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Abstract

Critically ill patients with hospital-acquired pneumonia (HAP) and ventilator-associa -

ted pneumonia (VAP) pose a formidable challenge in clinical management due to the pro-

found alterations in their pharmacokinetics (PK) resulting from their underlying patho-

physiological conditions. This leads to substantial inter- and intra-patient variability in

drug exposure.

HAP and VAP are frequently caused by Gram-negative pathogens, for which merope -

nem is recognized as an effective treatment option by guidelines. The efficacy of antibi-

otics hinges on their pharmacological properties, namely, their PK and pharmacodynamics

(PD). Specifically, for meropenem, the PK/PD efficacy target is a drug concentration (Css)

to minimum inhibitory concentration (MIC) ratio (Css/MIC) greater than 4 for the entire

duration of therapy.

This thesis aims to investigate strategies for optimizing meropenem PK and PD in crit-

ically ill patients with HAP/VAP.

To enhance meropenem PK optimization in critically ill patients, I evaluated the per-

formance of various methods for estimating renal function, which is crucial for dosing

adjustments. These methods included the measurement of creatinine clearance (mCLCR)

and its estimation using CKD-EPI, Cockcroft-Gault (CG), and MDRD equations. Linear

regressions were used to calculate the dose predicted by each method based on the actual

mero-penem clearance.
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Abstract

For PD optimization of meropenem in patients with HAP/VAP, I developed a PK/PD

model to quantify the relationship between meropenem concentrations and changes in C-

reactive protein (C-RP), an inflammation biomarker. Then, I simulated C-RP fate for

different Css/MIC scenarios.

In the first project involving 46 patients, 133 meropenem concentrations were ana-

lyzed. The CKD-EPI formula consistently overestimatedmCLCR up to 90 mL/min, after

which it underestimated it. CG and MDRD formula consistently overestimated mCLCR

across the entire range of glomerular filtration rates (GFR).

Consequently, in critically ill patients, dose adjustments for 24-hour continuous infusion

of meropenem should be based onmCLCR. The use of equations for GFR estimation may

result in significant under- or overestimation of meropenem dosages.

In the second project with 64 patients, 211 meropenem steady-state concentrations

and 415 C-RP measurements, I successfully built a PK/PD model. Simulations demon-

strated that higher Css/MIC ratios were associated with greater and more rapid reductions

in C-RP from baseline. Specifically, Css/MIC ratios of 4-8 was associated with more than

a 55 % decrease in C-RP at day 4, which could be used to evaluate the effectiveness of

meropenem in empirical treatments.
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Abstract

This research endeavors to personalize the treatment of critically ill patients with

HAP/VAP who are being treated with meropenem. It is essential to optimize both PK and

PD aspects of therapy. In this pursuit, the measurement of creatinine clearance (mCLCR)

is essential, and empirical estimation formulas should not be relied upon. Regarding the

PD, our findings demonstrate that C-RP serves as a biomarker reflecting meropenem’s

efficacy (as indicated by Css/MIC ratio) and can be used in clinical practice, particularly

during empiric treatments, to assess whether the PK/PD efficacy target has been achieved.

This comprehensive approach holds promise for enhancing the clinical management of

critically ill patients with HAP/VAP and advancing the field of antibiotic therapy opti-

mization.
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Riassunto

I pazienti critici con polmonite nosocomiale (HAP) e polmonite associata alla

ventilazione meccanica (VAP) costituiscono una sfida formidabile nella gestione clinica

a causa delle profonde alterazioni nella loro farmacocinetica (PK), dovute alle loro con-

dizioni fisiopatologiche. Ciò porta a una significativa variabilità inter- e intra-paziente

nell’esposizione ai farmaci.

HAP e VAP sono frequentemente causate da patogeni Gram-negativi, per i quali il

meropenem è un’opzione di trattamento secondo le linee guida. L’efficacia degli an-

tibiotici dipende dalle loro proprietà farmacologiche, quindi, dalla loro PK e dalla loro

farmacodinamica (PD). In particolare, per il meropenem, l’obiettivo di efficacia PK/PD è

un rapporto tra concentrazione del farmaco (Css) e concentrazione minima inibente (MIC)

(Css/MIC) superiore a quattro per l’intera durata della terapia.

Questa tesi mira a investigare strategie per ottimizzare la PK e la PD del meropenem

nei pazienti critici con HAP/VAP.

Per migliorare l’ottimizzazione della PK del meropenem nei pazienti critici, ho va-

lutato le prestazioni di vari metodi per stimare la funzione renale, cruciale per gli ag-

giustamenti posologici del meropenem. Questi metodi includevano la misurazione della

clearance della creatinina (mCLCR) e la sua stima utilizzando le equazioni CKD-EPI,

Cockcroft-Gault (CG) e MDRD. Delle regressioni lineari sono state utilizzate per calco-

lare la dose prevista da ciascun metodo basata sulla clearance effettiva del meropenem.
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Riassunto

Per l’ottimizzazione della PD del meropenem nei pazienti con HAP/VAP, ho svilup-

pato un modello PK/PD per quantificare la relazione tra le concentrazioni di meropenem e

l’andamento della proteina C-reattiva (C-RP), un biomarcatore dell’infiammazione. Suc-

cessivamente, ho simulato l’andamento della C-RP per diversi scenari di Css/MIC.

Nel primo progetto coinvolgente 46 pazienti e 133 concentrazioni di meropenem,

abbiamo mostrato che la formula CKD-EPI sovrastima la mCLCR fino a 90 mL/min,

dopodiché la sottostima. Le formule CG e MDRD sovrastimano la mCLCR su tutto il

range del tasso di filtrazione glomerulare (GFR). Di conseguenza, nei pazienti critici, gli

aggiustamenti posologici per l’infusione continua di meropenem dovrebbero essere basati

sulla mCLCR. L’uso di equazioni per la stima del GFR può portare a significative sot-

tostime o sovrastime delle dosi di meropenem, che è dannoso per il paziente.

Nel secondo progetto con 64 pazienti, 211 concentrazioni di meropenem e 415misura-

zioni di C-RP, ho costruito con successo un modello PK/PD per cui le simulazioni hanno

dimostrato che rapporti Css/MIC più elevati erano associati a riduzioni maggiori e più

rapide della C-RP rispetto ai valori iniziali. In particolare, i rapporti Css/MIC di 4-8 erano

associati a una diminuzione superiore al 55 % della C-RP al giorno 4. Questo valore e la

descrizione dell’andamento della C-RP nel tempo potrebbero essere utilizzati per valutare

l’efficacia del meropenem nei trattamenti empirici.
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Riassunto

Questa ricerca si impegna a personalizzare il trattamento dei pazienti critici con HAP/

VAP trattati con mero-penem. È essenziale ottimizzare sia gli aspetti della PK che della

PD della terapia. In questa ricerca, abbiamo mostrato che la misurazione della clearance

della creatinina (mCLCR) è essenziale, e non si dovrebbe utilizzare formule di stima em-

piriche. Per quanto riguarda la PD, i nostri risultati dimostrano che la C-RP è un biomar-

catore che riflette l’efficacia del meropenem. Può essere utilizzata nella pratica clinica, in

particolare per valutare se l’obiettivo PK/PD del meropenem è stato raggiunto nei tratta-

menti empirici. Questo approccio completo offre prospettive promettenti per migliorare

la gestione clinica dei pazienti critici con HAP/VAP e per far avanzare il campo dell’ot-

timizzazione della terapia antibiotica.
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Résumé

Les patients critiques atteints de pneumonie nosocomiale (HAP) et de pneumonie

associée à la ventilation mécanique (VAP) représentent un défi considérable en matière

de prise en charge clinique en raison de leurs conditions pathophysiologiques qui résul-

tent des altérations profondes de leur pharmacocinétique (PK). Cela engendre une grande

variabilité inter- et intra-patients dans l’exposition aux antibiotiques.

La HAP et la VAP sont fréquemment causées par des agents pathogènes à Gram né-

gatif, pour lesquels le méropénème est une option de traitement selon les directives eu-

ropéennes et américaines. L’efficacité des antibiotiques repose sur leurs propriétés phar-

macologiques, à savoir leur PK et leur pharmacodynamie (PD). Plus précisément, pour

le méropénème, la cible d’efficacité PK/PD est un rapport entre la concentration plasma-

tique du médicament (Css) et la concentration minimale inhibitrice du pathogène (CMI)

(Css/CMI) supérieur à 4 pendant toute la durée du traitement.

Cette thèse vise à étudier différentes stratégies pour optimiser la PK et la PD du

méropénème chez les patients critiques atteints de HAP/VAP.

Pour optimiser la PK du méropénème chez les patients critiques, j’ai évalué les perfor-

mances de différentes méthodes d’estimation de la fonction rénale, essentielle pour les

ajustements posologiques du méropénème. Ces méthodes comprenaient la mesure de la

clairance de la créatinine (mCLCR) et son estimation à l’aide des équations CKD-EPI,

Cockcroft-Gault (CG) et MDRD. Des régressions linéaires ont été utilisées pour calculer

la dose prédite par chaque méthode en fonction de la clairance réelle du méropénème.
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Résumé

Pour l’optimisation de la PD du méropénème chez les patients atteints de HAP/VAP,

j’ai construit un modèle PK/PD permettant de quantifier la relation entre les concentra-

tions de méropénème et les variations de la protéine C-réactive (C-RP), un biomarqueur

de l’inflammation. J’ai ensuite simulé la cinétique de la C-RP pour différentes valeurs de

Css/MIC.

Dans la première étude, menée sur 46 patients et 133 concentrations deméropénème, la

formule CKD-EPI surestimait de manière constante lamCLCR jusqu’à 90 mL/min, après

quoi elle la sous-estimait. Les formules CG et MDRD surestimaient de manière constante

lamCLCR sur l’ensemble de la plage des taux de filtration glomérulaire (GFR). Par con-

séquent, chez le patient critique, les ajustements posologiques du méropénème devraient

être basés sur la CLCR mesurée. L’utilisation d’équations pour l’estimation du GFR peut

entraîner une sous- ou une surestimation significative des doses de méropénème, ce qui

peut avoir des conséquences préjudiciables pour le patient. Par conséquent, il est impératif

de mesurer la créatinine dans les urines et de ne pas recourir à des formules mathématiques

pour estimer la fonction rénale.

Dans le second projet, incluant 64 patients, 211 concentrations de méropénème et

415 prélèvements de C-RP, j’ai construit avec succès un modèle PK/PD. Les simulations

ont montré que des rapports Css/CMI plus élevés étaient associés à des réductions plus

importantes et plus rapides de la C-RP par rapport aux valeurs de base. Plus précisément,

les rapports Css/CMI compris entre 4 et 8 étaient associés à une diminution de plus de 55

%de la C-RP au jour 4, ce qui pourrait être utilisé pour évaluer l’efficacité duméropénème.
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Résumé

Cette recherche vise à personnaliser le traitement des patients critiques atteints de

HAP/VAP traités par méro-pénème. Il est essentiel d’optimiser à la fois la PK et la PD du

médicament. Pour optimiser la PK, la mesure de la clairance de la créatinine (mCLCR)

dans les urines est essentielle, et les formules d’estimation empiriques ne devraient pas

être utilisées. En ce qui concerne la PD, nos résultats montrent que la C-RP peut être util-

isée en clinique, notamment pour évaluer si la cible PK/PD a été atteinte et si la dose de

méropénème administrée est adéquate pour la guérison du patient. Cette approche globale

offre des perspectives prometteuses pour améliorer la prise en charge clinique des patients

critiques atteints de HAP/VAP et pour faire progresser le domaine de l’optimisation de la

thérapie antibiotique.
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I.1. Hospital-acquired and ventilator-associated pneumonia

I.1 Hospital-acquired and ventilator-associated pneumo-

nia

I.1.1 Definition of hospital-acquired and ventilator-associated pneu-

monia

Pneumonia (from the Greek πνευµων, pneumôn, “lung”) is an acute infection of the

pulmonary parenchyma caused by a wide variety of microorganisms, including bacteria,

viruses, fungi or parasites [1]. The lung parenchyma refers to alveolar tissue with res-

piratory bronchioles, alveolar ducts, blood vessels and terminal bronchioles (Figure I.1).

Pneumonia is categorized into distinct categories:

• Community-acquired pneumonia (CAP): pneumonia acquired outside of the hospi-

tal setting or within the first 48-72 h of hospital admission,

• Hospital-acquired pneumonia (HAP): pneumonia contracted by a patient at least

48-72 h after being admitted to the hospital,

• Ventilator-associated pneumonia (VAP): subcategory of HAP that occurs in pa-

tients receiving mechanical ventilation for at least 48-72h and

• Health care–associated pneumonia (HCAP): pneumonia acquired in lower-acuity

health care settings [1–4].
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Figure I.1: Anatomy of the lungs.

I.1.2 Epidemiology and etiology of hospital-acquired pneumonia and

ventilator-associated pneumonia in critically ill patients

According to the World Health Organization (WHO), acute respiratory infections

were the leading cause of morbidity and mortality from infectious disease in the world

in 2020 [5]. Almost 4 million people die from acute respiratory infections each year,

with 98 % of these deaths due to lower respiratory tract infections such as pneumonia [5].

Fifty-six percent of the infections in ICU are hospitalized-acquired which barely varies be-

tween geographic regions (55.3 % in Western Europe, 49.6 % in North America, 51.8 %

in Australasia, 64.8 % in Africa, 66.8 % in Easter Europe, 52.6 % in Asia/Middle East

and 58.6 % in Central/South Africa) and gross national income (55.5 % in upper, 57.4 %

in upper-middle and 50.5 % in lower-middle and lower gross national income) [5].
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HAP and VAP are the second most common hospitalized-acquired infection in the

world, affecting 0.5 to 1.7 % of hospitalized patients [6]. In intensive care units (ICU),

one fifth of critically ill patients is likely to acquire a HAP. According to the EU-VAP/CAP

study, a prospective observational study conducted among 1,089 patients with pneumonia

from 27 ICU in 9 European countries, 20.57 % of the patients (827 patients) had a HAP

and 42.70 a VAP (n = 465) [3]. HAP and VAPwere the most common infection in ICU [7]

and were directly related to death in 19.6 % of the patients [3]. HAP and VAP are also a

frequent lethal complication of hospitalization and contributed for 43.9 % of the deaths in

critically ill patients [3].

HAP and VAP are mainly caused by bacteria and viruses, and more rarely by fungi

or parasites. In a retrospective multicenter cohort study conducted in 13 Korean tertiary

or university-affiliated hospitals in 2019, bacteria were the most frequent pathogens, ac-

counting for 86.3 % of the pathogen identification [8].

Bacteria can be classified considering different properties. The most common is based

on Gram stain, developed in 1882 by Hans Christian Gram, which characterizes bacteria

based on the structural characteristics of their cell walls. The thick layers of peptido-

glycan (long sugar polymer) in the ”Gram-positive” cell wall stain purple, while the thin

”Gram-negative” cell wall appears pink [9]. Gram-negative bacteria, or by simplification

Gram-negatives, are protected from external attack by an outer membrane, unlike Gram-

positive (Figure I.2). Gram-negatives are also the most frequent isolated pathogens in

hospital-acquired infections (77.9 % of the ICU patients) whereas Gram-positives were

isolated in 31.3 % of the critically ill patients [10].

At this point, it is important to note that patients may be infected by several different

pathogens (bacteria, viruses, fungi, parasites), varied species of bacteria or even different

families of bacteria; this is known as polymicrobial infection.
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Figure I.2: Structure of Gram-positive and Gram-negative bacteria.

The bacteria most frequently responsible for HAP and VAP are Pseudomonas aerug-

inosa (23.0 %), Klebsiella pneumoniae (22.6 %), Acinetobacter species (16.6 %), and

Escherichia coli (12.0 %), for Gram-negatives and Methicillin-sensitive Staphylococcus

aureus (MSSA) (6.5 %) andMethicillin-resistant Staphylococcus aureus (MRSA) (4.0 %)

for Gram-positives [10–12].
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I.1.3 Physiopathology of hospital-acquired pneumonia in critically ill

patients

Lung is not a sterile environment but has its own flora; the “lung microbiome”, com-

posed notably by Prevotella, Veillonella, Streptococcus, Fusobacterium, andHemophilus

species. The lung microbiome is a dynamic community, with a constant equilibrium

among species and in an interaction with lung immunity [13]. In pneumonia, this bal-

ance is upset and a species of bacteria, whether or not from the microbiome, multiplies.

Bacteria outside of the lung microbiome typically enter the lower respiratory tract through

aspiration from oral cavity or nose. This happens in healthy conditions during sleep. Pro-

gression to pneumonia is rare but some conditions such as host immune system or viru-

lence of bacteria can lead to pneumonia [1] . Another feasible way of colonization is via

blood stream: when achieving the lungs, bacteria can invade spaces between cells and

alveoli. For intubated patients, the endotracheal tube is a direct route of entry for bacteria

to the lower respiratory tract (e.g., VAP) [13].

The risk of acquiring HAP or VAP increases with patient age and the presence of co-

morbidities (such chronic respiratory diseases, cardiovascular and renal diseases, epilepsy,

dementia, stroke) or lifestyle-related factors (smoking, alcohol, chronic malnutrition, and

poor dental hygiene). Other factors (structural lung disease, recent antibiotic or corticos-

teroid use) favor Gram-negative infections [1].
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I.1.4 Treatment of hospital-acquired pneumonia and ventilator-asso -

ciated pneumonia in critically ill patients

To treat bacterial infections, antibiotics are employed. The term ”antibiotic” is de-

rived from the Greek words ”αντι” (anti), meaning ”against,” and ”βιος” (bios), meaning

”life”. A comprehensive study conducted across 1,150 medical centers spanning 88 coun-

tries involved 15,302 patients, of whom 53.6 % [8, 14] were confirmed to have bacterial

infections [10]. Among these infected patients, 34.2 % received treatment with carbapen-

ems, and 31.36 % with penicillins, two significant classes of antibiotics. Remarkably,

antibiotics were also administered to 39.2 % of patients who did not have confirmed in-

fections. In the subsequent section I.2, we will delve deeper into the pharmacological

properties and classes of antibiotics. However, it is worth noting at this point that antibi-

otics play a pervasive role in healthcare settings worldwide.

The initial treatment of HAP and VAP is determined by various patient factors: pa-

tients clinical and pathological conditions (such as sepsis), the length of stay before infec-

tion, recent history of intravenous antibiotic use within 90 days, the causative pathogen,

previous infections over the past 90 days, and local antibiotic-resistance data, including

the prevalence of Staphylococcus aureus in the hospital [2].

In the scenario of empirical treatment, where the specific causative pathogen is not

yet known, as opposed to targeted treatment when the pathogen is identified, European

guidelines advise the use of combination therapy that includes:

• a Gram-positive antibiotic with MRSA activity (e.g., glycopeptides or oxazolidi-

nones) and
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• one or two Gram-negative antibiotics with an activity against Pseudomonas species

(antipseudomonal activity), one β-lactam–based agent (penicillins, cephalosporins,

carbapenems or monobactams) and/or one non-β-lactam–based agent (fluoroquino -

lones, aminoglycosides or polymyxins), depending on the risk factor for antimicro-

bial resistance [2].

In case of HAP, recommended initial empiric antibiotic therapy for HAP includes:

• a Gram-negative antibiotic for patients with no elevated risk of mortality and no

factors increasing the likelihood of MRSA,

• a Gram-negative antibiotic plus linezolid or vancomycin in patients with no elevated

risk of mortality but with factors increasing the likelihood of MRSA and

• two Gram-negative antibiotics plus linezolid or vancomycin in patients with high

risk of mortality and with factors increasing the likelihood of MRSA [2].

