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Abstract

In recent decades, advancements in technology have led to a wealth of computational

tools for statistical analysis and an abundance of large open datasets. Can we combine

multiple open source input information types with the help of statistical analysis tech-

niques to enhance traditional models for flood hazard assessment and modeling? The

present Dissertation tackles this issue by showing how these elements can be exploited to

improve modelling accuracy in two distinct yet interconnected domains of flood hazard

assessment.

In the first Part of the Dissertation, unsupervised artificial neural networks are em-

ployed as regional models for sub-daily rainfall extremes. The aim of the models is to

learn a robust relation to estimate locally the parameters of a Gumbel distribution for

representing the frequency of extreme rainfall depths for any duration in the 1-24h range.

The prediction depends on a set of twenty morphoclimatic descriptors. The application

of the models focuses on a large study area in north-central Italy, for which an extensive

dataset of annual maximum series is available. Validation is performed over an indepen-

dent set of 100 gauges, where locally fitted Gumbel distributions are used as reference.

A conventional approach from the literature, where Gumbel parameters are functions of

mean annual precipitation (MAP), is used as benchmark.

Are ANNs effective in RFA for sub-daily rainfall extremes? Is the combination of a

set of morpho-climatic indexes helpful for describing the local frequency regime? Our

results show that multivariate ANNs may remarkably improve the estimation of per-

centiles relative to the benchmark approach. Finally, we show that the very nature of

the proposed ANN models makes them suitable for interpolating predicted sub-daily

rainfall quantiles across space and time-aggregation intervals.

In the second Part of the Dissertation, decision trees are used to combine a selected

blend of input geomorphic descriptors for predicting flood hazard (FH). This kind of

approaches is commonly referred to as DEM-based in the literature, as it depends on ge-

omophic information retrieved from DEMs. Relative to existing DEM-based approaches,

the method proposed here is innovative, as it relies on the combination of three character-

istics: (1) simple multivariate models, (2) a set of exclusively DEM-based descriptors as
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Abstract

input, (3) an existing flood hazard map as reference information. What is the potential

and accuracy of multivariate approaches relative to univariate ones? Can we effectively

use these methods for extrapolation purposes, i.e., FH assessment outside the region

used for setting up the model? Is it possible to exploit natural characteristics of these

methods for enhancing and completing FH information from the target map?

First, the methods are applied to a wide study area in northern Italy, represented with

the MERIT DEM, at ∼90m horizontal resolution. Here, the potential of multivariate

approaches relative to the performance of a selected univariate model is assessed and

discussed, also on the basis of multiple extrapolation experiments, where models are

tested outside their training region. The results show that multivariate approaches may

(a) significantly enhance floodprone areas delineation relative to univariate ones, (b)

provide accurate predictions of expected inundation depths, and (c) produce encouraging

results in extrapolation.

Second, the whole of Italy is studied, and represented with the EU DEM with 25m

horizontal resolution. The validation of the proposed model against a mix of multiple

sources of independent information confirms the benefits of considering multiple geo-

morphic descriptors, and shows the potential of DEM-based models for completing the

information of imperfect reference flood hazard maps, and the advantages of continuous

representation of hazard over binary flood maps.
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Chapter 1

The rationale of the Dissertation

The European Water Charter of the Council of Europe, proclaimed in 1968, stated

unequivocally, “There is no life without water. It is a treasure indispensable to all hu-

man activity”. However, when extreme events occur in conjunction with inefficient risk

management strategies, water can transform from an essential resource into a significant

threat to human life.

The Center for Research on Epidemiology of Disasters (CRED) conducts annual

analyses of natural disasters worldwide, providing estimates of their impacts. CRED’s

observations underscore the alarming frequency of floods as a natural disaster. According

to the Emergency Events database, known as EM-DAT and maintained by CRED, nearly

half of all recorded events from 2000 to 2019 were attributed to floods (i.e., 3’254 out of

7’348 recorded events, CRED and UNDRR, 2020).

Given the historical role of floods as a threat to human life and an impediment to

economic growth, it is essential to recognize that their impact is expected to be even more

pronounced in future climate scenarios. In fact, climate change is inequivocably leading

to an increase of global mean temperature. As mean temperatures continue to rise, the

atmosphere experiences a heightened capacity to hold water, resulting in increased sol-

ubility of water vapor. In situations favoring droplet formation, this amplified moisture

content leads to larger and more concentrated rainfall within shorter timeframes. Con-

sequently, the incidence of extreme rainfall events is increasing in response to the effects

of climate change (e.g., Seneviratne et al., 2012).

This Dissertation is dedicated to two closely interconnected research areas of flood

hazard assessment. The first topic is regional frequency analysis of extreme rainfall

events. This entails the development of a model to transfer information from gauged

sites to ungauged ones. The second topic revolves around flood hazard assessment and
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mapping, with an emphasis on geomorphic information and non-physical models.

Despite the apparent differences between these two topics, the same underlying phi-

losophy guides the research conducted in both cases: the objective is to leverage machine

learning techniques to construct multivariate models that make use of large and open

datasets as input data. These models are designed to address the challenges presented

by large and complex study areas. Since the innovative models proposed in the next

chapters are designed to combine the aforementioned characteristics, we call them “data

driven” and “multivariate”.

The primary objective of this research is to explore the potential and limitations of

machine learning approaches in two distinct cases within the realm of flood hazard as-

sessment and mapping. Can we exploit the advantages of machine learning techniques

for (1) extending the area of applicability of our models, (2) increasing the amount of ef-

fective input information, (3) reducing our dependence on non-freely accessible datasets,

and (4) decreasing the effort needed for setting up the models? Through the analyses

described in the next chapters, a significant contribution to address these research ques-

tions is given.

Why should we consider simplified data-driven models in contrast to physically-based

models? Indeed, robust knowledge has been achieved about the physical mechanisms that

lead to the formation of clouds and peak flows in river discharge. Sophisticated climate

models can simulate the formation of clouds and precipitation (e.g., Bonan et al., 2002),

hydrological models can reproduce the hydrological cycle from rainfall to river discharge

(Hartmann et al., 2014; Singh, 2018), and hydraulic models can propagate peak flows

along the river network and reconstruct inundations of the floodplains (e.g., Bates et al.,

2010). However, employing most of these models requires numerous assumptions about

the underlying physics of the system, and their application demands a profound level of

detail regarding boundary conditions, primarily obtained from infrequently available field

measurements. Moreover, even if we manage to address the major issues related to model

assumptions and input data, setting up these models remains a resource-intensive task.

Additionally, computational requirements can be substantial, while the inherent uncer-

tainty in model assumptions and boundary conditions inevitably leads to uncertainties

in the results. In summary, when developing models for hydrological applications, large

efforts are needed, while output accuracy is not guaranteed (e.g., Mendoza et al., 2015).

For this reason, simplified and conceptual models are largely abundant in the literature

(e.g., Salvadore et al., 2015; Hartmann et al., 2014; Annis et al., 2020b; Petroselli and

Grimaldi, 2018; Manfreda et al., 2015).
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Notably, techniques for remote sensing are significantly advancing, providing infor-

mation and products that are then converted into freely accessible and open datasets

(e.g., Yamazaki et al., 2017; Dottori et al., 2021; Gallaun et al., 2019). These datasets

are typically in raster format, meaning that the Earth’s surface is discretized into pixels.

As a result, the horizontal resolution often falls short compared to measurements from

field surveys. Nonetheless, remote sensing products and datasets are easily accessible,

regularly updated, and validated according to rigorous public standards (e.g., Takaku

and Tadono, 2017; Mukherjee et al., 2013; Garcia G., 2015).

Additionally, the availability and flexibility of computational tools and models for

artificial intelligence applications are rapidly increasing. Nowadays, a wide variety of

methods fall under the popular term ’machine learning.’ In essence, it involves training

a machine to develop an algorithm to solve a specific problem. By observing input data

and following specific directives provided by developers, the machine learns a model to

generate an output based on a given input. While physical processes governing the phe-

nomena of interest are implicitly modeled, yet control over the equations used in the

model is limited. Nevertheless, machine learning empowers users to construct models

based on available data and avoids imposing preconceived assumptions about system

behavior (Hastie et al., 2009; Zounemat-Kermani et al., 2021).

This Dissertation presents and discusses innovative multivariate data-driven models

for flood hazard assessment and mapping. They can be called “data-driven” and “multi-

variate”, as they largely benefit from the wealth of multiple publicly available sources of

information. They leverage the flexibility of machine learning techniques for representing

complex phenomena in largely extended and morphoclimatically complex study areas.

We do not aim to discuss the potential of machine learning in general, or to extensively

compare different machine learning methods. Instead, we are interested in analysing the

benefits from using specific techniques in the two fields considered here, that are extreme

rainfal regionalization and geomorphic flood hazard modelling.

Our models are compared with benchmarking approaches that are well described in

the scientific literature, including both data-driven and physical models. The analysis

of our results demonstrates how the proposed techniques, which permit the effective uti-

lization of a broader range of input variables and the coverage of larger study areas, can

bring substantial advantages to flood hazard assessment and mapping (Magnini et al.,

2022, 2023, 2024).
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This Thesis is structured into three main parts. The introductory part provides an

overview of key machine learning concepts. Two numbered parts follow. The first Part

concerns the regional frequency anaylsis of sub-daily rainfall extremes, and contains an

introduction to the problem, a chapter for describing the state of the art, and a chapter

showing the application of a machine learning approach to this field. The second Part

is about geomorphic flood hazard mapping, and contains an introduction to the topic,

two chapters for the state of the art, and a chapter describing the application of ML

approaches in this area. Finally, a conclusive chapter summarises the main findings

delineated in the first and second Parts.
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Chapter 2

An introduction to machine learning

The term “machine learning” refers to a branch of artificial intelligence and computer

science which focuses on data-driven algorithms to imitate the way humans learn, with

a gradual improvement of accuracy. The term was coined and made popular during the

late 1950s by Arthur Lee Samuel, who was an employee at the International Business

Machine, a multinational corporation in the field of technology, computer software and

hardware. Different articles in the scientific community may not always agree on precise

definitions, but in general artificial intelligence (AI), whose machine learning (ML) is a

branch, is considered as a subset of the main field of statistical learning. Tipically, in

statistical learning one is more interested in the relationships between the input and the

output of a specific problem, whereas in machine learning the focus is on the accuracy of

the results. The term “deep learning” refers to specific cases of ML, including complex

models as artificial neural networks.

Today, ML approaches have been applied to a large number of problems, including

text analysis, computer vision, business planning and email filtering, leading to genera-

tive models, capable to create new texts and images (e.g, OpenAI, 2023).

In general, ML implies learning from data (Hastie et al., 2009). In a typical scenario,

there is an outcome variable, which can be quantitative (such as the inundation water

depth) or categorical (such as susceptibility/non-susceptibility to floods), that we wish to

predict based on a set of features, or descriptors (such as elevation of terrain and distance

from the river network). The training set of data is used to build a prediction model, or

learner. In this set, the feature measurements are observed for a set of objects (such as

pixels of a raster spatial domain), while the outcome may be either known or unknown,

depending on the nature the specific application. After the training phase, the model
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can be used to predict the outcome for new unseen objects. A good learner is one that

accurately predicts such an outcome. A large number of different models are available,

each one with its own advantages. Each model has some internal parameters (or a

specific configuration) that is learned during the training phase. In the next Sections, an

overview of the procedures for statistical learning is given, and some of the most common

machine learning models are described.

2.1 The statistical learning procedure

In general, suppose that Y is the expected quantitative outcome, andX = (X1, X2, .., Xm)

is a set of m features or descriptors. It can be assumed that the relationship between Y

and X has the form

Y = f(X) + ϵ (2.1)

where f is some fixed but unknown function of the input features and ϵ is a random

error term, which is independent of X and has mean zero. Through machine learning

techniques, an estimate f̂ of f is found, which yields to the prediction Ŷ = f̂(X). Then,

it can be demostrated that

E[(Y − Ŷ )2] = E[(f(X)− f̂(X))2] + V ar(ϵ) (2.2)

where E[(Y − Ŷ )2] is the average of the squared difference between the predicted and

actual value of Y . Equation 2.2 shows that the error consists of two parts: the first one,

E[(f(X)− f̂(X))2], depends on the estimate of f , and is reducible throught the selection

of the most appropriate model. The second, V ar(ϵ), is irreducible, as it depends on a se-

ries of external factors, as measurement errors, lack of data, or inappropriate descriptors.

Once the model has been trained, and an estimate f̂ of f is obtained, it needs to be

tested on another set of data, which is usually called test set. Then, it can be applied to

different sets of data. Typically, in ML applications one is not interested in the form of

f̂ , which is treated as a “black box”. Most of times, the actual aim is to obtain a model

capable to generalize, which means predicting accurately with new sets of data.

In general, the best solution is always a balance in the Bias-variance tradeoff. Vari-

ance refers to the amount by which f̂ would change if it was estimated with a different

training set. Bias refers to the error that is introduced by approximating a real-life

problem. Thus, using a more flexible model, which means with a higher number of pa-

rameters (thus, more complex), usually significantly reduces the bias, but increases the
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variance. Initially, increasing flexibility results in faster decrease of bias than increase

in variance. Hence, the accuracy for the test set improves. However, at some point the

more the model is adapted to the training set (i.e., lower bias), the less its prediction is

expected to be accurate with a test set (i.e., higher variance).

In the most simple and common case, the outcome of the target variable (Y , see

equation 2.1) is observed and known for the training set, but in several ML applications

it is not available. Nevertheless, the problem to be solved by the model can be described

as in equation 2.1, yet with unknown Y .

Depending on the nature of the problem, and consequently on the available data,

there are three different learning paradigms: supervised learning, unsupervised learning,

and reinforcement learning.

2.1.1 Supervised learning

Supervised learning algorithms build a model for a set of data where not only the

input features (or descriptors) are available, but also the outcome variable (or variables),

which is also called as target variable, is present. Thus, having a matrix An×m of the

training set, whose n rows are the individual samples and m columns are the observed

features, the supervised learning algorithms searches for a function f(A, parameters)

whose result is as close as possible to the vector Y of the target outcome, with length n.

This is achieved by iteratively trying values for the parameters of f until the optimiza-

tion of an objective function is reached.

The two most common applications of supervised learning are regression and classi-

fication, which occur when the target variable is continuous or categorical, respectively.

The most common objective function for regression is mean squared error (MSE):

MSE =
1

n

n∑
i=1

(yi − f̂(xi))
2 (2.3)

where n is the number of elements where the target and input variables have been

observed, and xi the set of features for each element i-th element.

With reference to classification, the most common objective function is accuracy (ACC):

ACC =
1

n

n∑
i=1

facc(xi) (2.4)
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where facc is 1 when the i-th element is correctly labelled, and 0 otherwise.

2.1.2 Unsupervised learning

Unsupervised learning is a more complex problem than the supervised one. It occurs

when the available data do not include an observed target variable.

One of its most important applications is clustering, which consists of dividing a

dataset in a number of subsets characterized by high similarity in the m-dimensional

space of the m input features. Several algorithms for clustering are available (e.g., DB-

SCAN, hierarchical clustering, k-means nearest neighbour), but in general it can be

defined as a multi-objective optimization problem. In fact, not only the distance be-

tween clusters, but also the number of clusters and their internal homogeneity need to

be optimized.

The second most common application of unsupervised learning is density estimation,

which consists of generating a synthetic a probability density function to describe a set

of data. In this case, the most common method is “maximum likelihood estimation”,

which means minimizing the logaritmic likelihood (logLH)

LogLH = log(
n∏

i=1

(P (xi|θ)) =
n∑

i=1

(log(P (xi|θ)) (2.5)

where P (xi|θ) is the probability to observe xi given a set of parameters θ for the proba-

bility density function.

2.1.3 Reinforcement learning

The third statistical learning method is reinforcement (Sutton and Barto, 2018).

Unlike supervised learning, it does not require the presentation of input/output pairs.

Also, in contrast to unsupervised learning, it does not explicitly correct sub-optimal

actions. This methodology is primarily applied to problems where an exact solution does

not exist. Consequently, the computation and optimization of an objective function with

precise values for exact solutions are unattainable.

Typically, this kind of algorithms use dynamic programming techniques, as the learn-

ing process is a sequence of trial-and-error steps. Within these algorithms, the learner,

or decision maker (called agent) takes some actions to respond to stimulation from an
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interactive environment. Based on the reward for his actions, the agent learns to improve

the rules leading to its actions (policy). During this trial-and-error process, reinforce-

ment learning involves a trade-off between exploration and exploitation. In fact, the

agent must explore different actions to discover the best strategy (exploration) for max-

imizing the rewards. In the meanwhile, it must also exploit the current knowledge to

make optimal decisions (exploitation).

Some of the most common applications of reinforcement learning are game theory,

vehicles with automatic driving systems and robotics.

2.2 Decision trees (DTs)

Decision trees (DTs) are popular supervised ML techniques (Breiman et al., 1984;

Hastie et al., 2009), as they are very effective in solving many kinds of classification or

regression problems based on an easily-interpretable logic.

DTs search for a relation between input and target output by means of a recursive

splitting, which is done through a set of nodes organized in a tree structure. Being the

input of a DT a data matrix An×m, whose n rows are the individual samples and m

columns the observed features (or attributes), each node corresponds to a test to be

performed on a single attribute in the m columns. Depending on the outcome of the

tests on the nodes, the data (originally with n rows) is splitted into two subsets (i.e., two

matrices with n1 and n − n1 rows): each subset is forwarded to one of a set of “child”

nodes (see Figure 2.1). Leaves are the last nodes; each one is labeled with an output

value, such as a class or a number, representing the tree’s output for an input vector

that reaches that leaf via the tree’s structure.

Training a decision tree consists in determining its structure, the splitting rule on

each node, and the labels on the leaves. Most training algorithms operate by recursively

splitting the training set, measuring the quality of each partition with object functions

that reflect the degree of uniformity of the output values (see Sect. 9.4.2). Repeatedly,

tests leading to the best partition are chosen, and child nodes are created accordingly.

When some termination criterion is reached, e.g. a set in the partition is perfectly

uniform or a maximum depth has been reached, the last nodes become leaves and they

are labeled either with the most frequent class value (discrete case, or classification) or

with the average of the output values (numeric case, or regression).

An additional useful feature of DTs is that they can predict class probabilities of the

input samples. This will be hereinafter referred to as p-value. Indeed, the p-value can
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Figure 2.1: Example structure of a decision tree for a given dataset with N samples and
M features, having seven nodes in total: one root node, two decision nodes, and four
leaves, resulting in an overall depth of three (i.e., longest path from roots to leaves).
Figure adatped from Magnini et al. (2022)

be easily obtained for any class in a classification problem, and consists of the fraction

of samples of that class in each leaf (computed during the training).

To the aims of the present Dissertation, it is worth underlining also that the number of

possible outcomes that the prediction can assume corresponds to the number of leaves.

Therefore, the range of target values of a DT is finite, and any regression problem

is inevitably approximated by a classification problem, since any continuous numeric

interval is ”discretized” into a series of fixed values, or class, whose number corresponds

to the number of the leaves. For each class, based on the frequency of that class over the

The most important parameters to adjust for decision trees are their depth and the

minimum number of samples per leaf. Deeper trees contain more splits, leading to less

biased models, but usually with a high variance (i.e., bad performances with a validation

set of data). Reducing the complexity of a DT, aiming to improve its generalization

accuracy, is called pruning, and is usually achieved by increasing the minimum number

of samples per leaf.

2.3 Artificial neural networks (ANNs)

ANNs are among the most common machine learning models (Hastie et al., 2009).

They imitate the structure of human brains, and consist of successive layers, each one
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Figure 2.2: Most commonly adopted activation functions for artificial neural networks

Figure 2.3: Example structure of an artificial neural network, with three input features,
two hidden layers, and two target variables

containing a given number of inter-connected units, called neurons (Figure 2.3).

Referring to each single j-th neuron, its output yj is a function fj of the linear

combination of the ninput input factors xi,j, as follows:

yj = fj(

ninput∑
i=1

(wi,j · xi,j) (2.6)

Where wi are the weights, or coefficients of the input factors, and fi (usually called

the “activation function”) can assume a variety of shapes (see Figure 2.2). Usually, the

relu or the sigmoid function are adopted (e.g., Han and Moraga, 1995).

The ninput input factors for each neuron are the outputs from the previous layer,

while for the first layer the input are the features (or descriptors) themselves.
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The most common approach for training neural networks is back-propagation, also

called gradient descent. Given a certain objective function, or measure of fit, R(θ)

(usually to be minimized), depending on a set of parameters θ, the gradient descent

consists of a series of steps: (1) the loss R(θ0) is computed with a trial set of parameters

θ0; (2) the derivatives of R(θ) with respect to the parameters are computed; (3) the

parameters are updated according to the gradient descent (i.e., back-propagation).

The training phase consists of an iterative process, composed of epochs. First, the

training set is divided into a number of subsamples, called batches. At each epoch,

each batch in turn is used for observing the data and guessing values for the model’s

parameters θ (i.e., the weights and the activation functions). Before moving to the

next batch, the target variables are computed using data from the previous batch, and

the parameter values are updated using the gradient of the fit measure, R(θ). The

increment/decrement value adopted for computing the derivatives of R(θ) with respect

to the parameters is called learning rate.

Thus, at any epoch, the parameters are updated as many times as the number of

batches. When the number of observations (size) of the batch is between 1 and the total

number of the sample, which is the most frequent situation, the optimization algorithm

is called mini-batch gradiend descent.

With respect to decision trees, ANNs are definitely more complex, as a larger number

of parameters need to be defined by the user, which govern both the structure and the

learning procedure. First, the size of batches, number of epochs, learning rate and mea-

sure of fit need to be carefully set, as they have a significant influence on the accuracy

of the final model. Second, the structure of ANNs can be adapted to specific cases by

modifiying the number of hidden layers (i.e., the layers between the input and output).

This allows to increase complexity and flexibility of the model, reducing the bias (see

above the bias-variance tradeoff).

The nature of ANNs make them suitable to solve a large variety of non-linear complex

problems. However, they are not easily interpretable, which means that the presence of

non-linearity and interconnections among neurons make impossible to follow the path of

single features through the ANN layers. Hence, there is not a direct way to estimate the

influence of each input feature.
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2.4 Bagging

One of the most common approaches to reduce the variance of a ML model is boot-

strap aggregation, which is also called “bagging” (Breiman, 1996). In fact, given a set

of n independent observations X1, X2, .., Xn, each one with variance σ2, the variance of

the mean value X̄ is σ2/n: thus, averaging a set of observations reduces variance.

Bagging consists of a series of steps:

1. Generating series of B training sets through bootstrap. Given a sample of n el-

ements, bootstrap consists of randomly selecting nb elements from the original

sample, with the possibility to draw multiple times the same observations. Thus,

it is possible to obtain B nb-dimensional samples from the same population

2. For each sample generated from bootstrap, training a ML model (e.g., a decision

tree)

3. Averaging the predictions of the B models

The third step is usually called “stacking”, and can be also performed by assuming

the mode of the predictions.

Two of the most common applications of bagging concern decision trees, leading to

random forests, and ANNs, leading to ensembles of ANNs.
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Chapter 3

Introduction to the first Part of the

Dissertation

Several hydrological applications, such as the design and management of stormwater

drainage systems, combined sewer overflows and flood control systems require an accurate

estimation of the design storm (e.g., Claps et al., 2022; Camorani et al., 2005). The

latter can be defined as the rainfall depth associated with a given duration and non-

exceedance probability (commonly expressed in terms of return period). To produce

an accurate estimation of the design storm, modelling the frequency regime of rainfall

extremes in the location of interest is needed (e.g., Koutsoyiannis, 2007; Persiano et al.,

2020). Timeseries of observed rainfall extremes (e.g., annual sequences of maximum

rainfall depths for given durations), when locally available, are in many cases too short

to perform robust at-site frequency analysis. This limitation is often addressed by means

of regional frequency analysis (RFA), that consists in transferring observed data from

other gauged locations to the target site (see e.g., Di Baldassarre et al., 2006; Castellarin

et al., 2009; Blöschl, 2011).

In general, RFA consists of two main phases: (i) the delineation of a homogenous

pooling-group of sites (i.e., region), containing gauged sites that are similar to the target

one, and (ii) the definition of a regional model to transfer the information from the

homogeneous region to the target site (Grimaldi et al., 2011). The scientific literature

reports on a large number of different methods for conducting RFA of rainfall extremes

(see e.g., Svensson and Jones, 2010). The homogeneous region is defined based on some

hydrological similarity criteria (see e.g. Castellarin(2001), and can be considered as

fixed (i.e., the gauged sites are divided into fixed clusters) or specific for any target

site, as in the region-of-influence approach (Burn, 1990). The regional transfer function

defined in the second phase of RFA is highly variable depending on the specific approach:
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on the one hand, the target variable could be a specific percentile (e.g., Ouali et al.,

2016), a parameter of a probability distribution (e.g., Soltani et al., 2017), a statistical

moment or L-moment (e.g., Modarres and Sarhadi, 2011; Ngongondo et al., 2011), or

the complete time series itself (e.g., Requena et al., 2017, 2018); on the other hand,

the observations of the gauged sites could be used alone or with some covariates of

the target variable. Literature also reports on several methods that do not require the

definition of a homogeneous region (methods based on regression, e.g., Brath et al. 2003,

or interpolation, (e.g., Claps et al., 2022).

Regarding the application of RFA to the estimation of flood quantiles, the scien-

tific community has proposed several approaches that make use of advanced artificial

intelligence (AI) techniques. Linear and non-linear techniques have been discussed for

the definition of a homogeneous region (e.g., Ouarda et al., 2001; Ouali et al., 2016).

Models for regional flood frequency analysis can consider many morphological and cli-

matic covariates (Msilini et al., 2022), consider non-linearity of the input-output relations

(Ouarda and Shu, 2009), and represent the interaction between the input variables (e.g.,

Msilini et al., 2020). On the contrary, the literature does not report on many AI-aided

RFA methods for modelling the frequency regime of extreme precipitation.

The preference for one model or another strongly depends on the specific case. More-

over, since certain knowledge of the frequency regime of a highly stochastic event is not

possible, incontrovertible evaluation of regional models cannot be obtained (Di Baldas-

sarre et al., 2009; Velázquez et al., 2011). However, it is clear which are the characteristics

that a good regionalization method should have. First, the ability to profitably use as

much recorded information (i.e., observed data) as possible. This is due to the nature

of available official gauging networks, that consist of unevenly distributed rain gauges,

and timeseries that are often short or fragmented (Libertino et al., 2018; Kidd et al.,

2017). As a result, very short sequences are often discarded in regional analysis (e.g.,

Di Baldassarre et al., 2006). Second, the model should be as flexible as possible. Due to

the fast development of technology and science, the amount, location and type of data

available is highly dynamic. Thus, a model that can be easily adapted to these changes

has a great advantage.

This first part of the present Thesis is divided into three chapters. The first is the

present Introduction, the second is dedicated to the state of the art of regional frequency

analysis for rainfall extremes, and the third to the application of an innovative machine

learning RFA model for rainfall extremes.
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As said in the Introduction to this Part, several water management infrastructures

require the knowledge of the design rainfall, which is the rainfall associated with a given

duration of the event and a given non-exceedance probability. In the best case, the

design rainfall is obtained through local frequency analysis (LFA). Supposing a long and

complete rainfall depth time series is available at the site of interest, LFA consists of a

series of steps. First, extreme values are extracted. These can be the single maximum

value for each year (annual maxima approach), or all the values that exceed a selected

threshold (i.e., peak-over-threshold approach). Second, a probability distribution is fitted

on the maximum data. Finally, intensity-duration-frequency (IDF) relationships are

derived by extracting quantiles from the probability distributions (see Koutsoyiannis

et al., 1998; Brath et al., 2003).

