical framework. We also explored various analytical solutions and key
algorithms associated with MARL. In the following, we will discuss the many-
agent perspective, understanding the challenges and the solutions proposed in the
literature.

4.3 Many-agent

CPSW are characterized by a very large number of agents, with a population that
can potentially range from hundreds to millions of agents. In such scenarios, the
traditional MARL framework is no longer applicable, as the number of agents
makes it computationally infeasible to learn a joint policy. A novel approach is
required to address the challenges of many-agent systems, which is the focus of this
section–in the so-called area of ManyRL [Yan21]. When we discuss many-agent
systems, we refer to a large number of agents (N ≫ 2) that are interchangeable and
indistinguishable. In CPSW perspective, it is still applicable because we consider
the agent to be behavioural homogeneous, even if they are not identical.

After this brief introduction, we will discuss the peculiarities of many-agent
systems, starting from the formalization of the problem, and then we will discuss
practical solutions in this context.

4.3.1 Formalization

Standard stochastic games do not capture the essence of many-agent systems, as
they do not consider the homogeneous nature of the agents, and the large number
of agents. Therefore, in the context of swarm robotics, a novel framework called
SwarMDP [Šoš+16] has been proposed. This is focused on the idea of having a

CHAPTER 4. REINFORCEMENT LEARNING 71



swarming agent that rules the entire population of agents. In the following, we
will discuss the formalization of this framework. Moreover, this model can be also
applied in the system dynamics of aggregate computing discussed in Section 3.3.1.

4.3.1.1 SwarMDP

A SwarMDP is characterized by a swarming agent (A) and the dynamics of the
environment (E). Specifically, A is a tuple (S,O,A,R, π) where:

• S,O,A are the set of local states, observations (or features), and actions,
respectively;

• R : S → R is the reward function, which is influenced by the environment;

• π : O → A is the policy function, which maps the observations to the actions:
it could be deterministic or stochastic.

Starting from this definition, the environment E is defined as a tuple (P ,A, T , ξ),
where:

• P is the total number of agents in the systems (the agent population), which
is assumed to be fixed;

• A is the defined agent prototype that rules each agent v ∈ P ;

• T : SP ×AP ×SP → R is the transition global function, which is influenced
by the actions of the agents and returns a collective reward – this is typically
not known by the swarming agents;

• ξ : SP → OP is the global observation model of the systems.

4.3.2 Solutions for ManyRL

In a ManyRL scenario, the concept of homogeneity is leveraged to design algo-
rithms that scale effectively with the number of agents. Rather than developing
N distinct policies for N agents, the objective is to formulate a single policy ap-
plicable to all agents. The learning paradigm typically employed in this context is
CDTE, for the following reasons:

• fully decentralized learning is impractical due to the high level of non-
stationarity that arises from concurrent learning;

• an agent’s view of the system is so limited that locally collected experiences
are insufficient for capturing the full range of possible local behaviour.

CHAPTER 4. REINFORCEMENT LEARNING 72



While several CDTE algorithms, such as MAPPO and QMIX, aim to find N
policies, various practical adjustments can be employed to adapt them for multi-
agent settings.

Subsequently, we will discuss the most popular of these techniques, as well as
algorithms specifically designed for many-agent systems.

Parameter sharing

Parameter sharing [ACS23] is a pivotal technique in ManyRL, due to the strongly
homogeneous agent assumptions. The essence of this approach lies in the utiliza-
tion of a unified set of parameter values, denoted as θshared for the policy network
or ϕshared for the value network, across all agents. This can be extended also to
the case of standard RL algorithms, where the parameter sharing is applied to the
Q-table. This unified parameter set serves as the backbone for both the policy and
value functions of each agent. This learning approach is effective in many-agent
systems, and it has several advantages:

• Sample efficiency: one of the most compelling advantages is the improve-
ment in sample efficiency. By learning a single set of parameters, the al-
gorithm can generalize across agents, thereby utilizing a more diverse and
larger set of trajectories for training.

• Computational efficiency: parameter sharing keeps the computational
load manageable by maintaining a constant number of parameters, irrespec-
tive of the number of agents. This is in stark contrast to a non-shared
approach, where the number of parameters would increase linearly with the
number of agents.

This, however, comes at the cost of policy space limitation: employing parameter
sharing inherently constrains the policy space to identical policies for each agent,
reducing the complexity of the overall joint policy. Said that, in CPSW this is
quite reasonable, because complexity comes from the interaction of simple agents,
rather than from complex agents.

Mathematically it involves constraining the policy parameters θ and/or value
function parameters ϕ across agents as follows:

θshared ≡ θ1 ≡ θ2 ≡ . . . ≡ θN

ϕshared ≡ ϕ1 ≡ ϕ2 ≡ . . . ≡ ϕN

where N is the number of agents.

CHAPTER 4. REINFORCEMENT LEARNING 73



Experience Sharing

Experience sharing serves as another cornerstone in ManyRL [ACS23]. Unlike
parameter sharing, which centralizes the neural network parameters across agents,
experience sharing focuses on the distribution of experiences or trajectories among
agents. By pooling experiences from multiple agents into a shared replay buffer,
each agent has the opportunity to learn from a much richer set of experiences than
it could generate on its own. This not only speeds up the learning process but also
ensures a more uniform learning progression across agents, which is particularly
useful for tasks that require coordinated multi-agent actions.

However, experience sharing comes with its own set of challenges. For in-
stance, the approach can be computationally intensive as it increases the size of
the batch used for training. Additionally, unlike parameter sharing, experience
sharing allows for the possibility of agents learning diverse policies. However,
these approaches can be combined to leverage the benefits of both techniques.

In terms of mechanics, experience sharing typically involves storing each agent’s
experiences, usually denoted as (s, a, r, s′), in a shared replay buffer. During the
learning phase, agents sample from this shared buffer to update their individual
policies and value functions.

Many-agent Q-Learning

Many-agent Q-Learning extends the classic Q-Learning algorithm to a multi-agent
setting by incorporating the concepts of experience sharing and parameter sharing.
In this approach, each agent maintains a global Q-table but can learn from a shared
experience replay buffer. This shared buffer contains the state-action-reward-next
state tuples (s, a, r, s′) from all agents, thereby enriching the learning process for
each individual agent.

The algorithm operates similarly to traditional Q-Learning, with the primary
difference being the source of experiences used for updates. During each learning
iteration, agents sample experiences from the shared replay buffer to update the
global Q-values. The Q-value update equation remains the same as in single-agent
Q-Learning, but the experiences used for the updates are drawn from the collective
experiences of all agents.

By leveraging shared experiences, this approach aims to achieve faster conver-
gence and more robust policies. Agents benefit from the diverse set of experiences,
which can be particularly useful in complex or stochastic environments where in-
dividual experiences may not provide sufficient coverage of the state-action space.

This method is especially useful in scenarios where agents are working towards a
common goal but partial observability of the environment. By sharing experiences,
they can collectively learn a more comprehensive and effective strategy to achieve

CHAPTER 4. REINFORCEMENT LEARNING 74



their objective. This can be also extended to deep-q learning approaches, where
the Q-table is replaced by a neural network. The algorithm is summarized in

Algorithm 2: Many-agent Q-Learning

Data: Initialize a global value function with random Q
Data: Initialize a single replay Dshared buffer for all agents
Data: Collect environment observations o01, . . . , o

0
n

for time step t = 0, . . . , d do
for agent i = 1, . . . , n do

if with probability ε then
choose random action ai

else
choose ai = maxaQ(ht, ai)

end
Execute actions and collect observations ot+1

i and rewards ri
Store all transitions in replay buffer Dshared

end
for agent i = 1, . . . , n do

Sample random mini-batch of transitions from replay buffer Dshared

Update Q by the Bellman equation
end

end

Algorithm 2.

Mean-field reinforcement learning

Mean-field reinforcement learning (MFRL) [Yan+18] offers a scalable and efficient
approach to address the challenges in many-agent systems. In traditional MARL
algorithms, the computational complexity can grow exponentially with the number
of agents, making it impractical for systems with a large population. MFRL
elegantly sidesteps this issue by approximating the many-body problem as a two-
body problem. Here, each agent interacts not with all other agents, but with an
average or “mean field” effect that represents the collective behaviour of the entire
population. It can be resumed with this equation:

Q′(s,a) =
1

Nj

∑
k∈N(j)

Q′(s, a′, ak)

Where Nj is the number of agents in the neighbourhood of agent j, and a is the
joint action space of the agents in the neighbourhood of agent j. This approach is

CHAPTER 4. REINFORCEMENT LEARNING 75



particularly well-suited for CPSW with many behaviourally homogeneous agents.
It aligns with the notion that complexity in such systems often arises from the
interactions among simple agents, rather than from the complexity of individual
agents. In fact, the mean-field effect can be seen as a form of communication
between agents, where each agent is influenced by the collective behaviour of the
entire population, but only through its local observations and neighbourhood in-
teractions. In MFRL, the learning process is mutually reinforced between the
individual agents and the dynamics of the overall population.

4.4 Final Remarks

This chapter provides a comprehensive overview of the foundational concepts in
reinforcement learning. It begins by exploring the fundamental notion of intel-
ligence and delves into key formalizations and algorithms that have shaped the
field. This serves as a foundational understanding for the remainder of the paper,
especially about the concept of CPSW. Indeed, we introduce swarMDP, a model
that formalizes the dynamics of swarm-like systems, offering a theoretical frame-
work for understanding complex agent interactions. Building on this, we present
practical solutions to many-agent challenges through parameter sharing and expe-
rience sharing. Specifically, we introduce a unified approach known as many-agent
Q-Learning. Lastly, we discuss the concept of mean-field reinforcement learning,
emphasizing the critical role of neighbourhood context. Drawing parallels with
aggregate computing, we argue that computation in these systems is inherently an
interaction between an agent and its neighbours. This interaction fosters collective
behaviours, leading to the overall system dynamics.

CHAPTER 4. REINFORCEMENT LEARNING 76



References

[ACS23] SV Albrecht, F Christianos, and L Schäfer. “Multi-Agent Reinforce-
ment Learning: Foundations and Modern Approaches”. In: Mas-
sachusetts Institute of Technology: Cambridge, MA, USA (2023).

[ACV22a] Gianluca Aguzzi, Roberto Casadei, and Mirko Viroli. “Addressing
collective computations efficiency: Towards a platform-level reinforce-
ment learning approach”. In: 2022 IEEE International Conference on
Autonomic Computing and Self-Organizing Systems (ACSOS). IEEE.
2022, pp. 11–20.

[ACV22b] Gianluca Aguzzi, Roberto Casadei, and Mirko Viroli. “Towards Re-
inforcement Learning-based Aggregate Computing”. In: Proc. of the
Int. Conf. on Coordination Models and Languages. Springer, 2022,
pp. 72–91. doi: 10.1007/978-3-031-08143-9\_5.

[ACV23] Gianluca Aguzzi, Roberto Casadei, and Mirko Viroli. “MacroSwarm:
A Field-Based Compositional Framework for Swarm Programming”.
In: International Conference on Coordination Languages and Models.
Springer Nature Switzerland Cham. 2023, pp. 31–51.

[Agu+21] Gianluca Aguzzi et al. “ScaFi-Web: A Web-Based Application for
Field-Based Coordination Programming”. In: Coordination Models
and Languages - 23rd IFIP WG 6.1 International Conference, CO-
ORDINATION 2021. Ed. by Ferruccio Damiani and Ornela Dardha.
Vol. 12717. Lecture Notes in Computer Science. Springer, 2021,
pp. 285–299. doi: 10.1007/978-3-030-78142-2\_18.

[Agu+22] Gianluca Aguzzi et al. “Dynamic Decentralization Domains for the
Internet of Things”. In: IEEE Internet Computing 26.6 (Nov. 2022),
pp. 16–23. doi: 10.1109/mic.2022.3216753.

[Aru+17] Kai Arulkumaran et al. “Deep Reinforcement Learning: A Brief Sur-
vey”. In: IEEE Signal Process. Mag. 34.6 (2017), pp. 26–38. doi:
10.1109/MSP.2017.2743240.

77

https://doi.org/10.1007/978-3-031-08143-9\_5
https://doi.org/10.1007/978-3-030-78142-2\_18
https://doi.org/10.1109/mic.2022.3216753
https://doi.org/10.1109/MSP.2017.2743240


[Aud+16] Giorgio Audrito et al. “Run-Time Management of Computation Do-
mains in Field Calculus”. In: Foundations and Applications of Self*
Systems, IEEE International Workshop on. IEEE. 2016, pp. 192–197.

[Aud+18] Giorgio Audrito et al. “Space-time universality of field calculus”. In:
Coordination Models and Languages: 20th IFIP WG 6.1 International
Conference, COORDINATION 2018, Held as Part of the 13th Inter-
national Federated Conference on Distributed Computing Techniques,
DisCoTec 2018, Madrid, Spain, June 18-21, 2018. Proceedings 20.
Springer. 2018, pp. 1–20.

[Aud+19a] Giorgio Audrito et al. “A Higher-Order Calculus of Computational
Fields”. In: ACM Transactions on Computational Logic 20.1 (2019),
5:1–5:55. issn: 1529-3785.

[Aud+19b] Giorgio Audrito et al. “A Higher-Order Calculus of Computational
Fields”. In: ACM Trans. Comput. Log. 20.1 (2019), 5:1–5:55. doi:
10.1145/3285956.

[Aud+20] Giorgio Audrito et al. Computation Against a Neighbour: Address-
ing Large-Scale Distribution and Adaptivity with Functional Program-
ming and Scala. 2020. doi: 10.48550/ARXIV.2012.08626. url: htt
ps://arxiv.org/abs/2012.08626.

[Aud+21] Giorgio Audrito et al. “Adaptive distributed monitors of spatial prop-
erties for cyber-physical systems”. In: J. Syst. Softw. 175 (2021),
p. 110908. doi: 10.1016/j.jss.2021.110908. url: https://d
oi.org/10.1016/j.jss.2021.110908.

[Aud+22] Giorgio Audrito et al. “Functional Programming for Distributed Sys-
tems with XC”. In: 36th European Conference on Object-Oriented
Programming, ECOOP 2022, June 6-10, 2022, Berlin, Germany. Ed.
by Karim Ali and Jan Vitek. Vol. 222. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022, 20:1–20:28. doi: 10.4230
/LIPIcs.ECOOP.2022.20. url: https://doi.org/10.4230/LIPIcs
.ECOOP.2022.20.

[Bea+08] Jacob Beal et al. “Fast self-healing gradients”. In: Proceedings of the
2008 ACM Symposium on Applied Computing (SAC). ACM, 2008,
pp. 1969–1975. doi: 10.1145/1363686.1364163.

[Bea+12] Jacob Beal et al. “Organizing the Aggregate: Languages for Spatial
Computing”. In: CoRR abs/1202.5509 (2012).

[Bea+17] Jacob Beal et al. “Self-adaptation to device distribution in the Inter-
net of Things”. In: ACM Transactions on Autonomous and Adaptive
Systems (TAAS) 12.3 (2017), pp. 1–29.

REFERENCES 78

https://doi.org/10.1145/3285956
https://doi.org/10.48550/ARXIV.2012.08626
https://arxiv.org/abs/2012.08626
https://arxiv.org/abs/2012.08626
https://doi.org/10.1016/j.jss.2021.110908
https://doi.org/10.1016/j.jss.2021.110908
https://doi.org/10.1016/j.jss.2021.110908
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.1145/1363686.1364163


[BPV15] Jacob Beal, Danilo Pianini, and Mirko Viroli. “Aggregate Program-
ming for the Internet of Things”. In: Computer 48.9 (2015), pp. 22–
30. doi: 10.1109/MC.2015.261. url: https://doi.org/10.1109
/MC.2015.261.

[Bra+13] Manuele Brambilla et al. “Swarm robotics: a review from the swarm
engineering perspective”. In: Swarm Intell. 7.1 (2013), pp. 1–41. doi:
10.1007/s11721-012-0075-2. url: https://doi.org/10.1007/s
11721-012-0075-2.

[Cas+19] Roberto Casadei et al. “Engineering Resilient Collaborative Edge-
Enabled IoT”. In: 2019 IEEE International Conference on Services
Computing, SCC 2019, Milan, Italy, July 8-13, 2019. Ed. by Elisa
Bertino et al. IEEE, 2019, pp. 36–45. doi: 10.1109/SCC.2019.0001
9. url: https://doi.org/10.1109/SCC.2019.00019.

[Cas+20a] Roberto Casadei et al. “FScaFi : A Core Calculus for Collective
Adaptive Systems Programming”. In: Leveraging Applications of For-
mal Methods, Verification and Validation: Engineering Principles
- 9th International Symposium on Leveraging Applications of For-
mal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020,
Proceedings, Part II. Ed. by Tiziana Margaria and Bernhard Stef-
fen. Vol. 12477. Lecture Notes in Computer Science. Springer, 2020,
pp. 344–360. doi: 10.1007/978-3-030-61470-6\_21. url: https:
//doi.org/10.1007/978-3-030-61470-6%5C_21.

[Cas+20b] Roberto Casadei et al. “Pulverization in Cyber-Physical Systems:
Engineering the Self-Organizing Logic Separated from Deployment”.
In: Future Internet 12.11 (2020), p. 203. doi: 10.3390/fi12110203.
url: https://doi.org/10.3390/fi12110203.

[Cas+21a] Roberto Casadei et al. “Engineering collective intelligence at the edge
with aggregate processes”. In: Eng. Appl. Artif. Intell. 97 (2021),
p. 104081. doi: 10.1016/j.engappai.2020.104081. url: https:
//doi.org/10.1016/j.engappai.2020.104081.

[Cas+21b] Roberto Casadei et al. “Tuple-Based Coordination in Large-Scale Sit-
uated Systems”. In: Coordination Models and Languages - 23rd IFIP
WG 6.1 International Conference, COORDINATION 2021, Proceed-
ings. Vol. 12717. Lecture Notes in Computer Science. Springer, 2021,
pp. 149–167. doi: 10.1007/978-3-030-78142-2\_10.

[Cas+22] Roberto Casadei et al. “Digital Twins, Virtual Devices, and Augmen-
tations for Self-Organising Cyber-Physical Collectives”. In: Applied
Sciences 12.1 (2022). issn: 2076-3417. doi: 10.3390/app12010349.
url: https://www.mdpi.com/2076-3417/12/1/349.

REFERENCES 79

https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1109/SCC.2019.00019
https://doi.org/10.1109/SCC.2019.00019
https://doi.org/10.1109/SCC.2019.00019
https://doi.org/10.1007/978-3-030-61470-6\_21
https://doi.org/10.1007/978-3-030-61470-6%5C_21
https://doi.org/10.1007/978-3-030-61470-6%5C_21
https://doi.org/10.3390/fi12110203
https://doi.org/10.3390/fi12110203
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1007/978-3-030-78142-2\_10
https://doi.org/10.3390/app12010349
https://www.mdpi.com/2076-3417/12/1/349


[Cas23] Roberto Casadei. “Macroprogramming: Concepts, state of the art,
and opportunities of macroscopic behaviour modelling”. In: ACM
Computing Surveys (2023).

[CAV18] Roberto Casadei, Alessandro Aldini, and Mirko Viroli. “Towards
attack-resistant Aggregate Computing using trust mechanisms”. In:
Sci. Comput. Program. 167 (2018), pp. 114–137. doi: 10.1016/j.sc
ico.2018.07.006. url: https://doi.org/10.1016/j.scico.2018
.07.006.

[CAV21a] Roberto Casadei, Gianluca Aguzzi, and Mirko Viroli. “A Program-
ming Approach to Collective Autonomy”. In: J. Sens. Actuator Net-
works 10.2 (2021), p. 27. doi: 10.3390/jsan10020027.

[CAV21b] Roberto Casadei, Gianluca Aguzzi, and Mirko Viroli. “A program-
ming approach to collective autonomy”. In: Journal of Sensor and
Actuator Networks 10.2 (2021), p. 27.

[CV18] Roberto Casadei and Mirko Viroli. “Programming Actor-Based Col-
lective Adaptive Systems”. In: Programming with Actors - State-
of-the-Art and Research Perspectives. Ed. by Alessandro Ricci and
Philipp Haller. Vol. 10789. Lecture Notes in Computer Science.
Springer, 2018, pp. 94–122. doi: 10.1007/978-3-030-00302-9\_4.
url: https://doi.org/10.1007/978-3-030-00302-9%5C_4.

[CV19] Roberto Casadei and Mirko Viroli. “Coordinating Computation at
the Edge: a Decentralized, Self-Organizing, Spatial Approach”. In:
Fourth International Conference on Fog and Mobile Edge Computing,
FMEC 2019, Rome, Italy, June 10-13, 2019. IEEE, 2019, pp. 60–67.
doi: 10.1109/FMEC.2019.8795355. url: https://doi.org/10.110
9/FMEC.2019.8795355.

[DBT00] Marco Dorigo, Eric Bonabeau, and Guy Theraulaz. “Ant algo-
rithms and stigmergy”. In: Future Gener. Comput. Syst. 16.8 (2000),
pp. 851–871. doi: 10.1016/S0167-739X(00)00042-X. url: https:
//doi.org/10.1016/S0167-739X(00)00042-X.

[DH04] Tom De Wolf and Tom Holvoet. “Emergence versus self-organisation:
Different concepts but promising when combined”. In: International
workshop on engineering self-organising applications. Springer. 2004,
pp. 1–15.

[DMC96] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. “Ant system:
optimization by a colony of cooperating agents”. In: IEEE Trans.
Syst. Man Cybern. Part B 26.1 (1996), pp. 29–41. doi: 10.1109/34
77.484436. url: https://doi.org/10.1109/3477.484436.

REFERENCES 80

https://doi.org/10.1016/j.scico.2018.07.006
https://doi.org/10.1016/j.scico.2018.07.006
https://doi.org/10.1016/j.scico.2018.07.006
https://doi.org/10.1016/j.scico.2018.07.006
https://doi.org/10.3390/jsan10020027
https://doi.org/10.1007/978-3-030-00302-9\_4
https://doi.org/10.1007/978-3-030-00302-9%5C_4
https://doi.org/10.1109/FMEC.2019.8795355
https://doi.org/10.1109/FMEC.2019.8795355
https://doi.org/10.1109/FMEC.2019.8795355
https://doi.org/10.1016/S0167-739X(00)00042-X
https://doi.org/10.1016/S0167-739X(00)00042-X
https://doi.org/10.1016/S0167-739X(00)00042-X
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/3477.484436


[Doe18] Sébastien Doeraene. “Cross-platform language design in Scala.js
(keynote)”. In: Proceedings of the 9th ACM SIGPLAN International
Symposium on Scala, SCALA@ICFP 2018, St. Louis, MO, USA,
September 28, 2018. Ed. by Sebastian Erdweg and Bruno C. d.
S. Oliveira. ACM, 2018, p. 1. doi: 10.1145/3241653.3266230. url:
https://doi.org/10.1145/3241653.3266230.

[Dol00] Shlomi Dolev. Self-Stabilization. MIT Press, 2000. isbn: 0-262-04178-
2.

[DV15] Ferruccio Damiani and Mirko Viroli. “Type-based self-stabilisation
for computational fields”. In: Logical Methods in Computer Science
11 (2015).

[FB16] Gianpiero Francesca and Mauro Birattari. “Automatic Design of
Robot Swarms: Achievements and Challenges”. In: Frontiers Robotics
AI 3 (2016), p. 29. doi: 10.3389/frobt.2016.00029. url: https:
//doi.org/10.3389/frobt.2016.00029.

[Foe+17] Jakob N. Foerster et al. “Counterfactual Multi-Agent Policy Gradi-
ents”. In: CoRR abs/1705.08926 (2017). arXiv: 1705.08926. url:
http://arxiv.org/abs/1705.08926.

[FS11] Francesco Riganti Fulginei and Alessandro Salvini. “The Flock of
Starlings Optimization: Influence of Topological Rules on the Collec-
tive Behavior of Swarm Intelligence”. In: Computational Methods for
the Innovative Design of Electrical Devices. Ed. by Slawomir Wiak
and Ewa Napieralska-Juszczak. Vol. 327. Studies in Computational
Intelligence. 2011, pp. 129–145. doi: 10.1007/978-3-642-16225-1
\_7. url: https://doi.org/10.1007/978-3-642-16225-1%5C_7.

[Gel85] David Gelernter. “Generative Communication in Linda”. In: ACM
Trans. Program. Lang. Syst. 7.1 (1985), pp. 80–112. doi: 10.1145/2
363.2433. url: https://doi.org/10.1145/2363.2433.

[Gu+21] Haotian Gu et al. “Mean-Field Multi-Agent Reinforcement Learn-
ing: A Decentralized Network Approach”. In: CoRR abs/2108.02731
(2021). arXiv: 2108.02731. url: https://arxiv.org/abs/2108.0
2731.

[HE10] Bernhard G. Humm and Ralf S. Engelschall. “Language-Oriented
Programming Via DSL Stacking”. In: ICSOFT 2010 - Proceedings
of the Fifth International Conference on Software and Data Tech-
nologies, Volume 2, Athens, Greece, July 22-24, 2010. Ed. by José
A. Moinhos Cordeiro, Maria Virvou, and Boris Shishkov. SciTePress,
2010, pp. 279–287.

REFERENCES 81

https://doi.org/10.1145/3241653.3266230
https://doi.org/10.1145/3241653.3266230
https://doi.org/10.3389/frobt.2016.00029
https://doi.org/10.3389/frobt.2016.00029
https://doi.org/10.3389/frobt.2016.00029
https://arxiv.org/abs/1705.08926
http://arxiv.org/abs/1705.08926
https://doi.org/10.1007/978-3-642-16225-1\_7
https://doi.org/10.1007/978-3-642-16225-1\_7
https://doi.org/10.1007/978-3-642-16225-1%5C_7
https://doi.org/10.1145/2363.2433
https://doi.org/10.1145/2363.2433
https://doi.org/10.1145/2363.2433
https://arxiv.org/abs/2108.02731
https://arxiv.org/abs/2108.02731
https://arxiv.org/abs/2108.02731


[How60] Ronald A Howard. “Dynamic programming and markov processes.”
In: (1960).

[Hun13] John Hunt. “Cake Pattern”. In: Scala Design Patterns: Patterns for
Practical Reuse and Design. Cham: Springer International Publish-
ing, 2013, pp. 115–119. isbn: 978-3-319-02192-8. doi: 10.1007/978-
3-319-02192-8_13. url: https://doi.org/10.1007/978-3-319-
02192-8_13.

[KBP13] Jens Kober, J. Andrew Bagnell, and Jan Peters. “Reinforcement
learning in robotics: A survey”. In: Int. J. Robotics Res. 32.11 (2013),
pp. 1238–1274. doi: 10.1177/0278364913495721.

[KE95] James Kennedy and Russell Eberhart. “Particle swarm optimiza-
tion”. In: Proceedings of International Conference on Neural Net-
works (ICNN’95), Perth, WA, Australia, November 27 - December 1,
1995. IEEE, 1995, pp. 1942–1948. doi: 10.1109/ICNN.1995.488968.
url: https://doi.org/10.1109/ICNN.1995.488968.

[KMP13] Soummya Kar, José M. F. Moura, and H. Vincent Poor. “QD-
Learning: A Collaborative Distributed Strategy for Multi-Agent Re-
inforcement Learning Through Consensus + Innovations”. In: IEEE
Trans. Signal Process. 61.7 (2013), pp. 1848–1862. doi: 10 . 1109
/TSP.2013.2241057. url: https://doi.org/10.1109/TSP.2013.2
241057.

[LLM15] Alberto Lluch Lafuente, Michele Loreti, and Ugo Montanari. “A
fixpoint-based calculus for graph-shaped computational fields”. In:
Coordination Models and Languages: 17th IFIP WG 6.1 International
Conference, COORDINATION 2015, Held as Part of the 10th Inter-
national Federated Conference on Distributed Computing Techniques,
DisCoTec 2015, Grenoble, France, June 2-4, 2015, Proceedings 17.
Springer. 2015, pp. 101–116.

[Low+17] Ryan Lowe et al. “Multi-Agent Actor-Critic for Mixed Cooperative-
Competitive Environments”. In: Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA. Ed. by Isabelle Guyon et al. 2017, pp. 6379–6390. url: htt
ps://proceedings.neurips.cc/paper/2017/hash/68a9750337a4

18a86fe06c1991a1d64c-Abstract.html.

[Luo+19] Nguyen Cong Luong et al. “Applications of Deep Reinforcement
Learning in Communications and Networking: A Survey”. In: IEEE
Commun. Surv. Tutorials 21.4 (2019), pp. 3133–3174. doi: 10.1109
/COMST.2019.2916583.

REFERENCES 82

https://doi.org/10.1007/978-3-319-02192-8_13
https://doi.org/10.1007/978-3-319-02192-8_13
https://doi.org/10.1007/978-3-319-02192-8_13
https://doi.org/10.1007/978-3-319-02192-8_13
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/TSP.2013.2241057
https://doi.org/10.1109/TSP.2013.2241057
https://doi.org/10.1109/TSP.2013.2241057
https://doi.org/10.1109/TSP.2013.2241057
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://doi.org/10.1109/COMST.2019.2916583
https://doi.org/10.1109/COMST.2019.2916583


[LW22] Xinyang Li and Yifan Wang. “Zero-Sum Stochastic Stackelberg
Games”. In: arXiv preprint arXiv:2211.13847 (2022).

[MLF07] Laëtitia Matignon, Guillaume J. Laurent, and Nadine Le Fort-Piat.
“Hysteretic q-learning : an algorithm for decentralized reinforcement
learning in cooperative multi-agent teams”. In: 2007 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, October
29 - November 2, 2007, Sheraton Hotel and Marina, San Diego, Cal-
ifornia, USA. IEEE, 2007, pp. 64–69. doi: 10.1109/IROS.2007.439
9095. url: https://doi.org/10.1109/IROS.2007.4399095.

[Mni+13] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement
Learning”. In: CoRR abs/1312.5602 (2013). arXiv: 1312.5602. url:
http://arxiv.org/abs/1312.5602.

[MZL04] Marco Mamei, Franco Zambonelli, and Letizia Leonardi. “Co-Fields:
A Physically Inspired Approach to Motion Coordination”. In: IEEE
Pervasive Computing 3.2 (2004), pp. 52–61. doi: 10.1109/MPRV.20
04.1316820.

[NKC+09] Ngoc Thanh Nguyen, Ryszard Kowalczyk, Shyi-Ming Chen, et
al. Computational Collective Intelligence. Semantic Web, Social
Networks and Multiagent Systems: First International Conference,
ICCCI 2009, Wroc law, Poland, October 5-7, 2009. Proceedings.
Springer, 2009.

[NS03] Abraham Neyman and Sylvain Sorin. Stochastic games and applica-
tions. Vol. 570. Springer Science & Business Media, 2003.

[NW04] Ryan Newton and Matt Welsh. “Region streams: Functional macro-
programming for sensor networks”. In: Proceeedings of the 1st in-
ternational workshop on Data management for sensor networks: in
conjunction with VLDB 2004. 2004, pp. 78–87.

[OH19] Afshin Oroojlooyjadid and Davood Hajinezhad. “A Review of Co-
operative Multi-Agent Deep Reinforcement Learning”. In: CoRR
abs/1908.03963 (2019). arXiv: 1908 . 03963. url: http : / / arxiv
.org/abs/1908.03963.

[OZ05] Martin Odersky and Matthias Zenger. “Scalable component abstrac-
tions”. In: Proceedings of the 20th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2005, October 16-20, 2005, San Diego, CA,
USA. Ed. by Ralph E. Johnson and Richard P. Gabriel. ACM, 2005,
pp. 41–57. doi: 10.1145/1094811.1094815. url: https://doi.or
g/10.1145/1094811.1094815.

REFERENCES 83

https://doi.org/10.1109/IROS.2007.4399095
https://doi.org/10.1109/IROS.2007.4399095
https://doi.org/10.1109/IROS.2007.4399095
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.1109/MPRV.2004.1316820
https://doi.org/10.1109/MPRV.2004.1316820
https://arxiv.org/abs/1908.03963
http://arxiv.org/abs/1908.03963
http://arxiv.org/abs/1908.03963
https://doi.org/10.1145/1094811.1094815
https://doi.org/10.1145/1094811.1094815
https://doi.org/10.1145/1094811.1094815


[Pia+21] Danilo Pianini et al. “Time-Fluid Field-Based Coordination through
Programmable Distributed Schedulers”. In: Log. Methods Comput.
Sci. 17.4 (2021). url: https://doi.org/10.46298/lmcs-17(4:13
)2021.

[PMV13] D Pianini, S Montagna, and M Viroli. “Chemical-oriented simulation
of computational systems with ALCHEMIST”. In: J. of Simulation
7.3 (2013), pp. 202–215. doi: 10.1057/jos.2012.27.

[Ras+18] Tabish Rashid et al. “QMIX: Monotonic Value Function Factorisa-
tion for Deep Multi-Agent Reinforcement Learning”. In: Proceedings
of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed.
by Jennifer G. Dy and Andreas Krause. Vol. 80. Proceedings of Ma-
chine Learning Research. PMLR, 2018, pp. 4292–4301. url: http:
//proceedings.mlr.press/v80/rashid18a.html.

[RBW15] Raymond Roestenburg, Rob Bakker, and Rob Williams. Akka in Ac-
tion. 1st. USA: Manning Publications Co., 2015. isbn: 1617291013.

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. Cambridge, MA, USA: A Bradford Book, 2018. isbn:
0262039249.

[Sch+17] John Schulman et al. “Proximal Policy Optimization Algorithms”.
In: CoRR abs/1707.06347 (2017). arXiv: 1707.06347. url: http:
//arxiv.org/abs/1707.06347.

[Šoš+16] Adrian Šošic et al. “Inverse reinforcement learning in swarm sys-
tems”. In: arXiv preprint arXiv:1602.05450 (2016).

[Sut+99] Richard S. Sutton et al. “Policy Gradient Methods for Reinforce-
ment Learning with Function Approximation”. In: Advances in Neu-
ral Information Processing Systems 12, [NIPS Conference, Denver,
Colorado, USA, November 29 - December 4, 1999]. Ed. by Sara A.
Solla, Todd K. Leen, and Klaus-Robert Müller. The MIT Press, 1999,
pp. 1057–1063. url: http://papers.nips.cc/paper/1713-policy
-gradient-methods-for-reinforcement-learning-with-functi

on-approximation.

[Sut88] Richard S. Sutton. “Learning to Predict by the Methods of Temporal
Differences”. In: Mach. Learn. 3 (1988), pp. 9–44. doi: 10.1007/BF0
0115009. url: https://doi.org/10.1007/BF00115009.

REFERENCES 84

https://doi.org/10.46298/lmcs-17(4:13)2021
https://doi.org/10.46298/lmcs-17(4:13)2021
https://doi.org/10.1057/jos.2012.27
http://proceedings.mlr.press/v80/rashid18a.html
http://proceedings.mlr.press/v80/rashid18a.html
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
https://doi.org/10.1007/BF00115009
https://doi.org/10.1007/BF00115009
https://doi.org/10.1007/BF00115009


[Tan93a] Ming Tan. “Multi-Agent Reinforcement Learning: Independent ver-
sus Cooperative Agents”. In: Machine Learning, Proceedings of
the Tenth International Conference, University of Massachusetts,
Amherst, MA, USA, June 27-29, 1993. Ed. by Paul E. Utgoff. Mor-
gan Kaufmann, 1993, pp. 330–337. doi: 10.1016/b978-1-55860-30
7-3.50049-6. url: https://doi.org/10.1016/b978-1-55860-30
7-3.50049-6.

[Tan93b] Ming Tan. “Multi-agent reinforcement learning: Independent vs. co-
operative agents”. In: Proceedings of the tenth international confer-
ence on machine learning. 1993, pp. 330–337.

[Tes+22] Lorenzo Testa et al. “Aggregate processes as distributed adaptive ser-
vices for the Industrial Internet of Things”. In: Pervasive and Mobile
Computing 85 (2022), p. 101658. issn: 1574-1192. doi: https://do
i.org/10.1016/j.pmcj.2022.101658. url: https://www.science
direct.com/science/article/pii/S1574119222000797.

[Tur50] Alan M. Turing. “Computing Machinery and Intelligence”. In: Mind
59.October (1950), pp. 433–60. doi: 10.1093/mind/lix.236.433.

[VDB13] Mirko Viroli, Ferruccio Damiani, and Jacob Beal. “A calculus of com-
putational fields”. In: Advances in Service-Oriented and Cloud Com-
puting: Workshops of ESOCC 2013, Málaga, Spain, September 11-13,
2013, Revised Selected Papers 2. Springer. 2013, pp. 114–128.

[Vir+18a] Mirko Viroli et al. “Engineering Resilient Collective Adaptive Sys-
tems by Self-Stabilisation”. In: ACM Trans. Model. Comput. Simul.
28.2 (2018), 16:1–16:28. doi: 10.1145/3177774. url: https://doi
.org/10.1145/3177774.

[Vir+18b] Mirko Viroli et al. “Engineering resilient collective adaptive systems
by self-stabilisation”. In: ACM Transactions on Modeling and Com-
puter Simulation (TOMACS) 28.2 (2018), pp. 1–28.

[Vir+19] Mirko Viroli et al. “From distributed coordination to field calculus
and aggregate computing”. In: J. Log. Algebraic Methods Program.
109 (2019). doi: 10.1016/j.jlamp.2019.100486. url: https://do
i.org/10.1016/j.jlamp.2019.100486.

[War89] Charles W. Warren. “Global path planning using artificial potential
fields”. In: IEEE Conf. on Robotics and Automation. 1989. doi: 10
.1109/ROBOT.1989.100007.

[WD92] Christopher J. C. H. Watkins and Peter Dayan. “Technical Note Q-
Learning”. In: Mach. Learn. 8 (1992), pp. 279–292. doi: 10.1007
/BF00992698.

REFERENCES 85

https://doi.org/10.1016/b978-1-55860-307-3.50049-6
https://doi.org/10.1016/b978-1-55860-307-3.50049-6
https://doi.org/10.1016/b978-1-55860-307-3.50049-6
https://doi.org/10.1016/b978-1-55860-307-3.50049-6
https://doi.org/https://doi.org/10.1016/j.pmcj.2022.101658
https://doi.org/https://doi.org/10.1016/j.pmcj.2022.101658
https://www.sciencedirect.com/science/article/pii/S1574119222000797
https://www.sciencedirect.com/science/article/pii/S1574119222000797
https://doi.org/10.1093/mind/lix.236.433
https://doi.org/10.1145/3177774
https://doi.org/10.1145/3177774
https://doi.org/10.1145/3177774
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1109/ROBOT.1989.100007
https://doi.org/10.1109/ROBOT.1989.100007
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698


[WH07] Tom De Wolf and Tom Holvoet. “Designing Self-Organising Emer-
gent Systems based on Information Flows and Feedback-loops”. In:
Proceedings of the First International Conference on Self-Adaptive
and Self-Organizing Systems, SASO 2007, Boston, MA, USA, July
9-11, 2007. IEEE Computer Society, 2007, pp. 295–298. doi: 10.110
9/SASO.2007.16. url: https://doi.org/10.1109/SASO.2007.16.

[Wik23a] Wikipedia contributors. 2017 Turin stampede — Wikipedia, The Free
Encyclopedia. [Online; accessed 6-October-2023]. 2023. url: https:
//en.wikipedia.org/w/index.php?title=2017_Turin_stampede

&oldid=1164182872.

[Wik23b] Wikipedia contributors. 2023 Canadian wildfires — Wikipedia, The
Free Encyclopedia. [Online; accessed 5-October-2023]. 2023. url: ht
tps://en.wikipedia.org/w/index.php?title=2023_Canadian_w

ildfires&oldid=1178342069.

[Yan+18] Yaodong Yang et al. Mean Field Multi-Agent Reinforcement Learn-
ing. 2018.

[Yan21] Yaodong Yang. “Many-agent reinforcement learning”. PhD thesis.
UCL (University College London), 2021.

[Yu+21] Chao Yu et al. “The Surprising Effectiveness of MAPPO in Coopera-
tive, Multi-Agent Games”. In: CoRR abs/2103.01955 (2021). arXiv:
2103.01955. url: https://arxiv.org/abs/2103.01955.

REFERENCES 86

https://doi.org/10.1109/SASO.2007.16
https://doi.org/10.1109/SASO.2007.16
https://doi.org/10.1109/SASO.2007.16
https://en.wikipedia.org/w/index.php?title=2017_Turin_stampede&oldid=1164182872
https://en.wikipedia.org/w/index.php?title=2017_Turin_stampede&oldid=1164182872
https://en.wikipedia.org/w/index.php?title=2017_Turin_stampede&oldid=1164182872
https://en.wikipedia.org/w/index.php?title=2023_Canadian_wildfires&oldid=1178342069
https://en.wikipedia.org/w/index.php?title=2023_Canadian_wildfires&oldid=1178342069
https://en.wikipedia.org/w/index.php?title=2023_Canadian_wildfires&oldid=1178342069
https://arxiv.org/abs/2103.01955
https://arxiv.org/abs/2103.01955


Part II

Engineering Cyber-Physical
Swarms

87



Chapter 5

Patterns: Sensing-driven
Clustering in Swarms

What is sensing-driven clustering?
How this problem can be addressed in
CPSW?
What are the assumptions underlying the
approach?
Why is this problem relevant for CPSW?
– RQ3, RQ4

Contents
5.1 Field-based Concurrent Processes . . . . . . . . . . . . 90

5.2 Resilient Dynamic Cluster Formation . . . . . . . . . . 92

5.3 Sensing-Driven Clustering . . . . . . . . . . . . . . . . . 94

5.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . 95

5.3.3 Adaptive Centroid-based Clustering on Numeric Values 97

5.3.4 Adaptive Clustering Meta-Algorithm . . . . . . . . . . . 98

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4.1 Scenario Description . . . . . . . . . . . . . . . . . . . . 102

5.4.2 Evaluation Goals . . . . . . . . . . . . . . . . . . . . . . 103

5.4.3 Simulation Framework . . . . . . . . . . . . . . . . . . . 104

5.4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

88



5.4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5.1 Swarm-based Environment Monitoring . . . . . . . . . . 115

5.5.2 Related Clustering Models and Problems . . . . . . . . 115

5.5.3 Related Work on Sensing-based Clustering . . . . . . . 117

5.5.4 Related Approaches and Programming Models . . . . . 118

5.5.5 Related Field-based Algorithms . . . . . . . . . . . . . . 118

5.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . 119

Swarm intelligence is the collective-level ability to solve problems in large
groups of relatively simple agents that interact with each other locally, i.e., based
on physical/logical proximity [BDT99]. Common but not exhaustive classes of
collective behaviours include spatial organization (e.g., pattern formation), swarm
navigation, and collective-decision making [Bra+13].

In particular, one problem of interest is swarm clustering [LKK05; CNM17],
whereby the classical data clustering task (i.e., the unsupervised learning task
where data items are grouped to promote intra-group similarity) is brought in
swarm settings. This problem revolves around splitting the swarm into groups
of individuals, called clusters, such that the individuals in the same cluster are
more similar to each other (for some definition of similarity) than to those in
other clusters. Once a cluster is formed, typically it is assigned a sub-goal to be
carried on collectively. Typical clustering approaches may consider the spatial
distribution of the individuals or the goals of the individuals to define clusters
that represent, e.g., teams or interaction domains. In this chapter, we focus on
sensing-based clustering [LM07], namely a clustering problem that considers both
the spatial distribution of individuals and the environmental values sensed by these
individuals (through sensors). This is essential for CPSW applications due to the
tight integration with the physical world. That is, the goal is to seek clusters
of neighbour individuals with a similar perception of some sensed value. The
problem can be in a static form, where a snapshot of the system state is consid-
ered, or in a dynamic form, where values change over time and solutions have to
deal with change somehow. The problem has been considered in Wireless Sen-
sor Networks (WSNs) and Internet-of-Things (IoT) applications like environment
monitoring and control [LM07], efficient distributed collection [Pha+10], and dis-
aster management [Kuc+20]. However, to the best of our knowledge, no existing
work addresses the dynamic problem in CPSW, which requires specific techniques
to adaptively re-adjust clusters to face changes. Additionally, we look for solu-
tions featuring resilience, namely, leveraging distribution and decentralization to
continuously face changes and faults, hence avoiding single points of failures and

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
89



potential bottlenecks. Accordingly, we present and address the dynamic sensing-
based swarm clustering problem, based on our language-based view of CPSW,
namely enforcing the use of a field-based programming model, both for the spec-
ification of the problem (i.e., the system model) and for the solution (i.e., the
distributed aggregate computing program definition).

Essentially, the core idea of our clustering approach is to make agents in local
minima (or maxima) of the sensed value (depending on whether lowest or highest
values are most significant) spawn a spatial process of gathering for neighbour de-
vices until finding the proper size of the cluster, additionally managing interactions
with other clusters when there are overlaps.

5.1 Field-based Concurrent Processes

Field-based concurrent processes, also called aggregate processes [Cas+19;
Cas+21], are field-based computations that exist dynamically: they can be dy-
namically generated (usually by individual agents), execute on a dynamic set of
agents, and disappear once all its members withdraw. They have been formalized
in [Cas+19] and deeply covered in [Cas+21], showing how they can support the
design of intelligent collective behaviour by extending the practical expressiveness
of field-based programming models [Vir+19]. We provide a brief account of the
details relevant for this chapter in the following.

Indeed, the aggregate process abstraction is relevant since an aggregate pro-
cess instance, by running on a (evolving) subset of the agents, can be used to
denote a dynamic cluster. Therefore, clustering algorithms can be expressed in
terms of how aggregate processes are generated (candidate cluster formation) and
merged/removed (cluster selection).

Aggregate processes can be expressed as normal field-based functions and
spawned through a spawn construct with the following signature:

// spawn is a generic function which accepts 3 parameters

def spawn[K,A,R](process: K => A => (R,Boolean),

newProcesses: Set[K],

args: A): Map[K,R]

The generic type K instantiates to the type of process key, also called a process
identifier (PID), which also works as construction parameter; the generic type A

instantiates to the type of runtime parameters for the currently running process
instances; the generic type R instantiates to the type of the output of the process.
A process definition has curried type K =>A =>(R,Boolean), namely a function
from a value of type K and a value of type A to a pair of a value of type R and
a Boolean. The Boolean value, called the process status, expresses if the device

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
90



that has executed a given process instance would like to participate in the process
(true status) or not (false status). The crucial point is that every device that
participates in a process with PID π automatically propagates the process PID
π to all its neighbours, which will run a corresponding process instance when the
spawn function is evaluated. So, the spawn function accepts a function process

of a field-based behaviour, a set newProcesses of new process instances to be
generated locally in the current round, and a value of type A for the runtime input
of the instances currently running in the local round of a given device. Notice that,
though process can be a field of functions, it is typically a constant field of the
same function, which means that usually a spawn expression enables running zero
or more process instances of the same kind of process. Evaluation of spawn returns
a Map[K,R] (i.e., a hashmap or dictionary) which is a set of entries mapping the
PIDs of executed process instances (with status true) to corresponding outputs
of type R.

As an example, consider building a separate gradient computation for each
distinct source agent, that will expand within a certain range ρ. This could be
coded as follows in ScaFi:

type DeviceId = Int

// Process definition as a function

val proc: DeviceId => Boolean => (Double, Boolean) = id => isSource => {

val output = gradient(id == deviceId())

val status = if(id == deviceId()) isSource

else output < ρ
(output, status)

}

// Set of processes to be generated locally

val newProcesses: Set[DeviceId] =

if(isSource()) Set(deviceId()) else Set.empty

// Expression for handling acquired and generated processes

val gradients: Map[DeviceId,Double] =

spawn[DeviceId,Boolean,Double](process, newProcesses, isSource())

In detail, the IDs of sources are used as PIDs; so, for instance, a gradient from
agent 7 will become a process with PID 7. The process logic is defined through
proc, which is a function of the PID id and Boolean argument isSource denoting
whether the running agent is a source, as provided by built-in sensor function
isSource(). In proc, a gradient is built from the agent whose ID, provided by
deviceId(), matches the id of the source corresponding to the current process
instance. Then, status is defined true if the source for the process is still a
source or, for non-source agents, if their gradient value is lower than threshold
ρ. Notice that when the original source is not a source any more, the gradient

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
91



output will rise, eventually causing all the agents to leave that process. Value
newProcesses will be a singleton set with the ID of the running device when its
isSource() sensor returns true, or the empty set otherwise. In the former case, a
corresponding process is spawned if it did not already exist. The evaluation of the
spawn call, then, will run both new and existing processes including those executed
(and not quit) at the previous round, as well as those acquired from neighbours.
The output of the spawn expression will be a map from the PIDs of the processes
locally executed to the value of the gradient (output) locally computed in those
process instances.

An example of the dynamics of such a program is provided in Figure 5.1.
In the picture: nodes are agents; labels on nodes are agent IDs; edges denote
neighbouring links, over which messages are sent and received; the output of the
spawn expression is shown above the nodes unless it is an empty map (not shown);
the different sub-pictures are snapshots of a corresponding hypothetical system
state trajectory that may result after multiple rounds of execution in multiple
devices. A more thorough introduction and description of aggregate processes
together with more examples is available in [Cas+21].

5.2 Resilient Dynamic Cluster Formation

Different cluster models exist and, for each cluster model, several algorithms can
be devised [Est02]. These are reviewed and compared with our cluster model in
Section 5.5.

In this chapter, we focus on swarm clustering, which involves associating each
swarm member to zero or more clusters. So, this is a problem of cluster forma-
tion [GHZ18], more than a problem of cluster analysis (which generally includes
cluster formation followed by cluster evaluation). A cluster, in this setting, is es-
sentially a label (cluster ID), which can be associated to an agent, and that can
be used to determine its behaviour. In field terms, a clustering can be seen as a
field mapping each agent to a set of cluster IDs—we call this a clustering field.

Essentially, a cluster can be used to determine, query, and control a group of
agents. Such a group could represent a team, used for cooperation or to solve
a common goal, or a space-time domain for a field computation. Indeed, as the
agents are situated in space, they provide a means for extracting data from their
corresponding location, which may be instrumental for environment monitoring,
data acquisition, etc.

Moreover, we consider dynamic clustering [RTG19], where the emphasis is not
on identifying a single clustering for a given system configuration, but to update
and evolve a clustering solution as the system configuration evolves (e.g., due to
mobility, failure, or change in other clustering criteria). The specific problem we

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
92



(a) Initial network. (b) A process is generated on agent 1.

(c) The process with PID 1 propagates
up to a certain range.

(d) The “border” of a process can
change dynamically.

(e) Another process is spawned by
source agent 3.

(f) Processes can overlap. Agents 2 and
6 run the two processes with PID 1 and
3.

(g) Process 1 ceases to exist.

Figure 5.1: Examples of the dynamics of multiple concurrent gradient processes.

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
93



tackle is dynamic sensing-based/space-based swarm clustering, which involves asso-
ciating each swarm member to zero or more clusters, and to evolve such association
by considering change in the environment (sensing-based) and spatial location of
the members (space-based).

In summary, our goal is to define a distributed, decentralized, field-based clus-
tering algorithm, for the system model based on our language-based view described
in Section 3.3.1, able to create and dynamically maintain a clustering field, re-
siliently. Our focus on resilience make centralized approaches not appropriate
since we cannot assume that some nodes are infallible or always available. This
work draws motivation from (i) the relevance of the problem for situated systems as
CPSW, (ii) a scarcity of solutions to the problem of sensing-driven spatial cluster-
ing in literature, and (iii) a general lack of effective field-based clustering solutions.
Refer to Section 5.5 for a more detailed account on these research gaps.