These guidelines were published in 2017 for the European guidelines [2] and 2016

for the American guidelines [15]. In recent years, new therapeutic options have emerged

to address multi-drug resistant (MDR) pathogens in HAP/VAP.

In 2022, updated guidelineswere developed to tackle these difficult-to-treat pathogens [16–

18]. Several novel antibiotics have been introduced for targeting MDR pathogens [13, 19,

20]:

• Ampicillin-sulbactam: a combination agent containing an existing β-lactam antibi-

otic (ampicillin) with β-lactamase inhibitor (BLI) (sulbactam)

• Cefiderocol: a siderophore cephalosporin that binds to iron and enters the bacte-

rial cell, active against a wide range of carbapenem resistant pathogens including

Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii.

• Ceftazidime-avibactam: a combination of a third-generation cephalosporin with a

non-β-lactam and β-lactamase inhibitor, approved by the Food and Drug Adminis-

tration (FDA) and European Medicines Agency (EMA) for HAP/VAP
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• Ceftolozane-tazobactam: a combination of a cephalosporin and BLI, approved by

the FDA and EMA for HAP/VAP.

• Imipenem-relebactam: a combination agent containing an existing β-lactam antibi-

otic (imipenem) with non-β-lactam β-lactamase inhibitor (relebactam).

• Meropenem-vaborbactam: a combination agent containing an existing β-lactam an-

tibiotic (meropenem) with a non-β-lactamase inhibitor (vaborbactam), not approved

for VAP, but with an advantage for clinical recovery when compared with the best

available therapy in a trial that included mechanically ventilated patients with car-

bapenem resistant Enterobacteriaceae [20, 21].

Updated European andAmerican guidelines forMDRpathogens, including these nov-

els antimicrobials are summarized in Table I.1. Guidelines typically recommend a course

of antibiotic therapy lasting 7 to 10 days, although this duration may vary based on factors

such as the specific pathogens involved, the patient’s clinical response, and the presence

of complicating factors [2, 3].

Once culture results become available, and if the patient’s clinical condition remains

stable, healthcare providers may consider de-escalating the antibiotic regimen. This in-

volves switching to narrower-spectrum antibiotics to mitigate the risk of antibiotic resis-

tance [2, 3].
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Table I.1: European and American recommendations on the treatment of severe

difficult-to-treat Gram-negative infections according to resistance phenotypes [16–19].

Resistance

phenotypes
European guidelines American guidelines

Carbapenem-

resistant

Enterobac-

terales

(CRE)

Meropenem-vaborbactam or

ceftazidime-avibactam for

severe infections if active in

vitro

Ceftazidime-avibactam plus

aztreonam or cefiderocol

for severe infections caused

by metallo-β-lactamase-

producing CRE

Meropenem-vaborbactam,

ceftazidime-avibactam, or

imipenem-relebactam for non-urinary

infections caused by Klebsiella

pneumoniae-producing carbapenemase

Ceftazidime-avibactam as first-line therapy

for OXA-48 infections

Ceftazidime-avibactam plus aztreonam or

cefiderocol for CRE infections

Pseu-

domonas

aerugi-

nosa with

difficult-

to-treat

resistance

Ceftolozane-tazobactam as

first-line therapy if active in

vitro

Cefftolozane-tazobactam,

ceftazidime-avibactam, and

imipenem-relebactam as first-line therapy for

non-urinary infections caused by

difficult-to-treat resistance Pseudomonas

aeruginosa

Carbapenem-

resistant

Acine-

tobacter

baumannii

(CRAB)

Ampicillin-sulbactam as first-

line therapy if active in vitro

Recommendation against

cefiderocol for the treatment

of severe CRAB infections

Combination agent op-

tions include tigecycline or

polymyxin B if active in vitro

Ampicillin-sulbactam as first-line therapy if

active in vitro, in combination therapy in

case of severe infections Cefiderocol in

combination therapy for refractory infections

to other antibiotics Combination agent

options include minocycline, tigecycline, or

polymyxin B if active in vitro
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I.2 Pharmacological properties of antibiotics

The term pharmacology comes from two Greek words: φαρµακον (pharmacon),

”poison, drug”, and λογος (logos), ”discourse, doctrine, knowledge”. It has been de-

fined as “the science of developing and applying mathematical and statistical methods

to characterize, understand, and predict a drug’s pharmacokinetic and pharmacodynamic

behavior” [22] Pharmacology is a bridging discipline, as the field includes pharmaceuti-

cal sciences, clinical pharmacology, medicine, computational science, programming, and

statistics [23]. Pharmacology is divided into two disciplines: pharmacokinetics (PK) and

pharmacodynamics (PD). The PK describes the fate of the drug in the organism whereas

the PD describes its mechanisms of action and its pharmacological effects. Simply put,

PK studies how the body handles the drug, and PD how the drug affects the body [24].

I.2.1 Mode of actions of antibiotics

According to their properties, antibiotics can either inhibit bacteria growth (they are

called bacteriostatic antibiotics) or kill bacteria (bactericidal antibiotics). It exists differ-

ent families of antibiotics, depending on their chemical structure andmechanism of action.

They may target the cell wall, the cytoplasmic membrane, the protein synthesis, the nu-

cleic acid synthesis or the folate synthesis of the bacteria [25]. The Figure I.3 illustrates

these different mechanisms of action.

Antibiotics targeting bacterial cell wall such as β-lactams or glycopeptides are bacte-

ricidal: by inhibiting the synthesis of peptidoglycan or peptidoglycan cross-linkage which

are essential for bacterial survival, they kill bacteria.
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Figure I.3: Mechanisms of action of antibiotics.

The cell membrane is attacked by polymyxins, causing cell permeability, cytoplasm

leakage and eventually bacteria death.

To growth and reproduce, bacteria need to replicate their deoxyribonucleic acid (DNA),

transcript it into ribonucleic acid (RNA) thanks to folic acid, and make protein using ribo-

somes (macromolecular machines performing protein synthesis, made up of two subunits:

50s and 30s). Some bacteriostatic antibiotics like sulfonamide and trimethoprim block

folic acid synthesis. Quinolones and fluoroquinolones block the action of the DNA gy-

rase, an enzyme involved in DNA replication. Rifamycins target RNA polymerase, an

enzyme essential for RNA transcription. They are bactericidal. Protein synthesis in bac-

teria can be prevented by antibiotics, which block ribosomes. Macrolides and linezolid act

on 50s subunit of ribosomes while tetracycline and aminoglycosides act on 30s subunit.

They can be bactericidal or bacteriostatic.
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Antibiotics used nowadays in clinics are most often derived from natural compounds,

such as actinomycetes or other bacteria, and fungi (Figure I.4) [26]. They were iso-

lated from organisms competing with bacteria in their natural environment. Microbes

are among the oldest organisms and have been existing for billions of years. They thus

have developed mechanisms to defend themselves against aggressions from other species,

and to attack the others, in a constant state of equilibrium [27]. Bacteria can adapt them-

selves to these attacks, and therefore to antibiotics action. It is known as antimicrobial

resistance (AMR).

Figure I.4: Origin of most common classes of antibiotics.
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I.2.2 Bacterial resistance to antibiotics

Mechanisms of resistance

Bacteria have developed resistance mechanisms to survive in their natural environ-

ment, becoming increasingly adept over time. They create resistance genes as a defense

against antibiotics and can even share these genes with subsequent generations (vertical

transfer) and across distinct species (horizontal transfer) (Figure I.5). Vertical gene trans-

fer is the transmission of genetic material from one generation of bacteria to the next within

the same lineage, typically through reproduction. It does not involve gene exchange be-

tween different species. One the other hand, horizontal gene transfer refers to the transfer

of genetic material between different bacteria of the same generation. This can occur

through processes like conjugation (direct exchange of DNA between bacteria via a struc-

ture called pilus), transformation (absorption of DNA by bacteria from the surrounding

environment), and transduction (bacteriophages can transfer genes by infecting different

bacteria cells), allowing bacteria to exchange genes and traits. Horizontal and vertical

gene transfers are combined, especially within confined environments such as infection

sites [28].

We might wonder how bacteria acquire resistant gene. They undergo mutations due to

selective pressure; some of these mutations confer resistant properties to them. They sur-

vive and transfer these new abilities through both horizontal and vertical gene transfers.

These mutations regard modifications of the antibiotics target or the inactivation of an-

tibiotics. Some bacteria show resistance by efflux mechanism (bacteria expel antibiotics

before they have time to work), while others show altered permeability or bypass of the

metabolic pathway [25]. The different mechanisms of AMR are illustrated in Figure I.6.
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Figure I.5: Horizontal and vertical gene transfer. Vertical gene transfer is the trans-

mission of genetic material from one generation of bacteria to the next, typically through

reproduction. This process leads to the inheritance of genetic information from parent to

offspring. Horizontal gene transfer, on the other hand, refers to the transfer of genetic

material between different bacteria of the same generation. This can involve the same bac-

terial species or different bacterial species, allowing for the exchange of genes and traits.

Consequences in clinics

Multidrug-Resistant (MDR) bacteria are bacteria that have developed resistance to

multiple classes of antibiotics. This phenomenon makes the treatment of bacterial in-

fections increasingly challenging in clinical settings. Drug resistance can spread rapidly,

limiting effective treatment options and increasing the risk of severe and potentially life-

threatening infections. This burden poses a major and worsening clinical challenge, as

their prevalence continues to rise, resulting in significant mortality [29].
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Figure I.6: Mechanisms of antibiotic resistance.

In both the EPIC-III survey and the EUROBACT-2 study focusing on infections in

ICU, Gram-negative bacterial infections constituted a majority, comprising over 60 % of

the reported cases [10, 30]. Furthermore, more than 24 % of these bacterial strains were

classified as difficult-to-treat resistance (DTR) [10, 30]. This classification denotes an in-

termediate or resistant phenotype to all first-line agents within the carbapenem, β-lactam,

and fluoroquinolone categories.
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In the context VAP, it has been observed that Gram-negative bacteria exhibiting MDR

profiles are prevalent in up to half of the reported cases [2, 3, 10]. Within the DTR Gram-

negatives, several species stand out, including DTR Enterobacterales, DTR Pseudomonas

aeruginosa and DTR Acinetobacter baumannii [31]. Within Enterobacterales strains, the

primary mechanism of antibiotic resistance often revolves around the production of Class

A carbapenemases (e.g., KPC) and Class D carbapenemases (e.g., OXA-type) [32]. Ad-

ditionally, Class B carbapenemases, including metallo-β-lactamases (MBL), contribute

significantly to the development of resistance. DTR Pseudomonas aeruginosa exhibits a

range of resistance mechanisms, encompassing the upregulation of efflux pumps, the loss

or reduction of outer membrane porins (OprD), increased production of AmpC enzymes,

and mutations affecting penicillin-binding proteins [33, 34]. Similarly, DTR Acinetobac-

ter baumannii employs various mechanisms to resist multiple antibiotics, including efflux

pumps and alterations in antibiotic binding sites, along with the expression of carbapen-

emases. The predominant class of carbapenemases in this context is Class D, including

variants such as OXA-23-like, OXA-24/40-like, and OXA 58-like [31].

Antibiotic resistance poses a significant global concern in the context of HAP and

VAP, especially because of its association with prolonged length of hospital stay and

higher mortality rates [2, 3, 31]. The continual rise of MDR microorganisms has cre-

ated a situation where many of the currently available antibiotics are steadily losing their

effectiveness [35, 36]. As a result, drug-resistant infections have become a leading cause

of death worldwide [35]. This predicament is compounded by the troubling shortage of

new antimicrobial agents currently in the developmental pipeline [37].
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Antibiotic stewardship, research into new therapies, and robust infection control mea-

sures are essential components of the strategy to address this growing healthcare concern.

This thesis centers on the optimization of antibiotic stewardship, with a particular em-

phasis on enhancing the pharmacological properties of antibiotics, namely the PK and the

PD. The following section I.2.3 will provide an explanation of PK, highlight its major

parameters, and outline methods for modeling drug PK.

I.2.3 Notions of pharmacokinetics

PK studies the effect of the organism on a drug, here, on antibiotics. Its goal is to pre-

dict drug concentrations along treatment in the blood and possibly in the organs. For this

purpose, it is important to understand how a molecule is absorbed in the body, distributed

throughout it, metabolized, and eliminated.

Absorption, Distribution, Metabolism and Elimination (ADME)

We can see the fate of the antibiotics in the body as a journey. It seems obvious that to

be effective, a drug must reach its target, in our case, the bacteria causing pneumonia. The

first stage of the antibiotic’s journey is therefore to reach the general bloodstream from its

administration site; it is the absorption [38].

By definition, if the antibiotic is administered intravenously, there is no absorption

(being injected directly into the general bloodstream). For extra-vascular routes of ad-

ministration (as opposed to intra-vascular), such as oral, subcutaneous or aerosol admin-

istrations, the antibiotic will have to pass through the body’s natural barriers protecting us

from toxic elements (like gastric acidity, the intestinal barrier, and the liver in the case of

an oral route) before reaching the general bloodstream. One parameter of interest is linked

to absorption and can be directly measured: the maximum concentration of the antibiotic

in the general bloodstream, known as Cmax (Figure I.7).
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Once in the systemic bloodstream, the antibiotic can reach its target following the

bloodstream. The distribution phase characterizes this passage of drugs from the blood-

stream to other tissues and organs and vice-versa. Drugs can then exert their therapeu-

tic effect in the body sites where they are intended to act (e.g., lungs in pneumonia,

central nervous system in meningitis or encephalitis, abdomen in intra-abdominal infec-

tions… [39–41]) but can also cause undesirable or even toxic effects in other sites, such

as daptomycin which causes skeletal muscle toxicity [38]. It should be noted that drug

molecules can only diffuse from plasma to tissues and from tissues to plasma when they

are in unbound, i.e., not bound to plasma proteins such as albumin.

Figure I.7: PK parameters derived from the drug concentration versus time profile. An-

tibiotic concentration-time curve showing the maximum concentration (Cmax) (in orange,

one for each curve) and the exposure (area under the curve or AUC) (in green, shown only

for the green curve but can be calculated for the three curves) following an intravenous

(IV, in blue), an extra-vascular (EV, in green) and a continuous infusion (in purple) ad-

ministration. Note that with a continuous infusion, concentrations reach a plateau when

the rate of elimination of the drug is equal to the rate of infusion. This state of equilibrium

is called steady-state and the resulting concentrations are called Css (steady-state concen-

trations). To reach this plateau more quickly, it is possible to administer an IV dose of the

drug, known as the loading dose (LD), to immediately reach the steady state.
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A fundamental PK parameter characterizing the drug distribution is the volume of

distribution (VD). The VD represents the theoretical volume used to quantify the distri-

bution of a drug between plasma and the rest of the body. It is defined as the volume

required to accommodate the total quantity of an administered drug while maintaining

the same concentration observed in the blood plasma, thereby illustrating the significance

of drug distribution within tissues [38]. This relationship can be expressed mathemati-

cally as shown in Equation I.1. Consequently, drugs with high VD values are extensively

distributed throughout the body, while those with low VD values exhibit limited distribu-

tion [38, 42, 43]. In other words, a drug that remains primarily within the plasma would

have an extremely low VD (approximately 3 L for a 70 kg man). Conversely, if all a

drug’s molecules left the plasma to distribute to other tissues, the VD would be infinite

(Figure I.8). The highest known VD is the quinacrine’s one (50,000 L) [38].

VD =
total amount of drug in the body (dose)

drug plasma or blood concentration
(I.1)

Figure I.8: Concept of volume of distribution (VD). A low VD indicates a (very) low ca-

pacity for tissue diffusion of the drug, due to a too highmolecular weight (macromolecules

are too large to diffuse) or to strong binding to plasma proteins (small molecules bound to

proteins become too large to diffuse). In these cases, VD do not exceed 10 L. Intermedi-

ate VD are found for small molecules (< 500 Da) that diffuse easily into the extracellular

water space (such as aminoglycosides, with a VD around 15 L) or extra- and intracellular

molecules (VD similar to the total volume of water in the body, i.e., 45 L). High VD indi-

cate that the drug diffuses easily into peripheral tissues, and even a high capacity to bind

in these tissues.
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The human body, through its remarkable evolutionary adaptations, possesses the ca-

pacity to recognize and eliminate xenobiotics—substances foreign to a living organism.

Consequently, drugs, being perceived as foreign entities, trigger variousmechanisms aimed

at their removal from the body. One such elimination pathway is metabolism.

The metabolism entails enzymatic reactions that alter the drug’s structure, resulting

in the creation of one or more derivative compounds referred to as metabolites. The pri-

mary objectives of this phase include the deactivation of the drug, reduction of its potential

toxicity, and the conversion of the drug into a water-soluble form, facilitating its elimi-

nation through either bile or urine. Many classes of drugs, including fluoroquinolones,

macrolides, oxazolidinones, rifamycins, and azoles, undergo this metabolic transforma-

tion. Alternatively, another pathway for drug excretion involves renal elimination.

Renal elimination pertains to the expulsion of the drug in its unaltered form, i.e., with-

out undergoing metabolic changes, through the urine. This excretion pathway primarily

applies to small, water-soluble molecules, including the majority of β-lactams, glycopep-

tides, and aminoglycosides. The body’s overall capacity to eliminate a molecule is charac-

terized by the clearance (CL). Clearance is defined as the volume of plasma from which a

substance, such as an antibiotic, is entirely removed within a specific unit of time [24, 38].
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Clearance is another fundamental PK parameter; serving as a measure of the rate at

which a substance undergoes elimination from the body. Clearance can be specified for

each organ involved in drug excretion, encompassing hepatic clearance, renal clearance,

intestinal clearance, pulmonary clearance, and others. The total clearance is derived by

summing these individual clearances. In the context of most drugs, only hepatic and renal

clearance are of significant consideration, with the contributions of other organs being

negligible. For drugs primarily excreted via the urinary route, renal clearance is often

sufficient for approximating the total clearance, as observed in the case of β-lactams, for

instance [24, 38]. In the scenario of intravenous (IV) administration, clearance can be

quantified as the ratio between the administered dose and the area under the concentration-

time curve AUC, as represented by Equation I.2. AUC corresponds to the integral of

drug concentration over time (Figure I.7). It provides insights into both the extent of

drug exposure and the rate at which it is cleared from the body. In cases of repeated

administration, the overall AUC (from the first dose onward) or AUC over a specific

period (such as between the penultimate and last doses) can be derived.

CL =
Dose

AUC
(I.2)

The minimum concentration, often referred to as the residual concentration or trough

concentration (Cmin) is another parameter of interest in PK. It represents the lowest con-

centration of a drug present in the bloodstream, specifically the concentration just before

the administration of a new dose. Cmin also serves as an indicator of the body’s capacity

to eliminate a substance.
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Assessing the ability to eliminate a substance is of utmost importance in clinical prac-

tice. If a drug’s elimination capability is exceedingly low, patients may be at risk of tox-

icity. Conversely, if it is excessively high, there is a potential for therapeutic failure. In

most cases, the precise measurement of drug clearance is not readily available, primarily

due to practical and economic constraints. As a result, clinicians often rely on surrogate

markers to determine appropriate drug dosing regimens.

For drugs that are primarily eliminated through the kidneys, such as β-lactams, con-

sidering renal function is essential when adjusting dosage regimens to ensure safe and

effective treatment [44].