This type of application requires time series referring to different time intervals (gen-

erally, between 1 and 24 hours), and its reliability depends on the length of the time

series. However, the availability of long and complete time series is limited to a small

portion of Earth’s surface (Kidd et al., 2017; Libertino et al., 2018). In fact, it is very

common to have short time series due to newly installed measure stations, or fragmented

records due to interruptions of the measurement.

Thus, regional frequency analysis (RFA) is adopted. It consists of transferring to

ungauged sites information from other gauged locations based on some hydrological

similarity (Hosking and Wallis, 1997), performing a “space-for-time substitution” (e.g.,

see Claps et al., 2022). Indeed, this transfer process is very delicate, and requires some

hydrological considerations and assumptions. In the following sections, the most widely

adopted methods for RFA of rainfall extremes will be described.
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4.1 Compilation of extreme values samples

Before performing both local and regional frequency analysis, some pre-processing

steps for the rainfall datasets are generally necessary. At a given location, rainfall mea-

surements consist of the depth of precipitated water for a unit surface during time. While

for analogic historical devices this results in a continuous line, the modern electronic ones

provide observations every 1-2 minutes.

Since for hydrological applications the duration associated with a given precipitation

event is a crucial aspect, the measures need to be summed over a moving window of

width d over the time axis.

The result is the time series of the rainfall depth associated with a d-wide time

interval, which is also called “complete duration series”. This is actually different from

the duration of the precipitation event itself, yet still the most common way to obtain

this kind of data. Therefore, the two terms time interval and duration will be used in the

next chapters of this Thesis as synonims, even if this is not properly true (Koutsoyiannis

et al., 1998).

The second processing step is to extract the extreme values from the time series

for a given duration. As mentioned in the Introduction, the first method is the peak-

over-threshold (POT), which consists of selecting all the measurements exceeding a fixed

threshold. The major advantage of this method is that various values can be selected

for every year, depending on the threshold, leading to longer time series of the maxima,

which in turn can provide valuable results when dealing with heavy-tail distributions

(Madsen et al., 1997; Marani, 2003). However, the approach is very sensitive to the

identification of the theshold (Claps and Laio, 2003).

The second method is the block maxima, which consists of selecting the maximum

event over a time period (or block). Commonly, a block of one year is used, leading to the

extraction of the annual maximum series (AMS). Following the suggestions of Gumbel

(1954), this approach is the most commonly adopted, also due to the wider availability

of AMS for older time series.

4.2 Commonly adopted probability distributions and

statistics

Once the timeseries of the extreme values are obtained, statistical analysis is per-

formed. Both for LFA and RFA, this usually consists of selecting and fitting the most

appropriate probability distribution.
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Figure 4.1: Generalized extreme value distributions with different values for the shape
parameter k. For all distributions, the mean µ is 0, and the standard deviation σ is 1.
Asterisks mark support endpoints

The scientific field that studies the statistical behaviour of the extreme values of a

stochastic variable (as rainfall can be considered) is named extreme value theory, or ex-

treme value analysis (EVA). With specific reference to hydrology, the main founders of

EVA were Jenkinson, Gumbel, and later Chow. They showed, in the 50s and 60s, that

when the number of observations of annual maxima n (see Section 4.1) tends to infin-

ity, their probability function converges to one of three possible asymptotes. All three

asymptotes can be described by a single mathematical expression introduced by Jenkin-

son (1955) and become known as the generalized extreme value (GEV) distribution.

The GEV distribution is characterized by three parameters, that are the location,

ξGEV , the scale, αGEV , and the shape k (see eq. 4.1 and 4.2). Its cumulate probability

distribution, F (x), is reported in equation 4.1 following the formulation in Hosking and

Wallis (1997) for k:

F (x) = −e−e−y

(4.1)

where

y =

−k−1ln[1− k(x− ξ)/αGEV ], k ̸= 0

(x− ξGEV )/αGEV , k = 0

The shape parameter k, also called the “third parameter” controls the upper tail and

the support of the distribution (see Figure 4.2). When k = 0, the type I distribution of

maxima (EV1), or Gumbel distribution is obtained (equation 4.2).
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F (x) = exp(−exp(−x− ξEV 1

αEV 1

)) (4.2)

The Gumbel distribution is widely used in the literature for modeling the AMS statis-

tics (e.g., Piper et al., 2016; Maity, 2018; Caldas-Alvarez et al., 2022), as (1) it has only

two parameters, which leads to lower complexity compared to the GEV, and (2) its

support is (−∞,+∞).

When k < 0 the support is (ξGEV + αGEV /k) < x < ∞ and the distribution is called

type II or Frèchet extreme value distribution. Finally, when k > 0 the distribution

is called type III, or reversed Weibull extreme value distribution, and its support is

−∞ < x ≤ (ξGEV +αGEV /k). This third case, when the distribution has an upper limit,

is the rarest one for AMS analysis.

The range of distributions adopted for EVA in hydrology includes also other distribu-

tions, such as the generalized logistic, generalized Pareto, or the lognormal. More details

on these distributions can be found in Hosking and Wallis (1997) and Coles (2001),

whereas the present Dissertation focuses exclusively on the GEV and its simplified case,

the Gumbel, which are the most common (e.g., Svensson and Jones, 2010) and will be

be used for the analyses described later.

4.2.1 L-moments

L-moments are statistical properties of measured timeseries and theoretical distri-

butions that became very popular in hydrology, as they can effectively be used for (1)

testing the global heretogeneity of a sample (i.e., a group of timeseries, or a supposed ho-

mogeneous region), (2) measuring the discordancy of each single timeseries with respect

to the sample, (3) measuring the goodness-of-fit of a theoretical probability distribution

on a sample or a single timeseries, and (4) fitting a given theoretical probability distribu-

tion on a sample or a single timeseries. These concepts are clearly described in Hosking

and Wallis (1997), and are widely known in hydrology. Thus, in the present Dissertation

only a quick resume is given.

The characteristics of a given timeseries and the shape of a given probability dis-

tibution have traditionally been described by their moments. These include the mean

(µ), which describes the center of location of the distribution, the standard deviation

(σ), which describes the dispersion of the distribution about its center, the coefficient of

variation (CV = σ/µ), the skewness, which describes the asymmetry, and the kurtosis,

which describe the propensity to produce outliers (or “tailedness”). In general, moments

mr of order r > 1 can be obtained from a timeseries of n measurements (e.g., annual
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maxima) by equation 4.3:

mr = n−1

n∑
i=1

(xi −m1)
r (4.3)

where m1 is the mean.

L-moments are an alternative system that arose from the work of Greenwood et al.

(1979) and was extensively investigated and described by Hosking and Wallis during the

70s, 80s and 90s. Let x1:n ≤ x2:n ≤ ... ≤ xn:n be an ordered sample, the unbiased sample

estimations lr for the L-moments with order r, λr, are defined as:

lr+1 =
r∑

k=0

pshr,kbk (4.4)

where bk is the unbiased estimator for the probability weighted moment, defined as

follows:

br = n−1

(
n− 1

r

)−1 n∑
j=r+1

(
j − 1

r

)
xj:n = n−1

n∑
j=r+1

(j − 1)(j − 2)...(j − r)

(n− 1)(n− 2)...(n− r)
xj:n

and the coefficients pshr,k are defined as:

pshr,k = (−1)r−k

(
r

k

)(
r + k

k

)
=

(−1)r−k(r + k)!

(k!)2(r − k)!

The most important L-moments are λ1, equal to the mean, λ2, or L-scale, L−CV =

λ2/λ1, or L-coefficient of variation, τ3 = λ3/λ2, or L-CS or L-skewness, and τ4 = λ4/λ2,

or L-kurtosis. Their informative content on the underlying distribution is similar to the

counterparts of the moments (i.e., scale, coefficient of variation, skewness and kurtosis).

Nevertheless, the L-moments have the advantage of being fixed, or in a fixed relationship,

for the most important 2- or 3-paremeter theoretical probability distributions (see Figure

4.2). This characteristic is extremely useful for selecting the most appropriate probabiliy

distribution for a given timeseries (LFA) or a given sample of timeseries (RFA).

More details on the definition and statistical properties of L-moments can be found in

Hosking and Wallis (1997). However, comparing equations 4.3 and 4.4 it is evident that

L-moments basically consists of linear combinations of the observations, while traditional

moments involve non-linear combinations (i.e., exponents > 1). Thus, L-moments are

less biased, more robust to outliers and can characterize a wider range of distributions,

which makes them particularly attractive for statistical inference (e.g., Di Baldassarre

et al., 2006; Schaefer, 1990).
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Figure 4.2: L-moments ratio diagram for the most widely used theoretical probability
distributions: uniform (U), logistic (L), normal (N), exponential (E), Gumbel (G), gen-
eralized logistic (GLO), generalized extreme value (GEV), generalizeed Pareto (GPA),
lognormal (LN3), and Pearson type III (PE3). Adpted from Hosking and Wallis (1997)

4.3 Approaches to statistical regionalization

A large variety of regionalization methods exist, but most of them rely on the “index

storm approach”, which was orginally developed for floods, and named “index flood”

(Dalrymple, 1960).

Accordingly, the rainfall depth h(d, T ) associated with a given duration d and return

period T , is the product of a scale factor md, that is called the storm index, and the

dimensionless rainfall depth h′(d, T ), that is called growth factor (see Equation 4.5). The

scale factor is site dependent and is usually estimated by averaging the available mea-

surements at the target station or exploiting regional information through interpolation

techniques. The growth factor is derived from a regional relation that is assumed to be

valid for the entire homogeneous group of sites, which requires to be defined through RFA.

h(d, T ) = md · h′(d, T ) (4.5)

A crucial aspect of regional models is the way different durations are handled. Indeed,

physical phenomena that origin rainfall with different durations are very different, as

convective cloud formation leads to short precipitation, while stratiform clouds cause

long events. However, when performing frequency analysis, it is very common to assume

that the same probability distribution can be adopted for all the durations, which is

called the “simple-scaling assumption” (Burlando and Rosso, 1996). In the case of the

storm index method, this lead to a simplified model, where h′(T ) does not depend on

the duration.
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h(d, T ) = md · h′(T ) (4.6)

A second, fundamental aspect for the classification of RFA models is the variable that

is regionalized. A very common approach is to regionalize specific quantiles for a given

duration with simple or multi-scaling assumption (Svensson and Jones, 2010; Soltani

et al., 2017), while other authors suggest to regionalize the parameters of a target prob-

ability distribution, or the sample ordinary moments or L-moments (e.g., Modarres and

Sarhadi, 2011; Ngongondo et al., 2011), or the complete time series itself (e.g., Requena

et al., 2017, 2018).

The third major element for the classification of RFA models is the way the pooling

group of gauged stations is (or not) selected. In fact, since a regional model aims to

transfer hydrological information from a pooling group of gauged stations to ungauged

ones, some criteria for assessing the reliability of this transfer are necessary. This is

usually accomplished by selecting the gauged stations as a homogeneous region, based

on some homogeneity and similarity tests. This will be addressed in the next sub-section.

4.3.1 Definition of a homogeneous region

Generally, a homogeneous region in the context of the RFA is defined as the domain

where the statistical properties of the investigated variable can be considered constant.

This can be declined in two different ways: (1) the same regional function with fixed

parameters to estimate the investigated variable; (2) the investigated variable has a fixed

valued over all the homogeneous region.

Thus, with specific reference to the storm index method, a given homogeneous region

could have either the property of having fixed parameters for a regional function for the

growth factor (e.g., h′(d, T ) = f(parameters)) or a the one of fixed growth factor over

all the area.

The procedures for the delineation of a homogeneous region evolved significantly over

time. Originally, fixed and non-overlapping geographical regions were adopted. These

were defined by splitting the study area into smaller regions based on some morpholog-

ical or climatological criteria (Cole, 1966). In the following years, it was proposed to

pool stations based on some geomorphological descriptors, such as latitude, longitude,

elevation or distance from the sea (e.g., Acreman and Wiltshire, 1989). In this way, it

was possible to minimize subjectivity in the delineation criteria and take into account a
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larger number of driving factors.

This second method became indeed more suitable with the invention and optimization

of cluster analysis tools (e.g., Modarres and Sarhadi, 2011; Ngongondo et al., 2011; Le

Gall et al., 2022).

A third method, which is called region-of-influence (ROI), was proposed by Burn

(1990), and still widely adopted (Svensson and Jones, 2010). It relies on non-fixed re-

gions, as single specific regions are defined for each ungauged site of the study area.

Regardless to the method adopted for the delineation, the heterogeneity of the region

(i.e., presence of outliers and discordant data) needs to be tested, as well as the homo-

geneity with the ungauged sites. To do this, specific test defined by Hosking and Wallis

(1997), considering the L-moments ratios (i.e., the dimensionless L-variance, or L-CV,

L-skewness, or L-CS, and L-kurtosis) are iteratively used (e.g., Castellarin et al., 2005;

Di Baldassarre et al., 2006).

4.3.2 Regionless methods

In some cases, the variable to regionalize has a high variability, so that is not conve-

nient to make any assumption of the homogenenity of a region. This leads to a different

class of RFA approaches that can be named “regionless”, as they do not require the de-

lineation of a homogeneous region, and that is based on interpolation techniques. These

methods are generally used for the estimation of the index rainfall, and can be divided

into interpolation and geostatistical methods.

The simplest interpolation techniques is based on Thiessen polygons. Given a certain

variable to regionalize, for each ungauged site, the record of the closest guaged site is

assigned (Goovaerts, 2000). Other methods include splines or thin plate splines (Carey-

Smith et al., 2018), or bilinear surface smoothings (Malamos and Koutsoyiannis, 2016).

Another important method is the inverse distance wieghting method, that assign

to ungauged locations a weighted average of the nearby measurements, whose weights

decrease with the distance from the target location. Thus, the distance is the only factor

considered when regionalizing the information, leading to excessively weighting of the

measurements around the target location in some cases (i.e., the “bull’s eye effect”).

To overcome this major drawback, geostatistical methods, also referred as kriging, have

been proposed.

The first kriging techinque was developed by Krige and Matheron (see Matheron,

1963). It takes advantage of the spatial correlation between neighbouring stations to
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perform an estimate in an ungauged site. First, the spatial variability of the estimates

is described with a variogram. This is defined as the half of the variance along the space

of the target variable (Z) in two points spaced h, described as in the following equation

γ(h) =
1

2
E{[Z(x+ h)− Z(x)]2} (4.7)

where x is the location and E is the expected value. The kriging technique is a

best linear unbiased estimator (BLUE): “best” as it leads to the minimum variance,

and “unbiased” as the expected value of the estimation bias error is zero. The linear

condition allows the evaluation of the unknown value ẑ0 in position x0 as a weighted

average of the nearby measurements

ẑ0 =
n∑

i=1

λiz(xi) (4.8)

where the weights of the interpolation λi are defined by fitting a model to the sample

variogram (eq. 4.7).

In the simplest case, called ordinary kriging (OK, see Prudhomme and Reed, 1999),

the mean value of Z is assumed to be constant but unknown in the neighbour of x0.

Since OK does not allow a good representation of heterogeneity and anisotropy of

rainfall field, other techniques have been proposed. For instance, the presence of signifi-

cant trends of Z, that break the assumption of constant mean, can be removed, in order

to apply the OK on the detrended values (i.e., detrended kriging, or regression kriging

Prudhomme and Reed, 1999). In this case, the prediction is obtained with the equation

ẑ0 = β0 +

p∑
j=1

βjXj(x0) +
n∑

i=1

λiϵ(xi) (4.9)

where β0 and βj are the intercept and coefficients of the regression, Xj are the p

independent variables.

The kriging with external drift (or KED, Wackernagel, 1998) and the universal kriging

(or UK, first introduced by Matheron, 1969) are special cases of kriging where the mean is

not constant over the spatial domain, and a trend is recognized wtih an external variable

(in the most common case, the elevation). Usually, the term UK is reserved for the case

where the trend (or drift) is modelled exclusively as a function of the coordinates, while

in KED it depends also on some auxiliary variables (Hengl et al., 2003). Both KED and

UK take advantage of the correlation with an external variable, but the deterministic

portion of the approach (the regression) and the stochastic one (the kriging) are modelled

simoultaneously (Hengl, 2007).
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Cokriging was introduced to improve the estimation of a variable using another spa-

tially correlated variable with better spatio-temporal availability (Ahmed and De Marsily,

1987). It can be considered as an extension of the OK that allows modelling multivari-

ate data with a multivariate variogram and a covariance model. With this approach,

measurements may not cover all the sample locations: the data can be available either

at the same or at different points for each variable, leading to isotopic (in the first case)

or heterotopic (in the second case) datasets. As recommended by Hengl et al. (2003),

cokriging should be used to improve the prediction if the number of secondary variables

is low and if they are not available at all sample locations

Geostatistical methods perform significantly better than traditional interpolation ap-

proach, and are therefore used for several applications of RFA for rainfall (Deidda et al.,

2021; Libertino et al., 2018; Svensson and Jones, 2010; Bostan et al., 2012).
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AI-based morphoclimatic regional

frequency modelling of sub-daily

rainfall extremes

5.1 Introduction

In the present Chapter, the potential of a new AI-based approach to RFA of rainfall

extremes is investigated and discussed, mainly following Magnini et al. (2024). It is based

on ensembles of unsupervised artificial neural networks (ANNs), that are able to predict

the parameters of a selected extreme value probability distribution of the dimensionless

extreme rainfall for any duration between 1 and 24 hours.

Following the general framework of the widely adopted storm index method (e.g.,

Di Baldassarre et al., 2006), the frequency regime of the dimensionless extreme rainfall

is regionalized. This is the extreme rainfall depth timeseries divided by its mean value

at each site for a given duration. In the present study we focused on the Gumbel dis-

tribution, but the approach could consider different models. The proposed method is

simple, flexible, and innovative thanks to some characteristics. First, no clustering or

target-pooling of available rain gauges is performed: all available annual sequences of

maximum rainfall depth are used jointly. Second, no filter on a minimum length of an-

nual sequences is needed and very short sequences (even with two observations) can be

used. Third, training is performed simultaneously on all available durations, which leads

to advanced interpolation of time-aggregation intervals capability, a very useful feature

for practical applications such as the construction of intensity-duration-frequency curves

(see Koutsoyiannis et al., 1998; Brath et al., 2003). Fourth, the modelled extreme value

distribution can be predicted at ungauged locations within the study region, based on
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available morphoclimatic information.

The proposed approach is tested in the present study by implementing it through

four kinds of ANNs with increasing complexity. The first makes use of the mean annual

precipitation (MAP) alone (MAP-ANN), which is a classical proxy for frequency regime

of rainfall annual maxima (see e.g., Schaefer, 1990; Alila, 1999; Castellarin et al., 2009).

The second relies on an extended set of twenty morphoclimatic characteristics of the site

of interest, including MAP (EXT-ANN). The third (EXT-PCA-ANN) and the fourth

(EXT-CCA-ANN) models are fed on pre-preprocessed versions of the same twenty input

descriptors, that are obtained through principal component analysis (PCA), and canon-

ical correlation analysis (CCA, see e.g., Di Prinzio et al., 2011).

We make use of a large dataset of gauged stations located in northern and central

Italy. For each station, rainfall annual maximum series (AMS) for five different time-

aggregation intervals, or durations for the sake of brevity, are available (i.e., 1h, 3h, 6h,

12h and 24h). The maximum length of the AMS series is 90 years. In particular, 2238

stations representing a wide range of morphological and climatic conditions are used to

train the four models. Validation of the four regional models is performed using data

collected at 100 independent raingauges. The validation considers a traditional RFA

method based on L-moments and MAP (e.g., Di Baldassarre et al., 2006) as the baseline

regional approach (hereafter also referred to as MAP-Lm), as well as the newly proposed

models (i.e., MAP-ANN, EXT-ANN, EXT-PCA-ANN, EXT-CCA-ANN), and compare

their predictions with those resulting from at-site frequency analyses (i.e. locally esti-

mated Gumbel distributions).

Finally, the study shows a preliminary application of the proposed EXT-ANN model

that adopts the 3-parameter Generalized Extreme Value (GEV) distribution (Jenkin-

son, 1955). In this preliminary application, the parameter that controls the skewness of

the GEV distribution (i.e., the shape parameter) is regionalized through geostatistical

interpolation procedure (Hengl, 2007), while the remaining two parameters are derived

from the prediction of the EXT-ANN model. Testing the proposed approach for a 3-

parameter distribution is important. The scientific literature clearly indicates that in

some geographical and climatic contexts the flexibility of a 2-parameter Gumbel dis-

tribution, even though widely adopted in previous works (see e.g., Grieser et al., 2007;

Svensson and Jones, 2010; Van den Besselaar et al., 2013; Piper et al., 2016; Maity,

2018; Caldas-Alvarez et al., 2022), is not enough for producing an accurate represen-

tation of the frequency of rainfall extremes (e.g., Koutsoyiannis and Baloutsos, 2000;

Koutsoyiannis, 2004; Papalexiou et al., 2018).
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Two main research questions are addressed within this research: (1) are ANNs useful

and effective in RFA of rainfall extremes? (2) Are morphological indices helpful in

describing the local frequency regime of sub-daily rainfall extremes?

5.2 Methods

The present Section describes the methodologies adopted to set up all the regional

models considered in the study. It is divided into two parts: the first briefly summarizes

the storm index model with the L-moments approach, that is considered as baseline; the

second illustrates the theoretic principles of the ANN approach that originates the four

AI-based models. More detail on the models set-up is given in Section 4.

5.2.1 Storm index method with L-moments approach

As said in Chapter 4, the storm index method is one of the most commonly adopted

models for RFA (e.g., Brath et al., 2003). Following the original version by Dalrymple

(1960), several different applications of the storm index method have been proposed.

The MAP-Lm model set up in the present study strictly follows the methods in Di

Baldassarre et al. (2006), which in turn strongly relies on the findings of Schaefer (1990)

and Alila (1999). These authors studied the extreme dimensionless rainfall depth, which

is obtained by dividing the dimensional data by the mean depth associated with the same

duration at the same station. They found that statistical moments and L-moments of

extreme dimensionless rainfall are in relation to MAP. Thus, homogenous groups of

stations can be identified according to their values of MAP, which can be used as a

substitute of the geographical location and as proxy of extreme precipitation. Based

on the findings by Hosking and Wallis (1997, 1993), L-moments should be preferred for

RFA to traditional moments as they are more robust to outliers, can characterize a wider

range of distributions and are less subject to estimation bias.

In particular, the MAP-Lm model aims to estimate the regional growth factor of the

dimensionless rainfall by means of a Gumbel distribution (i.e., generalized extreme value

distribution with zero-value shape parameter; see cumulative density function F (x), eq.

4.2) for each one of the considered durations (i.e., 1, 3, 6, 12, 24h). It is assumed

that the whole study area can be described by the same regional laws between local

MAP value and statistical moments of rainfall extremes; accordingly, the procedure can

be summarized in three major steps: (1) group gauged stations by their MAP values

through a moving window of 100 stations; (2) plot the average MAP and L-CV (i.e.,

L-coefficient of variation); (3) fit the regional function L-CV(MAP) as solution of a least
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squares problem. This procedure is applied for each duration to all stations with more

than five years of measurement.

In detail, the relationship between L-CV and MAP is modelled by adopting a Horton-

type curve (eq. 2).

L− CV = a+ (b− a) · exp(−c ·MAP ) (5.1)

Once the a, b and c regional parameters are found, L-CV can be obtained in the target

location as a function of MAP with eq. 5.1. Then, using the relations described in

Hosking and Wallis (1997), i.e., eq. 5.2 and 5.3, the location and scale parameters (ξ

and α) of the desired local frequency distribution, which is a Gumbel distribution in this

case, are estimated.

scale = α = λ2/ln(2) = (L− CV ) · λ2/ln(2) (5.2)

location = ξ = λ1 − γ · α (5.3)

Where λ1, λ2 and γ are in this order the L-moment of the first and second order (i.e.,

mean and the standard deviation of the dimensionless AMS observed) and the Euler’s

constant (i.e., 1.504).

Despite relying on a single proxy for extreme rainfall, this model has been shown to

be rather accurate (Di Baldassarre(2006) over the region for which it was proposed and

tested. Moreover, the general framework is rather flexible since local MAP values can

be easily retrieved for various regions of the world. For these reasons, it is selected as

the baseline for evaluating the performance of the AI-based approaches.

5.2.2 ANN approach

Artificial intelligence has been profitably used by several authors for enhancing RFA

for floods (e.g., Msilini et al., 2020; Ouali et al., 2016; Ouarda and Shu, 2009; Shu

and Ouarda, 2007), and the accurate choice of models and manipulation of data shows

encouraging results. However, the investigation of artificial intelligence techniques for

rainfall RFA is not yet well documented.

In the present study, artificial intelligence is used to enhance efficiency in data ex-

ploitation and combination. We consider ensembles of unsupervised ANNs; four differ-

ent models are set up: while fed with different input data, they are based on the same

macro-structure. All the ANN models follow four general guidelines: (1) exploiting si-

multaneously the AMS with all the available durations; (2) using short timeseries as

well as long ones; (3) minimizing negative logarithmic likelihood as objective function

46



Chapter 5. AI-based morphoclimatic regional frequency modelling of sub-daily rainfall
extremes

(see below); (4) predicting Gumbel distributions as target. Thus, differently from the

MAP-Lm model, the timeseries from all the stations are pooled together for training and

validating the ANN models. The aim of these ANNs, as for the MAP-Lm model, is to es-

timate the growth factor of the storm index framework. This is done by finding the best

parameters for Gumbel probability distributions of the dimensionless extreme rainfall

for any duration at any location, that correspond to the minimum negative logarithmic

likelihood.

ANNs are among the most common machine learning models (Hastie et al., 2009),

capable of high accuracy in a wide range of problems, inluding hydrological applications

(e.g., Mosavi et al., 2018).

In this application case, the activation function fi (see eq. 2.6) is assumed in the

present study as a sigmoid function, as it is commonly done (e.g., Han and Moraga,

1995). The input factors for neurons of the first layer are the descriptors themselves,

and each year of measurement for any station and any duration is considered as a single

observed element.

Before the training, the available dataset is divided into a “training/testing set” (the

larger one), and a “validation set” (the smaller one, used only for the validation). Dur-

ing the training phase, the training/testing set is randomly divided into two subsets: a

larger one that will be referred to as “training set” and a smaller one, that is referred to

as “testing set”. Common proportions of the original training/testing dataset are 80%

for the training and 20% for the testing set (e.g., see Xu and Goodacre, 2018). The

best hyperparameter set (i.e., the weights wi,j for each i-th neuron) is searched while

observing the training set and minimizing the negative logarithmic likelihood function

computed on the remaining data included in the testing set (i.e., backpropagation). In

this case, equation 2.5 becomes equation 5.4.

LogLH = log(
m∏
k=1

(p(xk)) =
m∑
k=1

(log(p(xk)) (5.4)

Where m is the testing set.

Since ANNs are complex and accurate models, they are likely to learn how to perfectly

reproduce the training set while being inaccurate with other datasets. This is referred

to as overfitting. To improve the generalization ability and stability of a single ANN, an

ANN ensemble can be used (see Chapter 2). In the present study, ANNs are generated

through bagging, and averaging is used for merging the results. Thus, for each single

ANN, the same initial training/testing set is randomly split, as discussed above, so that

the optimal hyperparameter set is searched by training the model on the training set
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while optimizing the objective function for the testing set. This method is a simple and

effective way to obtain ANN ensemble models (see e.g., Shu and Burn, 2004; Shu and

Ouarda, 2007).

