
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN

INGEGNERIA ELETTRONICA, TELECOMUNICAZIONI E
TECNOLOGIE DELL'INFORMAZIONE

Ciclo 36

Settore Concorsuale: 09/H1 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

Settore Scientifico Disciplinare: ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE
INFORMAZIONI

ADDRESSING CHALLENGES IN HETEROGENEOUS EMBEDDED SYSTEMS
PROGRAMMING: SECURITY AND PERFORMANCE

Presentata da: Emanuele Parisi

Supervisore

Andrea Acquaviva

Esame finale anno 2024

Coordinatore Dottorato

Aldo Romani

Co-supervisore

Luca Benini

Abstract

Embedded systems are increasingly integral to daily life, improving and facilitat-
ing the efficiency of an increasing number of systems, spanning from industrial
plants, to healthcare devices and autonomous vehicles. The emergence of Cyber-
Physical Systems has enhanced the digital computational capabilities of modern
Embedded Systems with access to real-world data coming from sensor readings,
and the possibility to act in the physical world through the control of actuators.
As the architecture of these systems becomes increasingly complex, incorporating
parallel clusters and custom hardware accelerators, as well as being integrated into
safety-critical scenarios, utilizing their computational capabilities effectively poses
numerous challenges. Additionally, ensuring security features are in place to avoid
harm to individuals and assets is a crucial concern. The research primarily addresses
challenges in contemporary Embedded Systems, focusing on platform optimization
and security enforcement.

The initial section of this study delves into the application of machine learning
methods to efficiently determine the optimal number of cores for a parallel RISC-V
cluster to minimize energy consumption. This is achieved through static source code
analysis. Results from experiments conducted on a contemporary RISC-V System-on-
Chip demonstrate that automated platform configuration is not only viable but also
that there is a moderate performance trade-off when relying solely on static features.
Consequently, this preliminary result shows room for exploration and development
of more intricate platform configuration systems based on static source code analysis
techniques.

The second part focuses on addressing the problem of heterogeneous device mapping,
which involves assigning tasks to the most suitable computational device in a
heterogeneous platform for optimal runtime. The contribution of this section lies in
optimizing the training framework for deep-learning models aimed at solving this
problem. A new data pre-processing technique is introduced, along with a training
framework called Siamese Networks, that enhances the classification performance
of DeepLLVM, an advanced approach for task mapping. Importantly, these proposed
approaches not only improve the classification performance of DeepLLVM but are
also independent from the specific deep-learning model used. This offers potential
enhancements to accuracy across various state-of-the-art methodologies.

vii

The final aspect of this research work focuses on addressing issues concerning the
binary exploitation of software running in modern Embedded Systems. It proposes
an architecture to implement Control-Flow Integrity in embedded platforms with a
Root-of-Trust, aiming to enhance security guarantees without extensive hardware
modifications. The approach involves enhancing the architecture of a modern RISC-V
platform for autonomous vehicles by implementing a side-channel communication
mechanism that relays control-flow changes executed by the process running on the
host core to the Root-of-Trust. The firmware of the Root-of-Trust is then modified to
analyze and enforce the desired Control-Flow Integrity policy in software, notifying
any security violations back to the host core. This approach has minimal impact
on system performance as shown through testing using well-known benchmark
suites, demonstrating its feasibility and effectiveness in enhancing security within
embedded RISC-V platforms.

viii

Contents

1 Introduction 1
1.1 Challenges in system performance . 1
1.2 Challenges in system security . 2
1.3 Outline . 3

2 Background 5
2.1 Techniques for source code analysis 5

2.1.1 Source code language abstraction 5
2.1.2 Source code structure analysis 8
2.1.3 Source Code Representation 11

2.2 Architecture of the reference RISC-V platform 15
2.2.1 CVA6 and Host Domain architecture 15
2.2.2 Root-of-Trust architecture . 17
2.2.3 Programmable Multi-Core Accelerator architecture 18

2.3 Security and Binary Exploitation . 19
2.3.1 Code-Reuse Attacks and Return-Oriented Programming 19
2.3.2 Control-Flow Integrity . 21

3 Machine Learning-based Device Configuration 23
3.1 Introduction . 23
3.2 Methods . 24

3.2.1 Methodology . 24
3.2.2 Dataset description . 25
3.2.3 Energy model . 27
3.2.4 Feature selection . 27

3.3 Results . 29
3.3.1 Test Bed . 29
3.3.2 Dataset analysis . 30
3.3.3 Optimal configuration selection 31

3.4 Conclusions . 34

4 Deep Learning-based Heterogeneous Device Mapping 35

ix

4.1 Introduction . 35
4.2 Methodology . 37

4.2.1 DeepLLVM network topology 37
4.2.2 Enhanced auxiliary inputs processing pipeline 39
4.2.3 Siamese training topology and Contrastive Loss 40

4.3 Results . 42
4.3.1 Machine learning models and training hyper-parameters . . . 42
4.3.2 Impact of auxiliary input preprocessing 43
4.3.3 Comparative results . 46

4.4 Conclusions . 47

5 Control-Flow Integrity enforcement in the Root-of-Trust 51
5.1 Introduction . 51
5.2 CFI Extensions and OpenTitan Firmware 53

5.2.1 SoC Modifications and CFI Mailbox 53
5.2.2 Host Core Modifications . 54
5.2.3 OpenTitan Firmware Design 56

5.3 Experimental Results . 56
5.3.1 OpenTitan firmware analysis 57
5.3.2 Runtime overhead . 58
5.3.3 Hardware utilization overhead 60

5.4 Security Assumptions and Implications 60
5.5 Conclusions . 61

6 Conclusions 67

Bibliography 69

x

List of Figures

2.1 Comparison between a linear algebra function expressed in C or in
LLVM-IR. 6

2.2 Summary of representation techniques for a C function. 9
2.3 Architecture of the reference RISC-V system-on-chip used. 15

3.1 Workflow to identify the minimum energy parallelism on a PULP cluster
and to define a dataset composed of static and dynamic features. . . . 24

3.2 Classification accuracy obtained by the classification mode, as a function
of the tolerance on the energy minimum. The left plot compares static
and dynamic features with the naive “always-8” choice. The right plot
shows the classification accuracy for different static features. 32

4.1 Representation of the DeepLLVM [3] data pro-processing and model
topology. 48

4.2 Distribution of auxiliary input features for the two datasets considered.
Each point is coloured in green or orange depending on its label. . . . 49

4.3 Siamese network training. First, the weight of the core network are
trainined using the contrastive loss computed on the projections of the
points in the train folds. Then, centroids of same class samples are
computed and the a label is assigned to each sample in the test set,
depending on the closer centroid. 49

5.1 Architecture of TitanCFI. The diagram highlights the proposed architec-
tural modification to the SoC (left) and CVA6 core (right) 53

xi

List of Tables

3.1 The energy model used to label the dataset. The energy consumption
of every system-on-chip component is modeled by its leakage and and
the dynamic energy required per cycle, depending on its state. 26

3.2 Description of the different class of static features used to predict
platform configuration. 28

3.3 Dynamic features used train the decision tree classifier. 29
3.4 Static and dynamic features ranked by their importance score. 33

4.1 Dataset composition [19]. The first two columns are the number of
benchmarks in suite (Benchmarks) and the number of unique kernels
in suite (Kernels). In the complete dataset, composed by the tuple Code
and Meta-information, each suite has a different number of pairs. . . . 36

4.2 Results of meta-information dataset classification using decision tree
and multi-layers perceptron for raw and normalized data. 40

4.3 Training and callbacks hyper-parameters used to train the proposed
machine learning models. 43

4.4 Impact of auxiliary input preprocessing on model accuracy. 44
4.5 Impact of auxiliary input preprocessing on [19] and [8]. 45
4.6 Comparison with state-of-the-art methodologies. 45

5.1 Cycles required to implement the return address protection policy in
OpenTitan . 62

5.2 Slowdown compared to [50] and [22] 63
5.3 Analysis of slowfown for EmBench-IoT and RISC-V Tests. 64
5.4 FPGA resource utilization compared to [50] 65

xiii

Introduction 1
Embedded systems are becoming increasingly common in many domains, they have
become an integral part of our daily lives, enhancing it in every way possible. From
consumer electronics to industrial automation, the advances in hardware architec-
tures and integration in complex systems along side with sensors and actuators
have paved the way for creation of Cyber-Physical Systems. These systems are
vital for making everyday tasks more efficient and effective. The importance of
Cyber-Physical Systems has grown in recent years, due to their ability to implement
complex monitoring and control tasks across a variety of industries including man-
ufacturing, energy, healthcare, and transportation. Such pervasive adoption, the
need to run increasingly complex applications efficiently, and their involvement in
safety-critical environments pose numerous challenges in their programming and
security enforcement on such systems.

1.1 Challenges in system performance

As Dennard’s scaling approaches its limits and the progress of Moore’s law slows,
contemporary embedded architectures strive to achieve energy efficiency and high
computational performance by integrating general-purpose CPUs with hardware
accelerators. They also utilize parallel clusters, such as CPU-GPU or CPU-FPGA
heterogeneous architectures, to leverage the strengths of different processing units
and optimize overall performance. In addition, platform configuration plays a vital
role in this context by utilizing scalable parallelism, optimized memory access pat-
terns, and flexible low power states to enhance energy efficiency. Considering the
computational demands, determining the optimal configuration of cores for energy
efficiency depends on factors such as processing pressure and power consumption
across different functional states. Embedded systems have embraced heterogeneity
and configurability; however, selecting the most appropriate accelerator and its
setup for specific kernels remains a challenge that requires expertise in this domain.
Although there have been attempts to automate hardware selection and configura-
tion using machine learning methods, numerous challenges still persist in this area.
One important consideration is determining the appropriate level of abstraction for

1

representing a program, whether it should be in a high-level programming language,
compiler intermediate representation, or assembly. Additionally, there are ongoing
research efforts focused on defining transformations to encode software into formats
that can be analyzed by machine learning models. Another challenging aspect
is developing strategies to effectively train these models when faced with limited
samples available in modern datasets.

1.2 Challenges in system security

Embedded systems are commonly used in critical infrastructure and applications,
including healthcare implantable devices, energy facilities, and automotive systems.
It is crucial to address security vulnerabilities in these systems as they can have
severe consequences. For instance, security issues in smart grids can result in service
disruptions and economic losses. Similarly, information leaks or data tampering from
medical implantable devices and automotive control systems can compromise their
functionality and pose significant risks to people’s lives. An additional complication
is that deeply embedded systems are frequently programmed in languages that
lack memory safety, leading to a higher likelihood of security vulnerabilities due to
software bugs during development. Although secure boot and firmware verification
protocols authenticate the software at startup, these measures cannot prevent a
determined attacker from exploiting any read or write vulnerability in the code. This
allows them to bypass traditional memory protection mechanisms and manipulate
the control flow of the targeted program using "Code-Reuse Attack" techniques
with malicious intent. To address these security risks, present-day System-on-Chip
designs include Control-Flow Integrity enforcement policies. These policies aim to
ensure that the control flow of an application follows the predetermined constraints
established by the developer during design and alert the platform runtime if any
violations occur. However, implementing a flexible CFI scheme on modern embedded
systems poses challenges such as avoiding substantial area overheads or developing
a hardware modules from scratch while still allowing for potential updates after
deployment. Embedded systems in the modern era are faced with the challenge
of being connected to public, unsafe networks. This connectivity raises concerns
about the security of these devices. Although there are existing security measures to
ensure data confidentiality, integrity, and authenticity between embedded systems, it
is still necessary to provide user space applications with access to secure enclaves for
storing cryptographic secrets in tamper-proof memories that can only be accessed by
trusted software. Additionally, incorporating cryptographic accelerators can enhance

2 Chapter 1 Introduction

the execution speed of essential security operations including digest computation,
encryption of data streams, and signature verification.

1.3 Outline

This thesis aims to contribute to the advancements in techniques for enhancing the
efficiency and security of modern embedded systems. The rest of this manuscript
is divided into two parts, which discuss various techniques that address challenges
related to programming and security enforcement in these systems. The first part
focuses on analyzing source code using machine and deep-learning models to
improve energy efficiency and runtime performance in modern embedded systems.
The background section provides an overview of state-of-the-art techniques for
representing source code and extracting features. In the second chapter, we address
the challenge of finding the best configuration for a parallel embedded RISC-V cluster
through traditional machine learning methods. Additionally, we evaluate how static
analysis compares to dynamic feature extraction when it comes to achieving accurate
classifications. The third chapter introduces the problem of heterogeneous device
mapping, a binary classification problem when a deep neural network has to learn
whether a task is optimally mapped in a CPU or on a hardware accelerators. It
also describes how CNN can be used for analyze token streams and compares
the accuracy with recurrent models. Finally, chapter four closes the first part,
describing a set of techniques based on graph neural networks auto-encoders to
learn a language model for source code. The second part of the thesis focuses on
addressing security concerns in modern embedded systems, specifically ensuring
execution authenticity and improving network stream performance through the
utilization of hardware accelerators on RISC-V platforms. The background chapter
presents a detailed overview of the reference RISC-V platform used for developing
our proposed solution. It also provides an explanation of the architecture employed
by OpenTitan, our chosen root-of-trust mechanism for enforcing security measures,
along with an exploration into Code Reuse Attacks and Control-Flow Integrity
principles. In Chapter 2, we propose a solution to enforce arbitrary Control-Flow
Integrity policies within OpenTitan’s Root-of-Trust infrastructure while comparing
this approach against alternative enforcement schemes that rely on custom hardware
accelerators in terms of their impact on execution and system resources. Chapter 3
showcases how the OpenTitan Root-of-Trust can seamlessly accelerate cryptographic
operations compared to software-based execution methods. The final chapter of
the thesis outlines the key findings and proposes future directions for addressing

1.3 Outline 3

programming and security issues in latest embedded systems. It summarizes the
main results obtained and suggests potential focus areas to overcome the challenges
identified.

4 Chapter 1 Introduction

Background 2
2.1 Techniques for source code analysis

Computational problems are solved using algorithms, which consist of a series of
operations that provide a solution based on a given input data. In the context of
computer programming, these algorithms are expressed in programming languages
following specific rules and procedures. However, this type of representation may
not be suitable for machine learning models that require numerical features as
input. To overcome this challenge, researchers in the field of AI-based source
code analysis have proposed various techniques to transform code into numerical
representations compatible with machine learning models. The following subsections
describe state-of-the-art methodologies for representing source code as numerical
input. Subsection 2.1.1 discusses the level of abstraction at which source code
can be analyzed. Subsection 2.1.2 focuses on structural representation of sources,
and it discusses two ways of observing code: as a sequence of tokens, or as a
graph. Finally, Subsection 2.1.3 details how to translate a program into a numerical
representation.

2.1.1 Source code language abstraction

Previous studies in this area have investigated various approaches to represent
source code before utilizing it in machine learning models [2]. These approaches
typically involve either using the original representation in a high-level program-
ming language or exploiting intermediate representations generated by compilers.
Utilizing the original high-level language representation offers several advantages,
including independence from specific compilers, platforms, and optimization chal-
lenges. It also provides flexibility for developing different heuristics. Preprocessing
steps can be applied initially to remove semantically irrelevant elements such as
comments. Furthermore, this approach preserves the expressive nature of high-level
code structures while ensuring robustness in classification tasks.

Employing intermediate representations generated by compilers, such as LLVM
Intermediate Representation (LLVM-IR) [37] or GCC Gimple [40], has emerged as

5

Figure 2.1: Comparison between a linear algebra function expressed in C or in LLVM-IR.

a preferable alternative [4]. This approach has several advantages as well. Firstly,
intermediate code already undergoes preliminary optimization through high-level
transformations. Moreover, it boosts enhanced hardware independence compared to
machine-specific assembly code and it serves as a versatile representation that can
be utilized across different high-level languages. Its flexibility allows for complex
compilation decisions including efficient allocation of code fragments to architecture
devices [5]. Furthermore, LLVM-IR enables the application of machine learning
techniques in order to gain insights into the characteristics of these code fragments by
transforming these properties into fixed-length feature vectors suitable for standard
machine learning algorithms. However, their further optimization remains crucial
in this context and the primary objective of this manuscript is to enhance the field
of knowledge representation by utilizing LLVM-IR as a foundational basis. The
subsequent sections offer introductions to the syntax and distinctive characteristics
of LLVM-IR.