Renal clearance, glomerular filtration rate and creatinine clearance

The kidney plays a key role in the elimination of a wide variety of xenobiotics [45]. Each

kidney is made up of around 1.2 million nephrons [46]. The nephron is the kidney’s

structural and functional unit responsible for urine formation [24, 38, 45, 46]. The kid-

ney consists of Bowman’s capsule, the proximal convoluted tubule, the Henle’s loop, the

distal convoluted tubule and the collecting duct (Figure I.9) [24, 38, 45, 46]. The kidney

is highly vascularized, with 2 main capillary networks: the first forms the glomerulus,

housed in Bowman’s capsule, and the second surrounds the tubular capillaries [47]. Urine

is formed from plasma in three stages: glomerular filtration, tubular reabsorption, and

tubular secretion.

Small water-soluble molecules, such as water, sugar, ions and certain antibiotics like

meropenem, are filtered through Bowman’s capsule (which acts like a molecular sieve)

and pass from the blood capillaries to the nephron; this is the glomerular filtration [24, 38,

45–48]. The indicator of the capacity of kidney to filtrate plasma is the glomerular filtra-

tion rate (GFR), the rate at which plasma is filtered through Bowman’s capsule [49, 50].
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The ultrafiltrate or primary urine formed after glomerular filtration undergoes changes

in its chemical composition, in the proximal convoluted tubule, the loop of Henle and the

distal convoluted tubule, where certain molecules can be reabsorbed from the nephron into

the blood: this is tubular reabsorption. In this way, glucose, 99 % of water and some ions

are reabsorbed. Other molecules can be secreted directly from the peritubular capillaries.

This is known as tubular secretion. The final urine accumulates in the bladder via the

collecting duct [24, 38, 45–48]. In a more mathematical way [48]:

Drug CL = [ glomerular filtration+ tubular secretion ] – tubular reabsorption

(I.3)

Figure I.9: Schematic representation of the functional unit of the kidney, the nephron. Re-

nal clearance (CLrenal) is a composite of three distinct phenomena: glomerular filtration

(CLfiltration), tubular reabsorption and tubular secretion (CLsecretion). Adapted from [51].
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Ideally, the renal clearance of a drug should be determined by collecting the patient’s

urine and measuring its urinary concentration. However, this is impractical in routine

clinical practice, time-consuming and expensive. Although renal function is not limited

to the glomerular filtration process, the GFR is considered the best indicator of renal func-

tion in clinics [49, 50]. GFR The direct measurement of GFR is not feasible; however,

it can be evaluated through the measurement of clearance of some markers. These mark-

ers employed to assess GFR can either be endogenous, originating within the organism,

or exogenous, introduced from external sources. It is crucial that these markers are non-

metabolized (e.g., undergo renal elimination exclusively), are produced or administered

at a constant rate, and are subject to filtration without involving secretion or reabsorption

processes. In the realm of GFR assessment, the gold standard is the measurement of inulin

clearance [49, 52]. However, this procedure is intricate and costly, making it impractical

for routine clinical use [50]. Theses inconveniences have encouraged the use of endoge-

nous markers.

The most commonly employed endogenous marker for GFR assessment is creati-

nine [24, 38, 49, 50, 53]. Creatinine results from the breakdown of creatine phosphate

in muscle tissue. It is produced by the body at a constant rate [49, 54, 55], which is con-

tingent upon an individual’s muscle mass. Importantly, creatinine undergoes complete

renal elimination without reabsorption or secretion [54]. Therefore, creatinine clearance

(CLCR) serves as clinical parameter for evaluating kidney function, and it can be deter-

mined through measurement or estimation.
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The measurement of CLCR (referred to as mCLCR for measured CLCR) necessitates

the collection of urine over a 24-hour period. Creatinine clearance is then calculated using

Equation I.4 [49, 54]. In contrast, the estimation of CLCR provides a more convenient

means of approximating GFR without requiring urine collection [49, 50]. It relies on the

measurement of plasma creatinine levels and different formulas have been developed for

this purpose:

• The Cockcroft & Gault or CG formula (named after its creators) is based on sex,

age and weight [56];

• The Modification of Diet in Renal Disease or MDRD formula (name of the study

that identified it) is based sex, ethnicity and age [57],

• TheChronicKidneyDisease Epidemiology collaboration or CKD-EPI formula (na -

me of the study that identified it) is based on sex, ethnicity and age [58].

mCLCR =
UCR×UV olume

SCR×T
(I.4)

where UCR is the urinary creatinine concentration (mg/dL), UV olume is the urinary volume

(mL), SCR is the serum creatinine concentration (mg/dL), and T is the 24-h collection

time.

The KDIGO (Kidney Disease: Improving Global Outcomes) clinical practice guide-

lines defined the distinct stages of renal function according to GFR (Table I.2).
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Table I.2: Classification of renal function according to GFR ranges.

GFR ranges (mL/min/1.73 m²) Description of renal function

≥ 90 Normal or high

60-89 Mildly decreased

45-59 Mildly to moderately decreased

30-44 Moderately to severely decreased

15-29 Severely decreased

< 15 Kidney failure

Mathematical modelling

In order to predict anti-infective concentrations over time, all the different PK pro-

cesses (absorption, distribution, metabolism, and elimination) need to be translated into

mathematical language. The prevailing method frequently employed is the utilization of

”compartmental” models. These models employ systems of differential equations to de-

lineate the concentrations of a drug in the distinct compartments of the model as they

evolve over time [23].

In PK, a compartment is a virtual distribution space in which the drug is instanta-

neously distributed homogeneously, then eliminated or exchanged with other compart-

ments, following identical kinetics at all points and over time in the compartment. Some-

times, the drug does not distribute homogeneously in the whole body (accumulation in

some tissues for example) and more than one compartment is needed to describe the drug

PK. The different compartments (usually, 1 to 3) represent the whole body [23, 24, 38].

PK compartments are based on several assumptions and conditions; the first is that

concentrations are always homogeneous within the compartment. The second is that ex-

change rates between compartments are of order one, and that rate constants and volumes

are constant over time. Compartments are said to be mamillary; meaning that all transfers

take place from the central compartment, including those entering and leaving the body

(Figure I.10).
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Figure I.10: Schematic representation of a 1 (upper panel) and 2-compartment (lower

panel) pharmacokinetic model.(t) is the drug concentration over time in plasma andAx(t),
the drug amount over time in compartment x. From [38].

The PK describes the relationship between drug dosing and the drug concentration-

time profile in the body. The drug concentration change over time (C(t)) can in the sim-

plest case be approximated to decline from an initial concentration (C0)with time (t) by an

exponential function (Equation I.5). In this case, the elimination rate (ke, in /time unit) at

any given time point is proportional to the concentration remaining in the system. Equa-

tion I.5 represents a one compartment model with intravenous (IV) administration. As

is commonly done [2, 13, 15, 44], antibiotics are routinely administered intravenously to

critically ill patients at our hospital. Therefore, we will not delve into models describing

extra venous administration.

C(t) = C0 × e−ke×t (I.5)

Once the PK parameters have been estimated, it is possible to predict drug concentra-

tions in an individual with the model. In order to do the same at the level of a population of

individuals, it will be necessary to add to these models the notions of individual variability

and residual error. This is what we call the population approach, developed in the next

section I.2.3.
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Population approach

The population approach in PK modeling is a method used to estimate the PK pa-

rameters of an entire population, rather than just an individual. The population approach

involves the use of PK modeling techniques to analyze data collected from a group of in-

dividuals, and then make predictions about the PK of individuals in the population based

on statistical modeling. The concept of population pharmacokinetics (popPK) was first

proposed by Sheiner and Beal in the 1970s [59].

The aim of popPK is to define the mean PK parameters and their dispersion (variance)

in a group of patients, to estimate the inter-individual or even intra-individual variability

of PK parameters, and to quantify the relationships that exist between a patient’s physio-

logical state and his PK properties. Therapy can thus be individually optimized.

There are three important components of popPK models: the structural model, the

statistic models, and the covariate models.

The structural model describes the general evolution of drug concentration over time

using the mathematical equations explained in the previous section I.2.3 (e.g., 1 or 2 com-

partments, type of administration…). The obtained PK parameters, such as CL and VD,

are average population parameters or typical population parameters. They represent a hy-

pothetical patient representative of the population being studied.

Carla TROISI 65



I.2. Pharmacological properties of antibiotics

The statistical model describes variability around the structural model and the distribu-

tion of individual PK parameters. There are two main sources of variability in population

PK: between-subject variability (BSV) or inter individual variability (IIV), which is the

variance of a parameter across individuals; and residual variability, which refers to the

unexplained variability that remains after accounting for other sources of variability. This

residual variability takes into consideration factors such as imprecision in time sampling

and drug concentration determination. It also acknowledges the inherent limitations of at-

tempting to precisely describe a complex phenomenon using a ”simplified” mathematical

formula.

The individuals of the studied population do not have the same PK parameter values

(each patient, for example, has his or her own CL and VD values). Individual PK pa-

rameters are random variables whose distribution can be estimated. A statistical model

must therefore be chosen to describe the distribution of individual parameters as a func-

tion of the typical population parameter. For most parameters, a lognormal distribution

is assumed, as they must be positive (CL and VD values cannot be negative, for example)

and often right skewed. Therefore, the individual parameter of the ith patient (Pi) can be

calculated using the value of the mean population parameter (Ppop) and the deviation from

the median of the parameter ith patient (ηi) as:

Pi = Ppop × eηi (I.6)

Taken across all evaluated individuals, the individual η values are assumed to be nor-

mally distributed with a mean of zero and variance ω2. That is the hypothesis assumed in

Monolix, the software used to build the PK and PD models in this thesis.
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The residual unexplained variability (RUV) arises frommultiple sources, including as-

say variability, errors in sample time collection, and model misspecification. It describes

the deviation between the concentrations predicted by the model (IPRED for individual

predicted concentrations) and those actually observed (DV for dependent variable or obs

for observations). It is noted ε. There are several possible models for describing RUV:

additive (Equation I.7), uncertainty is independent of concentration levels), proportional

(Equation I.8), uncertainty is proportional to the concentration levels) or combined (Equa-

tion I.9), among others.

DV = IPRED + ε (I.7)

DV = IPRED + ε× IPRED (I.8)

DV = IPRED + ε1 × IPRED + ε2 (I.9)
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Apart from estimating dose-concentration-time profiles of each patient and quantify-

ing inter-individual variability, the population approach enables the search for factors that

can explain part of the variability. These factors may include age, gender, body weight,

renal function, and other medical conditions that may affect drug PK (Figure I.11). These

several factors are known as covariates and partly explain variations in PK parameters be-

tween individuals or, sometimes, even within the same individual during treatment. Co-

variates models account for the effect of covariates. As an example, creatinine clearance

(CLCR) is often a significant covariate for CL of renally excreted drugs, and incorporation

of a relationship between this covariate and CL will likely reduce the inter-individual vari-

ability. CLCR can thereby provide guidance in the individualization and choice of dose

so that patients with a low CLCR receive a lower dose in accordance with their reduced

capacity to eliminate the drug [23].

Figure I.11: Factors explaining inter-individual variability and affecting drug exposure.

From (59).
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From a statistical point of view, popPK modeling refers to non linear mixed effects

modeling because it combines two diverse types of models: non-linear models and mixed

effects models. Non-linear models are used to describe relationships between concentra-

tions and parameters (which varies with time, dose, age, and other factors). Mixed effects

models, on the other hand, refer to the fact that popPK models incorporate fixed effects,

which are parameters that are constant across subjects, and random effects, which are pa-

rameters that vary across subjects.

Several algorithms can be used to estimate the popPK parameters, like the SAEMalgo-

rithm in Monolix (stochastic approximation expectation-maximization algorithm). They

are iterative meaning that they use repeated cycles of model estimation, assessment, and

refinement to improve the ability of a model to accurately describe the PK behavior of

a study population. Algorithm are based on a likelihood function, calculated to judge

the performance of the estimates, and maximized to improve model performance. As es-

timation cycles progress, this likelihood function is optimized to stabilize and stop the

algorithm; it is the convergence.

Different models can be compared with each other’s using the objective function (OF),

calculated according to Equation I.10. Two models can be confronted by comparing their

OF value (OFV). The difference between the two OFV follows a χ2 (chi-squared) distri-

bution with 1 degree of freedom (if the number of parameters is identical), with a threshold

value∆ ≥ 3.84 for rejection of the null hypothesis at a first-species risk of 5% (p < 0.05).

So, if the model 2 has an OFV 3.84 smaller than the OFV of the model 1, model 2 is prefer-

able. To take into account the complexity of the model and with a view to parsimony,

so-called penalty criteria can be used, such as the Akaike information criterion (AIC) or

the Bayesian information criterion (BIC), which can be calculated using the equations I.11

and I.12, respectively.
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OFV = −2× ln(likelihood) (I.10)

AIC = −2× ln(likelihood) + 2× k (I.11)

BIC = −2× ln(likelihood) + n× k (I.12)

where k is the number of parameters to be estimated in the model and n, the number of

observations.

Other conventional criteria are used to choose between different models and to vali-

date the model. Parameter accuracy is assessed using the relative standard error (RSE), a

measure of a statistical estimate’s reliability (lower the RSE is, more accurate is the pa-

rameter estimation). Linear regression between population or individual model-predicted

concentrations and observed concentrations highlights potential bias in estimation. The

model’s predictive capability is assessed using a virtual population whose characteristics

are randomly selected based on the model, and whose simulated observations are com-

pared with actual observations. The latter must be homogeneously distributed in relation

to the simulations. This representation is called a VPC for visual predictive check. Fi-

nally, the bootstrap, a patient resampling technique, is used to check the robustness of the

model and the accuracy of the estimated parameters [23, 38].
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Once validity has been established, the model can be used for extrapolation. The

Monte Carlo method is generally used to run simulations, generating random values of

parameters and covariates according to their own distribution law to produce many PK

profiles (thousands). One of the most common and useful application of simulations is

to investigate different dosage regimens in different patient groups (renal impairment,

elderly, obese…).

I.2.4 Notions of pharmacodynamic modeling

To describe the dose-response relationship of antibiotics, once the PK has been de-

termined, the PD needs to be characterized. PD modeling is used to describe and quantify

the relationship between the concentration of a drug and its biological effect. The time

course of effects can be directly or indirectly related to plasma drug concentration.

Direct effect models describe the relationship between plasma drug concentration and

immediate pharmacological effects. These models assume that the drug directly binds to

its target (e.g., useful when the target is in the plasma) and produce a response that is

proportional to the plasma drug concentration. The simplest form of direct effect models

is the Emax model (Equation I.13), which assumes a maximum effect (Emax) that can be

achieved for a drug and a concentration required to produce half of the maximum effect

(EC50). The Emax model can be graphically represented by a sigmoid curve that shows

the relationship between drug concentration and response. TheEmax model was modified

in sigmoidal Emax (according to Equation I.14) to consider the fact that multiple drug

molecules can interact with one target, leading to a sigmoidal dose-response curve.
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E(t) =
Emax × Cp(t)

EC50 + Cp(t)
(I.13)

E(t) =
Emax × Cp(t)

γ

ECγ
50 + Cp(t)γ

(I.14)

where E(t) is the drug effect over time, Emax is the maximum effect, EC50 is the drug

concentration that produces 50 % of the maximum effect, Cp(t) is the plasma drug con-

centration over time, and γ is the sigmoidicity coefficient or Hill number which represents

the steepness of the drug effect-concentration curve.

Direct effect models are useful for drugs that act rapidly and have a direct and re-

versible effect on their targets. However, they may not be suitable for drugs with complex

pharmacological effects or drugs that act through indirect mechanisms. Direct effect mod-

els also may not account for the time course of drug action, as they assume an immediate

effect that is independent of drug concentration changes over time.

Effect compartment models describe the temporal relationship between drug concen-

tration and effect. These models assume that the drug has a rapid distribution phase, fol-

lowed by a slower elimination phase, and that the drug’s effect is delayed and sustained

compared to its plasma concentration. The delayed response is due to the time required for

the drug to reach its target site in the body and to produce a pharmacodynamic effect. This

delayed response can be modeled by introducing an effect compartment that represents the

time delay between drug concentration in the plasma and drug concentration at the target

site. The relationship between the concentration of the drug in the effect compartment

and the effect is described using the following equations, using Emax (Equation I.15) or

sigmoidal Emax (Equation I.16) models:
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E(t) =
Emax × Ce(t)

EC50 + Ce(t)
(I.15)

E(t) =
Emax × Ce(t)

γ

ECγ
50 + Ce(t)γ

(I.16)

where E(t) is the drug effect over time, Emax is the maximum effect, EC50 is the drug

concentration that produces 50 % of the maximum effect, Ce(t) is the drug concentration

over time in the effect compartment, and γ is the sigmoidicity coefficient or Hill number

which represents the steepness of the drug effect-concentration curve, similarly to the di-

rect effect models (see Equations I.13 and I.14).

Effect compartment models are particularly useful for drugs with slow onset and pro-

longed duration of action, such as anesthetics and sedatives. They can also account for

factors that affect drug distribution and elimination, such as tissue binding andmetabolism.

But these models are insufficient when a surrogate is used to reflect response to a drug

(e.g., inflammation markers to reflect antibiotic treatment, called biomarkers) or when

adding an effect compartment is not enough to model drug response.

Turnover models describe the relationship between drug concentration and the rate of

biomarkers production or elimination. Thesemodels assume that the drug acts bymodulat-

ing the turnover rate of the biomarker, usually a protein (enzyme, receptor…). Basically,

the drug can enhance or inhibit the production or the degradation of the biomarker, leading

to 4 different scenarios (Figure I.12). The equations used to describe these scenarios are

similar to the ones describing Emax model (Equations I.15 and I.16).
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I(t) = 1−
Imax × Cγ

p

ICγ
50 + Cγ

p
(I.17)

S(t) = 1 +
Imax × Cγ

p

ICγ
50 + Cγ

p
(I.18)

where I(t) and S(t) represent the inhibition and simulation function, Imax and Smax the

maximum inhibition and simulation at the effect site (Smax should be > 0 and 0 < Imax

<1), IC50 and SC50 the drug concentration producing 50 % of the maximum inhibition or

simulation achieved at the effect site, respectively, CP the drug plasma concentration and

γ is the sigmoidicity coefficient (can be set at 1 if no sigmoidicity is needed).

Figure I.12: Diverse ways of considering drug-effect relationship. In the direct response

model, the hypothesis is that the effect (E) is directly linked to the drug plasma concen-

tration (Cp). Most of the time, a delayed response is observed because a drug must reach

its target to induce an effect, or because the effect is observed only after a cascade of

events triggered by the drug. In the first case, drug-effect relationship can be modelled by

adding a virtual compartment (effect compartment Ce) to represent the delayed response

due to drug distribution to its target site. In the second case, the drug can eventually lead

to simulation or inhibition to a protein production (described by a production rate kin) or
inhibition (described by a degradation rate kout).
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I.2.5 Pharmacokinetic/pharmacodynamic relationships of antibiotics

The PK/PD of antibiotics is distinct from other drugs because their target is not hu-

man cells but organisms from distinct species, and an ideal antibiotic would not directly

affect the patient or cause side effects. Regarding antibiotics, the PD definition ”how the

drug affects the bacteria” would thus be more appropriate than ”how the drug affects the

body” [23].

PK is the study of how drug concentrations change over time after administration, and

PD is the study of the relationship between a pharmacological effect and drug concen-

trations. PK/PD is the combination of these two sciences that ultimately enables to be

monitor the effect of the drug as a function of time (Figure I.13).

Figure I.13: Schematic representation of PK/PD relationship, integrating the PK (drug

concentrations versus time, top, left panel) and the PD (drug effect versus its concentra-

tions, top, right panel), allowing for the description of the complete effect profile over

time. From [60].