5.3 Study region and morphoclimatic descriptors

5.3.1 Study region

The methods explained above are applied on a dataset of 2338 gauged locations.

These are located in a wide geographical area in northern and central Italy (Figure

5.1), where a variety of climatic and morphological systems can be found. The north

is dominated by the Alps, the highest Italian mountain chain, with a mean elevation

of 2500 m.a.s.l., and highest peaks until 4800 m.a.s.l. The largest Italian plain, the Po

plain, stretches in the southern border of the Alps, following the course of the Po river

from the northwest to the northeast, where low coasts are located. The southern border

of the Po plain is marked by the Northern Apennines, whose maximum peak is 2165

m.a.s.l. Within the study area, one of the factors that seem to have the largest effect on

the precipitation regime is altitude (Allamano et al., 2009; Marra et al., 2021; Mazzoglio

et al., 2022).

Three different datasets (Table 5.1) are used in the present study to derive the input

information and set up the models described in Section 5.2. First, the Annual Maxima

Series (AMS), the variable whose probability distribution needs to be estimated, are

retrieved from the dataset I2-RED (Mazzoglio et al., 2020). It includes annual maximum

rainfall depths for 1, 3, 6, 12 and 24 consecutive hours from 2338 weather stations across

the study area, recorded between 1916 and 2019. While 2238 stations have been selected

and used as training/testing set for the five models (i.e. 80% for training and 20% for

testing, see Section 5.2.2), the remaining 100 are used as a validation set. The selection of

the validation set is based on three main guidelines: (1) to identify a significant number

of timeseries, so to have an informative validation set for evaluating the RFA models’

performance; (2) to have gauges that are representative of the entire dataset in terms

of location, local climate and morphological conditions (see Figure 5.1.c and 5.1.d); (3)

to have long timeseries for using as reference validation values the at-site predictions

of rainfall quantiles (Figure 5.1.b). Both groups have stations with at least 50 years

of measurement (i.e., 248 for the training/testing set and 29 for the validation set, see

Figure 5.1.b).

The second dataset used is the multi-error removed improved terrain model (MERIT,

see Figure 5.1 Yamazaki et al., 2017), that was used to derive the morphological descrip-
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Figure 5.1: Study area, training/testing (red dots) and validation (black dots) raingauges
(a); sample frequency distribution (%) of several characteristics for the training/testing
(red bars) and validation (grey bars) raingauges: timeseries length (b) for training and
validation set, mean annual precipitation (or MAP, (b)), and elevation (d). Adapted
from Magnini et al. (2024)

tors (lines 1 to 14 of Table 5.2). Third, the climatic information comes from the ISPRA

BIGBANG dataset (Braca et al., 2019), that contains, among other variables, a 1km

raster representation of the annual totals of cumulative liquid and snow precipitation

over the 1951-2019 time interval.

5.3.2 Morphoclimatic descriptors

The descriptors adopted in the present study were selected based on Mazzoglio et al.

(2022), which explored the influence of climatic and morphological descriptors on the

statistics of rainfall extremes. They can be divided into three groups: morphological,

climatic and geographical. The first group includes descriptors of the elevation, slope

and aspect for a buffer area with 1km radius around the station of interest (i.e., from

1 to 6 of Table 5.1), and of the orography and distance between the station and the

sea coastlines (i.e., from 7 to 14 of Table 5.1). The climatic descriptors include mean

annual rainfall and snow, and their multi-year standard deviation (i.e., from 15 to 18 of

Table 5.1). The geographic descriptors consist of longitude and latitude (i.e., 19 and 20

of Table 5.1).

49



Chapter 5. AI-based morphoclimatic regional frequency modelling of sub-daily rainfall
extremes

Figure 5.2: Correlation matrix (i.e., matrix whose elements are empirical Pearson cor-
relation coefficients) of input descriptors, reported in the same order as in table 5.1.
Adapted from Magnini et al. (2024)

The study descriptors can be obtained through GIS processing procedures of freely

available datasets: a digital elevation model (DEM) is needed for retrieving the morpho-

logical descriptors, a precipitation dataset for the climatic group, and the coordinate of

the gauged stations themselves for the geographical descriptors.

Some descriptors show significant inter-correlation, as illustrated by the correlation

matrix depicted in Figure 5.2. Each element Xij of this square and symmetric matrix is

the Pearson’s correlation coefficient (PCC) of descriptors Xi and Xj. The PCC varies

between –1 and 1, and the higher its absolute value is, the higher is the correlation

between the two variables to whom it is referred.

PCC(Xi, Xj) =
cov(Xi, Xj)

var(Xi) · var(Xj)
(5.5)

Several groups of highly inter-correlated variables are evident (e.g., 1-4, see Figure

5.2), and the mean altitude (descriptor 1) is strongly correlated with most of the other

descriptors. This characteristic of the dataset is common, and several authors, as Di

Prinzio et al. (2011), showed that pre-processing input datasets by means of Principal

Component Analysis (PCA, Jolliffe, 2002) or Canonical Correlation Analysis (CCA,

50



Chapter 5. AI-based morphoclimatic regional frequency modelling of sub-daily rainfall
extremes

Figure 5.3: L-moments ratio diagram of the 2338 gauged stations (i.e., training/testing
and validation set) for annual maximum series with 1h (a) and 24h (b) duration. Adapted
from Magnini et al. (2024)

Hotelling 1935), and removing redundant information may improve the training efficiency

of data-driven methods and may result in better predictions. To test the convenience

of preprocessing techniques for the present study case, PCA and CCA are adopted for

two out of the four ANN models trained (see Section 5.4). Finally, climate indexes

used in our study (i.e., descriptors 15, 16, 17 and 18) are long-term averages referring

to a given climate time-window (i.e. 1951-2019). Hence, we do not consider possible

non-stationarities in our study, which is an interesting subject for future developments

(see e.g. Persiano et al., 2020, for indications of signals on non-stationarity in sub-daily

rainfall extremes for the study region).

5.3.3 Gumbel target frequency distribution

Figure 5.3 illustrates the L-moments ratio diagram (see e.g. Hosking and Wallis, 1997)

of the study the rainfall annual maximum series at 1h and 24h durations. Regardless

of the duration, a high variability of sample L-moments is evident, as it was expected;

the location of the weighted average is a point on the GEV line, very near to the point

indicating the theoretical L-moments of the Gumbel distribution.

Thus, the choice of a regional distribution type is restricted to be either a Gumbel or

a GEV. Several studies (e.g., Koutsoyiannis and Baloutsos, 2000; Koutsoyiannis, 2004;

Papalexiou and Koutsoyiannis, 2013) showed how the latter should be preferred for a

better estimation of the upper tail in some geographical and climatic contexts. However,

these studies also made it clear that the estimation of the shape parameter of a GEV dis-
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tribution is affected by high uncertainty, especially when short time series are used. Due

to this reason, several recent studies proposing RFA approaches still resort to the more

robust Gumbel distribution (e.g., Svensson and Jones, 2010; Maity, 2018; Ouarda et al.,

2019; Caldas-Alvarez et al., 2022). Thus, our study thoroughly assesses the viability of

the Gumbel target distribution for the proposed ANN RFA models. Nevertheless, for

the sake of generalization, we also briefly present a possible adaptation of the proposed

approach to the GEV distribution.

5.4 Regional ANN models

5.4.1 ANN models with Gumbel target frequency distribution

We set up and analyze four different regional ANN models, all consisting of ensembles

of ANNs. As the MAP-Lm model (see Sect. 5.2.1), they all aim to produce a regional

estimate of the local growth factor for the dimensionless extreme rainfall depth associated

with in a given duration (or time aggregation interval). Therefore, they are trained on

dimensionless AMS of rainfall depths for a set duration, that are obtained by dividing

the original annual sequence by its sample mean (see details later on).

The first model is referred to as MAP-ANN and is fed exclusively on the MAP

descriptor. Its application and validation allow it to investigate the effect of exploiting

the same input information as in the MAP–Lmmethod (i.e., MAP) with a different model

(i.e., ANN) that exploits all available timeseries of the training set and is simultaneously

trained with all available durations (i.e., 1h, 3h, 6h, 12h and 24h). The second model,

EXT-ANN, is fed on the extended dataset composed of all the descriptors considered

(see Table 5.1). It is an example of both a multivariate approach to RFA of rainfall

extremes and a machine learning-based way to exploit multiple input information. The

third and fourth models (EXT-PCA-ANN and EXT-CCA-ANN, respectively) make use

of preprocessed versions of the same input descriptors of EXT-ANN through PCA and

CCA, respectively.

PCA is a statistical technique for reducing the dimensionality of a dataset (Jolliffe,

2002, Di Prinzio(2011). This is accomplished by linearly transforming the data into a

new coordinate system where most of the variation in the data can be described with

fewer dimensions than the initial dataset. This consists of a change of basis of the

original data matrix, and the new dimensions are the principal components (or PCs).

Given a set of r variables (X = (X1, X2, ..., Xr)), the covariance matrix is computed,

where each element aij is the covariance between the i-th and j-th variables. The PCs

are eigenvectors of the covariance matrix of the original data. The higher the number
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of selected PCs, the higher amount of variance of the initial matrix is caught. In this

study, the variance chosen for variable shrinking is 80.5%, that corresponds to five PCs:

these are the input covariates for the EXT-PCA-ANN model.

CCA (Hotelling 1935, Di Prinzio(2011) is a multivariate analysis technique used to

identify the possible correlations between two groups of variables. It consists of a linear

transformation of two groups of random variables into pairs of canonical variables, which

are established in such a way that the correlations between each pair are maximized.

With specific reference to our case, the set of right-hand random variables X consists

of the r input descriptors (X = (X1, X2, ..., Xr)), where r equals twenty). As the left-

hand set of variables, the s L-coefficients of variation of the AMS for each station for the

analyzed durations are selected (Y = (L−CV1h, L−CV3h, L−CV6h, L−CV12h, L−CV24h),

where s is five). The objective of CCA is to construct linear combinations Vi and Wi

(called canonical variables) of the variables X and Y, as follows:

Vi = Ai1 ·X1 + Ai2 ·X2 + ...+ Ai20 ·X20 (5.6)

Wi = Bi1 · L− CV1h +Bi2 · L− CV3h + ...+Bi5 · L− CV24h (5.7)

where i = 1, ..., p, with p = min(r, s). The first weights vectors A1 and B1 maximize

the correlation coefficients between resulting canonical variables, under constraints of

unit variance. Once the first pair of canonical variables is identified, other pairs can

be obtained under the constraint that the correlation between Vi and Wi is 0 (where

i ̸= j). The five canonical variables derived from the canonical transformation of the

twenty input descriptors are used as input covariates of the EXT-CCA-ANN model.

The EXT-PCA-ANN and EXT-CCA-ANN models provide the opportunity to assess

the effect of PCA and CCA pre-processing techniques. It will be discussed whether the

preprocessed input descriptors are able to effectively reproduce the variability of the

problem, while the noise in the real signal is absent.

The workflow for setting-up and validating the ensemble ANN models is summarized

in Figure 5.4. For a stable training of the ANNs, the input to the four regional ANN

models, which include the dimensionless AMS and the considered morphoclimatic de-

scriptors, is standardized (see e.g., Milligan and Cooper, 1988; Jain et al., 2005). Each

standardized input (Xi,st) is obtained from the original input (Xi) by subtracting the

regional mean (µi) and by dividing this difference by the regional standard deviation

(σi).

Xi,st =
Xi − µi

σi

(5.8)
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Figure 5.4: Workflow for setting-up and validating the ANN models. Main processes
for training (T1 and T2) and validation (V1, V2 and V3) are marked with solid black
arrows; side processes (i.e., S1, S2 and S3) marked with dotted black arrows. Models and
relations defined in the training phase and used for validation are marked with dashed
grey arrows. Adapted from Magnini et al. (2024)

The same relations used for standardizing the training set (with the same µi and

σi, see T1 in Fig. 3), are used also for the validation set (process V1 in Fig. 3).

Accordingly, the ensemble ANN models predict Gumbel parameters for standardized

and dimensionless distributions at the 100 validation sites, and these parameters need

to be back-transformed to the dimensionless space (see process V3, Fig. 3). This is done

through two empirical linear relations (i.e., one for the location parameter and one for

the scale parameter) between the parameters of the locally fitted Gumbel distribution

that model the frequency of the dimensionless AMS and the standardized AMS (see S1,

S2 and S3 of Fig. 3).

After some preliminary experiments with different structures of the models, ensem-

bles of 15 ANNs, each one with four layers, were found to be a good balance between

prediction accuracy and computational resources required for training.

We tested different proportions for splitting the training/testing set into the training

and testing set (e.g., 70%-30% and 80%-20%), but we did not observe significant varia-

tions in the results. Thus, we opted for the 80%-20% configuration, since it used a larger

amount of data for the training set.
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5.4.2 ANN models with GEV target frequency distribution: a

preliminary assessment

The approach we propose is general, and can be adapted to any distribution. In

particular, the usage of more flexible, 3-parameter probability distributions may allow a

better representation of the highest rainfall percentiles. Nevertheless, the estimation of

three parameters might be highly uncertain, even when state-of-the-art fitting methods

are adopted for at-site frequency analysis (see Section 5.3.3). Hence, in case the proposed

ANN approach makes use of a 3-parameter distribution (or even a 4-parameter one), the

usage of very short timeseries should be carefully considered both for training the models

and for validating them. The findings of these test experiments may be different from

case to case. Thus, in this Section we show a preliminary adaptation of the ANN models

with the GEV distribution, that has to be intended as a demonstration of the flexibility

of the proposed approach.

The GEV distribution is characterized by three parameters, that are the location,

ξGEV , the scale, αGEV , and the shape k (see eq. 4.1 and 4.2 in Chapter 4). The third

parameter (i.e., the shape) controls the upper tail of the distribution and its support, and

is directly linked to the skewness of the distribution (e.g. expressed in terms of L-CS, as

seen in Chapter 4). The remaining two parameters, location and scale, depend on the

third one, but are also linked to the first and second L-moments, similarly to the Gumbel

case. The GEV distribution and the mathematical relationships between its parameters

and the L-moments can be found in Hosking and Wallis (1997):

k ≈ 7.8590

(
2

3 + L− CS
− ln(2)

ln(3)

)
+ 2.9554

(
2

3 + L− CS
− ln(2)

ln(3)

)2

(5.9)

αGEV =
λ2k

(1− 2−k)Γ(1 + k)
(5.10)

ξGEV = λ1 − αGEV
(1− Γ(1 + k))

k
(5.11)

where Γ denotes the gamma function

Γ(x) =

∫ ∞

0

tx−1e−tdt (5.12)

We adapted our EXT-ANN model to the GEV distribution and validated it for the same

100 validation sites by following four steps:

1. The sample L-coefficient of skewness (L-CS) is computed for the timeseries within
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the training/test set having at least 30 years of data

2. The sample L-CS values from step 1 are regionalized across the study area by a

geostatistical interpolation technique (Hengl, 2007)

3. For any given raingauge belonging to the 100-sites validation set,

(a) The shape parameter of the GEV is estimated based on the regionalized L-CS

value

(b) The local L-CV value is obtained from the Gumbel scale parameter predicted

by EXT-ANN with eq. 5.2

(c) The L-CV value from step 4 and shape parameter from step 3 are used for

deriving the remaining parameters of the GEV distribution

4. The resulting ANN model is compared with a GEV distribution whose shape pa-

rameter results from previous step 3.a, while location and scale parameters are

fitted using an at-site maximum likelihood procedure

Step 2 adopts the ordinary kriging (OK) method as preliminary analyses using more

complex approaches (i.e., kriging with external drift, universal kriging, see Hengl, 2007)

did not improve our results. Details on the OK method can be found in Chapter 4 and in

several studies (e.g., Shehu et al., 2023; Hengl, 2007). This application of the EXT-ANN

model will be hereinafter referred to as EXT-ANN-GEV.

5.5 Performance metrics used in validation

The evaluation of the five models (i.e., baseline, MAP-ANN, EXT-ANN, EXT-PCA-

ANN, EXT-CCA-ANN) is conducted by considering three aspects of the models’ output

Gumbel distributions: the scale parameters, and the 80th and 99th percentiles. The

true values are the ones related to the Gumbel probability distributions fitted on the

validation dataset with the maximum likelihood method.

Three metrics are computed to evaluate the models’ performance from a global point

of view: relative BIAS (BIASr), root mean squared error (RMSE), and Pearson’s cor-

relation coefficient (PCC, see Section 3). The first two are commonly used in literature

(e.g., Msilini et al., 2020; Ghamariadyan and Imteaz, 2021; Shu and Ouarda, 2007), and

quantify the systematic error of the models (BIASr) and the gap between the predicted

and expected values of the considered variables (RMSE). Differently, the PCC does not

take into account the actual values of the variables, since it simply measures the degree of
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linearity of the relationship between the empirical reference values and the corresponding

model’s predictions.

BIASr =
n∑

i=1

(
yi − yi,pred

yi
) (5.13)

Where n is the total number of validation observations (i.e., for a given duration, the

sum of the total years of annual maxima records nj over the nt validation stations):

n =
nt∑
j=1

nj (5.14)

Each annual maximum is considered as a single i-th observation. Thus, any station is

counted as many times as its timeseries length (see also Figure 5.4), and final metrics

mainly depend on the longest timeseries. While yi is the true value of the output variable

(i.e., the one related to the fitted Gumbel distributions) for the i-th observation, yi,pred

is the value of the output variable obtained with the regional model.

One more metric is computed to evaluate models’ accuracy for each single station

and each single duration. This is herein referred to as percent relative error (PRE) and

defined as in eq. 14.

PRE[%] =
ypred − y

y
· 100 (5.15)

Positive values of PRE represent overestimation with respect to the true values (y),

while negative ones account for underestimation.

5.6 Validation of the Regional Models

After training, the five models described in Sections 2 and 4 (i.e., MAP-Lm, MAP-

ANN, EXT-ANN, EXT-PCA-ANN and EXT-CCA-ANN) are used to predict Gumbel

distributions for the dimensionless annual maximum rainfall at the locations of the val-

idation stations. We considered the performance metrics associated with the estimation

of the Gumbel scale parameters and two dimensionless rainfall quantiles, namely the

quantiles associated with the 0.8 and 0.99 non exceedance probabilities.

Concerning the metrics for the scale parameters (see Table 5.2), it is possible to

observe that RMSE and PCC present a similar behavior across durations and models,

which differs from the outcomes in terms of BIASr. Indeed, RMSE and PCC tend to show

optimal values for the same regional model, which is often different from the regional

model characterized by the smallest BIASr. The value of BIASr is generally between a
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few % and 9% for the scale parameters. Overall, the estimation of a regional model for

the 1h duration seems to be more complex than for higher durations, as it is pointed out

by higher values of the PCC for 12 and 24h. The MAP-Lm model is the least accurate

according to the RMSE and PCC metrics, while the MAP-ANN model is the second-

to-least accurate, but it is still slightly better than the MAP-Lm. Even though the

EXT-ANN, EXT-PCA-ANN and EXT-CCA-ANN models have similar performances,

the preprocessing of data leads to a better performance of EXT-PCA-ANN and EXT-

CCA-ANN compared to the EXT-ANN model for the 1h duration, while the EXT-ANN

is the best one for durations of 6, 12 and 24h.

The metrics computed for the 80th and 99th percentiles are reported in Table 5.2.

It is generally possible to observe a good agreement between the metrics listed in

Table 5.2 (scale parameter) and in Table 5.3 (rainfall percentiles). The EXT-ANN,

EXT-PCA-ANN and EXT-CCA-ANN models show a similar performance according to

all metrics. As for the scale parameter, BIASr values are discordant with the other two

metrics, but always very small in all cases (a few % at most). For longer durations (i.e.,

6, 12 and 24h) EXT-ANN is the best performing model according to RMSE and PCC;

differently, for short durations (i.e., 1 or 3h), the best performing model depends on

the metric being considered, but the models with preprocessing usually outperform the

EXT-ANN.

Since the overall best performing model is in general achieved by the EXT-ANN

model, we carried out a detailed analysis of its behavior. Figure 5.5 reports the geo-

graphical distribution of the PRE of the 99th percentile predicted for 1 and 24h dura-

tions (panels a and b, respectively). First, no clear geographical pattern of the prediction

error is visible: the goodness of the prediction for both 1 and 24h does not seem to be

linked to elevation, nor geographical location, and shows similar geographical variability

for both durations. Absolute values of PRE (—PRE—) are higher than 50% in one

case only for the set of 100 validation locations. Most of stations have low —PRE—

values (i.e., —PRE—< 20% for 44 and 43 validation locations for 1h and 24h duration,

respectively). The number of validation locations showing 20%<—PRE—<50% for a

duration of 1h (i.e., 9) is larger than for a 24h duration (i.e., 6).

The same analysis of PRE for the 99th percentile obtained from the MAP-Lm model

is presented in Figure 5.6. As for the EXT-ANN model, no clear geographical pattern

of the PRE is observed and most of the stations have PRE between –20% and 20% (i.e.,

17+37+35 for 1h, 19+33+37 for 24h). In particular, the stations with PRE between

–5% and 5% are 37 for 1h and 33 for 24h (lower numbers when compared to Figure 5.5),

while the stations with PRE>20% or <20% are 11 for both time-intervals (i.e., 3+7+1
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Figure 5.5: Percent relative error (PRE) of EXT-ANN dimensionless 99th percentiles
at 100 validation raingauges for 1h (a) and 24h (b) durations; larger circles represent
longer annual maximum series. The number of raingauges (overall station-years of data)
is reported for each PRE category. Adapted from Magnini et al. (2024)

for 1h and 6+4+1 for 24h, higher values when compared to Figure 5.5).

Finally, the results of model EXT-ANN are used to obtain the location and scale

parameters of a GEV distribution (see Section 5.4.2). Table 5.3 reports the global met-

rics obtained for the 80th and 99th percentiles of dimensionless rainfall depth (columns

“EXT-ANN-GEV”). These are relative to empirical predictions of the same percentiles

adopting a GEV distribution and the hybrid local/regional estimator described in Sec-

tion 5.4. While BIASr and RMSE are very similar to the previous case of application

with the Gumbel ANN (columns “EXT-ANN” of Table 5.2), PCC values are significantly

lower, with the exception of 1h, which has the highest PCC.

5.7 Interpolation across space and time-aggregation

interval

One of the most innovative and useful aspects of our AI-based approach is its ca-

pability to provide predictions of the dimensionless rainfall distribution in any location

(spatial interpolation) and for any time-aggregation interval (i.e., duration) between 1

and 24 hours (time-aggregation interpolation).

As an example, four stations in different geographic and climatic contexts (Table

5.2) are selected for time-aggregation interpolation. Figure 5.7 shows the Depth Dura-

tion Frequency (DDF) curves obtained with the EXT-ANN model in the four raingauges.

Dimensionality was reintroduced, and consistency among percentiles ensured, by mul-

tiplying the predicted dimensionless percentiles by the mean extreme precipitation for
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Figure 5.6: Percent relative error (PRE) of MAP-Lm dimensionless 99th percentiles at
100 validation raingauges for 1h (a) and 24h (b) durations; larger circles represent longer
annual maximum series. The number of raingauges (overall station-years of data) is
reported for each PRE category. Adapted from Magnini et al. (2024)

each duration (eq. 4.5). The latter was obtained by applying the scale-invariance hy-

pothesis to the mean extreme precipitation (see Burlando and Rosso, 1996) and using

a power scale law between time-aggregation and mean precipitation. Since the focus of

the present study is regional modelling of the growth factor of the storm index method,

estimation of the index rainfall (i.e., the mean extreme rainfall depth, see Section 5.2)

with multiple scaling is not discussed.

Some observations can be highlighted. First, in stations 9086, 5143 and 16126, the

EXT-ANN model has greater accuracy at 1h and 24h, while it is not fully capable of

reproducing the fitted model at 6h and 12h; this confirms the metrics in Tables 5.2

and 5.3. Station 17020 is a case of underestimation of the EXT-ANN (see also same

station in Figure 5.4, with PRE in -20% - -5% range), where the traditional MAP-Lm

model performs better than the ANN-based one. The MAP-Lm approach has similar

performances in all four stations: greater errors for longer return periods and longer

durations.

Regional ensemble ANN models presented here can produce a spatial interpolation

of estimated frequency distributions (i.e., Gumbel distribution in this study) based on

the gridded discretization of the study area used for retrieving the local values of the

morphoclimatic indices. Panels (a) and (b) of Figure 5.8 show the scale parameters

predicted by the EXT-ANN model for the dimensionless distributions of 1h and 24h

annual maximum rainfall depths over the drainage area of an Apennine catchment in

north-central Italy (i.e., Panaro river basin, drainage area 2300 km2). It can be observed

that the average value is higher for 1h duration than 24h (i.e., 0.28 against 0.25). The

relation between the predicted scale and the elevation is directly proportional to the
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Figure 5.7: DDF obtained with EXT-ANN and MAP-Lm models for stations 9086,
17020, 5143, and 16126 (see also Table 5.2). Adapted from Magnini et al. (2024)

MAP and is further explored in panels (c) and (d). Here, a rather evident decrease of

the scale parameter for 1h duration is observed when the elevation is growing, while

no clear regression is obtained for 24h. This seems to be in agreement with recent

findings of Marra et al. (2021), who observed a significant decreasing trend of the Weibull

scale parameters with elevation for sub-hourly durations, while no significant trend was

detected for longer time-intervals.

5.8 Discussion

The proposed approach aims at improving the predicting ability of the traditional L-

moments storm index model with the action of three combined strategies: (1) exploiting

complex non-linear regional functions (i.e., through ANN ensembles), (2) increasing the

amount of data used for training the regional models, and (3) increasing the number

of proxies for extreme precipitation. The first two points are discussed through the

comparison between MAP-Lm and MAP-ANN (subsection 8.1), while the third one

regards the EXT-ANN, EXT-PCA-ANN and EXT-CCA-ANN models (subsection 8.2).
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Figure 5.8: Raster-based EXT-ANN prediction of Gumbel scale parameters for 1h (a)
and 24h (b), obtained for an example river catchment in the study area (i.e., Panaro
river catchment); the main river network is reported in light blue. Scatterplot of scale
parameters against elevation values for 1h (c), and 24h (d), from raster-based prediction.

5.8.1 Comparing the univariate benchmark and AI-based mod-

els

Metrics in Tables 2 and 3 show that BIASr and RMSE are very similar for MAP-Lm

and EXT-ANN, while PCC has significant variations and, more in general, rather low

values (i.e., lower than 0.60). This is due to the different nature of the three metrics

(see Section 5.4): a small difference in BIASr and RMSE confirms that prediction er-

rors from the two approaches are very similar. Anyway, the higher PCC values (with

the exception of 1h time-interval) suggest that changing model type and data manage-

ment strategy introduces some benefits (i.e., positive correlation between expected and

predicted variables).

