
Alma Mater Studiorum – Università di Bologna

DOTTORATO DI RICERCA IN
DATA SCIENCE AND COMPUTATION

35° ciclo

Settore Concorsuale: 09/H1 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

Settore Scientifico Disciplinare: ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

UNCONVENTIONAL COMPUTING PARADIGM
METHODS WITH APPLICATION TO

COMPUTATIONAL CHEMISTRY

Presentata da : Marco Maronese

Coordinatore Dottorato:

Prof. Daniele Bonacorsi
Supervisore:

Prof. Andrea Cavalli
Co-Supervisore:

Dott. Sergio Decherchi

Esame finale anno 2024

iii

Acknowledgements
I would like to thank all my colleagues and collaborators for their work and

above all I want to thank Lorenzo Rocutto for these 4 years of mutual support.
I want to thank Professor Andrea Cavalli for the opportunities to work

closely with various entities in my research field, enabling me to grow as a
researcher.

Sergio Decherchi Ph.D, I extend my gratitude for his unwavering support
throughout these years of collaboration and for the valuable teachings he pro-
vided. I then extend all my thanks to all the staff and colleagues of the Italian
Institute of Technology in Genoa.

I also wish to express my thanks to Fabio Traversa Ph.D, the CTO of Mem-
computing Inc., for the guidance and knowledge he shared with me in the realms
of research and startups, along with the outstanding work during my internship
at their headquarters.

My thanks go to Ivano Tavernelli Ph.D and Francesco Tacchino Ph.D of IBM
Zurich Labs for their assistance during our collaboration and for the remarkable
opportunity to undertake an internship in their laboratories.

I also thank Carlo Cavazzoni Ph.D and Daniele Dragoni Ph.D for their
collaboration within the IIT-Leonardo Joint-Lab.

I would like to thank CINECA for providing access to computational time on
D-Wave Systems quantum computers through the ISCRA-C project FENSIA.
We are also grateful for the additional time we won via a second ISCRA-C
project.

Lastly, I’d like to express my gratitude to Professor Enrico Prati from UNIMI
(formerly CNR-IFN) and the QuantumTeam of CNR-IFN for the opportunities
and collaboration over these years, as well as for their support throughout my
research journey.

v

Contents

Acknowledgements iii

Abstract xxvi

1 Open problems in computational chemistry 1
1.1 Molecular simulations . 1
1.2 Molecular dynamics and Monte Carlo methods 4

1.2.1 Monte Carlo technique in computational chemistry . . . 4
1.2.2 Molecular dynamics simulations 5

1.3 Bottleneck in classical computational chemistry 7
1.3.1 Sampling problem . 8
1.3.2 Optimization problems for crystalline structure search . . 9

2 Quantum computing 11
2.1 Introduction . 11
2.2 Quantum mechanics for quantum computing 12

2.2.1 Quantum state and qubits 12
2.2.2 Transformations of quantum states 16
2.2.3 Dynamics of closed quantum systems 18
2.2.4 Observables and Measurement 19

Entanglement . 24
2.3 Elements of circuital quantum computing 25

2.3.1 Quantum circuits . 25
2.3.2 Elementary gates . 27

One-qubit gates . 27
Multi-qubit gates . 30

2.3.3 The universal quantum computer 33
2.4 Elements of adiabatic quantum computing 36

2.4.1 Spin-glass Hamiltonian for AQC 37
2.4.2 Quantum spin-glass model 38
2.4.3 Adiabatic theorem and convergence conditions of Quan-

tum Annealing . 39

vi

Adiabatic theorem . 40
Convergence conditions of quantum annealing 42
Computational complexity 44

2.5 Hardware realization . 45
2.5.1 Superconductive qubits 45

Josephson junction . 46
Charge qubit . 47

2.5.2 Trapped-ion qubits . 50
Qubit encoding on a trapped ion 51
Gates on Trapped ion qubits 53

2.6 Limitations in today’s quantum computers 54
2.6.1 Decoherence times . 55
2.6.2 Error rates and coupling map 58

2.7 Error correction . 59
Stabilizer formalism . 59

3 Memcomputing 61
3.1 Non-Turing computation with dynamical systems 62

3.1.1 Dynamical systems . 63
Lyapunov stability . 65

3.1.2 Ideal dynamical system for computation 66
3.2 Realisation of digital memcomputing machine 69

3.2.1 From analog to digital 69
3.2.2 Self-Organizing Logical Gates 70
3.2.3 Physical realization of SOLGs 72

3.3 Combinatorial optimization problems with memcomputing . . . 73
3.3.1 Boolean problems and MAX-SAT 73

Self-Organizing Logical Circuit 74
MAX-SAT and combinatorial optimization 78

3.3.2 Integer linear programming with memcomputing 79
Self-Organizing Algebraic Gates 79
Solving ILP problems with Memcomputing 80

4 Quantum computing for integral estimation 83
4.1 Chapter overview . 83
4.2 Quantum speedup over Monte Carlo techniques 85

4.2.1 Problem statement . 85
4.2.2 State preparation . 86

probability distribution loading 86

vii

Weight function loading 88
4.2.3 Quantum Amplitude Estimation algorithm 90

4.3 Alternative Quantum Amplitude Estimation methods 91
MLAE approach . 92
Iterative approach . 93

4.4 Comparison of the algorithms by statistical analysis 97
4.4.1 Bench-marking the methods of quantum amplitude esti-

mation . 97
4.5 Experimental test on a trapped-ion quantum computer 98

4.5.1 Trapped-ion quantum computer used for the experimental
test . 98

4.5.2 Assessing the performances on a trapped ion device . . . 99
4.6 Discussion . 99
4.7 Conclusions . 103

5 Quantum computing for ground-state search 105
5.1 Quantum computing for ground state estimation problem 105

5.1.1 Quantum phase estimation algorithm 105
5.1.2 Variational quantum eigensolver 107

5.2 Combinatorial optimization as ground state search problem . . . 110
5.2.1 Quantum approximate optimization algorithm 113
5.2.2 CVaR Optimization . 116

5.3 Optimize a water crystal lattice with quantum computing algo-
rithms . 117
5.3.1 2D square lattice . 118

Ion interaction . 119
5.3.2 Hexagonal lattice . 121

Ion interaction . 124
5.3.3 Hamiltonian operator mapping 124

Introduction of long-range interactions 127
5.4 Results . 128

5.4.1 Benchmark strategy . 129
Mean First Solution Time (MFST) 131
Classical solvers . 133

5.4.2 Quantum solutions tuning 136
5.4.3 Performances discussion 141

5.5 Discussion and conclusions . 145

viii

6 Benchmarking of non-Turing paradigms 147
6.1 Assessing the effectiveness of non-Turing paradigms on hard op-

timization problems . 147
6.2 Benchmark problems . 149

6.2.1 Semiprime Factorization Problem (FP) 149
FP: Implementation details 151

6.2.2 Hard–assignment Gromov–Wasserstein problem (GWP) . 153
GWP: Implementation details 154

6.2.3 Capacitated Helicopter Routing Problem (CHRP) 157
CHRP: Implementation details 158

6.3 Results . 161
6.3.1 Scalability assessment 161

Semiprime Factorization problem (FP) 162
Hard-assignment Gromov-Wasserstein problem (GWP) . 163
Capacitated Helicopter Routing Problem (CHRP) 165
Scalability results for TTS 166

6.3.2 Parameters dependency 166
Memcomputing tuning 168
D-Wave tuning . 170
Semiprime Factorization problem (FP) 170
Hard–Assignment Gromov-Wasserstein problem (GWP) 171
Capacitated Helicopter Routing Problem (CHRP) 174

6.3.3 Gap and latency driven analysis 174
6.4 Discussion and Conclusions . 175
6.5 Benchmarking of adiabatic quantum computers for in images fea-

ture extraction . 177
6.6 Feature extraction on AQCs . 180

6.6.1 Problem definition . 180
6.6.2 Computational procedure 180
6.6.3 Description of the dataset 182
6.6.4 Embedding the problem 182

6.7 Results . 184
6.7.1 Optimization of the NBMF hyperparameters 184
6.7.2 Tuning of the AQC parameters 184
6.7.3 Gap dependency on problem dimension and wall time . . 190
6.7.4 Reconstruction error after the iterative process 191

6.8 Conclusions . 194

ix

Bibliography 197

xi

List of Figures

1.1 Length-Time scales diagram [18]. 2

2.1 Graphical representation of a qubit using the Bloch sphere. Be-
sides the classically possible states |0⟩ and |1⟩ superposed |Ψ⟩
states are also possible. 14

2.2 Circuit representation of a charge qubit [66]. The region which
lies inside the dashed lines is the Cooper-pair box. 48

2.3 Circuit representation of a transmon qubit [66]. The region which
lies inside the dashed lines is the Cooper-pair box 49

2.4 40Ca+ energy levels involved to engineer a left-hand optical qubit.
Meter on the right are shown the energy levels in the presence of
an external magnetic field (Zeeman effect) where it is possible to
implement a hyperfine qubit. 52

2.5 Expected experimental curves for T1 and T2, Ref. [72]. 56
2.6 Immagine of the ibmqx2 quantum processor [74] 57
2.7 Coupling map of two different quantum processor of 5 qubits [59] 58

3.1 The phase space of a self-organizing AND (SO-AND) gate with
only four equilibria, each one corresponding to a logically consis-
tent state of an AND gate. In the absence of any other attractor,
the phase space of this gate clusters into four basins of attraction
(grey areas). Reference figure in [85]. 70

3.2 The SO-AND gate is in an unstable configuration if its logical
relations are unsatisfied. It is in a stable configuration if one of
its logical relations is satisfied. Reference figure in [85]. 72

3.3 Self-organizing (SO) AND gate, left panel, formed by dynamic
correction modules (DCMs), right panel.M indicates the resis-
tive memories, while The linear functions L drive the voltage-
controlled voltage generators (VCVG). Reference figure in [85] . 73

xii

3.4 Sketch of a possible 3-bit sum SOLC such that, given the bits
vo1 and vo2, outputs the consistent bits v1, v2, and v3. Note that
in addition to SO-OR, SO-AND, and SOXOR gates, the circuit
employs VCDCGs (diamonds with arrows inside) at each gate
terminal, except at the terminals where the input is supplied.
These VCDCGs eliminate, as possible equilibrium points, the
zero-voltage state of the terminals. Reference figure in [85]. . . . 75

3.5 Illustrative representation of the long-range correlations in a cir-
cuit that realizes the conjunctive normal form in the Equation
3.18. A machine that supports long-range order/correlations is
able to assign logical values to each variable of a CNF formula, in
a correlated way, even though those variables appear in different
clauses. This is because, the different variables can be mapped
into quantities (e.g., voltages) of a physical system, with each
quantity spatially separated from the others with the machine
correlating such quantities. Reference figure in [85]. 77

3.6 Example of a self-organizing circuit for a 3-SAT representing the
CNF in Equation 3.18. The the output of each 3-terminal SO-
OR gate is set to 1 (true), and the problem is to look for an
assignment of the variables v1, v2 and v3 that satisfies each clause.
xs and xl are the memory variables. Reference figure in [85] . . 79

3.7 A Self-Organizing Algebraic Circuit (SOAC) represents an ILP
problem. Each Self-Organizing Algebraic Gate (SOAG) is a lin-
ear condition that has to be satisfied when solving the ILP. The
output of the SOAGs is imposed in order to obtain feasible so-
lutions. The cost function is mapped into an additional SOAG
whose inequality value is progressively reduced. The SOAGs at
the circuital level are composed by dynamic correction modules
(DCMs); the circuit components of a DCM are illustrated in the
figure below on the right. 81

4.1 An illustration of how a probability distribution loading circuit,
P , can be supplemented with a quantum arithmetic circuit, R,
such that an expectation value of interest is encoded in the am-
plitude of a qubit. 89

4.2 Circuit preparing a state with amplitudes given by the polyno-
mial p(x) = a2x2 + a1x + a0 = (4a2 + 2a1)q1 + (a2 + a1)q0 +

4a2q1q0 + a0, for x = 0, 1, 2, 3, represented by two qubits. [127] . 90

xiii

4.3 Performance of the amplitude estimation algorithms to estimate
an 1D integral with n = 3 qubits. All results of the quan-
tum algorithms were obtained with the local qiskit simulator
aer_simulation and each plot shows the average of 10 execu-
tions with different simulator seeds. All simulations of the IQAE
[119] algorithm were performed with a 90% confidence interval.
a) The top-left plot shows how much the error on estimating the
integral decreases as a function of the number of samples/oracle
queries. The data are fitted with a function x−η in loglog scale.
For the algorithms MLQAE [118], standard QAE, IQAE, and
classical Metropolis-Hastings Monte Carlo (MHMC) the slopes
are respectively of −0.974±0.058, −1.267±0.206, −0.971±0.092

and −0.485±0.051 (result obtained without considering the case
with 10 samples). MLQAE and IQAE are performed with 100

shots per quantum circuit while the QAE was executed stan-
dalone. The data show quadratic speedup for the QAE (orange)
and slightly less than quadratic speedup for the MLQAE and
IQAE algorithms (blue and green, respectively) compared to es-
timation as a classic sampling Monte Carlo method (red). b)
The top-right plot shows the estimation error as a function of
the higher circuit depth (we must consider the highest one be-
cause MLQAE and IQAE required the simulation of more than
one quantum circuit). The two lower plots, c) and d), show in-
stead the execution time (for the quantum algorithms it is the
execution time of the QisKit local simulator) in function of the
estimation error (left) and the number of samples/oracle queries
(right). 96

xiv

4.4 Performances of MLQAE and IQAE on the 11-qubits IONQ-
Harmony device. a) Estimation of the integral function of Eq.
4.29 at different values of ∆ respectively set at π/3, π/4, π/5,
and π/6. The blue dots represent the estimations obtained using
IQAE while the green stars the MLQAE. The IQAE runs were
performed at confidence level of 85% and Nshots = 512. The
size of the dots increases as the target error ϵ decreases. In the
same way, the size of the stars increases as the M increases in
the MLQAE runs. Also for the MLQAE runs each circuit was
repeated 512 times. Each dot and star represents the average of 5
different runs. If in the upper plot the fit of the results on the tar-
get function, the lower plot shows the estimation errors reached
by the two algorithms in different settings. b) The two plot in
this panel shows how the estimation changes as the settings of
the algorithms change for the four values of ∆. The right plot
for the MLQAE and the left one for IQAE. For the MLQAE the
settings correspond to the number of samples represented in the
x-axis. For the IQAE case the results have an uncertainty on the
number of samples and the different settings are represented by
the dot size. c) The scaling of the estimation error with respect
to the number of samples of both the algorithms. Each dot is
the average of all the runs (5 runs for 4 values of ∆ for a total of
20 runs). For the IQAE case, only the standard deviation of the
estimation errors is shown. 100

5.1 Illustration of 8 water molecules arranged in a 3×3 square lattice
with a positive ion in the center. The oxygen atom is positioned
at the center of each site of the lattice while the hydrogen atoms
(in blue) occupy two out of four positions (the other two unpaired
positions are in white) for a total of 4 configurations identified
by the vector of the electric dipole. 120

5.2 Illustration of the two different settings of the two lattices rep-
resenting the hexagonal one. For each molecule, the Cartesian
coordinates x and y are defined with axes originating at the lat-
tice site (oxygen atom). The lattice of type A has the unit vector
of the direction 3, i.e. σ⃗3 along the x axis while for the lattice
B it is opposite to x. Two bases {σ⃗1, σ⃗2} are then defined to
construct the electric dipole vector. 121

xv

5.3 Example of a hexagonal lattice with 33 water molecules, left side,
and configurations of molecules in a hexagon, right side. Each
molecule in the A lattice, in red, has as prime neighbors only
molecules in the B lattice, in green. Each edge is labeled with a
number (1, 2, or 3) based on which direction the two molecules
are aligned. Each molecule, having 3 possible orientations, can
have a configuration which, in binary variables, can be encoded
with 01, 02, and 11. This is a type of dense encoding, as opposed
to "one-hot" encoding which would require 3 variables. 122

5.4 Illustration representing the mathematical elements involved in
the calculation of an interaction between water molecules ar-
ranged in a hexagonal lattice and an ion at a generic point of a
2-dimensional station. In addition to the Cartesian coordinates
assigned to each molecule to define the electric dipole, global co-
ordinates are introduced to calculate the distance between the
ion and the lattice sites. 124

5.5 Illustration of the lattices chosen to test the optimization solvers.
The figure shows theN = 6 cases where the lattices are composed
of hexagons. For the other values of N between N = 6 and N22,
the lattices have "unpaired" molecules, i.e. which do not belong
to hexagons. By increasing N , molecules are added following
the hexagonal topology starting from the lattice of 6 molecules
which is a single hexagon. For example, the case with N = 7

corresponds to a lattice of 7 molecules with a hexagon and a
molecule linked to one of the vertices of the hexagon. 129

5.6 Average GUROBI runtime to solve the QUBO problems related
to lattices of 6 to 22 molecules. 131

5.7 Performances, in terms of MFSS, of classical optimization solvers:
Simulated Annealing (SA), blue plot, and Parallel Tempering
Simulated Annealing (PTSA), orange plot. The temperature
scheduling of SA and the chains ion PTSA follow a geomet-
ric progression with the cooling rate r = 0.999. In the PTSA
the chains can be swapped with a rate of accept/reject steps on
rswap = 0.2 which means every 5 iterations.Each solver was run
30 times (with 30 different seeds) for each lattice. 135

xvi

5.8 Results, in terms of MFSS, of a QAOA with standard mixer
(⊗2NRX(β)). Each point is the result of the MFSS estimator over
15 runs on the 32 qubit cloud simulator ibmq_qasm_simulator.
The 15 runs are equally distributed in three CVaR setting α =

1, 0.5, 0.1. At each iteration of the optimizer 1000 samples (mea-
surements) are collected, therefore the cost of each run is evalu-
ated with the number of iterations accumulated up to the first
where the ground state is measured multiplied by the number
of total measurements per iteration (1000). For this reason, the
minimum cost is 1000 if the ground state is measured on the
first iteration. The parameters β and γ are initialized consid-
ering as prototypical scheduling (1 − λ(t))HM + λ(t)Hc where
λ(t) = t ∈ [0, 1]. 137

5.9 Comparative results between classical methods and QAOA with
standard mixer. The case p = 1 has a behavior comparable to
simulated annealing. 138

5.10 Results, in terms of MFSS, of a sQAOA that preserves the space
of feasible solutions with 103 shots per iteration. Each point is
the result of the MFSS estimator over 30 runs on the 32 qubit
cloud simulator ibmq_qasm_simulator. The 30 runs are equally
distributed in three CVaR setting α = 1, 0.5, 0.1. The param-
eters β and γ are linearly initialized as in the previous QAOA
implementation . 142

5.11 Results, in terms of MFSS, of a sQAOA with 104 shots for each it-
eration. The case N = 6 shows that each run reaches the ground
state at the first iterations and, therefore, with the first set of 104

measurements. Each point is the result of the MFSS estimator
over 30 runs on the 32 qubit cloud simulator ibmq_qasm_simulator.
The 30 runs are equally distributed in three CVaR setting α =

1, 0.5, 0.1. The parameters β and γ are linearly initialized as in
the previous QAOA implementation 143

5.12 Results, in terms of MFSS, of a custom VQE (sVQE), that pre-
serves the space of feasible solutions, with 103 and 104 shots.
Each point is the result of the MFSS estimator over 30 runs on
the 32 qubit cloud simulator ibmq_qasm_simulator. The 30 runs
are equally distributed in three CVaR setting α = 1, 0.5, 0.1. In
this case, all lattices addressed by the algorithm have been solved
at least once. 144

xvii

6.1 From the problem to the computing hardware. Three problems
are formulated in ILP and QUBO forms and solved with three
different solvers: i) the Gurobi optimization software based on
branch and bound and other heuristics; ii) a Virtual Memcom-
puting Machine exploiting self-organizing logic; and iii) a Quan-
tum Annealer. These solvers are physically implemented on hard-
ware based on the Von-Neumann architecture or on an adiabatic
quantum computer based on superconducting qubits. Memcom-
puting machines could be implemented on self-organizing memristor-
based circuits. 150

6.2 MFST plots for all the tested computing platforms, in log10, log10
scale. Every problem size corresponds to 5 different problem
instances using different seeds. Whenever a problem size on a
given machine includes unsolved instances, a smaller dot is used
and the number of solved instances is shown. The error bars
represent the standard deviation. We report both baseline and
parameter-optimized scaling results. In the scaling section, we
discuss these results. a: FP MFST with respect to the number
of bits of the semiprime. b: GWP MFST with respect to the
number of points. The red plus mark is the point N = 17 for
Gurobi, which was obtained by solving each instance only once,
due to time constraints. c: CHRP MFST with respect to the
number of workers. d: Zoom of the GWP plot showing the
slopes for Gurobi and VMM solvers for the biggest problems. The
VMM with enhanced settings achieved the best performances.
The highlighted rounded slope values have the following values
and standard deviations: Gurobi 16.89±0.83; VMM 5.89±0.50;
VMM baseline 10.93± 0.98. 164

6.3 Comparison between MFST and TTS as metrics to estimate the
computational cost to solve FP. The TTS slightly underestimates
the scaling for VMM. Plot in log10, log10 scale where N is the
number of bits of the semiprime. 167

6.4 Comparison between MFST and TTS as metrics to estimate the
computational cost to solve GWP. The two metrics are close to
identical for each solver. Plot in log10, log10 scale where N is the
number of points. 167

xviii

6.5 Comparison between MFST and TTS as metrics to estimate the
computational cost to solve CHRP. The TTS slightly underesti-
mates the actual expected cost to reach a solution for the first
time for VMM. Plot in log10, log10 scale where w is the number
of workers. 168

6.6 Test performed on the D-Wave machine for N = 6 for GWP.
The color of each box encodes the percentage probability that
the global optimum is found. 172

6.7 Test performed on the D-Wave machine for N = 6 for GWP.
The color of each box encodes the percentage probability that
the matrix used in GWP is a valid permutation matrix. 173

6.8 Test performed on the D-Wave machine forN = 6, c = 0.598, λ =

16 for GWP. For each annealing time (x-axis), we considered 5
different problems of that size and we performed 10.000 annealing
cycles for each. The values on the y-axis represent the average
TTS. 173

6.9 Performances of VMM and Gurobi on the CHRP problem, in log-
log scale. Errorbars have been slipped whenever they included
negative values. a: average gap percentage with respect to the
optimal solution reached by VMM and Gurobi in 60 seconds,
versus the number of workers. Gurobi was faster for small in-
stances but its performances quickly deteriorated, while VMM
was much more solid as the problem size increased. b: time re-
quired by VMM and Gurobi to reach the first feasible solution,
versus the number of workers. The dependence of computing
time on problem size clearly differed between the two solvers.
VMM was more resilient to hard instances, resulting in a better
wall time for w = 22, 24. 175

6.10 A selection of images of the aircraft class. 182
6.11 A selection of images of the not-aircraft class. 182
6.12 Hyperparameters selection: Reconstruction error as a function of

Hfill at different α values. Results are obtained using the classical
Gurobi solver for a dataset of 625 images with k = 50. Each dat-
apoint is the mean of three independent runs using three different
random seeds. 185

xix

6.13 Final (percent) sparsity of H matrix as a function of Hfill at
different α values. Results are obtained using the classical Gurobi
solver for a dataset of 625 images with k = 50. Each data point is
the mean of three independent runs using three different random
seeds. 185

6.14 Heatmaps showing the average gap and average number of broken
samples for every combination of annealing time tann and chain
strength Ichain. From top to bottom: 2000Q, Adv1, Adv2. All
devices were tested at k = 30. The experimental procedure to
collect the data is explained in detail in the main text. 188

6.15 Average gap and average number of broken samples for every
combination of annealing time tann and chain strength Ichain. In
the case k = 50 for Advantage 4.1. Optimal setting is tann = 25

and Ichain = 2.4, corresponding to gap 26.8%. 189
6.16 Performance analysis of the Advantage 4.1 (Adv1), the Advan-

tage2_1.1 prototype (Adv2), and the 2000Q (2kQ) quantum
computers. Plots a → f display the average gap from the exact
solution as a function of the problem size k. Each data point is
estimated by averaging the best gap obtained by the selected D-
Wave QPU on 250 distinct single-column problems. The shaded
area represents the standard deviation. The runs were executed
using the tuned optimal parameters for each solver. The maxi-
mum wall time allowed for each D-Wave run is a multiple of the
average time that Gurobi required to solve the same instance of
the problem. Plots g and h compare the distribution of samples
produced by the three D-Wave solvers. For every k, 10,000 sam-
ples were uniformly extracted from the whole collection of sam-
ples obtained from the previous runs on the 250 single-column
problems. The samples produced by 2kQ display a distribution
peaked towards higher gaps for k ≥ 40, while samples produced
by Adv1 and Adv2 display broader distributions. 192

xx

6.17 NBMF algorithm Workflow on AQC (D-Wave) and Gurobi. a In
the lower-left panel are reported some samples of the

√
n ×

√
n

satellite images of aircrafts. The m images are flattened and
stacked to form the n×m matrix V . b The optimization strat-
egy is based on an iterative updating of the continuous values
matrix W (always on Gurobi) and the binary matrix H (on
D-Wave or Gurobi). c The optimization step to update H is
embedded on the Pegasus, Chimera, and Zephyr graphs of the
Adv1, 2kQ, Adv2 devices, respectively. d The reconstruction er-
ror ||V − WH||F , in logarithmic scale, after find_W and after
find_H is shown at each epoch for the quantum-classical work-
flow and the full-classical one. e-f Reconstruction of a sampled
image at the epoch 1, 3, and 5 respect the original image (series
of images above), the images on the left side are the reconstruc-
tion with the quantum-classical workflow and in the right side
the reconstruction obtained by the fully-classical workflow. The
series of images below, instead, contains a sampled basis image,
which is a column of W , at the epochs 1, 3, and 5. 193

xxi

List of Tables

2.1 Properties of the ibm_kolkata quantum device 57

4.1 Comparison between QAE algorithms. Here n+1 is the number
of qubits on which the oracle query Q is applied, d is the depth
of Q while ϵ is the target accuracy and α the confidence level. In
the last two algorithms β ∈ (0, 1], k ≤ 2 and q ∈ [1, . . . , k − 1].
Types column indicates to which approach the algorithm belongs
to, based on the classification of Section 4.3: O corresponds to
the original QAE, I to the MLAE approach and II to the iterative
respectively . 95

5.1 Values of the constants with which the systems on which the
optimization solvers were tested are defined. 130

5.2 Scaling performances in MFSS of the tested classical solutions.
Parallel tempering simulated annealing (PTSA) clearly shows
better performance as expected. The swap rate at 0.2 corre-
sponds to 2 accept/rejection swap steps every 10 iterations and
therefore one every 5. Being parallelized on 10 chains, the total
samples collected with one PTSA run is 106, other implementa-
tion details in the caption of Figure 5.7 136

5.3 Scaling performances in MFSS of QAOA with standard mixer.
The best result is achieved by the case with p = 1 (in bold).
However, the trend is evaluated in a region that includes the
lattices of 6 and 7 molecules which turn out to be particularly
simple to solve. Other details in the caption of Figure 5.8. . . . 138

5.4 Scaling performances in MFSS of the tested quantum solutions
with constraints preserved circuit ansatz. The bold results are
the most relevant but the sQAOA with p = 1 and 103 shots has
a relative error of 10% and it is calculated on only 4 different
problem sizes. The sVQE case with p = 1 and 103 has a more
high accuracy and it was tested from a 16 to a 26 qubit problem.
Simulations details in the caption of Figure 5.10, 5.11 and 5.12 . 145

xxii

6.1 Set of tested values for D-Wave and semiprime factorization . . 171
6.2 Set of tested values for D-Wave and Gromov-Wasserstein 172
6.3 Number of qubits (q) and average chain length (lchain) associ-

ated with the embeddings at different problem sizes k. Results
are obtained running the minorminer software implemented in
the Ocean SDK[250] multiple times until there was no improve-
ment in the required number of qubits for ten consecutive trials.
Missing values in the table correspond to those cases where mi-
norminer did not return any embedding after ten consecutive trials.183

xxiii

Abstract

Over the past two decades, the landscape of applied chemistry has undergone a
notable transformation, with theory and modeling emerging as integral compo-
nents of this scientific discipline. Alongside traditional analytical and synthetic
chemistry, research in the field of chemistry has seen a profound change, mainly
due to substantial advances in methodology, numerical techniques, and the ex-
ponential growth of computer software and hardware capabilities. From the
beginning of the new millennium, parallel Graphics Processing Units (GPUs)
started to be actively used for general-purpose computing on GPU and later
found their way into fields of material science, computational chemistry, and
quantum chemistry. Therefore, contemporary High-Performance Computing
(HPC) clusters often provide, in addition to the so-called regular compute nodes,
the GPU nodes where computations can be run on both CPU and GPU cores.
Thanks to advanced HPC structures and the power of parallel processing of-
fered by GPUs, simulations are increasingly replacing the need for dangerous
and costly experiments with precise calculations. Physics-based methods such
as Molecular Dynamics (DM) and Monte Carlo (MC) techniques have benefited
enormously from the increasingly marked development of parallel computing.
However, the modern computing paradigm starts to show limitations. These
limitations have multiple natures. On the one hand, the Von Neumann architec-
ture, which enables today’s flexible general-purpose computing, suffers from the
limitations of a Turing-equivalent approach. In fact, to date there are no suit-
able methods for the classical computer paradigm, capable of effectively solving
many problems such as in many cases of combinatorial optimization (the prob-
lem to find the optimal solution) and other problems of the class called NP-hard
which still remain intractable today. Furthermore, hardware development no
longer guarantees an exponential increase in performance due to the engineering
problems of developing ever smaller transistors. This fundamental limitation,
as well as physical constraints brought on by Moore’s law scaling of transistors,
and a growing set of unreachably difficult optimization problems, have together
spurred the interest in unconventional computing architectures.

Many bottlenecks of classical computation are still very limiting for a mas-
sive use of simulation techniques for computational chemistry. The calculation

xxiv

of expectation values for thermodynamic observables, useful for studying chemi-
cal reactions, passes from the problem of estimating multidimensional integrals.
Sampling problems, where you want to generate configurations of a system con-
gruent to a probability distribution, is a huge obstacle to studying complex
systems and reactions where statistically very long and expensive simulations
are required. Problems, however, such as solving the Shrödinger equation or in
general finding the structure of a crystal are all limited in part by the capabil-
ities of combinatorial optimization problem solvers. The problems of sampling
and optimization are therefore the two points for which the need for new com-
putational alternatives is more evident.

In this thesis, three different promising alternatives are analyzed to ad-
dress these problems that seem prohibitive for classical computation. These
approaches can be divided into those that exploit the phenomenon of classical
mechanics and those that instead exploit the phenomenology of quantum me-
chanics. Quantum computers represent the second category. In the early 1980s,
quantum computers were proposed as an alternative paradigm for solving com-
putational problems based on the exploitation of the postulates of quantum
mechanics. In 1995, Shor defined an algorithm based on the concepts of quan-
tum information and quantum computation to tackle the problem of integer
factorization, which requires a polynomial increase in resources rather than an
exponential one as in a Turing-based approach. Therefore, from a theoretical
perspective, quantum computing surpasses the limits of classical computation
for certain computational problems. However, a digital and general-purpose
quantum computer as it was conceived between the 1980s and 1990s is not the
only paradigm that exploits quantum phenomena. An example of this are adia-
batic quantum computers (AQCs) which are instead an analog and non-Turing
alternative. The third paradigm considered in this work instead represents a
digital paradigm that exploits classical mechanics but is non-Turing. Mem-
computing is the name given to such an emerging computational paradigm.
Memcomputing exploits the evolution of a circuit based on memristors to per-
form computations. Memcomputing is a non-Turing paradigm that does not
exploit the Von Neumann architecture. It does not have a dedicated mem-
ory component but rather exploits the evolution of a physical system. Even if
these paradigms have a very strong theoretical basis, however, the challenges
of building machines capable of processing these calculations remain a signifi-
cant hurdle today. For this reason, it is useful to evaluate methods based on
these paradigms net of the current capabilities of the machines or simulators.
The first chapter presents the main limitations of today’s Molecular Dynamics

xxv

and Monte Carlo methods which boil down to the two fundamental problems
of optimization and sampling. In the second and third chapters, the elements
relating to the tested computational paradigms are presented. The second chap-
ter introduces quantum computing on a general level with a distinction between
the universal quantum computer (or digital, circuit, or general-purpose) and the
analog quantum computer, specifically the adiabatic quantum computer. In the
third chapter, the Memcomputing paradigm is introduced. For all three there
are descriptions of the physical implementation of the various types of quantum
computers and the memcomputing circuit. This is to provide a deeper under-
standing of today’s limitations in hardware implementation for these alterna-
tive paradigms. The fourth, fifth, and sixth chapters present 4 benchmarking
works between classical solutions and methods based on quantum computers
and memcomputing. In the fourth chapter, alternative quantum methods to
Monte Carlo techniques for estimating integrals are studied. The performance
of quantum amplitude estimation methods adapted to be implemented on mod-
ern quantum hardware was evaluated. The tests were performed on an 11-qubit
trapped ion computer. In the fifth chapter, a model of water molecules arranged
in a lattice was developed to test quantum optimization methods in finding the
crystal structure of the lattice with the presence of ions. In the sixth chapter,
the performances of non-turing paradigms (memcomputing and AQC) on NP-
hard optimization problems are analyzed. Initially, AQC and memcomputing
were evaluated together on 3 NP-hard problems: the Semiprime Factorization
problem (FP), the Hard-Assignment Gromov-Wasserstein problem (GWP), and
the Capacitated Helicopter Routing Problem (CHRP). Finally, the AQCs were
tested on a machine learning application for feature extraction from satellite im-
ages where the quantum computer is used to accelerate matrix decomposition.
All the tests result in good development prospects for these paradigms from
quantum computing to memcomputing, however, showing the limits present in
current machines.

1

Chapter 1

Open problems in computational
chemistry

1.1 Molecular simulations

Computational studies play an increasingly important role in chemistry and
biophysics, mainly thanks to improvements in hardware and algorithms. The
ability to properly sample configurational and conformational properties and to
subsequently describe at the atomic level the dynamical evolution of complex
macromolecular systems has wide application. This research is of paramount
importance in the study of macromolecular stability of mutant proteins [1],
molecular recognition, ions, and small molecule transportation of the influenza
M2 channel [2], protein association, the role of protein flexibility for influenza
A RNA binding [3], folding and hydration, influenza neuraminidase inhibitor
[4], drug resistance [5], enzymatic reactions, folding transitions [6], screening
[7], accessibility assessment, and hemagglutinin fusion peptide [8]. One should
also mention multivalent binding mode [9], docking [10], drug (e.g., Oseltamivir
and Zanamivir) efficiency against mutants [11], structural biochemistry [12],
biophysics, molecular biology, influenza multiple dynamics interactions [9], en-
zymology, pharmaceutical chemistry [13], biotechnology, rational epitope design
[14], computation vaccinology [15], binding [16], and free energy [17].
For instance, one may wish to calculate the free energy to assess the strength
and the stability of the bond in between a monoclonal antibody (mAb) and
an antigen, such as the viral hemagglutinin, to quantify the efficiency of the
neutralization process. In the last two decades theory and modeling turned
to become one of the major topics of applied chemistry along with analytic,
synthetic, and other chemistry fields. This made possible because of signifi-
cant improvements in methodology, numerical methods, and computer software
and hardware. Much experimental research started to include computational

2 Chapter 1. Open problems in computational chemistry

modeling. The role of computer simulation in modern chemistry cannot be over-
estimated and the use of effective modeling and simulation plays a critical role
in practical applications by providing insights into experiments and helping in
system optimization. Specifically, simulations are more and more often used to
substitute dangerous and expensive experiments with calculations. At the same
time, the impressive progress of modern experimental research in material sci-
ence and biology necessitates further developments and continuous extension of
the applicability and accuracy of nowadays computational chemistry methods.
The fast but accurate qualitative and quantitative modeling of large biological
molecules, nanoparticles, and interfaces becomes the main focus of the research
which requires significant computational efforts and is not always achievable at
the current technology level. For example, most of the computational chemistry
problems are about solving the Schrödinger equation for electrons in molecules
or the Newton equations of motion for a system of classical particles which
require large computational infrastructures such as High-Performance Comput-
ing (HPC) clusters often provide, in addition to the so-called regular compute
nodes, the Graphics Processing Units (GPUs) nodes where computations can be
run on both CPU and GPU cores. In fact, simulating macromolecular systems

Figure 1.1: Length-Time scales diagram [18].

is possible today subject to a compromise between the accuracy of the simu-
lation and the size of the system to be simulated. For this reason, there are
many methodologies that are positioned as the most suitable solutions based

1.1. Molecular simulations 3

on the size of the system and the time scale of the dynamics that you want
to simulate as shown in Figure 1.1. Consequently, mathematics should play a
central role in the development of new computational methodologies and new
computational paradigms. The ultimate goal is to develop numerical alterna-
tives with a computational complexity that scales better with the size of the
system in order to guarantee a better compromise between the accuracy and
speed of the simulation. An important example that shows the limits of the
modern computational approach in the simulation of large molecular systems
concerns the study of complexes consisting of a drug and its target in solu-
tion. Such computational predictions are challenging because a comprehensive
description must cover a range of time scales, from the femtosecond period of
molecular vibrations to the slow diffusion rate of all species in solution, up to
the millisecond and beyond to follow the binding and unbinding of drugs and
targets. Such systems require massive computations for adequate statistics and
a robust estimation of thermodynamic observables. thermodynamic observables
are quantitatively related to free energy. For instance, the Gibbs binding free
energy is directly related to the equilibrium concentration of bound ([PL]) and
unbound ligand ([L]) and protein ([P]) complexes, according to

∆Gbind = RT ln
KD

C0

(1.1)

where T is the temperature, R is the gas constant, and C0 is the standard state
concentration of 1mol/L. KD is the dissociation constant and is defined by

KD =
[L] [P]

[LP]
(1.2)

In terms of equilibrium thermodynamics, the ergodic theorem then provides a
suitable theoretical framework for linking the chemical world to the physical
observables used to assess drug potency and efficacy. In particular, for closed
systems, the time average of their properties is equal to the average over the
entire space. This provides the statistical properties of a system in thermody-
namic equilibrium. Molecular simulation can thus merge the microscopic and
macroscopic worlds by estimating the time that the system spends in a certain
microscopic state. If the simulations are sufficiently extensive, they can also es-
timate the probability of that state. This is becoming ever more feasible thanks
to modern algorithms and efficient hardware architectures.

4 Chapter 1. Open problems in computational chemistry

1.2 Molecular dynamics and Monte Carlo meth-

ods

1.2.1 Monte Carlo technique in computational chemistry

The objective of Monte-Carlo (MC) simulations is to generate an ensemble of
representative configurations under specific thermodynamics conditions for a
complex macro-molecular system [19]. Applying random perturbations to the
system generates these configurations. To properly sample the representative
space, the perturbations must be sufficiently large, energetically feasible and
highly probable. Monte Carlo simulations do not provide information about
time evolution. Rather, they provide an ensemble of representative configura-
tions, and, consequently, conformations from which probabilities and relevant
thermodynamic observables, such as the free energy may be calculated. The
calculation of free energy, as well as other thermodynamic observables, corre-
sponds to estimates of multidimensional integrals. The ensemble average of
an observable O (such as the enthalpy) is obtained by weighting the various
realizations of the observable by their corresponding probability

⟨O⟩ =
∫
dpNdrNO(rN , pN)P (rN , pN) (1.3)

where, for example, in an NVT ensemble The probability that the macro-
molecule is in a state characterized by atomic positions rN , and atomic momenta
pN is given by

P (rN , pN)dpNdrN =
exp
{
−βH(rN , pN)

}
dpNdrN

ZNV T
(1.4)

which is called Boltzmann distribution. In the last equation, H is the Hamilto-
nian of the system while Z is called the partition function that, in the canonical
ensemble (NVT), is

Z ≡
∫
dpNdrN exp

{
−βH(rN , pN)

}
(1.5)

The multidimensional integrals associated with the probability and the partition
function may be efficiently calculated with a procedure called Monte Carlo
integration. In this approach the integration space is sampled according to
a Markovian process and the integral is approximated by the average of the
corresponding sampled states. Such an approach is efficient if the sampled
states have a high probability of occurrence. A sufficient, but not necessary,

1.2. Molecular dynamics and Monte Carlo methods 5

condition for such an efficient sampling to hold is called detailed balance:

P (S)T (S → S ′)A(S → S ′) = P (S ′)T (S ′ → S)A(S ′ → S) (1.6)

where P (S) is the probability (emission probability) that the system is in the
state S ≡ (rN , pN), T (S → S ′) is the transition probability from state S to the
state S ′, and A(S → S ′) is the acceptance probability of such a transition. If
we assume that the transition probability is symmetrical

T (S → S ′) = T (S ′ → S) (1.7)

then the detailed balance equation reduces to

A(S → S ′)

A(S ′ → S)
=
P (S)
P (S ′)

= exp{β (H(S ′)−H(S))} (1.8)

For the so-called Metropolis algorithm [20].

A(S → S ′) = min{1, exp{β (H(S ′)−H(S))}} (1.9)

Consequently, each state is defined from the previous one (Markovian process).
A transition to a lower energy is always accepted, while a transition to a higher
energy is accepted with probability

exp{β (H(S ′)−H(S))} (1.10)

1.2.2 Molecular dynamics simulations

Molecular dynamics studies the temporal evolution of the coordinates and the
momenta (the state) of a given macromolecular structure. Such an evolution
is called a trajectory. A typical trajectory is obtained by solving Newton’s
equations. The trajectory is important in assessing numerous time-dependent
observables [21] such as the accessibility of a given molecular surface [22], the
interaction in between a small molecule (e.g., a drug) and the hemagglutinin or
the neuraminidase of a given influenza strain, the interaction epitope-paratope
in between an antigen (e.g., hemagglutinin) and an antibody (e.g., CR8020),
the appearance and disappearance of a particular channel or cavity, and the
fusion of the hemagglutinin with a cell membrane (fusion peptide), amongst
others. From an MD trajectory, it is possible to compute a temporal average of

6 Chapter 1. Open problems in computational chemistry

an observable by averaging this observable over time along the trajectory:

O = lim
t→∞

1

t

∫
dτO(rN(τ), pN(τ)) (1.11)

Although it has never been formally proven (and that it is not always appli-
cable: for instance, when the trajectory is periodic or when the phase space is
constituted of disconnected regions), the ergodicity principle is often invoked
[23]. The ergodicity principle states that the average over periods of time along
a given trajectory of an observable is, at the limit, identical to the ensemble
average of this observable as obtained, for instance, from Monte Carlo simula-
tions:

O ≈ ⟨O⟩ (1.12)

Ergodicity is instrumental in performing MD simulations in the canonical and
isobaric-isothermal ensemble. MD simulations are generally considered to suffer
from three main limitations:

• the accuracy of the interaction model or force field (MM, QM/MM, semi-
empirical, ab initio, etc.) may not enable the desired insights.

• The simulation output (the trajectory) is high-dimensional, noisy, and
can be difficult to interpret and describe using a meaningful and relevant
lower-dimension level of description.

• Given the limitation on the timestep, which needs to be small enough for
integration to be stable and accurate, the timescales that can be sampled
are often shorter than the process of interest to the researcher.

The choice of a proper potential is of the utmost importance in obtaining ac-
curate molecular dynamics simulations [24]. The potential must be physically
sound as well as computationally tractable. An approximate potential may be
calculated from quantum mechanics and from the Born-Oppenheimer approxi-
mation in which only the positions of the atomic nucleus bonding are considered
[24]. The potentials may be divided into bonding potentials and long-range po-
tentials. The bonding potentials involve interaction with two atoms (bound
lengths), three atoms (bound angles), and four atoms (dihedral angles). Long-
range interactions are associated with the Lennard-Jones potential (van der
Waal) and the Columbic potential. The harmonic approximation is utilized
for the bonding potentials, which means that solely small displacements are

1.3. Bottleneck in classical computational chemistry 7

accurately represented. The general form of the potential is

U(rN) =
∑
d

kd(d− d0)
2 +

∑
S

kS(S − S0)
2 +

∑
θ

kθ(θ − θ0)
2+

+
∑
χ

kχ(1 + cos νχ− δ) +
∑
ϕ

kϕ(ϕ− ϕ0)
2+

+
∑
i,j

ϵij

((
r0ij
rij

)1

2 +

(
r0ij
rij

)6

+
qiqj
ϵlrij

) (1.13)

where d is the bound length, S is the Urey-Bradley bound length, θ is the
bound angle, χ is the dihedral angle, ϕ is the improper dihedral angle, rij is
the distance in between atom i and j while kd, kS, kθ, kχ, and kϕ are constants,
d0, S0, θ0, ϕ0, and r0ij are equilibrium positions, ϵij is related to the Lennard-
Jones well depth, and ϵl is the effective dielectric constant [25]. Finally, qi
is the partial atomic charge associated with atom i the partial charge comes
from the asymmetrical distribution of the electrons in the chemical bounds.
The first term on the last line is the van der Waal interaction (or Lennard-
Jones potential), and the last term on the last line is the Columbic interaction.
The parameters of the model are determined experimentally and from quantum
mechanics. Among the most popular potentials are CHARMM and AMBER
[24]. The two differ mostly in the manner in which the parameters are estimated.
These potentials may model proteins, lipids, ethers, and carbohydrates, as well
as small molecules (e.g., drugs). The number of interactions involved in long-
range interactions rapidly becomes prohibitive. For instance, for the Columbic
potential, there are potentially N !/2!(N − 2)! interactions (this is because it is
the number of ways we can choose pairs of charges from a set of N charges),
which correspond to approximately a quarter of a billion interactions for an
influenza hemagglutinin. To reduce the computational burden, their action
range is truncated. The truncation should be performed in such a way as not to
introduce artificial discontinuities, which may result in computational artifacts.

1.3 Bottleneck in classical computational chem-

istry

It has already been mentioned previously that molecular dynamics suffers from
the problem of choosing an accurate force-field. This problem can ideally be
solved by calculating the solution of the Schrödinger equation of the molec-
ular system in question. This problem, which today is solved approximately

8 Chapter 1. Open problems in computational chemistry

for a few particles, can be reformulated as an optimization problem. In com-
putational chemistry, a problem such as minimizing the energy of a system to
determine its crystalline structure is also an optimization problem for which
there are Monte Carlo methods particularly suitable for solving it but always
with a limited number of particles. Finding a solver to solve an optimization
problem with better scaling than existing methods today would therefore allow
us to increase the simulation capabilities of molecular systems. In the previous
sections, however, the problem of sampling configurations of a molecular sys-
tem to estimate its thermodynamic properties has already been introduced. It
therefore appears that, from a computational science point of view, finding new
solutions for sampling and optimization problems are extremely preparatory for
computational chemistry.

1.3.1 Sampling problem

Unlike molecular dynamics simulations, Monte Carlo simulations are free from
the restrictions of solving Newton’s equations of motion. This freedom allows for
cleverness in the proposal of moves that generate trial configurations within the
statistical mechanic’s ensemble of choice. The common problem between MC
methods and molecular dynamics remains the difficulty of exploring separate
regions of phase space. Systems with high entropy are characterized by mul-
timodal probability distributions and high energy barriers which lead to less
exploratory sampling and therefore less accurate estimation of the integrals.
The replica exchange method provides an initial alternative to overcome this
problem. Many biomolecular processes involve an activation process in which a
high-energy barrier exists between the initial and the final state [26]. In order to
efficiently sample the macromolecular states, this type of barrier must be over-
come. An efficient, although computationally expensive, approach to overcome
such a barrier is called replica exchange (refer to [26] and, in the same spirit,
[27]). These methods involve a certain number of non-interacting simulations,
called replicas, which are performed in parallel. Each simulation is character-
ized by its own temperature: low temperature simulations tend to explore local
minima, while high-temperature simulations may overcome energy barriers and
consequently move in between local minima. To favour a better exploration of
the macromolecular states, the replicas are periodically exchanged (swapped)
according to the following acceptance probability:

AR(S → S ′) = min

[
1, exp

{
−(βS′ − βS)

(
H(S ′)

∣∣∣∣
TS′

−H(S)
∣∣∣∣
TS

)}]
(1.14)

1.3. Bottleneck in classical computational chemistry 9

This acceptance probability is similar to the ones introduced before, except for
the fact that each state is characterized by its own temperature. Once the ex-
change is completed, the simulations resume normally until another exchange
is performed. The whole procedure allows for a better sampling of the macro-
molecular states. Various enhanced sampling methods exist to increase the
ability to explore regions of phase space that are less entropic (characterized
by fewer microstates that identify a given macrostate) [28]. In addition to the
ability linked to the method with which to sample states of the system, there
remains an intrinsic limitation linked to the estimation of the relative thermo-
dynamic observables. In fact, from the central limit theorem, it turns out that
the number of samples to be collected to obtain an estimate within a certain
error ϵ, scales as

O
(
1

ϵ2

)
(1.15)

1.3.2 Optimization problems for crystalline structure search

The position of the constituent atoms of a macromolecular structure is usu-
ally determined either through X-ray crystallography for the larger structure or
through nuclear magnetic resonance (NMR) for the smaller molecules. If only
the amino acid sequence of a protein is available, the three-dimensional struc-
ture may be inferred either from methods based on homology, such as threading
or from ab initio methods, which predict the structure from the sequence alone
[29]. Among the larger structures associated with influenza are the hemagglu-
tinin and the neuraminidase. Because a protein has to be crystallized to apply
X-ray crystallography, the position of its constituent atoms may be distorted
from their natural positions by the crystallization process. Consequently, bond
lengths and bond angles may be distorted and steric clashes in between atoms
may occur. Therefore, it is recommended to minimize the potential energy of
the macromolecular structure to remediate this deficiency and to create a more
realistic structure [30].

The global optimization of nonlinear functions, such as the potential, is a
notoriously difficult problem because of the complexity of the energy landscape
and the profusion of local minima [31]. Usually, only local optimization is
performed. Such a minimization may be achieved through various algorithms
[31] such as the steepest descent algorithm, the conjugate gradient algorithm,
and the Newton-Raphson method. The first two are based on the gradient,
while the latter is based on the Hessian. In most cases, local optimization is
sufficient to refine the structure. If a global optimization is suited or required,

10 Chapter 1. Open problems in computational chemistry

an approach such as simulated annealing could be utilized [32]. Simulated
annealing is an MC method. The position of the atoms is subjected to small
random displacements. The acceptance probability of such a displacement is
given by

AR(S → S ′) = min

[
1, exp

{
−βk

(
H(S ′)

∣∣∣∣
Tk

−H(S)
∣∣∣∣
Tk

)}]
(1.16)

where
Tk ∈ {T1, T2, . . . , TK}, Tk+1 < Tk (1.17)

This means that the temperature acts as a control parameter. Initially, the
temperature is high, which implies that transitions from lower to higher energy
are allowed with a nonnegligible probability in being able to escape local min-
ima. Subsequently, the temperature is gradually reduced (cooling) to decrease
the occurrence of such a transition. Transitions to lower energy are always
accepted. With a proper choice of temperatures, a global optimization may
be achieved. The position of the global minimum associated with the energy
landscape may be further refined with local optimization.

11

Chapter 2

Quantum computing

2.1 Introduction

To introduce the motivations that led to the conception of quantum comput-
ing, we must start with the key concepts of classical computational sciences
and their limitations. Let’s start from a key concept in computer science: Al-
gorithms. An algorithm is a collection of simple instructions for carrying out
some task [33]. The concept of algorithm has a long tradition: only in the
1930s did the fundamental principles of modern algorithm theory and calcula-
tion emerge. Alonzo Church, Alan Turing, and other pioneers of the computer
age introduced these ideas, responding to a significant challenge posed by math-
ematician David Hilbert in the early 20th century. Hilbert’s question revolved
around whether there was an algorithm that could potentially solve all math-
ematical problems, a question sometimes called the "entscheidungsproblem".
The response to Hilbert’s challenge was negative: there is no algorithm capable
of solving all mathematical problems. To establish this, Church and Turing
faced the profound task of formally defining what we mean when we refer to
the intuitive concept of algorithm in mathematical terms. In doing so, they laid
the foundation for modern algorithm theory and, consequently, for the modern
field of computer science. First, Turing defined a class of machines, now known
as Turing machines [34], to capture the notion of an algorithm to execute a com-
putational task. The second approach is via the computational circuit model
[35]. Although these computational models appear different, it turns out that
this is the case they are equivalent [36]. The limitations of the above approaches
are assessed based on the resources required to solve a certain computational
problem. Firstly, the study of computational complexity theory allows us to
classify the difficulty of various computational problems. For instance, prime
factorization is considered one of the problems that are prohibitively challeng-
ing for a classical, Turing-based computational approach which shares the same

12 Chapter 2. Quantum computing

complexity classes as a Turing machine [37]. In the early 1980s, Feynman pro-
posed an alternative paradigm for solving computational problems based on the
exploitation of the postulates of quantum mechanics [38]. In 1995, Shor defined
an algorithm based on the concepts of quantum information and quantum com-
putation to tackle the problem of integer factorization [39], which requires a
polynomial increase in resources rather than an exponential one as in a Turing-
based approach. Therefore, from a theoretical perspective, quantum computing
surpasses the limits of classical computation for certain computational prob-
lems. However, the challenges of building machines capable of processing these
calculations remain a significant hurdle today. This chapter is therefore divided
as follows: firstly, we introduce the formalism of the Turing machine and the cir-
cuit model, and then we focus on their limitations. Subsequently, we introduce
the concepts related to quantum computation, starting from the postulates of
quantum mechanics to the elements of various quantum computing paradigms,
quantum hardware implementation, and today’s limitations.

2.2 Quantum mechanics for quantum computing

2.2.1 Quantum state and qubits

The first concept to introduce into quantum mechanics is related to the first
postulate

Postulate 1: Associated to any isolated physical system is a complex vec-
tor space with an inner product (that is, a Hilbert space H) known as the state
space of the system. The system is completely described by its state vector,
which is a unit vector in the system’s state space.