PD, pharmacodynamics; PK, pharmacokinetics.
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PK/PD indexes of antibiotic efficacy

Ideally, to measure the effect of antibiotics, bacteria would be counted. Since it is

obviously impossible to measure bacterial load in patients, we use a surrogate. To deter-

mine the overall sensitivity of a bacterial population to a given antibiotic, the minimum

inhibitory concentration (MIC) is used. It represents the lowest concentration associated

with inhibition of bacterial growth. It is determined in microbiology laboratory, in vitro,

under standardized conditions [61]. It is the PD criterion considering the specific sensi-

tivity of a bacterial strain and can be associated to three traditional PK indices to predict

antimicrobial activity for different antibiotic classes (Figure I.14):

• The ratio of the maximum plasma drug concentration to MIC (fCmax/MIC) is used

for the so called “concentration-dependent antibiotics” such as some aminogly-

cosides (gentamicin, tobramycin, amikacin), some fluoroquinolones and polymix-

ins [61–66].

• The percentage of time that the unbound drug concentration exceeds the MIC over

a 24-h period (%fT>MIC) is the PK/PD index for the so called “time dependent”

antibiotics, such as penicillins (piperacillin), carbapenems (meropenem), tetracy-

clines, macrolides and cephalosporines (cefepime, cefazoline, ceftazidime) [61–

66]. It should be noted that, in practical terms, the measurement of a residual con-

centration before a new antibiotic administration shows whether 100 % of the ther-

apeutic interval has been effectively covered.

• The ratio of the area under the drug concentration–time curve to MIC (fAUC/MIC)

is used for antibiotics with both time and concentration dependencies, such as fos-

fomycin, daptomycin, levofloxacin, vancomycin, colistin, linezolid, ciprofloxacin

and tigecyclines [61–66].
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Figure I.14: Traditional PK/PD indexes used in antibiotic therapy. The ratio of the maxi-

mum antibiotic concentration (Cmax) to the MIC (minimum inhibitory concentration), the

time during which the antibiotic concentration is above the MIC and the area under the

curve (AUC) above the MIC define the PK/PD indices. The PK parameters are shown in

blue and the PD parameter in salmon. From [67].

The MIC value is currently the best available parameter to reflect the effectiveness

of an antibiotic against pathogens. It is used as the criterion for determining a given

pathogen’s category of sensitivity or resistance to a given antibiotic [63]. The determined

MIC value must be compared with MIC clinical breakpoints to assess whether the strain

is susceptible or resistant to the antibiotic. Clinical breakpoint is the actual concentration

of any antibiotic which defines if the given isolate is sensitive or resistant to this antibiotic

(MIC < breakpoint: sensitive strain, MIC > breakpoint: resistant strain). This reference is

given by the European EUCAST (European Committee on Antimicrobial Susceptibility

Testing) [68] and the American CLSI (Clinical and Laboratory Standards Institute) [69].

In Europe, EUCAST updates breakpoint each year, the first of January, and has introduced

three categories since the first of January 2019 [70]:

• Susceptible (S): there is a high likelihood of therapeutic success using a standard

dosing regimen of the agent,

• Susceptible (I, for intermediate): there is a high likelihood of therapeutic success

using an increased dosing regimen, (even if this category is subject to debate [71])
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• Resistant (R): there is a high likelihood of therapeutic failure even when there is

increased exposure.

The comparison MIC to clinical breakpoint is used for antibiotic selection in targeted

therapy (between two potentially effective antibiotics, the one with the highest clinical

breakpoint/MIC ration is chosen).

In empiric treatment (at the beginning of therapy, or when isolates or their MIC are un-

known), clinicians consider clinical breakpoint as a surrogate of MIC to determine PK/PD

index [72]. Clinical breakpoint MIC represents a worst-case scenario regarding bacterial

susceptibility that needs to be considered when patients are treated empirically.

Therapeutic window

The therapeutic window (or therapeutic margin) of a drug refers to the range of drug

concentrations that causes the desired therapeutic effect without causing significant tox-

icity or adverse effects. In other words, it represents the range of drug dosages that can

be administered safely and effectively to a patient. The therapeutic margin is an essen-

tial concept in pharmacology as it determines the likelihood of a drug being an effective

treatment option for a specific condition. Under dosing or over dosing the patient would

lead to therapeutic failure, due to insufficient drug concentrations or to toxicity, respec-

tively (Figure I.15).

The slope for therapeutic effects is steep within therapeutic range and then plateaued.

At the same time, toxicity may increase accordingly to the drug level in a flat way (Fig-

ure I.16). The therapeutic window of a given drug represents the range of concentrations

between those that are ineffective and those that are toxic. The narrower this range, the

more complex the handling of the drug. Since the aim of antibiotics is to inhibit or kill

living organisms, patients may experience toxicity when the target of antibiotic action is

similar in bacteria and humans.
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Figure I.15: Schematic diagram of the therapeutic window of a drug The therapeutic win-

dow of a drug lies between two regions of concentrations associated with therapeutic fail-

ure. The therapeutic failure in the lower region is principally caused by the absence of

adequate efficacy and in the upper region, by the inability to have adequate efficacy with-

out unacceptable adverse response. From [24].

Toxicities

A drug with narrow therapeutic window means that a slight increase in his drug con-

centration can cause significant harm to the patient, which makes it more challenging to

find the optimal dose that has a prominent level of efficacy in treating the bacterial in-

fection without causing significant toxicity. Antibiotics can be highly toxic, for kidneys

notably.

Aminoglycosides such as amikacin, gentamycin, tobramycin, neomycin, and strepto-

mycin are associated with renal and auditory toxicity linked to exposure (AUC) [74–77].
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Figure I.16: Concentration–response relationship for wide (A) and narrow (B) therapeutic

window (TW) (solid line = efficacy curve and dotted line = toxicity curve). From [73].

Glycopeptides, and particularly vancomycin, can cause nephrotoxicity [78–81], and

the incidence of vancomycin-associated acute kidney injury (AKI) is as high as 43 % [81].

A meta-analysis including 53 studies demonstrated that vancomycin-related factors (treat-

ment duration and serum trough levels) significantly increased the risks of vancomycin-

associated AKI [80]. Colistin adverse effects include nephrotoxicity as well [82, 83], but

also pulmonary toxicity [84]. Linezolid has multiple adverse effects, including serotonin

syndrome [85], thrombocytopenia [86], peripheral neuropathy, reduced visual acuity, and

anemia [87], while daptomycin may induce myopathies [88] eosinophilic pneumonia [88]

and pulmonary toxicity [89].
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High β-lactam serum levels are to be related to neurotoxicity [90–92], hematological

adverse events, hepatotoxicity, allergy, nephrotoxicity, and Clostridium difficile infec-

tions [90, 92, 93]. A retrospective study conducted in 199 septic patients treated with

meropenem, piperacillin/ tazobactam, ceftazidime or cefepime found that worsening neu-

rological status was associated with increased trough concentrations normalized to the

clinical breakpoint of Pseudomonas aeruginosa and occurred in approximately half of

the ICU patients treated with piperacillin/tazobactam and approximately two-thirds of

the ICU patients treated with meropenem [94]. Another retrospective study in patients

treated with piperacillin or meropenem showed that neurotoxicity was associated with

higher trough concentrations (Cmin > 361.4mg/L for piperacillin andCmin > 64.2mg/L for

meropenem) [95]. Conversely, researchers who conducted a retrospective study among

93 critically ill patients receiving either conventional or higher-than-conventional doses of

meropenem or piperacillin/tazobactam concluded that there were no significant between

group differences in rates of various toxicities, although mean daily doses were more than

40 % higher in the high-dose groups [96]. Meropenem and piperacillin are thus pretty safe

to use, the therapeutic window being large (threshold of Cmin being high). Their convul-

sive activity is 6 and 9 times lower than that of penicillin G, formeropenem and piperacillin

respectively, in contrast to cefazolin and cefepime, which have a convulsive activity 1.6

and 2.94 times higher than penicillin G, respectively [92]. Cefepime and cefazolin have a

lower neurotoxicity threshold and cefepime is associated with encephalopathy [92].

To conclude, PK and PD are key components in modern drug development. Once

PK and PKPD are characterized, the concentration leading to the desired effect and lim-

ited side effects can be identified, and the dosing regimen that will result in the target

concentration range can be computed [23]. But critically ill patients are a very heteroge-

neous population, and many factors affect their PK. This PK variability obviously affects

their exposure to antibiotics.
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I.3 Challenges in antibiotic therapy: pharmacokinetic al-

terations in critically ill patients

Critical patients are patients with serious and potentially life-threatening conditions

requiring hospitalization in intensive care units (ICU). These conditions may include mul-

tiple organ dysfunction, trauma, severe infection, burns, stroke, heart or respiratory failure,

or complex surgery. Critical patients often require complex and varied drug treatments.

However, their pathological conditions can alter the PK of the drugs they receive, leading

to difficulties in managing their treatment, as well as a possible alteration in the efficacy

of antibiotics. In this section I.3.1, we will discuss some of the causes of alterations in the

PK of drugs.

I.3.1 Alterations in absorption processes

Many factors might alter antibiotics absorption. Shock leads to a reduction in blood

flow and motility, resulting in delayed gastric emptying and diminished absorption that

cannot be restored by using of vasopressors (or antihypotensive agents, tend to raise low

blood pressure). Alternatively, during shock or use of vasopressors skin perfusion will be

reduced thereby decreasing absorption of subcutaneously administered drugs. Shock and

use of vasopressors reduce skin perfusion and thus, absorption of antibiotics administered

subcutaneously. Absorption of oral antibiotics in the small intestine is modified in case of

intestinal infections, coeliac disease, inflammatory bowel disease or gastrectomy. Surgery

or intestinal infection can lead to increased intestinal motility and to a reduction in the

absorption. In case of liver injury, the absorption of oral antibiotics can be enhanced,

with a risk of toxicity [43, 44, 97, 98]. To avoid any variability in antibiotic absorption in

critically ill patients, antibiotics are administered intravenously (IV bolus, intermittent or

continuous infusion).
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I.3.2 Alterations in distribution processes

Critical illness and a plethora of associated interventions affect the distribution of

antibiotics. This includes sepsis (a life-threatening organ dysfunction caused by a dysreg-

ulated host response to infection), shock, burn injury, pancreatitis (inflammation of the

pancreas), or alterations in plasma protein binding.

Sepsis induces vasodilation (an increasing of vascular permeability), causing the cap-

illary leak syndrome, formation of edema, and thus, contributes to an augmented VD. The

VD is also increased when using mechanical ventilation, extra-corporal circuits (e.g., car-

diopulmonary bypass or plasma exchange), fluid resuscitation (fluid and electrolytes ad-

ministration tomaintain organ perfusion and substrate delivery), intravenous fluid therapy,

use of vasopressors and inotropes (drugs affecting the contraction of heart muscle), par-

enteral nutrition, post-surgical drainage, advanced liver disease, ascites (abnormal build-

up of fluid in the abdomen), mediastinitis (infection of mediastinum), pleural effusion

(accumulation of excessive fluid around the lungs), and burn injury [43, 44, 97, 99, 100].

The clinical importance of an increased VD is particularly relevant for hydrophilic antibi-

otics with low VD such as β-lactams, aminoglycosides, and glycopeptides. Indeed, these

antibiotics are more distributed in the peripheral tissues conducting to antibiotic ineffi-

cacy [43, 44, 97, 99, 100]. To do not compromise clinical outcomes, an increased dosage

of the loading dose is required.

Finally, protein binding playing an important role in drug distribution, since only the

unbound fraction of a drug is pharmacodynamically active, the hypoalbuminemia (low

level of blood albumin concentrations) occurring in more than 40 % [101, 102] of patients

admitted to ICU may result in a greater unbound drug proportion and thus an increased

VD of hydrophilic antibiotics.
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I.3.3 Alterations in metabolism processes

Drug metabolism occurring predominantly in the liver, hepatic dysfunction leads to

alterations in metabolism. Critically ill patients may develop hepatic dysfunction due

to inflammation, ischemia, or drug-induced liver injury [43, 44, 97, 99, 100]. This can

affect the metabolism of antibiotics that are primarily metabolized by the liver, such as

macrolides and tetracyclines, leading to higher drug concentrations and potential toxicity.

The ability of the liver to clear drugs is proportionate to blood flow and/or the hepatic ex-

traction ratio of the drug, driven by enzymes [24, 38]. Critical illness affects thusmetabolic

activity throughout alterations in plasma protein concentration, hepatic enzymatic activ-

ity, and blood flow.

Additionally, many drugs used in critically ill patients may either induce or inhibit the

activity of the enzymes, associated with reduction or enhancement of drug-metabolizing

activities [43, 44].

Drug-drug interactions (DDI) can alter the PK of hepatically metabolized antibiotic,

as many molecules of different drugs compete for liver enzymes, leading to higher blood

concentrations of some drugs and potential toxicities [43, 97, 100, 103].

I.3.4 Alterations in kidney elimination processes

Finally, the elimination process can be disturbed during critical illness as renal clear-

ance can be either enhanced or impaired.

Multiple factors can cause enhancement in renal clearance: burn, early sepsis, use

of hemodynamically active drugs (aiming at improving hemodynamics and renal blood

flow), hematological malignancies, leading to augmented renal clearance (ARC) [97, 98].
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Reduced capacities of kidneys elimination can be due to several mechanisms such as

renal failure (after trauma, multiple organ failure, extensive burns, cardiogenic or hypov-

olemic shock), renal replacement therapies (RTT) (dialysis, hemofiltration, and hemodi-

afiltration), muscle wastage, long-term bedridden, chronic kidney disease (CKD) or acute

kidney disease (AKI) [43, 44, 97–100]. AKI occurs in about half of adult critically ill

patients admitted to the ICU and significantly affects clinical outcomes [41]. DDI can

occur for β-lactams co administered with other drugs such as probenecid, salicylate and

methotrexate, which competitively inhibit antibiotic kidney elimination, causing accumu-

lation in the body [99].

In this section, we explained that pathophysiological conditions of critically ill patients

are major sources major sources of inter- and intra-individual PK variability (Figure I.17.

This variability complicates the optimization of antibiotic treatment, particularly through

changes in the VD.

Many factors can modify the PK of antibiotics. The clinical state of a patient changes

rapidly in critical care, and these changes may even evolve on a daily basis within an in-

dividual [10, 27–32]. The two main PK parameters, VD and CL, can be highly modified

in critically ill patients [104]. For example, it has been shown that VD could vary by more

than 4 fold among critically ill patients (meropenem VD was 15.7 L in septic patients and

69.5 L in polytraumatized patients) [104]. VD and CL were also significantly different

among critically ill patients treated with meropenem, doripenem, cefepime, ceftazidime

and ceftriaxone [104].
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Figure I.17: Antibiotic pharmacokinetics in critically ill patients’ response to treatment is

influenced by multiple factors, leading to variability. From [43].

This variability can be source of antibiotic under- and overdosage. It has been shown

that, for the same antibiotic dosage, it is possible to obtain sub-therapeutic plasma concen-

trations which are correlated with a reduced probability of clinical cure, and conversely,

overdoses which are correlated with increased risk of toxicity [33]. Solutions have thus

been developed to overcome the variability in critically ill patients and improve antibiotic

efficacy. This is discussed in the next section I.4.
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I.4 Existing solutions to ensure the effectiveness of an-

tibiotic therapy: individualizing critically ill patients’

treatment

There are different tools to optimize antibiotic treatment in critically ill patients. The

first one is to adjust the dosing regimen to ensure the efficiency PK/PD target is met (as

discussed previously; time/MIC, Cmin/MIC, or AUC/MIC). Therapeutic drug monitoring

(TDM) allows to assess patients’ blood drug levels to ensure that they are within the thera-

peutic window. If not, the dosage regimen can be adjusted accordingly. Finally, clinicians

rely on biomarkers (a molecule, usually a protein which reflects patients’ state, and in case

of antibiotics, inflammation’s state) trends to evaluate whether the antibiotic is effective

or not.

I.4.1 Optimization of antibiotic therapy

The first way of ensuring the effectiveness of any antibiotic is to optimize its dosage

regimen, in terms of mode of administration, interval between administrations and dose.

In the case of β-lactams, time dependent antibiotics, studies in ICUs have demonstrated

that continuous infusion (CI) (over 24 h) of β-lactam antibiotics leads to improved out-

comes compared to intermittent (0.5-1 h) or prolonged (3-4 h) infusions without increased

adverse events [105–111].

In a meta-analysis of 632 critically ill patients with severe sepsis from three random-

ized trials, the rates of hospital mortality was reduced in the CI group compared to the

intermittent infusion (II) group (19.6 % versus 26.3 % (p = 0.045)), and the clinical cure

rate was significantly increased (55.4 % versus 46.3 % (p = 0.021)) [107].
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In a meta-analysis of 1,191 critically ill patients treated by CI or II meropenem for

sepsis, the mortality risk was reduced by 34 % in the CI group (risk ratio (RR) = 0.66,

p = 0.03), a significant higher clinical cure rate (RR = 1.15, p = 0.026), and significant

lower length of ICU stay (RR = -1.40, p = 0.005), hospital length of stay (RR = 1.87,

p < 0.01), and emergence of resistance (RR = -16.23, p = 0.02) [108].

In a two-center randomized controlled trial of CI versus II dosing of β-lactams, con-

ducted among 140 critically ill participants with severe sepsis, patients treated with CI

administration had higher clinical cure rates (56 versus 34 %, p = 0.011), higher PK/PD

target attainment rates of 100 % fT>MIC on day 1 (97 versus 70 %, p < 0.001) and on day

3 (97 versus 68 %, p < 0.001) than patients treated with II administration [110]. Similarly,

in critically ill patients with respiratory infections, clinical cure rates were significantly

higher in patients treated with CI meropenem (89 patients, 90.47 versus 59.57 % for CI

and II, respectively), ceftazidime (121 patients, 89.3 versus 52.3 % for CI and II, respec-

tively), and piperacillin (83 patients) [109]. β-lactams are thus preferably administered in

continuous infusion in ICUs.

It has also been shown that targeting steady state concentrations over MIC ratio of

at least 4 (Css/MIC > 4) maximizes β-lactam efficacy and reduces the risk of develop-

ing resistance [106, 111–117]. In a study led in 44 critically ill patients with documented

Gram-negative bacterial infections and treated with CI-meropenem, authors used a clas-

sification and regression tree (CART) and identified a cut-off value of 4.63 as valuable

predictor of favorable clinical cure (77.1 % of the patients with a Css/MIC ratio equals

or above 4.63 were cured and 0 % of the patients with a ratio below this threshold were

cured, p = 0.01) [112].
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Similarly, in a study of 116 critically ill patients treated with CI β-lactams (52 treated

withmeropenem, 45with piperacillin and 19with ceftazidime), a significant highermicro-

biological failure and/or resistance developmentwas observed in patients withCss/MIC≤ 5

compared to those with Css/MIC > 5 (21/30 versus 5/86, p < 0.001).

Comparable results were also found in 43 critically ill COVID-19 patients with Gram-

negative superinfections treated with CI meropenem, where the microbiological failure

rate was significantly lower in patients with a Css/MIC > 4 compared to those with a

Css/MIC < 4 (33.3 % versus 75.0 %; p = 0.01). A review compiling data of 64 articles

(24 for meropenem, 21 for piperacillin, 10 for cefepime, and 9 for ceftazidime), proposed

to use the target of 100 % fT>4MIC , as this would allow for maximal bacterial killing,

protect against bacterial regrowth, and ensure positive clinical outcome [105]. Consider-

ing that critically ill patients are severely vulnerable to suboptimal dosing and represent a

source of selection of (multi)resistance to antibiotics, guidelines recommend to maintain

β-lactam concentrations at least 4 times higher than the MIC during 100 % of the dosing

interval (100 % fT>4MIC) as PK/PD target of efficacy [2, 106].