5.3 Sensing-Driven Clustering

In this section, after describing a minimal set of assumptions underlying the ap-
proach (Section 5.3.1), we define the problem to be addressed (Section 5.3.2),
in terms of inputs, outputs, and parameters, describe a specific instantiation of
the problem for centroid-based clustering on numeric values (Section 5.3.3), and
then present a meta-algorithm providing a solution to the stated problem (Sec-
tion 5.3.4).

5.3.1 Assumptions

Before formally defining the problem of Dynamic Sensing Based Swarm Clustering,
we summarize the assumptions about the swarm devices and the environment in
which they act. Such assumptions justify both the way we define the problem,
and some of the design choices we adopt for its solution.

1. A swarm is composed by a set of possibly many relatively simple autonomous
cyber-physical agents,

2. An agent can move within the environment, sense, and actuate.

3. Communication is based on peer-to-peer connection link, based on the prox-
imity of agents, without relying on infrastructure (e.g., LTE network, Wi-Fi
network).

4. Reliability of agents themselves and communications are not guaranteed and,
in some scenarios, failures are quite likely.

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
94



5. The measures of the environment, as sensed by the agents, can change over
time.

6. The measures of interest of the environment at two points in space close to
each other tend to be positively correlated.

The above assumptions, based on our system model defined in Part I, are rather
weak and, therefore, quite challenging. They encompass scenarios where a swarm
of agents explores an area where multiple natural phenomena are happening.
Therefore, even if the proposed solution target CPSW, it can be applied to other
scenarios, such as WSNs and IoT, where the above assumptions are satisfied.

The field-based clustering algorithm for solving the Dynamic Sensing Based
Swarm Clustering problem will be discussed below. For now, we just want to
point out that our assumptions justify a fully distributed approach in which agents
exchange information with their neighbours.

First, given the very nature of swarm systems, problems are usually bet-
ter solved by distributed algorithms than centralized algorithms, e.g., [Hos13;
CNM17]. In particular, by our assumption that agents and communications can
fail, and that there is no global communication infrastructure, a node in charge of
all the computations (either an agent or a base station) would constitute a risky
single point of failure. Even if the swarm was able to recover from such failure
by automatically choosing another central node, the switch would be cumbersome
and potentially very costly, only to reach again a situation with another single
point of failure.

Given agents whose connection links are established and lost based on the
proximity with other agents, it may be possible to build an abstraction on top
of that, whereby multi-hop communications are transparent, and each agent has
the illusion of being able to immediately communicate with any other agent in
the swarm by specifying an appropriate ID (this is, e.g., the typical abstraction
brought by the IP layer of the TCP/IP stack). While the cost of adding such
an additional layer may be acceptable in some situations, for the specific goal of
clustering this would not bring any advantage: as we shall see in the sections
below, clusters spring out, expand, and collapse following spatial vicinity—i.e., a
new cluster expands first to the immediate neighbours of the agent that generated
it, and then progressively incrementally spreads to further agents.

5.3.2 Problem Definition

We address the problem of situation awareness and recognition, where a value dis-
tributed in space (e.g., temperature as measured by sensors) has to be monitored,
by recognizing compact clusters with similar values (e.g., spatial regions with a

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
95



similar temperature). This problem, called sensing-driven clustering in literature,
has been investigated largely in static scenarios [Kuc+20; Pha+10; LM07], where
data from a fixed sensor network has to be processed to obtain the relevant clusters.
However, solutions for such networks do not extend well to dynamic contexts, such
as a mobile CPSWs system monitoring an environment: in this scenario, mobility
and proximity of communication are key, and need to be handled by an algorithm
that is resilient to changes in values, network structure and placement in space.
To the best of our knowledge, this problem has never been previously considered
in the literature.

A sensing-driven clustering algorithm for such system could be useful for several
outcomes. Clusters may provide a compressed summary of the value distribution
in space, to upload on the cloud and be graphically represented for human con-
venience. Clusters may also be used to drive more complex situation recognition
patterns: algorithms to detect dangerous situations may be run in each cluster
separately, using information from that cluster to reach a verdict, without inter-
ference from information on neighbouring clusters. Clusters may also be used to
drive task assignments to the monitoring drones, possibly guiding their placement
in space, by directing more drones in clusters where the need arises.

More formally, we consider the following problem:

• Input: for each device, a unique identifier i and a value vi of type T (possibly
obtained through a sensor reading);

• Output: for each device, a list of clusters to which the device belongs, repre-
sented as a map from unique identifiers l of cluster leaders to corresponding
cluster summary values wl of type S.

To formally specify the output, we need some further details characterizing what
a cluster is, how they should be selected, and what is their summary. This is
attained through the following problem parameters.

• Metric: a data type M with

– a null value 0M ;

– a partial order1 x ≤ y defined for x, y of type M ;

– an addition operator x+y defined for x, y of typeM , such that x+0M =
x and x+ y > x if y > 0M ;

– a positive function d(i, j) > 0M returning a value in M representing
a distance between a device i and j (depending on the devices’ sensor

1A partial order is a reflexive, transitive and anti-symmetric relation; with no requirement
that either x ≤ y or y ≤ x for x, y of type M .

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
96



states and possibly values vi). This is intended to make use of spatial
distance estimates as well as other factors (i.e., value distances).

• Summary: a data type S with

– a value s(i) of type S in every device i (depending on sensor state);

– an associative and commutative function f : (S, S)→ S, used to aggre-
gate values s(i) for devices in a same cluster.

• Leader selection:

– a candidate radius r(i) in M (depending on sensor state and values),
so that only devices with a relative distance strictly lower than r(i) can
belong to a cluster whose leader is i;2

– a commutative similarity predicate p : (S, S) → {⊤,⊥}, identifying
similar clusters based on their summary.

According to this description, a candidate cluster C is a set of devices with a
leader i, such that every j ∈ C is within a distance of r(i) from the leader i,
according to the metric given by d. The summary wi of such cluster is the repeated
aggregation through f of the values {vj : j ∈ C}. Nearby clusters are merged if
their summaries are similar according to predicate p, and in such cases, the lowest
identifier is selected as the leader of the merged cluster.

Leaders are used to regulating clusters via aggregate processes and to easily
support consistent coordination and decision-making regarding the activity of a
cluster. Notice that agents may belong to multiple clusters: this is important
to support tracking phenomena that are spatially close to each other. Indeed,
if a node is in between two phenomena, it could participate in the corresponding
clusters at the same time to help to track or handle both phenomena. We highlight
that we aim to solve this problem by an adaptive algorithm, that is, a program
that is able to handle changes in its input, by periodically and asynchronously
updating its internal values.

5.3.3 Adaptive Centroid-based Clustering on Numeric
Values

In the evaluation section, we consider a specific instantiation of the parameters
just introduced, for centroid-based clustering on numeric values. In this context,
the metric is a simple distance on values, so that d(i, j) = |vi − vj|. To prevent
the creation of a candidate cluster for every device, the candidate radius r(i) is set

2Notice that r(i) = 0M implies that no device can be in a cluster whose leader is i.

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
97



to zero whenever i is not a local minimum (i.e., has a neighbouring device j such
that vj < vi). If instead i is a local minimum, r(i) is set to a fixed difference value
θ. The values s(i) to be summarized are set to a tuple [xi, yi, vi, 1] of the devices’
positions3 and values with the number 1, with an aggregator function f that is a
component-wise sum, so that the overall aggregate of a cluster C is (eventually)
equal to the tuple [

∑
i∈C xi,

∑
i∈C yi,

∑
i∈C vi,#C] (where #C is the actual number

of members of cluster C). The similarity predicate p then declares two clusters as
similar if they have centroids within a radius of γ, in a 3D space mixing spatial
coordinates with a value coordinate:

p([x, y, v, n], [x′, y′, v′, n′]) := ∥(x, y, v)
n

− (x′, y′, v′)

n′ ∥ < γ

where (x, y, v) denotes a 3D vector and ∥·∥ denotes the norm of a vector. By setting
the problem parameters as described, the meta-algorithm can select clusters of
similar value, led by their minima, and merge overlapping clusters that are too
close together and with a similar value.

5.3.4 Adaptive Clustering Meta-Algorithm

We now describe the general meta-algorithm for the stated problem through state
equations. The algorithm state is distributed, hence composed of variables xi
depending on a device identifier i: we assume that such a variable is stored in
device i and periodically updated by it through the state equations. Each equation
may involve inspecting the state of variables in neighbour devices j: we assume
that every device periodically shares its state with neighbours, so that a (not
necessarily updated) view of neighbours’ state is available in each device, and each
state equation can be computed locally in the current device i, without remote
memory accesses. We use N (i) to denote the set of current neighbours of device
i, i.e., the set of devices j for which a view of their state is locally available in
i (not including i itself). The execution of state equations can be performed in
asynchronous rounds, as described in Part I. In order to showcase the algorithm at
work by examples, in the following we consider a network of three interconnected
devices i = 0, 1, 2, so that N (0) = N (1) = N (2) = {0, 1, 2}. We assume that the
devices are placed in positions (x0, y0) = (0, 0), (x1, y1) = (1, 1), (x2, y2) = (2, 0)
and hold values v0 = 2, v1 = 3, v2 = 1. We will also assume that the parameters
are as described in Section 5.3.3, with θ = γ = 3.

Table 5.1 summarizes the state variables used in state equations. Every device
maintains a candidate leader set Si, of possible clusters to which the device may

3We assume that a GPS-like sensor is available.

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
98



i current device N (i) neighbour set
ℓ candidate leader Si candidate leader set
mℓ

i metric in i from ℓ cℓi whether i belongs to cluster ℓ
pℓi parent of i in cluster ℓ tℓi partial summary in i for cluster ℓ
uℓi candidate leader summary in i for ℓ
li selected leader for cluster i, if any wi selected summary for cluster i, if any
lℓi selected leader for cluster ℓ in i wℓ

i selected summary for cluster ℓ in i

Table 5.1: State variables used in the state equations.

belong. Every round, this set is updated as:

Si = {ℓ ∈ Sj for j ∈ N (i) s.t. cℓj = ⊤} ∪

{
∅ if r(i) = 0M

{i} otherwise

Thus, Si includes i provided that r(i) > 0M , together with other candidate leaders
ℓ considered by neighbours (in their candidate leader set and which have computed
to be within the cluster). In field-based computing, this set is implicitly maintained
by the spawn construct, given cℓi as process return status and {i} as new process
key (if r(i) > 0M). In our sample network, the initial value for Si in each i will
only consider the current device, as information from neighbouring devices is not
available yet. Thus, we will have S0 = {0},S1 = {},S2 = {2}. After convergence,
each node will understand itself as possibly belonging to clusters 0 and 2, so that
S0 = S1 = S2 = {0, 2}.

Most of the meta-algorithm computation is repeated for each of the candi-
date leaders ℓ ∈ Si. First, a metric mℓ

i of the distance between ℓ and i is com-
puted, through the following equation (i.e., the gradient block in field-based
computing—cf. Section 3.3.2.3):

mℓ
i =

{
0M if ℓ = i

min{mℓ
j + d(i, j) : j ∈ N (i)} otherwise

In the sample network, we will have m0
0 = m2

2 = 0, m0
1 = 0 + |v0 − v1| = 1,

m2
1 = 0+ |v2 − v1| = 2, m2

0 = m0
2 = 0+ |v0 − v1|+ |v2 − v1| = 3. From mℓ

i , we also
decide the values cℓi as the truth predicates of whether mℓ

i ≤ θ.
Then, an optional parent pℓi for ℓ ̸= i is determined as the neighbour j with

minimal mℓ
j (resolving ties by the identifier j itself):

pℓi =

{
argminj∈N (i){(mℓ

j, j)} if ℓ ̸= i

None otherwise

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
99



In our example, we have that p01 = 0, p21 = 2, p20 = p02 = 1 while p00 and p22
are undefined. Through it, partial summaries tℓi can be computed (C block in
field-based computing—cf. Section 3.3.2.3):

tℓi = reduce({s(i)} ∪ {tℓj : j ∈ N (i) and pℓj = i}, f)

where “reduce” is a function accumulating every element of a given set with the
given binary function, and thus aggregates with f the value s(i) together with the
tℓj values of neighbours j which chose the current device i as their parent. In the
sample network, we will have that t20 = s(0) = (0, 0, 2, 1), t02 = s(2) = (2, 0, 1, 1),
t01 = s(1) + s(2), t21 = s(1) + s(0), t00 = t22 = s(0) + s(1) + s(2) = (3, 1, 6, 3). The
value of the partial summary in the leader is then propagated through the cluster
by a broadcast function:

uℓi =

{
tℓi if ℓ = i

uℓ
pℓi

otherwise

so that, in our example after convergence, each uℓi is (3, 1, 6, 3). Every candidate
leader i with r(i) > 0M is now able to choose its selected leader li, as the minimum
candidate leader j (possibly i itself) with a summary similar to that of i according
to predicate p:

(li, wi) =

{
min{(ℓ, uℓi) : ℓ ∈ Si and p(uℓi , uii)} if r(i) > 0M

None otherwise

In the running example, we will have that l0 = l2 = 0, w0 = w2 = (3, 1, 6, 3), since
the two clusters are fully overlapping hence p is true. The selected leader li and
corresponding summary wi is then propagated by broadcast through the cluster
of i. For every ℓ ∈ Si:

(lℓi , w
ℓ
i ) =

{
(li, wi) if ℓ = i

(lℓ
pℓi
, wℓ

pℓi
) otherwise

Finally, in every device i, the meta-algorithm output is the map:

{lℓi 7→ wℓ
i : ℓ ∈ Si}.

This meta-algorithm is presented as ScaFi pseudo-code in Listing 5.1, using
ScaFi library functions gradient, C, and broadcast—cf. Section 3.3.2.3. Notice
that since clusters are represented as aggregate processes, and aggregate processes
define “scopes” for collective computations, the participation of an agent in an
aggregate process has by itself the information about the cluster membership; so,
collective tasks may be assigned to any cluster, and these will be inherently played

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
100



Listing 5.1: ScaFi pseudo-code of the clustering meta-algorithm

// process starts when r(i) is positive

val newProc = mux (r(i) > 0) { Set(mid) } { Set.empty }

// collect map from ℓ ∈ to (mℓ
i , u

ℓ
i)

val clusters = spawn(ℓ => _ => {

val mℓ
i = gradient(mid == ℓ, d) // distance estimation

val cℓi = mℓ
i < r(ℓ) // whether device is in cluster

val tℓi = C(mℓ
i, f, s(i)) // summary collection

val uℓi = broadcast(mℓ
i, tℓi) // summary broadcast

return ((mℓ
i, uℓi), cℓi) // process result and status

}, newProc, ())

// selected leader

val li = mux (r(i) > 0) {

clusters.filter(x => p(x._2, clusters(mid))).keys.min

} { mid }

// selected leader summary

val wi = mux (r(i) > 0) { clusters(li)._2 } { None }

// propagate in process

val result = spawn(ℓ => _ => {

val mℓ
i = clusters(ℓ)._1 // recover distances

val cℓi = mℓ
i < r(ℓ) // whether device is in cluster

val (lℓi, wℓ
i) = broadcast(mℓ

i, (li, wi)) // final broadcast

return ((lℓi, wℓ
i), cℓi) // process result and status

}, newProc, ())

// build result map

return result.map(x => { x._2._1 -> x._2._2 })

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
101



by all the members of that cluster. We also remark that although values vi
are not directly used by the meta-algorithms, the parameters r(i) and d(i, j) are
allowed to depend on them (and usually do), so that values are indirectly used.
An example of such behaviour is given in the next section.

5.4 Evaluation

In this section, we evaluate the meta-algorithm proposed in Section 5.3.4 in a
case study of situation recognition within a synthetic environment (Section 5.4.1).
The goal (Section 5.4.2) is to show how the algorithm can cluster agents in a
sensing-based fashion, hence identifying various temperature cluster shapes. Fur-
thermore, we assess how the algorithm works in mobile settings, where a swarm of
agents moves across an environment—which can be representative for exploration
scenarios. After describing the scenario and goals, in this section we describe the
simulation framework (Section 5.4.3), the simulation configurations (Section 5.4.4),
the results (Section 5.4.5), and finally provide a discussion about the evaluation
and the approach (Section 5.4.6).

5.4.1 Scenario Description

A swarm group of robots is interested in identifying areas where environmental
data varies within a known range. In particular, we assume that the robots are
both capable of sensing the environmental temperature, perceiving their position
in space (e.g., using GPS), and exploring a limited area (i.e., a square with a side of
1 km). The temperature is just an arbitrary choice of a sensible physical quantity
that should drive, together with the spatial distribution, the clustering; the idea
is that a temperature can be indicative for an environment situation that could
require attention or intervention (cf. wildfires which can start and spread in hot,
dry, and windy conditions). The scenarios are plausible, but we are not interested
in full realism: simplifications and generalizations are introduced to study the
algorithm in diverse controlled situations. Since the absence of central authority
and the limited agent communication capability, we suppose that the agents can
only interact with their neighbours (i.e., the devices with which a agent manages
to establish a connection). In particular, we imagine that each agent is equipped
with a LoRa module with a connection range of 100m. In this case, a node
can potentially participate in several clusters as it may be spatially close to two
different phenomena. Therefore, it must both partake in the collective perception
(i.e. perceive the local temperature) and act to solve the cluster-identified problem.
The choice of how and when a node should act depends on the application but is
typically left to the leader, since it has the cluster-side vision of phenomena and

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
102



the nodes. Notice that these assumptions are coherent with the system model of
Section 3.3.1.

In the experiments described in the following, we are only interested in the
clusters determined by the swarm cooperatively, not in how clusters are leveraged
at the application level. However, even if we do not directly leverage the output of
the clustering process, we would highlight that, in using the proposed algorithm, we
inherently exploit both the leader election process and the multi-cluster formation.
The foster is necessary to create clusters since, in our algorithm, each cluster is
managed by one leader. The latter is essential to track the phenomena of interest.
In fact, as phenomena can be spatially close and thus overlapping, if a node could
only participate in one cluster, we would not be able to analyse the traced phe-
nomenon correctly. Lastly, we emphasize that the scope of this application is quite
versatile and can be adapted to various specific scenarios as outlined in previous re-
search [Sch+20]. Examples include marine monitoring [Far+17] (covering aspects
like aquaculture, pollution, and water quality), intelligent agriculture [Bal+13] (in-
volving fertilization and pest control), military surveillance, tracking of criminal
activity, and locating victims in disaster situations [Sae+10].

5.4.2 Evaluation Goals

We set up these simulations to:

1. verify the capability of the algorithm to find different cluster shapes: To as-
sess the algorithm’s versatility, we aim to confirm its robustness in accurately
identifying various types of data distributions, including but not limited to
Gaussian shapes;

2. examine how found clusters can cope with drone movement and failures:
upon confirming the algorithm’s effectiveness in stationary conditions, we
intend to explore its responsiveness to variables such as drone mobility and
system failures. Our analysis will focus on how these dynamics affect the
clustering process in terms of cluster count, shape, and size;

3. test the algorithm dynamics when the temperature distribution changes: in
a swarm agentics context, the observed phenomena could change over time.
Therefore, the algorithm proposed should be robust against phenomena dy-
namisms.

That is, these goals reflect the design requirement of supporting sensing/spatial-
based clustering in static, mobile, and environment-dynamic scenarios.

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
103



5.4.3 Simulation Framework

We verify our sensing-driven clustering algorithm using Alchemist simulations.
The simulation experiments, resulting data, source code, and instructions for re-
producibility are available at a public GitHub repository4. Alchemist is already
used in similar scenarios [Cas+21], and it supports the ScaFi language [Cas+20a],
that has been chosen among other field-based languages [Vir+19] as it supports
aggregate processes [Cas+19], which we consider essential in order to implement
our clustering algorithm.

5.4.3.1 Parameters

To evaluate the efficacy of our proposed solution, we examine the collective pro-
gram behavior under various parameters. These parameters are summarized in
Table 5.2 and elaborated upon below.

A key parameter is the in-cluster threshold (θ), which serves as a determinant
for whether an agent resides within or outside a cluster. This threshold plays a
critical role in guiding the expansion of the aggregate process across nodes. A low
value may limit the program’s consideration to only a handful of nodes, whereas
an excessively high value could result in the inclusion of nodes that should not
be part of the cluster. Given that this parameter is contingent on the specific
application, developers need to judiciously strike a balance between node inclusion
and boundedness, as this will significantly influence the shape of the cluster.

The same cluster threshold (γ) is employed by the cluster leader to determine
the similarity between two clusters, as elaborated in Section 5.3.4. This parameter
is vital in accurately establishing cluster boundaries. A high value for γ could result
in the merging of two distinct clusters, while a value that’s too low might leave
overlapping clusters separated even when they could be meaningfully combined.

A clustering process starts when a node becomes a candidate. waiting candidate
time (β) rules the rounds needed by a node to spawn a process after it has become
a candidate. This helps in avoiding the excessive process spawn due to small local
temperature variations.

We are interested in the robustness of the clustering process against the robots
movement. Therefore, we tested our solution varying the robot speed (ω) and the
exploration range (ζ). We expect that the higher the movement speed, the greater
the instability of the identified clusters. ω does not affect candidate robots, they
will stand still until they stay candidates.

We check also how the output changes varying the density (α) of robots. Theo-
retically, we expect a better result with high-density swarms. From α we compute

4https://github.com/cric96/experiment-2021-swarm-intelligence-si

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
104

https://github.com/cric96/experiment-2021-swarm-intelligence-si


Parameter Unit Description Values
In Cluster Threshold – θ ◦C A real value used to verify if

the temperature perceived in
a certain node could be con-
sidered as a part of the cur-
rent cluster

[ 0.5, 1.0,
1.5 ]

Same Cluster Threshold
– γ

n.a A real value used to verify if
two clusters could be consid-
ered as the same

[ 0.1, 0.3,
0.7 ]

Speed – ω km/s The constant velocity used
by drone to explore the ar-
eas

[ 7, 10, 14 ]

Exploration range – ζ km The maximum range area in
which drones could move

[ 0.5, 0.6 ]

Density – α n.a A parameter used to de-
fine how many nodes will be
placed in the environment

[ 0.5, 0.75 ]

Waiting candidate time
– β

n.a Rounds needed to mark a
node as candidate

[ 3, 5, 7 ]

Failure frequency – ξ Hz Failure frequency of random
nodes that participate in the
system

[ 0.5, 0.1, 0 ]

Spawn frequency – τ Hz Spawn frequency of a node in
a random position within the
environment

[ 0.5, 0.1, 0 ]

Table 5.2: A summary of the parameters used in simulations

the total number of robots as: N = (10/α)2, e.g. with α = 0.5, N = 400 and with
α = 0.75, N = 173.

Finally, ξ (failure frequency) and τ (spawn frequency) are used to verify how
our algorithm could handle failures during the clustering process. The foster rules
the frequency in which a random node disappears from the system. The latter
controls the rate of spawning nodes that will participate in the aggregate program
evaluation. This is useful to avoid complete node isolation after frequent node
failures. Even if the movement is already a good estimation of how the system
responds to dynamisms, we want to add another disruptive change. Indeed, move-
ments are typically relative, and therefore the changes in the neighbourhood are
limited.

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
105



5.4.3.2 Metrics

The clustering results are verified using different metrics. First, we extract the
number of total unique clusters found by the collective to check if the program
produces the correct partitioning. This value gives a quick overview of the cluster-
ing result. Along with this value, we evaluate the total number of unique merged
clusters. The latter should be as near as possible to the correct cluster number.

However, neither the number of total unique clusters nor the total number of
unique merged clusters tells us anything about the shape of the clusters. To this
aim, we compute several metrics:

• the number of nodes for each cluster, stating the overall device partitions;

• the Silhouette [Rou87] and Dunn [Dun74] indexes, used as internal evaluation
schemes;

• the error rate, observable only when we know the ground truth.

By examining the Silhouette index, we can gauge the extent to which the clusters
overlap. A Silhouette value approaching 0 indicates overlapping clusters, while a
value closer to 1 suggests that the clusters are distinct and well-separated. The
Dunn index serves as a supplementary metric; when the Silhouette index is close
to 1, a higher Dunn index value is expected. The error rate metric quantifies the
degree of node misclassification. A node is considered misclassified if it is either
falsely associated with a cluster (false positive), or if it is incorrectly identified as
external when it should actually belong to a cluster (false negative). The error
rate is calculated using the following formula:

E =
FP + FN

TP + TN

Here, TP denotes true positives, which refers to the number of nodes correctly
classified within a cluster and located near a specific variable like temperature
distribution. TN represents true negatives, or the number of nodes accurately
classified as external and distanced from any variable distribution. This metric
provides insights into the algorithm’s performance during drone exploration.

5.4.4 Simulations

We evaluate the behaviour of our algorithm in several experiments. The simula-
tions have in common 1. the environment area (a square with a side of 1km), 2. the
communication radius (100m), and 3. the average evaluation frequency of aggre-
gate programs (1Hz). The drones are uniformly placed to cover the entire zone.

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
106



(a) (b) (c)

(d) (e) (f)

Figure 5.2: Graphical representation of temperature field distributions used in the
simulations. The lighter the colour, the lower the temperature.

We run the simulations in a modern machine equipped with two AMD EPYC 7301
with 128GB RAM. The results are reproducible in any modern machine, but con-
sider that it might take a long time to finish (in our configuration, the simulations
end after 8 h). Each scenario is executed 20 times with different random seeds for a
total of 100 simulated seconds (some simulations lasts 150 s to reach convergence).
The selection of scenarios presented below aims to achieve two main objectives:

1. assess the effectiveness of our algorithm,

2. ensure that it meets all the previously outlined goals.

Specifically, we chose scenarios where most temperature distributions follow a nor-
mal distribution. This choice is grounded in the observation that natural phenom-
ena often exhibit such distributions. Consequently, if our algorithm succeeds in
identifying clusters in these Gaussian scenarios, it is likely to be effective in other
contexts where monitoring natural phenomena is essential. To complement this,
we also tested the algorithm’s ability to identify non-Gaussian shapes, as evidenced
in scenarios 3, 4, and 5.

The final set of scenarios is designed to evaluate the system’s adaptability
to changes at both the system level, such as movement and failures, and the
environmental level, like variations in distribution over time.

The simulation data is processed using NumPy [Har+20] and visualized
through matplotlib [Hun07]. The plotted results consist of the average (lines)

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
107



Figure 5.3: Snapshots of simulation executions. The colour of the square identifies
the cluster ID found in that point. Black colour means no cluster. The green
circle means that the node is a candidate. The blue gradient circles are a graphical
representation of temperature distribution. On the left is shown a snapshot of a
simulation before the merge policy has been applied (multiple clusters per point
are found). On the right, there is the snapshot of the same simulation after the
merge policy action.

and the standard deviation (area behind lines) of the values of interest in different
episodes. In Figure 5.3 there is a graphical representation of a run of our algorithm.

5.4.4.1 Scenario 1: Gaussian patterns (Figure 5.2a)

Description In this scenario, the drones are stationary (i.e., they stand still).
There are five zones with a Gaussian distribution, and there is no overlap between
distributions. Given the stationary situation, the number of candidate nodes is
equal to the number of zones of interest.

Why Used to verify 1, particularly we expect that the algorithm finds clusters
without making any errors and that they will be stable over time.

5.4.4.2 Scenario 2: Stretched Gaussian patterns (Figure 5.2b)

Description These simulations are similar to the previous one, but in this
case, the Gaussian distributions have an ellipse-like shape.

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
108



Why With these experiments, we would check that the shape does not make
such a difference in the clustering process. Indeed, we expect a result similar to
the one in the previous example (1).

5.4.4.3 Scenario 3: One direction temperature field (Figures 5.2c
and 5.2d)

Description In this case, we imagine that only one cluster is present (fixing
θ to 1 ◦C and putting a total variation of temperature equal to 1 ◦C). Temper-
atures grow from left to right in a constant fashion. Namely, in Figure 5.2c the
temperature varies in one dimension (horizontally), whereas in Figure 5.2d the
temperature varies in two dimensions (diagonally). In the scenario depicted in
Figure 5.2c we are interested to see what happens when multiple candidates are
elected. In this case, there are several relative minima (the set of nodes that are
leftmost with minimum ID in their neighbourhood). But, eventually, the processes
will expand them in the same way. Thus, we expect that the merging policy tends
to create only one cluster. We use the scenario shown in Figure 5.2d as a reference.
Indeed, there will be only one candidate (located in the bottom left corner), and
hence the algorithm should result in one cluster.

Why We devise these experiments to test the effectiveness of the merging
policy and to verify the goal 1.

5.4.4.4 Scenario 4: Gaussian overlapped patterns (Figure 5.2e)

Description In this case, we have several Gaussian patterns that could be
overlapped. We imagine that the θ value is essential here: if the value is too high,
the system will recognise the set of overlapping clusters as one; otherwise, it will
consider disjointed.

Why This experiment serves to emphasize that θ is a domain-dependent
choice. Moreover, it will show that the algorithm could be used also to find over-
lapped situations (1).

5.4.4.5 Scenario 5: Non convex patterns (Figure 5.2f)

Description In this case, there are two zones, one with a non-convex shape
with a lower temperature than the outer zone. Here we expect that, eventually,
the system will identify the presence of only two clusters. The program might
identify several candidates in the transitory phases (cf. one for each edge). Hence,
the merging policy should fix this issue by producing only two clusters.

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
109



Why With this scenario, we want to point out that the program can cope
with zones of arbitrary shape.

5.4.4.6 Scenario 6: Gaussian patterns with movement

Description We test the result using four Gaussian distributions (arranged
similarly to Figure 5.2a) combined with movement. Here, both merging policy, and
waiting candidate time (β) will be essential. In particular, β helps to avoid false
positives since it waits before spawning a new clustering process when encounters
small local temperature variations. In general, we imagine that high values of ω
and ζ will make the algorithm more unstable.

Why We are interested in seeing how movement affects the result of the
clustering process (2).

5.4.4.7 Scenario 7: Variable size Gaussian pattern

Description In this experiment, the temperature distributions are placed
similarly as Figure 5.2a, but then the size of areas evolves in time. We expand the
areas until a time T and then contract them to their initial size. The starting area
range is 100m, and the maximum area expansion is 1 km. Here we expect that
the cluster area follows the underlying temperature distribution.

Why In this experiment, we verify the algorithm’s robustness against tem-
perature changes (3).

5.4.4.8 Scenario 8: Random Failures

Description The temperature distribution of choice follows the Figure 5.2a.
Nodes could disappear randomly with a rate specified by failure frequency. This
could be harmful when: i) the failure happens in a leader node, and therefore the
cluster formed should be destroyed and, ii) the failures are so frequent that certain
nodes became isolated. The second case is avoided using spawn frequency, which
forces the system to insert a new node with the specified rate. In this case, we
expect robust performance with high-density system (i.e., α = 0.5) since spurious
failure does not change the overall topology.

Why In this last scenario, we check how the system handles node failures
during the clustering process (3).

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
110



0 20 40 60 80 100
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

# 
of

 u
ni

qu
e 

clu
st

er

Scenario 1: cluster count 
 =0.5 =1. =0.3 

=3. 

all clusters
clusters

0 20 40 60 80 100
Time

0.0

2.5

5.0

7.5

10.0

12.5

# 
of

 u
ni

qu
e 

clu
st

er

Scenario 2: cluster count 
 =0.5 =1. =0.1 

=3. 

all clusters
clusters

0 20 40 60 80 100 120 140
Time

0

5

10

15

# 
of

 u
ni

qu
e 

clu
st

er

Scenario 3-c: cluster count 
 =0.5 =1. =0.3 

=3. 

all clusters
clusters

0 20 40 60 80 100 120 140
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

# 
of

 u
ni

qu
e 

clu
st

er

Scenario 4: cluster count 
 =0.5 =1. =0.3 

=3. 

all clusters
clusters

0 20 40 60 80 100
Time

0.0

2.5

5.0

7.5

10.0

12.5
# 

of
 u

ni
qu

e 
clu

st
er

Scenario 5: cluster count 
 =0.5 =1. =0.3 

=3. 

all clusters
clusters

0 20 40 60 80 100
Time

0.0

2.5

5.0

7.5

10.0

12.5

# 
of

 u
ni

qu
e 

clu
st

er

Scenario 6: cluster count 
 =0.5 =1. =0.3 

=3. =7. 
=0.5 =0.1 

=0.1 
all clusters
clusters

0 20 40 60 80 100
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

# 
of

 u
ni

qu
e 

clu
st

er

Scenario 7: cluster count 
 =0.5 =1. =0.3 

=3. 

all clusters
clusters

0 20 40 60 80 100
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

# 
of

 u
ni

qu
e 

clu
st

er
Scenario 8cluster count 

 =0.5 =1. =0.1 
=3. 

=0.5 
=0.001 

all clusters
clusters

Figure 5.4: Overview of simulation results. The dotted lines identify the ideal
cluster division count. The blue lines show the unique cluster found. Instead, the
cyan lines indicate the unique cluster number after the merging phase.

5.4.5 Results

The simulation results underscore the algorithm’s capability to effectively partition
the data into meaningful clusters. As demonstrated in Figure 5.4, our algorithm
stabilizes to produce the correct number of clusters after a certain settling period.
In the sections that follow, we concentrate on discussing the outcomes in relation
to the evaluation goals outlined in Section 5.4.2.

Goal 1: static sensing/spatial-based clustering Running the simulations
of scenarios 1-5 we verified how much the clusters extracted follow the underlying
temperature distribution in the static context. Figure 5.4 shows that the algorithm
correctly extracts the cluster number – with the optimal parameters’ configuration.
Furthermore, observing Figure 5.5, we can deduce that the cluster shape is correct
too. Indeed, the Silhouette index tends to be 1 when the clusters are disjointed,
and the error rate is negligible.

Here, θ plays a key role. Observing the behaviour of scenario 4 in Figure 5.6, we

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
111



0 20 40 60 80 100
Time

0

10

20

30

# 
of

 n
od

es

Scenario 2:  
 =0.5 =1. =0.3 

=3. 

cluster-1
cluster-2
cluster-3
cluster-4

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 2: errors  
 =0.5 =1. =0.3 

=3. 

errors

0 20 40 60 80 100
Time

2

1

0

1

2

3

4

in
de

x 
va

lu
e

Scenario 2: Internal metrics 
 =0.5 =1. =0.3 

=3. 

silhouette
dunn index

0 20 40 60 80 100 120 140
Time

0

10

20

30

40

# 
of

 n
od

es

Scenario 4:   
 =0.5 =1. =0.3 

=3. 

cluster-1
cluster-2
cluster-3
cluster-4
cluster-5

0 20 40 60 80 100 120 140
Time

0.0

0.2

0.4

0.6

0.8

1.0
er

ro
r r

at
e

Scenario 4: errors  
 =0.5 =1. =0.3 

=3. 

errors

0 20 40 60 80 100 120 140
Time

2

1

0

1

2

3

4

in
de

x 
va

lu
e

Scenario 4: Internal metrics 
 =0.5 =1. =0.3 

=3. 

silhouette
dunn index

0 20 40 60 80 100
Time

0

5

10

15

20

25

# 
of

 n
od

es

Scenario 6:  
 =0.5 =1. =0.3 

=3. =7. 
=0.5 =0.1 

=0.1 
cluster-1
cluster-2
cluster-3
cluster-4

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 6: errors  
 =0.5 =1. =0.3 

=3. =7. 
=0.5 =0.1 

=0.1 
errors

0 20 40 60 80 100
Time

2

1

0

1

2

3

4

in
de

x 
va

lu
e

Scenario 6: Internal metrics 
 =0.5 =1. =0.3 

=3. =7. 
=0.5 =0.1 

=0.1 
silhouette
dunn index

0 20 40 60 80 100
Time

0

5

10

15

20

25

# 
of

 n
od

es

Scenario 7:  
 =0.5 =1. =0.3 

=3. 

cluster-1
cluster-2
cluster-3
cluster-4

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 7: errors  
 =0.5 =1. =0.3 

=3. 

errors

0 20 40 60 80 100
Time

2

1

0

1

2

3

4

in
de

x 
va

lu
e

Scenario 7: Internal metrics 
 =0.5 =1. =0.3 

=3. 

silhouette
dunn index

0 20 40 60 80 100
Time

0

5

10

15

20

25

# 
of

 n
od

es

Scenario 8  
 =0.5 =1. =0.1 

=3. 
=0.5 

=0.001 
cluster-1
cluster-2
cluster-3
cluster-4
cluster-5

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 8errors  
 =0.5 =1. =0.1 

=3. 
=0.5 

=0.001 
errors

0 20 40 60 80 100
Time

2

1

0

1

2

3

4

in
de

x 
va

lu
e

Scenario 8Internal metrics 
 =0.5 =1. =0.1 

=3. 

silhouette
dunn index

Figure 5.5: In-depth analysis of good simulation results. In general, the algorithm
produces good results. In the case of movement and failures, the error can reach
up to 10 per cent.

see that with too low θ we overestimate the cluster numbers and, with a high level

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
112



of θ, we underestimate the cluster number. But this was the expected behaviour,
as it depends directly on the trend of the target distributions.

Finally, Another important aspect is the density (α) of the system. With a
few nodes, candidate nodes may be positioned far from the cluster centre, thus
identifying wider areas than expected.

Goal 2: robustness against node mobility and failures When nodes have
a low mobility and exploration range, the system is robust to node movements
(Figure 5.5). The exploring policy introduces errors, but the results are compara-
ble to solutions where the nodes are stationary. Moreover, even in case of failures,
the clustering process is practically not affected at all. However, in the worst case,
mobility and failures lead to false positives (Figure 5.6). Indeed, some processes
start in areas where the temperature is almost constant. Therefore, that process
approximately covers the whole area (and hence produces a high error rate). Sce-
nario 8 is mainly influenced by the low-density situation. Indeed, in that case,
removing nodes lead to not covering the whole system.

Goal 3: robustness against temperature changes The result of scenario
7 is comparable to the static scenario. Indeed, Figure 5.5 shows that the cluster
number is correct, and Figure 5.5 shows that the error rate is low, and the shape
is accurate. The solution suffers from low-density values and wrong θ values as
scenarios 1-5 (Figure 5.6).

5.4.6 Discussion

Simulations

Ultimately, our algorithm can support a certain degree of movement, sporadic
failures, find various cluster shapes, and cope with temperature changes in the
optimal condition: high density (α), limited exploration range (ζ), and an appro-
priate value for in cluster threshold (θ) value.

However, when drones move randomly, the algorithm starts to produce sub-
optimal cluster divisions since the nodes do not care about the cluster found, and
they continue to explore the area. But this could lead to becoming a false candidate
and then starting an unwanted clustering process. Furthermore, it could be argued
that uniform zones are part of a cluster that is not identified as there are no relative
minima. For this reason, when a node starts the process in a non-correct zone, the
cluster identification will expand in the nearly whole system. This problem could
be reduced by changing ω and ζ when the nodes belong to a cluster.

It is important to highlight that when α is set to a low value, the algorithm
tends to produce poor cluster divisions, a phenomenon that becomes particularly

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
113



evident in the presence of failures. This limitation is inherent to our algorithm’s
design, which relies on a centroid to initiate the clustering process. With a low
α value, the likelihood increases that the node initiating the clustering process is
distant from the true centroid of the cluster. As a result, the expansion process may
deviate from the underlying distribution, leading to a significant misclassification
of nodes.

Hardware Deployment

While we have not conducted experiments involving the clustering algorithm
on a physical system, insights can be gleaned from the physical deployment of
FCPP [Aud20], a C++ library that provides an internal DSL for field-based pro-
gramming. This deployment was carried out in the context of an Industrial Internet
of Things (IIoT) scenario [Tes+22]. The hardware used consisted of DWM1001C
modules by Decawave, which are resource-constrained with a 64MHz ARM Cortex-
M4 CPU, 512 KB of flash memory, and 64 KB of RAM. Despite these limitations,
the porting of FCPP was successful, and we were able to execute a field-based
program with dynamic processes whose complexity is comparable to the cluster-
ing algorithm discussed in this paper [Tes+22].

The DWM1001C modules support BLE (Bluetooth Low Energy) and UWB
(Ultra Wideband) for communication. In the IIoT context, BLE was used for mes-
sage exchange among neighboring nodes, while UWB was employed for distance
estimation. This distance data could be integrated into the current clustering
algorithm using the gradient function for multi-hop distance estimation.

Although the FCPP deployment experience has been promising, pointing to-
ward the feasibility of deploying our clustering algorithm in a similar setting,
several differences between the two scenarios merit further investigation. Firstly,
the largest IIoT experiment involved only 20 nodes, which may be insufficient to
adequately assess the clustering algorithm

5.5 Related Work

Coverage of related work is organized to separately cover: related swarm-based
environment monitoring approaches (Section 5.5.1), related clustering models and
problems (Section 5.5.2), research work related to the sensing-based clustering
problem we address (Section 5.5.3), research work related to field-based computing
(Section 5.5.4), and related field-based algorithms (Section 5.5.5).

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
114



5.5.1 Swarm-based Environment Monitoring

The approach proposed can be used to dynamically cluster a swarm, e.g., to moni-
tor an environment in a decentralized way. Literature on swarm-based environment
monitoring is ample [DM12]. In particular, various works leverage mobility and
sparse sampling [Bes+19; Cas+22b; Kem+17].

In [GA14], a persistent monitoring approach of environment phenomena with
discontinuous dynamics is proposed. It is based on optimally adapting a sparse
set of sensing locations according to an evolving stochastic model of the environ-
ment. In [Bes+19], decentralized planning is used to support multi-agent active
perception, which leverages movement to improve the quality of information gath-
ering through effective choice of “viewpoints” in space and time. In [Kem+17],
the authors focus on multi-agent coordination for informative adaptive sampling in
unknown, communication-constrained environments (like lakes or oceans). Their
approach is based on dynamic, decentralized Voronoi partitioning over a set of sam-
pling locations, which are recalculated at synchronization points initiated through
requests for surfacing events. Though the approach of this paper could also be used
to support sparse sampling [Cas+22b], it also aims at supporting the formation
of spatially cohesive clusters for coordinated processing and/or action. Moreover,
we do not aim at moving agents to appropriate sampling locations, but rather
leave the agents to move autonomously (e.g., according to exploration policies)
while having the collective clustering reflect the underlying phenomenon to sup-
port decision-making possibly beyond pure environmental sampling. The use of
Voronoi partitions in [Kem+17] differs from our clustering in that they leverage
regions to limit the prospective sampling locations to be visited by each vehicle,
while we actually want to define groups of coordinating agents.

5.5.2 Related Clustering Models and Problems

Clustering is a well-known problem in data analysis and machine learning, and has
been widely studied in the literature [JMF99; Est02; Jai10]. In a classical setting,
the data to be clustered is stored in a single dataset, and a single algorithm (or
agent) is in charge of finding the “best” clusters according to some optimization
criteria. Each data point in the input data set is described by the values of a fixed
set of features; the number of such features constitutes the dimensionality of the
data set and, typically, high dimensional data is harder to cluster meaningfully.

A characteristic of the clustering tasks considered in the present paper (and in
general, of sensing-based methods, see the next section), is that besides the sensed
data, a main source of information is the spatial distance between the agents.
In [TU21], the authors consider high-dimensional data sets that exhibit natural
clusters, characterized by distances and/or density-based structures. They propose

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
115



a semi-automated method whereby the clusters are automatically proposed and
manually selected starting from a topographic visualization of the high-dimensional
data. Notably, they use swarm intelligence for computing the topographic map,
while other techniques are adopted for the interactive process of clusters compu-
tation.

There are, however, several works that address swarm-based clustering, using
swarm intelligence for the clustering task itself [MBF11]. It is important to note
that such methods (both those based on particle swarm optimization (PSO), and
those based on ant colony systems (ACS)) exploit swarms just as a computational
means for finding clusters in a data set. Their goal is not to cluster the elements
of the swarm itself, as it is the case for the present work, but to simulate a virtual
swarm to find good quality clusters.

Some works directly address the clustering of swarms. In [Hu+21], the clus-
tering of a team of special agents (i.e., aerial drones) is part of a larger process
that, after cluster formation, also involves formation tracking (i.e., tracking a tar-
get through a suitable formation), and containment control (i.e., surround ground
agents cooperating in the mission). The method proposed to form clusters is based
on a game-theoretic framework named GRAPE. A significant difference w.r.t. the
present work is that the number (and nature) of clusters is determined by a given
set of targets, while we do not assume such a priori knowledge. Another significant
work with similar goals is [GHZ18], where a team of agents must be partitioned
into clusters organized as suitable formations (i.e., geometric spatial patterns).
The proposed solution inter-mixes the determination of clusters and their forma-
tion (based, among other things, on the agents’ dynamics), assuming that the
number and nature of such formations is known a priori.

Since we consider clustering over a given topology (network), the problem can
be related to graph-based clustering [CJ10]. Graph-based clustering, however,
assumes that the given graph can be partitioned into densely connected subgraphs
that are sparsely connected to each other; i.e., it assumes that all the similarity
information is expressed by the presence of edges between nodes (and, possibly,
by their weights). This is not necessarily the case with the networks formed by
our swarms, where connections are just determined by spatial distance, and the
clustering is strongly influenced by the sensed data. Also, community detection
methods can be viewed as clustering of the nodes of a graph representing a network
of relations (e.g. a social network) [Jav+18]. Interestingly, unlike in generic graph-
based clustering, communities can easily overlap, since a node (e.g., user) may
belong to several communities at once.

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
116



5.5.3 Related Work on Sensing-based Clustering

Sensing-based clustering typically applies to sensor networks that are distributed
on a geographical area and exploit clustering mainly to reduce the communication
bandwidth and/or energy consumption of the net. The role played by sensing a
(possibly dynamic) geographic environment makes such problem and the proposed
approaches to solve it relevant to the present work, although the agents considered
here are themselves dynamic entities moving and acting across the space.

In [LM07], the goal is to partition sensors for indoor monitoring and control.
The cluster heads are predetermined (based on the sources to be monitored and
controlled), while cluster formation is periodically scheduled in order to adapt to
changes in the sensed data. In our work, instead, the cluster heads are not a
priori given: they are determined according to the sensed data (e.g., the agents
perceiving local minima) and can change dynamically (e.g., because a candidate
withdraws and joins a different cluster).

The goal of [GLY07] is, instead, to obtain energy savings in data collection from
a wireless sensor network by receiving values from only a subset of selected repre-
sentatives and predicting the other valuer through automatically generated statis-
tical models. Cluster heads are chosen (probabilistically) based on the amount of
energy they have. Cluster formation is periodically scheduled, and the assignment
of a sensor to a cluster is based on the distance from the head and the similarity
of the sensed value with the head’s value. A work with similar goals is [CZ18],
where again energy savings in a WSN is the primary motivation. Here, the cluster
heads are chosen based on residual energy level and data gradient. Moreover, an
autoregressive prediction model for sensory data is maintained by each head to
self-adjust temporal sampling intervals within the cluster.

A sensing-based clustering problem is also studied in [Kuc+20] where, however,
instead of being a high energy-constrained WSN, the deployed system involves
sensorized units and mobile phones able to upload all the relevant data to the
cloud, through cellular and Wi-Fi connections. In a disaster scenario, the mobile
phones data is used to centrally compute density-based clusters that can inform
the SAR (Search and Rescue) teams about the location of people in the area.

The DyClee approach described in [RTG19] is also centralized. The authors
assume that streams of sensors observations (e.g. in an Industrial IoT) are contin-
ually tracked by their system, and are classified (e.g., as healthy or faulty) based
on a set of clusters that capture the patterns corresponding to different states. The
main focus is on the novelty detection problem, or concept drift, which implies the
ability to update the clusters as new behaviour is learned, while ignoring noise and
occasional outliers. The online clustering algorithm consists of two stages based,
respectively, on distance and density, and is fully dynamic in that it is able to
create, eliminate, drift, merge, and split clusters as data is processed.

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
117



5.5.4 Related Approaches and Programming Models

Programming swarms of agents is a difficult task, because of the need of coordi-
nating their local behaviours to achieve global, swarm-level goals. In this work, we
adopt the field-based computing and programming approach [Vir+19] for express-
ing self-organising, collective behaviour of swarms. Our focus is on decentralized
behaviour-based approaches (rather than automatic design methods like e.g. re-
inforcement learning), as surveyed e.g. in [Bra+13; Vir+19] and briefly in the
following.

An approach to the problem that has proven to be quite effective is generative
communication through tuple-based coordination models, as offered, e.g., in the
Linda language [Gel85] and its descendants; essentially, several processes running
on the same system can synchronize by writing and retrieving information in a
shared (tuple-)space. A derived idea is that of allowing programmability of the
tuple space itself, so that the coordination logic of processes can be embedded
in the communication medium–see, e.g., [OD01]. An obvious limitation of the
mentioned approaches for the task of swarm programming is that they assume a
central memory accessible by all the agents/processes. However, the idea of tuple-
spaces has been extended also to distributed systems, e.g., in the IBM TSpaces
framework [Wyc+98].

An important feature of swarm systems is their adaptivity achieved through
self-organization. A support to build such kind of systems is offered by frameworks
inspired by other sciences such as biology [TM03] and chemistry [Say09]. The field-
based computing approach adopted in the present paper is based, instead, on the
concept of field, borrowed from physics. The related idea of a field of tuples has
been implemented in the TOTA middleware [MZ09].

As seen in this chapter, the field-based approach is particularly well suited to
mobile, spatially situated agents. A related (and precursor) thread of research of
that of spatial computing, where space is both an abstraction and a means for com-
putation. Spatial computing approaches have been largely surveyed in [Bea+13].
They are also related to macro-programming [NMW07], where distributed systems
as wholes are programmed by a centralized perspective. For instance, a prominent
related macro approach to swarm programming is Buzz [PB16a], where swarms
are first-class collection-like abstractions.

5.5.5 Related Field-based Algorithms

Field-based computing has the peculiar ability to capture collective behaviours as
functions operating on fields and to compose them together as “building blocks” to
address problems of increasing complexity [Vir+19]. Of particular relevance for the
present discussion is the implementation of the SCR (Self-Organising Coordination

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
118



Regions) pattern. Most specifically, the SCR pattern can be denoted as a feedback
chain S-G-C-G: leaders are elected (S); then, a gradient from leaders builds the
communication structure (G); then, data from members (indirectly defined by the
information path towards a leader) is collected towards leaders (C); then, data
from leaders is propagated back to the members of the regions (G). However, the
SCR pattern is not limited to clustering (S-G part), but also regulates interactions
within regions (C-G part). Roughly, the sensing-based clustering algorithm cov-
ered in this work could replace the initial C-G composition that determines the
system regions.

Similar to a clustering algorithm, the S block [MBD18] provides a distributed
mechanism to elect leaders from a set of candidates, and to assign each remaining
user node to a leader, thus partitioning the system into regions. The approach
presented here is different in several respects: first, the candidate leaders are de-
termined by a characteristic of a sensed measure (e.g., local minimum); second,
each candidate cluster head spawns an aggregate process to recruit other nodes
within the cluster; finally, the other nodes can join more than one cluster, based
on the similarity of their sensed values with the ones sensed by leaders.

5.6 Final Remarks

In this chapter, we precisely define and address the dynamic sensing-based mobile
swarm clustering problem—an essential task in the context of CPSW, to support
the coordination of collective tasks based on environmental sensing data. Most
specifically, we use our language-based approach centred on aggregate computing
to devise a novel configurable meta-algorithm promoting self-organised clustering
in a swarm of neighbouring-interacting agents. The algorithm is evaluated on a
set of synthetic environment configurations in the context of swarm robotics—a
typical application domain for CPSW. In particular, we show that a swarm can
autonomously create clusters reflecting the underlying dynamics of the perceptible
target phenomenon in the environment, and can deal with changes in the swarm
topology and environment. The subsequent chapter will introduce a general pro-
gramming pattern for distributed sensing and actuation in CPSW systems. This
pattern aims to provide a comprehensive solution for addressing the challenges
associated with CPSW programming.