Let us consider the case of a finite-dimensional Hilbert space. For an N-
dimensional Hilbert space H, we can define a basis set of N vectors {|i⟩ ; i =
0, . . . , N − 1} (using Dirac’s notation for vectors). Therefore, each element
|ψ⟩ ∈ H can be writable as

|ψ⟩ =
N−1∑
i=0

ci |i⟩ , (2.1)

2.2. Quantum mechanics for quantum computing 13

where ci ∈ C ∀i, and therefore CN ⊆ H. Quantum states are localized on the
unit sphere centered on the origin of space H, it follows that

⟨ψ|ψ⟩ =
N−1∑
i=0

|ci|2 = 1 (2.2)

In Dirac’s notation: the ket is a column vector while bra is the transpose-
conjugate of the ket vector. The inner product ⟨ψ|ψ⟩ is so the dot product
between ⟨ψ| and |ψ⟩. In quantum computing, these definitions are useful to
define the building block of quantum computation: The qubit. In principle,
any quantum mechanical system that can be modeled by a two-dimensional
complex vector space can be viewed as a qubit. Contrary to the bit b, defined
as a minimal unit of information in classical theory and which can only take on
one of two values which are generally labeled as 0 and 1, in quantum information
theory, the qubit is defined as a linear combination of two vector states labeled
as |0⟩ and |1⟩:

|ψ⟩ = α |0⟩+ β |1⟩ (2.3)

Without loss of generality, one can define the vector states |0⟩ and |1⟩ as an
orthonormal basis for the 2-dimensional Hilbert space, isomorphic to C2, that
can be written in vector representation as

|0⟩ :=

(
1

0

)
|1⟩ :=

(
0

1

)
(2.4)

Such a basis, as defined above, is called computational basis. From such defini-
tion it results that any qubit vector state can be written as follow:

|ψ⟩ = α |0⟩+ β |1⟩ :=

(
α

β

)
∈ C2 (2.5)

From Equation 2.2 follow that |α|2 + |β|2 = 1 and since Since α and β are
complex numbers, a qubit state is parameterizable as

|ψ⟩ = eiγ
(
cos

θ

2
|0⟩+ eiφ sin

θ

2
|1⟩
)

(2.6)

where θ, φ and γ are real number. The global phase factor eiγ because it
has no observable effects, qubit states corresponding to different values of γ are

14 Chapter 2. Quantum computing

Figure 2.1: Graphical representation of a qubit using the Bloch
sphere. Besides the classically possible states |0⟩ and |1⟩ super-

posed |Ψ⟩ states are also possible.

indistinguishable [40]. A qubit state is effectively writable as

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩ (2.7)

The numbers θ ∈ [0, π] and φ ∈ [0, 2π) define a point on the unit three-
dimensional sphere as shown in the Figure 2.1.
This sphere is called the Bloch sphere. It provides a useful means of visualizing
the state of a single qubit. Many of the operations on a single qubits which
we describe later in this Chapter are neatly described within the Bloch sphere
picture. The Cartesian coordinates of the point (θ, φ) on the Bloch sphere are
given by (sin θ cosφ, sin θ sinφ, cos θ).
The next step is to define a multi-qubit state: a state |ψ⟩ of n qubits is an ele-
ment of a Hilbert space H = H0 ⊗H1 ⊗ · · · ⊗Hn−1. The Hilbert spaces Hi are
2-dimensional so we define a computational basis (|0⟩ ; |1⟩) over any space Hi.
Following such a definition, we can assign a computational basis for the space
H too. The computational basis of H is given by the tensor product between
the elements of the computational basis of the spaces Hi. Therefore we write
that the computational basis of H is

{|k0⟩ ⊗ |k1⟩ ⊗ · · · ⊗ |kn−1⟩ |ki ∈ {0, 1}∀i} (2.8)

2.2. Quantum mechanics for quantum computing 15

but we can simplify the notation by writing {|s⟩ |s ∈ {0, 1}n}. The set {0, 1}n

is the set of all binary strings of n bit. we can find a vector representation also
for such computational basis of a multi-qubit Hilbert space. For example, if we
consider the state |0⟩ ⊗ |1⟩ then

|01⟩ = |0⟩ ⊗ |1⟩ ≡

(
1

0

)
⊗

(
0

1

)
=

1

(
0

1

)

0

(
0

1

)
 =

0

1

0

0

 (2.9)

A n-qubit Hilbert Hn space is a 2n vector space, indeed the number of elements
of the computational basis is 2n, so a generic quantum state |ψ⟩ ∈ Hn

|ψ⟩ =
∑

s∈{0,1}n
αs |s⟩ (2.10)

can be written as a vector of a space C2n . Also in such case the state |ψ⟩ must
respect the normalization condition:∑

s∈{0,1}n
|αs|2 = 1 (2.11)

We define the following notation: given a set of qubits, if we want to define
the number of qubits of the set we will use the lowercase Latin letters (such as
n,m, l, . . .) as we have already done. When we specify the number of dimen-
sions of the correspondent multi-qubit Hilbert space (such as 2n, 2m, 2l, . . .) we
will use the correspondent uppercase Latin letters (then N ≡ 2n,M ≡ 2m, L ≡
2l, . . .). After such a definition we can introduce another way to write the com-
putational basis of a multi-qubit Hilbert space in order to simplify the notation:
we can replace the binary string s of the element |s⟩ of the computational basis
with the correspondent decimal number. In such way the computational basis of
a n-qubits Hilbert space can be written as {|0⟩ , |1⟩ , |2⟩ , . . . , |N − 1⟩} Therefore
the state |ψ⟩ in Eq. 2.11 can be written as

|ψ⟩ =
N−1∑
i=0

αi |i⟩ ,
N−1∑
i=0

|αi|2 = 1 (2.12)

A complex coefficient αi is sometimes called an amplitude.

16 Chapter 2. Quantum computing

2.2.2 Transformations of quantum states

To define the transformation that brings a quantum state |ψ⟩ to a new state∣∣ψ′〉, The following postulate gives a prescription for the description of such
state changes.

Postulate 2: The evolution of a closed quantum system is described by a
unitary transformation. That is, the state |ψ⟩ of the system at time t1 is related
to the state

∣∣ψ′〉 of the system at time t2 by a unitary operator U which depends
only on the times t1 and t2.

Since a qubit (or multi-qubit) state can be thought of as an element of the
unitary radius sphere of a Hilbert space, the transformations that we perform
over |ψ⟩ must leave invariant the square module of ⟨ψ|ψ⟩. The operators that
satisfy this criterion are operators Û such that〈

Ûψ
∣∣∣Ûψ〉 = ⟨ψ|ψ⟩ (2.13)

The transformations that can be performed on qubits are mathematically de-
fined by unitary operators i.e. operators such that

Û Û † = Û †Û = I (2.14)

A that acts on a one qubit state can be represented as a two-by-two matrix and
then an element of the group U (2).

A general element of U ∈ U(2) is writable as

U = u0I − iu1σ1 − iu2σ2 − iu3σ3 =

(
u0 − iu3 −(u2 + iu1)

u2 − iu1 u0 + iu3

)
(2.15)

where ui ∈ R ∀i and the three unitary matrices σ1, σ2, σ3 (preferably written
like as σx, σy, σz or X, Y, Z) are called Pauli matrices

X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
(2.16)

Therefore, the group U(2) is isomorphic to a real values vector space, con-
sequently it is easily parameterizable. Since a n-qubit state is defined on a
N -dimensional Hilbert space, where N = 2n, the operators that act on that are
elements of the unitary group U(N). For a natural number N ∈ N, the set of
all N × N unitary matrices, that are isometries of the N -dimensional Hilbert

2.2. Quantum mechanics for quantum computing 17

space H, forms the a group called the unitary group U(N). To define a param-
eterization of a general U(N) group, it is necessary to define the Lie group and
the Lie algebra. In a nutshell every matrix U ∈ U(N) can be writable as

U = e−iH where H ∈ H(N) (2.17)

The set H(N) is the set of all N × N hermitian matrices, i.e., the matrices
such that Ĥ = Ĥ†. The H(N) form a Lie algebra for the unitary group, which
means that H(N) is a vector space and

U = e−i
∑

i aiHi (2.18)

indeed
Hi = i

∂U

∂ai

∣∣∣∣
a=0

(2.19)

which means that H(N) is the vector space tangent to U(N). The dimension of
the Lie algebra vector space is equal to the number of the independent free pa-
rameters of an element of U(N) which isN2. Therefore an operator on n-qubit is
completely defined by 4n real parameters. A simple way to parameterize U(N)

is therefore by choosing a basis for the space H(N). Let’s define the following
base {I, X, Y, Z}⊗n where n is defined such that N = 2n, which is the set of
all possible tensor products between n elements of H(2) basis {I, X, Y, Z}. Lie
algebra is defined with a noncommuting vector basis. For the algebra of U(2),
for example, the three elements, which together with the identity, constitute
the basis of the algebra follow the following commutation relation

[σi, σj] = 2iϵijkσk (2.20)

for this reason, the exponential in Equation 2.18 cannot be decomposed into a
succession of independent transformations in a trivial way, in fact the
Baker–Campbell–Hausdorff formula is valid [41]

etAetB = etZ , Z = A+B+
1

2
[A,B]+

1

12
[A, [A,B]]− 1

12
[B, [A,B]]+ . . . (2.21)

where A and B are quadratic matrices and t is a scalar. Since the elements
of the basis of the algebra of U(N) do not commute between each other then,
from the Equation 2.18 which

U = e−i
∑

i aiHi ̸=
∏
i

e−iaiHi (2.22)

18 Chapter 2. Quantum computing

However, there is an approximation that allows the Equation 2.18 to be written
as a product of unitary operators with an error of O(t2) [42]. The Trotter-Suzuki
formula [36] said that

eit(A+B) = lim
t→∞

(
ei

t
m
Aei

t
m
B
)m

(2.23)

where A and B are hermitian operators. Another way to define operators on a
Hilbert space is with the Dirac notation. A one-qubit operator can be written
as

U = U00 |0⟩⟨0|+ U01 |0⟩⟨1|+ U10 |1⟩⟨0|+ U11 |1⟩⟨1| (2.24)

and since the projection operator |i⟩⟨j| act on an element |k⟩ of computational
basis as |i⟩⟨j| |k⟩ = δjk |i⟩, then we can represent the action of the one-qubit
operator U on a one-qubit state |ψ⟩ = α |0⟩ + β |1⟩ as a matrix applied to a
vector:

U |ψ⟩ ≡

(
U00 U01

U10 U11

)(
α

β

)
=

(
αU00 + βU01

αU10 + βU11

)
⇒ U |ψ⟩ =

(
αU00 + βU01

)
|0⟩+

(
αU10 + βU11

)
|1⟩

(2.25)

In general an unitary operator that acts over an n-qubits Hilbert space can be
written as

Û =
N−1∑
i,j=0

Uij |i⟩⟨j| (2.26)

which can be represented as the N ×N matrix (Uij) ∈ U(N).

2.2.3 Dynamics of closed quantum systems

A more refined version of the second postulate can be given which describes
the time evolution of a quantum system, by defining the dynamic equation of
a closed quantum system, called Schrödinger equation

iℏ
d |ψ⟩
dt

= H |ψ⟩ (2.27)

Where’H’ is a Hermitian operator representing the system’s Hamiltonian, which
contains information regarding the system’s available energy levels. Conse-
quently, it enables the description of all dynamic properties of the system. A
property of the Hermitian matrices is that there exists a spectral decomposition

2.2. Quantum mechanics for quantum computing 19

and all the eigenvalues are real. Therefore, in Dirac notation

H =
∑
E

E |E⟩⟨E| (2.28)

where E is the eigenvalue, which represents the accessible energy levels of the
system, and |E⟩ are the eigenvectors, or eigenstates, and therefore |E⟩⟨E| is
the projector on the eigenstates |E⟩. The discussion about the meaning of
eigenvalue and eigenstates of hermitian operators in quantum mechanics will
be held in the next section. From the solution of the Schrödinger equation the
second postulate is retrieved

|ψ(t1)⟩ = exp

{
−iH (t1 − t0)

ℏ

}
|ψ(t0)⟩ = U(t1, t0) |ψ(t0)⟩ (2.29)

where the unitary operator U(t1, t0) is defined as time evolution operator

U(t1, t0) ≡ exp

{
−iH (t1 − t0)

ℏ

}
(2.30)

The eigenstates |E⟩ of the Hamiltonian operator are often called stationary
states, indeed U(t1, t0) share the same eigenstate of H

exp

{
−iH (t1 − t0)

ℏ

}
|E⟩ = |E⟩ exp

{
−iE (t1 − t0)

ℏ

}
(2.31)

indeed the global phase has no observable effects.

2.2.4 Observables and Measurement

In quantum mechanics, there are two protagonists: the system and the observer.
An interaction between the observer and the system is called a measurement.
Properties of the system that can be measured are called observables. Examples
are position, momentum, angular momentum, energy, etc. Each observable cor-
responds to a hermitian operator O. To retrieve information from a quantum
system the observer has to interact with the system and then perform a mea-
surement. The second postulate says that a closed quantum system evolves with
a unitary transformation but a measurement operation makes the system not
closed anymore. TO define a measurement it is necessary to define an observable
operator O that, since is hermitian, there exists a spectral decomposition

O =
∑
i

Oi |i⟩⟨i| (2.32)

20 Chapter 2. Quantum computing

where |i⟩ are the eigenstates and Oi are the eigenvalues. The projector operators
|i⟩⟨i| are called measurement operators and it projects a quantum state |ψ⟩ on
the eigenstate |i⟩ with eigenvalue Oi which is the outcome of the measurement.
The meaning of these elements comes from the third postulate, which provides
a description of the effects of measurements on quantum systems.

Postulate 3: Quantum measurements are described by a collection {Mm}
of measurement operators. These are operators acting on the state space of
the system being measured. The index m refers to the measurement outcomes
that may occur in the experiment. If the state of the quantum system is |ψ⟩
immediately before the measurement then the probability that result m occurs
is given by

p(m) = ⟨ψ|M †
mMm|ψ⟩ (2.33)

and the state of the system after the measurement is

|ψm⟩ =
Mm |ψ⟩√

⟨ψ|M †
mMm|ψ⟩

(2.34)

The measurement operators satisfy the completeness equation,∑
m

M †
mMm = I (2.35)

This equation being satisfied for all |ψ⟩ is equivalent to the completeness equa-
tion. However, the completeness equation is much easier to check directly, so
that’s why it appears in the statement of the postulate. A simple but important
example of a measurement is the measurement of a qubit in the computational
basis. This is a measurement on a single qubit with two outcomes defined by
the two measurement operators M0 ≡ |0⟩⟨0|, M1 ≡ |1⟩⟨1|. Observe that each
measurement operator is Hermitian, and that M2

0 = M0, M2
1 = M1. Thus the

completeness relation is obeyed, 1 =M †
0M0 +M †

1M1 =M0 +M1. Suppose the
state being measured is |ψ⟩ = α |0⟩ + β |1⟩. Then the probability of obtaining
measurement outcome 0 is

p(0) = ⟨ψ|M †
0M0|ψ⟩ = ⟨|ψ⟩|M0||ψ⟩⟩ = |α|2 (2.36)

2.2. Quantum mechanics for quantum computing 21

Similarly, the probability of obtaining the measurement outcome 1 is p(1) =

|β|2. The state after measurement in the two cases is therefore

M0 |ψ⟩
|α|

=
α

|α|
|0⟩

M1 |ψ⟩
|β|

=
β

|β|
|1⟩

(2.37)

but the value α
|α| and β

|β| are global phase so they can be ignored. For a n-qubit
system, we could measure just a subset of the qubits. Let’s write a multi-qubits
state as in equation 2.10

|ψ⟩ =
∑

s∈{0,1}n
αs |s⟩ (2.38)

Measuring the first qubit, labelled with q0, alone gives 0 with probability

pq0(0) =
∑

s′∈{0,1}n−1

|αs′0|2 (2.39)

leaving the post-measurement state

|ψ⟩ =
∑

s′∈{0,1}n−1

αs′0√
p0(0)

|s′⟩ (2.40)

Let’s take as an example the Hamiltonian operator H, the observable energy,
from the Equation 2.28. By splitting the state |ψ⟩ into the eigenstate basis of
H

|ψ⟩ =
∑
E

⟨E|ψ⟩ |E⟩ (2.41)

The quantum state |ψ⟩ is, therefore, in superposition between the state |E⟩
which means the outcome of the energy measurement is E with a probability
|⟨E|ψ⟩|2. It is possible to compute the expectation value of the energy mea-
surement

⟨ψ|H|ψ⟩ = ⟨ψ|
∑
E

E |E⟩⟨E| |ψ⟩ =
∑
E

E|⟨E|ψ⟩|2 (2.42)

There are two important characteristics of measure operators: In general they
do not commute and they are not invertible The first characteristic leads to the
order of two consecutive measurements do not bring to the same state. The
Heisenberg principle is related to such property.

Let’s consider two observatories that do not commute and therefore do not
share a set of eigenstates. After a measurement with the observable O1, the
measurement value O1i is obtained, and the state is projected with |O1i⟩⟨O1i|

22 Chapter 2. Quantum computing

into the eigenstate |O1i⟩. However, |O1i⟩ is not eigenstate O2, this results in an
uncertainty in the measurement of O2 since

|O1i⟩ =
∑
j

⟨O2j|O1i⟩ |O2j⟩ (2.43)

On the other hand, if a measurement with O2 is performed first, the state will
be projected onto a superposition state on the O1 eigenstates. This uncertainty
is the basis of the Heisenberg uncertainty principle whereby I cannot measure
with arbitrary precision two observables that do not commute. In quantum
computing, it is conventional to write the n-qubit quantum states in a super-
position between states of the computational basis which are eigenstates of the
operator Z⊗n, which is the tensor product of the Pauli Z operator on n qubits.
Therefore the states of the qubits are, by convention, measured via the observ-
able Z⊗n. From a more general point of view, to consider a system evolved
through the measurement operation, we must consider the system as an open
system and to do so we need to consider the formalism of density matrices.
The density operator formalism provides a description of systems whose state
is not completely known. More precisely, suppose a quantum system is in one
of a number of states |ψi⟩, with a probability pi. The set {|ψi⟩} is called an
ensemble of pure states. A quantum system whose state |ψ⟩ is known exactly
is said to be in a pure state. The density operator for a system defined in an
ensemble {|ψi⟩} is defined as

ρ ≡
∑
i

pi |ψi⟩⟨ψi| (2.44)

It is said that the system, described by a density operator ρ, is in a mixed state
if if there is no unitary vector |ψ⟩ on a Hilbert space such that ρ = |ψ⟩⟨ψ| but
it can be written only as an ensemble of pure states. In an open system, a
quantum state is no longer considered as a unit vector on a Hilbert station but
it is necessary to consider an enabler of quantum states, in fact, in general, an
open system can be described as a mixed state. One criterion for understanding
whether a system is in a mixed or pure state is to evaluate the trace of the
density operator associated with the square. If Tr{ρ2} = 1 that ρ is a pure
state, otherwise, if Tr{ρ2} < 1 then it is a mixed state. The three postulates of
quantum mechanics can be rewritten with the density operator formalism. The
evolution of a closed quantum system described by ρ is

ρ =
∑
i

pi |ψi⟩⟨ψi|
U−−→

∑
i

piU |ψi⟩⟨ψi|U † = UρU † (2.45)

2.2. Quantum mechanics for quantum computing 23

where U is a unitary operator. Instead, the measurements are described in the
density operator formalism in the following way: Given measurements operators
Mm, it is useful to consider that from a state |ψi⟩, the probability to measure
m is

p(m|i) =
〈
ψi|M †

mMm|ψi
〉
= Tr

{
M †

mMm |ψi⟩⟨ψi|
}

(2.46)

Then, the probability to obtain the results m from ρ is

p(m) =
∑
i

p(m|i)pi =
∑
i

piTr
{
M †

mMm |ψi⟩⟨ψi|
}
= Tr

{
M †

mMmρ
}

(2.47)

and, after the measurement transforms ρ in

ρm =
∑
i

pi
Mm |ψi⟩⟨ψi|M †

m

Tr
{
M †

mMm |ψi⟩⟨ψi|
} =

MmρM
†
m

Tr
{
M †

mMmρ
} (2.48)

The region where it is important to define the formalism of density operators
in quantum computing is to describe subsystems that make up a quantum
system. Given two systems A and B, the whole system is described by the
density operator ρAB while the reduced density operator for the system A is

ρA ≡ TrB (ρAB) (2.49)

where TrB is known as partial trace over the system B. Given a density operator
|a1⟩⟨a2| ⊗ |b1⟩⟨b2|, where |a1⟩ , |a2⟩ ∈ HA and |b1⟩ , |b2⟩ ∈ HB, the partial trace is
defined as

TrB(|a1⟩⟨a2| ⊗ |b1⟩⟨b2|) = |a1⟩⟨a2|Tr{|b1⟩⟨b2|} = |a1⟩⟨a2| ⟨b1|b2⟩ (2.50)

In general ρA ≡ TrB (ρAB) is a mixed state. Let’s consider now a general
(n1 + n2)-qubit state, defined in the Hilbert space H⊗(n1+n2)

2 = H⊗n1
2 ⊗ H⊗n2

2

that, for semplicity, it is writable HAB = HA ⊗HB

|ψ⟩ =
∑
i

∑
j

cij |i⟩ ⊗ |j⟩ (2.51)

The partial trace over the space H⊗n2
2 of ρ = |ψ⟩⟨ψ| is

ρA = TrB (ρ) = TrB

(∑
ijkl

cij c̄kl |i⟩⟨k| ⊗ |j⟩⟨l|

)
=

N2−1∑
m=0

∑
ik

cimc̄km |i⟩⟨k| (2.52)

That is the resulting mixed state after measurements with projections |m⟩⟨m|.

24 Chapter 2. Quantum computing

The reason for doing this is because the partial trace operation is the unique
operation that gives rise to the correct description of observable quantities for
a subsystem of composite systems [36].

Entanglement

Operations over more then one qubit leads to particular cases. Let’s consider
two qubits state of two different Hilbert space: an n-qubits state |ψ⟩ ∈ Hn and
an m-qubits state |ψ′⟩ ∈ Hm. Let’s consider now a gate A which acts on ∈ Hn

and B which acts on ∈ Hm then we define an operator A⊗B such that(
A⊗B

)(
|ψ⟩ ⊗ |ψ′⟩

)
≡ A |ψ⟩ ⊗B |ψ′⟩ (2.53)

Such gate A⊗B can be easily written as a NM ×NM matrix in the following
way:

A⊗B ≡

A00B A01B . . . A0(N−1)B

A10B A11B
...

... . . .

A(N−1)0B . . . A(N−1)(N−1)B

 ∈ U(NM) (2.54)

The operators A ⊗ B acts over the space Hn+m ≡ Hn ⊗ Hm and it doesn’t
create entaglement between the first set of n qubits with the set of m qubits.
Instead if we define an operator U which acts over the space Hn+m then it is
not always possible to write it as a tensor product between two operators that
act one over Hn and the other one over Hm.
Such operators are called not separable and they are able to transform two
separate states into an entangled state. Entanglement is the second fundamental
difference between quantum bits and classical ones after the superposition over
different bitstrings. In order to explain the notion of entangled states we need
to define what is a separable state (Ref. [43]). A n-qubits quantum state is
said to be separable if it can be written as the tensor product of the states of
single-qubit state:

|ψ⟩ = |ψ0⟩ ⊗ |ψ1⟩ ⊗ · · · ⊗ |ψn−1⟩ (2.55)

A n-qubits quantum state that is not separable is called an entangled state.
Entangled states are quantum states that cannot be described only by looking
at individual single-qubit system. Entangled states are easier to understand
with an example. Commonly used quantum state in the literature are the Bell

2.3. Elements of circuital quantum computing 25

states ∣∣Φ+
〉
=

1√
2

(
|00⟩+ |11⟩

) ∣∣Φ−〉 = 1√
2

(
|00⟩ − |11⟩

)
∣∣Ψ+

〉
=

1√
2

(
|01⟩+ |10⟩

) ∣∣Ψ−〉 = 1√
2

(
|01⟩ − |10⟩

) (2.56)

Let’s take, for example, the Bell state |Φ+⟩: Let’s rewrite |Φ+⟩ as

∣∣Φ+
〉
=

|0⟩q1 ⊗ |0⟩q0 + |1⟩q1 ⊗ |1⟩q0√
2

(2.57)

If we consider only the state of the qubit q0 it comes out that the qubit has
an equal probability to be in the state |0⟩ or |1⟩ after measurement. The same
observation holds for the other qubit. But these individual descriptions are not
sufficient to fully describe |Φ+⟩. For example, a state like(

|0⟩+ |1⟩√
2

)
q1

⊗
(
|0⟩+ |1⟩√

2

)
q0

(2.58)

satisfies the 2 individual descriptions, but is not equal to |Φ+⟩. In order to fully
describe |Φ+⟩ we should add another condition that will link the qubits q0 and
q1 together. In the case of |Φ+⟩ measuring qubit q0 will necessarily collapse
the state of qubit q0 to either |0⟩ or |1⟩, but as qubits q0 and q1 are entangled,
the state of qubit q1 will also be impacted by the measurement and depending
on the value measured for q0, the final state after measuring qubit q0 is either
|0⟩ ⊗ |0⟩ or |1⟩ ⊗ |1⟩. To summarise, 2 or more qubits are entangled if their
states are linked and cannot be fully described individually.

2.3 Elements of circuital quantum computing

2.3.1 Quantum circuits

Having defined the elements of quantum mechanics, it is possible to introduce
the quantum equivalent of classical circuital computing where the gates are
not boolean operations but unitary operators acting on qubit vector states,
The sequence of operations represents the computation on a circuital quantum
computer called a quantum circuit. A quantum circuit is a sequence of gates
(unitary operators) applied on sets of qubits called quantum register. Such a
quantum circuit is similar to the one used in classical computing: a quantum
circuit is composed of quantum gates applied sequentially to a given number of
qubits. Thanks to the similarity between the classical and the quantum models,

26 Chapter 2. Quantum computing

many mathematical tools and formalisms from classical computing can be recast
in the quantum world.
A quantum circuit is identified by a graph composed of the following elements:

• Each qubit of the registers is represented by a horizontal line.

|q0⟩
|q1⟩

...
|qn−1⟩

The qubit identifier can be written at the extremities of the line. The
time evolution of the qubits goes from left to right. Generally, the qubits
of a register are initialized in the state |0⟩.
A register qubit is ordered as follows: the first qubit q0 is the first from
the right in the binary string s which identifies the element |s⟩ of the
computational basis i.e. it is the last qubit in the string s and for such
reason, it is called the less significant qubit.

• Each gate U has a unique representation: a tile of square shape on the
qubits line on which the gate U is applied

U

...

• At the end to the computation, to extract information from the a qubit
state, we apply an operation called measurement (we will talk about such
operation in the follow section) represented on the circuit with the follow-
ing icon

The measurement operation breaks the superposition of states of the mea-
sured qubit and it returns a value which can be stored in a classical bit
represented by a doubled horizontal line.

2.3. Elements of circuital quantum computing 27

A quantum circuit without measurement is reversible since all unitary operators
(gates) are reversible.
This is an important property of the quantum circuit that a classical version
has not. If we want to extract information we break the reversible property of
the circuit because the measurement operation is not unitary and, in particular,
not invertible. It is interesting to underline that this formalism is based on the
second postulate to define operations on qubits as unitary transformations. The
second postulate, however, is valid only if it is considered an isolated system
and this leads to complications in the creation of devices capable of carrying
out such calculations.

2.3.2 Elementary gates

The following Section contains references from [44] and [45].

One-qubit gates

The simplest gate that we can define on a single qubit is the identity operator:

I = |0⟩⟨0|+ |1⟩⟨1| (2.59)

We can also write it as a matrix: (
1 0

0 1

)
(2.60)

Then a set of important gates corresponds to the Pauli matrices, called Pauli
gates:

X = |1⟩⟨0|+ |0⟩⟨1| ,

(
0 1

1 0

)

Y = i |1⟩⟨0| − i |0⟩⟨1| ,

(
0 −i
i 0

)

Z = |0⟩⟨0| − |1⟩⟨1| ,

(
1 0

0 −1

) (2.61)

The following equivalences with the Pauli matrices hold: σ1 = X, σ2 = Y ,
σ3 = Z, where σn is the n-th Pauli matrix.
It’s worth noting that we can obtain each one of the gates X, Y , and Z from
the other two in the following way: X = −iY Z, Y = −iXZ and Z = iXY .
The gate X is the equivalent of the NOT operation in the classical computation
indeed it trasforms |0⟩ → |1⟩ and |1⟩ → |0⟩ and it is also called bitflip gate while

28 Chapter 2. Quantum computing

the gate Z is called phaseflip gate since it acts on the computational basis in
the following way: |0⟩ → |0⟩ and |1⟩ → − |1⟩ and it has not an equivalent gate
with the classical computation.
Such single qubit gate, 1, X, Y and Z are a basis for the space U(2). Indeed
the set of the 2 × 2 unitary matrix has a vector space structure and a matrix
U ∈ U(2) can be written as

U = u0I + u1X + u2Y + u3Z (2.62)

where the u0, u1, u2 are u3 are real numbers. Every transformation of a single-
qubit state can be seen as a rotation of the Bloch sphere. Let’s introduce the
gates which realize the rotations of angle θ of the Bloch sphere on the axis x̂, ŷ
and ẑ and they are called respectively Rx, Ry and Rz

Rx(θ) = e−i
θ
2
X = cos

θ

2
I − i sin

θ

2
X =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)

Ry(θ) = e−i
θ
2
Y = cos

θ

2
I − i sin

θ

2
Y =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)

Rz(θ) = e−i
θ
2
Z = cos

θ

2
I − i sin

θ

2
Z =

(
e−i

θ
2 0

0 ei
θ
2

) (2.63)

The gate Rz is called phase gate since it introduces a relative phase eiθ on a
superposition state. We can also define a rotation of θ of the Bloch sphere on
an axis identified by an arbitrary 3-dimensional real vector n⃗ = (nx, ny, nz) in
the following way

Rn⃗(θ) = cos
θ

2
I − i sin

θ

2
(nxX + nyY + nzZ) (2.64)

If nx = 0 we obtain that XRn⃗(θ)X = Rn⃗(−θ) that because XYX = −Y and
XZX = −Z. Another relevant operation is the Hadamard gate:

Had =
1√
2
(|0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0| − |1⟩⟨1|) (2.65)

which can be written as:

Had =
1√
2

(
1 1

1 −1

)
(2.66)

2.3. Elements of circuital quantum computing 29

This gate corresponds to a rotation of π
2

about the axis ŷ, and maps the basis
states to an equally probable superposition of the basis states:

Had |0⟩ = 1√
2
(|0⟩+ |1⟩) ≡ |+⟩

Had |1⟩ = 1√
2
(|0⟩ − |1⟩) ≡ |−⟩

(2.67)

An important property of the gate Had is that Had = Had† (i.e. the Hadamard
gate is hermitian) and then H2 = 1 since H is also unitary. The gates X,Z
and clearly 1 have such property too.
Remembering that two matrices A and B are called similar if it exists an invert-
ible matrix M such that A = M−1BM , we now have the following similarity
relations: HadXHad = Z (HadZHad = X) and HadY Had = −Y . The fol-
lowing theorem (Ref. [44]) shows how we can decompose a general single-qubit
gate U in a sequence of gates known to us.

Theorem 2.3.1 (Z-Y decomposition for a single qubit). Suppose U is a unitary
operation on a single qubit. Then there exist real numbers α, β, γ and δ such
that

U = eiαRz(β)Ry(γ)Rz(δ) (2.68)

The utility of such a theorem lies in the following corollary

Corollary 2.3.1.1. Suppose U is a unitary gate on a single qubit. Then there
exist unitary operators A, B and C on a single qubit such that ABC = 1 and
U = eiαAXBXC where α is some overall phase factor.

It is important to specify that in such case eiα ≡ eiα1.
There are other special gates that are important for a reason which will be
shown in the next Section because they lead to the universality. Such gates are

S =

(
1 0

0 i

)
T =

(
1 0

0 ei
π
4

)
(2.69)

We can see that T =
√
S.

Moreover, there is a set of three gates that are important for the quantum
computers that will be used in such a discussion. The most important of such
a set of three gates is

U3(θ, ϕ, λ) =

(
cos θ

2
−eiλ sin θ

2

eiϕ sin θ
2

ei(λ+ϕ) cos θ
2

)
(2.70)

30 Chapter 2. Quantum computing

Because if we apply it on a single qubit state |0⟩ we obtain the most general
single qubit state

U3(θ, ϕ, λ) |0⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ (2.71)

as it is written the equation 2.7. The other two gates are

U1(λ) = U3(0, 0, λ) =

(
1 0

0 eiλ

)

U2(ϕ, λ) = U3(
π

2
, ϕ, λ) =

1√
2

(
1 −eiλ

eiϕ ei(λ+ϕ)

) (2.72)

Multi-qubit gates

Let’s see the most important multi-qubit gates. The section above shows that
an important property that the quantum computation offers is the quantum
entanglement. In order to create entangled states we need to define a gate whose
action can not be written as a tensorial product of single-qubit operations. The
most important example of such a gate is the CX gate also called Controlled-
NOT gate. Such gate acts on two qubits, and it applies the X gate on the
second qubit only if the first one (called control qubit) is in the state |1⟩. It can
be defined by the following sum of tensorial products:

CX = |0⟩⟨0| ⊗ 1 + |1⟩⟨1| ⊗X

= |0⟩⟨0| ⊗ (|0⟩⟨0|+ |1⟩⟨1|) + |1⟩⟨1| ⊗ (|1⟩⟨0|+ |0⟩⟨1|)

= |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

(2.73)

The correspondent matrix representation of the CX gate will be

CX =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (2.74)

One can easily check with the following example that this gate creates entangle-
ment starting from an original factorized state: let’s build a separable two-qubit
state

1√
2
(|0⟩+ |1⟩)⊗ |0⟩ (2.75)

2.3. Elements of circuital quantum computing 31

and let’s apply to it a CX gate controlled by the qubit in superposition.

CX

(
1√
2
(|0⟩+ |1⟩)⊗ |0⟩

)
= CX

(
1√
2
(|00⟩+ |10⟩)

)
=

1√
2

(
|00⟩+ |11⟩

) (2.76)

The output state is the Bell state |Φ+⟩ defied in 2.56 and as we know it is not
expressible by a tensor product between two single-qubit states. Since CX is
its own inverse, it can also take an entangled state to a factorized one. CX gate
is represented in the graph of the quantum circuits as follows:

•

The symbol
⊕

identifies the line of the target qubit, while the black dot corre-
sponds to the control qubit.
There exists another version of the Controlled-NOT such that the gate X is
applied on the target qubit if the control one is in |0⟩ and not in |1⟩. Since

(X ⊗ 1) (|0⟩⟨0| ⊗ 1 + |1⟩⟨1| ⊗X) (X ⊗ 1)

=X |0⟩⟨0|X ⊗ 1 +X |1⟩⟨1|X ⊗X

= |1⟩⟨1| ⊗ 1 + |0⟩⟨0| ⊗X

(2.77)

that corresponds to the following circuit equality

=

X • X

the resulting gate act such that The CX gate is only a particular case of a
family of gates where a generic gate U is applied on a target qubit when the
control qubit is in state |1⟩. These gates are called CU or Controlled-U gates,
and they are written as:

CU = |0⟩⟨0| ⊗ 1 + |1⟩⟨1| ⊗ U (2.78)

The graphic representation of the Controlled-U gate in a quantum circuit is the
following:

32 Chapter 2. Quantum computing

U

•

If we consider two Controlled-U gates A and B such that A = M−1BM , then
the following equality holds:

A M−1 B M
=

• •

Since U = eiαAXBXC from the Corollary 1 we obtain that

U C B A

=

• • •
(
1 0

0 eiα

)

That because

(
eiα 0

0 eiα

)

=

•
(
1 0

0 eiα

)

Let’s consider now the three-qubit gates. The first gate of such type that
must be introduced is the CCX gate or Toffoli gate. The Toffoli gate can be
decompose in CX and single-qubit gate, in particular H, T , T † and S (see [46]).
The Toffoli gate is not necessary to compute a general CCU gate. The following
theorem shows how to decompose a general CCU without Toffoli gates

2.3. Elements of circuital quantum computing 33

Theorem 2.3.2. Suppose U is a unitary gate on a single qubit. Than

U V V † V

• = • •

• • • •

Where V is any unitary operator satisfying V 2 = U .

2.3.3 The universal quantum computer

The definition of universality for quantum computers is summarized as follows:

Definition 1. The universality for quantum computers is the ability to achieve
any desired unitary operator on any arbitrary number of qubits [47].

David P. DiVincenzo in the paper [48] defined five requirements for the
realization of an universal quantum computer:

• A scalable physical system with well characterized qubits

• The ability to initialize the state of the qubits to a simple fiducial state,
such as |000 . . .⟩

• Long relevant decoherence times, much longer than the gate operation time

• A universal set of quantum gates

• A qubit-specific measurement capability

The meaning of ’characterized qubits’ can be summarize as follows: a qubit is
a quantum two-level system but if the qubit has additional energy levels, the
control system of the quantum computer should be designed so that the its
probability to go in those states is sufficiently small to allow the computation.
The ability to initialize the state of the qubits is a computing requirement
that the registers should be initialized to a known value before to start the
computation.
We will talk about the third requirement when we will introduce the decoherence
concept. Instead, the meaning of the last requirement can be explained as
follows [48]. If a qubit’s density matrix is

ρ = p |0⟩⟨0|+ (1− p) |1⟩⟨1|+ α |0⟩⟨1|+ α∗ |1⟩⟨0| (2.79)

34 Chapter 2. Quantum computing

the measurement should give outcome |0⟩ with probability p and |1⟩ with prob-
ability 1 − p independent of α and of any other parameters of the system,
including the state of nearby qubits, and without changing the state of the rest
of the quantum computer. Let’s now introduce the concept of universal set of
basis gates. Before that we must specify some definitions. The first one is the
definition of a dense subgroup of the unitary group U(N) [49]

Definition 2 (Dense subgroup of the unitary group U(N)). A sub group G ⊂
U(N) is everywhere dense if for every u ∈ U(N) and for every ε > 0 there
exists a gε ∈ G such that the distance between gε and u is less than ε.

There are several ways to define the distance on an operator group, but for
the purposes of this definition, they are equivalent. The distance most often
used in quantum computing literature is the trace distance and is defined on
U(N) as

dist(U, V) =

√
N − |Tr(UV †)|

N
U, V ∈ U(N) (2.80)

Now we can define a universal set of basis gates as follows [49]

Definition 3. A finite set of quantum gates forms a pure universal quantum
basis in n-qubit space if they generate an everywhere dense subgroup of U(2n).

Let’s now consider a specific realization such as that of the quantum com-
puter hardware used in this Thesis. A set of basis gates is given by the gates
U3(θ, ϕ, λ) and CX:

U3(θ, ϕ, λ) =

(
cos θ

2
−eiλ sin θ

2

eiϕ sin θ
2

ei(λ+ϕ) cos θ
2

)
CX =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (2.81)

The universality of such a set of gates is given by the following Theorem [49]:

Theorem 2.3.3. The circuit group generated by CX and all single-qubit unitary
operators is purely universal in the multi-qubit space.

Indeed the set of all operators of kind U3(θ, ϕ, λ) is a dense subgroup of
U(2). Compiling unitary generative using a set of single-qubit and 2-qubit
quantum gates is a problem addressed primarily by Kitaev and Solovay which
led to a theorem that bears their name. The Solovay-Kitaev theorem [50] is
a crucial result in quantum computation and a breakthrough in the quantum
compilation problem. Robert M. Solovay first announced the results in 1995,

2.3. Elements of circuital quantum computing 35

but they were formalized and published independently a few years later by
Alexei Y. Kitaev in 1997 on a review paper, including an algorithm to quickly
approximate quantum gates [51]. The theorem roughly states that if we consider
any quantum algorithm i.e. a unitary transformation U ∈ SU(d), it is possible
to find very quickly an approximation of the sequence of gates as long as they
belong to a suitable set B. Such a set needs to satisfy some requirements to be
exploited:

• All the gates in B need to be a unitary matrix with determinant 1;

• ∀Aj ∈ B, the inverse operation A†
j ∈ B;

• B must be a universal set, i.e. it is possible to approximate any unitary
operation as a finite sequence of gates from the set.

It is worth highlighting that the second request is not strictly necessary to
approximate unitary transformations, but it is a condition required to proof the
theorem only [52]. However, if the requirements are met, the theorem holds
for every desired accuracy ϵ, and the length of the resulting sequence scales
efficiently.

Theorem 2.3.4. (Solovay-Kitaev) Let be ϵ > 0 a desired fixed accuracy,
then ∀U ∈ SU(d) exists a finite circuit C of gates driven by a set B such that
the distance d(U,C) < ϵ. The sequence S of gates has a length O(logc(1

ϵ
)),

where c is a constant value. The circuit depth returned by the theorem and the
execution time of its implementations scales polylogarithmically, even if distinct
formulations and proofs

achieve different values of the constants [53], [54]. For instance, the Dawson-
Nielsen formulation [50] provides sequences of length O(log3.97(1/ϵ)) in a time
of O(log2.71(1/ϵ)), while in [55] those quantities scales as O(log3+γ(1/ϵ)) and
O(log3+γ(1/ϵ)) respectively, where γ is a positive constant which can be set
at will. Additional boosts in performance can be gained by introducing some
constraints such as restricting B a to a diffusive set of gates [52] the space
of unitary matrices efficiently or by employing ancilla qubits [55]. Geometrical
proof [54] shows that despite of the strategy considered, no algorithm can return
sequence using less than O(log(1/ϵ)) gates. Moreover, one critical issue that
the theorem does not address is finding a universal set of gates, but fortunately,
it can be proved that almost all sets of gates have such propriety [56], [57]. The
Solovay-Kitaev theorem provides an elegant and efficient classical algorithm for
compiling an arbitrary unitary transformation into a circuit of quantum gates,

36 Chapter 2. Quantum computing

balancing the sequence length, the pre-compilation time, and the execution
time. However, algorithms based on the theorem do not represent the only
potential strategies to approach the quantum compiling problem. An optimal
quantum circuit for a general two-qubit gate requires at most 3 CNOT gates
and 15 elementary one-qubit gates. In the case of a purely real unitary two-
qubit gate transformation, the construction requires at most 2 CNOTs and
12 one-qubit gates [58]. Such a method, known as KAK decomposition, is
used for instance by the IBM QX architectures to address two-qubit random
SU(4) transformations [59]. For instance, the Quantum Fast Circuit Optimizer
(Qfactor) optimizes the distance between a sequence of unitary gates, and a
target unitary matrix, using an analytic method based on the SVD operation.
In the following, modern approaches are outlined

2.4 Elements of adiabatic quantum computing

Adiabatic Quantum Computing (AQC) employs the adiabatic theorem to guide
entangled qubits through a time-dependent Hamiltonian, steering them toward
a configuration representing a superposition of the global minima for a given
classical optimization problem. Adiabatic quantum computation is a universal
quantum computational paradigm based on the adiabatic theorem and equiv-
alent to gate-based quantum computation [60]. In the text, the computers
developed by the company D-Wave are referred to as Adiabatic Quantum Com-
puters (AQC) for simplicity. However, in reality, the D-Wave hardware does not
strictly adhere to the conditions of adiabaticity, and the system’s Hamiltonian
does not allow for universal quantum computation. D-Wave hardware is, there-
fore, an approximation of AQC and is special-purpose, naturally implementing
the algorithm known as quantum annealing.
AQC facilitates Quantum Annealing (QA), akin to Simulated Annealing (SA),
where a Quantum Annealing (QA) algorithm controls a quantum system by
gradually reducing quantum fluctuations’ amplitude. This approach aims to
maintain the system close to its instantaneous ground state, much like the
quasi-equilibrium state in SA, but using quantum tunneling instead of thermal
hopping. The key elements for introducing adiabatic quantum computation are
the spin-glass Hamiltonian and the adiabatic theorem.

2.4. Elements of adiabatic quantum computing 37

2.4.1 Spin-glass Hamiltonian for AQC

This Section introduces the classical and quantum formulation of an Ising spin-
glass model, which stands at the basis of AQC’s functioning.

Consider a d-dimensional lattice Λ, where each site i is occupied by a spin
variable si. The term spin variable refers to a two-state system. The Ising model
is a statistical system whose behavior depends on the following Hamiltonian:

H = J
∑
⟨ij⟩

sisj + h
∑
i

si , (2.82)

where si is a random spin variable that assumes values ±1 on the N sites of the
lattice, and the first summation runs on sites i and j such that the two sites are
nearest neighbours. The Ising model was named after Ernst Ising, which was
the first to study and characterize it in 1925 [61].

The Ising model can represent several different physical systems. For in-
stance, consider a system of magnetic dipoles aligned along the same axis, with
only two allowed orientations. In this case, the first term in Eq. 2.82 is a two-
sites interaction which can produce an ordered ferromagnetic state (if J < 0).
The second term represents the paramagnetic effect of a uniform external field.
We may also consider a binary alloy of type AB. In this case, the spin variables
indicate whether a certain site on the crystalline lattice is occupied by an atom
of either type A or type B. Neighbors of the same type will contribute to the
total energy with a term +J due to reciprocal repulsion, while neighbors of
different types will contribute with −J . Lastly, one could use the spin values to
represent the presence (+1) or absence (−1) of a molecule in a certain cell of a
lattice gas (a useful model for modelling the critical behavior of a fluid system).

The Ising model can be generalized by allowing each spin-pair appearing in
the first summation of Eq. 2.82 to interact with different values of Jij. In the
magnetic analogy, it means abandoning the hypothesis that spins are equally
distributed across the lattice. Thus, certain couples will be more closely packed,
interacting with higher values of the coupling Jij. The model obtained is known
as spin-glass.

We may also remove the finite range of the interaction, allowing distant
spins to interact with each other. It means that the summation over the nearest
neighbors appearing in Eq. 2.82 is now performed over any spin pair. If the
quadratic couplings are distributed according to a Gaussian probability density,
the system we have obtained is then called the Sherrington and Kirkpatrick
model of spin glasses [62].

38 Chapter 2. Quantum computing

We can push the generalization further by considering a scenario where the
external magnetic field is not uniform and can vary from site to site. This leads
to the following Hamiltonian:

H =
∑
i,j,i̸=j

Jijsisj +
∑
i

hisi , (2.83)

where J and h now depend on the lattice site considered, and the summation
is performed over any pair (i,j) such that i ̸= j.

We can now abandon the idea that the spin-glass model is defined over a
lattice. Since interactions have infinite range, there is no need to think of spin
variables as bounded in a certain spatial location. It is far more useful to think
of the model as a graph, where each spin variable possesses connections with
many (potentially all) other spin variables. A coupling Jij = 0 corresponds to
a missing link in the graph. Nonetheless, the expression site will still be used
in the present work, meaning a particular position in the graph.

We will call spin configuration any function

S : Λ → {±1} (2.84)

which assigns spin up (+1) or down (-1) to each site in Λ. Let Ω be the set of
all possible spin configurations. The cardinality of the set is |Ω| = 2N .

2.4.2 Quantum spin-glass model

A quantum analog of the spin-glass model can be defined by mapping each spin
variable si to a two-state quantum system qi:

si = +1 → |ψ⟩i = |+1⟩i
si = −1 → |ψ⟩i = |−1⟩i

(2.85)

The system Hamiltonian can be redefined as follows:

H =
∑
i ̸=j

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i , (2.86)

where σzi are Pauli-z matrices such that.

σzi |ψ⟩j ̸=i = 0

σzi |+1⟩i = |+1⟩i
σzi |−1⟩i = − |−1⟩i .

(2.87)

2.4. Elements of adiabatic quantum computing 39

In the Hamiltonian in Eq. 2.86, all the interaction terms act along the z-
axis. For this reason, the eigenstates of the Hamiltonian correspond to the set
Ω of the classical states of the classical spin-glass model. This means that if
the system is initialized with a configuration in Ω, it does not evolve as time
passes, i.e. there is no chance for the spins to flip. If we want to build a true
analog of the classical spin-glass model, we should allow the configurations in Ω

to relax and become a superposition of multiple classical states. In the classical
spin-glass model spin-flip events are possible thanks to thermal effects. In the
quantum system, one may introduce a new interaction term that acts along a
different direction, like a transverse magnetic field that acts along the x-axis:

H =
∑
i,j,i̸=j

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i + g

∑
i

σxi , (2.88)

with g ∈ R. The last term in the above expression allows the mixing of the
eigenstates of the Hamiltonian in Eq. 2.86. In a suggestive classical analogy,
the quantum superposition of different configurations may corresponds to the
statistical ensemble, while the transverse magnetic field emulates the presence
of a non-zero temperature.

The effect of the transverse field depends on the magnitude of g. If g →
0, the effect vanishes and the eigenstates become increasingly similar to the
classical states. If g → ∞, the effect amplifies and the total Hamiltonian
H in Eq. 2.88 becomes H ∼ g

∑
i σ

x
i . In this case, the eigenstates of the

Hamiltonian correspond to the eigenstates of σx, which means each spin has an
equal probability to be in the +1 or −1 state.

2.4.3 Adiabatic theorem and convergence conditions of

Quantum Annealing

In this Section, the principles of QA are introduced in mathematical terms.
The main references for this Section are [63] and [64]. First, the proof of the
adiabatic theorem is reviewed. Then, the spin-glass model with a transverse field
is introduced as an example of QA implementation. Finally, the convergence
condition for QA is presented.

40 Chapter 2. Quantum computing

Adiabatic theorem

Let’s consider a general Hamiltonian which depends on time t only through the
dimensionless time s = t/τ , where τ is a characteristic time scale of the system

H(t) = H̃

(
t

τ

)
≡ H̃(s) . (2.89)

The parameter τ is introduced to control the rate of change in the Hamiltonian.
By varying the dimensionless time s, we can analyze how the system evolves
and responds to the changes in the Hamiltonian in a more manageable way.
In quantum systems the state vector |ϕ(t)⟩ follows the real-time Schrödinger
equation,

i
d

dt
|ϕ(t)⟩ = H(t) |ϕ(t)⟩ , (2.90)

where we set ℏ = 1. In terms of the dimensionless time we get:

i
d

ds

∣∣∣ϕ̃(s)〉 = τH̃(s)
∣∣∣ϕ̃(s)〉 . (2.91)

Assuming the initial state of the system at s = 0 as the ground state of the
initial Hamiltonian H̃(0) = H(0) and that the ground state of H̃(s) is not
degenerate for s ≥ 0. The objective is to obtain a sufficient condition that
allows to evolve the H̃(s) in time in such a way that, at any s, the state of the
system corresponds to the instantaneous eigenstate |0(s)⟩ corresponding to the
lowest eigenvalue at that time. This is usually called adiabatic evolution. We
will now present the adiabatic theorem, which provides a sufficient condition
to adiabatically evolve the system. To keep track of the distance between the
state vector and the ground state, it is natural to expand the state vector by
the instantaneous eigenstates of H̃(s). First, we derive useful formulas for the
eigenstates. The kth instantaneous eigenstate of H̃(s) is denoted as |k(s)⟩:

H̃(s) |k(s)⟩ = εk(s) |k(s)⟩ , (2.92)

where εk(s) is the eigenvalue of the state |k(s)⟩ with respect to the Hamiltonian
H̃(s). Let’s assume that |0(s)⟩ is the ground state of H̃(s) and that the eigen-
states are orthonormal, which means that ⟨j(s)|k(s)⟩ = δjk. Let us differentiate
Eq. 2.92 with respect to s, and then project the obtained expression onto the
state |j(s)⟩. We obtain〈

j(s)

∣∣∣∣∣ dds
∣∣∣∣∣k(s)

〉
=

−1

εj(s)− εk(s)

〈
j(s)

∣∣∣∣∣dH̃(s)

ds

∣∣∣∣∣k(s)
〉
, (2.93)

2.4. Elements of adiabatic quantum computing 41

if j ̸= k. In the case j = k we can impose the following condition:〈
k(s)

∣∣∣∣∣ dds
∣∣∣∣∣k(s)

〉
= 0 . (2.94)

Note that, if j = k, the calculation that brings from Eq. 2.92 to Eq. 2.93 does
not produce any condition on the term appearing in Eq. 2.94. Nonetheless,
we can demonstrate that the condition in Eq. 2.94 is always achievable by a
time-dependent phase shift. Indeed, if we define

∣∣∣k̃(s)〉 = eiθ(s) |k(s)⟩, we find

〈
k̃(s)

∣∣∣∣∣ dds
∣∣∣∣∣k̃(s)

〉
= i

dθ

ds
+

〈
k(s)

∣∣∣∣∣ dds
∣∣∣∣∣k(s)

〉
. (2.95)

The second term on the right hand side is purely imaginary, because〈
k(s)

∣∣∣∣∣ dds
∣∣∣∣∣k(s)

〉∗

+

〈
k(s)

∣∣∣∣∣ dds
∣∣∣∣∣k(s)

〉
=

d

ds
⟨k(s)|k(s)⟩ = 0 . (2.96)

Then, a proper tuning of the phase factor θ(s) suffices at making the sum of the
right-handed terms of Eq. 2.95 equal to zero. Thus, condition Eq. 2.94 holds
for the phase-tuned eigenstate

∣∣∣k̃(s)〉 even if the original eigenstate |k(s)⟩ does
not satisfy it.

The following theorem holds [63]:

Theorem 2.4.1. If the instantaneous ground state of the Hamiltonian H̃(s) is
not degenerate for s ≥ 0 and the initial state is the ground state at s = 0, i.e.∣∣∣ψ̃(0)〉 = |0(0)⟩, the state vector

∣∣∣ψ̃(s)〉 has the asymptotic form in the limit of
large τ as ∣∣∣ψ̃(s)〉 =

∑
j

cj(s)e
−iτϕj(s) |j(s)⟩ , (2.97)

where
c0(s) ≈ 1 +O(τ−2) , (2.98)

and
cj ̸=0(s) ≈

i

τ

[
Aj(0)− eiτ

[
ϕj(s)−ϕ0(s)

]
Aj(s)

]
+O(τ−2) , (2.99)

where ϕj(s) ≡
∫ s
0
ds′εj(s

′), ∆j(s) ≡ εj(s)− ε0(s) , and

Aj(s) ≡
1

∆j(s)2

〈
j(s)

∣∣∣∣∣dH̃(s)

ds

∣∣∣∣∣0(s)
〉

(2.100)

We can conclude that the system evolves adiabatically if the right-hand side

42 Chapter 2. Quantum computing

of 2.99 is much smaller than unity. In such case, at any time s, the system has
a low probability to occupy states different from the istantaneous ground state
|0(s)⟩. This condition can be rewritten as

τ ≫ |Aj(s)| . (2.101)

Expression 2.101 implies that Adiabatic evolution is possible when τ is large,
which means H̃(s) changes slowly in time. Using the original time variable t,
the adiabaticity condition is further rewritten as

1

∆j(t)2

∣∣∣∣∣
〈
j(t)

∣∣∣∣∣dH(t)

dt

∣∣∣∣∣0(t)
〉∣∣∣∣∣ = δ ≪ 1 , (2.102)

which must hold for all times. This is the usual expression of the sufficient
condition for adiabatic evolution.

Convergence conditions of quantum annealing

We now derive a condition which guarantees the convergence of QA. The prob-
lem consists of finding an anneal schedule (i.e. the time dependence of the
control parameters) such that the adiabaticity condition (Eq. 2.102) is sat-
isfied. We consider the transverse-field spin-glass model introduced in Section
2.4.2 since modern QA devices implement this Hamiltonian. Suppose one wants
to solve an optimization problem that can be represented as the ground-state
search of a spin-glass model of the general form

Hglass ≡ −
N∑
i=1

Jiσ
z
i −

∑
ij

Jijσ
z
i σ

z
j −

∑
ijk

Jijkσ
z
i σ

z
jσ

z
k − ... , (2.103)

where the σzi are the Pauli matrices that act along the z-direction. Many combi-
natorial optimization problems can be written in this form, by mapping binary
variables to spin variables.
An important assumption is that Hamiltonian 2.103 is extensive, i.e. propor-
tional to the number of spins N for large N . To realize QA, fictitious kinetic
energy is typically introduced by the time-dependent transverse field

HT ≡ −
N∑
i=1

σxi . (2.104)

The Pauli operators σxi enable spin flips, quantum fluctuations, or quantum
tunneling between the states that possess eigenvalues +1 and -1 with respect

2.4. Elements of adiabatic quantum computing 43

to σzi . Such effects allow a quantum search of the phase space. The total
Hamiltonian takes the expression

H(t) = −F (t)

(∑
i,j

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i

)
−G(t)

∑
i

σxi

≡ F (t)HP +G(t)HT ,

(2.105)

where t is the physical time, F (t) and G(t) are positive real numbers, HP is the
Hamiltonian whose ground state correspond to the solution of the optimization
problem, and H(t) is the transverse field Hamiltonian. The problem Hamilto-
nian HP in Eq. 2.105 is a simplified version of the more general Hglass. The
reason for this restriction comes from the fact that modern quantum anneal-
ers can only implement Hamiltonians with interaction terms that are at most
quadratic. Nonetheless, the following deductions about convergence for QA al-
gorithms hold for a generic Hglass.
Each eigenstate of H(τ) is a set of N binary values S = {s1, s2...sN}, where
N is the total number of spin degrees of freedom of the system. Each spin
variable si can assume two different states, +1 and −1. There are 2N different
eigenstates of HP , one for each possible combination of the N spin variables. A
generic state of the system can be expressed as:

|ϕ⟩ =
∑

{s1,...,sN}∈Ω

α
(
{s1, ..., sN}

)
|s1, ..., sN⟩ ,

with
∑

{s1,...,sN}∈Ω

|α
(
{s1, ..., sN}

)
|2 = 1

(2.106)

where the sums are over each possible configuration of the N spins.
Suppose we are interested in finding which of the eigenstates corresponds to the
minimum energy of HP . By choosing a correct annealing schedule for F (t) and
G(t) (i.e. choosing their dependence on time), we can encourage the system
to converge to the global minimum. At t = 0 we set G(0) ≫ F (0). This
way, the initial ground state will be an eigenstate of Hamiltonian HT , which
means an equally probable superposition of all the classical states in the phase
space Ω. As t grows, the system must be gradually forced into states that
are a mixture of low-energy configurations with respect to Hamiltonian HP ,
so we must raise F (t) and lower G(t). If the annealing schedule is sufficiently
slow, the adiabatic theorem assures that the system will remain close to the
lowest energy eigenstate of the instantaneous Hamiltonian H(t). For t → ∞,
we impose G(t) ≪ F (t), so that the system finds itself in a superposition

44 Chapter 2. Quantum computing

dominated by the state corresponding to the spin configuration that minimizes
HP .
An important issue is how slowly we should modify F (t) and G(t) to keep
the state vector arbitrarily close to the instantaneous ground state of total
Hamiltonian 2.105. For simplicity, we suppose to fix F (t) to a positive constant
k for every time t. Expression 2.105 can then be rewritten as

H ′(t) = HP + Γ(t)HT (2.107)

where H ′ = H/k and Γ(t) = G(t)/k. Note that modern quantum computers
allows to control the time dependency of both F and G terms. Nonetheless, the
evolution of the ratio G(t)/F (t) is the driving force of quantum annealing. For
this reason, what can be learned for F (t) fixed is instructive and can then be
extended to more general contexts. The following theorem provides a sufficient
condition for convergence.