In the field of compiler technology, LLVM-IR is widely recognized for its adaptability
and often compared to an assembly-like representation. Despite its resemblance to
low-level assembly code, as shown in Figure 2.1, LLVM-IR remains independent of
specific target Instruction Set Architectures, focusing instead on its core properties
such as platform independence, language neutrality, efficiency, modularity, support
for control and data flow analysis. This foundation makes it instrumental in enabling

6 Chapter 2 Background

various compiler optimizations and analyses. As a result of these attributes, LLVM-
IR holds significant relevance both in academic research and industrial compiler
development. Within the realm of the LLVM compiler framework, LLVM IR plays
a crucial role as it serves as an essential language that facilitates program analysis
and transformation. Positioned strategically between source code and machine
code, LLVM IR acts as a universal conduit, allowing various programming languages
to leverage the optimization and code generation capabilities inherent in LLVM.
What makes LLVM-IR truly remarkable is its ability to reside close to machine code
while maintaining its high-level expressiveness and remaining platform-independent.
The flexibility of LLVM shines through its compatibility with numerous frontends
(including C, C++, Rust, and Swift) and backends (targeting architectures such as
x86, ARM, and RISC-V), which are seamlessly unified through their shared use of
the dependable LLVM-IR [4].

The LLVM-IR strictly adheres to the principles of a typed, Static Single Assignment
paradigm. This adherence guarantees that each variable has a unique assignment
and remains immutable after being assigned. The adoption of SSA form in LLVM-
IR enhances code comprehension and enables significant optimization benefits.
Additionally, the use of SSA form simplifies data flow representation, thus facilitating
advanced compiler optimizations. As a result, LLVM-IR emerges as a powerful
intermediate language for program analysis and transformation purposes [37].

The LLVM IR incorporates a deliberate typing system that guarantees precise data
type definitions for each variable, providing enhanced compiler safety and opti-
mization potential. Within the LLVM IR framework, there is extensive support for
a wide range of fundamental data types including integers (ranging from i1 to
i64), floating-point numbers (such as float and double), pointers, arrays, structures,
and function types. This comprehensive set of data types allows for effective static
analysis, optimization techniques, and code generation in the LLVM toolchain.

The LLVM module is a fundamental component of the LLVM-IR, serving as a com-
prehensive encapsulation unit for code, data, and metadata within a compilation
unit. It organizes all relevant components related to a single compilation unit into
a self-contained entity for code representation. Resembling assembly language
in structure, LLVM-IR is organized into functions, basic blocks, and instructions.
Functions are crucial units of code with their own set of basic blocks. These cohesive
segments of code provide a linear flow of execution without branching instructions.
In the LLVM-IR, instructions serve as fundamental components of functionality. Each
instruction is defined by an opcode and input data. Notably, LLVM-IR opcodes are
platform-independent, distinguishing them from conventional assembly opcodes.

2.1 Techniques for source code analysis 7

This platform independence guarantees that LLVM-IR remains impartial to partic-
ular computer architectures or Instruction Set Architectures. Moreover, LLVM-IR
introduces intrinsics, which are specialized functions that play a crucial role in
representing custom behaviors and high-level code patterns. These intrinsics al-
low for the expression of low-level operations, enabling advanced optimizations
by providing insights into specialized hardware capabilities or runtime behaviors.
The LLVM Intermediate Representation encompasses a specific class of functions
known as intrinsic functions or LLVM-IR intrinsics. These intrinsics embody low-level
operations that are typically not expressible in the regular LLVM-IR language and
act as a bridge between high-level language constructs and low-level hardware
operations. By exposing functionality provided by target hardware or runtime en-
vironments, these intrinsics offer hints to the compiler for optimization purposes.
In brief, the incorporation of LLVM-IR intrinsics in the LLVM framework enables
efficient generation of machine code for different target architectures and hardware
platforms. The modular organization and platform-agnostic opcodes of LLVM-IR,
along with its versatility in supporting a wide range of programming languages and
compiler optimizations through the use of intrinsics, make it an essential component
in program analysis, transformation, and synthesis within compiler technologies like
LLVM.

2.1.2 Source code structure analysis

The representation of source code is an essential aspect in numerous machine
learning and compiler optimization tasks. There are two primary approaches to
representing source code, regardless of whether it is written in its original high-level
language [19] or translated into an intermediate representation such as LLVM-IR [4].
These approaches include token-based representations, which involve sequencing
tokens within the input data, and graph-based representations that encompass a
graphical representation of the code structure.

An essential approach in analyzing source code is token-based representation, which
portrays the code as text [3]. This method treats source code as a means of
human communication using tokens [2]. The process consists of two main steps:
source rewriting and tokenization. To ensure accurate modeling of source code,
the process of rewriting involves normalizing the input source by parsing it and
removing elements that do not contribute to this task. Such elements may include
comments, conditional compilation statements, or artifacts unrelated to accurately
representing the source code (e.g., variable and function names). The purpose of
source normalization is to simplify the model’s learning process by eliminating trivial

8 Chapter 2 Background

Figure 2.2: Summary of representation techniques for a C function.

semantic differences in programs caused by factors like choice of variable names or
presence of comments. The process of tokenization involves transforming the input
code into a sequence of language syntactic elements, called tokens. These tokens are
stored in a dictionary and each assigned a unique numerical identifier. Token-based
representation of source code can be both beneficial and challenging from a machine
learning perspective. Sequentially structured data has been extensively studied in
machine learning, with powerful methods available that yield impressive results
on such data. The ordered sequence of tokens also accurately reflects the original
ordering as written by the programmer, which provides valuable insights into their
thought process during coding analysis. However, this strict ordering may impose
constraints on representing code fragments that could potentially execute differently
without such constraints.

Decades of research in the field of compilers have revealed that certain data struc-
tures provide a more comprehensive view of code optimization compared to simple
token sequences. Graph-based program representation aims to capture intrinsic
properties specific to the source code being represented, based on an appropriate
strategy for representing the input program [18]. In terms of high-level language
representation, graph-based approaches tend to expose the grammatical structure of
the input program to machine-learning models. One common approach is represent-
ing the input program as its Abstract Syntax Tree (AST) [8]. The AST represents

2.1 Techniques for source code analysis 9

the abstract syntactic structure of text written in a formal language and each node
signifies a construct found within this text. Moreover, to enhance the AST’s effective-
ness in tracking data dependencies and manipulations on the same data, additional
data-flow information can be incorporated. This enrichment involves creating a
labeled digraph known as a dataflow-enriched AST graph. In this graph, nodes
are labeled as Declarations, Statements, and Types similar to those found in the
Clang AST. The edges of this graph have two types of labels: type AST (representing
child-of relationships within the AST) and dataflow (representing use-use relation-
ships for variables). Moreover, sources can be translated into graphs to represent
their intermediate representation. This graph consists of assembly-like statements
commonly found in LLVM-IR. The edges of the graph connect the vertices based on
different relationships that exist between pairs of edges. For instance, ProGraML
[18] offers a comprehensive example of representing sources at the LLVM-IR level
using a graph representation. In this approach, a full-flow graph is constructed by
adding a vertex for each instruction and connecting them with control flow edges.
To maintain order, all control edges are labeled with ascending numeric positions
according to their sequence in the list of outgoing control edges from each vertex.
Additionally, constant values and variables introduce extra vertices in the graph
structure. To capture the relationship between constants and variables with their cor-
responding instructions, data-flow edges are introduced. These edges link variables
and constants to the instructions that utilize them as operands, as well as instructions
to the produced variables. Each unique variable and constant is represented as a
vertex in ProGraML [18] graph-based representation, implicitly preserving the scope
of variables. In contrast to tokenized machine learning approaches, this ensures that
variables from different scopes are always mapped to distinct vertices and can be
distinguished accordingly. Additionally, such a representation enables distinction
between constant values with similar textual representations in source code. Similar
to control edges, data edges include a position label that encodes the operand
order for each instruction. Furthermore, the connection between a statement that
invokes a function and the invoked function is represented by call edges. A call
edge is created from the invoking statement to the entry statement of the function.
Return call edges are included from all terminal statements within a function to the
invoking statement. Unlike control and data flow edges, position labels are not used
for call edges since there is no specific ordering required among different calls to a
given function. Figure 2.2 shows the different representations possible for a small C
function, both as a sequence of tokens and as a graph, depending on the abstraction
level at which the function is analyzed.

10 Chapter 2 Background

2.1.3 Source Code Representation

The process of source code representation involves transforming the source code into
a numerical form that is appropriate for input into a neural network model designed
to solve the downstream task. There are two main approaches to representing source
code: manual feature extraction and automatic representation learning through
machine learning techniques.

Manual features extraction

Manual feature extraction in the field of machine-learning-based source code anal-
ysis relies on the expertise of compiler writers or domain experts who manually
identify and select features that are relevant to solving a given problem [31]. One
notable work in this area is [30], which presents predictive modeling techniques for
determining whether it is beneficial to run OpenCL [52] code on a GPU or OpenMP
code on a multi-core host. The predictor utilizes selected code features chosen by
the compiler writer, summarizing costs associated with mapping decisions. During
compilation, the paper analyzes the OpenCL code and extracts information about
operations’ numbers and types. Moreover, in addition to assigning higher importance
to double-precision floating-point operations compared to single-precision ones, the
memory access patterns are also analyzed to determine if accesses to global memory
are coalesced or not. The number of control flow operations in an application is
potentially relevant to functions mapped on GPUs, although it was not considered in
[30]. Lastly, it is important to note that synthesizing raw features into aggregated
ones can provide more informative insights compared to analyzing them individually.
This approach involves combining and normalizing multiple features, allowing for a
deeper understanding of the data.

Deep Learning-based features extraction – End-to-end learning

Historically, feature extraction in the field of machine learning has primarily relied
on extracting significant aspects of data according to human expertise. However,
when there is a lack of expert guidance, manually crafted features may not be as
relevant. This can result in suboptimal performance for artificial neural networks
[31]. To address this issue, recent advancements have steered away from relying on
domain experts to manually extract features. Instead, the emphasis is now placed on
empowering machine learning models to autonomously handle feature extraction
tasks. This transition involves two main approaches. In one approach, known as

2.1 Techniques for source code analysis 11

end-to-end feature learning, the model starts with a random representation and
refines it during training to address the specific task [3]. The other approach involves
pre-training the model using representations that serve as a foundation for improving
its ability to solve the intended task more effectively and accurately [5][55].

In the field of end-to-end representation learning, there is a technique where each
unit of data is initially assigned a random embedding. This embedding is then
refined by the network as it solves the downstream task during training. Notably,
two research works by Cummins et al. [19], and Barchi et al. [4] demonstrate how
this strategy can be applied to machine-learning models for source code analysis.
These papers demonstrate similar techniques in which token representations are
learned directly through an embedded layer during the end-to-end training process
of machine learning models. Both methodologies represent code as a sequence of
tokens and analyze source code at different abstraction levels, with [19] focusing
on high-level OpenCL code and [4] analyzing LLVM-IR. In both cases, tokens in
the vocabulary are mapped to unique integer values during encoding. To mitigate
the limitation of sparse data representation caused by arbitrary integer values, an
embedding layer is used. This layer translates tokens in a sparse, integer-encoded
vocabulary into a lower-dimensional vector space. By doing so, semantically related
tokens such as float and int can be mapped to nearby points within this space. The
Embedding Layer acts as the first layer of the network, receiving sequences of token
indexes and projecting each element into the embedding space. Consequently, it
produces a list of sequences that consist of vectors belonging to the embedding
space. Each token in the integer encoded vocabulary is mapped to a vector with
real values through this embedding layer [3]. Given a vocabulary size V and
embedding dimensionality D, during training, an embedding matrix WE is learned
with dimensions RV ×D. The token-indexes projection is determined by the weights
of the Embedding Layer. Initially, these weights are randomly initialized, resulting in
a random starting condition for the projection in the embedding space. As training
progresses, these weights are updated. The output sequence from this embedded
space, known as token-points, can then be passed on to subsequent layers of the
neural network.

In recent advancements in machine learning-based source code representation, there
has been an increasing interest in an alternative approach that involves pretraining
a source code representation. This approach aims to create a representation that
is independent of the specific downstream tasks. By doing so, it allows for a clear
separation between the network responsible for assigning representations to data
elements like programs, functions, or instructions, and the network dedicated to
solving particular downstream tasks. To illustrate this approach further, we will

12 Chapter 2 Background

discuss two state-of-the-art methods for constructing LLVM-IR statement embeddings:
inst2vec [5] and IR2Vec [55].

Deep Learning-based features extraction – Code Embedding

The methodology known as inst2vec [5] presents a robust and effective technique
for generating embeddings of LLVM-IR instructions. It is built on the theoretical
framework of Neural Code Comprehension (NCC), which aims to represent code
semantics in a manner that can be easily learned. NCC employs a versatile processing
pipeline that transforms code from different source languages into statements written
in the LLVM Intermediate Representation format. These statements are further
transformed into contextual Flow Graphs, which capture both data-flow and control-
flow aspects of the code, including loops and function calls. By utilizing this
structure, inst2vec [5] trains an embedding space specifically designed for individual
statements, allowing them to effectively address various high-level tasks in machine
learning models. The NCC approach assumes that statements appearing in similar
contexts have comparable meanings. In the inst2vec method, LLVM intermediate
representation instructions are considered as statements and the context is defined
using a contextual flow graph (XFG). The XFG represents both data-flow and control-
flow relationships between pairs of LLVM-IR instructions through a directed multi-
graph. Nodes in the XFG can be variables or label identifiers like basic blocks or
function names, while edges represent either data dependence carrying an LLVM-IR
statement or execution dependence. Based on this concept, inst2vec utilizes the skip-
gram model to train an embedding space for individual statements. This technique
is commonly employed in natural language processing to train word embeddings
such as word2vec [41].

IR2Vec [55] is a robust and scalable encoding infrastructure that represents pro-
grams as distributed embeddings in continuous space. While inst2vec [5] utilizes the
NCC framework to learn LLVM-IR instruction embeddings, IR2Vec [55] introduces
an innovative approach for learning embeddings of LLVM-IR seeds. These seeds
serve as the fundamental units of information within an LLVM-IR instruction. By
composing seed embeddings hierarchichy, IR2Vec can generate embedding vectors
not only for instructions but also for basic blocks, functions, and ultimately entire
programs. This distributed embedding is achieved through a combination of various
representation learning techniques and comprehensive flow information analysis.
These approaches enable IR2Vec to effectively capture both the syntax and semantics
of input programs in a rigorous academic manner while maintaining scalability.
In addition, IR2Vec harnesses the capabilities of the LLVM-IR language format to

2.1 Techniques for source code analysis 13

generate embeddings that can be applied across multiple programming languages
and machine architectures. This versatility makes them highly suitable for academic
research purposes. To effectively represent entities within the intermediate represen-
tation, relationships are established and their representations are learned through
a seed-embedding vocabulary. The core training procedure for seed embeddings
lies at the heart of IR2Vec [55]. Each LLVM-IR instruction is deconstructed into its
fundamental components: opcode, type, and arguments. While opcodes and types
belong to finite sets, arguments are classified into five distinct categories: variables,
pointers, and constants. In order to categorize arguments, IR2Vec proposes a clas-
sification system that includes three key relationships for describing an LLVM-IR
instruction. The TypeOf relationship associates each opcode with its corresponding
type, providing information on the nature of the operation. Meanwhile, the NextInst
relationship captures control-flow details by linking together successive opcodes.
Lastly, the Argi relation connects an opcode with its i-th argument class. To fa-
cilitate academic expansion, IR2Vec [55] extracts code triples from each LLVM-IR
instruction: these triples consist of the instruction’s opcode and type connected via
a TypeOf relation; control-flow successors linked through NextInstr; and multiple
Argi relations connecting an opcode to each of its argument classes. To train seed
embeddings in IR2Vec, source files from the input dataset are first converted into
LLVM-IR format before generating code triples for each instruction. The TransE [7]
model is utilized to acquire the initial embedding, which generates knowledge-base
embeddings by interpreting relationships as translations on entity embeddings in a
lower-dimensional space. In this particular context, relationships can be depicted as
translations within the embedding space: if there is a relationship between entities,
then their respective embeddings should exhibit proximity to one another with
the addition of a vector that corresponds to the specific relationship involved. The
outcome of this learning process forms a dictionary containing embeddings of known
entities referred to as Seed Embedding Vocabulary. This provided dictionary serves as
a foundation for generating multiple levels of program-specific embeddings. At the
highest level, symbolic encodings are constructed through coarse-grained instruction
representations derived from instances found within the Seed Embedding Vocabulary
set. Additionally, IR2Vec presents an approach for augmenting LLVM-IR instruction
Symbolic encoding by incorporating use-def relations and reaching definitions to
capture flow-aware characteristics inherent in instruction encoding patterns. To
aggregate alive instruction embeddings and compute the embedding of basic blocks,
liveness analysis is carried out on basic blocks. This aggregation process proceeds by
combining basic block embeddings to generate LLVM-IR function embeddings.