Overall, it is evident that the MAP-ANN model has unsatisfactory accuracy (i.e.,

maximum PCC 0.204 for scale with 12h time-interval). However, this could be consid-

ered a good result when carefully looking at the regional relation developed within the

MAP-Lm framework (see Figure 5.9 for 1h and 24h cases). In particular, the L-CV(MAP)

relations found in the present study (see red lines in Figure 5.9) do not show clear and

strong relationships between L-CV and MAP, especially for the 24h case. The com-

parison with an empirical relation reported in the literature (i.e., Di Baldassarre(2006,
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Figure 5.9: Local MAP values and empirical L-CV of 1-hour and 24-hour annual maxima
across the study area (dots); moving weighted average (yellow line); Horton-type regional
relationship L − CV (MAP ) in eq. 2 fitted to the moving weighted average (red solid
line) and found by Di Baldassarre et al. (2006) over north-central Italy (red dashed line).
Adapted from Magnini et al. (2024)

see dotted red lines in Figure 5.9) suggests that when a large and morphologically and

climatically complex region is considered, the classical MAP-Lm approach may not be a

viable regionalization strategy. The discrepancies between the relationship identified in

this study and that of Di Baldassarre et al. (2006) is more evident for long time aggre-

gation intervals and less pronounced for short durations. In fact, 24h annual maxima are

generally associated with frontal disturbances in the study region, and show a complex

geographical variability of annual maxima statistics (see e.g. Mazzoglio(2022). Differ-

ently, 1h annual maxima are mostly the result of convective storms, which have more

spatially homogeneous statistics (see e.g. Schaefer, 1990, Alila 1999, Di Baldassarre et

al. 2006).

5.8.2 The multivariate AI-based models

For any time-aggregation interval (i.e., duration), the EXT-ANN, EXT-PCA-ANN

and EXT-CCA-ANN models outperform the MAP-Lm and MAP-ANN when referring

to the global metrics (Tables 2 and 3). The difference is particularly significant for the

PCC, which shows that the EXT- models (that make use of an EXTended set of descrip-

tors) are much more effective in capturing the overall trend of the variables (i.e., location,

scale, 80th and 99th percentiles) within the study area. However, the maximum value

of PCC for the scale parameter is still very low for 1h (i.e., 0.275), and lower than 0.6

for 24h. This clearly shows that the EXT- models are more accurate when modelling

rainfall phenomena with longer durations, as it is also evident from the higher number
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of high absolute PRE values (i.e., Percent Relative Error) for 1h (i.e., 10 cases in total

out of 100) than for 24h (i.e., 7 cases) for the EXT-ANN (Figure 5.5). A possible reason

for these results is that convection phenomena are less influenced by the morpholology

(see, e.g., Schaefer, 1990, and Alila, 1999), leading to lower predictive power of most of

the input descriptors. Anyway, it is worth highlighting that PRE values <-20% or >20%

are mainly observed in Figure 5.5.a in stations where long data series are not available

and the expected values (i.e., locally fitted Gumbel distributions) are less reliable, while

numerous stations with longer AMS show good results (i.e., PRE values between –5%

and 5%).

Also, it is interesting to note that percentiles obtained from the MAP-Lm approach are

rather similar to the ones from local data frequency analysis in some cases (see Figure

5.7), even if the model is very simple. However, when looking at the PRE values for the

dimensionless 99th percentile (see Figure 5.6), and comparing it with the one predicted

with EXT-ANN, the lower accuracy of the former MAP-Lm is evident. First, gauged

locations associated with high PRE values for the 99th percentiles are more for MAP-

Lm (i.e., 11 for 1h, and 11 for 24h, see Figure 5.6) than for the EXT-ANN (see above).

Accordingly, locations associated with lower PRE values (i.e., 37 for 1h and 33 for 24h)

are less (i.e., for EXT-ANN, 44 for 1h and 43 for 24h).

Regarding the gridded EXT-ANN predictions (Figure 5.8), it is difficult to objectively

compare our results with previous knowledge, as studies on the link between parame-

ters of Gumbel distributions of dimensionless annual maxima and orography are lacking.

Marra et al. (2021) observed the relations between scale parameter of Weibull distri-

butions of ordinary events and elevation in Israel. This seems to be aligned with the

trends of the linear and non-linear relations found in the present study between the scale

parameter and elevation for 1h and 24h (panels (c) and (d) of Figure 5.8).

Since we use a large number of gauged sites that are described by several correlated

indices and annual maximum series of very different length, the real signal of the regional

function is expected to be disturbed by a certain noise. Thus, the actual impact of

preprocessing morphological and climate descriptors is worth analyzing. Multivariate

preprocessing techniques generally allow to reduce the noise, so that the models train

to reproduce the signal. However, it is remarkable here that data preprocessing (i.e.,

principal component analysis, or PCA, and canonical correlation analysis, or CCA) seems

to have a positive impact just for the 1h duration, while for longer durations the EXT-

ANN model performs the best (see Tables 2 and 3). This is a positive result, as it

clearly shows how the ensemble ANNs can successfully handle large datasets with several

couples of variables that are strongly inter-correlated (see dark colored cells in Figure 2).
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In general, it is not possible to understand whether or not preprocessing the input data

should be preferred to using the raw dataset, but some conclusions can be drawn. First,

preprocessing can impact the performance of the model, in a positive but also negative

way. Second, PCA and CCA have similar performances. Third, in absolute terms, all

EXT- regional models have very similar performances and prediction accuracy. Fourth,

given the similar performance, it has to be mentioned that reducing the dimensionality

of the problem and making the models simpler through preprocessing techniques has

significant computational advantages in the training phase.

Concerning the preliminary adaptation of the proposed ANN approach to the GEV

(i.e., Generalized Extreme Value) distribution, the results are encouraging, as the BIASr

and RMSE are very similar to the ones computed for the Gumbel (Table 5.2). However,

a correct estimation of the higher order statistical moments, and therefore of shape

parameters of 3- and 4-parameter distributions, remains a critical aspect for the use

of more flexible probability distributions. The sampling variability of the predictions

of GEV parameters used in this study is probably the main reason for the lower PCC

values obtained for the EXT-ANN-GEV relative to the EXT-ANN, which indicates a

weaker linearity between ANN predictions of dimensionless GEV rainfall percentiles and

their empirical validation counterparts. To further investigate this aspect, we computed

the same performance metrics by considering only the validation stations with timeseries

longer than 40 years. For the sake of brevity, these results are not reported in Table 5.3,

but an improvement of the performance was observed, leading to PCC values aligned

to those associated with the best performing Gumbel ANN models. This confirms that

the record length strongly affects the training and validation of the EXT-ANN-GEV

approach. Although we showcase the adaptability of the proposed ANN approach to

probability distributions with more than two parameters, dedicated studies are needed

for assessing the impact and benefit of short timeseries for the models’ training and

validation.

In conclusion, the proposed AI-based approach shows satisfactory accuracy relative

to classical regionalization methods, and significantly superior performances for time-

aggregation intervals equal to or longer than 12h. It also has the advantages of being ap-

plicable over a very large study area, and allowing to model any time-aggregation interval

between 1 and 24 hours, which automatizes the construction of duration-depth-frequency

curves. However, some drawbacks and margins of improvements are still present. First,

the accuracy with 1h is still low, which could be improved with a more complex model

architecture. Second, some of the input variables (i.e., morphological and climatic de-

scriptors) are not easy to retrieve and compute and not always available, which affects
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model applicability. In particular, descriptors related to the distance from the two coasts

(i.e., variables 7-14, Table 5.1) can require significant GIS-computational resources to be

retrieved for a large number of points. This can be a limit specially in a raster-based or

gridded application aimed to produce spatially interpolated maps as in Figure 5.8.

Such a problem could be solved with a reliable ranking of the input descriptors’

influence on the final results. However, no direct method exists for input features’ ranking

in ANNs, and the weights computed for the PCA and CCA are not informative, as in

disagreement. Given also the case-specific meaning of this analysis, which is in contrast

with the general aims of this study, this point needs to be addressed by future works.

Finally, the present work considered the 2-parameter Gumbel distribution. More

flexible statistical models, as the 3-parameter Generalized Extreme Value distribution

(Jenkinson, 1955), or the 4-parameter Kappa distribution (Blum et al., 2017) could

eventually be used. Preliminary experiments performed with a GEV distribution high-

light strong potential of the approach. However, further testing of the robustness of

our approach is needed for models with more than 2 parameters in which for instance

the skewness (3-parameter) and the skewness and kurtosis (4-parameter) need to be

modelled.

5.9 Conclusions

Regional frequency analysis (RFA) is commonly adopted for estimating extreme hy-

drological variables such as floods or extreme rainfall where local measurements are

unavailable or insufficient for at-site frequency analysis. Different approaches have been

proposed for the RFA of rainfall extremes, each one characterized by specific advantages

and disadvantages (see e.g. Claps et al., 2022). One of the most common drawbacks is

that regional models specifically refer to a single duration or a single exceedance prob-

ability. Several approaches require the definition of a homogeneous region where the

model is trained; this leads to higher accuracy. However, the applicability of the model

is then limited to locations that are hydrologically similar to the homogeneous group used

in the training. Moreover, most models require filtering the available gauged stations

based on the length of the measured timeseries to perform reliable frequency analysis.

These aspects lead to discarding a significant amount of data, which could turn out to

be detrimental to the accuracy of the regional predictions in some cases.

This study proposes a new approach for estimating the growth factor within the

storm index framework for extreme rainfall RFA. This is the dimensionless percentile

associated with a given duration and exceedance probability. By multiplying the growth
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factor by the mean extreme rainfall with the same duration, the dimensional percentile

can be obtained (Dalrymple, 1960). Our approach is based on ensemble unsupervised

artificial neural networks (ANNs), that are capable of predicting the location and scale

parameters of a Gumbel distribution of the dimensionless rainfall for any sub-daily time

aggregation interval (duration) in the 1-24h range.

The study area consists of a large region in north-central Italy, where a wide vari-

ety of morpho-climatic contexts are present. From the I2-RED freely available dataset

(Mazzoglio et al., 2020), 2338 gauged stations are selected, where measurements of an-

nual maximum rainfall depths are available in the 1931-2019 record period for the 1, 3,

6, 12, 24h time-intervals (i.e., durations). To train the models 2238 gauged stations are

used, while the remaining 100 serve as validation set.

Following one approach proposed in the literature (Di Baldassarre et al., 2006) that

showed good results over a significant portion of the selected study area, a baseline

regional model is developed (MAP-Lm). This consists of a relationship between the L-

coefficient of variation and the MAP. Then, four applications of the ANN-based approach

are set up: the first (MAP-ANN) makes use of the mean annual precipitation as unique

input covariate; the second (EXT-ANN) makes use of an extended number of twenty

variables, including morphology (e.g., elevation, slope, aspect, distance from the coast),

climate (i.e., mean and standard deviation of snow and liquid precipitation) and geo-

graphical coordinates of the stations. The fourth and fifth models (EXT-PCA-ANN and

EXT-CCA-ANN, respectively) make use of the same extended dataset, but apply two

different preprocessing strategies of the input morphoclimatic covariates (or descriptors),

namely principal component analysis (PCA) and canonical correlation analysis (CCA).

This method is innovative for several reasons. First, it does not require the identi-

fication of a homogeneous group of sites for model training and application. Second, it

uses all available annual maximum data, regardless of the length of the annual sequence

(which can be very short, and even two observations). Third, training is simultaneously

performed for all durations. These characteristics lead to high interpolation ability,

meaning that a single model can predict Gumbel distributions for the extreme rainfall

in every point in the spatial domain, and for any duration in the 1-24h range.

The performances of the regional models are analyzed through global metrics (e.g.,

Pearson correlation coefficient, or PCC), that sum up prediction accuracy over all the

validation set, and through the percent relative error (PRE) at each single validation

station. Results indicate that the classical approach MAP-Lm appears to have low

accuracy when applied to a very large and morpho-climatically heterogeneous region

(i.e., PCC 0.1 for 99th dimensionless percentiles of annual maximum depth for a 1h
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duration, and PCC -0.1 for a 24h duration). The MAP-ANN method, which uses the

same input information (i.e., MAP) but a different approach (i.e., simultaneous use

of durations, and ANNs ensembles) shows a slightly better performance, but still low

accuracy. When twenty descriptors of the local morphoclimatic conditions are used,

ANN-based models show a significant improvement over the MAP-Lm and MAP-ANN

(i.e., PCC 0.3 for the 99th dimensionless percentile for 1h, and 0.5 for 24h). Even if the

maximum PCC are still low, when considering the local PRE over the 100 validation

stations, the improvement of the new approach is evident, as the number of stations

with low relative error (i.e., PRE between –5% and 5%) increases (i.e., 44 and 43 for

EXT-ANN at 1 and 24h durations, respectively, versus 37 and 33 for the MAP-Lm).

Also, ensemble ANNs show good ability to handle complex and heterogeneous datasets,

even without data preprocessing. PCA and CCA seem to have a slight positive effect in

modelling short duration extremes, while their impact is limited for longer durations.

In conclusion, based on the outcomes of our study we can affirm that using ensemble

ANN models with a few traditional descriptors (i.e., local MAP value as in Schaefer 1990

and similar and more recent regional studies) does not lead to significant advantages over

a traditional method (i.e., statistics of extremes rainfall event as empirical functions of

local MAP value). However, when combined with multiple morphological and climatic

descriptors, the improvement can be remarkable, particularly for annual maximum rain-

fall depths associated with longer time-aggregation intervals (between 12 and 24 hours

in this study). Time and space interpolation ability of the ANNs over the 1-24h range

and across the entire study area enable practitioners to directly obtain depth-duration-

frequency curves or raster maps of rainfall extremes associated with a given duration

and exceedance probability.

Future analyses should build on this preliminary study and address some of the cur-

rent limitations of the approach. First, methods should be further developed in order to

improve the accuracy for extremes originated by convective events. Second more flexible

distributions should be considered (e.g., Generalized Extreme Value). Preliminary exper-

iments in this direction produced encouraging results. Third, some additional research

should aim at identifying the most effective and descriptive morphoclimatic indices, in-

cluding alternative or complementary information to the descriptors considered in this

study.
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Table 5.1: Input descriptors and source datasets used for deriving them (references for
MERIT DEM, BIGBANG and I2-RED datasets are Yamazaki et al., 2017; Braca et al.,
2019; Mazzoglio et al., 2020, in this order)

.

Descriptor Description Information origin
1 mean altitude within a 1km distance from

the gauged location
MERIT DEM

2 standard deviation of the altitude within a
1km distance from the gauged location

MERIT DEM

3 mean slope (I.e., ration between vertical and
horizontal distance) within a 1km distance
from the gauged location

MERIT DEM

4 standard deviation of the slope within a 1km
distance from the gauged location

MERIT DEM

5 mean aspect (I.e., direction of maximum
slope) within a 1km distance from the gauged
location

MERIT DEM

6 standard deviation of the aspect within a
1km distance from the gauged location

MERIT DEM

7 minimum distance from the Adriatic coast MERIT DEM
8 mean elevation within the distance between

the gauged location and the Adriatic coast
MERIT DEM

9 standard deviation of elevation within the
distance line between the gauged location
and the Adriatic coast

MERIT DEM

10 Maximum elevation within the distance line
between the gauged location and the Adriatic
coast

MERIT DEM

11 minimum distance from the Tyrrhenian coast MERIT DEM
12 mean elevation within the distance between

the gauged location and the Tyrrhenian coast
MERIT DEM

13 standard deviation of elevation within the
distance line between the gauged location
and the Tyrrhenian coast

MERIT DEM

14 Maximum elevation within the distance line
between the gauged location and the Tyrrhe-
nian coast

MERIT DEM

15 Mean annual precipitation BIGBANG dataset
16 Mean annual snow precipitation BIGBANG dataset
17 Standard deviation of annual precipitation

within the 1919-2019 record period
BIGBANG dataset

18 Standard deviation of annual snow precipita-
tion within the 1919-2019 record period

BIGBANG dataset

19 Longitude I2-RED
20 Latitude I2-RED
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Table 5.2: Performance metrics for estimated scale parameter for Gumbel distributions
of dimensionless annual maxima at 100 validation points. The best values for each metric
are marked with bold characters

Scale
Metrics MAP-

Lm
MAP-
ANN

EXT-
ANN

EXT-
ANN-
PCA

EXT-
ANN-
CCA

1h
BIASr -0.075 -0.038 -0.051 -0.025 -0.046
RMSE 0.050 0.049 0.050 0.048 0.048
PCC 0.120 0.105 0.242 0.252 0.275

3h
BIASr -0.083 -0.046 -0.053 -0.044 -0.047
RMSE 0.050 0.047 0.044 0.044 0.044
PCC -0.031 0.015 0.422 0.387 0.394

6h
BIASr -0.081 -0.048 -0.047 -0.060 -0.038
RMSE 0.050 0.048 0.043 0.045 0.044
PCC -0.037 0.176 0.453 0.387 0.384

12h
BIASr -0.068 -0.046 -0.029 -0.051 -0.030
RMSE 0.049 0.048 0.042 0.045 0.045
PCC -0.063 0.204 0.463 0.337 0.350

24h
BIASr -0.079 -0.061 -0.045 -0.050 -0.045
RMSE 0.048 0.047 0.039 0.042 0.042
PCC 0.030 0.139 0.548 0.421 0.420
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Table 5.3: Performance metrics for estimated 80th and 99th percentiles of dimensionless
annual maxima at 100 validation points. For each duration, the best case among the
models MAP-Lm, EXT-ANN, EXT-PCA-ANN and EXT-CCA-ANN is marked in bold
for each metric, while the worst is in italic. The column EXT-ANN-GEV reports the
metrics for a demonstration of the adaptability of EXT-ANN to the GEV distribution.

80th percentile 99th percentile

MAP-
Lm

MAP-
ANN

EXT-
ANN

EXT-
ANN-
PCA

EXT-
ANN-
CCA

EXT
-ANN-
GEV

MAP-
Lm

MAP-
ANN

EXT
-ANN

EXT-
ANN-
PCA

EXT-
ANN-
CCA

EXT-
ANN-
GEV

1h 1h
BIASr -0.009 -0.003 -0.004 0.001 -0.004 0.008 -0.020 -0.007 -0.013 0.000 -0.011 0.022
RMSE 0.044 0.043 0.043 0.042 0.042 0.049 0.198 0.194 0.196 0.191 0.189 0.197
PCC 0.103 0.077 0.240 0.268 0.251 0.237 0.105 0.101 0.242 0.257 0.272 0.378

3h 3h
BIASr -0.012 -0.009 -0.011 -0.009 -0.010 0.031 -0.021 -0.019 -0.024 - 0.019 -0.020 0.060
RMSE 0.045 0.040 0.038 0.037 0.038 0.088 0.201 0.186 0.172 0.172 0.172 0.276
PCC -0.096 0.034 0.405 0.375 0.361 0.202 -0.082 0.020 0.420 0.387 0.389 -0.015

6h 6h
BIASr -0.007 -0.009 -0.009 -0.011 -0.006 0.030 -0.013 -0.019 -0.020 -0.025 -0.014 0.057
RMSE 0.045 0.041 0.038 0.040 0.039 0.096 0.206 0.187 0.171 0.178 0.175 0.279
PCC -0.152 0.175 0.395 0.319 0.307 0.284 -0.129 0.175 0.442 0.375 0.369 0.082

12h 12h
BIASr -0.006 -0.008 -0.005 -0.008 -0.004 0.028 -0.011 -0.017 -0.010 -0.020 -0.010 0.053
RMSE 0.045 0.042 0.038 0.041 0.040 0.098 0.205 0.188 0.169 0.181 0.178 0.275
PCC -0.087 0.146 0.394 0.242 0.255 0.235 -0.092 0.194 0.450 0.318 0.331 0.142

24h 24h
BIASr -0.006 -0.010 -0.007 -0.008 -0.007 0.011 -0.014 -0.025 -0.018 -0.020 -0.017 0.020
RMSE 0.044 0.041 0.036 0.039 0.039 0.062 0.198 0.185 0.156 0.170 0.169 0.205
PCC -0.070 0.103 0.474 0.319 0.316 0.444 -0.065 0.134 0.534 0.401 0.400 0.201

Table 5.4: Main characteristics of the four stations adopted for the time-aggregation
interpolation application through EXT-ANN model.

Code Location Record
length

Mean
eleva-
tion [m
a.s.l.]

Minimum
distance
from Adri-
atic coast
[km]

Minimum
distance
from
Thyrrenic
coast [km]

MAP
[mm]

MA-
Snow
[mm]

9086 Codogno 64 60.28 202.49 98.18 802.58 7.28
17020 Folgaria 58 1114.7 109.60 225.73 1219.16 193.83
5143 Isola di

Palanzano
Centrale

70 723.13 167.62 43.18 1416.89 39.28

16126 La Verna 76 1080.65 62.29 124.64 1174.25 163.38
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Chapter 6

Introduction to the second Part of

the Dissertation

Every year flood events worldwide cause vast economic losses, as well as heavy social

and environmental impacts, which have been steadily increasing over the last five decades

(Jongman et al., 2014; Guha-Sapir et al., 2016), mainly because of the complex inter-

action between the intensification of extreme hydrological events due to climate change

(e.g., Brunetti et al., 2002; Uboldi and Lussana, 2018) and anthropogenic pressure (i.e.,

land-use and land-cover modifications, see Di Baldassarre et al., 2013; Domeneghetti

et al., 2015; Requena et al., 2017). Thus, nowadays, successful flood hazard mapping

for flood hazard management is a major task for the whole scientific community (Alfieri

et al., 2014; Dottori et al., 2016). Traditional methods to assess fluvial flood hazard rely

on hydrological and hydraulic numerical models, whose improvement allows to simulate

any scenario for different geometrical or hydrological conditions, obtaining very accu-

rate results (Horritt and Bates, 2002; Costabile et al., 2012; Bellos and Tsakiris, 2016).

However, a high amount of hydrologic and hydraulic input information is required to

adequately describe the geometry and hydraulic behaviour of the system, thus consid-

erable effort and computation capacity are needed. Consequently, numerical models are

unsuitable for high resolution and large-scale applications and in data-scarce regions. To

overcome this issue, other mapping techniques have been proposed that take advantage

of the wealth of topographic information contained in digital elevation models (DEMs):

flood-related geomorphic descriptors (or features, or indices) can be derived from DEMs

and used to obtain a measure of flood hazard.

A large variety of descriptors has been tested singularly (see e.g., Manfreda et al.,

2015; Samela et al., 2017) or in selected blends (Degiorgis et al., 2012; Gnecco et al.,

2017), while some others mixed these indices with information from other sources (e.g.,
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Wang et al., 2015; Lee et al., 2017; Khosravi et al., 2018; Arabameri et al., 2019; Janizadeh

et al., 2019; Costache et al., 2020). These studies suggest that data-driven flood hazard

mapping has a remarkable potential. However, in most of the studies, the reference flood

hazard information used to set up the models consists of a dataset of isolated historical

events observed in the study area (Lee et al., 2017; Khosravi et al., 2018; Janizadeh et al.,

2019; Arabameri et al., 2019; Costache et al., 2020), leading to case-specific prediction

skills.

This kind of techniques are highly efficient in terms of computation time, and can be

used on very large study areas (even at continental scale, see Nardi et al., 2019). However,

they do not capture flow dynamics, and hence their application is limited to large scale

and low detail cases. Overall, DEM-based models are very useful as preliminary flood

hazard mapping tools in data-scarce contexts and in application to large areas, but

cannot yet effectively substitute the traditional models, especially when detailed results

are required. Nevertheless, if a strong and reliable relation to derive flood hazard from

GDs is obtained, the model could be easily applied in extrapolation to any region where

the same relation is supposed to be valid (Tavares da Costa et al., 2020).

This Part of the present Thesis investigates the potential and limitations of DEM-

based flood hazard mapping models, with particular attention to the comparison between

a single-descriptor model and a multivariate one. First, an innovative DEM-based ap-

proach is set-up over Northern Italy, and tested in geographical extrapolation (Magnini

et al., 2022), which consists of applying the models on totally new areas with respect

to the calibration phase. This represents a strong innovation with reference to the ex-

isting literature, where detailed tests on the trasportability of these methods outside

the calibration region are not present. Second, the capability of the approach is further

investigated nation-wide for Italy, and its natural capabilities are used to solve hetero-

geneities and inconsistencies of the national official flood hazard map (Magnini et al.,

2023).
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Hydrodynamic models for flood

hazard mapping

Hydrodynamic or hydraulic models are the most common methods for estimating

flood hazard (e.g., Bates and De Roo, 2000; Neal et al., 2012; Horritt and Bates, 2002;

Neelz and Pender, 2013), as they enable the user to accurately reproduce the river

hydraulics and floodplain inundation dynamics. This is is achieved by the resolution

of physical equations through numeric methods. Usually, a significant amount of input

data is necessary, that can require long time and big effort for being retrieved. According

to their dimensionality, hydraulic models can be divided into 1D, 2D and 3D. While

1D, 2D and 1D-2D mixed models are widely applied for flood hazard estimation, 3D

models are adopted for studying vertically stratified fluid properties (e.g., temperature,

salinity or sediment transport). Thus, they are commonly used for ecological studies or

hydrodynamic simulation of complex hydraulic structures as dams.

7.1 1D hydrodynamic models

One-dimensional models rely on the evaluation of the water volume flowing through

the channel cross-sections. Most models solve full 1D Saint Venant equations for conser-

vation of mass and momentum (Neelz and Pender, 2013):

∂Q

∂x
+

∂A

∂t
= 0 (7.1)

1

A

∂Q

∂t
+

1

A

∂

∂x
(
Q2

A
) + g

∂h

∂x
− g(S0 − Sf ) = 0 (7.2)

Where Q, t, h, g, Sf , S0, A, and x are discharge, time, water depth, the gravitational
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acceleration, the friction slope, the channel bed slope, the flow cross-section area and the

distance between cross-sections, in this order.

The equations are solved by assuming that the flow is parallel to the centerline of the

channel and that varies slowly in the cross-sections. In 1D models, the entire riverine

system is represented as a succession of cross sections: in each cross-section, the infor-

mation about the river morphology is used to calculate flow parameters, while the space

between two consecutive cross-sections is used as the spatial step for the numerical so-

lution of the equations 7.1 and 7.2.

Figure 7.1: Example of 1D geometry and boundary conditions. Upper right panel is a top
view on the channel and cross-sections. Upstream boundary conditions are represented
in the lower left panel. The flow characteristics computed are shown in the bottom right
and top left panels.

Input to 1D models include riverbed characteristics at each cross section (i.e., eleva-

tion and roughness of riverbed, banks and adiacent relevant areas) and flow boundary

condition (i.e., the hydrograph of the water flow entering the system).

The numerical modelling scheme depends on the specific model. The majority adopts

finite-difference method, as HEC-RAS 1D (U.S. Army corps of Engineers), SOBEK 1D

Flow, InfoWorks RS 1D, Mike 11 (Danish Hydraulic Institute).

Overall, the 1D numerical scheme leads to significantly lower computation times than

2D models. However, since flow characteristics are computed only within cross-sections,

the interaction with hydraulic structures as weir and bridges and the inundation of

floodplains can be poorly described.
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7.2 2D hydrodynamic models

Two-dimensional models rely on a complete 2D representation of the terrain though

a grid composed of a large number of cells. Thus, river dynamics are exclusively driven

by the topography by depth averaging Navier-Stokes shallow water equations. These

are, again, conservation of mass and momentum:

∂h

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= 0 (7.3)

∂hu

∂t
+

∂

∂x
(hu2 +

1

2
gh2) +

∂(huv)

∂y
= 0 (7.4)

∂hv

∂t
+

∂(huv)

∂x
+

∂

∂y
(hv2 +

1

2
gh2) = 0 (7.5)

Where x and y are spatial dimensions, estimates of u, v and h over space and time.

Different numerical schemes are commonly implemented for solving these equations over

all the cells of the grid, that can assume various shapes according to the model.