Theorem 2.4.2. Imposing the adiabaticity condition in Eq. 2.102 on the trans-
verse field spin-glass model in Eq. 2.107 yields the following sufficient condition
of convergence for QA:

Γ(t) = a(tδ + c)−1/(2N−1) (2.108)

for t > 0. Here a and c are constants of order O(N0) and δ is a parameter
sufficiently small such that the adiabaticity condition in Eq. 2.102 holds.

A proof for this theorem can be found in reference [63].

Computational complexity

The power-law dependence on t in Eq. 2.108, sufficient to ensure conver-
gence for QA, is much faster than the log-inverse law typical of SA, T (t) =

pN/ log(αt+ 1). However, we can not conclude that QA provides an algorithm
to solve NP problems in polynomial time. Indeed, suppose we want Γ(t) to
reach a certain small value ε so that the system is close to the ground state of
HP . The time required to satisfy such condition is estimated from Eq. 2.108 as

tf ≈
1

δ

(
1

ε

)2N−1

. (2.109)

This relation shows that the QA algorithm requires a time exponential in N to
converge.

2.5. Hardware realization 45

2.5 Hardware realization

2.5.1 Superconductive qubits

Superconducting circuits are the basis of superconducting qubits, as they are
built using superconducting elements that behave quantum mechanically.
First of all let’s introduce a basic quantum electronic circuit. The LC oscillator
is the simplest example of a quantum integrated circuit. LC circuits consist of
an inductor L connected to a capacitor C. For a circuit to behave quantum
mechanically there must be no dissipation, that is, the circuit must have zero
resistance at the operating temperature. This is essential to preserve quantum
coherence.
The LC circuit obeys the equations of motion of the linear harmonic oscillator
where the flux Φ in the inductor is analogous to the position coordinate, and the
charge Q on the capacitor is analogous to the conjugate momentum. Therefore
we define two operators Φ̂ and Q̂ such that[

Φ̂, Q̂
]
= iℏ (2.110)

Even if the circuit has a huge amount of electrons, the degrees of freedom have
been reduced to one, the Cooper-pair fluid moving back and forth in the circuit
[65]. The Hamiltonian of the circuit is

Ĥ =
Φ̂2

2L
+
Q̂2

2C
(2.111)

The inductance L of the system has the role of the mass and the inverse of
the capacitance 1/C of the spring constant. Being ω = 1/

√
LC the resonance

frequency of the circuit then we can write

Ĥ = ℏω
(
â†â+

1

2

)
(2.112)

where

â† = −i 1√
2Cℏω

Q̂+
1√

2Lℏω
Φ̂

â = i
1√

2Cℏω
Q̂+

1√
2Lℏω

Φ̂
(2.113)

In an harmonic oscillator the difference between two consecutive energy levels
is always ∆E = ℏω. Therefore it is impossible to approximate it to a two level
system using the lowest two levels.

46 Chapter 2. Quantum computing

We want to approximate our system to a two level qubit. The property of a
system to be approximated in a two level system is often called ’non-linearity’.
In a non linear system the energy level cannot be uniformly spaced. The only
element which is both non-dissipative and non-linear is a Josephson junction.
Josephson junctions is the essential element of superconducting qubits.

Josephson junction

Josephson junctions consist of two superconductors separated by an insulating
barrier. The width of the barrier is of the order of nanometres. The origin of
the non-linearity of the Josephson element is associated to the discreteness of
charge that tunnels across the thin insulating barrier. Hence the junction is
characterized by only one degree of freedom N(t), the number of Cooper pairs
having tunnelled across the barrier.
The variable that gives the number of Cooper-pairs across the junctionN should
be treated as a discrete operator, as we have said that the charge tunnelling
across the barrier is discrete

N̂ =
∑
N

N |N⟩⟨N | (2.114)

The two superconducting electrodes form a capacitor, but we will ignore the
Coulomb energy that builds up as Cooper pairs tunnel from one side to the
other. The tunnelling of electrons through the barrier couples the |N⟩ states.
The coupling energy is given by the Hamiltonian

ĤJ = −EJ
2

∑
N

[
|N⟩⟨N − 1|+ |N − 1⟩⟨N |

]
(2.115)

Where EJ is a constant. The Hamiltonian can be written in terms of the phase
difference of the Cooper pairs wave functions on the two sides of the junction.
We introduce new basis states

|φ⟩ =
∑
N

eiNφ |N⟩ (2.116)

Where φ → φ + 2π leaves the |ϕ⟩ unchanged. The txo operator φ̂ and N̂ are
conjugate variables with [

φ̂, N̂
]
= i (2.117)

2.5. Hardware realization 47

Conversely, the |N⟩ state is given by the Fourier transformation of the phase
state

|N⟩ = 1

2π

∫ 2π

0

dφeiNφ |φ⟩ (2.118)

We introduce the operator

eiφ̂ =
1

2π

∫ 2π

0

dφeiNφ |φ⟩⟨φ| (2.119)

Which acts on |N⟩ as
eiφ̂ |N⟩ = |N − 1⟩ (2.120)

We can obtain the expression for the coupling Hamiltonian 2.115 in the basis
of |φ⟩.

ĤJ = −EJ
2

(
eiφ̂ + e−iφ̂

)
= −EJ cos φ̂ (2.121)

Charge qubit

The charge qubit, known as Cooper-pair box, consists of a small superconduct-
ing island located between the insulating barrier of a Josephson junction and
one of the plates of a capacitor (Fig). In this type of qubit the charge is the con-
trolled variable, controlled by the voltage source, inducing a charge difference
between both sides of the Josephson junction.

The Hamiltonian of the circuit is

Ĥ = EC

(
N̂ −Ng

)2
− EJ cos φ̂ (2.122)

The first term is the electrostatic energy (Coulomb energy) operator

Û = EC

(
N̂ −Ng

)2
= EC

∑
N

(N −Ng)
2 |N⟩⟨N | (2.123)

where Ng = Cg
Vg
2e

is the polarization charge induced by the voltage Vg on
the gate capacitor of capacitance Cg while EC = (2e)2

2(CJ+Cg)
is the electrostatic

Coulomb energy, the energy used to store a Cooper pair in the capacitor.
The charge qubit is in the charge regime, EC ≫ EJ . N̂ is a discreet variable
representing the quantity of Cooper pairs on the island which can only take
integer values. The offset charge Ng is, on the other side, a continuous variable.
The charge states are given by the excess of Cooper pairs that have tunnelled
to the island. For a qubit, all the states over |2⟩ can be ignored when the offset
charge Ng is about the same charge as an electron, Ng = 1/2, because of a great
energy difference between the first and second states. Thus, we can make a two

48 Chapter 2. Quantum computing

Figure 2.2: Circuit representation of a charge qubit [66]. The
region which lies inside the dashed lines is the Cooper-pair box.

level approximation.
The qubit basis states are |0⟩ and |1⟩, the first corresponding to the lack of
Cooper pairs in the superconducting island and the second corresponding to
the presence of a single Cooper pair. When Ng = 1/2, the energy is the same
for both charge states |0⟩ and |1⟩ leading to degeneracy. For that reason an
energy splitting occurs in that region and the energy eigenstates become linear
combinations of the charge states.

|±⟩ = 1√
2

(
|0⟩ ± |1⟩

)
(2.124)

Making the two levels approximation, we can replace the Hamiltonian in the
Equation 2.122 in the qubit reduced Hamiltonian

Ĥqubit = EC

(
N2
g 0

0 (1−Ng)
2

)
− EJ

2

(
0 1

1 0

)
(2.125)

If we change the zero of energy of the system to E0 = EC(1/2 − Ng)
2 + 1/4 (

Ref. [67]) then

Ĥqubit = −1

2

(
Eσ̂z + EJ σ̂x

)
(2.126)

2.5. Hardware realization 49

where E = EC(1 − 2Ng). One can thus make a correspondence between the
Cooper pair box and a spin 1/2 in a magnetic field using the Pauli spin matrices:

σ̂x =

(
0 1

1 0

)
σ̂y =

(
0 i

−i 0

)
σ̂z =

(
1 0

0 −1

)
(2.127)

The Hamiltonian in the Equation 2.126 takes the form

Ĥqubit = −⃗̂s · h⃗ (2.128)

where ⃗̂s = 1
2
⃗̂σ = 1

2
(σ̂x, σ̂y, σ̂z) is the spin operator and h⃗ is an effective magnetic

field whose components in the bass (x, y, z) are (E, 0, EJ).
The qubit in the IBM’s quantum computer are a kind of charge qubit called

Figure 2.3: Circuit representation of a transmon qubit [66].
The region which lies inside the dashed lines is the Cooper-pair

box

transmon.
The transmon consists of two superconducting islands coupled through two
Josephson junctions which operates in the flux regime EJ ≫ EC , normally
EJ/EC ∼ 50.
The difference between a transmon as from Figure 2.3 and the charge qubit
in the Figure 2.2 is that transmons have an additional capacitance, meaning
that EC = (2e)2/(CJ +CB+Cg). Such architecture is characterized by a higher
decoherence times. The decoherence times will be introduced in the next Section

50 Chapter 2. Quantum computing

2.5.2 Trapped-ion qubits

Even an atom can be identifiable as a qubit, obviously under the necessary
conditions. Charged atoms (ions) can be contained (that is, trapped) in one
precise location using electric fields. It is possible to contain neutral atoms
using optical tweezers, but our focus is on ions, which can be contained using
an electromagnetic trap. In 1953 Wolfgang Paul proposed his now-called Paul
trap and, together with Dehmelt, they awarded the 1989 Physics Nobel Prize,
Current trapped ion quantum computers extensively use the Paul trap. Since,
using the laws of electrostatics, one can prove that it is impossible to create a
confining potential with only static electric fields, Paul and Dehmelt propose
time-dependent saddle-shaped potentials. In detail, the Paul trap is a potential
composed of a combination of an oscillating potential (referred to as radio-
frequency RF) and a static one (DC potential) [68]. The potential Φ is

Φ(r⃗, t) = ΦDC(r⃗) + ΦRF (r⃗, t) (2.129)

where the DC potential

ΦDC(r⃗) =
1

2

(
uxx

2 + uyy
2 + uzz

2
)

(2.130)

and the RF potential is

ΦRF (r⃗, t) =
1

2

(
vxx

2 + vyy
2 + vzz

2
)
cos (ΩRF t+ ϕ) (2.131)

The vectors ui, vi, ϕ and the frequency ΩRF need to be adjusted to the charge
and mass of the ion. The technology to trap many ions and put them close
together in a one-dimensional array is called an ion chain. To make a quantum
computer with ions it is necessary to place the ions in a sufficiently spaced one-
dimensional array and cool them all down to the point where their motion in
space is quantized. In this scenario, photons that would bring the ion to their
excited states will not cause any relative motion. Instead, all ions will recoil
together. This phenomenon is called the Mossbauer effect [36]. However, only
a select few isotopes meet the requirements, such as the effect described above,
to be able to make qubits. The reason is that our qubit basis states are the
ground and excited states of an electron in the atom, and we need to be able
to transition between them using laser light. There is a need for ions with an
excited state that is long-lived, and also one that can be manipulated using
frequencies that lasers can produce. The best ions for our purposes are single-
charged ions in Group II of the periodic table, such as Calcium-40, Beryllium-9,

2.5. Hardware realization 51

and Barium-138, commonly used in university laboratories [69]. The rare earth
Ytterbium-171 is used by IonQ and Honeywell. These elements have two valence
electrons, but their ionized version only has one. The valence electron is not so
tightly bound to the atom, so it is the one whose state is used to represent a
qubit.

Qubit encoding on a trapped ion

To simplify, we consider the energy levels of the hydrogen atom which has
quantum states identifiable with 3 quantum numbers |n, l,m⟩ where n indicates
the energy level while the other quantitative numbers indicate the degenerate
states with total angular momentum l and angular momentum along a preferred
direction (z) indicator with m. Given a value l we have that m ∈ {−l,−l +
1, . . . , l−1, l}. However, we need to broaden this discussion to introduce the spin
of the electron. For an electron the total spin is always 1/2 so the quantum
states will be |n, l,m, s = ±1/2⟩ given that s, the component along z of the
spin, has the same behavior as m. For a general atom, different values of l
do not correspond to degenerate states but to different energy levels. For this
reason, at a given point, the energy levels are ordered based on the value of
l and therefore we have, for example, the states, called orbitals, S, P,D with
angular moment l = 0, 1, 2 respectively. The states can be rewritten so as to
consider the angular momentum and the spin as a single observable, the total
angular momentum J. In this way we will have the states S1/2, P1/2, P3/2, D3/2

and D5/2. If one considers the calcium isotope ion 40Ca+, the Hilber subspaces
generated by the basic elements are considered which, in energy level order, are
S1/2, D3/2, D5/2, P1/2 and P3/2 where however theD orbitals correspond to n−1.
The procedure for encoding a qubit consists of identifying a ground state |g⟩ and
an excited state |e⟩ with energies that are E0 and E1 respectively. After many
simplifications involving some approximations, we find that the Hamiltonian
that describes the two energy levels of the ion resonant to the laser light is
given by the operator

H = E0 |g⟩⟨g|+ E1 |e⟩⟨e|+
ℏΩ
2

(
aeiφ + a†e−iφ

)
+H1(t) (2.132)

where

a =

(
0 0

1 0

)
a† =

(
0 1

0 0

)
(2.133)

Where Ω is called Rabi frequency and it depends on the applied magnetic
field due to the laser, and by the magnetic moment of the ion. The Rabi

52 Chapter 2. Quantum computing

Figure 2.4: 40Ca+ energy levels involved to engineer a left-hand
optical qubit. Meter on the right are shown the energy levels in
the presence of an external magnetic field (Zeeman effect) where

it is possible to implement a hyperfine qubit.

oscillations drive the exchange between the state |g⟩ and |e⟩. The Hamilto-
nian H1(t) is due to the potential in Equation 2.129 and it can be ignored in
such discussion. Now there are two ways to encode a qubit. The first one
is called, the optical qubit. In such case, always taking the ion 40Ca+ into
consideration, an infrared laser couples the two levels |g⟩ =

∣∣S1/2,m = −1/2
〉

and |e⟩ =
∣∣D5/2,m = −1/2

〉
that correspond, in computational base, to |0⟩ and

|1⟩. The exited state
∣∣D5/2,m = −1/2

〉
respect the channel

∣∣S1/2,m = −1/2
〉
↔∣∣D5/2,m = −1/2

〉
has a lifetime of 1.17×109ns ∼ 1s which means that in ∼ 1s a

spontaneous emission of a photon will bring the electron back to
∣∣S1/2,m = −1/2

〉
starting from

∣∣D5/2,m = −1/2
〉
. In Figure 2.4 the energy levels of the orbitals

involved are graphically represented. Another, more common, type of qubit
encoded on atomic states is called hyperfine qubit. In this case, the Zeeman
effect is exploited. This effect concerns the splitting of atomic levels due to the
presence of an external magnetic field. The external magic field introduces a
Hamiltonian term equal to

HB = −µ⃗ · B⃗ where µ⃗ = −µb
ℏ

(
gLL⃗+ gSS⃗

)
(2.134)

The terms gL and gS are 1 and ∼ 2 respectively. The term HB produces a split-
ting of the energy levels since it depends, approximately, on the total angular
momentum J⃗ as shown in Figure 2.4. Therefore the states

∣∣S1/2,m = −1/2
〉

and∣∣S1/2,m = +1/2
〉

will be separated by an energy difference equal to ∆E = gµBB

where is the Lande factor and it depends by the angular momentum and the
spin of the electron orbital. Therefore the hyperfine qubit is built on the states

2.5. Hardware realization 53

∣∣S1/2,m = −1/2
〉

and
∣∣S1/2,m = +1/2

〉
that are separated by a small energy

difference if the magnetic field in small. The exited state
∣∣S1/2,m = +1/2

〉
is

called hyperfine state and it is a metastable state with a lifetime of almost
infinite. In a nutshell, the selection rules for a certain type of atomic level tran-
sitions said that transitions of ∆l = 0 are not permitted. Therefore the two
states in the hyperfine qubit are coupled via an auxiliary state (generally with
a short lifetime) with a higher energy. So to decay into the ground state, these
types of qubits must transition from an auxiliary state and such a transition
is generally unlikely at low temperatures. This makes these types of qubits
very stable. However, this structure leads to a complication when introducing
unitary transformations of the qubit which in fact must be very precise.

Gates on Trapped ion qubits

According to Schrödinger’s equation, the Rabi oscillations defined in 2.132,
produce a time evolution on the ground state |g⟩

|ψ(t)⟩ = exp

{
−itΩ

2

(
aeiφ + a†e−iφ

)}
|g⟩ ≡ U(Ω, φ, t) |g⟩ (2.135)

therefore, since

U(Ω, φ, t) |g⟩ = cos

(
Ωt

2

)
|g⟩ − i sin

(
Ωt

2

)
eiφ |e⟩ (2.136)

and
U(Ω, φ, t) |e⟩ = −i sin

(
Ωt

2

)
e−iφ |g⟩+ cos

(
Ωt

2

)
|e⟩ (2.137)

than U(Ω, φ, t) is a parametrized unitary transformation on a single qubit and,
therefore, it is possible to implement any element of U(2) with the identity.

U(Ω, φ, t) =

(
cos
(
Ωt
2

)
−i sin

(
Ωt
2

)
e−iφ

−i sin
(
Ωt
2

)
eiφ cos

(
Ωt
2

))
(2.138)

As for two-qubit transformations, an ingenious gate, known as the Mølmer-
Sørensen gate is often used. In this case, 2 ions are involved which are brought
together mechanically and one auxiliary. There is, also in such case, a Rabi
frequency ΩMS, of two simultaneous laser pulses, associated with this evolution.
adjusting the time and the phase of the lasers can lead to a superposition
of |g⟩ |g⟩ |n⟩ and |e⟩ |e⟩ |n⟩ which leads to, for example, in a two-qubit state
(|g⟩ |g⟩+ |e⟩ |e⟩) /

√
2. Using Schrödinger’s equation allows us to derive how the

qubits evolve when we apply the Mølmer-Sørensen protocol for a time t. The

54 Chapter 2. Quantum computing

gate has the following form

UMS(t) =

cos
(
ΩMSt

2

)
0 0 −i sin

(
ΩMSt

2

)
0 cos

(
ΩMSt

2

)
−i sin

(
ΩMSt

2

)
0

0 −i sin
(
ΩMSt

2

)
cos
(
ΩMSt

2

)
0

−i sin
(
ΩMSt

2

)
0 0 cos

(
ΩMSt

2

)

(2.139)

Since the CNOT gate is commonly used in quantum algorithms, let’s define how
to obtain it from the Mølmer-Sørensen gate. It is possible to do so by using
a combination of single-qubit rotations and the Mølmer-Sørensen gate applied
for a period of t = π/2ΩMS

• RY (π/2)

MS
(
π
2

) RX(−π/2) RY (−π/2)
=

RY (−π/2)

Therefore, having defined a universal gate basis, trapped ion technology follows
the DiVincenzo criteria and is suitable for performing quantum computing.

2.6 Limitations in today’s quantum computers

From DiVincenzo’s criteria and the postulates of quantum mechanics, it can
be deduced that the qubit system in a quantum computer must be closed and
therefore not interact with the outside. In general, this prerequisite cannot be
met in practice. For this reason, error correction methods have been devel-
oped that aim to detect and correct the error rather than prevent it. These
error correction methods consist of producing qubits called logical qubits by
aggregating clusters of qubits together, in this way, with intermediate measure-
ments on auxiliary qubits, it is possible to detect and correct errors on the
qubit register. To date, these error correction methods are difficult to imple-
ment because, in addition to the need to have many qubits, the implemented
quantum gates bring with them an error rate as well as the measurement op-
erations. This leads to problems in detecting and then correcting errors using
error correction algorithms. Quantum computers that implement logical qubits
are called fault-tolerant while those today that do not implement it are called
Noisy intermediate-scale quantum (NISQ) devices [70].

2.6. Limitations in today’s quantum computers 55

2.6.1 Decoherence times

The Schrödinger equation governs the dynamics of a closed quantum system
and it leads to a time evolution of the quantum states described by a unitary
operator. However, the interaction with the environment induces non-unitary
dynamics. We refer to a non-unitary dynamic by calling it dissipative dynamics
and this leads to the phenomenon of decoherence and therefore to the loss of
information contained in the qubits. The effects of closed and open quantum
systems both follow the master equation in the Lindblad form [71].

∂tρ =
1

iℏ
[H, ρ] +

∑
k

γk

(
LkρL

†
k −

1

2
L†
kLkρ−

1

2
ρL†

kLk

)
(2.140)

The dissipative (non-unitary) evolution is described by the jump operators Lk
with their associated weight γk. The different k interactions with the environ-
ment are called channels (in general channels are the term used to refer to the
operators that act on the density matrix). For typical error channels, the deco-
herence time scale is tk = 1/γk. For simplicity, in the following description of
the decoherence, only two channels are considered: L1 = σx with time T1 and
L2 = σx with time T2. Indeed σx leads to qubit decay on the ground state, for
example, Spontaneous emission, while σx leads to the qubit dephasing. Let’s
take a step back to give the definition of a coherent quantum state. A coherent
state is a quantum state that maintains its relatively complex phase during a
period of time [66]. The decoherence is the loss of coherence. Coherence is
lost when the system acquires phases from the surrounding environment and
no longer maintains its complex relative phase. Coherence can be described by
a system coupled to a heat bath. Imagine the qubit is in a pure state, with
density matrix ρ = |g⟩⟨g| in time t = 0. At t > 0 the system evolves coupled to
a reservoir at temperature T . The state is not pure anymore, as it mixes with
the first excited state. The stationary state of the system is given by

ρ =
1

1 + e−βω
|g⟩⟨g|+ e−βω

1 + e−βω
|e⟩⟨e| (2.141)

where |e⟩ is the first excited state.
It is important that a qubit remains in a coherent superposition of states, that
is necessary for quantum computation. The ideal qubit is unperturbed by its
environment but still accessible to be controlled and measured. Quantum de-
vices have associated decoherence times, which limit the number of quantum
operations that can be performed before the results are affected by noise.
One can distinguish between two measures of decoherence times (Ref. [72]):

56 Chapter 2. Quantum computing

• T1 is the ”longitudinal coherence time” (also known as ”amplitude damp-
ing”)

• T2 is the ”transverse coherence time” (also known as ”phase damping”).

T1 is the time required by a qubit to relax from the first excited state to the
ground state, that is, the decay time. T2 is the average time in which the energy-
level splitting remains unchanged, in other words the time it takes for the phase
difference between two eigenstates to become random, the dephasing time. One
way to estimate T1 is to initialize a qubit to the ground state |0⟩. One applies
an X gate to turn it into |1⟩, and measure it in the computational basis after
a time t. The probability of the qubit of staying in the |1⟩ state is expected to
follow an exponential decay curve e−t/T1 . To experimentally determine T2, one
can initialise a qubit to the ground state |0⟩, apply a Hadamard transform H

to change it into (|0⟩+ |1⟩) /
√
2, and wait for a time t before applying another

transform H and measuring the qubit on the computational basis. The decrease
of the probability of obtaining a |0⟩ measurement during time should follow the
expression e−t/T2+1

2
. For what concerns the causes of decoherence, the decohering

elements can be extrinsic and intrinsic. The extrinsic decoherence is caused by
the already mentioned coupling to the environment, and the solution will be
isolating our system as much as possible (as it must be still readable). Intrinsic
decoherence is caused by noise coming from the superconducting circuit. The
temperature at which the qubits operate is of the order of millikelvin, meaning
that the temperature is not a cause of decoherence. The noise coming from the
superconducting circuit is more relevant.

Figure 2.5: Expected experimental curves for T1 and T2, Ref.
[72].

Since IBM provides values for coherence times T1 and T2 these times can be
compared with an estimated time for the execution. In Table 2.1 the statistics

2.6. Limitations in today’s quantum computers 57

Parameter Average Min Max
T1(µs) 108.5 69.34 197.58
T2(µs) 90.63 19.1 248, 62
Readout error 1.18× 10−2 3× 10−3 1.418× 10−1

CNOT error 8.126× 10−3 3.913× 10−3 1
Gate time (ns) 451.556 298.667 625.778

Table 2.1: Properties of the ibm_kolkata quantum device

about the values of T1 and T2 end the other performance parameters of the
27-qubit device ibm_kolkata are listed. The device ibm_kolkata is one of the
best performing superconductive devices in terms of error resilience vs num-
ber of qubits. A metric that evaluates the performance of a NISQ quantum
hardware is the Quantum Volume (QV) [73]. The quantum volume evaluates
the performances of hardware taking into account the error resilience and the
number of qubits. The device ibm_kolkata has the most high QV for a super-
conductive device. Considering a trapped ion device, the coherence times are
considerably longer. This is thanks to the hyperfine states technique described
in the previous section. For example, the 11-qubit trapped ion device harmony
device of IONQ has average times: T1 > 107µs, therefore the order of seconds,
while T2 = 2× 105µs. The downside, however, is that gate execution times are
very high. The two qubit gate has an average execution time of 210µs which is
1000 times the execution time of the superconductive device. A new generation
IONQ device has up to T1 = 100s and T2 = 1s and a quantum volume of 4 or-
ders of magnitude with respect to the more performing superconductive device
but, however, hundreds of microseconds as gate runtime.

Figure 2.6: Immagine of the ibmqx2 quantum processor [74]

58 Chapter 2. Quantum computing

2.6.2 Error rates and coupling map

In addition to the decoherence, each operation performed with quantum gates
introduces accuracy errors in the system. According to IBM, CX gates are less
accurate than single-qubit operations by approximately a factor of 10. The error
rates are not fixed and depend on the calibration of the device. Each device is
typically calibrated twice daily, and from each calibration, a list of qubit-specific
operation error rates is provided, as well as the associated measurement error
rates.
Moreover, we have that not all CX between the qubits are physically imple-

Figure 2.7: Coupling map of two different quantum processor
of 5 qubits [59]

mented. In Figure 2.7 there are two examples of coupling maps i.e. the physical
connections between the qubits in the processor. Such links are represented by
an arrow that establishes which CX is physically implemented. The arrow
starts from the control qubit to the target qubit.
There is a method to reverse the rules of the two coupled qubits using Hadamard
gates [44]

Had Had •
=

Had • Had

If you want to apply an operation on two unconnected qubits, it is only necessary
that there is a path between qubits that joins them in the lattice. In fact, if for
example, we consider a circuit with five qubits connected via a linear lattice,

2.7. Error correction 59

the first and last can be entangled with a CX gate using the following circuit

• • •

• •

= • •

• •

Therefore if the path in the lattice involves n qubit, 2(n− 1) gates are needed.
Because of errors and decoherence times, current quantum computers can be
said to perform approximate quantum computations. Together with chip scaling
(number of qubits), noise and decoherence rates are the greatest obstacles to
a scenario of quantum supremacy. As such, the development of quantum error
correction schemes is an active area of research. Different hardware providers
develop quantum devices with different topologies for the qubit lattice. Google
develops devices with a quadratic lattice, IBM with a hexagonal lattice, and
Rigetti with an octagonal lattice instead. Trapped ion devices are, instead,
fully connected and this is an important feature that makes trapped ion devices
suitable for implementing error correction already today.

2.7 Error correction

An approach to building logical qubits is with the surface codes based on the
stabilizer formalism. The surface codes are, in general, the most promising class
of error correction techniques. They are an evolution of the toric code developed
by Kitaev. Surface codes are the planar version of the toric code. One of the
significant advantages of surface codes is their relative tolerance to local errors.

Stabilizer formalism

Stabilizer codes are very useful to work with. The general formalism applies
broadly and there exists general rules to construct preparation circuits, cor-
rection circuits and fault-tolerant logical gate operations once the stabilizer
structure of the code is known. The stabilizer formalism was first introduced
by Daniel Gottesman [75] uses the Heisenberg representation for quantum me-
chanics. Describing quantum states in terms of operators rather than the states.
A state |ψ⟩ is defined to be stabilized by some operator, K if |ψ⟩ is an eigenstate

60 Chapter 2. Quantum computing

of K with eigenvalue +1

K |ψ⟩ = |ψ⟩ (2.142)

in other words, |ψ⟩ is invariant under K. For example, |0⟩ is stabilized by
Z. An n-qubit stabilizer state is then defined by the n generators the of an
Abelian (all elements commute) sub-group, G, of the n-qubit Pauli group Pn =

{I, X, Y, Z}⊗n

G = {Ki|Ki |ψ⟩ = |ψ⟩ , [Ki, Kj] = 0,∀ (i, j)} ⊂ Pn (2.143)

Other properties of the stabilizers are that Ki is hermitian and K2
i = I ∀i.

Many extremely useful multi-qubit states are stabilizer states, including two-
qubit Bell states, and Greenberger-Horne-Zeilinger (GHZ) states. Using X and
Z gates it is possible to design the generators of G. Given a GHZ state on 3

qubit |GHZ⟩3 = 1/
√
2 (|000⟩+ |111⟩) the generators can be XXX, ZZI and

IZZ. The link be- tween stabilizer codes and stabilizer states come about by
dfining a relevant coding subspace within the larger Hilbert space of a multi-
qubit system. To illustrate this reduction let us examine a simple two qubit
example. A 2-qubit system has a Hilbert space dimension of four, however, if
we require that these two qubit state is stabilized by the XX operator, then
there are only two orthogonal basis states which satifies this condition,

|0⟩L ≡ 1√
2
(|01⟩+ |10⟩) |1⟩R ≡ 1√

2
(|00⟩+ |11⟩) (2.144)

which can be used to define an effective logical qubit. Hence by using stabilizers,
we can reduce the size of the Hilbert space for a multi-qubit system to an
effective single qubit system. In the context of QEC, the stabilizers that are
used to define the logical subspace are utilized to detect and correct errors. A
stabilizer code is therefore a subspace defined via stabilizer operators for a multi-
qubit system. The physical qubits, in a logical one, are therefore initialized
in |0⟩L put in entanglement the physical qubits. Operators that act in the
subspace generated by {|0⟩L , |1⟩L} must be defined. In the meanwhile, the
stabilizers are used to measure the errors. As errors occur from the random and
unpredictable appearance of X and Z operations, they must be detected by
repeatedly measuring each qubit, which can be done with combined X and Z

measurements. However, since [X,Z] ̸= 0, sequential measurements of the same
qubit conflict with one another, causing random projections of the qubit state
onto these operators’ respective eigenstates, completely destroying the quantum
state. Instead, stabilizers are defined such that [Ki, Kj] = 0 ∀ (i, j).

61

Chapter 3

Memcomputing

In the landscape of modern computing, three foundational concepts stand as
pillars, shaping the very essence of computation and technological progress.
Alan Turing’s visionary creation, the Turing machine, set forth the abstract
blueprint for computation, while John von Neumann’s architectural innovation
revolutionized the way computers operate. Parallelly, Gordon Moore’s empirical
observation of the pace of technological advancement, known as Moore’s Law,
propelled the digital realm into a trajectory of exponential growth. Comput-
ing architectures have not changed in their essential features since the 1950s,
but many parts of the engineering of such systems have improved, resulting
in handheld smartphones more capable than room-sized supercomputers of the
past. But this framework is now showing its age. The Von Neumann architec-
ture allows for flexible general purpose computation but also introduces what is
called the von Neumann bottleneck. Performance in these systems is limited by
the constant need to communicate between CPU and memory, to obtain data
as well as program instructions. This fundamental organizational limitation, as
well as physical constraints brought on by Moore’s law scaling of transistors,
and a growing set of unreachably difficult optimization problems, have together
spurred the interest in unconventional computing architectures. Among these
alternatives to the Turing-Von Neumann approach, we find the Memcomput-
ing paradigm. Memcomputing is the name given to an emerging computational
paradigm that exploits the evolution of a circuit based on memristors to perform
computations. It should not be confused with the in-memory or near-memory
computing paradigm which was conceived to avoid most of the costs of mov-
ing data by processing directly within the memory subsystem [76]. In fact,
Memcomputing is a non-Turing paradigm that does not exploit the Von Neu-
mann architecture. It does not have a dedicated memory component but rather
exploits the evolution of a physical system. The dynamical evolution of this
system, therefore, plays the role of a fictitious memory. Memcomputing devices
perform computations harnessing the nonlinear dynamics of a physical system.

62 Chapter 3. Memcomputing

Such concept was pioneered by Chua [77]. The Chua’s approach allows to solve
nonlinear optimization problems [77] through possibly such nonlinear dynamics.
One of the key differences between the Chua’s approach and Memcomputing
is that while the former is a fully analogical method, the latter exploits logical
gates, hence the dynamical evolution is used to support a fully bit-based solver.
Another computational device based on the dynamic of nonlinear systems has
been recently devised . This is the Simulated Bifurcation Machine (SBM) de-
veloped by Toshiba [78] which is inspired by quantum principles. The SBM
simulates a classical system of nonlinear oscillators that produces bifurcations
in the phase space, enabling the simulation of a spin-glass system. As SBM
is a fully digital solution this system is currently the most closely related to
Memcomputing.

3.1 Non-Turing computation with dynamical sys-

tems

To understand memcomputing it is necessary to introduce a dynamical system
as a computing paradigm first [79]. The first consideration is that the computa-
tional process itself is a dynamical system, regardless of the object of computa-
tion. Problems are formulated such that a physical system evolves from a start
state, which represents the problem instance, to an end state which represents
the solution. For example, consider a conventional digital computer. It can be
represented as a long Boolean vector combined with a state transition function,
which is in fact the logic of the machine. Normally we think of the machine as
moving in discrete steps. While a dynamical system may legitimately operate
in a discrete state space, note that a physically-realized the digital computer
actually moves rapidly through a continuous space of values, such as voltage
levels, settling within well-defined and well-separated ranges that represent 0
and 1. An analog computer is an even more natural candidate for computing
as a dynamical system. In the following, we will assume a machine that can
represent variables with more than 1 bit of precision. This description is general
enough to fit either digital or analog machines. In the digital case, multiple bits
are grouped together to represent a single variable, and dynamics are expressed
as a set of numerical operations implemented on top of digital logic.

3.1. Non-Turing computation with dynamical systems 63

3.1.1 Dynamical systems

First of all, the term dynamical system has to be explained [80]. Dynamical
systems can be approached in two ways. On the one hand, on an abstract level,
a dynamical system is just a difference or differential equation, the properties
of which shall be studied. On the other hand, this formal mathematical de-
scription generally appears as the result of a modeling process in the analysis
of a time-dependent process, for example, the course of a chemical reaction, the
spread of a forest fire, the growth of a population, the spreading of an epidemic
disease, or the run of an evolutionary algorithm. A modeling process aims at
formalizing and quantifying the important characteristics of the system, for in-
stance, the interactions between entities. If the modeler is interested in how
the system evolves in time, the result is a dynamic system. Thus, a dynamical
system is a model of a time-dependent system or process expressed in a formal
mathematical way. In general, several classes of dynamical systems can be dis-
tinguished. Dynamical systems can be grouped by the nature of the change,
that is, whether the changes are deterministic or stochastic. This section con-
siders deterministic systems. For a rigorous introduction to the field of random
dynamical systems, the reader is referred to Arnold [81]. Dynamical systems
can further be classified into discrete time and continuous time dynamical sys-
tems. In the first case, the change of the variable, x⃗ ∈ X ⊂ Rn, where X is
called phase space, occurs at discrete time steps, leading to an iterated map or
difference equation

x⃗ (t+ 1) = f (x⃗ (t)) (3.1)

where f : Rn → Rn and a starting point x⃗ (0) = x⃗0 is fixed. In general, the
starting time is assumed to be t0 = 0. A dynamical system in continuous time
leads to a differential equation

d

dt
x⃗(t) = F (x⃗(t)) (3.2)

where x⃗ ∈ X ⊂ Rn, x⃗(0) = x⃗0 and F : Rn → Rn is the flow vector field
representing the laws of the temporal evolution of x⃗. The solutions {x⃗(t)| ˙⃗x(t) =
F (x⃗(t))} are also called trajectories in the phase space. In a more general
definition, F is time-dependent therefore, ˙⃗x = F (x⃗, t) where F : Rn × R → Rn,
but for simplicity, only the time-invariant case will be considered F (x⃗, t) ≡ F (x⃗).
Considering now only the continuous time case, an equivalent to the equation

64 Chapter 3. Memcomputing

3.2 is the following

T (t)x⃗(0) = x⃗(0) +

∫ t

0

F (x⃗ (t′)) dt′ (3.3)

where T : R ×X → X is called the flow field or just the flow of the dynamical
system. Generally, finding a solution to Equation 3.2 is very complicated for
cases where F (x⃗) is non-linear. However, one way to obtain information on the
properties of the dynamic system under examination is to study the solutions
in equilibrium and their stability through Liapunov theories. Equilibrium solu-
tions are solutions of Equation 3.2 that are the rest points of the system, that is
points where no more changes in the system occur. There are many synonyms
for equilibrium solutions including the terms rest point, singularity, fix point,
fixed point, stationary point (also solution or state), or steady state [82]. In
other words, an equilibrium solution is a solution x⃗(t) = x⃗e such that

dx⃗e
dt

= 0 ⇒ F (x⃗e) = 0 (3.4)

Therefore, x⃗e is an equilibrium point if and only if x⃗(t) = xe is a trajectory.
However, not all the Equilibrium solutions have the same properties. Equilib-
rium points can be divided into different classes following the study of their
stability. A simple analysis to study the stability of an equilibrium point is the
linear stability analysis [80]. Expanding the Equation 3.2 on an equilibrium
point x⃗e

˙⃗x ≈ J(x⃗e)(x⃗− x⃗e) (3.5)

where J is the Jacobian matrix. By diagonalizing the Jacobian it is possible to
calculate the local trajectories in the neighborhood of xe.

x⃗(t) ≈ x⃗e +
∑
i

u⃗ie
λit (3.6)

where the sum is over the eigenvalues λi and the associated eigenvectors u⃗i of
the Jacobian matrix. If ∀ i Re λi is positive, than x⃗e is repulsive, otherwise
if ∀ i Re λi is negative than x⃗e is stable. A dynamical system can then have
an equilibrium point with most directions being stable and a few flat ones
(directions u⃗i where Re λ = 0). The stability of that point would still be
governed by the stable directions. The number of eigenvalues with positive real
part (number of unstable directions) is called the index of the equilibrium point.
However, a more sophisticated analysis of the equilibrium point stability was
provided by Lyapunov.

3.1. Non-Turing computation with dynamical systems 65

Lyapunov stability

Assuming that F (x⃗) satisfies the standard conditions for the existence and
uniqueness of solutions, F is Lipschitz continuous, an equilibrium point x⃗e is
said locally stable, in the sense of Lyapunov, if ∀ ϵ > 0, ∃ δ > 0, such that, if
∥x⃗(0)− x⃗e∥ ≤ δ ⇒ ∥x⃗(t)− x⃗e∥ ≤ ϵ, ∀ t ≥ 0 [83]. That means all the trajecto-
ries that have an initial point near the equilibrium point x⃗e remain near x⃗e all
time. More in-depth, an equilibrium point is said locally asymptotically stable
if it is locally stable and δ can be chosen so that

∥x⃗(0)− x⃗e∥ ≤ δ ⇒ x⃗(t) → x⃗e as t→ ∞ (3.7)

while a more strong definition is the globally asymptotically stable equilibrium
point which is similar to the above condition but ∀δ > 0.
To verify the stability of an equilibrium point without explicitly solving the
differential equation associated with the dynamical system, an important tool
is the Lyapunov function. A Lyapunov function V : Rn → R that maps a
trajectory x⃗(t) to a scalar V (x⃗(t)). A Lyapunov function can be thought of as
a generalized energy function, and −V̇ as the associated generalized dissipation
function. Studying the Lyapunov function as a function of time allows us to
infer the stability of trajectories. To characterize the Lyapunov function it is
first necessary to provide the following definitions. Assuming a set D such that
0 ∈ D ⊆ Rn, a function V : D → R is positive semidefinite (PSD) on D if
V (0) = 0 and V (x⃗) ≥ 0, ∀x ∈ D. Instead V : D → R is called positive
definite (PD) on D if V (0) = 0 and V (x⃗) > 0, ∀x ∈ D \ {0}. In the end,
V is negative semidefinite (NSD), or negative definite (ND), if −V is PSD, or
PD. Another important definition is the Lie derivative. Lie derivative of a C1

function V : Rn → R along vector field F : Rn → Rn is

LFV (x⃗) ≡ ∇V (x⃗)TF (x⃗) (3.8)

Let x⃗(t) be a solution to ODE ˙⃗x(t) = F (x⃗(t)), than the derivative of V (x⃗(t))

with respect to the time

dV

dt
=

n∑
i=1

∂V

∂xi

∂xi
∂t

= ∇V (x⃗)TF (x⃗) = LFV (x⃗) (3.9)

Therefore, the Lie derivative characterizes the time-course evolution of the value
of V along the solution trajectory of ˙⃗x = F (x⃗). With these elements, it is
possible to state the Lyapunov theorem as follows

66 Chapter 3. Memcomputing

Theorem 3.1.1. Let D ⊂ Rn be a set containing an open neighborhood of
the origin. If there exists a PD function V : D → R such that LFV (x⃗) is
NSD then the origin is stable. If in addition, LFV (x⃗) is ND then the origin is
asymptotically stable.

A Lyapunov function is a PD C1 function such that LFV (x⃗) is NSD or
ND. If V is also radially unbounded, then, the origin is globally asymptotically
stable. Then, to verify if x⃗e is globally asymptotically stable, the first step is to
translate the space such that x⃗e = 0 and then find a Lyapunov function with
LFV (x⃗) ND on a radial region RA ∈ D centered on 0, such that V (x⃗) → ∞ as
x⃗→ ∂RA.

3.1.2 Ideal dynamical system for computation

Before introducing how a dynamic system can be engineered to solve com-
putational problems, an important classification of dynamic systems must be
highlighted. Dynamical systems can be typically grouped into two categories,
according to whether they conserve or not volumes in phase space. Considering
at time t = 0 and a (n− 1)-dimensional surface ∂Ω(t = 0) that encloses a vol-
ume of the phase space Ω(t = 0) Let’s then take all points on this surface and
let them evolve according to the Equation 3.2. At time t the surface evolves
in ∂Ω(t) which encloses the volume Ω(t). The system is said conservative if
Ω(t) = Ω(t = 0) and non-conservative if Ω(t) ̸= Ω(t = 0). Moreover, another
definition is the dissipative system where Ω(t) < Ω(t = 0). Since

dΩ

dt
=

∫
∂Ω(t)

F (x⃗(t)) · n̂dσ =

∫
Ω(t)

∇ · F (x⃗(t))dx (3.10)

if ∇ · F (x⃗(t)) < 0 then the system is dissipative. To have good properties
for computation is important to study the long-time properties of dynamical
systems. The question is, waiting enough time, it will be possible to determine
that the system trajectory is within a finite distance from a solution point and
with that distance independent of the size of the problem we are trying to solve?
Therefore it is necessary to design a dissipative system due to the definition of
attractor. It is called an attractor The set of all points in the phase space
to which a dissipative dynamical system converges in the long-time limit. For
instance, the attractor of an equilibrium point is that equilibrium point itself.
Other kinds of trajectories have different attractors. There are periodic orbits
i.e. solutions where there exists a constant TP > 0 such that x⃗P (t) = x⃗P (t +

nTP) where n ∈ N. It is clear that such orbits ‘reside’ on hyper-surfaces of

3.1. Non-Turing computation with dynamical systems 67

multi-dimensional invariant tori. However, a dynamical system may also have
quasi-periodic orbits as attractors. They never really come back exactly on
themselves, like periodic orbits, rather, they densely cover the hyper-surfaces of
multi-dimensional invariant tori. Finally, the Equation 3.2 may show a highly
irregular pattern at long times, which, despite being deterministic, is difficult
(practically impossible) to predict. In such cases, the system displays a chaotic
dynamical pattern. Therefore, according to the initial conditions we choose for
the Eqaution 3.2, we may end up in any of these attractors. We can then define
the following important notion: It is defined as the basin of attraction the set of
initial points in the phase space that evolve according to the Equation 3.2, and
whose trajectories end up in a given attractor. With regard to computation,
it is clear that neither (quasi-)periodic orbits, nor chaotic behavior are good
features to design a physical machine to compute the solution of a particular
problem. In both cases, the solution or output would still change in time, in
the chaotic case, even unpredictably.
Initial conditions are extremely important when the bifurcation phenomenon
occurs in the dynamical system. In dynamical systems, a bifurcation occurs
when a small smooth change made to the parameter values (the bifurcation
parameters) of a system causes a sudden qualitative or topological change in its
behavior. There are several classes of bifurcations, an example is the saddle-
node bifurcation. Assuming a dynamical system in 1-dimension, u̇ = f(u, µ)

where µ is the bifurcation parameter. If f(u, µ) satisfying:

f(0, 0) = 0
∂f

∂u
(0, 0) = 0 (3.11)

which means that u = 0 is an equilibrium point at µ = 0. Supposing that the
ODE that defines the system satisfies the hypotheses of the Cauchy-Lipschitz
theorem, such that for each initial condition, there exists a unique solution and
that, f ∈ Ck with k ≥ 2 in a neighborhood of (u, µ) = (0, 0) and

a ≡ ∂f

∂µ
(0, 0) ̸= 0 b ≡ ∂2f

∂u2
(0, 0) ̸= 0 (3.12)

The following properties hold in neighborhood of u = 0 for small enough µ

• if ab < 0 the differential equation has no equilibrium point for µ < 0, or
for µ > 0 if ab > 0

• if ab < 0 the differential equation possesses two equilibrium point u±(ϵ),
ϵ =

√
µ for µ > 0 (or for µ > 0 if ab > 0), with opposite stability.

68 Chapter 3. Memcomputing

Then for the system, a saddle-node bifurcation occurs at µ = 0. From the
Equation 3.12, the series expansion of f around (0, 0) is

f (u, µ) = aµ+ bu2 + o
(
|µ|+ u2

)
(3.13)

therefore, closed to (0, 0)

µ = − b

a
u2 + o

(
u2
)

(3.14)

Consequently, if abµ > 0 the system has no equilibrium point, for µ = 0 it has
an equilibrium point in U = 0 instead, for abµ < 0 a pair of equilibrium point
occurs

u±(µ) = ±
√

−aµ
b

+ o
(√

|µ|
)
⇒ ∂f

∂u
(u±(µ), µ) = 2bu±(µ) + o

(√
|µ|
)

(3.15)

then the equilibrium u−(µ) is attractive, asymptotically stable when b > 0 and
repelling, unstable when b < 0. Whereas, the equilibrium u+(µ) has oppo-
site stability properties. This means that by changing µ, linked to the initial
conditions and therefore to the statement of the computational problem to be
solved, it is possible to direct the system towards one solution or another. This
is therefore a good property for a dynamic system to be exploited as a com-
puting machine. In the particular context of the memcomputing paradigm, the
focal point is to design a dynamic system so that it has topological (and there-
fore global) characteristics that will aid in the efficient solution of combinatorial
optimization problems. Such features can be summarized in the following points

1. The dynamical system has to be dissipative so that it has attractors.

2. Of all the attractors, we choose equilibrium points as representations of
the solutions to a given problem. Say, we map one equilibrium point
to one solution. The system has to be constrained to always reach such
points.

3. This means that we do not want (quasi-)periodic orbits or chaos.

4. A part from the equilibrium points representing the solutions to the prob-
lem, to avoid local minimum traps, the system can only have, as additional
critical points saddle points and no additional minima.

5. The system must admit the bifurcation phenomenon so as to control the
topology of the system with the initial condition and then obtain different
solutions, (equilibrium points) with different inputs (initial conditions).

3.2. Realisation of digital memcomputing machine 69

3.2 Realisation of digital memcomputing machine

Electronic circuits are ideal for engineering a dynamic system for the purpose
of performing calculations. Chua, in 1983, [77], created one of the most fa-
mous examples of an electronic circuit used as an analog solver of non-linear
optimization problems. The task of solving a non-linear optimization prob-
lem with constraints reduces to that of finding the solution of the associated
canonical circuit using a circuit simulation program, such as SPICE. This is
a non-Turing but analog approach for solving, for examples, linear program-
ming problems, quadratic programming problems, and polynomial program-
ming problems. Memcomputing takes inspiration from the Chua circuit design
and elevates it into a digital version.

3.2.1 From analog to digital

Meaningful interaction between man and calculating machine involves defining
a finite set of symbols and reading the result of the calculation unambiguously
by finite means Writing the input and reading the results cannot possibly re-
quire exponential resources as the size of the input increases. This requirement
means that one wants to solve a problem whose input and output are digital, or
at least it can be written this way (maybe as an approximation). Manipulation
of digital symbols is best performed by Boolean algebra, that is the set of logical
propositions that relate the truth value of two or more variables represented in
a binary form, namely, whether their value is ‘true’ (logical 1) or ‘false’ (logical
0) [84]. AND and OR gates are two examples of boolean operations that act
on two binary variables (two bits) and they produce a binary output. Classical
digital computing is based on the decomposition of mathematical calculations
in a universal basis of boolean operations. The physical realization of such oper-
ations is made by exploiting electronic circuits. Such a computational paradigm
is analog to a Turing machine. Specifically, classical computation as understood
by Zuse and Von Neumann is equivalent to a Turing machine having memory
of the state of the binary variables in the register. Memcompuiting instead is
a non-Turing paradigm and it exploits a dynamical system to simulate the be-
havior of logical operations thus resulting in a non-Turing but digital paradigm.
The main revolution of the memcomputing paradigm is based on the creation
of bi-directional or terminal-agnostic boolean gates, this implies that they will
always satisfy their logical proposition, irrespective of whether the truth value
is assigned at the traditional in-terminals or the traditional out-terminals and
it is not a feature of Turing machines. The dynamic system that creates these

70 Chapter 3. Memcomputing

Figure 3.1: The phase space of a self-organizing AND (SO-
AND) gate with only four equilibria, each one corresponding to
a logically consistent state of an AND gate. In the absence of
any other attractor, the phase space of this gate clusters into
four basins of attraction (grey areas). Reference figure in [85].

terminal-agnostic gates has the property of time non-locality due to the long-
range order in the system variables. Such a concept is related to a memory
[85]. Time non-locality is an important feature of quantum computing and it is
related to the quantum entanglement.

3.2.2 Self-Organizing Logical Gates

let’s consider an AND gate. This gate has only four logically consistent states,
according to the truth values assigned to the in-terminals:

0 ∧ 0 = 0; 0 ∧ 1 = 0; 1 ∧ 0 = 0 ; 1 ∧ 1 = 1 (3.16)

Let’s now design a physical system, following some appropriate equation of mo-
tion of the type of the Equation 3.2, which has only these four states as its
equilibrium points, and no other attractor, namely no periodic orbits or chaos.
This physical system will then dynamically self-organize (SO) into any one of
these four states, according to the initial conditions. Such a gate is called self-
Organizing Logic Gate (SOLG), in which only the final states are important,
not how such states are reached during dynamics [86]. The variables of the
original Boolean gate will be mapped into voltages of an actual electronic cir-
cuit that implements the dynamic system underlying the SOLGs. However, the
three terminals of this new SO-AND gate are not necessarily digital, because

3.2. Realisation of digital memcomputing machine 71

the voltages follow a trajectory x⃗(t) in the phase space X ⊂ R3. It is necessary
to relax the digital condition at the terminals of the gate and allow them to
adapt to any bounded value they may support during dynamics.
Therefore, when the system is at equilibrium (in one of the four logically con-
sistent states), no dynamics should occur. On the other hand, away from the
logically consistent states, the system will change its state, always attempting to
converge to one of the equilibrium points (Figure 3.1). In fact, at any given time
during dynamics (after the initial condition has been set, but before the output
is reached), the state of the system could be in any non-linear combination of
‘input’ and ‘output’ states. When the system is in a non-linear combination of
states then the system is in an unstable configuration as shown in Figure 3.2.
This behavior can be realized if we introduce extra degrees of freedom, namely,
the dimension of our (phase) space of dynamical variables is not three (or what-
ever is the number of gate terminals), but larger. The extra (memory) degrees
of freedom are represented by ˜⃗x. They could be due to any physical mechanism
that induces time non-locality (memory) in the system [87]. To summarize the
concept of the SOLG two steps have to be specified: Provide dynamics to the
voltages at the terminals, vi = vi(t) where i is the index associated with the gate
terminal; Add as many extra dynamical (memory) degrees of freedom x̃k(t) as
necessary to let the system evolve to the only logically consistent equilibrium
states of the gate.
Let’s consider first the step: by providing dynamics to the literals of the ter-
minals of the original gate, one goes from a set of discrete states (the logically
consistent solutions of the gate) to a dynamical system of the voltage variables
only. The resulting system may have several types of critical points, in addition
to the equilibrium points which correspond to the correct logical proposition of
the gate. In particular, this (reduced) phase space of the voltages may contain
local minima that could trap the system dynamics. This is where the second
step of the procedure comes in handy. If memory variables are appropriately
introduced, they expand the reduced phase space of the voltages, transform-
ing any possible local minimum into saddle points. This leaves the equilibrium
points representing the logically consistent solutions as the only equilibrium
points. Active elements are needed to obtain appropriate extra degrees of free-
dom. The reason is that the dynamical system has to be able to always end up
in the correct equilibrium points, which represent the logical states of the gate.
In other words, the terminal voltages have to be guided toward the solution. To
accomplish this, the system needs feedback so that if it strays away from the
correct path in the phase space, it will immediately correct it.

72 Chapter 3. Memcomputing

Figure 3.2: The SO-AND gate is in an unstable configuration if
its logical relations are unsatisfied. It is in a stable configuration
if one of its logical relations is satisfied. Reference figure in [85].