14 Chapter 2 Background

CVA6

L1$

Peripherals

uD
MA

UART
SPI
I2C
SDIO

Interrupt
Control

Sc
ra

tc
hp

ad

AXI-4 xbar

OpenTitan

IBEX AES
HMAC
KMAC
OTBNTL

-U
L
xb
ar

SRAM

TLUL2AXI

Interrupt
Control

AP
B
xb
ar

PMCA

Core FP
U

0

I$

TC
DM

AXI-4 xbar

DMA

Core FP
U

7TC
DM
 x
ba
r

ROM

Figure 2.3: Architecture of the reference RISC-V system-on-chip used.

2.2 Architecture of the reference RISC-V platform

Most of the contributions of this thesis work have used a testbed built around
PULP, a modular and heterogeneous RISC-V platform composed of a Linux-capable
host-domain, described in Section 2.2.1, a general-purpose parallel cluster of 32-
bit RISC-V core, described in Section 2.2.3, and a Root-of-Trust featuring a set of
cryptographic accelerators and access to a private memory, described in Section
2.2.2. The architecture of the reference RISC-V platform is sketched in Figure 2.3.

2.2.1 CVA6 and Host Domain architecture

The host domain includes the CVA6 core, a scratchpad memory, and the peripheral
domain. CVA6 [57] is a 64-bit RISC-V core that fully implements the Integer (I),
Multiplication/Division (M), Atomic (A) and Compressed (C) extensions, which

2.2 Architecture of the reference RISC-V platform 15

implement integer arithmetic, atomic memory transactions, and compressed opcodes.
It has optional support for floating point extensions F and D. The core features three
privilege levels - Machine (M), Supervisor (S), and User (U) - to ensure compatibility
with Unix-like operating systems. The CVA6 core implements a six-stage pipeline
consisting of PC Generation, Instruction Fetch, Instruction Decode, Issue Stage,
Execute Stage, and Commit Stage. The first two stages serve as the frontend by
selecting the next program counter for execution and handling fetch logic along
with branch prediction. The branch prediction mechanism is vital for reducing the
negative effects of control flow stalls on instruction per cycle. It employs three
methods to predict the next program counter: a branch history table (BHT), a
branch target buffer (BTB), and a return address stack (RAS). The Decode stage
takes care of realigning and decoding instructions before storing them in an issue
queue. In the Issue Stage, instructions are issued to the execute stage once all
operands are ready using components such as the issue queue, scoreboard, and
reorder buffer. The Execute Stage houses functional units including fixed latency
units and variable latency units. One notable functional unit is the Load-Store
Unit which hosts the memory-management unit (MMU) and interfaces with a
private L1 data cache. The MMU of CVA6 offers hardware address translation to
support the functioning of an operating system. The processor features separate
and customizable data and instruction translation look-aside buffers, which are
examined for a valid address translation with every access to instructions or data.
Both data and instruction caches are virtually indexed and physically tagged and
their set-associativity and cache-line size can be adapted. At synthesis time it is
possible to choose between the implementation of a Write-Back or Write-Through
cache, depending on the need of the target system to be implemented. If no
valid translation is found, CVA6’s hardware page table walker interrogates the
main memory to acquire a valid address translation. Finally, in the Commit Stage
instructions are read from ROB for committing purposes while also updating register
files and resolving write-back conflicts through ROB mechanisms. The scratchpad
memory is meant to store data to be shared with off-chip peripherals, or the support
efficient communication between the CVA6 host core and the programmable cluster.
The peripheral domain, implements many common embedded I/O interfaces and
controllers, such as HyperBUS, I2C, (Q)SPI, CPI, SDIO, UART, CAN, PWM, and
I2S. Additionally, it also features the uDMA, a controller intended to autonomously
support data transfers between I/O peripherals and the scratchpad memory. Finally
a 64-bit AXI crossbar [36] orchestrates all the communications in the SoC.

16 Chapter 2 Background

2.2.2 Root-of-Trust architecture

OpenTitan [16] is an open-source silicon RoT that implements a secure enclave
aiming at securing sensitive data against hardware attacks, tampering, counterfeiting,
and enabling the implementation of security mechanisms such as secure boot and
remote attestation. The hardware architecture of OpenTitan includes (i) a secure
microcontroller, (ii) on-board private memory, and (iii) a set of cryptographic
accelerators.

The secure microcontroller is Ibex, an open-source 32-bit RISC-V core optimized
for low-gate count, and designed for embedded control applications [21]. Ibex
supports the Integer (I) or Embedded (E), Integer Multiplication and Division (M),
Compressed (C), and B (Bit Manipulation) extensions. The core utilizes a two-stage
pipeline architecture, consisting of an Instruction Fetch stage and an Instruction
Execution stage. During the Instruction Fetch stage, instructions are retrieved from
memory through a prefetch buffer that can fetch one instruction per cycle, if the
instruction side memory is ready. The fetched instruction is then decoded and
immediately executed in this same stage, with register read and write operations
taking place as well. If there are any multi-cycle instructions, they will cause stalls
in this stage until they are completed. Additionally, there is an optional Write-Back
stage that can be enabled if needed to enhance core performance by reducing
stalls on memory accesses at the cost of a slight increase in pipeline control logic
complexity. Ibex is integrated into a wrapper that converts its interface to the
TileLink Uncached Lightweight (TL-UL) interconnect employed by the platform.

Cryptographic hardware accelerators enhance system performance by efficiently
executing compute-intensive security primitives. They prevent cryptographic com-
putations from becoming a bottleneck and support key generation, buffer encryp-
tion/decryption, signature generation/verification, and hash calculation operations
commonly used in the field of security. These accelerators include HMAC and KMAC
for digest and hash calculations, Advanced Standard Encryption for symmetric cryp-
tography operations, and OpenTitan Big Number Accelerator (OTBN) designed for
RSA and Elliptic Curve Cryptography algorithms.

The OpenTitan system includes a 128KB SRAM memory and an embedded flash
memory that has been enhanced with Error Correcting Code and data and address
scrambling to improve security and reliability. In the reference system, OpenTitan is
integrated into the SoC, allowing it to access memory through a custom TileLink-to-
AXI bridge [15]. Communication between the host domain and RoT is facilitated

2.2 Architecture of the reference RISC-V platform 17

by a shared-memory mailbox. This mailbox consists of general-purpose memory-
mapped registers designed for data sharing. Additionally, it also features two specific
registers - Doorbell and Completion - that are used to send interrupts to both the Ibex
security microcontroller and CVA6 host core. OpenTitan also includes a peripheral
subsystem for communication with the host domain and external hardware modules.
This subsystem supports UART, USB, I2C, SPI, and GPIO interfaces.

2.2.3 Programmable Multi-Core Accelerator architecture

The Programmable Multi-Core Accelerator (PMCA) [47] is a collection of 8 RISC-V
cores based on the CV32E4 microcontroller [28]. The PCMA is used by the host to
execute kernels that require intensive computations. Each core in the cluster follows
an in-order, 4-stage pipeline and supports the RISC-V instruction set architectures I,
M, and C. Additionally, they incorporate extensions specifically designed for DSP and
machine learning workloads to fulfill computational requirements [27]. The core
is enhanced with a custom RISC-V extension that allows for efficient manipulation
of both real and complex numbers. This greatly improves the core’s ability to
perform DSP-centric operations more effectively. Furthermore, the fetch stage of
the core now supports zero-overhead hardware loops, making it possible to execute
repetitive tasks commonly found in DSP and machine learning workloads without
any additional overhead typically associated with traditional loop constructs. In
addition, efficient array manipulation is facilitated through post-modified load and
store instructions which enable single-cycle multiply and accumulate operations as
well as single-cycle complex multiplication. Moreover, dedicated instructions are
provided for efficient rounding, normalization, and clipping. To enhance instruction-
level parallelism, the core’s instruction set is expanded to include SIMD instructions.
These instructions reduce the width of operands, allowing for double or quadruple
the number of operations per cycle. For integer numbers, precision can be reduced
to 8-bit, and for floating-point numbers, it can be reduced to 16-bit. The core’s
instruction set is enriched with bit-manipulation-oriented instructions, including bit
insertion and extraction operations. These instructions improve code compactness
and execution speed for bit-level manipulations in control-oriented code. Floating-
point computation is handled by 8 FPUs supporting FP32 and FP16 with SIMD
support [42].

The cluster’s memory architecture incorporates a two-level instruction cache system,
consisting of 512 bytes dedicated I-caches for each core and a 4 KB shared I-cache,
optimizing instruction access. To avoid data cache overhead, the cluster employs a
shared 128 KB scratchpad memory accessible by all cores. Access to the L1 memory

18 Chapter 2 Background

is supported by a highly optimized interconnect which ensures low-latency memory
access and overall performance efficiency.

The PMCA interacts with the host’s AXI interconnect using two 64-bit AXI ports, one
for master and one for slave communication. The cluster includes a DMA with an
AXI port and four ports connected to the scratchpad, enabling high-bandwidth and
low-latency transactions between the cluster memory. An event unit is dedicated to
efficient event management and parallel thread dispatching on a fine-grained level
[29].

2.3 Security and Binary Exploitation

In today’s society, Internet of Things devices have become an integral part of our daily
lives. They are used in various critical areas such as autonomous vehicles, power
grids, and healthcare. It is crucial to prioritize strong security measures and address
cybersecurity risks due to the growing presence of these devices. Events like security
breaches in vehicular systems and the well-known Mirai botnet, which involved a
widespread distributed denial-of-service attack solely using IoT devices, highlight the
weaknesses present in IoT systems. One of the challenges in securing modern IoT
node firmware is that it is usually developed using programming languages such as C
and C++ [11]. These languages give developers a lot of control over resource usage,
but their manual memory management and adherence to typing rules also introduce
security vulnerabilities. As a result, protecting embedded systems from various
security threats becomes crucial. Of particular concern are software vulnerabilities
that can lead to memory corruption [9], enabling unauthorized access, hijacking
target processes, and causing significant disruptions.

2.3.1 Code-Reuse Attacks and Return-Oriented Programming

Control-flow hijacking attacks pose a significant threat to computer systems by
exploiting memory corruption vulnerabilities. These exploits involve corrupting
specific memory regions, such as the stack’s return address, which enables attack-
ers to redirect program execution towards malicious code called a payload. The
objectives of these attacks include arbitrary code execution, privilege escalation, and
unauthorized access to sensitive information. Historically, the technique of "stack
smashing" [43] has been employed to carry out execution hijacking. This method
exploits buffer overflows to manipulate the memory region of the stack by injecting

2.3 Security and Binary Exploitation 19

malicious code called shellcode, which executes malicious actions as intended by
the attacker. Additionally, it involves modifying and redirecting the return address
stored in the stack to point toward the initial binary instruction of this injected
shellcode. As a result, when the vulnerable function returns, instead of following
normal behavior, program execution is redirected towards this injected code giving
unauthorized control over program behavior. In order to counteract these threats,
modern computer systems have implemented mitigation strategies. One such strat-
egy is the Write xor eXecute principle, which ensures that a writable memory region,
including the stack, cannot be marked as executable at the same time. However,
despite extensive research on exploit mitigations, only a few of them are actually
being used [54]. While defenses like Address Space Layout Randomization (ASLR),
stack canaries [17], and Data Execution Prevention [51] combination protect the
flow against code-injection attacks but they fail to fully prevent code-reuse attacks.
Code-reuse attacks (CRAs) involve manipulating existing fragments of code for
malicious purposes without introducing new code and have become increasingly
prevalent in recent times. Common manifestations of code-reuse attacks are Return-
Oriented Programming (ROP) [46], or Jump-Oriented Programming (JOP) [6],
wherein attackers craft sequences of legitimate code instructions to execute their
desired actions.

Return-oriented programming bypasses memory protection mechanisms like W ⊕ X.
Unlike traditional code injection methods, ROP attacks do not insert new code into
the system. Instead, they manipulate existing snippets of code called gadgets that
end with a return instruction and are present in the program’s address space. By
linking these gadgets together through control of the stack, an attacker can execute
malicious behavior without introducing new code. This approach makes ROP attacks
less detectable compared to traditional shell code injection techniques as they utilize
pre-existing instructions as building blocks for their exploits. ROP is a technique
that utilizes the stack pointer as a program counter, determining the sequence of
instructions to be executed. Unlike traditional programming approaches where
instructions are stored in the text segment, ROP constructs its program using the
stack segment. Each ROP instruction on the stack corresponds to an instruction
sequence located within the exploited program’s memory. The progression of execu-
tion is dictated by the stack pointer, which determines which ROP instruction will
be executed next. When a return instruction is encountered, it updates the core’s
program counter with the address of the subsequent gadget address for sequential
execution of attacker-crafted gadget chains to proceed smoothly. ROP is a technique
that involves arranging gadgets to carry out an attacker’s intended actions. These
gadgets are organized within the program’s memory, and the stack pointer is redi-

20 Chapter 2 Background

rected to execute the first gadget. While buffer overflows are commonly employed
for this purpose, other methods such as overwriting function pointers can also be
utilized.

2.3.2 Control-Flow Integrity

Control-Flow Integrity (CFI) [1] has emerged in the state of the art literature
on security as a technique to constrain the possible control-flow transfers of an
application to those that have been specified by the developer and alert the platform
runtime if any control-flow violations occur. While the ISA of a machine allows
indirect control-flow transfers to target any executable address in memory [26], in
the high-level languages the valid targets are restricted by language constructs. In
practice the target of any jump will always be the first executable instruction of a
basic block of code, such as functions or methods. CFI prevents code-reuse attacks
because they would cause the program to transfer control to a target which is illegal
under CFI. In practice, CFI closes the gap between ISA capabilites and high-level
language semantics by constraining control-flow transfers target locations.

Most CFI mechanisms follow a two-phase process: analysis and enforcement [59].
During the analysis phase, the control-flow graph (CFG) of the target program is
computed by a static binary analyzer. Since the limitations of static program analysis
may lead to an overapproximation of the control-flow transfers that can actually take
place at runtime, limiting the security of the enforced CFI policy, some methodologies
enrich the analysis phase by running the binary to be protected with real-world
data, extract the execution traces using available tracing support, such as Intel IPT,
and use such information to prune non-essential edges from the static CFG [58]
[13]. The enforcement phase ensures that control-flow transfers whose targets are
computed at runtime, such as indirect branches and return instructions—correspond
to edges in the CFG produced by the analysis phase. These targets are commonly
separated into two categories: forward, which give control to a new location inside
a program, and backward, which return control to a previous location. ISAs usually
offers two forward control-flow transfer instructions: call and jump. While a jump
simply updates the program counter, moving execution to another target address,
a call instruction pushes the address of the immediately following instruction onto
the stack, so that whenever a return instruction is executed, such address is fetched
back into the program counter of the machine and execution can resume from
the next address before the call instruction. Forward control flow can be direct or
indirect, depending on whether the target address can be statically determined at
compile time (direct) or is computed at runtime (indirect). A return instruction is the

2.3 Security and Binary Exploitation 21

symmetric counterpart of a call instruction, and a compiler emits function prologues
and epilogues to form such pairs. Returns are always, and intrinsically, indirect
control flow changes. CFI enforcement schemes should also take into account global
exception-triggered control-flow manipulation, that is, interprocedural control flows
that require unwinding stack frames on the current stack until a matching exception
handler is found.

CFI can be enforced both with software and hardware approaches. Assuming
that code is static and immutable, software solutions instrument indirect control-
flow transfers at compile time through a modified compiler, or during execution
through dynamic binary translation [45]. The types of indirect transfers that are
subject to such validation and the number of valid targets per branch varies greatly
between different CFI defenses. Hardware approaches extend the SoC architecture
to provide runtime-checking capabilities for the executed software. These solutions
can be categorized into three main approaches: (i) ISA extensions, (ii) hardware
monitors, and (iii) programmable coprocessors. ISA extension techniques [22]
introduce custom opcodes for conducting security checks during program execution.
While these techniques typically have minimal runtime overhead, they require
ad-hoc binary toolchains and invasive modifications to the processor pipeline to
accommodate these new instructions. Additionally, all software must be rebuilt,
and legacy binaries cannot benefit from this protection. Hardware monitors [50]
utilize custom-designed IPs closely integrated with the processor pipeline to monitor
control-flow instructions and implement security features like shadow stacks or jump
tables directly in silicon. These techniques are transparent to the executed software
and do not require extensive modifications to the core architecture. However, they
lack flexibility in dynamically updating the CFI enforcement policy, requiring the
creation of a new monitoring system from scratch. Security coprocessors [23] [24]
rely on a dedicated semi-programmable core that enables the implementation of
the desired policy in software. These co-processors use a reserved side-channel to
communicate control-flow information. This approach allows for the implementation
of customized policies on the co-processor, which operates in parallel with the main
core. However, a co-processor capable of implementing arbitrary policies is typically
larger than a customized hardware IP, therefore, there is a significant increase in
area overhead.