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
119



0 20 40 60 80 100 120 140
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

# 
of

 u
ni

qu
e 

clu
st

er

Scenario 4: cluster count 
 =0.5 =1. =0.3 

=3. 

all clusters
clusters

0 20 40 60 80 100 120 140
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

# 
of

 u
ni

qu
e 

clu
st

er

Scenario 4: cluster count 
 =0.5 =1.5 =0.3 

=3. 

all clusters
clusters

0 20 40 60 80 100 120 140
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

# 
of

 u
ni

qu
e 

clu
st

er

Scenario 4: cluster count 
 =0.5 =0.5 =0.3 

=3. 

all clusters
clusters

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 7: errors  
 =0.75 =1.5 =0.7 

=7. 

errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0
er

ro
r r

at
e

Scenario 1: errors  
 =0.75 =1.5 =0.1 

=7. 

errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 2: errors  
 =0.75 =1.5 =0.3 

=5. 

errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 6: errors  
 =0.5 =1. =0.3 

=3. =7. 
=0.5 =0.1 

=0.1 
errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 6: errors  
 =0.5 =1. =0.3 

=3. =10. 
=0.5 =0.1 

=0.1 
errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 6: errors  
 =0.5 =1. =0.3 

=3. =14. 
=0.5 =0.1 

=0.1 
errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 6: errors  
 =0.5 =1.5 =0.1 

=3. =7. 
=0.6 =0.1 

=0.1 
errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 6: errors  
 =0.5 =1. =0.1 

=3. =7. 
=0.6 =0.1 

=0.1 
errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 6: errors  
 =0.5 =1. =0.7 

=3. =10. 
=0.6 =0.1 

=0.1 
errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 8errors  
 =0.75 =0.5 =0.1 

=7. 
=0.5 

=0.001 
errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 8errors  
 =0.75 =0.5 =0.1 

=7. 
=0.5 
=0.1 

errors

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

er
ro

r r
at

e

Scenario 8errors  
 =0.75 =0.5 =0.1 

=7. 
=0.5 
=0.5 

errors

Figure 5.6: Main examples of bad clustering results. In the first line, the images
show different behaviour varying θ. In the second line, the plots show how the
algorithm does not handle well low-density robot swarms. In the third line, the
charts show how the algorithm handles various movement speeds. The fourth line
shows how the exploration range impacts the clustering results. Finally, the last
line shows how failures impact performance.

CHAPTER 5. PATTERNS: SENSING-DRIVEN CLUSTERING IN SWARMS
120



Chapter 6

Patterns: Dynamic
Decentralization Domains for
Cyber-Physical Swarm

What is the right level of abstraction for
programming CPSWs?
How distributed sensing and actuation
can be organized to adapt to the envi-
ronment?
– RQ3, RQ4

Contents
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Decentralized situation recognition and action: a case
study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2.1 Requirements and abstractions . . . . . . . . . . . . . . 124

6.3 Dynamic Decentralization Domains in Practice . . . . 126

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . 129

6.4.2 Results and discussion . . . . . . . . . . . . . . . . . . . 129

6.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . 130

Edge computing and related scenarios like CPSWs promote a vision of distributed
computational systems deeply integrated with humans and environments. The
complexity and volume in terms of devices, communications, failures, and change,

121



are pushing the adoption of paradigms that can adequately address both functional
and non-functional of CPSW that concerns of:

• decentralization for scalability and delegation;

• autonomic computing and self-organization [KC03] for operational effective-
ness and adaptation;

• in-network processing for latency reduction and infrastructural autonomy;
and

• collective computing [Cas+21] for coordination and collaboration.

Specifically, they form the platform upon which several concurrent distributed
computational processes (DCPs) would run, carrying on transient activities by self-
organized continuous computation and communication. The goal of a DCP is to
identify dynamic regions of the computational environment (regions of “space”)
where situations of interest occur, monitor their evolution, and reactively trigger
distributed actions to signal events, remedy problems, or control the phenomenon.
Hence, DCPs are generated to satisfy a request, handle an event, or execute a col-
lective task; they opportunistically spread (resp. shrinks) to gather (resp. release)
resources/workers or cover (resp. uncover) regions of interest; they may perform
distributed sensing and actuation; eventually, they may vanish once the activity
is done.

In this chapter, we address the problem of capturing the right abstractions for
modelling DCPs, abstracting from the specific communication technologies, taking
inspiration from the analogous the approach taken in map-reduce frameworks for
big data, where the declarative concept of stream is adopted. and propose the
concepts of concurrent collective tasks and decentralization domains, which can be
exploited in combination to provide distributed situated recognition and action.

6.1 Motivation

CPSWs are increasingly tasked with monitoring and acting upon dynamically
changing environments, often without the availability of a central coordinator.

The recurrent approach in computer/software engineering to manage such com-
plexity is to adopt various levels of abstractions and mechanisms that encapsulate
coherent sets of problems and solutions. This work aims to simplify the program-
ming of these complex systems by enabling the user to express high-level goals,
without having to fully specify the how. This allows lower-level components to
handle issues such as dynamicity, failure, and heterogeneity.

CHAPTER 6. PATTERNS: DYNAMIC DECENTRALIZATION DOMAINS122



As an analogy, consider database management systems: SQL queries express
what data needs to be retrieved, while the system itself determines the most effi-
cient way to fulfill the request. The ultimate objective is to apply this principle
to self-organizing systems, primarily to realize decentralized situation recognition
and action.

6.2 Decentralized situation recognition and ac-

tion: a case study

A CPSW system should ideally determine autonomously what has to be done,
when, where, by whom, and how. The critical problem is setting up a decentralized
process for adaptive situation recognition and situated action. The system should
organize to monitor the environment for situations requiring intervention; then,
the intervention should pursue the desired state of affairs. These two phases do
not need to be sequential but can be performed continuously in a feedback loop,
gradually steering the system towards a correct and stable configuration. Also,
the system should opportunistically exploit available resources accordingly to the
current context and goals—which may change dynamically. Also, we cannot as-
sume the existence of a centralized coordinator such as the cloud, which is usually
relied upon in classic approaches.

As an example and case study throughout the paper, consider a large-scale flood
warning system, which we call FloodWatch, fully developed (in simulation)
in Section 6.4. We want to monitor the rain intensity to pre-alert the public
safety organizations close to areas at a risk of floods. The tracked phenomenon
is spatially and temporally hard to predict with a fine-enough grain (data from
the NOAA1 has, at best, zip-code granularity): at a single-city level, we could
perform better by promptly reacting to specialized sensor readings. However, the
information provided by individual sensors is too fragile, as the risk depends on the
rain intensity in the surroundings and not just on the specific spot (e.g., coastal
zones with steep elevation profiles could suffer floods even with light rain, if the
close-by higher-altitude zone is being hit hard). Pre-defining areas (using pre-
existing altimetric and structural knowledge) helps, but this strategy misses out
on essential information: how the underlying phenomenon is behaving. Indeed,
areas should be formed ad-hoc considering the city structure and rain distribution,
and leveraged to perform on-the-fly situation recognition and response.

This approach is practical whenever there are phenomena with non-strictly-
local effects, irregularly shaped in space, and/or hard-to-predict at a fine grain.

1https://www.noaa.gov/

CHAPTER 6. PATTERNS: DYNAMIC DECENTRALIZATION DOMAINS123



6.2.1 Requirements and abstractions

Given the high-level vision and goals discussed in the previous sections, and with
the help of FloodWatch, we delineate some needs together with abstractions
and corresponding requirements, for a programming model aimed at decentralized
situation recognition and action.

6.2.1.1 R1. Concurrent collective task execution.

In FloodWatch, there is the need to coordinate a system that spans large geo-
graphical areas, hence leveraging DCPs for sensing, computation, and actuation at
a collective level. One may also devise a more complex case study and platform for
environmental monitoring where there is a distributed process for FloodWatch,
another process for critical infrastructure monitoring, waste management, surveil-
lance, etc.; these processes may run independently or, possibly, interact.

In general, most complex systems is not limited to a single activity but usually
involve several activities running concurrently. Furthermore, these activities could
be collective, i.e., involve a collaboration of multiple agents with partial perception
of the environment. We call these concurrent collective tasks (CCTs), which ex-
press activities that may overlap in the system (a device may partake in multiple
CCTs simultaneously). Notice that CCTs may have a limited and dynamic do-
main: a subset of devices in the system (sometimes also called team or ensemble)
which may change over time.

6.2.1.2 R2. Flexible and adaptive decentralization.

FloodWatch is centred on organizing distributed sensing and actuation accord-
ing to both the environment structure and the current rainfall. Generally speaking,
strategies that are too fine-grained or too coarse-grained tend to be sub-optimal:
in the former case, non-local information is not considered, possibly resulting in a
lack of coherence and global inefficiency; in the latter case, the system may fail to
adequately recognize specific contexts that should be handled ad-hoc. In Flood-
Watch, warnings should be delivered in the surroundings of risky areas, but not
too broadly.

Many systems, indeed [Pia+21a], often need abstractions capturing an “adap-
tive” spatial divide-and-conquer principle through which a problem in space is
split into parts (or regions) that opportunistically adapt according to the con-
text. We call each region a decentralization domain (DD) since it represents a
non-overlapping bounded subsystem of a CCT. Multiple DDs can also compete to
gather resources exclusively within the domain defined by a CCT (at whose level
cross-domain interaction could happen, instead).

CHAPTER 6. PATTERNS: DYNAMIC DECENTRALIZATION DOMAINS124



Partitions

Environment Environment evolves

New PartitionsResponses

time

Figure 6.1: Overview of the proposed approach. The projected squares represent
environments, with colours denoting environmental phenomena. Time flows left
to right. The proposed system tracks spatial phenomena by partitioning the space
in non-overlapping regions that agree on a measure, which is then leveraged to
enact (multiple) spatially-bound responses that can overlap or compete. Contex-
tual (induced or natural) changes are tracked by evolving (reshaping, deleting, or
creating) the partitions.

6.2.1.3 R3. Feedback-regulated activity within decentralized domains.

In FloodWatch, each region should sense the water level and altitude, process
data, and decide region-local actions such as alerting. In a system for compu-
tational resource management, each region might collect resource advertisements
and requests, compute assignments, and publish assignments while also monitoring
and handling the activity progress.

In general, DDs are expected to autonomously carry out distributed sensing
activities, followed by processing and decision-making, which may trigger actions
affecting the environment (cf. actuations, for a kind of indirect feedback) or spawn-
ing new CCTs (e.g., to connect with other services). Often, in order to simplify
and guarantee consistency at the level of DDs, decisions might be taken centrally
in a DD by a leader. This could also be seen as a feedback loop: contributions are
collected at the leader, the leader performs the decision-making and spreads the
decisions which are then carried out, producing new data to be gathered and so
on.

6.2.1.4 Summary of requirements.

The rationale of the above requirements is to promote abstractions supporting
concurrent, system-spanning, and possibly overlapping activities (R1), dynamic
creation and maintenance of non-overlapping regions (R2), and internal loops of
regional situation recognition and action (R3). Figure 6.1 summarizes these ideas.

CHAPTER 6. PATTERNS: DYNAMIC DECENTRALIZATION DOMAINS125



6.3 Dynamic Decentralization Domains in Prac-

tice

From the previous discussion, we further refine the requirements and extrapolate
the design elements of an Application Program Interface (API) supporting the
decentralized computation we need:

• concerning CCTs (cf. R1)

– we use a CCT to model a collective sensing task partitioned into multi-
ple sensing domains (i.e. DDs), where each sensing domain has a centre
and an extension in space;

– both the extension in space and the centre can change dynamically to
improve the way the underlying phenomenon is being tracked, through
selection of an appropriate leading node, definition of a metric (which
can be other than the spatial distance), and definition of a granularity.

• concerning partitioning into DDs (cf. R2) and activity within a DD (cf. R3)

– sensing domains for a single measure must not overlap, to avoid dupli-
cate sampling and undesired interference (overlapping can be achieved
through multiple CCTs, or by using a mixed custom metric);

– inside a single sensing domain, a strategy is defined to collect the sensor
readings;

– the decentralized sensing will output the collectively-sensed result and
the identifier of the device closer to the area centre;

– the set of actions/actuations to perform may vary depending on the
overall sensing results, could require a collective plan for coordination,
and may require fine-grained information about all the results of the
sensing phase.

To the best of our knowledge, no completely decentralized API/framework
exists in the literature that directly satisfies the aforementioned requirements
(although, of course, it can be implemented leveraging existing frameworks).
Thus, we designed a Scala API, presented in Listing 6.1, which serves two
roles: (i) to reify the sought abstractions, and hence as a specification tool for
dynamic decentralization domains; and (ii) as a basis for a prototypical im-
plementation on top of the ScaFi framework [Cas+21; Cas+20a], which will
be presented and used in the experiments in next section. Specifically, class
DistributedSensing denotes DDs; types Perception, SituatedRecognition,

CHAPTER 6. PATTERNS: DYNAMIC DECENTRALIZATION DOMAINS126



and Action model sensing, reasoning, and acting operations, respectively; and
decentralisedRecognitionAndResponse encapsulates the logic that creates mul-
tiple CCTs and manages their dynamic partitioning into DDs.

Consider the FloodWatch case study introduced in Section 6.2 as a reference
scenario. We assume that several pluviometers, deployed in the city, can commu-
nicate with each other (either through cloud or directly). We want to monitor
the progression of a storm hitting the city, adjusting the granularity at runtime:
large areas with similar rain intensity should get clustered together; if, instead, the
precipitation is spotty, each spot should form a region. In other words, we want to
leverage the clustering of similarly affected areas to achieve a better global tracking
of the underlying phenomenon, understand its spatial structure, and potentially
exploit the information for better counteraction.

We assume that lower parts of the city are at a higher risk in case of floods.
We assume that the rain gauges have a GPS sensor supporting altimetry measure-
ment (we would like to consider this information when responding to a potential
emergency). Finally, we want to consider the altimetry of an entire zone and not
of a single point, and to react promptly if any rain gauge is moved to a different
location: we thus use the same technique for both rain intensity and altimetry.

The application goal goes beyond sensing: when the rain in low-altitude areas
is so heavy that it might cause floods, we want to:

1. propagate an alert signal to the surroundings of the area at risk, to be per-
ceived, e.g., by smart vehicles transiting by; and

2. pre-alert the closest fire station or civil protection post to be prepared in
case of actual issues.

The application logic, leveraging our API, is shown in Listing 6.2–it exemplifies the
abstractions (a) and their exemplary use (b). DistributedSensing represents the
configuration of the collective value-reading operation, that selects a leading node,
expands an area of influence, and produces an area-wide result; Action represents
a collective task enacted in response to a distributed perception; Perception links
each distributed sensing process to the corresponding computed value (i.e., the re-
sult of the collective sensing process); SituatedRecognition maps collective per-
ceptions to actual actions; decentralizedRecognitionAndResponse is the entry
point.

6.4 Evaluation

In this section, we consider the FloodWatch case study, and show that our API
can successfully be used in a challenging scenario to program a system behaviour
that responds as expected to the underlying environmental phenomena.

CHAPTER 6. PATTERNS: DYNAMIC DECENTRALIZATION DOMAINS127



Listing (6.1) Scala API for decentralized situation recognition

/* Configuration of a distributed sensing task */

class DistributedSensing[Leadership,Distance,Data](

perceptionCenter: () => Leadership,

localValue: () => Data,

metric: Data => Distance,

accumulate: UnivariateStatistics[Data],

limit: Distance

){ def compute(): Data = /* API implementation */ }

type Perception[Data] =// Collective sensing result

Map[DistributedSensing[?, ?, Data], Data]

type Action = () => Unit // Response action type

/* Situation recognition: perception to action */

type SituatedRecognition[Data] = Perception[Data] => Set[Action]

// Actual high level API

def decentralizedRecognitionAndResponse[Data](

sensing: Set[DistributedSensing[?, ?, Data]],

situatedRecognition: SituatedRecognition[Data]

): Unit = { /* CCT creation and Action execution */ }

Listing (6.2) Example use of the API for the case study

// FloodWatch program

type FloodWatchSensing = DistributedSensing[ID, Double, Double]

val altimetry: FloodWatchSensing = new DistributedSensing(/**/)

val rainInnensity: FloodWatchSensing = new DistributedSensing(/**/)

val sensing = Set(altimetry, rainIntensity)

def propagateAlarm(): Action = ???

def callForHelp(): Action = ???

val response: SituatedRecognition[Double] =

situation => {

/* create actions related to alarms */

val alarm: Set[Action] = ???

/* call fire station following alarms */

val call: Set[Action] = ???

alarm ++ call

}

// Actual API usage

decentralizedRecognitionAndResponse(sensing,response)

Figure 6.2: Scala implementation of the proposed API

CHAPTER 6. PATTERNS: DYNAMIC DECENTRALIZATION DOMAINS128



6.4.1 Experimental setup

We exercise the API in a challenging and realistic scenario, using open data of
Toronto2, featuring 50 water gauges samples taken in 2021. To stress-test our
proposed approach with a denser network of devices, we added 300 simulated
gauges, randomly positioned, whose data is interpolated from the values of the
surrounding real devices. We selected the rain event that occurred on 2021-09-07,
the heaviest in the available data. We used data from OpenStreetMap3 to position
24 fire stations.

We implemented the proposed API in the ScaFi aggregate programming toolkit
and simulated the scenario using the Alchemist simulator [PMV13]. In the exper-
iment, devices compute their programs unsynchronized at a frequency of 1Hz. We
define a simple metric for the actual risk of a location as the quotient of the local
rain intensity on the local altitude (namely, the rainier and the lower the position,
the higher the risk); we run an oracle measuring it with a fine grain across the city
at each instant. As performance measure, we count how many alerts get generated
and how many stations they reach. Additional gauges position and device timing
drift are randomized. We ran 64 repetitions of the simulation and considered the
mean results. The experiment is available and reproducible; it has been released,
open-sourced4, and permanently archived [AP22]. Figure 6.3 depicts the scenario
as simulated in Alchemist.

6.4.2 Results and discussion

Figure 6.3 shows that, when conditions change, DDs adapt by changing their
shape and extension to track the underlying phenomenon coherently; in response
to heavy rain, close-by stations get appropriately alerted. The system macro-
scopically tracks the underlying phenomena: more operators get alerted when
(Figure 6.4) and where (Figure 6.5) there are peaks in the signal. However, even
in response to similarly high peaks the system may decide to allocate less or more
resources to manage them: differences are primarily due to the system detecting
different base risks (due to the altitude) or the event being strictly local.

We now give some remarks to better contextualize the contribution. Regarding
applicability and generality, we observe that CCTs and partitioning into DDs en-
able addressing several kinds of applications in domains like computing ecosystems,
wireless sensor networks (WSNs), IoT and smart city, and multi-robot/multi-agent
systems—cf. the surveys in [Pia+21a; Vir+19]. Details on quantitative cost/per-
formance considerations on this kind of paradigm, can be found in [Pia+21a;

2https://bit.ly/3QciJ9i
3using Overpass API https://overpass-turbo.eu/
4https://bit.ly/3vF09P6

CHAPTER 6. PATTERNS: DYNAMIC DECENTRALIZATION DOMAINS129

https://bit.ly/3QciJ9i
https://overpass-turbo.eu/
https://bit.ly/3vF09P6


Figure 6.3: Subsequent simulation snapshots (left-to-right, top-to-bottom) of
FloodWatch. Darker shadows indicate heavier rain. Black squares with a small
red dot are unalerted fire stations, when at least an alert reaches them, their dot
changes to a large red square. Circles represent gauges; their colours map the
DDs they are subject to when measuring rainfall intensity. A video of a complete
simulation run is available at https://bit.ly/3zysMOV.

Cas+21]: the focus of this article is on programming abstractions for CPSW fol-
lowing a language-based software engineering approach [Gup15].

6.5 Final Remarks

Mechanisms based on decentralization and self-organization are intensely re-
searched and expected to play crucial roles in next-generation applications involv-
ing CPSW. In this work, to turn decentralized activities into actionable notions, we
propose a high-level programming model for situation recognition and action that
originally integrates recent developments in collective adaptive computing. The
idea is to expose a declarative API featuring (i) concurrent collective tasks which
overlap in space and (ii) non-overlapping decentralization domains with inner in-
formation flows-based feedback loops. We implement the API in Scala by mapping
CCTs and DDs to ScaFi aggregate computations, then show the approach’s effec-

CHAPTER 6. PATTERNS: DYNAMIC DECENTRALIZATION DOMAINS130

https://bit.ly/3zysMOV


0 5000 10000 15000 20000 25000 30000 35000
time

0

2

4

6

8

al
er

ts

Generated alerts over time
generated alerts
alerts managed by stations
water level

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n 
wa

te
r l

ev
el

 

0 5000 10000 15000 20000 25000 30000 35000
time

0

50

100

150

200

250

300

de
vi

ce
s r

ec
ei

vi
ng

 si
gn

al
s (

de
vi

ce
s)

Alerted devices over time
one signal
two signals
three signals
four signals
water level

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n 
wa

te
r l

ev
el

 

Figure 6.4: Simulation results, showing, with time, the average rainfall intensity
(dotted black line), the number of operator stations receiving alerts (left) and the
breakdown by number of alerts received per station (right).

tiveness through a case study in flood monitoring and control. Results show that
programs expressed declaratively through the API yield DDs that can adapt to
properly handle distributed monitoring and action.

This work focused on designing and programming decentralized systems. We
believe that this level of control is instrumental for properly structuring collective
adaptive behaviour to steer desired emergents. Building upon these foundational
abstractions, it becomes feasible to develop more intricate, high-level, and domain-
specific constructs. Towards this direction, in the following chapter, we introduce
MacroSwarm, a macro-programming API tailored for swarm-like system steering
and control.

CHAPTER 6. PATTERNS: DYNAMIC DECENTRALIZATION DOMAINS131



79.6 79.5 79.4 79.3 79.2 79.1

43.60

43.65

43.70

43.75

43.80

43.85

(a)

79.6 79.5 79.4 79.3 79.2 79.1

43.60

43.65

43.70

43.75

43.80

43.85

(b)

79.6 79.5 79.4 79.3 79.2 79.1

43.60

43.65

43.70

43.75

43.80

43.85

(c)

79.6 79.5 79.4 79.3 79.2 79.1

43.60

43.65

43.70

43.75

43.80

43.85

(d)

Figure 6.5: Ability to track the risk spatially. Charts show risk (the darker, the
higher) as estimated in real-time by an oracle using altitude and rainfall intensity.
Stations are depicted with a red circle, and those alerted are filled in white. Solid
black areas are non-land. Alerted stations are indeed those closest to the zones of
the highest risk.

CHAPTER 6. PATTERNS: DYNAMIC DECENTRALIZATION DOMAINS132



Chapter 7

Patterns: Coordinated
Movements and Decision Making

What are the patterns that can be used
to express coordinated movements and
decision-making in a swarm?
Can we design a language-based ap-
proach to express these patterns in a
formal-yet-practical way?
How can we evaluate the effectiveness of
such an approach?
–RQ4

Contents
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 API Design . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.2.1 Movement blocks . . . . . . . . . . . . . . . . . . . . . . 136

7.2.2 Flocking blocks . . . . . . . . . . . . . . . . . . . . . . . 138

7.2.3 Leader-based blocks . . . . . . . . . . . . . . . . . . . . 139

7.2.4 Team formation blocks . . . . . . . . . . . . . . . . . . . 139

7.2.5 Pattern formation blocks . . . . . . . . . . . . . . . . . 140

7.2.6 Swarm Planning blocks . . . . . . . . . . . . . . . . . . 141

7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.3.1 Case Study: Find and Rescue . . . . . . . . . . . . . . . 143

7.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 148

133



7.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . 149

In CPSW domains, a prominent research problem is how to effectively engineer
swarm behaviour [Bra+13], i.e., how to promote the emergence of desired global-
level outcomes with inherent robustness and resiliency to changes and faults in the
swarm or the environment. Complex patterns can emerge through the interaction
of simple agents [Bon+99] and centralized approaches can suffer from scalability
and dependability issues: as such, we seek for an approach based on suitable
distributed coordination models and languages to steer the micro-level activity of
a possibly large set of agents.

Though several approaches and languages have been proposed for specifying or
programming swarm behaviour [Ash+07; CNS21; DK18; Kos+20; KL16; Lim+18;
Mot+14; PB16b; Yi+20], a key feature that is generally missing or provided only
to a limited extent is compositionality, namely, the ability to combine blocks of
simple swarm behaviour to construct swarm systems of increasing complexity in
a controlled/engineered way. Additionally, most existing approaches tend to be
pragmatic, not formally founded and quite ad-hoc: they enable the construc-
tion of certain types of swarm applications but with limited support for analy-
sis and principled design of complex applications (e.g. [Lim+18; DK18; PB16b;
CNS21]). Exceptions that provide a formal approach exist, but they are typically
overly abstract, requiring additional effort to code and execute swarm control pro-
grams [Luc+19].

In this chapter, we introduce a formally-grounded API, expressive and prac-
tical enough to concisely and elegantly encode a wide array of swarm behaviours
incorporating both coordinated movement and collective decision-making. In the
eye of the language-based approach, we based this design on aggregate computing:
each block of swarm behaviour is captured by a purely functional transforma-
tion of sensing fields into actuation fields including movement vectors, and such
a transformation declaratively captures the state/computation/interaction mech-
anisms necessary to achieve that behaviour. Practically, such specifications can be
programmed as Scala scripts in the ScaFi framework [Cas+22a], a reference im-
plementation for field-based coordination and aggregate computing. Accordingly,
we present MacroSwarm, a ScaFi-based framework to help programming with
swarm behaviours by providing a set of blocks covering key swarming patterns as
identified in literature [Bra+13]: flocking, leader-follower behaviours, morphogen-
esis, and team formation. To evaluate MacroSwarm, we show a use case that
leverage our API in a simulated environment based on the Alchemist multi-agent
system simulator.

CHAPTER 7. PATTERNS: COORDINATED MOVEMENTS AND DECISION
MAKING 134



7.1 Motivation

Engineering the collective behaviour of swarms is a significant research chal-
lenge [Bra+13].

A main distinction in engineering collective behaviour is between centralized
(orchestration-based) and decentralized (choreographical) approaches. In the for-
mer category, programs generally specify tasks and relationships between tasks,
and these descriptions are used by a centralized entity to command the behaviour
of the individual entities of the swarm. By contrast, decentralized approaches
do not rely on any centralized entity: each agent is driven by a control program
and the resulting execution is decentralized (e.g., based on interaction with neigh-
bours, like in Meld [Ash+07]). In this chapter, we focus on decentralized solutions,
since they support resilience and scalability by avoiding single points of failure and
bottlenecks.

In the general context of behaviour-based swarm design, researchers have
pointed out various issues [Bra+13; DTT20] like a general lack of top-down design
methods of collective behaviours (cf. the scientific issue of “emergence program-
ming” [Var+15] and “self-organization steering” [Ger+20]), the problem of formal
verification and validation [Luc+19], heterogeneity, and operational/maintenance
issues (e.g., scalability, adaptation, and security).

Specific challenges can be found in the context of specific kinds of systems,
such as (micro) aerial swarms [Abd+21; Cop+20], specific domains, like agricul-
ture [Alb+22], or specific kinds of tasks, like simultaneous localisation and mapping
(SLAM) [KGB21].

To address top-down swarm programming, an approach should provide the
means to define and compose blocks of high-level swarm behaviours. Regard-
ing the kinds of blocks that can be provided, it is helpful to look at proposed
taxonomies of collective/swarm behaviour. In a prominent survey on swarm engi-
neering [Bra+13], collective behaviours are classified into;

• spatially-organising behaviours (e.g., pattern formation, morphogenesis);

• navigation behaviours (e.g., collective exploration, transport, and coordi-
nated motion);

• collective decision-making (e.g., consensus achievement and task allocation);

• others (e.g., human-swarm interaction and group size regulation).

Finally, we observe in the literature a rather sharp distinction between approaches
leveraging formal methods for specifying swarm behaviour [Luc+19], also enabling
verification, and more pragmatic approaches offering concrete Domain Specific
Languages (DSLs) that are more usable. In a recent survey on formal specification

CHAPTER 7. PATTERNS: COORDINATED MOVEMENTS AND DECISION
MAKING 135



Macro Swarm   

Base Movement

FlockingLeader Based

Team Formation Pattern Formation Swarm
Planning

Resilient    
Coordination  
Operators    

C G S
Field-Coordination  

Constructs     
rep nbr branch

vShape line centeredCircle

plan

separation

execute

cohesion alignsinkAt alignWith

isTeamFormed teamFormation

goTo

explore

brownian

maintainUntil

Figure 7.1: MacroSwarm: architecture overview. The black boxes contained in
the green rectangle represent the main modules of the library.

methods for swarm robotics [Luc+19] it is reported that a major limitation lies
in (i) the tooling and (ii) the formalization of the “last step” of passing from a
formal model to program code. Hence, we seek here an approach that combines
the benefits of formal methods and the pragmatism of concrete DSLs.

In summary, this work is motivated by the need for an approach for formal-
yet-practical top-down behaviour-based design of decentralized swarm behaviour.

7.2 API Design

This section presents the MacroSwarm approach and API. In particular, we de-
scribe its overall architecture and the main blocks exposed by the API (summarized
in Figure 7.1), which support the specification of a wide range of high-level swarm
behaviours. The key idea in the design ofMacroSwarm lies in the representation
of a swarm behavioural unit as a function mapping sensing and parameter fields
to actuation fields (often, velocity vectors). We have organized the API into mul-
tiple modules, capturing logically related sets of behaviours, and comprising more
fundamental and reusable sets of behaviours as well as more application-specific
sets (e.g., related to movement or team formation).

7.2.1 Movement blocks

These blocks control the movement of individual agents within the swarm. The
simplest movement expressible with MacroSwarm is a collective constant move-
ment (Figure 7.2a), described through a tuple like Vector(x,y,z) that devises

CHAPTER 7. PATTERNS: COORDINATED MOVEMENTS AND DECISION
MAKING 136



the velocity vector of the swarm:

Vector(2.5, 0, 0) // a constant field which is the same for all the agents

This vector must then be appropriately mapped the right electrical stimulus for
the underlying engine platform of the mobile agent of interest. On top of that,
this module exposes several blocks to explore an environment. Particularly, the
brownian block produces a random velocity vector for each evaluation of the pro-
gram. In addition to that simple logic, there are movements based on GPS like
goTo (produces a velocity vector that eventually moves the system to sink at one
single point) and explore (produces a velocity vector that lets the system explore
a rectangle defined through minBound and maxBound). The last one is based on
temporal blocks, like maintainTrajectory and maintainUntil. The former al-
lows the systems to maintain a certain velocity for the time specified. At that
moment, a new velocity is generated according to the given strategy. The latter,
instead, is used to maintain a certain velocity until a condition is met (e.g., a tar-
get position is reached). This module also exposes an obstacleAvoidance block
(Figure 7.2d), which creates a vector pointing away from obstacles.

Even if these blocks are quite simple, it is still possible to combine them to
create interesting behaviours. For instance, the program

(maintainVelocity(browian()) + obstacleAvoidance(sense("obs"))).normalize

expresses a collective behaviour in which the nodes will explore the environment,
while avoiding any obstacles perceived through a sensor. Notice how the compo-
sition is achieved by simply summing the computational fields produced by the
sub-blocks. The expression v.normalize yields v as a unit vector (of length 1),
while keeping the same direction—useful when combining several vectors together.
A summary of the blocks exposed by this module is reported in the following list-
ing:

// Movement library

def brownian(scale: Double): Vector

// GPS Based

def goTo(target: Point3D): Vector

def explore(minBound: Point3D, maxBound: Point3D): Vector

// Temporal Based

def maintainTrajectory(trajectory: => Vector)(time: FiniteDuration):Vector

def maintainUntil(direction: Vector)(condition: Boolean): Vector

// Obstacle Avoidance

def obstacleAvoidance(obstacles: List[Vector]): Vector

CHAPTER 7. PATTERNS: COORDINATED MOVEMENTS AND DECISION
MAKING 137



7.2.2 Flocking blocks

In a CPSW, it is often necessary to coordinate the movement of the entire swarm,
rather than just individual agents, to achieve emergent behaviours, and ensure that
the nodes move cohesively, avoid collisions, and strive to be aligned in a common
direction. Therefore, in this module, we have implemented the main blocks to
support the flocking of agents. Several models are available in the literature for
this purpose. Particularly, MacroSwarm exposes the Vicsek [Vic+95], Cucker-
Smale [CS07], and Reynolds (Figure 7.2e) [Rey87] models. We have also exposed
the individual blocks to implement Reynolds, which are cohesion, separation,
and alignment. These blocks can be used individually by higher-level blocks to
implement specific behaviours (e.g., following a leader while avoiding collisions).

Another essential aspect that emerges at this level is the concept of a variable
neighbourhood. Indeed, it may happen that the logical neighbourhood model used
by aggregate computing does not match the one used to coordinate the agents.
Thus, the node’s visibility can be more restrictive or extensive according to the
neighbourhood model applied. In particular, in the case of Reynolds, it is typical
for the separation range to be different from that of alignment. Therefore, the
flocking blocks accept a “query” strategy towards a variable neighbourhood. The
main implementation of these queries are:

• OneHopNeighborhood: the same as the aggregate computing model;

• OneHopNeighborhoodWithinRange(radius: Double): it takes all the nodes
in the neighbourhood within the given range.

• LongRangeNeighborhood(radius: Double): it expands the range of aggre-
gate computing communication by spawning an aggregate process for each
node that expands itself within the range passed.

The flocking models are typically described by an iterated function in which the
velocity at time t + 1 depends on the velocity at time t. Taking as an example

the Vicsek rule, it is described as: vi(t + 1) =
∑

j∈N vj(t)

|N | + ηi(t) where N is the

neighbourhood of the node i at time t, vi(t) is the velocity of the node i at time t,
and ηi(t) is a random vector that models the noise of the model. For this reason,
each block receives the previous velocity field as a parameter, rather than encod-
ing it internally within each block. This is because the previous velocities may
be influenced by other factors, such as constant movements or a target position.
Typical usage of this operator follows the following schema:

rep(initialVelocity) { oldVelocity => flockingOperator(oldVelocity, ..) }

CHAPTER 7. PATTERNS: COORDINATED MOVEMENTS AND DECISION
MAKING 138



For example, the following program describes a collective movement in which the
nodes try to reach the position (x,y) while maintaining a distance of k meters
from one another:

rep(Point2D.Zero) {

v => (goTo(Point2D(x, y)) +

separation(v, OneHopNeighbourhoodWithinRange(k))).normalize

}

7.2.3 Leader-based blocks

These blocks allow agents to follow a designated leader. The idea behind lead-
ership in swarm systems is that a leader can act as a coordinator, influencing
the followers that recognize it as such. In the context of aggregate computing,
leaders are typically defined as Boolean fields holding true for leaders and false

for non-leaders. Leaders can be predetermined (i.e., nodes with certain charac-
teristics), virtual (i.e., nodes that do not exist in the system but are simulated
for collective movement steering), or chosen in space (e.g., using the S block—see
Section 3.3.2). A leader can be thought of as creating an area of influence, affect-
ing the actions of its followers. Currently, we have identified alignWithLeader

and sinkAt (Figure 7.2b) as essential blocks. The former propagates the leader’s
velocity throughout its area of influence (e.g., via G—see Section 3.3.2), with fol-
lowers adjusting their velocity to it. However, sometimes it may also be desirable
to create a sort of attraction towards the leader, so that the nodes remain cohesive
with it. For this reason, the sinkAt block creates a computational field in which
nodes tend to move towards the leader. These blocks are useful for higher-level
blocks, such as those associated with the creation of teams or spatial formations.

7.2.4 Team formation blocks

These blocks allow agents to form teams or sub-groups within the swarm, useful
e.g. for work division or situations requiring intervention by a few agents. In
general, the formation of a team creates a “split” in the swarm logic, conceptually
creating multiple swarms with potentially different goals (cf. Figure 7.2c). One
way to create teams is by using the branch construct (see Section 3.3.2). For
example, the following program,

def alignVelocity(id: Int) =

alighWithLeader(id == mid(), rep(browian())(x => x)

branch(mid() < 50) { alignVelocity(0) } { alignVelocity(50) }

CHAPTER 7. PATTERNS: COORDINATED MOVEMENTS AND DECISION
MAKING 139



creates two groups, each of which follows a certain velocity dictated by the leaders
(0 and 50).

Other times, one needs to create teams based on the spatial structure of the
network or when certain conditions are met. The teamFormation block supports
this scenario. By internally using S, it allows for the creation of teams based on
certain spatial constraints expressed through parameters intraDistance (i.e., the
distance between team members) and targetExtraDistance (i.e., the size of the
leader’s area of influence). It is also possible to create teams based on predeter-
mined leaders, denoted explicitly by Boolean fields. Moreover, since team forma-
tion may take time to complete, or require conditions to be met (e.g., that at least
N members are present, or that the minimum distance between all nodes is less
than a certain threshold), we also parameterize teamFormation by a condition

predicate. An example of built-in predicate is isTeamFormed, which verifies that
each node under the influence of the leader has a necessary a number of neigh-
bours within a targetDistance radius. An example is as follows.

teamFormation(targetIntraDistance = 30, // separation

targetExtraDistance = 300, // influence of the leader

condition = leader => isTeamFormed(leader, targetDistance = 40)

).velocity // use the velocity vector to create the Team

Each team must refer to a single leader, who can coordinate the associated nodes
(using the APIs exposed by the Leader Based Block). In particular, to execute a
certain behaviour within a team, the insideTeam method must be used. Given the
ID of the leader to which a node belongs, this method can define the movement
logic relative to that leader. For instance, this code aligns the followers with a
velocity generated by a leader,

team.insideTeam{ leader =>

alignWithLeader(leader) {

rep(brownian())(x => x))

}

}

7.2.5 Pattern formation blocks

Team formation blocks can be used to create groups of agents with certain char-
acteristics. However, sometimes we are also interested in the spatial structure of
the group. In swarm behaviours, the spatial structures of the teams can be in-
strumental in performing certain tasks (e.g., coverage or transportation tasks). In
MacroSwarm some of the most idiomatic spatial structures are available.

CHAPTER 7. PATTERNS: COORDINATED MOVEMENTS AND DECISION
MAKING 140



(a) (b) (c)

(d) (e)

Figure 7.2: Overview of swarm behaviours expressible with MacroSwarm.

The implementation is as follows. First, the formation of structures is based
on the presence of a leader that collects the hop-by-hop distances of their followers
(leveraging G and C) and sends them a direction in which they should go to form
the required structure (using G).

The structures currently supported (Figure 7.3) are v-like shapes (vShape),
lines (line), and circular formations (centeredCircle). These structures are self-
healing : if there is a disturbance of the structure, the group tends to reconstruct
itself and return to a stable structure. Additionally, it is assumed that the leader
has his own speed logic. In this way, the group will follow the leader maintaining
the chosen structure.

7.2.6 Swarm Planning blocks

With the previous blocks available, there is a need for a handy mechanism to ex-
press a series of plans that change over time and move the swarm towards different
targets. For this reason, MacroSwarm also exposes the concept of swarm plan-

CHAPTER 7. PATTERNS: COORDINATED MOVEMENTS AND DECISION
MAKING 141



Figure 7.3: Examples of the supported patterns. From left to right: line formation,
v-like formation, and circular formation.

ning. The idea is to express a series of plans (or missions) defined by a behaviour
(i.e., the logic of production of a velocity vector) and a goal (defined as a boolean
predicate condition). At any given time, the swarm will be executing a certain
sub-plan, which will be considered complete only when the boolean condition is
satisfied. At this point, the swarm will follow the next objective described by the
overall plan. The exposed API allows for the creation of these collective plans in
the following way:

execute.once {

plan(goTo(goalOne).endWhen(isClose(goalOne)),

plan(goTo(goalTwo).endWhen(isClose(goalTwo)),

}.run() // will trigger the execution of the plan

This snippet creates a plan in which the nodes will first go to goalOne, and once
reached (isClose verifies that the node is close enough to the point passed), it
will move on to the next objective goalTwo. Since it is specified that the mission
is executed once, after the completion of the last plan, the group will stop moving.
To make the group repeat the plan, the repeat method can be used instead of
once. Note that there is no coordination between agents in the above code, but you
can enforce it using lower-level blocks (e.g., flocking or team-based behaviours).
For example, MacroSwarm enables describing a swarm behaviour where:

1. a group of nodes gathers around a leader,

2. the leader brings the entire group towards the goalOne,

3. the leader brings the entire group towards the goalTwo.

This can be described using the following code:

execute.once( // if it is repeated, you can use `repeat'
plan{sinkAt(leaderX)}.endWhen{

isTeamFormed(leaderX, targetDistance=100)

},

CHAPTER 7. PATTERNS: COORDINATED MOVEMENTS AND DECISION
MAKING 142



plan(goTo(goalOne)).endWhen{ G(leaderX, isClose(goalOne), x => x)},

plan(goTo(goalTwo)).endWhen{ G(leaderX, isClose(goalTwo), x => x)},

).run()

The use of G in this way is a recurrent pattern, and in ScaFi it is exposed through
the broadcast[T](center: Boolean, value: T): T block.

7.3 Evaluation

To validate the proposed approach and API we define a simulated find-and-rescue
case study, to show the ability of MacroSwarm to express complex swarm be-
haviours (Section 7.3.1). Then, we discuss the results of the case study and the
applicability of the proposed approach in real-world scenarios (Section 7.3.2).

7.3.1 Case Study: Find and Rescue

In our scenario, we want a fleet of drones to patrol a spatial area. In the area,
dangerous situations may arise (e.g., a fire breaks out, a person gets injured, etc.).
In response to these, a drone designated as a healer must approach and resolve
them. Exploration must be carried out in groups composed of at least one healer
and several explorers, who will help the healer identify alarm situations.

7.3.1.1 Goal

The goal of the proposed case study is to demonstrate the effectiveness of the
proposed API in terms of expressiveness (i.e., the ability to describe complex
behaviours easily) and correctness (i.e., the described behaviour collectively does
what is expressed). For the first point, since it is a qualitative metric, we will show
the development process that led to the implementation of the produced code,
demonstrating its ease of understanding. For the second point, since deploying
a swarm of drones is costly, we will make use of simulations to verify that the
program is functioning correctly both qualitatively (e.g., observing the graphical
simulation) and quantitatively (i.e., extracting the necessary data and computing
metrics that allow us to understand if the system behaves as it should).

7.3.1.2 Setup

Initially, 50 explorers and 5 healers are randomly positioned in an area of 1km2.
Each drone has a maximum speed of approximately 20 km/h and a communication
range of 100 meters. The alarm situations are randomly generated at different
times within the spatial area in a [0, 50] minutes time-frame. Each simulation run

CHAPTER 7. PATTERNS: COORDINATED MOVEMENTS AND DECISION
MAKING 143



(a) Team formation (b) Circle formation (c) Explore

Figure 7.4: The first phases of the scenario described in Section 7.3. At the
beginning, the system is split into teams; afterwards, the teams assume a spatial
formation (circular, in this case); finally, the teams start exploring the overall area.

lasts 90 minutes, during which we expect the number of alarm situations to reach
a minimum value. The node should form teams of at least one healer and several
explorers, maintaining a distance of at least 50 meters between the node and the
leader

7.3.1.3 Implementation details

To structure the desired swarm behaviour, we break the problem into parts:

1. the swarm must split into teams regulated by a healer, who works as a leader
(Figure 7.4a);

2. teams must assume a spatial formation promoting the efficiency of the ex-
ploration (Figure 7.4b);

3. the teams must explore the overall area (Figure 7.4c);

4. when any node detects an alarm zone, it must point that to the healer;

5. the healer node approaches the dangerous situation to fix it;

6. then, the team should return to the exploration phase.

We now describe the implementation of each part, leveraging the MacroSwarm
API. First, for creating teams, we can use the Team Formation blocks:

val teamFormedLogic =

(leader: ID) => isTeamFormed(leader, minimumDistance + confidence)

def createTeam() =

teamFormation(sense("healer"), minimumDistance, teamFormedLogic)

CHAPTER 7. PATTERNS: COORDINATED MOVEMENTS AND DECISION
MAKING 144



where minimumDistance is the minimum distance between nodes during the team
formation phases and confidence is the confidence interval used to check if the
team is formed through the isTeamFormed method. Each team then should follow
the aforementioned steps, expressible using the Swarm Planning API:

def insideTeamPlanning(team: Team): Vector =

team.insideTeam {

healerId =>

val leading = healerId == mid() // team leader

execute.repeat(

plan(formation(leading)).endWhen(circleIsFormed), // shape formation

plan(wanderInFormation(leading)).endWhen(dangerFound), // exploration

plan(goToHealInFormation(leading, inDanger)).endWhen(dangerReached),

// healing

plan(heal(healerId, inDanger)).endWhen(healed(dangerFound))

).run() // repeat the plan

}

The first step is the formation of the teams, based on method formation which
internally uses centeredCircle to place the nodes in a circle around the leader
node. The function circleIsFormed verifies whether the nodes are in a circle
formation, i.e., that the distance between any node and the leader is less than
radius (set to 50 meters in this scenario). The second step is the exploration phase,
implemented by method wanderInFormation, which uses the explore function to
move the nodes to a random direction within given bounds while keeping the
circle formation. This leverages centeredCircle, passing the movement logic of
the healer (leader) to the block. Exploration will go on until someone finds a
danger node, denoted by predicate dangerFound. This internally uses C and G to
collect the danger nodes’ positions and share them within the team:

def dangerFound(healer: Boolean): Boolean = {

val dangerNodes =

C(sense("healer"), combinePosition,

List(sense("danger")), List.empty)

broadcast(healer, dangerNodes.nonEmpty)

}

The third step is the movement towards the danger node, which is implemented by
the goToHealInFormation method, which uses again the centeredCircle func-
tion with a delta vector that moves the leader node towards the danger node.
inDanger is computed similarly to dangerFound, but, in this case, the position
will be shared instead. dangerReached is a Boolean field indicating if the healer
node is close enough to the danger node. The last step is the healing of the danger
node, which is modelled as an actuation of the healer. The rescue ends when the

CHAPTER 7. PATTERNS: COORDINATED MOVEMENTS AND DECISION
MAKING 145



danger node is healed. As a final note, we also want the nodes to be able to avoid
each other when they are too close, even if they are not in the same team. For
this, we leverage the Flocking API the separation block outside the team logic.
Then, the main program is as follows:

val team = createTeam()

rep(Vector.Zero) { v =>

insideTeamPlanning(team) +

separation(v, OneHopNeighbourhoodWithinRange(avoidDistance))

}.normalize

This program shows that the API is flexible enough to create complex behaviours
handling various coordination aspects.

7.3.1.4 Results

We validated the results by effectively running Alchemist simulations, publicly
available at https://zenodo.org/badge/latestdoi/611692727. We launched
64 simulation runs with different random seeds: Figure 7.5 shows the average
results obtained. Furthermore, we extracted the following data:

• intra-team distance: after an initial adjustment phase, the system should
converge to an average distance of 50 meters (Figure 7.5a);

• minimum distance between each node: as we want to avoid collisions, the
minimum distance between two nodes should always be greater than zero
(Figure 7.5b);

• number of nodes in danger : we expect the nodes in danger to increase up to
50 minutes and then decrease, tending towards zero (Figure 7.5c).

The results (Figure 7.5) show that the system can achieve the expected outcomes.

7.3.2 Discussion

Despite its simplicity, this use case allowed us to demonstrate the capability of
MacroSwarm, both in qualitative terms (i.e., the produced code is simple and
understandable) and quantitative terms (i.e., the data show that the swarm follows
the given instructions correctly).

That being said, there are several things to consider when using the library in
real-world contexts. Ours is a top-down approach, in which we have defined an
evaluation and implementation system that is general enough to be executed in
various multi-agent systems. Specifically, we require that at least:

CHAPTER 7. PATTERNS: COORDINATED MOVEMENTS AND DECISION
MAKING 146

https://zenodo.org/badge/latestdoi/611692727


0.5 1.0 1.5 2.0
time (minutes)

25

30

35

40

45

50

te
am

 a
ve

ra
ge

 d
ist

an
ce

 (m
et

er
)

(a)

0 20 40 60 80
time (minutes)

5

10

15

20

25

30

m
in

 d
ist

an
ce

 (m
et

er
)

(b)

0 20 40 60 80
time (minutes)

0

1

2

3

4

5

6

da
ng

er
 (n

od
es

 c
ou

nt
)

(c)

Figure 7.5: Quantitative plots of the simulated scenario. Figure 7.5a shows the
average team distance in the first two minutes. Figure 7.5b shows the minimum
distance between nodes. Figure 7.5c shows the nodes in danger through time.
Since we ran several simulations, the lines show the average values, whereas the
area around the lines shows the confidence interval throughout the simulations.

i) nodes can perceive and interact with neighbours and approximate a direction
vector to each of them;

ii) they can move in a specific direction with a certain velocity; and

iii) they can perceive distance and direction for certain obstacles.

As for point i), this can be developed using specific local sensors (e.g., range
and bearing systems [Bil+22]), by using GPS, by approximating distances using
cameras mounted on each drone, or by using Bluetooth direction finding [SW22].
Concerning the point ii) the velocity vector can be mapped to the motors of the
UAVs, or the motor’s wheels of the ground agents [KB91], so it can be easily imple-
mented in real-case scenarios. Finally, concerning iii), there are several solutions
for perceiving the direction of obstacles by leveraging various sensors, like Laser
Imaging Detection And Ranging (LIDAR) systems [Pen+15].

That being said, we know that the reality gap for real-world scenarios could
introduce divergences from the behaviours shown, as the used simulator, although

CHAPTER 7. PATTERNS: COORDINATED MOVEMENTS AND DECISION
MAKING 147



general, does not simulate many aspects of reality, such as communication delay,
friction, and possible perception errors. We aim to test the API in more realistic
simulators (like Gazebo [KH04]) or real systems as a future work.

7.4 Related Work

Related programming approaches for swarms include Meld [Ash+07],
Buzz [PB16b], Voltron [Mot+14], TeCoLa [KL16], Dolphin [Lim+18], Maple-
Swarm [Kos+20], PARoS [DK18], Resh [CNS21], and [Yi+20]. In the following,
we review the works that are more related to MacroSwarm, which are those for
expressing decentralized behaviours.

Buzz [PB16b] is a mixed imperative-functional language for programming
swarms. In Buzz, swarms are first-class abstractions: they can be explicitly cre-
ated, manipulated, joined (e.g., based on local conditions), and used as a way to
address individual members (e.g., for tasking them). For individual agents, the
language provides access to local features and the local set of neighbours, for inter-
action. For swarm-wide consensus, a notion of virtual stigmergy is leveraged, based
on distributed tuple spaces. Buzz is designed to be an extensible language since
new primitives can be added. Indeed, Buzz is based on a set of quite effective but
ad-hoc mechanisms. By contrast, MacroSwarm uses few general and expressive
primitives, and supports swarm programming through a library of reusable, com-
posable blocks. Additionally, MacroSwarm can leverage theoretical results from
field calculi [Vir+19; Vir+18], making programs amenable for formal analysis.

Voltron [Mot+14] is a programming model for team-level design of drone sys-
tems. It represents a group of individual drones through a team abstraction, which
is responsible for the overall task. The details of individual drone actions and their
timing are delegated to the platform system during runtime. The programmer is-
sues action commands to the drone team, along with spatio-temporal constraints.
The tasks in Voltron are associated with spatial locations, and the team self-
organises to populate multisets of future values that represent the task’s eventual
result at a specific location. However, Voltron is imperative in nature, limiting the
compositionality of team-level behaviours.