Very frequently, a mixed model scheme 1D-2D is adopted (e.g., TELEMAC 2D,

Infoworks RS, and HEC-RAS 2D), due to a lower computational demand with respect to

only 2D models. This usually consists of using a 1D scheme to obtain flow characteristics

within the riverbed, and implementing a 2D model for floodplain inundation wherever

it is necessary (see, e.g., Monteleone et al., 2023).

7.3 Flood hazard mapping through hydrodynamic

models

The accurate set-up of hydrodynamic models allows to reproduce real evets (e.g.,

Monteleone et al., 2023) or simulate hypothetical scenarios (e.g., Shustikova et al., 2020).

Flood hazard modelling is obtained from flood inundation mapping when a specific non-

exceedance probability (or return period) is associated with the flood event. In case a

single river is considered, this is typically achieved by adopting a flow hydrograph with

the desired return period as boundary condition for the system, or simulating the failure

of hydraulic structures. However, when a large spatial domain is considered, where a

large number of rivers and minor streams are present (e.g., regional, national or even

continental scale), assessing flood hazard is a more complex task. Typically, multiple

flood simulations are run in this case, and an ensemble of the results from the single
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models (i.e., flow depth and extension of inundated areas) is created.

A relevant example of hydrodynamic flood hazard mapping over a large area is the

one adopted by Alfieri et al. (2014), Dottori et al. (2016), and Dottori et al. (2022) for a

coverage including the whole European continent. This impressive work was performed

through a cascading simulation approach, composed of the following consecutive steps:

1. Distributed hydrological model setup and calibration

2. Simulation of a long-term discharge time series and derivation of peakflows with

selected return period

3. Downscaling to 100 m spatial resolution and derivation of design flood hydrographs

4. Floodplain hydraulic simulations

5. Merging of output flood depth single maps

Before starting the hydrodynamic modeling phase, the research for obtaining the

input design flood hydrographs for the hydrodynamic models is conducted (steps 1, 2

and 3). First, the LISFLOOD software (Van Der Knijff et al., 2010) with European

coverage at a grid resolution of 5km is calibrated (step 1). Second, a 21-year con-

tinuous discharge time series is generated using the calibrated model (step 2). The

meteorological input data for LISFLOOD is obtained by combining point measure-

ments from the Monitoring Agricultural Resources agro-meteorological database (Ri-

jks et al., 1998), the World Meteorological Organization (WMO) synoptic observa-

tions (http://www.wmo.int/pages/prog/www/), and the German Weather Service

(http://www.dwd.de/) network.

In step 3, the output of the hydrological model is downscaled at the resolution of 100m,

and the generated time series of flow discharge evaluated statistically by fitting extreme

value distributions on their annual maxima (i.e., Gumbel distributions) for each pixel of

the raster domain falling within the river network.

In step 4, design flood hydrographs from step 3 are then used to perform small-scale

floodplain hydrodynamic simulations every 5 km along the river network using the 2D

modeling LISFLOOD-FP software (Bates et al., 2010). For this step, only river sections

with a contributing area larger than 500 km2 are considered. Despite this semplification,

a large number of single models are set-up and run (i.e., more that 37’000 in Alfieri et al.,

2014).

Finally, the single inundation maps from step 4 are merged for obtaining a single hazard

map for the whole Europe, whose return period corresponds to the one selected in step

3.
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As evident from the described cascade process, the effort required for hydrodynamic

flood hazard assessment is significant, and its amount exponentially increases for very

extended study areas. Nevertheless, simplifying assumptions are always necessary (e.g.,

the resolution of 5km for the generation of flow discharge timeseries, or the minimum

contributing area of 500 km2), and can introduce significant inaccuracy in the results,

which can be either justified or not based on the specific application case. An evident

example is Figure 7.2, where the flood map obtained by Alfieri et al. (2014) with a return

period of 500 years is showed for Italy, and the lack of flood hazard information for a

large portion of the river network is striking.

Figure 7.2: Water depth (red scale colors) from flood hazard map with 500-year return
period from Alfieri et al. (2014) over Italy. In black, main river network
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Chapter 8

DEM-based flood hazard modeling

and mapping

Since a large amount of hydrologic and hydraulic input information is required for

their set up, numerical models are often unsuitable for large-scale applications and data-

scarce regions. Thus, alternative mapping techniques have been proposed which mainly

rely on topographic information contained in digital elevation models (DEMs). Impor-

tant advantages of DEM-based flood hazard mapping methods are their flexibility and,

in principle, their general applicability to any flood-prone area where a reliable DEM is

available, as well as their low computational costs relative to numerical models. However,

two main drawbacks must be highlighted: first, DEM-based methods do not consider the

water dynamics, and second, they need a pre-existing reliable reference flood hazard map,

which may or may not be available for the area of interest.

During calibration (or training) of DEM-based models, a function f is learned be-

tween a certain number of descriptors of terrain morphology, used as indepentend vari-

ables (or covariates GDs) and flood susceptibility fs.

fs = f(GDs, parameters) (8.1)

The type of function, the number and nature of the GDs, and the way the optimal

parameters of the functions are found depend on the specific DEM-based model. All

DEM-based models need some flood hazard information as reference (or target) for the

calibration. During this phase, the best parameters are found based on the optimization

of an objective function that represents the accuracy in reproducing the reference flood

hazard information.

One of the most common ways to classify the DEM-based models is the number of GDs

used as covariates, which leads to the definition of univariate and multivariate models.
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8.1 Univariate DEM-based models

The first DEM-based approaches proposed in the literature consider a single geomor-

phic descriptor, or index (see e.g., Williams et al., 2000; Noman et al., 2001; Dodov and

Foufoula-Georgiou, 2006; Nardi et al., 2006; Manfreda et al., 2011, 2014, 2015; Samela

et al., 2017; De Risi et al., 2018), that is used as a binary classifier to distinguish between

flood-prone and flood-free areas through the definition of a threshold value. In this case,

the function f of the GD is very simple, and the only parameter is the threshold value

(th):

f(x) =

flood-prone, if x ≥ th

non-flood-prone, otherwise

Where x is the value of the selected geomorphic descriptor at a specific point of the study

area (typically, a pixel within a raster domain), and the ≥ character could be either >,≤,

or <, depending on the case.

The optimal threshold value, th, is identified by means of an iterative calibration

procedure which optimizes the agreement of the binary map with reference pre-existing

flood hazard information.

Several authors (see e.g., Manfreda et al., 2015; Samela et al., 2017) highlight that the

performance of the considered geomorphic descriptor (or index) can change according to

the geographical context of the application.

8.1.1 Geomorphic descriptors (GDs)

Topographical rasterized information contained in DEMs can be used to extract GDs

adopting several algorithms available in the literature (e.g., Tarboton et al., 1991). These

descriptors vary spatially, assuming different values for different pixels within the domain,

while being constant in time.

They can be divided into two broad categories: (1) single features, if they represent

simple terrain characteristics, and (2) composite indices, if they are derived based on

a combination of other features. Several descriptors were proposed and compared by

the authors as single covariates for DEM-based models (see e.g., Manfreda et al., 2015;

Samela et al., 2017). Some of the most popular and effective can be found in the list

below, which consist first of three single indices, and then three composite:

1. Local slope (sd8), estimated for each cell as the maximum slope among the eight
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possible flow directions and computed as the ratio between the vertical and the

horizontal differences. It can be defined either in radiants or in degrees

2. Upstream contributing area (Ad), also called “accumulation area”. It can be

either in m2 or in number of drained pixels

3. Horizontal distance from the nearest stream (D), defined as the length of the

path that hydrologically connects each cell to the nearest cell of the river network

(Figure 8.1). It can be either in m or in number of pixels.

4. Height above the nearest drainage (HAND), defined as the vertical difference

between a given cell and the hydrologically nearest cell belonging to the river

network (Rennó et al., 2008, , see Figure 8.1). As the D, either in m or in number

of pixels.

5. Modified topographic index (TIm), derived from the modification proposed by

Manfreda et al. (2008) to the index originally introduced by Kirkby (1975), and

defined as follows:

TIm = ln (
and

tan(β)
) (8.2)

where ad is the drained area per unit contour length, tan(β) is the local gradient,

n is an exponent <1

6. Geomorphic flood index (GFI), defined as the ratio between the term hr and

HAND. The numerator represents the water depth, computed in the hydrologically

nearest stream chapter with a hydraulic scale relation (hr ≈ bAn
r , where Ar is the

contributing area in the considered stream chapter, see Figure 8.1). Coefficient

b and exponent n can be taken from the literature (Nardi et al., 2006) or appro-

priately estimated with calibration (e.g., see the recent work from Annis et al.,

2022, , where the dependence of b and n on catchment morphology and climate

characteristics).

GFI = ln (
hr

HAND
) (8.3)

7. Alternative version of the GFI, hereinafter referred to as local geomorphic flood

index (LGFI), defined as:

LGFI = ln (
hl

HAND
) (8.4)

where the water depth hl is computed with reference to the contributing area of

the considered pixel
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In addition, the elevation itself [m a.s.l.], is frequently used as a GD.

Figure 8.1: Schematic representation of some of the most effective and popular geomo-
prhic descriptors: distance (D) and elevation difference (HAND) with respect to the
nearest section on the river network along the flow path (or drainage direction); water
depth computed with a scale relation (hr)

8.1.2 Calibration

The calibration phase is extremely important, and relies on two aspects: the objective

function and the reference information. With specific reference to univariate models,

several metrics have been used and proposed for finding the optimal threshold, which

consists in a constrained binary classification problem. Some of the most common are

the accuracy (ACC), precision (or positive predictive value, PPV), recall (or true positive

ratio, TPR) and true skill score (TSS; Youden, 1950; Everitt, 2002):

ACC =
TP + TN

TP + TN + FP + FN
(8.5)

PPV =
TP

TP + FP
(8.6)

TPR =
TP

TP + FN
(8.7)

TSS =
TP

TP + FN
+

TN

TN + FP
− 1 (8.8)

where TP, TN, FP, FN are respectively true positive, true negative, false positive and

false negative predictions of the model. All of these objective functions vary between 0

(no skill) and 1 (optimal value).

With reference to the flood hazard reference information, two cases are possible.

The first is when a coherent flood hazard map is available over the study area. In this

case, all the segments of the river network are supposed to be associated with flood
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hazard for a specific return period (or non-exceedance probability). Alternatively, only

isolated events are available, that can be considered simoultaneously. In this second

case, the return period and characteristics of the events can be highly heterogeneous, as

the dataset could consist of observed events reconstructed from satellite images or from

more hydraulic models, or of a mix of the two.

Aditionally, the study region could be used just partially for the calibration. In fact,

previous studies (e.g., Tavares da Costa et al., 2019; Gnecco et al., 2017; Marchesini

et al., 2021) have highlighted that the DEM-based classification of regions into flood-

prone and flood-free zones is more effective if the calibration is done on meaningful

areas. This is due to the different importance of far-from-river and close-to-river pixels

in the computation of the objective function. Thus, some authors calibrated their models

referring to the portion of the study area that is closest to the river network, and that we

will term calibration area (Gnecco et al., 2017; Tavares da Costa et al., 2019; Marchesini

et al., 2021).

Two methods are prevalent for the definition of the calibration area: a buffer with

a fixed radius along the flood susceptible areas of the reference flood hazard maps, or a

buffer with variable radius along the river network. In the second case, the variability can

be determined by the height above the nearest stream section (HAND), the contributing

area or the stream order.

8.2 Multivariate DEM-based models

A second class of DEM-based approaches to be investigated can be named as mul-

tivariate, as they rely on the combination of different GDs. The relation between the

combination of GDs and flood hazard can be searched through numerous statistical

methods. Commonly, machine learning (ML; Breiman et al., 1984) models are used,

often ensembled with multi-criteria decision-making techniques (Triantaphyllou, 2000;

Ho et al., 2010).

Regarding the covariates, some authors (Degiorgis et al., 2012; Gnecco et al., 2017)

have tested a blend of GDs, while some others mixed these indices with information

on land use, soil geology and climate, and compared different combination strategies

(e.g., Wang et al., 2015; Lee et al., 2017; Khosravi et al., 2018; Arabameri et al., 2019;

Janizadeh et al., 2019; Costache et al., 2020).

The objective function is variable, depending on the specific approach adopted. Usu-
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ally, the MSE or ACC are used, in case the target is a countinuous characterization of

flood susceptibility or a binary classification into flood-prone/non-flood-prone.

In most of the recent studies about multivariate DEM-based flood hazard modelling,

the reference information used to set up the models consists of a dataset of isolated

historical events observed in the study area (Lee et al., 2017; Khosravi et al., 2018;

Janizadeh et al., 2019; Arabameri et al., 2019; Costache et al., 2020). Thus, DEM-based

techinques are used to combine punctual informations from single flood events to derive

continuous raster flood susceptibility maps. In other words, information from hydraulic

simulations and hazard is completely absent from the reference dataset used for the

calibration.

As evident, multivariate models present a significant advantage over the univariate

ones: since the dynamics of flood events is not modelled, the usage of multiple infor-

mation types is expected to improve the accuracy of such simplified models. However,

considering multiple layers of raster information for large study areas, as typically done

with DEM-based applications, can increase exponentially the computational costs.

Thus, additional studies about univariate models have been recently published (e.g.,

Nardi et al., 2019; Lindersson et al., 2021; Annis and Nardi, 2021; Annis et al., 2022),

suggesting that data-driven flood hazard mapping has a remarkable potential not just

for multivariate models, but also for the univariate ones, which still remain a valid and

low-effort option.
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Machine-Learning blends of

geomorphic descriptors: value and

limitations for flood hazard

assessment across large floodplains

9.1 Introduction

In this Chapter, mainly relying on Magnini et al. (2022) and Magnini et al. (2023), an

innovative approach for multivariate DEM-based flood hazard mapping is proposed and

discussed through two consecutive applications with the same methodology yet different

focus. In both cases, we consider large study areas, characterized by markedly varied

morphological, hydrological and climatic conditions.

First, Northern Italy is considered (i.e., 105km2), and the∼ 90m resolution, hydrologically-

corrected, MERIT DEM (Yamazaki et al., 2017) is used for deriving a set of GDs. We

then use decision trees (Hastie et al., 2009) for assessing flood hazard associated with a

given probability of occurrence (i.e., return period) in terms of (a) delineation of flood-

prone and flood-free areas, and (b) prediction of expected inundation water depth (as a

measure for flood intensity).

The simultaneous combination of the five following meaningful elements makes our

study different from all previous works in literature. First, only strictly easy-to-retrieve,

DEM-based GDs are used to assess flood hazard, in contrast with several studies in which

also other information is considered. Second, both generation of binary flood suscepti-

bility maps and prediction of expected maximum inundation water depth are analyzed,

setting up parallel models. Third, decision trees are trained using pre-existing flood
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hazard maps as target information, in contrast with the discontinuous datasets of his-

torical events mostly used to train machine learning models for flood hazard estimation

(Lee et al., 2017; Khosravi et al., 2018; Janizadeh et al., 2019; Arabameri et al., 2019;

Costache et al., 2020). Fourth, a univariate geomorphological approach for identification

of flood-prone and flood-free areas (i.e., GFI) is compared with the proposed multivariate

approach: this allows us to analyse the actual enhancement resulting from the use of mul-

tiple GDs. Fifth, predictive skill of the multivariate DEM-based flood hazard approach

is assessed in extrapolation by applying models trained on specific geographical areas to

different regions with dissimilar morphological and/or hydrological features. This last

aspect is highly important for possible future applications to data-scarce environments

in extrapolation mode.

In the second application, the whole of Italy is adopted as study area. The initial

phase of this study consists of the analysis of the available datasets for selecting the

most appropriate input DEM and reference flood-hazard map. For both, an effective

framework for the selection is proposed, exploiting EU-Hydro (Gallaun et al., 2019) as

reference river network. Second, the same methods described above are used to derive

input GDs and set up a univariate and a multivariate DEM-based model. After the

calibration over specific fractions of the study area, the two models are applied to the

whole region. Finally, we validate both models by referring to independent information

(i.e., datasets that were not used for training or calibration). Namely, this consists

of three inundation extents produced by the same number of recent flood events and

delineated on the basis of remote sensing data (local validation), as well as a synthetic

inundation scenario obtained through 2D hydrodynamic numerical modelling. The latter

was generated as the envelope of several levee-breaching simulations along a 300-km

branch of the major Italian river.

Differently from what previously done, the aim is not the assessment of model’s

performance in test areas that differ from the training ones, but instead in areas where

the calibration flood map may be inhomogeneous or inaccurate -which is a common

situation in practice. This is done by referring to validation sources (e.g. detailed output

of hydrodynamic model runs) that are alternative to the available target flood maps.

Usually, DEM-based methods are used at large scales to obtain binary maps, which

delineate maximum flood extent associated with a given return period, and they are

considered auxiliary tools of the more accurate hydraulic models. However, by nature

DEM-based flood hazard models can efficiently handle secondary river networks (see

e.g., Nardi et al., 2019) and can produce spatially continuous and highly homogeneous

characterization of flood hazard. Some authors (e.g., Avand et al., 2022; Deroliya et al.,
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2022; Costache et al., 2020) exploited multivariate DEM-based approaches for a spatially

continuous estimation of flood susceptibility. Nevertheless, their models were calibrated

on a number of independent inundation events, instead of a coherent flood hazard map

with a given return period.

Through the application to the entire Italy, we investigate the unexplored potential

of these features of DEM-based approaches for enhancing the flood hazard information

with respect to heterogeneities and inconsistencies that are present in existing calibration

maps covering all the study area. Moreover, the presentation of a baseline reference

framework to address the selection of the most appropriate DEM and reference hazard

map is an innovative and useful element for future studies on the topic.

By assuming the abovementioned characteristics, these two studies aim to advance

previous knowledge on the potential of ML techniques for combining GDs to derive accu-

rate flood susceptibility maps across large geographical regions. More precisely, we want

to investigate four main research questions: (1) can we profit from a blend of various

GDs for flood hazard assessment and mapping relative to a univariate approach? (2) Can

we use simple ML techniques for effectively blending multiple GDs? (3) Are these tech-

niques capable of providing a reliable assessment of flood hazard over large geographical

areas when used in geographical extrapolation? What are the desired characteristics of

the training region/watershed to make the trained model as general as possible? (4) Can

we use DEM-based models to enhance existing flood hazard maps?

The present Chapter is organized as follows: Section 9.2 describes the general meth-

ods adopted for both the applications (i.e., GDs and decision trees); the study area,

the detailed framework of the analyses and the results obtained for Northern Italy are

illustrated in Sections 9.3, 9.4 and 9.5, in this order. Then, the details for the application

to all Italy, including the methods for the selection of the input DEM and target flood

hazard map, are described in Section 9.6. Section 9.7 shows the results for the selection

of DEM and reference hazard map, the application of the models to the study area and

their validation. Additional investigations about the application at a national scale rel-

ative to a recent catastrophic event are presented in Section 9.8. Finally, all the results

are discussed in Section 9.9 and summarised in Section 9.10.

9.2 Methods

The analyses conducted in the study are based on two main elements: geomorphic

descriptors (GDs) and decision trees (DTs); simplicity and replicability of these elements

represent a fundamental aspect and an important advantage of this contribute.
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Aiming to estimate flood hazard output variables (i.e., flood-susceptibility and maximum

expected water depth), DTs models combine several selected DEM-derived input features

(GDs), based on the availability of target information (i.e., flood hazard reference maps).

Consistent with the aims of our study, we set up two different types of DTs: classifier

DTs to solve the classification problem relative to flood-extent delineation, and regressor

DTs to solve the regression problem of water depth estimation. Classifier and regressor

models use the same input GDs, but require different target flood hazard maps. The

software we use for the training is Scikit-learn (Pedregosa et al., 2011), open source

library for Python 3.6 or later (Van Rossum and Drake Jr, 1995).

9.2.1 Geomorphic descriptors

As input variables for the above-mentioned models, in our study we use the ground

elevation in meters a.s.l. itself (as retrieved from the DEM) together with six GDs,

the first three of which are single indices, while the remaining three are composite (see

Chapter 8):

1. Local slope (sd8), pure number

2. Horizontal distance from the nearest stream (D), in number of pixels

3. Height above the nearest drainage (HAND), in meters

4. Modified topographic index (TIm), pure number

5. Geomorphic flood index (GFI), pure number. Coefficient b and exponent n

can be appropriately estimated with calibration or taken from the literature (Nardi

et al., 2006).

6. local geomorphic flood index (LGFI), pure number

The choice of the above mentioned GDs is due to different reasons. First, previ-

ous studies (e.g., Manfreda et al., 2015; Samela et al., 2017) clearly showed that D and

HAND are the most descriptive single-feature indices for flood hazard mapping, suf-

ficiently accurate in mountainous regions, but still inadequate over predominantly flat

areas, whereas, among composite feature indices, GFI and LGFI show good performance

in both the geographical contexts. Also, in several studies (e.g., Wang et al., 2015; Lee

et al., 2017; Khosravi et al., 2018; Janizadeh et al., 2019; Costache et al., 2020), elevation

retrieved from DEM shows to have a strong influence on flood occurrence. Slope appears

to be the most important index in Khosravi et al. (2018) and Costache et al. (2020), and
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among the most influent ones in Arabameri et al. (2019). The adoption of TIm is based

on Manfreda et al. (2008), who highligthed a strong correlation between the index and

the occurrence of inundation events.

Indeed, we believe that the selected set of GDs provides DT models with a rather ex-

haustive description of the study area morphology. In fact, slope and TIm may influence

the infiltration time, and consequently the runoff; elevation is not only strongly linked

to the runoff, but also to climatic conditions; D and HAND consider the horizontal and

vertical proximity to the river network, and GFI and LGFI combine this information

with an estimation of the water depth in the nearest stream.

Overall, for the aim of a multivariate analysis, this combination should enable one to

consider two comprehensive pieces of information by looking into the morphology (i.e.

elevation, sd8, TIm) and hydrology (i.e., by accounting for the river network; i.e. D,

HAND, GFI, LGFI) of the study region.

9.2.2 Decision trees

Decision trees (DTs, see Chapter 2) are one of the machine learning models most

frequently used in hydrology (e.g., Mosavi et al., 2018). There are multiple reasons why

this technique was selected for the present research. First, their simplicity makes DTs

low-computational-effort models, meaning that they can be suitable for applications over

large study areas. Second, DTs are very convenient for modelling non-linear relations

betwenn input and output, as it is in the case between GDs and flood-susceptibility.

Third, they are easily interpretable, meaning that it is possible to exactly understand

the path that leads a given input xi to a certain output yi. This last characteristic is not

common to all ML models, and allows the user to also obtain a ranking of the relevance

of the input features (i.e., the GDs) in the optimal configuration obtained during the

training.

The combination of strictly DEM-based GDs through simple machine learning tech-

niques aims to investigate an approach that can be implemented in low times, and just

using common programming and GIS tools.
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9.3 Testing the approach: application to Northern

Italy

The study area includes most of Northern Italy and a little part of Switzerland, hav-

ing a total extent of about 105km2. Many different geographical subsystems can be found

within this surface: the Alps, located in the North, lie in about 5 · 104km2, with average

elevation of 2500 m a.s.l. and a mainly rocky soil. This mountain range also hosts several

big lakes, as Garda, Maggiore and Iseo Lakes. The Apennines, in the southern portion,

have lower altitudes than the Alps, and more permeable soils. The Po Valley, the largest

floodplain in Italy, stretches from West to East, covering an area of about 4.6 · 104km2,

going from the Alps and the Apennines to the Adriatic Sea (see Figure 9.1).

The study area is mostly occupied by the Po river basin, that is the largest in Italy.

Moreover, other important rivers are the Adige, Brenta, Reno and Bacchiglione.

For this large and predominantly flat region, floods represent a major issue, also con-

sidering its high population density and presence of strategic industrial and agricultural

assets (ISPRA, 2018; Persiano et al., 2020).

The DEM used to represent the study area is the freely-available Multi-Error-Remover

Improved-Terrain model (MERIT; see Yamazaki et al., 2017). This choice was made for

two reasons. First, MERIT should be quite reliable for hydrological applications, as it

is the product of several processing operations and corrections on previously available

DEMs (i.e., NASA SRTM3 and JAXA AW3D), some of which specifically addressing

hydrological consistency (e.g. agreement between modelled and real stream-network).

The second reason is that its resolution is 3 arcseconds, which corresponds to ∼ 90m

at the equator. These characteristics enabled us to perform an accurate computation of

geomorphic indices, while reducing the computational costs.

Two different freely-available reference flood hazard maps have been used to train

the ML models. The first, used for the classification problem (i.e., delineation of flood-

extent), has been produced by the Italian Institute for Environmental Protection and

Research (ISPRA) in 2017 to fulfill the Floods Directive of the European Parliament

(2007/60/EC). An updated version of the map was finalized in 2020 and released by

ISPRA in 2021. However, the analyses described in the Dissertation rely on the version

realized in 2017, and released in 2018, which was the only available at that time. This

map (hereinafter referred to as PGRA P1) refers to a return period of about 500 years

and comes from the merge of different hazard maps produced by local authorities, which

explains its heterogeneity. Detailed flood hazard mapping characterizes some areas (e.g.,
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Figure 9.1: MERIT DEM for the study area, with major rivers and lakes marked in
black (left); study area in the European context (right; map from ©OpenStreetMap
contributors (2017), distributed under the Open Data Commons Open Database License
(ODbL) v1.0). Adapted from Magnini et al. (2022)

see the northwestern portion of the study area in Figure 9.2), while lacking information

affects other zones (e.g., see the northeastern portion of the study area in Figure 9.2).

In the reminder of this study we term exhaustiveness the degree of detail by which flood

hazard is defined and captured for minor streams.

The second map (see Figure 9.3), used for the regression problem (i.e., estimation of

water depth), is made available by the study from the Joint Research Centre (JRC) of

the European Commission according to the methods described by Dottori et al. (2016)

and summarised in Chapter 7. It refers to a return period of 100 years, and thus, it will

be named JRC 100 in the remainder of the study. Differently from PGRA P1, JRC 100

provides information in terms of water depth and is uniform throughout the study area,

yet evenly incomplete and less accurate for minor streams, as it comes from the merger

of several numerical simulations, which considered only river catchments with drainage

area higher than 500km2 (see Dottori et al., 2016, and Chapter 7).

9.4 Framework of the analysis

This chapter provides an overview of the four macro-phases of the present study,

namely:

1. Data selection and preparation
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Figure 9.2: Binary flood hazard target map with return period ∼500 years, made avail-
able by ISPRA in 2018 (ISPRA, 2018) and termed PGRA P1 in this study. Adapted
from Magnini et al. (2022)

(a) Selection of the DEM and computation of geomorphic indices with terrain

analysis

(b) Selection of the flood hazard target map

2. Preliminary analyses

(a) Definition and preparation of the calibration area

(b) Selection of performance metrics and objective functions

3. Implementation of the univariate approach (benchmark approach): set-

up of GFI optimal threshold in randomly-selected 85% of calibration area

4. Testing multivariate approach with two different modes:

Testing mode Training set Testing set
Geographical in-
terpolation

Randomly selected 85%
of calibration area

Randomly selected 15%
of calibration area

Geographical ex-
trapolation

Geographical sub-region
of the calibration area

Geographical remainder
of the calibration area
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Figure 9.3: Water depth for the target 100-year flood hazard map obtained by Dottori
et al. (2016), termed JRC 100 in this study (colour classes in the legend are used for
data visualization only). Adapted from (Magnini et al., 2022)

Macro-phase (1) of the study consists of the preparation of input data, which is a fun-

damental step for the success of machine learning algorithms; specific criteria are used

to select the GDs (Sect. 9.2.1), the accuracy and horizontal resolution of the DEM,

and the target flood-hazard datasets (Sect. 9.3). Phase (2) (i.e., preliminary analyses)

is necessary for defining some important aspects for the succesful set-up of DEM-based

models: the calibration area (Sect. 9.4.1), the objective functions and the performance

metrics for evaluating the results (Sect. 9.4.2). Phase (3) identifies the benchmarking

approach, i.e. a univariate DEM-based model for classification of flood susceptible areas,

to be used as comparison for the successive analysis. This model is built up according

to the indications reported in the literature, and considers the GFI descriptor alone, as

it is found to be the most versatile and accurate by many authors (e.g., Samela et al.,

2017).