Regarding vancomycin, the target for therapeutic effectiveness is a daily AUC/MIC

> 400 [91, 114]. TDM is usually based on trough concentrations, targeting a Cmin of

15-20 mg/L vancomycin [114]. However, it has been shown that even in patients with

trough levels below 10-15 mg/L vancomycin, the AUC was still within the therapeutic

range, and that AUC guided-vancomycin dosing was associated with decreased nephro-

toxicity [118]. Nephrotoxic risks could be reduced by maintaining trough concentrations

below 15 mg/L [119]. Updated guidelines recommend that daily AUC values (assuming a

MIC of 1 mg/L) should be maintained between 400 and 600 mg.h/L to maximize efficacy

and minimize the likelihood of nephrotoxicity [120].
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The therapeutic target commonly associated with optimal antimicrobial activity of

aminoglycosides (e.g., amikacin, gentamicin) is a Cmax/MIC ratio of 8-10 [74, 114], but

an AUC/MIC ratio of 80 110 may provide optimal outcomes in critically ill patients [121].

Using the breakpoints ofPseudomonas aeruginosa as defined by the EUCAST [68], guide-

lines recommend targeting an amikacin Cmax of 60-80 mg/L and a gentamicin Cmax of

30-40 mg/L for empirical therapy, which correspond to a Cmax/MIC ratio between 8 and

10 [74].

Measuring plasmatic concentrations of antibiotics showed that a variable proportion of

critically ill patients achieved the PK/PD target of efficacy. Table I.3 shows the percentage

of critically ill patients who attained the PK/PD of efficacy for different antibiotics. In a

large study led in 384 critically ill patients treated with β-lactams, only 35.0 % of the

patients achieved the PK/PD target of 100 % fT>4MIC . It is thus necessary to ensure that

antibiotic concentrations are sufficiently high for each patient, which is the topic of the

next section I.4.2.

I.4.2 Importance of TDM to guide antibiotic therapy

The inherent variability in antibiotic PK within and among critically ill patients pres -

ents a substantial challenge, as it can lead to suboptimal dosing. Such suboptimal dosing

poses a significant risk, potentially resulting in unfavorable clinical outcomes or selection

of antibiotic-resistant bacteria. Consequently, the evaluation of patient treatment should

prioritize drug concentrations rather than simply administered doses. To achieve this, ther-

apeutic drug monitoring (TDM) emerges as a crucial tool for optimizing antibiotic dosing

in critically ill patients.
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Table I.3: Attainment of PK/PD targets in critically ill patients.

Antibiotic

[reference]

Class of

antibiotics

No. of

patients
Daily dose PK/PD target

Achieve-

ment rate

(%)

Amoxicillin [122] β-lactam 71 6.0 g (3.5-6.0) 100 % fT>4MIC 11.3

Ampicillin [122] β-lactam 18 12.0 g (8.3-12.0) 100 % fT>4MIC 22.2

Amikacin [123] aminoglyc. 47 30 mg/kg Cmax > 60 mg/L 76.6

Amikacin [124] aminoglyc. 66
22.6 mg/kg (±

6.9)
Cmax > 60 mg/L 24.2

Cefazolin [122] β-lactam 14 3.0 g (3.0-4.0) 100 % fT>4MIC 14.3

Cefepime [122] β-lactam 14 6.0 g (5.0-6.0) 100 % fT>4MIC 71.4

Ceftriaxone [122] β-lactam 33 2.0 g (2.0-4.0) 100 % fT>4MIC 87.9

Doripenem [122] β-lactam 13 1.75 g (1.50-3.0) 100 % fT>4MIC 30.8

Gentamycin [123] aminoglyc. 16 8 mg/kg Cmax > 30 mg/L 6.3

Gentamycin [124] aminoglyc. 24 6.6 mg/kg (± 2.3) Cmax > 30 mg/L 4.2

Meropenem [122] β-lactam 89 3.0 g (3.0-4.0) 100 % fT>4MIC 41.6

Meropenem [103] β-lactam 25 6.0 g 100 % fT>4MIC 88.0

Piperacillin [122] β-lactam 109 12.0 g (12.0-16.0) 100 % fT>4MIC 30.3

Piperacillin [103] β-lactam 36 12.0 g 100 % fT>4MIC 11.1/61.0a

Vancomycin [125] glycopep. 42 27 mg/kg (± 13) AUC/MIC > 400 71.0

Cmin ≥ 15 mg/L 57.0

aminoglyc., aminoglycoside; AUC, daily area under the curve (over 24 h); glycopep., glycopeptide.
aDepending on the species considered, 61.0 % for Enterobacteriaceae and 11.1 % for Pseudomonas aerug-

inosa.

Daily doses are given as median ± SD or median (interquartile range).

TDM affords the individualization of antibiotic dosing regimens based on the sub-

stantial PK variability exhibited by critically ill patients. Through the quantification of

antibiotic levels in plasma or other relevant body fluids, clinicians can effectively gauge

antibiotic exposure levels and subsequently tailor dosages to achieve the desired PK/PD

target, optimizing therapeutic efficiency while mitigating the risk of toxicity (Figure I.18).
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Historically, TDM was initially introduced in the late 1960s, primarily as a means to

minimize the toxicity associatedwith drugs possessing narrow therapeutic indices. Specif-

ically regarding antimicrobial agents, aminoglycosides were among the first to undergo

dose adjustments guided by TDM [91]. In recent decades, the utilization of TDM has

gained traction in the context of antimicrobial drug dosing. Indeed, an international sur-

vey, lead among clinicians in 9 ICUs in Europe, USA and Australia performing β-lactam

TDM, indicated that piperacillin and meropenem were the most commonly monitored

β-lactams (100 % of units), followed by ceftazidime (78 %), ceftriaxone (43 %), and ce-

fazolin (43 %) [126].

TDM approach proves particularly pertinent in the ICU setting, characterized by the

high degree of variability frequently encountered. Notably, some recent studies have also

indicated that TDM can serve to minimize the risk of antibiotic-related toxicities [92, 127].

A recent systematic review including 11 studies and 1,463 critically ill patients concluded

that TDM-guided dose adaptation was associated with greater target attainment (85 %

higher), improved clinical (17 % higher) and microbiological cure (14 % higher), and a

21 % reduction in risk of treatment failure compared to control group [128]. Similarly,

another recent meta-analysis, including 10 randomized controlled trials and 1,241 par-

ticipants showed that individualized antimicrobial dose optimization was associated with

significantly higher target attainment rates and a decrease in treatment failure and risk of

nephrotoxicity [98].
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In a recent retrospective study, the first year of implementation of an expert clini-

cal pharmacological advice (ECPA) program based on TDM results was evaluated for its

impact on tailoring therapy involving 18 different antimicrobial agents across a tertiary

university hospital setting. Out of the 1,010 critically ill patients included in the study,

the clinical pharmacology unit recommended dosage adjustments in 62.9 % of the initial

requests. These adjustments aimed to either achieve the PK/PD target for efficacy (requir-

ing increased dosages) or reduce the risk of potential toxicities (necessitating decreased

dosages) [129].

In summary, rational TDM represents a paradigm shift in the management of antibiotic

therapy for critically ill patients. Its ability to detect PK variations, facilitate precise dose

adjustments, and foster PK/PD target attainment while simultaneously curbing the risks

of toxicities has ushered in a new era of personalized medicine (Figure I.19). As we

navigate the complex landscape of infectious diseases and the formidable challenge of

antimicrobial resistance (AMR), TDM stands resolute as a cornerstone of evidence-based

antibiotic management, offering renewed hope for the future of patient care.

I.4.3 Use of biomarkers to guide antibiotic therapy

Monitoring the response to antibiotic therapy is another critical aspect of optimiza-

tion. Since we cannot directly measure the number of bacteria in a person, clinicians rely

on biomarkers—molecules that reflect biological processes, in our case, the response to

antibiotics. In clinical routine, C-reactive protein (C-RP) and procalcitonin (PCT) are

biomarkers extensively used for infection diagnosis and management [14, 130–134].
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Figure I.18: Concept of therapeutic drug monitoring (TDM). The drug concentrations

measured in plasma are transmitted to clinicians for interpretation and for dosage regimen

adjustment (change the dose in case of continuous infusion administration and change the

dose and/or the schedule in case of other administration) to optimize patient’s treatment.

Note that this is a simplification of the process, clinicians also consider sources of vari-

ability (such as renal function for drugs which are renally eliminated) to take decisions.

From [24].

Biomarkers can be used to discriminate between infections due to Gram-negative,

Gram-positive pathogens and fungi. A study conducted on 1,949 samples from patients

suspected of having bloodstream infections revealed striking differences in the median

PCT levels among the pathogens. In cases of Gram-negative bacteremia, the median PCT

value was notably elevated at 13.8 ng/mL (with an interquartile range (IQR) of 3.4–44.1),

whereas in Gram-positive infections, it measured substantially lower at 2.1 ng/mL (with

an IQR of 0.6–7.6). Fungal infections exhibited even lower median PCT levels, averag-

ing at 0.5 ng/mL (with an IQR of 0.4–1). This discrepancy in PCT levels was statistically

significant (p < 0.0001) [135].
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Figure I.19: TDM conceptual model implementation in clinics. AKI indicates acute

kidney injury; ARC, augmented renal clearance; Cl, clearance; CVVHD, continuous

venovenous hemodialysis; ECMO, extracorporeal membrane oxygenation; fT>MIC ,

free unbound drug concentration time above minimum inhibitory concentration (MIC);

fAUC/MIC, ratio of free unbound drug concentration area under the curve to MIC;

fCmax/MIC, ratio of free peak plasma concentration to MIC; Ke, elimination rate con-

stant; IV, intravenous; PK, pharmacokinetics; t1/2, half-life; Vd, volume of distribution.
From (91).
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Furthermore, another study proposed a practical algorithm based on PCT levels for

guiding empirical antibiotic therapy decisions. According to this algorithm, when PCT

levels surpass the threshold of 2 ng/mL, it suggests considering the possibility of Gram-

negative bacteria as the etiological agents of the infection [136].

Several studies have explored the use of biomarkers to guide the early discontinuation

of antibiotic treatment, and these investigations have yielded promising results [137–144].

In a randomized clinical trial, patients with uncomplicated Gram-negative bacteremia who

received antibiotic treatment guided by C-RP levels exhibited 30-day rates of clinical fail-

ure that were equivalent to those who followed a standard 14-day antibiotic regimen. The

C-RP-guided group experienced fewer instances of treatment failure at all time points, and

the median duration of antibiotic therapy for this group was notably shorter (7 days) [139].

Similarly, in a randomized, open-label, controlled clinical trial involving 130 critically ill

patients, those who received guidance based on C-RP levels had a median antibiotic treat-

ment duration of 6 days, compared to 7 days in the control group [140].

These findings underscore the potential of C-RP guidance to streamline antibiotic

treatment. PCT has also been investigated in this context. A multicenter, prospective,

parallel-group, open-label trial conducted in 621 critically ill patients assessed the initia-

tion or discontinuation of antibiotics based on predefined PCT concentration thresholds.

In the PCT-guided group (n = 307), mortality rates at both days 28 and 60 were noninferior

to those in the control group (n = 314) following current guidelines. Additionally, patients

in the PCT-guided group had significantly more days without antibiotics, with an absolute

difference of 2.7 days (p < 0.0001) [144]. Moreover, meta-analyses conducted elsewhere

have consistently shown reductions in the duration of antimicrobial therapy in critically

ill populations with infections when PCT-guided treatment is implemented [145, 146].
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These findings collectively suggest that biomarker-guided approaches, involvingC-RP

and PCT, hold promise for optimizing antibiotic treatment duration in critically ill indi-

viduals.

Biomarkers might also serve as valuable indicators of the effectiveness of antibiotic

therapy [133, 147–153]. In a prospective, multicenter, observational study involving 37

patients with microbiologically documented VAP, C-RP levels and C-RP ratio to baseline

at days 4 and 5 were significantly different between patients who survived and those who

did not [147]. Similar results were observed in a prospective study of 129 cancer patients

with healthcare-associated pneumonia: C-RP levels and C-RP ratio to baseline were sig-

nificantly higher in non-survivors by day 4 [148]. A 13-year retrospective study focusing

on critically ill patients showed that elevated C-RP values were associated with increased

risk of organ failure and 72-hour mortality [149].

Additionally, a meta-analysis was conducted to assess the accuracy of PCT in predict-

ing mortality in pneumonia patients. This analysis encompassed 9 studies involving 608

critically ill patients with CAP or VAP. The results indicated that elevated PCT levels

were linked to a heightened risk of mortality (p = 0.046, RR 4.18, 95 % CI: 3.19–5.48)

and that the prognostic performance was similar between patients with VAP or CAP [150].
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Further supporting these findings, a prospective observational study conducted in a

medical intensive care unit within a university hospital demonstrated comparable results.

Multivariate logistic regression analysis involving 63 critically ill patients withVAP showed

a strong correlation between PCT levels on days 1, 3, and 7 (e.g., at sampling days) and

patient outcomes (p < 0.002, p < 0.0001, and p < 0.0001, respectively) [151]. Likewise, a

multinational observational study involving 157 critically ill patients with HAP, VAP, or

CAP suggested that PCT could serve as a prognosticmarker for bothmorbidity andmortal-

ity [152]. These findings collectively emphasize the potential of biomarkers, particularly

C-RP and PCT, in predicting clinical outcomes in critically ill patients with pneumonia.

Biomarkersmight also predict PK changes and target-site concentrations (e.g., in lungs

for pneumonia, in the urinary tract for urinary tract infections, in the central nervous sys-

tem for meningitis…). However, there is currently a lack of clinical evidence, standard-

ization, and defined thresholds for these biomarkers [154].

In summary, biomarkers are a promising tool to further individualize treatment. They

have been shown to be useful for diagnostic, for early-stop treatment and for predicting

the outcome. Nevertheless, data are lacking on the relationships between antibiotics PK

and biomarkers kinetics.
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I.4.4 Conclusion

In conclusion, the optimization of antibiotic therapy in critically ill patients neces-

sitates a meticulous and tailored strategy. Our exploration unveiled the formidable chal-

lenges posed by HAP and VAP, delving into their epidemiology, physiopathology, and

treatment intricacies. Subsequently, our scrutiny extended to the pharmacological prop-

erties of antibiotics, shedding light on their potential modes of action, the possible mecha-

nisms of resistance they may exhibit, and the intricate realm of PK alterations in critically

ill patients. It is imperative to underscore that these alterations in PK introduce a chal-

lenging variability, arduous to master, and capable of leading to the failure of antibiotic

therapy.

Moreover, integrating biomarkers such as C-RP emerges as a pivotal aspect of indi-

vidualizing treatment, considering PK alterations. These biomarkers serve as invaluable

tools, reflecting the patients’ immune response and providing clinicians with a nuanced

understanding to gauge the efficacy of antibiotic therapy. Incorporating these biomarkers

into the outlined comprehensive strategy not only adds an additional layer of precision but

also empowers clinicians to monitor and adjust antibiotic regimens dynamically, address-

ing the intricacies introduced by PK alterations.
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To reinforce this holistic approach, the chapter underscores the significance of early

initiation, judicious antibiotic selection, personalized dosing, and fostering multidisci-

plinary collaboration. Implementation of these strategies not only enhances patient out-

comes and prevents antibiotic resistance but also aligns with the goal of promoting ratio-

nal antibiotic use in critically ill patients. This comprehensive guide positions healthcare

providers to navigate the intricate landscape of antibiotic therapy judiciously, ensuring a

tailored approach that caters to the unique needs of critically ill individuals, thereby con-

tributing significantly to elevated standards of patient care.

Building upon this foundation, the chapter emphasized solutions to enhance antibiotic

effectiveness, highlighting the importance of early initiation, proper selection, personal-

ized dosing, and multidisciplinary collaboration. By implementing these strategies, clini-

cians can improve outcomes, prevent antibiotic resistance, and promote rational antibiotic

use in critically ill patients. This comprehensive guide positions healthcare providers to

navigate the complexities of antibiotic therapy judiciously, ensuring a tailored approach

thatmeets the unique needs of critically ill individuals, ultimately contributing to improved

patient care.
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In the preceding section, the first chapter (section I.3), we delved into the myr-

iad challenges faced in the realm of antimicrobial therapy when it comes to critically ill

patients. These challenges are primarily rooted in the substantial inter-patient variability

in antibiotic response, stemming from alterations in various PK processes. Consequently,

there is a compelling need to tailor antimicrobial therapy to the unique characteristics of

each critically ill patient.

The discipline of antimicrobial pharmacology revolves around the intricate interplay of

PK and PD. To achieve the goal of personalized antimicrobial therapy, it becomes imper-

ative to individualize both the PK and PD aspects. The overarching objective of this thesis

centers on the investigation of strategies for optimizing both the PK and PD of antibiotics,

with a particular focus on β-lactams. This antibiotic class holds paramount importance as it

is the most frequently administered in intensive care units [155–159], and within this class,

we zero in on meropenem, an antimicrobial of frequent use [129, 159–162]. Within the

scope of this thesis, we present two primary projects: the optimization of PK, discussed in

chapter 3, and the optimization of PD, explored in chapter 4, both focusing onmeropenem.

The third chapter of this research project sets out to optimize the PK of meropenem

in critically ill patients. This is accomplished through a comprehensive exploration of

the impact of various methods for estimating renal function on the dosage adjustment of

meropenem. The kidneys play a pivotal role in the elimination of many antibiotics, includ-

ing meropenem. Therefore, accurate assessment of renal function is essential to ensure

that the drug is administered at the appropriate dose, thereby optimizing its effectiveness

while minimizing the risk of toxicity.
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Moving on to the fourth chapter, our focus shifts to the PD optimization ofmeropenem.

In this section, we investigate the utility of C-RP as a biomarker that reflects the antibi-

otic’s efficacy. Monitoring the response of critically ill patients to meropenem treatment

is a complex endeavor, and C-RP emerges as a promising indicator of the drug’s impact on

the infection. In this chapter, we seek to enhance our understanding of C-RP fate during

meropenem treatment.

In conclusion, the fifth chapter encapsulates the findings and insights garnered through-

out this research endeavor. It offers a comprehensive summary of the optimization strate-

gies explored for meropenem therapy in critically ill patients, emphasizing the importance

of tailoring treatment to individual patient profiles. Additionally, this chapter provides a

glimpse into future perspectives and potential avenues for further research in this critical

area of antimicrobial therapy.

Eventually, this thesis serves as a contribution to the ongoing quest for improved an-

timicrobial therapy in the complex and challenging context of critical care.
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Figure II.1: Illustration of the project aims.