Meld [Ash+07] is a logic-based language for programming modular ensembles,
for systems where communication is limited to immediate neighbours. It leverages
facts with side-effects to handle actuation, production rules to generate new facts
from existing facts, and aggregate rules to combine multiple facts into one fact
by folding (e.g., maximization or summation). The runtime deals with the com-
munication of facts and the removal of invalidated facts. The declarativity and
logical foundation make Meld an interesting macroprogramming system; however,
it is not clear how it can scale with the complexity of general swarm behaviour.

CHAPTER 7. PATTERNS: COORDINATED MOVEMENTS AND DECISION
MAKING 148



Indeed, it is mainly adopted for shape formation and self-reconfiguring ensembles.
Finally, we mention another category of related works, which are task orches-

tration languages for swarms (e.g., TeCoLa [KL16], Dolphin [Lim+18], Maple-
Swarm [Kos+20], PARoS [DK18], Resh [CNS21], and [Yi+20]): they adopt quite
a different approach that leverages centralized entities to control the activity of
the swarm members based on the provided task descriptions.

7.5 Final Remarks

This chapter presents a comprehensive framework for top-down swarm program-
ming, offering modular building blocks that encapsulate prevalent decentralized
swarm behaviours.

We delineate the key contributions of this work as follows:

1. A programming model founded on the concepts of collective behaviours and
swarm capabilities ;

2. A library of modular, reusable building blocks designed for swarm program-
ming and grounded in field calculus;

3. A case study that validates the expressiveness and efficacy of the framework
herein proposed.

The discussions in Chapters 5 to 7 contribute to the broader vision of developing
a comprehensive set of design pattern for CPSW. This aims to bridge the gap
between domain-specific problems and their concrete implementations.

In the subsequent chapter, we introduce a novel programming model for CPSW,
which addresses temporal considerations through a functional reactive program-
ming paradigm.

CHAPTER 7. PATTERNS: COORDINATED MOVEMENTS AND DECISION
MAKING 149



Chapter 8

Language: Reactive-based
collective computations

How can we design a reactive program-
ming model for aggregate computing?
Why is it important to decouple the logic
from the scheduling of the program?
How can we experimentally evaluate the
benefits of reactivity and resource usage?
– RQ1, RQ4

Contents
8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.1.1 Self-organization Engineering Approaches . . . . . . . . 152

8.1.2 Functional Reactive Programming . . . . . . . . . . . . 153

8.2 FRASP Programming Model . . . . . . . . . . . . . . . 156

8.2.1 System Model and (Reactive) Execution Model . . . . . 156

8.2.2 Programming Abstractions and Primitives . . . . . . . . 157

8.2.3 Paradigmatic Examples: Self-Healing Gradient & Channel159

8.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . 162

8.3.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 164

8.3.3 Implementation details . . . . . . . . . . . . . . . . . . . 164

8.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.4.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

150



8.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . 167

8.4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . 169

8.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . 171

Building artificial self-organising systems exhibiting collective intelligence is a
relevant research challenge spanning science and engineering [PB15; Ger07; SSP13;
NJW20]. A central problem lies in driving the (emergence of) self-organising be-
haviour of a collection of agents or devices—a goal also referred to through terms
like “guided self-organization” [Pro09], “controlled self-organization” [Sch+10],
and “emergence steering” [Gia17]. This problem can be reduced to the defini-
tion of the control program that each agent has to execute [MH12].

As our language-based approach, in this chapter, we focus on an approach to
self-organization, where the developer writes the self-organising control program
using a suitable macroprogramming language [Cas23; Sen+22] (i.e., one aiming
at expressing the macro-level behaviour of a system), be it general-purpose or
domain-specific (e.g., explicitly tailored to robotic swarms [Bra+13] or wireless
sensor networks [MP11]). Specifically, our high-level goal is to devise a program-
ming language for self-organising CPSWs that is expressive, practical, and declar-
ative—in the sense that it should allow the programmer to abstract from many
operational details, to be dealt with automatically by the underlying middleware/-
platform [Noo+19]. Specifically, we focus on the problem of concrete scheduling
of the sub-activities of which a self-organising system can be composed. State-of-
the-art languages typically leverage a round-based execution model, where devices
repeatedly evaluate their context and control program entirely (typically in a loop
or periodic, time-driven fashion). This approach is simple to reason about but
limited in terms of flexibility in scheduling and management of sub-activities (and
response to contextual changes). Motivated by this, and inspired by the functional
reactive paradigm, in this chapter we propose a reactive self-organization program-
ming language that enables the decoupling of program logic from its scheduling. In
particular, as a contribution, we:

• propose a novel programming model and language, called Functional Reactive
Approach to Self-organization Programming (FRASP);

• provide an open-source implementation as a Scala DSL1, leveraging the func-
tional reactive library Sodium and inspiration from the ScaFi aggregate pro-
gramming DSL [Cas+22a; Aud+23];

• experimentally evaluate the benefits of reactivity and resource usage through

1https://github.com/cric96/distributed-frp

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 151

https://github.com/cric96/distributed-frp


an open-source, permanently available artefact with reproducible simula-
tions2.

The result is a functional reactive self-organization programming model, relying
on the functional composition of behaviours, and whereby each sub-expression is
amenable to independent scheduling: overall, we maintain the same expressiveness
and benefits of aggregate programming while enabling significant improvements in
terms of scheduling controllability, flexibility in the sensing/actuation model, and
execution efficiency.

8.1 Motivation

In this section, we review approaches for self-organization engineering (Sec-
tion 8.1.1), and set the goal of combining the benefits of reactive approaches
with those of compositional macroprogramming models like aggregate computing.
Then, we provide background on functional reactive programming (FRP) (Sec-
tion 8.1.2), the paradigm we choose for our programming model, for its benefits
in declarativity and automatic, configurable management of change.

8.1.1 Self-organization Engineering Approaches

Among reactive approaches is Tuples On The Air (TOTA) [MZ09], a program-
ming model for decentralized peer-to-peer networks of mobile nodes or agents.
It uses tuples to represent context information and mediate interactions between
agents. In particular, tuples are reactive: they are associated with propagation
rules that describe how tuples should be propagated to neighbours (hop-by-hop)
in a network and how the content of tuples should change during propagation or
in reaction to environmental events. The agents behave and coordinate through
operations on tuples (e.g., insertion, read, removal, waiting) or by subscribing to
tuple-related events. Other reactive approaches exist, such as the Higher-Order
Chemical Language (HOCL)[BFR07], but they feature quite a large abstraction
gap. On the other side, there are programming models based on a round-based
execution model whereby each device repeatedly performs a complete evaluation of
its control program (e.g., wrapped in a loop or scheduled in a periodic, time-driven
fashion) as aggregate computing – our language of reference. Though conceptu-
ally simple, the round-based models could be more efficient, because they fully
re-evaluate the context and the whole program without tracking change. Though
it might be acceptable for predictable patterns of environmental change, this be-
comes largely suboptimal for highly variable dynamics. Indeed, the round-based

2https://github.com/AggregateComputing/experiment-2023-acsos-distributed-frp

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 152

https://github.com/AggregateComputing/experiment-2023-acsos-distributed-frp


approach seems to be a legacy of imperative languages or solutions featuring lim-
ited compositionality. Instead, more compositional languages like, e.g., aggregate
computing languages [BPV15; BBM10; Aud+22] and Buzz [PB16b], allow building
complex self-organising behaviour by composing blocks of simpler self-organising
behaviours. Therefore, each individual block of behaviour is potentially indepen-
dent of others (i.e., independently schedulable), with data dependencies arising
from each composition. A reactive extension of aggregate computing has been
proposed in [Pia+21b], based on manually specifying dependencies and reactive
policies (with configurable triggers) among different aggregate computations. In-
stead, a more practical approach could be decoupling programs from the speci-
fication of reactive policies and letting them only define the data dependencies
between program portions. The most suitable programming approach for this is
the functional reactive programming paradigm [Bai+13], briefly introduced in the
following.

8.1.2 Functional Reactive Programming

Reactive programming [Bai+13] is a paradigm suitable for developing event-
driven applications, leveraging abstractions to express (relationships between)
time-varying values and automatically handle the propagation of change (cf. the
paradigmatic example of spreadsheets [Bla16]). Reactive programming is often
combined with the functional programming paradigm [Bai+13; Bla16] in the so-
called FRP.

FRP builds on few abstractions and various combinators [WH00]. Conceptu-
ally, FRP considers continuous time, Time = {t ∈ R | t ≥ 0}. Time-varying
values are called cells and may be conceptually modelled by generic functions of
type Cell a : Time → a. Then, streams are discrete-time values and may be
modelled by generic functions of type Stream a : [Time] → [a] (where notation
[X] indicates sequences of Xs), namely, mapping a sequence of (increasing) sam-
ple times to a sequence of corresponding values. While cells model state, streams
model state changes (or events). Then, FRP libraries provide functions (combi-
nators) for transforming signals to signals, streams to streams, signals to streams,
and streams to signals. An example of such a library is Sodium [Bla16], the Java
library for FRP which we leveraged to implement FRASP as described in Sec-
tion 8.3.

8.1.2.1 Background: Sodium

Sodium is primarily based on two types:

• Cell<T> represents a value of type T that changes over time;

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 153



• Stream<T> represents a sequence of emissions of events, each holding data
of type T.

In addition, Sodium implements a series of primitives that can be used to perform
transformations on cells and streams.

8.1.2.1.1 Never A stream that will never emit any events can be created by
using the empty constructor of Stream<T>:

Stream<String> never = new Stream<>();

8.1.2.1.2 Constant A cell that will always have the given value can be created
by passing a constant value to the constructor of Cell<T>:

Cell<String> helloWorld = new Cell<>("Hello World!");

8.1.2.1.3 Map A stream (resp. cell) can be transformed into a corresponding
stream (resp. cell) through method x.map(f), where f is the mapping function:

Stream<Integer> source = ...;

Stream<String> out = source.map(x -> Integer.toString(x));

Cell<Integer> source = ...;

Cell<String> out = source.map(x -> Integer.toString(x));

8.1.2.1.4 Merge Two streams of the same type can be merged into a single
stream via the s1.merge(s2,f) method, where a mapping function f can be used
to combine simultaneous events.

Stream<Integer> left = ...;

Stream<Integer> right = ...;

Stream<Integer> merged = left.merge(right, (l, r) -> l + r);

8.1.2.1.5 Hold A stream s can be converted into a cell through method s.

hold(init): the cell, holding init before the first event, will keep the value of
the most recent event.

Stream<Integer> events = ...;

Cell<Integer> hold = events.hold(0);

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 154



8.1.2.1.6 Snapshot A cell can be converted into a stream through method
s.snapshot(c,f): the output stream will capture the values of the given cell c
whenever the source stream s fires.

Stream<String> trigger = ...;

Cell<Integer> state = ...;

Stream<String> out = trigger.snapshot(state, (t, s) -> t + s);

8.1.2.1.7 Filter Method s.filter(f) produces a stream that emits only the
events from the source stream s that satisfy the given predicate f.

Stream<Integer> events = ...;

Stream<Integer> out = events.filter(x -> x > 0);

8.1.2.1.8 Lift Two cells can be combined into one through a method c1.lift

(c2,f), where f is a combining function.

Cell<Integer> left = ...;

Cell<Integer> right = ...;

Cell<Integer> out = left.lift(right, (l, r) -> l + r);

8.1.2.1.9 Sample The sampling of a cell returns the current value wrapped
by the cell.

Cell<String> state = ...;

String currentState = state.sample();

8.1.2.1.10 Switch (stream) Flattens a cell of streams into a single stream
that emits whenever the active stream for the cell emits.

Cell<Stream<Integer>> source = ...;

Stream<Integer> out = Cell.switchS(source);

8.1.2.1.11 Switch (cell) Flattens a cell of cells into a single cell whose value
is the value of the active cell of the wrapper cell.

Cell<Cell<Integer>> source = ...;

Cell<Integer> out = Cell.switchC(source);

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 155



Combining streams and cells yields a directed graph across which changes prop-
agate that forms a piece of functional reactive logic. External interfacing with FRP
graphs is supported by (i) pushing events into streams and cells, by leveraging
types StreamSink<T> and CellSink<T>; and (ii) listening to changes in streams
and cells, through method listen(h) attaching handler h.

8.2 FRASP Programming Model

This section presents the FRASP programming model from a user perspective.
First, we explain the system and execution model (Section 8.2.1); then, we present
the language abstractions and primitives (Section 8.2.2); finally, we show how
paradigmatic examples of self-organization can be expressed in FRASP (Sec-
tion 8.2.3).

8.2.1 System Model and (Reactive) Execution Model

In general, in aggregate computing, the scheduling of a program execution is asyn-
chronous w.r.t. other devices and may be periodic (time-triggered) or reactive.
In this work, we consider reactive scheduling and compare it with the periodic
scheduling of earlier research. In reactive settings, a program may need to be
re-executed any time an input changes, i.e.:

• sensor data (e.g., the temperature sensor perceives a different temperature);

• neighbour data (e.g., a device is no longer a neighbour, a message has expired,
or a neighbour provides a more recent message that supersedes previous
data).

A re-evaluation of the program may produce a different output and export. Fur-
thermore, in this work, we take this reactivity scheduling of programs a step further
by allowing individual expressions (i.e., portions of programs) to be re-evaluated
when their context and inputs (e.g., dependencies on other expressions) change—
thanks to the FRP approach. This idea will be shown in Example 2 and Figure 8.1.

Notice that the model is logical and may be implemented using different ap-
proaches and optimizations—e.g., a device may send a heartbeat to notify that
it is still a neighbour and its data has not changed, it may send a message with
only data that has changed, and so on. Also, inbound and outbound reactivity
can be regulated by throttling, i.e., by accumulating a certain amount of (change
in) inputs (before re-evaluating the program or parts of it) and accumulating a
certain amount of (change in) outputs/exports (before executing actions and/or
sending the export to neighbours).

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 156



8.2.2 Programming Abstractions and Primitives

In this thesis, we adopt the general system model devised in Part I, where a
single program is used to express the collective behaviour of the entire system
of devices. Specifically, the self-organising collective behaviour will emerge from
(i) the local execution of the program by all the devices making up the system,
(ii) the distributed execution (implementing the message passing), and (iii) the
environment dynamics (which will affect neighbourhoods and the data perceived
by sensors).

Since FRASP is implemented as a DSL internal (or embedded) in Scala, Scala
types and features (e.g., functions) can be reused in FRASP programs.

8.2.2.1 Datatypes

According to the FRP paradigm, we would like to express a self-organising col-
lective computation as a graph of reactive sub-computations. We call each sub-
computation a flow and represent it programmatically through type Flow[T]3,
where T is the type of the output of the wrapped computation. A Flow is es-
sentially a function that takes a Context and returns a cell of Exports, possibly
depending on the exports of other Flows, recursively—see Section 8.3.3 for details.
With abuse of terminology, we will refer to a flow as its output cell, i.e., as a
time-varying value.

8.2.2.2 Local values

The simplest constructs of the language are local and atomic (i.e., that do not
depend on other flows or neighbours).

• constant(e) returns a constant flow that always evaluates to the argument
that has been passed;

• sensor(name) returns the flow of values produced by the sensor with the
given name;

• mid(), as a shortcut to sensor("mid"), returns the constant flow of the
device ID.

8.2.2.3 Choice

A mux(c){t}{e} expression returns a flow with the same output of flow t when
the Boolean flow c is true and the output of flow e when c is false. E.g., code

3Notation: we highlight types in brown, primitives in red, derived/library constructs in
purple, and Scala (host language) keywords in blue.

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 157



mux(sensor("temperature") > THRESHOLD)

{ constant("hot") } { constant("normal") }

will yield the string "hot" in the devices where the local temperature sensor yields
a value below the given threshold and the string "normal" otherwise.

8.2.2.4 Interaction with neighbours

Communication with neighbours is handled in both directions at once through a
single construct, nbr(f), which takes a flow f as a parameter. The local output of
f will be automatically sent to neighbours. Instead, the output of the whole nbr(f)
expression is an object NeighborField[T] collecting the values of f computed by
all the neighbours. For instance

nbr(mid()) // or nbr(mid()).withoutSelf to exclude "self"

returns, in any device, the IDs of all its neighbours (including the device itself).
Sensors providing a value for each neighbour have dedicated syntax. They

can be queried through construct nbrSensor(name). For instance, the built-in
function nbrRange, defined as follows:

def nbrRange(): Flow[NeighborField[Double]] =

nbrSensor("nbrRange")

provides the neighbouring field of (estimated) distances to neighbours (how such
a sensor works is an implementation detail—e.g., it may use GPS traces or Wi-Fi
signal strength).

8.2.2.5 Branching

An expression branch(c){t}{e} evaluates and returns the value of expression t

(resp. e) when c evaluates to true (resp. false). This enables a form of dis-
tributed branching, where devices that happen to execute t will not interact with
those that executed e (and vice versa)—unlike mux in which a device “contributes”
to both t and e. E.g., in a system split into red and blue devices, the expression:

branch(sensor("color") == "red"){

nbr(constant(1)).sum // red nodes run this

} {

nbr(constant(1)).sum // blue nodes run this

}

will yield in any device the number of neighbours of the same kind, neighbours
that run the other sub-computation (despite those being the same) will not be con-
sidered. This concept is called alignment and is well-discussed, e.g., in [Aud+23].

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 158



Notice that, upon a change in the value sensed by colour, a device may dynami-
cally switch branches and hence sub-computation domain and “aligned” neighbour
set.

8.2.2.6 Lifting

Lifting enables flow combination: i.e., lift(f1,f2,...,fN){g} yields a flow ob-
tained by applying g(o1,o2,...,oN) where oi is the output of flow fi . Lifting
can also be applied on flows of NeighborFields, in which case the output is a flow
of a NeighborField whose values are combined from the input NeighborFields
neighbour-wise (runtime checks avoid combining flows with different domains).
E.g.,

lift(nbr(mid(),nbrRange()){(nbrId,nbrDist) =>

s"${nbrId} is at distance ${nbrDist} from me"}

yields locally to a device one string per neighbour reporting its ID and distance.

8.2.2.7 Looping (state evolution)

Construct loop(init,ft) evolves a piece of state (initially, init) by applying
function ftmapping the previous state’s flow to the next state’s flow. For instance,
the expression:

loop(0)(v => v + 1)

represents a computation counting from 0 onwards (ignoring overflow). How fre-
quently does this counting progress? It depends on the implementation of Context,
which provides a default throttling period. A different loop implementation may
also accept a stream explicitly dictating the pace of the stateful computation (e.g.,
evolving state each time a button is pressed).

8.2.3 Paradigmatic Examples: Self-Healing Gradient &
Channel

In this section, we cover the two fundamental self-organising behaviours already
introduced in the Part I that will be exercised in the evaluation in Section 8.4.
Firstly, we re-implement the gradient building block with the reactive extension,
and we show how it can be used to implement a channel computation.

Example 1 (Self-Healing Gradient). Figure 8.4a provides a representation of a
gradient.

Multiple gradient computation algorithms exist [Aud+17] as previously out-
lined. A basic algorithm can be implemented in FRASP as follows.

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 159



Listing 8.1: Gradient implemented with FRASP

def gradient(source: Flow[Boolean]): Flow[Double] =

loop(Double.PositiveInfinity) { g => {

mux(source) {

constant(0.0)

} {

lift(nbrRange(), nbr(g)){_ + _}

.withoutSelf

.min

}

}

The function takes the Boolean source flow as input, denoting whether the ex-
ecuting node is the source of the gradient or not. The external loop is used to
progressively evolve the current gradient value g starting from an infinite value
(as, initially, we do not know whether a source is reachable). Internally to the
loop, we use mux to select one of two values: if the node is a source (i.e., source is
true), then its gradient value is 0 (base case); otherwise, the gradient should be the
minimum value among the neighbours’ gradient values augmented by the distance
(nbrRange) from that very neighbour. Construct lift is used to combine (using
the sum, cf. _+_) the two flows nbrRange (distances to neighbours) and nbr(g)

(neighbours’ gradient values).

The following example showcases the compositionality of the programming
model, namely the possibility of combining multiple self-organising behaviours
to build a more complex self-organising behaviour.

Example 2 (Self-Healing Channel). Therefore, an implementation in FRASP is
as follows.

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 160



Listing 8.2: Channel implemented with FRASP

1 def broadcast[T](

2 source: Flow[Boolean], value: Flow[T]

3 ): Flow[T] =

4 val broadcastResult = loop[(Double, Option[T])](

5 (Double.PositiveInfinity, None)

6 ) { d =>

7 val x = value.map(0.0 -> Some(_))

8 val y =

9 mux(source) { value.map(0.0 -> Some(_)) } {

10 val n = nbr(d)

11 val distances = n.mapTwice(_._1)

12 val values = n.mapTwice(_._2)

13 val field = lift(distances, nbrRange(), values) {

14 (ds, ra, va) => (ds + ra) -> va

15 }

16 field.withoutSelf

17 .map(_.values.minByOption(_._1)

18 .getOrElse((Double.PositiveInfinity,None)))

19 }

20 }

21 lift(broadcastResult, value){_._2.getOrElse(_)}

22
23 def distanceBetween(

24 source: Flow[Boolean], destination: Flow[Boolean]

25 ): Flow[Double] =

26 broadcast(source, gradient(destination))

27
28 def channel(

29 source: Flow[Boolean],

30 destination: Flow[Boolean],

31 width: Double,

32 ): Flow[Boolean] = lift(

33 gradient(source),

34 gradient(destination),

35 distanceBetween(source, destination)

36 ){

37 (distSource, distDest, distBetween) =>

38 distSource + distDest <= distBetween + width

39 }

This self-organising data structure can be implemented by leveraging two reactive
gradients (one from the source and one from the destination—cf. Lines 33

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 161



and 34) and a broadcast(v,s) (which is a way to propagate a value v hop-by-hop
from a source s outwards along the minimum paths of its gradient—indeed, a
structure similar to the gradient implementation in Example 1) that supports
the computation of distanceBetween. The channel depends on these three
flows: i.e., the expression at Line 38 will be re-evaluated only upon a change
of the output of (one of) these three sub-computations. For a graphical view
of the local and distributed dependency graph, see Figure 8.1: the key idea is
that, e.g., a local change in sensor source will not cause a re-computation of
gradient(destination).

8.3 Implementation

This section briefly provides the implementation goals (Section 8.3.1), architectural
design (Section 8.3.2), and implementation details (Section 8.3.3) of FRASP. Even
though a complete description of the implementation is beyond the aims of this
paper, this section is meant to illustrate that the prototype is technically sound,
that we followed modern software engineering practices, and to provide general
guidance for understanding the code organization of the provided artefact (see
Footnote 1).

8.3.1 Goals

The high-level goal of this work is to provide a programming model that is ex-
pressive enough to allow developers to declaratively describe self-organising collec-
tive computations while decoupling and providing fine-grained control over their
scheduling details. This vision can be summarized with the term functional reac-
tive self-organization. Considering the system model introduced in Section 8.2.1,
there are three main objectives to be pursued in order to accomplish the goal:

• Re-compute only upon relevant changes in the context : computations should
occur reactively only when relevant changes are observed from the environ-
ment (i.e., sensing and neighbour data).

• Avoid re-evaluation of unaffected sub-computations : if a portion of the com-
putation depends on data that did not change, it should not be re-evaluated.

• Interact only upon relevant changes : each device should avoid broadcasting
an export that has not changed since the last one, with the direct consequence
that no further message exchange should be required if a computation reaches
a stable configuration.

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 162



Channel

gradient
(source)

gradient
(destination)

distanceBetween

source destination

Sub-
computations

Computation

Sensors

nbrRange

Input

Width

Platform

Local sensorsNeighbour data

(a) Node view.

(b) Distributed view (with neighbour dependencies).

Figure 8.1: The reactive dataflow graph corresponds to Example 2. Figure 8.1a
provides the local view of the computation for a single node (where the layers de-
note different semantic kinds of dependencies), whereas Figure 8.1b shows the dis-
tributed dependency graph. The arrows denote dependencies. The dashed arrows
denote dependencies based on platform-level scheduling and node interaction—
e.g., a red block depends on changes corresponding to neighbours’ red blocks and
is communicated via message passing.

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 163



core frp

simulation

Core

Language

RichLanguage Semantics

Incarnation

FrpEngineFrpExtensions

AggregateProgramSimulator

Environment

Figure 8.2: Architecture of FRASP.

8.3.2 Architecture

The architecture of the prototype is shown in Figure 8.2. The design is organised
into three packages: core, which includes basic type definitions (Core) as well
as the components for the DSL (Language for primitives and RichLanguage for
other built-ins) and its “virtual machine” (Semantics), overall captured by an
Incarnation; frp, which provides an interface to the FRP engine (FrpEngine),
possibly also decoupling from the specific FRP library adopted, as well as ex-
tensions (FrpExtensions) useful for the definition of FRASP constructs; and
simulation, which provides basic simulation support (for more advanced support,
we also integrated FRASP into Alchemist—see Section 8.4).

8.3.3 Implementation details

FRASP has been implemented in Scala, using Sodium as FRP library [Bla16].
Scala is well-known for its suitability as a host for embedded DSLs [Art+15], and
for aggregate computing embeddings as well [Aud+23]. The design of the FRASP
DSL is detailed in Figure 8.3.

Following the system/execution model described in Section 8.2.1, we model

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 164



the input and output of a (sub-)program through an interface Context, providing
access to local sensor data and neighbour data; and an interface Export, capturing
outputs and data that must be shared with neighbours. In particular, an Export

is modelled as a tree where each node is a Slot (corresponding to a particular
language construct) with an associated value, and can be located through a path
of slots—e.g., S1/S2/S3 identifies a node in the export tree, where S1 depends
on S2 which depends in turn on S3 (so, a change in the output S3 will cause the
expression corresponding to S2 to re-evaluate, and possibly S1 in turn).

Flow is the type of a reactive (sub-)computation, which takes a Context (pro-
viding its inputs), a Seq[Slot] as path (indicating its position in the export tree),
and returns Cell (i.e. a time-varying value—cf. Section 8.1.2) of Export. Each
Language construct returns a Flow: therefore, the constructs do not immediately
run upon evaluation, but rather an executable, reactive object denoting a compu-
tation graph whose nodes will execute as a response to change (cf. Figure 8.1).
Access to neighbour-related data is mediated by a NeighborField abstraction,
which is the same provided by constructs supporting interaction with neighbours,
i.e., nbr and nbrSensor (cf. Section 8.2.2).

8.4 Evaluation

To evaluate the proposed approach, we prepared several publicly available and
reproducible Alchemist simulations. In particular, we released FRASP4 and inte-
grated it into Alchemist.

8.4.1 Goals

The simulations are designed to evaluate the following:

G.1) Correctness : the reactive and round-based versions of the same algorithm
should ultimately produce the same correct collective results.

G.2) Efficiency : The efficiency is measured in terms of:

(a) messages : the number of messages exchanged between devices;

(b) time: the time required to reach a stable output;

(c) computation: the number of sub-computation steps performed by each
device.

4https://central.sonatype.com/artifact/io.github.cric96/distributed-frp_3/0.1

.3

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 165

https://central.sonatype.com/artifact/io.github.cric96/distributed-frp_3/0.1.3
https://central.sonatype.com/artifact/io.github.cric96/distributed-frp_3/0.1.3


NeighborField
T

neighborValues(): Map[DeviceId, T]
fold(seed: T, combine: (T, T) => T): T
lift[A, B, C](a: NeighborField[A], b: NeighborField[B], f: (A, B) => C): NeighborField[C]

Flow
T

run(path: Seq[Slot], context: Context): Cell[Export[T]]

Export
T

root(): T
children(): Map[Slot, Export[Any]]
followPath(path: Seq[Slot]): Option[Export[Any]]

Language

mid(): Flow[DeviceId]
constant[A](a: A): Flow[A]
sensor[A](id: LocalSensorId): Flow[A]
branch[A](cond: Flow[Boolean], th: Flow[A], el: Flow[A]): Flow[A]
mux[A](cond: Flow[Boolean], th: Flow[A], el: Flow[A]): Flow[A]
loop[A](init: A, f: Flow[A] => Flow[A]): Flow[A]
nbr[A](a: Flow[A]): Flow[NeighborField[A]]
nbrSensor[A](id: NeighborSensorId): Flow[NeighborField[A]]
lift[A, B, C](a: Flow[A], b: Flow[B], f: (A, B) => C): Flow[C]

NeighborState

sensor[A](id: NeighborSensorId): A
exported(): Export[Any]

Context

selfId(): DeviceId
neighbors(): Cell[Map[DeviceId, NeighborState]]
sensor[A](id: LocalSensorId): Cell[A]

Slot

Operand(index: Int)
Condition
Then
Else
Nbr
Key[T](value: T)

produces

produces

emits uses

Figure 8.3: Design of FRASP DSL.

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 166



(a) Scenario G: gradient. (b) Scenario C: channel.

Figure 8.4: Evaluation scenarios. The output of the program being evaluated is
depicted in the inner circle. On the left, the hue varies depending on the gradient
output, with redder colours indicating lower values. On the right, the channel be-
tween the source nodes (blue shadow) and destination (green shadow) is indicated
in cyan. The grey nodes denote obstacles.

In particular, we expect the reactive version of the algorithm to be more
efficient than the round-based one.

G.3) Reactivity : the programs should react to various sources of change (e.g.,
network topology, sensor data, dependent computations—cf. Section 8.2.1),
avoiding re-evaluations when inputs do not change.

8.4.2 Experimental Setup

8.4.2.1 Common setup and parameters

The simulated system consists of 400 devices placed on a 100m×100m square and
forming a slightly irregular grid (nodes’ positions are generated for a regular grid
and then randomly deviated). Each node has a mean distance to its neighbours of 5
meters and a communication radius of 7.5 meters. Messages sent by the nodes may
be subject to a communication delay regulated by the parameter τ , which describes
an exponential probabilistic function. Each simulation is characterized by the
mode of execution of the aggregate program, which can be (i) purely reactive, (ii)
reactive with throttling, or (iii) round-based. The pure reactive policy is evaluated

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 167



for every new message received from any neighbour. This policy is expected to
converge quickly at the price of a significant overhead in the number of exchanged
messages. The “reactive with throttling” policy is parametrized on the throttling
frequency γ (i.e., the inverse of the period in which all events received in this
interval are accumulated before emission). Compared to the purely reactive policy,
throttling is expected to reduce message overhead at the expense of convergence
time. Finally, the round-based policy is driven by a γ parameter describing how
often each device will wake up and compute the round.

8.4.2.2 Scenarios

In the above setup, the two programs discussed in Section 8.2, i.e., the self-healing
gradient (scenario G—cf. Figure 8.4a) and channel (scenario C—cf. Figure 8.4b),
are executed for 300 simulated time units. The former represents a minimally com-
plex self-organising behaviour, enabling the evaluation of basic dynamics, whereas
the latter is representative of larger behaviours that can be defined as compositions
of simpler ones, hence providing insights about what could happen when multiple
reactive computations are combined.

For scenario G, a group of nodes (i.e., a 20m × 20m area at the bottom left)
is marked as a gradient source. Also, a set of nodes marked as obstacles is posi-
tioned at the centre in a 8m× 2m area. To verify that the gradient can adapt to
changes and assess the effects of continuous and frequent changes in the system,
at simulated time t = 150 a cluster of nodes migrates from the lower left-hand side
to the lower right-hand side of the area.

For scenario C, a set of nodes denoting the channel’s destination are placed
in the upper right in a 20m × 20m area. Here, to verify reactivity to change,
we switch the set of destination nodes at t = 200 from the upper-right corner to
the upper-left corner. This injected change allows us to observe both the channel
computation’s reactivity and the sub-computations’ evaluation. In fact, by only
modifying the destination area, the gradient starting from the source (which is a
sub-computation of the channel computation) should not be re-evaluated (as it
would not change its collective output).

8.4.2.3 Metrics

The metrics extracted for this study are:

• Total cumulative number of messages exchanged (up to time T ) – #messages:
this is used to evaluate the communication overhead/efficiency (cf. goal G.2)
and to inspect the communication dynamics of the reactive solution. It is
computed as the sum of the number of messages sent by each node up to
time T .

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 168



• Average output value of the system – output (mean): for each time instant
t, we extract the average value of the computational field produced by the
system. This value will allow us to assess both correctness (cf. goal G.1)
and time efficiency (when the programs converge to a certain stable value—
cf. goal G.2). Also, this indicates the responsiveness of the system, as the
output should vary with the introduction of changes in the system.

• Total number of executions for program sub-computations – #evaluations:
this value was extracted in the channel program only (since it comprises
multiple subprograms). For each sub-program, we calculated the number
of times it has been evaluated up to time T as the sum of the number of
evaluations of each node.

This metric is useful for assessing goals G.2c and G.3.

8.4.2.4 Baselines

To establish baselines, we implemented round-based solution programs for the self-
healing gradient (scenario G) and channel (scenario C) in ScaFi—see [Cas+22a].
The execution for the round-based solution is configured with an evaluation fre-
quency of 1Hz: any device will evaluate the entire ScaFi program every second
and then broadcast the resulting export to its neighbourhood (even if it did not
change from the previous execution).

8.4.3 Results and Discussion

In this section, we will present the results obtained from the simulations, high-
lighting how the proposed model satisfies the goals elicited in Section 8.4.1. We
run a total of 768 simulations by running 64 randomized instances (varying the
random seed and the position of the nodes in the environment) for each one of the
12 simulation configurations obtained by a different combination of (i) execution
mode, (ii) throttling period, and (iii) scenario program. Our results are presented
in Figure 8.5 and Figure 8.6.

8.4.3.1 Correctness (goal G.1)

Consider Figure 8.5b and Figure 8.5d: we observe that in all cases, especially in
the reactive and throttling executions, the program output converges to the same
collective result. Pure reactive policies have less noise (as variations are reduced)
but tend to converge to the same result on average.

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 169



8.4.3.2 Efficiency (goal G.2)

From Figure 8.5, we can see how the reactive computation is more efficient than
the round-based one (cf. goal G.2) in the sense of communication/computation
efficiency (Figures 8.5a and 8.5c) and time efficiency (Figure 8.5d). Moreover, as
expected, throttling can further improve the efficiency of the reactive solution.

Indeed, starting with the messages metric, we observe that the number of
messages exchanged in pure reactive policies to reach a stable output is greater
than the throttled counterpart. This result is expected: in the purely reactive
model each message different from the previous one causes a program re-evaluation
and subsequent message sending. Analysing the policies with throttling, we notice
that the higher the throttling period, the lower the number of messages sent,
and in particular, the more the policy tends towards the round-based one. In
the gradient scenario, for instance, the throttle mode achieves convergence by
sending six times fewer messages than the round-based one. Despite consuming
more, purely reactive policies are still more efficient than round-based ones, sending
approximately 40% fewer messages. However, it is also noteworthy that, in the case
of continuous variations, such as the migration of nodes in the gradient scenario,
the number of messages grows linearly in both reactive and round-based modes.
Efficiency could be improved by approximating the output value not to send every
message for every update, i.e., to regulate reactivity according to some threshold
for “significant change”.

Moving on to converge time, we immediately note that reactive policies are
the most efficient because they expand changes throughout the system as soon as
they occur, avoiding delays due to waiting for a new evaluation round. However,
in the case of frequent environmental change, one may have a higher message
consumption than round-based policies, leading to higher energy consumption.

Observing throttling policies, we note that the higher the throttling period, the
higher the convergence time, as the system will take longer to react to changes. In
the worst case (i.e., when the throttling period is equal to the evaluation time of
round-based policy), the convergence time is approximately the same. However,
convergence time shortens with the decrease in the throttling period, getting per-
formance close to the purely reactive policy but with fewer messages exchanged.
Thus, the proposed model balances communication cost (the number of messages
exchanged) and performance (time required to converge to the expected output), de-
pending on the application’s needs. Moreover, the relationship between the throt-
tling period and the number of messages sent is not linear (unlike the convergence
time). In fact, halving the period (0.5 seconds instead of 1 second) also halves
the convergence time, yet the number of messages exchanged is approximately the
same.

Concerning reactivity (goal G.3), we notice how the reactive solutions effec-

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 170



tively “follow” environmental changes. This can be observed from Figure 8.5a
and Figure 8.5c: when there is no change to react to, no program evaluation
is performed, resulting in no new messages being sent (cf. the intervals where the
message count does not increase). Moreover, as the environmental conditions vary,
the program is re-evaluated, as observed at the moment of variation (at t = 150
in the case of the gradient and at t = 200 in the case of the channel).

Finally, we show how the model promotes fine-grained reactivity. Figure 8.6
shows how FRASP enables a program to re-compute required sub-computations
only.

Indeed, at t = 200, only the channel’s target changes, and thus the source gradi-
ent is not re-computed (it would be pointless since its inputs did not change). Also,
this execution occurs only where needed, resulting in a “wave” of re-computations
from the source to the destination (cf. the larger red circles in Figure 8.6).

8.5 Final Remarks

This chapter proposes FRASP, a functional reactive macroprogramming model for
expressing self-organising behaviour. The language is designed by taking inspira-
tion from the aggregate programming approach and can be seen as an extension
of it. As experimentally verified, FRASP allows tunable, fine-grained reactivity,
enabling increased communication and time efficiency w.r.t. proactive models. In-
deed, in FRASP, a distributed self-organising computation turns into a distributed
computation dependency graph, where distinct sub-computations may execute in-
dependently depending on whether their context has changed. This represents
a seminal advancement in the field of CPSW engineering, as it enables both the
expression of self-organizing behaviours– crucial for the development of robust col-
lective applications– and fine-grained control over computational scheduling—key
for optimizing the efficiency of these applications.

These chapters serve as a bridge between the complex problem domain of
CPSW and practical solution engineering. However, the question of how to ef-
fectively deploy such intricate behaviours within contemporary complex IT infras-
tructures remains unresolved. In the final chapter, we explore a potential approach
to address this challenge, melding the innovative aspects of pulverized architecture
with multi-tier programming.

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 171



0 100 200 300
time

0

2

4

6

8

# 
m

es
sa

ge
s

1e5 mode = round

0 100 200 300
time

mode = reactive

0 100 200 300
time

mode = throttle

throttle
0.0
0.125
0.2
0.5
1.0

(a) Channel: messages.

0 100 200 300
time

0

2

4

6

8

ou
tp

ut
 (m

ea
n)

mode = round

0 100 200 300
time

mode = reactive

0 100 200 300
time

mode = throttle

throttle
0.0
0.125
0.2
0.5
1.0

(b) Channel: output.

0 100 200 300
time

0.0
0.2
0.4
0.6
0.8
1.0

# 
m

es
sa

ge
s

1e6 mode = round

0 100 200 300
time

mode = reactive

0 100 200 300
time

mode = throttle

throttle
0.0
0.125
0.2
0.5
1.0

(c) Gradient: messages.

0 100 200 300
time

0

2

4

6

8

ou
tp

ut
 (m

ea
n)

mode = round

0 100 200 300
time

mode = reactive

0 100 200 300
time

mode = throttle

throttle
0.0
0.125
0.2
0.5
1.0

(d) Gradient: output.

Figure 8.5: Simulation results of FRASP simulations.

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 172



(a) (b) (c) (d)

0 50 100 150 200 250 300
time

0

1000

2000

3000

4000

# 
ev

al
ua

tio
ns

subprogram
G[source]
G[destination]

Figure 8.6: behaviour of the channel in response to changes in a destination

CHAPTER 8. LANGUAGE: REACTIVE-BASED COLLECTIVE
COMPUTATIONS 173



Chapter 9

Platform: Deployment of
Cyber-Physical Swarms
applications

How can we deploy an aggregate comput-
ing application in a large variety of net-
work architectures?
Does the deployment strategy affect the
functional behaviour of the application?
How can we ensure that the deployment
strategy is correct and safe?
– RQ1, RQ4

Contents
9.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 176

9.1.1 Pulverized aggregate computing . . . . . . . . . . . . . 176

9.1.2 Multi-tier programming and ScalaLoci . . . . . . . . . . 177

9.2 Multi-tier pulverised aggregate computing . . . . . . . 179

9.2.1 Pulverized architecture in ScalaLoci . . . . . . . . . . . 180

9.2.2 Definition of deployment kinds . . . . . . . . . . . . . . 180

9.2.3 Integration with aggregate programming . . . . . . . . . 183

9.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . 186

174



CPSW are typically required to act as coordinated collectives and to be able
to adapt to dynamic environmental conditions and inputs. As discussed in Chap-
ter 3 reliance on a centralized device is not allowed, and the system is expected
to reach global goals based on the coordinated (inter-)actions of the individual
entities that compose the system. Aggregate computing foster the adoption of
global-to-local techniques, by which the behaviour of the ensemble of devices is
designed top-down, and interactions among devices (i.e., protocols) are generated
automatically and implicitly. However, the generated interaction scheme depends
on assumptions about how devices communicate with each other; in other words,
the approach often dictates how the network should be structured. In turn, this
creates a tension between the network structure the language reasons upon and the
actual way devices communicate. Since in CPSWs the challenging case in which no
controllers exist must typically be supported, a purely peer-to-peer (P2P) network
is usually considered the paradigmatic setup. However, real-world networks are
usually structured hierarchically, and the ability to target multiple infrastructural
setups can help to achieve non-functional benefits. Therefore, a contemporary
approach designed to facilitate agile deployment of CPSW should be versatile
enough to accommodate multiple network architectures. In this direction, Pul-
verization [Cas+20b] is an approach proposed for aggregate computing (but in
principle applicable to other frameworks) to neatly separate behavioural and de-
ployment concerns. In short, it decomposes the concept of a logical device, which
is the target for which the behaviour is programmed, into micro-components that
can be deployed independently and whose internal communication protocol is de-
fined at deployment time. This technique de facto relieves the behaviour designer
of the duty to consider multiple possible deployments in different networks, allow-
ing them to write the behaviour for the most generic case, and have the program
functionally behave as designed regardless of the actual final deployment.

However, pulverization does not directly provide ways for specifying and de-
ploying components in a safe and meaningful fashion: it proposes a methodology to
cleanly separate behavioural and deployment concerns that need to be addressed
at some point. The definition of the deployment strategy and its execution is thus
a very relevant and challenging engineering issue on its own: ideally, such a spec-
ification should be declarative and possibly guided and checked by static analysis
to lower the risk of failures at runtime.

This chapter discusses how a pulverized system can be deployed and executed
on multiple different network structures, by leveraging a recent approach known
as multi-tier programming [WWS20]. In multi-tier programming, a distributed
system is declaratively described, in terms of components and admissible interac-
tions in a single code base. In particular, in type-level multi-tier programming, the
specification leverages the type system of the language to ensure the correctness

CHAPTER 9. PLATFORM: DEPLOYMENT OF CYBER-PHYSICAL
SWARMS APPLICATIONS 175



and coherence of the architecture; moreover, it also relieves the developer from
low-level concerns by offloading to the compiler the responsibility of breaking the
computation into deployment units enforcing the contract defined in the code.

The integration of these two paradigms offers a promising strategy for de-
signing and implementing CPSWs that operates independently of the underlying
infrastructure. In this chapter, we explore this approach by combining ScaFi and
ScalaLoci—a Scala-based framework for multitier programming.

9.1 Background

9.1.1 Pulverized aggregate computing

At the core of pulverization [Cas+20b] is the idea that the functional behaviour of
a distributed application is fundamentally orthogonal to the actual deployment of
the services that compose it. Thus, through a classic divide-and-conquer approach,
in a pulverized system, any logical device (of the many composing the CPSW) is
broken down into five components acting as units of deployment : 1. Sensors (S),
encapsulating the ability to retrieve information from the environment; 2. Actu-
ators (A), responsible for acting upon the environment; 3. State (K), providing
persistence of knowledge; 4. Behaviour (B), modelling the actual execution of the
application business logic; and 5. Communication (C), which provides means to
interact with other logical devices. These pulverized components can be deployed
to different physical nodes of the network: as far as they can communicate with
each other and the target execution protocol is respected, the functionality should
not be affected. Then, a concrete development approach will expose abstractions
with a well-defined mapping to such a partitioning schema. So, an application
designer can focus on functional requirements while delaying all the deployment
and communication concerns (which may well affect non-functional properties of
the system) to a later moment.

This strategy is especially well-suited to adapt approaches designed to work
with a flat (non-layered) network structure (e.g., peer-to-peer, mesh, and ad-hoc
networks) to arbitrary network architectures—to exploit a broader range of deploy-
ments, e.g. for efficiency or reliability. Consider, for instance, the simple case of
Figure 9.2a: there is a 1:1 mapping between logical and physical devices, and direct
communication among devices (actually, among their C pulverized components)
must be possible. This is typically not the case in many Internet applications,
however: let us consider the case in which the same application should be de-
ployed in an IoT scenario where end devices are thin, equipped with sensors and
actuators, but battery-powered and equipped with a microcontroller with minimal
computational capabilities (for instance, LoRaWAN or Sigfox motes [Mek+18]).

CHAPTER 9. PLATFORM: DEPLOYMENT OF CYBER-PHYSICAL
SWARMS APPLICATIONS 176



These devices cannot host the actual computation of the program (component
B), which must necessarily be offloaded to the edge of the cloud. This change
in the deployment would typically imply a re-writing of the functional logic of
the program, as end devices cannot be considered computation-capable nodes any
more. Instead, with pulverization, they retain their existence as logical devices
with some of their pulverized components hosted on different physical nodes as
depicted in Figure 9.2c. Crucially, this makes the original application work on a
different network architecture without any functional logic changes.

Aggregate computing is a naturally pulverizable approach: its semantics can
be expressed as a purely functional manipulation of state, messages, and sensor
readings [Vir+19], providing a straightforward mapping into pulverized compo-
nents. Indeed, initial experiments [Cas+20b] showed that aggregate programs
deployed on pulverized infrastructures retain their original functional behaviour
on different deployments. Nevertheless, pulverization is not a silver bullet: the
approach is fundamentally an engineering pattern to encapsulate a non-functional
concern (network structure and deployment), allowing for the business logic to
work across deployments, but it does not specify how a pulverized architecture
should be described and verified so that it can be operated correctly at runtime.

9.1.2 Multi-tier programming and ScalaLoci

The concrete architecture of a distributed system is usually multi-tier, i.e., it com-
prises multiple layers, each one encapsulating some specific functional concern (e.g.
data management, application and presentation logic, etc.) each physically sepa-
rated from the others. Historically, distinct tiers and crosscutting functionalities
that belong to multiple tiers are developed into several compilation units (often us-
ing different programming languages), raising development and maintenance costs.

A recent trend in trying to tackle these issues is multi-tier program-
ming [WWS20], by which a distributed architecture is defined in a single com-
pilation unit with a single language. Once the program is declaratively specified,
the compiler (or the runtime, depending on the language of choice) is responsible
for splitting the computation among different peers. Depending on the specific
multi-tier programming language, different kinds of constraints may be imposed.
For instance, in Links [Coo+06], applications must follow a client-server architec-
ture, while other languages allow for more freedom of choice.

One interesting language that lets the designer specify arbitrary deployments
is ScalaLoci [WKS18; WS19; WS20], a type-safe multi-tier language hosted in
Scala language. The structure of a ScalaLoci application is defined through peers
and ties. Peers abstract over locations and represent the components of an ap-
plication, whereas ties define the connections between peers. Only tied peers can
communicate with each other.

CHAPTER 9. PLATFORM: DEPLOYMENT OF CYBER-PHYSICAL
SWARMS APPLICATIONS 177



The following code depicts a simple controller-worker architecture. Annotation
@multitier denotes the BookingApp as a ScalaLoci object.

/* Defines an application with the peers 'Controller' and

* and 'Worker' and a 1:n connection between them */

@multitier object BookingApp {

@peer type Controller <: {

type Tie <: Multiple[Worker]

}

@peer type Worker <: {

type Tie <: Single[Controller]

}

on[Controller]{ print("I am a Controller") }

on[Worker]{ print("I am a Worker") }

}

A declared @peer type can have multiple instances that execute the peer’s logic,
e.g., multiple worker instances. In this example, the logic is replaced with simple
prints. An instance of the controller peer may connect to multiple workers, whereas
a worker instance is tied to one controller. The sample compiles two executables
representing the controller and the worker, whose instances can be deployed and
executed on different physical nodes.

/* accessible for workers. */

val requests: Event[Request] on Controller = placed {...}

// Name of the worker @Worker accessible for Controller.

val name: String on Worker = placed {...}

/* not accesible for workers. */

val tokens : Local[Map[Long]] on Controller =

placed {...}

/* Access allowed: Worker observes events

emitted on Controller. */

on[Worker]{ requests.asLocal.observe{...} }

// Error: no access to tokens outside of the Controller.

on[Worker]{ tokens.asLocal.observe{...} }

Asynchronous multi-tier reactives like signals and events are used to compose
non-blocking data flows that span across multiple peers. Data from remote peers
are accessed using ScalaLoci’s .asLocal expression variants, and the visibility of
placement types for remote peers can be regulated. A @multitier module can
capture the controller-worker schema:

@multitier trait ControllerWorker[T] {

@peer type Controller <: {

type Tie <: Multiple[Worker]

CHAPTER 9. PLATFORM: DEPLOYMENT OF CYBER-PHYSICAL
SWARMS APPLICATIONS 178



}

@peer type Worker <: {

type Tie <: Single[Controller]

}

def run(task: Task[T]): Future[T] on Controller =

// run task on some selected worker

on(selectWorker()) // (`selectWorker` is left out)

.run.capture(task) { task.process() }.asLocal

}

The run method has return type as the placement type
Future[T] on Controller1, effectively placing run on the Controller peer.
The Task type is parametrized over the type T of the value, which a task produces
after execution. Running a remote task remotely results in a Future to account
for processing time network delays and potential failures. The remote block is
executed on the worker, which starts processing the task. The remote result
is transferred back to the controller as Future[T] using asLocal. A single
worker instance in a pool of workers is selected for processing the task via the
selectWorker method.

The module can be used to implement an application where a server offloads
work to the connected clients. In the following code, we specialize the clients to
be workers and the server to be a controller:

@multitier trait VolunteerProcessing {

val m: ControllerWorker[Int] // ref to another module

// augmenting the peers in this module

@peer type Client <: m.Worker

// with the controller/worker functionality

@peer type Server <: m.Controller

on[Server] { m.run(new Task()) }

}

9.2 Multi-tier pulverised aggregate computing

The contribution of this work is an architecture for multi-tiered deployment strate-
gies in pulverized systems, along with a prototypical implementation using aggre-
gate programming and ScalaLoci. Using multi-tier abstractions, we:

1. map the overall logical system into a multi-tiered module, building the con-
cept of a pulverized device into ScalaLoci (see Figure 9.1b);

1Scala enables infix use of binary type constructors; i.e., A on B refers to the same type as
on[A,B] .

CHAPTER 9. PLATFORM: DEPLOYMENT OF CYBER-PHYSICAL
SWARMS APPLICATIONS 179



2. define the functions associated with each pulverized component;

3. characterize the possible kinds of network nodes (e.g., cloud, edge, thin-end
device);

4. decide the network structure in terms of possible connections among network
node kinds;

5. detail the deployment by assigning each pulverized component to a network
node kind.

Ultimately, this architectural design allows us to specify functional behaviour in-
dependently of deployment (via pulverized aggregate programming), then declar-
atively define multiple deployment schemes and their related communication con-
straints (thanks to multi-tier programming), and finally, statically enforce the
respect of the expressed constraints (as a consequence of the robust type program-
ming system introduced by ScalaLoci).

9.2.1 Pulverized architecture in ScalaLoci

As a first step, we need to formalize what a pulverized architecture is in
ScalaLoci, by defining all the pulverized components and binding them together
into the concept of the logic node. Figure 9.1 shows a possible ScalaLoci imple-
mentation (Figure 9.1b) of a pulverized device (Figure 9.1a): LNode represents
the logical device, LogicalSystem encloses the concept of the pulverized system
into a multi-tier module. The logical device and all its pulverized components are
mapped on abstract peers.