The main results of the study are obtained in phase (4), as the DEM-based multi-

variate approach is tested in two different ways. First, two DTs are set-up (i.e., one

classifier DT and one regressor DT) using training and test sets with the same statistical

distribution of input features. This represents an ideal case (termed here as geographical

97



Chapter 9. Machine-Learning blends of geomorphic descriptors: value and limitations
for flood hazard assessment across large floodplains

interpolation mode), in which the training and test sets have very similar morphoclimatic

characteristics.

Second, four sub-portions of the study area are selected based on specific morphocli-

matic conditions, and then, eight more DTs are trained on these areas (i.e., one classifier

DT and one regressor DT for each training area) and tested on the complement to the

study region (see Sect. 9.4.3). This represents a data-scarce case (termed here as ge-

ographical extrapolation mode), in which morphoclimatic characteristics of training and

test sets may be rather different.

9.4.1 Calibration area

Since previous studies (e.g., Tavares da Costa et al., 2019) have highlighted the

benefits from defining a calibration area, in the present study, training and testing of the

models have been performed referring to a portion of the entire study area.

Different methods to define this area have been tested during the preliminay analyses

of phase (2), finding that the most effective way, representing a good trade-off between

the calibration efficiency and the ease of identification, is to refer to a constant-radius

buffer around the target flood hazard map. In particular, based on sensitivity analyses

that clearly showed that the radius value has a non-negligible impact on the accuracy

of the trained model, a 2 km radius has been selected for the PGRA P1 target map,

and a 5 km radius for the JRC 100 map (see Figure 9.4). Thus, during our analyses,

all the pixels falling outside the 2 km and 5 km calibration buffer areas are neglected

when fitting the models and evaluating the results for all classification and regression

problems, respectively.

9.4.2 Objective functions and performance metrics

Specific objective functions are used to train the DTs for classification and regression,

while other performance metrics are computed to evaluate their predictions during the

validation. With regards to the classification problem, the objective function, used during

the training of the DTs to assess the quality of each split, is the Gini impurity (IG(p)),

that varies between 0 (the optimal value) and 1 (Hastie et al., 2009). At each step, the

Gini impurity measures how often a randomly chosen element from the set would be

incorrectly labeled if it was randomly labeled according to the distribution in the subset.

Given the number of target classes J , and the fraction of items labeled with class i in
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Figure 9.4: Calibration areas: 2km buffer (green) and PGRA P1 flood-prone areas (blue)
used for the classification problem (left); 5km buffer (orange) and JRC 100 flood-prone
areas (red) used for the regression problem (right). Adapted from Magnini et al. (2022)

the set pi, the Gini impurity is defined as follows:

IG(p) =
J∑

i=1

pi · (1− pi) (9.1)

To perform implementation of the univariate approach and parameterize the multi-

variate classifier DTs, and evaluate the results, we use the true skill statistic (or TSS,

see 8). TSS has been successfully used by several authors in different applications

(Bartholmes et al., 2009; Alfieri et al., 2012; Tavares da Costa et al., 2019). During

preliminary analyses of phase (2), some experiments suggested to prefer this metric to

accuracy (ACC, see below), which showed to be less sensitive to model modifications

(i.e., different calibration areas, input information, tree depth) and goodness (lower ex-

tension of FP and FN areas).

Other metrics used for analysing the results are accuracy (ACC), precision (or positive

predictive value, PPV), and recall (or true positive ratio, TPR). All the three are very

common in evaluating the performance of a classifier (e.g., Manfreda et al., 2015; Samela

et al., 2017). They all vary between 0 and 1 (see 8).

With regards to the regression problem, the objective function to minimize during

the training is the well-established mean squared error (MSE, see eq. 2.3 in Chapter

2). The metric mainly used to evaluate the results and parameterize the multivariate

regressor DTs is the determination coefficient R2, that varies between −∞ and 1 (the
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optimal value). It measures the improvement of the predicted values relative to the mean

of the input samples (y), defined as:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − y)2
(9.2)

The last considered metric is the mean absolute error (MAE), defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi| (9.3)

Lastly, we use the Gini importance (GI) to measure the importance of each factor (i.e.,

each GD) in the trained models (both classifier and regressor DTs), which is defined for

the j-th factor as the total decrease in node impurity (IGi
), weighted by the fraction of

samples reaching that node (ni). Although this measure is largely used for its speed

of computation, it has the drawback of neglecting the weakest factor when two related

factors are used, which has to be taken into account when discussing the results.

GIj =

Nj∑
i=1

(IGi
− IGi−1

)

ni

(9.4)

where Nj is the number of nodes where a condition on the j-th factor is used as splitting

rule.

9.4.3 Training and testing strategy

All models considered in this study are trained and tested in different sub-domains

of their calibration area based on two different strategies.

For the univariate model and the interpolation DTs, the pixels of the calibration area

have been randomly split in 85% for the training and 15% for the test set, based on

established proportion adopted for machine learning algorithms (Mosavi et al., 2018).

This produces two datasets with millions of pixels, both with very diverse ranges of input

and target information.

During the extrapolation analyses, training is performed in turn on four different portions

of the overall calibration area. To avoid dividing any catchement into a part for training

and one for testing, the delineation of these areas follows catchment boundaries, as well

as precise geographical and hydrological criteria (see Figure 9.5):

� Area A includes the Alpine catchments and the northern portion of the Po river

floodplain. The complementary test area includes all the Apennines, a lower moun-
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Figure 9.5: Training areas (bold contour) used for the geographical extrapolation exper-
iments performed in phase (4), with major rivers and lakes higlighted in black. Adapted
from (Magnini et al., 2022)

tain range, and the southern part of Po plain, where smaller river catchments are

located

� Area B includes catchments in the upstream sector of the Po river basin, rep-

resenting part of the Alps and of the Apennines. The complementary test area

includes most of the Po plain, and part of the Alps and Apennines

� Area C is the complementary of area B and consists of the downstream portion

of the Po river basin

� Area D includes the Apennines, Western and Central Alps and the entire Po

streamline. Its complementary test area contains a rather small part of the Po

plain, the Western Alps and the flood plain of the Adige, Brenta and Bacchiglione

rivers

Before training DTs, k-fold cross-validation (CV) is performed to optimize models

hyper-parameters, namely: the maximum tree depth and the minimum number of records

in any leaf node. K-fold CV is a widely used method for model parameterization and
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selection (Hastie et al., 2009), and consists in dividing the training set into k folds and

then performing two consecutive operations: (1) training of the model using k− 1 folds,

and (2) validation of the model using the remaining fold. These two steps are repeated

for k times, for all the combinations of the k folds of the training data.

9.5 Results of the application to Northern Italy

The reliability of the predictions of the models is assessed by performance metrics

that refer to (a) the training set and (b) the test set. While the metrics computed for

the training set assess the reliability in reproducing the observed target map, the ones

regarding the test set measure the ability of the model when applied to a different sample

than the one used in training (i.e. validation of the model). In order to find out the

relevance of each input GD in the DTs’ structure, the Gini importance (see Sect. 9.4.2)

for each model is reported in Table 9.3, and will be better discussed in Sect. 9.9.

9.5.1 Delineation of flood-prone areas in interpolation mode

Figure 9.6 represents the flood susceptibility map obtained with the classifier DT

model trained within the random 85% of the 2 km buffer calibration area (i.e. multivari-

ate flood susceptibility map). To understand the quality of the proposed approach and

profitably discuss the results, Figure 9.7 illustrates the map produced with the univariate

benchmark approach set up in the same area. Relevant performance metrics for multi-

variate and univariate models are reported in rows 1 and 2 of Table 9.1, respectively.

Figure 9.6 and Table 1 highlight that the DT flood susceptibility map is strongly consis-

tent with the target map PGRA P1. Also, the model produces a rather detailed mapping

across floodplains of minor streams (i.e. exhaustiveness, as defined in Sect. 9.3). In par-

ticular, it can be observed in Figure 9.6 that the zones where the target map has high

exhaustiveness (e.g., northwestern portion of the study area) are mapped with slightly

lower exhaustiveness by the DT model, while the DT output is more detailed in flood-

plain of minor streams than the target map, where the latter is lacking exhaustiveness

(e.g., northeastern part).

Figure 9.6 shows that GFI uniformly and exhaustively estimates flood susceptibility

along all minor streams in mountain areas, but tends to severely overestimate the size

of flood-prone areas in predominantly flat regions.

The first line of Table 9.3 reports the Gini importance for the classifier DT: HAND scores

about 65%, followed by elevation (16.5%) and GFI (10.5%).
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Figure 9.6: Multivariate 500-year flood susceptibility map for the study area (red); target
flood hazard map (PGRA P1, blue); purple indicates overlaying areas. Adapted from
Magnini et al. (2022)

9.5.2 Prediction of flood hazard intensity in interpolation mode

Figure 9.8 illustrates expected maximum inundation water depths as predicted through

the regressor DT trained within the random 85% of the 5 km buffer calibration area;

relevant performance metrics can be found in the first row of Table 9.2. Figure 9.8 and

Table 9.2 show good performance of the DT model for the regression problem. It is

worth noting here that the exhaustiveness of the DT water-depth map is considerably

higher than that of the reference map (i.e. JRC 100). This result was expected due to

the focus of JRC 100 on larger catchments.

The data density plot in Figure 9.9 depicts the relationship between target and predicted

water depths for the test set focusing on true positives (i.e. both target and predicted

water depths are higher than 0.0 m) and neglecting water depths higher than 3.5m (ne-

glected pairs, beyond axes’ limits, are 4.2% of the total).
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Figure 9.7: Binary flood susceptibility map resulting from a univariate analysis (mor-
phometric index: GFI, light green); target flood hazard map (PGRA P1, blue); dark
green indicates overlaying areas. Adapted from Magnini et al. (2022)

The second row of Table 9.3 shows that the most informative GD is GFI (63.7%), followed

by elevation (20.7%) and slope (5.4%).

9.5.3 Multivariate flood hazard modelling in extrapolation mode

Tables 9.1 (rows 3-6) and 9.2 (rows 2-5) report performance metrics for the geographi-

cal extrapolation experiments for the classification and regression problems, respectively,

while Figures 9.10 and 9.11 depict the corresponding DT output maps.

With regards to the classification problem (Table 9.1), the performance metrics highlight

a generalized good agreement with the target map. Figure 9.10 and chapter “Training

performance” of Table 9.1 show that all models can accurately reproduce the target

map in the training area, but they are quite inaccurate in the test area, as it is evident

the difference between the two. In fact, concerning the test area, Table 9.1 shows that
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Table 9.1: Classification problem: performance metrics for the multivariate (classifier
DTs) and univariate (classifier GFI) flood susceptibility maps; target flood hazard map
for both approaches: PGRA P1. The reported values have been converted from the
interval 0-1 to the percentage notation. The best testing metrics values are reported in
bold, the worst ones in italic (the first line should be compared with the second one; the
last four lines should be compared to each other)

Model Training performance Test performance
TSS ACC PPV TPR TSS ACC PPV TPR

Classifier DT - interpolation 80% 93% 89% 84% 78% 92% 88% 83%
Classifier GFI - benchmark 69% 84% 66% 87% 69% 84% 66% 87%
Classifier DT trained in A 75% 92% 86% 78% 56% 83% 88% 61%
Classifier DT trained in B 61% 93% 82% 64% 65% 85% 80% 75%
Classifier DT trained in C 82% 92% 89% 88% 33% 88% 71% 35%
Classifier DT trained in D 80% 94% 91% 93% 63% 79% 53% 87%

Table 9.2: Regression problem: performance metrics for the multivariate water-depth
output maps obtained with the regressor DTs (target flood hazard map: JRC 100); the
best testing metrics values are reported in bold, the worst ones in italics

Model Training performance Test performance
R2 MSE MAE R2 MSE MAE

Regressor DT - interpolation 0.726 0.227 0.393 0.692 0.242 0.439
Regressor DT trained in A 0.709 0.240 0.443 -0.029 1.100 0.547
Regressor DT trained in B 0.606 0.145 0.284 -2.110 5.208 1.283
Regressor DT trained in C 0.711 0.281 0.467 0.333 0.623 0.264
Regressor DT trained in D 0.741 0.251 0.380 0.175 1.109 0.417

according to the true skill score (TSS), the best prediction in the test area is obtained

using B as training area (TSS=65%), followed by D (TSS=63%) and A (TSS=56%),

respectively.

The same table shows that the best results are obtained when training on area C if

one focuses on accuracy (ACC=88%), followed by B (ACC=85%) and A (ACC=83%).

According to precision (PPV), the best result is obtained training the model on area A

(PPV=88%), while it is D according to recall (TPR=87%).

Concerning the regression problem, worse predictive skill in geographical extrapolation

is observed in Table 9.2. Differently from the classification, performance metrics for the

regression problem are in good agreement among each other, showing that area C has

the better results, while area B is the worst. On the other hand, Figure 9.11 suggests

that water depth estimation in the test area is quite reliable in all the cases, with the

exception of the DT trained in area B.

Focusing on Gini importance, Table 9.3 clearly shows that regressor DTs (rows 7-10) are

characterized by similar structures regardless of the training areas: GFI is always ranked
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Figure 9.8: Multivariate water-depth hazard map obtained with regressor DT in inter-
polation mode (target flood hazard map: JRC 100). Adapted from Magnini et al. (2022)

first in terms of relevance, followed by elevation and slope. This is not true for the classi-

fication problem (rows 3-6): in this case, classifiers DTs identified four different training

areas have different structures, in which the most informative geomorphic descriptor can

be alternatively GFI, or HAND, or the elevation; this latter is always ranked second.

106



Chapter 9. Machine-Learning blends of geomorphic descriptors: value and limitations
for flood hazard assessment across large floodplains

Figure 9.9: Data density plot (%) for target vs. predicted expected maximum water
depth (target values: empirical JRC 100; predicted values: regressor DT applied to the
test set). Adapted from Magnini et al. (2022)

Table 9.3: Gini importance of the selected input features computed for the DTs trained
in phase (4); the highest value for each DT is highlighted in bold, the lowest in italic

Model elevation sd8 D HAND GFI LGFI TIm
Classifier DT - interpolation 16.5% 3.5% 2.8% 65.6% 10.5% 0.6% 0.4%
Regressor DT - interpolation 20.7% 5.4% 2.0% 4.8% 63.7% 1.8% 1.6%
Classifier DT trained in A 10.2% 6.8% 2.2% 8.0% 71.6% 0.3% 0.8%
Classifier DT trained in B 9.8% 9.8% 3.8% 60.0% 11.8% 4.2% 0.4%
Classifier DT trained in C 74.3% 2.3% 1.7% 9.7% 11.1% 0.6% 0.1%
Classifier DT trained in D 18.5% 2.8% 1.4% 69.5% 7.1% 0.4% 0.3%
Regressor DT trained in A 14.3% 3.6% 1.8% 3.5% 73.2% 2.3% 1.3%
Regressor DT trained in B 18.9% 3.8% 2.6% 4.2% 66.7% 2.0% 1.9%
Regressor DT trained in C 17.8% 3.1% 1.9% 4.3% 69.2% 2.5% 1.2%
Regressor DT trained in D 14.3% 3.9% 1.3% 4.0% 74.7% 0.9% 0.9%
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Figure 9.10: Geographical extrapolation for the classification problem: multivariate flood
susceptibility maps obtained from classifier DTs (red); target flood hazard map (PGRA
P1, blue); purple indicates overlaying areas. Adapted from Magnini et al. (2022)
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Figure 9.11: Geographical extrapolation for the regression problem: multivariate flood
susceptibility maps obtained from regressor DTs (see also Figure 9.3, target flood hazard
map: JRC 100). Adapted from Magnini et al. (2022)
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9.6 Deploying the technology: application to Italy

The methods adopted for the set-up of the univariate and the multivariate DEM-

based models for this second study case, focusing on the whole of Italy, are mainly the

same as for the previous application to Northern Italy. The main differencies are the

following points:

1. A more objective and extended approach for the input DEM and target flood

hazard map is presented (i.e., phases (1.a) and (1.b) in the framework presented

at Section 9.4)

2. Preliminary analyses for the selection of the appropriate buffering distance for the

univariate model led to the value of 200 meters (i.e., phase (2.a) in the framework

at Section 9.4)

3. The implementation of the univariate approach is more sophisticated, and con-

sists of two phases: first, the geographical domain is divided into hydro-climatic

districts; second, for each in turn, the best threshold for the GFI is searched by

means of optimization of the TSS (compare with phase (3) in the framework at

Section 9.4)

4. The multivariate model is set-up by considering only six geomorphic descriptors out

of the seven adopted for Northern Italy (Section 9.2.1). The discarded descriptor

is the modified topographic index (Manfreda et al., 2008), as it is the one with the

lowest influence in the models (see Table 9.3)

5. The univariate and multivariate models are validated only in interpolation, but

against a more extended set of independent flood hazard datasets (compare with

phase (4) in the framework at Section 9.4)

These changes to the framework of the analyses are due to the fact that the study

area is notably more extended than for Northern Italy. Modification (4) aims to reduce

computational demand for data processing and models training, while (1), (2) and (3)

Specific subsections follow, that are dedicated to the study area, the validation datasets,

and the methods for the selection of the input DEM and target flood hazard map.

9.6.1 Second study area: Italy

The selected study area consists of the whole Italian peninsula and islands, that

approximately amount at 301’103km2 (see Figure 9.12). The overall extent and the large
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variety of geographical and climatic conditions make Italy an interesting and complex

study area for large scale flood-hazard modelling. In fact, the length of the peninsula

and mostly mountainous hinterland make the climate highly diverse, ranging from humid

subtropical to humid continental and oceanic (e.g., see climate classification in Cui et al.,

2021). The Alps extend from the north-west to the north-east, and are the highest

mountain range (i.e., twelve peaks higher than 3500m a.s.l., and highest peak at 4809m

a.s.l.). The Apennines stretch from North to South for almost the whole peninsula (i.e.,

about 1300km) and have lower peaks compared to the Alps (i.e., maximum peak is 2900m

a.s.l.). The largest plain, located in the north, is the floodplain of the Po river, that is

also the main river in Italy (i.e., length of ∼650km, and mean discharge of ∼1500 m3/s).

Italy is an interesting case study for flood modelling, as a large portion of its territory

is subject to floods: 5.4% with high probability hazard, which corresponds to 2.4 million

of people exposed, while 14% to low probability hazard, corresponding to 12.2 million of

people (Trigila et al., 2021).

9.6.2 Validation datasets

After being trained (i.e., calibrated) in the calibration areas (i.e., 200m and 2km

buffer areas, as described in Section 2), the DEM-based models are applied to the whole

study region (i.e., even outside buffer areas). The validation is performed by comparing

the model outputs with new information, consisting of two types of datasets: (1) three

inundation maps delineated from satellite data, and (2) one envelope flood hazard map

obtained from the merger of several 2D hydrodynamic simulations. These all are associ-

ated with a return period that is approximately the same as, or lower than the reference

flood hazard map. Based on the return period and the location, which corresponds to

the most flood susceptible area in Italy, the four datasets can be adopted for an effective

validation.

Concerning the first validation dataset, two recent flood events are selected: the inun-

dation event that occurred between 19th and 24th October 2019 in Alessandria Province

(AL, Piedmont region), and the one that occurred between 15th and 19th November

2019 in Bologna province (BO, Emilia-Romagna region). These events are described by

three Sentinel-1 SAR (Synthetic Aperture Radar) images; the corresponding inundation

extents are delineated, within the present study, through a change detection method ex-

pressly developed, partially derived from Canty (2019), and successfully validated with

ground truth data. Finally, three inundation maps, named as AL 21/10/19, BO 20/11/19

and BO 21/11/19, are obtained and used for the validation of the target and modelled

flood maps (see panels 1(a), 2(b), 3(c) of Figure 9.12).

111



Chapter 9. Machine-Learning blends of geomorphic descriptors: value and limitations
for flood hazard assessment across large floodplains

Figure 9.12: EU-DEM in Italy (top-left panel); validation datasets: inundation maps
associated with AL21/10/19 (panel 1(a)), BO20/11/19 (panel 2(b)), BO21/11/19 (panel
3(c)) events; catastrophic inundation scenario along the middle lower portion of the Po
River in terms of maximum simulated water depths (panel 4(d)). Adapted from Magnini
et al. (2023)
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The second validation dataset consists of a single flood hazard map obtained from a

series of simulations run with the two-dimensional hydrodynamic model LISFLOOD-FP

(Bates and De Roo, 2000; Neal et al., 2012; Shustikova et al., 2020). The flood hazard

map of 50m horizontal resolution was produced by merging 42 model simulations into

one map (i.e., each simulation is associated with a return period higher than 200 years,

but lower than 500 years, see e.g. Domeneghetti et al., 2015). Each simulation represents

hypothetical levee breaches on both banks of the river (21 on the right and 21 on the

left bank; see panel 4 of Figure 9.12).

9.6.3 Analysis of available DEMs

Nowadays, DEMs can be developed from a variety of different surveying techniques,

characterized by specific advantages and disadvantages. Above all, the onset of modern

satellite remote sensing techniques allowed the creation of freely distributed DEMs with

global or semi-global coverage. However, the accuracy of the DEMs is often affected

by inevitable errors, that are associated with the techniques and algorithms used for

creating the DEMs, and the characteristics of the terrain, such as morphology and land

cover (Mukherjee et al., 2013; Thomas et al., 2014). Producers of global and national

DEMs carry out quality assessments on their products, yet usually, only the global

RMSE (i.e., root mean square error, see formula below eq. 9) is provided as a measure

of accuracy, which gives no information about the accuracy over specific areas of interest

or geomorphological contexts. Thus, choosing the right terrain model for a study can be

difficult without performing a specific data quality analysis (Florinsky et al., 2018; Patel

et al., 2016; Tavares da Costa et al., 2019; Thomas et al., 2014).

For this reason, seven different DEMs with a spatial resolution finer than 100m, ob-

tained with various techniques and covering the whole Italy, are considered and assessed.

Namely, they are: SRTMGL1 (Farr et al., 2007), ASTER GDEM (Tachikawa et al., 2011;

Abrams, 2016; Gesch et al., 2016), ALOS AW3D30 (Tadono et al., 2016; Takaku and

Tadono, 2017), TINITALY (Favalli and Pareschi, 2004; Tarquini et al., 2012), EU-DEM

(Bashfield and Keim, 2011; Garcia G., 2015), HydroSHEDS DEM (Lehner and Grill,

2013) and MERIT DEM (Yamazaki et al., 2017). The spatial resolution of these DEMs

is: 1 arc second (∼30 m) for STRMGL1, ASTER GDEM and ALOS AW3D30; 10 m for

TINITALY; 25 m for EU-DEM and 3 arc second (∼90 m) for HydroSHEDS DEM and

MERIT DEM.

The seven DEMs are tested over three areas of interest (see upper left panel of Fig-

ure 9.12), each one with different morphological and land-cover characteristics. These

are, from north to south, Valsugana (a valley in a predominantly mountainous region in
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northern Italy), the territory of Bologna Municipality and surroundings (an area charac-

terized by flatland, hills and urban zones), and the territory of Rimini and surroundings

(a coastal urban area on the Adriatic Sea). On these areas, the national DEMs are

compared with the high-resolution DEMs obtained by the airborne LiDAR surveys per-

formed for the Special Remote Sensing Plan (see Costabile, 2010), carried out by the

Italian Ministry of the Environment and for Protection of the Land and Sea, which we

assume here as ground truth. These reference DEMs have slightly different characteris-

tics for each area of interest, with the resolution varying in a 1-2 m range, and vertical

accuracy being between 15 and 30 cm. A series of tests are carried out to evaluate the

vertical accuracy of the DEMs in respect to the reference LiDAR for the three areas,

considering different terrain slopes (i.e., ≤5°, 5°-10°, 10°-30° and ≥30°), land cover type

(i.e., urban, forest, low vegetation and crop fields, bare land) and HAND values (i.e.,

HAND ≤ 3 m and HAND ≥ 5 m). When performing these tests, the LiDAR datasets

are resampled to the resolution of the tested DEM with a bilinear method.

In addition to the vertical accuracy, hydraulic consistency is also evaluated by compar-

ing the Topographic Wetness Index (or TWI, see Beven and Kirkby, 1979) with the EU-

Hydro photo-interpreted river network dataset (Gallaun et al., 2019), made available by

the Copernicus Programme from the European Union (https://www.copernicus.eu/en).

This choice is derived from preliminary analyses, which pointed out the strong agree-

ment between the EU-Hydro dataset and the real Italian stream network. The TWI (see

eq. 8) is directly computed from the DEMs via the SCA (i.e., specific catchment area,

defined as the contributing area per unit width of contour, in meters), which represents

the tendency of a pixel to receive water, and the slope ϕ, which represents the tendency

to drain. Thus, it is strongly related to the water flow direction (Mattivi et al., 2019)

and can be used as a qualitative evaluation of hydraulic consistency.

TWI = ln(
SCA

tan(ϕ)
) (9.5)

The vertical accuracy of the models is obtained by computing the residuals, e(x, y),

between the two DEMs (i.e., e(x, y) = f ′(x, y)–f(x, y), where f ′(x, y) is the surface of

the DEM under analysis and f(x, y) is the surface of the reference DEM). We refer to

widely used performance metrics to quantify the accuracy of each DEM; in particular,

we consider the linear error with 90% confidence (LE90), and the RMSE (eq. 9).

114



Chapter 9. Machine-Learning blends of geomorphic descriptors: value and limitations
for flood hazard assessment across large floodplains

9.6.4 Analysis of available reference flood-hazard maps

In recent years, the large demand of reliable flood hazard maps of different scale (e.g.

national, continental, global) exhilarated the development of various flood modelling

methods and frameworks (Pappenberger et al., 2012; Winsemius et al., 2013; Yamazaki

et al., 2011; Sampson et al., 2015; Dottori et al., 2016, e.g.,). As a result, plenty of

flood hazard maps are available, but the comparison of different large scale models is not

straightforward (Ward et al., 2015; Trigg et al., 2016; Lindersson et al., 2021), making

critical the selection of a target map.

Here, we consider the two hazard maps used by Magnini et al., 2022 and we compare

them in Italy based on their capillarity in representing flood hazard along the national

river network. Indeed, having target flood hazard information for a greater number of

minor streams, which have lower accumulation area, can lead to more effective training

of DEM-based models (Magnini et al., 2022, e.g., see). The first map is the European-

scale map made available by the European Joint Research Centre (JRC; see Alfieri et al.,

2014) with a 500-year return period and 100m resolution, that has been developed as a

component of the Copernicus European Flood Awareness System (EFAS, www.efas.eu).

The second map has been provided in 2018 by the Italian Institute for Environmental

Protection and Research (ISPRA; see ISPRA, 2018) to fulfil the EU Floods Directive

of the European Commission (2007/60/EC). It refers to a return period of about 500

years and is the merger of different hazard maps produced by local authorities. Resulting

from local maps obtained with different methodologies, the ISPRA flood hazard map has

notable heterogeneity: detailed flood hazard mapping characterizes some regions (e.g.,

see the north-western region of Figure 9.13), while mapping is sparser in other ones (e.g.,

see the north-eastern portion of the study area in Figure 9.13).