Css, meropenem steady-state concentration; MIC, minimum inhibitory concentration.
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III.1. Abstract

III.1 Abstract

Assessment of glomerular filtration rate (GFR) is necessary for dose adjustments of

β-lactam that are excreted by the kidneys, such as meropenem. The aim of this study

was to compare the daily dose of 24 h-continuous infusion (CI) meropenem when GFR

was calculated by means of measured creatinine clearance (mCLCR) or estimated by

the CKD-EPI (eGFRCKDEPI), Cockcroft–Gault (eGFRCG), and MDRD (eGFRMDRD)

equations. Adult critically ill patients who underwent therapeutic drug monitoring (TDM)

for the assessment of 24 h-CI meropenem steady state concentration (Css) and for whom a

24 h urine collection was performed were retrospectively enrolled. Meropenem clearance

(CLM ) was regressed against mCLCR, and meropenem daily dose was calculated based

on the equation infusion rate = daily dose/eGFRMDRD. eGFRCKDEPI , eGFRCG, and

eGFRMDRD were regressed againstmCLCR in order to estimate eGFRMDRD. Forty-six

patients who provided 133 meropenem Css were included. eGFRCKDEPI overestimated

mCLCR up to 90 mL/min, thenmCLCR was underestimated. eGFRCG and eGFRMDRD

overestimated mCLCR across the entire range of GFR. In critically ill patients, dose ad-

justments of 24 h-CI meropenem should be based onmCLCR. Equations for estimation of

GFR may lead to gross under/overestimates of meropenem dosages. TDM may be highly

beneficial, especially for critically ill patients with augmented renal clearance.
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III.2.1 Rationale of studying meropenem

Multidrug-resistant (MDR) Gram-negative pathogens are the leading cause of severe

infections in critically ill patients [10]. Despite available treatments, the in-hospital mor-

tality rate for patients with suspected or proven infections is as high as 30 % [10]. Among

the most important causes of antimicrobial treatment failure and worse clinical outcome in

critically ill patients are the high level of antimicrobial resistance, the high inter-individual

pharmacokinetic variability, and the frequent immunocompromised state [44, 97].

Current Italian and European guidelines recommend the novel β-lactams/ β-lacta -

mase inhibitors as first-line agents for the treatment of severe infections caused by carba -

penemase-producing Gram-negative pathogens [16, 163]. However, meropenem still re-

mains a valuable option in the context of extended-spectrum β-lactamases (ESBLs)-pro -

ducing Enterobacterales [164, 165], as well as for susceptible strains of Pseudomonas

aeruginosa or Acinetobacter baumannii [164, 166].

III.2.2 PK/PD target of efficacy of meropenem

Meropenem has time-dependent bactericidal activity, and its efficacy is related to the

duration of time the serum concentration is above the minimum inhibitory concentration

(MIC) of the micro-organism (time above MIC) for at least 40 % of the dosing inter-

val [112, 167]. However, in critically ill patients and/or immunocompromised subjects,

more aggressive PD targets of efficacy up to 100 % t > 4-8 × MIC are currently advo-

cated for maximizing efficacy [112] and preventing the development of resistance [113].

The attainment of such higher PD targets may be facilitated by the use of 24 h-continuous

infusion (CI) administration [108, 168].
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III.2.3 Assessing glomerular filtration rate

Considering that meropenem is mainly excreted as an unmodified drug by the renal

route, the calculation of the daily dose that is necessary for attaining the PD efficacy tar-

get should be based on patient’s glomerular filtration rate (GFR) [169–171]. GFR is one

of the measures of kidney function; it describes the flow rate of fluid filtered through the

kidney [172]. It cannot bemeasured directly. Alternatively, in clinical settings, an endoge-

nous filtration marker, creatinine, found in serum and urine, is commonly used to assess

GFR. Creatinine clearance (CLCR) is the volume of blood plasma cleared of creatinine

per unit time. It can be measured in urines or estimated from serum concentration [172].

Measured creatinine clearance (mCLCR) should be approached as the best surrogate

of GFR, but this could be time- and resource-consuming. That is why GFR is frequently

estimated nowadays by means of validated mathematical formulas, such as the Cock-

croft–Gault (CG), the chronic kidney disease epidemiology collaboration (CKD-EPI), and

themodification of diet in renal disease (MDRD) equations. However, such formulas were

not assessed and validated specifically in the critical care setting, so that estimated GFR

(eGFR) based on them could deviate consistently from mCLCR, thus, leading to drug

underdosing or overdosing.

III.2.4 Objectives

The aim of this study was to evaluate whether eGFR based on CG, CKD-EPI, and

MDRD equations could be as reliable asmCLCR in calculating the daily dose of 24 h-CI

meropenem for properly treating nosocomial infections in a cohort of critically ill patients.
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III.3 Material and methods

III.3.1 Patients’ enrollment

This retrospective monocentric study was conducted among critically ill patients ad-

mitted to the post-transplant Intensive Care Unit of the IRCCS Azienda Ospedaliero-

Universitaria di Bologna, Italy, in the period December 2020–January 2022. All of the

included patients received 24 h-CI of meropenem and underwent real-time therapeutic

drug monitoring (TDM) for optimizing empirical or targeted treatment of Gram-negative

infections.

The following demographic and clinical data were collected from each patient’s med-

ical record: age, gender, weight, height, serum creatinine, type, and site of infection.

Patients undergoing renal replacement therapy were excluded.

III.3.2 Meropenem administration

Meropenem therapy was started with a loading dose of 2 g over 2 h and continued

with a maintenance dose initially based on the patient’s renal function (ranging from 1 g

q6h over 6 h to 0.25 g q6h over 6 h) and subsequently optimized by means of TDM cou-

pled with expert clinical pharmacological advice (ECPA). Stability of 24 h-CI meropenem

was granted by reconstitution of the aqueous solution every 6-8 h with infusion over 6-

8 h [173].
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TDM of meropenem was performed within 48-72 h from the starting treatment and

then reassessed every 48–72 h. Peripheral venous blood samples were centrifugated, and

plasma was then separated. Meropenem plasma concentrations were analyzed by means

of a liquid chromatography-tandemmass spectrometry (LC–MS/MS) commercially avail-

able method (Chromsystems Instruments & Chemicals GmbH, Munich, Germany), with a

lower limit of detection of 0.3 mg/L. The desired pharmacodynamic target of meropenem

efficacy was set at a steady state concentration (Css) to MIC (Css/MIC) ratio of 4–8 [170].

III.3.3 Assessment of glomerular filtration rate

At each TDM assessment, mCLCR (mL/min) was performed and calculated as fol-

lows:

mCLCR =
UCR × UV olume

SCR × T
(III.1)

where UCR is the urinary creatinine concentration (mg/dL), UV olume is the urinary volume

(mL), SCR is the serum creatinine concentration (mg/dL), and T is the 24 h collection time

(equal to 1’440 min).

Creatinine was measured both in serum and urine by enzymatic assay.

Patients withmCLCR < 30mL/min/1.73m²were defined as having an episode of acute

kidney injury (AKI), whereas those withmCLCR ≥ 130 mL/min/1.73 m² were defined as

having an episode of augmented renal clearance (ARC). Instead, eGFR was assessed by

means of three different formulas: the Cockcroft and Gault formula (eGFRCG) [56], the

CKD-EPI formula (eGFRCKDEPI) [57], and the MDRD formula (eGFRMDRD) [58].
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III.3.4 Estimation of meropenem daily dose

A multistep approach was used to assess whether the eGFR calculated by means of

the aforementioned formulas could be considered as reliable as the mCLCR for properly

calculating the daily meropenem dosages needed for optimal treatment for the critically

ill patients.

First, meropenem total clearance (CLM ) was calculated in each single patient by

means of the following equation:

CLM =
IR

Css

(III.2)

where CLM is the meropenem clearance (L/h), IR is the hourly meropenem infusion rate

(mg/h), and Css is the meropenem steady-state plasma concentration (mg/L).

Second, linear regression between CLM andmCLCR was performed.

Third, the meropenem daily dosing regimen was estimated by means of themCLCR.

For doing so, CLM was expressed as a function of mCLCR by means of Equations III.3

and III.4.

meropenem IR = CLM × Css (III.3)

CLM = a+ b×mCLCR (III.4)

where a and b are the intercept and slope, respectively.
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In this way, the dailymeropenem infusion rate (meropenem daily IR−mCLCR),

was calculated as following in mg/24 h:

meropenem daily IR−mCLCR = [a+ b×mCLCR]× Css × 24 (III.5)

Subsequently, linear regressions between mCLCR and each of the eGFR, namely

eGFRCKDEPI , eGFRCG, and eGFRMDRD, were assessed. The resulting linear regres-

sion equations were used for estimating the meropenem daily dosing regimens based on

each of the eGFR formulas (one each for eGFRCKDEPI , eGFRCG, and eGFRMDRD).

Accordingly:

IR− eGFRCKDEPI = [c+ d×mCLCR]× Css × 24 (III.6)

IR− eGFRCG = [e+ f ×mCLCR]× Css × 24 (III.7)

IR− eGFRMDRD = [g + h×mCLCR]× Css × 24 (III.8)

The squared coefficient of regression (R2) was used to evaluate the performance of

each regression. A one-way analysis of variance (ANOVA) was used to assess differ-

ences between measured and estimated renal function and between the meropenem daily

dose based onmCLCR versus eGFR.

All statistical analysis and plotting were performed using R (version 4.0.3).
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III.4 Results

III.4.1 Patients’ enrollment

A total of 46 patients (76.1% males, 35/46) were included in this analysis and con-

tributed 133meropenemCss. Patient’s demographic and clinical characteristics are repor -

ted in Table III.1. Median (IQR) age, weight, and serum creatinine were 58.5 (54.0 –67.0)

years, 70.0 (60.0–80.0) kg, and 0.7 (0.4–1.2) mg/dL, respectively. Overall, hospital-

acquired pneumonia and intra-abdominal infections accounted for the majority of indi-

cations for meropenem treatment (60.8 %, 28/46 patients). Overall, median GFR was

significantly different when using mCLCR compared to eGFRCKDEPI , eGFRCG, and

eGFRMDRD (74.7 mL/min vs. 103.1 mL/min/1.73 m² vs. 112.6 mL/min/1.73 m² vs.

108.5 mL/min/1.73 m², p < 0.001). No difference was observed in the median eGFR val-

ues obtained by means of the three empiric formulas. AKI was observed in 28.3 % (13/46)

of the subjects, and 26.1 % of patients (12/46) had at least an episode of ARC.

III.4.2 Comparison of performances of formulas to estimate GFR

Linear regression between CLM vs. mCLCR is shown in figure III.1. Linear regres-

sions between eGFRCKDEPI vs. mCLCR, eGFRCG vs. mCLCR, and eGFRMDRD

vs. mCLCR are shown in Figure III.2. Bland-Altman plots for assessing the agree-

ment between mCLCR vs. eGFRCKDEPI , mCLCR vs. eGFRCG, and mCLCR vs.

eGFRMDRD are presented in Figure III.3. eGFRCG showed a better correlation with

mCLCR (R² = 0.78), compared to those of eGFRCKDEPI vs. mCLCR and eGFRMDRD

vs. mCLCR (R² = 0.62 and 0.63, respectively). Both eGFRCG and eGFRMDRD overes-

timated mCLCR across all ranges of renal function, while eGFRCKDEPI overestimated

mCLCR up to 90 mL/min, then underestimated it.
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Figure III.1: Linear regression between meropenem clearance (CLMER) vs. measured

creatinine clearance (mCLCR). The dashed line represents the line of regression.

III.4.3 Estimation of meropenem daily dose

The daily dose of 24 h-CI meropenem needed to attain a PK/PD target of Css/MIC of

4–8 considering the EUCAST clinical breakpoint of meropenem against Enterobacterales

and Pseudomonas aeruginosa (namely, Css of 8 or 16 mg/L) based on IR-eGFRCKDEPI ,

IR eGFRCG, and IR-eGFRMDRD are depicted in Figure III.4 and Figure III.5, respec-

tively.

Meropenem daily dosages based on eGFR equations were consistently different from

those based onmCLCR. WhenGFRwas calculated bymeans of eGFRCG or eGFRMDRD,

higher than necessary doses were estimated due to an overestimation of mCLCR. Simi-

larly, this occurs when using eGFRCKDEPI in patients with mCLCR < 90 mL/min. Ta-

ble III.2 reports themedian difference inmeropenemdaily dosewhen using eGFRCKDEPI ,

eGFRCG, and eGFRMDRD with respect tomCLCR.
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III.5 Discussion

This is the first study that assessed the performances of commonly empirical formulas

for eGFR estimation in determining meropenem dosages that are optimal for the empirical

treatment of Gram-negative infections in critically ill patients.

For hydrophilic antibiotics that are eliminated mainly unmodified by the renal route,

such as meropenem, a high correlation between creatinine clearance and drug clearance

was described in different patient populations [170, 174]. The existence of such a relation-

ship is of utmost importance for clinicians, as it allows them to adjust drug dosage based on

the degree of a patient’s renal function [170]. In our patients,mCLCR was linearly associ-

atedwithCLM , but it could account for nomore than 54% of the variability ofmeropenem

elimination. This is plausible, considering that meropenem is also eliminated by tubular

secretion [175] and that normal physiology is greatly modified in critically ill patients so

that the PK of antibiotics predominantly cleared by the renal route may be highly variable.

Consistent with our observation is that reported by a recent prospective study conducted

among 25 critically ill patients with sepsis who were treated with 3 h-extended infusion

meropenem every 8 h [25]. The correlation between CLM and mCLCR was even lower

than ours, the R² ranging 0.23–0.30 according to the time of the PK assessment after start-

ing therapy.

Different studies assessed the performances of eGFR equations compared tomCLCR

across different ranges of GFR, and almost all showed important flaws when using such

mathematical equations for renal function estimation in critically ill patients [176–178].
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A recent retrospective study conducted on 237 critically ill patients in Arabia with

a mean mCLCR of 102.7 ± 65.4 mL/min showed that eGFRCKDEPI , eGFRCG, and

eGFRMDRD had an accuracy as low as 12.7–30 % in estimating mCLCR within ± 10

%, and that both eGFRCG and eGFRMDRD, but not eGFRCKDEPI , were significantly

biased. Moreover, that study confirmed an overestimation of all equations in patients with

AKI and in patients with ARC, an overestimation of eGFRCG, and an underestimation

of eGFRCKDEPI [179]. GFR-estimating equations showed poor performances both in

patients with AKI and ARC. In the former scenario, eGFR formulas performed poorly

when compared to mCLCR, with a bias ranging from 7.4 to 11.6 mL/min [180]. On the

contrary, in the context of ARC, eGFR equations have been shown to generally underesti-

matemCLCR [181] We can confirm this finding for eGFRCKDEPI , but we observed an

overestimation, especially for the eGFRMDRD in our cohort. In this regard, it should be

noted that the MDRD equation was validated only for patients with impaired or modestly

impaired renal function (eGFR < 60 mL/min/1.73 m²), and its use should not be extended

to patients of higher classes of renal function.

Collectively, these data clearly indicate that in critically ill patients, renal function

should be measured rather than estimated, especially for those experiencing ARC [181].

For drugs that are eliminated mainly by the kidneys, the implications of a proper assess-

ment of renal function are of utmost importance for drug dosing.

From our findings, it emerges that in critically ill patients, estimation of meropenem

dosages should be based on mCLCR. The use of empirical formulas should be discour-

aged, as it may lead to an underestimation of the daily maintenance dose with the con-

sequent substantial risk of meropenem underexposure if eGFRCKDEPI is used, or to an

overestimation of the drug dose if eGFRCG or eGFRMDRD are used.
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However, it is worth noting that nowadays the optimal administration of β-lactams in

critically ill patients should be supported by TDM, and results should be interpreted by

clinical pharmacologists with experience in antimicrobial and infectious diseases. In a

recent experience of antimicrobial TDM in critically ill patients, we reported the need for

a dose increase based on TDM for meropenem in 13.5 % of cases and a dose decrease for

piperacillin-tazobactam in 44 % of patients [182].

In critically ill patients the attainment of an aggressive PD target of efficacy for β-

lactams has been shown effective both for achieving a positive clinical outcome from the

infectious episode and for preventing the development of resistance. Specifically, a re-

cent retrospective study conducted among 74 critically ill patients who received 24 h-CI

meropenem for the treatment of different infections between December 2020 and July

2021 showed that achieving a Css/MIC ≥ 4.63 was associated with a clinical cure [112].

Another retrospective study conducted among 116 critically ill patients who received

CImeropenem, piperacillin, or ceftazidime for the treatment of documentedGram-negative

infections showed that targeting aCss/MIC ratio > 5 for these β-lactams could prevent mi-

crobiological failure and/or resistance development [113].

We are aware of the presence of some limitations in this study. First, our data were

retrospectively collected, and this only allowed us to get sparse pharmacological and labo-

ratory data. Second, the sample size was quite limited due to the need for both meropenem

plasma concentrations andmCLCR. Third, we applied the empirical formulas to all ranges

of renal function, which may be inaccurate in some circumstances. A strength of our anal-

ysis was that the continuous infusion mode of administration gave us the opportunity to

exactly calculate CLM in each patient and to associate this pharmacokinetic variable to

different estimates of renal function.
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III.6 Conclusions

In conclusion, we showed all the eGFR equations are not adequate for calculating the

doses of 24 h-CI meropenem that are needed to attain optimal PK/PD targets of efficacy

in critically ill patients. Clinicians should rely on mCLCR and TDM for optimizing the

24 h-CI meropenem dose in empiric therapy against susceptible Gram-negative pathogens

in the critically ill population. This study outlines the importance of optimizing the phar-

macokinetics of β-lactams in critically ill patients.
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Table III.1: Demographic and clinical characteristics of the population (n = 46).

Variable Median or Count IQR Range or %

Age (years) 58.5 54–67

Gender (male/female) 35/11 76.1/24.9

Body weight (kg) 70.0 60.0–80.0

BMI (kg/m2) 24.2 21.7–26.8

Assessment of renal function

Serum creatinine 0.7 0.4–1.2

mCLCR (mL/min) 74.7 40.5–129.3

eGFRCKDEPI (mL/min/1.73 m²) 103.1 62.6–126.7

eGFRCG (mL/min/1.73 m²) 112.6 61.7–185.2

eGFRMDRD (mL/min/1.73 m²) 108.5 58.9–207.0

Patients with AKI 13 28.3

Patients with ARC 12 26.1

Reason for meropenem

IAI 18 39.1

HAP 10 21.7

Sepsis/septic shock 9 19.6

BSI 6 13.1

Others 3 6.5

Meropenem treatment

Dose (g q24h by CI) 2.0 2.0–4.0

Treatment duration (days) 12.0 8.0–19.0

Css (mg/L) 13.4 9.4–19.5

Clearance (L/h) 7.8 5.3–11.6

ARC, augmented renal clearance (defined as mCLCR ≥ 130 mL/min); AKI, acute kid-

ney injury (defined as mCLCR < 30 mL/min); BMI, body mass index; BSI, bloodstream

infection; Css, meropenem steady-state concentration; eGFRCG estimated glomerular fil-

tration rate calculated bymeans of the Cockcroft–Gault formula; eGFRCKDEPI estimated

glomerular filtration rate calculated by means of the CKD-EPI formula; eGFRMDRD es-

timated glomerular filtration rate calculated by means of the MDRD formula; HAP, hos-

pital acquired pneumonia; IAI, intra-abdominal infections;mCLCR, measured creatinine

clearance.

Data are presented as median (IQR) for continuous variables and as a number (%) for cat-

egorical variables.
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Figure III.2: Linear regressions between (A) estimated glomerular filtration rate (eGFR)

calculated by means of the CKD-EPI formula (eGFRCKDEPI) vs. measured creati-

nine clearance (mCLCR), (B) eGFR estimated by means of the Cockcroft–Gault for-

mula (eGFRCG) vs. mCLCR and (C) eGFR estimated by means of the MDRD formula

(eGFRMDRD) vs. mCLCR. The dashed lines represent the line of regression. The dotted

lines are the identity lines.
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Figure III.3: Bland–Altman plots for assessing the agreement between measured creati-

nine clearance (mCLCR) vs. (A) estimated glomerular filtration rate (eGFR) calculated

by means of the CKD-EPI formula (eGFRCKDEPI), (B) eGFR estimated by means of the

Cockcroft–Gault formula (eGFRCG), and (C) eGFR estimated by means of the MDRD

formula (eGFRMDRD). The red dashed lines represent the average difference and the

95% C.I. for the average difference.
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Figure III.4: 24 h-CI meropenem daily dose necessary to achieve the targeted Css of

8 mg/L by using eGFRCKDEPI , eGFRCG, or eGFRMDRD compared tomCLCR.