Once all components are modelled, their contract must be specified to char-
acterize them and define their behaviour. This is done by placing the available
computations on the components that will effectively host them. For instance,
if our system has the notion of Sensor[V], representing a generic sensor that
upon access returns values of type V, we can enforce the requirement that the
SensorComponent must be able to read values from sensors via something like:

def sense[V](id: SensorID): V on SensorComponent = ...

This strategy decouples the structural definition of components participating in
the system from their behavioural specification.

9.2.2 Definition of deployment kinds

Once the definition of components is complete, we can begin describing the
actual deployments. These can be expressed rather concisely with the proposed

CHAPTER 9. PLATFORM: DEPLOYMENT OF CYBER-PHYSICAL
SWARMS APPLICATIONS 180



logical node

B
behaviour

C
communication

K state/knowledge

S
sensors

A
actuators

neighbour node

C B

K

S A

(a) A pulverized logical device split into sub-components, and one of its neighbours.

@multitier trait LogicalSystem {

// A logical node, connected to other logical nodes

@peer type LNode <: { type Tie <: Multiple[LNode] }

}

// Partitioning of a logical node into sub-components

@multitier trait PulverisedSystem extends LogicalSystem {

@peer type SensorComponent <: LNode // $\LSens$
@peer type ActuatorComponent <: LNode // $\LAct$
@peer type StateComponent <: LNode // $\LState$
@peer type BehaviourComponent <: LNode // $\LComp$
@peer type CommunicationComponent <: LNode // $\LComm$

}

(b) ScalaLoci code describing a pulverized logical system. (See Section 9.2.3 for more
details.)

Figure 9.1: Pulverization model and corresponding ScalaLoci specification.

CHAPTER 9. PLATFORM: DEPLOYMENT OF CYBER-PHYSICAL
SWARMS APPLICATIONS 181



S C

AB
K

C A

SB
K

S A

CB
K

S A

BC
K

@multitier object P2P extends PulverisedSystem {

/* Definition of device

kinds and possible network connections */

@peer type Node <: { type Tie <: Multiple[Node] }

@peer type SensorComponent <: Node

// Pulverised component allocation on devices

@peer type ActuatorComponent <: Node

@peer type StateComponent <: Node

@peer type BehaviourComponent <: Node

@peer type CommunicationComponent <: Node

}

(a) Peer-to-peer: 1-to-1 mapping between logical and physical devices.

S A

KB

C

S A

KB

C

S A

KB

C

@multitier object BrokerBased extends PulverisedSystem {

// Definition of device kinds

// and possible network connections

@peer type Node <: { type Tie <: Single[Broker] }

@peer type Broker <: {

type Tie <: Multiple[Node] with Multiple[Broker]

}

@peer type SensorComponent <: Node

@peer type ActuatorComponent <: Node

@peer type StateComponent <: Node

@peer type BehaviourComponent <: Node

@peer type CommunicationComponent <: Broker

}

(b) Multi-broker: the communication is offloaded in part to the edge, and in part to the
cloud.

S A

CB

K

S A

CB

K

S A

C B K

@multitier object IoTSystem extends PulverisedSystem {

// Definition of device kinds and possible network connections

@peer type Thin <: { type Tie <: Multiple[Thick] }

@peer type Thick <: { type Tie <: Multiple[Thick] with Multiple[Thin] }

// Pulverised component allocation on devices

@peer type SensorComponent <: Thin

@peer type ActuatorComponent <: Thin

@peer type StateComponent <: Thick

@peer type BehaviourComponent <: Thick

@peer type CommunicationComponent <: Thick

}

(c) IoT with thin clients: end devices only host sensors and actuators, other components
are offloaded either to the edge or the cloud.

Figure 9.2: Examples of pulverized architectures. Thick boxes represent physi-
cal devices, dashed boxes represent pulverized components, and different logical
devices are identified by colour (red, green, and blue). A pulverized component
is hosted on the physical device in which it is contained. Communication among
different logical devices that imply communication among physical devices is de-
picted with a dashed red line.

CHAPTER 9. PLATFORM: DEPLOYMENT OF CYBER-PHYSICAL
SWARMS APPLICATIONS 182



design, as depicted in Figure 9.2, where we show three possible definitions of very
different architectures. In Figure 9.2a, we define a system where logical and phys-
ical devices coincide. This structure is typical of opportunistic network structures
(P2P overlays, tactical networks, etc.). Figure 9.2b, shows a hybrid edge-cloud
system supporting the computation of thick end devices (e.g., smartphones). The
infrastructure hosts the communication components, de facto enabling network
communication among end devices (this is a typical situation in usual Wi-Fi net-
works, where end devices are “hidden” a router performing network address trans-
lation). A practical example of this architecture could be a multi-broker MQTT
system, with brokers deployed either on the edge (for better performance with
closely located devices) or on the cloud. Finally, in Figure 9.2c, we replicate a
similar system, but with thin end devices. Namely, end devices do not possess
enough computational capacity to host their associated computation and thus
need to operate as remote sensors and offload all calculations to an external de-
vice. This situation is typical of WAN sensing networks (e.g., LoRaWAN), where
end devices are equipped with minimal memory and very low-power microcon-
trollers and are expected to run on battery for years. To summarize, different
network architectures can be specified by following two steps: 1. definition of the
physical devices involved in the architecture and how they are tied together; and
2. allocation of the pulverized components on the kinds of devices that can host
them.

The resulting system can then be instanced by selecting a communication pro-
tocol and a serialization framework. For example, in the following snippet, we show
how this could be done for the system in Figure 9.2b, assuming communication
via TCP and serialization via the uPickle library.

import loci.serializer.upickle._ // Serialization logic

import loci.communicator.tcp._ // Communication protocol

object Broker extends App { // Peer instatiation

val tie = listen[BrokerBased.Peer](TCP(port))

multitier.start(new Instance[BrokerBased.Broker](tie))

}

object Peer extends App {

val tie = connect[BrokerBased.Broker](TCP(host, port))

multitier.start(new Instance[BrokerBased.Node](tie))

}

9.2.3 Integration with aggregate programming

The design described so far is entirely independent of the specific aggregate pro-
gramming language of choice: due to pulverization, the way the logic is expressed

CHAPTER 9. PLATFORM: DEPLOYMENT OF CYBER-PHYSICAL
SWARMS APPLICATIONS 183



only concerns the behavioural component (B). As reference aggregate computing
library we picked ScaFi for our prototype, mainly because it shares the language
of choice with ScalaLoci, and thus it could be the foundation stone of a unified
framework living in the Scala ecosystem. A full account of ScaFi can be found
in Part I.

To perform a collective computation, ScaFi requires to define an
AggregateProgram (i.e. an object containing the aggregate application logic) and
a Context (i.e., the set of information required to evaluate an AggregateProgram,
such as the previous state, sensors’ data, and messages received from neighbours).
ScaFi’s Contexts in a pulverized architecture are embedded in the State compo-
nent. Consequently, the glue code required to execute ScaFi aggregate code over
a pulverized network is minimal:

def compute(

deviceIdentifier: Id,

state: State

): State on BehaviourComponent = {

val context = new ContextImpl(

deviceIdentifier,

export = state.exports,

localSensor = state.sensors,

neighbourSensor = state.neighbourSensor

)

val program : AggregateProgram = ... // business logic

// actual execution; returns the new State

program.round(context)

}

9.3 Implications

The construction of a pulverized platform for aggregate computing via multi-tier
programming introduces a plethora of intriguing applications, each with its unique
impact and significance. In this section, we delve deeper into these applications, ex-
amining their technical intricacies and their broader implications for both academia
and industry.

Programmability and Compile-Time Safety in Deployment Architec-
tures for Pulverized Systems The use of type-annotated definitions in the
deployment of a pulverized system confers robustness and reliability to the archi-
tectural integrity of the system. This approach facilitates static consistency checks

CHAPTER 9. PLATFORM: DEPLOYMENT OF CYBER-PHYSICAL
SWARMS APPLICATIONS 184



between the planned architecture and its deployed instantiation, enabling the com-
piler to enforce constraints. As a result, unauthorized access to data that is not
within the scope of a specific component is precluded by design. This dramatically
enhances system security and diminishes runtime errors.

From an engineering standpoint, the focus then squarely shifts to addressing
the functional aspects of the application. In this context, the functional aspect
refers to crafting the core logic of an aggregate computing program. We posit
that this approach can be subsumed under a broader research paradigm aimed
at modularizing functional and non-functional concerns. The latter could then
be managed using specialized techniques and languages tailored for those specific
challenges.

Opportunistic Deployment and Dynamic Reconfiguration of Pulverized
Systems The inherent flexibility of the pulverized architecture enables dynamic
adaptability in application deployment. Essentially, it is conceivable to reposition
components of a logical device across multiple physical nodes dynamically. For
instance, a B component could be offloaded to the cloud to conserve battery
life on the original device. While this concept is conceptually supported by the
pulverization methodology, its practical implementation is currently limited due
to ScalaLoci’s focus on static data placement.

Nonetheless, our research opens the door to future developments that could
extend existing languages to support dynamic data placement between peers. Such
an extension would not only augment system flexibility but also maintain type
safety in the system specification.

Incorporation of Placement Types in aggregate programming As it
stands, ScalaLoci and ScaFi have been designed to function in tandem in such
a way that the aggregate program remains blissfully unaware of its multi-tier
deployment architecture. However, another avenue for exploration is how place-
ment types, along with other novelties introduced by ScalaLoci’s unique take on
multi-tier programming, could be strategically utilized within aggregate computing
systems.

At present, the specific implications and potential benefits of manipulating
placement types at the level of aggregate computing are not yet fully understood.
Nonetheless, we see emerging opportunities for developing adaptive networked
systems capable of dynamic evolution. These preliminary insights suggest a fertile
ground for further research and development in this area.

CHAPTER 9. PLATFORM: DEPLOYMENT OF CYBER-PHYSICAL
SWARMS APPLICATIONS 185



9.4 Final remarks

In this chapter, we introduce a methodology for bridging fragmented architectures
with the verified deployment of aggregate systems. We utilize multitier program-
ming to enhance declaratively, expressiveness, and safety. Specifically, we demon-
strate how to define a fragmented architecture using ScalaLoci and then map it to
an actual deployment.

Additionally, we outline how aggregate computations can be seamlessly inte-
grated into the existing infrastructure. This is achieved by sketching the implemen-
tation of the system’s behavioural aspects using the ScaFi aggregate computing
toolkit.

Given the vast design possibilities in this context, we posit that the synergy
between multitier programming and fragmented aggregate programming presents a
compelling strategy for designing and implementing CPSW. This approach allows
for independent operation from the underlying infrastructure while maintaining
the integrity of the business logic.

CHAPTER 9. PLATFORM: DEPLOYMENT OF CYBER-PHYSICAL
SWARMS APPLICATIONS 186



References

[Abd+21] Mohamed Abdelkader et al. “Aerial Swarms: Recent Applications and
Challenges”. In: Current Robotics Reports 2.3 (July 2021), pp. 309–
320. doi: 10.1007/s43154-021-00063-4. url: https://doi.org
/10.1007/s43154-021-00063-4.

[Alb+22] Daniel Albiero et al. “Swarm robots in mechanized agricultural oper-
ations: A review about challenges for research”. In: Comput. Electron.
Agric. 193 (2022), p. 106608. doi: 10.1016/j.compag.2021.106608.
url: https://doi.org/10.1016/j.compag.2021.106608.

[AP22] Gianluca Aguzzi and Danilo Pianini. cric96/experiment-2022-ieee-
decentralised-system: 1.0.1. 2022. doi: 10.5281/ZENODO.6477039.
url: https://zenodo.org/record/6477039.

[Art+15] Cyrille Artho et al. “Domain-Specific Languages with Scala”. In:
ICFEM. Vol. 9407. LNCS. Springer, 2015, pp. 1–16. doi: 10.100
7/978-3-319-25423-4\_1.

[Ash+07] Michael P. Ashley-Rollman et al. “Meld: A declarative approach to
programming ensembles”. In: 2007 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IEEE, 2007, pp. 2794–2800.
doi: 10.1109/IROS.2007.4399480. url: https://doi.org/10.110
9/IROS.2007.4399480.

[Aud+17] Giorgio Audrito et al. “Compositional Blocks for Optimal Self-
Healing Gradients”. In: SASO. IEEE. 2017, pp. 91–100. doi: 10.11
09/SASO.2017.18.

[Aud+22] Giorgio Audrito et al. “Functional Programming for Distributed Sys-
tems with XC”. In: 36th European Conference on Object-Oriented
Programming, ECOOP 2022, June 6-10, 2022, Berlin, Germany. Ed.
by Karim Ali and Jan Vitek. Vol. 222. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022, 20:1–20:28. doi: 10.4230
/LIPIcs.ECOOP.2022.20.

187

https://doi.org/10.1007/s43154-021-00063-4
https://doi.org/10.1007/s43154-021-00063-4
https://doi.org/10.1007/s43154-021-00063-4
https://doi.org/10.1016/j.compag.2021.106608
https://doi.org/10.1016/j.compag.2021.106608
https://doi.org/10.5281/ZENODO.6477039
https://zenodo.org/record/6477039
https://doi.org/10.1007/978-3-319-25423-4\_1
https://doi.org/10.1007/978-3-319-25423-4\_1
https://doi.org/10.1109/IROS.2007.4399480
https://doi.org/10.1109/IROS.2007.4399480
https://doi.org/10.1109/IROS.2007.4399480
https://doi.org/10.1109/SASO.2017.18
https://doi.org/10.1109/SASO.2017.18
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20


[Aud+23] Giorgio Audrito et al. “Computation Against a Neighbour: Address-
ing Large-Scale Distribution and Adaptivity with Functional Pro-
gramming and Scala”. In: Log. Methods Comput. Sci. 19.1 (2023).
doi: 10.46298/lmcs-19(1:6)2023.

[Aud20] Giorgio Audrito. “FCPP: an efficient and extensible Field Calculus
framework”. In: IEEE International Conference on Autonomic Com-
puting and Self-Organizing Systems, ACSOS 2020, Washington, DC,
USA, August 17-21, 2020. IEEE, 2020, pp. 153–159. doi: 10.110
9/ACSOS49614.2020.00037. url: https://doi.org/10.1109
/ACSOS49614.2020.00037.

[Bai+13] Engineer Bainomugisha et al. “A survey on reactive programming”.
In: ACM Comput. Surv. 45.4 (2013), 52:1–52:34. doi: 10.1145/250
1654.2501666.

[Bal+13] David Ball et al. “Robotics for Sustainable Broad-Acre Agriculture”.
In: Field and Service Robotics - Results of the 9th International Con-
ference, December 9-11, 2013, Brisbane, Australia. Ed. by Luis Mej́ıas
Alvarez, Peter I. Corke, and Jonathan M. Roberts. Vol. 105. Springer
Tracts in Advanced Robotics. Springer, 2013, pp. 439–453. doi: 10
.1007/978-3-319-07488-7\_30.

[BBM10] Jonathan Bachrach, Jacob Beal, and James McLurkin. “Composable
continuous-space programs for robotic swarms”. In: Neural Comput.
Appl. 19.6 (2010), pp. 825–847. doi: 10.1007/s00521-010-0382-8.

[BDT99] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelli-
gence - From Natural to Artificial Systems. Studies in the sciences of
complexity. Oxford University Press, 1999. isbn: 978-0-19-513159-8.

[Bea+13] Jacob Beal et al. “Organizing the Aggregate: Languages for Spa-
tial Computing”. In: Formal and Practical Aspects of Domain-
Specific Languages: Recent Developments. IGI Global, 2013. Chap. 16,
pp. 436–501. isbn: 978-1-4666-2092-6. doi: 10.4018/978-1-4666-2
092-6.ch016.

[Bes+19] Graeme Best et al. “Dec-MCTS: Decentralized planning for multi-
robot active perception”. In: Int. J. Robotics Res. 38.2-3 (2019). doi:
10.1177/0278364918755924.

[BFR07] Jean-Pierre Banâtre, Pascal Fradet, and Yann Radenac. “Program-
ming Self-Organizing Systems with the Higher-Order Chemical Lan-
guage”. In: Int. J. Unconv. Comput. 3.3 (2007), pp. 161–177.

REFERENCES 188

https://doi.org/10.46298/lmcs-19(1:6)2023
https://doi.org/10.1109/ACSOS49614.2020.00037
https://doi.org/10.1109/ACSOS49614.2020.00037
https://doi.org/10.1109/ACSOS49614.2020.00037
https://doi.org/10.1109/ACSOS49614.2020.00037
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1007/978-3-319-07488-7\_30
https://doi.org/10.1007/978-3-319-07488-7\_30
https://doi.org/10.1007/s00521-010-0382-8
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.1177/0278364918755924


[Bil+22] Cem Bilaloglu et al. “A Novel Time-of-Flight Range and Bearing Sen-
sor System for Micro Air Vehicle Swarms”. In: Swarm Intelligence -
13th International Conference, ANTS 2022, Málaga, Spain, Novem-
ber 2-4, 2022, Proceedings. Ed. by Marco Dorigo et al. Vol. 13491.
Lecture Notes in Computer Science. Springer, 2022, pp. 248–256. doi:
10.1007/978-3-031-20176-9\_20. url: https://doi.org/10.10
07/978-3-031-20176-9%5C_20.

[Bla16] S. Blackheath. Functional Reactive Programming. Manning, 2016.
isbn: 9781638353416.

[Bon+99] Eric Bonabeau et al. Swarm intelligence: from natural to artificial
systems. Santa Fe Institute Studies in the Sciences of Complexity.
Oxford university press, 1999. isbn: 978-0-19-513159-8.

[BPV15] Jacob Beal, Danilo Pianini, and Mirko Viroli. “Aggregate Program-
ming for the Internet of Things”. In: Computer 48.9 (2015), pp. 22–
30. doi: 10.1109/MC.2015.261. url: https://doi.org/10.1109
/MC.2015.261.

[Bra+13] Manuele Brambilla et al. “Swarm robotics: a review from the swarm
engineering perspective”. In: Swarm Intell. 7.1 (2013), pp. 1–41. doi:
10.1007/s11721-012-0075-2. url: https://doi.org/10.1007/s
11721-012-0075-2.

[Cas+19] Roberto Casadei et al. “Aggregate Processes in Field Calculus”.
In: Coordination Models and Languages - 21st IFIP WG 6.1 Inter-
national Conference, COORDINATION 2019, Held as Part of the
14th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2019, Kongens Lyngby, Denmark, June 17-
21, 2019, Proceedings. Ed. by Hanne Riis Nielson and Emilio Tu-
osto. Vol. 11533. Lecture Notes in Computer Science. Springer, 2019,
pp. 200–217. doi: 10.1007/978-3-030-22397-7\_12.

[Cas+20a] Roberto Casadei et al. “FScaFi : A Core Calculus for Collective
Adaptive Systems Programming”. In: Leveraging Applications of For-
mal Methods, Verification and Validation: Engineering Principles
- 9th International Symposium on Leveraging Applications of For-
mal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020,
Proceedings, Part II. Ed. by Tiziana Margaria and Bernhard Stef-
fen. Vol. 12477. Lecture Notes in Computer Science. Springer, 2020,
pp. 344–360. doi: 10.1007/978-3-030-61470-6\_21. url: https:
//doi.org/10.1007/978-3-030-61470-6%5C_21.

REFERENCES 189

https://doi.org/10.1007/978-3-031-20176-9\_20
https://doi.org/10.1007/978-3-031-20176-9%5C_20
https://doi.org/10.1007/978-3-031-20176-9%5C_20
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/978-3-030-22397-7\_12
https://doi.org/10.1007/978-3-030-61470-6\_21
https://doi.org/10.1007/978-3-030-61470-6%5C_21
https://doi.org/10.1007/978-3-030-61470-6%5C_21


[Cas+20b] Roberto Casadei et al. “Pulverization in Cyber-Physical Systems:
Engineering the Self-Organizing Logic Separated from Deployment”.
In: Future Internet 12.11 (2020), p. 203. doi: 10.3390/fi12110203.
url: https://doi.org/10.3390/fi12110203.

[Cas+21] Roberto Casadei et al. “Engineering collective intelligence at the edge
with aggregate processes”. In: Eng. Appl. Artif. Intell. 97 (2021),
p. 104081. doi: 10.1016/j.engappai.2020.104081. url: https:
//doi.org/10.1016/j.engappai.2020.104081.

[Cas+22a] Roberto Casadei et al. “ScaFi: A Scala DSL and Toolkit for Aggregate
Programming”. In: SoftwareX 20 (2022), p. 101248. doi: 10.1016/j
.softx.2022.101248. url: https://doi.org/10.1016/j.softx.2
022.101248.

[Cas+22b] Roberto Casadei et al. “Space-fluid Adaptive Sampling: a Field-
based, Self-organising Approach”. In: Coordination Models and Lan-
guages - 24th International Conference, COORDINATION 2022,
Held as Part of the 17th International Federated Conference on Dis-
tributed Computing Techniques, DisCoTec 2022, Lucca, Italy, June
13-17, 2022, Proceedings. Ed. by Maurice H ter Beek and Marjan Sir-
jani. Vol. 13271. Lecture Notes in Computer Science. In press. 2022.

[Cas23] Roberto Casadei. “Macroprogramming: Concepts, State of the Art,
and Opportunities of Macroscopic Behaviour Modelling”. In: ACM
Comput. Surv. 55.13s (July 2023). issn: 0360-0300. doi: 10.1145/3
579353.

[CJ10] Zheng Chen and Heng Ji. “Graph-Based Clustering for Computa-
tional Linguistics: A Survey”. In: Proceedings of the 2010 Work-
shop on Graph-Based Methods for Natural Language Processing.
TextGraphs-5. Uppsala, Sweden: Association for Computational Lin-
guistics, 2010, pp. 1–9. isbn: 9781932432770. url: https://aclant
hology.org/W10-2301/.

[CNM17] Nicolás Bulla Cruz, Nadia Nedjah, and Luiza de Macedo Mourelle.
“Robust distributed spatial clustering for swarm robotic based sys-
tems”. In: Appl. Soft Comput. 57 (2017), pp. 727–737. doi: 10.1016
/j.asoc.2016.06.002.

[CNS21] Martin Carroll, Kedar S. Namjoshi, and Itai Segall. “The Resh Pro-
gramming Language for Multirobot Orchestration”. In: IEEE Inter-
national Conference on Robotics and Automation, ICRA 2021, Xi’an,
China, May 30 - June 5, 2021. IEEE, 2021, pp. 4026–4032. doi: 10
.1109/ICRA48506.2021.9561133. url: https://doi.org/10.1109
/ICRA48506.2021.9561133.

REFERENCES 190

https://doi.org/10.3390/fi12110203
https://doi.org/10.3390/fi12110203
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1145/3579353
https://doi.org/10.1145/3579353
https://aclanthology.org/W10-2301/
https://aclanthology.org/W10-2301/
https://doi.org/10.1016/j.asoc.2016.06.002
https://doi.org/10.1016/j.asoc.2016.06.002
https://doi.org/10.1109/ICRA48506.2021.9561133
https://doi.org/10.1109/ICRA48506.2021.9561133
https://doi.org/10.1109/ICRA48506.2021.9561133
https://doi.org/10.1109/ICRA48506.2021.9561133


[Coo+06] Ezra Cooper et al. “Links: Web Programming Without Tiers”. In:
Formal Methods for Components and Objects, 5th International Sym-
posium, FMCO 2006, Amsterdam, The Netherlands, November 7-10,
2006, Revised Lectures. Ed. by Frank S. de Boer et al. Vol. 4709. Lec-
ture Notes in Computer Science. Springer, 2006, pp. 266–296. doi:
10.1007/978-3-540-74792-5\_12. url: https://doi.org/10.10
07/978-3-540-74792-5%5C_12.

[Cop+20] Mario Coppola et al. “A Survey on Swarming With Micro Air Ve-
hicles: Fundamental Challenges and Constraints”. In: Frontiers in
Robotics and AI 7 (Feb. 2020). doi: 10.3389/frobt.2020.00018.
url: https://doi.org/10.3389/frobt.2020.00018.

[CS07] Felipe Cucker and Steve Smale. “Emergent Behavior in Flocks”. In:
IEEE Transactions on Automatic Control 52.5 (2007), pp. 852–862.
doi: 10.1109/TAC.2007.895842.

[CZ18] Wenyu Cai and Meiyan Zhang. “Spatiotemporal correlation-based
adaptive sampling algorithm for clustered wireless sensor networks”.
In: Int. J. Distributed Sens. Networks 14.8 (2018). doi: 10.1177/15
50147718794614.

[DK18] Dimitris Dedousis and Vana Kalogeraki. “A Framework for Program-
ming a Swarm of UAVs”. In: 11th PErvasive Technologies Related to
Assistive Environments Conference (PETRA’18), Proceedings. ACM,
2018, pp. 5–12. doi: 10.1145/3197768.3197772. url: https://do
i.org/10.1145/3197768.3197772.

[DM12] Matthew Dunbabin and Lino Marques. “Robots for Environmental
Monitoring: Significant Advancements and Applications”. In: IEEE
Robotics Autom. Mag. 19.1 (2012), pp. 24–39. doi: 10.1109/MRA.20
11.2181683.

[DTT20] Marco Dorigo, Guy Theraulaz, and Vito Trianni. “Reflections on the
future of swarm robotics”. In: Sci. Robotics 5.49 (2020), p. 4385. doi:
10.1126/scirobotics.abe4385. url: https://doi.org/10.1126
/scirobotics.abe4385.

[Dun74] Joseph C Dunn. “Well-separated clusters and optimal fuzzy parti-
tions”. In: Journal of cybernetics 4.1 (1974), pp. 95–104. doi: 10.10
80/01969727408546059.

[Est02] Vladimir Estivill-Castro. “Why so many clustering algorithms: a po-
sition paper”. In: SIGKDD Explor. 4.1 (2002), pp. 65–75. doi: 10.1
145/568574.568575.

REFERENCES 191

https://doi.org/10.1007/978-3-540-74792-5\_12
https://doi.org/10.1007/978-3-540-74792-5%5C_12
https://doi.org/10.1007/978-3-540-74792-5%5C_12
https://doi.org/10.3389/frobt.2020.00018
https://doi.org/10.3389/frobt.2020.00018
https://doi.org/10.1109/TAC.2007.895842
https://doi.org/10.1177/1550147718794614
https://doi.org/10.1177/1550147718794614
https://doi.org/10.1145/3197768.3197772
https://doi.org/10.1145/3197768.3197772
https://doi.org/10.1145/3197768.3197772
https://doi.org/10.1109/MRA.2011.2181683
https://doi.org/10.1109/MRA.2011.2181683
https://doi.org/10.1126/scirobotics.abe4385
https://doi.org/10.1126/scirobotics.abe4385
https://doi.org/10.1126/scirobotics.abe4385
https://doi.org/10.1080/01969727408546059
https://doi.org/10.1080/01969727408546059
https://doi.org/10.1145/568574.568575
https://doi.org/10.1145/568574.568575


[Far+17] Alessandro Farinelli et al. “Interacting with team oriented plans in
multi-robot systems”. en. In: Auton. Agent. Multi. Agent. Syst. 31.2
(Mar. 2017), pp. 332–361.

[GA14] Sahil Garg and Nora Ayanian. “Persistent Monitoring of Stochas-
tic Spatio-temporal Phenomena with a Small Team of Robots”. In:
Robotics: Science and Systems X, University of California, Berkeley,
USA, July 12-16, 2014. Ed. by Dieter Fox, Lydia E. Kavraki, and
Hanna Kurniawati. 2014. doi: 10.15607/RSS.2014.X.038.

[Gel85] David Gelernter. “Generative communication in Linda”. In: ACM
Trans. Program. Lang. Syst. 7.1 (1985), pp. 80–112. issn: 0164-0925.
doi: 10.1145/2363.2433.

[Ger+20] Carlos Gershenson et al. “Self-Organization and Artificial Life”. In:
Artif. Life 26.3 (2020), pp. 391–408. doi: 10.1162/artl\_a\_00324.
url: https://doi.org/10.1162/artl%5C_a%5C_00324.

[Ger07] Carlos Gershenson. Design and control of self-organizing systems. Co-
pIt Arxives, 2007.

[GHZ18] Xiaohua Ge, Qing-Long Han, and Xian-Ming Zhang. “Achieving
Cluster Formation of Multi-Agent Systems Under Aperiodic Sam-
pling and Communication Delays”. In: IEEE Trans. Ind. Electron.
65.4 (2018), pp. 3417–3426. doi: 10.1109/TIE.2017.2752148.

[Gia17] Kristin Giammarco. “Practical modeling concepts for engineering
emergence in systems of systems”. In: SoSE. IEEE, 2017, pp. 1–6.
doi: 10.1109/SYSOSE.2017.7994977.

[GLY07] Bugra Gedik, Ling Liu, and Philip S. Yu. “ASAP: An Adaptive Sam-
pling Approach to Data Collection in Sensor Networks”. In: IEEE
Trans. Parallel Distributed Syst. 18.12 (2007), pp. 1766–1783. doi:
10.1109/TPDS.2007.1110.

[Gup15] Gopal Gupta. “Language-based software engineering”. In: Sci. Com-
put. Program. 97 (2015), pp. 37–40. doi: 10.1016/j.scico.2014.0
2.010. url: https://doi.org/10.1016/j.scico.2014.02.010.

[Har+20] Charles R. Harris et al. “Array programming with NumPy”. In: Na-
ture 585.7825 (Sept. 2020), pp. 357–362. doi: 10.1038/s41586-020
-2649-2.

REFERENCES 192

https://doi.org/10.15607/RSS.2014.X.038
https://doi.org/10.1145/2363.2433
https://doi.org/10.1162/artl\_a\_00324
https://doi.org/10.1162/artl%5C_a%5C_00324
https://doi.org/10.1109/TIE.2017.2752148
https://doi.org/10.1109/SYSOSE.2017.7994977
https://doi.org/10.1109/TPDS.2007.1110
https://doi.org/10.1016/j.scico.2014.02.010
https://doi.org/10.1016/j.scico.2014.02.010
https://doi.org/10.1016/j.scico.2014.02.010
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2


[Hos13] Satoshi Hoshino. “Reactive Clustering Method for Platooning Au-
tonomous Mobile Robots”. In: IFAC Proceedings Volumes 46.10
(2013). 8th IFAC Symposium on Intelligent Autonomous Vehicles,
pp. 152–157. issn: 1474-6670. doi: https://doi.org/10.3182/201
30626-3-AU-2035.00009. url: https://www.sciencedirect.com
/science/article/pii/S1474667015349259.

[Hu+21] Junyan Hu et al. “A Decentralized Cluster Formation Containment
Framework for Multirobot Systems”. In: IEEE Trans. Robotics 37.6
(2021), pp. 1936–1955. doi: 10.1109/TRO.2021.3071615.

[Hun07] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Com-
puting in Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.110
9/MCSE.2007.55.

[Jai10] Anil K. Jain. “Data clustering: 50 years beyond K-means”. In: Pat-
tern Recognition Letters 31.8 (2010), pp. 651–666. issn: 0167-8655.
doi: https://doi.org/10.1016/j.patrec.2009.09.011.

[Jav+18] Muhammad Aqib Javed et al. “Community detection in networks:
A multidisciplinary review”. In: J. Netw. Comput. Appl. 108 (2018),
pp. 87–111. doi: 10.1016/j.jnca.2018.02.011.

[JMF99] A. K. Jain, M. N. Murty, and P. J. Flynn. “Data Clustering: A Re-
view”. In: ACM Comput. Surv. 31.3 (1999), pp. 264–323. issn: 0360-
0300. doi: 10.1145/331499.331504.

[KB91] Yoram Koren and Johann Borenstein. “Potential field methods and
their inherent limitations for mobile robot navigation”. In: Proceed-
ings of the 1991 IEEE International Conference on Robotics and Au-
tomation, Sacramento, CA, USA, 9-11 April 1991. IEEE Computer
Society, 1991, pp. 1398–1404. doi: 10.1109/ROBOT.1991.131810.
url: https://doi.org/10.1109/ROBOT.1991.131810.

[KC03] Jeffrey O. Kephart and David M. Chess. “The Vision of Autonomic
Computing”. In: Computer 36.1 (2003), pp. 41–50. doi: 10.1109
/MC.2003.1160055. url: https://doi.org/10.1109/MC.2003.116
0055.

[Kem+17] Stephanie Kemna et al. “Multi-robot coordination through dy-
namic Voronoi partitioning for informative adaptive sampling in
communication-constrained environments”. In: 2017 IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2017, Singa-
pore, Singapore, May 29 - June 3, 2017. IEEE, 2017, pp. 2124–2130.
doi: 10.1109/ICRA.2017.7989245.

REFERENCES 193

https://doi.org/https://doi.org/10.3182/20130626-3-AU-2035.00009
https://doi.org/https://doi.org/10.3182/20130626-3-AU-2035.00009
https://www.sciencedirect.com/science/article/pii/S1474667015349259
https://www.sciencedirect.com/science/article/pii/S1474667015349259
https://doi.org/10.1109/TRO.2021.3071615
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1016/j.jnca.2018.02.011
https://doi.org/10.1145/331499.331504
https://doi.org/10.1109/ROBOT.1991.131810
https://doi.org/10.1109/ROBOT.1991.131810
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/ICRA.2017.7989245


[KGB21] Miquel Kegeleirs, Giorgio Grisetti, and Mauro Birattari. “Swarm
SLAM: Challenges and Perspectives”. In: Frontiers in Robotics and
AI 8 (Mar. 2021). doi: 10.3389/frobt.2021.618268. url: https:
//doi.org/10.3389/frobt.2021.618268.

[KH04] Nathan P. Koenig and Andrew Howard. “Design and use paradigms
for Gazebo, an open-source multi-robot simulator”. In: 2004
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, Sendai, Japan, September 28 - October 2, 2004. IEEE, 2004,
pp. 2149–2154. doi: 10.1109/IROS.2004.1389727.

[KL16] Manos Koutsoubelias and Spyros Lalis. “TeCoLa: A Programming
Framework for Dynamic and Heterogeneous Robotic Teams”. In: Pro-
ceedings of the 13th International Conference on Mobile and Ubiq-
uitous Systems: Computing, Networking and Services (MobiQuitous
2016). ACM, 2016, pp. 115–124. doi: 10.1145/2994374.2994397.
url: https://doi.org/10.1145/2994374.2994397.

[Kos+20] Oliver Kosak et al. “Maple-Swarm: Programming Collective Behavior
for Ensembles by Extending HTN-Planning”. In: Leveraging Appli-
cations of Formal Methods, Verification and Validation: Engineering
Principles - 9th International Symposium on Leveraging Applications
of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30,
2020, Proceedings, Part II. Ed. by Tiziana Margaria and Bernhard
Steffen. Vol. 12477. Lecture Notes in Computer Science. Springer,
2020, pp. 507–524. doi: 10.1007/978-3-030-61470-6\_30. url:
https://doi.org/10.1007/978-3-030-61470-6%5C_30.

[Kuc+20] Kerem Kucuk et al. “Crowd sensing aware disaster framework design
with IoT technologies”. In: J. Ambient Intell. Humaniz. Comput. 11.4
(2020), pp. 1709–1725. doi: 10.1007/s12652-019-01384-1.

[Lim+18] Keila Lima et al. “Dolphin: A Task Orchestration Language for
Autonomous Vehicle Networks”. In: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2018, Madrid,
Spain, October 1-5, 2018. IEEE, 2018, pp. 603–610. doi: 10.1109
/IROS.2018.8594059. url: https://doi.org/10.1109/IROS.2018
.8594059.

[LKK05] C. Lee, M. Kim, and Sanza Kazadi. “Robot Clustering”. In: Pro-
ceedings of the IEEE International Conference on Systems, Man and
Cybernetics, Waikoloa, Hawaii, USA, October 10-12, 2005. IEEE,
2005, pp. 1449–1454. doi: 10.1109/ICSMC.2005.1571350.

REFERENCES 194

https://doi.org/10.3389/frobt.2021.618268
https://doi.org/10.3389/frobt.2021.618268
https://doi.org/10.3389/frobt.2021.618268
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1145/2994374.2994397
https://doi.org/10.1145/2994374.2994397
https://doi.org/10.1007/978-3-030-61470-6\_30
https://doi.org/10.1007/978-3-030-61470-6%5C_30
https://doi.org/10.1007/s12652-019-01384-1
https://doi.org/10.1109/IROS.2018.8594059
https://doi.org/10.1109/IROS.2018.8594059
https://doi.org/10.1109/IROS.2018.8594059
https://doi.org/10.1109/IROS.2018.8594059
https://doi.org/10.1109/ICSMC.2005.1571350


[LM07] Yen-Ting Lin and Seapahn Megerian. “Sensing Driven Clustering for
Monitoring and Control Applications”. In: 4th IEEE Consumer Com-
munications and Networking Conference, CCNC 2007, Las Vegas,
NV, USA, January 11-13, 2007. IEEE, 2007, pp. 202–206. doi: 10.1
109/CCNC.2007.47.

[Luc+19] Matt Luckcuck et al. “Formal Specification and Verification of Au-
tonomous Robotic Systems: A Survey”. In: ACM Comput. Surv. 52.5
(2019), 100:1–100:41. doi: 10.1145/3342355. url: https://doi.o
rg/10.1145/3342355.

[MBD18] Yuanqiu Mo, Jacob Beal, and Soura Dasgupta. “An Aggregate Com-
puting Approach to Self-Stabilizing Leader Election”. In: 2018 IEEE
3rd International Workshops on Foundations and Applications of
Self* Systems (FAS*W), Trento, Italy, September 3-7, 2018. IEEE,
2018, pp. 112–117. doi: 10.1109/FAS-W.2018.00034. url: https:
//doi.org/10.1109/FAS-W.2018.00034.

[MBF11] D. Martens, B. Baesens, and T. Fawcett. “Editorial survey: swarm
intelligence for data mining”. In: Machine Learning 82 (2011), pp. 1–
42. doi: https://doi.org/10.1007/s10994-010-5216-5.

[Mek+18] Kais Mekki et al. “Overview of Cellular LPWAN Technologies for
IoT Deployment: Sigfox, LoRaWAN, and NB-IoT”. In: 2018 IEEE
International Conference on Pervasive Computing and Communica-
tions Workshops, PerCom Workshops 2018, Athens, Greece, March
19-23, 2018. IEEE Computer Society, 2018, pp. 197–202. doi: 10.1
109/PERCOMW.2018.8480255. url: https://doi.org/10.1109
/PERCOMW.2018.8480255.

[MH12] Georg Martius and J. Michael Herrmann. “Variants of guided self-
organization for robot control”. In: Theory Biosci. 131.3 (2012),
pp. 129–137. doi: 10.1007/s12064-011-0141-0.

[Mot+14] Luca Mottola et al. “Team-level programming of drone sensor net-
works”. In: Proceedings of the 12th ACM Conference on Embedded
Network Sensor Systems (SenSys’14). ACM, 2014, pp. 177–190. doi:
10.1145/2668332.2668353. url: https://doi.org/10.1145/2668
332.2668353.

[MP11] Luca Mottola and Gian Pietro Picco. “Programming wireless sensor
networks: Fundamental concepts and state of the art”. In: ACM Com-
put. Surv. 43.3 (2011), 19:1–19:51. doi: 10.1145/1922649.1922656.
url: https://doi.org/10.1145/1922649.1922656.

REFERENCES 195

https://doi.org/10.1109/CCNC.2007.47
https://doi.org/10.1109/CCNC.2007.47
https://doi.org/10.1145/3342355
https://doi.org/10.1145/3342355
https://doi.org/10.1145/3342355
https://doi.org/10.1109/FAS-W.2018.00034
https://doi.org/10.1109/FAS-W.2018.00034
https://doi.org/10.1109/FAS-W.2018.00034
https://doi.org/https://doi.org/10.1007/s10994-010-5216-5
https://doi.org/10.1109/PERCOMW.2018.8480255
https://doi.org/10.1109/PERCOMW.2018.8480255
https://doi.org/10.1109/PERCOMW.2018.8480255
https://doi.org/10.1109/PERCOMW.2018.8480255
https://doi.org/10.1007/s12064-011-0141-0
https://doi.org/10.1145/2668332.2668353
https://doi.org/10.1145/2668332.2668353
https://doi.org/10.1145/2668332.2668353
https://doi.org/10.1145/1922649.1922656
https://doi.org/10.1145/1922649.1922656


[MZ09] Marco Mamei and Franco Zambonelli. “Programming pervasive and
mobile computing applications: The TOTA approach”. In: ACM
Trans. on Software Engineering Methodologies 18.4 (2009), pp. 1–
56. issn: 1049-331X. doi: 10.1145/1538942.1538945.

[NJW20] Rocco De Nicola, Stefan Jähnichen, and Martin Wirsing. “Rigorous
engineering of collective adaptive systems: special section”. In: Int.
J. Softw. Tools Technol. Transf. 22.4 (2020), pp. 389–397. doi: 10.1
007/s10009-020-00565-0.

[NMW07] Ryan Newton, Greg Morrisett, and Matt Welsh. “The regiment
macroprogramming system”. In: Proceedings of the 6th International
Conference on Information Processing in Sensor Networks, IPSN
2007. ACM, 2007, pp. 489–498. doi: 10.1145/1236360.1236422.
url: https://doi.org/10.1145/1236360.1236422.

[Noo+19] Joseph Noor et al. “DDFlow: visualized declarative programming for
heterogeneous IoT networks”. In: IoTDI. ACM, 2019, pp. 172–177.
doi: 10.1145/3302505.3310079.

[OD01] Andrea Omicini and Enrico Denti. “From tuple spaces to tuple cen-
tres”. In: Sci. Comput. Program. 41.3 (2001), pp. 277–294. doi: 10
.1016/S0167-6423(01)00011-9.

[PB15] H. Van Dyke Parunak and Sven A. Brueckner. “Software engineer-
ing for self-organizing systems”. In: Knowl. Eng. Rev. 30.4 (2015),
pp. 419–434. doi: 10.1017/S0269888915000089.

[PB16a] Carlo Pinciroli and Giovanni Beltrame. “Buzz: A Programming Lan-
guage for Robot Swarms”. In: IEEE Softw. 33.4 (2016), pp. 97–100.
doi: 10.1109/MS.2016.95. url: https://doi.org/10.1109/MS.20
16.95.

[PB16b] Carlo Pinciroli and Giovanni Beltrame. “Buzz: An extensible pro-
gramming language for heterogeneous swarm robotics”. In: 2016
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, IROS 2016, Daejeon, South Korea, October 9-14, 2016. IEEE,
2016, pp. 3794–3800. doi: 10.1109/IROS.2016.7759558. url: http
s://doi.org/10.1109/IROS.2016.7759558.

[Pen+15] Yan Peng et al. “The obstacle detection and obstacle avoidance al-
gorithm based on 2-D lidar”. In: IEEE International Conference on
Information and Automation, ICIA 2015, Lijiang, China, August 8-
10, 2015. IEEE, 2015, pp. 1648–1653. doi: 10.1109/ICInfA.2015.7
279550. url: https://doi.org/10.1109/ICInfA.2015.7279550.

REFERENCES 196

https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1007/s10009-020-00565-0
https://doi.org/10.1007/s10009-020-00565-0
https://doi.org/10.1145/1236360.1236422
https://doi.org/10.1145/1236360.1236422
https://doi.org/10.1145/3302505.3310079
https://doi.org/10.1016/S0167-6423(01)00011-9
https://doi.org/10.1016/S0167-6423(01)00011-9
https://doi.org/10.1017/S0269888915000089
https://doi.org/10.1109/MS.2016.95
https://doi.org/10.1109/MS.2016.95
https://doi.org/10.1109/MS.2016.95
https://doi.org/10.1109/IROS.2016.7759558
https://doi.org/10.1109/IROS.2016.7759558
https://doi.org/10.1109/IROS.2016.7759558
https://doi.org/10.1109/ICInfA.2015.7279550
https://doi.org/10.1109/ICInfA.2015.7279550
https://doi.org/10.1109/ICInfA.2015.7279550


[Pha+10] Ngoc Duy Pham et al. “SCCS: Spatiotemporal clustering and com-
pressing schemes for efficient data collection applications in WSNs”.
In: Int. J. Commun. Syst. 23.11 (2010), pp. 1311–1333. doi: 10.100
2/dac.1104.

[Pia+21a] Danilo Pianini et al. “Partitioned integration and coordination via
the self-organising coordination regions pattern”. In: Future Gener.
Comput. Syst. 114 (2021), pp. 44–68. doi: 10.1016/j.future.2020
.07.032.

[Pia+21b] Danilo Pianini et al. “Time-Fluid Field-Based Coordination through
Programmable Distributed Schedulers”. In: Log. Methods Comput.
Sci. 17.4 (2021). url: https://doi.org/10.46298/lmcs-17(4:13
)2021.

[PMV13] D Pianini, S Montagna, and M Viroli. “Chemical-oriented simulation
of computational systems with ALCHEMIST”. In: Journal of Sim-
ulation 7.3 (Aug. 2013), pp. 202–215. doi: 10.1057/jos.2012.27.
url: https://doi.org/10.1057/jos.2012.27.

[Pro09] Mikhail Prokopenko. Guided self-organization. 2009.

[Rey87] Craig W. Reynolds. “Flocks, herds and schools: A distributed be-
havioral model”. In: Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH 1987,
Anaheim, California, USA, July 27-31, 1987. Ed. by Maureen C.
Stone. ACM, 1987, pp. 25–34. doi: 10.1145/37401.37406. url:
https://doi.org/10.1145/37401.37406.

[Rou87] Peter J. Rousseeuw. “Silhouettes: A graphical aid to the interpreta-
tion and validation of cluster analysis”. In: Journal of Computational
and Applied Mathematics 20 (1987), pp. 53–65. issn: 0377-0427. doi:
https://doi.org/10.1016/0377-0427(87)90125-7. url: https:
//www.sciencedirect.com/science/article/pii/037704278790

1257.

[RTG19] Nathalie Barbosa Roa, Louise Travé-Massuyès, and Victor Hugo
Grisales. “DyClee: Dynamic clustering for tracking evolving environ-
ments”. In: Pattern Recognit. 94 (2019), pp. 162–186. doi: 10.1016
/j.patcog.2019.05.024.

[Sae+10] Joan Saez-Pons et al. “Multi-robot team formation control in the
GUARDIANS project”. en. In: Ind. Rob. 37.4 (June 2010), pp. 372–
383.

[Say09] Hiroki Sayama. “Swarm Chemistry”. In: Artif. Life 15.1 (2009),
pp. 105–114. doi: 10.1162/artl.2009.15.1.15107.

REFERENCES 197

https://doi.org/10.1002/dac.1104
https://doi.org/10.1002/dac.1104
https://doi.org/10.1016/j.future.2020.07.032
https://doi.org/10.1016/j.future.2020.07.032
https://doi.org/10.46298/lmcs-17(4:13)2021
https://doi.org/10.46298/lmcs-17(4:13)2021
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://doi.org/10.1016/j.patcog.2019.05.024
https://doi.org/10.1016/j.patcog.2019.05.024
https://doi.org/10.1162/artl.2009.15.1.15107


[Sch+10] Hartmut Schmeck et al. “Adaptivity and self-organization in organic
computing systems”. In: ACM Trans. Auton. Adapt. Syst. 5.3 (2010),
10:1–10:32. doi: 10.1145/1837909.1837911.

[Sch+20] Melanie Schranz et al. “Swarm Robotic Behaviors and Current Ap-
plications”. In: Frontiers Robotics AI 7 (2020). doi: 10.3389/frobt
.2020.00036.

[Sen+22] Iwens Gervásio Sene Júnior et al. “The state of the art of macro-
programming in IoT: An update”. In: J. Internet Serv. Appl. 13.1
(2022), pp. 54–65. doi: 10.5753/jisa.2022.2372. url: https://d
oi.org/10.5753/jisa.2022.2372.

[SSP13] Vivek Kumar Singh, Garima Singh, and Suparna Pande. “Emergence,
Self-Organization and Collective Intelligence - Modeling the Dynam-
ics of Complex Collectives in Social and Organizational Settings”. In:
UKSim. IEEE, 2013, pp. 182–189. doi: 10.1109/UKSim.2013.77.

[SW22] Pradeep Sambu and Myounggyu Won. “An Experimental Study on
Direction Finding of Bluetooth 5.1: Indoor vs Outdoor”. In: IEEE
Wireless Communications and Networking Conference, WCNC 2022,
Austin, TX, USA, April 10-13, 2022. IEEE, 2022, pp. 1934–1939.
doi: 10.1109/WCNC51071.2022.9771930. url: https://doi.org/1
0.1109/WCNC51071.2022.9771930.

[Tes+22] Lorenzo Testa et al. “Aggregate Processes as Distributed Adaptive
Services for the Industrial Internet of Things”. In: Pervasive and
Mobile Computing (to appear) (2022).

[TM03] Robert Tolksdorf and Ronaldo Menezes. “Using Swarm Intelligence
in Linda Systems”. In: Engineering Societies in the Agents World
IV, 4th International Workshop, ESAW 2003, London, UK, Octo-
ber 29-31, 2003, Revised Selected and Invited Papers. Ed. by Andrea
Omicini, Paolo Petta, and Jeremy Pitt. Vol. 3071. Lecture Notes in
Computer Science. Springer, 2003, pp. 49–65. doi: 10.1007/978-3-
540-25946-6\_3.

[TU21] Michael C. Thrun and Alfred Ultsch. “Swarm intelligence for self-
organized clustering”. In: Artificial Intelligence 290 (2021). issn:
0004-3702. doi: https://doi.org/10.1016/j.artint.2020.1
03237.

[Var+15] Franck Varenne et al. “Programming the emergence in morpho-
genetically architected complex systems”. In: Acta biotheoretica 63.3
(2015), pp. 295–308. doi: 10.1007/s10441-015-9262-z.

REFERENCES 198

https://doi.org/10.1145/1837909.1837911
https://doi.org/10.3389/frobt.2020.00036
https://doi.org/10.3389/frobt.2020.00036
https://doi.org/10.5753/jisa.2022.2372
https://doi.org/10.5753/jisa.2022.2372
https://doi.org/10.5753/jisa.2022.2372
https://doi.org/10.1109/UKSim.2013.77
https://doi.org/10.1109/WCNC51071.2022.9771930
https://doi.org/10.1109/WCNC51071.2022.9771930
https://doi.org/10.1109/WCNC51071.2022.9771930
https://doi.org/10.1007/978-3-540-25946-6\_3
https://doi.org/10.1007/978-3-540-25946-6\_3
https://doi.org/https://doi.org/10.1016/j.artint.2020.103237
https://doi.org/https://doi.org/10.1016/j.artint.2020.103237
https://doi.org/10.1007/s10441-015-9262-z


[Vic+95] Tamás Vicsek et al. “Novel Type of Phase Transition in a System
of Self-Driven Particles”. In: Phys. Rev. Lett. 75 (6 Aug. 1995),
pp. 1226–1229. doi: 10.1103/PhysRevLett.75.1226. url: http
s://link.aps.org/doi/10.1103/PhysRevLett.75.1226.

[Vir+18] Mirko Viroli et al. “Engineering Resilient Collective Adaptive Sys-
tems by Self-Stabilisation”. In: ACM Trans. Model. Comput. Simul.
28.2 (2018), 16:1–16:28. doi: 10.1145/3177774. url: https://doi
.org/10.1145/3177774.

[Vir+19] Mirko Viroli et al. “From distributed coordination to field calculus
and aggregate computing”. In: J. Log. Algebraic Methods Program.
109 (2019). doi: 10.1016/j.jlamp.2019.100486. url: https://do
i.org/10.1016/j.jlamp.2019.100486.

[WH00] Zhanyong Wan and Paul Hudak. “Functional reactive programming
from first principles”. In: PLDI. ACM, 2000, pp. 242–252. doi: 10.1
145/349299.349331.