The evaluation of these two maps is carried out by considering the overlay with the

EU-Hydro river network at a national scale(as for the DEM selection phase), that is

selected as reference. Two steps are needed: first, the EU-Hydro shapefile is converted

to a raster file with the same resolution and dimension of the considered hazard map.

Second, computing the ratio between the number of flood-prone pixels falling on the

river network and the total number of river-network pixels. This is done for separately

for the different Strahler orders, and is used as a measure of capillarity and completeness

of the target datasets for training DEM-based flood hazard models.
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Figure 9.13: Flood hazard map with 500-years return period (light blue) released by
ISPRA in 2018; in black: lakes and major rivers (Strahler order ⩾5), from EU-Hydro
dataset (©European Union, Copernicus Land Monitoring Service 2021, European En-
vironment Agency (EEA)). In red: six Italian regions (see Section 7.1). Adapted from
Magnini et al. (2023)
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9.7 Results of the application to Italy

9.7.1 Selection of input DEM

Metrics for the evaluation of the vertical accuracy of the considered DEMs (i.e.,

RMSE and LE90, see Section 9.6.3) in the test areas (i.e., Valsugana, Bologna and

Rimini, from North to South in Figure 9.12) are computed with reference to the LiDAR

measurements (see Section 9.6.3) and are reported in Table 1. The three DEMs with the

lowest errors are TINITALY, SRTM and MERIT for Valsugana, SRTM, HydroSHEDS,

and MERIT for Bologna, and EU-DEM, HydroSHEDS and MERIT for Rimini. It can

be also noticed that vertical accuracy for EU-DEM and SRTM is very similar in Bologna.

Metrics computed for the different terrain slopes, land cover types and HAND values are

not reported for the sake of brevity, as they confirm what seen in Table 9.4.

Table 9.4: metrics for vertical accuracy of the considered DEMs. Higher values (corre-
sponding to worst accuracy) are marked with darker coloured cells.

Valsugana Bologna Rimini
DEM Resolution RMSE LE90 RMSE LE90 RMSE LE90

TINITALY 10 8.236 12.141 4.511 6.475 2.832 4.412
EU-DEM 25 18.722 26.865 3.968 6.091 2.041 3.185
SRTM 30 15.764 21.083 3.203 4.665 2.239 3.537

ASTGTM 30 16.621 24.577 6.769 9.885 5.683 8.917
AW3D30 30 12.93 20.597 5.264 8.329 2.967 4.431

HydroSHEDS 90 30.166 44.597 3.355 4.549 2.108 3.362
MERIT 90 15.043 21.955 3.466 4.598 1.98 3.074

The analysis of TWI clearly shows that the hydraulic consistency of TINITALY

is very low, while the other DEMs have similar performance. Thus, TWI is useful to

exclude inappropriate DEMs, but not for numerically ranking the best ones. For the sake

of brevity, only a detailed example of the comparison between TINITALY and EU-DEM

within the Bologna test area is shown (Figure 9.14).
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Figure 9.14: Focus on part of the Bologna test area. TWI computed from TINITALY
(left panel) and EU-DEM (right panel); in red, river network from EU-Hydro dataset
(©European Union, Copernicus Land Monitoring Service 2021, European Environment
Agency (EEA)). Adapted from Magnini et al. (2023)

Given the combination of good performances in flat areas (i.e., Bologna and Rimini),

the good hydraulic consistency, and the good resolution, the EU-DEM is selected as

the most appropriate DEM for the present study. This decision is also enforced by the

nature of EU-DEM, which was produced by hydraulic conditioning on the EU-Hydro

river network (Bashfield and Keim, 2011), the same dataset largely used for analysing

the results of the present study.

9.7.2 Selection of reference flood hazard map

Quantification of the agreement between the considered flood hazard maps (i.e., the

ISPRA and JRC maps) and EU-Hydro river network over the study area is reported

in Table 9.5. It is evident that flood prone areas in the ISPRA map comprehend a

much higher portion of the river network than in the JRC map. This advantage is more

significant for stream segments with lower Strahler orders, which is taken as evidence

that, due to the threshold source area of 500km2, the JRC map neglects a significative

number of minor streams. As a result, the ISPRA map is selected as the target flood

hazard map.

9.7.3 Reproduction of target hazard maps

Panels (a) and (c) of Figure 9.15 represent the standardized GFI (i.e., rescaled GFI

values so that the maximum is equal to 1, highest susceptibility of being flooded, and the

minimum is equal to 0, lowest susceptibility), and the p-value computed by the decision
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Table 9.5: Percentage of overlay between EU-Hydro river network and considered refer-
ence flood hazard maps. Darker colour means higher percentage, which in turn means
better agreement between the two datasets.

Map Strahler
1 2 3 4 5 6 7 8

ISPRA 10.30% 23.10% 37.60% 51.70% 64.80% 58.10% 99.60% 97.50%
JRC 0.02% 2.90% 3.20% 14.70% 58.80% 69.40% 90.60% 91.40%

tree (varying from 1, highest probability for a pixel of being classified as “floodable”,

and 0, lowest probability; see Chapter 2). These are the starting points from which

the univariate and multivariate models derive their binary output maps, respectively.

(see Panels (b) and (d) of Figure 9.15) represent respectively the flood-susceptibility

maps obtained with the univariate and multivariate DEM-based flood hazard models.

Both figures show strong similarity between the target and the output maps (i.e., dark

redblue areas in panels (b) and (d) of Figure 9.15), which is particularly evident for the

multivariate model.

Table 9.6 reports the performance metrics of the two DEM-based binary maps. It is

evident that the multivariate method (second line) leads to better metrics (except for

the TPR), but the difference with the univariate one (first line) is low, suggesting that

the two binary outputs are very similar.

Table 9.6: Performance metrics for the DEM-based hazard maps computed for testing
pixels located inside a 200m buffer area around the target flood hazard map. Highest
and lowest values for each column are marked in bold and italic, respectively.

Model TSS ACC PPV TPR F1
Univariate 0.528 0.762 0.830 0.754 0.790
Multivariate 0.596 0.781 0.905 0.705 0.792

An additional evaluation is performed by computing the overlay between the flood-

prone areas of the DEM-based binary maps and the EU-Hydro river network (Table 9.7),

as done for the selection of the reference ISPRA map (Section 9.5). The univariate model

detects flood-susceptibility on a significantly higher portion of the river network than in

the ISPRA map. The exception is Strahler order 8, where the overlay drops to 70.72%,

suggesting inaccuracy of the model. The increase in the overlay for the multivariate

model is lower, but still significant for Strahler orders from 3 to 6. For the others, the

percentage of flood prone areas over the river network is substantially the same as in the

reference ISPRA map.
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Figure 9.15: Output of DEM-based models - univariate model: standardized GFI values
(red scale, panel (a)), binary flood hazard map (panel (b), black); multivariate model:
p-value (red scale, panel (c)), binary flood hazard map (panel (d), black). In panels (b)
and (c), blue represents the target ISPRA hazard map; dark blue identifies overlapping
areas between the target and model maps. Adapted from Magnini et al. (2023)

120



Chapter 9. Machine-Learning blends of geomorphic descriptors: value and limitations
for flood hazard assessment across large floodplains

Table 9.7: Percentage of overlay between EU-Hydro river network, reference ISPRA
flood hazard and binary outputs from DEM-based models. Darker colour means higher
percentage (see Table 2).

Map Strahler
1 2 3 4 5 6 7 8

ISPRA 10.30% 23.10% 37.60% 51.70% 64.80% 58.10% 99.60% 97.50%
Univariate 40.60% 69.70% 82.81% 91.05% 92.14% 84.64% 98.61% 70.72%
Multivariate 9.38% 22.03% 45.43% 71.41% 78.84% 73.64% 95.77% 95.95%

9.7.4 Validation against observed inundation extents and enve-

lope flood hazard map

In Table 9.8 the agreement between the DEM-based models and the validation maps

is showed, by means of the overlaying flood-susceptible areas. Considering the inun-

dation maps (see the first three sections of Table 9.8 from the left), it is evident that

the flood susceptibility map from the multivariate model has the lowest agreement with

the validation dataset. However, with the exception of the AL 21/10/19 event, that is

more poorly represented in all the maps, the overlaying percentage is always more than

85%. Differently, the envelope validation map has higher agreement with the multivari-

ate model (i.e., 94.45%) than with the univariate (77.19%).

Table 9.8: Overlap between binary flood hazard maps (Target: reference flood hazard
map, PGRA; Univariate: GFI DEM-based model; Multivariate: Decision Tree DEM-
based model) and validation maps (i.e., observed inundation extents retrieved from satel-
lite data, inundation scenario from 2D hydrodynamic modelling). Highest and lowest
values for each column are marked in bold and italic, respectively.

Observed inundation
events

Synthetic inundation
scenario

AL 21/10/19 BO 20/11/19 BO 21/11/19
Model km2 % km2 % km2 % km2 %
Target 16.16 76.79 37.43 98.59 14.93 99.60 3347.62 99.72

Univariate 14.63 69.51 33.52 88.30 14.46 96.43 2591.19 77.19
Multivariate 12.06 57.30 33.09 87.17 13.25 88.36 3170.73 94.45

Regarding the values assumed by the standardized GFI and the multivariate p-value

over the areas detected by the validation maps (9.16), higher median values of the latter

are observed (i.e., p-value higher than 0.6, while standardized GFI lower than 0.4). It is

again evident here that the event occurred in Alessandria is more critical to be modelled

than the one in Bologna, as both the p-value and the standardized GFI are partially

under the classification threshold over the area.

The continuous indexes and binary output maps of the DEM-based models can be
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Figure 9.16: Boxplot of standardized GFI (univariate model, light grey) and p-value
(multivariate model, dark grey) within the four inundated areas used in validation. Red
lines indicate the thresholds for the DT classification (i.e., 0.5 at national level) and for
the GFI classification (i.e., 0.265, 0.260, 0.249, 0.283 for AL 21/10/19, BO 20/11/19, BO
21/11/19 and the 2D envelope area, in this order). Adapted from Magnini et al. (2023)

better examined with specific focus on the validation areas of the AL 21/20/19 event

and the synthetic scenario (illustrative examples in 9.17 and 9.18, respectively). From

this analysis, two points emerge: (1) the multivariate model leads to discontinuous flood-

plain delineation, while sharp floodplain boundaries are produced by the univariate one

(upper panels of Figures 6 and 7), and (2) the multivariate model is more efficient in

characterizing flood hazard outside the main river network (panels (d) and (e) of 9.17

and 9.18).

9.8 Informativeness relative to the catastrophic event

in Emilia-Romagna in May 2023

In this Section, the four outputs obtained from the analyses described in Sections

9.6 and 9.7 (i.e., the standardized GFI and univariate binary flood hazard map, and the

p-value and multivariate binary flood hazard map) are further examined. In particular,

their informativeness is investigated relative to a recent record-breaking event, occurred

over Eastern Emilia-Romagna region (Northern Italy) in May 2023.

This event is different from the other ones considered in Sections 9.6 and 9.7, as it

(1) is a real event, as the AL 21/10/19, BO 20/11/19 and BO 21/11/19, and (2) has
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Figure 9.17: Upper panels: comparison of the floodable area (black) according to the tar-
get flood hazard, and DEM-based binary outputs with observed inundated areas (blue)
(upper panels); lower panels: standardized GFI values and p-value (colour scale) com-
pared with inundated areas (blue) for the AL 21/10/19 event. Adapted from Magnini
et al. (2023)
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Figure 9.18: Comparison between envelope the synthetic inundation scenario (transpar-
ent light blue) and binary flood hazard maps (upper panels, from left to right: target
map, univariate model, and multivariate model), and continuous flood-susceptibility in-
dices (bottom panels, from left to right: standardized GFI of the univariate model, and
p-value of the multivariate model). Adapted from Magnini et al. (2023)

a medium scale, as the synthetic scenario generated with LF-FP simulations, but (3) it

involves several river catchments, which were almost simoultaneously subject to flooding.

During May 2023, two severe precipitation events occurred since May 2nd to 3rd,

and since 16th to 17th. Both the rainfall events were caused by a cyclonic disturbancy,

that brought large warm air masses to clash into the Appennines. Precipitation with

unprecedented spatial extension and time persistency occurred, with return periods in

some cases longer than 500 years (see Brath et al., 2023). The rapid succession of the

two events led simoultaneously 23 rivers to overtop, since the soil was oversaturated by

the first event. In total, about 540km2 were flooded.

The investigation presented in this Section is based on the extension of the flooded

areas after the event occurred on May 18th 2023. This dataset results from the merge of

the products from the Copernicus Emergency Management Service’s Mapping compo-

nent. These consist of the outputs for post-processing operations from the acquisitions

from different sensors at different times since 16th of May to 1st of June 2023. More

detail is given in the official technical report (https://emergency.copernicus.eu/ma

pping/ems/information-bulletin-167-copernicus-emergency-management-ser

vice-activities-following-latest). The maximum extension of the flooded area

is reported in Figure 9.19, where the ISPRA map released in 2017 is also represented.

It is evident that a large percentage of the flooded areas are labelled as non-flood-prone

according to the ISPRA map. This inconsistency is not present in the new version of the

map, released in 2021 (Trigila et al., 2021), but the present analyses exclusively relate
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on the 2017 dataset, since it served as target for training the models.

Figure 9.19: Boxplot of standardized GFI (univariate model, (a)) and p-value (multivari-
ate model, (b)) within the inundated areas in Romagna region during May 2023. Red
lines indicate the thresholds for the GFI classification (i.e., 0.27 as mean value) and for
the DT classification (i.e., 0.5 at national level)

The analyses follow the same scheme adopted for the validation against the three

inundation maps AL 21/10/19, BO 20/11/19, BO 21/11/19 and the LF-FP scenario

(see Section 9.7.4). First, the percentage of overlap is reported in Table 9.9. Here, what

observed in Section 9.7.4 is exacerbated, as the ISPRA map has a very low overlap (see

also Figure 9.19). The univariate binary map is the one with the best overlap, while the

multivariate one has characteristics in between the other two maps.

Table 9.9: Overlap between binary flood hazard maps (Target: reference flood hazard
map by ISPRA, 2018; Univariate: GFI DEM-based model; Multivariate: Decision Tree
DEM-based model) and validation map about Romagna region in May 2023. Highest
and lowest values for each column are marked in bold and italic, respectively.

Observed inundation event
Romagna, May 2023

Model km2 %
Target (ISPRA, 2018) 316.67 58.47

Univariate 489.83 90.47
Multivariate 426.89 78.81
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Second, the values of the standardized GFI and the p-value are examined in the

boxplots of Figure 9.20. Here, it is showed that the variability of the GFI values within

the flooded areas is much wider than the one of the p-value; thus, the major extension

of the flood-prone areas in the univariate binary map results from a lower threshold.

Figure 9.20: Boxplot of standardized GFI (univariate model, (a)) and p-value (multi-
variate model, (b)) within the inundated areas in Eastern Emilia-Romagna during May
2023. Red lines indicate the thresholds for the GFI classification (i.e., 0.27 as mean
value) and for the DT classification (i.e., 0.5 at national level)

Accordingly, looking at the values of the two indexes of flood-proness in detail in the

study areas, as it is done in Figure 9.21, one can promptly notice the improvement of the

informative content due to the multivariate model with respect to the univariate one.

9.9 Discussion

The Discussion of the results is divided into six subsections. First, the methodologies

adopted for the selection of the input DEM and flood hazard map are discussed. Then,

three subsections are dedicated to the research questions that mainly are addressed

within the application to Northern Italy. Namely, these are: (1) Can we profit from a

blend of various geomorphic descriptors for flood hazard assessment and mapping? (2)

Can we use simple ML techniques for effectively blending multiple GDs? (3) Are these

techniques capable of providing a reliable assessment of flood hazard over large areas in

extrapolation? Finally, the main research question for the application over all Italy is

discussed: Can we use DEM-based models to enhance existing flood hazard maps?
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Figure 9.21: Standardized GFI values (a) and p-value (b) within part of the inundated
areas (i.e., the province of Ravenna) in Eastern Emilia-Romagna during May 2023
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9.9.1 Selection of the input DEM

On the importance of the selection of the appropriate DEM for calibrating a DEM-

based flood hazard model, several studies are already present (e.g., Tavares da Costa

et al., 2019). For the study on Northern Italy, the selection of the MERIT DEM is

performed with a simple framework, based on two points: its declared hydrological con-

sistency and and its horizontal resolution. This method is adapt in its specific application

case, as the focus is to assess the goodness of the proposed models (i.e., the usage of

DTs, the set of input GDs, the predictive power in extrapolation). Indeed, a DEM with

finer resolution would have made increase the time and effort for processing the input

data and training the input models (see Section 9.3).

In the study over the whole of Italy, a more sophisticated framework for performing

this operation is given, trying to decrease subjectivity (see Section 9.6.3). The method

presented is valuable as it considers several characteristics of the DEMs: vertical accu-

racy, hydraulic consistency and resolution. In fact, even if the vertical accuracy is the

simplest way to evaluate a DEM, the calibration of a DEM-based model requires either

good reliability of the river network extracted. Also, a DEM with higher vertical accu-

racy in flat areas, where the flood hazard is generally more difficult to estimate, has to

be preferred over one with higher accuracy in mountainous contexts.

Indeed, one of the critical aspects of the proposed method is that some ground-truth

data for evaluating vertical accuracy of DEMs could be not available. In this case,

the selection should be based not only on the horizontal resolution, but also on the

hydraulic consistency (e.g., Magnini et al., 2022). As an example, the river network or

some geomorphic descriptors can be derived from the considered DEMs and compared

with a reference river network (Tavares da Costa et al., 2019, see). Alternatively, studies

showing that a specific DEM has good performance over the target area can be followed.

9.9.2 Selection of the reference flood hazard map

An objective evaluation of the most appropriate reference flood hazard map is very

difficult, as each map has its own advantages and weaknesses (see Section 9.6.4). In

these studies, a framework for a quantitative selection is given. The Authors are aware

the coverage of river network extent and the accuracy of flood hazard estimation are

two extremely different concepts. However, it is evident that in the case of the present

study, there are several areas of Italy where the minor streams are susceptible to floods

with 500years according to the ISPRA map (see, e.g., the extreme north-western spot of

Italy), while in JRC modelling they are not. Thus, it is reasonable to assume that these
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minor streams are accurately modelled in the ISPRAmap, and that they do not appear as

flood-susceptible in the JRC map due to the source area threshold (see Chapter 7). Thus,

evaluating the portion of modelled river network that is covered by flood prone areas can

be an effective way to quantify the comprehensiveness of the hydraulic modelling, and

is used here as a selection method for the reference hazard map.

This approach can be suitable for large study areas, as in the present study, but for

medium to small scale applications other aspects of the reference maps should also be

considered (e.g., the way hydraulic structures were modelled). Finally, the proposed

method requires to have a river network dataset to assume as reference, which should

be rather feasible, thanks to open source online resources as EU-Hydro. Nevertheless,

in case no dataset is available, a user-defined river network can be obtained by manual

extraction from satellite data.

9.9.3 Can we profit from a blend of various geomorphic de-

scriptors for flood hazard assessment and mapping?

The first goal of the present research is the evaluation of the improvement which can

be obtained by applying a machine-learning aided multivariate DEM-based flood hazard

assessment relative to a univariate DEM-based approach.

This research question is addressed by comparing the results obtained with the univariate

and multivariate DEM-based models, and is conveniently divided into two sections, each

one dedicated to a study area.

Application to Northern Italy

First, regarding the classification problem (i.e., differentiation between flood-prone

and flood-free areas), the outcomes reported in Figures 9.6-9.7 and Table 9.1 (rows 1-2)

suggest that the combination of multiple geomorphic descriptors (GDs) increases the

comprehensiveness of the morphological description of the study area. The resulting

multivariate data-driven model can reproduce the reference flood hazard map in a sig-

nificantly enhanced way relative to a univariate approach adopting a single GD. This is

particularly visible from the lower extension of wrongly-predicted areas (i.e., false pos-

itive, or FP, and false negative, or FN) in the classifier DT output map (ligth red and

blue areas in Figure 9.6) relative to the GFI output map (light green and blue areas in

Figure 9.7).

Second, concerning the regression problem (i.e., prediction of the flood intensity, such

as the expected maximum water-depth associated with a given probability of occurrence)
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the regressor DT considered for interpolation shows high accuracy in reproducing the

target map.

Also, it is worth highlighting that regressor DTs provide a direct estimate of this

variable, relative to the traditional univariate DEM-based approaches, which usually

requires the prior delineation of flood extent to compute water depth, as the elevation

difference between the flood-extent border and each pixel (see Manfreda and Samela,

2019).

Figure 9.9 highlights that the correlation between the predicted and target water depths

can be improved, yet it also clearly shows that predictions for the test set are unbiased.

It is worth mentioning here that the diagram neglects the true negatives (i.e. target and

predicted water depths are equal to 0.0m; 49.78% of the cases), false positives (i.e. only

predicted water depths are equal to 0.0m; 22.37% of the cases) and false negatives (i.e.

only target water depth are equal to 0.0m; 0.08%). While the occurrence of the most

concerning cases (false negatives) is very limited, predictions show significant margins

for improvement as far as the false positives are concerned. Nevertheless, it should also

be recalled here that the target map by its own very nature neglects smaller streams

(contributing area has to be higher than 500km2), whereas the decision tree regressor

looks at morphology only and provides water depth predictions also for smaller streams

(i.e. higher exhaustiveness, see Figure 9.8).

One of the most interesting aspects is the relevance that each GD assumes in the

regressor DTs (see Table 9.3). It can be observed that all models rely mainly on one

single GD, with Gini importance always in excess of 60%, but still, the multivariate

analysis leads to significantly better results relative to the univariate one. Also, it is

important to highlight that:

� While regressor DTs tend to depend mainly on the GFI, classifier DTs depend on

HAND

� While the input GDs have quite a similar Gini importance hierarchy in regres-

sor DTs, classifiers DTs assume different hierarchical structures depending on the

considered training area

� All models agree in giving low Gini importance to LGFI and TIm, probably due

to redundant information relative to GFI

� Elevation is very often ranked second, always associated with significant importance

Overall, this suggests that regressor DTs tend to operate by correcting a baseline esti-

mate that mostly relies on the GFI value. On the other hand, classifier DTs obtain their
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results by following different rules depending on the training data, and often prefer using

lower-levels features relative to more complex indicators such as the GFI. This sensitivity

to the training area makes difficult to set a priori weights to the GDs when building up

the models. It should be kept in mind, however, that different Gini importances do not

necessarily imply radically different classification rules, due to the existing correlations

between the input features. Ideally, dedicated feature selection and importance analysis

algorithms should be used to obtain deeper insight on how the different models come to

their conclusions; we plan to investigate this line as part of future work.

Application to all Italy

When comparing the binary maps obtained across the entire study area (Table 9.6),

the multivariate model achieves slightly better metrics than the univariate one, confirm-

ing what observed for Northern Italy. When focusing on smaller scales, the univariate

model performs slightly better for single inundation events, yet significantly worse at

a river branch scale (Table 9.8, sections “Observed inundation events” and “Synthetic

inundation scenario”, respectively).

On one hand, better overlap between inundation events and the univariate binary

map confirms the validity of GFI. In fact, while its computation is straightforward, its

accuracy for inundation susceptibility can be locally very significant. In particular, this

is true when the thresholding is performed through a watershed-wise strategy, as in this

case. On the other hand, the multivariate model trained nationwide shows higher accu-

racy in reproducing large inundation scenarios obtained through hydrodynamic modelling

(Figure 9.18). This confirms what observed for Northern Italy, and is a clear indication

that considering a variety of morphological descriptors as opposed to a single index leads

to a better delineation of the envelope of all possible inundation events, which is the true

objective of geomorphic floodplain delineation (see also dark blue areas in panels (b) and

(d) of Figure 9.15 on this point).

Differently than for Northern Italy, probably due to the usage of two distinct DEMs,

numerous discontinuities (i.e., isolated non-floodable pixels or small pixel clusters in

floodable areas and vice versa) can be identified in the multivariate binary map (right-

upper corners of Figures 9.17 and 9.18) by looking at specific areas in more detail. These

discontinuities result from the combination of the p-value thresholding (p-value=0.5),

that is required by the production of a binary map, with the nature of an approach

based on decision trees. In fact, as this multivariate approach is pixel-based, it does not

explicitly enforce spatial coherence of the output. These isolated pixels are behind the

lower metrics obtained while validating the multivariate flood-hazard map against the
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inundated areas for specific flood events (columns “Observed inundation events” in Table

9.8). On the contrary, discontinuities are not present in the univariate flood-hazard map,

due to the hydrological topologic consistence that characterises GFI. In fact, the con-

tributing area increases and the elevation above the nearest river-pixel decreases moving

downstream, implying a monotonic increase of GFI in the same direction. Nevertheless,

the GFI local descriptiveness of the actual susceptibility of a pixel of being inundated

may vary from region to region. Thus, relying only on GFI can lead to improved ac-

curacy in mountainous areas and upper river segments (central upper panel in Figure

9.17), and simultaneously to very significant and spatially broad inconsistencies in pre-

dominantly flat large areas (see e.g. the area North to the Po river in the central upper

panel of Figure 9.18). These findings are in line with the literature, where consistence of

univariate models is found to be higher in floodplain areas unaltered by humans (Nardi

et al., 2018, e.g., ) and influenced by river stream order (Annis et al., 2019).

9.9.4 Can we use simple ML techniques for effectively blending

multiple GDs?

The second research question of the study over Northern Italy is wheter it is possi-

ble to obtain a good estimation of flood hazard by combining multiple GDs with low-

complexity machine learning models. Differently from several other contributes in the

literature, we do not focus on model complexity nor on the comparison of different mod-

els (Wang et al., 2015; Khosravi et al., 2018; Mosavi et al., 2018; Arabameri et al., 2019;

Costache et al., 2020). Instead, we prefer to select one simple model type (i.e., decision

trees, DTs) and focus on the combination of the five innovative elements listed in the

Introduction; in this way, we can analyse the influence on the multivariate DEM-based

approach of the preliminary steps, consisting in data pre-processing (i.e., selection and

manipulation of input features, target maps, training set and test set). This is highly

important, because machine learning models do not reproduce the dynamics of the wa-

ter, as such, their performance is strictly linked to the data used for the training, that

need to be handled very carefully.

As it is highlighted in Section 9.9.3, the outcomes of the study over Northern Italy

(Figures 9.7-9.8, Tables 9.1-9.2) clearly show that DTs can effectively reproduce the tar-

get information (Figures 9.2-9.3) with high accuracy for both classification and regression

problem, even if the resolution of the MERIT DEM (Yamazaki et al., 2017), from which

the input GDs have been retrieved, is not very high.

Indeed, even if regressor DTs necessarily implicate discretization of the output vari-
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able, in the present study for Northern Italy large datasets and appropriate tree depth

allow us to obtain wide ranges of different water depth values.

Moreover, the trained DTs estimate flood hazard associated with different minor streams

that are neglected in the target maps (see red areas in Figure 9.6; compare Figure 9.8

with Figure 9.3). Due to the absence of information in these areas, it is not possible to

assess the goodness of the models output, but this tendency of completing target informa-

tion could be a key aspect for future applications to data-scarce or inaccurately mapped

regions, and thus, it could be considered as a promising characteristic of the models.

Additional considerations on this aspect follow in the next sections of the Discussion.