22 Chapter 2 Background

Machine Learning-based
Device Configuration

3

3.1 Introduction

This chapter is dedicated to exploring the feasibility of using static source code
analysis to determine the optimal configuration for an embedded RISC-V core
cluster, with a focus on minimizing power consumption during compilation. This
innovative approach involves extracting unique static features from the LLVM-IR
[37] representation of a code segment, eliminating the need for dynamic profiling or
runtime assessments. Additionally, it includes evaluating any differences in precision
between system configurations derived from static source code analysis and those
obtained through dynamic attribute extraction via profiling on the target platform.

Previous research in this field has recognized the significance of source code analysis
for decisions regarding system configuration, such as parallelism mapping [56] and
thread coarsening [39]. However, these studies have not adequately addressed the
crucial concern of energy optimization specifically within ultra-low-power embedded
architectures. Additionally, existing literature on power and energy modeling for
parallel architectures has primarily focused on profiling-based features rather than
predicting optimal scaling configurations (i.e., number of parallel cores) based solely
on source code information. Therefore, the main objective of this study is to fill this
gap by approaching it as a classification task where a classifier is trained to assign
each computational kernel to its corresponding minimum-energy category.

In this chapter, I have made several technical contributions including: first, a dataset
of kernels specifically designed for energy classification in parallel architectures.
Each dataset sample has been ported to the PULP [47], a cluster of 8 efficient
RISC-V cores, optimized for DSP applications, presented in Section 2.2.3. Secondly,
I highlight the complexity of the energy classification problem and emphasiz that it
cannot be simply treated as an extension of performance or speed-up classification.
Lastly, through empirical experiments and analysis, I demonstrate the feasibility of
source code-based energy classification techniques and quantified their accuracy
compared to dynamic features-based methods.

23

Figure 3.1: Workflow to identify the minimum energy parallelism on a PULP cluster and to
define a dataset composed of static and dynamic features.

3.2 Methods

3.2.1 Methodology

In the field of embedded parallel processors, achieving software energy efficiency
involves leveraging hardware parallelism [48]. As the application utilizes more cores,
the runtime decreases, along with leakage energy, but dynamic power consumption
increases. The purpose of this chapter is to demonstrate that by using a machine
learning model trained on static source code information, it is possible to determine
the optimal configuration for minimizing energy consumption on parallel embedded
microcontrollers. Figure 3.1 details the proposed approach which consists of the
following steps:

(A) A preliminary features extraction activity is conducted on all samples in the
dataset through static source code analysis. Comprehensive information regarding
the dataset construction and machine learning features can be found in Sections
3.2.2 and 3.2.4.

(B) Each sample in the dataset is analyzed using GVSOC [10], a cycle-accurate
simulator of the PULP cluster. It provides detailed execution traces for tracking
opcodes executed, memory transactions, active wait cycles, and cores idleness caused
by clock gating.

(C) All samples are simulated eight times using an increasing number of the cores
available in the PULP cluster. This allows an extraction a runtime trace of the activity
of each core during each cycle of the duration of the benchmark run, providing
valuable insights into system performance and efficiency.

(D) The execution traces are combined with the energy model presented in Table
3.1. This approach enables the assignment of an accurate energy cost to each sample

24 Chapter 3 Machine Learning-based Device Configuration

based on the number of utilized cores. For a detailed description of the energy
model, please refer to Section 3.2.3.

(E) In order to minimize energy consumption, a detailed analysis is conducted on
the eight traces obtained for each benchmark. This analysis allows labeling each
sample with the number of execution cores that would yield optimal results in terms
of energy efficiency.

(F) The collection of labelled samples, each with its specific set of static features,
represents the dataset used for training the decision tree algorithm.

3.2.2 Dataset description

A carefully defined collection of parallel programs to be measured and analyzed
has been established. To express kernel parallelism, I have chosen OpenMP [20], a
widely-used programming model for shared-memory architectures that is supported
by an increasing number of platforms including PULP. It should be noted that many
embedded research-oriented architectures do not fully implement the OpenMP
standard; instead, they provide a subset of functionalities specifically designed
to support common scenarios. The PULP cluster runtime implements a partial
version of the OpenMP standard which does not support tasking and only provides
a limited selection of loop scheduling policies. Consequently, in this study, we
had to meticulously customize the application kernels comprising the dataset and
often exclude publicly available OpenMP datasets due to limitations in functionality
provided by PULP’s implementation. In terms of memory allocation, the PULP [47]
runtime offers a comprehensive but non-standard range of interfaces for allocating
on-cluster data. This allows for efficient access to cluster private memory without
requiring explicit programming for DMA transfers from off-cluster memory, which is
the default destination for dynamic memory allocation. Additionally, adjustments
have been made to the benchmarks to make them adaptable based on the type of
data used during computation. These modifications are necessary because embedded
systems often have constrained hardware resources that can affect program behavior
depending on the processed data variables being utilized. This becomes particularly
relevant when handling floating-point operations that compete over resources such
as FPUs across cores.

3.2 Methods 25

Table 3.1: The energy model used to label the dataset. The energy consumption of every
system-on-chip component is modeled by its leakage and and the dynamic energy
required per cycle, depending on its state.

Operating Region Energy [fJ]

Processing Element

Leakage 182
NOP 1212
ALU 2558
FP 2468
L1 3242
L2 1011
CG 20

FPU

Leakage 191
Operative 299
Idle 0

Other Cluster Components

Leakage 655
Active 2702

Operating Region Energy [fJ]

Memory Bank L1

Leakage 49
Read 2543
Write 2568
Idle 64

Memory Bank L2

Leakage 105
Read 2942
Write 3480
Idle 13

ICache

Leakage 774
Use 4492
Refill 5932

DMA

Leakage 165
Transfer 1750
Idle 46

26 Chapter 3 Machine Learning-based Device Configuration

3.2.3 Energy model

The energy estimation of the RISC-V cores in the PULP cluster was conducted using
an energy model, as described in Subsection 3.2.1. The activity traces from the
GVSOC simulator were utilized to extract information for this purpose. Details
about the energy model can be found in Table 3.1. In terms of both leakage and
switching activity, each component of the PULP cluster contributes to its overall
energy consumption. The power consumed by processing elements is dependent on
opcode classes executed as well as on active wait cycles performed. Furthermore, in
order to minimize power usage during periods of inactivity, advanced low-power
states such as clock-gating are employed. The models for memory, FPU, and DMA
take into account the differences between active and idle power consumption.
Additionally, the models also consider the energy costs associated with read and
write operations. In addition to these considerations, further costs are taken into
account for energy consumption related to circuitry not explicitly modeled within
the PULP cluster. This includes factors like the cores-to-TCDM bus and the event
unit responsible for managing power gating and interrupt dispatching.

3.2.4 Feature selection

This section provides a detailed description of the features that were taken into
consideration for training the classification model. For this study, I utilize two
ensembles of static source code features. The first ensemble consists of the raw and
aggregate forms of the features introduced by [30]. Additionally, I incorporate a
second set of features provided by LLVM-MCA, which is a machine code analyzer
tool included in the LLVM compiler suite.

The authors in [30] explore six RAW metrics for static analysis of OpenCL [52]
kernels, which were then condensed into four features used for the decision tree.
However, when dealing with deeply embedded systems like PULP, not all the RAW
metrics from [30] are applicable. Specifically, there is no difference between global
and local memory accesses as we assume that all data resides in TCDM. This
assumption is reasonable since architectures like PULP achieve maximum efficiency
when data access occurs within on-cluster TCDM. The challenge in programming
embedded devices similar to PULP lies in carefully managing DMA transfers from
off-cluster memory to overlap transfers with computation efficiently. Furthermore,
it should be noted that coalescing is not relevant in our case because scratchpad
memories are not affected by access patterns. Additionally, the average number
of work-items per kernel is a specific metric for the OpenCL programming model

3.2 Methods 27

Table 3.2: Description of the different class of static features used to predict platform
configuration.

Features
Description

[30] This work

R
aw

comp op # of ALU, FP and JUMP opcodes
mem – Not used
localmem tcdm # of accesses in on-cluster TCDM memory
coalesced – Not meaningful on the PULP architecture
transfer transfer Amount of data the kernel works on
avgws avgws Average # of iterations in parallel regions

A
gg

r.

F1 F1 transfer / (op + tcdm)
F2 – Not used, depends on coalesced
F3 F3 avgws
F4 F4 op / tcdm

LL
V

M
-M

C
A

– uOPSpc Micro operations issued per cycle
– RBP Instructions per cycle
– RPDiv Reverse block throughput
– RPFPDiv Resource pressure on the divider port
– RP0 Resource pressure on the FP divider port
– RP1 Resource pressure on Port 0 (Misc)
– RP2 Resource pressure on Port 1 (Misc)
– RP3 Resource pressure on Port 2 (AGU, Load Data)
– RP4 Resource pressure on Port 3 (AGU, Load Data)
– RP5 Resource pressure on Port 4 (Store Data)
– RP6 Resource pressure on Port 5 (ALU, ALU Vec., LEA)
– RP6 Resource pressure on Port 6 (ALU, Branch)
– RP7 Resource pressure on Port 7 (AGU)

and does not apply to OpenMP codes. Instead, I suggest considering the average
number of iterations that can be executed concurrently within the parallel regions
of an OpenMP kernel. As for combining the RAW metrics into four AGGregate static
features, I follow the framework described in [30] work and summarized in Table
3.2.

The LLVM framework [37] provides a static machine code analysis tool called
LLVM-MCA. This tool measures the performance of machine code in a specific
CPU, considering factors such as throughput and processor resource consumption.
By modeling the execution engine of different microarchitectures, LLVM-MCA can
provide insights into opcode dispatch to various execution units or "ports," assuming
perfect branch predictions and cache hits. An important output of this analysis is the
generation of metrics known as "port pressures." These metrics quantify how much

28 Chapter 3 Machine Learning-based Device Configuration

Table 3.3: Dynamic features used train the decision tree classifier.

Features Description

D
yn

am
ic

PE_idle Fraction of cycles in which a core incurs in resource contention
or in a multi-cycle instruction.

PE_sleep Fraction of cycles in which a core is in clock-gating.
PE_alu # of opcodes involving the usage of the ALU.
PE_fp # of opcodes involving the usage of the FPU.
PE_l1 # of opcodes involving access to the TCDM.
PE_l2 # of opcodes involving an access to off-cluster memory.
L1_idle # of cycles in which a TCDM bank is idle.
L1_read # of read request received by a TCDM bank.
L1_write # of write request received by a TCDM bank.
L1_conflicts # of contemporary requests received by a TCDM bank.

an instruction flow stimulates execution units. This study aims to explore whether
these easily collectible features from the LLVM framework can be used as a static
kernel fingerprint to improve the modeling capabilities of our decision tree classifier
for our domain-specific problem solution.

3.3 Results

3.3.1 Test Bed

The GVSOC [10], a virtual platform included in the PULP-SDK, offers significant
advantages for integration into development flows. Compared to RTL simulation,
it provides fast and cycle-accurate performance. Additionally, the virtual platform
generates execution traces that capture detailed information about the status of
cluster components throughout program execution.

The power consumption numbers have been obtained through an analysis using
Synopsys PrimeTime 2019.12 with a nominal voltage of 0.65 V and extracting value
change dump traces from post-layout simulation in Mentor Modelsim 2008.06 for
synthetic benchmarks. These numbers encompass both static and dynamic power
components. By integrating these values, the energy consumption associated with a
specific class of instructions can be determined since each benchmark focuses on a
single instruction class.

We utilized GVSOC to capture the execution traces and determine the energy con-
sumption during the execution of an OpenMP kernel on PULP. The traces consist

3.3 Results 29

of a record of events triggered by the various components simulated in the virtual
platform. Each component is identified by its specific path within the architecture.
To calculate energy, I employe trace analysis software composed of two modules:
hierarchical listeners and a trace analyser. These listeners are grouped together
within the PULPListeners class, which offers methods to access information about
the platform and its components. PULPListeners comprises 8 CoreListeners, 16
L1BankListeners, and 32 L2BankListeners respectively registering with their cor-
responding paths on the trace analyzer for event capturing purposes. The GVSOC
trace analyzer processes the GVSOC trace line by line, using regular expressions
to extract information such as the event cycle number and the component that
generated the event. This extracted data will be further analyzed by a listener.
The CoreListeners receive events from cluster/pe/insn to analyze opcode traces
and from cluster/pe/trace to identify clock gating regions and wait cycles. The
BankListeners receive events from cluster/l1/bank/trace for analyzing write
and read events on banks, as well as counting conflicts that occur when multiple re-
quests are received in the same cycle. By analyzing the trace, it is feasible to exclude
events that fall within a specific range of cycles. This process entails determining
the cycle range in which the parallel code fragment (function void kernel(...))
resides. Within this designated region, I calculate the energy contributions for each
component in the platform considering the features specified in Table 3.3 and using
energy model mentioned in Section 3.2.3.

3.3.2 Dataset analysis

The dataset utilized in this study encompasses three different sets of benchmarks,
comprising a total of 59 distinct C kernel programs. These benchmark suites were
selected for the purpose of analysis and include Polybench, UTDSP, and Custom.
Polybench is widely recognized as a comprehensive program set that evaluates poly-
hedral optimization functionality in compilers. UTDSP includes a series of kernels
specifically designed to test optimization techniques targeting digital signal proces-
sors. In addition, an assortment of manually crafted kernels was incorporated into
the dataset to simulate various memory access patterns, computational operations,
and synchronization mechanisms.

Each individual kernel within the system is designed to handle specific types of data
and process varying amounts of data. In the analysis, I primarily focus on 32-bit
integers and single-precision floating-point numbers. The decision to exclude double
precision floating-points stems from the lack of support for them in the processing
elements within PULP [47]. Furthermore, I have chosen not to explore the effects

30 Chapter 3 Machine Learning-based Device Configuration

of utilizing compact integer types like 16 or 8 bit integers until future research
endeavors.

The execution of each kernel, instantiated with a specific type, is repeated multiple
times with the different amount of processing data, for checking how problem
size impacts energy efficiency. For each kernel, I test a problem size of 512, 2048,
8196, and 32768 bytes. The quantity and variety of chosen payload sizes have
two advantages. On the one hand, it reflects a typical payload size suitable for the
amount of computation in a parallel microcontroller of the power class of PULP. On
the other hand, such a choice allows us to fit all the data the benchmarks work on
in the scratchpad memory. In this way, I avoid the need to take into account DMA
transfers from the off-cluster memory to the scratchpad, which would make the
energy analysis notably more difficult. Under the assumptions above, the dataset of
kernels we used to train and test the machine learning model is composed of 448
samples. The dataset shows a class unbalance between 5% and 15%, except for the
class with label 8 which accounts for the 34.8% of the samples collection.

To assess the performance of the classifier, two key metrics were utilized: absolute
accuracy and t-accuracy. Absolute accuracy is a commonly employed metric for
evaluating machine learning classifiers. It measures the fraction of correct predictions
made by the model in comparison to the total number of samples analyzed. However,
the experimental setup also takes into consideration that in certain scenarios that
may be acceptable from an engineering perspective, to select a number of processing
elements that results in some energy wastage compared to the theoretical minimum.
To address this concern, the concept of t-accuracy is introduced, which is similar to
absolute accuracy but considers a prediction correct if the energy loss falls within
t% of the theoretical minimum. In practical terms, a sample in the dataset is
most efficient when parallelized with four processing elements, but the classifier
predictions should be computed with six processing elements. This prediction is
deemed correct if the additional energy wasted running that kernel with six cores
instead of four is lower than t%.

To ensure unbiased accuracy results, each training experiment in the following
section employs a 10-fold stratified cross-validation method. Furthermore, for added
reliability, every cross-validation is repeated 100 times using random seeds.

3.3.3 Optimal configuration selection

The objective of this research is to assess the potential of machine learning models
in determining the optimal parallelism configuration for maximum energy efficiency

3.3 Results 31

0 2 4 6 8
Tolerance on Energy Minimum [%]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Dynamic and Static Features

static-agg
static-opt
dynamic
dynamic-opt
always-8

0 2 4 6 8
Tolerance on Energy Minimum [%]

0.55

0.60

0.65

0.70

0.75

0.80

Static Features Exploration

static-raw+mca
static-agg
static-agg+mca
static-opt

Figure 3.2: Classification accuracy obtained by the classification mode, as a function of the
tolerance on the energy minimum. The left plot compares static and dynamic
features with the naive “always-8” choice. The right plot shows the classification
accuracy for different static features.

on PULP architecture. The study revolves around examining whether it is feasible
to utilize solely static code analysis-based features as inputs for training a classifier.
This investigation involves three key stages: i) Initial evaluation of aggregate static
features ii) Analysis leveraging dynamic features obtained from GVSOC traces and
identification of the most valuable classification features iii) Refinement of static
feature optimization methods.