[WKS18] Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. “Dis-
tributed system development with ScalaLoci”. In: Proc. ACM Pro-
gram. Lang. 2.OOPSLA (2018), 129:1–129:30. doi: 10.1145/327649
9. url: https://doi.org/10.1145/3276499.

[WS19] Pascal Weisenburger and Guido Salvaneschi. “Multitier Modules”.
In: 33rd European Conference on Object-Oriented Programming,
ECOOP 2019, July 15-19, 2019, London, United Kingdom. Ed. by
Alastair F. Donaldson. Vol. 134. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019, 3:1–3:29. doi: 10.4230/LIPIcs.ECOOP
.2019.3. url: https://doi.org/10.4230/LIPIcs.ECOOP.2019.3.

[WS20] Pascal Weisenburger and Guido Salvaneschi. “Implementing a Lan-
guage for Distributed Systems: Choices and Experiences with Type
Level and Macro Programming in Scala”. In: Art Sci. Eng. Program.
4.3 (2020), p. 17. doi: 10.22152/programming-journal.org/2020
/4/17. url: https://doi.org/10.22152/programming-journal.o
rg/2020/4/17.

[WWS20] Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi. “A
Survey of Multitier Programming”. In: ACM Comput. Surv. 53.4
(2020), 81:1–81:35. doi: 10.1145/3397495. url: https://doi.o
rg/10.1145/3397495.

[Wyc+98] P. Wyckoff et al. “T Spaces”. In: IBM Systems Journal 37.3 (1998),
pp. 454–474. doi: 10.1147/sj.373.0454.

REFERENCES 199

https://doi.org/10.1103/PhysRevLett.75.1226
https://link.aps.org/doi/10.1103/PhysRevLett.75.1226
https://link.aps.org/doi/10.1103/PhysRevLett.75.1226
https://doi.org/10.1145/3177774
https://doi.org/10.1145/3177774
https://doi.org/10.1145/3177774
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1145/349299.349331
https://doi.org/10.1145/349299.349331
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3276499
https://doi.org/10.4230/LIPIcs.ECOOP.2019.3
https://doi.org/10.4230/LIPIcs.ECOOP.2019.3
https://doi.org/10.4230/LIPIcs.ECOOP.2019.3
https://doi.org/10.22152/programming-journal.org/2020/4/17
https://doi.org/10.22152/programming-journal.org/2020/4/17
https://doi.org/10.22152/programming-journal.org/2020/4/17
https://doi.org/10.22152/programming-journal.org/2020/4/17
https://doi.org/10.1145/3397495
https://doi.org/10.1145/3397495
https://doi.org/10.1145/3397495
https://doi.org/10.1147/sj.373.0454


[Yi+20] Wei Yi et al. “An Actor-based Programming Framework for Swarm
Robotic Systems”. In: IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, IROS 2020, Las Vegas, NV, USA, Octo-
ber 24, 2020 - January 24, 2021. IEEE, 2020, pp. 8012–8019. doi:
10.1109/IROS45743.2020.9341198. url: https://doi.org/10.11
09/IROS45743.2020.9341198.

REFERENCES 200

https://doi.org/10.1109/IROS45743.2020.9341198
https://doi.org/10.1109/IROS45743.2020.9341198
https://doi.org/10.1109/IROS45743.2020.9341198


Part III

Learning in Cyber-Physical
Swarms

201



Chapter 10

Research Roadmap for Hybrid
aggregate Computing

What is the research roadmap toward hy-
brid aggregate computing?
What are the opportunities and chal-
lenges of this research?
How can we address these challenges?
– RQ1, RQ2

Contents
10.1 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

10.1.1 Goals and Means . . . . . . . . . . . . . . . . . . . . . . 204

10.1.2 Patterns: learning AC algorithms . . . . . . . . . . . . . 205

10.1.3 Platform: learning execution strategies and adaptations 206

10.1.4 Platform: learning system structures and re-structuring 207

10.2 Opportunities and Challenges . . . . . . . . . . . . . . . 208

10.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . 209

Engineering of AC applications is a rich activity that spans multiple con-
cerns including designing the aggregate program, developing reusable algo-
rithms [Aud+17; Aud+21], detailing the execution model [Pia+21], and choosing
a deployment based on available infrastructure [Cas+20b] (see Figure 10.1 for the
full AC “stack”). Traditionally, these activities have been carried out through
ad-hoc designs and implementations created by developers and tailored to specific
contexts and goals (see Part II of the thesis), leading to, e.g., self-organization
algorithms that are very reactive under certain network assumptions [Aud+21], or

202



round execution frequencies tailored to the velocity of change of underlying envi-
ronment phenomena [Pia+21]. To overcome the complexity and cost of manually
tailoring or devising general but inefficient algorithms, execution details, and de-
ployments, we propose to use machine learning (ML) techniques. In particular, we
observe that automated design driven by learning can be applied at different levels
of the AC “engineering stack”. The integration of AC and ML done during this
thesis, which we refer to as aggregate computing + machine learning (AC+ML)
or hybrid aggregate computing, is provided a lot of opportunities and challenges,
fostering a long-term record of research contributions. In this chapter, we discuss
a research roadmap followed during the thesis, for achieving the vision of hybrid
aggregate computing.

Application

MIddleware

System

Structure


API

Scheduling Communication

Algorithms

Aggregate Programs

P2P FogEdge Cloud

State

Figure 10.1: The entire Aggregate Computing stack. The application level (com-
posed of API, algorithms and programs) needs to be supported by an execution
platform/middleware, to decouple the application from systems structures. Then,
this execution platform should be deployed in a particular architecture. In our
vision, machine learning could enhance all of these layers.

CHAPTER 10. RESEARCH ROADMAP FOR HYBRID AGGREGATE
COMPUTING 203



Goal

effective & efficient
aggregate
behaviours

Learning
Programs /
Algorithms

Learning
Execution
Strategy

Learning
Aggregate
Computing

Deployments

Starting Point

Hand-crafted
solutions

Challenges

Opportunities Collective
Intelligence

Green Autonomic
Computing

Multi-agent
LearningProgram Synthesis

Application

Middleware

System

Structure


ULT
SVD

FLEX

Distributed
Schedulers

Pulverised
Architecturs

Figure 10.2: Overview of the research roadmap aiming at efficient and effective
aggregate computations. The starting point is current research, based on hand-
crafted solutions. The goal is addressed through the application of hybrid aggre-
gate computing at the program/execution/deployment levels.

10.1 Roadmap

This section details motivation and direction for AC+ML research, also summa-
rized in Figure 10.2.

10.1.1 Goals and Means

To systematically analyse the ways in which ML can promote the development
of AC applications, it is important to consider the goals and means of the AC
framework.

The goals include:

1. functionality — achieving some collective behaviour (e.g., environment mon-
itoring and control through sensor-actuator networks [Cas+20b; Pia+21],
resiliently organize the system into leader-regulated areas [Cas+19], and
matching and coordinating collective tasks with worker ensembles [Cas+21]);

2. non-functionality — concerning with the cost associated to the functionality.

In particular, the latter can be further divided into multiple sub-goals from which
application-specific trade-offs can be made:

CHAPTER 10. RESEARCH ROADMAP FOR HYBRID AGGREGATE
COMPUTING 204



1. time efficiency : refers to the time needed to converge to the desired state-
of-affairs;

2. communication efficiency : refers to the amount of communication performed
(e.g., measured in terms of messages or bandwidth);

3. execution efficiency : refers to the number of rounds of computations per-
formed;

4. energy efficiency : e.g. by combining communication and execution efficiency;

5. dependability : concerns e.g. reliability or safety of a collective and its prod-
ucts.

In the AC approach, these goals can be addressed through three main means:

1. algorithms;

2. execution strategy;

3. system structure (deployment).

Now, it turns out that ML could be a powerful technique to replace or augment
those traditionally human-engineered means.

10.1.2 Patterns: learning AC algorithms

AC algorithms take collective inputs and use computational mechanisms to pro-
duce collective outputs. In the field calculus [Vir+19], the minimal formal frame-
work that underpins AC, collective inputs and outputs are denoted by computa-
tional fields (or fields for short), namely distributed data structures mapping each
device of the aggregate system to a value. The field calculus, then, provides a set
of operators for manipulating fields: essentially, operators specifying how fields
evolve over time (round after round), and operators specifying interactions with
neighbours (which can be reified through neighbouring fields). So, in AC, a col-
lective adaptive behaviour is the result of an algorithm (a function from fields to
fields) expressed e.g. in ScaFi and the concrete execution of the algorithm in a
system of devices.

Usually, algorithms are progressive – they take time (computation rounds and
communications) to converge to the “correct” value – and self-healing, i.e., they
can adjust their output following changes in their inputs and the system topology.
For instance, a gradient algorithm progressively corrects the field of distances after
the set of sources changes, or nodes move (hence changing the distances between
neighbour nodes) or enter/leave the system.

CHAPTER 10. RESEARCH ROADMAP FOR HYBRID AGGREGATE
COMPUTING 205



So, different gradient algorithms may achieve the same functionality (i.e., the
eventual computation of the field of minimum distances from sources) with differ-
ent non-functional outcomes. Indeed, they may:

• take a different time or a different number of rounds to converge, for the
same initial condition;

• require a different amount of data to be exchanged;

• take different trade-offs e.g. regarding reactivity and smoothness (cf. the
stability of values during change) [Aud+21; Aud+17]; or

• take different assumptions regarding the execution model or the environ-
ment [Aud+21], which may affect applicability.

Designing efficient and versatile AC algorithms can be complex [Aud+21;
Aud+17]: therefore, it is interesting to explore whether algorithms can be learnt
or synthesized given high-level functional goals. For this purpose, an idea could be
to combine the program synthesis [GPS17] technique called sketching [Sol08] with
machine learning. With this approach, the designer could provide an algorithm
template with holes corresponding to actions to be learnt by the agents or the
whole collective, e.g., through reinforcement learning. In this case, learning would
be used to search for an optimal policy. The resulting algorithm, then, would need
extensive testing (e.g. by simulation) in a representative set of environments and
dynamics. In this regard, research is needed to identify what synthesis techniques,
learning algorithms, frameworks, and methodologies can support the learning of
algorithms able to achieve performance similar or better than state-of-the-art so-
lutions. The first efforts in this direction are highlighted in Chapters 11 and 12.

10.1.3 Platform: learning execution strategies and adap-
tations

For a given AC program or algorithm, multiple execution strategies can be applied,
affecting aspects like the scheduling of computation rounds (i.e., the frequency of
execution), the scheduling of communications (i.e., when the devices exchange
data), the retention of messages from neighbours (i.e., when should messages from
the neighbour be considered too old to be used). In particular, a first distinction
can be made between static and dynamic execution strategies. The latter approach
adapts the execution choices at runtime depending on factors which may include
the speed of environmental change, the energy level of a device, incentives in vol-
unteering settings, or the desired Quality of Service (QoS). Moreover, these factors
may be diverse in diverse portions of the system; so, it is in general important to
also consider the local context of each device or set of devices.

CHAPTER 10. RESEARCH ROADMAP FOR HYBRID AGGREGATE
COMPUTING 206



Note that adaptive behaviour could be achieved via static execution strate-
gies, e.g., by using reactive approaches triggering behaviours when specific context
conditions apply [Pia+21]. However, again, since it is in general hard to design
static or dynamic execution strategies able to adequately take into account all the
factors and goals, it could make sense to let a system (and its components) learn
how to efficiently execute algorithms according to a set of given high-level objec-
tives. Indeed, true adaptiveness comes from changing the behavioural rules, and
learning is a premier tool for changing for the better. The emphasis on improving
efficiency by optimizing execution of aggregate systems, hence promoting sustain-
ability of collective computations, could be the opportunity to open up a vision of
green autonomic computing. In Chapter 13 we propose a reinforcement learning
approach to learn the execution strategy to improve the execution efficiency of a
gradient algorithm.

10.1.4 Platform: learning system structures and re-
structuring

A logical AC system consists of a logical network of logical devices operating as per
the aforementioned execution protocol. It is the collective digital twin [Cas+22a]
of a target set of application-level physical devices (e.g., robots of a swarm, or
workers in a computing ecosystem). As shown in recent work on pulverized ar-
chitectures [Cas+20b], it turns out that different application partitioning schemas
and implementations of the digital thread associated with the aggregate system are
possible, as well as different deployments of application components onto the avail-
able Information-Communication Technology (ICT) infrastructure. For instance,
it is possible to embed evaluations of the aggregate program into the devices them-
selves, to move the entire computational part to the cloud (leaving devices as thin
hosts dealing only with sensing and actuation), or spread these onto a layer of edge-
fog infrastructural devices. Different deployments may lead to different efficiency
trade-offs and non-functional outcomes [Cas+20b; Cas+22a], which, crucially, may
also change dynamically due to application and infrastructure dynamics (cf. ad-
dition or removal of new nodes, blackouts, etc.).

In previous research, aggregate application partitioning and deployment have
been done manually at design time [Cas+20b]—as showed in Chapter 9. However,
for a given set of infrastructures, it is not easy to determine an effective map-
ping. The usual approach consists of manually generating different deployments,
simulating these for the same set of applications, collecting various cost metrics,
and evaluating results to determine trade-offs and guidelines. However, ML could
be injected into such a methodology to have the system learn by itself what is a
(locally) optimal deployment for an aggregate application. Moreover, the system

CHAPTER 10. RESEARCH ROADMAP FOR HYBRID AGGREGATE
COMPUTING 207



could be induced to learn a strategy to self-adapt the deployment (i.e., by mov-
ing components opportunistically across the ICT infrastructure) while trying to
preserve, e.g., certain QoS targets.

Additionally, it has been shown in [Cas+22a], that changing the logical struc-
ture of an aggregate system at runtime (e.g., by injecting virtual devices) could
be a further means for steering self-organization processes, namely to improve the
collective behaviour of a system (cf. [LS11]). In this respect, a challenge would be
to determine how, when, and where virtual devices should be spawned or removed
from the system. In the AC+ML vision, this problem should not be addressed
through ad-hoc solutions, but the AC system should be trained in order to learn
the best strategies for improving the efficacy and efficiency of aggregate applica-
tions.

10.2 Opportunities and Challenges

Opportunities

A prominent opportunity of AC+ML research lies in potentially getting insights
about the automatic design of Collective Intelligence (CI), renewing the partial
contributions given by Szuba’s computational collective intelligence [Szu01] and
Tumer and Wolpert’s COIN (COllective INtelligence) [WT02]. However, unlike
previous work, the peculiar characteristic of aggregate computing of reifying CI
into macro-level programs (which we may refer to as CI programmability) is ex-
pected to enable a synergic and gentle introduction of automatic design and learn-
ing. Additionally, the other crucial aspect of functional compositionality of ag-
gregate behaviours (denoted by functions operating on fields), is also expected
to help, e.g., by fostering learning processes whereby the goal is to find suitable
compositions of elementary collective behaviours. Moreover, the ability to change
execution strategies while guaranteeing the same behaviour could also be consid-
ered a form of CI.

Indeed, another key opportunity lies in the possibility of fostering efficiency in
large-scale intelligent systems, which is more and more important for sustainability
as advocated by important fields like green computing [SM16]. The significance
of the problem is especially relevant nowadays because of the tension between the
visions of pervasive computing [SM03], future-generation large-scale computational
collectives [Cas+21], and autonomic computing (promoting smarter – i.e. more
computationally intensive – devices) [KC03] and the urge to limit the impact of
humans and technologies on the environment.

CHAPTER 10. RESEARCH ROADMAP FOR HYBRID AGGREGATE
COMPUTING 208



Technical Challenges

Applying learning through the AC stack (Figure 10.1) poses several challenges,
many of which are implied by the nature of aggregate systems—cf. distribution,
decentralization, partial observability, many-agents coordination, and the eventual
nature of collective computations,

Particularly, learning in many-agent networked system [ZYB21] is currently
an open challenge. Indeed, extending the learning from one agent to many agents
exponentially enlarges the policy search space, due to the combinatorial nature of
multi-agent systems [HKT19]. Moreover, the neighbouring-based system structure
is not strict and could evolve in time, leading to time- and space-varying input
spaces. Furthermore, it is not appropriate to use a centralized controller that
orchestrates the system as a whole, due to the typical large scale and resilience
requirements. However, using only a local vision of the system could lead to the
problem of non-stationarity, since each agent concurrently learns and modifies the
environment in the eye of the other agents [TW12]. Another concern related to
many-agent settings is the multi-agent credit assignment problem [SB18]. This is
referred to in the difficulty of deriving a local reward policy from a global utility
that measures the system as a whole [AT04]. Besides, the reward received is
typically very delayed and sparse in time, because an action taken in a point of
large geographical space, could lead to an influence on the whole system only when
it reaches all nodes.

These challenges are mitigated by an increasing track of research records on
AC [Vir+19], the availability of formal tools for analysing and reasoning about
aggregate computations and systems [Vir+19], and the support given by tools for
developing and simulating aggregate systems [Vir+19].

10.3 Final Remarks

Developing AC applications requires addressing various algorithmic, computa-
tional, and deployment concerns. The integration of ML across the AC devel-
opment stack provides opportunities and challenges requiring significant research.
The roadmap for AC+ML delineated in this thesis is expected to provide results
and insights on the engineering of collectively intelligent distributed systems. In
the ensuing chapters, we will elaborate on the efforts delineated by this roadmap,
which align with the facets defined during the engineering phase. Specifically
concerning high-level aspects (i.e., the design patterns), we first introduce an ap-
proach called “Collective Program Sketching” Chapter 10. This method enables
the definition of partial collective algorithms with intentional gaps, subsequently
filled via machine learning techniques. Additionally, we introduce a distinct yet

CHAPTER 10. RESEARCH ROADMAP FOR HYBRID AGGREGATE
COMPUTING 209



related concept called “Field-informed reinforcement learning” Chapter 12 . In
this context, aggregate computing is employed to enhance the collective learning
process. The computational fields generated by aggregate computing serve to in-
form the learning process with collective knowledge, despite the existence of only
local knowledge.

Subsequently, we shifted our focus to platform facets. The initial endeavour in
this realm culminated in the development of “distributed schedulers” chapter 13,
wherein RL has been utilized to augment the efficiency of a self-stabilizing col-
lective computation. The experience gained from these three projects has led to
the creation of a specialized tool named “ScaRLib” Chapter 14. This tool serves
as an enabling medium towards a hybrid vision of aggregate computing and is
particularly well-suited for supporting many-agent learning vision.

CHAPTER 10. RESEARCH ROADMAP FOR HYBRID AGGREGATE
COMPUTING 210



Chapter 11

Patterns: Collective Program
Sketching

Contents
11.1 Aggregate Programs Improvement through RL . . . . 213

11.2 Motivation: Building blocks Refinement . . . . . . . . 213

11.3 Learning Schema . . . . . . . . . . . . . . . . . . . . . . . 214

11.4 Reinforcement learning-based gradient block . . . . . . 216

11.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

11.5.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . 218

11.5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . 219

11.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . 221

CPSW behaviour can be expressed by a single aggregate program (global per-
spective) that also defines what processing and communication activities must be
performed by each individual device (local perspective).

Besides the programming model and its implications, a significant portion of
research on AC [Vir+19] has focussed on design and analysis of coordination algo-
rithms expressed in field calculus (FC) for efficiently carrying out self-organising
behaviours like, e.g., computing fields of minimum distances from sources (gradi-
ents) [NSB03; MZL04; Aud+17], electing leaders [MBD18], or distributed sum-
marization [Aud+21]. However, devising self-organising coordination algorithms
is not easy; especially difficult is identifying solutions that are efficient across en-
vironment assumptions, configurations, and perturbations. The difficulty lies in
determining, for a current context, the local decisions of each device, in terms e.g.
of processing steps and communication acts, producing output fields that quickly
converge to the correct solution.

211



Environment

Agent

Computation round

Context
evaluation

Aggregate
program

evaluation

Context
action

Scheduling

policy

Sensors

State

Inbound

Message box

Outbound

Message box

Actuators

neighboursAggregate

program

0 1

2

3

RL

Figure 11.1: Integration of RL within the AC control architecture [CAV21]. The
RL state and reward concepts build upon the context, given by environment and
neighbour data. The designer configures action points where learning can improve
the aggregate computation. The actions selected by the learned policies will then
affect the environment (via actuators) and neighbours (via outbound messages).

In chapter we adopt a RL-based approach—where an agent learns from experi-
ence how to behave in order to maximize delayed cumulative rewards. We devise a
general methodology that somewhat resembles the notion of sketching in program
synthesis [Sol08]: a template program is given and holes are filled with actions
determined through search. In our case, the program is the AC specification of a
coordination algorithm, and holes are filled with actions of a policy learnt through
many-agent Hysteretic Q-Learning. We consider the case of the classic gradient
algorithm, a paradigmatic and key building block of self-organising coordination
[Vir+19; Bea+13; Cas22]: we show via simulations that the system, after sufficient
training, learns an improved way to compute and adjust gradient fields to network
perturbations.

CHAPTER 11. PATTERNS: COLLECTIVE PROGRAM SKETCHING 212



11.1 Aggregate Programs Improvement through

RL

As anticipated in Chapter 3, the behaviour of an aggregate system depends on the
interplay of two main ingredients:

• the aggregate program, expressing conceptually the global behaviour of the
entire system, and concretely the local behaviour of each node in terms of
local processing and data exchange with neighbours; and

• the aggregate execution model, promoting certain dynamics of the system in
terms of topology management (e.g., via neighbour discovery), execution of
rounds, scheduling of communications; and

While the latter cannot be controlled, the importance of the first element is re-
flected in the research on the design of novel algorithms (cf. [Vir+19; Aud+17]),
while the second element is studied w.r.t. the possibility of tuning and adaptiv-
ity according to available technology and infrastructure or the dynamics of the
environment—see Chapter 13. Since tuning programs or execution details to
specific environments or adapting those to changing environments can be burden-
some, it makes sense to consider the use of machine-learning techniques to let a
system learn effective strategies for unfolding collective adaptive behaviour. In
this chapter, we focus on improving aggregate programs by learning effective local
actions within a given algorithmic schema—an approach similar to the sketching
technique for program synthesis [Sol08]. Differently from the previous chapter,
where we used RL to improve the execution model, here we use RL to improve
the aggregate program. Specifically, we integrate RL within the AC control archi-
tecture to support the learning of good collective behaviour sketched by a given
aggregate program (Figure 11.1): we focus on improving AC building blocks (such
as the gradient algorithm covered in Part I) through learning, leading toward a so-
called reinforcement learning-based aggregate computing. Learning, thus, does not
replace the AC methodology for defining the programs, but it is best understood
as a technique that supports and improves the AC algorithm design process.

11.2 Motivation: Building blocks Refinement

A major advantage of AC as a programming model is its compositionality : complex
collective behaviours (e.g., the maintenance of a multi-hop connectivity channel)
can be expressed through a combination of building blocks capturing simpler col-
lective behaviours (e.g., gradients). Since building blocks are fundamental bricks of

CHAPTER 11. PATTERNS: COLLECTIVE PROGRAM SKETCHING 213



Simulation
Learn process

i-th episode

Figure 11.2: Reinforcement Learning schema used in our simulations. The learning
algorithm is applied at simulation time (for T episodes) improving a sharedQ table.
At the deployment time then, the agents exploit a local copy of the optimal Q∗

table found by learning.

behaviour that often recur in programs, their bad and good qualities (cf., conver-
gence speed, stability, etc.) tend to amplify and affect behaviours that depend on
them. Therefore, research tends to investigate refined variants of building blocks
that provide the same functionality but are more effective or efficient under spe-
cific assumptions or contexts (e.g., high mobility, situations where stability is more
important than precision, etc.) [Aud+17; Aud+21]. With a library of algorithms,
the designer can choose the best combination of building blocks that are well-fitted
for a given environment, and even substitute a building block with a variant im-
plementation without substantially affecting the application logic. In general, a
building block can be seen as a black box (function) that takes a set of input fields
(e.g. metric, perception fields, constant fields, etc.) and yields an output field.
To increase its flexibility, such a function could leverage a refinement policy able
to affect the behaviour of the building block over time or in a certain situation.
This policy could be a feedback loop, hysteresis, or custom logic to solve a spe-
cific problem. We aim at structuring the learning of refinement policies through
RL [Agu21]. Our idea is that it should not be the designer who codes a particular
block to be used, but that it is the learning algorithm that understands, given a
global policy to be optimized following a utility function, what actions need to be
activated.

11.3 Learning Schema

The learning algorithm is seen as a state (st) evolution function in which the nodes
try to apply a correction factor (update) following a policy (πQ

target or π
Q
behavioral)

refined by learning. The state is built from a neighbourhood field of the building
block generic output (ot) passed as input. Listing 11.1 exemplifies the general

CHAPTER 11. PATTERNS: COLLECTIVE PROGRAM SKETCHING 214



def optBlock(ot−1) { // learning as a field that evolves in time

rep((s0, a0, o0)) { // s0, a0 context dependent

case (st−1, at−1, _) => {

val Q = sense("Q") // global during training, local during execution

val ot = update(ot−1, at−1) // local action

// state from the neighbourhood field program output

val st = state(nbr(ot))
val at = branch(learn) { // actions depends on learn condition

val rt−1 = reward(ot, simulation) // simulation is a global object

simulation.updateQ(Q, st−1, at−1, rt−1, st) // Q update

∼ πQ
behavioural(st) // sample from a probabilistic distribution

} {

πQ
target(st) // greedy policy, no sampling is needed

}

}

(st, at, ot)
}._3 // select the output from the tuple

}

Listing 11.1: ScaFi-like pseudocode description (implemented in the simulation)
for value-based RL algorithm applied AC. state, update, reward are block spe-
cific.

program structure used to combine RL with AC for improving building blocks.
The branching operator (branch) on learn condition makes it possible to use
the centralized training and decentralized execution (CTDE) schema since when
the learn is false there is no need for a central entity (simulation). Here we
applied a many-agent Q-Learning with hysteretic updated (from the Hysteretic Q-
Learning algorithm described in Section 4.1): the Q table is gathered using sense,
a ScaFi operator used to query sensors and collect data from them. At simulation
time, Q is a shared object, but at runtime, each agent owns a local table.

Finally, the produced ot is returned to the caller.
In this case, we encoded the learning process with AC itself. Though we could

have extracted the learning process from the AC program, we took this decision
because:

• it allows us to extend learning by exploiting neighbourhood Q table fields –
so we can think of doing non-homogeneous learning in different areas of the
system;

• the scheme for taking state and choosing actions is the same as the one we
would need for learning, so the only difference is in the branch; and

CHAPTER 11. PATTERNS: COLLECTIVE PROGRAM SKETCHING 215



• it can simply be extended to online learning.

11.4 Reinforcement learning-based gradient

block

The gradient block could be generalized as follows:

def gradientOpt(source, metric, opt) {

rep(infinity) { g => mux(source) { 0 } { opt(g, metric) } }

}

where opt is a function that determines how to evolve the gradient based on the
field of current gradient values g and current metric (estimation of distances to
neighbour). In this chapter, we examine opt as an hole, a placeholder that a
reinforcement learning (RL) algorithm fills based on raw experiential interactions.
The primary objective is the incremental construction of a gradient field, while
also aiming to mitigate the rising-value issue. This issue is also known as the
count to infinity problem in the domain of field-based coordination. It manifests
as the system’s inefficiency in rapidly responding to an increase in output needs
(e.g., when a source node deactivates), despite its proficiency in handling situations
requiring a reduction in output (e.g., when a new source is introduced).

The literature provides various heuristic solutions to overcome the limitations
of traditional gradient methods [Aud+17]. One notable technique is the Con-
straint and Restoring Force (CRF) [Bea+08], designed to enforce a uniform rate
of increase in the gradient field when nodes detect a local, slow ascent. In this
context, each node is influenced by a set of constraints, specifically, nodes that
possess lower gradient values. If a node identifies a sluggish increase and finds
itself unconstrained, it elevates its output at a fixed rate, independent of its neigh-
bours. Otherwise, it adheres to the traditional gradient formula. Our proposed
learning algorithm aims to emulate this behaviour while eliminating the necessity
for manual algorithmic design.

To articulate our learning problem, we employ the general schema depicted
in Figure 11.2. The state function captures sufficient information for agents to
dynamically accelerate local value increases. Specifically, we define the state st
as the difference between a node’s perceived output and the minimum and maxi-
mum gradient values received from its neighbours: st = (|mint − ot|, |maxt − ot|).
To manage the high dimensionality of this state space, we employ discretization,
thereby mitigating the risk of overfitting. The discretization is governed by two
parameters: maxBound and buckets. maxBound constrains the output to a range
between −radius×maxBound and radius×maxBound, where radius is the max-
imum communication range of the nodes. Values outside this range are considered

CHAPTER 11. PATTERNS: COLLECTIVE PROGRAM SKETCHING 216



equivalent states. buckets defines the granularity of the discretization within this
specified range.

To incorporate historical data, we stack the states from two successive time
steps to form ht = [(st−1, st)]. This composite state ht serves as the input state for
our RL algorithm, resulting in a state space cardinality of |st| × |st| = buckets4.

The action space is bifurcated into two categories: ConsiderNeighbourhood,
which executes the traditional gradient evaluation, and Ignore(velocity), which
disregards neighbouring data to adjust the gradient at a designated velocity.
The corresponding update function is defined accordingly:

def update(ot−1, at−1, metric) = // ot−1 is the previous gradient output

val gclassic = minHoodPlus(nbr(ot−1) + metric())

match at−1 // scala-like pattern matching

case ConsiderNeighbourhood => gclassic
case Ignore(velocity) => ot + velocity * deltaTime()

Finally, the reward function is described as follows:

def reward(ot, simulation) {

if(ot - simulation.rightValueFor(mid()) ∼= 0) { 0 } { -1 }

}

In this context, the function mid retrieves the corresponding field of node identi-
fiers. The overarching goal is to compel the nodes to generate output values that
closely approximate the ideal gradient values as stipulated by a trusted oracle,
represented by the function simulation.rightValuefor().

When the output aligns with the expected ideal value, a reward of 0 is issued.
Conversely, if the output diverges from the expected value, a minor punitive mea-
sure in the form of a negative reward, −1, is administered. This is designed to
expedite the nodes’ convergence toward a state where the actual output closely
mirrors the ideal value.

11.5 Evaluation

To evaluate our approach, we run a set of Alchemist simulated experiments and
verify that an aggregate system can successfully learn an improved way to compute
a gradient field (cf. the gradient block described in Part I). The source code, data,
and instructions for running the experiments have been made fully available at a
public repository1, to promote the reproducibility of results.

1https://github.com/cric96/experiment-2022-coordination

CHAPTER 11. PATTERNS: COLLECTIVE PROGRAM SKETCHING 217

https://github.com/cric96/experiment-2022-coordination


Name Values
(γ) [0.4 – 0.7 – 0.9]

(ϵ0, θ) [(0.5,200) – (0.01,1000) – (0.05,400) – (0.02,500)]
(β, α) [(0.5,0.01) – (0.5,0.1) – (0.3,0.05) – (0.2,0.03) – (0.1,0.01)]

(buckets, maxBound) [(16,4) – (32,4) – (64,4)]

Table 11.1: Summary of the simulation variables. A simulation is identified by a
quadruple (i, j, k, l) of indexes for each variable.

11.5.1 Simulation setup

The simulation comprises N devices, organized within a structured grid. The grid
environments employed for this study fall into two categories, each having identical
dimensions concerning width (200m) and inter-node spacing (5m). However, they
differ in the number of rows: the first scenario features a single row (essentially
aligning the nodes linearly), while the second includes five rows.

The total number of agents, denoted by N , is calculated using the formula
N = 200

5
× rows. Consequently, the first and second scenarios comprise 40 and 200

agents, respectively. Each node initiates its round evaluation asynchronously at a
frequency of 1Hz. The nodes positioned at the extreme left and right ends serve
as source nodes. A single simulated episode has a duration of 85 s, denoted as T .

To simulate a gradually escalating issue, we deactivate the left source node
at t = 35 s, denoted as Cs. Subsequently, the system experiences an ascent in
computational field values before ultimately stabilizing.

An entire simulation spans NE = 1200 episodes. For the initial NL = 1000
episodes, the system employs RL to enhance a globally shared Q-table. During
the subsequent NT = 200 episodes, each agent utilizes the optimized Q-table,
adhering to a greedy policy for action selection.

The Hysteretic Q-Learning algorithm serves as the learning mechanism (refer to
Section 4.1). The behavioural policy adopts an ϵ-greedy strategy with exponential
decay, optimizing the balance between exploration and exploitation. The decay
rate is formulated as ϵi = ϵ0 · ei/θ for each episode i.

To determine the most effective configuration, we performed a grid search
across various parameters, summarized in Table 11.1. The efficacy of each config-
uration is ascertained by calculating the total error during the final NT episodes,
which is derived as follows:

errorti = |gradientti − simulatedti| (11.1)

CHAPTER 11. PATTERNS: COLLECTIVE PROGRAM SKETCHING 218



Subsequently, the system-wide average error for each time step t is computed:

errort =
1

N

N∑
i=0

errorti (11.2)

Finally, the cumulative error for each episode is given by:

errorepisode =
T∑
t=0

errort (11.3)

We finalize the optimal configuration based on box plot analyses (Figure 11.3a),
selecting the one that minimizes the average error during the last NT episodes.

11.5.2 Results and Discussion

Figure 11.3 provides a comprehensive performance analysis of our reinforcement
learning-based gradient algorithm. The best-performing configuration, character-
ized by parameters γ = 0.9, ϵ0 = 0.5, θ = 200, α = 0.3, and β = 0.05, was selected
based on Figure 11.3a. The trend of the mean error across episodes is illustrated
in Figure 11.3b, where the shaded region represents the standard deviation and
the dashed vertical line marks the time of source alteration.

The principal objective of this research was to develop an algorithm that offers
superior performance against the rising-value problem when compared to tradi-
tional gradient methods. This is corroborated by Figure 11.3b, which demonstrates
that our algorithm successfully reduces the errorepisode compared to conventional
approaches. Specifically, the agents adaptively learn when to disregard the neigh-
bouring nodes and accelerate the output through the Ignore action.

This adaptive behaviour is further substantiated by Figures 11.3c to 11.3f. Es-
pecially in Figures 11.3c and 11.3e, where the agent count is fewer, the rapid decline
in error (and corresponding quick output increase) is evident when the source node
is deactivated. In addition, our algorithm’s performance closely parallels that of
the manually crafted CRF solution for the rising-value problem. Both exhibit an
initial acceleration phase followed by a transient period of overestimation, eventu-
ally leading the system to accurate gradient field values.

Another noteworthy aspect is the system-wide applicability of the learned pol-
icy. The policy is universally shared among the nodes, thereby enabling straight-
forward scalability across deployments with varying node counts. Moreover, the
policy outperforms the baseline across different system configurations.

We would also like to emphasize that the asynchronous nature of node activa-
tion eliminates the need for a globally synchronized clock. This feature enhances
the policy’s adaptability, as it remains effective regardless of the local order in

CHAPTER 11. PATTERNS: COLLECTIVE PROGRAM SKETCHING 219



1301 1101 1011 3221 2100 2320 1220 3322 3001
configuration

300

350

400

450

500

550

ep
iso

de
 e

rro
r

(a) Box plots of last Gs episode.

0 100 200 300 400 500 600
episodes

400

600

800

1000

1200

1400

av
er

ag
e 

er
ro

r

classic
RL
CRF

(b) Learning progress of the best result.

0 10 20 30 40 50 60 70 80
Time

0

100

200

300

400

500

av
er

ag
e 

er
ro

r

error Classic
error RL
error CRF

(c) Error evolution with 40 agents

0 20 40 60 80
Time

0

250

500

750

1000

1250

1500

1750

av
er

ag
e 

er
ro

r

error Classic
error RL
error CRF

(d) Error evolution with 200 agents

0 10 20 30 40 50 60 70 80
Time

0

10

20

30

40

50

60

av
er

ag
e 

ou
tp

ut

mean optimal
mean classic
mean CRF
mean RL

(e) Output evolution with 40 agents

0 10 20 30 40 50 60 70 80
Time

0

10

20

30

40

50

60

av
er

ag
e 

ou
tp

ut

mean optimal
mean classic
mean CRF
mean RL

(f) Output evolution with 200 agents

Figure 11.3: Performance of our RL-based gradient algorithm with velocity =
20.

which aggregate programs are evaluated. Consequently, the learned policy is ver-

CHAPTER 11. PATTERNS: COLLECTIVE PROGRAM SKETCHING 220



satile enough to be employed in a wide range of deployment scenarios.

11.6 Final Remarks

This chapter discusses the integration of aggregate computing and reinforcement
learning to foster the design of collective adaptive behaviour. In particular, we
propose to use RL as a means to improve building block AC algorithms. Our
approach is applied to improving the gradient algorithm, one of the key AC algo-
rithms, where learning is performed through Hysteretic Q-Learning. We evaluate
the approach through synthetic experiments comparing the reactivity of different
gradient algorithms in dealing with the rising value problem. This first approach
can be succinctly described as “RL for AC”, where reinforcement learning is em-
ployed to enhance various facets of aggregate computing. Conversely, the next
solution can be characterized as “AC for RL”, in which aggregate computing tech-
niques are utilized to inform and optimize the reinforcement learning process.

CHAPTER 11. PATTERNS: COLLECTIVE PROGRAM SKETCHING 221



Chapter 12

Patterns: Field-informed
Reinforcement Learning

How can we guide the learning of a swarm
of agents to perform a collective task by
leveraging a computational field?
Is it possible to use a graph neural net-
work (GNN) to learn a policy for each
agent in a swarm-like system?
– RQ1, RQ2

Contents
12.1 Background and Motivation . . . . . . . . . . . . . . . . 224

12.1.1 Graph Neural Networks . . . . . . . . . . . . . . . . . . 224

12.1.2 Problem formalization . . . . . . . . . . . . . . . . . . . 226

12.1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 227

12.2 Approach Description . . . . . . . . . . . . . . . . . . . . 227

12.2.1 Architecture, fields and aggregate dynamics . . . . . . . 227

12.2.2 Learning algorithm . . . . . . . . . . . . . . . . . . . . . 228

12.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

12.3.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

12.3.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

12.3.3 Training Phase . . . . . . . . . . . . . . . . . . . . . . . 233

12.3.4 Test phase . . . . . . . . . . . . . . . . . . . . . . . . . . 234

12.3.5 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . 234

222



12.3.6 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

12.3.7 Discussion and Results . . . . . . . . . . . . . . . . . . . 235

12.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . 236

The coordination of a group of autonomous agents that can perceive and act in
their environment is a fundamental problem in artificial intelligence. Such agents
need to cooperate and communicate to achieve a common goal while dealing with
the challenges of distributed and situated intelligence. These challenges include the
limited and local nature of the information available to each agent and the emer-
gence of global behaviour from local interactions. A key question in designing
swarm-like systems is how to create distributed controllers for the agents that en-
able them to perform complex collective tasks. In this chapter, we propose a novel
hybrid approach that combines the manual and automatic design of distributed
controllers.

Specifically, we propose a solution called Field-Informed Reinforcement Learn-
ing (FIRL) that utilizes aggregate computing together with a GNN [Zho+20] in
combination with a reinforcement learning approach, namely Deep Q-Learning
(DQN). Here the GNN is trained on field-information from aggregate computing
and provides so-called node embeddings for each agent, serving as input for the
DQN. The DQN provides the appropriate actions for the agent to achieve their
tasks. The main contribution of FIRL is the definition of distributed controllers
that are informed by collective knowledge that has been distilled during training,
but that use only local information when deployed. This way, FIRL can achieve a
balance between manual design and automatic design, combining the benefits of
both approaches while mitigating their drawbacks. Moreover, the learned policies
have the potential to scale with size and adapt to different network topologies due
to the inherent nature of GNNs and aggregate computations. FIRL can also be
seen as a way of bridging the gap between symbolic and sub-symbolic AI meth-
ods, by integrating declarative programming with deep learning. Conceptually,
FIRL leverages the ideas of behaviour implicit communication [CPT10] [Tum+04],
whereby intelligent agents (here trained by DQN) achieve collective goals by learn-
ing how to use signs they left in the environment (here made of fields): much like
ants collectively rely on pheromones they produce [Par97].

We employ this approach in a swarm-like system setting where agents are
tasked to cover phenomena detected in their environment. Over time, the agents
have to converge over each phenomenon to cover it appropriately as illustrated in
Figure 12.1.

CHAPTER 12. PATTERNS: FIELD-INFORMED REINFORCEMENT
LEARNING 223



(a) Start (b) After 50 steps (c) After 200 steps

Figure 12.1: Agents (coloured dots) are deployed in an area and have to coordinate
to cover the phenomenon. The phenomenon can have varying areas of importance.
Over time, the phenomenon will be covered sufficiently without any central con-
troller.

12.1 Background and Motivation

12.1.1 Graph Neural Networks

Graphs are ubiquitous structures that represent entities and their inter-
relationships. With the rise of deep learning, there has been a growing interest in
developing neural network models that can process graph-structured data. GNN
is one such model that has gained significant attention in recent years: it is a novel
neural network model used to process graph-structured data with deep learning
approaches. Unlike traditional neural networks that operate on fixed-size vectors,
GNNs are designed to handle irregular structures, making them suitable for various
applications where data is inherently graph-structured.

12.1.1.1 Graph Representation

Let G = (V,E) be a graph where E ⊆ V × V defines the neighbourhood relations
for each participating node, and V identifies the nodes present in the graph. Each
node v ∈ V is associated with an observation (or feature set) fv. For the sake of
simplicity, we thereafter describe Gf as a graph that contains the feature set fv
for each node v ∈ V . Note that, when we refer to Gf and Go, we are referring to
the same graph G but with different node features. Also, to access the feature set
fv of a node v ∈ V , we use the notation fv or Gf [v].

CHAPTER 12. PATTERNS: FIELD-INFORMED REINFORCEMENT
LEARNING 224



12.1.1.2 Objective of GNNs

Given fv, the goal of a GNN is to learn the node embedding hv for each node v ∈ V .
The node embedding hv describes the node in the network and summarizes the
geometric properties of the graph in this location, allowing for the comparison of
various nodes in the graph. This is analogous to how convolutional neural networks
(CNNs) learn spatial hierarchies in images; GNNs learn to capture the topological
and combinatorial structure of graphs.

12.1.1.3 Message Passing in GNNs

In modern GNNs, the node embedding hv is computed by aggregating information
from the node’s neighbours NG(v), and then combining it with the node’s current
embedding hv in a process called message passing [Gil+17]. This iterative process
allows GNNs to capture long-range dependencies in the graph.

The GNNs is partitioned into several message passing layers k, where each of
them is responsible for computing the node embedding h

(k)
v for each node v ∈ V .

Formally, a GNN can be defined by three phases:

m(k)
uv = ψ(k)

(
h(k−1)
u , h(k−1)

v , e(k−1)
uv

)
(12.1)

a(k)u =

(k)⊕({
m(k)

uv : v ∈ NG(u)
})

(12.2)

h(k)u = ϕ(k)
(
h(k−1)
u , a(k)u

)
(12.3)

Where hkv is the embedding of node v within the k-th layer, andNG(v) is the set
of neighbours of node v computed from E. The initial embedding h0v is usually set
to the node’s feature vector fv. The differential part comes into play in the ψ and
ϕ functions, which are typically differentiable functions such as neural networks.

12.1.1.4 Aggregation Functions in GNNs

The ψ function, called the message function, computes the messagem
(k)
uv from node

u to node v. The ϕ function, known as the update function, updates the node
embedding h

(k)
v of node v. The aggregation function

⊕
aggregates information

from the neighbours of a node v. While simple aggregation functions like sum,
max, or sum of products are common, more complex aggregation functions have
been proposed to capture intricate relationships in the graph [Pel+20].

CHAPTER 12. PATTERNS: FIELD-INFORMED REINFORCEMENT
LEARNING 225



12.1.1.5 GNN Application

Applying a GNN to a graph Gf can be expressed as:

GNN (Gf ) = {h(k)v : v ∈ V, k ∈ N} (12.4)

This formulation allows GNNs to effectively process and extract features from
graph-structured data by iteratively aggregating and transforming information
from the node’s neighbours.

GNNs have found applications in diverse areas. They are used in social network
analysis to understand user behaviours and community structures. In chemistry,
they help in predicting molecular properties and drug discovery. In physics, they
assist in understanding complex systems. In this chapter, we delve into the appli-
cation of GNNs in multi-agent systems, focusing on learning local behaviours for
each agent (more details in Section 12.2).

12.1.2 Problem formalization

Given the homogeneity, large system scale, and the locality (i,e., each agent can
only observe its neighbours), the problem can be modelled through the SwarMDP
model [Sos+17]—an extension of the decentralized partially observable Markov
decision processes (DecPOMDP) [BZI00] model for swarm-like systems (see the
Part I section for more details). However, In swarMDP, the neighbourhood is
not directly defined, but it is implicitly defined by the observation model ξ. In
our specific case, the agents can only interact with 1-hop neighbours and are not
directly influenced by other agent observations. We can therefore restrict the
observation model as follows:

ξ(v) : {sj, j ∈ N v} → O ξ = {ξ(v), v ∈ P}

where N v is the set of neighbours of v. This model can be used to express the
evolution of the system in time. Specifically, starting from a global state SP

t , the
next state SP

t+1 is defined as:

AP
t = π(ξ(SP

t )) SP
t+1 = T (SP

t ,AP
t )

Given a time t, the system can be also represented as a graphGt = V t, Et, where Et

is built from N . Each node is then decorated with the local observation perceived
at the time t: ovt ∈ O. This graph can be used both to compute computational
fields and, as done in previous work [Tol+19; Tol+20; Gos+22], can be the input
for a GNN.

CHAPTER 12. PATTERNS: FIELD-INFORMED REINFORCEMENT
LEARNING 226



12.1.3 Motivation

Our work uniquely intersects the realms of automatic and manual methodolo-
gies, with a focus on field-based coordination and ManyRL empowered by GNNs.
Building upon foundational research in co-fields [MZL04], we advance a novel
framework where agents utilize a “digital sign” or computational field [CPT10].
This enables them to access and reason over global system data, thereby enhancing
their decision-making capabilities.

In our innovative model, we integrate ManyRL and GNNs to foster agent in-
telligence. This architecture allows agents to learn localized, yet comprehensive,
representations of their surrounding environment.

Our approach diverges significantly from existing studies in which GNNs func-
tion as part of a distributed controller [Gos+22; Tol+19]. Although these works
have demonstrated GNNs’ utility in decentralized systems, they often relegate the
communication aspect solely to neural networks. This has been known to compli-
cate and potentially destabilize the learning process.

In contrast, our implementation ensures that the GNNs are guided by com-
putational fields, narrowing the learning focus to specialized tasks as outlined by
a collective reward function. This design not only expedites learning but also
enhances its stability.

12.2 Approach Description

In this section, we discuss the components involved in our proposed solution—
namely the architecture—and how these components interact with each other to
bring the system to perform the collective behaviour—namely the dynamics. Fi-
nally, we will detail the learning algorithm designed and used to synthesize the
policy.

12.2.1 Architecture, fields and aggregate dynamics

The proposed solution, summarized in Figure 12.2, consists mainly of two parts:

• the aggregate program used to create part of the observation;

• the policy πgnn learned through GNN-based approach.

Let Γ be the aggregate program that takes a graph Gt decorated by ovt , representing
the participating agents and their neighbourhood relations at time t, as input. The
evaluation of Γ produces a field value θvt for each node v in Gt. From this field,
we construct the feature vector fv for each node v in Gt as follows: fv = (θvt , o

v
t ).

The policy πgnn is then evaluated for each agent using fv as input, producing an

CHAPTER 12. PATTERNS: FIELD-INFORMED REINFORCEMENT
LEARNING 227



GN
N

AC
Environment

t t+1

Figure 12.2: High-level description of FIRL approach. For each time step t, a
graph is constructed from the environment, and it will associate each node with a
local feature ovt (hexagons in the picture). Using this feature, an aggregate program
computes spatio-temporal information that enhances the feature set of each agent
producing fv, depicted as colours in the middle graph. Finally, utilizing the GNN,
actions are computed for each agent in the system to be performed against the
environment, enabling advancement in the simulations according to swarMDP
rules.

action avt that will then modify the global state of the system. While the graph,
containing the aggregate information, might appear as global knowledge, this is
not the case as the information is never aggregated globally. The individual agents
only combine information from their local neighbourhood. In fact, the program
Γ is proactively executed at every agent, and the GNN can be locally evaluated
using only neighbourhood information. We want to emphasize that, in this case,
the GNNs must be 1-hop; otherwise, they could not have a local interpretation
for each agent, according to our system model. This intuition of basing a policy
based only on neighbourhood information came from mean-field RL, introduced
in Chapter 4

12.2.2 Learning algorithm

Here we discuss a variant of many agent Deep-Q learning: we use a value-based
approach combined with a GNN as a function approximator. Specifically, we lever-
aged the property of GNNs to have a dual interpretation, i.e., to function globally
over the entire graph and locally only over the neighbourhood. Importantly, each
agent only has local information from itself and its neighbourhood to utilize in the
GNN. The major modifications to many-agent DQL are (see Section 4.1):

1. experience replay stores experiences in the form of graphs decorated with
features (e.g., observations, actions, rewards, etc.),

CHAPTER 12. PATTERNS: FIELD-INFORMED REINFORCEMENT
LEARNING 228



(a) (b) (c)

Figure 12.3: Simulations of the case study scenario in Alchemist. The dots rep-
resent drones, the circle area represents the phenomenon to be monitored. Fig-
ure 12.3a represents the scenario used during training as well as during test. The
others instead are only used in the test phase to evaluate the policy found.

2. the neural network used to compute the Q function is based on a GNN with
an multi-layer perceptron (MLP) downstream.

The first point is a natural extension because we work on graphs rather than
simple values. This also influences how we create a batch of experiences to train
the network. In fact, we sample a batch of graphs from the replay buffer, and
then we merge them into a single graph, which is then used to train the network.
This process is called graph mini-batching [FL19; Wan+19] and its main purpose
is to pass an entire batch of graphs to the same GNN for improved performance.
For the second point, the use of GNNs allows us to define policies on a variable
neighbourhood, which is essential in such systems as this can change due to the
applied neighbourhood policy. It is known that GNNs have a certain ability to
generalize to new structures and scale with different agents [Zho+20; KTA19].
Additionally, using the overall graph compared to local experiences makes learning
more stable as it reduces the non-stationarity of the environment perceived by
each node. This is because, even though the actions are produced using only
local and neighbourhood information, during the learning phase, we have access
to the internal graph, which will influence the policy through non-local information
during the backpropagation.