Overall, it is possible to observe that DTs are effective tools to combine GDs and

estimate flood hazard. This indicates that proper data handling has a strong influence

on the accuracy of the final estimation, which is comparable to the choice of a given

machine learning technique. In particular, we want to underline two elements of the

presented approach that have great importance on the predictive skill.

First, the utilization of flood hazard maps as target results in a large number of

pixels for the training and test set, and therefore a very broad spectrum of hydrologi-

cal/morphological characteristics, which represent a much more informative dataset rel-

ative to isolated points used by other authors for training more complex models (Lee

et al., 2017; Khosravi et al., 2018; Arabameri et al., 2019; Janizadeh et al., 2019).

Second, a sensible identification of a calibration area is very important for a successful

training, as it allows to neglect irrelevant pixels. To this aim, a preliminary sensitivity

analysis might be very useful for identifying the optimal buffering radius around the

target map (see Section 9.4.1), even if different approaches are proposed in the literature

(e.g., Degiorgis et al., 2012). Indeed, in the case of application of DEM-based methods

in data-scarce areas, where local flood-hazard modelling datasets may not be available,

global or continental flood hazard maps produced by the European Joint Research Cen-

tre (Dottori et al., 2016, 2021) can be used as a target.

These observations lead to the choice of using the same methodology for the appli-

cation over all Italy. In this case, the larger extension of the study area and the finer

resolution of the EU-DEM entail processing a huge amount of pixels from extremely

different morpho-climatical systems.

The discontinuities in predicted flood susceptibility described in Section 9.9.3 reveal

that DTs can produce spatial inconsistencies in some cases. This is probably due to

the size of the study area and the nature of the input DEM, and partially solved by

considering a continuous characterization of flood hazard instead of a binary mapping
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(Figures 9.15, 9.16). However, despite this drawback, the multivariate output has good

evaluation metrics (Tables 9.6 and 9.8), and DTs provide a better estimation of flood

hazard over large flat areas (Section 9.9.3). This is remarkable, as the calibration of the

univariate model is regionally-wise, while the one of DTs is unique for the whole of Italy.

Overall, the results obtained from this second study confirm the effectiveness of mul-

tivariate DTs for (a) reproducing accurately and (b) completing the target information.

9.9.5 Are these techniques capable of providing a reliable as-

sessment of flood hazard over large areas in extrapola-

tion?

The evaluation of prediction accuracy for geographical extrapolation (i.e., applying

the models in geographical areas, or watersheds, that have not been considered for pa-

rameterization and training) is a key and characteristic aspect of the application over

Northern Italy.

On the one hand, performing predictions with new input data is a major problem for

machine learning models; on the other hand, reaching good predictive skills in extrap-

olation is needed for future practical applications to data-scarce environments. What

is more interesting about this part is to understand the link between training and test

performances: if the relationship between input and target values, learnt by the model

during the training, is also valid for the extrapolation region, accurate test predictions

are obtained, but this depends strongly on the choice of input and target datasets for

the training, which can be very difficult. Before addressing this very issue, a careful

discussion of the resulting metrics and maps is required, as their interpretation is not

straightforward.

With reference to the classification problem, each metric suggests a different training

area as the best case, and this highlights how difficult it is to choose a single metric for

describing the goodness of a model for a binary classification. Figure 9.10 and TSS values

in rows 4-5 of Table 9.2 could suggest that Area B (test TSS=65%) has better extrapola-

tion performance than Area C (test TSS=33%). On the contrary, ACC is similar for the

two cases, and higher for Area C (ACC=88%) than for Area B (ACC=85%), suggesting

that TSS is a more informative metric than ACC in representing the model performance.

On the other hand, precision and recall appear to be quite unbalanced metrics, as areas

A and D lead to test prediction with considerable overextension of FN and FP values,

respectively (see Figure 9.10). Differently, regression metrics agree in pointing at the

DT trained in B as the best case (Table 9.3). However, the absolute values of R2, that
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depicts low-accuracy test predictions, do not reflect other metrics (MSE and MAE) and

the output maps (Figure 9.11).

As expected, the choice of the training area has great influence on prediction accuracy.

This is particularly visible for the classification problem: in Figure 9.10, the difference

between metrics for training and test is striking. Nevertheless, this difference becomes

less clear for the regression problem (Figure 9.11). The same observations are confirmed

by Table 9.3, where evidence is given of different structures for the classifiers DTs, while

the regressor DTs are all very similar. More in detail, the obtained results show that the

extent of the training area has less importance than the quality of the input data that it

contains. Perfect examples of this remark are classifiers DTs trained in A and D: even

if both A and D are very wide, prediction over the test area is affected by considerable

errors. This happens because A does not include any part of the Apennines, while D

ignores a large flat area in the eastearn coast, meaning that any geographical system

corresponds to a specific relationship between input GDs and flood susceptibility, and

thus it cannot be fully represented by a model trained with very different datasets. The

comparison between area B and C is also meaningful: while the training in B leads to

good test predictions for the classification, it is the worst case for the regression (the

opposite is valid for C). This is probably due to the fact that area B contains useful

information to delineate flood-prone areas, as it represents the upstream chapter of Po

river, but cannot adequately train a regressor DT, as it lacks high target values (i.e.,

high inundation water depths). To sum up, GDs combination with DTs is capable to

provide quite a reliable estimation of flood hazard (i.e., flood-prone areas and maximum

water depth) in extrapolation mode, but a careful choice of the training area is needed,

where target and input dataset is complete and representative for the test area.

9.9.6 Can we use DEM-based models to enhance existing flood

hazard maps?

Resolution of weaknesses of the reference flood hazard map

Finally, the increase in the extension of flood-prone areas in the DEM-based outputs

with respect to the reference ISPRA map should be discussed. This is a major task,

as no method exists to evaluate geomorphic-based flood hazard information where no

reference is available from hydraulic models. However, it is quite reasonable to expect

areas close to rivers to be flood-susceptible when considering a 500-years return period

(see also Section 9.9.2); thus, the overlap between the flood-prone areas and the river

network is considered in the present study.
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At a national scale, only the overlap for the DEM-based outputs can be compared

just with the one for the reference map (Table 9.7), while at a regional scale, the JRC

map can also be used (Table 9.10). In fact, in some regions the JRC has a major overlap

with the EU-Hydro river network than the ISPRA map, showing inconsistencies of the

latter. In these regions (Figure 9.13), the overlap values for the DEM-based models and

JRC map are very similar, and both higher that the ISPRA map (Table 9.10). This

shows that geomorphic approaches can effectively use the reference information collected

elsewhere to accurately predict flood susceptibility where exact reference is not available.

Globally (Table 9.7), it is possible to consider as an advantage the increase in overlap

for high Strahler orders (i.e., 3, 4, 5 and 6) observed for the multivariate model, as it

represents an advance with respect to the probable inaccuracy of the reference ISPRA

map. Differently, the huge overlap for minor streams (i.e., Strahler orders 1, 2 and 3) for

the univariate model should be considered suspiciously.

The results from the further investigation against the event occurred in May 2023 in

the Romagna region are in line with the previous observations. Both the DEM-based

models have greater overlap with the flooded area: while the univariate has about 100%

overlap, the multivariate has characteristics more similar to the target ISPRA map, even

if with a significant improvement of the agreement with the validation dataset (see Table

9.9).

It is important to mention that the updated of the ISPRA flood hazard map, released

in November 2021 (Trigila et al., 2021), does not have the same inconsistencies as the

version of 2017. However, the analyses described are still useful and valid, as the presence

of flood hazard maps with low accuracy is very frequent worldwide.

These findings seem to confirm that DEM-based models, in particular the multivariate

ones, can be useful to complete flood hazard information where it is already available

but with some inconsistencies (see also Lindersson et al., 2021).

Floodplain delineation vs flood hazard characterization

To conclude, concerning the informativeness of a binary geomorphological flood haz-

ard modelling, as opposed to a continuous representation of flood hazard, it is worth

comparing the standardized GFI values and the corresponding p-values from the multi-

variate approach. By looking at the left panels of Figure 9.15, and the lower panels of

Figures 9.17 and 9.18, all adopting the same colour scale, it is possible to observe that

both the indices assume higher values in floodplains and river proximity, correctly esti-

mating flood susceptibility in the entire spatial domain. However, the differences in the

strength of the regional patterns produced by the two modelling approaches are rather
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Table 9.10: Percentage of overlap between EU-Hydro river network, reference ISPRA
flood hazard, JRC map, and binary outputs from DEM-based models. Darker colour
means higher percentage (see Table 9.5). Only regions and Strahler orders where overlap
for JRC is significantly higher than for ISPRA are reported. When regions do not have
rivers with 6 Strahler order, values are missing.

Region Map Strahler 3 Strahler 4 Strahler 5 Strahler 6

Trentino
Alto-Adige

ISPRA 3.34% 10.21% 16.38% 5.05%
JRC 5.92% 4.85% 46.32% 71.34%

Univariate 57.61% 73.46% 87.89% 92.46%
Multivariate 16.08% 39.28% 52.47% 53.73%

Veneto

ISPRA 11.03% 4.37% 16.41% 20.50%
JRC 10.62% 3.37% 49.66% 55.44%

Univariate 54.46% 65.95% 72.71% 65.02%
Multivariate 29.70% 48.05% 63.41% 59.13%

Marche

ISPRA 2.52% 2.21% 0.19% -
JRC 3.16% 19.92% 47.55% -

Univariate 87.47% 92.65% 92.73% -
Multivariate 60.39% 80.16% 74.62% -

Lazio

ISPRA 14.78% 35.56% 76.87% 48.63%
JRC 4.90% 22.54% 79.57% 83.57%

Univariate 72.47% 86.91% 98.72% 91.30%
Multivariate 48.41% 72.10% 90.69% 84.72%

Abruzzo

ISPRA 23.36% 34.12% 49.23% 66.34%
JRC 2.01% 5.65% 61.13% 87.04%

Univariate 74.03% 85.97% 92.59% 95.90%
Multivariate 35.59% 64.65% 72.39% 89.31%

Sicily

ISPRA 10.17% 35.59% 19.18% -
JRC 1.01% 16.90% 78.50% -

Univariate 84.28% 93.31% 97.90% -
Multivariate 59.39% 82.19% 84.16% -

striking. On one hand, the p-values show a smooth and gradual decrease moving further

away from the river network, and higher values in floodplains relative to standardized

GFI values.

On the other hand, very high standardized GFI values can be found in well-defined

areas and very close to the river network. Then, the univariate flood susceptibility de-

creases rather abruptly when moving from the river network to its immediate proximity,

having an overall variability between 0.2 and 0.0 from a river floodplain to a mountain

peak. This is confirmed by the boxplots of Figure 9.16, showing that the inundated

areas of the studied flood events are characterized by lower standardized GFI values

and narrower ranges relative to the p-values associated with the multivariate model. An

additional confirmation is the low GFI thresholds (red lines in Figure 9.16) obtained in

calibration for the four considered areas, and the corresponding wider floodplains de-
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lineated through the univariate flood hazard model.The investigation against the catas-

trophic flood in Emilia-Romagna in May 2023 is an additional confirmation. Here, the

GFI values are still lower than the p-value in average, but their range is wider (Figures

9.20 and 9.21). This is due to the extension of the inundations, that include even areas

far from the main river bed. Hence, a better agreement between the p-value and the

inundation extent is confirmed.

The above considerations can support a more efficient and effective use of DEM-based

flood hazard modelling products. In fact, most of the scientific literature focuses on the

capability of these models to reproduce binary target flood-hazard maps. However,

these models produce a great deal of information on susceptibility to inundation that is

mostly lost if binary mapping, which we could also refer to as “floodplain delineation”,

is preferred to a continuous representation of flood susceptibility, which instead is closer

to a “flood hazard mapping” in the strict sense. Just a few studies (e.g., Avand et al.,

2022; Deroliya et al., 2022; Costache et al., 2020) show the application of DEM-based

approaches for obtaining spatially continuous flood-susceptibility maps, but their models

are trained on a pool of single inundation events. Thus, their analyses do not extensively

focus on the information gain with respect to floodplain delineation, and rather show

how their approaches can combine sparse information into a coherent output. Differently,

we train our models on binary flood hazard maps, and examine how these methods can

improve information on flood hazard maps that is already available.

In this context, continuous representation of flood susceptibility can be used for

the entire study domain, or limited to a buffer of delineated floodplains (i.e., binary

maps), proving a graphical representation of the uncertainty of the binary map itself.

Based on the outcomes of the present study, when a continuous spatial representation of

flood hazard is considered, a simple multivariate approach to geomorphic flood hazard

modelling seems to be associated with much higher potential and informativeness of a

univariate modelling adopting a single, and yet very effective, morphological index.

Overall, the analyses above show the effectiveness of a new application of DEM-based

models. So far, most of the literature describes how they can mimic pre-existing flood

hazard maps (e.g., Nardi et al., 2018; Manfreda et al., 2014), derive spatially continuous

estimation of flood susceptibility from multiple single measurements of inundation events

(e.g., Costache et al., 2020; Avand et al., 2022), or predict flood hazard over data-

scarce regions (e.g., Magnini et al., 2022). Differently, we gave evidence that DEM-based

modelling can be used for enhancing incomplete or inexact information contained in

national target flood hazard maps. This is possible thanks to their natural capabilities

to produce spatially homogeneous and continuous flood-susceptibility maps, which seem
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to gain robustness when using a variety of morphometric indices instead of a single one.

So far, the main limitations of geomorphic approaches, in particular in coastal and flat

areas as observed by other authors (e.g., Lindersson et al., 2021), remain unsolved. Also,

evaluating the goodness of the additional information produced by DEM-based models

with respect to the reference maps (e.g., minor streams) is very challenging. In these

cases, appropriate use of global flood hazard maps and ancillary datasets (e.g., JRC flood

maps and EU-Hydro river network) can be resolutive.

9.10 Conclusions

This Chapter analyzes and compares data-driven and resource-efficient methods for

assessing and mapping riverine flood hazard across large geographical areas. It illustrates

the potential and limitations of combining different geomorphic descriptors by means of

decision trees for delineating flood prone areas and for predicting the expected maximum

water depths for a given return period.

Two consecutive applications of a common methodology are outlined. First, we focus

on a large study area in Northern Italy (size ∼ 105km2) containing Western, Central and

part of the Eastern Italian Alps, part of the Northern Apennines and the floodplains

of a complex river-system including the main rivers Po, Adige, Brenta, Bacchiglione

and Reno. The morphology of the study area is described by the Multi-Error-Remover

Improved-Terrain model (MERIT DEM; Yamazaki et al., 2017), with a 90-meter reso-

lution, approximately. Decision trees are trained using as input features the geomorphic

descriptors retrieved from the MERIT DEM, and as target maps two different datasets:

one representing flood extent with a reference return period of 500 years, and one repre-

senting expected maximum water depth for a 100-year return period scenario.

In the second application, the whole of Italy is considered; the EU-DEM, with 25-

meter horizontal resolution, is used to describe the study area, while the official flood

hazard map for Italy is used as reference for the training. In both the studies, univariate

and multivariate DEM-based models are built up. The univariate models rely only on

the geomorphic flood index (or GFI; Manfreda et al., 2014), which is one of the most

accurate and versatile (e.g., see Samela et al., 2017). The multivariate models use a

data-driven blend of various DEM-based indices, including GFI.

Relative to previous studies focusing on morphometric floodplain delineation and

flood-hazard mapping (see e.g., Dodov and Foufoula-Georgiou, 2006; Nardi et al.,

2006; Manfreda et al., 2011, 2014, 2015; Samela et al., 2017; De Risi et al., 2018) and
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machine-learning aided multivariate flood hazard mapping (see e.g., Gnecco et al., 2017;

Arabameri et al., 2019; Janizadeh et al., 2019; Costache et al., 2020), our analyses rep-

resent a relevant advacement of knowledge. In fact, several elements are simultaneously

combined: (a) an effective framework for selecting the appropriate input DEM and refer-

ence flood hazard map is presented, relying on the open-source EU-Hydro river network

dataset (Gallaun et al., 2019); (b) only strictly DEM-based morphometric data and in-

dices are used for predicting flood hazard; (c) morphological characterization of flood

hazard associated with a given probability of occurrence is studied separately as a clas-

sification problem (i.e., generation of binary flood hazard maps) and as a regression

problem (i.e., prediction of expected maximum inundation water depth); (d) machine

learning models (i.e., decision trees) are trained using pre-exhisting flood hazard maps

as target information; (e) univariate geomorphological assessment of flood hazard (i.e.,

one geomorphic descriptor used as predictor) is thoroughly compared with a multivariate

assessment, in which several DEM-based geomorphic descriptors are blended together by

means of decision trees; (f) potential and accuracy of DEM-based flood hazard prediction

is assessed in geographical extrapolation by applying models trained on specific geograph-

ical areas to different areas having diverse morphologic and/or hydrological features; (g)

abilities of the models is investigated to resolve heterogeneities and inconsistencies of the

same reference map used for training.

In particular, we address four main science questions: (1) can we profit from a blend

of geomorphic descriptors to perform flood hazard mapping with respect to a univariate

DEM-based approach? (2) Are decision trees a valid tool for combining multiple geomor-

phic descriptors? (3) Is this approach capable to predict flood hazard over large areas

in geographical extrapolation? (4) Can we use DEM-based models to enhance existing

flood hazard maps?

With reference to the first and second questions, the models are trained and tested

with different sets, consisting respectively in randomly-selected 85% and 15% of the

pixels contained in a buffer area around the flood-prone areas of the target maps. The

results obtained for the classification problem (i.e., binary flood susceptibility mapping,

or floodplain delineation) show high performance metrics in validation relative to the

univariate approach. In particular, the combination of DEM-based descriptors leads

to much more accurate results in flood-prone areas delineation over predominantly flat

regions. Concerning the regression problem (i.e., estimating maximum inundation water

depth associated with a 100-year return period), good performances are confirmed in

validation as well.
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Also, with reference to the third question, we test the proposed approach in a second

mode, which we termed geographical extrapolation. We delineate four different subre-

gions of Northern Italy to train classifier and regressor decision trees by selecting four

areas belonging to four different hydrologically-coherent geographical systems. When

tested on the remainders of the first study area, the four different models show different

extrapolation performances depending on the morphological features (e.g. Apennines

vs. Alps) and the broadness of the hydrological conditions included in the training

subregions. In particular, concerning the classification problem, models trained in ar-

eas containing headwater catchments of the main rivers can extrapolate better over the

downsteam portions of the basins than vice versa. Concerning the regression problem,

the selection of the training area must rely not only on these morphological and hy-

drological features, but also on the availability of a sufficently wide range of values for

the target variable (i.e., maximum water depth in our case) within this area, in order

to adequately train the model. This means that training in headwater catchment ar-

eas performs very poorly for extrapolating maximum water depth across downstream

floodplains.

Concerning the fourth research question, we focus on a national scale, and analyse

the ability of DEM-based models of handling the secondary river network, and producing

spatially-continuous and homogeneous characterization of flood hazard. These advan-

tages are naturally offered by geomorphic methods, but yet just partially exploited (e.g.,

see Deroliya et al., 2022), and not fully discussed. Accordingly, we validate the univariate

and multivariate models against independent information, that is remotely-sensed inun-

dated areas during three different flood events, and a synthetic catastrophic inundation

scenario obtained as the envelope of several 2D hydrodynamic simulations. In brief, it is

observed that (a) multivariate DEM-based models can be used to complete flood hazard

information (with reasonable uncertainty) where the reference map is incomplete or in-

accurate; (b) the spatially continuous representation of flood susceptibility (flood hazard

mapping), should always be preferred to a binary representation (floodplain delineation)

as it provides a wealth of information, e.g. on uncertainty and descriptiveness of the

simplified DEM-based model; (c) in case spatially continuous flood susceptibility maps

are to be prepared, multivariate approaches (e.g., p-value from a decision-tree classifier)

seem to be preferable to univariate ones (e.g., GFI alone) due to their higher descrip-

tiveness and information content.

In conclusion, multivariate DEM-based analysis by means of decision trees is very

effective in estimating flood hazard relative to univariate approach, and that these tech-
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niques have good potential in extrapolation mode as well. Also, we suggest a more

effective use of national flood hazard maps obtained from DEM-based models: instead

of mimicking the national target flood hazard maps, which are often heterogeneous and

inexact, we should rather exploit the training information to produce spatially homoge-

neous and continuous flood-susceptibility maps.

Different elements of this work can be further examined in future studies, in order

to deepen the collective knowledge and understanding of the DEM-based multivariate

techniques. First, classifier and regressor decision trees could be compared with other

multivariate approaches, whose training is based on different target maps (e.g., inun-

dation maps derived from satellite products). Second, finer resolution DEMs could be

used, in order to increase the accuracy of the morphological description of the study area

(see, e.g., Annis et al., 2020a). Third, to further enhance the input information, soil and

climate data (e.g., permeability and precipitation) could be added beside geomorphic

descriptors. Finally, more complex machine learning models should be tested, for better

characterizing the impact of selecting a given technique on the accuracy of flood hazard

assessment.
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Final remarks

The present Thesis describes the application of innovative and efficient data-driven

approaches to two distinct, yet closely related, research areas of flood hazard assessment:

regional frequency analysis of rainfall extremes, and flood hazard mapping.

In both of these research domains, the existing scientific literature is rich in terms

of approaches aiming to solve complex problems through models of reasonable complex-

ity. These approaches benefit from low computational efforts and ease of access to the

necessary input information, but are susceptible to significant inconsistencies in certain

scenarios. In the research detailed in the preceding Chapters, innovative data-driven ap-

proaches are introduced, aiming to relax assumptions and limitations of the previously

adopted methods. The new models take advantage of machine learning techniques, which

allow to increase the number of input variables relative to the benchmark approaches, and

capture non-linear relationships. Importantly, all the models employed rely exclusively

on open datasets and are viable for applications to large study areas.

In detail, this Dissertation addresses the following reseach questions: Can we adopt

machine learning (ML) techniques to enhance well-established flood hazard models? Can

we exploit intrinsic capabilities of ML for extending our study areas while maintaining

general validity? Can we rely solely on open-access input information? Can we benefit

from the change by transitioning from univariate to multivariate models? The research

described in the present Dissertation aims at addressing these very complex and not yet

exhaustively answered questions.

In Part 1, the focus is regional frequency analysis (RFA) of sub-hourly rainfall ex-

tremes over a large study area in Northern Italy. In the framework of the widely adopted

storm index method (Dalrymple, 1960), the benchmark approach considered for the re-

gionalization of the L-moments is the one from Castellarin et al. (2005); Di Baldassarre
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et al. (2006). Based on the findings of Schaefer (1990) and Alila (1999), this approach

consists of modelling a simple exponentially decaying relation where the L-CS and L-

CV (i.e., L-coefficient of skewness and L-coefficient of variation, see Hosking and Wallis,

1997) depend only on the mean annual precipitation (MAP). In other words, the mean

cumulative yearly precipitation, a readily available and widely observed variable, is used

as a proxy for extreme precipitation. This, in turn, eliminates the need for extensive time

series data for precise local estimations of extreme rainfall statistics, which are estimated

on a regional basis instead.

Chapter 5 describes an innovative approach for RFA that makes use of ensembles of

unsupervised artificial neural networks (ANN). Four models were set up with a different

set of input descriptors: the first (MAP-ANN) makes use of the MAP solely, the second

(EXT-ANN) relies on an extended set of twenty variables, inclunding distance from the

coast, orographic barriers, slope, and elevation (Magnini et al., 2024). The third and

fourth build on a pre-processed version of the extended set through principal component

analysis (PCA) and canonical correlation analysis (CCA), respectively. The aim of the

ANN models is to find a regional relation that links the parameters of a Gumbel distri-

bution for the annual maximum rainfall depths to the input descriptors of climate and

morphology for any duration within 1-24 hours.

The validation over a set of 100 gauging stations reveals that the improvement with

respect to the benchmark approach is significant, specially when considering longer du-

rations. Moreover, the very nature of the proposed ANN models makes them suitable

for interpolating predicted subdaily rainfall quantiles across time-aggregation intervals

and space. Indeed, the proposed framework has some limitations. First, a notable chal-

lenge lies in the relatively low correlation between predicted and locally fitted quantiles,

which is particularly evident for short durations. Second, the number of input descrip-

tors, while beneficial for model accuracy, can complicate the practical application of the

models. Third, the utilization of the 2-parameter Gumbel distribution may locally result

in underestimation of the highest quantiles. However, despite these inherent limitations,

which make necessary further investigation in subsequent studies, the potential presented

by machine learning in this context remains significant. Notably, this approach dispenses

with the need to assume specific shapes for the relationships between morpho-climatic

descriptors and statistical outputs, and it allows for the inclusion of a wide range of input

features that may capture any pertinent factors.

Part 2 focuses on simplified methods for flood hazard mapping. These are usually re-

ferred to as DEM-based or geomorphic approaches, since they mainly rely on geomorphic
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descriptors of the study area retrieved from digital elevation models (DEMs).

In this context, it is common practice in the literature to employ machine learning

(ML) algorithms to integrate various data types, which frequently include non-DEM-

based features such as geology, precipitation and land use. However, most of the multi-

variate DEM-based models in the literature are calibrated (or trained) using a reference

dataset derived from isolated flood events. On the one hand, this leads to flood suscep-

tibility prediction that is not directly associated with a specific return period, and, on

the other hand, to locally satisfactory predictive skills yet with uncertain generalization

abilities.

In Chapter 9, an innovative DEM-based approach is proposed and extensively dis-

cussed (Magnini et al., 2022). It is based on a blend of seven exclusively DEM-based

geomorphic descriptors, that are combined with decision trees to reproduce and extrap-

olate flood hazard information contained in pre-existing target maps. This approach

draws inspiration from various characteristics found in existing literature, carefully se-

lected to create a model whose set-up process is as straightforward as possible.

First, the methods are applied to a large and morpho-climatically complex study are

in Northern Italy. During the evaluation of model accuracy, the potential of the mod-

els when applied to new areas is tested, showing for the first time in the literature the

potential and the limitations of such an approach for a real application to data-scarce

areas.

Through a second, nation-wide application to the whole of Italy, we take an ad-

ditional step by exploring a novel utilization of DEM-based methods (Magnini et al.,

2023). Differently from the previous literature, in this case the models are applied to

the same study area where training is performed. Then, through a detailed comparison

with respect to a set of validation datasets, the ability of DEM-based models to exploit

their natural features to enhance flood hazard mapping over the study region is investi-

gated. Final results show the potential of these methods for completing the information

of imperfect reference flood hazard maps, and the advantages of continuous representa-

tion of hazard over binary flood maps. Thus, new encouraging pathways for data-driven

methods for flood hazard mappings are delineated.

Indeed, the aim of the data-driven techniques proposed, described and discussed

within this Dissertation is not meant to be an alternative to accurate and well established

physically-based models. Instead, the results obtained clearly exemplify how existing ML

techniques can be effectively leveraged to process multiple open datasets and improve

accuracy for flood hazard assessment and mapping.
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It is showed how either complex (i.e., ANNs) and simple (i.e., decision trees) models

can improve the performance of benchmark approaches. Multivariate functions of the

input descriptors are built for representing flood hazard and rainfall over large and mor-

phoclimatically complex study areas. In general, the results obtained are encouraging,

as seen for the longer durations in sub-daily precipitation events and the capability of

DEM-based models to extend flood hazard information where target data are not avail-

able. However, much research is needed in those areas in which the proposed models

show significan margins of improvement, as it is observed for shorter durations in rainfall

RFA, and for discontinuous flood hazard characterization from decision trees.
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