To begin with, the accuracy of the decision tree classifier needs to be assessed using
the static features shown in Table 3.2. Initially, the aggregate set of features (F1, F3
and F4) is used, outlined in Table 3.2 and compare the findings with a naive classifier
that utilizes all processing elements in the cluster (always-8). The comparison is
shown in Figure 3.2 (left plot) where it is evident that the red line consistently
outperforms the dashed grey line. In particular, when considering a tolerance of

32 Chapter 3 Machine Learning-based Device Configuration

Table 3.4: Static and dynamic features ranked by their importance score.

Feature PE Importance

St
at

ic

F3 – 19.6 %
F4 – 11.7 %
F1 – 6.8 %
RP4 – 3.5 %
uOPSpc – 3.2 %
RP7 – 3.1 %

D
yn

am
ic

PE_sleep 8 19.6 %
PE_sleep 2 11.7 %
PE_idle 5 6.8 %
L1_write 1 6.7 %
L1_conflicts 6 4.1 %
L1_read 8 4.0 %
PE_sleep 5 3.5 %
L1_conflicts 5 3.2 %
PE_sleep 6 3.1 %
PE_alu 6 2.3 %
PE_sleep 7 2.1 %
PE_idle 3 1.9 %

5% on wasted energy, the classification accuracy exceeds 75%. Exploring dynamic
features plays a crucial role in identifying new necessary static features to enhance
classification performance.

Then a similar experiments is conducted using dynamic features extracted from
GVSOC [10]. As traces are utilized to calculate the energy consumption of a program,
they provide the "ground truth" for determining the optimal energy parallelism. Con-
sidering that dynamic features are expected to be more informative than static ones,
our goal is to identify the most optimal subset that yields improved classification
results. The decision tree ranks dynamic features based on their importance. After
conducting the analysis, a list of significant features, provided in Table 3.4, has been
compiled.

One of the most significant features is the PE_sleep attribute, which accurately
measures clock-gating cycles with a parallelism of both 8 and 2 cores. These values
provide valuable insights into how the source code behaves under different levels
of parallelism. Additionally, other notable attributes should also be taken into
considerations such as PE_idle when utilizing five cores and L1_write operations
without any form of parallelism. The former indicates wait cycles using half of the

3.3 Results 33

available parallelism, while the latter identifies memory writes that do not utilize
any form of parallel execution.

The left plot of Figure 3.2 showcases the classification accuracy over 8 classes
using different combinations of static features. The accuracy, without any energy
tolerance threshold, is consistently around 57%. However, when allowing a 5%
energy threshold tolerance, which is feasible in most cases, the classification accuracy
increases to approximately 80%. By scoring and pruning less informative features
used by the decision tree classifier, an "optimized" classifier can achieve an accuracy
of 61% without a threshold and 79% with a 5% threshold over eight classes.

3.4 Conclusions

The problem of automatic source code configuration becomes increasingly relevant as
architectures grow more complex and diverse. This study aims to predict the optimal
number of cores for minimizing the execution energy of openmp kernels on deeply
embedded architectures using static code analysis. Focus of this thesis is on the
PULP architecture, an advanced parallel ultra-low-power embedded microcontroller.
By incorporating dynamic features into the decision tree model, it is possible to
identify the most promising features that enhance the robustness of the classifier
based solely on static features. Ultimately, the results demonstrate that a decision
tree trained with static source code features achieves a significant accuracy rate of
61%. Furthermore, when introducing a tolerance threshold of 5% for wasted energy
during classifier evaluation, accuracy improves further and approaches 80%.

The first activity needed to further enhance this study is to expand the dataset cover-
age by including more kernels and exploring various parallel programming models.
Additionally, any analysis should include DMA transfers and memory hierarchy to
seek for a more complete and comprehensive platform representation. Furthermore,
having a sufficiently large dataset, deep learning model can be exploited to avoid
manual features engineering, augmenting the prediction capabilities of the existing
solutions proposed in this research work.

34 Chapter 3 Machine Learning-based Device Configuration

Deep Learning-based
Heterogeneous Device
Mapping

4

4.1 Introduction

Heterogeneous computing platforms have gained significant importance in the mod-
ern era due to the changing landscape of semiconductor technology. The slowdown
of Moore’s law, which predicted a consistent increase in the performance of individ-
ual processors, paired with the end of Dennard scaling, which allowed processors to
become more power-efficient as they grew in complexity, boosted the adoption of
heterogeneous architectures in recent years, to meet the increasing computational
demands of various applications [25]. Heterogeneous architectures, which integrate
general-purpose processors and specialized hardware accelerators, are crucial for
a wide range of applications such as artificial intelligence, scientific computing,
mobile devices, and autonomous systems [34]. This architectural approach enables
efficient utilization of hardware resources and optimization of performance and
energy efficiency across various computing systems.

The emergence of state-of-the-art methodologies based on supervised deep learning
models for source code analysis has provided new opportunities to enhance compilers
to efficiently face novel challenges offered by heterogeneous computing [19, 18, 3,
8]. One of which is heterogeneous device mapping that refers to the problem of
choosing the best computational unit, among the one available on a heterogenous
platform to execute a given program snippet, taking into account the structural
properties of the program to offload and metadata describing the environment and
conditions in which the execution takes place. These models analyze source code to
determine the optimal configuration for tasks on different platforms, considering
metrics such as performance or energy. This approach eliminates the need for manual
porting and profiling of computational kernels, making it easier for developers to
code and deploy their applications. By leveraging deep learning algorithms, which
are capable of automatically extracting relevant static features from data, a code
classifier is used in this process. Through preliminary source code transformations

35

Table 4.1: Dataset composition [19]. The first two columns are the number of benchmarks
in suite (Benchmarks) and the number of unique kernels in suite (Kernels). In
the complete dataset, composed by the tuple Code and Meta-information, each
suite has a different number of pairs.

Suite Version Benchmarks Kernels Samples

amd-sdk 3.0 12 16 16
npb 3.3 7 114 527
nvidia-sdk 4.2 6 12 12
parboil 0.2 6 8 19
polybench 1.0 14 27 27
rodinia 3.1 14 31 31
shoc 1.1.5 12 48 48

Total 71 256 680

and the use of a deep learning network as a language model, important code
features are identified for decision-making purposes such as assigning appropriate
accelerators to specific portions of the code.

Most recent advancements in deep learning for analyzing source code on different
platforms depend greatly on a dataset developed by Cummins et al. [19]. This
dataset, summarized in Table 4.1, consists of 256 OpenCL [52] kernels that have
been profiled on a Intel Core i7-3820 CPU and two GPU models, namely a AMD
Tahiti 7970 and a NVIDIA GTX 970. Alongside the code sequences, additional
auxiliary information describes the runtime environment in which the computation
is performed. Such information is condensed into two number representing the
kernel payload size and the work-group size, an OpenCL platform parameter influ-
encing device parallelism. Since each OpenCL kernel can be executed with multiple
combination of payload and work-group size, these supplementary information
effectively expand the source code collection into a 680-sample dataset. Typically,
these auxiliary inputs are directly integrated into the final classification layer of
the network to work alongside output from a deep learning language model that
extracts crucial information from the code sequences. A significant drawback of this
existing dataset is its limited scale and representativeness; it may not adequately
cover all scenarios and applications encountered in real-world situations, potentially
restricting accuracy and practicality when training models is based on it.

This chapter introduces two enhancement in the training pipeline for deep-learning
models aiming at solving the device mapping problem. First, the distribution of
the axuiliary information in the dataset proposed in [19] is analyzed, and a novel
pre-processing technique is proposed to standardize such metadata and pre-process

36 Chapter 4 Deep Learning-based Heterogeneous Device Mapping

them before joining them with the language model into the vector which feed
the device mapping classifier. Additionally, the training framework is enhanced to
support Siamese networks: a specific type of neural network architecture designed to
solve tasks involving similarity analysis, such as face recognition and text matching.
Two intuitions support the adoption of Siamese networks. First, training a Siamese
network boosts the dataset size since it requires feeding the network with pairs
of samples, instead of a single sample. This boosts dataset size since the Siamese
counterpart of a dataset composed of N samples is a dataset composed of all the
possible pairing of the original N samples. The second intuitions relies on veryfing
whether using a loss which forces samples beloing to the same class to have similar
representations in the features space is a more effective learning strategy to solve
the problem of heterogeneous device mapping. The advantages of this training
methodology are showcased through its application on DeepLLVM, a state-of-the-art
model for heterogeneous device mapping [3], which analyze a sequence of LLVM-
IR tokens through convolutive and pooling layers. Finally, a comparison is made
between the accuracy achieved by our proposed modifications with state-of-the-art
techniques on heterogeneous device mapping to quantify the improvement.

4.2 Methodology

4.2.1 DeepLLVM network topology

This section outlines the preprocessing pipeline and the network architectures of
DeepLLVM [3], which this work assumes as baseline. The analysis of DeepLLVM
flow consists of two steps, represented in Figure 4.1: source code preprocessing and
code classification. During source code preprocessing, significant syntactic elements
are identified and translated into a sequential list of integers. Code classification is
then performed using a supervised learning method with a Convolutional Neural
Network composed of convolution and pooling layers.

OpenCL kernel pre-processing and LLVM-IR tokenization

To enable machine learning models that work with numerical data, it is necessary to
have a preprocessing pipeline that can convert source code into a suitable numerical
form as detailed in Section 2.1. The DeepLLVM model takes as input a dataset of
computational kernels written using OpenCL [52], which is a high-level framework
for writing C programs that can run on heterogeneous platforms with multiple

4.2 Methodology 37

execution engines. The Clang compiler is used to translate OpenCL code to LLVM-
IR. This allows the learned language model not to be specific to OpenCL, but
potentially applicable to other high-level languages as well. DeepLLVM collects
the input source code tokens using a customized procedure tailored for processing
LLVM-IR sources. This procedure includes two steps: pre-tokenization and post-
tokenization. During the pre-tokenization phase, non-code lines such as empty lines
and comments are removed from each kernel. The body of the input kernel is isolated
and simplified by reducing LLVM-IR array and vector data types. Furthermore,
parentheses, math operators, commas, colons, and assignment symbols are treated
as separate tokens in the token stream. Complex data types are also simplified during
pre-tokenization by replacing constants with placeholders (e.g., _float_constant
for real constants), resulting in a significant reduction in code fragment length.
Following pre-tokenization, any sequence of characters separated by spaces can be
identified as a token. Post-tokenization transformations are applied to the tokens to
implement higher-level generalizations, such as removing LLVM-IR meta-data and
replacing variable and function names with anonymous placeholders. Additional
anonymization operations are described in [3]. The output of the post-tokenization
phase is a set of tokens assigned unique numerical identifiers, which will be processed
by the language modeling network for classification in downstream tasks.

CNN-based language modelling and downstream classifier

The deep-learning model for device mapping uses a tuple of two inputs: the numeri-
cal sequence representing the preprocessed LLVM-IR source and auxiliary data that
defines the context of OpenCL kernel usage. DeepLLVM consists of two components:
a language model that converts the input token sequence into a multidimensional
vector, and a features classifier that analyzes the output of the language model to pre-
dict the optimal device for kernel offloading. The network input is a tensor composed
of batch-size sequences, each one composed of a token sequence with appropriate
padding or trimming. The token indexes are projected into a metric space using
an embedding layer, as described in the background section. The Embedding Layer
translates the token sequence and projects each element into an embedding space
resulting in a list (of length batch-size) of sequences, where each token has been
transformed into a vector in the embedding space. The weights of the Embedding
Layer determine how each token is mapped to its corresponding embedded vector.
During training, the projection in the embedding space initially starts from ran-
dom conditions. The DeepLLVM language model is inspired by sentence sentiment
classification techniques to reduce the output of the embedding layer into a single

38 Chapter 4 Deep Learning-based Heterogeneous Device Mapping

point in the feature space. The CNN implementation consists of a one-dimensional
convolution layer followed by global max-pooling. The convolutional layer applies
multiple filters to process each sequence produced by the embedding layer, and then
selects the maximum value using global max pooling. Once the language model
reduces the original token sequence to a single point in space representing the
analyzed kernel, this vector is combined with auxiliary information into a single
vector. The resulting vector is then classified using two dense, fully connected layers
that output the model’s prediction.

4.2.2 Enhanced auxiliary inputs processing pipeline

Meta-information is used to provide the source code analysis with contextual infor-
mation regarding the environment in which the application runs. For the dataset
considered in this study [19] such information is constituted by a tuple of two
elements DM : {A1, A2} where A1 represents kernel payload (measured in bytes)
which impacts data movement phases, and A2 denotes work-group size, an OpenCL
platform parameter influencing device parallelism. The distribution of the two
auxiliary meta-information is shown in Figure 4.2.

To investigate the usage of auxiliary information, the original dataset is modifyed
by filtering out source code and metadata pairs with inconsistent labeling. An
auxiliary input pair is said to be inconsistently labelled, if its label depends on
the specific source code being paired. This results in a separate dataset consisting
only of auxiliary inputs. This thesis trains two commonly used classifiers for device
mapping analysis - a decision tree and a multi-layer perceptron. The decision tree
classifier was previously successful in studies such as [44] and [55], while multi-
layer preceptron serves as a baseline for deep learning techniques applied to device
mapping. Stratified 10-Fold Cross Validation [53] was employed using both decision
tree and multi-layer perceptron models, repeating each experiment ten times with
random seeds.

The experimental findings are presented in Table 4.2. The decision tree model
exhibits a satisfactory 73% accuracy, which is deemed acceptable given the inclusion
of meta-information. In contrast, the MLP model struggles to learn and achieves an
approximate accuracy rate of 50%. The challenge lies in the fact that Deep-learning
techniques assume properly formatted data with values falling within the range of
or [-1, 1]. This requirement ensures accurate gradient computation and prevents
issues associated with numerical instabilities during learning. Unfortunately, this
condition does not hold for the auxiliary inputs under consideration.

4.2 Methodology 39

Table 4.2: Results of meta-information dataset classification using decision tree and multi-
layers perceptron for raw and normalized data.

AMD
ACC MCC

DT MLP DT MLP

D̃M Raw 0.738 0.465 0.488 -0.012
D̃M Normalized 0.711 0.731 0.422 0.472

NVIDIA
ACC MCC

DT MLP DT MLP

D̃M Raw 0.727 0.535 0.456 0.074
D̃M Normalized 0.724 0.636 0.453 0.248

To address this common problem in device mapping methodology, a preprocessing
procedure is implemented on the training data. This procedure consists of three
normalization steps: power transformation, standard scaling, and min-max scaling.
The power transform applies parametric monotonic transformations to make the
distribution of data more Gaussian-like. The standard scaler removes the mean and
scales the data to have unit variance. Lastly, the min-max scaler scales the values of
the data within a range of [-1, 1], which reduces the feature range that needs to be
processed by the multi-layer perceptron algorithm. The findings of this procedure
are documented in Table 4.2. Now, both the MLP and decision tree classifiers can
effectively learn from both versions of the dataset. It is worth noting that although
the performance of these two models is similar, the multi-layer perceptron model
holds more potential as it can be easily integrated into a code analysis framework.
The proposed techniques offer an improvement to the methodology described by
DeepLLVM, as shown in this result. During training, certain scaling parameters
are acquired to preprocess auxiliary inputs. Additionally, the network topology is
adjusted by incorporating a multi-layer perceptron layer that processes the auxiliary
input before merging it with the output of the language model.

4.2.3 Siamese training topology and Contrastive Loss

Siamese networks [14] are a specific type of neural network architecture that are
particularly useful for tasks involving similarity analysis, such as face recognition,

40 Chapter 4 Deep Learning-based Heterogeneous Device Mapping

signature verification, image comparison, and text matching. These networks offer
versatility and can be employed in diverse fields where comparing the likeness or
dissimilarity between data points plays a critical role. One distinguishing feature
of Siamese networks is their incorporation of twin subnetworks with identical
architectures and parameters. This design allows them to process pairs of input
samples concurrently while learning representations that assign similar features to
instances from the same class while separating those with different labels. Through
this approach, Siamese networks can effectively uncover and generalize distance
metrics based on available data, making them an influential tool across various
applications.