12.3 Evaluation

To test the effectiveness of the proposed approach, we experiment with a case
study related to swarm robotics leveraging Alchemist, specifically, tracking and

CHAPTER 12. PATTERNS: FIELD-INFORMED REINFORCEMENT
LEARNING 229



Algorithm 3: Deep Q-Network (DQN) with GNN and Graph Replay
Buffer executed by each agent

Input: Environment E, graph replay buffer D, target network θ−, current
network θ, exploration strategy ϵ

Output: Trained DQN model θ
Initialize D with random initial transitions;
Initialize θ with random weights;
Set θ− ← θ;
while not done do

Observe current graph observations Go;
if random < ϵ then

select a random action a;
else

Gq = Q(Go, θ); a = {v ∈ Gq|av ∈ argmaxavGq[v](av)};
end
Execute the collective action Ga in the environment E and observe a
graph-level reward Gr and the next observation G′

o;
Store transition (Go, Ga, Gr, G

′
o) in D;

Sample a batch of graph transitions (Gi
o, G

i
a, G

i
r, G

′i
o ) from D and

merge them in (Gb
o, G

b
a, G

b
r, G

′b
o );

Compute the target Q-value for each node v in the graph Gb:
yv = Gb

r[v] + γ ∗max a′Q(G′b
o [v], G

b
a[a

′]; θ−);
Compute the current expected value for each node v in the graph Gb:
y∗v = Q(Gb

o[v], G
b
a[v]; θ);

Update the current network weights using gradient descent:
θ ← θ − α∇θ 1

|Gb|(y − y
∗)2;

Every C steps, update the target network weights: θ− ← θ ;
end

CHAPTER 12. PATTERNS: FIELD-INFORMED REINFORCEMENT
LEARNING 230



coverage of a spatio-temporal phenomenon—cf. tracking a wildfire or monitoring
the water levels in a canal with multiple autonomous drones embodied in embedded
devices (e.g., drones or IoT devices)—similar to the ones discussed in Part I. The
individual drones do not have any knowledge of the initial phenomenon itself (i.e.,
shape, size, location, velocity, and so on). Initially, we perform the training phase
using a stationary phenomenon before expanding towards a moving phenomenon
in the test phase. Finally, the phenomenon may have varying areas of interest,
defined by an underlying distribution function. This underlying distribution is
utilized in the feature set of each drone’s observation and guides the drones to
rally over the phenomenon. While we only use Gaussian distributions, we can
use any other distribution and shape. For the GNN, we use the implementation
provided by PyTorch Geometric [FL19], which is a library for deep learning on
graphs built on top of PyTorch [Pas+19]. Finally, we use ScaFi [Cas+22b] as
the aggregate programming language to support our field-informed approach. The
evaluation is performed in two stages, first, the neural networks are trained in an
explicit training phase before being extensively evaluated in the testing stage. 1

12.3.1 Scenario

Figure 12.3 presents the three different types of scenarios utilized within the eval-
uation. The first type of experiment considers a single phenomenon at a static
location (i.e., Zone Fixed), the second type of experiment considers two phenom-
ena in two independent but static locations (i.e., Two Zones), and the third type
of experiment considers a moving phenomenon (i.e., Moving). All phenomena
are modelled as a Gaussian distribution. Importantly, only the left scenario illus-
trated in Figure 12.3a was used for training the neural networks. Furthermore,
all three types of scenarios contain a set of P = 25 drones placed in a 2D grid
large 1000x1000 meters. Each drone can perceive the presence of the phenomenon
of interest through an installed sensor ζv with v ∈ V. (e.g., camera, temperature
sensor, etc.) if it is within range. Additionally, each drone has a coverage range ω
(fixed to 75 meters) that describes the area it can monitor. Each drone can only
communicate directly with its neighbourhood N , which in this case depends on
an O range fixed to 300 meters. Through this communication channel, drones can
exchange information. Each drone moves following a certain action composed of
two components (r, i) which respectively describe the angle and intensity of the
movement (i.e., the velocity vector). Since we used a value-based approach, the
action space A is discrete and composed of 18 possible angles and 3 possible inten-
sities. In particular, the angles are quantized to 20 degrees, and for the velocities,

1The simulations are publicly available at https://github.com/AggregateComputing/expe
riment-2023-acsos-field-informed-rl.

CHAPTER 12. PATTERNS: FIELD-INFORMED REINFORCEMENT
LEARNING 231

https://github.com/AggregateComputing/experiment-2023-acsos-field-informed-rl
https://github.com/AggregateComputing/experiment-2023-acsos-field-informed-rl


we have selected [0, 5, 10] m/s.
For the aggregated information, each drone will produce a computation field

with which they will try to approximate the direction of the phenomenon of inter-
est. The program Γ in question is a simple application of block G, where the source
is the maximum value of the neighbourhood. This can be expressed in ScaFi as
follows:

val source = maxHood(nbr(sense(ζ))) == sense(ζ)
G(source, Point3D.Zero, _ + nbrVector())

where maxHood is a function that returns the maximum value of the neighbour-
hood, nbr is a function that a neighbourhood field of values (in this case, the sensor
value ζ), sense is a function that returns the value of the sensor, and nbrRange

is a function that returns an approximate direction for each drone in the neigh-
bourhood. This value will then be fed into the πGNN to compute the action to be
performed.

12.3.2 Goal

The objective of this scenario is threefold:

1. maximize the number of drones within the phenomena;

2. minimize the number of drones without neighbours;

3. maximize the coverage of the system.

As we are modelling a reinforcement learning system, these three components must
be encoded in a reward function that provides an estimate of the current action
taken by a given drone. Formally, we define the reward of a drone being within
the phenomenon as:

Ra
v = 1 if ζv > 0 else 0 (12.5)

Namely, a drone is considered within the phenomena as soon as the drone can
sense the phenomenon. This will lead the system to prefer a configuration in
which every drone is present within the phenomenon. The second element in the
objective function ensures cohesion among the drones. This is important because
if the system breaks into many scattered drones, the observability of the phe-
nomenon is reduced, limiting the ability of the drones to move appropriately in
the environment. In this case, the reward is defined as:

RN
v = 1 if |N | > 0 else 0

Finally, to maximize the coverage, we define a reward function that favours the
maximum distance between the drones equal to the coverage range ω. This will

CHAPTER 12. PATTERNS: FIELD-INFORMED REINFORCEMENT
LEARNING 232



minimize multiple drones covering a common area. This means that the average
distance will tend towards the one expressed by the viewing range of each drone:

RC
v = 1− dmin

ω

Where dmin describes and minimum distance of the drone to its neighbourhood.
The final reward function Rv for an agent v is defined as:

Rv = (
Ra

v +RN
v +RC

v

3
)− 1

Specifically, we decided to express the signal as a regret as it is a more general
measure of the quality of the action taken by the drone.

12.3.3 Training Phase

Before we can evaluate our approach, the underlying neural networks have to be
fine-tuned in a dedicated training phase. The training process for each neural
network was divided into 100 episodes, each consisting of 200 steps, resulting in
a total of 20,000 experiences. For each episode, the 25 drones are semi-randomly
positioned on a grid (i.e., in a lattice layout with a random variation in their
position) without knowing the correct position of the phenomenon, but that is
fixed in the top right corner. The position of the phenomenon with an example of
positioned drones can be seen in Figure 12.3a.

The feature set used by the GNN created for each drone consists of the vector
computed by the aggregated program and the value of the local sensor ζ. In this
case, we chose to use an exponential epsilon decay, defined as:

ϵ = ϵmin + (ϵmax − ϵmin) · e−λ·e

Where e is the current episode number. This leads to a high number of random
actions at the beginning and gradually shifts towards exploitation in the later
episodes. In our training process, we set ϵmin = 0.02, ϵmax = 0.99, and λ = 0.1. γ
was set to 0.99, as we want to give more value to future returns, aiming to achieve
good coverage by continuously tracking the phenomenon. The neural network
structure used consists of a layer of SuperGAT [KO22] —a GNN based on attention
mechanisms— and a layer of MLP. The hidden size was set to 256. As the reward
function is defined as a regret, we decided to use the Huber loss function with
δ = 1. which is a combination of the L1 and L2 loss functions:

Lδ =

{
1
2
(y − ŷ)2 if |y − ŷ| < δ

δ · (|y − ŷ| − 1
2
δ) otherwise,

CHAPTER 12. PATTERNS: FIELD-INFORMED REINFORCEMENT
LEARNING 233



where δ is a hyperparameter that determines the threshold between the two loss
functions (fixed to 1 in our experiments) and y and ŷ are the target and predicted
values, respectively. This function is used to penalize the drone if the action taken
is too far from the optimal action. We use the RMSprop optimiser with a learning
rate of 0.0001. Finally, we use a replay buffer of size 1000 to store the graph
experiences and a batch size of 32.

12.3.4 Test phase

For the evaluation, we explore the previously discussed three different types of
experiments. We generated 64 random scenarios for each type of experiment.
Additionally, the placement of the drones was randomized as it has been done
during training. For the first type, consider a single static phenomenon randomly
placed in the environment. This is in contrast to the training where the phenomena
were always placed in the same location. For the second type, we placed two
distinct phenomena within the area. Their location is kept constant in all 64
experiments. As the training only contained a single phenomenon, this setup
represents a challenge for the drones. Finally, the third type contained moving
phenomena. In each scenario, the starting position as well as the direction of
movement is randomly sampled from a uniform distribution. The movement is in
a straight line with a constant speed of 5m/s within an unbounded environment.
Examples of all three types of experiments are shown in Figure 12.3.

12.3.5 Baselines

We compare our FIRL approach against baseline approaches where the DQN uti-
lizes a MLP as well as an approach only relying on GNNs, without additional field
information. In all approaches, the underlying neural network (i.e., the MLP and
the GNN) are trained with a single, stationary phenomenon.

The MLP uses the same feature set as the GNN but applies it in the DQN
but without leveraging the graph structure. Moreover, we increased the batch size
to 512 and the replay buffer to 10000 since we recorded 25 drones’ experiences
for each step instead of one graph experience. The GNN alone, without using the
field information, apply the position of drones and the local sensor value directly as
input features within the DQN. These baselines are used to verify the effectiveness
of the components used in the FIRL. Indeed, the MLP baseline is used to verify
the effectiveness of the GNN in the proposed approach, while the GNN baseline is
used to verify the effectiveness of the field information in the proposed approach.

CHAPTER 12. PATTERNS: FIELD-INFORMED REINFORCEMENT
LEARNING 234



12.3.6 Metrics

We evaluate the performance of the different approaches by measuring the coverage
of the phenomenon over time. The coverage is defined as the percentage of the
phenomenon covered by drones. Specifically, we can measure the coverage as
the intersection over the union of the phenomenon and the drones’ view range.
Formally, we define the overall coverage for a certain time step as:

Ω =
⋃
v∈V

ωv C =
|Ω ∩ P|
|P|

where P is the area of the phenomenon and Ω is the area covered by the drones.
In the training phases, we measure the average coverage in each episode, and the
total reward obtained by the drones at each episode of the simulation. We also
measure the number of drones that are within the phenomenon at each step of
the simulation. This will be a measure of how well the drones are tracking the
phenomenon.

12.3.7 Discussion and Results

The results of the training process are summarized in Figure 12.4. In the charts,
the line represents the average value of a metric of interest, while the shaded
area represents its standard deviation. Specifically, we observe that the proposed
version achieves higher coverage and total reward compared to other approaches.
Interestingly, despite the global information available in GNNs without fields, they
fail to converge to a good result like the one obtained with the field. This outcome
was expected, as the computed field helps drones encode the necessary information
to navigate towards the phenomenon. Furthermore, we note that GNN combined
with DQN and graph replay buffer outperforms the simple MLP informed field
computation. This is because relying solely on MLP and basic deep learning leads
to non-stationary and unstable learning, as evident from the wider confidence
interval of the reward over training time.

Focusing now on the results of the test phase, highlighted in Figure 12.5, we
observe that the field-informed version achieves higher coverage than the other
approaches in all scenarios since it shows the ability of our solution to generalize
to situations. We observe that the field-informed version successfully moves the
drones closer to the target phenomenon, distributing them evenly without col-
lapsing into a single central point. Figure 12.5 quantitatively presents the results
across various previously described scenarios.

For all experiments, both GNN versions demonstrate the capability to transfer
the learned experience to the test phase whereas the MLP version fails to gen-
eralize. It is worth noting that, in the Zone Fixed experiment, once the desired

CHAPTER 12. PATTERNS: FIELD-INFORMED REINFORCEMENT
LEARNING 235



configurati45on is achieved in the static case, the drones cease to move, maintain-
ing the found configuration. Interesting observations arise when we use scenarios
different from the training phase. In the Two Zones experiment, we notice that
our approach using field information finds a better configuration than the simple
GNN counterpart. It exhibits both higher overall coverage and manages to divide
the system into two equally covered parts. Indeed, observing the Figure 12.6, we
notice that the informed version maintains a balanced coverage between the two
zones, with a difference of less than 5% between the two parts, maintaining a fair
division of the phenomena. In contrast, the uninformed version also maintains
a fair division but with significantly different coverage between the two parts,
indicating a wrong placement among the drones in one of the zones. This is a
consequence of the uninformed version’s inability to encode the necessary infor-
mation to divide the drones into two zones, therefore it is not able to generalize.
Finally, the Moving experiment emphasizes how the informed version generates a
more robust policy for new scenarios. Indeed, we observe that our approach using
FIRL maintains higher coverage and a greater number of drones on the target
phenomenon compared to the other two solutions. The uninformed GNN version,
however, fails again to generalize its movement behaviour, as evidenced by the
simulations where the drones, once reaching the target zone, stop moving due to
tracking issues.

In conclusion, the results demonstrate how the proposed idea can generate more
robust controllers. By guiding information flow in GNNs, we improve learning effi-
ciency and alleviate the challenge of encoding relevant information. Nevertheless,
we acknowledge the crucial role of GNNs. Our modified version of DQN, combined
with GNNs, enables the discovery of robust behaviours in a few episodes, which
is challenging to capture with MLPs combined with DQN, even if we use field
information.

12.4 Final Remarks

In this chapter, we have introduced a novel approach for constructing distributed
controllers by leveraging aggregate computing to encode agent interactions, along
with the combination of DQN and GNN for synthesizing distributed intelligence.
The proposed Field-Informed reinforcement learning (FIRL) approach offers a
promising solution to the challenges faced in coordinating multi-agent systems. By
combining manual design and machine learning techniques, the approach enables
agents to autonomously learn and adapt their behaviour while leveraging locally
available information. The demonstrated success in the proposed case study in
solving collective tasks underscores the potential impact of this approach in ad-
vancing the field of multi-agent systems and swarm robotics. In the next chapter,

CHAPTER 12. PATTERNS: FIELD-INFORMED REINFORCEMENT
LEARNING 236



0 20 40 60 80 100
episode

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

co
ve

ra
ge

mode
GNN (informed)
GNN 
MLP

(a) Average coverage for each episode in
training

0 20 40 60 80 100
episode

2500

2400

2300

2200

2100

2000

to
ta

lR
ew

ar
d

mode
GNN (informed)
GNN 
MLP

(b) Reward during training

Figure 12.4: Training results of FIRL. It can cover the phenomenon better than
the baselines, and it reaches a higher reward.

0 50 100 150 200
time

0.1

0.2

0.3

0.4

0.5

co
ve

ra
ge

experiment = Zone Fixed

0 50 100 150 200
time

experiment = Two Zones

0 50 100 150 200
time

experiment = Moving

mode
GNN (informed)
GNN
MLP

(a) Ratio of coverage of the phenomena. Our FIRL approach can
outperform other approaches lacking field information.

0 50 100 150 200
time

0

5

10

15

20

in
sid

e[
su

m
]

experiment = Zone Fixed

0 50 100 150 200
time

experiment = Two Zones

0 50 100 150 200
time

experiment = Moving

mode
GNN (informed)
GNN
MLP

(b) Number of drones inside the phenomenon in the three types of
experiments

Figure 12.5: Quantitative test results. The proposed approach can cover and track
the phenomenon better than the baselines.

CHAPTER 12. PATTERNS: FIELD-INFORMED REINFORCEMENT
LEARNING 237



0 50 100 150 200
time

0

2

4

6

8

10

12

in
sid

e[
su

m
]

mode = GNN (informed)

0 50 100 150 200
time

mode = GNN

0 50 100 150 200
time

mode = MLP

area
1
2

(a) Two Zones experiment: aggregated number of drones inside
each phenomenon

0 50 100 150 200
time

0.10

0.15

0.20

0.25

0.30

co
ve

ra
ge

mode = GNN (informed)

0 50 100 150 200
time

mode = GNN

0 50 100 150 200
time

mode = MLP

area
1
2

(b) Two Zones experiment: ratio of covered to the uncovered zones
both phenomena

Figure 12.6: Coverage of two zones using the different modes of the controller.

we will discuss how reinforcement learning can be used to platform aspects of the
aggregate computing model.

CHAPTER 12. PATTERNS: FIELD-INFORMED REINFORCEMENT
LEARNING 238



Chapter 13

Platform: Distributed Schedulers
for Collective Computations

Is it possible to improve the efficiency of
aggregate computations without modify-
ing the application logic?
– RQ2, RQ4

Contents
13.1 Background and Related Work . . . . . . . . . . . . . . 240

13.2 Aggregate Platform Improvement Through Rein-
forcement learning . . . . . . . . . . . . . . . . . . . . . . 241

13.2.1 Learning Setting . . . . . . . . . . . . . . . . . . . . . . 242

13.2.2 Reinforcement learning to Reduce Energy Consumption 243

13.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

13.3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . 245

13.3.2 Discussion and Results . . . . . . . . . . . . . . . . . . . 247

13.3.3 On practical applicability . . . . . . . . . . . . . . . . . 251

13.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . 252

An aggregate program is usually deployed across a network of devices that
interact with their neighbours. These devices execute the program through asyn-
chronous sense-compute-act rounds [Cas+20b]. The goal is to facilitate the emer-
gence of collective behaviour through repeated evaluations of the program, thereby
directing the system towards globally coherent objectives. The program encom-
passes both functional and non-functional aspects, such as resilience and resource

239



complexity in terms of time, memory, and message overhead. Some of these non-
functional aspects can be managed at the middleware level. The aggregate com-
puting (AC) execution platform serves as the logical or software middleware that
coordinates networked devices, enabling them to operate as an aggregate system
and supporting the execution of aggregate applications through properly scheduled
computation rounds [Pia+21]. Typically, the aggregate platform is manually con-
figured to initiate rounds based on a specific frequency or triggers. However, this
chapter investigates the application of RL at the platform level to discover effective
scheduling policies. The aim is to enhance system efficiency while preserving its
functionality, as characterized by the eventual collective outcome.

We substantiate our thesis through a case study, where a variant of many-agent
Q-Learning is successfully applied to minimize system-wide power consumption
without requiring modifications to the aggregate program itself [LR00].

13.1 Background and Related Work

The problem we deal with in this work may fall under the topic of Multi-Objective
Sequential Decision-Making [Roi+13]. In fact, our goal is to optimize a functional
goal (e.g. crowd steering) and one or more non-functional goals (e.g. reducing
energy consumption, increasing the speed of calculation, and others).

In particular, these goals may also conflict, making it difficult to find the op-
timal policy for a given problem. Particularly, we focused on applying RL in the
case of the trade-off of functional and non-functional concerns, since it has been al-
ready exploited for managing non-functional aspects in several applications - e.g.,
reducing the energy in a smart building [Yu+21], improving the efficiency of rout-
ing protocols [HCL18] and improving cooling in server farms [Le+19]. Moreover,
RL is practically the first choice as it allows learning directly from raw experience
without the need to build an explicit model with minimal overhead at inference
time (both in the case of deep neural networks and standard tabular methods).

The focus of our solution is mainly on energy efficiency related to self-organising
computations—since it is an important topic nowadays related to green computing
concerns. One way to improve efficiency would be to act at the level of schedul-
ing as already explored in related work about wireless sensor network scheduling.
In [Iwa+21; Mih+12] the system learns when a node should be awakened to reduce
conflicting messages (and therefore to reduce the power consumption). However,
our work is quite different from the previous. We aim to leverage learning to
improve a general collective computation expressed in AC-like execution model
(i.e, asynchronous and iterative evaluation of rounds eventually lead to collective
behaviours–see Part I) and not a specific application as is often the case (e.g.
distributed sensing in WSN). For example, consider a typical AC application,

CHAPTER 13. PLATFORM: DISTRIBUTED SCHEDULERS FOR
COLLECTIVE COMPUTATIONS 240



namely the management of crowds of people equipped with smart devices. The
self-organising execution model involves fixed and periodic evaluation of rounds.
But this means that at unhurried times with few emergencies, the system continues
to compute the same value without adding any collective information. Therefore,
with RL we want the system to learn to identify these “peaceful” conditions and
then reduce the number of collective rounds.

Another essential non-functional aspect that can be addressed using RL is
the management of message bandwidth. Numerous studies have explored efficient
communication protocols [ZZL19; Su+19]. For computations resembling the AC
model, nodes are required to communicate with their neighbours using broadcasts
to eventually achieve a collective data structure. However, in many scenarios, this
approach can result in unnecessary message transmissions. For instance, in highly
dense networks, transmitting local information to only a select group of neighbours
might be sufficient to establish the same global structure. Consider the scenario of
crowds as an illustrative example. In an extremely dense setting, if a node intends
to disseminate an alarm throughout the system, it might be more efficient to relay
the message to just a subset of its neighbours, adhering to a gossip-like protocol. In
such contexts, RL can be instrumental in determining when nodes should modify
their neighbourhood model, thereby reducing the number of messages transmitted
while still achieving the intended application objective.

13.2 Aggregate Platform Improvement Through

Reinforcement learning

In AC, collective behaviour is the result of both an aggregate program and an
execution protocol whose details may vary within certain limits without affecting
the desired functionality. The extent of effects induced by the execution protocol
is usually assessed by simulation testing, possibly accompanied by formal results
applicable to the aggregate program at hand—e.g., self-stabilisation [Vir+18] or
known properties (cf. optimality results) of used algorithms [Aud+17; Aud+21].

Programming in AC focusses primarily on functional aspects of an applica-
tion, but may also pay special attention to non-functional aspects like, e.g., re-
silience (supported by self-organization algorithms). Other non-functional goals
such as computational efficiency and bandwidth consumption may also be impor-
tant (cf. energy-constrained devices), and can be addressed through (i) efficient
algorithms, in terms of computation, memory, or message complexity, as well as (ii)
fine-tuned configuration of the execution platform, namely of the software middle-
ware, daemon, or simulator responsible for supporting the execution of aggregate
applications. For instance, the designer could configure the platform to schedule

CHAPTER 13. PLATFORM: DISTRIBUTED SCHEDULERS FOR
COLLECTIVE COMPUTATIONS 241



Sensors

Actuation

Communication

Scheduler
Local State

Execution
Platform Program

Environment

Neighbourhood

Agent

Figure 13.1: Description of the general scheme of RL applied to the execution
platform. The agent receives the state and reward from the platform and produces
an action that can affect one of the platform aspects (blue circles).

computation rounds at a given frequency that is somewhat related to the desired
reactivity and expected environmental dynamics.

Recent work [Pia+21] has also proposed the use of rule-based and reactive
policies to let a system adapt its execution based on changes in inputs or the
environment. However, such rules are still hand-crafted: they may be highly
suboptimal or require to be adjusted when porting the application to different
environments.

In this chapter, we explore the possibility of learning how to improve aggre-
gate applications from a non-functional point of view, leveraging the RL frame-
work. Particularly, in our idea RL enhances general aggregate programs, making
it possible to reuse the same application logic in different contexts. This choice
has several benefits. Firstly, learning will be used as a mechanism to improve
adaptability. Indeed, using hand-craft approaches to handle non-functional as-
pects could lead to ad-hoc solutions that might fail against environmental changes
not considered by the designer. Using learning instead, the agents self-adapt as a
consequence to maximize the reward signal that guides them towards a collective
goal. Also, in the case of online and continuous learning, it is possible to learn a
good policy by doing, even if the nodes are in an unknown environment without
any prior knowledge of the application domain. This situation is difficult to handle
with handcraft algorithms, that require a deep domain knowledge.

13.2.1 Learning Setting

The learning settings follow the one discussed in Section 4.3.2, therefore a many-
agent Q-learning configuration with parameter and experience sharing. The ac-
tions chosen by the agents only indirectly influence the local program output: this
is done by producing side-effects at the infrastructural level—e.g., dropping ob-

CHAPTER 13. PLATFORM: DISTRIBUTED SCHEDULERS FOR
COLLECTIVE COMPUTATIONS 242



solete messages from neighbours, or waking up more frequently to more quickly
react to locally perceived changes. The actions can also influence the neighbour-
hood state, e.g., by sending a special message to force neighbours to wake up.
This work considers a local reward function, that should be crafted in a way that
brings about the collective goal through emergence. However, the reward defini-
tion is specific to the non-functional requirement that is being considered; in other
cases, there might be the need to design more complex reward functions, such
as global functions (i.e., the reward signal is received after collective actions) or
neighbourhood-level functions (i.e., the signal is received after a neighbourhood-
level action). Nevertheless, for the requirement taken into account (e.g., energy
efficiency—see next subsection), the reward function can be reused across several
collective program specifications, since it does not depend on the application logic.

13.2.2 Reinforcement learning to Reduce Energy Con-
sumption

Among the non-functional goals that RL could face, this study focusses on reduc-
ing the energy consumption of aggregate computations, by altering the local agent
scheduling policy (As pointed out in Section 13.3.2). Our goal is to reduce the num-
ber of computation rounds and hence the energy needed to achieve certain results
in a certain time amount or, dually, to reduce the amount of time to achieve certain
results for a given amount of energy. Similar ideas have already been considered in
related works about wireless sensor network scheduling. In [Iwa+21; Mih+12] the
system learns when a node should wake up in order to reduce conflicting messages
(and therefore to reduce the power consumption). However, our work is quite
different from the previous. We aim to leverage learning to improve a general col-
lective computation expressed in AC-like execution model (i.e., asynchronous and
continuous evaluation of rounds brings to collective specifications).

In particular, the algorithm should learn how to reduce the round frequency
in stable conditions. To this aim, the program should be self-stabilising [Vir+18],
i.e., it should reach a well-defined eventual fix-point field result, once input fields
cease to change. Note that, by reducing the round frequency, we reduce both the
total amount of program evaluation and the message exchange between neighbours
(which typically involves non-negligible power consumption).

Even if we consider the whole aggregate computing context as a state, in this
work the agent observation space is based on the local output produced by an
aggregate program evaluation. Following the self-stabilisation assumptions, an
agent state encodes the variation of the output history, thus we constrain the
output to be a numeric value. At each time step t, it is computed the local output
ot and δt, which consists of three possible values, Stable (ot = ot−1), Rising

CHAPTER 13. PLATFORM: DISTRIBUTED SCHEDULERS FOR
COLLECTIVE COMPUTATIONS 243



(ot > ot−1), and Decreasing (ot < ot−1). Also, in order to consider the evolution
of δ, each agent stacks the last w values of δ in its state: st = (δt, δt−1, . . . , δt−w).

The actions point out when the agent should fire the next aggregate program
evaluation, following a typical wake-up scheduling. We consider a discrete action
set, e.g., based on possible energy consumption profiles. Each action contains the
delta time at which the next round should be triggered.

Finally, the reward function is devised by only observing the local state of the
AC execution platform, aiming to reduce the overall consumption by emergence.
The reward signal should consider two aspects:

• the overall low-power consumption;

• the time needed to reach a stable condition.

In doing this, the signal weighs these two contributions using an additional pa-
rameter θ. When the output history contains a δ ̸= Stable, the reward function
is evaluated as:

rt = −θ ∗∆/T (13.1)

T is defined by the action with the highest next wake-up value. This gives a
negative reward if the node stays in a non-stable condition for a long time (i.e.,
when ∆ = T ). Otherwise, the reward function is evaluated as:

rt = (1− θ) ∗ (1−∆/T ) (13.2)

That is the inverse of the case of non-stable conditions. Thus, this reduces the
consumption as much as possible, so the reward is maximized when ∆ = T .

Notice that these settings do not depend on a particular aggregate program,
but they can be used in any program with continuous output and an eventually
stable field. Besides, thanks to the local reward function, this learning setting
could be also employed for online learning. However, we would highlight that in
this case, we exploited offline learning. In this way, we could consider the cost of
RL at runtime negligible concerning power consumption.

13.3 Evaluation

Our RL approach combined with AC is evaluated through a set of simulated exper-
iments, verifying that an aggregate system eventually learns an improved schedul-
ing policy reducing the overall system consumption. To this purpose, we adopt
ScaFi [Cas+20a], which bundles, together with the language previously discussed,
a simulator to execute aggregate programs.

CHAPTER 13. PLATFORM: DISTRIBUTED SCHEDULERS FOR
COLLECTIVE COMPUTATIONS 244



Parameter Description Values
ϵ0 ϵ at the beginning of simulations [0.1, 0.4]
γ Discount factor for Q update [0.99, 0.95]
α Learning rate for Q update [ 0.1, 0.4 ]
w State window stack size [2, 5, 7]
θ Balance of reactivity vs. consumption [0.975, 0.9, 0.99]

Table 13.1: The parameters used in simulations. A simulation consist in a tuple
of (ϵ0, γ, α, w, θ).

For the sake of reproducibility, the code and the instructions to run simulations
and produce the charts are open-sourced and available at a public repository1.

13.3.1 Simulation Setup

In the experimental setup, we configure the network to consist of a 100x100 meter
grid populated with N = 100 nodes. Each simulation episode is designed to last
for 80 seconds of simulated time. For the training phase, we conduct L = 1000
episodes using an ϵ-greedy policy. The value of ϵ is dynamically adjusted in each
episode k according to the formula:

ϵk = ϵ0 − (ϵ0/L× k) (13.3)

Here, ϵ0 serves as the initial value of ϵ. This decay mechanism is implemented
to strike an effective balance between exploitation and exploration as the training
progresses.

In terms of learning, a single global Q-table is maintained, which each agent up-
dates using local trajectory tuples of the form (st, at, rt+1). Following the training
phase, we evaluate the system’s performance over the final T = 50 episodes, em-
ploying a greedy policy for this assessment. At this stage, each agent operates with
a localized copy of the Q-table, reflecting the state of the system post-training.

The nodes in the grid have the option of executing four distinct actions, corre-
sponding to different next-wake uptimes: 100ms, 200ms, 500ms, and 1s. The focus
of the training will be on optimizing scheduling policies for two specific programs,
referred to as the gradient-cast (G) and the converge-cast (C) building blocks,
which are detailed in Part I.

To explore the impact of dynamic changes on the system, we introduce vari-
ability in the set of source nodes. When the source set changes, the computational
field must recalibrate to a new stable state. Slow response from nodes can sig-
nificantly extend the convergence time. In scenarios with minor changes, learning

1https://github.com/cric96/experiment-2022-acsos-round-rl

CHAPTER 13. PLATFORM: DISTRIBUTED SCHEDULERS FOR
COLLECTIVE COMPUTATIONS 245

https://github.com/cric96/experiment-2022-acsos-round-rl


algorithms could favour solutions where nodes opt for the longest next wake-up
time, thereby reducing responsiveness.

To induce this variability, we design two specific scenarios. In the first scenario,
referred to as Swap, a single source node is initially placed at the grid’s leftmost
corner. At time 40, the rightmost node becomes the new source, causing a ripple
effect in the system that is eventually stabilized by the aggregate computation.

The second scenario, termed MultiSwap, starts with a central node as the
single source. At time 30, four nodes at the grid corners become new sources. At
time 60, these corner nodes revert to being non-source nodes.

To assess the performance of our RL-based solution (Rl), we conduct simu-
lations for each parameter set as shown in Table 13.1. We compare Rl against
two alternatives: a fixed-rate scheduling approach (Periodic) with a minimum
wake-up time of 100ms, and a power-minimizing heuristic (Ad-hoc).

Specifically, in Ad-hoc, nodes adjust their next wake-up time based on output
changes. If the output differs from the previous step, they double the next wake-up
time, up to a maximum limit. Otherwise, they keep it at the minimum action set
value of 100ms.

We examine how different parameters influence learning dynamics and quantify
the solution error using mean squared error (MRSE) between Periodic and Rl
as follows:

MRSEt =
N∑
i=0

(outputt(i)
Periodic − outputt(i)

RL) (13.4)

In the above equation, t is the time step at which the error is evaluated and i
indexes individual nodes. We also count the total number of computation rounds
(or “ticks”) across the entire system:

TotalTickst =
N∑
i=0

(rounds(i)) (13.5)

Here, rounds is a local function that tallies how many times a node has executed
the aggregate program. Another metric we consider is the rate of ticks per second:

TicksPerSecondt = TotalTickst − TotalTickst−1 (13.6)

For a direct comparison between Rl and Ad-hoc, we calculate two additional
metrics: the error percentage and the energy saving percentage. The error per-
centage indicates how much the computational field of Rl diverges from that of
Periodic. The aim is to minimize this value. The energy-saving percentage is

CHAPTER 13. PLATFORM: DISTRIBUTED SCHEDULERS FOR
COLLECTIVE COMPUTATIONS 246



200 400 600 800 1000
Average ticks

0

250

500

750

1000

1250

1500

1750

2000

To
ta

l e
rro

r

Solutions

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Figure 13.2: The distribution of the solutions after the training phases in Swap
scenario. Each point consists of one of the configurations expressed in Table 13.1.
The colour of nodes shows the θ parameter. The size of nodes represents the w
value (the smaller the node the smaller the w). The solutions of interest are located
in the blue ellipse. Similar results are achieved with C and in the MultiSwap
scenario.

calculated as:

EnergySavingt =
TotalTicksPeriodict − TotalTickst

TotalTicksPeriodict

(13.7)

This metric is intended to be maximized, as a higher value indicates more
significant power savings.

13.3.2 Discussion and Results

The simulations demonstrate that the learning algorithm produces different poli-
cies. Particularly, observing the Figure 13.2 we could recognize three macro-
behaviours:

• the system tends to reduce the power consumption as much as possible,
leading to high error and non-reactive policy. It happens mainly with a
low value of θ since the smaller it is the greater the reward for reducing
consumption tends to be.

• When the simulation runs with a high θ value, the policies remain with a
high power profile to increment as much as possible the reactivity to the
environment changes.

CHAPTER 13. PLATFORM: DISTRIBUTED SCHEDULERS FOR
COLLECTIVE COMPUTATIONS 247



Figure 13.3: The slow-down behaviour of the policy learnt in Swap scenario. The
colours of the small squares denote the node frequencies (the redder, the higher the
frequency). The colours of the large squares denote the output (the greener, the
closer the nodes are to the sources). In the leftmost figure, a new source appears
in the bottom right corner. The signal propagation produces a frequency drop on
the node that evaluates the new value (the black node grows toward the gradient
direction).

• The system tries to balance power efficiency and reactivity, which is our
intended goal. It is typically achieved with a value in the middle of the two,
but other parameters influence the training results.

This section discusses the results of those simulations that have a high power-
saving percentage and a low error in each scenario/program since the others do
not have any particular point of interest. Figure 13.4 shows the charts of the
simulation results. In each scenario, the algorithm successfully reduces the power
consumption percentage of the system, maintaining a low percentage of the output
error. The best performances are typically reached with the highest value of θ,
γ, and w. Indeed, the first value guides the learning process to reduce the period
in which the node outputs are in an unstable condition. γ tends to reduce the
long-term consumption, guiding the node to maximize the overall power. Finally,
with a great value of w, agents tend to better understand the output progression
and then they better react to local changes.

The best results are achieved in the Swap (Figure 13.5) scenario and with the
gradient program. Here, introducing at most a 10% of error in the swap moments
(i.e., when the new source appears), the learning algorithm reduces the power
consumption by nearly 60%. Particularly, the consumption is near to our Ad-hoc
solution, but with a remarkably reduced error. Interestingly, at the swap time, the
round frequency drops until a peak and then soars (Figure 13.3). This behaviour
may appear counter-intuitive. At a first glance, indeed, we expect that the nodes
tend to maintain a low-cost power consumption, and then when changes in the
environment happen, the nodes start to increase the frequency to react quickly
against them. However, if the nodes sleep, they cannot intercept new events. For
this reason, the agents tend to maintain a high power consumption to identify

CHAPTER 13. PLATFORM: DISTRIBUTED SCHEDULERS FOR
COLLECTIVE COMPUTATIONS 248



0 20 40 60 80

0

2e+04

4e+04

6e+04

8e+04

Time

To
ta

l t
ic

ks

Periodic
Ad Hoc
Rl

0 20 40 60 80

200

400

600

800

1000

Time

tic
ks

 p
er

 s
ec

on
d

Periodic
Ad Hoc
Rl

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

Time

Pe
rc

en
ta

ge

Ad Hoc Error Percentage
Rl Error Percentage
Ad Hoc Energy Saving Percentage
Rl Energy Saving Percentage

0 20 40 60 80

0

2e+04

4e+04

6e+04

8e+04

Time

To
ta

l t
ic

ks

Periodic
Ad Hoc
Rl

0 20 40 60 80

200

400

600

800

1000

Time

tic
ks

 p
er

 s
ec

on
d

Periodic
Ad Hoc
Rl

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

Time

Pe
rc

en
ta

ge

Ad Hoc Error Percentage
Rl Error Percentage
Ad Hoc Energy Saving Percentage
Rl Energy Saving Percentage

0 20 40 60 80

0

2e+04

4e+04

6e+04

8e+04

Time

To
ta

l t
ic

ks

Periodic
Ad Hoc
Rl

0 20 40 60 80

200

400

600

800

1000

Time

tic
ks

 p
er

 s
ec

on
d

Periodic
Ad Hoc
Rl

0 20 40 60 80

0

0.2

0.4

0.6

0.8

Time

Pe
rc

en
ta

ge
Ad Hoc Error Percentage
Rl Error Percentage
Ad Hoc Energy Saving Percentage
Rl Energy Saving Percentage

0 20 40 60 80

0

2e+04

4e+04

6e+04

8e+04

Time

To
ta

l t
ic

ks

Periodic
Ad Hoc
Rl

0 20 40 60 80

200

400

600

800

1000

Time

tic
ks

 p
er

 s
ec

on
d

Periodic
Ad Hoc
Rl

0 20 40 60 80

0

0.2

0.4

0.6

0.8

Time

Pe
rc

en
ta

ge

Ad Hoc Error Percentage
Rl Error Percentage
Ad Hoc Energy Saving Percentage
Rl Energy Saving Percentage

Figure 13.4: Simulation results. The leftmost chart shows the total ticks as time
passes (ticks), the chart in the middle shows the ticks per second, and the rightmost
chart shows the error and consumption measures. The first line shows the best
performance of the gradient-case program in the simplest scenario (i.e., Swap).
The second line evaluates the performance of the gradient in the MultiSwap
scenario. Finally, the last two lines show how RL manages the C block, with
different θ values. The overall power-saving using our approach is between 60% to
40% with respect to the Periodic program evaluation.

CHAPTER 13. PLATFORM: DISTRIBUTED SCHEDULERS FOR
COLLECTIVE COMPUTATIONS 249



0 200 400 600 800 1000

400

600

800

1000

Episode

Ro
ot

 M
ea

n 
Sq

ua
re

d 
Er

ro
r

Error

0 200 400 600 800 1000

200

300

400

Episode

Ti
ck

s 
pe

r s
ec

on
ds

Average ticks per second

Figure 13.5: Shows the average error and the average ticks during the learning
episodes of Swap scenario.

100 200 300 400 500 600 700 800 900
Nodes

0.0

0.2

0.4

0.6

0.8

1.0

% Error RL
% Error AdHhoc

% Energy RL
% Energy AdHoc

Figure 13.6: Error and energy saving percentage (see Section 13.3.1) as nodes vary.
We use the best policy found in the Swap scenario as a reference, checking how
the error and energy-saving change.

CHAPTER 13. PLATFORM: DISTRIBUTED SCHEDULERS FOR
COLLECTIVE COMPUTATIONS 250



changes, and then they could enter power-saving settings.
In the MultiSwap scenario, the algorithm reaches a good performance with a

very low error, but with slightly higher power consumption (600 ticks on average
versus 500 of the Swap scenario). This happens because we gave more importance
to the convergence time (with θ = 0.99) and therefore the algorithm tended to
prefer solutions with low error. Nevertheless, even if it has higher consumption, it
reaches a similar performance of Periodic but with half of the ticks.

The same RL settings could be used even with different programs. Indeed,
the system learns how to reduce consumption when it is used with block C. In-
terestingly, θ could be used to decide the trade-off between power consumption
and reactivity: the program with θ = 0.9 (fourth line Figure 13.4) has a low error
but a limited reduction in the power consumption (∼ 40 %); instead, the program
with θ = 0.975 has an increased convergence time in the swap moments but the
overall consumption is reduced by a factor of 70.

Lastly, we want to recall that AC programs are scale-free regarding the num-
ber of nodes, since they leverage self-organization to reach a collective structure.
Therefore, even the learnt policy should not depend on the agents in the system.
To verify this consideration, we use the same policy found with 100 nodes in sev-
eral other deployments (from 100 nodes to 900). Particularly, in Figure 13.6, the
power consumption reduction remains stable as the nodes vary. Moreover, the er-
ror is constant too. There were some oscillations but the error remains negligible
even if the size is 10 times the nodes of the training configuration. Differently, the
heuristic worsens by a factor of three.

13.3.3 On practical applicability

We test our algorithm in simulated scenarios, but it can simply be adapted in a
real system, which mainly means:

1. define the training phase (offline/online);

2. integrate the RL agent inference to the aggregate middleware

For 1) if the learning is performed online, it should be also taken into account
the cost of the central server that performs the learning and the communication
among the nodes— or any technique that allows a global Q table to be maintained
and consistently updated (e.g., via gossip algorithm). Obviously, in the case of
very dense and large-scale networks that is significant. Whereas if simulations are
used, the cost of learning is negligible. Currently, our focus has been on the second
case—implementing true distributed online learning, a more detailed evaluation is
needed to understand the cost of maintaining a central and updated Q table. For
2) on the other hand, there are several aspects to consider. In fact, AC can adapt to

CHAPTER 13. PLATFORM: DISTRIBUTED SCHEDULERS FOR
COLLECTIVE COMPUTATIONS 251



different computing platforms and communication protocols, as it adopts a fluid
approach—see work on pulverization [Cas+20b]. Thus, although AC typically
does not care about the underlying platform, since our work is heavily dependent
on the execution model instead, we have to be sure that this is closer to reality.
Practically, we have to check i) the communication model and ii) the scheduling
platform. For ii), the devices should be able to change the energy-saving model at
runtime to support our AC solution—that is already possible in various embedded
systems such as ESP-32. Regarding communication instead, it could be that some
scheduling policies that rely on a communication protocol do not work for another
protocol (e.g., a policy trained with wired TCP, does not work well with wireless
UDP due to packet collisions, message flooding, etc). Therefore, in the case of
simulation, we should have a communication model as detailed as possible to be
sure that the policy works in the selected platform too.

13.4 Final Remarks

This chapter explores the combination of in combining RL with AC to optimize
non-functional aspects of collective computations such as power consumption, en-
ergy bandwidth, and reactivity (in terms of convergence time) as highlighted by
the research roadmap. In particular, this work leverages Q-Learning to reduce the
cost of executing AC programs in several synthetic scenarios. The contribution
can be framed within a larger vision in which the designer could mainly focus
on functionality and key non-functional aspects (e.g., resiliency) at design time,
while the platform is programmed to or instructed to learn how to optimize less
critical but still highly desired non-functional aspects—acting upon scheduling or
deployment [Cas+20b].

CHAPTER 13. PLATFORM: DISTRIBUTED SCHEDULERS FOR
COLLECTIVE COMPUTATIONS 252



Chapter 14

Platform: Toolkit for Hybrid
Aggregate Computing

How can we design a framework for the
development of effective ManyRL sys-
tems
– RQ2, RQ3, RQ4

Contents
14.1 Software Description . . . . . . . . . . . . . . . . . . . . 254

14.1.1 Core abstraction . . . . . . . . . . . . . . . . . . . . . . 255

14.1.2 ScaFi-Alchemist integration . . . . . . . . . . . . . . . . 257

14.1.3 DSL for learning configurations . . . . . . . . . . . . . . 258

14.1.4 Tool usage . . . . . . . . . . . . . . . . . . . . . . . . . 260

14.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 260

14.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . 260

14.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

14.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . 262

14.3.1 Many Agent simulators: . . . . . . . . . . . . . . . . . . 263

14.3.2 Multi-Agent Deep RL libraries: . . . . . . . . . . . . . . 263

14.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . 265

In this dissertation, we advocate for a language-based approach to the engineering
of CPSW. Specifically, we propose a hybrid vision that combines RL and aggregate
computing. This approach underscores the need to create a corpus of solutions

253



to address the overarching problem of ManyRL. ManyRL [Yan21; HDB21] of-
fers significant opportunities in the design of large-scale systems requiring agents
to coordinate and collaborate effectively, even in environments with partial ob-
servability and intrinsic unpredictability. Therefore, there is a need for effective
frameworks (and tools) that can foster ManyRL adoption.

However, although several frameworks exist both for describing and solving
ManyRL problems (Ray [Mor+17]) and for using and defining multi-agent en-
vironments (PettingZoo [Ter+21]) they generally lack the following aspects: (i)
setting up complex environments (and hence simulation scenarios) is particularly
difficult, and (ii) they are typically tailored for handling a limited number of
agents, and for non-collaborative tasks.

To start addressing these problems, in this work, we present ScaRLib, a frame-
work for the design of effective ManyRL systems, that provides the following set
of features: support for centralized training and decentralized execution, easy ex-
tensibility, a DSL for easily expressing complex cooperative scenarios, integration
with a simulator for large-scale pervasive computing systems (Alchemist), and the
possibility to express field-based coordination problems thanks to the integration
with ScaFi. With ScaFi, in particular, we support our language-based vision:
ScaRLib is provided with a high-level language for distributed computing that
provides declarative and compositional ways of expressing complex coordination
tasks.

14.1 Software Description

ScaRLib 1 2 is a research Scala framework designed to support the development
of ManyRL systems by JVM-based high-level specification, and with learning per-
formed under the hood by PyTorch3. This project aims to provide a tool that
allows easy and powerful system specification. To meet this purpose we have de-
signed many abstractions, that model high-level aspects of the ManyRL domain,
without caring about low-level implementation details. Basically, ScaRLib is com-
posed of three main modules (Figure 14.1), namely:

• scarlib-core that implements the main abstractions over the ManyRL do-
main,

• dsl-core that provides a high-level language to specify the system, and

1Tool available on GitHub at https://github.com/ScaRLib-group/ScaRLib
2demo video at: https://github.com/ScaRLib-group/ScaRLib-demo-video
3https://pytorch.org/

CHAPTER 14. PLATFORM: TOOLKIT FOR HYBRID AGGREGATE
COMPUTING 254

https://github.com/ScaRLib-group/ScaRLib
https://github.com/ScaRLib-group/ScaRLib-demo-video
https://pytorch.org/


scarlib-core dsl-corealchemist-scafi

PyTorch

Figure 14.1: ScaRLib main modules

• alchemist-scafi that provides bindings between ScaRLib and the two tools
Alchemist and ScaFi. It is important to note that ScaRLib is not limited
to the Alchemist-ScaFi combination, that module is already implemented
due to the actual need, however, it is possible to implement other bindings
to other tools (e.g., by replacing Alchemist with some other simulator, for
example, FLAME GPU [RCR09]).

14.1.1 Core abstraction

The module scarlib-core implements the core functionalities and abstractions
of the framework, such as the definition of the main data structures and the im-
plementation of the main algorithms. All the abstractions (Figure 14.2) are built
around a bunch of concepts. The key element is the System, which is a collection of
agents that interact within a shared environment and that are trained to optimize
a global or local reward signal expressed by a reward function. The tool comes
with two types of systems already implemented that are very common in litera-
ture [DD20], i.e., centralized training and decentralized execution (CTDESystem)
and decentralized training and execution (DTDESystem). Furthermore, an imple-
mentation of the DQL algorithm [Mni+15] is provided and used to train agents.
The end-user who wants to run a learning process only has to implement four
elements in order to define his own system with the desired collective goal, which
are:

1. the environment : that is the place where the agents live,

2. the agent state space: namely the information that the agent can perceive
from the environment,

3. the action space: namely the actions that the agent can perform in that
environment, and

4. the reward function: that is the function that the agent has to maximize.

CHAPTER 14. PLATFORM: TOOLKIT FOR HYBRID AGGREGATE
COMPUTING 255



<<trait>>
Environment

+ step(action: Action, agentId: Int): (Double, State)
+ observe(agentId: Int): State
+ reset( ): Unit

<<trait>>
Agent

+ step( ): Unit
+ notifyNewPolicy(policy: Policy): Unit

<<trait>>
Action

<<trait>>
State

+ elements( ): Int
+ observation( ): Seq[Double]

<<trait>>
RewardFunction

+ compute(currentState: State, action: Action, newState: State): Double

<<trait>>
DeepQLearner

+ record(state: State, action: Action, reward: Double, newState: State ): Unit
+ improve( ): Unit
+ snapshot(episode: Int, agentId: Int): Unit
+ getPolicy( ): Policy

<<trait>>
System

+ learn(episodes: Int, episodeLength: Int): Unit
+ runTest(episodes: Int, policy: Policy): Unit

Figure 14.2: ScaRLib core architecture

Only by using this module, it is possible to run a simple learning process in a
simulated environment based on our platform.

To gain a deeper comprehension of the system dynamics, a discussion of the
underlying mechanisms is warranted. Both systems employ a training algorithm
characterized by a sequence of epochs, each encompassing a collection of episodes.
Within each episode, agents are presented with the current state, which serves as
an input for action selection. The collective action executed by the agents prompts
a state transition in the environment, thereby facilitating the progression to the
subsequent episode. Upon completion of an epoch, the environment is reinitialized,
and the agents undergo training based on the aggregated experience.

Most specifically, if the chosen system is a CTDESystem (Figure 14.3a) the agents
are trained in a centralized way, for that reason, there is a single central dataset,
where the global experience of all the agents is stored, and a single central learner
that is responsible for the training process and for the improvement of the policy
neural network. The system is also responsible for the execution of all the agents
and the notification of the updated policy. In this way, it is possible to easily
extend the system in order to modify the execution flow, e.g., if a concurrent and
distributed execution is needed. The DTDESystem (Figure 14.3b) works similarly,
the only difference is that every agent has its own dataset and learner.

Regarding the training process, since the tool aims to support neural-network-
based RL algorithms (like DQN), we chose to use the current de facto standard
framework for building neural networks, which is PyTorch—alternatives include

CHAPTER 14. PLATFORM: TOOLKIT FOR HYBRID AGGREGATE
COMPUTING 256



Environment

Dataset

Agent0

Agent1

AgentN

Learner

observe and act

reawrd and new state

execute

store experience

improve policy

subsample experience

CTDESystem

update policy

(a) CTDE System

Environment

Dataset0

Agent0

Agent1

AgentN

Learner0

observe and act

reawrd and new state

execute

store experience

improve policy

subsample experience

DTDESystem

Dataset1

DatasetN

Learner1

LearnerN

(b) DTDE System

Figure 14.3: Examples of developed system dynamics. On the left, there is the
centralized system, where a learner with a global view of the system updates the
policy shared with all agents. On the right, there is a decentralized system, where
each agent has a local policy and a local policy.

DL4J 4, which could be subject of future investigation.
One way to integrate this library into a JVM environment could be to rely

on its native core (LibTorch) using Java Native Interface (JNI) – as was done in
scala torch 5 project. In ScaRLib, we chose a convenient approach that allowed
us not only to access PyTorch but also all the libraries connected to it (e.g., torch
geometric, etc.), which is to use ScalaPy [LS20] to interact directly with the Python
API of these libraries. This integration generally involves:

1. setting up a Python environment in which the libraries of interest are in-
stantiated;

2. creating a Scala API that isolates what is necessary to access the Python
ecosystem.

In this case, we have isolated everything in DQN, which is therefore the entry
point for accessing PyTorch.

14.1.2 ScaFi-Alchemist integration

In addition to the core, we have implemented another module called
alchemist-scafi (Figure 14.4) in which there is the integration with the two

4https://deeplearning4j.konduit.ai/
5https://github.com/microsoft/scala_torch

CHAPTER 14. PLATFORM: TOOLKIT FOR HYBRID AGGREGATE
COMPUTING 257

https://deeplearning4j.konduit.ai/
https://github.com/microsoft/scala_torch


AlchemistEnvironment

<<trait>>
Environment

<<trait>>
ScafiProgram

+ main( ): Unit
- computeState( ): State

<<uses>> AlchemistSimulationSpecification<<reads>>

Figure 14.4: ScaRLib alchemist-scafi architecture. A ScafiProgram should be
passed to the AlchemistEnvironment in order to start the learning process.

tools: Alchemist and ScaFi. Such integration enables the possibility to run the
learning process in an aggregate computing context. This is a key part of this
contribution. In fact, although Alchemist has been used for cooperative many-
agent reinforcement learning with ScaFi as shown in previous chapters, ad-hoc
solutions were always created that were difficult to reuse, rigid, untested, and had
interoperability issues between Alchemist and the chosen native libraries. With
this integration, we aim to deliver a robust and user-friendly system that will
serve as a long-term solution, fostering greater engagement within the multi-agent
reinforcement learning community. This simulator and paradigm have already
demonstrated their versatility in representing a wide range of environments, as
discussed in Part I.