3.2.3 Physical realization of SOLGs

Although the specific gate realization may be different, the general idea is the
same for all types of Boolean gates. The first step to describe the physical
realization is to choose reference voltage vc to associate the logical 0 to vc (for
example vc = 1V) and 1 to −vc. Consider, again, an AND gate with initial
configuration 01 as input and 1 as output. It means that the SOLG is in
an initially unstable configuration, and will attempt to dynamically change its
state to reach one of the four possible equilibrium states compatible with an
AND gate. A set of active devices called dynamic correction modules (DCMs)
[88], attached to each terminal reads the voltages of the other terminals as well
and they provide the necessary feedback to the system. DCMs are made of
resistive memories, with a minimum Ron and a maximum Roff , and voltage-
controlled voltage generators (VCVGs), which are active devices. In Figure 3.3
an illustration of the circuit that implements a DCM is shown. The VCVGs are
linear voltage generators piloted by the voltages v1, v2, and v3 at the terminals
of the SOLG. The output voltage of the VCVG is given by

vV CV G = a1v1 + a2v2 + a3v3 + dc (3.17)

The parameters a1, a2, a3 and dc are determined to satisfy a set of constraints
characteristic of the gate, namely constraints that will guide the physical system
to always satisfy the gate logic. Therefore, these parameters are different for an

3.3. Combinatorial optimization problems with memcomputing 73

Figure 3.3: Self-organizing (SO) AND gate, left panel, formed
by dynamic correction modules (DCMs), right panel.M indicates
the resistive memories, while The linear functions L drive the
voltage-controlled voltage generators (VCVG). Reference figure

in [85]

AND, OR, XOR, or any other gate. Since 5 voltages are involved in DCMs, 20
parameters have to be defined. If the gate is connected to a network and the
gate configuration is correct, no current flows from any terminal: the gate is
in stable equilibrium (steady state). Note that one could choose a different set
of parameters (or even a different design altogether for SOLGs) that satisfies
the same conditions, or simply the general principles of operation of SOLGs.
However, finding a suitable set of parameters to guide the system toward the
equilibrium point is the main problem concerning the memcomputing paradigm.

3.3 Combinatorial optimization problems with mem-

computing

3.3.1 Boolean problems and MAX-SAT

A logical proposition that relates variables is called a clause. A clause is also
sometimes called a constraint. For later use, any clause can be converted into an
equivalent form known as the conjunctive normal form (CNF). A logic formula
is in conjunctive normal form if it is a conjunction of disjunctions of boolean
variables. CNF, in a nutshell, is a series of clauses with ORs (disjunctions), that
represent the constraints, connected by ANDs. This form defines a very impor-
tant problem known as a satisfiability (SAT) problem or constraint satisfaction

74 Chapter 3. Memcomputing

problem, where the variables have to satisfy a set of constraints. Satisfiabil-
ity (SAT) problem It is the problem of finding an assignment of the Boolean
variables, such that their CNF formula evaluates to true. Equivalently, we can
say that each clause should have at least one literal that is true under the as-
signment (for a disjunctive clause). Such a formula and all its clauses are then
said to be ‘satisfied’. If there is no assignment satisfying all clauses, the CNF
formula is said to be ‘unsatisfiable’. The particular CNF representing a SAT
problem in which all clauses contain three distinct literals, of which none is a
negation of the others, like

φ(x⃗) = (¬x1∨x2∨x3)∧(¬x1∨¬x2∨x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x2∨¬x3) (3.18)

is called an instance of a 3-SAT problem.
Unlike 2-SAT problems which belong to the P class of problems that can be
solved polynomially, 3-SAT problems are among the NP-complete problems. In
general, such problems are Boolean problems. Let x⃗ ∈ {0, 1}n and a function
f : {0, 1}n → {0, 1}m, a system of Boolean statements (with n,m integers) that
accept as input the Boolean variables x⃗ ∈ {0, 1}n. Solving the problem defined
by f and y⃗ ∈ {0, 1}m means that the machine must return a possible input x⃗
of f if it exists, that satisfies f(x⃗) = y⃗. Memcomputing is suitable for solving
such kinds of problems.

Self-Organizing Logical Circuit

To introduce how memecomputnig can solve such problems the first considera-
tion is that A CNF formula has a simple Boolean circuit representation [89].
Let’s then assume that the problem can be written in the form of a Boolean
circuit (whether in CNF or not), namely, it can be written as a set of logic gates
whose input is a set of truth values (in a binary representation, a collection of
0s and 1s), and whose output is also a collection of truth values. Now that we
have seen how to construct individual SOLGs, it is straightforward to assem-
ble them to obtain self-organizing logic circuits (SOLCs). The construction of
these SOLCs is indeed quite easy to do. The procedure can be summarized as
follows: (i) Transform a given problem into Boolean format; (ii) Design one
Boolean circuit that represents such a problem. This sets its physical topology
(architecture); (iii) Replace the standard logic gates of this Boolean circuit with
SOLGs; (iv) Apply the Boolean values that represent the input of the problem
to the appropriate terminals of this circuit; (v) Let the circuit self-organize to
the solution; vi Read the solution at the appropriate terminals. An example

3.3. Combinatorial optimization problems with memcomputing 75

Figure 3.4: Sketch of a possible 3-bit sum SOLC such that,
given the bits vo1 and vo2, outputs the consistent bits v1, v2,
and v3. Note that in addition to SO-OR, SO-AND, and SOXOR
gates, the circuit employs VCDCGs (diamonds with arrows in-
side) at each gate terminal, except at the terminals where the
input is supplied. These VCDCGs eliminate, as possible equilib-
rium points, the zero-voltage state of the terminals. Reference

figure in [85].

is provided by a 3-bit ADDER in the Figure 3.4. It is worth stressing once
more that the previous choice of circuitry is just one possible realization. The
important point to remember is that either we choose SOLG’s parameters and
design so that no solution other than the logically consistent one is present, or
if that is difficult to do when one connects different SOLGs together to form a
SOLC, we may connect a VCDCG at each terminal but the ones at which we
send the inputs, as it is shown in Fig. 7.15. This guarantees the absence of any
equilibria other than the logically consistent relations of the gates. However, a
circuit can be understood as a single gate with a given number of input and out-
put terminals. The elements that assemble it are autonomously self-organized
but the property of these circuits is that it exploits long-range correlations to
obtain large-scale order. To understand how the various SOLGs are reorga-
nized within a SOLC, we need to think of the circuit as a many-body system
with variables connected to each other. The memcomputing feature that allows
solving Boolean problems (as well as combinatorial optimization problems) lies
in working in a critical regime where it expresses a large-scale order. A system

76 Chapter 3. Memcomputing

that expresses order is a system whose fundamental units are arranged in an or-
dered fashion (imagine, for instance, the atoms in a solid). ‘Long-range’ means
that such an order extends over the entire spatial (or temporal) dimension of
the system, and even to infinity, if the system is extended to its thermodynamic
limit.
Given a physical system, some of its properties (e.g., the spins of individual ele-
ments of magnetic materials; see the following example) may showcase this type
of order. In memcomputing the correlations between the different degrees of
freedom of the system are long-ranged. For instance, such phenomenon appears
in many natural phenomena; the onset of continuous phase transitions being a
typical (and important) example [90]. Consider, for instance, a ferromagnetic
material in which the spin domains are all aligned in some direction. By vary-
ing some parameter, say increasing the external temperature, the material goes
from one phase of matter (ferromagnet) to another (paramagnet) in which the
spin domains have random orientations (Fig. 4.3). In proximity to the (critical)
point in between the two phases, the correlations of the spin fluctuations decay
as a power law, meaning that different spins can correlate at arbitrary distances
from each other. To quantify what I just wrote we can calculate the (2-point)
correlation function, Gc(r⃗), at a distance r⃗ between spins s (r⃗) (vectors with a
given magnitude and orientation) at different locations, averaged over all possi-
ble spin configurations. Away from the critical point, we expect the correlations
to be local/short-ranged, meaning that they typically decay exponentially

Gc (r⃗) ≡ ⟨∆s(r⃗)∆s(0)⟩ ∼ exp{−|r⃗|/ζ}, |r⃗| → ∞ (3.19)

where the fluctuations ∆s = s − ⟨s⟩ (⟨·⟩ is the average among all the configu-
rations), and ζ is the correlation length, namely the characteristic length over
which the spin fluctuations correlate. At criticality (near the critical point),
instead, we find that the correlation function behaves algebraically as

Gc (r⃗) ≡ ⟨∆s(r⃗)∆s(0)⟩ ∼ 1

|r⃗|α
, |r⃗| → ∞ (3.20)

with α some constant—called the critical exponent of the correlation func-
tion—that depends on the dimensionality, symmetries of the system, and range
of interactions. The correlation length, ζ, instead diverges at criticality. Since
the correlations decay as a power law, by simply scaling the distance r⃗ by some
arbitrary factor λ, the correlation function would only change as Gc(λr⃗) =

λ−αGc(r⃗), namely the system is self-similar at different scales: fluctuations oc-
cur at all length scales. We would the call these correlations scale-free (or

3.3. Combinatorial optimization problems with memcomputing 77

Figure 3.5: Illustrative representation of the long-range cor-
relations in a circuit that realizes the conjunctive normal form
in the Equation 3.18. A machine that supports long-range or-
der/correlations is able to assign logical values to each variable of
a CNF formula, in a correlated way, even though those variables
appear in different clauses. This is because, the different vari-
ables can be mapped into quantities (e.g., voltages) of a physical
system, with each quantity spatially separated from the others
with the machine correlating such quantities. Reference figure in

[85].

scale-invariant). Then one can see that if a dynamical system could be engi-
neered so that its correlations are long-ranged, somehow driving it toward the
critical state of some sort of (continuous) phase transition, its different parts
could correlate strongly at long distances, making it a good candidate to solve
hard problems efficiently.
This is because hard problems typically require the simultaneous (correlated)

assignment of logical values of different variables anywhere in the problem spec-
ification. For instance, a conjunctive normal form (CNF) formula, as in Fig-
ure 3.5, can be viewed as a Boolean physical circuit, with the variables being
physical quantities (e.g., voltages) of an actual physical system. A machine
(a collection of elementary units) with long-range correlations can then assign
logical values to the variables in a correlated way, even if the variables appear
in multiple clauses. Therefore, computation at a continuous phase transition
or, more precisely, computation at criticality seems very appealing. MemCom-
puting machines should be some mechanism of collective dynamics. A similar
idea of computing at criticality was put forward in 1990 by Langton [91], who
argued, using cellular automata as a model of computing machines, that the
optimal conditions for processing and storing of information are achieved in the
proximity of a phase transition, in particular continuous ones that show crit-
ical behavior. The same author has called this behavior computation at the
edge of chaos. A similar conclusion was subsequently reached regarding the
operation of the brain, where one observes scale-free features in the firing of

78 Chapter 3. Memcomputing

neurons at distant locations of the cortex [92]. Collective dynamics then seems
to be a property that MemComputing machines share with the brain. However,
although these ideas are very compelling, even if correct, they do not suggest
how to actually build a machine that could generate such a scale-free behavior
on its own, namely without tuning any external parameters, and take full ad-
vantage of it during computation. The physical realization of a memcomputing
machine suggested in the previous section indicates that this collective dynamic
will necessarily depend on the choice of parameters that control the voltage
of the active elements present in the DCMs internal to the SOLGs. Starting
from the assumption of finding an adequate set of parameters, memcomputing
is thus theoretically capable of solving NP-hard problems in polynomial time.
For example, if we consider the integer factorization problem where it is re-
quired to find two primes p and q such that n = p× q, we know that the circuit
that creates a multiplier between two integers scales as O(N2) where N is the
number of bits related to n. By replacing the circuit with the equivalent SOLC
then it is possible, by fixing n, to obtain the solution p and q in O(N2).

MAX-SAT and combinatorial optimization

If the CNF formula cannot be satisfied by any set of literals, one could still try to
solve a very important optimization problem: one could look for the variables
assignment that maximizes the number of satisfied clauses. This problem is
called a Maximum satisfiability (MAX-SAT) problem. In such a case, the MAX
2-SAT problem is NP-complete. Always taking the CNF in Equation 3.18 as
an example of 3-SAT problem, the corresponding SOLC is shown in Figure 3.6.
However, MAX-SAT aims at finding an assignment of the Boolean variables that
maximizes the number of satisfied clauses (equivalently, minimizes the number
of unsatisfied clauses) in a given logic formula. To define this problem via a
SOLC one must take into consideration that there will be unsatisfied clauses,
therefore, the dynamics do not necessarily reach an equilibrium point. In fact,
in the infinite time limit, it would settle into a (quasi-)periodic orbit. Indeed,
even if the dynamics reached the global optimum, we would not know if that
is really the optimum, or some other ‘sub-optimal’ solution. Let us consider a
percentage of unsatisfied clauses, and call it α. The question could be, how long
does it take the solver to reach the threshold α as a function of problem size?
Then adding an adder in the circuit in 3.6 on the clauses outputs and fixing
the adder output with α. Iteratively, reducing α, the solution of the MAX-SAT
can be obtained. Since MAX-SAT (from 3 and up at least) is an NP-complete

3.3. Combinatorial optimization problems with memcomputing 79

Figure 3.6: Example of a self-organizing circuit for a 3-SAT
representing the CNF in Equation 3.18. The the output of each
3-terminal SO-OR gate is set to 1 (true), and the problem is to
look for an assignment of the variables v1, v2 and v3 that satisfies
each clause. xs and xl are the memory variables. Reference figure

in [85]

problem, then every combinatorial optimization problem (as well as every NP
problem) can be mapped in polynomial time into a MAX-SAT problem [93].

3.3.2 Integer linear programming with memcomputing

Integer Linear Programming (ILP) is a class of combinatorial optimization prob-
lem that can be formalized as follows:

min
x

∑
i

fixi

Aeqx = beq

Aineqx ≤ bineq

(3.21)

where x ∈ Nn, fi ∈ R ∀i ∈ {1, 2, · · · , n}, Aeq ∈ Nmeq×n, Aineq ∈ Nmineq×n,
beq ∈ Nmeq , bineq ∈ Nmineq and meq and mineq are the number of equalities and
inequaliteies constraints respectively.
The memcomputing approach to ILP problems is based on the concept of Self-
Organizing Algebraic Gates (SOAGs).

Self-Organizing Algebraic Gates

The strategy for building SOLGs can be employed also in the design of self-
organizing algebraic gates (SOAGs) [94]. These gates are similar to the SOLGs
in their mode of operation. However, instead of satisfying a Boolean relation,
they satisfy an algebraic relation, e.g., an inequality relation between variables.
SOAGs are terminal-agnostic gates that can use any terminal simultaneously

80 Chapter 3. Memcomputing

as ‘input’ or ‘output’ to satisfy an algebraic relation. In addition to time non-
locality (memory), SOAGs require feedback to operate as desired, hence the
need of active elements. Such gates can be used in tackling, e.g., Integer Linear
Programming (ILP), an optimization problem in which one needs to find a
variable assignment that satisfies also algebraic relations. The interested reader
should consult for the application of SOAGs to ILP in [94].

Solving ILP problems with Memcomputing

Memcomputing deals with ILP problems through specific circuital elements,
dubbed Self-Organizing Algebraic Gates. Using SOAGs, one can assemble a
Self-Organizing Algebraic Circuit (SOAC). The SOAC collectively self-organizes
in order to satisfy the constraints of an ILP problem 3.7. Indeed the linear equal-
ities and inequalities of a given ILP problem can be directly mapped on a SOAC
(see Figure 3.7). Instead, the cost function can be easily reformulated as an ex-
tra linear inequality with an extra bounding parameter. Iteratively, this bound
is reduced forcing the SOAC to self-organize and find a new feasible solution,
each time closer to the global optimum as described for MAX-SAT problem
mapped on SOLC. Currently, no physical implementation of such concept ex-
ists, but Memcomputing Inc. has realized software able to simulate the circuital
dynamic of Memcomputing machines on classical computers. The simulation
software exploits GPUs to increase the overall performance.

3.3. Combinatorial optimization problems with memcomputing 81

Figure 3.7: A Self-Organizing Algebraic Circuit (SOAC) rep-
resents an ILP problem. Each Self-Organizing Algebraic Gate
(SOAG) is a linear condition that has to be satisfied when solv-
ing the ILP. The output of the SOAGs is imposed in order to
obtain feasible solutions. The cost function is mapped into an
additional SOAG whose inequality value is progressively reduced.
The SOAGs at the circuital level are composed by dynamic cor-
rection modules (DCMs); the circuit components of a DCM are

illustrated in the figure below on the right.

83

Chapter 4

Quantum computing for integral
estimation

4.1 Chapter overview

This chapter discusses the application of quantum computing methods, specif-
ically of methods called quantum amplitude estimation, for the estimation of
integrals. The main aim is to evaluate the speedup of these techniques com-
pared to Monte Carlo methods and their applicability on NISQ devices. Hy-
brid methods alternative to the standard definition of the Quantum Amplitude
Estimation (QAE) algorithm were therefore studied and implemented. These
algorithms are more resistant to noise than modern quantum machines. Specif-
ically, a trapped ion quantum computer was used which guarantees better per-
formance in terms of noise. The survey and implementation of different versions
of the QAE algorithm reveal that the maximum likelihood QAE, which does
not make use of phase estimation, emerges as the best candidate to demonstrate
an advantage over classical Monte Carlo methods in the short term. Numerical
integration is a fundamental problem in many areas of science and engineering.
These techniques are in fact widely used in computational chemistry [25], [95].
Traditional numerical integration methods can be computationally expensive
and require significant computational resources. Monte Carlo methods [96] are
exploited for numerical integration problems, as they are flexible and able to
handle high-dimensional problems. However, Monte Carlo methods are limited
in terms of approximation accuracy depending on the number of samples used
in the simulation. Such class of methods is statistical and it suffers from the
difficulty of generating a good sampling by starting from an arbitrary probabil-
ity density function. As a result, Monte Carlo methods can be computationally
expensive for high-precision integration, making them less efficient for certain
applications [97]. Quantum computing[98], [99] provides an alternative path,
more specifically after the introduction of the Quantum Amplitude Estimation

84 Chapter 4. Quantum computing for integral estimation

(QAE) algorithm [100]. QAE is a quantum algorithm that can be used to es-
timate the amplitude of a specific state in a quantum system with quantum
speed-up compared to classical algorithms. This allows QAE to be used for
efficient numerical integration of complex functions. In particular, QAE has
been shown to be able to beat the classical Monte Carlo methods for numerical
integration, especially in high-dimensional integration problems [101]. By using
QAE, it is possible to estimate the integrals with the same precision by ex-
tracting fewer samples, thus significantly reducing the computational resources
required for numerical integration. Moreover, QAE can be used to solve a wide
range of numerical integration problems, including those in finance [102], physics
[103], [104], and machine learning [105]–[108]. It has been shown that QAE can
be applied to estimate option pricing [109] in financial derivatives [110], [111],
to solve differential equations [112], and to perform molecular simulations [113]
and quantum simulation, among others. The QAE algorithm carries a quadratic
speedup with respect to classic Monte Carlo techniques. However, such advan-
tage is constrained by the existence of fault-tolerant quantum hardware [114],
[115] that does not exist today. In currently available noisy intermediate scale
quantum (NISQ) devices [70], the QAE algorithm has not yet shown an ad-
vantage in practical cases [116] due to the insufficient coherence times of the
physical qubits [117] and because the error carried by the gates. Indeed, the
QAE circuit involves 2M applications of controlled quantum queries and a quan-
tum Fourier transform. Therefore, alternative approaches have been proposed
for QAE that involve a lower-depth circuit. Such quantum-classical hybrid al-
gorithms can be divided into two categories, namely the Maximum Likelihood
Amplitude Estimation (MLAE) [118] approach and the Iterative QAE [119] ap-
proach, respectively.
A major difference consists in the fact that, while the MLAE approach allows
to fix the number of quantum queries, in the iterative approach such number
is classically computed at each iteration from the result of the previous one.
Therefore, the way errors propagate during the runs is not trivial. For this rea-
son, it is necessary to evaluate the performance of such methods on noisy devices
to determine which one best realizes its purpose. The performance analysis of
such methods has been then divided in two steps. First, the analysis is carried
out with the use of a quantum computing simulator. Here, the standard QAE
algorithm, the MLAE, the IQAE and the classical Metropolis-Hastings Monte
Carlo (MHMC) algorithm are compared. The scaling on the estimation error,
the execution time and the depth of the circuits are considered, respectively. A

4.2. Quantum speedup over Monte Carlo techniques 85

1D integral is used to exemplify and benchmark, providing a reasonable trade-
off between being representative and carrying an addressable circuit depth. All
simulations are performed on the quantum circuit simulator aer_simulation of
Qiskit library, by involving 3 qubits. The second part of the analysis instead
involves the use of a quantum hardware with the specific aim of determining the
degree of resilience of the methods with respect to the noise of the hardware. For
such analysis, the trapped ion device Harmony of IONQ is used. The trapped
ion qubits are well-known for their superior coherence and fidelity [120]. Such
processors have already shown that they can support quantum circuits with
depth larger than with other technologies [121]. For this reason, it represents
an adequate candidate for benchmarking amplitude estimation solutions. The
MLQAE method appears to be a more short-term alternative to the standard
QAE for estimating integrals. The Iterative method, on the other hand, is
more sensitive to the noise of the quantum processing unit (QPU). Moreover,
the Iterative hybrid approach has a depth of the circuits that implements it
on average higher. Furthermore, it requires deeper circuits than the MLAE
approach in terms of scaling with respect to the estimation error. Instead, the
two approaches exhibit a comparable speed-up.

4.2 Quantum speedup over Monte Carlo tech-

niques

Quantum Amplitude Estimation (QAE) [100] is a fundamental quantum algo-
rithm with the potential to achieve a quadratic speedup for many applications
that are classically solved through Monte Carlo (MC) simulation [104]. QAE is
of particular interest for its exploitation in numerical integration.

4.2.1 Problem statement

Let’s consider the following integral of a function f : Rd → R.

µ =

∫
X

g(x) dx (4.1)

over the integration domain X ∈ Rd and let’s define a probability distribution
p(x) such that p(x) ̸= 0 for x ∈ X than the integral can be rewritten as

µ =

∫
p(x)f(x) dx = Ep[g(x)] (4.2)

86 Chapter 4. Quantum computing for integral estimation

where g(x) ≡ f(x)/p(x) in X and 0 otherwise. Classically, the Monte Carlo
method consists of a set of methods to estimate the integral in the Equation 4.2.
Such methods start from the assumption of sampling M values (x0, . . . , xM−1)

from the p(x) and then estimate I with the average estimator.
The basic core of Monte Carlo methods involves estimating the expected output
value µ of a randomized algorithm Q that generates samples. The natural
algorithm for doing so is to produce k samples, each corresponding to the output
of an independent execution of Q, and then to output the average µ̃ of the
samples as an approximation of µ. Assuming that the variance of the random
variable corresponding to the output of Q is at most σ2, the probability that
the value output by this estimator is far from the truth can be bounded using
Chebyshev’s inequality:

Pr [|µ̃− µ| ≥ ϵ] ≤ σ2

Mϵ2
(4.3)

It is therefore sufficient to take

M ≈ O
(
σ2

ϵ2

)
(4.4)

to estimate µ up to additive error ϵ with, say, 99% success probability. This
simple result is a key component in many more complex randomized approxi-
mation schemes. The estimation error bound of classical MC simulation scales
as O(1/

√
M), where M denotes the number of (classical) samples. Although

this algorithm is fairly efficient, its quadratic dependence on σ/ϵ seems far from
ideal: for example, if σ = 1, to estimate µ up to four decimal places, we would
need to run A over 100 million times [103]. Unfortunately, it can be shown
that without any further information about Q, the sample complexity of this
algorithm is asymptotically optimal [122] with respect to its scaling with σ and
ϵ, although it can be improved by a constant factor [123]. Here is where quan-
tum computing comes to help. The number of uses of Q can be reduced almost
quadratically beyond the classical bound. The result is based on amplitude
estimation.

4.2.2 State preparation

probability distribution loading

The first step is to define a loading strategy allowing to encoding of the p(x).
This is the state preparedness problem that can be traced back to the article

4.2. Quantum speedup over Monte Carlo techniques 87

by Lov Grover and Terry Rudolph [124]. There, the authors discussed how
to efficiently create quantum states proportional to functions satisfying certain
integrability conditions. Let p be a probability distribution. The state to create
is

|ψ⟩ = P |0⟩n =
∑

i∈{0,1}n

√
p(xi) |i⟩ (4.5)

where the value of p(xi) is obtained from discretizing the distribution p.
In a 1-dimensional case, the sample space X is discretized in N = 2n intervals
so that the samples can be identified by i ∈ {0, i, . . . , N − 1} and the corre-
sponding random variable will be identified with the set {x0, x1, x2, . . . , xN−1}
where xi = x0 + i∆ and ∆ is the spacing. To create the state |ψ⟩ we proceed
in K steps from initial state |0⟩ to a state |ψK⟩ = |ψ⟩ that approximates |ψ⟩
with 2K = N discretizing intervals. Encoding the values of a probability den-
sity p(x) into the amplitudes of an n qubit state is generally an operation that
requires a number of gates that grow exponentially with the number of qubits.
Specifically, the number of 2-qubit gates is at most 2n+1 − 2n [125]. In the case
of the Equation 4.5 this number is smaller, given that all amplitudes have zero
relative phases, but it is still exponential in the number of qubits. Furthermore,
Monte Carlo integration is particularly efficient for high dimensional integrals,
therefore it is necessary to use quantum states to encode multivariate distribu-
tions. Any quantum circuit with some n qubits may be interpreted as preparing
a d-dimensional multivariate distribution where each dimension is represented
by ni qubits [101], also called wires hereafter, where i indexes the dimension,
and is such that.

n =
d∑
i=0

ni (4.6)

Furthermore, for each dimension, the binary numbers supported are interpreted
as real numbers starting at some position x

(i)
l ∈ {x(i)0 , x

(i)
1 , . . . , x

(i)
Ni−1} and with

equal spacing
∆(i) ≡

∣∣∣x(i)l − x
(i)
l−1

∣∣∣ (4.7)

The final state will be, correspond to the state in the Equation 4.5 for a d-
dimension sample space,

|ψ⟩ = P |0⟩n1
|0⟩n2

· · · |0⟩nd
= P1 |0⟩n1

⊗ P2 |0⟩ns
⊗ · · · ⊗ Pd |0⟩nd

=

=

N1−1∑
i1=0

N2−1∑
i2=0

· · ·
Nd−1∑
id=0

√
p1

(
x
(1)
i1

)√
p2

(
x
(2)
i2

)
· · ·
√
pd

(
x
(d)
id

)
|i1⟩n1

|i2⟩n2
· · · |id⟩nd

(4.8)

88 Chapter 4. Quantum computing for integral estimation

Weight function loading

Instead of performing measurements from the state |ψ⟩ in the Equation 4.5 to
evaluate the integral, let’s consider encoding f(x) in the qubit register. Let’s
consider an operator Uf such that

Uf |x⟩n |0⟩ = |x⟩n
(√

1− f̃(x) |0⟩+
√
f̃(x) |1⟩

)
(4.9)

where Uf is an operator over n + 1-qubit and f̃(x) is a function obtained by
an affine transformation applied on f(x). Indeed a necessary condition is that
f̃(x) ∈ [0, 1] ∀x ∈ X therefore, f̃(x) = Af(x) + B ∈ [0, 1]. Later the in-
verse affine transform will be performed in classical post-processing to recover
the mean of the actual random variable with this shifting and re-scaling since
E[af(x) + b] = aE[f(x)] + b.
In such a case, the state |x⟩ is another way to write the state |i⟩ where i is the
decimal number correspondent to the bitstring of n qubit and related to x as
follow i = (x− x0)/∆. For simplicity, to study the multidimensional case, con-
sider now the state

∣∣x(d)〉 of the dth dimension and, therefore, only a function
f(x(d)). The transformation defined in the Equation 4.9 can be decomposed
in two steps. In the first step, a circuit denoted R and termed the “quantum
arithmetic circuit” is applied to

∣∣x(d)〉 |0⟩k in such a way

R
∣∣x(d)〉 |0⟩k = ∣∣x(d)〉 ∣∣∣∣arcsin√f̃ (x(d))

〉
k

(4.10)

Where the register of k qubit is used to encode in a bitstring, an approximation
of an arcsine function. Therefore R follows the formalism of a quantum oracle

|x⟩ |y⟩ R−→ |x⟩ |y ⊕ f(x)⟩ (4.11)

In the second step, the register of k qubit is then used to control a bank of Ry

rotation gates performed on an ancilla qubit (as shown in Figure 4.1)

|Ω⟩k RY

(
arcsin

√
f̃ (x(d))

)
|0⟩ = |Ω⟩k

(√
1− f̃(x(d)) |0⟩+

√
f̃(x(d)) |1⟩

)
where |Ω⟩k ≡

∣∣∣∣arcsin√f̃ (x(d))

〉
k

(4.12)

Indeed, Ω is the bitstring that approximates the arcsine of the square root of
f̃(x(d)) which means if the jth qubit of the register of k qubits is |Ωj = 1⟩ then

4.2. Quantum speedup over Monte Carlo techniques 89

Figure 4.1: An illustration of how a probability distribution
loading circuit, P , can be supplemented with a quantum arith-
metic circuit, R, such that an expectation value of interest is

encoded in the amplitude of a qubit.

a rotation of angle ϕj = 2j+1 is applied therefore

RY

(
arcsin

√
f̃ (x(d))

)
=

k−1∏
j=0

RY

(
Ωj2

j+1
)

(4.13)

The problem with this procedure concerns the construction of the circuit that
performs the R transformation which is often very expensive in terms of gate
and circuit depth. The complexity of this approach depends on f but often
will be dominated by the computation of the arcsin , which can be realized
using O(n2) operations where n is the number of qubits that encode x [126].
Moreover, such a strategy requires ancilla qubits to encode the arcsin .
Let’s consider now another strategy to encode f(x) instead of introducing a
quantum register to store |Ω⟩ defined in Equation 4.12. In [116] it is shown how
to implement an operator

UP |i⟩n |0⟩ = |i⟩n
(
cos p(k)(xi) |0⟩+ sin p(k)(xi) |1⟩

)
(4.14)

where p(k) : [0, 1] → R is a polynomial of degree k and sin p(k)(xi) ≈ p(k)(xi) +

O (x3). The corresponding quantum circuits, illustrated in Figure 4.2 for k = 2,
use polynomially many (multi-controlled)RY gates. In particular supposing k ≤
⌈n/2⌉, UP requires O

(
nd
)
CNOT gates. Consider expanding into a polynomial

90 Chapter 4. Quantum computing for integral estimation

Figure 4.2: Circuit preparing a state with amplitudes given by
the polynomial p(x) = a2x2 + a1x+ a0 = (4a2 + 2a1)q1 + (a2 +
a1)q0+4a2q1q0+a0, for x = 0, 1, 2, 3, represented by two qubits.

[127]

of degree k, P (k)(x), not of f̃ like in [127] but of
√
h.√

h(x(d)) ≡ C

√
1 + f̃(x(d)) ≈ Pk(x

(d)) +O((x)k) (4.15)

where h(x(d)) ∈ [0, 1]. In the end, net of the approximations, the final state is
obtained, also considering the loading of the probability density,

|ψ⟩ =
∑
i1,··· ,id

√
pi0,...,id |xi0 · · ·xid⟩

(√
1− h(x

(d)
id
) |0⟩+

√
h(x

(d)
id
) |1⟩

)
(4.16)

To simplify the notation, such a state, and the relative operators to get it can
be written as follows

A |0⟩n |0⟩ =
√
1− a |Ψ0⟩ |0⟩+

√
a |Ψ1⟩ |1⟩ (4.17)

where a ∈ [0, 1] is the probability to measure the ancilla qubit in |1⟩ and it
is unknown [100]; |Ψ0⟩ and |Ψ1⟩ are two normalized states, not necessarily
orthogonal [119].
To relate the unknown value a to the integral in the Equation 4.2 one can define

|Ψ1⟩ =
1√
a

∑
x

√
p(x)h(x) |x⟩n (4.18)

therefore a ∼ Ep[h(x)] = Ep[C2(1 + (Af(x) +B))] = ÃEp[f(x)] + B̃.

4.2.3 Quantum Amplitude Estimation algorithm

The Quantum Amplitude Estimation (QAE) algorithm takes as input a state
as defined in Equation 4.17 prepared to leverage an operator A which must be
designed to use the QAE algorithm. Let’s define an operator Q = AS0A†SΨ0

where S0 = I − 2 |0⟩n+1 ⟨0|n+1 representing reflection with respect to the state
|0⟩ while SΨ0 = I−2 |Ψ0⟩n ⟨Ψ0|n⊗|0⟩ ⟨0| the reflection with respect to the state
|Ψ0⟩n. Design SΨ0 reflection as a quantum circuit could look difficult but if |Ψ0⟩

4.3. Alternative Quantum Amplitude Estimation methods 91

and |Ψ1⟩ are orthogonal then it can be performed only with a Z gate applied on
the ancilla qubit. Applications of Q are denoted as quantum samples or oracle
queries [119].
The canonical QAE follows the form of quantum phase estimation (QPE): (i)
it uses m ancilla qubits, initialized in equal superposition, to represent the
final result, (ii) it defines the number of quantum samples as M = 2m and
(iii) it applies geometrically increasing powers of Q controlled by the ancilla
qubits. Eventually, it performs an inverse quantum Fourier transform (QFT)
on the ancilla qubits before they are measured. The measurement of m ancilla
qubits produces a bit string equivalent to an integer y ∈ {0, . . . ,M − 1} and an
estimation of a can be defined as ã = sin2 θa where θa ≡ yπ/M . The algorithm
produces an estimation ã such that

|a− ã| ≤ δ ≡
2π
√
a(a− 1)

M
+

π2

M2
∼ O

(
1

M

)
(4.19)

with a probability

P[y||a− ã| ≤ δ] = P[y = ⌊Mθa/π⌋] + P[y = ⌈Mθa/π⌉]

=
sin2(M∆)

M2 sin(∆)
+

sin2(π −M∆)

M2 sin(π/M −∆)
≥ 8

π2

(4.20)

where M ≤ 2 while ∆ is the minimal distance on the unit circle between the
angles θa and πy/M . Therefore returning a scaling complexity of O(1/M) for
M applications of quantum samples Q.
The success probability to obtain ã with the discrepancy shown in the Equation
4.19 can quickly be boosted to close to 100% by repeating the QAE circuit
multiple times and by using the median estimate. Since the success probability
of QAE is larger than 8/π2 we would in principle only need, for instance, 24
repetitions to achieve a success probability of 99.75% [116]. However, current
quantum hardware introduces additional errors. In the work [116] the circuit
was repeated 8192 times to get a reliable estimate of a.

4.3 Alternative Quantum Amplitude Estimation

methods

As discussed, today’s hardware limitations prevent one from getting the theoret-
ical speedup. For this reason, various algorithms have been developed involving
both classical and quantum devices in order to reduce the resources required

92 Chapter 4. Quantum computing for integral estimation

for quantum computation without renouncing a speedup against Monte Carlo
methods. The alternative hybrid algorithms can be divided into two categories.
The first category (I), to which we will refer with a Maximum Likelihood Am-
plitude Estimation (MLAE) approach, consists of a Grover-like circuit, and a
maximum likelihood estimation on a classical processor. Such approach has
been discussed by different groups: in Ref. [118] the idea was introduced for
the first time, while two variants have been proposed later [128], [129]. The
second category (II), under the name of iterative approach, consists of an alter-
nating sequence of Grover-like circuits, where the oracle query Q is applied k

times, and a classical algorithm to compute the value k of Q applications for the
next quantum iteration. Such iterative procedure leads to decrease the confi-
dence interval of the estimation ã up to the error ϵ with up to T = ⌈log2(π/8ϵ)⌉
iterations [119]. Such an algorithm in turn takes inspiration from the variant
of the quantum approximation counting described by Aaronson and Rall [130].

MLAE approach

As mentioned earlier, such a quantum-classical hybrid class of algorithms in-
volves both a Grover-like circuit and a Maximum Likelihood Estimation (MLE)
[131] on a classical processor, respectively. In the following, the strategy of the
algorithm is analyzed. Let A be an operator such that

A |0⟩n |0⟩ = cos θa |Ψ0⟩ |0⟩+ sin θa |Ψ1⟩ |1⟩ (4.21)

The aim of the algorithm is to estimate a = sin2 θa. It is possible to replace
QPE with a set of Grover iterations combined with a Maximum Likelihood
Estimation (MLE) [118].
Let’s perform Nk sampling from the circuit

QkA |0⟩n |0⟩ =

= cos ((2k + 1)θa) |Ψ0⟩ |0⟩+ sin ((2k + 1)θa) |Ψ1⟩ |1⟩
(4.22)

From the Eq. 4.22 we are able to model the probability distribution of the
measurements of the ancilla qubit with P[|0⟩] = cos2 ((2k + 1)θa) and P[|1⟩] =
sin2 ((2k + 1)θa).
The likelihood of such model is

Lk(hk, θa) =
[
sin2 ((2k + 1)θa)

]hk [cos2 ((2k + 1)θa)
]Nk−hk (4.23)

4.3. Alternative Quantum Amplitude Estimation methods 93

where hk is the number of measurements that have returned 1 and Nk is the
total number of measurements.
Next, let’s perform the sampling with M + 1 times with k = 0, . . . ,M in order
to compute the total likelihood

L(h, θa) =
M∏
k=0

Lk(hk, θa) (4.24)

Using the maximum likelihood procedure we are able to compute the optimal
θa such that our model approximates the true distribution as closely as possible

θ̂a := argmax
θa

L(h, θa) = argmax
θa

lnL(h, θa) (4.25)

Now a and θa are uniquely related through a = sin2 θa in the range 0 ≤ θa ≤ π/2

so â = sin2 θ̂a, as the function is invertible in such interval. As shown in Ref.
[129] a pure MLAE method as just described above brings less than a quadratic
advantage respect to the classical Monte Carlo. There, it is described an al-
gorithm that exploits the MLAE method, but alternated with the variational
optimization step.

Iterative approach

As in the previously discussed approach, the IQAE replaces the standard QAE
circuit, with the low complexity circuit defined in Equation 4.22. The difference
between the two approaches is that, while in the MLAE method the k times with
which Q is applied ranges from 0 to M , in the iterative approach k is computed
by a classical routine which takes as input a confidence interval [θl, θu] for the
angle θa.
The algorithms described in Refs. [119], [130], [132] belong to the iterative
approach class. In the following, the most representative IQAE is described in
details [119]. The IQAE uses the quantum computer to approximate, withNshots

measure, P[|1⟩] = sin2 ((2k + 1)θa) for the last qubit in QkA |0⟩n |0⟩ for different
powers k. The first step consists to set a confidence interval [θl, θu] ⊆ [0, π/2].
For convenience we set [θl, θu] = [0, π/2].
After that we must define a confidence level 1 − α ∈ (0, 1), a target accuracy
ϵ > 0 and a number of shots Nshots ∈ {1, . . . , Nmax(ϵ, α)} where

Nmax(ϵ, α) =
32

(1− 2 sin (π/14))2
log

(
2

α
log2

(π
4ϵ

))
(4.26)

94 Chapter 4. Quantum computing for integral estimation

From the definition of the inputs (ϵ, α,Nshots) one can calculate the maximum
possible error

Lmax(ϵ, α,Nshots) = arcsin

(
2

Nshots

log

(
2T (ϵ)

α

))1/4

(4.27)

For each iteration i an integer ki must be defined. In Ref. [119] it is defined a
routine called FindNextK which takes the integer ki−1 (k0 = 0) and the interval
[θl, θu] obtained from the previous iteration. In such core routine of the algo-
rithm, the idea is to define an integer ki such that [(4ki+2)θl, (4ki+2)θu]mod2π

is fully contained either in [0, π] or [π, 2π]. That choice follows the aim of esti-
mating, instead of sin2 ((2k + 1)θa), the quantity cos ((4k + 2)θa) which can be
inverted only in [0, π] or [π, 2π].
If FindNextK finds an integer ki which satisfies the constraints, then one per-
forms the N shots (which depends of Nshots) of the circuit QkA |0⟩n |0⟩ to esti-
mate ai = P[|1⟩]. Otherwise the iteration i must be performed with ki = ki−1.
The next step consists to define an interval [amini , amaxi] using different tech-
niques such as the Chernoff-Hoeffding method according to which amaxi =

min(1, ai + ϵai) and amini = max(0, ai − ϵai) where

ϵai =

√
1

2N
log

(
2T

α

)
(4.28)

The new confidence interval [θl, θu] is than calculated from [amini , amaxi] revers-
ing the formula a = cos ((4k + 2)θa). Such algorithm demonstrates a quadratic
speedup with respect to Monte Carlo techniques up to a factor given by Nmax.
The speedup in such case depends by the confidence level which can be arbi-
trarily set.

4.3. Alternative Quantum Amplitude Estimation methods 95

Q
A

E
m

et
ho

ds
lis

t
A

lg
or

it
hm

N
IS

Q
-

re
ad

in
es

s
Q

ub
it

s
D

ep
th

N
sh
o
ts

vs
α

Sp
ee

du
p

ov
er

M
C

R
ef

.
T

yp
e

Q
A

E
Lo

w
n
+
1
+

lo
g
1/
ϵ

d
·

1/
ϵ

+
lo
g
lo
g
1/
ϵ

B
(p

=
0,
81
,k

=
1,
n
=
N
sh
o
ts
)

**

1/
ϵ

[1
00

]
O

Q
A

E
N

O
-

P
E

*
M

ed
iu

m
n
+
1

d
·1
/ϵ

–
ϵ−

4
/
3

[1
18

],
[1

33
]

I

V
ar

Q
A

E
*

H
ig

h
n
+
1

<
d
·1
/ϵ

–
>
ϵ−

4
/
3

[1
29

]
I

P
ow

er
-la

w
A

E
*

H
ig

h
n
+
1

d
·(
1/
ϵ)

1
−
β

–
–

[1
28

]
I

IQ
A

E
M

ed
iu

m
n
+
1

d
·1
/ϵ

N
m
a
x

E
q.

4.
26

N
m
a
x
·1
/ϵ

[1
19

]
II

SQ
A

E
M

ed
iu

m
n
+
1

–
–

–
[1

30
]

II
FA

E
M

ed
iu

m
n
+
1

d
·1
/ϵ

–
(1
/ϵ
)

·
ln
lo
g
(π
/ϵ
)

[1
32

]
II

*
C

la
ss

ic
al

op
ti

m
iz

at
io

n
re

qu
ir

ed
**

B
in

om
ia

ld
is

tr
ib

ut
io

n

T
a
bl

e
4.

1:
C

om
pa

ri
so

n
be

tw
ee

n
Q

A
E

al
go

ri
th

m
s.

H
er

e
n
+

1
is

th
e

nu
m

be
r

of
qu

bi
ts

on
w

hi
ch

th
e

or
ac

le
qu

er
y
Q

is
ap

pl
ie

d,
d

is
th

e
de

pt
h

of
Q

w
hi

le
ϵ

is
th

e
ta

rg
et

ac
cu

ra
cy

an
d
α

th
e

co
nfi

de
nc

e
le

ve
l.

In
th

e
la

st
tw

o
al

go
ri

th
m

s
β
∈
(0
,1
],

k
≤

2
an

d
q
∈
[1
,.
..
,k

−
1]

.
T

yp
es

co
lu

m
n

in
di

ca
te

s
to

w
hi

ch
ap

pr
oa

ch
th

e
al

go
ri

th
m

be
lo

ng
s

to
,b

as
ed

on
th

e
cl

as
si

fic
at

io
n

of
Se

ct
io

n
4.

3:
O

co
rr

es
po

nd
s

to
th

e
or

ig
in

al
Q

A
E

,I
to

th
e

M
LA

E
ap

pr
oa

ch
an

d
II

to
th

e
it

er
at

iv
e

re
sp

ec
ti

ve
ly

96 Chapter 4. Quantum computing for integral estimation

Figure 4.3: Performance of the amplitude estimation algo-
rithms to estimate an 1D integral with n = 3 qubits. All results
of the quantum algorithms were obtained with the local qiskit
simulator aer_simulation and each plot shows the average of
10 executions with different simulator seeds. All simulations of
the IQAE [119] algorithm were performed with a 90% confidence
interval. a) The top-left plot shows how much the error on es-
timating the integral decreases as a function of the number of
samples/oracle queries. The data are fitted with a function x−η

in loglog scale. For the algorithms MLQAE [118], standard QAE,
IQAE, and classical Metropolis-Hastings Monte Carlo (MHMC)
the slopes are respectively of −0.974 ± 0.058, −1.267 ± 0.206,
−0.971±0.092 and −0.485±0.051 (result obtained without con-
sidering the case with 10 samples). MLQAE and IQAE are
performed with 100 shots per quantum circuit while the QAE
was executed standalone. The data show quadratic speedup
for the QAE (orange) and slightly less than quadratic speedup
for the MLQAE and IQAE algorithms (blue and green, respec-
tively) compared to estimation as a classic sampling Monte Carlo
method (red). b) The top-right plot shows the estimation error
as a function of the higher circuit depth (we must consider the
highest one because MLQAE and IQAE required the simulation
of more than one quantum circuit). The two lower plots, c) and
d), show instead the execution time (for the quantum algorithms
it is the execution time of the QisKit local simulator) in function
of the estimation error (left) and the number of samples/oracle

queries (right).

4.4. Comparison of the algorithms by statistical analysis 97

4.4 Comparison of the algorithms by statistical

analysis

4.4.1 Bench-marking the methods of quantum amplitude

estimation

In order to benchmark the effectiveness of algorithms of quantum amplitude
estimation, we consider an integral sufficiently representative despite a relatively
shallow depth of the quantum circuit required for the implementation on a gate-
model quantum computer. More specifically selected function consists of sin2 x.
We therefore consider the following integral

I =
1

∆

∫ ∆

0

sin2 x dx (4.29)

which is approximated by the following summation of 2n samples

D =
2n−1∑
x=0

1

2n
sin2

(
(x+ 1/2)∆

2n

)
n→∞−−−→ I. (4.30)

encoded by a qubit register q of n qubits.
The integral D can be interpreted as the expectation value of the function

f(x) = sin2

(
(x+ 1/2)∆

2n

)
(4.31)

with an uniform probability distribution p(x) = 1/2n.
The corresponding quantum circuits P to encode p(x) on the n+1 qubit register
(consisting in q plus an ancilla qubit) and R to encode f(x) are

P |0⟩n |0⟩ =
1√
2n

∑
x

|x⟩n |0⟩ (4.32)

R|x⟩n |0⟩ = |x⟩n
(
sin

(
(x+ 1/2)∆

2n

)
|1⟩+ cos

(
(x+ 1/2)∆

2n

)
|0⟩
)
(4.33)

respectively [118]. P can be realized with Hadamard gates, and R with
controlled-Y rotation gates. The methods described in the previous Section
aim to reduce the number of qubits and the length of the circuits while main-
taining an advantage over the classic Monte Carlo method.
In the Table 4.1 the QAE variants are classified on the basis of the relative
NISQ readiness. The number of the qubits and the circuits depth are two pa-
rameters to evaluate the NISQ readiness. Standard QAE algorithm results at

98 Chapter 4. Quantum computing for integral estimation

low NISQ readiness. However, the algorithm scaling does not depend only on
the circuits depth but also on the number of shots Nshots and potentially on
the number of calls to the QPU. Another parameter to consider is the confi-
dence level α, i.e. the probability of obtaining a result within the desired target
error ϵ. In the original QAE the lowest α is 81%, but it can be increased by
performing more parallel circuit runs, which means a higher Nshots. Other al-
gorithms, like the IQAE, allow one to arbitrarily choose the confidence level
therefore there is a correlation between the computational cost and α. All the
algorithms described above succeed in estimating an integral with an error that
scales as O(x−η) where x is the number of samples, η is positive and it has been
experimentally evaluated, as follows.

4.5 Experimental test on a trapped-ion quantum

computer

4.5.1 Trapped-ion quantum computer used for the exper-

imental test

Trapped ion technology is a promising approach for realizing quantum comput-
ing due to its long coherence times and the ability to establish full connectivity
between qubits. Among the various trapped ion platforms, IonQ has developed
a scalable architecture for building quantum processors with sufficient fidelity
and low error rates for the purposes of this study. The technology relies on
trapping individual ytterbium ions in a linear array and using laser pulses to
manipulate their quantum states. The ions are cooled and trapped in a high
vacuum chamber to minimize decoherence. The qubits are encoded in the hy-
perfine states of the electron and nuclear spins of the ion, which have long
coherence times and are immune to certain types of noise. IonQ has made their
11 qubit device called Harmony available on the AWS Braket platform [134].
Harmony has an average single-qubit gate fidelity of 99.35%, two-qubit gate of
96.02% and state preparation and measurement of 99.3% - 99.8%. The coher-
ence times, instead, are of the order of seconds: T1 > 107µs and T2 = 2 · 105µs
The device also features reconfigurable connectivity, allowing for flexible qubit
connectivity for various quantum algorithms. Such properties makes it one of
the highest-performing quantum processors currently available to the public at
the time of this study.

4.6. Discussion 99

4.5.2 Assessing the performances on a trapped ion device

The Maximum Likelihood Quantum Amplitude Estimation and the Iterative
Quantum Amplitude Estimation are algorithms specially designed for noisy
quantum computers. Although it is possible to use a simulator for a first eval-
uation of the performance of these algorithms, as shown in Figure 4.3, some
characteristics of these algorithms can make the solutions more or less effective
when in the presence of noise. Both being hybrid solutions, the noise present in
quantum devices affects the final result in a non-trivial way. Figure 4.4 shows
some estimates of integrals performed with such two hybrid techniques. The
performance in the presence of noise is specially executed on several cases. It
consists of an integral function F (x) at different values of x, as the value of the
integral to be estimated affects the noise resilience of these techniques.
Such benchmarking was performed on a 11 trapped ion qubits device (IONQ-
Harmony). The results were obtained by using 2 qubits (it is therefore a large
discretization of the integral since n = 1) and without exploiting any error
suppression or error mitigation technique. The number of qubits is necessarily
reduced because in the case n = 1 whatever the number of oracle calls, the
length of the circuit remains unchanged. With two qubits it is always possible
to compile a circuit into one with a fixed depth. For this reason, such bench-
marking scheme is not influenced by the length of the circuits (that are equal
for each run) but only by how resilient the hybrid strategy exploited by the two
algorithms is to the noise. For a good bench-marking it is necessary to chose
the algorithms parameters in order to prevent overload of the device. For such
reason the confidence level set for the IQAE should be less than 90%. Other-
wise, it achieves an estimation of ã ∼ 0.5 almost always independently by ∆.
However, since the focus is to evaluate effective alternative solutions to QAE,
a level of confidence not lower than that of the standard QAE (81%) has been
chosen. It was necessary also to increase the number of circuits shots as, even
if the confident level parameter was fixed to 85% in our case, the noise in the
hardware reduces the effective confidence level. If, by using a simulator with
a confidence level set to 90%, Nshots = 100 was a good choice, for the runs on
the trapped ion device Nshots = 512. Also for the MLQAE runs, the effective
confidence level is affected by the hardware noise therefore Nshots = 512.

4.6 Discussion

Let’s first consider the results from the simulator. The aim is both to evalu-
ate the scaling of the algorithms, i.e. how the estimation error decreases with

100 Chapter 4. Quantum computing for integral estimation

Figure 4.4: Performances of MLQAE and IQAE on the 11-
qubits IONQ-Harmony device. a) Estimation of the integral
function of Eq. 4.29 at different values of ∆ respectively set at
π/3, π/4, π/5, and π/6. The blue dots represent the estima-
tions obtained using IQAE while the green stars the MLQAE.
The IQAE runs were performed at confidence level of 85% and
Nshots = 512. The size of the dots increases as the target error
ϵ decreases. In the same way, the size of the stars increases as
the M increases in the MLQAE runs. Also for the MLQAE runs
each circuit was repeated 512 times. Each dot and star repre-
sents the average of 5 different runs. If in the upper plot the fit
of the results on the target function, the lower plot shows the
estimation errors reached by the two algorithms in different set-
tings. b) The two plot in this panel shows how the estimation
changes as the settings of the algorithms change for the four val-
ues of ∆. The right plot for the MLQAE and the left one for
IQAE. For the MLQAE the settings correspond to the number of
samples represented in the x-axis. For the IQAE case the results
have an uncertainty on the number of samples and the different
settings are represented by the dot size. c) The scaling of the
estimation error with respect to the number of samples of both
the algorithms. Each dot is the average of all the runs (5 runs
for 4 values of ∆ for a total of 20 runs). For the IQAE case, only

the standard deviation of the estimation errors is shown.

4.6. Discussion 101

the number of samples, and to evaluate how the length of the circuits scales.
From the latter, it is possible to forecast when the two methods will start to
provide a benefit over the Monte Carlo method. The simulations are performed
by aer_simulation of the Qiskit library. From the fit on the data in Figure 4.3
we estimate the theoretically predicted trends within 1.3σ. For the standard
QAE algorithm (theoretical η = 1), we estimate η = 1.267 ± 0.206 while for
the IQAE and MLAE algorithms we estimate a value compatible with η = 1

and thus with the QAE algorithm (a trend with η < 1 or at least slightly less
performing than the standard QAE is expected). However, to evaluate the per-
formance, one should consider, at the same time, the average circuit depth since
it impacts the viability on modern quantum devices in the NISQ era.
IQAE and MLAE are classical-quantum hybrid algorithms that are therefore
compositions of runs of multiple circuits interspersed with classical routines.
The Figure 4.3 shows the maximum depths reached by the circuits to perform
an estimation of the integral. We note how the two hybrid algorithms IQAE
and MLAE - as expected - have a shallower depth than the standard QAE,
but in particular the IQAE algorithm needs very long circuits to perform an
estimation of the same quality as MLAE. As shown in Figure 4.3, the IQAE
approach requires circuits that are also twice as long for an estimate with an
error of 10−4. Indeed, even though the number of samples is similar between
the two algorithms at the same error ϵ, because of the structure of IQAE, inter-
actions with multiple oracle calls (which are counted as samples) concatenated
in the same circuit can happen. Such property is also reflected in the execution
time of the algorithms by quantum simulator. It turns out that the MLQAE
algorithm is the fastest at the same error of integral estimation ϵ. Such conclu-
sion is general for any number of qubits. The iterative method, as well as the
MLQAE, performs on the quantum processor the estimate of the probability
P[|1⟩] on the ancilla qubit which will depend on the unknown value of the inte-
gral and not on the number of qubits dedicated to encoding the integral. The
two lower plots in Figure 4.3 allow us to extrapolate the execution times on
the simulator of quantum solutions examined in this work. Generating a sam-
ple with the Monte Carlo method takes 4 orders of magnitude less time than
MLQAE. Around the interval [10−13, 10−11] we could find an advantage in terms
of computational time of the MLQAE algorithm. Approximately 1024 classical
samples are required to achieve precision in such range. Such values are lower
if we consider a physical implementation of a quantum computer. If we assume
execution of the quantum gates 100 times faster than its simulated counterpart,

102 Chapter 4. Quantum computing for integral estimation

then the advantage can be obtained around the interval [10−9, 10−8] with a num-
ber of classical samples required around 10−17. In the case of gate execution
1000 times faster than the laptop simulation then this advantage could be in
the range [10−7, 10−6] where it would take about 1011 classical samples. Further
analysis of the resources required by QAE algorithms is reported in Ref.[104],
based on a practical example of a multidimensional integral. To achieve a pre-
cision of the order of 10−3, 1000 qubits are estimated to be used, combined with
long coherence times and high fidelity gates.
We now turn the attention to the experimental results obtained from runs on
a noisy quantum computer, in our case of a 1-dimensional integral. For this
analysis we specifically chose one of the devices with the highest coherence time
and the highest connectivity among those currently available. Both algorithms
that should provide a NISQ-friendly alternative to the standard QAE, however
turn out to have a workflow that is very susceptible to noise. In fact, all the runs
were performed with the same length of the circuits, since at n = 1 such circuits
have a very limited depth (∼ 10). Therefore, the limits of the algorithms are
not only linked to the length of the circuits but also to how they propagate the
error. The IQAE depends on an iterative process where the number of oracle
calls chained in a circuit of an iteration depends on the result of the estimation
in the previous iteration. This iterative process is therefore very sensitive to
noise as errors propagate from one iteration to another. Indeed, even at 2 qubits
it is not possible to find a decreasing trend of the error on the estimates of the
integers with the number of quantum samples. At more than two qubits, the
circuits begin to grow noticeably with a trend represented in Figure 4.3. With
the length of the circuits depending on the results of the previous iteration we
can easily understand how even with few qubits this process leads to random
results (a random result corresponds to an estimate of ã ∼ 0.5 which corre-
sponds to a complete overlap of the ancilla qubit being measured). However, as
from Figure 4.4, already using 2 qubits (therefore n = 1) it is already possible
to achieve a precision of 10−3. Especially with the MLQAE method we obtain
a decreasing trend which leads to average estimates with an error lower than
10−3 exceeding 103 samples. In general, the MLQAE method exceeds the per-
formance of the IQAE in the presence of noise, confirming the considerations
that are followed by the aer_simulation runs.