Siamese networks encompass a learning approach for training neural networks on
similarity tasks, rather than just being limited to network architecture. Figure 4.3
provides an intuition of the working principles of Siamese networks. During the
training phase, siamese samples comprise two input samples that undergo processing
by twin networks sharing weights. Each twin network independently processes one
of the input data points and extracts a feature vector representing the data. The
resulting feature vectors from both twin networks are then compared using either
a similarity or distance metric. The Siamese network is trained with the objective
to optimize a loss function that promotes similarity between feature vectors for
similar inputs and dissimilarity for dissimilar inputs. By minimizing this loss, the
network becomes capable of discriminating between pairs that are similar versus
those that are dissimilar. In this work, the Siamese network is trained using a loss
function named "Contrastive Loss". The contrastive loss [35] is a commonly used
loss function for training Siamese networks. It encourages the network to learn to
discriminate between similar and dissimilar pairs of data points. The loss function is
designed to minimize the distance between similar pairs and maximize the distance
between dissimilar pairs.

loss =

d(S1, S2)2, if label(S1) = label(S2)

max(0, m − d(S1, S2))2 otherwise

where m, called "margin" is a crucial hyperparameter that can be adjusted to control
the trade-off between correctly classifying similar and dissimilar pairs, depending
on the specific requirements of the task. After the completion of training epochs,
all the projections of the samples in the training set are gathered and a centroid
for each class is calculated by taking an average of their corresponding projections.
Ultimately, to test the siamese network, the projections for all points in the test fold
are computed and a label is assigned depending on the closer centroid.

4.2 Methodology 41

4.3 Results

4.3.1 Machine learning models and training hyper-parameters

A series of experiments have been performed to assess the impact of modifying the
training framework for preprocessing auxiliary inputs and incorporating siamese
training on the accuracy of machine learning models for mapping heterogeneous
devices. The current study focuses on evaluating two machine learning models,
namely CNN and Siamese. The CNN model is influenced by the DeepLLVM network
proposed in [3]. In this approach, a 1D convolutional layer and global max pooling
filter are utilized to extract relevant features from a sequence of LLVM-IR tokens.
These extracted features are then concatenated with auxiliary inputs and classified
using a multi-layer perceptron. To further improve the performance of DeepLLVM, an
additional fully connected layer is introduced before combining the auxiliary input
features with the output from the language modeling sub-network. Furthermore,
Subsection 4.3.2 investigates how preprocessing methods for auxiliary inputs along
with an added dense layer impact the classification accuracy of the CNN.

Siamese refers to the CNN described in the previous paragraph, without an activation
function in the final layer of the fully-connected classifier. This allows the network
to project each dataset sample into a two-dimensional space rather than performing
classification tasks. During training, every combination of sample pairs in the train
folds undergo separate projection into a 2-dimensional space and update network
weights based on the obtained contrastive loss value. As described in Section 4.2.3,
samples with different labels are moved apart by the loss function while samples
with equal labels are penalized proportionally to their projected distance. Upon
completion of training epochs, all projections from train samples are collected. A
centroid is then computed for each class using these projections. The Siamese
network is tested by projecting all points in the test fold and assigning a label based
on proximity to centroids.

Table 4.3 describes the established training framework. For the CNN, a batch size
of 32 is used and trained for 70 epochs. The Siamese network is trained using
batches of 64 samples and lasted for 15 epochs. Both models utilized the Adam
optimizer with a learning rate of 0.001. The CNN model is trained for a larger
number of epochs and utilizes a learning-rate scheduler to progressively reduce
the learning rate as the model progresses. The learning rate scheduler has three
parameters: patience, threshold, and factor. After each training epoch, the training
loss is compared to that of previous epochs. If there is no significant improvement

42 Chapter 4 Deep Learning-based Heterogeneous Device Mapping

Table 4.3: Training and callbacks hyper-parameters used to train the proposed machine
learning models.

Parameters CNN Siamese

Epochs 70 15
Batch size 32 64

Optimizer
Learning rate 1e-3 1e-3
Weight decay 5e-4 5e-4

LR scheduler
Factor 5e-1 -
Threshold 1e-4 -
Patience 5 -

Contrastive loss Margin - 2

beyond the threshold for several epochs (patience), then the optimizer’s learning
rate is multiplied by a factor. This technique helps prevent gradient descent from
getting stuck in local minima and improves performance in deep-learning models.

Evaluation of the experiment outcomes involves two metrics: accuracy and Matthews
correlation coefficient. MCC is preferred over accuracy and F1 score for assessing
binary classifiers in imbalanced class scenarios [33]. The experiments are repeated
10 times with varying fold splits, resulting in mean (µ), standard deviation (σ), and
a 95% confidence interval (CI95).

4.3.2 Impact of auxiliary input preprocessing

The impact of the proposed auxiliary input preprocessing technique detailed in this
work is validated by checking the classification performance of the CNN and the
Siamese model. To enhance the handling of auxiliary inputs in existing literature,
two modifications is purposed in this work: Firstly, a series of scaling techniques is
introduced to preprocess the raw auxiliary input values present in the dataset. These
techniques include using a power transformer based on the Yeo-Johnson method
to make the data distribution more Gaussian-like and applying a standard scaler to
remove mean and scale them to unit variance. Secondly, a data scaling within a fixed
range of -1 and +1 and Lastly, a one-layer fully connected perceptron in the auxiliary
input analysis pathway for enhancing the flexibility of feature space manipulation
during training. Four separate experiments - A, B, C, and D - are conducted to assess
each modification individually. The details of each experiment can be found in Table
4.4a. Experiment A replicates the findings presented in [3] for the CNN model and
serves as a benchmark for evaluating siamese network performance.

4.3 Results 43

Table 4.4: Impact of auxiliary input preprocessing on model accuracy.

Additional model techniques

Experiment input pre-processing input dense-layer

A No No
B Yes No
C No Yes
D Yes Yes

(a) Experiments composition.

AMD Experiments
ACC MCC

A B C D A B C D

C
N

N

µ .853 .882 .868 .890 .695 .758 .726 .775
σ .013 .008 .008 .006 .027 .015 .017 .012
CI95 .009 .006 .006 .004 .020 .011 .012 .008

Si
am

. µ .882 .910 .873 .917 .757 .816 .738 .829
σ .006 .008 .009 .007 .012 .015 .019 .014
CI95 .004 .005 .007 .005 .009 .011 .014 .010

(b) AMD Experiments

NVIDIA Experiments
ACC MCC

A B C D A B C D

C
N

N

µ .823 .843 .830 .873 .638 .678 .653 .767
σ .010 .008 .009 .009 .021 .017 .017 .018
CI95 .007 .006 .006 .006 .015 .012 .012 .013

Si
am

. µ .859 .885 .832 .888 .713 .765 .657 .771
σ .010 .008 .010 .009 .021 .017 .020 .018
CI95 .007 .006 .007 .006 .015 .012 .014 .013

(c) NVIDIA Experiments

44 Chapter 4 Deep Learning-based Heterogeneous Device Mapping

Table 4.5: Impact of auxiliary input preprocessing on [19] and [8].

Test on state-of-the-art models
AMD NVD

A B ∆ A B ∆

D
ee

pT
. µ .814 .855 .041 .805 .839 .034

σ .020 .015 -.005 .008 .007 -.007
CI95 .014 .007 -.001 .006 .005 -.001

C
D

FG

µ .864 .889 .025 .814 .853 .039
σ .010 .007 -.003 .006 .009 .003
CI95 .007 .005 -.002 .004 .006 .002

Table 4.6: Comparison with state-of-the-art methodologies.

State-of-the-art methodologies
AMD NVIDIA Mean

DeepTune [19] .814 .805 .810
NCC/inst2vec [5] .802 .810 .806
CDFG [8] .864 .814 .839
DeepLLVM [3] .853 .823 .838

CNN
this work

.890 .873 .882
Siamese .917 .888 .903
(a) State-of-the-art methods were re-evaluated

in this work using SKF and Training Set with
9/10 folds.

State-of-the-art methodologies
AMD NVIDIA Mean

ProGraML [18] .866 .800 .833

CNN
this work

.894 .877 .886
Siamese .908 .879 .894
(b) CNN and Siamese methods were re-evaluated

in this work using SKF and Training Set with
8/10 folds.

4.3 Results 45

The results of the four experiments are presented in Tables 4.4b and 4.4c. Experiment
D consistently achieves the highest accuracy and MCC scores for both datasets,
indicating that normalizing auxiliary input and adding dense layers are effective
strategies for improving classification performance. In particular, the CNN model
achieves an accuracy of 88.8% on the AMD dataset, outperforming the baseline from
experiment A by 3.7%. For the NVIDIA dataset, our proposed modifications result in
a 5 increase in accuracy, reaching 87.3%. Moreover, incorporating Siamese networks
into the framework further enhances classification performance with top accuracies
of 91.7% for AMD dataset and 88.8% for NVIDIA dataset - demonstrating superior
performance compared to alternative methodologies used for source code mapping
on heterogeneous platforms.

Furthermore, this study demonstrates the effectiveness of auxiliary input prepro-
cessing in enhancing the performance of existing methodologies for source code
device mapping. The impact of this preprocessing pipeline on DeepTune and CDFG is
presented in Table 4.5. Our experimental results reveal that incorporating auxiliary
input preprocessing leads to a minimum accuracy improvement of 2.5%, with a
maximum improvement of 4.1% observed in the case of DeepTune when evaluated
using the AMD dataset.

4.3.3 Comparative results

Table 4.6 compares the CNN and the Siamese with other state-of-the-art tools that
solve the problem of heterogeneous device mapping. The selection is limited to
the methodologies which analyze LLVM-IR, plus DeepTune [19]. This study utilizes
Stratified K-Fold Cross Validation to train all of the methodologies under test. Our
evaluation is based on the average results from 10 different experiments, each with
a unique assignment of samples in the folds. Due to the limited size of the dataset,
variations in fold composition can have a significant impact on performance for any
given model. To ensure fair comparisons between techniques and machine learning
models, a statistics derived from multiple experiments are taken into considerations,
where the order of samples within folds are varied. For this purpose, the comparison
techniques are replicated in this study and each experiment is performed using
an identical setup as our models. Specifically, this thesis uses "Stratified K-Fold
Training Set with 9/10 folds - 10 Repetitions - Rebuild Folds" methodology. To
ensure a fair comparison between the proposed technique and ProGraML [18],
which utilizes a smaller training set (80%), we conducted re-training of both CNN
and Siamese models using an analogous dataset splitting configuration. Same as

46 Chapter 4 Deep Learning-based Heterogeneous Device Mapping

before, a "Stratified K-Fold Training Set is used with the exception of 8/10 folds - 10
Repetitions - Rebuild Folds" for this purpose.

The results shown in Table 4.6 demonstrate a noteworthy increase in accuracy for
the proposed methods compared to state-of-the-art techniques. The incorporation
of auxiliary input processing techniques, such as normalization and an additional
dense layer, enhances the classification accuracy of the baseline model found in
[3] from 85.5% to an average of 88.2%. By utilizing these techniques during
siamese training, even better performance improvements are achieved, surpassing
existing methodologies. Additionally, it is worth noting that both auxiliary input
normalization and the Siamese framework can be applied to all methods listed in
Table 4.6.

4.4 Conclusions

In this study, two deep-learning classifier approaches are introduced to maximize
the potential of a dataset containing source code for heterogeneous device mapping.
The first approach involves using metainformation data in combination with two
different techniques: a decision tree and a multi-layer perceptron. Our goal is to
determine the most effective analysis technique for this type of data. Interestingly,
while the decision tree generally performed better, integrating code analysis with
a multi-layer perceptron made our methodology more promising. By applying a
normalization pipeline, satisfactory results are achieved, even when utilizing the
multi-layer perceptron approach. Additionally,this thesis introduces a novel training
approach called the Siamese Network. This paradigm utilizes contrastive loss to
learn from similarities between samples within the same class. The objective of this
technique is to improve classification performance by incorporating a loss function
that encourages sample similarity and by expanding the training dataset through
paired samples rather than individual ones. By employing a new multi-layer percep-
tron, normalizing meta information, and utilizing the Siamese Network, satisfactory
accuracy rates are achieved in heterogeneous device mapping. Specifically, results
show an accuracy of 91.7% for AMD devices and 88.8% for NVIDIA devices on
the dataset. For future research directions, an exploration of additional techniques
aimed at further improving classification accuracy, will be investigated that may
include enhancing the utilized language models and addressing any inconsistencies
in dataset labels.

4.4 Conclusions 47

Auxiliary
InputsOpenCL

LLVM-IR

Tokenizer

coeff.

Embedding

Concatenation

MLP

ReLU

MLP

Sigmoid

Conv1d

ReLU

MaxPool1d

Dropout

MLP

ReLU

STD

So
ur

ce
 C

od
e

Pr
e-

pr
oc

es
si

ng
La

ng
ua

ge
 M

od
el

li
ng

Au
xi

li
ar

y
In

pu
t

pr
e-

pr
oc

es
si

ng

Cl
as

si
fi

er

Siamese
projection

Figure 4.1: Representation of the DeepLLVM [3] data pro-processing and model topology.

48 Chapter 4 Deep Learning-based Heterogeneous Device Mapping

Figure 4.2: Distribution of auxiliary input features for the two datasets considered. Each
point is coloured in green or orange depending on its label.

Figure 4.3: Siamese network training. First, the weight of the core network are trainined
using the contrastive loss computed on the projections of the points in the train
folds. Then, centroids of same class samples are computed and the a label is
assigned to each sample in the test set, depending on the closer centroid.

4.4 Conclusions 49

Control-Flow Integrity
enforcement in the
Root-of-Trust

5

5.1 Introduction

The widespread use of open-hardware platforms in various application domains,
including safety and security-critical systems like industrial controllers and au-
tonomous vehicles, has led to extensive research efforts focused on enhancing the
security features of these systems. Modern SoC designs are equipped with devices
such as Trusted Platform Modules and Root of Trust, on-chip or off-chip IPs featuring
cryptographic accelerators, secure storage, and often employing physical measures
to ensure robustness against physical attacks, such as power monitoring. These
systems are increasingly employed to support secure boot and firmware signature
verification, effectively preventing the execution of malicious code.

While secure boot and firmware verification schemes ensure software authenticity
at boot time, embedded systems are often programmed using memory-unsafe lan-
guages, such as C-derived languages. Such approach has the advantage of granting
great freedom to the system developer in terms of memory management, and enable
aggressive source code optimization. However, it comes at the cost of a increased
risk of bugs and memory corruptions which can potentially introduce security vul-
nerabilities into the system. Read and write vulnerabilities can be exploited by a
determined attacker to bypass traditional memory protection mechanisms [49][17]
and alter the control flow of the victim program using Return-Oriented Program-
ming, or other Code-Reuse techniques, to trigger malicious, potentially dangerous,
behaviours [46].

To address security threats posed by CRAs, modern SoC designs include Control-Flow
Integrity enforcement policies. These policies ensure that an application’s control
flow follows the constraints established during development and alerts the platform
runtime of any violations [1]. In addition to software-based approaches, there are
hardware solutions that aim to enhance control flow integrity by extending the
system-on-chip architecture with runtime checking capabilities. These hardware

51

solutions can be classified into three main categories: ISA extensions [22][32],
hardware monitors [50], and programmable co-processors [23][24]. While im-
plementing ISA extension techniques requires a specific toolchain and designing
hardware monitors involves creating a new hardware IP from scratch, security co-
processors provide the ability to implement customized policies through software
by utilizing a dedicated programmable core that leverages a reserved side-channel
for obtaining control-flow information from the main core, paying the area cost of a
secondary core which enforce the CFI policy.

This chapter describes an innovative co-processor-based architecture for implement-
ing custom CFI policies on the modern RISC-V platform described in Section 2.2
and is inspired by [15] that includes the OpenTitan RoT and a RV64GC CVA6
host processor [57]. Our approach relies on exploiting the OpenTitan RoT, which
is already present on the platform to enable Secure Boot and Remote Attestation,
as a CFI co-processor to harness the RV32IMAC Ibex [21] core to execute custom
CFI policies in software. This approach eliminates the need for a separate security
monitor and optimizes the use of the RoT, which is usually unused after initial setup.
It leverages the built-in security features of the RoT, such as private tamper-proof
storage access, to enhance security beyond what alternative state-of-the-art solutions
offer. The chapter has the following contributions:

Design: Enhancement of the architecture of a RISC-V SoC for autonomous vehicles
allow OpenTitan to monitor and track control flow instructions executed by the host
processor. Additionally, I improve the commit stage of the host core to filter these
instructions and store them in a FIFO until they are deemed "safe" by the monitoring
system. Moreover, (iii) the OpenTitan Ibex firmware is extended to analyze the
selected instructions and detect any control flow violations.

Exploration: Characterization of the overhead of running CFI checks in the RoT
by measuring the runtime overhead of the CFI enforcement scheme on a set of
benchmark applications.

Implementation: The effectiveness of the implemented system is demonstrated
through the incorporation of a return address protection policy based on a shadow
stack. Additionally, an examination and comparison are conducted between our so-
lution’s runtime penalty and hardware overhead in relation to the original design.