Figure III.5: 24 h-CI meropenem daily dose necessary to achieve the targeted Css of

16 mg/L by using eGFRCKDEPI , eGFRCG, or eGFRMDRD compared tomCLCR.
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Table III.2: Differences in meropenem dose amount (in g/daily by CI) when using eGFR

formulas compared tomCLCR, for targeting Css at 8 and 16 mg/L.

Css = 8 mg/L Css = 16 mg/LmCLCR
eGFRCKDEPI eGFRCG eGFRMDRD eGFRCKDEPI eGFRCG eGFRMDRD

10 0.34 0.18 0.19 0.68 0.36 0.38

30 0.26 0.21 0.25 0.52 0.42 0.50

60 0.13 0.25 0.33 0.26 0.50 0.66

90 0.00 0.30 0.41 0.00 0.60 0.82

120 −0.13 0.34 0.49 −0.26 0.68 0.97

150 −0.26 0.39 0.57 −0.52 0.78 1.14

180 −0.38 0.43 0.65 −0.76 0.86 1.30

210 −0.51 0.48 0.73 −1.02 0.96 1.46

240 −0.64 0.52 0.81 −1.28 1.04 1.62

270 −0.76 0.57 0.89 −1.52 1.14 1.78

300 −0.89 0.61 0.97 −1.78 1.22 1.94
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IV.1. Abstract

IV.1 Abstract

In critically ill patients with hospital-acquired pneumonia (HAP) and ventilator-asso -

ciated pneumonia (VAP), the antibiotic treatment failure due to insufficient efficacy is an

important clinical challenge, especially with the global rise of antibiotic resistance. Strate-

gies to individualize treatment are therefore needed. C-reactive protein (C-RP) dynamic

models could help for predicting patients’ response to antimicrobial therapy. We investi-

gated the relationship between meropenem exposure and C-RP dynamics in critically ill

adults with HAP/VAP.

Critically ill patients treated by continuous infusion (CI) meropenem with HAP/VAP

were included between December 2020 and August 2023 at the IRCCS Azienda Ospeda -

liero-Universitaria di Bologna, Italy. Non-linear effects modelling was performed to es-

timate the pharmacokinetic (PK) parameters. Then, a turnover response model to char-

acterize C-RP trend was applied. Finally, Monte Carlo simulations were used in to sim-

ulate C-RP course considering different meropenem dosing regimens and all covariates

included in the final PK/pharmacodynamic (PD) model.

Sixty-four patients were enrolled and 211meropenem steady-state concentrationswere

retrieved. A one-compar-tment model with first order elimination and eGFR as covari-

ate on meropenem clearance adequately fitted the PK data. Mean meropenem population

clearance was 7.32 L/h.
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The PD analysis included 415 C-RP measurements in 47 patients who received either

meropenem monotherapy (n = 24) or in combination with a Gram-positive antimicrobial

in the absence of documented Gram-positive infection (n = 23). The PD was described

with an indirect turnover model with full inhibition of C-RP production. MIC and con-

comitant therapy with a Gram-positive antimicrobial were the only covariates on IC50.

The C-RP elimination rate was 0.012 h−1 and IC50 was 1.90 for an MIC of 2 mg/L in

patients receiving meropenem monotherapy. C-RP reduction was simulated for different

meropenem concentration (Css)/MIC ranges (< 1, 1-4, 4-8, > 8), considering a meropenem

dosage adapted to the eGFR. Higher Css/MIC values were associated with a greater and

quicker C-RP relative reduction from baseline (> 55 % decrease in Css/MIC 4-8 and > 8,

35 % decrease in Css/MIC 1-4, and 10 % decrease in Css/MIC < 1 at day 4).

The first PK/PD model of CI meropenem and C-RP in critically ill patients with

HAP/VAP was successfully built. C-RP reduction and MIC are important to consider

when tailoring critically ill patients with HAP/VAP treated with CI-meropenem and a cut

off value of 55 % of relative C-RP reduction from baseline could discriminate patients

with an optimal Css/MIC in empirical treatment.

IV.2 Introduction

IV.2.1 Rationale of studying meropenem

In intensive care units (ICU), the most frequent infections are hospital-acquired pneu-

monia (HAP) and ventilator-associated pneumonia (VAP) [183]. In particular, their preva-

lence ranges from 24.7 to 34 % (3,188) and the 30-day mortality risk is increased by

82 % [184].
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HAP and VAP are mainly caused by Gram-negative pathogens, accounting for 77.9 %

of isolated pathogens [10]. Among these, Pseudomonas aeruginosa, Klebsiella pneu-

moniae, and Acinetobacter baumannii are the most frequent, corresponding to 23.0 %,

22.6 %, and 16.6 %, respectively [10].

Current European and Italian guidelines recommend using the new β-lactams/ β-lacta -

mase inhibitors (BL/BLI) such as ceftazidime-avibactam and meropenem-vaborbactam as

first line to treat severe infections caused by carbape-nemase-producing Gram-negative

pathogens [16, 163]. Nevertheless, meropenem can be used against extended-spectrum β-

lactamases (ESBLs)-producing Enterobacterales, and against susceptible strains of Pseu-

domonas aeruginosa and Acinetobacter baumannii [165, 166].

IV.2.2 PK/PD target of meropenem efficacy

Meropenem exhibits a time-dependent bactericidal activity. In critically ill patients,

targeting a plasma meropenem concentration at least four times the minimum inhibitory

concentration (MIC) of the causative bacteria for 100 % of the dosing interval (fT≥4MIC =

100 %) maximizes meropenem efficacy [106, 112, 113]. Thus, continuous infusion (CI)

associated with real-time therapeutic drug monitoring (TDM) might be the optimum to

enhance meropenem efficacy in critically ill patients [106, 112, 113, 182].
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IV.2.3 Rationale for studying C-RP

The response to antimicrobials treatment is monitored by biomarker trends in clinical

routine [130]. There are few studies on biomarkers guided therapy for early stop treat-

ment [138–140]. C-reactive protein (C-RP) is a biomarker used extensively for infection

diagnosis and management in clinical practice [132]. It has been shown to reflect antibi-

otic therapy efficacy [147]. Indeed, C-RP and C-RP relative change from baseline during

the first six days of antibiotic therapy was significantly decreased in survivors compared

to non-survivors in VAP [147]. But there is still a knowledge gap in linking meropenem

exposure to C-RP trend.

IV.2.4 Objectives

The aim of this studywas to develop a population PK/PDmodel to quantifymeropenem

exposure and C-RP kinetics relationships and to simulate the trend of C-RP for different

CI meropenem dosing regimens in critically ill patients with HAP/VAP.

IV.3 Material and methods

IV.3.1 Patients’ enrollment

This was a monocentric, retrospective clinical study conducted among critically ill pa-

tients admitted to the ICU of the IRCCS Azienda Ospedaliero Universitaria di Bologna,

in Italy, during the period December 2020 August 2023. All included patients had a HAP

or a VAP treated with 24 h-CI meropenem and underwent real-time TDM.

Patients were divided into distinct groups according to their possible combination ther-

apy. None of the patients received a combination therapy including antifungals.
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This study was approved by the local ethics committee (No. 308/2021/Oss/AOUBo

on 24 May 2021). Due to the retrospective nature of this investigation, informed written

consent was waived.

The following demographic and clinical data were collected from each patient’s med-

ical record: age, gender, weight, height, serum creatinine (SCr), estimated glomerular

filtration rate (eGFR), type and site of infection, and microbiological isolates with the

MIC for meropenem. The eGFR was estimated by means of Chronic Kidney Disease -

Epidemiology Collaboration (CKD-EPI) formula.

IV.3.2 Meropenem administration and TDM

At our Institution, all patients received an initial bolus of 2 g of meropenem over

2 h immediately followed by a maintenance dose (MD). MD was initially adjusted to the

eGFR, according to: 1 g q6h over 6 h in patients with eGFR ≥ 60 mL/min/1.73 m² or

of 0.5 g q6h over 6 h in those with eGFR < 60 mL/min/1.73 m². Stability of 24 h-CI

meropenem was granted by reconstitution of the aqueous solution every 6–8 h with infu-

sion over 6–8 h [173].

Patients underwent real-time TDM coupled with expert clinical pharmacological ad-

vice to guarantee the achievement of an optimal PD target of meropenem. This was de-

fined as a meropenem steady-state concentration (Css)-to-MIC ratio of 4–8, PK/PD target

of meropenem efficacy recommended by the consensus documents [106, 112, 185].
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IV.3.3 Blood sampling

Blood samples for TDM were collected to determine meropenem Css and C-RP mea-

surements. Five mL of peripheral venous blood were centrifugated and sent to our labo-

ratory for analysis. Concentrations were analyzed by means of a liquid chromatography-

tandemmass spectrometry (LC–MS/MS) commercially available method (Chromsystems

Instruments & Chemicals GmbH, Munich, Germany), with a lower limit of detection of

0.3 mg/L. Concentration determinations and expert clinical pharmacological advice were

available few hours after blood sampling to adjust meropenem dosage.

IV.3.4 Outcome definition

Clinical cure and microbiological eradication were assessed by clinicians. The clin-

ical cure was defined as the complete resolution of signs and symptoms of the infection

coupled with documented microbiological eradication at the end of treatment and absence

of recurrence or relapse at 30-day follow up or development of meropenem resistance.

Microbiological eradication was defined as the absence of the index pathogen from the

primary site of infection in at least one subsequent assessment.

IV.3.5 PK/PD modelling

The PK/PD analysis was conducted with Monolix 2023-R1. To avoid instability and

biases in modeling clinical sparse data, a sequential PK/PD model was built in a two-step

process as already performed [186–189]. First, a PK model was built based on the pre-

viously published pharmacokinetics model of Cojutti et al. [112]. Second, the median

Bayesian posterior estimates of the PK parameters were considered as fixed input in the

PD model. The PD model was developed and fitted to the C-RP data over time.
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Population PK modeling was performed using a stochastic approximation of the stan-

dard expectation maximization (SAEM) algorithm. As meropenem was administered by

CI, a one compartment with first-order elimination was selected for the model struc-

ture [112]. The volume of distribution, VD was fixed at 20.0 L, according to Cojutti et

al. [112].

To describe the PD, models of full or partial inhibition/activation and with or without

sigmoidicity were tested on C-RP production and degradation.

Inter-individual variability (IIV) was evaluated for all PK and PD parameters, except

for the VD (fixed at 0.40 according to Cojutti et al. [112]). Additive, proportional, and

combined error models were tested for residual variability.

In the second step, the following clinical variables were tested as covariates on each

PK/PD parameter: eGFR, weight, height, age, gender, pathogen’s MIC, and type of mi-

crobiological isolates (Pseudomonas vs. non-Pseudomonas species and fermenting vs.

non-fermenting microorganisms). Regarding the MIC, in case of multiple microbiologi-

cal isolates, the one with the highest MIC for meropenem was considered.
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IV.3.6 Model evaluation

The model was evaluated considering (1) a significant decrease in the objective func-

tion value (OFV; equal to −2 log-likelihood, decrease of at least 3.84 points for 1 degree

of freedom) and in Akaike information criterion (AIC), (2) the precision of parameter

estimation (decrease in relative standard error (RSE)), the goodness-of-fit plots: (3) pop-

ulation and individual observations vs. predictions plots, and (4) residual plots (individ-

ual weighted residuals (IWRES) vs. individual predicted concentrations and vs. time),

(5) graphical visual predictive checks (VPC) and (6) bootstrap. A non-parametric boot-

strap resampling technique of 1’000 patients was used to evaluate the uncertainty of all

PK and PD parameter estimates and the robustness of the final model. From the bootstrap

empirical posterior distribution, the 95% confidence interval (2.5–97.5 percentiles) for

the parameters was obtained. The bootstrap resampling was obtained using the ”Rsmlx”

package in R (R version 4.2.1).

IV.3.7 Monte Carlo simulations

Monte Carlo simulations using the final PK/PD model were performed with Simulix

2023-R1 and included all covariates retained significant. C-RP profiles were explored for

different Css/MIC ranges. For this, 80’000 patients were simulated, and patients were

divided into diverse groups, based on their Css/MIC ratio. For each group of Css/MIC

ranges, median of relative C-RP reduction from baseline was calculated.

All plots were generated using the ”ggplot2” package in R (R version 4.2.1).
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IV.4 Results

IV.4.1 Patient Demographics

From a total of 154 patients, 64 patients were enrolled and 211 meropenem Css val-

ues were collected. Patients were excluded of the analysis because they had a concomitant

therapy with antifungals (n = 82), they had less than 48 h meropenem treatment duration

they were pediatric patients (n = 2) or they did not receive meropenem in CI (n = 2) (Fig-

ure IV.1).

Median (IQR) age, weight, and eGFR, were 65.5 (57.0-74.0) years, 75.00 (65.00-

85.00) kg, and 70.00 (39.00-100.00) mL/min/1.73 m², respectively. Median (IQR) mero -

penem treatment duration, dose and Css were 9.00 (6.50-14.00) days, 2.00 (1.50-4.00) g

daily by CI and 15.90 (9.75-27.60) mg/L, respectively.

Overall, 24 patients were treated with meropenem monotherapy, 23 were treated with

meropenem plus an anti-Gram-positive agent, 5 were treated with meropenem plus fos-

fomycin with or without at least one Gram-positive antimicrobial, and 12 received mero -

penem plus at a Gram-positive antimicrobial with a documented infection due to a Gram-

positive pathogen. The 47 patients receiving meropenem monotherapy (n = 24) or with

at least one Gram-positive antimicrobial in the absence of Gram-positive isolate (n = 23)

were included in the analysis for the PD model.
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In this sub-population, median (IQR) C-RP at baseline and C-RP along treatment were

14.70 (7.46-26.89) mg/dL, and 11.79 (6.85-20.08) mg/dL, respectively. Among these

47 patients, 13 were infected by Pseudomonas aeruginosa (MIC ranging from 0.12 to

16.00 mg/L), 13 by Klebsiella pneumoniae (MIC ranging from 0.12 to 8.00 mg/L) and

7 by Acinetobacter baumannii (MIC ranging from 0.12 to 64.00 mg/L). Mean MIC for

meropenem was 6.97 mg/L. Other microbiological data are summarized in Table IV.1.

Figure IV.1: Flowchart of patients’ inclusion. The PK analysis was conducted among 64

patients (in purple) and the PD analysis among 47 patients (in green).

IV.4.2 PK/PD model

The PK/PD model parameters are shown in Table IV.3. The PK analysis was lead

among the 64 patients. The final PK model included eGFR as a covariate on CLMER.

Including eGFR as a covariate on CLMER lead to a decrease in OFV of 45.73 and in AIC

of 43.73. The mean population CLMER was 7.32 L/h.

The PD was described in the subpopulation of 47 patients with an indirect response

and full inhibition of C-RP production without sigmoidicity (Equation IV.2). The PK/PD

model structure is highlighted in Figure IV.2 and the relationship between drug host and

pathogens investigated in this model is described in Figure IV.3.
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Table IV.1: Summary of patients’ data.

Variable Mediand or Count IQR Range or %

Age (years) 65.5 (57.0-74.0)

Gender (M/F) 36/28 (56.25/43.75)

Height (m) 1.70 (1.68-1.75)

Weight (kg) 75.00 (65.00-85.00)

Lab measurements

Serum creatinine (mg/dL) 0.96 (0.62-1.31)

eGFR (mL/min/1.73 m²) 70.00 (39.00-100.00)

C-RP at baseline (mg/dL)a 14.70 (7.46-26.89)

C-RP (mg/dL)a 11.79 (6.85-20.08)

Meropenem treatment

Treatment duration (days) 9.00 (6.50-14.00)

Dose (g daily by CI) 2.00 (1.50-4.00)

Css (mg/L) 15.90 (9.75-27.60)

a In the 47 patients included in the PD analysis. If not specified, data from the 64 patients.

CI, continuous infusion; C-RP, C-reactive protein along treatment; Css, meropenem con-

centration at steady-state; eGFR, estimated glomerular filtration rate calculated with the

CKD-EPI formula.

Data are presented as median (IQR) for continuous variables and as number (%) for cate-

gorical variables.

dC-RP

dt
= 1 +

(kin × (1− Css)

Css + IC50

− kout × C-RP (IV.1)

kin = C-RP0 × kout (IV.2)

where kin is the C-RP production rate (mg/L/h) calculated according to Equation IV.2;

Css, the meropenem steady-state concentration (mg/L); kout, the C-RP degradation rate

(h−1); C-RP0, the C-RP concentration at baseline (mg/L); C-RP, the C-RP concentration

(mg/L); and IC50, the half maximal inhibitory concentration (mg/L).
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Overall, C-RP concentrations were well fitted by the PD model. In particular, PD pa-

rameters were estimated with a RSE of less than 30 %, apart from θ3 (RSE of 53.4 %)

and θ5 (RSE of 31.9 %). Pathogen MIC was significantly associated with IC50, with a

decrease of 4.83 and 3.93 in OFV and AIC, respectively. The concomitant administra-

tion of a Gram-positive antimicrobial was another significant covariate on IC50 with a

decrease of 11.83 and 9.83 in OFV and AIC, respectively. Interestingly, infections due

to Pseudomonas aeruginosa or to fermenting pathogens were not considered different to

others by this model.

IC50 was 1.90 mg/L considering an MIC of 2 mg/L in patients receiving meropenem

monotherapy. The C-RP elimination rate was 0.012 h−1.

Figure IV.2: Schematic representation of the pharmacokinetic (PK) (in purple) and phar-

macodynamic (PD) (in green) relationships of the model built. Increasing meropenem

concentrations inhibit the production of C-RP.

IV.4.3 Model evaluation

Diagnostic plots for the PK/PD models showed a good agreement between the ob-

served and predicted data (Figure IV.4), resulting in an R2 of 0.72 for the PK model and

0.77 for the PD model. The individual weighed residuals vs. meropenem and C-RP con-

centrations did not show any trend indicative of model misspecification (Figure IV.4).
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IV.4. Results

Figure IV.3: Drug-host-pathogen relationships investigated in this study.

The VPC indicated adequate goodness-of-fit and a good predictive performance of the

final PD model (Figure IV.5). The VPC showed that the median of the observed C-RP

was comprised within the median of the simulated prediction bands, and that the 90 %

prediction interval is also consistent with the corresponding observed C-RP-based per-

centiles. The VPC of the PK model showed that the median of the observed meropenem

concentrations was comprised within the median of the simulated prediction bands, but

that the model underestimates the highest meropenem concentrations at 144 h. But VPC

showed acceptable predictive performance of the PK model.

The bootstrap median and 95 % confidence interval are presented in Table IV.3.
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Figure IV.4: Observations-versus-individual predictions (upper panels) and individual

weighted residuals (IWRES) versus individual-predicted concentrations (lower panels)

for meropenem concentrations (left panels), and C-RP concentrations (right panels).