4.7. Conclusions 103

4.7 Conclusions

Using a simulator, we assess the scalability of various integral estimation meth-
ods, quantum and classical, with respect to their performance improvements
concerning estimation error reduction, sample size, computational time, and
quantum circuit length. The execution on a NISQ device shows how such meth-
ods behave when the noise is involved. Among the Quantum Amplitude Es-
timation (QAE) variants, the maximum likelihood QAE, which eschews phase
estimation, emerges, compared to the iterative method, as the prime contender
for an advantage over classical Monte Carlo methods. Such assertion finds re-
inforcement in the observed trade-off between quantum circuit length and the
accuracy of integral estimation, especially in the presence of noise.

105

Chapter 5

Quantum computing for
ground-state search

5.1 Quantum computing for ground state esti-

mation problem

5.1.1 Quantum phase estimation algorithm

In quantum mechanics, the ground state is the state of the minimum energy
accessible by the system. The problem of finding the ground state of a quantum
system corresponds to computing the minimum eigenvalue of the associated
Hamiltonian operator and the relative eigenstate. Considering an Hilbert space
n-dimensional Hn and a system Hamiltonian H, each quantum state can be
written as

|ψ⟩ =
∑
n

cn |ϕn⟩ where Ĥ |ϕn⟩ = Ek |ϕn⟩ (5.1)

Analytically it is possible to retrieve the spectrum of H by applying the Fourier
transformation of the expectation value of exp

{
−iĤt

}
.

∫
⟨ψ|e−iĤt|ψ⟩ eiωtdt =

∫
⟨ψ| e−iĤt

∑
n

|ϕn⟩⟨ϕn| |ψ⟩ eiωtdt =

=
∑
n

∫
⟨ψ| e−iĤt |ϕn⟩ cneiωtdt =

∑
n

|cn|2
∫
e−iEnteiωtdt =

=
∑
n

|cn|2δ (En − ω)

(5.2)

The final distribution has a support equal to the Hamiltonian spectra with
values equal to the probability of finding |ψ⟩ in |ϕn⟩. The quantum algorithm
called Quantum Phase Estimation (QPE) is able to approximate the eigenvalues
of a unitary operator following a strategy similar to the calculations in Equation
5.2. Such an algorithm can be used to find the ground state of a quantum

106 Chapter 5. Quantum computing for ground-state search

system. The elements to take into consideration to design the algorithm are
three

• Implement a quantum circuit that realizes the unitary U = exp{−iH},
which is unitary since H is hermitian.

• Prepare a state |u⟩ ≈ |ϕ0⟩ (in the description of the algorithm it is assumed
to have an oracle capable of preparing a state that approximates |ϕ0⟩)

• Define a register containing t qubits initially set to the state |0⟩. The
value of t is determined by two factors: the desired level of accuracy
for estimating E0 and the desired probability of success for the phase
estimation procedure.

The state |u⟩ has to be stored on a second register of n qubit while the register of
t qubit is necessary to store the state

∣∣φ̃(t)
〉
= |φ1 . . . φt⟩ where φ ≈ 0.φ1 . . . φt.

It is necessary to specify that, by notation, the eigenvalue of H corresponds to
2πφTrH. The normalization term TrH =

∑
iEi allow to have φ ∈ [0, 1]. The

QPE algorithm is therefore implemented as a circuit that performs the following
transformation

QPE |0⟩⊗t |u⟩ =
∑
i

ci

∣∣∣φ̃(t)
i

〉
|ϕi⟩ (5.3)

Finally measuring the first register we obtain a collection of results that fit
the distribution in Equation 5.2. If |u⟩ ≈ |ϕ0⟩ then ci ∼ 0 ∀i ̸= 0 and the
QPE circuit returns

∣∣∣φ̃(t)
0

〉
|ϕ0⟩. Considering the simple case of |u⟩ = |ϕ0⟩, the

generalization is easy to obtain, the phase estimation is summarized in two
stages. First, a circuit shown in Figure 5.2 is applied. The circuit begins by
applying a Hadamard transform to the first register, followed by the application
of controlled-U operations on the second register, with U raised to successive
powers of two. The final state of the first register is easily seen to be:

1√
2t

2t−1∑
k=0

|k⟩ |u⟩ →
t−1⊗
j=0

(
|0⟩+ e2πi2

jφ |1⟩
)
|u⟩ = 1√

2t

2k−1∑
k=0

e2πiφk |k⟩ |u⟩ (5.4)

The second stage of phase estimation is to apply the inverse quantum Fourier
transform on the first register which can be done in O(t2) steps.

1√
2t

2k−1∑
k=0

e2πiφk |k⟩ |u⟩ QFT †
−−−→ |φ̃⟩ |u⟩ (5.5)

The third and final stage of phase estimation is to read out the state of the first
register by doing a measurement in the computational basis. The final output

5.1. Quantum computing for ground state estimation problem 107

allows to reach an n bit precision of the phase φ given by

n = t−
⌈
log2

(
2 +

1

2α

)⌉
(5.6)

where 1 − α is the success probability. If, for example, one wants to obtain
a precision equal to chemical precision of 1.6 × 10−3Ha with a probability of
0.5 then n = ⌈log2 (1.6× 10−3)⌉ and α = 0.5, therefore, t = 11 qubit are
necessary. The computational cost, instead, scales as O(2t) (the number of the
controlled-U applications) or, in other words, O(1/ϵ) where ϵ is the estimation
error (indeed ϵ ∼ 2−n ∼ 2−t).

5.1.2 Variational quantum eigensolver

Today, the quantum computing technology is in its infancy. Quantum comput-
ers at this stage of development are called Noisy-Intermediate Scale Quantum
(NISQ) devices [70], [135]. There are several indications that these NISQ de-
vices may outperform conventional computers in the near future [136], [137].
Algorithms running on these restricted devices may require only a small num-
ber of qubits, show some degree of noise resilience, and are often cast as hybrid
algorithms, where some steps are performed on a quantum device and some on a
conventional computer. These algorithms, which are often called NISQ-friendly
have characteristics such as a moderate number of operations, or quantum gates,
and good scaling of qubits with respect to the size of the problem. For such
reasons, well-known quantum algorithms such as Shor’s algorithm for factoring
prime numbers, or Grover’s algorithm for unstructured search problems, are
not suitable. As said before, the best-performing quantum approach to find-
ing eigenvalues is the quantum phase estimation (QPE) algorithm. The QPE
algorithm offers an exponential speedup over classical methods and requires a
number of quantum operations O(1/ϵ) to obtain an estimate with precision ϵ.
QPE is not suitable for NISQ devices but there exists alternatives to solve the
eigenvalue problem which requires a gate number polynomial with the number
of qubits.
The Variational Quantum Eigensolver (VQE) was originally developed by Pe-
ruzzo et al. [138], and its theoretical framework was extended and formalized
by McClean et al. [139]. The VQE is among the most promising examples of
NISQ algorithms. In its most general description, it aims to compute an up-
per bound for the ground-state energy of a Hamiltonian. It is grounded in the
variational principle (and more precisely in the Rayliegh-Ritz functional [140]),
which optimizes an upper bound for the lowest possible expectation value of

108 Chapter 5. Quantum computing for ground-state search

an observable with respect to a trial wavefunction. Let us consider a quantum
system S composed of n qubits and a Hamiltonian H of a different system Q

associated with a d-dimensional Hilbert space where d ≤ 2n. The interest is
to calculate the eigenvalues and eigenstates of H, denoted by Ei and |ϕi⟩ us-
ing S. As mentioned, the VQE method is based on the variational principle of
Rayliegh-Ritz, thus considering the expectation value of H

〈
Ĥ
〉
=

⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

(5.7)

where is assumed a normalized wave function, ⟨ψ|ψ⟩ = 1, however, attention
should be paid to normalization in the case of leakage errors from the computa-
tional basis [139]. From the Rayliegh-Ritz principle, considering the eigenvalue
ordered as E0 ≤ E1 ≤ · · · ≤ Ed, since

⟨ψ|Ĥ|ψ⟩ ≥ E0 (5.8)

it is worth that
min
|ψ⟩

⟨ψ|Ĥ|ψ⟩ = ⟨ψ0|Ĥ|ψ0⟩ = E0 (5.9)

the expectation value forms an upper bound for the ground-state energy. To
be solved with the help of a quantum computer, the optimization problem in
Equation 5.9 must be mapped onto the system S defined previously on n qubits.
The class of hermitian operators must be restricted to the class of operators
whose expectation value can be measured efficiently on S. A sufficient condition
for this property is that operators have a decomposition into a polynomial sum
of simple operators. Observables suitable for direct measurement on a quantum
device are tensor products of spin operators (Pauli operators). Therefore H
must be rewritten as

Ĥ =
∑
iα

hiασ̂
i
α +

∑
ijαβ

hijαβσ̂
i
ασ̂

j
β +

∑
ijkαβγ

hijkαβγσ̂
i
ασ̂

j
βσ̂

k
γ + . . . (5.10)

where the coefficients {hiα, h
ij
αβ, h

ijk
αβγ, . . . } are real and the Greek indices identify

the Pauli operator while Roman indices identify the qubit on which the operator
acts, By exploiting the linearity of quantum observables, it follows that〈

Ĥ
〉
=
∑
iα

hiα
〈
σ̂iα
〉
+
∑
ijαβ

hijαβ
〈
σ̂iασ̂

j
β

〉
+
∑
ijkαβγ

hijkαβγ
〈
σ̂iασ̂

j
βσ̂

k
γ

〉
+ . . . (5.11)

5.1. Quantum computing for ground state estimation problem 109

otherwise the decomposition into Pauli matrices of a Hermitian operator written
in Equation 5.10 can be simplified as

Ĥ =
P∑
a

haP̂a Pa ∈ {Î , X̂, Ŷ , Ẑ}n (5.12)

where the number of Pauli strings P grows polynomially with the number of
qubits. In such a way it is possible to compute in polynomial time

〈
Ĥ
〉

by
measurements from the state S. Estimating an expectation value through direct
sampling it therefore involves a cost equal to

O
(
P
ϵ2

)
(5.13)

where ϵ is the estimation error of the eigenvalue. In order to translate this
minimization task in Equation 5.9 into a problem that can be executed on a
quantum computer, one must start by defining a so-called ansatz wavefunction
that can be implemented on a quantum device as a series of quantum gates.
Such a goal can be achieved using parametrized unitary operations. Therefore
|ψ⟩ must be obtained as the application of a parametrized unitary U(θ) to an
n-qubits initial state

|ψ(θ)⟩ = U(θ) |0⟩⊗n (5.14)

where θ ≡ (θ0, θ1, . . . , θm) denotes an m-tuple of real values parameters. The
key aspects of the ansatz are its expressibility and trainability. The expressibil-
ity defines the ability of the ansatz to span a large class of states in the Hilbert
space. That means if such operator ansatz is chosen such that ∀ |ψ⟩ ∈ H⊗n, ∃θ
such that |ψ(θ)⟩ = |ψ⟩ than the VQE problem is therefore writable as

E0 = min
θ

⟨ψ(θ)|Ĥ|ψ(θ)⟩ = min
θ

P∑
a

ha ⟨ψ(θ)|P̂a|ψ(θ)⟩ (5.15)

More narrowly the expressibility of the ansatz can be evaluated with the ability
to produce the ground state |ϕ0⟩ [141], therefore, there must exist parameters
θ such that

∣∣ψ(θ)〉 = |ϕ0⟩. Typically, assuming n qubits, the transformations
U(θ) used for VQE are of the type

U(θ) = U0(θ0)UentU1(θ1)Uent · · ·Up−1(θp−1)UentUp(θp) (5.16)

110 Chapter 5. Quantum computing for ground-state search

where Ul(θl), l = 0, 1, . . . , p, corresponds to a single layer of transformations,
typically composed by single qubit parameter gates, and Uent is called entangle-
ment map and it makes the n qubits entangled. Instead, the ansatz trainability
describes the practical ability of the ansatz to be optimized using techniques
tractable on quantum devices.
The parameters of the ansatz used need to be updated iteratively until conver-
gence. In general, this requires sampling the expectation value of the Hamil-
tonian several times for a given parameter set in the ansatz in order to define
an update rule for the parameters (i.e. the updated value of the parameters
is a function of the expectation value measured). The choice of optimization
is critical for at least three main reasons: (i) it directly impacts the number
of measurements required to complete an optimization step, as e.g. computing
the numerical gradient of a quantum circuit can require value estimation of
the Hamiltonian with respect to several slightly modified wave functions (this
is also generally true for gradient-free methods) [142]; (ii) certain optimizers
have been designed to alleviate specific optimization issues, such as the barren
plateau problem [143]; (iii) it directly impacts the number of iterations required
to reach convergence (if it allows for convergence to be reached at all) [144]. The
total cost of the VQE algorithm is, therefore, the cost expressed in Equation
5.13 for the expectation value estimation, plus the empirical cost of the classical
parameter optimization.

5.2 Combinatorial optimization as ground state

search problem

Trainability is therefore the crucial issue regarding the performance of the VQE.
To understand if this solution can provide a speed-up compared to other clas-
sical solutions to solve an eigenvalue problem. In the following sections, the
ability of VQE to solve optimization problems will therefore be explored. Con-
sider a combinatorial optimization problem. Every problem of this type can be
expressed as a binary optimization problem

min
{b}n

C({b}n)

s.t. fi({b}n) = 0

gi({b}n) ≤ 0

(5.17)

5.2. Combinatorial optimization as ground state search problem 111

in general, a binary function like C({b}n) can be expanded as

C({b}n) = c0 +
∑
i

cibi +
∑
ij

cijbibj +
∑
ijk

cijkbibjbk + . . . (5.18)

The optimization problem can be converted back into an unconstrained problem
by adding slack variables si for inequalities, to transform them into equalities,
and penalty terms, with appropriate weights, for the equalities. Therefore it
can be written as

min
{b}n

C̃({b}n) = min
{b}n

(
C({b}n) +

∑
i

λi(fi({b}n))2 +
∑
i

δi(gi({b}n) + b̄i)
2

)
(5.19)

and C̃({b}n) can also be expanded to a polynomial in binary variables as in
Equation 5.18. Such a kind of optimization problem is said Higher-order Un-
constrained Binary Optimization problem or HUBO problem. Evaluating the
performance of the VQE on these problems allows you to focus only on train-
ability. Mapping a problem of this type into the VQE formalism consists of
designing a Hamiltonian which is essentially classical. This means that, given
an n-qubit state |ψ⟩

⟨ψ|Ĥ|ψ⟩ =
∑

b0,··· ,bn−1

∣∣cb0,··· ,bn−1

∣∣2C̃(b0, · · · , bn−1)

|ψ⟩ =
∑

b0,··· ,bn−1

cb0,··· ,bn−1 |b0, · · · , bn−1⟩
(5.20)

This condition corresponds to having a diagonal Hamiltonian in the computa-
tional basis and the eigenvalues of Ĥ represent all the possible values of C̃({b}n).
Therefore, ⟨b0, · · · , bn−1|Ĥ|b0, · · · , bn−1⟩ = C̃(b0, · · · , bn−1). The problem is
therefore reduced to finding the state of the computational basis correspond-
ing to the bitstring that realizes the minimum value of C̃. The solution of
the binary optimization problem is not a superposition of computational basis
states and, therefore, it is not necessary to estimate

〈
Ĥ
〉

to find the ground
state eigenvalue of H but just sample the ground state bitstring. The goal is,
therefore, to prepare a quantum state of n-qubits, and measure the qubits in
the observable σ̂z. Indeed a diagonal Hamiltonian can be decomposed into a

112 Chapter 5. Quantum computing for ground-state search

combination of σz Pauli matrices.

Ĥ =
∑

b∈{0,1}n
C̃(b0, · · · , bn−1) |b0, · · · , bn−1⟩⟨b0, · · · , bn−1| =

=
∑

b∈{0,1}n
C̃(b0, · · · , bn−1)

n−1⊗
i=0

(
σ̂(i)
z + (−1)bi Î(i)

)
=

= h0 +
∑
i

hiσ̂
(i)
z +

∑
ij

hijσ̂
(i)
z σ̂

(j)
z +

∑
ijk

hijkσ̂
(i)
z σ̂

(j)
z σ̂(k)

z + . . .

(5.21)

Such final results have the same form as the polynomial expansions of a binary
function in Equation 5.18. The correspondence between the efficient {c} in
Equation 5.18 and {h} in Equation 5.21 is obtained considering that〈

b0, · · · , bn−1|σ̂(i1)
z σ̂(i2)

z · · · σ̂(ik≤n)
z |b0, · · · , bn−1

〉
= zi1zis · · · zik≤n

(5.22)

where zij = 1 − 2bij is called Ising variable, indeed z ∈ {−1, 1} that are the
eigenvalues of σ̂z for |b⟩ ∈ {|1⟩ , |0⟩}. Finding the ground state of a Hamiltonian
with a VQE method is suitable only if Ĥ can be decomposed in a polynomial
number of terms with respect to the number of qubits. If this condition is re-
spected then it is possible to address this problem with the VQE and evaluate
its scaling as a solver of combinatorial problems. Quantum computers, in such a
case, are used as a sampler with respect to a parametric probability distribution
that can be prepared with a polynomial number of operations. The routine per-
formed by a quantum computer consists of sampling qubit state measurements
where the qubit state |ψθ⟩ = U(θ) |0⟩ is prepared by a quantum parametric
circuit ansatz U of parameters θ. Samples are obtained by preparing the qubit
state |ψθ⟩ and measuring the qubits K times so as to obtain a set of samples
X = {xk}Kk=1, where xk are bitstrings.
The classical routine has to improve the probability of sampling the minimum
energy bitstring. In fact, even considering an ansatz capable of creating a super-
position of all the states of the computational basis, U = Had⊗n, it is possible
to sample the ground state but with a possibility that decreases exponentially
with the number of qubits, and therefore binary variables of the problem. The
trainability of the VQE therefore corresponds to the ability to design an ansatz
and choose an optimization technique that together are able to amplify the
probability amplitude of |ψ(θ)⟩ corresponding to the ground state. The pro-
cedure to amplify the amplitude relative to the ground state remains that of

5.2. Combinatorial optimization as ground state search problem 113

estimating the expectation value of H via samples xk

⟨ψ(θ)|Ĥ|ψ(θ)⟩ ≈ 1

K

K∑
k=1

Hk (5.23)

where Hk = ⟨xk|H|xk⟩, which is the energy corresponded to the sample xk. Pa-
rameters optimization is performed on classical processors and this is done in
general using gradient-based methods. For such reason, it is useful to define the
unitary U(θ) (i.e. the transformation that is applied on the qubits of the quan-
tum processor) in order to calculate analytically the gradient of our estimate of〈
Ĥ
〉

as it is defined in Equation 5.23. The step of expectation value estimation
and parameter updates are then repeated until convergence is reached.

5.2.1 Quantum approximate optimization algorithm

One type of quantum state that can be explored as a parametric ansatz is
that produced by adiabatic state preparation with a variable path. In adiabatic
quantum computation [145] and adiabatic state preparation [146] one makes use
of the adiabatic theorem, described in Chapter 2, which states loosely that if
one prepares the lowest eigenstate of an initial Hamiltonian ĤB, by continuously
changing the Hamiltonian from ĤM to a final problem Hamiltonian ĤC , one fin-
ishes in the lowest eigenstate of ĤC if the evolution is slow enough. In adiabatic
computation, slow enough is quantified relative to the minimum eigenvalue gap
between the ground and first excited states along the evolution. While many
developments have occurred in the area of adiabatic quantum computation and
modifications to the Hamiltonian, perhaps the most commonly considered form
of evolution is defined by

Ĥ(s) = A(s)ĤM +B(s)Ĥc (5.24)

where s ∈ [0, 1], A(0) = B(1) = 1 and A(1) = B(0) = 0. The evolution is
controlled by continuously changing the parameter s as a function of time t.
Let us now consider how this idea can be translated into the formalism of the
VQE algorithm. Consider the set of all paths of A(s) and B(s) from 0 to 1 as a
function of time t ∈ [0, τ] and denote it F (τ), where τ is some finite time. Label
one such path as f ∈ F (τ). In a noiseless coherent situation (quantum closed
system), the unitarity of evolution dictates that the final state of the evolution
is uniquely determined by the path f . In this situation, the final pure state
can be written as a higher-order function of the path f , or |ψ [f]⟩. Thus any

114 Chapter 5. Quantum computing for ground-state search

expectation values of the final state may be written as functionals of the path,〈
Ĥ
〉
[f], and by the variational principle

〈
ĤC

〉
[f] = ⟨ψ [f]|ĤC |ψ [f]⟩ ≥ E0 (5.25)

such that the optimal path is the path in F (τ) that minimizes the value of
⟨H⟩ [f]. This functional minimization may be changed into a standard mini-
mization by parameterizing the path f by a set of parameters θ and performing
an optimization on the parameters θ that determine the path. As such, adiabatic
state preparation may be considered as an ansatz to be used in the variational
quantum eigensolver to find the ground state of a Hamiltonian ĤC , where the
state parameters are the shape or nature of the path [147]. In a quantum digi-
tal computer, where the VQE algorithms can be run, such an eigenvalue solver
based on the adiabatic theorem is called Quantum Approximate Optimization
Algorithm or QAOA [148], [149]. QAOA can be seen as a form of VQE with a
specific choice of the variational form that is derived from the problem Hamil-
tonian ĤC . QAOA applies an approximation of an adiabatic evolution, i.e. a
quantum dynamic evolution respects the time-dependent Hamiltonian operator.
Let be ĤC and ĤM , also called problem Hamiltonian and mixer Hamiltonian,
as 2n qubit observables, the first step in the QAOA algorithm is to prepare
the qubit register in the ground state of ĤM . A typical choice for the mixer
Hamiltonian is the following

ĤM =
n−1∑
i=0

σ(i)
x , σx =

(
0 1

1 0

)
(5.26)

and the ground state is

|ψM⟩ = Had⊗n |0⟩n = |+⟩n (5.27)

The next step is to perform a simulation of the time evolution with respect to
the time-depended Hamiltonian

Ĥ(t) = A(t)ĤM +B(t)ĤC (5.28)

For a time-depended Hamiltonian H(t), the time evolution operator is general-
ized as

U(t0, t) = T exp

{
− i

ℏ

∫ t

t0

Ĥ(t′)dt′
}

(5.29)

5.2. Combinatorial optimization as ground state search problem 115

Such a kind of unitary evolution can be simulated on a quantum circuit dis-
cretizing it in p1 time step with size ∆t

∫ t

t0

Ĥ(t′)dt′ ≈
p1−1∑
l=0

H(l∆t)∆t (5.30)

Since, in general,
[
Ĥ(l∆t), Ĥ((l + 1)∆t)

]
̸= 0, then the time-evolution operator

is applied on the qubits by the Trotter approximation

exp

{
−i

p1−1∑
l=0

Ĥ(l∆t)∆t

}
= lim

p2→∞

[
p1−1∏
l=0

exp

{
−iĤ(l∆t)

∆t

p2

}]p2
(5.31)

where is assumed ℏ = 1.
However, from the Equation 5.28, Ĥ(l∆t) = A(l∆t)ĤM +B(l∆t)ĤC where, in
general

[
ĤM , ĤC

]
̸= 0. Still using the Trotter-Suzuki formula

exp

{
−iĤ(l∆t)

∆t

p2

}
= lim

p3→∞

[
exp

{
−iA(l∆t)∆t

p2p3
ĤM

}
exp

{
−iB(l∆t)∆t

p3p2
ĤC

}]p3
(5.32)

Unificando le Equaizoni 5.30, 5.31 and 5.32 it is possible to approximize U(t0, t)
as

lim
p→∞

p−1∏
i=0

(
e−iβiĤM e−iγiĤC

)
(5.33)

where β,γ ∈ Rp are vectors of parameters. The variational form of QAOA
is constructed with a layer of Hadamard gates, followed by two alternating
unitaries

UC = e−iγĤC , UM = e−iβĤM (5.34)

For a given depth p ∈ N the variational form is thus defined as

U(β,γ) =

[
p∏
i=1

UB(βi)UC(γi)

]
Had⊗n (5.35)

This yields the trial wave function

|ψ(β,γ)⟩ = U(β,γ) |0⟩⊗n (5.36)

One can easily design a quantum circuit that re-eliminates the operator U(β,γ)
if the conditions on the Hamiltonians HM and HC are taken into account. To
implement UM and UC as operators acting on a qubit register, the Hamiltonians
ĤM and ĤC must be decomposed in a sum of composed Pauli matrices. The

116 Chapter 5. Quantum computing for ground-state search

two Hamiltonians can be chosen so as not to incur further trotterization. The
initial choice of the mixer Hamiltonian, shown in Equation 5.26, guarantees a
direct implementation on a register of n qubits

UM |+⟩⊗n =
n−1⊗
i=0

RX(β) |+⟩i (5.37)

Regarding ĤC , the QAOA algorithm is mainly used to solve combinatorial
optimization problems where ĤC is diagonal and is therefore a sum of terms
in Pauli matrices Z that commute between each other. The unitary matrix
UC is therefore diagonal itself and it adds only relative phases, in fact in this
case it is also called phase operator, in contrast with the mixer operator UM
which has terms out of the diagonal and which therefore mixes elements of the
computational base. If we want to understand the QAOA as a special case of
the VQE, the role of UC is exactly that of an entanglement map. It should be
clarified how to implement a unitary how in a quantum circuit

exp
{
iγσ̂i1z σ̂

i2
z · · · σ̂ikz

}
(5.38)

using only single and two-qubit gates. The following circuit shows this compi-
lation for a 3-qubit

e−iγZ⊗Z⊗Z
• •

= • •
e−iγZ

in general, it requires 2(k − 1) CNOT gates.

5.2.2 CVaR Optimization

VQE and QAOA minimize the expectation of the problem Hamiltonian for a
parameterized trial quantum state. The expectation is estimated as the sample
mean of a set of measurement outcomes, while the parameters of the trial state
are optimized classically.
Instead of aggregating the samples to estimate the expectation value of the
Hamiltonian, good results have been obtained by exploiting the Conditional
Value-at-Risk as an aggregation function [150]. Formally, the CVaR of a random
variable X for a confidence level α ∈ (0, 1] is defined as

CVaRα(X) = E[X|X ≤ F−1
X (α)] (5.39)

5.3. Optimize a water crystal lattice with quantum computing algorithms 117

where FX denotes the cumulative density function of X. In other words, CVaR
is the expected value of the lower α-tail of the distribution of X.
Without loss of generality, assume that the samples Hk = H(xk) are sorted in
non decreasing order, i.e. Hk+1 ≤ Hk. Then, the CVaRα is defined as

1

⌈Kα⌉

⌈Kα⌉∑
k=1

Hk (5.40)

and it is a generalization of both the sample mean (α = 1) and the best observed
sample (α → 0). It is clear that this can be applied to both VQE and QAOA,
simply by replacing the sample mean in Equation 5.23 with CVaRα in the
classical optimization algorithm. The CVaR could give a reasonable benefit.
Suppose |ϕ0⟩ ë is the ground state, and |ϕ1⟩, |ϕ2⟩ and |ϕ3⟩ are first, second and
third excited state. Define |ψA⟩ = (|ϕ0⟩+|ϕ3⟩)/

√
2 and |ψB⟩ = (|ϕ1⟩+|ϕ2⟩)/

√
2.

Suppose the energy level are equally separated, then ⟨ψA|H|ψA⟩ = ⟨ψB|H|ψB⟩,
therefore the optimizer will encounter a gradient plateau. However for our
purpose, we would like to obtain the ground state, therefore |ψA⟩ is better than
|ψB⟩ in practice. The CVaR could help with this problem by emphasizing the
distribution |ψA⟩. The CVaR emphasizes the best-observed samples and leads
to a smooth objective function without introducing local minimum [150]. Also,
the implementation of CVaR is relatively straightforward. Since CVaR throws
away some of the samples, the accuracy of the estimation decreases. In order to
get the same accuracy, the sampling number needs to be increased. The same
amount of samples should be involved in the calculation.

5.3 Optimize a water crystal lattice with quan-

tum computing algorithms

The problem of achieving the minimum energy of a chemical system can be re-
formulated as a combinatorial optimization problem. Over the years, however,
molecular dynamics has proven to be a more effective tool for studying molecular
systems because of the computational cost involved in combinatorial computa-
tion. With quantum computers, people have begun to think that studying a
molecular system combinatorially may be more advantageous instead. To date,
quantum devices are not yet able to handle long calculations due to high noise
but there are algorithms such as the Variational Quantum Eigensolver (VQE)
and the Quantum Approximate Optimization Algorithm (QAOA) that allow to
address combinatorial optimization problems through the joint use of classical

118 Chapter 5. Quantum computing for ground-state search

and quantum processors. In this paper we will use variations of these two quan-
tum optimization algorithms to compute the ground state of a lattice of water
molecules interacting with each other through the formation and destruction of
hydrogen bonds. The system is then completed with the addition of an ion that
interacts with the electric dipoles of the water molecules.

After introducing the quantum methods that will be tested, in this section
the molecular system used as a benchmarking problem will be presented. The
point is to map the system’s Hamiltonian into an n qubit Hamiltonian. The final
system that will be used to test variational quantum methods is the result of a
series of complications of a basic starting system described in [151]. In summary,
the system in [151] is composed of water molecules arranged as lattice particles
consisting of a single oxygen atom at the center of a site and two hydrogen atoms
on each side. The internal state of the system, such as the dipole moment at
a site, is defined with respect to the location of the hydrogen atoms at the
site depending on their role in hydrogen bonds (H bonds) being a donor or
an acceptor. To achieve the minimum energy of these systems via the VQE
and QAOA algorithms we have rewritten the water lattice Hamiltonian into
an Ising Hamiltonian since from an Ising system it is easy to write a diagonal
Hamiltonian operator with respect to the computational basis of the qubits of
the device.

5.3.1 2D square lattice

Let’s define a system of N = NrNc water molecules arranged on a 2D square
lattice, with Nr rows and Nc columns, and having a lattice constant a. For
simplicity, we consider a = 1.
Each lattice site has an Oxygen atom at the center and two Hydrogen atoms.
We assume the Hydrogen atoms occupy the consecutive sites only at each lattice
points so that we have a non-zero dipole moment for each water molecule. Thus
at each site (i, j) there is one Hydrogen along the row and one along the column
denoted by superscripts x and y respectively. Each water molecule acts like a
dipole given by the vector

µ⃗i,j =
µ0√
2

(
σxi,j, σ

y
i,j

)
(5.41)

5.3. Optimize a water crystal lattice with quantum computing algorithms 119

where µ0 is the permanent dipole moment of water. The Hydrogen occupancy
is defined in terms of the Ising-like states

σx,yi,j =

+1 hydrogen atom left or top of oxygen atom at site (i, j),

−1 hydrogen atom right or bottom of oxygen atom at site (i, j)

(5.42)
Each water molecule interacts only with its nearest neighbor as shown in Fig-
ure 5.1. Since we consider finite number of water molecules we use the periodic
boundary conditions to mimic bulk water.
The interactions are repulsive R if the two nearest sites are occupied by Hydro-
gen atoms and attractive (Hydrogen bond) ϵH if one of the two nearest sites are
unoccupied. The Hydrogen bond attractions are about 3 to 4 times stronger
than the repulsions between the Hydrogen sites. The dimensionless Hamiltonian
H can be written as follows

βH =
ϵH
2

N−1∑
(i,j)

(σxi+1,jσ
x
i,j + 1) +

R

2

N−1∑
(i,j)

(σxi+1,jσ
x
i,j − 1)

+
ϵH
2

N−1∑
(i,j)

(σyi,j+1σ
y
i,j + 1) +

R

2

N−1∑
(i,j)

(σyi,j+1σ
y
i,j − 1)

= J/2
N−1∑
(i,j)

(σxi+1,jσ
x
i,j + σyi,j+1σ

y
i,j) +N(ϵH −R)

(5.43)

where J = ϵH+R is the strength of the interactions. We choose a smaller value
for the Hydrogen bond strength ϵH as and −2kBT and repulsions R as 0.5kBT
respectively.

Ion interaction

We introduce an ion to the system. At each water site we get an additional
energy contribution given by a dipole-ion interaction

−µ⃗i,j · E⃗i,j = − Γ

(r(i, j)−R0)2
σi,j (5.44)

where r(i, j) is the position of the ion at the water site (i, j) and R0 is the
position of the ion. The ion-dipole interactions are long-ranged r−2, hence we
need to sum over the periodic images of the ion. The dimensionless Hamiltonian

120 Chapter 5. Quantum computing for ground-state search

Figure 5.1: Illustration of 8 water molecules arranged in a
3×3 square lattice with a positive ion in the center. The oxygen
atom is positioned at the center of each site of the lattice while
the hydrogen atoms (in blue) occupy two out of four positions
(the other two unpaired positions are in white) for a total of 4

configurations identified by the vector of the electric dipole.

of the system is

βH =
ϵH
2

N−1∑
(i,j)

(σxi+1,jσ
x
i,j + 1) +

R

2

N−1∑
(i,j)

(σxi+1,jσ
x
i,j − 1)+

+
ϵH
2

N−1∑
(i,j)

(σyi,j+1σ
y
i,j + 1) +

R

2

N−1∑
(i,j)

(σyi,j+1σ
y
i,j − 1)+

−
N−1∑
(i,j)

Γ

(|i− iI |2 + |j − jI |2)3/2
(|i− iI |σxi,j + |j − jI |σyi,j) =

=J/2
N−1∑
(i,j)

(σxi+1,jσ
x
i,j + σyi,j+1σ

y
i,j)− Γ

N−1∑
(i,j)

(gx(i, j)σ
x
i,j + gy(i, j)σ

y
i,j)+

+(N − 1)(ϵH −R)

(5.45)

where gx(i, j) = |i− iI |/(|i− iI |2+ |j− jI |2)3/2 and gy(i, j) = |j− jI |/(|i− iI |2+
|j − jI |2)3/2 are the strength of the interactions.

5.3. Optimize a water crystal lattice with quantum computing algorithms 121

5.3.2 Hexagonal lattice

Water molecules can be rearranged into a 2-D hexagonal lattice. A hexagonal
lattice is a composition of two triangular lattices A and B. To represent the
dipole of the water molecules we must define two sets of 2-D coordinates for
both the lattices A and B as in it is shown in Figure 5.3 .
Unlike the case of a square lattice where, for each water molecule, the dipole µ is
expressed simply in the basis σ⃗1 = (1, 0) and σ⃗2 = (0, 1), in a hexagonal lattice
is better to define µ in two different sets of basis, one for the lattice A and one
for B. The hydrogen atoms in the square lattice are positioned in 4 directions

Figure 5.2: Illustration of the two different settings of the two
lattices representing the hexagonal one. For each molecule, the
Cartesian coordinates x and y are defined with axes originating
at the lattice site (oxygen atom). The lattice of type A has the
unit vector of the direction 3, i.e. σ⃗3 along the x axis while for
the lattice B it is opposite to x. Two bases {σ⃗1, σ⃗2} are then

defined to construct the electric dipole vector.

which are defined by the vectors σ⃗1, σ⃗2 and by their opposites −σ⃗1, −σ⃗2. In
the case of the hexagonal lattice, however, the hydrogen atoms are positioned
in directions that are not orthogonal to each other. These three directions are
identified by the set of vectors {σ⃗1, σ⃗2, σ⃗3} associated with each molecule. For
molecules in the A lattice, a new choice is the following

σ⃗1 =

(
− cos (π/3)

− sin (π/3)

)
, σ⃗2 =

(
− cos (π/3)

sin (π/3)

)
, σ⃗3 =

(
1

0

)
= − (σ⃗1 + σ⃗2) (5.46)

For the molecules in B the triad of vectors is obtained by mirroring the vectors
of the set A along the first and the second coordinate.

σ⃗1 =

(
cos (π/3)

sin (π/3)

)
, σ⃗2 =

(
cos (π/3)

− sin (π/3)

)
, σ⃗3 =

(
−1

0

)
= − (σ⃗1 + σ⃗2) (5.47)

122 Chapter 5. Quantum computing for ground-state search

The Figure illustrates sets of vectors {⃗σ1, σ⃗2, σ⃗3} for one molecule in the lattice
A and for one in B. From this set of vectors, it is possible to define the direction
of the electric dipole of all the molecules of the hexagonal lattice as a function
of binary variables.

µ⃗n/µn = a (σ1,nσ⃗1 + σ2,nσ⃗2 + σ3,nσ⃗3) (5.48)

where a is a normalization factor. From Equation 5.46 and Equation 5.47, the
electric dipole can be written for all molecules as

µ⃗n/µn = −1

2
((2σ1,n + σ2,n + 1) σ⃗1 + (2σ2,n + σ1,n + 1) σ⃗2) (5.49)

where σ1,n, σ2,n ∈ {−1, 1} and a = −1/2. The presence of a hydrogen atom
along the direction σ⃗1 corresponds to σ1 = 1 while a hydrogen along σ⃗2 corre-
sponds to σ2 =1. Given that the available directions are 3 then it is not possible
to have at least one hydrogen atom along one of the two directions σ⃗1, σ⃗2. So
the three possible configurations of the two binary variables are (−1, 1), (−1, 1)

and (1, 1). The configuration (1, 1) corresponds to having a electric moment
aligned with σ⃗3 but in the opposite direction. Now that the configurations of

Figure 5.3: Example of a hexagonal lattice with 33 water
molecules, left side, and configurations of molecules in a hexagon,
right side. Each molecule in the A lattice, in red, has as prime
neighbors only molecules in the B lattice, in green. Each edge
is labeled with a number (1, 2, or 3) based on which direction
the two molecules are aligned. Each molecule, having 3 possible
orientations, can have a configuration which, in binary variables,
can be encoded with 01, 02, and 11. This is a type of dense en-
coding, as opposed to "one-hot" encoding which would require

3 variables.

5.3. Optimize a water crystal lattice with quantum computing algorithms 123

the molecules in the lattice have been mapped into binary variables, it is possi-
ble to introduce the terms of the Hamiltonian concerning the hydrogen bonds
and the repulsions between the adjacent molecules in the lattice. Given two ad-
jacent molecules with index n and m, the interaction hα(n,m) can be of three
types and are indicated with the index α ∈ {1, 2, 3} which represents which
binary variable is involved.

βhα(n,m) = −ϵH
2

(σα,nσα,m − 1) +
R

2
(σα,nσα,m + 1) (5.50)

where σ1,n ∈ {−1, 1}, σ2,n ∈ {−1, 1} and

σ3,n ≡ − (σ1,n + σ2,n + 1) ∈ {−1, 1} (5.51)

The Figure 5.3 shows an example of hexagonal lattice where each coupling is
labeled by α ∈ {1, 2, 3} and compared with the Figure 5.3 it can be understood
that the term h1(n,m) indicates whether or not a hydrogen bond is present
between the molecules n and m which are aligned along the direction σ⃗1 and
so also for h2(n,m) and h3(n,m). To write the complete Hamiltonian for a
lattice of a generic number of molecules, it is necessary to define, for each
molecule, a term for each first neighbor (with a maximum of 3 first neighbors).
For notational compactness, it is useful to define an adhesion matrix A with
elements

Anm =

α if n andm are neighborhood aligned along the direction α,

0 otherwise
(5.52)

Therefore the total Hamiltonian is

βHHB =
3∑

α=1

N∑
n,m=0

δα,An,m

(
R− ϵH

2
σα,nσα,m +

R + ϵH
2

)
(5.53)

Each molecule of the lattice A is involved in three Hamiltonian terms of all
the three kinds of interactions defined in Equation 5.50 and otherwise for the
molecules in B, the molecules n and m cannot belong to the same lattice and
this is a necessary condition to have δα,An,m ̸= 0.

124 Chapter 5. Quantum computing for ground-state search

Figure 5.4: Illustration representing the mathematical ele-
ments involved in the calculation of an interaction between water
molecules arranged in a hexagonal lattice and an ion at a generic
point of a 2-dimensional station. In addition to the Cartesian co-
ordinates assigned to each molecule to define the electric dipole,
global coordinates are introduced to calculate the distance be-

tween the ion and the lattice sites.

Ion interaction

Let’s introduce the interaction with an ion as defined in Equation 5.44. The
ion-dipole interaction is given by the following formula

hI,n = −k |q|r⃗n · µ⃗n
r3

(5.54)

where Γ is a factor equal to the charge of the ion multiplied by a constant that
can be considered equal to 1. To compute the distance r, with the associated
radius vector r⃗n, between a molecule n and the ion, it is necessary to associate a
vector of Cartesian coordinates (xn, yn) to each site of the lattice. Considering
how the electric dipole of a single molecule was defined in Equation 5.49, the
resulting term is the following

βHI =
N∑
n=1

hI(n)

hI(n) =
Γ

2

1

r3

(
(2σ1,n + σ2,n + 1) r⃗n · σ⃗1 + (2σ2,n + σ1,n + 1) r⃗n · σ⃗2

) (5.55)

Figure 5.4 illustrates an example with a negative ion interacting with a molecule
in the A lattice and one in the B lattice.

5.3.3 Hamiltonian operator mapping

At this point the lattice Hamiltonian should be rewritten as a qubit Hamilto-
nian. The Hamiltonian already has a form reminiscent of the Ising form and it

5.3. Optimize a water crystal lattice with quantum computing algorithms 125

is therefore straightforward to map it. Since each water molecule has 4 different
configurations for a square lattice and 3 for the hexagonal one, two qubits must
be defined for each molecule, one for the σ⃗1 direction and one for σ⃗2.
For simplicity, in the square lattice the direction x will be indicated with the in-
dex 1 while y with 2 to standardize the notation with the case of the hexagonal
lattice. For both the square and hexagonal lattices we need to define a qubit
register to configure the first coordinate of each electric dipole in the lattice and
a register for the second coordinate. For the square lattice the mapping is even
simpler since you only need to define σ1

i ≡ ⟨s|σ̂i,1z |s⟩, as well as for the direction
2, where |s⟩ ∈ {|0⟩ , |1⟩}⊗2N is an element of the computational base, i is the
index, or a couple of indices, of a single water molecule, and

σ̂i,1z = I
(0)
1 ⊗· · ·⊗ I

(i−1)
1 ⊗ σ̂

(i)
z,1⊗ I

(i+1)
1 ⊗· · ·⊗ I

(N−1)
1 ⊗ I

(0)
2 ⊗· · ·⊗ I

(N−1)
2 (5.56)

is a 2N qubit operator which apply on the first qubit, of the i-th molecule, the
Pauli matrix

σ̂z =

(
1 0

0 −1

)
(5.57)

For the hexagonal lattice, the first register of N qubit encodes the σ1 direction,
the second the σ2 direction. The following definitions therefore apply

σα,i =
〈
s|σ̂α,iz |s

〉
(5.58)

ehere it is useful to specify the operator σ̂3,i
z for a given i, this operator re-

stricted in the space of 2 qubits defining a given molecule follows the definition
in Equation 5.51

σ̂3
z = − (σz ⊗ I + I ⊗ σz + I ⊗ I) (5.59)

In the case of the square lattice, the Hamiltonian does not contain terms of type
σ̂i,1z σ̂

i,2
z and therefore the states of the 2N qubit registers live in two separate

Hilbert spaces of N qubit. The square lattice is therefore more easily addressed
by a quantum computer since it is possible to separate the calculation between
the 1 and 2 coordinates by reducing the number of qubits required.
In the case of the hexagonal lattice, there are terms with σ3, therefore, since

σ̂3
z σ̂

3
z =

(
σ̂1
z + σ̂2

z + 1
) (
σ̂1
z + σ̂2

z + 1
)
= 2

(
σ̂z ⊗ σ̂z + σ̂z ⊗ I + I ⊗ σ̂z +

3

2
I ⊗ I

)
(5.60)

it is necessary to explore the states where the two registers are entangled.
One peculiarity of the hexagonal lattice is that the water molecules have three

126 Chapter 5. Quantum computing for ground-state search

different configurations, so it was necessary to use two qubits per molecule. Two
qubits correspond to 4 states so one state does not have a physical correspondent
in the water lattice. So we had to add terms to the Hamiltonian to penalize one
of the 4 states to two qubits. Since, as we have defined the hexagonal lattice,
the water molecule can not have an electric dipole (σ1

n, σ
2
n) = (1, 1) then the

state of the two corresponding qubits should not be in |00⟩. Such a constraint
corresponds to the inequalities

σ1,n + σ2,n − 1 ≤ 0 ∀n (5.61)

In the Hamiltonian, a penalty term has to be added in order to penalize non-
physical states. A natural choice is

βĤP = A

N∑
i=1

(σ̂i,1z + σ̂i,2z − 1) (5.62)

However, this choice promotes the different physical states in a non-congruent
way, therefore a better choice is the following

βĤP = A
N∑
i=1

(σ̂i,1z + 1)(σ̂i,2z + 1) (5.63)

because such a term is null for every physical state. For the reasons explained
above, the hexagonal lattice turns out to be a more suitable benchmark for
studying quantum variational algorithms given its complications. In the hexag-
onal case the Hamiltonian operator turns out to be overall

βĤ = β
(
ĤHB + ĤI + ĤP

)
=

=
3∑

α=1

N∑
i=0

N∑
j=0

δα,An,m

(
R− ϵH

2
σ̂α,iz σ̂α,jz +

R + ϵH
2

)
+

+
Γ

2

N∑
i=0

1

r3i

((
2σ̂1,i

z + σ̂2,i
z + 1

)
r⃗i · σ⃗1 +

(
2σ̂2,i

z + σ̂1,i
z + 1

)
r⃗i · σ⃗2

)
+

+ A
N∑
i=1

(σ̂i,1z + 1)(σ̂i,2z + 1)

(5.64)

5.3. Optimize a water crystal lattice with quantum computing algorithms 127

Which turns out to be equivalent to a Hamiltonian of an Ising model with zero
transverse field on 2N spin

βĤ =
2N∑
i≥j

Jijσ̂izσ̂jz +
2N∑
i

biσ̂
i
z (5.65)

The system as defined corresponds to an Ising model with very sparse connec-
tivity, this means that the matrix J has null values for the most part. The
Hamiltonian terms in ĤHB contribute to the couplings. In particular, defining
Cα the number of couplings of type α in the lattice, then, In Ĥm C1 Ising cou-
plings come from lattice coupling of the type 1, C2 for the type 2 and 4C3 for 3.
The C3 type 3 couplings contribute also with 4 bias terms. The Ion Interactions,
instead, contribute only with 2N bias terms while the penalty terms contribute
with N couplings and 2N bias terms.
Since each molecule has 3 couplings, one for each type, then approximately
Cα ≈ N/2 ∀α. therefore, the total number of Pauli terms in Ĥ is the following

#1-qubit Pauli Terms = 4C3 + 2N + 2N

#2-qubit Pauli Terms = C1 + C2 + 4C3 +N

⇒ #Pauli Terms = C1 + C2 + 8C3 + 5N ≈ 10N

(5.66)

So the number of terms grows linearly with the number of molecules in the
lattice. It is therefore a very sparse problem since the total number of terms
for a fully connected Ising model at 2N spins is N(2N + 1).

Introduction of long-range interactions

A problem as sparse as the one defined above can be easily solved by classi-
cal solvers such as GUROBI and also by heuristic solvers such as simulated
annealing. For this reason, it is necessary to introduce long-range interactions
between the molecules in the lattice. Let’s define the dipole-dipole interaction
between all the molecules in the lattice. The dipole-dipole interaction between
two molecules with electric dipole µ⃗i ans µ⃗j is defined as follows

EDD(i, j) = k
2µ⃗i · µ⃗j
r3ij

(5.67)

128 Chapter 5. Quantum computing for ground-state search

The Hamiltonian corresponding to this interaction is obtained simply from the
definition in Equation 5.49.

βHDD = Ω
∑
i,j

[Aij = 0]

(
2∑

α1=1

2∑
α2=1

Σα1,iΣα2,jσ⃗α1,i · σ⃗α2,j

)
Σ1,i ≡ 2σ1,i + σ2,i + 1

Σ2,i ≡ 2σ2,i + σ1,i + 1

(5.68)

where [·] is called Iverson bracket which returns 1 if the condition in the bracket
is true and 0 otherwise, indeed such a term involves only molecules that are
not first neighbors and for which a hydrogen bond is not established. With the
addition of these interactions, the corresponding Ising model thus becomes fully
connected, and therefore the number of Pauli terms of the operator Ĥ scales as
O(N2).

5.4 Results

In this section, the scaling assessments are presented regarding the different clas-
sical and quantum solvers in solving the problem of finding the ground state
of the Hamiltonian as defined in Equation 5.64. As anticipated, the Hamilto-
nian that maps the system of N water molecules into a 2-dimensional lattice is
equivalent to an Ising model, with zero transverse field, on 2N binary variables
and therefore 2N qubits. In general, it is a spin-glass model

H =
2N∑
i≥j

Jijzizj +
2N∑
i

bizi (5.69)

where the dimensional term β is neglected. The variables z ∈ {−1, 1} are
often called Ising variables. Finding the ground state is therefore an opti-
mization problem where we want to find the string of binary variables z =

(z0, z1, . . . , z2N−1) that achieves the minimum energy

z = argmin
z

2N∑
i≥j

Jijzizj +
2N∑
i

bizi (5.70)

An Ising variable problem like the one just defined can be reconverted into a
binary variables problem xi ∈ {0, 1} via the transformation zi = 1 − 2xi. The
resulting problem is a problem called quadratic unconstrained binary optimiza-
tion problem or QUBO problem which can be written between the definition of

5.4. Results 129

the quadratic form Q

x = argmin
x

xTQx (5.71)

the matrix Q is a 2N × 2N symmetric matrix and, in the case of a hexagonal
water lattice with long-range dipole-dipole interaction, has not zero elements in
general, and the problem is said fully connected. It should be emphasized that,
although the solution of the two problems, Ising and QUBO, correspond via the
formula zi = 1− 2xi, the ground state energy differs by a constant offset term.

5.4.1 Benchmark strategy

Having defined the problem, it is necessary to define the window of instances
of the problem to be solved on which to evaluate the performance of the vari-
ous optimization solvers. The results that will be presented below will concern

Figure 5.5: Illustration of the lattices chosen to test the opti-
mization solvers. The figure shows the N = 6 cases where the
lattices are composed of hexagons. For the other values of N be-
tween N = 6 and N22, the lattices have "unpaired" molecules,
i.e. which do not belong to hexagons. By increasing N , molecules
are added following the hexagonal topology starting from the lat-
tice of 6 molecules which is a single hexagon. For example, the
case with N = 7 corresponds to a lattice of 7 molecules with
a hexagon and a molecule linked to one of the vertices of the

hexagon.

17 different hexagonal lattices from N = 6 to N = 22 molecules. The case
N = 6 corresponds to a single hexagon, the molecules will be added gradually

130 Chapter 5. Quantum computing for ground-state search

Constant Value (kT)
ϵH -2
R 0.5
Γ 1.25
Ω 1
A 10

Table 5.1: Values of the constants with which the systems on
which the optimization solvers were tested are defined.

to form other hexagons as shown in Figure 5.5. In all the systems considered,
the parameters ϵH , R, Γ, Ω and the penalty constant A are setted as shown
in the Table 5.1. To calculate the solution of the QUBO problems associated
with the different lattices, GUROBI was used as the reference solver [152].
With Gurobi it is possible to demonstrate the optimality of the solution to
the optimization problem. GUROBI is a powerful optimization software suite
widely acclaimed for its remarkable capabilities in tackling complex combinato-
rial problems. Within the suite, one prominent solver for addressing Quadratic
Unconstrained Binary Optimization (QUBO) problems is the GUORBI solver.
This specialized solver is a testament to the advanced techniques and algorithms
harnessed by GUROBI, particularly the branch and bound method, for address-
ing QUBO problems with utmost efficiency and precision. The GUORBI solver
employs a branch and bound approach, a fundamental algorithmic technique
in mathematical optimization, to systematically explore the solution space of
QUBO problems. By decomposing the problem into smaller subproblems and
progressively narrowing down the search space, it efficiently identifies optimal
solutions or guarantees optimality. This intelligent solver leverages a combina-
tion of linear programming relaxations, heuristics, and cutting-plane methods,
adapting to the specific problem structure and complexities. In Figure 5.6 the
results using GUROBI are shown. Such a test is useful to verify that the prob-
lem is hard for classical solvers. The QUBO problem solved by GUROBI is a
version without the penalty terms. However, constraints have been added

x1i + x2i ≥ 1 (5.72)

where x1i, x2i ∈ {0, 1} are the two binary variables defining the i-th molecule.
Therefore the problem passed to the GUROBI solver precisely from the category
of Binary Quadratic Programs (BQPs). The results show that GUORBI takes,
clearly, an exponential time to find the solution in the range of N = 6, . . . , 22

molecules. With GUROBI, when the dimensions of the problem are still small,

5.4. Results 131

6 8 10 12 14 16 18 20 22
Water molecules

10 1

100

101

102

Ti
m

e(
s)

GUROBI

Figure 5.6: Average GUROBI runtime to solve the QUBO
problems related to lattices of 6 to 22 molecules.

it is always possible to obtain the solution in relatively short times as in the
case in Figure 5.6. For other solvers, as in the case of VQE and QAOA, which
are heuristic, it is necessary to take into account the trials, or seeds, which have
not led to the solution within a certain time limit. Particular metrics must
therefore be defined to evaluate the performance of heuristic software. In the
context of this and other works present in this document, an innovative metric
called Mean First Solution Time (MFST) was defined.

Mean First Solution Time (MFST)

It is customary, when running algorithms, to define a maximal execution time,
after which the computation is stopped and a new parameter (e.g. seed) is used
to run the computation. This requires proper metrics to evaluate the overall
expected execution time. In particular, the estimation should include the time
spent in failures and not just the average time of successes. The estimated
execution time then correlates with the allocated computing time and hence
with the monetary budget for the computation. We therefore introduce a new
metric, which takes fully into account the time spent in failed runs. We call this
metric the Mean First Solution Time (MFST) (as it is inspired by the Mean

132 Chapter 5. Quantum computing for ground-state search

First Passage Time concept in physics [153]). Given a problem instance, the
MFST is defined as:

TMFST = E{k}Tmax + E{t} (5.73)

where E{k} is the expected number of failures before the first solution is found,
Tmax is the maximal allowed execution time (e.g. for one seed) it is not a random
variable, and E{t} is the expected solution time (the averaged time of solved
instances). The expected solution time E{t} can be easily estimated via the
usual sample mean estimator:

t̄s =
1

|Is|
∑
j∈Is

tj (5.74)

where Is is the set of solved instances and |Is| its cardinality. The variable
k is a random variable which follows the negative hypergeometric distribution
NHG(|I|, |I| − |Is|, 1)

k ∼ NHG(|I|, |I| − |Is|, 1) =

(|I|−k−1
|I|−|Is|−k

)(|I|
|I|−|Is|

) (5.75)

where |I| is the cardinality of the run set. Therefore the expected value of the
number of failures k before a success is:

|I| − |Is|
|Is|+ 1

(5.76)

Hence, we estimate the MFST via the formula:

TMFST =
|I| − |Is|
|Is|+ 1

Tmax +
1

|Is|
∑
j∈Is

tj (5.77)

Clearly, if all instances are solved, the mean solution time is obtained. Another
widely used metric for evaluating the scalability is the time to solution scaled
by the solution probability (TTS). While this quantity is formally a time, it
does not explicitly consider the maximal execution time, which is captured by
the MFST. In particular the Time To Solution (TTS) is defined as:

TTTS =
E{t}
p

(5.78)

where p is the solution probability; this can be estimated as p̄ = |Is|/|I|, hence
the estimator:

T TTS =
t̄s
p̄

(5.79)

5.4. Results 133

It is easy to show that there is a simple relation between T TTS and TMFST :

TMFST =
|I| − |Is|
|Is|+ 1

Tmax +
|Is|
|I|

T TTS (5.80)

This relation shows that, if all problems are solved (|Is|=|I|), the two metrics
are the same. However when not all instances are solved, the presence of Tmax
creates a discrepancy. If Tmax is high, the TTS can significantly underestimate
the real execution time. The variance of TMFST is computed following the error
propagation formula:

σ2
TMFST

=

(
∂TMFST

∂|Is|

)2

σ2
|Is| +

(
∂TMFST

∂t̄s

)2

σ2
t̄s

= T 2
max

(|I|+ 1)2|Is|2

(|Is|+ 1)4
1

|I|
1− p̄

p̄
+ σ2

t̄s

(5.81)

where:

σ2
t̄s
=
σ2
ts

|Is|
(5.82)

and σ2
ts is the variance of the solution time.