52 Chapter 5 Control-Flow Integrity enforcement in the Root-of-Trust

T
L2A

X
I

IBEX

T
L-U

L X
bar

AXI Xbar

Root-of-Trust

ext-irq

PLIC

CFI
Firmware

Host
Domain

ext-irq

CVA6
CFI

Stage

CVA6
subsystem
completion-scmi

doorbell-cfi

P
L

IC

CFI Stage

Queue

Queue Controller

Filter0

Filter1

instr0

instr1

log0

log1

CVA6

Commit

Execute

Issue

Decode

Frontend

C
o

n
tr

o
lle

r

V

L

pu
sh

log_in

se
le
ct

wait

LogWriter

poplog
out

AXI

fa
ul
t

M
A

IL
B

O
X

 S
C

M
I

completion-cfi

M
A

IL
B

O
X

 C
F

I

doorbell-scmi

empty

ack0

ack1

co
m
pl
et
io
n-
cf
i

Figure 5.1: Architecture of TitanCFI. The diagram highlights the proposed architectural
modification to the SoC (left) and CVA6 core (right)

5.2 CFI Extensions and OpenTitan Firmware

To incorporate the OpenTitan Root-of-Trust as a CFI co-processor, enhancements
have been made to the baseline PULP platform described in Section 2.2 and in [15].
As shown in Figure 5.1, these modifications involve implementing a side channel
for transmitting control-flow data between the CVA6 host core and OpenTitan.
Specifically, changes have been made to expand both the CVA6 commit stage and
the SoC communication system. The expansion of the CVA6 commit stage involves
several actions: filtering control-flow operations from the retired instructions stream,
extracting relevant metadata from the host core scoreboard, and forwarding them to
RoT through enqueuing. Alongside hardware adaptations, specialized firmware has
also been developed for OpenTitan to enable proper enforcement of Control Flow
Integrity. This development ensures compatibility with custom firmware designs
while supporting secure data exchange between CVA6 and RoT through an added
shared memory region within the SoC communication system.

5.2.1 SoC Modifications and CFI Mailbox

To ensure adherence to the desired control-flow graph, runtime CFI policies require
gathering information on the executed control-flow of the target process. This study
extracts control-flow metadata from retired instructions stored in the CVA6 commit
stage and transmits them to the Root-of-Trust using a mechanism known as the CFI
Mailbox. The CFI Mailbox serves as a shared memory area designed for exchanging
information between the host core and the Root-of-trust. The CFI Mailbox design
bears similarity to the existing SCMI-like mailbox found in the reference SoC [15].
It comprises several shared memory registers used for data sharing, along with two
control registers: the doorbell register and the completion register. These control
registers are responsible for sending interrupt requests to signal the availability of

5.2 CFI Extensions and OpenTitan Firmware 53

new data or when a security check has been conducted, thereby notifying both
communicating parties. The shared memory space is designed to have enough
capacity to accommodate the CFI metadata necessary for representing a single
control flow instruction. When new metadata is prepared for retrieval, the enhanced
CVA6 commit stage activates the doorbell register to generate an interrupt in the
Root-of-Trust. Unlike a typical SCMI-like mailbox, the completion register in this
case is not linked to the host domain interrupt controller. Instead, it is directly
connected to the commit stage of the CVA6 core. Its purpose is to signal that a
previously retired instruction has been verified and checked by the CFI enforcement
policy. The result of this policy can be retrieved from the mailbox, indicating that
the Root-of-Trust is prepared to proceed with reading the next commit log.

5.2.2 Host Core Modifications

CFI Filters

The commit stage of the CVA6 core has been expanded to include an instruction
scanner for all retired instructions from each commit port. This scanning process
is responsible for identifying and selecting control flow operations that require
checking. These operations, as outlined in Section 2.3, consist of indirect jumps,
function returns, and function calls. Indirect jumps, indirect calls, and function
returns are types of control-flow changes where the target destination is determined
at runtime based on the value stored in a register that may have been tainted
by an attacker due to memory corruption. In contrast, direct calls have their
target addresses hardcoded in the code binary itself and cannot be compromised
assuming the immutability of code memory. However, it remains necessary to collect
information about direct calls to enforce backward edge protection mechanisms like
shadow stack, aiming at safeguarding against hijacking attempts of a function return
address.

This research implements two CFI filters, one for each commit port of the CVA6 core.
A CFI Filter receives a scoreboard entry from the commit port, which represents
an executed instruction ready for retirement. The purpose of the CFI Filter is to
determine if the retired instruction is relevant to Control Flow Integrity and extract
necessary metadata, called a commit log, for enforcing CFI. The commit log consists
of a 224-bit packet containing four pieces of information: (i) the program counter
representing the instruction address, (ii) the uncompressed binary encoding of the
current instruction, (iii) the next program counter value, and (iv), the target address.
It is important to consider both the next program counter and the target address

54 Chapter 5 Control-Flow Integrity enforcement in the Root-of-Trust

when dealing with indirect function calls. This is necessary to verify the forward
edge by checking the target address of the called function, as well as protect against
any attacks on the backward edge when the function returns by storing the next
program counter in a shadow stack.

CFI Queue and Queue Controller

The Control Flow Integrity Queue operates as a First-In-First-Out data structure that
holds the commit logs obtained from the CFI Filters. To regulate the flow of data
into the CFI Queue, the Queue Controller manages the push signal and occasionally
inhibits the commit stage, potentially stalling the pipeline, by preventing the core
from retiring further instructions. Furthermore, if either multiple commit ports retire
control-flow instructions or if there is insufficient space within the CFI Queue, then
these conditions trigger inhibition of the commit stage using controls provided by
the Queue Control module. This behavior is necessary due to limitations imposed
by having only a single entry FIFO for storing commits in internal storage. Due to
its simple pipeline and focus on energy efficiency rather than performance, CVA6
typically does not commit multiple control-flow instructions in the same cycle. As a
result, implementing the CFI Queue as a standard FIFO should not cause significant
performance degradation while maintaining simplicity in design.

CFI Log Writer

The CFI Log Writer module acts as a bridge between the CVA6 core and the CFI
Mailbox. It is implemented as a Finite State Machine that retrieves commit logs
from the CFI Queue and triggers write transactions on the SoC interconnect to write
control-flow metadata to the CFI Mailbox. While idle, the FSM waits for the presence
of at least one commit log in the CFI Queue and a ready signal from the CFI Mailbox.
Next, it fetches a commit log from the queue and divides it into data chunks with
sizes matching those of the data bus width, which is equal to 64 bits in the reference
architecture. Then, AXI transactions are initiated to transmit each chunk of data
to transfer all sections of a complete commit log into the CFI Mailbox. Finally, the
CFI Log Writer triggers an interrupt in the Root-of-Trust by setting the doorbell
register and it transits into a "waiting" state, where it remains idle until it receives a
completion signal asserted by Root-of-Trust firmware. Once the completion signal
is received, the FSM reads the result provided by the CFI enforcement policy from
the CFI Mailbox and triggers an exception if any control flow violation is detected.

5.2 CFI Extensions and OpenTitan Firmware 55

Finally, the FSM returns to idle and it is ready to pop a new commit log from the CFI
Queue.

5.2.3 OpenTitan Firmware Design

In this research, the desired control flow integrity policy is incorporated into the
firmware of the OpenTitan Root-of-Trust using C programming language. To achieve
this, an additional external interrupt, corresponding to the CFI Mailbox doorbell, is
added to the Interrupt Controller of OpenTitan. The CFI policy is then implemented
as an interrupt service routine associated with the CFI Mailbox external interrupt. In
the given software architecture, it is necessary to implement each CFI policy in three
steps: IRQ entry, policy enforcement, and IRQ exit. When the OpenTitan interrupt
controller receives a CFI Mailbox interrupt, it wakes up the Ibex microcontroller.
Then, Ibex jumps to the CFI interrupt service routine and reads the commit log from
the CFI Mailbox. This commit log contains information about the control-flow event
that needs to be verified. Next, the binary encoding of the uncompressed RISC-V
instructions is used to determine whether the control flow event corresponds to a
function call, function return, or indirect jump. Based on this analysis, it applies
appropriate programmed CFI enforcement policies. Lastly, the Ibex writes a binary
value indicating if any control-flow violation occurred in the CFI Mailbox. It also
sets the CFI Mailbox Completion register to signal that checks are complete, the host
core can read the outcome of the enforcement policy, and OpenTitan is ready to
handle the next commit log.

5.3 Experimental Results

To evaluate the hardware and runtime requirements of the proposed CFI enforcement
scheme, we synthesized the modified architecture on an FPGA. We also conducted
simulations using two benchmark suites to estimate how these architectural modifi-
cations affected hardware utilization and runtime overhead. The synthesis process
utilized Xilinx Vivado 2020.2, targeting the Virtex UltraScale+ VCU118 system.
The benchmarks used in this study were obtained from EmBench-IoT v1.0 and
RISC-V-Tests, which were compiled with a standard RISC-V toolchain including GCC
12.2.0 with optimization level -O3.

56 Chapter 5 Control-Flow Integrity enforcement in the Root-of-Trust

5.3.1 OpenTitan firmware analysis

To evaluate the performance impact of implementing Control-Flow Integrity en-
forcement policies in the Root of Trust, a widely known protection policy called
shadow-stack is implemented [12]. The implementation proposed in this work
analyzes the binary instructions to differentiate between call and return instructions.
When a call instruction is encountered, the expected return address is extracted
from the commit log and pushed into the shadow stack. If a return instruction is
detected, its return address is compared with the value popped from the shadow
stack. Any discrepancy is reported as a security violation. Additionally, during both
scenarios, the firmware ensures that there are no overflow or underflow issues in
the shadow stack. To this purpose, the shadow stack is authenticated when saved or
restored from main memory using the HMAC cryptographic accelerator available in
the OpenTitan platform.

The cost of implementing the mentioned policy in OpenTitan is presented in Table
5.1. The table categorizes the instructions into IRQ and CFI, as well as Logic, Memory-
RoT, and Memory-SoC. The former category distinguishes instructions involved in
IRQ handling, such as spilling registers to the stack and clearing the interrupt
pending bit, from those implementing the CFI policy, such as accessing the mailbox
or pushing the return address in the stack. The latter category considers the purpose
of the executed instruction, separating memory accesses, and distinguishing between
RoT private scratchpad and SoC memory, from other operations. Specifically, the IRQ
section displays the cycle cost for implementing the OpenTitan firmware described
in Subsection 5.2.3. The results indicate that the implementation of the CFI policy
incurs a significant cost, resulting in approximately 258 to 276 cycles per control-
flow operation. However, it is important to note that a considerable portion of this
overhead is attributed to the OpenTitan microarchitecture. Upon analyzing the
results, two main issues become apparent: a high proportion of cycles dedicated
to IRQ handling and added overhead due to memory accesses. Around 60% of the
total number of cycles required for implementing the CFI policy are spent on IRQ
handling. Also, the examination of simulator-generated traces reveals that there is
an average delay of 45 cycles from when the host core commits the instruction which
writes the CFI Mailbox doorbell register until the Ibex core awakes. In addition,
the overhead of accessing the OpenTitan private scratchpad is about 5 cycles per
access and Ibex spills and restores 6 registers during IRQ entry and exit, resulting
in a cumulative overhead of 105 cycles regardless of the implemented CFI policy.
On the other hand, implementing return address protection in software requires
between 48 and 58 opcodes for the CFI policy logic. This demonstrates that software

5.3 Experimental Results 57

implementation is feasible and may be a more cost-effective option compared to
designing custom hardware modules, as long as the RoT architecture is optimized to
achieve a high IPC.

The sections of Table 5.1 labeled as Polling and Optimized present the performance
results of the Root-of-Trust firmware after implementing two potential optimizations
to address the issues mentioned earlier. In the Polling firmware, additional cycles are
used for busy waiting by polling the doorbell bit of the CFI Mailbox after verifying an
instruction. This strategy aims to reduce the overhead associated with IRQ handling
procedures and allows direct execution of CFI enforcement logic when a new control
flow instruction is already available in the CFI Queue. This optimization does not
require any hardware modifications and achieves an average policy enforcement
time of 112 cycles, resulting in approximately 58% savings compared to approaches
without busy waiting loops.

A more aggressive optimization, represented by the Optimized section of Table 5.1,
involves redesigning the interconnect system, and substituting it with a low-latency
interconnect. Substituting the internal OpenTitan interconnect with a low-latency
interconnect would enable accessing the OpenTitan private memory and peripherals
in a single cycle and the SoC memory in approximately 8 cycles, instead of 12. In
this last scenario, enforcing return address protection requires 73 cycles on average,
more that 70% less than the baseline IRQ firmware.

5.3.2 Runtime overhead

To evaluate the impact of CFI enforcement on runtime performance, two suites
of benchmarks are run, comparing the overhead resulting from CFI enforcement
with the one obtained by alternative solutions in the state-of-the-art. Slowdown is
measured by simulating the RTL of a reference SoC and analyzing the cycle-accurate
execution trace, which provided us with the number of cycles needed to execute
each instruction. These traces were then provided as input to a trace-driven model to
estimate the latency introduced by CFI enforcement. Based on the firmware analysis
reported in Table 5.1, three different latencies are emulated: 267 cycles for textitIRQ
firmware, 112 cycles for Polling firmware, and 73 cycles for the Optimized variant.

Table 5.2 presents a comparison of the runtime overhead between our approach
and two state-of-the-art architectures, namely DExIE [50] and FIXER [22]. It can be
observed from the first section of Table 5.2 that our solution incurs lower runtime
overhead compared to DExIE [50], taking into account the best obtained results

58 Chapter 5 Control-Flow Integrity enforcement in the Root-of-Trust

reported in their paper. However, it is important to note that the authors of [50] also
mention a reduction in clock frequency when using their security monitor. While
compensating for clock reduction makes the overhead of DExIE [50] negligible, Table
5.2 highlights how enforcing CFI in the RoT leads to minimal overhead compared to
custom hardware monitor in 3 out of 4 benchmarks tested by [50].

The comparison with FIXER is more complicated because the authors of [22] report
a 1.5% runtime overhead for their solution, without showing the breakdown of how
such results were obtained. Based on our observations, this work incurs a mean
overhead of approximately 5% in most cases, except for the dhrystone benchmark.
This result is only slightly higher than what was reported by the authors of [22].

Comparing the performance overhead of TitanCFI with alternative CFI enforcement
techniques provides valuable insights to compare the performance of alternative
approaches to the same problem. However, these comparisons do not offer a com-
prehensive understanding of the real-world performance degradation that can be
expected. Two major concerns arise: the selection of functions with a relatively low
number of control-flow instructions and the use of benchmarks that are primarily
focused on assessing core performance and are not relevant to the problem of CFI
enforcement. To address these limitations, this work takes a different approach. In-
stead of focusing on limited function sets or non-relevant benchmarks, we assess the
overhead of CFI enforcement in the Root-of-Trust across a larger pool comprising the
EmBench-IoT suite and most RISC-V-Tests. This allows for a more robust evaluation
in terms of both benchmark diversity and scalability to real-world scenarios. Table
5.3 presents the execution cycle count, number of retired control flow instructions,
and slowdown achieved by this work with a CFI queue size of 8 for each bench-
mark. While the implementation proposed here currently incurs some overhead and
requires optimization to support benchmarks with higher control flow instruction
counts, it generally results in less than 10% overhead for most tested kernels.

To improve the performance of this work, two main approaches can be taken. Firstly,
ad-hoc static source code analysis techniques should be developed to identify hot-
spots in the code to perform a selective function call inlining to reduce the burden on
the CFI enforcement module. Additionally, supporting per-thread CFI enforcement
would provide selective protection for processes exposed at the system boundary
when dealing with potentially tainted data and inputs. It should also be noted that
the benchmarks in Table 5.3 which impose the highest overhead are not kernel that
requires CFI enforcement, since they aim at performing linear algebra or physics
computation. In real-world scenarios, these benchmarks wouldn’t typically need
protection against control-flow attacks.

5.3 Experimental Results 59

5.3.3 Hardware utilization overhead

The hardware overhead of the proposed architectural modifications is measured
conducting FPGA synthesis to determine the utilization of LUTs, registers, and
BRAMs with respect to the original design. The results are summarized in Table
5.4, which demonstrate that the proposed modifications have a minimal effect
on hardware resources. Specifically, they account for less than 1% of the entire
SoC’s resource utilization and less than 6% when considering only the host core.
Comparing these findings with those reported by [50], it is evident that this solution
outperforms theirs in terms of resource efficiency. The described implementation
utilizes approximately 60% fewer LUTs, 2% fewer registers, and does not require
any BRAM slice usage. Importantly, these architectural changes do not compromise
the maximum operating frequency of the SoC either.