IV.4.4 Monte Carlo simulations

Simulations were conducted considering a meropenem dosage adapted to the eGFR

(e.g., 0.75, 1.5, 3, 4, and 6 g daily by CI for an eGFR of 0-30, 30-60, 60-90, 90-120 and

120-150 mL/min/1.73 m², respectively) and a representative range of MIC (e.g., 0.12, 0.5,

1, 2, 4, 8, 16 and 32mg/L). Simulated patients were classified in four groups ofmeropenem

Css/MIC ratios: non optimal (< 1), quasi-optimal (1-4), optimal (4-8) and more than op-

timal (> 8) [154].
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Median C-RP relative reduction from baseline for the different Css/MIC ratios are

shown in Figure IV.6 for group 1 (meropenem monotherapy) and in Figure IV.7 for

group 2 (meropenem + anti-Gram-positive antimicrobial). In group 1, in the optimal sce-

nario (Css/MIC 4-8), C-RP was reduced by 40 % and 55 % after 2 and 4 days of therapy,

respectively and reached 75 % reduction after 10 days of therapy. Conversely, in sub-

optimal conditions (Css/MIC < 1), C-RP was reduced by less than 10 % after 10 days of

therapy and around 5 % reduction after 2 and 4 days of therapy. In quasi-optimal condi-

tions (Css/MIC 1-4), C-RP was reduced by 25 %, 35 %, and 50 % after 2, 4 and 10 days

of therapy, respectively. It is worth noting that high Css/MIC ratios (> 8) did not result in

a greater reduction in C-RP than under optimal conditions (80 versus 75 % after 10 days

of therapy). In group 2, the simulations showed similar trends with group 1 with a slower

reduction (40 %, 35 %, 17 % and 2 % C-RP reduction after 10 days therapy in Css/MIC

< 1, 1-4, 4-8, and > 8, respectively).

IV.5 Discussion

In this study, the CI-meropenem exposure and C-RP dynamics were described in crit-

ically ill patients with HAP/VAP using population PK/PD approach for the first time. The

PK of meropenem could be satisfactorily described by a one compartment model with first

order elimination with eGFR as covariate on CLMER, and the PD by an indirect response

model with MIC and concomitant therapy as covariates on IC50. The simulations showed

different C-RP trends depending on meropenem Css/MIC ranges. This is the first study to

quantitatively link meropenem and C-RP relationships. This study provides the necessary

tools to take the next critical steps to provide truly individualized antimicrobial therapy

for critically ill patients with HAP/VAP receiving meropenem.
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Meropenem concentrations were maintained in a quite narrowed range, which is in ad-

equation with the nature of the data (TDM dose adjustment). A one-compartment model

well described the data. This is in linewith the findings of previous studies [112, 190–192].

The only significant covariate on CLMER was eGFR. This is in agreement with previous

findings [112, 191, 193–195], and with the fact that meropenem is mainly eliminated by

the renal route [116]. Meropenem clearance was close to what was previously found in

critically ill patients: 7.27 L/h for a median eGFR of 91.5 mL/min/1.73 m² [112], 7.34 L/h

for amedian eGFRof 67mL/min [196], 7.82 L/h for amedian eGFRof 59.43mL/min [191],

7.48 L/h for a mean eGFR of 35.69 mL/min/1.73 m² [197].

The VPC showed acceptable predictive performances of the PK model and all param-

eters were well estimated. Some meropenem population PK models have already been

published and the aim of this study was not to describe the meropenem PK but to use the

meropenem PK to describe the C-RP kinetics. We thus sequentially estimated the PK and

the PD, as it was previously done [186–189].

The turnover response model with full inhibition of C-RP production well described

the data. To our knowledge, there is only one other study describing the C-RP kinetics

using a similar indirect turnover response model with full C-RP inhibition. This study

included 237 Japanese non critically patients with Gram-positive infections treated by te-

icoplanin for PK modeling and 181 for PD modeling [198]. Even though this model was

built in a different patient population and for another antibiotic, they reported a similar

IC50 (of 2.66 mg/L), consistent with our findings and with concentrations in clinics. Fur-

thermore, the estimation of all principal parameters in our models is precise and plausible.
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The C-RP vs. population predictions illustrated the C-RP high variability in critically

ill patients. The model could describe this variability when considering patients and bacte-

ria characteristics (e.g., C-RP vs. individual predictions). Two other PK/PD models were

built using C-RP but for other antibiotics and other patients in Gram-positive infections.

An open-label study of 18 English neonates linked teicoplanin concentrations and C-RP

using a sigmoidal Emax model [199]. Another study was led among 25 non-critically ill

English adults linking vancomycin concentrations and C-RP using the same sigmoidal

Emax model [187]. None of them considered Gram-negative infections or critically ill pa-

tients. They both used AUC/EC50 (area under the curve representing patient’s exposure to

antibiotics and antibiotics concentration that produces the half-maximal C-RP inhibition

ratio) as a surrogate of AUC/MIC. Our approach was similar, but we concluded that MIC

was important to consider and that it was not possible to consider Css/IC50 only, since

IC50 depends on MIC. This difference could be due to the to the fact that we had MIC.

MIC was a significant covariate on IC50. MIC role in meropenem treatment is pre-

dominant as its PK/PD target of efficacy depends on Css/MIC ratio [2, 106, 112, 113].

Meropenem PK/PD target of efficacy have been proposed to be fT>4MIC = 100 % [106,

112–117]. In a study led in 44 critically ill patients with documented Gram-negative bac-

terial infections and treated with CI-meropenem, authors identified a cut-off value of 4.63

as valuable predictor of favorable clinical cure [112].

Similarly, in a study of 116 critically ill patients treated with CI β-lactams (52 treated

with meropenem, 45 with piperacillin and 19 with ceftazidime), significant higher micro-

biological failure and resistance development were observed in patients with Css/MIC ≤ 5

compared to those with Css/MIC > 5.
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Comparable results were found in 43 critically ill COVID-19 patients with Gram-

negative superinfections treated with CI meropenem, where the microbiological failure

rate was significantly lower in patients with a Css/MIC > 4 compared to those with a

Css/MIC < 4.

A review compiling data of 64 articles (24 for meropenem, 21 for piperacillin, 10 for

cefepime, and 9 for ceftazidime), proposed to use the target of 100 % fT>4MIC , as this

would allow for maximal bacterial killing, protect against bacterial regrowth, and ensure

positive clinical outcome [105].

Predicting C-RP trends for different meropenem Css/MIC ratios is thus an asset and

we discriminated C-RP in patients with non-optimal, quasi-optimal, optimal and higher

then optimal meropenem PK/PD target of efficacy, similarly to a previous study [154].

In clinical practice, C-RP is commonly used to inform anti-infective therapy decisions.

However, a substantial portion of this process relies on informal and intuitive practices.

In our study, we established a direct connection between meropenem serum concentra-

tions and alterations in circulating C-RP levels. Monitoring C-RP in individual patients

offers a real-time assessment of their response to the drug. This approach presents dis-

tinct advantages as C-RP provides quantitative data, is readily accessible, and is widely

embraced by clinicians. C-RP, alone or in combination with TDM, could lead to a better

therapeutic management. Indeed, C-RP was shown to be different in survivors and non-

survivors [148].

In a prospective, multicenter, observational study of 37 microbiologically documented

VAP, the C-RP, and its ratio to baseline at days 4 and 5 were significantly different be-

tween patients who survived and those who did not [148].
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Similar results were found in a prospective study lead among 129 cancer patients with

healthcare-associated pneumonia: C-RP and C-RP ratio to baseline were significantly

higher in non-survivors by day 4 [148]. Our results suggests that a relative decrease from

baseline in C-RP of more than 55% at day 4 is reflecting an optimal meropenem exposure.

The Monte Carlo simulations of C-RP kinetics between different meropenem Css/MIC

ratios showed a greater decrease at the beginning of therapy, period during which C-RP

could discriminate survivors and non survivors, with a similar pattern to what has been

described [147, 148].

C-RP-guided therapy is also associated with reduction in antibiotic treatment [139,

140, 143]. In a randomized clinical trial, 30 day rates of clinical failure among patients

with uncomplicated Gram-negative bacteremia was noninferior in C-RP-guided antibiotic

durations group compared to 14-day durations of antibiotic therapy [139]. The C–RP-

guided group had the fewest failures at every time point, and the median antibiotic dura-

tion was 7 days [139].

Similarly, in a randomized, open-label, controlled clinical trial led in 130 critically ill

patients, the median duration of antibiotic treatment was 6 days in the C-RP-guided treat-

ment group and 7 days in the control group [140].

This appears of crucial importance when considering AMR progression worldwide.

Indeed, shortening antibiotic treatment duration decreases risks of resistant organisms’

emergence. Both American and European guideline recommended a 7-day course of an-

timicrobial therapy rather than a longer duration in HAP/VAP treatment [2, 15]. Our

results described expected C-RP trends for the first 10 days of therapy.
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European guidelines reported a higher mortality rate in cases caused by Pseudomonas

aeruginosa and Acinetobacter spp. [2]. Interestingly, infections due to Pseudomonas

aeruginosa or to nonfermenting bacteria were not retained different than other infections

in this model. That could be due to the difference in MIC between species, Pseudomonas

aeruginosa and Acinetobacter baumannii having the highest MIC in our population.

To our knowledge, this is the first study investigating the C-RP dynamics in critically

ill patients with HAP/VAP and treated by CI-meropenem.

We acknowledge some limitations to our study. Indeed, this is a retrospective design,

with limited number of TDM and C-RP assessments per patient. Due to the CI adminis-

tration, we had to fix the volume of distribution and the PK model showed some limita-

tions. Conversely, the fact that this is the first description of the relationship between CI-

meropenem exposure and changes in C-RP dynamics against documented Gram-negative

HAP/VAP in critically ill patients and the possibility to integrate pathogens characteristics

in humans remain valuable points of strength.

IV.6 Conclusions

To conclude, it was possible to describe drug, host, and pathogen characteristics in a

single model. Indeed, meropenem PK and C-RP dynamics were successfully linked us-

ing routinely collected patient data in critically ill patients with Gram-negative HAP/VAP.

This study investigated the optimization of the PD of meropenem treatment using

C-RP in critically ill patients with HAP/VAP. C-RP reduction could reflect meropenem

Css/MIC and a cut off value of 50 % of relative C-RP reduction from baseline at day 4

could discriminate patients with an optimal Css/MIC in empirical treatment.
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Monitoring C-RP and considering eGFR and MIC might be useful to optimize mero -

penem treatment in adult critically ill patients with HAP/VAP treated by CI meropenem.

Clinicians should expect a slower decrease in C-RP when the PK/PD target of efficacy is

not attained.
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Table IV.2: Summary of microbiological data (n=47).

Variable Mediand or Count IQR Range or % MIC ranges (mg/L)

Reason for meropenem use

VAP 35 (74.47)

HAP 6 (12.77)

VAP + BSI 5 (10.64)

HAP + BSI 1 (2.12)

Gram-negative isolates:

Pseudomonas aeruginosa 13 (27.66) 0.12-16.00

Klebsiella pneumoniae 13 (27.66) 0.12-8.00

Acinetobacter baumannii 7 (14.89) 0.12-64.00

Enterobacter aerogenes 3 (6.38) 0.12

Serratia marcescens 3 (6.38) 0.12-8

Escherichia coli 2 (4.26) 0.12-2

Enterobacter cloacae 2 (4.26) 0.12-1

Proteus mirabilis 2 (4.26) 0.12

Klebsiella oxytoca 1 (2.13) 0.12

Enterobacter bugandensis 1 (2.12) 1

MIC (mg/L) 0.25 (0.12-4.00)

Microbial eradicationa 28 (63.63)

Clinical outcome

Cured 29 (61.70)

Failed 18 (38.30)

a Among the 44 patients with bronchoalveolar lavage cultures in at least one subsequent

assessment.

BSI, bloodstream infection; HAP, hospital-acquired pneumonia; MIC, minimum in-

hibitory concentration; VAP, ventilator-associated pneumonia.

Data are presented as median (IQR) for continuous variables and as number (%) for cate-

gorical variables and as min-max value for MIC ranges.
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Table IV.3: PK/PD model parameter estimates.

Parameter
Estimate (%

RSE)

Bootstrap

median

Bootstrap 95%

confidence

interval

PK model

Population parameters

CLMER (L/h) = θ1 × exp(CLCR×θ2)

θ1 (L/h) 2.72 (16.7) 2.73 2.32 – 3.13

θ2 0.011 (20.0) 0.011 0.0085 - 0.014

VD (L) - - -

Inter-individual variability

ω CLMER 0.59 (10.4) 0.58 0.52 - 0.64

ω VD - - -

Residual variability

Proportional error 0.37 (6.53) 0.36 0.33 – 0.41

PD model

Population parameters

C-RP0 (mg/dL) 22.58 (9.55) 21.51 20.47 – 23.04

IC50 (mg/dL) = θ3 × exp(MIC×θ4) × expθ5
a

θ3 0.79 (53.4) 1.02 0.38 - 1.32

θ4 0.44 (15.9) 0.31 0.24 - 0.48

θ5 2.46 (31.9) 2.50 1.92 - 3.97

kout (h
−1) 0.012 (27.2) 0.012 0.0097 - 0.014

Inter-individual variability

ω C-RP0 0.51 (15.8) 0.48 0.39 - 0.59

ω IC50 1.59 (22.5) 1.32 1.12 – 2.00

ω kout 1.08 (21.6) 1.01 0.82 – 1.51

Residual variability

Proportional error 0.35 (4.87) 0.38 0.35 - 0.44

a θ5 is the parameter that corrects IC50 in patients receiving meropenem and an anti-Gram-positive antimi-

crobial.

95% CI, 95% confidence interval; CLMER, meropenem clearance ; C-RP0, C-RP value at baseline; IC50,

half maximal inhibitory concentration; kout, C-RP degradation rate; MIC, minimum inhibitory concentra-

tion; % RSE, percentage of relative standard error; VD, meropenem volume of distribution; ω, standard

deviation of inter-individual variability.

Proportional error was estimated using: observation = prediction × (1 + proportional error).
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Figure IV.5: Visual predictive check (VPC) for the population pharmacokinetic (PK)

model (upper panel) and the pharmacodynamic (PD) models (bottom panel). Blue lines

represent the median, 10th, and 90th percentiles of the observed values; shaded areas are
the prediction intervals for the median (red middle area) and 10th and 90th percentiles

(light blue bottom and top areas).
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Figure IV.6: C-RP relative reduction from baseline for different PK/PD target of

meropenem efficacy in Group 1 (meropenem monotherapy).

Figure IV.7: C-RP relative reduction from baseline for different PK/PD target of

meropenem efficacy in Group 2 (meropenem + anti-Gram-positive antimicrobial).
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V. Conclusions and future perspectives

This research focused on optimizing the treatment of critically ill patients with

HAP/VAP who were receiving meropenem. These patients presenting complex chal-

lenges due to significant variations in their drug exposure caused by their underlying health

conditions, to improve their therapy with meropenem, two key aspects were investigated:

optimization of the PK and of the PD (FigureV.1).

In the first project, various methods for estimating renal function were evaluated to en-

hance meropenem PK optimization. The study revealed that the commonly used estima-

tion formulas for estimating the GFR led to incorrect dosing recommendations. The actual

measurement of creatinine clearance (mCLCR) was found to be crucial for meropenem

dosing adjustments in critically ill patients.

The second project aimed at optimizing meropenem PD by developing a PK/PDmodel

that quantified the relationship between meropenem concentrations and changes in C-RP,

an inflammation biomarker. Simulations demonstrated that achieving an optimal target

concentration ratio (Css/MIC) was associated with higher and faster reduction in C-RP

levels.

To conclude:

1. Accuratemeasurement of creatinine clearance is essential for optimizingmeropenem

dosing in critically ill patients. Relying on estimation formulas for GFR can lead to

dosing errors.

2. The use of C-RP as a biomarker can aid in assessing the effectiveness of meropenem

therapy, especially during empirical treatment.
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Overall, this research provides valuable insights into tailoring meropenem treatment

for critically ill patients with HAP/VAP, emphasizing the importance of individualized

dosing based on measured renal function and the potential use of C-RP monitoring to

guide therapy. This study has also made a significant contribution by delving into the in-

tricate interplay between patients, drug, and pathogen. For the first time in the literature,

our work has explored the relationships between these elements, addressing one of the six

key research priorities set forth by leading organizations such as the International Soci-

ety of Anti-Infective Pharmacology, and the European Society of Clinical Microbiology

and Infectious Diseases [200]. Our research acknowledges the crucial gaps in traditional

PK/PD approaches to antibiotic optimization and aligns with their overarching goal of

personalizing antibiotic therapies. By doing so, we aimed to advance our understanding

of antibiotic pharmacology and, ultimately, to enhance patient outcomes.

However, this research does not address all knowledge gaps, and there are still numer-

ous questions awaiting investigation. This thesis can serve as a foundational work upon

which to build and further explore these inquiries.

The findings from this research can serve as a foundation for the investigation of the

meropenem Css/MIC ratios, C-RP trends and clinical or microbiological outcome in criti-

cally ill patients with HAP/VAP. Future perspectives could include a cut-off value of C-RP

predicting the probability of clinical cure at different key time-point of the treatment.

While C-RP showed promise as a biomarker for assessing meropenem effectiveness,

future studies could explore additional biomarkers or combinations thereof, such as pro-

calcitonin. This could lead tomore comprehensivemonitoring tools that provide clinicians

with real-time feedback on antibiotic therapy response.
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The principles and methodologies applied in this research could be extended to other

antibiotics with similar PK/PD properties (e.g., other β-lactams) and further investigated

in other antibiotics, using the same workflow. Investigating the PK/PD relationships of

different antibiotics in critically ill patients may lead to more personalized and effective

treatment strategies.

As healthcare continues to move towards precision medicine, future work could in-

volve the development of individualized dosing algorithms for meropenem based on a

patient’s specific clinical and pharmacological profile. This would take into account not

only renal function but also other patient-specific factors.

The research could pave the way for clinical trials aimed at validating the proposed

dosing strategies and biomarker monitoring in larger patient populations. These trials

could provide robust evidence for the effectiveness of the approach.

Ultimately, the success of optimized antibiotic dosing strategies relies on the collab-

orative efforts of pharmacologists, infectious disease specialists, intensivists, and clinical

pharmacists. Looking ahead, fostering these interdisciplinary collaborations represents a

promising avenue for driving continuous improvements in patient care.

In summary, the future perspectives of this work encompass a wide range of possibil-

ities, from practical clinical applications to further research endeavors aimed at refining

antibiotic dosing in critically ill patients and advancing the field of infectious disease man-

agement.
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Figure V.1: Illustration of the project. Css, meropenem steady-state concentration; eGFR,

estimated glomerular filtration rate; mCLCR, measured creatinine clearance; MIC, mini-

mum inhibitory concentration.
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VI.3 Other activities

VI.3.1 Scientific dissemination
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(GMP) congress: 2022/2023

• Organization of a game in an elementary school in Leiden to raise children’s aware-

ness of bacterial resistance to antibiotics: November 2022

• Chair of the student session at the DMDG/GMP/SPS joint meeting: 2022

• Co-chair of the student session at the Group of Metabolism and Pharmacokinetics

(GMP) congress: 2021

VI.3.2 Other projects in which I have been involved

• Relationships between meropenem Css/MIC ratio, C-RP over time and clinical and

microbiological outcomes using time-to-eventmodeling in critically ill patients (col-

laboration with Leiden university).

• External validation of published PKmodels ofmeropenem and piperacillin-tazobactam

(collaboration with Leiden university).

• Predictions of the best and worst population PK models of vancomycin for model-

informed precision dosing using machine learning (collaboration with InsightRX,

Uppsala university, and Vienna university).

• Population PK modeling of CI-ampicillin in hospitalized patients with enterococcal

infections.
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