For the time to solution, we can estimate the variance by observing that |Is| is
distributed as a binomial distribution. That leads to:

σ2
p̄ =

p̄(1− p̄)

|I|
(5.83)

Using the error propagation formula, it follows that:

σ2
TTTS

= T
2

TTS

(
1

|I|
1− p̄

p̄
+
σ2
t̄s

t̄2s

)
(5.84)

All the presented formulas are meaningful if at least one instance has been
solved, that is |Is| > 0 or equivalently p ∈ (0, 1].

Classical solvers

As defined in Chapter 1, Simulated annealing is one of the most exploited
optimization techniques based on Markov chain Monte Carlo methods. To find
the minimum energy structure of the lattice of water molecules, simply solve
the relative QUBO problem as defined in Equation 5.71. To solve a QUBO
problem with simulated annealing, we define as the initial condition a random
bitstring x(0) = xin. We then generate a trial state x(1) by flipping a random
bit into the x(0) bitstring. Generally a trial state x(k) will be accepted with

134 Chapter 5. Quantum computing for ground-state search

probability

A(x(k) → x(k+1)) = min

[
1, exp

{
−Ex(k+1) − Ex(k)

Tk

}]
(5.85)

where Ex ≡ xTQx is the energy of the system up to an offset term. The
sequence of temperatures along the Tk iterations remains to be defined. There
are several choices, the most common being linear scheduling and geometric
scheduling. In linear scheduling, the temperature decreases linearly with the
iterations

Tk → Tk+1 = Tk − l ⇒ Tk = T0 − kl (5.86)

where l > 0. In the case of geometric scheduling there is instead a decreasing
temperature following a geometric sequence:

Tk → Tk+1 = rTk ⇒ Tk = rkT0 (5.87)

where 0 < r < 1. Figure 5.7 shows the performance of simulated annealing
in the search for the ground state of the lattices in a window ranging from 6

molecules to 17 for a total of 12 points. Each point in the plot in the figure
represents the computational cost expressed in Mean First Solution Samples or
MFSS with a number of trials N = 30 (i.e. 30 different seeds). This MFSS
metric is exactly defined with the MFST but instead of evaluating the execu-
tion times, in this case, the reference quantity is the number of iterations and
therefore the number of samples generated, in other words, the length of the
Markov chain. Each trial that leads to the solution of the QUBO problem, con-
tributes a cost equal to the number of samples generated before obtaining the
first bitstring relating to the ground state. Instead of a maximum time Tmax,
a maximum number of iterations Kmax is therefore defined. The procedure for
generating new samples scales in time like the energy calculation and there-
fore with the quadratic form xTQx. The results in Figure 5.7 were obtained
with Kmax = 105 and with geometric scheduling with r = 0.999 and T0 = 100

(the temperature is defined as dimensionless as for the Hamiltonian). Also in
Figure 5.7 there is also the performance relating to a parallel tempering sim-
ulated annealing which exploits the replica exchange technique to reduce the
probability of becoming trapped in local minima. The results for parallel tem-
pering were obtained by initializing 10 chains x(0),c = xcin where c is the chain
index c ∈ {1, 2, . . . , 10}. For each chain, a simulated annealing procedure is
defined. Therefore, as before, the Markov chain is built with the accept/reject
rule defined in Equation 5.85 with scheduling, also in this case, geometric, with

5.4. Results 135

6 7 8 9 10 11 12 13 14 15 16 17
Water molecules

103

104

105

106

M
ea

n
Fir

st
 S

ol
ut

io
n

Sa
m

pl
es

SA,r=0.999
PTSA,r=0.999,rswap=0.2

Figure 5.7: Performances, in terms of MFSS, of classical op-
timization solvers: Simulated Annealing (SA), blue plot, and
Parallel Tempering Simulated Annealing (PTSA), orange plot.
The temperature scheduling of SA and the chains ion PTSA fol-
low a geometric progression with the cooling rate r = 0.999. In
the PTSA the chains can be swapped with a rate of accept/reject
steps on rswap = 0.2 which means every 5 iterations.Each solver

was run 30 times (with 30 different seeds) for each lattice.

r = 0.999. The initial temperature is different for each chain: T (c)
0 = 10c. The

additional step concerns the possibility of exchanging the adjacent chains c and
c+ 1. according to the acceptance rule

A(x(k),c ↔ x(k),c+1) = min

[
1, exp

{
−

(
1

T
(c)
k

− 1

T
(c+1)
k

)
(Ex(k),c+1 − Ex(k),c)

}]
(5.88)

A good choice for the exchange rate between replicas is every 5 step. Since the
cost of parallel tempering depends on the number of replicas and each replica
has a maximum cost of 105 iterations, Kmax = 106 for the data in Figure 5.7.
Figure 5.7 shows the log scale fit to an exponential function eµN where N is the
number of molecules in the lattice. The scaling of these solutions, as for the
quantum methods that will be discussed later, is evaluated with respect to the
parameter µ. Table 5.2 shows the performances in terms of exponential scaling

136 Chapter 5. Quantum computing for ground-state search

Method iterations chains swape rate µ δµ
SA 105 - - 0.5277 0.0028

PTSA 105 10 0.2 0.3721 0.0017

Table 5.2: Scaling performances in MFSS of the tested clas-
sical solutions. Parallel tempering simulated annealing (PTSA)
clearly shows better performance as expected. The swap rate at
0.2 corresponds to 2 accept/rejection swap steps every 10 itera-
tions and therefore one every 5. Being parallelized on 10 chains,
the total samples collected with one PTSA run is 106, other im-

plementation details in the caption of Figure 5.7

of the tested classical solutions, simulated annealing and parallel tempering,
which refer to the slope of the fit eµN in log scale.

5.4.2 Quantum solutions tuning

Let’s discuss the QAOA settings to obtain the best performances against the
classical heuristic solvers. The first step was to evaluate performance in the
standard QAOA setting. The QAOA has been defined as a specific version
of the VQE with a physics-based ansatz circuit that exploits the background
principle of the adiabatic theorem. In the standard setting of the algorithm,
the qubit register is initialized in the state |+⟩2N , i.e. the ground state of the
mixer Hamiltonian

ĤM =
2N∑
i=0

Xi (5.89)

Figure 5.8 shows the performance in terms of scaling of the average number of
samples (qubit measurements) to reach the solution for the first time. All runs
were performed on the 32-qubit noise-free quantum simulator
ibmq_qasm_simulator. The range of solved systems is from N = 6 to N = 13

molecules. The three curves represent three different values of p, i.e. the number
of repetitions of the ansatz as defined in Equation 5.35. The three curves are
the result of the expectation value of the mean first solution samples (MFSS) on
M = 15 trials for each N instance and with a maximum number of samples of
Kmax = 105 based on a number of shots S = 103, to evaluate the cost function,
and 100 parameters updates, i.e. iterations of the classic optimizer. The clas-
sic optimizer chosen is called COBYLA. Constrained Optimization BY Linear
Approximation (or COBYLA) [154] is an implementation of Powell’s nonlin-
ear derivative-free constrained optimization that uses a linear approximation
approach. The algorithm is a sequential trust-region algorithm that employs

5.4. Results 137

6 7 8 9 10 11 12 13
Water molecules

104

105

106

M
ea

n
Fir

st
 S

ol
ut

io
n

Sa
m

pl
es

sQAOA,p=1,s=1000.0
sQAOA,p=2,s=1000.0
sQAOA,p=3,s=1000.0

Figure 5.8: Results, in terms of MFSS, of a QAOA with
standard mixer (⊗2NRX(β)). Each point is the result of the
MFSS estimator over 15 runs on the 32 qubit cloud simulator
ibmq_qasm_simulator. The 15 runs are equally distributed in
three CVaR setting α = 1, 0.5, 0.1. At each iteration of the
optimizer 1000 samples (measurements) are collected, therefore
the cost of each run is evaluated with the number of iterations
accumulated up to the first where the ground state is mea-
sured multiplied by the number of total measurements per it-
eration (1000). For this reason, the minimum cost is 1000 if the
ground state is measured on the first iteration. The parameters
β and γ are initialized considering as prototypical scheduling

(1− λ(t))HM + λ(t)Hc where λ(t) = t ∈ [0, 1].

linear approximations to the objective and constraint functions, where the ap-
proximations are formed by linear interpolation at n + 1 points in the space
of the variables and tries to maintain a regular-shaped simplex over iterations.
This choice was made with the aim of not having to require the calculation of
the gradient of the parametric circuits that it would require.

The potential of the CVaR cost function has also been explored. As defined
in Equation 5.40, α is the parameter that represents the portion of the samples
considered to build the cost function to pass to the classical optimizer. Different
α leads to different performance since it is very tied to the initial condition. For
this reason, the 15 trials which then translate the curves in Figure 5.35 are

138 Chapter 5. Quantum computing for ground-state search

6 7 8 9 10 11 12 13 14 15 16 17
Water molecules

103

104

105

106

M
ea

n
Fir

st
 S

ol
ut

io
n

Sa
m

pl
es

SA,r=0.999
PTSA,r=0.999,rswap=0.2
sQAOA,p=1,s=1000.0
sQAOA,p=2,s=1000.0
sQAOA,p=3,s=1000.0

Figure 5.9: Comparative results between classical methods and
QAOA with standard mixer. The case p = 1 has a behavior

comparable to simulated annealing.

divided into groups of 5 trials for the cases with α = 1, α = 0.5 and α = 0.1.
Figure 5.9 shows the performance of a standard version of QAOA against

the optimized versions of simulated annealing and parallel tempering. In terms
of MFSS, the case with p = 1 performs better than the case with a higher
circuit depth. However, for p = 1, 2, 3 we obtain performances, in terms of
scaling, worse than parallel tempering and a performance similar to simulated
annealing only in the case p = 1. However, it should be pointed out that for
N > 10 and therefore for the cases N = 11, 12, 13 there are cases where in
none of the 15 trials the solution was reached in the 100 iterations. It therefore

Method p shots µ δµ
QAOA 1 1e3 0.6237 0.0118
QAOA 2 1e3 0.7980 0.0346
QAOA 3 1e3 0.7890 0.0443

Table 5.3: Scaling performances in MFSS of QAOA with stan-
dard mixer. The best result is achieved by the case with p = 1 (in
bold). However, the trend is evaluated in a region that includes
the lattices of 6 and 7 molecules which turn out to be particu-
larly simple to solve. Other details in the caption of Figure 5.8.

5.4. Results 139

appears that, in a standard version, QAOA performs similarly if not worse than
the classical heuristic methods taken into consideration. This result leads to
reflection on how the QAOA setting can be improved in order to obtain better
performances. The presence of non-feasible solutions that do not have a physical
meaning can be of help to methods based on Markov chains such as simulated
annealing given that passing from non-feasible states can help to escape from
local minima. For variational quantum methods, they have no usefulness and
can actually lead to plateaus. In fact, the number of unfeasible states grows
exponentially with the number of molecules. Considering that for each molecule
there is one, out of 4, unfeasible state, therefore, for N molecules, the number
of unfeasible states is

#unfeasible solutions = 4N − 3N (5.90)

that, for large N , is O(4N). Therefore, considering a uniform probability of
sampling, the probability of sampling an unfeasible solution grows as

P =
4N − 3N

4N
= 1−

(
3

4

)N
N→∞−−−→ 1 (5.91)

The probability of measuring an unfeasible state therefore becomes important
for large N . A specific ansatz circuit design can therefore prevent this problem.
For this purpose it is assumed that the variational circuit acts as follows〈

ψuf

∣∣∣U(β, γ)∣∣∣ψ̃〉 = 0 (5.92)

where |ψuf⟩ is a generic unfeasible state and
∣∣∣ψ̃〉 is the initial state which is a

superposition over all the feasible states. A simple choice for
∣∣∣ψ̃〉 is as follows

∣∣∣ψ̃〉 =
N−1⊗
i=0

1√
3
(|01⟩i + |10⟩i + |11⟩i) (5.93)

which can be simply obtained from the following circuit

|0⟩ X RY (ϕ)

|0⟩ RY (θ) •

By repeating this circuit for each pair of qubits relating to a molecule and setting

140 Chapter 5. Quantum computing for ground-state search

the angles as θ = arccos 1/
√
3 and ϕ = arccos 1/

√
2, the state in Equation 5.93 is

obtained. To exploit the adiabatic theorem, a Hamiltonian mixer must therefore
be constructed such that

∣∣∣ψ̃〉 is the ground state. For a generic choice of
∣∣∣ψ̃〉,

a consistent choice for UM(β) is an operator of the type UM = 1 ⊕ V where
V ∈ SU(3). A generic element of SU(3) has 8 free parameters while if it is
considered as unitary UM = 1 ⊕ O where O is an orthogonal matrix in SO(3)

then only 3 parameters are involved. A generic element in SO(3) is obtained
via the following exponential map

O = exp{−i (xLx + yLy + zLz)} (5.94)

Where Lx, Ly and Lz are the basis of then algebra of SO(3) that generate
rotations in 3-dimensional space along axis x, y and z respectively. In the
reduced 2-qubit Hilbert space of only the feasible solutions, O is a rotation
where the axis x, y and z corresponds to |01⟩, |10⟩ and |11⟩. Therefore, to build
a circuit on 2 qubits that realizes UM = 1 ⊕ O we consider the decomposition
into Pauli matrices of the generators of UM = 1 ⊕ O. The step to obtain the
correct decomposition is to expand the Li generators so that they are defined
on a 2 qubit Hilbert space. Let L̃i be the representation in 4 × 4 matrices of
the generators of SO(3), the following decompositions are obtained.

L̃x =

0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 =
1

2
(I ⊗ Y − Z ⊗ Y)

L̃y =

0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 =
1

2
(Y ⊗ I − Y ⊗ Z)

L̃z =

0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 =
1

2
(X ⊗ Y − Y ⊗X)

(5.95)

5.4. Results 141

Therefore the mixer operator UM can be written as

UM =
N−1⊗
i=0

e−iβH
s
M (5.96)

where HM is a Hamiltonian defined on the two qubits that encodes the state of
a single molecule

Hs
M =

x

2
(Y2 − Z1Y2) +

y

2
(Y1 − Y1Z2) +

z

2
(X1Y2 − Y1X2) (5.97)

Setting x = y = z = −1/
√
3 then the initial state

∣∣∣ψ̃〉 in Equation 5.93 is an
eigenstate of UM with eigenvalue −1. Given HC is an Ising Hamiltonian that
is diagonal in the computational basis then UC acts by adding only relative
phases. The Hilbert subspace of feasible solutions and their superpositions re-
mains unchanged under the UM transformation. The following section analyzes
the performance of this version of QAOA, which will be indicated with sQAOA
(since it acts on the unit sphere with axes |01⟩, |10⟩ and |11⟩). In this ver-
sion, the parametrized state |ψ(β, γ)⟩ = U(β, γ)

∣∣∣ψ̃〉 is a superposition of only
the feasible solutions. The sQAOA is a quantum approximate optimization
algorithm with constraint preserving mixers [155] where the mixer operator re-
stricts the evolution to a sub-space of the full Hilbert space generated by feasible
computational basis states.

5.4.3 Performances discussion

This section presents the results of the customized version of the QAOA which
takes into account only the feasible solutions. Figure 5.10 shows the MFSS
results of sQAOA with 1000 shots for each iteration of the COBYLA optimizer.
In the figure, there are results with p = 1 and p = 2 in a window of 6 different
lattices from 8 to 13 molecules. This new version reduces in absolute value
the average number of samples necessary to obtain the solution, exceeding the
performance for simulated annealing for cases such as the 10 and 11 molecule
lattice but the scaling is comparable to simulated annealing and also to the
standard version of the QAOA. However, the parallel tempering method is
more performing in terms of scaling. also in this case the points relating to
the sQAOA were obtained considering a CVaR version of the cost function with
α = 1, α = 0.5 and α = 0.1, respectively with 10 different tests for each α

for a total of 30 trials. The case with p = 1 initially shows better scaling but
beyond the 11 molecules it is unable to find the ground state of the lattice and

142 Chapter 5. Quantum computing for ground-state search

6 7 8 9 10 11 12 13 14 15 16 17
Water molecules

103

104

105

106

M
ea

n
Fir

st
 S

ol
ut

io
n

Sa
m

pl
es

SA,r=0.999
PTSA,r=0.999,rswap=0.2
sQAOA,p=1,s=1000.0
sQAOA,p=2,s=1000.0

Figure 5.10: Results, in terms of MFSS, of a sQAOA that
preserves the space of feasible solutions with 103 shots per itera-
tion. Each point is the result of the MFSS estimator over 30 runs
on the 32 qubit cloud simulator ibmq_qasm_simulator. The 30
runs are equally distributed in three CVaR setting α = 1, 0.5, 0.1.
The parameters β and γ are linearly initialized as in the previous

QAOA implementation

therefore the error on the scaling estimate (see Table 5.4) does not allow us to
define any type of advantage. Increasing the number of shots up to 104 gives
a maximum cost of Kmax = 106 equal to the case of parallel tempering. In
Figure 5.11 there are the results of the sQAOA with S = 104. In all cases in
the window between 6 and 11 molecules, where this setting was tested, better
performances than parallel tempering are obtained in terms of the absolute
value of the number of samples generated. As regards scaling, the 5.4 table
shows that the performances are comparable to those of parallel timing and
slightly better than simulated annealing. This is valid for both the cases at
p = 1 and p = 2 which are very similar. Also in this case the trials for each
lattice are 30 distributed equally on the cases with α = 1, α = 0.5, and α = 0.1

for the cost function CV aR. In the last case, Figure 5.12, the performance
are shown with an ansatz which instead does not draw inspiration from the
adiabatic theorem as in the QAOA but is more linked to a standard version

5.4. Results 143

6 7 8 9 10 11 12 13 14 15 16 17
Water molecules

103

104

105

106

M
ea

n
Fir

st
 S

ol
ut

io
n

Sa
m

pl
es

SA,r=0.999
PTSA,r=0.999,rswap=0.2
sQAOA,p=1,s=10000.0
sQAOA,p=2,s=10000.0

Figure 5.11: Results, in terms of MFSS, of a sQAOA with
104 shots for each iteration. The case N = 6 shows that each
run reaches the ground state at the first iterations and, therefore,
with the first set of 104 measurements. Each point is the result of
the MFSS estimator over 30 runs on the 32 qubit cloud simulator
ibmq_qasm_simulator. The 30 runs are equally distributed in
three CVaR setting α = 1, 0.5, 0.1. The parameters β and γ are

linearly initialized as in the previous QAOA implementation

of the VQE. This version, which we call sVQE, is defined with an ansatz with
3N(p + 1) trainable parameters. With this version, we want to understand
if by expanding the expressiveness of the variational ansatz by adding more
parameters, better performances can be obtained. The ansatz of the sVQE is
defined with a first layer of operators applied on the pairs of qubits that define
a single molecule, an operator U(α, β, γ). Using the Euler angle formalism, for
a single qubit we have that a generic rotation can be obtained by applying only
rotations on the x and z axes of the Bloch sphere: Rn⃗(θ) = RZ(γ)RX(β)RZ(α).
With this formalism, we obtain that a generic rotation in the Hilbert subspace
at 2 qubit generated by from the feasible solutions, and considering only real
amplitudes can be defined as

U(α, β, γ) = e−iγL̃ye−iβL̃xe−iαL̃y (5.98)

144 Chapter 5. Quantum computing for ground-state search

6 7 8 9 10 11 12 13 14 15 16 17
Water molecules

103

104

105

106

M
ea

n
Fir

st
 S

ol
ut

io
n

Sa
m

pl
es

SA,r=0.999
PTSA,r=0.999,rswap=0.2
sVQE,p=1,s=10000.0
sVQE,p=1,s=1000.0

Figure 5.12: Results, in terms of MFSS, of a custom
VQE (sVQE), that preserves the space of feasible solutions,
with 103 and 104 shots. Each point is the result of the
MFSS estimator over 30 runs on the 32 qubit cloud simulator
ibmq_qasm_simulator. The 30 runs are equally distributed in
three CVaR setting α = 1, 0.5, 0.1. In this case, all lattices ad-

dressed by the algorithm have been solved at least once.

where L̃x and L̃y are defined in equation 5.95. The choice to compose the
generic rotation with L̃x and L̃y is given by their decomposition into Pauli
matrices which allows us to then decompose U(α, β, γ) in rotations on a single
qubit without introducing trotterization approximations. The qubit register
is however initialized as in Equation 5.93. After the first layer of operators
U(α, β, γ), p repetitions of layers U(αi, βi, γi) are concatenated, interspersed
with linear entanglement maps composed of CZ gates so you have a phase
operator which therefore preserves the subspace of feasible solutions. The results
in Figure 5.12 represent two sVQE settings, one with S = 103 shots and the
second with S = 104. Both with p = 1 and with 30 trials per lattice equally
divided with the same values of α tested so far. In the case with S = 103, testing
from 8 to 13 molecules, slightly worse performances are obtained in absolute
values compared to the same case of the sQAOA but with all the points, up to
13 molecules, where it is possible to get the solutions in the 30 trials. Scaling,

5.5. Discussion and conclusions 145

Method p shots µ δµ
sQAOA 1 1e3 0.3706 0.0344
sQAOA 2 1e3 0.6584 0.0082
sQAOA 1 1e4 0.5872 0.0172
sQAOA 2 1e4 0.6485 0.0098
sVQE 1 1e3 0.48675 0.0009
sVQE 1 1e4 0.5761 0.0153

Table 5.4: Scaling performances in MFSS of the tested quan-
tum solutions with constraints preserved circuit ansatz. The bold
results are the most relevant but the sQAOA with p = 1 and 103

shots has a relative error of 10% and it is calculated on only 4
different problem sizes. The sVQE case with p = 1 and 103 has
a more high accuracy and it was tested from a 16 to a 26 qubit
problem. Simulations details in the caption of Figure 5.10, 5.11

and 5.12

on the other hand, is also comparable with simulated annealing. In the case
S = 104, however, the curve is entirely above the respective case of the sQAOA
at S = 104 without bringing any evident benefit.

5.5 Discussion and conclusions

The data shown concerns a still small window of size of the systems tested for
clear conclusions. At these dimensions, the topology of the latex influences
greatly and differently on the performance of the various methods tested. This
introduces several fluctuations that prevent in-depth scaling evaluations. Gener-
ally, it can be seen from the results of classical solvers that there is a periodicity
of 3 in the number of Molecules and this depends on the topology of the lattices
tested and shown in Figure 5.5. In fact, with N = 10 and N = 13 the lattices
are composed of hexagons, 2 in the case of N = 10 and 3 for N = 13, while
for the case with N = 11 and N = 12, for example, there are spaced molecules
that do not belong to closed hexagons. This affects possible frustrations that
introduce local minima very close to the global minimum. However, this affects
the performance of simulated annealing while for the other solvers, there are
other lattices that are more critical. For parallel tempering, a very marked pe-
riodicity is visible where lattices with N = 9, N = 12, and N = 15 are more
complicated to detect. These are cases where in theory unpaired 2s (which do
not belong to formed hexes) should be easier to place. For the QAOA in the
version with ansatz constraints preserving, the solution to N = 12 has never
been found, thus showing the same difficulties as parallel tempering in solving

146 Chapter 5. Quantum computing for ground-state search

this case. For smaller sizes, however, the fluctuations do not seem to be very
linked to the topology of the lattice, or at least not in a way that is as intuitive
as for parallel tempering and simulated annealing. As regards the QAOA, in
Figure 5.9 we note that the cases with N = 6 and N = 7 can be solved much
more easily than the others. In these cases, in fact, the dimension of the Hilbert
space corresponding to the qubit register is very small (N = 6 corresponds to a
space of dimension 22N = 4096) and therefore it is very likely to sample the basic
state with 1000 shots. With N > 7 the problem becomes complicated enough
to observe real scaling. The introduction of the customized ansatz, however,
does not show particular advantages in terms of scaling at such small sizes but
instead reduces in absolute value the number of samples to obtain the solution
for the first time. However, the results can be improved by considering various
points

• The results are very linked to the small size of the gratings considered, by
increasing the number of shots it may be possible to deal with cases with
N > 20 in order to obtain a more accurate evaluation of the scaling.

• The sVQE results suggest that greater expressiveness of the variational
loop can help solve larger problems. Introducing more β parameters to
train, and therefore defining a more general UM operator that still pre-
serves the constraints, could improve performance.

• The quantum methods considered were all tested with three different val-
ues of α (CVaR parameter). As with parallel tempering, variational quan-
tum methods can also benefit from a parallelization over several α which
would have the role of a temperature in this case. In fact, depending on
the initial conditions, different alpha leads to different performances.

It should be underlined that the QAOA is designed as an approximation
for the solution of optimization problems while in this case it was tested as a
solver. QAOA was able to find the global optimum up to 26 qubits and in some
cases to find the solution with a smaller total number of samples than simulated
annealing.

147

Chapter 6

Benchmarking of non-Turing
paradigms

6.1 Assessing the effectiveness of non-Turing paradigms

on hard optimization problems

The Von Neumann architecture [156], and hence the Turing paradigm [157],
has dominated computing since the time of Charles Babbage [158]. Moore’s
law [159] predicts an exponentially increasing number of transistors which can
be translated to a sustained growth of the computing power. In recent years,
this increase has come from specialized and highly parallel accelerators, chiefly
graphics processing units (GPUs). The quest for ever-increasing performance
now requires new approaches with more efficient energetic profiles and a re-
duced environmental impact. Alternative architectures need to be investigated
in depth towards a more concrete green-computing implementation. Notwith-
standing the traditional Turing machines may still be faster, technological signs
of progress may quickly change this situation, providing the community with
faster architectures that are energetically more sustainable. Non-traditional
hardware/software platforms are today available, an example being quantum-
gate-based computing assets[44]. These machines introduced by Deutsch [160],
are the quantum generalizations of the class of Turing machines. As emerged
from the study by Bernstein and Vazirani [161], which introduced the concept
of quantum complexity classes, quantum computers can solve certain problems
exponentially faster than classical computers. Quantum-gate-based comput-
ers are indeed universal computers; Adriano Barenco et al. [53] describe the
quantum counterpart of the classical logical gates, called quantum gates, and
provide a universal quantum gate set. These quantum gates are implemented
through photonic qmodes [162], trapped ions qubits [163], [164], and supercon-
ducting qubits. Currently, many important players as Google [165] and IBM

148 Chapter 6. Benchmarking of non-Turing paradigms

[166] among others [167] are dedicating significant resources to the implemen-
tation of such computing systems. It is debated when the quantum gold rush
[168] will generate practical utility [136], [169]–[171]. In [136] the Google team
claimed to have reached Quantum Supremacy with their Sycamore QPU, while
in [169] the IBM team contended such claim. Later, [170] and [171] showed how
a modern supercomputer can match the aforementioned "quantum supremacy"
performances. Besides this quantum, Turing-gate-based machinery, there are
other non-classic alternatives such as the Quantum Annealer (D-Wave Systems
[172]). There are also different ways to use classical phenomena to perform
calculations, e.g. the Memcomputing Machine (Memcomputing Inc. [173]),
the Simulated Bifurcation Machine (Toshiba [78]), and approaches such as the
Ising machine [174] and p-bits [175]. To fairly evaluate these different com-
puting paradigms, proper benchmarks must be defined to assess the potential
of these architectures to solve difficult tasks faster than conventional comput-
ers. For instance in [176] benchmarks are defined for assessing the speed-up
against classical solvers; in [177] and [178] methods are described to evaluate
quantum computing performances. In the first part of the chapter two com-
mercially widely available and paradigmatic non-Turing approaches are criti-
cally evaluated and compared to a classical solver (see Figure 6.1). D-Wave and
Memcomputing can solve equivalent problems and they represent a quantum
(not gate-based) and classical (not quantum) approach, respectively. D-Wave
solves Quadratic Unconstrained Binary Optimization problems (QUBO) and
is a quantum annealer (often also defined as AQC even if it does not respect
the adiabatic condition). Memcomputing solves Integer Linear Programming
problems (ILP) by mapping them to a physical circuit, with the physical circuit
evolution emulated via a software. D-Wave is the most mature representative
of the quantum annealing strategy. Memcomputing represents an approach
based on differential equations with digital read-out (similar in spirit to the
bifurcation machine [78]). The two approaches can be directly compared with
an established baseline, namely the Gurobi suite of optimization methods [179].
These approaches are benchmarked on three difficult, well-known, and combina-
torial problems of broad interest that can be expressed in ILP (Memcomputing)
and QUBO (D-Wave) format: the Semiprime Factorization problem (FP), the
Hard-Assignment Gromov-Wasserstein problem (GWP), and the Capacitated
Helicopter Routing Problem (CHRP). The security of large part of the public
key cryptography (RSA[180]) is based upon the assumed intractability of FP.
GWP is a particularly hard example of the optimal transport theory [181], [182]
and is an instance of the well-known Quadratic Assignment Problem [183], a

6.2. Benchmark problems 149

fundamental combinatorial problem. CHRP is an industrial optimization prob-
lem concerning the route scheduling of helicopters. For an accurate comparison,
the Mean First Solution Time (MFST) which is the expected waiting time to
obtain the first solution of the problem, is used as an evaluation metric. It is
thus directly proportional to the expected total amount of monetary budget
required to solve the problem. We compare this novel metric to the widely used
probability-normalized Time To Solution metric (TTS). TTS has been used to
evaluate performances of quantum annealers in [184], [185] and [186]. The re-
sults shows that the performances of the solvers strongly depend on the selected
set of internal parameters. This is the first time AQCs and Memcomputing ma-
chines are compared to each other on such a comprehensive set of industrially
and mathematically relevant problems, and it’s the first time that the depen-
dence of their performances on internal parameters is analyzed in detail.

6.2 Benchmark problems

6.2.1 Semiprime Factorization Problem (FP)

FP is a notoriously hard problem [187]. Given M , the number to be factored,
one must find the prime factors p and q. The best-known classical algorithm
for solving FP is the General Number Field Sieve whose complexity is not
polynomial [188]:

O
(
e

3
√

64
9
(logM)1/3(log logM)2/3

)
(6.1)

In 1994, Shor proposed an algorithm [189] that solves FP in polynomial time
with a gate-based quantum computer. Despite the method’s correctness, its
application is currently hampered by the limited number of qubits available
in gate-based quantum machines. FP has high practical relevance because its
prohibitive computational complexity forms the basis of the RSA [180] cryp-
tographic system’s security. To implement this problem on the examinated
platforms, we formulated FP as an optimization problem. As shown in [190],
FP can be converted into a satisfability problem (SAT) problem. The first step
is to convert the equation M = p×q into a nonlinear system of equations, whose
unknowns are the fixed point bit representation of the numbers. The nonlinear
system is then converted to a linear system with constraints, where auxiliary
variables are used with corresponding restraints. This form is an integer linear
programming problem and can be run on VMM and Gurobi. To allow porting
on D-Wave, we defined a QUBO problem where we recover the quadratic form

150 Chapter 6. Benchmarking of non-Turing paradigms

Figure 6.1: From the problem to the computing hardware.
Three problems are formulated in ILP and QUBO forms and
solved with three different solvers: i) the Gurobi optimization
software based on branch and bound and other heuristics; ii) a
Virtual Memcomputing Machine exploiting self-organizing logic;
and iii) a Quantum Annealer. These solvers are physically im-
plemented on hardware based on the Von-Neumann architecture
or on an adiabatic quantum computer based on superconducting
qubits. Memcomputing machines could be implemented on self-

organizing memristor-based circuits.

6.2. Benchmark problems 151

by squaring the system of equations. The constraints can be imposed via a
penalty term.

FP: Implementation details

The semiprime factorization problem is expressed as follows: let M be the
number to be factored, one wants to find the prime factors p and q such that

M = p× q (6.2)

This problem can be solved as a binary optimization problem. For this, one
needs the bit representation of the numbers:

M :=

LM−1∑
i=0

2imi, p :=

Lp−1∑
i=0

2ipi, q :=

Lq−1∑
i=0

2iqi (6.3)

in which mi, pi, qi ∈ {0, 1}.
The bit sizes Lp and Lq are unknowns, but one can arbitrarily consider p ≥ q,
from which it follows that Lq ≤ ⌈LM

2
⌉. To reduce the problem’s variables, it is

useful to consider that, since p and q are prime numbers, then p0 = q0 = m0 = 1.
Moreover, since the problem’s complexity is not changed by a priori knowledge
of the lengths Lp and Lq, then the most significant bit of p and q can be fixed to
1 if one intends to evaluate the problem’s scaling, as in this case. Since VMM
solves optimization problems in the ILP formulation, the SAT problem (derived
from the equations 6.2 and the equation 6.3) must be converted to a linear
version. An ILP formulation of a semiprime factorization problem is derived
from the Column-Based Procedure [191]. The Column-Based Procedure, or
Multiplication Table Method [192], involves splitting the equation 6.2, written
in the binary form, into at most Lp+Lq+1 equations. The factors of equations
6.2, rewritten according to the definitions in equation 6.3, can be grouped by
collecting those terms with the same powers of 2 as coefficients. Therefore the
final system comprises up to LM + 1 equations:

Lq−1∑
j=0

qjpi−j +
i∑

j=1

ci,j −mi −
Li∑
j=1

2j−ici,i+j = 0 , 0 ≤ i ≤ LM (6.4)

where i is column index of the corresponding multiplication table p × q or, in
other words, the power of 2 that unites these terms of the i-th equation. The
number Li = ⌈log2 (Lq + i−mi)⌉ is the number of carry variables introduced
in the i-th equation.

152 Chapter 6. Benchmarking of non-Turing paradigms

The carry variables ci,j were added and subtracted from equation 6.2 to set to
0 the sum of the terms with the same power of 2 and thus obtain the system in
equation 6.4. The system of equations is not linear due to the presence of terms
like piqj. These terms correspond to the logical AND operation whose equation
zij ≡ piqj is equivalent to the following two linear inequalities:pi + qj ≤ zi,j + 1

pi + qj ≥ 2zi,j
(6.5)

From equation 6.4 and 6.5, an ILP problem PF can be defined as follows:
∑Lq−1

j=0 zi−j,j +
∑i

j=1 ci,j −mi −
∑Li

j=1 2
j−ici,i+j = 0 , 0 ≤ i ≤ LM

pi + qj ≤ zi,j + 1 , 1 ≤ i ≤ Lp − 2 , 1 ≤ j ≤ Lq − 2

pi + qj ≥ 2zi,j , 1 ≤ i ≤ Lp − 2 , 1 ≤ j ≤ Lq − 2

(6.6)

The optimization problem PF is an ILP problem that does not bear a cost
function, therefore a feasible solution is also the problem’s solution.
To reduce the number of carry variables and the number of equality constraints,
the problem’s equations PF can be rearranged in order to consider blocks of
columns of the multiplication table. This method, called Blocks Multiplication
Table Method [193], follows the same procedure of the previously cited Mul-
tiplication Table Method. But instead of the system in equation 6.4 (where
each equation corresponds to one power of 2), the new equations correspond
to a group of power of 2. For the implementations on the VMM, Gurobi, and
D-Wave, we used the Blocks Multiplication Table Method with a block size of
2 columns. Therefore the total number of equations in the ILP problem is up
to ⌈LM

2
⌉.

The ILP formulation was used for VMM and Gurobi, but cannot be imple-
mented on D-Wave devices. For D-Wave, the ILP problem PF was converted
into the corresponding QUBO (Quadratic Unconstrained Binary Optimization)
formulation, which includes a penalty component that takes into account the
constraints. The QUBO cost function for D-Wave is then:

PQUBO
F (p, q, z, c) =

∑
i

H2
i (p, q, z, c) + λ

∑
i,j

R(pi, qj, zi,j) (6.7)

where H2
i are the square of the equalities in equations 6.6 but grouped by

blocks of 2 to support the Blocks Multiplication Table Method. The penalty

6.2. Benchmark problems 153

terms R(pi, qj, zi,j) are QUBO terms corresponding to the inequalities:

R(pi, qj, zi,j) = piqj − 2pizi,j − 2qjzi,j + 3zi,j (6.8)

The penalty factor λ was fixed to 2, as in [192], [193]. For D-Wave, we ran only
4 problems for each bit size, (instead of 5) due to limitations in the available
computing time.

6.2.2 Hard–assignment Gromov–Wasserstein problem (GWP)

Optimal transport theory deals with the problem of moving mass from one place
to another with minimal effort. This effort is accounted by a cost function; the
integral of these mass moves has to be minimized[194]. The main constraint here
is represented by mass conservation; this leads naturally to approach optimal
transport as a mapping problem between probability distributions. The original
problem has two main formulations: the hard formulation from Monge and the
relaxed formulation from Kantorovich [194]. In both, one assumes that the two
metric spaces involved are the same. The Gromov–Wasserstein distance was
introduced by Mémoli [181] and it is an instance of optimal transport between
metric spaces having different dimensions (nonregistered) [195]. The GWP finds
application in generative machine learning [196], [197] and computer graphics
[181], [182], among others. Finding this distance is equivalent to finding a per-
mutation matrix that allows this mapping between distributions. In literature
one can find several regularized, approximate or simplified forms of the GWP:
Authors in [198] introduce the entropic regularization approach and uses it in
combination with the Sinkhorn’s matrix scaling algorithm for solving the GW
problem; another paper [199] considers a variant of the optimal transport prob-
lem that restricts the set of admissible couplings to those having a low-rank
factorization, achieving a linear time approximation for GWP. We will instead
consider the problem’s hard–assignment version, where the desired mapping
between points is bijective and the probability distributions in the two spaces
assign equal weight to all points. In this form, the cost function is an instance
of a Quadratic Assignment Problem (QAP) [183], which makes it an NP-hard
problem in general [200]. As anticipated, one is concerned with mapping two
point clouds which belong to different metric spaces. One is given two sets of N
points, S1 = {x1, ..., xN} and S2 = {y1, ..., yN}, belonging to two distinct vector
spaces, each equipped with a distance, aij = d1(xi, xj) and bhk = d2(yh, yk).
Further, one can define a distance between two pairs of points. Here, we used
the squared euclidean metric d(aij, bhk) = (aij − bhk)

2. We ultimately want to

154 Chapter 6. Benchmarking of non-Turing paradigms

find the permutation matrix γ, such that the following expression is minimized:

PGW(γ) =
∑
ij

∑
hk

d(aij, bhk)γihγjk . (6.9)

Since γ is a permutation matrix, the following expressions must hold:

γij ∈ 0, 1 ∀i, j∑
i

γij = 1 ∀j∑
j

γij = 1 ∀i

(6.10)

The Gromov–Wasserstein distance is the value attained at the minimum. The
implementation therefore uses n2 binary variables. This problem is already
naturally in a quadratic form similar to QUBO, yet is constrained. To ensure
γ is a permutation matrix we add the following restraints to the cost function
via a penalization technique. (∑

i

γij − 1

)2

∀j(∑
j

γij − 1

)2

∀i

(6.11)

For VMM and Gurobi, we transform this problem into a corresponding ILP by
merging the products in γ into a single auxiliary variable.

GWP: Implementation details

To define the hard–assignment Gromov–Wasserstein problem, one begins by
considering two sets of N points, S1 = {x1, ..., xN} and S2 = {y1, ..., yN}, be-
longing to two distinct vector spaces each endowed of a distance, aij = d1(xi, xj)

and bhk = d2(yh, yk), respectively. One can define a distance between two pairs
of points. Here, we used the squared euclidean metric d(aij, bhk) = (aij − bhk)

2.
To solve the hard–assignment Gromov–Wasserstein problem, one must find a
permutation matrix γ ,such that the following expression is minimized:

PGW(γ) =
∑
ij

∑
hk

d(aij, bhk)γihγjk . (6.12)

Starting from the initial formulation PGW, one can convert the problem into a
Integer Linear Programming problem to support VMM and Gurobi. One can

6.2. Benchmark problems 155

indeed create a linear form by introducing n4 binary variables such that:

zihjk = γihγjk (6.13)

This strategy is typically used to linearize a Quadratic Assignment Problem
[201]. The expression to minimize is now:

P ILP
GW({zihjk}) =

∑
ij

∑
hk

d(aij, bhk)zihjk (6.14)

subject to

γih + γjk ≤ zihjk + 1 ∀i, h, j, k (6.15)

to enforce expression 6.13. Inequalities in 6.15 ensure that the condition zihjk =
0 implies γijγjk = 0, while γijγjk = 1 can be realized only if zihjk = 1. In
addition, since d(aij, bhk) ≥ 0 for every combination of indices, minimizing 6.14
automatically ensures that, if γijγjk = 0, then zihjk = 0. Thus the addition
of the constraint in expression 6.15 is sufficient to impose γijγjk = zihjk. One
can reduce the number of variables in the problem by noting that, if i = j

or h = k, then the product on the right hand of expression 6.13 equals zero.
Indeed, in this case, the two elements of the gamma matrix would belong to the
same row or column, which means that at least one of them must equal zero.
Furthermore, zihjk = zjkih holds true. Thus, in the cost function, one should
consider only the terms zihjk, such that i < j:

P ILP
GW (γ) =

∑
i>j

∑
hk

d(aij, bhk)zihjk +
∑
i<j

∑
hk

d(aij, bhk)zihjk =

=
∑
i<j

∑
hk

(d(aij, bhk) + d(aji, bkh)) zihjk =

= 2
∑
i<j

∑
hk

d(aij, bhk)zihjk ,

(6.16)

since the distance matrices are symmetric. Note that the case i = j has already
been ruled out by the previous observation. The above approach reduces the
number of z–variables from n4 to 1

2
n2 ·(n−1)2, that is, the number of z variables

is halved asymptotically.
As we already observed, the matrix γ must be a permutation matrix. The sum
of each row must equal one, so one gets n equations with n coefficients, resulting
in n2 nonzero coefficients in the constraint equations. Since the same is true for

156 Chapter 6. Benchmarking of non-Turing paradigms

columns, the total number of nonzero coefficients is 2n2. Since VMM is able to
implement inequalities only, equations of the form a = b are automatically and
internally mapped by VMM into two inequalities a ≤ b and a ≥ b. This this
leads to 4n2 nonzero coefficients in the constraint expressions. This is an internal
remapping of VMM. Both Gurobi and VMM receive the same specification with
the equalities as input file.
To implement inequalities, one should consider the condition on γij and zihjk

appearing in eq. 6.15. The constraint matrix thus contains 3n2 · (n2 − 1)/2

nonzero elements. The total number of nonzero coefficients in the constraint
expressions is 1

2
n2 · (3n2 + 1), which become 1

2
n2 · (3n2 + 5) when implemented

on VMM. Asymptotically, the number of constraints goes as 3
2
n4, while the

number of binary variables goes as 1
2
n4, so that the number of constraints is

3 times the number of variables asymptotically. Similarly to the factorization
case for D-Wave, we reformulate the constraints as penalty terms. This leads
to following cost:

PQUBO
GW ({γij}) = PGW({γij}) + λR({γij}) (6.17)

where the first term is the original Gromov-Wasserstein cost and the penalty
regularizer R({γij}) is ruled by the λ > 0 coefficient, which enforces the cor-
rectness of the γ matrix:

R({γij}) = −4
∑
i,j

γi,j +
∑
h,k,j

γh,jγk,j +
∑
i,h,k

γi,hγi,k (6.18)

R({γij}) correctly attains a minimum if and only if all the following constraints
are satisfied: ∑

i

γi,j − 1 = 0 ∀j∑
j

γi,j − 1 = 0 ∀i
(6.19)

Indeed, starting from 6.19, we can square the left–hand size of both constraints,
obtaining two expressions that attain the sole global minimum only when the
constraints in 6.19 are satisfied (i.e. when γ is a permutation matrix). Summing
those two expressions gives back exactly 6.18. The proper value for λ in 6.18
must be found by careful testing (see Section 6.3.2). This is because a higher
or lower value can lead to only the satisfaction of the constraints or only to the
minimization of the cost, respectively, while both are desired. The cost func-
tion in equation 6.17 contains every possible quadratic term of the variables.

6.2. Benchmark problems 157

The graph representing the problem is therefore fully connected, while D-Wave
Advantage is topologically characterized by a very sparse graph of qubits. The
solution to this hardware limitation is to use embedding techniques to link to-
gether nearby qubits with a strong ferromagnetic coupling, so that they behave
as a single two-state system. With this approach, one can implement highly
connected graphs.

6.2.3 Capacitated Helicopter Routing Problem (CHRP)

CHRP is a helicopter flight scheduling problem, in which one aims to minimize
the overall flight time. CHRP was introduced in [202], based on the formula-
tion of the Dial-a-ride problem (DARP) [203]. Each flight can have multiple
legs to connect offshore oil rigs. The flights are scheduled to transport workers
from heliport to rigs, from rig to rig, and from rig to heliport. The problem
has limiting constraints, such as the maximum range for each helicopter type
and maximum capacities for the weight of the workers and luggage. As a hard
constraint, CHRP requires all workers to be transported. CHRP is then a multi-
agent routing problem where agents (helicopters) interact through the temporal
worker assignment constraints. These characteristics make CHRP very hard,
even for small instances, and therefore intractable for real world scenarios. In-
deed, CHRP and similar problems such as the DARP are NP-hard in the strong
sense [204] since they generalize the Travelling Salesman problem with time win-
dows, which is proven to be NP-complete [205]. Because of its hardness and
commercial relevance, multiple heuristics have been developed to provide ap-
proximate solutions, using clustering search [206], genetic algorithms [207], and
a League Championship Algorithm [208]. CHRP can be cast to an integer lin-
ear programming problem with all variables being binary. The problem is then
automatically in QUBO form with a null quadratic term and thus usable on
D-Wave. The problem size can scale with the number of rigs (locations) and
the number of workers, while the maximum number of flights is usually set ac-
cording to the number of workers. In the Integer Linear Programming format,
all binary variables are decision variables. The formulation has two blocks of
constraints. One block defines the helicopter routes as cyclic paths in a dynamic
graph. The other block defines the assignment of workers to flights.

158 Chapter 6. Benchmarking of non-Turing paradigms

CHRP: Implementation details

Let us consider a directed graph G = (V,E), where V is the set of vertices
and E the set of edges. The vertex with label 0 maps the heliport, and the
remaining vertices map the oil rigs. The graph is fully connected since we have
legs connecting all rigs and heliport. We define binary variables vr,t,f being 1 if
the flight f stops at the location (rig or heliport) r at time t and binary variable
el,t,f being 1 if the flight f includes the leg l departing at time t. The time t is an
integer index that only defines the order of the events and not the actual time.
Hence, t has a range that goes from 0 to T , with T being the maximum number
of legs for a given flight (T can either be set by the user or evaluated as the
maximum number of legs a flight can include given the helicopter range). The
index r ∈ E is 0 for the heliport and ranges from 1 to R for the rigs. The index
l ∈ E spans all possible 2R(R + 1) directed edges. Finally, the f is the flight
index, which ranges form 1 to F , with F either set by the user or estimated
from the number of passengers. To define the equations, it is also useful to
introduce maps δ : E → V and α : E → V , which return the departing and
arrival vertices of an edge, respectively. We can also define the formal inverse
maps δ−1 : V → E and α−1 : V → E, which return all outgoing edges from and

6.2. Benchmark problems 159

all incoming edges to a vertex, respectively. Using these definitions, we have∑
l∈δ−1(r)

el,t,f ≤ vr,t,f t ∈ {0, .., T − 1},∀r, f (6.20)

∑
l∈α−1(r)

el,t,f = vr,t+1,f t ∈ {0, .., T − 1},∀r, f (6.21)

∑
r

vr,t,f ≤ 1 ∀t, f (6.22)∑
r

vr,t+1,f ≤
∑
r

vr,t,f t = {0, ..., T − 1},∀f (6.23)

vr=0,t,f ≤ 1 t ∈ {0, T}, ∀f (6.24)

vr,t,f = 0 t ∈ {0, T}, r ∈ {1, ..., R},∀f (6.25)
R∑
r=1

vr,t+1,f + vr=0,t,f ≤ 1 t = {0, ..., T − 1},∀f (6.26)

el,t,f = 0 l ∈ δ−1(r = 0), t ∈ {1, ..., T},∀f (6.27)
T∑
t=1

vr=0,t,f ≥ vr=0,t=0,f ∀f (6.28)

el,t,f = 0 l ∈ δ−1(r) ∩ α−1(r), t ∈ {0, ..., T − 1},∀f (6.29)

vr,t,f + vr,t+1,f ≤ 1 t ∈ {0, ..., T − 1}, ∀r, f (6.30)∑
l,t

dlel,t,f ≤ range(f) ∀f. (6.31)

This set of linear relations fully defines each flight. Equation (6.20) requires
that, if a flight includes a location at a given time, then that flight can have one
leg departing from that location at that time. Equation (6.21) requires that,
if a flight includes a location at a give time, then that flight must have a leg
arriving to that location at that time. Equation (6.22) requires that the flight
includes at most one location at time. Equation (6.23) requires that, if at a
given time the flight does not include any location, then it does not include
locations at the subsequent times either. Equation (6.24) and (6.25) require
that, at time t = 0 and t = T , if the flight includes locations, they must be
the heliport. Equation (6.26) and (6.27) require that, at any time except t = 0,
a flight cannot have departing legs from the heliport. This means that, if the
heliport is visited at a time other than 0, then it must be the last stop. These
two constraints are redundant. One would be enough. However, including both
help the convergence of solvers like Gurobi since it includes more cutting planes.
Equation (6.28) requires that, if a flight has legs, it must stop at the heliport
twice. Equations (6.29) and (6.30) require that a helicopter cannot remain two

160 Chapter 6. Benchmarking of non-Turing paradigms

consecutive times at the same location. Again, these constraints are redundant
but they help the convergence of solvers. Finally, equation (6.31) requires that
a flight cannot exceed the range associated with the corresponding helicopter.
We note that these constraints do not require that a flight has any legs, so we
can have empty flights. Moreover, this formulation allows flights to include the
same rig visited multiple nonconsecutive times.
This first set of equations defines closed routes for helicopters in terms of closed
paths in a graph. However, they are actually independent routes since we have
not yet included the worker assignments. To this end, we define the binary
variables pkp,t,f being 1 if the helicopter operating the flight f picks up the
passenger p at time t and dfp,t,f being 1 if the helicopter operating the flight f
drops off the passenger p at time t; the passenger index p ranges from 1 to P .
We also define maps ρ : {1, ..., P} → V and γ : {1, ..., P} → V , which return
the pick up and drop off locations for each worker, respectively. Conversely, we
define the inverse maps ρ−1 : V → {1, ..., P} and V → γ : {1, ..., P}, which
return all the workers that need to be picked up and dropped off at a given
location, respectively. Using these variables with the previous variables, the
assignment problem can be formalized as:

∑
t,f

pkp,t,f = 1 ∀p (6.32)∑
t

pkp,t,f =
∑
t

dfp,t,f ∀p, f (6.33)∑
t

pkp,t,f t ≤
∑
t

dfp,t,f t ∀p, f (6.34)∑
p∈ρ−1(r)

pkp,t,f +
∑

p∈γ−1(r)

dfp,t,f ≥ vr,t,f ∀r, t, f (6.35)

∑
p∈ρ−1(r)

pkp,t,f +
∑

p∈γ−1(r)

dfp,t,f ≤ (|ρ−1(r)|+ |γ−1(r)|)vr,t,f ∀r, t, f (6.36)

t∑
t′=0

∑
p

pkp,t′,f −
t∑

t′=0

∑
p

dfp,t′,f ≤ capacity(f) ∀t, f (6.37)

t∑
t′=0

∑
p

wppkp,t′,f −
t∑

t′=0

∑
p

wpdfp,t′,f ≤ maxweight(f) ∀t, f (6.38)

t∑
t′=0

∑
p

wlppkp,t′,f −
t∑

t′=0

∑
p

wlpdfp,t′,f ≤ maxluggage(f) ∀t, f (6.39)

This second set of equations assigns passengers to flights. Equation (6.32)
enforces that all workers are picked up and none are excluded. Equation (6.33)

6.3. Results 161

requires that, if the helicopter operating the flight f picks up the worker p at
any time, then it must drop off the same passenger at some time. Equation
(6.34) enforces that the drop off happens after the pick up. Equations (6.35)
and (6.36) enforce that a flight has a leg to the location r if and only if (i.e. the
vice versa is enforced too) the helicopter operating that flight either picks up or
drops off a worker at that location. In equation (6.36), |ρ−1(r)| and |γ−1(r)| are
the number of elements returned by the inverse maps. Equation (6.37) requires
that the number of passengers on the helicopter operating the flight f does not
exceed its maximum capacity at any time. Equation (6.38) requires that the
total passenger weight on the helicopter operating the flight f does not exceed
its maximum weight capacity at each instant of time. Equation (6.39) requires
that the total luggage weight on the helicopter operating the flight f does not
exceed its maximum luggage weight capacity at each instant of time. The model
is finally completed by the cost function:

min
e

∑
l,t,f

dlel,t,f . (6.40)

6.3 Results

We challenged the platforms on the above-mentioned orthogonal hard problems:
Semiprime Factorization probem (FP), Hard-Assignment Gromov-Wasserstein
problem (GWP) and the Capacitated Helicopter Routing Problem (CHRP). To
provide a fair comparison we take advantage of the previously introduced Mean
First Solution Time (MFST). We perform a scalability assessment, analyze the
parameters dependency of the solvers and the time required to deliver a first
approximate solution.

6.3.1 Scalability assessment

Here, we discuss the scalability of the analyzed platforms in terms of MFST.
This metric allows one to precisely capture the expected waiting time to obtain
the first solution, or in other words the expected required computing time in
an operative scenario. This is achieved by taking into account explicitly failed
runs (no solutions found in the maximum allowed wall time). The timeout for
D-Wave and VMM were set based on the available computing budget for each
machine. D-Wave was run for dozens of seconds for each problem instance co-
herently with the granted computational time. The VMM was executed for a
few hours while running the GPU backend, and for several days when utilizing

162 Chapter 6. Benchmarking of non-Turing paradigms

the CPU backend (see each problem section for precise timeout values). Gurobi
was granted a timeout of 72 hours (maximum wall time of the IIT HPC infras-
tructure). For every problem, Gurobi was run on a cluster node with 32 cores
(2 physical sockets). To evaluate the scalability and remove possible biases, we
define n instances of a problem given a prescribed problem size N . We esti-
mate the MFST of each problem and report the average MFSTs between all the
problem instances given one single size. The scaling curve is the set of problems
averaged MFSTs and results are reported in log-log scale.