The specification of a learning system does not change, only two new elements
are added: the specification of the Alchemist simulation and the implementation
of the ScaFi-based logic. Specifically, the Alchemist simulation is configured as de-
picted in Figure 3.9, where a ScaFi class, encapsulating the aggregate programming
code, is passed as a program. To facilitate the training progression, a molecule
containing the current action–a subclass of the Action class–is integrated within
the ScaFi program. This molecule is injected by a learner governing the RL pol-
icy. Additionally, the aggregate program evaluates the environment state, which
is required to be a subtype of the State class, via the computeState method.
This computed state is subsequently encapsulated in the state molecule, serving
as input for the learner to refine the policy.

14.1.3 DSL for learning configurations

Finally, we developed an internal DSL designed to streamline the development of
ManyRL training systems. This approach aims to seamlessly translate the con-
cepts envisioned by a ManyRL system designer into a functional training system.
Utilizing a strongly-typed language like Scala for our DSL enables error detec-

CHAPTER 14. PLATFORM: TOOLKIT FOR HYBRID AGGREGATE
COMPUTING 258



tion at compile-time, thereby preempting simple configuration errors that might
otherwise only be caught during runtime.

The public-facing DSL serves as a simplified interface to the underlying abstrac-
tions encapsulated in the scarlib-core module. Consequently, when a developer
wishes to initiate a simulation (for example, in Alchemist), they must first specify
a reward function. This function serves as a metric for evaluating the performance
of a particular agent in relation to the current state of the environment.

class MyRewardFunction extends CollectiveRewardFunction:

override def computeReward(

state: State,

action: Action,

nextState: State

): Double = ...

Consequently, they must decide which actions are supported by the agents living
in the chosen system. Since we are talking about ManyRL systems, we suppose
that each agent has the same action space. Thus, it is possible to define a set of
actions as a product type:

sealed trait MyAction extends Action

object MyAction:

case object A extends MyAction

case object B extends MyAction

case object C extends MyAction

def all: Seq[MyAction] = Seq(A, B, C)

Final refinements required include:

• choosing the class of the Alchemist environment to instantiate,

• defining the number of agents living in the chosen environment, and

• defining the size of the buffer in which the memory will be stored.

This can be expressed as follows:

val system = learningSystem {

rewardFunction { new MyRewardFunction() }

actions { MyAction.all}

dataset { ReplayBuffer[State, Action](10000) }

agents { 50 } // select the number of agent

environment {

// select a specific environment

"it.unibo.scarlib.experiments.myEnvironment"

}

}

CHAPTER 14. PLATFORM: TOOLKIT FOR HYBRID AGGREGATE
COMPUTING 259



14.1.4 Tool usage

The tool is published on Maven Central and it is possible to include it in your
project, for example, through a build system. In the case of Gradle, for instance,
you will need to add the following instructions:

implementation("io.github.davidedomini:scarlib-core:1.5.0")

implementation("io.github.davidedomini:dsl-core:1.5.0")

At this point, it will be possible to create your own training system as shown in
the DSL section. To start the training, you will then need to write:

learningSystem.train(episodes = 1000, episodeLength = 100)

Of course, the system can also be used to verify a certain policy that has been
learned during a training process. To do this, first, you will need to load the neural
network extracted during training:

val network = PolicyNN(path, inputSize = ..., hiddenSize = ...)

Then you can execute the test in the following way:

system.runTest(episodeLength = 100, network)

For further details on how to specify simulations and environments, please refer
to the repository README, the presentation video and the developed simulation
(following section).

14.2 Experiments

14.2.1 Description

To test ScarLib’s functionality, we develop an experiment 6 involving a relatively
large number of agents and non-trivial coordination tasks. We aim to create a flock
of drones that moves to avoid collisions with each others, by learning a policy by
which each agents decide how to move based on neighbours relative position. This
is a well-known problem, and various models and algorithms exist which we draw
upon [Rey87; Šoš+16]. In this case, we assumed that agents position themselves
in an unlimited 2D environment with a fixed neighbourhood (the closest five, in
our experiments, though this is a simulation parameter) and have the ability to
perform movement steps in the 8 directions of a square grid (horizontally, vertically,
or diagonally). The environment state, as perceived by the single agent, is the
relative distance to the closest neighbours. Particularly, it was expressed through
ScaFi as:

6repository available at https://github.com/ScaRLib-group/ScaRLib-flock-demo

CHAPTER 14. PLATFORM: TOOLKIT FOR HYBRID AGGREGATE
COMPUTING 260

https://github.com/ScaRLib-group/ScaRLib-flock-demo


val state = foldhoodPlus(Seq.empty)(_ ++ _)(Set(nbrVector))

where nbrVector is the vector representing the relative position of the neighbour.
foldhoodPlus is a ScaFi function that allows to fold over the neighbourhood and
++ is the concatenation operator for sequences.

The crucial point for this task is the definition of the reward function. In
this simulation, we based it on collision and cohesion factors. We aim to learn a
policy by which agents, initially spread in a very sparse way in the environment,
move toward each other until reaching approximate δ distance without colliding,
ultimately forming one or many close groups.

The collision factor comes into play when the distance is less than δ, and
exponentially weighs the distance d relative to its closest neighbour:

collision =

{
0 if d > δ

exp
(
−d

δ

)
otherwise

(14.1)

In this way, when the negative factor is taken into account: the system will tend
to move nodes away from each other.

However, if only this factor were used, the system would be disorganized. This
is where the cohesion factor comes in. Given the neighbour with the maximum
distance D, it linearly adjusts the distance relative to the node being evaluated by
function:

cohesion =

{
0 if d < δ

−(D − δ) otherwise
(14.2)

The overall reward function is defined as the sum of these two factors (cohesion+
collision) as shown in Figure 14.5.

14.2.2 Results

To verify the functionality of the described simulation, we divided the evaluation
into two parts. In the first part, we trained the system for a total of 1000 epochs,
each consisting of 100 episodes (or steps). For each epoch, we randomly place 50
agents in a grid large 50x50 meters. We set the target distance δ at 2 meters.

Given the flexibility of ScaRLib, we tested the training with both CDTE and
DTDE processes to ensure that the system could produce policies capable of solv-
ing the described task in both cases. With the homogeneous policies found (i.e.,
the one extracted from the CTDE process), we verified that the system’s behaviour
was consistent with what was learned by varying the initial seed in 16 simulations.
With the CDTE policy, since we considered the system homogeneous, we also ver-
ified the behaviour as the number of nodes varied, expecting similar performance
as the nodes increased.

CHAPTER 14. PLATFORM: TOOLKIT FOR HYBRID AGGREGATE
COMPUTING 261



d

7

6

5

4

3

2

1

0

Figure 14.5: Cohesion-Collision reward function: the red vertical line represents
the target distance d. The portion of the graph to the right of the red line represents
the influence of the cohesion term, while the left one represents the influence of
the collision term.

The graphs shown in Figure 14.6 demonstrate the multi-objective nature of
the problem. In fact, cohesion and collision are two contrasting signals, and the
system had to find a balance between these two values. The graphs show that
DQN can generally optimize one signal at a time, with cohesion tending towards
zero and collision increasing. Nonetheless, after 500 epochs in CTDE simulation,
we see that the system had already found a balance between these two factors. In
the case of DTDE learning, we observe that convergence is achieved in fewer steps
(5̃0). This is because there is a greater number of policies and therefore greater
overall complexity compared to a single homogeneous policy.

During the testing phase (Figure 14.7 shows a series of snapshots of the learned
policy), we observed that the system is capable of maintaining a distance of ap-
proximately δ, both in the CDTE and DTDE cases. Most specifically, we note that
the homogeneous policy is generally a winning choice for homogeneous ManyRL
tasks. Increasing the number of agents (from 50 to 200), we can observe that
collective performances are similar to those with few agents (Figure 14.8).

14.3 Related work

MARL has gained significant interest in the past decade, leading to the develop-
ment of several frameworks for use in both research and industry communities.
Here, we highlight current state-of-the-art solutions for MARL problems and com-
pare them to the tools presented in this work.

CHAPTER 14. PLATFORM: TOOLKIT FOR HYBRID AGGREGATE
COMPUTING 262



-120

-110

-100

-90

-80

-70

-60

-50

-40

-10k 0 10k 20k 30k 40k 50k 60k 70k 80k 90k100k110
-80
-70
-60
-50
-40
-30
-20
-10
0
10

-10k 0 10k 20k 30k 40k 50k 60k 70k 80k 90k100k11
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20

-10k 0 10k 20k 30k 40k 50k 60k 70k 80k 90k100k11

-115
-110
-105
-100
-95
-90
-85
-80
-75
-70
-65
-60
-55
-50
-45

-5k 0 5k 10k 15k 20k 25k 30

(a) Total average reward

-28
-26
-24
-22
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0

-5k 0 5k 10k 15k 20k 25k 30

(b) Average collision factor

-110
-100
-90
-80
-70
-60
-50
-40
-30
-20

-5k 0 5k 10k 15k 20k 25k 30

(c) Average cohesion factor

Figure 14.6: Cohesion and collision experiment results. The y-axis represents the
reward value. The x-axis represents the total number of episodes. The first three
graphs show the results of the CDTE learning process, while the last three show
the results of the DTDE learning process.

14.3.1 Many Agent simulators:

Unlike supervised learning, where a large dataset is required to improve neu-
ral network performance, in RL, algorithms require a simulator to gain experi-
ence. One such comprehensive solution for MARL is PettingZoo [Ter+21], which
provides both competitive and cooperative settings for simulations with multiple
agents. Another option for many-agent scenarios is NeuralMMO [Sua+19], a GPU-
optimized simulator for MMO-like games that is designed to handle large-scale
simulations of thousands of agents. Vectorized Multi-agent Simulator [Bet+22] is
another promising solution, as it is optimized for collective tasks through GPU
computation, and it can be extended with additional environments. While ScaR-
Libis not directly linked to any simulator, its main abstraction can be potentially
linked to both JVM-based simulators and gym-based Python environments. Our
choice of Alchemist was mainly due to its ability to express ManyRL settings easily,
but potentially it can be used with any of the above-described solutions.

14.3.2 Multi-Agent Deep RL libraries:

since the importance of multi-agent settings several libraries have been developed
in recent years. Ray [Mor+17] is one of the most comprehensive frameworks, orig-
inally designed for single-agent RL but now integrated with basic concepts for
MARL solutions thanks to MALib. It offers various MARL algorithms, supports

CHAPTER 14. PLATFORM: TOOLKIT FOR HYBRID AGGREGATE
COMPUTING 263



(a) (b) (c)

(d) (e) (f)

Figure 14.7: Snapshots of the learned policy, the time flow is from left to right.
In the first row, there are 50 agents, whereas in the second row, there are 200
agents. In the last step of the simulation, the agents converged to a distance of
approximately δ.

0 20 40 60 80 100
time

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

di
st

an
ce

s

legenda
min distance
mean distance

(a) 50 agents

0 20 40 60 80 100
time

0.25

0.50

0.75

1.00

1.25

1.50

di
st

an
ce

s

legenda
min distance
mean distance

(b) 100 agents

0 20 40 60 80 100
time

0.25

0.50

0.75

1.00

1.25

1.50

di
st

an
ce

s

legenda
min distance
mean distance

(c) 200 agents

Figure 14.8: The performance of the learned policy. The y-axis represents the
distance between the agents. The x-axis represents the time. The green line is
equal to δ. In the charts, as the number of agents varies, the performance of the
learned policy is similar. Moreover, the minimum (blue line) distance between the
agents is always greater than δ. The average distance (orange line) stays close to
2 * δ (after convergence).

CHAPTER 14. PLATFORM: TOOLKIT FOR HYBRID AGGREGATE
COMPUTING 264



different gym-like environments, and is highly customizable through configuration
files. PyMARL [Sam+19] is one of the first solutions in Python for MARL, though
it is limited to specific algorithms (like VDN and QMIX), and it is not generaliz-
able. ScaRLib is more similar to the first framework, even though it is primarily
designed for cooperative applications. However, since it was developed specifically
for ManyRL, it includes some abstractions and configurations that are not present
in Ray, such as the concept of a collective reward function and the configuration
for CTDE. This reduces the time required to use ScaRLib compared to Ray. Ad-
ditionally, ScaRLib has a simple DSL that is easier to use than Ray’s configuration
system and is aided by the type system.

Finally, some innovative approaches aim to scale solutions to large populations
of cooperative agents, such as mean-field RL. However, only a few implementations
currently exist, and they are not considered to be general-purpose. ScaRLib, on
the other hand, offers a practical, simple implementation that can be leveraged in
ManyRL settings.

Overall, ManyRL is a high-level framework that reduces the effort required
for developers and practitioners to define and implement ManyRL problems when
compared to current state-of-the-art solutions.

14.4 Final Remarks

In this chapter, we presented ScaRLib: a collaborative many-agent deep reinforce-
ment learning framework that integrates the functionalities of ScaFi and Alchemist.
The framework enables the definition of simulations of large-scale distributed sce-
narios and the creation of complex scenarios with ease through its exposed DSL.
With ScaRLib, developers can effectively and efficiently simulate and experiment
with different reinforcement learning algorithms, thereby providing a valuable tool
for the advancement of coordination and multi-agent systems research. This tool
is essential in the view presented in this thesis: the development of Cyber-Physical
Swarms applications need both a foundational theory and a practical tool to test
and validate the theory.

CHAPTER 14. PLATFORM: TOOLKIT FOR HYBRID AGGREGATE
COMPUTING 265



References

[Agu21] Gianluca Aguzzi. “Research directions for Aggregate Computing with
Machine Learning”. In: Proc. of the Int. Conf. on Autonomic Com-
puting and Self-Organizing Systems. IEEE, 2021, pp. 310–312. doi:
10.1109/ACSOS-C52956.2021.00078.

[AT04] Adrian K. Agogino and Kagan Tumer. “Unifying Temporal and
Structural Credit Assignment Problems”. In: 3rd International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2004), 19-23 August 2004, New York, NY, USA. IEEE Computer So-
ciety, 2004, pp. 980–987. doi: 10.1109/AAMAS.2004.10098. url: htt
p://doi.ieeecomputersociety.org/10.1109/AAMAS.2004.10098.

[Aud+17] Giorgio Audrito et al. “Compositional Blocks for Optimal Self-
Healing Gradients”. In: 11th IEEE International Conference on Self-
Adaptive and Self-Organizing Systems, SASO 2017, Tucson, AZ,
USA, September 18-22, 2017. IEEE Computer Society, 2017, pp. 91–
100. doi: 10.1109/SASO.2017.18. url: http://doi.ieeecomputer
society.org/10.1109/SASO.2017.18.

[Aud+21] Giorgio Audrito et al. “Optimal resilient distributed data collection in
mobile edge environments”. In: Comput. Electr. Eng. 96.Part (2021),
p. 107580. doi: 10.1016/j.compeleceng.2021.107580. url: http
s://doi.org/10.1016/j.compeleceng.2021.107580.

[Bea+08] Jacob Beal et al. “Fast self-healing gradients”. In: Proceedings of the
2008 ACM Symposium on Applied Computing (SAC). ACM, 2008,
pp. 1969–1975. doi: 10.1145/1363686.1364163.

[Bea+13] Jacob Beal et al. “Organizing the aggregate: Languages for spatial
computing”. In: Formal and Practical Aspects of Domain-Specific
Languages: Recent Developments. IGI Global, 2013, pp. 436–501.

[Bet+22] Matteo Bettini et al. “VMAS: A Vectorized Multi-Agent Simulator
for Collective Robot Learning”. In: The 16th International Sympo-
sium on Distributed Autonomous Robotic Systems (2022).

266

https://doi.org/10.1109/ACSOS-C52956.2021.00078
https://doi.org/10.1109/AAMAS.2004.10098
http://doi.ieeecomputersociety.org/10.1109/AAMAS.2004.10098
http://doi.ieeecomputersociety.org/10.1109/AAMAS.2004.10098
https://doi.org/10.1109/SASO.2017.18
http://doi.ieeecomputersociety.org/10.1109/SASO.2017.18
http://doi.ieeecomputersociety.org/10.1109/SASO.2017.18
https://doi.org/10.1016/j.compeleceng.2021.107580
https://doi.org/10.1016/j.compeleceng.2021.107580
https://doi.org/10.1016/j.compeleceng.2021.107580
https://doi.org/10.1145/1363686.1364163


[BZI00] Daniel S. Bernstein, Shlomo Zilberstein, and Neil Immerman. “The
Complexity of Decentralized Control of Markov Decision Processes”.
In: Proc. of the Conf. in Uncertainty in Artificial Intelligence. 2000,
pp. 32–37.

[Cas+19] Roberto Casadei et al. “Self-organising Coordination Regions: A Pat-
tern for Edge Computing”. In: Coordination Models and Languages
- 21st IFIP WG 6.1 International Conference, COORDINATION
2019, Proceedings. Vol. 11533. Lecture Notes in Computer Science.
Springer, 2019, pp. 182–199. doi: 10.1007/978-3-030-22397-7\_1
1. url: https://doi.org/10.1007/978-3-030-22397-7%5C_11.

[Cas+20a] Roberto Casadei et al. “FScaFi : A Core Calculus for Collective
Adaptive Systems Programming”. In: Leveraging Applications of For-
mal Methods, Verification and Validation: Engineering Principles
- 9th International Symposium on Leveraging Applications of For-
mal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020,
Proceedings, Part II. Ed. by Tiziana Margaria and Bernhard Stef-
fen. Vol. 12477. Lecture Notes in Computer Science. Springer, 2020,
pp. 344–360. doi: 10.1007/978-3-030-61470-6\_21. url: https:
//doi.org/10.1007/978-3-030-61470-6%5C_21.

[Cas+20b] Roberto Casadei et al. “Pulverization in Cyber-Physical Systems:
Engineering the Self-Organizing Logic Separated from Deployment”.
In: Future Internet 12.11 (2020), p. 203. doi: 10.3390/fi12110203.
url: https://doi.org/10.3390/fi12110203.

[Cas+21] Roberto Casadei et al. “Engineering collective intelligence at the edge
with aggregate processes”. In: Eng. Appl. Artif. Intell. 97 (2021),
p. 104081. doi: 10.1016/j.engappai.2020.104081. url: https:
//doi.org/10.1016/j.engappai.2020.104081.

[Cas+22a] Roberto Casadei et al. “Digital Twins, Virtual Devices, and Augmen-
tations for Self-Organising Cyber-Physical Collectives”. In: Applied
Sciences 12.1 (2022). issn: 2076-3417. doi: 10.3390/app12010349.
url: https://www.mdpi.com/2076-3417/12/1/349.

[Cas+22b] Roberto Casadei et al. “ScaFi: A Scala DSL and Toolkit for Aggregate
Programming”. In: SoftwareX 20 (2022), p. 101248.

[Cas22] Roberto Casadei. “Macroprogramming: Concepts, State of the Art,
and Opportunities of Macroscopic Behaviour Modelling”. In: CoRR
abs/2201.03473 (2022). arXiv: 2201.03473. url: https://arxiv.o
rg/abs/2201.03473.

REFERENCES 267

https://doi.org/10.1007/978-3-030-22397-7\_11
https://doi.org/10.1007/978-3-030-22397-7\_11
https://doi.org/10.1007/978-3-030-22397-7%5C_11
https://doi.org/10.1007/978-3-030-61470-6\_21
https://doi.org/10.1007/978-3-030-61470-6%5C_21
https://doi.org/10.1007/978-3-030-61470-6%5C_21
https://doi.org/10.3390/fi12110203
https://doi.org/10.3390/fi12110203
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.3390/app12010349
https://www.mdpi.com/2076-3417/12/1/349
https://arxiv.org/abs/2201.03473
https://arxiv.org/abs/2201.03473
https://arxiv.org/abs/2201.03473


[CAV21] Roberto Casadei, Gianluca Aguzzi, and Mirko Viroli. “A Program-
ming Approach to Collective Autonomy”. In: J. Sens. Actuator Net-
works 10.2 (2021), p. 27. doi: 10.3390/jsan10020027.

[CPT10] Cristiano Castelfranchi, Giovanni Pezzulo, and Luca Tummolini. “Be-
havioral Implicit Communication (BIC): Communicating with Smart
Environments”. In: Int. J. Ambient Comput. Intell. 2.1 (2010), pp. 1–
12. doi: 10.4018/jaci.2010010101.

[DD20] Wei Du and Shifei Ding. “A survey on multi-agent deep reinforcement
learning: from the perspective of challenges and applications”. In:
Artificial Intelligence Review 54.5 (Nov. 2020), pp. 3215–3238. doi:
10.1007/s10462-020-09938-y. url: https://doi.org/10.1007
/s10462-020-09938-y.

[FL19] Matthias Fey and Jan Eric Lenssen. “Fast Graph Representa-
tion Learning with PyTorch Geometric”. In: CoRR abs/1903.02428
(2019). arXiv: 1903.02428.

[Gil+17] Justin Gilmer et al. “Neural Message Passing for Quantum Chem-
istry”. In: Proc. of the 34th International Conference on Machine
Learning. 2017, pp. 1263–1272.

[Gos+22] Walker Gosrich et al. “Coverage Control in Multi-Robot Systems via
Graph Neural Networks”. In: Proc. of the Int. Conf. on Robotics and
Automation. IEEE, 2022, pp. 8787–8793. doi: 10.1109/ICRA46639
.2022.9811854.

[GPS17] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. “Program
Synthesis”. In: Found. Trends Program. Lang. 4.1-2 (2017), pp. 1–
119. doi: 10.1561/2500000010. url: https://doi.org/10.1561/2
500000010.

[HCL18] Thomas Hendriks, Miguel Camelo, and Steven Latré. “Q2-Routing :
A Qos-aware Q-Routing algorithm for Wireless Ad Hoc Networks”.
In: 14th International Conference on Wireless and Mobile Com-
puting, Networking and Communications, WiMob 2018, Limassol,
Cyprus, October 15-17, 2018. IEEE, 2018, pp. 108–115. doi: 10.110
9/WiMOB.2018.8589161.

[HDB21] Keyang He, Prashant Doshi, and Bikramjit Banerjee. Many Agent
Reinforcement Learning Under Partial Observability. 2021. doi: 10
.48550/ARXIV.2106.09825. url: https://arxiv.org/abs/2106.0
9825.

REFERENCES 268

https://doi.org/10.3390/jsan10020027
https://doi.org/10.4018/jaci.2010010101
https://doi.org/10.1007/s10462-020-09938-y
https://doi.org/10.1007/s10462-020-09938-y
https://doi.org/10.1007/s10462-020-09938-y
https://arxiv.org/abs/1903.02428
https://doi.org/10.1109/ICRA46639.2022.9811854
https://doi.org/10.1109/ICRA46639.2022.9811854
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010
https://doi.org/10.1109/WiMOB.2018.8589161
https://doi.org/10.1109/WiMOB.2018.8589161
https://doi.org/10.48550/ARXIV.2106.09825
https://doi.org/10.48550/ARXIV.2106.09825
https://arxiv.org/abs/2106.09825
https://arxiv.org/abs/2106.09825


[HKT19] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. “A sur-
vey and critique of multiagent deep reinforcement learning”. In: Au-
ton. Agents Multi Agent Syst. 33.6 (2019), pp. 750–797. doi: 10.100
7/s10458-019-09421-1. url: https://doi.org/10.1007/s10458
-019-09421-1.

[Iwa+21] Takuya Iwaki et al. “Multi-hop sensor network scheduling for optimal
remote estimation”. In: Autom. 127 (2021), p. 109498. doi: 10.1016
/j.automatica.2021.109498.

[KC03] Jeffrey O. Kephart and David M. Chess. “The Vision of Autonomic
Computing”. In: Computer 36.1 (2003), pp. 41–50. doi: 10.1109
/MC.2003.1160055. url: https://doi.org/10.1109/MC.2003.116
0055.

[KO22] Dongkwan Kim and Alice Oh. “How to Find Your Friendly Neigh-
borhood: Graph Attention Design with Self-Supervision”. In: CoRR
abs/2204.04879 (2022). doi: 10.48550/arXiv.2204.04879. arXiv:
2204.04879.

[KTA19] Boris Knyazev, Graham W. Taylor, and Mohamed R. Amer. “Under-
standing Attention and Generalization in Graph Neural Networks”.
In: Conf. on Advances in Neural Information Processing Systems.
2019, pp. 4204–4214.

[Le+19] Duc Van Le et al. “Control of Air Free-Cooled Data Centers in Tropics
via Deep Reinforcement Learning”. In: Proceedings of the 6th ACM
International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation, BuildSys 2019, New York, NY, USA,
November 13-14, 2019. ACM, 2019, pp. 306–315. doi: 10.1145/3
360322.3360845.

[LR00] Martin Lauer and Martin A. Riedmiller. “An Algorithm for Dis-
tributed Reinforcement Learning in Cooperative Multi-Agent Sys-
tems”. In: Proceedings of the 17th International Conference on Ma-
chine Learning (ICML 2000). Morgan Kaufmann, 2000, pp. 535–542.

[LS11] Wenfeng Li and Weiming Shen. “Swarm behavior control of mobile
multi-robots with wireless sensor networks”. In: J. Netw. Comput.
Appl. 34.4 (2011), pp. 1398–1407. doi: 10.1016/j.jnca.2011.03.0
23. url: https://doi.org/10.1016/j.jnca.2011.03.023.

[LS20] Shadaj Laddad and Koushik Sen. “ScalaPy: seamless Python inter-
operability for cross-platform Scala programs”. In: Proceedings of the
11th ACM SIGPLAN International Symposium on Scala. ACM, Nov.

REFERENCES 269

https://doi.org/10.1007/s10458-019-09421-1
https://doi.org/10.1007/s10458-019-09421-1
https://doi.org/10.1007/s10458-019-09421-1
https://doi.org/10.1007/s10458-019-09421-1
https://doi.org/10.1016/j.automatica.2021.109498
https://doi.org/10.1016/j.automatica.2021.109498
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.48550/arXiv.2204.04879
https://arxiv.org/abs/2204.04879
https://doi.org/10.1145/3360322.3360845
https://doi.org/10.1145/3360322.3360845
https://doi.org/10.1016/j.jnca.2011.03.023
https://doi.org/10.1016/j.jnca.2011.03.023
https://doi.org/10.1016/j.jnca.2011.03.023


2020. doi: 10.1145/3426426.3428485. url: https://doi.org/10
.1145/3426426.3428485.

[MBD18] Yuanqiu Mo, Jacob Beal, and Soura Dasgupta. “An Aggregate Com-
puting Approach to Self-Stabilizing Leader Election”. In: 2018 IEEE
3rd International Workshops on Foundations and Applications of
Self* Systems (FAS*W), Trento, Italy, September 3-7, 2018. IEEE,
2018, pp. 112–117. doi: 10.1109/FAS-W.2018.00034. url: https:
//doi.org/10.1109/FAS-W.2018.00034.

[Mih+12] Mihail Mihaylov et al. “Decentralised reinforcement learning for
energy-efficient scheduling in wireless sensor networks”. In: Int. J.
Commun. Networks Distributed Syst. 9.3/4 (2012), pp. 207–224. doi:
10.1504/IJCNDS.2012.048871.

[Mni+15] Volodymyr Mnih et al. “Human-level control through deep reinforce-
ment learning”. In: Nature 518.7540 (Feb. 2015), pp. 529–533. doi:
10.1038/nature14236. url: https://doi.org/10.1038/nature14
236.

[Mor+17] Philipp Moritz et al. Ray: A Distributed Framework for Emerging
AI Applications. 2017. doi: 10.48550/ARXIV.1712.05889. url:
https://arxiv.org/abs/1712.05889.

[MZL04] Marco Mamei, Franco Zambonelli, and Letizia Leonardi. “Co-Fields:
A Physically Inspired Approach to Motion Coordination”. In: IEEE
Pervasive Computing 3.2 (2004), pp. 52–61. doi: 10.1109/MPRV.20
04.1316820.

[NSB03] Radhika Nagpal, Howard E. Shrobe, and Jonathan Bachrach. “Or-
ganizing a Global Coordinate System from Local Information on
an Ad Hoc Sensor Network”. In: Information Processing in Sen-
sor Networks, 2nd International Workshop, IPSN 2003, , Proceed-
ings. Vol. 2634. Lecture Notes in Computer Science. Springer, 2003,
pp. 333–348. doi: 10.1007/3-540-36978-3\_22.

[Par97] H. Van Dyke Parunak. “”Go to the ant”: Engineering principles from
natural multi-agent systems”. In: Ann. Oper. Res. 75 (1997), pp. 69–
101. doi: 10.1023/A\%3A1018980001403.

[Pas+19] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. https://pytorch.org. 2019.

[Pel+20] Giovanni Pellegrini et al. “Learning aggregation functions”. In: arXiv
preprint arXiv:2012.08482 (2020).

REFERENCES 270

https://doi.org/10.1145/3426426.3428485
https://doi.org/10.1145/3426426.3428485
https://doi.org/10.1145/3426426.3428485
https://doi.org/10.1109/FAS-W.2018.00034
https://doi.org/10.1109/FAS-W.2018.00034
https://doi.org/10.1109/FAS-W.2018.00034
https://doi.org/10.1504/IJCNDS.2012.048871
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.48550/ARXIV.1712.05889
https://arxiv.org/abs/1712.05889
https://doi.org/10.1109/MPRV.2004.1316820
https://doi.org/10.1109/MPRV.2004.1316820
https://doi.org/10.1007/3-540-36978-3\_22
https://doi.org/10.1023/A\%3A1018980001403
https://pytorch.org


[Pia+21] Danilo Pianini et al. “Time-Fluid Field-Based Coordination through
Programmable Distributed Schedulers”. In: Logical Methods in Com-
puter Science Volume 17, Issue 4 (Nov. 2021). doi: 10.46298/lmcs
-17(4:13)2021.

[RCR09] Paul Richmond, Simon Coakley, and Daniela M. Romano. “A High
Performance Agent Based Modelling Framework on Graphics Card
Hardware with CUDA”. In: Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems - Vol-
ume 2. AAMAS ’09. Budapest, Hungary: International Foundation
for Autonomous Agents and Multiagent Systems, 2009, pp. 1125–
1126. isbn: 9780981738178.

[Rey87] Craig W. Reynolds. “Flocks, herds and schools: A distributed be-
havioral model”. In: Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH 1987,
Anaheim, California, USA, July 27-31, 1987. Ed. by Maureen C.
Stone. ACM, 1987, pp. 25–34. doi: 10.1145/37401.37406. url:
https://doi.org/10.1145/37401.37406.

[Roi+13] Diederik M. Roijers et al. “A Survey of Multi-Objective Sequential
Decision-Making”. In: J. Artif. Intell. Res. 48 (2013), pp. 67–113.
doi: 10.1613/jair.3987.

[Sam+19] Mikayel Samvelyan et al. “The StarCraft Multi-Agent Challenge”.
In: CoRR abs/1902.04043 (2019).

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. Cambridge, MA, USA: A Bradford Book, 2018. isbn:
0262039249.

[SM03] Debashis Saha and Amitava Mukherjee. “Pervasive Computing: A
Paradigm for the 21st Century”. In: Computer 36.3 (2003), pp. 25–
31. doi: 10.1109/MC.2003.1185214. url: https://doi.org/10.1
109/MC.2003.1185214.

[SM16] Subhadeep Sarkar and Sudip Misra. “Theoretical modelling of fog
computing: a green computing paradigm to support IoT applica-
tions”. In: IET Networks 5.2 (2016), pp. 23–29. doi: 10.1049/ie
t-net.2015.0034. url: https://doi.org/10.1049/iet-net.2015
.0034.

[Sol08] Armando Solar-Lezama. Program synthesis by sketching. University
of California, Berkeley, 2008.

REFERENCES 271

https://doi.org/10.46298/lmcs-17(4:13)2021
https://doi.org/10.46298/lmcs-17(4:13)2021
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/10.1613/jair.3987
https://doi.org/10.1109/MC.2003.1185214
https://doi.org/10.1109/MC.2003.1185214
https://doi.org/10.1109/MC.2003.1185214
https://doi.org/10.1049/iet-net.2015.0034
https://doi.org/10.1049/iet-net.2015.0034
https://doi.org/10.1049/iet-net.2015.0034
https://doi.org/10.1049/iet-net.2015.0034


[Šoš+16] Adrian Šošić et al. Inverse Reinforcement Learning in Swarm Sys-
tems. 2016. doi: 10.48550/ARXIV.1602.05450. url: https://arxi
v.org/abs/1602.05450.

[Sos+17] Adrian Sosic et al. “Inverse Reinforcement Learning in Swarm Sys-
tems”. In: Proc. of AAMAS. ACM, 2017, pp. 1413–1421.

[Su+19] Yuhan Su et al. “Cooperative communications with relay selection
based on deep reinforcement learning in wireless sensor networks”.
In: IEEE Sensors Journal 19.20 (2019), pp. 9561–9569.

[Sua+19] Joseph Suarez et al. Neural MMO: A Massively Multiagent Game
Environment for Training and Evaluating Intelligent Agents. 2019.
doi: 10.48550/ARXIV.1903.00784. url: https://arxiv.org/abs
/1903.00784.

[Szu01] Tadeusz Szuba. “A formal definition of the phenomenon of collective
intelligence and its IQ measure”. In: Future Gener. Comput. Syst.
17.4 (2001), pp. 489–500. doi: 10.1016/S0167-739X(99)00136-3.
url: https://doi.org/10.1016/S0167-739X(99)00136-3.

[Ter+21] J Terry et al. “PettingZoo: Gym for Multi-Agent Reinforcement
Learning”. In: Advances in Neural Information Processing Systems.
Ed. by M. Ranzato et al. Vol. 34. Curran Associates, Inc., 2021,
pp. 15032–15043. url: https://proceedings.neurips.cc/paper
/2021/file/7ed2d3454c5eea71148b11d0c25104ff-Paper.pdf.

[Tol+19] Ekaterina I. Tolstaya et al. “Learning Decentralized Controllers for
Robot Swarms with Graph Neural Networks”. In: 3rd Annual Con-
ference on Robot Learning, CoRL 2019, Osaka, Japan, October 30 -
November 1, 2019, Proceedings. Ed. by Leslie Pack Kaelbling, Danica
Kragic, and Komei Sugiura. Vol. 100. Proceedings of Machine Learn-
ing Research. PMLR, 2019, pp. 671–682. url: http://proceedings
.mlr.press/v100/tolstaya20a.html.

[Tol+20] Ekaterina Tolstaya et al. “Learning decentralized controllers for robot
swarms with graph neural networks”. In: Proc. of the Conf. on Robot
Learning. PMLR. 2020, pp. 671–682.

[Tum+04] Luca Tummolini et al. ““Exhibitionists” and “Voyeurs” Do It Better:
A Shared Environment for Flexible Coordination with Tacit Mes-
sages”. In: Proc. of Int. Workshop on Environments for Multi-Agent
Systems. Springer, 2004, pp. 215–231. doi: 10.1007/978-3-540-32
259-7\_11.

REFERENCES 272

https://doi.org/10.48550/ARXIV.1602.05450
https://arxiv.org/abs/1602.05450
https://arxiv.org/abs/1602.05450
https://doi.org/10.48550/ARXIV.1903.00784
https://arxiv.org/abs/1903.00784
https://arxiv.org/abs/1903.00784
https://doi.org/10.1016/S0167-739X(99)00136-3
https://doi.org/10.1016/S0167-739X(99)00136-3
https://proceedings.neurips.cc/paper/2021/file/7ed2d3454c5eea71148b11d0c25104ff-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/7ed2d3454c5eea71148b11d0c25104ff-Paper.pdf
http://proceedings.mlr.press/v100/tolstaya20a.html
http://proceedings.mlr.press/v100/tolstaya20a.html
https://doi.org/10.1007/978-3-540-32259-7\_11
https://doi.org/10.1007/978-3-540-32259-7\_11


[TW12] Karl Tuyls and Gerhard Weiss. “Multiagent Learning: Basics, Chal-
lenges, and Prospects”. In: AI Mag. 33.3 (2012), pp. 41–52. doi: 10
.1609/aimag.v33i3.2426. url: https://doi.org/10.1609/aimag
.v33i3.2426.

[Vir+18] Mirko Viroli et al. “Engineering Resilient Collective Adaptive Sys-
tems by Self-Stabilisation”. In: ACM Trans. Model. Comput. Simul.
28.2 (2018), 16:1–16:28. doi: 10.1145/3177774. url: https://doi
.org/10.1145/3177774.

[Vir+19] Mirko Viroli et al. “From distributed coordination to field calculus
and aggregate computing”. In: J. Log. Algebraic Methods Program.
109 (2019). doi: 10.1016/j.jlamp.2019.100486. url: https://do
i.org/10.1016/j.jlamp.2019.100486.

[Wan+19] Minjie Wang et al. “Deep graph library: A graph-centric, highly-
performant package for graph neural networks”. In: arXiv preprint
arXiv:1909.01315 (2019).

[WT02] David H. Wolpert and Kagan Tumer. “Collective Intelligence, Data
Routing and Braess’ Paradox”. In: J. Artif. Intell. Res. 16 (2002),
pp. 359–387. doi: 10.1613/jair.995. url: https://doi.org/10.1
613/jair.995.

[Yan21] Yaodong Yang. “Many-agent reinforcement learning”. PhD thesis.
UCL (University College London), 2021.

[Yu+21] Liang Yu et al. “A Review of Deep Reinforcement Learning for Smart
Building Energy Management”. In: IEEE Internet Things J. 8.15
(2021), pp. 12046–12063. doi: 10.1109/JIOT.2021.3078462.

[Zho+20] Jie Zhou et al. “Graph neural networks: A review of methods and
applications”. In: AI Open 1 (2020), pp. 57–81. doi: 10.1016/j.ai
open.2021.01.001.

[ZYB21] Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. “Decentralized
multi-agent reinforcement learning with networked agents: recent
advances”. In: Frontiers Inf. Technol. Electron. Eng. 22.6 (2021),
pp. 802–814. doi: 10.1631/FITEE.1900661. url: https://doi
.org/10.1631/FITEE.1900661.

[ZZL19] Sai Qian Zhang, Qi Zhang, and Jieyu Lin. “Efficient Communica-
tion in Multi-Agent Reinforcement Learning via Variance Based Con-
trol”. In: Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. 2019,
pp. 3230–3239.

REFERENCES 273

https://doi.org/10.1609/aimag.v33i3.2426
https://doi.org/10.1609/aimag.v33i3.2426
https://doi.org/10.1609/aimag.v33i3.2426
https://doi.org/10.1609/aimag.v33i3.2426
https://doi.org/10.1145/3177774
https://doi.org/10.1145/3177774
https://doi.org/10.1145/3177774
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1613/jair.995
https://doi.org/10.1613/jair.995
https://doi.org/10.1613/jair.995
https://doi.org/10.1109/JIOT.2021.3078462
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1631/FITEE.1900661
https://doi.org/10.1631/FITEE.1900661
https://doi.org/10.1631/FITEE.1900661


Chapter 15

Conclusion

This dissertation situates itself within the realm of complex systems engineer-
ing and many-agent reinforcement learning (ManyRL) applications, adopting un-
conventional methods to address the unique challenges posed by Cyber-Physical
Swarm (CPSW) (introduced in Chapter 2). It is grounded in a language-based
approach focused on aggregate computing (discussed in Chapter 3), further inte-
grated with machine learning techniques (overviewed in Chapter 4)—particularly
the one based on the notion of many-agent.

Focusing on the research questions posed in Chapter 1, we have sought to
address the following. Regarding RQ1, we have chosen to use the aggregate com-
puting model as a reference because it allows for handling the various challenges
of CPSW, including scale, collective behaviors, and the possibility of creating self-
healing behaviors. We have also shown other plausible models used in different
contexts, such as the multi-agent RL, particularly SwarMDP. We have seen how
these can be combined (see Chapter 12).

About RQ2, we explored the various aspects of this combination (i.e., the
hybrid approach) in Part III. We demonstrated how this seems to be a winning
combination at all levels of engineering, both at the application level and the
platform level.

For RQ3, we sought to outline the main characteristics that differentiate
CPSW systems from known ones — see discussion in Chapter 2. In particular
homogeneity and self-organisation were the characteristics that then guided the
choice of the reference model and the solutions discussed.

Finally, concerning RQ4, we discussed throughout the thesis how this influ-
ences the design process, discussing new patterns and how this affects the dis-
tributed execution platform of such applications.

Following this, an in-depth analysis of the principal contributions and potential
future work that continues in the direction proposed by this thesis is presented.

274



15.1 Discussion

Design Patterns for Cyber-Physical Swarms

AC proves to be a composable, modular, and predictable approach for self-
organizing systems, making it versatile across various domain-specific applications.
After identifying the class of CPSW, we noted existing gaps in aggregate comput-
ing’s ability to manage the complexity inherent in these systems. To address this,
we first identified algorithms capable of supporting high-level applications, such
as the swarm clustering algorithm introduced in Chapter 5. We further sought to
identify design patterns that can aid designers in crafting collective processes, as
detailed in Chapter 6. Lastly, we encapsulated an essential API for coordinated
movement and collective decision-making in Chapter 7. This corpus of contribu-
tions serves as a milestone in designing applications for CPSWs, providing design-
ers with both a suite of essential tools and a design space that narrows the gap
between the problem space and the solution space.

Deployments in Complex Infrastructure

Aggregate computing offers a flexible model with minimal constraints on deploy-
ment. In this dissertation, the model aligns perfectly with the CPSWs systems
under consideration. However, this top-down approach eventually needs to be
grounded, ensuring that the collective application remains independent of the cho-
sen deployment scheme, thereby decoupling logic from architectural considerations.
To that end, we introduced a modern deployment approach for collective applica-
tions based on the “pulverization” model and multi-tier programming (Chapter 9).
This allowed us to capture essential components required for aggregate computa-
tion, facilitating their opportunistic distribution based on the chosen infrastruc-
ture, managed through the multi-tier paradigm, particularly leveraging Scala Loci.

Novel Programming Models for CPSws

Field calculus emerged as an effective paradigm for declarative and expressive
conceptualization and implementation of complex, self-organizing behaviours at
the collective level. This was applied in a range of applications, from swarm
robotics and crowd engineering to data centres. However, the approach high-
lighted certain limitations, particularly concerning efficiency– crucial in aggregate
systems featuring low-power computational devices. In response, we introduced
FRASP (Chapter 8), a new model founded on reactive programming combined
with spatial computing, offering greater flexibility in execution by allowing partial
re-computation when needed.

CHAPTER 15. CONCLUSION 275



Learning for Aggregate Computing

Our language-based approach opened a new frontier in the design of collective ap-
plications. Conventionally, a stark distinction exists between manual design (e.g.,
defining behaviours through programming languages) and automatic design (e.g.,
employing machine learning techniques for collective behaviours). In this thesis,
we attempted to bridge these two worlds, striking a balance between declarative
simplicity and the complexity and adaptability of described collective behaviours.
To do so, we outlined a roadmap (Chapter 10) that helped us frame the problem
and the layers of interaction required for this hybrid vision. Our research ventured
into program synthesis in collective systems, where parts of the program were left
undefined to be later filled by ManyRL algorithms (Chapter 11). Another line of
work focused on learning intelligent scheduling policies to expedite the attainment
of equilibrium compared to a pre-set program (Chapter 13). Lastly, we introduce
a novel tool called ScaRLib (Chapter 14), which allows for the seamless integration
of aggregate computing and deep reinforcement learning, supporting the hybrid
design discussed in this thesis.

Aggregate Computing for Learning

In line with the hybrid approach, aggregate computing itself can serve as a medium
for enhancing learning. As explored in Chapter 12, we combined graph neural net-
works with aggregate computing and deep reinforcement learning. This unification
proved to be highly effective, allowing for localized learning processes that are in-
formed by collective knowledge gathered through aggregate computing, akin to
programmed shimmery.

15.2 Future works

Unified programming model

In the quest for a seamless interface between aggregate computing, novel reactive
models, and machine learning, the development of a unified programming model
stands as a crucial next step. This framework could enable practitioners to design
complex behaviours across the swarm with reduced cognitive load, focusing on
higher-level objectives instead of intricate details.

Comprehensive Swarm API

While the presented patterns in this thesis serve as a good foundation, it is by no
means exhaustive. Upcoming work aims to expand the API to accommodate more

CHAPTER 15. CONCLUSION 276



swarm behaviours and complex orchestrations, further streamlining the applica-
tion development process for cyber-physical swarm systems. This will entail not
only algorithmic contributions but also real-world testing and validation against
robustness and scalability criteria.

Benchmarking

As more algorithms and approaches get introduced in this space, benchmarking
them against standard metrics becomes essential for meaningful comparison and
adoption. Future efforts will aim to establish such benchmarks, enabling the em-
pirical evaluation of different strategies in terms of performance, efficiency, and
adaptability.

Opportunistic Deployment

Building on the deployment methods discussed, future work will also investigate
opportunistic deployment strategies that take advantage of the system’s inher-
ent flexibility. For example, identifying the conditions under which it might be
beneficial to move computation closer to the data source or a more powerful com-
putational node, thereby optimizing for both efficiency and latency.

Aggregate Computing for Learning: Distributed Learning

Following the promising results in leveraging aggregate computing for learning, the
next steps will focus on enhancing distributed learning paradigms. This can open
avenues for more effective, decentralized learning schemes (e.g., federated learning),
reducing the need for a centralized learning authority and thereby increasing the
robustness and resilience of the system.

Online Learning

The current research has largely focused on offline learning mechanisms. However,
real-world applications often require the ability to adapt and learn in real time.
Future work aims to extend the proposed models and algorithms for online learning
capabilities, allowing swarms to dynamically adapt to changing environments.

Learn to Deploy

Taking inspiration from the emerging “DevOps” culture in software engineering,
we plan to explore how learning algorithms can aid in the deployment and man-
agement of swarm applications. This line of research would aim to automate many

CHAPTER 15. CONCLUSION 277



aspects of deployment, from selecting optimal locations for computational nodes
to dynamically allocating resources based on real-time system performance.

Unified Design Process

Last but not least, integrating all these disparate elements– programming models,
deployment strategies, and learning algorithms—into a unified design process rep-
resents a grand challenge for future work. The goal would be to offer practitioners
a one-stop solution for designing, deploying, and managing cyber-physical swarm
systems effectively and efficiently.

Privacy and Security

Finally, the integration of learning algorithms into swarm systems raises significant
concerns about privacy and security. Even if this was not the focus of this thesis,
it is essential to consider these aspects in the design of future systems. Future
work will need to address these concerns, ensuring that the learning process does
not compromise the privacy of individuals or the security of the system as a whole.
For instance, federated learning can be a promising approach to address privacy
concerns, allowing individual agents to learn from local data without sharing it
with the central authority.

CHAPTER 15. CONCLUSION 278


	Abstract
	Introduction
	Research Background and Context
	Overview and Contribution
	Thesis structure

	Reference
	I Background
	Cyber-Physical Swarms
	Overview
	Vision examples
	Wild-fire monitoring in extensive forests
	Crowd steering
	Autonomous vehicles

	Characteristics
	Related concepts
	Final Remarks

	Macro-programming
	The Essence of Macroprogramming
	Conceptual Framework
	Preliminaries
	Macroprogramming: Definition and Basic Concepts
	Historical Evolution and Context

	Aggregate computing
	System Model
	Field-based Programming Model
	Tools

	Final Remarks

	Reinforcement Learning
	Single-agent
	Markov Decision Process
	Find a policy given an MDP
	Find a policy without an MDP
	Policy Gradient Methods
	Approximate Solutions
	Wrap up

	Multi-agent
	Stochastic games
	Taxonomies
	Solutions for MARL
	Wrap up

	Many-agent
	Formalization
	Solutions for MAARL

	Final Remarks

	References

	II Engineering Cyber-Physical Swarms
	Patterns: Sensing-driven Clustering in Swarms
	Field-based Concurrent Processes
	Resilient Dynamic Cluster Formation
	Sensing-Driven Clustering
	Assumptions
	Problem Definition
	Adaptive Centroid-based Clustering on Numeric Values
	Adaptive Clustering Meta-Algorithm

	Evaluation
	Scenario Description
	Evaluation Goals
	Simulation Framework
	Simulations
	Results
	Discussion

	Related Work
	Swarm-based Environment Monitoring
	Related Clustering Models and Problems
	Related Work on Sensing-based Clustering
	Related Approaches and Programming Models
	Related Field-based Algorithms

	Final Remarks

	Patterns: Dynamic Decentralization Domains
	Motivation
	Decentralized situation recognition and action: a case study
	Requirements and abstractions

	Dynamic Decentralization Domains in Practice
	Evaluation
	Experimental setup
	Results and discussion

	Final Remarks

	Patterns: Coordinated Movements and Decision Making
	Motivation
	API Design
	Movement blocks
	Flocking blocks
	Leader-based blocks
	Team formation blocks
	Pattern formation blocks
	Swarm Planning blocks

	Evaluation
	Case Study: Find and Rescue
	Discussion

	Related Work
	Final Remarks

	Language: Reactive-based collective computations
	Motivation
	Self-organization Engineering Approaches
	Functional Reactive Programming

	FRASP Programming Model
	System Model and (Reactive) Execution Model
	Programming Abstractions and Primitives
	Paradigmatic Examples: Self-Healing Gradient & Channel

	Implementation
	Goals
	Architecture
	Implementation details

	Evaluation
	Goals
	Experimental Setup
	Results and Discussion

	Final Remarks

	Platform: Deployment of Cyber-Physical Swarms applications
	Background
	Pulverized aggregate computing
	Multi-tier programming and ScalaLoci

	Multi-tier pulverised aggregate computing
	Pulverized architecture in ScalaLoci
	Definition of deployment kinds
	Integration with aggregate programming

	Implications
	Final remarks

	References

	III Learning in Cyber-Physical Swarms
	Research Roadmap for Hybrid aggregate Computing
	Roadmap
	Goals and Means
	Patterns: learning ac algorithms
	Platform: learning execution strategies and adaptations
	Platform: learning system structures and re-structuring

	Opportunities and Challenges
	Final Remarks

	Patterns: Collective Program Sketching
	Aggregate Programs Improvement through rl
	Motivation: Building blocks Refinement
	Learning Schema
	Reinforcement learning-based gradient block
	Evaluation
	Simulation setup
	Results and Discussion

	Final Remarks

	Patterns: Field-informed Reinforcement Learning
	Background and Motivation
	Graph Neural Networks
	Problem formalization
	Motivation

	Approach Description
	Architecture, fields and aggregate dynamics
	Learning algorithm

	Evaluation
	Scenario
	Goal
	Training Phase
	Test phase
	Baselines
	Metrics
	Discussion and Results

	Final Remarks

	Platform: Distributed Schedulers for Collective Computations
	Background and Related Work
	Aggregate Platform Improvement Through reinforcement learning
	Learning Setting
	reinforcement learning to Reduce Energy Consumption

	Evaluation
	Simulation Setup
	Discussion and Results
	On practical applicability

	Final Remarks

	Platform: Toolkit for Hybrid Aggregate Computing
	Software Description
	Core abstraction
	ScaFi-Alchemist integration
	DSL for learning configurations
	Tool usage

	Experiments
	Description
	Results

	Related work
	Many Agent simulators:
	Multi-Agent Deep RL libraries:

	Final Remarks

	References
	Conclusion
	Discussion
	Future works