Semiprime Factorization problem (FP)

We defined n = 5 different problem instances (five different p, q pairs). To run
the benchmark on Gurobi, we randomized 5 times the seed for each problem
instance, for a total of 25 runs per problem size. In Figure 6.2a, a plot with
the average MFSTs of the performed runs is shown. Each point is the average
MFST of the problem instances belonging to the same bit size N . The average
MFST for VMM was estimated based on the same 5 instances and 120 different
seeds for each instance. This setting was required to better estimate the solution
probability. We used the standard CPU backend of the Memcomputing Software
As a Service platform (Saas). For each run, VMM simulated 2 replicas of the
circuit corresponding to FP, with a maximum timeout of 10 hours. To solve
the problem, VMM usually runs a Monte Carlo algorithm to explore the space
of the circuit parameters before simulating it. For this specific problem, no
parameter space exploration was performed and the number of Markov chains
was set to 120 to perform the calculation of the 120 different seeds in parallel on
60 cores. Hence, all the runs correspond to the same single circuit topology and
parameter set. We analyzed the scaling with respect to the increasing problem
size, namely the bit size in the interval [14, 64]. Gurobi was very effective in
relative terms (see MFST in Figure 6.2), since it performed a quick presolve of
about half of the instances under consideration. Gurobi’s ability to reduce the
number of variables and constraints of the optimization problem depends on
the instance and thus on the semiprime to be factorized. For N = 64, Gurobi
performed a presolve calculation effectively enough to reduce solution time by
four orders of magnitude compared to the problems where this simplification
was not possible. At N = 68, the problems that Gurobi could not simplify
exceeded the wall time of 72 hours of computation. For this reason, problems
with a bit size greater than 64 were not considered. In the range N = 37 to
N = 64, the MFST for Gurobi scales with a slope of 16.91 ± 0.92 (see Figure
6.2b). All instances between N = 15 and N = 42 were solved at least once by

6.3. Results 163

VMM. The linear fit of the MFSTs in the range between 37 and 42 bits resulted
in a scaling with a slope of 14.64 ± 0.62. Therefore, VMM obtained a slightly
better slope with respect to Gurobi, but the overall execution time was still
superior, and VMM could not solve all instances for larger bit sizes. We also
used D-Wave devices to solve FP in the interval between 14 and 17 bits. The
number of device queries (which can be considered as the number of different
seeds in a quantum device) was 104 up to N = 14 and then was gradually
increased up to 8× 104 at N = 17 (∼ 12 seconds of computational time). The
number of runs was doubled each time that N increased by a unit. We found
no significant differences in the slope between D-Wave Advantage and the D-
Wave 2000Q, but D-Wave Advantage proved slightly faster, probably because
its greater connectivity allows for shorter physical qubit chains [209]. Overall,
we found that D-Wave devices could only tackle small instances of the problems,
whereas VMM and Gurobi could deal with significantly higher bit sizes. Gurobi
was the fastest approach overall.

Hard-assignment Gromov-Wasserstein problem (GWP)

GWP’s size and complexity depends on the variable N i.e. the number of points
to match between the two sets. To run our benchmark, we defined 5 problem
instances for each problem size. For each instance, multiple runs were performed
with different random seeds for the solvers. Results are reported in Figure 6.2b.
For Gurobi, each instance was solved 5 times with different random seeds, for
a total of 25 runs for each problem size. For VMM, each instance was solved
5 times with different random seeds for the solver, for a total of 25 runs for
each problem size, as for Gurobi. Contrary to FP and CHRP, we found an
advantage in using the GPU backend of the Memcomputing Saas solver. We
thus used GPUs to solve GWP on VMM, setting the timeout for each instance
to Tmax = 1900 seconds. For D-Wave Advantage, every instance was sampled
with thousands of annealing cycles, going from 50, 000 samples for N = 3, 4, 5

up to 390, 000 samples when N = 7, 8. We report that 390, 000 samples resulted
in ∼ 60 seconds of access time for D-Wave Advantage. Gurobi solved all the
runs for each instance of each problem size up to N = 16 points. At N = 17,
the most computationally intensive instances required a wall time exceeding 72

hours, so we solved every instance only once (a single seed). The corresponding
point is indicated with a ′+′ marker on the plot. The slope for Gurobi was
16.89±0.83. Figure 6.2b shows that the VMM achieved a better overall scaling
than Gurobi. The slope of the fit in log-log scale was 5.89 ± 0.50, which was
significantly better than the competitors. At N = 12 and N = 13, Gurobi and

164 Chapter 6. Benchmarking of non-Turing paradigms

Figure 6.2: MFST plots for all the tested computing plat-
forms, in log10, log10 scale. Every problem size corresponds to
5 different problem instances using different seeds. Whenever a
problem size on a given machine includes unsolved instances, a
smaller dot is used and the number of solved instances is shown.
The error bars represent the standard deviation. We report both
baseline and parameter-optimized scaling results. In the scaling
section, we discuss these results. a: FP MFST with respect to
the number of bits of the semiprime. b: GWP MFST with re-
spect to the number of points. The red plus mark is the point
N = 17 for Gurobi, which was obtained by solving each instance
only once, due to time constraints. c: CHRP MFST with re-
spect to the number of workers. d: Zoom of the GWP plot
showing the slopes for Gurobi and VMM solvers for the biggest
problems. The VMM with enhanced settings achieved the best
performances. The highlighted rounded slope values have the
following values and standard deviations: Gurobi 16.89 ± 0.83;

VMM 5.89± 0.50; VMM baseline 10.93± 0.98.

6.3. Results 165

VMM required a similar time to solve the problem, but the wall times quickly
diverged for bigger problem sizes. At N = 16, the VMM required an average
MFST of 409 ± 107s (∼ 7 minutes) compared to the 9560 ± 3730s required
by Gurobi, i.e. VMM was ∼ 23 times faster than Gurobi. VMM was able
to tackle problems almost up to the same size as Gurobi, but did not solve
every instance of the hardest problem size, N = 17. D-Wave could only tackle
small instances (N ≤ 8), thus it is hard to make a sound comparison with other
technologies. AtN = 8, D-Wave Advantage solved only one of the five instances,
finding the correct solution for this instance only once over 390, 000 trials. The
resulting point (the rightmost in the D-Wave plot) is thus of limited statistical
significance. Deeper insights will be achieved when the D-Wave hardware is
advanced enough to tackle bigger instances of this problem. Overall, VMM was
slightly less reliable than Gurobi in the biggest problem sizes, but showed the
best scaling behaviour.

Capacitated Helicopter Routing Problem (CHRP)

We fixed the number of rigs to 25 and varied the number of workers (w) and
the pick-up and drop-off locations generated at random. When converted into
QUBO and embedded into chimera topology, the problem becomes too large to
fit in D-Wave, even for a few passengers, thus the device was not included in the
comparison plot. Summary results are presented in Figure 6.2c. We considered
five instances for each problem size, and every instance was submitted to Gurobi
and VMM with 5 different seeds, for a total of 25 submitted problems for every
worker size. We used the GPU backend of the Memcomputing Saas, setting the
timeout for each instance to 5 hours. The slopes of the two solvers in log-log
scale were very similar for the problem sizes considered (5.2 for Gurobi versus
5.1 for VMM). In contrast to GWP, the CHRP did not show an advantage for
VMM in scaling terms. Additionally, while Gurobi solved all instances, VMM
was slightly less reliable beacause it could not solve all instances of the biggest
size (w = 24). Overall, the results of the three benchmark problems show
that D-Wave’s current hardware can solve only very small instances. VMM
managed the biggest problems well in most cases. VMM’s scaling was similar
to Gurobi, but was superior for one problem. We note that, for GWP, VMM
used GPU hardware to achieve significant speed-ups. In contrast, Gurobi, and
the branch-and-bound [210] method in general, is not particularly amenable to
a GPU implementation. This is important because the ability to exploit GPU
architectures may be critical to improving the overall computing time.

166 Chapter 6. Benchmarking of non-Turing paradigms

Scalability results for TTS

In this section, we report the results using the TTS as metric to measure scalabil-
ity. The formula that correlates the estimations of MFST with the estimations
of TTS is:

TMFST =
|I| − |Is|
|Is|+ 1

Tmax +
|Is|
|I|

T TTS (6.41)

where
TTS ≡ ts

p
, p =

|Is|
I

(6.42)

TTS and MFST are identical every time all problem instances are correctly
solved, which means |I| = |Is|. This is the case for Gurobi in all the plots. TTS
and MFST are also approximately identical for D-Wave. Indeed each D-Wave
run time is approximately equal to Tmax, which is the qpu total access time. For
this reason, T TTS ∼ Tmax|I|/|Is|. Considering then a large collection of trials,
the estimation of MFST is:

TMFST ∼ |I| − |Is|
|Is|+ 1

Tmax + Tmax
|I|→∞−−−−→ |I|

|Is|
Tmax (6.43)

which is approximately equal to T TTS.
For VMM, there is a slight difference between the two metrics, with TTS esti-
mates generally being equal to or less than the MFST. This behavior is visible
in the plot in figure 6.3 when the probability of success of the run is low (e.g.
at N = 60).
The TTS diverges from the MFST when the probability to solve the problem is
very low and the Tmax is simultaneously rather different from the typical solu-
tion time. In these cases, using the MFST allows one by definition to capture
correctly, in absolute terms, the average time needed to get the first solution.
This metric should thus be preferred to the TTS.

6.3.2 Parameters dependency

D-Wave and VMM allow users to tune several parameters that directly affect the
dynamic of the physical and simulated device, respectively. For each machine,
we identified a single problem size on which to execute a tuning protocol. Those
optimal parameters were then used for all the other problem sizes, improving
performances. Below, we systematically compare the scaling results using the
default parameters against their tuned version.

6.3. Results 167

Figure 6.3: Comparison between MFST and TTS as metrics to
estimate the computational cost to solve FP. The TTS slightly
underestimates the scaling for VMM. Plot in log10, log10 scale

where N is the number of bits of the semiprime.

Figure 6.4: Comparison between MFST and TTS as metrics to
estimate the computational cost to solve GWP. The two metrics
are close to identical for each solver. Plot in log10, log10 scale

where N is the number of points.

168 Chapter 6. Benchmarking of non-Turing paradigms

Figure 6.5: Comparison between MFST and TTS as metrics
to estimate the computational cost to solve CHRP. The TTS
slightly underestimates the actual expected cost to reach a solu-
tion for the first time for VMM. Plot in log10, log10 scale where

w is the number of workers.

Memcomputing tuning

The VMM User Interface (UI) provides access to two main classes of tunable
parameters. The first class sets the physical features of the circuit. The second
class sets the simulation settings. The parameters that set the physical features,
and hence the internal dynamics of the VMM, are 19. They represent electronic
element characteristics like resistances, capacitances, and transistor model pa-
rameters. On the other hand, the simulation is performed according to several
simulation parameters used to set the control unit of the VMM [173]. Examples
are the total timeout for a job, the amount of virtual time to simulate, and limits
for the wall time. The VMM UI includes a parallel tempering (replica exchange
Markov Chain Monte Carlo) to test and optimize multiple circuit physical pa-
rameters. This is called the Dynamic Parameter Search (DPS) mode for the
VMM. It runs multiple circuit realizations using different physical parameters.
Each of these realizations are a Markov chain for the parallel tempering. Each
Markov chain changes the physical parameters, simulates the circuit, returns a
score based on the VMM performance for that parameter set, and accepts or
rejects the change following the Metropolis–Hastings algorithms with adaptive
temperatures. The user can set the number of Markov chains, the number of

6.3. Results 169

iterations, the standard deviation, and the number of parallel processes. This
latter hyper-parameter allows one to run multiple Markov chains in parallel.
The hardware used were virtual machines running on Google Cloud (Intel Xeon
60 virtual core processor for the CPU VMs and NVIDIA 8 V100 GPUs for
the GPU VMs). The number of parallel processes were therefore always set to
equal or double the virtual machine cores or number of physical GPUs, depend-
ing on the type of virtual machine used. During the tests, it was clear that the
physical parameter tuning would heavily impact the VMM performance. In our
tests, six distinct rounds of DPS with 1000 iterations each were performed for
the benchmark problems. Based on the problem-solving performance, the best
physical parameter sets from each DPS round were selected and used to initial-
ize the chains for the next round. In each round, we checked if the boundaries
for the physical parameters needed to be enlarged or shrank based on the score
distribution. The final result was a collection of sets of physical parameters.
Multiple sets can be useful because the user can then run multiple realizations
of VMM, increasing the convergence and so obtaining better results. Once good
samples of physical parameters were found for one problem instance, we used
these parameters to run the other problems of the same type but different sizes
and instances. We did this using the Dynamic Solution Search (DSS) mode.
However, once we had found the physical parameters, a few extra parameters
for the VMM control unit were tuned. To describe these parameters, it is useful
to briefly detail how the VMM control unit works. The control unit sets up
the VMM, assembling and connecting the self-organizing gates to embed the
problem. It sets the virtual time, checks the limit of wall time, and initializes
the circuit components (e.g. capacitors, transitors). This initialization is set at
random by default, but the user can feed a custom initialization (warm start)
or use the rounding of the solution of the ILP relaxation. For our tests, we
used random initialization. Moreover, the control unit can also restart the cir-
cuit, using a perturbation of the best solution found in the previous simulation.
Therefore the user can set up the number of iterations where a restart will be
operated, how to perturb the best assignment to use as an initial condition for
the restart (the "switch fraction" parameter), the virtual time of each iteration,
the limit to the wall time, and the total time out. Other advanced parameters
for the control unit can be set, e.g. a target for objective function (when/if
reached, the simulation ends and the VMM returns) and the number or replicas
of the circuit. Each circuit actually comprises several coupled interconnected
replicas of itself to enhance the convergence. In our tests, we used 2 replicas.
Figure 6.2a shows how the parameter tuning affected the MFST of VMM in

170 Chapter 6. Benchmarking of non-Turing paradigms

PF, compared to the baseline. Figures 6.2b and 6.2c show the same for GWP
and CHRP, respectively.

D-Wave tuning

We tuned the following parameters for the D-Wave devices:

• tann: the annealing time, namely the time duration of a single annealing
cycle.

• λ: the regularization term that accounts for the penalty on the constraints.
For the factorization problem, this parameter was obtained from previous
literature [193].

• c = Jchain/Qmax: the ratio between the intensity of the chains coupling,
Jchain, and Qmax = maxi,j{ai, bi,j}, where ai and bi,j are the biases and the
couplings, respectively, of the QUBO problem Q submitted to the D-Wave
device.

The parameter tuning procedure involves running 10, 000 annealing cycles for
several combinations of the parameters and choosing the best one in terms of
TTS (Time To Solution). For both the problems where D-Wave devices were
used (semiprime factorization and hard–assignment Gromov–Wasserstein), we
ran the parameter tuning on the biggest problem size.

Semiprime Factorization problem (FP)

For VMM, we considered N = 29 as the tuning point. In Figure 6.2a, a com-
parison between the results before and after the parameter tuning is shown.
Instances N ∈ [30, 42] were not solved using default parameters. After the
parameter tuning, all the instances up to N = 42 were solved in less than
∼ 4 × 103s. For D-Wave, the size N = 14 was used as the tuning point. The
tuned parameters didn’t result in an improved solution probability. The tuning
procedure involved c and tann, at the point N = 14. We tested a total of 32
different combinations for c and tann, which can be found in table (6.1).
This strategy was used for both the available devices D-Wave 2000Q and D-
Wave Advantage. The best value found was c = 0.598 for D-Wave 2000Q and
c = 0.490 for D-Wave Advantage. Finally, the best annealing times found were
tann = 8 for D-Wave Advantage and tann = 1 for D-Wave 2000Q (additional
annealing times, namely tann = 16, 32, 64, were tested, keeping the c value fixed,
but without any visible improvement).

6.3. Results 171

Parameter Values tested

c 0.330, 0.402, 0.490, 0.598,
0.729, 0.888, 1.083, 1.320

tann 1,2,4,8

Table 6.1: Set of tested values for D-Wave and semiprime fac-
torization

As shown in Figure 6.2, the parameter tuning for N = 14 did not lead to sen-
sible improvements in TTS for instances of size N > 14. Therefore, for the
semiprime factorization problem, the optimized D-Wave parameters did not
exhibit transferability.

Hard–Assignment Gromov-Wasserstein problem (GWP)

In the GWP, VMM without any parameter tuning solved only one of the five
instances for N = 15, with no instances solved for N = 16 and N = 17 (see
Figure 6.2b). The parameter tuning was performed on one instance at N = 16,
enabling VMM to solve all other instances for N = 16 and all but one instance
for N = 17. The tuning process also sensibly reduced the computing time for all
N < 16 cases. This means that for GWP the parameter tuning of VMM shows
good transferability: spending computational time to get the right parameters
is an effort that systematically boosts the solver’s ability to tackle new GWP
instances, even at different problem sizes. The most remarkable effect was at
N = 12, where the MFST of VMM was reduced by a factor of 16.
The effect for D-Wave Advantage was even more remarkable: the tuning pro-
cedure at N = 6 reduced the MFST by more than one order of magnitude
at all problem sizes. The highest speed-up (∼ 78 times faster) was found at
N = 3. To tune the parameters, we used the N = 6 point. We tested a total
of 64 different combinations for c and λ, whose values are reported in table
(6.2). Here, we additionally tuned λ to limit the total needed computing time
to stratify the parameter selection. That is, first we selected c and λ and then
we optimized the annealing time. Results are shown in figure 6.6, where the
color scale encodes the percentage probability that the solver found the global
optimum. Figure 6.7 correspondingly shows the percentage of samples in which
the constraints are satisfied (i.e. the solution corresponds to a correct permu-
tation matrix). We observe that a high probability of satisfying the constraints
does not always correspond to a high probability of finding the global optimum,

172 Chapter 6. Benchmarking of non-Turing paradigms

Parameter Values tested

c 0.330, 0.402, 0.490, 0.598,
0.729, 0.888, 1.083, 1.320

λ 4,6.5,10,16,25.5,40,64,101

Table 6.2: Set of tested values for D-Wave and Gromov-
Wasserstein

although the two quantities are partially correlated. Indeed, according to fig-
ure 6.7, one should choose λ = 25.5 or λ = 40, while in figure 6.6 λ = 16

seems a much more robust choice. Since the aim is to fully solve the problem,
we chose λ = 16. The value of c was easier to pick since c = 0.598 produces
consistently better results in both figures 6.6 and 6.7. Keeping λ = 16 and

Figure 6.6: Test performed on the D-Wave machine for N = 6
for GWP. The color of each box encodes the percentage proba-

bility that the global optimum is found.

c = 0.598 fixed, we performed 10, 000 annealing cycles for five different problems
with N = 6, using seven different annealing times. Figure 6.8 represents the
TTS versus tann. Increasing tann steadily reduces the TTS, in contrast to the
semiprime factorization case. This dependence of TTS vs tann is in accordance
with the adiabatic theorem, which predicts that increasing the annealing time
will produce a better solution [63], [64]. Nonetheless, lower annealing times are
useful for decoupling the quantum state from the outer environment. Indeed,

6.3. Results 173

Figure 6.7: Test performed on the D-Wave machine for N = 6
for GWP. The color of each box encodes the percentage probabil-
ity that the matrix used in GWP is a valid permutation matrix.

Figure 6.8: Test performed on the D-Wave machine for N =
6, c = 0.598, λ = 16 for GWP. For each annealing time (x-
axis), we considered 5 different problems of that size and we
performed 10.000 annealing cycles for each. The values on the

y-axis represent the average TTS.

for flux qubits (the technology used in D-Wave), decoherence times are usually
measured in dozens [211] or hundreds of nanoseconds [212]. Such times are

174 Chapter 6. Benchmarking of non-Turing paradigms

much lower than the fastest annealing time available on state-of-the-art Adia-
batic Quantum Computers (AQC) (0.5 µs on D-Wave Advantage). Nonetheless,
some authors have reported that AQCs appear to be surprisingly resilient to
noise and imperfections and that they can show evidence of quantum behavior
for annealing times in the order of microseconds [172], [213], [214]. Here, the
annealing process seemed to benefit from longer annealing times, which could
mean that the noise had a limited impact, or that the fluctuations induced by
the outer noise boosted the system’s ability to reach the global minimum [215].
On the other hand, in the semiprime factorization case, longer annealing times
did not improve performances.

Capacitated Helicopter Routing Problem (CHRP)

Parameter tuning allowed VMM to reduce all its MFSTs, peaking to a ten-
fold reduction for p = 10 (see Figure 6.2c). While the baseline VMM solved
all instances up to p = 10, VMM with tuned parameters solved all instances
up to p = 22. The tuned VMM could tackle problems with ∼ 3.5 times the
number of nonzero elements in the ILP problem matrix, compared to the base-
line. The efficacy of the solver was therefore greatly increased, showing good
transferability of the optimal parameters. Overall, we conclude that the tested
parameter tuning procedures are fundamental for VMM and D-Wave solvers.
For some instances of GWP and CHRP, using optimal parameters reduced by
more than one order of magnitude the required time to find the global mini-
mum. The ability to obtain an advantage using new computational approaches
such as VMM and D-Wave heavily depends on the development of better and
automated parameter tuning procedures.

6.3.3 Gap and latency driven analysis

CHRP finds direct application in industry. The ability to quickly reach a good
solution, i.e. latency, is more relevant than being able to reach the global
optimum in several real-world scenarios. Hence, we analyzed the solver’s ability
to achieve a certain gap from the true solution in a given amount of time. Figure
6.9a shows the gap from the optimal solution obtained by the two solvers with
one minute as maximum wall time. When the solver did not find a feasible
solution, the gap was considered 100%. For a number of workers w = 22, 24,
Gurobi struggled to find a feasible solution in a minute, resulting in gap values
up to 89 ± 31% at w = 24. VMM achieved better scores on the biggest sizes,
with a 19 ± 30% gap at w = 24. The gap obtained by both solvers exhibits

6.4. Discussion and Conclusions 175

great variability (as can be seen by the standard deviation) due to the different
difficulty of the tackled instances. In Figure 6.9b, we report the time required
by the two solvers to find the first feasible solution. When w increases, Gurobi
takes a rapidly increasing amount of time to satisfy the constraints. However,
VMM finds a feasible solution in a time that seems only mildly dependent on the
problem size. For comparison, Gurobi takes 0.32±0.73 seconds for w = 10 (first
nontrivial case for the solver) and 208±116 seconds for w = 24 (i.e. ∼ 650 times
slower due to increased problem complexity). VMM takes 16.5 ± 7.2 seconds
for w = 10, and 44 ± 42 seconds for w = 24, which is only ∼ 2.7 times slower
on average.

Figure 6.9: Performances of VMM and Gurobi on the CHRP
problem, in log-log scale. Errorbars have been slipped whenever
they included negative values. a: average gap percentage with
respect to the optimal solution reached by VMM and Gurobi in
60 seconds, versus the number of workers. Gurobi was faster for
small instances but its performances quickly deteriorated, while
VMM was much more solid as the problem size increased. b:
time required by VMM and Gurobi to reach the first feasible
solution, versus the number of workers. The dependence of com-
puting time on problem size clearly differed between the two
solvers. VMM was more resilient to hard instances, resulting in

a better wall time for w = 22, 24.

6.4 Discussion and Conclusions

Here, we challenged two novel optimization engines on three hard problems and
compared them with the state-of-the-art classical Turing Gurobi ILP solver.

176 Chapter 6. Benchmarking of non-Turing paradigms

Gurobi was fast and reliable for all the tested problems. However, the non-
classical solver VMM significantly outperformed Gurobi in absolute MFST and
scaling for GWP. This finding shows that the VMM solver is very effective in
some Integer Linear Programming classes. Yet, this performance boost was not
effortless, being obtained only after parameter tuning. However, the parame-
ter tuning, as for D-Wave, was performed for only one instance and the same
parameters were used to solve the other ones. It is also worth mentioning that
different parameter settings does not just lower the absolute convergence time,
but also lower the slope of the scaling. VMM and D-Wave parameters could
have been fine-tuned at different problem sizes and this could have significantly
improved the scaling results. However, computing time limitations prevented
this per-problem optimization and hence reaching larger problem sizes. In prin-
ciple VMM has no intrinsic limits in dealing with bigger problem sizes; however,
being a heuristic approach its efficiency depends on the parameters setting. A
key factor is represented by the invariance of the problem structure at increas-
ing problem sizes. When the invariance is preserved, good parameters at a
given size become “portable” to bigger problems. If the structure invariance
is not preserved (as in our hard problems) then this requires fine-tuning the
parameters at each problem size. On a practical level, VMM was also the best
solver for CHRP to find a low gap feasible solution for the hardest instances.
VMM’s performance, in terms of absolute time but not scaling, is partly due
to its use of GPUs. In contrast, Gurobi is bound to CPUs because it exploits
branch and cut and heuristics that are not easily parallelizable. VMM, in-
stead, is natively parallelizable, so able to exploit GPU (and other distributed
hardware) computing power. The fact that an algorithm is not prone to GPU
porting may significantly impact its longevity. Indeed, given the current GPUs
power, even a relatively modest algorithmic improvement which favours a GPU
porting may render CPU-based method rapidly obsolete and slow. This consid-
eration is a very practical one and holds even if the algorithm improvement does
not affect scalability theoretically. In contrast to Gurobi and VMM, D-Wave
quantum annealers tackled only small instances of the benchmark problems.
D-Wave devices have often been tested on spin-glass models, which are not
always representative of several applicative problems. For example, in [216]
the authors suggest than spin-glass problems could lead to understating the
performances achievable by AQCs; the study in [217] discusses how spin-glass
benchmarks could advantage Simulated Annealing approaches with respect to
AQCs; Authors in [184] show that industrially relevant problems are much

6.5. Benchmarking of adiabatic quantum computers for in images feature
extraction

177

harder in general than solving spin-glass models. By testing the device on real-
world problems cast to QUBO forms, we observed that the solver’s abilities are
currently limited. This is also because on D-Wave one needs to use penalties to
enforce constraints, which is not ideal. The main current bottlenecks for this
technology is the thermal noise, but the technology would also benefit from an
increase in the number of qubits and a more connected topology. Despite such
shortcomings, the tuning procedure we performed is able to accelerate D-Wave
performances significantly (up to 78 times for the GWP). Similar approaches
could prove to be fundamental in bringing practical applications of adiabatic
quantum computers closer. VMM proved to be already today a valuable tool
for some problems, also in terms of latency. Promisingly, VMM is only a circuit
emulation, whereas a physical circuit would perform much faster and would be
much more energy efficient albeit if possibly less flexible than the simulation.
Energy efficiency is a key metric that future computing paradigms ought to
carefully consider to grant long-term sustainability. We can envision that such
non-Turing solvers might find the best application when used in tandem and not
in isolation versus a classical counterpart [218]. We expect that a future chal-
lenge for High-Performance Computing will be to get the best of the two worlds,
achieving speed and maintaining energetic efficiency and programmability.

6.5 Benchmarking of adiabatic quantum comput-

ers for in images feature extraction

Adiabatic Quantum Computer, developed by DWave, is one of the most ma-
ture quantum computational technologies currently competing to experimen-
tally achieve practical usefulness.
Following the supremacy claim by Google [136] (later contested [170]), and the
utility of quantum computing before fault tolerance claimed by IBM [219] (later
contested [220]) the D-Wave team recently published experimental evidence that
AQCs can achieve an advantage in terms of wall time with respect to SA on a
spin-glass optimization benchmark [221]. Such results shed light on the current
capabilities of AQCs, but the benchmarking strategy chosen, which is widely
adopted in the literature, follows two popular tendencies that contain potential
flaws. The first is comparing AQCs performances to simulated annealing algo-
rithms, which cannot be considered a competitive classical approach in most
cases. The second is choosing a spin glass problem as a benchmark, which can
make it difficult to objectively evaluate AQCs capabilities in real-world scenarios

178 Chapter 6. Benchmarking of non-Turing paradigms

[184], [216], [217]. In [216] the authors show how spin-glass benchmark prob-
lems can lead to understating AQCs’ performances; in [217] it is discussed how
spin-glass benchmarks could advantage Simulated Annealing (SA) approaches
with respect to AQCs; on the other hand, in [184] practical real-world prob-
lems are shown to be much harder in general than solving spin-glass models.
We believe that testing AQCs on applications on the verge of machine learning
such as that considered in the following sections, can provide useful insights to
better characterize the actual level of readiness of this technology when applied
to industrial real-world problems.
In contrast with the popular approach, an exhaustive inquiry concerning the
capabilities of quantum computers must necessarily encompass an analysis of
the outcomes achieved by applying such technology to real-world industrial
problems. In particular, it is relevant to test AQCs on optimization problems
suitable to be included in a machine learning application. Indeed, the field of
machine learning is one of those that is thought to benefit most from quantum
computing [222], [223]. We selected the problem of Feature Extraction [224]
(FE), an important branch of computer vision that provides methods to auto-
matically capture meaningful patterns or features associated with images, or
image datasets. If properly selected, such features can be used for dimension-
ality reduction, acting as a basis set for a more compact latent space repre-
sentation of the original data, which typically turns out beneficial to generate
Machine Learning (ML) models with improved classification, recognition, and
detection capabilities [225]. Among the most used classical techniques to tackle
FE, one can find Principal Component Analysis (PCA) [226]–[229] and Inde-
pendent Component Analysis (ICA) [230], [231]. Deep learning-based methods
like Convolutional Neural Networks (CNNs) [232], [233] and Recurrent Neural
Networks (RNNs) [234] also make use of FE techniques. Such approaches can
be computationally demanding and may require substantial processing power
depending on the size of the dataset involved or the level of sophistication of
the selected algorithm.
AQCs offer practical means to explore quantum approaches to FE because of
their ability to handle a high number of variables[235], [236], which is enabled
by the availability of thousands of physical qubits and connectivity that char-
acterize such devices[237]. O’Malley et al. [238], [239] were among the first
to test AQCs to perform FE tasks. In [238], they introduced a workflow to
perform Non-negative Binary Matrix Factorization (NBMF), which allows to
exploit AQCs to factorize a collection of images as the product of two matrices,
one of which must be binary-valued. The continuous matrix is interpreted as

6.5. Benchmarking of adiabatic quantum computers for in images feature
extraction

179

the collection of basis "feature" images, while the binary one is the "weights"
matrix that lists which feature images must be summed up to recompose the
original images. Such an approach is widely based on the method to factorize
matrix-vector multiplication on AQCs previously introduced by Li et al. [240].
In [239], they managed to boost the performances of the quantum FE algorithm
by modifying the shape of the annealing schedule, similar to what was done for
a similar problem in Ref.[241]. Members of our team have previously worked
on applying different quantum computing paradigms [106] comprising AQCs
[242], [243] to machine learning tasks. In this novel work, we explore oppor-
tunities, challenges, and current limitations of different generations of D-Wave
quantum annealers when utilized to address FE tasks using NBMF methods.
We compare the legacy lower noise D-Wave 2000Q (now dismissed) with 2000

qubits arranged in a Chimera topology [244] (2kQ), the D-Wave Advantage 4.1
[237] with 5000 qubits arranged in a Pegasus topology [245] (Adv1) , and the
most recent D-Wave Advantage2 prototype 1.1 [246] with 500 qubits arranged
in Zephyr topology (Adv2). Such devices represent three important steps in
the history of AQCs, namely an increase in topology complexity, going from
Chimera (8 couplers per qubit) to Pegasus (15 couplers per qubit) to Zephyr
(20 couplers per qubit).
The comparison between different quantum annealing hardware allows us to
assess the evolution in the computational capabilities of AQCs and provides us
indications about the most relevant working conditions for which this technol-
ogy is expected to challenge classical digital approaches. Our study is inspired
in particular by O’Malley et al. [238], where the NBMF methodology was ap-
plied to extract salient features from gray-scale images of human faces. Here, we
consider instead an extended, more complex, dataset comprising low-resolution
RGB satellite images of airplanes, using the Adv1 processor to also double the
maximum number of features extracted with the NBMF methodology in [238]
(70 vs 35). Additionally, we applied a tuning procedure to choose the opti-
mal values for both the problem parameters and the internal parameters of the
AQCs, which allowed us to get better results in the computational time at our
disposal. The evaluation is conducted first on the optimization problem involv-
ing matrix factorization and subsequently on a feature extraction and image
reconstruction task.

180 Chapter 6. Benchmarking of non-Turing paradigms

6.6 Feature extraction on AQCs

6.6.1 Problem definition

Given a dataset of m images composed by
√
n ×

√
n pixels, we seek to find

the best possible representation of each image through a linear combination of
k << m basis images weighted with binary values, i.e. 0 or 1. In other words,
we look for a set of k basis images to optimally span via linear combination
the data-space of reference when only binary coefficients are made available.
Such a problem can be formally cast in a matrix factorization problem. Given
a matrix V of size n × m, with its columns encoding the m flattened gray-
scale images of the original dataset, the goal is to determine the non-negative
matrices W (real) and H (binary) of size n×k and k×m respectively, for which
||V −WH||F is minimum, where the norm is the Frobenius norm (square root
of the summation of the square of every element in the matrix). The complexity
of the task comes from the fact that both matrices W and H must be optimized
to achieve the best possible approximation for V . We call W the basis-image
matrix, and H the reconstruction, or latent matrix. The columns of the matrix
W encode the flattened basis images used to reconstruct the original images
of the database. The columns of the H matrix, instead, encode the binary
weights associated with the basis images. These are to be interpreted as the
values of the features of the original images in a binary latent space over which
to perform classification. A lower number of basis images will generally imply
a poorer capability to reconstruct the original images in the dataset. On the
other hand, setting a higher number of features will diminish the advantages
of FE, and each value in the binary latent space decomposition will carry less
information.

6.6.2 Computational procedure

As discussed in Refs. [238], [240], the original problem of factorizing the matrix
V into the matrix product WH via NBMF can be recast into an iterative
optimization problem where either W and H are optimized one at a time,
alternatively. The full problem can hence be decomposed into two consecutive
optimization steps as follows:

find_W : = arg min
X∈Rn×k

||V −XH||F + α||X||F , (6.44)

find_H : = arg min
X∈{0,1}k×m

||V −WX||F , (6.45)

6.6. Feature extraction on AQCs 181

where || · ||F represents the Frobenius norm, a measure of the distance between
two matrices, and α ∈ R+ a free parameter to be tweaked beforehand. The sec-
ond term in eq.6.44 is used as a regularization component to penalize solutions
with large ||X||F . Such a term forces the candidate H matrix to be sparse, so
that images in V will be reconstructed by combining only some of the basis
images in W . The two optimization problems are then solved iteratively until
the condition ||V −WH||F < ϵ is matched, with ϵ being the desired threshold
error in the reconstruction of V .

Finding W– the first problem is solved by finding the X matrix that min-
imizes the quadratic cost function

C = ||V −XH||2F + α||X||2F , (6.46)

with H initialized as discussed in Sec. 6.7. This quadratic form is minimized
via the Gurobi [179] mathematical programming solver. Gurobi implements a
wide array of heuristics that make it a reference tool for the minimization of
quadratic cost functions. It is a licensed software with a free license for aca-
demic utilization.

Finding H– as in Ref.[238], the original problem of finding the H matrix
that best reproduces V given W can be reduced to a set of independent op-
timization sub-problems to be solved for each image in the dataset. We can
indeed solve:

Hz = arg min
q∈{0,1}k

||Vz −Wq||2, (6.47)

where z = 1, 2, ...,m, and q is an array of k binary variables. The L2 norm is
used here in place of the Frobenius norm to account for dealing with vectors
rather than matrices. Such a problem can be solved by minimizing the corre-
spondent Quadratic Unconstrained Binary Optimization (QUBO) cost function,
obtained by squaring the norm in Eq. 6.47:

Q(q) =
∑
i

aiqi +
∑
i<j

bijqiqj, (6.48)

with

ai =
∑
l

Wli(Wli − 2Vlz),

bij = 2
∑
l

WliWlj.
(6.49)

182 Chapter 6. Benchmarking of non-Turing paradigms

Figure 6.10: A selection of images of the aircraft class.

Figure 6.11: A selection of images of the not-aircraft class.

Such a cost function is then minimized with respect to the binary variables
qi ∈ {0, 1}. We solved the find_H step both using an AQC (hybrid quantum-
classical workflow) and using Gurobi as for find_W (purely classical workflow).

6.6.3 Description of the dataset

We consider a dataset of satellite images that is publicly available under the
CC-BY-SA license at https://www.kaggle.com/rhammell/planesnet. The
dataset is actually composed of two sub-datasets containing respectively 8000
and 24000 image files in .png format. These two sub-datasets contain images
that were previously classified as either aircraft or not-aircraft, examples of
which are reported in Figs. 6.10, 6.11. The images display a squared aspect
ratio and are composed of 20×20 RGB pixels which can be considered represen-
tative of the low-resolution images typically provided by low-cost constellation
satellites. For the purpose of this work, we only consider aircraft images, which
are transformed into a grey scale. Each of such images depicts a single near-
centered aircraft at various zoom levels, in-plane orientations, and atmospheric
and light conditions. Wings, tails, and tips of the aircraft are fully contained
in the perimeter of the images in most cases. The number of details embodied
in this dataset yields an overall complexity that we expect to capture only by
using a relatively large number of features.

6.6.4 Embedding the problem

Any QUBO problem can in principle be submitted to an AQC [247]. The only
limitations regard the total number of variables and the topology of the problem,
namely the amount and structure of non-zero quadratic coefficients in Eq. 6.48.
Given a problem with an acceptable number of variables, a proper embedding

https://www.kaggle.com/rhammell/planesnet

6.6. Feature extraction on AQCs 183

procedure is required whenever the mathematical structure of the problem can-
not be mapped directly on the AQC topology [248]. Such a procedure involves
connecting multiple physical qubits together via a strong ferromagnetic cou-
pling Jchain, which makes them behave like a single two-level quantum system,
i.e. a logical qubit. The embedding approach augments the effective connectiv-
ity for each logical qubit and eventually allows for the mapping onto the AQC
of problems with up to all-to-all connectivity. Obtaining a suitable embedding
is generally non-trivial, and it is typically addressed through a procedure known
as minor embedding. [249]. The mathematical structure of the NBMF problems
considered in this work implies the presence of k binary variables connected in
an all-to-all fashion by the quadratic coefficients bij appearing in Eq. 6.49. In
principle, any of these coefficients could become equal to zero, but this con-
dition can change at each iteration, and in general, most of the coefficients
assume nonzero values. For this reason, it is practical to assume the problem
is represented by a fully connected topology of k binary variables. A favor-
able consequence of this hypothesis is that the embedding procedure has to be
performed only once for each tested k value. For the sake of completeness, we
report the details of the minor embedding at various problem sizes in Table 6.3.
The embeddings have been obtained using the minorminer.find_embedding

function from Ocean, the SDK provided by D-Wave Systems [250].

2kQ Adv1 Adv2
k q lchain q lchain q lchain

10 34 3.40 16 1.60 16 1.60
20 121 6.05 52 2.60 47 2.35
30 273 9.10 115 3.83 93 3.10
40 505 12.62 199 4.97 161 4.02
50 791 15.82 297 5.94 252 5.04
60 - - 422 7.03 - -
70 - - 555 7.93 - -

Table 6.3: Number of qubits (q) and average chain length
(lchain) associated with the embeddings at different problem sizes
k. Results are obtained running the minorminer software imple-
mented in the Ocean SDK[250] multiple times until there was
no improvement in the required number of qubits for ten con-
secutive trials. Missing values in the table correspond to those
cases where minorminer did not return any embedding after ten

consecutive trials.

184 Chapter 6. Benchmarking of non-Turing paradigms

6.7 Results

6.7.1 Optimization of the NBMF hyperparameters

The NBMF-based FE algorithm relies on some hyperparameters, namely the
number of epochs of the iterative process, the initialization of the H matrix,
and the regularization parameter α. The associated values are chosen within
a preselected range in order to minimize the reconstruction error ||V −WH||F
at the end of the iterative NBMF process. In practice, this is achieved by con-
ducting preliminary runs on a dataset of 625 images with k = 50, which are
typical values for problem sizes relevant to this work. For this analysis, we
exclusively use the Gurobi solver. In this work, Gurobi version 9.5.0 was used,
and calculations were performed on a laptop CPU Intel i5-11400H. Preliminary
experimental results showed that the reconstruction error between successive
NBMF iterations decreases rapidly within the first 5 steps. For this reason,
from now on, we set nepochs = 5 as a meaningful number of iterations for the
process. As for the initialization of H, we opt for a random uniform filling with
a predetermined density Hfill, which represents the percentage of ones in it. In
Figure 6.12, we show the behavior of the reconstruction errors as a function of
α and Hfill.
From such analysis, it is evident that the reconstruction error has a mild depen-
dence on these two hyperparameters over the tested ranges. We select α = 0.1

and Hfill = 5% as the best values to minimize the reconstruction errors. We
also report the dependence of the sparsity of the final H after 5 iterations as a
function of α and Hfill. Figure 6.12 shows the reconstruction error ||V −WH||F
as a function of Hfill at different α values. The error varies slightly for different
values of such hyperparameters, accounting to few percentage points across all
the tested combinations for α and Hfill. The optimal combination resulting in
the lowest reconstruction error was α = 0.1 and Hfill = 5%. Figure 6.13 shows
the dependence of the sparsity of the final H after 5 iterations as a function of
α and Hfill.

6.7.2 Tuning of the AQC parameters

Ocean SDK enables users to adjust multiple parameters that influence the dy-
namics of the physical device. It has been demonstrated that the performance
of AQCs can be significantly boosted upon tuning these parameters, resulting

6.7. Results 185

Figure 6.12: Hyperparameters selection: Reconstruction error
as a function of Hfill at different α values. Results are obtained
using the classical Gurobi solver for a dataset of 625 images with
k = 50. Each datapoint is the mean of three independent runs

using three different random seeds.

Figure 6.13: Final (percent) sparsity of H matrix as a function
of Hfill at different α values. Results are obtained using the
classical Gurobi solver for a dataset of 625 images with k = 50.
Each data point is the mean of three independent runs using

three different random seeds.

186 Chapter 6. Benchmarking of non-Turing paradigms

in improvements of up to two orders of magnitude in the average time to solu-
tion [251]. The parameters with the most substantial impact on performance
are two:

• tann: the annealing time, namely the time duration of a single quantum
annealing cycle.

• Ichain: parameter controlling the intensity of the chain coupling Jchain in-
side the AQC according to the following equation:

Jchain = Ichain
2NJ

Nvars

√∑
{i,j},i ̸=j J

2
ij

NJ

, (6.50)

where NJ is the total number of quadratic connections in the original (not
embedded) QUBO problem, and Nvars is the number of logical variables in
the original QUBO problem (which implies 2 NJ

Nvars
is the average number of

connections per logical variable). Note that in Ocean SDK Ichain = 1.414

by default, as prescribed in the function
chain_strength.uniform_torque_compensation [252].

Determining the optimal values for these parameters is a non-trivial task in
practical terms. With regard to the annealing time, one could rely on the adia-
batic theorem that prescribes maximizing tann to obtain high-quality solutions
[63], [64]. However, it is known that due to the coupling of the quantum state to
the environment, longer annealing times can trigger quantum decoherence that
deteriorates the overall device performance. Nonetheless, some studies[172],
[213], [214] have shown evidence for a quantum behavior of AQCs even for an-
nealing times much longer than the decoherence times of the flux qubits used
in the devices under consideration (microseconds vs. dozens [211] or hundreds
of nanoseconds [212]). As a result, only a direct tuning of this parameter can
provide reliable indications of the optimal values to be used for tackling the
problem of interest.
We therefore tested various combinations of tann and Ichain, and we selected the
one that resulted in the lowest average gap from the global optimum for find_H
instances. The gap for each problem instance is defined as follows:

gap =
(Cbest − Coptimal)

Cbest
· 100 , (6.51)

with Cbest being the cost of the best solution found with the quantum device, and
Coptimal being the global optimum of each problem instance found by Gurobi.
Note that by definition this gap is bounded 0% ≤ gap ≤ 100%. We performed

6.7. Results 187

the test on 100 single-column problems, where a single column of the H matrix
is optimized (see Eq. 6.47). Such test set was created by initializing V with
500 random images from the dataset, and H with random binary digits with
Hfill = 5%. The initialization was repeated for 5 different seeds, then execut-
ing for each case find_W using Gurobi, and then selecting the first 20 column
problems of find_H for each seed, for a total of 100 problems. Since we aim to
use the optimal parameters to enhance the computation at different problem
sizes, we decided to perform the tuning procedure at k = 50 for Adv1, while we
chose k = 30 for Adv2 and 2kQ. This way the optimal parameters are obtained
at a problem size that is not trivial and at the same time is not close to the
maximum achievable size on the hardware (see Table 6.3).
To conduct a fair comparison, we fixed the overall QPU time tQPU available
for each combination of parameters. This is achieved by varying the number
of annealing samples to compensate for the variable annealing time used in the
analysis. Specifically, we decided to set tQPU = 0.200s for each single-column
problem, which we found sufficient to allow for relatively good solutions for the
problems at hand while staying within the overall time budget at our disposal.
In detail, this value allows for a number of samples per problem ranging from
919 for tann = 100µs to 1644 for tann = 4µs (the longest and shortest annealing
times tested, respectively). The reason why the number of samples changes so
little with respect to tann is due to the impact of the delay and readout times
per sample, which contribute to tQPU especially when tann is low. Note that
tQPU does not include the time required to communicate with the QPU over
the Internet, which has a fixed duration. The left image in Figure 6.15 shows
the average gap obtained at k = 50 for Adv1, while the right image in the same
figure shows the percentage of broken samples. A sample is considered broken
if at least one of the chains in the embedding contains antiparallel qubits.
Figure 6.14 shows a comparison between the heatmaps obtained at k = 30 for
the three most recent D-Wave hardware models: D-Wave 2000Q (2000 qubits,
8 connections per qubit), Advantage 1 (5000 qubits, 15 connections per qubit),
Advantage 2 (model 4.1, 500 qubits, 20 connections per qubit). Such heatmaps
have been produced following the exact same procedure described in the main
text. Figure 6.15 shows that the average gap appears to be independent of the
annealing time. This is in contrast with the heatmap on the right, which shows
that, on average, samples obtained using a shorter annealing time contain more
broken samples. Apparently, the higher number of samples collected for shorter
annealing times compensates for the lower average quality of the collected sam-
ples. Additionally, the fluctuations induced by the outer noise could be boosting

188 Chapter 6. Benchmarking of non-Turing paradigms

Figure 6.14: Heatmaps showing the average gap and average
number of broken samples for every combination of annealing
time tann and chain strength Ichain. From top to bottom: 2000Q,
Adv1, Adv2. All devices were tested at k = 30. The experimen-
tal procedure to collect the data is explained in detail in the main

text.

6.7. Results 189

Figure 6.15: Average gap and average number of broken sam-
ples for every combination of annealing time tann and chain
strength Ichain. In the case k = 50 for Advantage 4.1. Opti-
mal setting is tann = 25 and Ichain = 2.4, corresponding to gap

26.8%.

the ability of the system to reach the global minimum, as suggested in [215]. On
the other hand, the chain strength heavily influences the quality of the samples.
If a sufficiently strong Ichain is imposed, the annealing process should produce
samples whose chains are composed of parallel qubits. Such expectation is con-
firmed by the right heatmap in figure 6.15, which shows how higher Ichain values
correspond to a lower average number of broken samples. Nonetheless, reducing
Ichain lowers the energy gap between different configurations, raising the prob-
ability of both quantum tunneling and thermal fluctuations.
The optimal value for Ichain must balance these effects. The combination tann =

25 and Ichain = 2.4 resulted in the optimal gap of 26.8% and 48.1% broken
samples, with only 1.43% of the chains broken. The low average number of sin-
gle broken chains could explain the limited impact of a high number of broken
samples. The optimal setting is to be compared with the D-Wave base setting
Ichain = 1.414, which resulted in gap values ranging from 49.4% (at tann = 25)
to 58.19% (at tann = 6), a percentage of broken samples > 99.97%, and a per-
centage of broken chains ∈ [19.25%, 22.11%] (varying the annealing time). The
parameter tuning procedure effectively halved the number of samples contain-
ing broken chains, and reduced the number of broken chains by more than an
order of magnitude, drastically improving the expected average gap from 49.4%
to 26.8%.

190 Chapter 6. Benchmarking of non-Turing paradigms

6.7.3 Gap dependency on problem dimension and wall

time

After tuning the NBMF hyperparameters and the quantum devices parameters,
we can now compare the performance of quantum devices provided by D-Wave
(hybrid workflow) and the classical solver Gurobi (purely classical workflow) on
single-column problems. Our goal is to understand if there are indications of
quantum advantage or conditions in which such quantum advantage could be
reached earlier, for the set of problems considered in this work. The analysis is
conducted at varying problem sizes, varying the value of k from 10 to 70, using
the average gap defined in Eq.6.51 as an evaluation metric. For each problem
size k, we establish a maximum allowed wall time for the AQCs, which depends
on the average time required by Gurobi to solve problems of the same size.
The computational time needed by the classical solver serves as an indicator
of problem complexity at each size. This specific methodology enables us to
employ the average gap obtained by AQCs as a metric to evaluate the quantum
solver’s ability to match classical capabilities.
We compared the solvers on a total of 250 single-column problems coming from
5 different initializations of matrix V and H (50 problems per initialization).
We used the optimal hyperparameters and per-solver optimal Ichain and tann

found previously. On average, Gurobi required 0.09± 0.02 to solve problems at
k = 10, and 0.23± 0.12 to solve those at k = 70.
Figures 6.16a-c show the results obtained for the different solvers and different
maximum wall times. For each size, when mult= n it means that the quantum
solver had a runtime n times longer the average time required by the classical
solver to find the optimal solution at that problem size. Fig.s 6.16d-f present
the same data but grouped with respect to the mult value so that it is easier
to compare the performances of the solvers. Violin plots in Figs.6.16g-h show
the distribution of the gaps obtained by sampling at different k values using the
three D-Wave devices. Figures 6.16a-f highlight a monotonic increase. Given
that we already corrected the runtime according to the problem complexity,
this means that the quantum solvers performance is degrading as k increases,
if compared to the classical solver.
We could expect that the k at which the tuning procedure has taken place will
be boosted. We performed the optimal parameter search at k = 50 for Adv1,
while 2000Q and Adv2 have been tuned at k = 30. 2kQ and Adv1 at mult= 0.1

do indeed show a swift decrease in the average gap at k = 30 and k = 50, re-
spectively, but the change is not evident at any other multiplier nor in the Adv2

6.7. Results 191

case. This behavior suggests that the optimal parameters we found exhibit good
transferability, enhancing the performances even at different k values.
In addition to the previous evaluations based on the average optimal gap ob-
tained on multiple problems, the violin plots in Figures6.16g-h allow us to
compare the different solvers with respect to the distribution of all samples. In
Figures 6.16g we can appreciate how, for k ≥ 40, 2kQ tends to produce samples
with a much higher gap if compared to Adv1. The impact of this behavior is
confirmed by Figures6.16d-f, where the average gap attained by 2kQ rapidly
grows for k ≥ 45, while Adv1 and Adv2 are less affected. This detrimental
effect is probably due to the different chain lengths required to embed problems
on the three solvers (see Tab.6.3). At k = 40 the average length of the chains of
the 2kQ embedding rises above 12 qubits, to reach almost 16 qubits at k = 50.
On the other hand, Adv1 and Adv2 are much closer to each other, reaching
5.94 and 5.04 average length, respectively, at k = 50, which results in similar
distributions in figure h.

6.7.4 Reconstruction error after the iterative process

After having analyzed the quantum hardware performance in solving single-
column QUBO problems, we focused on analyzing the performances in solving
the full interactive process that constitutes the FE NBMF-based algorithm.
To this end, we compared the fully classical and hybrid quantum-classical FE
workflows to extract k = 50 features from a dataset with m = 500 images. For
the hybrid workflow, we used Adv1 with 2000 samples per each single-column
find_H problem, setting the optimal parameters Ichain = 2.4, tann = 25. We
performed runs with nepochs = 5 iterations for both D-Wave and Gurobi, which
led to a decrease in the reconstruction error ||V −WH||F , as shown in Fig.6.17
d. Figures 6.17d shows that the findH step in the hybrid workflow increases the
reconstruction error achieved in the same epoch during the findW step. This
means that, given the W matrix found at a certain iteration, D-Wave is finding
an updated H matrix that is worse than the previous one. This is compensated
at each new epoch by the findW step, in Eq.6.44, yielding to a reduction of the
reconstruction error during the overall process. In absolute values the purely
classical workflow is observed to outperform the hybrid one.
Figures 6.17e-f show an example of dominant feature images (basis images from
matrix W) obtained by running the quantum and classical NBMF workflows.
The corresponding basis images, shown at different epochs, resemble some sort
of spherical harmonics. As expected from the reconstruction score, we can visu-
ally verify that from epoch 3 to 5 the feature images are modified only slightly.

192 Chapter 6. Benchmarking of non-Turing paradigms

Figure 6.16: Performance analysis of the Advantage 4.1
(Adv1), the Advantage2_1.1 prototype (Adv2), and the 2000Q
(2kQ) quantum computers. Plots a → f display the average gap
from the exact solution as a function of the problem size k. Each
data point is estimated by averaging the best gap obtained by
the selected D-Wave QPU on 250 distinct single-column prob-
lems. The shaded area represents the standard deviation. The
runs were executed using the tuned optimal parameters for each
solver. The maximum wall time allowed for each D-Wave run
is a multiple of the average time that Gurobi required to solve
the same instance of the problem. Plots g and h compare the
distribution of samples produced by the three D-Wave solvers.
For every k, 10,000 samples were uniformly extracted from the
whole collection of samples obtained from the previous runs on
the 250 single-column problems. The samples produced by 2kQ
display a distribution peaked towards higher gaps for k ≥ 40,
while samples produced by Adv1 and Adv2 display broader dis-

tributions.

6.7. Results 193

Figure 6.17: NBMF algorithm Workflow on AQC (D-Wave)
and Gurobi. a In the lower-left panel are reported some samples
of the

√
n ×

√
n satellite images of aircrafts. The m images are

flattened and stacked to form the n×m matrix V . b The opti-
mization strategy is based on an iterative updating of the contin-
uous values matrix W (always on Gurobi) and the binary matrix
H (on D-Wave or Gurobi). c The optimization step to update
H is embedded on the Pegasus, Chimera, and Zephyr graphs of
the Adv1, 2kQ, Adv2 devices, respectively. d The reconstruction
error ||V −WH||F , in logarithmic scale, after find_W and after
find_H is shown at each epoch for the quantum-classical work-
flow and the full-classical one. e-f Reconstruction of a sampled
image at the epoch 1, 3, and 5 respect the original image (series
of images above), the images on the left side are the reconstruc-
tion with the quantum-classical workflow and in the right side
the reconstruction obtained by the fully-classical workflow. The
series of images below, instead, contains a sampled basis image,

which is a column of W , at the epochs 1, 3, and 5.

The same figures also display examples of image reconstructions across the it-
eration process. As expected from the reconstruction score, at visual inspection
the fully classical workflow provides a slightly sharper reconstructed image.

194 Chapter 6. Benchmarking of non-Turing paradigms

The hybrid workflow tends to combine more feature images to reconstruct im-
ages in V . Indeed, 34.6% of the elements in the final matrix H are equal to 1,
as opposed to only 14.6% in the classical workflow. Thus, the hybrid workflow
produced a potentially more informative decomposition of the images from the
dataset into base features.

6.8 Conclusions

We analyzed the capabilities of AQCs on a task with applications in machine
learning, namely performing feature extraction (FE) from a dataset of low-
resolution satellite images of airplanes, exploiting an approach based on Non-
negative Binary Matrix Factorization (NBMF). The NBMF is implemented
through a hybrid iterative algorithm where the portion of the workflow cor-
responding to the optimization of the binary latent H matrix is offloaded to
AQCs. This methodology can be used to perform FE on large datasets thanks
to the possibility of decomposing the original latent H matrix optimization
problem into a set of independent problems corresponding to single columns of
the H matrix.
We considered three generations of AQCs provided by the D-Wave company,
namely the legacy device 2000Q, Advantage 4.1, and the most recent proto-
type Advantage2_1.1. First, we devoted consistent efforts to fine-tuning the
algorithm hyperparameters and the AQCs parameters. Using the optimal AQC
parameters, we were able to reduce the average number of broken chains by one
order of magnitude while halving the expected average gap from the optimal
solution (results obtained on Advantage 4.1). Hence, we compared the perfor-
mance of three hybrid quantum-classical workflows based on the three AQCs
against that of a purely classical workflow based on the state-of-the-art Gurobi
classical solver running on classical digital hardware. As an evaluation metric,
we used the solution gap from the global optimum obtained at fixed runtimes
and averaged over a selection of problem instances.
We observed all quantum solvers to provide a similar qualitative behavior in
terms of gap performances as a function of the problem size, i.e. k. In partic-
ular, we observed the average gap to the exact solution to increase along with
k. We can nonetheless appreciate a slight but statistically significant quanti-
tative difference in the performance of the three AQCs, with Adv2 achieving
the lowest gap values, Adv1 following close, and 2kQ falling short, particularly
on larger problem sizes. This effect is more evident at shorter runtimes. The
fast degrading of the performance of 2kQ for k > 40 is probably correlated

6.8. Conclusions 195

with the excessive chain length required to embed such problems on the sparse
Chimera topology, which also notably affects the distribution of samples with
respect to the attained gap. These observations suggest an incremental overall
performance with the more recent solver generations, which seems to correlate
mainly to the average chain length found by the embedding procedure. Such
conclusion supports the idea, common in literature, that the topology of the
available hardware currently represents the main bottleneck for adiabatic quan-
tum computation [253]–[255].
During the iterative process, the optimization of H at fixed W made with
D-Wave at a relatively large k increases the reconstruction error rather than re-
ducing it as in the case of utilization of a classical solver. For small k, however,
the average gap on single instances of the optimization problem remains close
to zero for all quantum solvers. In particular, we observed that both Adv1 and
Adv2 are capable of solving all the submitted instances at k = 10 with 0% gap
(i.e. exactly) within the average time required by the Gurobi solver (mult= 1).
This result suggests that recent generations of AQCs have finally reached com-
petitive performances for industrially-relevant, small-sized problems.
At least for the set of problems considered here, the classical solvers provide
in general still the reference tools. There are conditions, however, where the
AQCs start to provide alternative solutions with comparable performances. In
this perspective, the first applications where AQCs are expected to become com-
petitive with classical counterparts are those where limited and short running
times are required (e.g. real-time or near-real-time applications).

197

Bibliography

[1] G. Morra and G. Colombo, “Relationship between energy distribution
and fold stability: Insights from molecular dynamics simulations of na-
tive and mutant proteins,” Proteins: Structure, Function, and Bioinfor-
matics, vol. 72, no. 2, pp. 660–672, 2008.

[2] R. Alhadeff, D. Assa, P. Astrahan, M. Krugliak, and I. T. Arkin, “Com-
putational and experimental analysis of drug binding to the influenza m2
channel,” Biochimica et Biophysica Acta (BBA)-Biomembranes, vol. 1838,
no. 4, pp. 1068–1073, 2014.

[3] C. F. Reboul, G. R. Meyer, B. T. Porebski, N. A. Borg, and A. M.
Buckle, “Epitope flexibility and dynamic footprint revealed by molecular
dynamics of a pmhc-tcr complex,” PLoS computational biology, vol. 8,
no. 3, e1002404, 2012.

[4] R. E. Amaro, R. V. Swift, L. Votapka, W. W. Li, R. C. Walker, and R. M.
Bush, “Mechanism of 150-cavity formation in influenza neuraminidase,”
Nature communications, vol. 2, no. 1, p. 388, 2011.

[5] Y. Zhang, H. Shen, M. Zhang, and G. Li, “Exploring the proton conduc-
tance and drug resistance of bm2 channel through molecular dynamics
simulations and free energy calculations at different ph conditions,” The
Journal of Physical Chemistry B, vol. 117, no. 4, pp. 982–988, 2013.

[6] N.-j. Deng, W. Zheng, E. Gallicchio, and R. M. Levy, “Insights into
the dynamics of hiv-1 protease: A kinetic network model constructed
from atomistic simulations,” Journal of the American Chemical Society,
vol. 133, no. 24, pp. 9387–9394, 2011.

[7] S.-S. Chang, H.-J. Huang, and C. Y.-C. Chen, “High performance screen-
ing, structural and molecular dynamics analysis to identify h1 inhibitors
from tcm database@ taiwan,” Molecular BioSystems, vol. 7, no. 12, pp. 3366–
3374, 2011.

[8] P. Lagüe, B. Roux, and R. W. Pastor, “Molecular dynamics simulations
of the influenza hemagglutinin fusion peptide in micelles and bilayers:

198 Bibliography

Conformational analysis of peptide and lipids,” Journal of molecular bi-
ology, vol. 354, no. 5, pp. 1129–1141, 2005.

[9] C. Sieben, C. Kappel, R. Zhu, et al., “Influenza virus binds its host
cell using multiple dynamic interactions,” Proceedings of the National
Academy of Sciences, vol. 109, no. 34, pp. 13 626–13 631, 2012.

[10] Z. Yang, Y. Nie, G. Yang, Y. Zu, Y. Fu, and L. Zhou, “Synergistic
effects in the designs of neuraminidase ligands: Analysis from docking
and molecular dynamics studies,” Journal of theoretical biology, vol. 267,
no. 3, pp. 363–374, 2010.

[11] T. Rungrotmongkol, M. Malaisree, N. Nunthaboot, P. Sompornpisut,
and S. Hannongbua, “Molecular prediction of oseltamivir efficiency against
probable influenza a (h1n1-2009) mutants: Molecular modeling approach,”
Amino acids, vol. 39, pp. 393–398, 2010.

[12] G. G. Dodson, D. P. Lane, and C. S. Verma, “Molecular simulations
of protein dynamics: New windows on mechanisms in biology,” EMBO
reports, vol. 9, no. 2, pp. 144–150, 2008.

[13] D. Vlachakis, A. Karozou, and S. Kossida, “3d molecular modelling study
of the h7n9 rna-dependent rna polymerase as an emerging pharmacolog-
ical target,” Influenza Research and Treatment, vol. 2013, 2013.

[14] C. Peri, P. Gagni, F. Combi, et al., “Rational epitope design for protein
targeting,” ACS Chemical Biology, vol. 8, no. 2, pp. 397–404, 2013.

[15] D. R. Flower, K. Phadwal, I. K. Macdonald, P. V. Coveney, M. N. Davies,
and S. Wan, “T-cell epitope prediction and immune complex simulation
using molecular dynamics: State of the art and persisting challenges,”
Immunome Research, vol. 6, no. 2, pp. 1–18, 2010.

[16] D. Xu, E. I. Newhouse, R. E. Amaro, et al., “Distinct glycan topology for
avian and human sialopentasaccharide receptor analogues upon binding
different hemagglutinins: A molecular dynamics perspective,” Journal of
molecular biology, vol. 387, no. 2, pp. 465–491, 2009.

[17] M. Lawrenz, J. Wereszczynski, R. Amaro, R. Walker, A. Roitberg, and
J. A. McCammon, “Impact of calcium on n1 influenza neuraminidase
dynamics and binding free energy,” Proteins: Structure, Function, and
Bioinformatics, vol. 78, no. 11, pp. 2523–2532, 2010.

[18] S. Gusarov, A. E. Kobryn, S. Stoyanov, and V. Veryazov, “Mathematical
challenges in computational chemistry: Multiscale, multiconfigurational
approaches, machine learning,”

Bibliography 199

[19] K. A. Fichthorn and W. H. Weinberg, “Theoretical foundations of dy-
namical monte carlo simulations,” The Journal of chemical physics, vol. 95,
no. 2, pp. 1090–1096, 1991.

[20] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines,”
The journal of chemical physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[21] K. Lindorff-Larsen, P. Maragakis, S. Piana, M. P. Eastwood, R. O. Dror,
and D. E. Shaw, “Systematic validation of protein force fields against
experimental data,” PloS one, vol. 7, no. 2, e32131, 2012.

[22] A. K. Harris, J. R. Meyerson, Y. Matsuoka, et al., “Structure and ac-
cessibility of ha trimers on intact 2009 h1n1 pandemic influenza virus to
stem region-specific neutralizing antibodies,” Proceedings of the National
Academy of Sciences, vol. 110, no. 12, pp. 4592–4597, 2013.

[23] S. Toxvaerd, “Hamiltonians for discrete dynamics,” Physical Review E,
vol. 50, no. 3, p. 2271, 1994.

[24] K. Vanommeslaeghe, E. Hatcher, C. Acharya, et al., “Charmm general
force field: A force field for drug-like molecules compatible with the
charmm all-atom additive biological force fields,” Journal of computa-
tional chemistry, vol. 31, no. 4, pp. 671–690, 2010.

[25] E. Paquet, H. L. Viktor, et al., “Molecular dynamics, monte carlo simula-
tions, and langevin dynamics: A computational review,” BioMed research
international, vol. 2015, 2015.

[26] P. Minary, M. E. Tuckerman, and G. J. Martyna, “Dynamical spatial
warping: A novel method for the conformational sampling of biophys-
ical structure,” SIAM Journal on Scientific Computing, vol. 30, no. 4,
pp. 2055–2083, 2008.

[27] T. Huber and W. F. van Gunsteren, “Swarm-md: Searching conforma-
tional space by cooperative molecular dynamics,” The Journal of Phys-
ical Chemistry A, vol. 102, no. 29, pp. 5937–5943, 1998.

[28] S. Decherchi and A. Cavalli, “Thermodynamics and kinetics of drug-
target binding by molecular simulation,” Chemical Reviews, vol. 120,
no. 23, pp. 12 788–12 833, 2020.

[29] D. Baker and A. Sali, “Protein structure prediction and structural ge-
nomics,” Science, vol. 294, no. 5540, pp. 93–96, 2001.

200 Bibliography

[30] A. Özen, T. Haliloğlu, and C. A. Schiffer, “Dynamics of preferential sub-
strate recognition in hiv-1 protease: Redefining the substrate envelope,”
Journal of molecular biology, vol. 410, no. 4, pp. 726–744, 2011.

[31] S. J. Wright, Numerical optimization. 2006.

[32] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by
simulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[33] M. Sipser, “Introduction to the theory of computation,” ACM Sigact
News, vol. 27, no. 1, pp. 27–29, 1996.

[34] A. M. Turing et al., “On computable numbers, with an application to
the entscheidungsproblem,” J. of Math, vol. 58, no. 345-363, p. 5, 1936.

[35] I. Wegener, The complexity of Boolean functions. John Wiley & Sons,
Inc., 1987.

[36] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information. Cambridge university press, 2010.

[37] T. M. F. Ramos, A. A. Almeida, and M. Ayala-Rincón, “Formalization
of the computational theory of a turing complete functional language
model,” Journal of Automated Reasoning, vol. 66, no. 4, pp. 1031–1063,
2022.

[38] R. P. Feynman et al., “Simulating physics with computers,” Int. j. Theor.
phys, vol. 21, no. 6/7, 2018.

[39] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[40] C. P. Williams, Explorations in Quantum Computing. Springer Publish-
ing Company, Incorporated, 2008.

[41] W. Rossmann, Lie groups: an introduction through linear groups. Oxford
University Press, USA, 2006, vol. 5.

[42] N. Hatano and M. Suzuki, “Finding exponential product formulas of
higher orders,” in Quantum annealing and other optimization methods,
Springer, 2005, pp. 37–68.

[43] S. Adrien, “Master’s thesis report: Introduction to quantum computing,”
2018.

[44] M. A. Nielsen and I. Chuang, Quantum computation and quantum in-
formation, 2002.

Bibliography 201

[45] E. Rieffel and W. Polak, “Quantum computing,” The Handbook of Tech-
nology Management, vol. 3, 2011.

[46] V. V. Shende and I. L. Markov, “On the cnot-cost of toffoli gates,” arXiv
preprint arXiv:0803.2316, 2008.

[47] I. Q. Team, “User guide - universality of quantum computation,” 2019.
doi: https : / / quantum - computing . ibm . com / support / guides /

introduction-to-quantum-circuits?section=5cae61a566c1694be21df8ce.

[48] D. P. DiVincenzo, “The physical implementation of quantum compu-
tation,” Fortschritte der Physik: Progress of Physics, vol. 48, no. 9-11,
pp. 771–783, 2000.

[49] A. Bocharov, K. M. Svore, et al., “From reversible logic gates to universal
quantum bases,” Bulletin of EATCS, vol. 2, no. 110, 2013.

[50] C. M. Dawson and M. A. Nielsen, “The solovay-kitaev algorithm,” arXiv
preprint quant-ph/0505030, 2005.

[51] A. Y. Kitaev, “Quantum computations: Algorithms and error correc-
tion,” Russian Mathematical Surveys, vol. 52, no. 6, p. 1191, 1997.

[52] Y. Zhiyenbayev, V. Akulin, and A. Mandilara, “Quantum compiling with
diffusive sets of gates,” Physical Review A, vol. 98, no. 1, p. 012 325, 2018.

[53] A. Barenco, C. H. Bennett, R. Cleve, et al., “Elementary gates for quan-
tum computation,” Physical review A, vol. 52, no. 5, p. 3457, 1995.

[54] A. W. Harrow, B. Recht, and I. L. Chuang, “Efficient discrete approx-
imations of quantum gates,” Journal of Mathematical Physics, vol. 43,
no. 9, pp. 4445–4451, 2002.

[55] A. Y. Kitaev, A. Shen, and M. N. Vyalyi, Classical and quantum com-
putation. American Mathematical Soc., 2002.

[56] S. Lloyd, “Almost any quantum logic gate is universal,” Physical review
letters, vol. 75, no. 2, p. 346, 1995.

[57] D. E. Deutsch, A. Barenco, and A. Ekert, “Universality in quantum
computation,” Proceedings of the Royal Society of London. Series A:
Mathematical and Physical Sciences, vol. 449, no. 1937, pp. 669–677,
1995.

[58] F. Vatan and C. Williams, “Optimal quantum circuits for general two-
qubit gates,” Physical Review A, vol. 69, no. 3, p. 032 315, 2004.

https://doi.org/https://quantum-computing.ibm.com/support/guides/introduction-to-quantum-circuits?section=5cae61a566c1694be21df8ce
https://doi.org/https://quantum-computing.ibm.com/support/guides/introduction-to-quantum-circuits?section=5cae61a566c1694be21df8ce

202 Bibliography

[59] A. Zulehner and R. Wille, “Compiling su (4) quantum circuits to ibm qx
architectures,” in Proceedings of the 24th Asia and South Pacific Design
Automation Conference, ACM, 2019, pp. 185–190.

[60] C. C. McGeoch, Adiabatic quantum computation and quantum annealing:
Theory and practice. Springer Nature, 2022.

[61] E. Ising, “Beitrag zur theorie des ferromagnetismus,” Zeitschrift für
Physik A Hadrons and Nuclei, vol. 31, no. 1, pp. 253–258, 1925.

[62] D. Sherrington and S. Kirkpatrick, “Solvable model of a spin-glass,”
Physical review letters, vol. 35, no. 26, p. 1792, 1975.

[63] S. Morita and H. Nishimori, “Mathematical foundation of quantum an-
nealing,” Journal of Mathematical Physics, vol. 49, no. 12, p. 125 210,
2008.

[64] S. Morita and H. Nishimori, “Convergence of quantum annealing with
real-time schrödinger dynamics,” Journal of the Physical Society of Japan,
vol. 76, no. 6, p. 064 002, 2007.

[65] S. M. Girvin, “Circuit qed: Superconducting qubits coupled to microwave
photons,” Quantum Machines: Measurement and Control of Engineered
Quantum Systems, p. 113, 2011.

[66] A. Irastorza Gabilondo, “Quantum computation with superconductors,”
2017.

[67] V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. Devoret, “Quantum
coherence with a single cooper pair,” Physica Scripta, vol. 1998, no. T76,
p. 165, 1998.

[68] M. Raizen, J. Gilligan, J. C. Bergquist, W. M. Itano, and D. J. Wineland,
“Ionic crystals in a linear paul trap,” Physical Review A, vol. 45, no. 9,
p. 6493, 1992.

[69] J. A. Bergou, M. Hillery, and M. Saffman, Quantum information pro-
cessing. Springer, 2021.

[70] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, 2018.

[71] G. Lindblad, “On the generators of quantum dynamical semigroups,”
Communications in Mathematical Physics, vol. 48, pp. 119–130, 1976.

[72] A. R. Ana Neri, “Quantum computation: Ibm q experience,” MAPI
DOCTORAL PROGRAMME IN COMPUTER SCIENCE, 2018.

Bibliography 203

[73] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gam-
betta, “Validating quantum computers using randomized model circuits,”
Physical Review A, vol. 100, no. 3, p. 032 328, 2019.

[74] M. Sisodia, A. Shukla, and A. Pathak, “Experimental realization of non-
destructive discrimination of bell states using a five-qubit quantum com-
puter,” Physics Letters A, vol. 381, no. 46, pp. 3860–3874, 2017.

[75] D. Gottesman, Stabilizer codes and quantum error correction. California
Institute of Technology, 1997.

[76] S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna, and O. Mutlu,
“Processing-in-memory: A workload-driven perspective,” IBM Journal
of Research and Development, vol. 63, no. 6, pp. 3–1, 2019.

[77] L. O. Chua and G. Lin, “Non-linear optimization with constraints: A
cook-book approach,” International Journal of Circuit Theory and Ap-
plications, vol. 11, no. 2, pp. 141–159, 1983.

[78] K. Tatsumura, M. Yamasaki, and H. Goto, “Scaling out ising machines
using a multi-chip architecture for simulated bifurcation,” Nature Elec-
tronics, vol. 4, no. 3, pp. 208–217, 2021.

[79] F. Rothganger, C. D. James, and J. B. Aimone, “Computing with dy-
namical systems,” in 2016 IEEE International Conference on Rebooting
Computing (ICRC), IEEE, 2016, pp. 1–3.

[80] L. Perko, Differential equations and dynamical systems. Springer Science
& Business Media, 2013, vol. 7.

[81] D. V. Arnold and H.-G. Beyer, “Performance analysis of evolution strate-
gies with multi-recombination in high-dimensional rn-search spaces dis-
turbed by noise,” Theoretical Computer Science, vol. 289, no. 1, pp. 629–
647, 2002.

[82] S. Wiggins et al., “Introduction to applied nonlinear dynamical systems
and chaos [electronic resource],”

[83] A. M. Liapunov, Stability of motion. Elsevier, 2016.

[84] W. Rautenberg, A concise introduction to mathematical logic. Springer,
2006, vol. 39.

[85] M. Di Ventra, MemComputing: fundamentals and applications. Oxford
University Press, 2022.

204 Bibliography

[86] F. L. Traversa and M. Di Ventra, “Polynomial-time solution of prime
factorization and np-complete problems with digital memcomputing ma-
chines,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 27,
no. 2, 2017.

[87] Y. V. Pershin and M. Di Ventra, “Memory effects in complex materials
and nanoscale systems,” Advances in Physics, vol. 60, no. 2, pp. 145–227,
2011.

[88] M. Di Ventra and F. L. Traversa, Self-organizing logic gates and circuits
and complex problem solving with self-organizing circuits, US Patent
9,911,080, Mar. 2018.

[89] S. Arora and B. Barak, Computational complexity: a modern approach.
Cambridge University Press, 2009.

[90] N. Goldenfeld, Lectures on phase transitions and the renormalization
group. CRC Press, 2018.

[91] C. G. Langton, “Computation at the edge of chaos: Phase transitions
and emergent computation,” Physica D: nonlinear phenomena, vol. 42,
no. 1-3, pp. 12–37, 1990.

[92] M. A. Munoz, “Colloquium: Criticality and dynamical scaling in living
systems,” Reviews of Modern Physics, vol. 90, no. 3, p. 031 001, 2018.

[93] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified np-
complete problems,” in Proceedings of the sixth annual ACM symposium
on Theory of computing, 1974, pp. 47–63.

[94] F. L. Traversa and M. Di Ventra, “Memcomputing integer linear pro-
gramming,” arXiv preprint arXiv:1808.09999, 2018.

[95] H. M. Cezar, S. Canuto, and K. Coutinho, “Dice: A monte carlo code
for molecular simulation including the configurational bias monte carlo
method,” Journal of Chemical Information and Modeling, vol. 60, no. 7,
pp. 3472–3488, 2020.

[96] G. Fishman, Monte Carlo: concepts, algorithms, and applications. Springer
Science & Business Media, 2013.

[97] P. Glasserman, Monte Carlo methods in financial engineering. Springer,
2004, vol. 53.

[98] E. Ferraro and E. Prati, “Is all-electrical silicon quantum computing
feasible in the long term?” Physics Letters A, p. 126 352, 2020.

Bibliography 205

[99] M. De Michielis, E. Ferraro, E. Prati, et al., “Silicon spin qubits from
laboratory to industry,” Journal of Physics D: Applied Physics, vol. 56,
no. 36, p. 363 001, 2023.

[100] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quantum amplitude am-
plification and estimation,” Contemporary Mathematics, vol. 305, pp. 53–
74, 2002.

[101] S. Herbert, “Quantum monte carlo integration: The full advantage in
minimal circuit depth,” Quantum, vol. 6, p. 823, 2022.

[102] P. Rebentrost, B. Gupt, and T. R. Bromley, “Quantum computational
finance: Monte carlo pricing of financial derivatives,” Physical Review A,
vol. 98, no. 2, p. 022 321, 2018.

[103] A. Montanaro, “Quantum speedup of monte carlo methods,” Proceed-
ings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 471, no. 2181, p. 20 150 301, 2015.

[104] G. Agliardi, M. Grossi, M. Pellen, and E. Prati, “Quantum integration
of elementary particle processes,” Physics Letters B, vol. 832, p. 137 228,
2022.

[105] J. Allcock and S. Zhang, “Quantum machine learning,” National Science
Review, vol. 6, no. 1, pp. 26–28, 2019.

[106] M. Maronese, L. Moro, L. Rocutto, and E. Prati, “Quantum compiling,”
in Quantum Computing Environments, Springer, 2022, pp. 39–74.

[107] M. Lazzarin, D. E. Galli, and E. Prati, “Multi-class quantum classifiers
with tensor network circuits for quantum phase recognition,” Physics
Letters A, vol. 434, p. 128 056, 2022.

[108] R. Molteni, C. Destri, and E. Prati, “Optimization of the memory reset
rate of a quantum echo-state network for time sequential tasks,” Physics
Letters A, vol. 465, p. 128 713, 2023.

[109] G. Agliardi and E. Prati, “Optimal tuning of quantum generative adver-
sarial networks for multivariate distribution loading,” Quantum Reports,
vol. 4, no. 1, pp. 75–105, 2022.

[110] N. Stamatopoulos, D. J. Egger, Y. Sun, et al., “Option pricing using
quantum computers,” Quantum, vol. 4, p. 291, 2020.

[111] S. Chakrabarti, R. Krishnakumar, G. Mazzola, N. Stamatopoulos, S. Wo-
erner, and W. J. Zeng, “A threshold for quantum advantage in derivative
pricing,” Quantum, vol. 5, p. 463, 2021.

206 Bibliography

[112] F. Oz, R. K. Vuppala, K. Kara, and F. Gaitan, “Solving burgers’ equation
with quantum computing,” Quantum Information Processing, vol. 21,
pp. 1–13, 2022.

[113] K. Binder, Monte Carlo and molecular dynamics simulations in polymer
science. Oxford University Press, 1995.

[114] J. Preskill, “Fault-tolerant quantum computation,” in Introduction to
quantum computation and information, World Scientific, 1998, pp. 213–
269.

[115] E. Prati, “Quantum neuromorphic hardware for quantum artificial in-
telligence,” in Journal of Physics: Conference Series, IOP Publishing,
vol. 880, 2017, p. 012 018.

[116] S. Woerner and D. J. Egger, “Quantum risk analysis,” npj Quantum
Information, vol. 5, no. 1, pp. 1–8, 2019.

[117] M. Maronese, L. Moro, L. Rocutto, and E. Prati, “Quantum compiling,”
in Quantum Computing Environments, Springer, 2022, pp. 39–74.

[118] Y. Suzuki, S. Uno, R. Raymond, T. Tanaka, T. Onodera, and N. Ya-
mamoto, “Amplitude estimation without phase estimation,” Quantum
Information Processing, vol. 19, no. 2, pp. 1–17, 2020.

[119] D. Grinko, J. Gacon, C. Zoufal, and S. Woerner, “Iterative quantum
amplitude estimation,” npj Quantum Information, vol. 7, no. 1, pp. 1–6,
2021.

[120] K. Wright, K. M. Beck, S. Debnath, et al., “Benchmarking an 11-qubit
quantum computer,” Nature communications, vol. 10, no. 1, p. 5464,
2019.

[121] Y. Nam, J.-S. Chen, N. C. Pisenti, et al., “Ground-state energy estima-
tion of the water molecule on a trapped-ion quantum computer,” npj
Quantum Information, vol. 6, no. 1, p. 33, 2020.

[122] P. Dagum, R. Karp, M. Luby, and S. Ross, “An optimal algorithm for
monte carlo estimation,” SIAM Journal on computing, vol. 29, no. 5,
pp. 1484–1496, 2000.

[123] M. Huber, “Improving monte carlo randomized approximation schemes,”
arXiv preprint arXiv:1411.4074, 2014.

[124] L. Grover and T. Rudolph, “Creating superpositions that correspond
to efficiently integrable probability distributions,” arXiv preprint quant-
ph/0208112, 2002.

Bibliography 207

[125] V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of quantum
logic circuits,” in Proceedings of the 2005 Asia and South Pacific Design
Automation Conference, 2005, pp. 272–275.

[126] T. Häner, M. Roetteler, and K. M. Svore, “Optimizing quantum circuits
for arithmetic,” arXiv preprint arXiv:1805.12445, 2018.

[127] A. C. Vazquez, R. Hiptmair, and S. Woerner, “Enhancing the quantum
linear systems algorithm using richardson extrapolation,” ACM Trans-
actions on Quantum Computing, vol. 3, no. 1, pp. 1–37, 2022.

[128] T. Giurgica-Tiron, I. Kerenidis, F. Labib, A. Prakash, and W. Zeng, “Low
depth algorithms for quantum amplitude estimation,” arXiv preprint
arXiv:2012.03348, 2020.

[129] K. Plekhanov, M. Rosenkranz, M. Fiorentini, and M. Lubasch, “Varia-
tional quantum amplitude estimation,” arXiv preprint arXiv:2109.03687,
2021.

[130] S. Aaronson and P. Rall, “Quantum approximate counting, simplified,”
in Symposium on Simplicity in Algorithms, SIAM, 2020, pp. 24–32.

[131] R. J. Rossi, Mathematical statistics: an introduction to likelihood based
inference. John Wiley & Sons, 2018.

[132] K. Nakaji, “Faster amplitude estimation,” arXiv preprint arXiv:2003.02417,
2020.

[133] S. Certo, A. D. Pham, and D. Beaulieu, “Benchmarking amplitude esti-
mation on a superconducting quantum computer,” arXiv preprint arXiv:2201.06987,
2022.

[134] Amazon, “Amazon braket,” Amazon Web Service, Tech. Rep., 2020. [On-
line]. Available: https://aws.amazon.com/braket/.

[135] M. Brooks, “Beyond quantum supremacy: The hunt for useful quantum
computers,” Nature, vol. 574, no. 7776, pp. 19–22, 2019.

[136] F. Arute, K. Arya, R. Babbush, et al., “Quantum supremacy using a
programmable superconducting processor,” Nature, vol. 574, no. 7779,
pp. 505–510, 2019.

[137] Y. Wu, W.-S. Bao, S. Cao, et al., “Strong quantum computational ad-
vantage using a superconducting quantum processor,” Physical review
letters, vol. 127, no. 18, p. 180 501, 2021.

https://aws.amazon.com/braket/

208 Bibliography

[138] A. Peruzzo, J. McClean, P. Shadbolt, et al., “A variational eigenvalue
solver on a photonic quantum processor,” Nature communications, vol. 5,
no. 1, p. 4213, 2014.

[139] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, “The
theory of variational hybrid quantum-classical algorithms,” New Journal
of Physics, vol. 18, no. 2, p. 023 023, 2016.

[140] J. MacDonald, “Successive approximations by the rayleigh-ritz variation
method,” Physical Review, vol. 43, no. 10, p. 830, 1933.

[141] Z. Holmes, K. Sharma, M. Cerezo, and P. J. Coles, “Connecting ansatz
expressibility to gradient magnitudes and barren plateaus,” PRX Quan-
tum, vol. 3, no. 1, p. 010 313, 2022.

[142] G. E. Crooks, “Gradients of parameterized quantum gates using the
parameter-shift rule and gate decomposition,” arXiv preprint arXiv:1905.13311,
2019.

[143] T. Haug, K. Bharti, and M. Kim, “Capacity and quantum geometry of
parametrized quantum circuits,” PRX Quantum, vol. 2, no. 4, p. 040 309,
2021.

[144] B. Koczor and S. C. Benjamin, “Quantum natural gradient generalized
to noisy and nonunitary circuits,” Physical Review A, vol. 106, no. 6,
p. 062 416, 2022.

[145] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D.
Preda, “A quantum adiabatic evolution algorithm applied to random in-
stances of an np-complete problem,” Science, vol. 292, no. 5516, pp. 472–
475, 2001.

[146] L. Veis and J. Pittner, “Adiabatic state preparation study of methylene,”
The Journal of Chemical Physics, vol. 140, no. 21, 2014.

[147] J. Roland and N. J. Cerf, “Quantum search by local adiabatic evolution,”
Physical Review A, vol. 65, no. 4, p. 042 308, 2002.

[148] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate op-
timization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[149] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quantum
approximate optimization algorithm: Performance, mechanism, and im-
plementation on near-term devices,” Physical Review X, vol. 10, no. 2,
p. 021 067, 2020.

Bibliography 209

[150] P. K. Barkoutsos, G. Nannicini, A. Robert, I. Tavernelli, and S. Wo-
erner, “Improving variational quantum optimization using cvar,” Quan-
tum, vol. 4, p. 256, 2020.

[151] S. Dutta, Y. Lee, and Y. Jho, “Hydration of ions in two-dimensional
water,” Physical Review E, vol. 92, no. 4, p. 042 152, 2015.

[152] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, https:
//www.gurobi.com/documentation/current/refman/index.html,
Accessed: 10-Jul-2023, 2023.

[153] M. Gitterman, “Mean first passage time for anomalous diffusion,” Phys.
Rev. E, vol. 62, no. 5, p. 6065, 2000.

[154] M. Powell, “Advances in optimization and numerical analysis,” in Pro-
ceeding of the 6th Workshop on Optimization and Numerical Analysis,
1994, pp. 5–67.

[155] F. G. Fuchs, K. O. Lye, H. Møll Nilsen, A. J. Stasik, and G. Sartor,
“Constraint preserving mixers for the quantum approximate optimiza-
tion algorithm,” Algorithms, vol. 15, no. 6, p. 202, 2022.

[156] J. Schmidhuber, “Colossus was the first electronic digital computer,”
Nature, vol. 441, no. 7089, pp. 25–25, 2006.

[157] R. Herken, The Universal Turing Machine A Half-Century Survey. Springer-
Verlag, 1995.

[158] L. F. Menabrea, “Sketch of the Analytical Engine (1843) with notes by
the translator, Ada Agusta, Countess of Lovelace,” in https://doi.

org/10.7551/mitpress/12274.003.0005, 2021, ch. 3, pp. 9–26.

[159] S. E. Thompson and S. Parthasarathy, “Moore’s law: The future of si
microelectronics,” Mater. today, vol. 9, no. 6, pp. 20–25, 2006.

[160] D. Deutsch, “Quantum theory, the church–turing principle and the uni-
versal quantum computer,” Proc. Math. Phys. Eng. Sci., vol. 400, no. 1818,
pp. 97–117, 1985.

[161] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM J.
Comput., vol. 26, no. 5, pp. 1411–1473, 1997.

[162] Xanadu Quantum Technologies, \NoCaseChange{ https: // www. xanadu.
ai/ hardware} , 2021.

[163] IonQ, Ionq – trapped ion quantum computing, https://ionq.com/,
2021.

https://www.gurobi.com/documentation/current/refman/index.html
https://www.gurobi.com/documentation/current/refman/index.html
https://doi.org/10.7551/mitpress/12274.003.0005
https://doi.org/10.7551/mitpress/12274.003.0005
\NoCaseChange {https://www.xanadu.ai/hardware}
\NoCaseChange {https://www.xanadu.ai/hardware}
https://ionq.com/

210 Bibliography

[164] Honeywell Quantum Solutions, \NoCaseChange{ https: // www. honeywell.
com/ } , 2021.

[165] Google Quantum AI, \NoCaseChange{ https: // quantumai. google/
hardware} , 2021.

[166] IBM Quantum, Https: // quantum-computing. ibm. com/ , 2021.

[167] Rigetti Computing, \NoCaseChange{ https: // www. rigetti. com/

what-we-build} , 2021.

[168] E. Gibney, “Quantum gold rush: The private funding pouring into quan-
tum start-ups,” Nature, vol. 574, no. 7776, pp. 22–24, Oct. 2019. doi:
10.1038/d41586-019-02935-4. [Online]. Available: https://doi.org/
10.1038/d41586-019-02935-4.

[169] E. Pednault, J. Gunnels, D. Maslov, and J. Gambetta, \NoCaseChange{ https:
// www. ibm. com/ blogs/ research/ 2019/ 10/ on-quantum-supremacy/

} , 2019.

[170] Y. Liu, X. Liu, F. Li, et al., “Closing the" quantum supremacy" gap:
Achieving real-time simulation of a random quantum circuit using a new
sunway supercomputer,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2021, pp. 1–12.

[171] F. Pan, K. Chen, and P. Zhang, “Solving the sampling problem of the
sycamore quantum circuits,” Phys. Rev. Lett., vol. 129, p. 090 502, 9 Aug.
2022. doi: 10.1103/PhysRevLett.129.090502. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.129.090502.

[172] M. W. Johnson, M. H. Amin, S. Gildert, et al., “Quantum annealing
with manufactured spins,” Nature, vol. 473, no. 7346, p. 194, 2011.

[173] F. L. Traversa and M. Di Ventra, “Universal memcomputing machines,”
IEEE Trans. Neural. Netw. Learn. Syst., vol. 26, no. 11, pp. 2702–2715,
2015.

[174] N. Mohseni, P. L. McMahon, and T. Byrnes, “Ising machines as hardware
solvers of combinatorial optimization problems,” Nat. Rev. Phys., vol. 4,
no. 6, pp. 363–379, May 2022. doi: 10.1038/s42254-022-00440-8.
[Online]. Available: https://doi.org/10.1038/s42254-022-00440-8.

[175] K. Y. Camsari, B. M. Sutton, and S. Datta, “P-bits for probabilistic spin
logic,” Appl. Phys. Rev., vol. 6, no. 1, p. 011 305, 2019. doi: 10.1063/
1.5055860. eprint: https://doi.org/10.1063/1.5055860. [Online].
Available: https://doi.org/10.1063/1.5055860.

\NoCaseChange {https://www.honeywell.com/}
\NoCaseChange {https://www.honeywell.com/}
\NoCaseChange {https://quantumai.google/hardware}
\NoCaseChange {https://quantumai.google/hardware}
Https://quantum-computing.ibm.com/
\NoCaseChange {https://www.rigetti.com/what-we-build}
\NoCaseChange {https://www.rigetti.com/what-we-build}
https://doi.org/10.1038/d41586-019-02935-4
https://doi.org/10.1038/d41586-019-02935-4
https://doi.org/10.1038/d41586-019-02935-4
\NoCaseChange {https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/}
\NoCaseChange {https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/}
\NoCaseChange {https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/}
https://doi.org/10.1103/PhysRevLett.129.090502
https://link.aps.org/doi/10.1103/PhysRevLett.129.090502
https://doi.org/10.1038/s42254-022-00440-8
https://doi.org/10.1038/s42254-022-00440-8
https://doi.org/10.1063/1.5055860
https://doi.org/10.1063/1.5055860
https://doi.org/10.1063/1.5055860
https://doi.org/10.1063/1.5055860

Bibliography 211

[176] M. Kowalsky, T. Albash, I. Hen, and D. A. Lidar, “3-regular three-xorsat
planted solutions benchmark of classical and quantum heuristic optimiz-
ers,” Quantum Sci. Technol., vol. 7, no. 2, p. 025 008, Feb. 2022. doi:
10.1088/2058-9565/ac4d1b. [Online]. Available: https://dx.doi.
org/10.1088/2058-9565/ac4d1b.

[177] T. F. Rønnow, Z. Wang, J. Job, et al., “Defining and detecting quantum
speedup,” science, vol. 345, no. 6195, pp. 420–424, 2014.

[178] E. Knill, R. Laflamme, R. Martinez, and C.-H. Tseng, “An algorith-
mic benchmark for quantum information processing,” Nature, vol. 404,
no. 6776, pp. 368–370, 2000.

[179] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, https://www.gurobi.com,
2021.

[180] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978, issn: 0001-0782. doi: 10.1145/359340.359342.
[Online]. Available: https://doi.org/10.1145/359340.359342.

[181] F. Mémoli, “Gromov–wasserstein distances and the metric approach to
object matching,” Found. Comput. Math., vol. 11, no. 4, pp. 417–487,
2011.

[182] G. Peyré, M. Cuturi, and J. Solomon, “Gromov-wasserstein averaging of
kernel and distance matrices,” in International Conference on Machine
Learning, PMLR, 2016, pp. 2664–2672.

[183] E. L. Lawler, “The quadratic assignment problem,” Manage. Sci., vol. 9,
no. 4, pp. 586–599, 1963.

[184] A. Perdomo-Ortiz, A. Feldman, A. Ozaeta, et al., “Readiness of quan-
tum optimization machines for industrial applications,” Phys. Rev. Appl.,
vol. 12, no. 1, p. 014 004, 2019.

[185] I. Hen, J. Job, T. Albash, T. F. Rønnow, M. Troyer, and D. A. Lidar,
“Probing for quantum speedup in spin-glass problems with planted so-
lutions,” Phys. Rev. A, vol. 92, no. 4, p. 042 325, 2015.

[186] T. Albash and D. A. Lidar, “Demonstration of a scaling advantage for a
quantum annealer over simulated annealing,” Physical Review X, vol. 8,
no. 3, p. 031 016, 2018.

[187] S. G. Krantz, The proof is in the pudding: The changing nature of math-
ematical proof. Springer, 2011.

https://doi.org/10.1088/2058-9565/ac4d1b
https://dx.doi.org/10.1088/2058-9565/ac4d1b
https://dx.doi.org/10.1088/2058-9565/ac4d1b
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342

212 Bibliography

[188] A. K. Lenstra, H. W. Lenstra, M. S. Manasse, and J. M. Pollard, “The
number field sieve,” in The development of the number field sieve, Springer,
1993, pp. 11–42.

[189] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proceedings 35th annual symposium on foundations of
computer science, Ieee, 1994, pp. 124–134.

[190] C. J. Burges, “Factoring as optimization,” Microsoft Research MSR-TR-
200, 2002.

[191] R. Dridi and H. Alghassi, “Prime factorization using quantum annealing
and computational algebraic geometry,” Scientific reports, vol. 7, no. 1,
pp. 1–10, 2017.

[192] S. Jiang, K. A. Britt, A. J. McCaskey, T. S. Humble, and S. Kais, “Quan-
tum annealing for prime factorization,” Scientific reports, vol. 8, no. 1,
p. 17 667, 2018.

[193] R. Mengoni, D. Ottaviani, and P. Iorio, “Breaking rsa security with a low
noise d-wave 2000q quantum annealer: Computational times, limitations
and prospects,” arXiv preprint arXiv:2005.02268, 2020.

[194] L. Ambrosio, L. A. Caffarelli, Y. Brenier, G. Buttazzo, C. Villani, and
S. Salsa, Optimal Transportation and Applications. Springer Berlin Hei-
delberg, 2003. doi: 10.1007/b12016. [Online]. Available: https://doi.
org/10.1007/b12016.

[195] F. Mémoli, “Spectral gromov-wasserstein distances for shape matching,”
in 2009 IEEE 12th International Conference on Computer Vision Work-
shops, ICCV Workshops, IEEE, 2009, pp. 256–263.

[196] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative ad-
versarial networks,” in International conference on machine learning,
PMLR, 2017, pp. 214–223.

[197] C. Bunne, D. Alvarez-Melis, A. Krause, and S. Jegelka, “Learning gen-
erative models across incomparable spaces,” in International Conference
on Machine Learning, PMLR, 2019, pp. 851–861.

[198] J. Solomon, G. Peyré, V. G. Kim, and S. Sra, “Entropic metric alignment
for correspondence problems,” ACM Transactions on Graphics (ToG),
vol. 35, no. 4, pp. 1–13, 2016.

[199] M. Scetbon, G. Peyré, and M. Cuturi, “Linear-time gromov wasserstein
distances using low rank couplings and costs,” in International Confer-
ence on Machine Learning, PMLR, 2022, pp. 19 347–19 365.

https://doi.org/10.1007/b12016
https://doi.org/10.1007/b12016
https://doi.org/10.1007/b12016

Bibliography 213

[200] T. Vayer, R. Flamary, R. Tavenard, L. Chapel, and N. Courty, “Sliced
gromov-wasserstein,” in Neural Information Processing Systems, 2019.

[201] R. E. Burkard, E. Cela, P. M. Pardalos, and L. S. Pitsoulis, “The quadratic
assignment problem,” in Handbook of combinatorial optimization, Springer,
1998, pp. 1713–1809.

[202] M. T. Fiala Timlin and W. R. Pulleyblank, “Precedence constrained
routing and helicopter scheduling: Heuristic design,” Interfaces, vol. 22,
no. 3, pp. 100–111, 1992.

[203] J.-F. Cordeau and G. Laporte, “The dial-a-ride problem (darp): Vari-
ants, modeling issues and algorithms,” Quarterly Journal of the Belgian,
French and Italian Operations Research Societies, vol. 1, pp. 89–101,
2003.

[204] R. W. Calvo and A. Colorni, “An effective and fast heuristic for the
dial-a-ride problem,” 4or, vol. 5, no. 1, pp. 61–73, 2007.

[205] M. W. Savelsbergh, “Local search in routing problems with time win-
dows,” Annals of Operations research, vol. 4, no. 1, pp. 285–305, 1985.

[206] R. de Alvarenga Rosa, A. Manhães Machado, G. Mattos Ribeiro, and G.
Regis Mauri, “A mathematical model and a clustering search metaheuris-
tic for planning the helicopter transportation of employees to the pro-
duction platforms of oil and gas,” Comput. Ind. Eng., vol. 101, pp. 303–
312, 2016, issn: 0360-8352. doi: https://doi.org/10.1016/j.cie.
2016.09.006. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0360835216303382.

[207] A. Motta, R. Vieira, and J. Soletti, “Optimal routing offshore helicopter
using genetic algorithm,” in 2011 6th IEEE Joint International Infor-
mation Technology and Artificial Intelligence Conference, vol. 2, 2011,
pp. 6–9.

[208] A. Husseinzadeh Kashan, A. Abbasi-Pooya, and S. Karimiyan, “A rig-
based formulation and a league championship algorithm for helicopter
routing in offshore transportation,” in Proceedings of the 2nd Interna-
tional Conference on Data Engineering and Communication Technology,
A. J. Kulkarni, S. C. Satapathy, T. Kang, and A. H. Kashan, Eds.,
Springer Singapore, 2019, pp. 23–38.

[209] M. Maronese, L. Moro, L. Rocutto, and E. Prati, “Quantum compiling,”
arXiv preprint arXiv:2112.00187, 2021.

https://doi.org/https://doi.org/10.1016/j.cie.2016.09.006
https://doi.org/https://doi.org/10.1016/j.cie.2016.09.006
https://www.sciencedirect.com/science/article/pii/S0360835216303382
https://www.sciencedirect.com/science/article/pii/S0360835216303382

214 Bibliography

[210] L. Mitten, “Branch-and-bound methods: General formulation and prop-
erties,” Oper. Res., vol. 18, no. 1, pp. 24–34, 1970.

[211] C. Kaiser, J. Meckbach, K. Ilin, et al., “Aluminum hard mask tech-
nique for the fabrication of high quality submicron nb/al–alox/nb joseph-
son junctions,” Superconductor science and technology, vol. 24, no. 3,
p. 035 005, 2010.

[212] R. Harris, J. Johansson, A. Berkley, et al., “Experimental demonstration
of a robust and scalable flux qubit,” Physical Review B, vol. 81, no. 13,
p. 134 510, 2010.

[213] S. Boixo, T. Albash, F. M. Spedalieri, N. Chancellor, and D. A. Lidar,
“Experimental signature of programmable quantum annealing,” Nature
communications, vol. 4, p. 2067, 2013.

[214] T. Albash and D. A. Lidar, “Decoherence in adiabatic quantum compu-
tation,” Physical Review A, vol. 91, no. 6, p. 062 320, 2015.

[215] L. Buffoni and M. Campisi, “Thermodynamics of a quantum annealer,”
Quantum Science and Technology, vol. 5, no. 3, p. 035 013, 2020.

[216] H. G. Katzgraber, F. Hamze, and R. S. Andrist, “Glassy chimeras could
be blind to quantum speedup: Designing better benchmarks for quantum
annealing machines,” Phys. Rev. X, vol. 4, no. 2, p. 021 008, 2014.

[217] H. G. Katzgraber, F. Hamze, Z. Zhu, A. J. Ochoa, and H. Munoz-Bauza,
“Seeking quantum speedup through spin glasses: The good, the bad, and
the ugly,” Phys. Rev. X, vol. 5, no. 3, p. 031 026, 2015.

[218] A. Callison and N. Chancellor, “Hybrid quantum-classical algorithms
in the noisy intermediate-scale quantum era and beyond,” Phys. Rev. A,
vol. 106, no. 1, Jul. 2022. doi: 10.1103/physreva.106.010101. [Online].
Available: https://doi.org/10.1103%5C%2Fphysreva.106.010101.

[219] Y. Kim, A. Eddins, S. Anand, et al., “Evidence for the utility of quantum
computing before fault tolerance,” Nature, vol. 618, no. 7965, pp. 500–
505, 2023.

[220] J. Tindall, M. Fishman, M. Stoudenmire, and D. Sels, “Efficient tensor
network simulation of ibm’s kicked ising experiment,” arXiv preprint
arXiv:2306.14887, 2023.

[221] A. D. King, J. Raymond, T. Lanting, et al., “Quantum critical dynamics
in a 5,000-qubit programmable spin glass,” Nature, pp. 1–6, 2023.

https://doi.org/10.1103/physreva.106.010101
https://doi.org/10.1103%5C%2Fphysreva.106.010101

Bibliography 215

[222] V. Dunjko, J. M. Taylor, and H. J. Briegel, “Quantum-enhanced machine
learning,” Physical review letters, vol. 117, no. 13, p. 130 501, 2016.

[223] L. Moro and E. Prati, “Anomaly detection speed-up by quantum re-
stricted boltzmann machines,” Communications Physics, vol. 6, no. 1,
p. 269, 2023.

[224] W. K. Mutlag, S. K. Ali, Z. M. Aydam, and B. H. Taher, “Feature
extraction methods: A review,” in Journal of Physics: Conference Series,
IOP Publishing, vol. 1591, 2020, p. 012 028.

[225] R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, and J. Saeed, “A
comprehensive review of dimensionality reduction techniques for feature
selection and feature extraction,” Journal of Applied Science and Tech-
nology Trends, vol. 1, no. 2, pp. 56–70, 2020.

[226] M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” in
Proceedings. 1991 IEEE computer society conference on computer vision
and pattern recognition, IEEE Computer Society, 1991, pp. 586–587.

[227] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of cog-
nitive neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[228] R. Bro and A. K. Smilde, “Principal component analysis,” Analytical
methods, vol. 6, no. 9, pp. 2812–2831, 2014.

[229] C. O. S. Sorzano, J. Vargas, and A. P. Montano, “A survey of dimen-
sionality reduction techniques,” arXiv preprint arXiv:1403.2877, 2014.

[230] A. Hyvärinen and E. Oja, “Independent component analysis: Algorithms
and applications,” Neural networks, vol. 13, no. 4-5, pp. 411–430, 2000.

[231] O. Déniz, M. Castrillon, and M. Hernández, “Face recognition using in-
dependent component analysis and support vector machines,” Pattern
recognition letters, vol. 24, no. 13, pp. 2153–2157, 2003.

[232] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

[233] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Computer Vision–ECCV 2014: 13th European Con-
ference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I
13, Springer, 2014, pp. 818–833.

216 Bibliography

[234] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learn-
ing with neural networks,” Advances in neural information processing
systems, vol. 27, 2014.

[235] K. Mato, R. Mengoni, D. Ottaviani, and G. Palermo, “Quantum molecu-
lar unfolding,” Quantum Science and Technology, vol. 7, no. 3, p. 035 020,
2022.

[236] C. F. Negre, H. Ushijima-Mwesigwa, and S. M. Mniszewski, “Detecting
multiple communities using quantum annealing on the d-wave system,”
Plos one, vol. 15, no. 2, e0227538, 2020.

[237] D-Wave Systems Inc., Qpu-specific physical properties: Advantage_system4.1,
2022.

[238] D. O’Malley, V. V. Vesselinov, B. S. Alexandrov, and L. B. Alexan-
drov, “Nonnegative/binary matrix factorization with a d-wave quantum
annealer,” PloS one, vol. 13, no. 12, e0206653, 2018.

[239] J. Golden and D. O’Malley, “Reverse annealing for nonnegative/binary
matrix factorization,” Plos one, vol. 16, no. 1, e0244026, 2021.

[240] R. Y. Li, R. Di Felice, R. Rohs, and D. A. Lidar, “Quantum annealing
versus classical machine learning applied to a simplified computational
biology problem,” NPJ quantum information, vol. 4, no. 1, p. 14, 2018.

[241] D. Ottaviani and A. Amendola, “Low rank non-negative matrix factor-
ization with d-wave 2000q,” arXiv preprint arXiv:1808.08721, 2018.

[242] L. Rocutto and E. Prati, “A complete restricted boltzmann machine
on an adiabatic quantum computer,” International Journal of Quantum
Information, vol. 19, no. 04, p. 2 141 003, 2021.

[243] L. Rocutto, C. Destri, and E. Prati, “Quantum semantic learning by re-
verse annealing of an adiabatic quantum computer,” Advanced Quantum
Technologies, vol. 4, no. 2, p. 2 000 133, 2021.

[244] D. Vert, R. Sirdey, and S. Louise, “On the limitations of the chimera
graph topology in using analog quantum computers,” in Proceedings of
the 16th ACM international conference on computing frontiers, 2019,
pp. 226–229.

[245] K. Boothby, P. Bunyk, J. Raymond, and A. Roy, “Next-generation topol-
ogy of d-wave quantum processors,” arXiv preprint arXiv:2003.00133,
2020.

Bibliography 217

[246] D-Wave Systems Inc., Qpu-specific physical properties: Advantage2_prototype1.1,
2022.

[247] M. Maronese, L. Moro, L. Rocutto, and E. Prati, “Quantum compiling,”
in Quantum Computing Environments, Springer, 2022, pp. 39–74.

[248] J. Cai, W. G. Macready, and A. Roy, “A practical heuristic for finding
graph minors,” arXiv preprint arXiv:1406.2741, 2014.

[249] V. Choi, “Minor-embedding in adiabatic quantum computation: I. the
parameter setting problem,” Quantum Information Processing, vol. 7,
pp. 193–209, 2008.

[250] D-Wave Systems, Ocean SDK public Github repository, https://github.
com/dwavesystems/dwave-ocean-sdk, Accessed: 27-Sep-2023, 2023.

[251] L. Rocutto, M. Maronese, F. Traversa, S. Decherchi, and A. Cavalli, “As-
sessing the effectiveness of non-turing computing paradigms,” submitted,
2023.

[252] D-Wave github repository - uniform_torque_compensation https://github.com/dwavesystems/dwave-
system/blob/1.18.0/dwave/embedding/chain_strength.py#L38, 2021.

[253] V. Dumoulin, I. J. Goodfellow, A. Courville, and Y. Bengio, “On the
challenges of physical implementations of rbms,” in Twenty-Eighth AAAI
Conference on Artificial Intelligence, 2014.

[254] J. Clark, T. West, J. Zammit, X. Guo, L. Mason, and D. Russell, “To-
wards real time multi-robot routing using quantum computing technolo-
gies,” in Proceedings of the International Conference on High Perfor-
mance Computing in Asia-Pacific Region, 2019, pp. 111–119.

[255] E. Zardini, M. Rizzoli, S. Dissegna, E. Blanzieri, and D. Pastorello, “Re-
constructing bayesian networks on a quantum annealer,” arXiv preprint
arXiv:2204.03526, 2022.

https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/dwavesystems/dwave-ocean-sdk

	Acknowledgements
	Abstract
	Open problems in computational chemistry
	Molecular simulations
	Molecular dynamics and Monte Carlo methods
	Monte Carlo technique in computational chemistry
	Molecular dynamics simulations

	Bottleneck in classical computational chemistry
	Sampling problem
	Optimization problems for crystalline structure search

	Quantum computing
	Introduction
	Quantum mechanics for quantum computing
	Quantum state and qubits
	Transformations of quantum states
	Dynamics of closed quantum systems
	Observables and Measurement
	Entanglement

	Elements of circuital quantum computing
	Quantum circuits
	Elementary gates
	One-qubit gates
	Multi-qubit gates

	The universal quantum computer

	Elements of adiabatic quantum computing
	Spin-glass Hamiltonian for AQC
	Quantum spin-glass model
	Adiabatic theorem and convergence conditions of Quantum Annealing
	Adiabatic theorem
	Convergence conditions of quantum annealing
	Computational complexity

	Hardware realization
	Superconductive qubits
	Josephson junction
	Charge qubit

	Trapped-ion qubits
	Qubit encoding on a trapped ion
	Gates on Trapped ion qubits

	Limitations in today's quantum computers
	Decoherence times
	Error rates and coupling map

	Error correction
	Stabilizer formalism

	Memcomputing
	Non-Turing computation with dynamical systems
	Dynamical systems
	Lyapunov stability

	Ideal dynamical system for computation

	Realisation of digital memcomputing machine
	From analog to digital
	Self-Organizing Logical Gates
	Physical realization of SOLGs

	Combinatorial optimization problems with memcomputing
	Boolean problems and MAX-SAT
	Self-Organizing Logical Circuit
	MAX-SAT and combinatorial optimization

	Integer linear programming with memcomputing
	Self-Organizing Algebraic Gates
	Solving ILP problems with Memcomputing

	Quantum computing for integral estimation
	Chapter overview
	Quantum speedup over Monte Carlo techniques
	Problem statement
	State preparation
	probability distribution loading
	Weight function loading

	Quantum Amplitude Estimation algorithm

	Alternative Quantum Amplitude Estimation methods
	MLAE approach
	Iterative approach

	Comparison of the algorithms by statistical analysis
	Bench-marking the methods of quantum amplitude estimation

	Experimental test on a trapped-ion quantum computer
	Trapped-ion quantum computer used for the experimental test
	Assessing the performances on a trapped ion device

	Discussion
	Conclusions

	Quantum computing for ground-state search
	Quantum computing for ground state estimation problem
	Quantum phase estimation algorithm
	Variational quantum eigensolver

	Combinatorial optimization as ground state search problem
	Quantum approximate optimization algorithm
	CVaR Optimization

	Optimize a water crystal lattice with quantum computing algorithms
	2D square lattice
	Ion interaction

	Hexagonal lattice
	Ion interaction

	Hamiltonian operator mapping
	Introduction of long-range interactions

	Results
	Benchmark strategy
	Mean First Solution Time (MFST)
	Classical solvers

	Quantum solutions tuning
	Performances discussion

	Discussion and conclusions

	Benchmarking of non-Turing paradigms
	Assessing the effectiveness of non-Turing paradigms on hard optimization problems
	Benchmark problems
	Semiprime Factorization Problem (FP)
	FP: Implementation details

	Hard–assignment Gromov–Wasserstein problem (GWP)
	GWP: Implementation details

	Capacitated Helicopter Routing Problem (CHRP)
	CHRP: Implementation details

	Results
	Scalability assessment
	Semiprime Factorization problem (FP)
	Hard-assignment Gromov-Wasserstein problem (GWP)
	Capacitated Helicopter Routing Problem (CHRP)
	Scalability results for TTS

	Parameters dependency
	Memcomputing tuning
	D-Wave tuning
	Semiprime Factorization problem (FP)
	Hard–Assignment Gromov-Wasserstein problem (GWP)
	Capacitated Helicopter Routing Problem (CHRP)

	Gap and latency driven analysis

	Discussion and Conclusions
	Benchmarking of adiabatic quantum computers for in images feature extraction
	Feature extraction on AQCs
	Problem definition
	Computational procedure
	Description of the dataset
	Embedding the problem

	Results
	Optimization of the NBMF hyperparameters
	Tuning of the AQC parameters
	Gap dependency on problem dimension and wall time
	Reconstruction error after the iterative process

	Conclusions

	Bibliography