5.4 Security Assumptions and Implications

This research aims to safeguard software developed in a memory-unsafe language,
like C, which is susceptible to bugs and memory vulnerabilities that may be exploited.
The protection scheme implemented in this work assumes that other entities within
the System-on-Chip cannot tamper with the CFI Mailbox. This assumption is rea-
sonable because additional security components, such as RISC-V Physical Memory
Protection, can be configured to prevent access to specific memory regions. As a
result, any attempts to read from or write into these protected areas will trigger an
access fault exception. Furthermore, it is assumed that only the Ibex microcontroller
has secure and exclusive access rights to the private memory of the Root of Trust.
No other party should have visibility or be able to modify data in this portion of
memory.

Enforcing control-flow integrity policies within the Root-of-Trust allows for the
utilization of its private memory and hardware accelerators, further enhancing
security guarantees. One example is utilizing the internal RoT scratchpad to securely
store sensitive information like the shadow stack. Unlike many CFI architectures
that rely on reserved pages in virtual memory protected by the operating system,
implementing CFI within the RoT ensures greater security as its private memory
remains inaccessible to any entity in the SoC. In a multi-process scenario where
numerous processes require protection, it is improbable for all the necessary CFI
metadata to be stored in the Root-of-Trust private memory simultaneously. As a
result, transferring data to the SoC main memory occasionally becomes necessary.

60 Chapter 5 Control-Flow Integrity enforcement in the Root-of-Trust

Many CFI architectures in the state-of-the-art [23, 24] store CFI data in reserved
pages of virtual memory protected by the Operating System, assuming the Operating
System is trusted and secure. One potential solution involves statically allocating
a specific region of main memory for the Root-of-Trust using technologies like
RISC-V PMP. Alternatively, having access to the cryptographic accelerators provided
by the Root-of-Trust enables the authentication of CFI metadata, as suggested by
ZipperStack [38], before storing it in unsecured locations within main memory.

5.5 Conclusions

This study explores the feasibility of implementing Control-Flow Integrity enforce-
ment policies in software within a Root of Trust environment. By leveraging tamper-
proof memory and cryptographic accelerators, it is possible to enhance the security
guarantees offered by the CFI enforcement scheme without requiring custom hard-
ware monitors or modifications to the host core pipeline. Additionally, it describes
how to leverage the attributes of Root-of-Trust, such as secure memory and cryp-
tographic accelerators, to strengthen the security assurances offered by the CFI
enforcement mechanism. The proposed solution is showcased by enhancing the
design of the RISC-V SoC described in Section 2.2. The approach demonstrates
minimal hardware overhead and maintains timing integrity. Through tests con-
ducted on EmBench-IoT and RISC-V-Tests benchmark suites, it was observed that
the majority of benchmarks did not impose any or less than 10% runtime overhead.
Comparatively, the impact of the proposed CFI enforcement scheme on system per-
formance is similar to alternative state-of-the-art architectures [50][22] for most
benchmarks. Further research will focus on evaluating our approach with different
RoTs, addressing challenges specific to OpenTitan, and implementing our protection
scheme on more advanced platforms such as multi-core hosts with varying CFI
policies.

5.5 Conclusions 61

Table 5.1: Cycles required to implement the return address protection policy in OpenTitan

Op.
Instructions [#] Cycles [#] Cycles [%]

IRQ CFI TOT IRQ CFI TOT IRQ CFI TOT

IR
Q

C
A

LL

Logic 8 15 23 59 27 86 23 10 33
Mem. RoT 14 5 19 74 28 102 29 9 38
Mem. SoC 2 4 6 22 48 70 10 19 29

TOT 24 24 48 155 103 258 62 38 100

R
ET

.

Logic 8 15 33 59 45 104 21 16 37
Mem. RoT 14 5 19 74 28 102 27 10 37
Mem. SoC 2 4 6 22 48 70 9 17 26

TOT 24 34 58 155 121 276 57 43 100

Po
lli

ng

C
A

LL

Logic − 15 15 − 27 27 − 26 26
Mem. RoT − 5 5 − 28 28 − 27 27
Mem. SoC − 4 4 − 48 48 − 47 47

TOT − 24 24 − 103 103 − 100 100

R
ET

.

Logic − 25 25 − 45 45 − 37 37
Mem. RoT − 5 5 − 28 28 − 23 23
Mem. SoC − 4 4 − 48 48 − 40 40

TOT − 34 34 − 121 121 − 100 100

O
pt

im
iz

ed C
A

LL

Logic − 15 15 − 27 27 − 42 42
Mem. RoT − 5 5 − 5 5 − 08 08
Mem. SoC − 4 4 − 32 32 − 50 50

TOT − 24 24 − 64 64 − 100 100

R
ET

.

Logic − 25 25 − 45 45 − 55 55
Mem. RoT − 5 5 − 5 5 − 06 06
Mem. SoC − 4 4 − 32 32 − 39 39

TOT − 34 34 − 82 82 − 100 100

62 Chapter 5 Control-Flow Integrity enforcement in the Root-of-Trust

Table 5.2: Slowdown compared to [50] and [22]

Benchmark
Slowdown [%]

[50] [22] Opt. Poll. IRQ

Em
B

en
ch aha-mont64 48 n.a. − − −

edn 47 n.a. 1 1 2
matmult-int 48 n.a. − − 1
ud 48 n.a. 12 18 43

R
IS

C
-V

Te
st

s rsort n.a.

2

− − 1
median n.a. 3 5 12
qsort n.a. − − 1
multiply n.a. 2 3 6
dhrystone n.a. 360 553 1318

5.5 Conclusions 63

Table 5.3: Analysis of slowfown for EmBench-IoT and RISC-V Tests.

Benchmark Cycles CF
Slowdown [%]

Opt. Poll. IRQ

Em
B

en
ch

aha-mont64 2.51E+6 1.50E+1 − − −
crc32 3.49E+6 1.50E+1 − − −
cubic 1.10E+6 2.01E+4 46 107 390
edn 4.23E+6 3.67E+2 − − −
huffbench 3.49E+6 2.28E+3 1 3 11
matmult-int 4.69E+6 2.05E+2 − − −
minver 4.75E+5 4.50E+3 − 7 153
nbody 1.21E+5 4.29E+3 163 301 849
nettle-aes 5.20E+6 7.95E+2 − − −
nettle-sha256 4.73E+6 8.57E+3 1 2 11
nsichneu 5.24E+6 1.70E+1 − − −
picojpeg 4.97E+6 2.14E+4 5 15 58
qrduino 4.61E+6 4.35E+3 − − −
sglib-combined 3.67E+6 2.62E+4 9 32 142
slre 3.57E+6 6.69E+4 38 110 401
st 1.47E+5 2.31E+2 − − 2
statemate 3.22E+6 2.75E+4 − − 129
ud 1.87E+6 2.98E+3 − − −
wikisort 4.38E+5 7.69E+3 94 158 418

R
IS

C
-V

Te
st

s

dhrystone 4.57E+5 2.25E+4 260 452 1215
median 2.53E+4 1.10E+1 − − −
memcpy 1.20E+5 1.10E+1 − − −
mm 1.41E+6 2.33E+5 1108 1752 4311
mt-matmul 5.76E+4 2.38E+2 11 22 65
mt-memcpy 4.08E+5 1.80E+1 − − −
mt-vvadd 1.48E+5 3.30E+1 − − −
multiply 3.72E+4 9.00E+0 − − −
pmp 9.01E+5 5.90E+1 − − −
qsort 2.68E+5 1.10E+1 − − −
rsort 3.32E+5 1.10E+1 − − −
spmv 1.67E+5 1.10E+1 − − −
towers 2.01E+4 9.00E+0 − − −

64 Chapter 5 Control-Flow Integrity enforcement in the Root-of-Trust

Table 5.4: FPGA resource utilization compared to [50]

w.o CFI CFI ∆ Overhead

H
os

t LUT 5.02E+4 5.14E+4 1.16E+3 +2.3 %
Registers 3.04E+4 3.22E+4 1.77E+3 +5.8 %
BRAM 6.60E+1 6.60E+1 − −

So
C

LUT 4.41E+5 4.41E+5 1.33E+3 +0.3 %
Registers 2.57E+5 2.58E+5 2.19E+3 +0.9 %
BRAM 2.68E+2 2.68E+2 − −

[50]
LUT 4.66E+3 8.02E+3 3.36E+3 +72.1 %
Registers 3.09E+3 5.33E+3 2.24E+3 +72.5 %
BRAM 1.36E+2 1.42E+2 6.00E+0 +4.4 %

5.5 Conclusions 65

Conclusions 6
Embedded systems are becoming more prevalent across various domains and have
become an essential part of our daily lives, improving efficiency in numerous ways.
The integration of advanced hardware architectures with sensors and actuators has
led to the development of Cyber-Physical Systems which play a crucial role in en-
hancing everyday tasks by enabling complex monitoring and control functions across
industries like manufacturing, energy, healthcare, and transportation. Through-
out this research, I focus on creating novel approaches to address the numerous
challenges involved in programming contemporary Embedded Systems. This encom-
passes optimizing platform configurations and task mapping for optimal performance
and developing architectural modifications to enforce security measures.

Machine Learning-based Device Configuration

In the context of automatic platform configuration for optimizing performance, a
machine learning model was developed to predict the optimal number of cores for
minimizing energy consumption in OpenMP kernels on deeply embedded archi-
tectures. The focus is on PULP, an advanced parallel ultra-low-power embedded
microcontroller with 8 RISC-V cores. Results show that by training the model with
static features extracted from source code, it could predict the optimal platform
configuration within a 5% tolerance on energy minimization with an accuracy close
to 80%. Additionally, incorporating dynamic features into the prediction model only
results in approximately a 10% loss in performance, suggesting that static source
code analysis is a viable approach to platform optimization.

Deep Learning-based Heterogeneous Device Mapping

In this research, I face the challenge of mapping tasks to heterogeneous devices
to optimize runtime performance. To enhance the performance of existing deep
learning-based solutions for device mapping, I propose two approaches based on
state-of-the-art techniques. The first method presents a pre-processing pipeline for
auxiliary input data, which enhances classification performance by standardizing

67

the data during training and incorporating a multi-layer perceptron layer in the
deep-learning model to reproject the auxiliary inputs. This is later concatenated with
metadata and language modeling output. This technique has been implemented
on three state-of-the-art models to demonstrate its effectiveness in improving clas-
sification performance. Additionally, I implement a novel technique called the
Siamese Network to improve the training framework for device mapping. This
approach utilizes contrastive loss to enhance classification accuracy by emphasizing
sample similarities with the same label. By incorporating paired samples instead
of individual ones, the training dataset is expanded, leading to improved results.
The proposed improvements were applied to DeepLLVM, which is a state-of-the-art
model for heterogeneous device mapping. The evaluation results demonstrat that
our approach achieved an accuracy of 91.7% for AMD devices and 88.8% for NVIDIA
devices on the dataset used in this study. These accuracies surpassed those obtained
by alternative state-of-the-art models, confirming the effectiveness of our proposed
techniques.

Control-Flow Integrity enforcement in the Root-of-Trust

In this research, the focus is on enforcing the security guarantee offered by embed-
ded RISC-V platform by implementing Control-Flow Integrity enforcement policies
in software within a Root of Trust environment. The goal is to enhance the secu-
rity measures provided by the CFI scheme without the need for custom hardware
monitors or extensive modifications to the host core pipeline. Moreover, I discuss
the advantages of leveraging features like tamper-proof memory and cryptographic
accelerators that lead to further strengthening the security guarantees of CFI in
conjunction with Root-of-Trust attributes. The proposed approach showcases limited
hardware impact and preserves timing integrity. Testing conducted on EmBench-IoT
and RISC-V-Tests, two well-known bare-metal benchmark suites, indicated that the
majority of benchmarks imposed either no overhead or less than a 10% increase
in runtime. In comparison to other current architectures, the effect on system per-
formance from implementing the suggested CFI enforcement scheme is similar for
most benchmarks.

68 Chapter 6 Conclusions

Bibliography

[1]M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. “Control-Flow Integrity Principles,
Implementations, and Applications”. In: ACM Trans. Inf. Syst. Secur. (2009). DOI: 10.
1145/1609956.1609960 (cit. on pp. 21, 51).

[2]F. Barchi, E. Parisi, A. Bartolini, and A. Acquaviva. “Deep Learning Approaches to Source
Code Analysis for Optimization of Heterogeneous Systems: Recent Results, Challenges
and Opportunities”. In: Journal of Low Power Electronics and Applications 12.3 (2022).
DOI: 10.3390/jlpea12030037 (cit. on pp. 5, 8).

[3]F. Barchi, E. Parisi, G. Urgese, E. Ficarra, and A. Acquaviva. “Exploration of Convolu-
tional Neural Network models for source code classification”. In: Engineering Applica-
tions of Artificial Intelligence 97 (2021), p. 104075. DOI: https://doi.org/10.1016/j.
engappai.2020.104075 (cit. on pp. 8, 12, 35, 37, 38, 42, 43, 45, 47, 48).

[4]F. Barchi, G. Urgese, E. Macii, and A. Acquaviva. “Code Mapping in Heterogeneous
Platforms Using Deep Learning and LLVM-IR”. In: Proceedings of the 56th Annual Design
Automation Conference 2019. DAC ’19. Las Vegas, NV, USA: Association for Computing
Machinery, 2019. DOI: 10.1145/3316781.3317789 (cit. on pp. 6–8, 12).

[5]T. Ben-Nun, A. S. Jakobovits, and T. Hoefler. Neural Code Comprehension: A Learnable
Representation of Code Semantics. 2018. arXiv: 1806.07336 [cs.LG] (cit. on pp. 6, 12,
13, 45).

[6]T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. “Jump-Oriented Programming: A New
Class of Code-Reuse Attack”. In: Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security. ASIACCS ’11. Hong Kong, China: Association
for Computing Machinery, 2011, pp. 30–40. DOI: 10.1145/1966913.1966919 (cit. on
p. 20).

[7]A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston, and O. Yakhnenko. “Translating Em-
beddings for Modeling Multi-Relational Data”. In: Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume 2. NIPS’13. Lake Tahoe,
Nevada: Curran Associates Inc., 2013, pp. 2787–2795 (cit. on p. 14).

[8]A. Brauckmann, A. Goens, S. Ertel, and J. Castrillon. “Compiler-Based Graph Represen-
tations for Deep Learning Models of Code”. In: Proceedings of the 29th International
Conference on Compiler Construction. CC 2020. San Diego, CA, USA: Association for
Computing Machinery, 2020, pp. 201–211. DOI: 10.1145/3377555.3377894 (cit. on
pp. 9, 35, 45).

[9]M. Brohet and F. Regazzoni. “A Survey on Thwarting Memory Corruption in RISC-V”.
In: ACM Comput. Surv. 56.2 (Sept. 2023). DOI: 10.1145/3604906 (cit. on p. 19).

69

https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/1609956.1609960
https://doi.org/10.3390/jlpea12030037
https://doi.org/https://doi.org/10.1016/j.engappai.2020.104075
https://doi.org/https://doi.org/10.1016/j.engappai.2020.104075
https://doi.org/10.1145/3316781.3317789
https://arxiv.org/abs/1806.07336
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/3377555.3377894
https://doi.org/10.1145/3604906

[10]N. Bruschi, G. Haugou, G. Tagliavini, F. Conti, L. Benini, and D. Rossi. In: IEEE, Oct.
2021. DOI: 10.1109/iccd53106.2021.00071 (cit. on pp. 24, 29, 33).

[11]N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and M. Payer. “Control-
Flow Integrity: Precision, Security, and Performance”. In: ACM Comput. Surv. 50.1 (Apr.
2017). DOI: 10.1145/3054924 (cit. on p. 19).

[12]N. Burow, X. Zhang, and M. Payer. “SoK: Shining Light on Shadow Stacks”. In: 2019
IEEE Symposium on Security and Privacy (SP). 2019. DOI: 10.1109/SP.2019.00076
(cit. on p. 57).

[13]L. Chen, S. Sultana, and R. Sahita. “HeNet: A Deep Learning Approach on Intel®
Processor Trace for Effective Exploit Detection”. In: May 2018, pp. 109–115. DOI:
10.1109/SPW.2018.00025 (cit. on p. 21).

[14]X. Chen and K. He. Exploring Simple Siamese Representation Learning. 2020. arXiv:
2011.10566 [cs.CV] (cit. on p. 40).

[15]M. Ciani, S. Bonato, R. Psiakis, A. Garofalo, L. Valente, S. Sugumar, A. Giusti, D. Rossi,
and D. Palossi. “Cyber Security aboard Micro Aerial Vehicles: An OpenTitan-based
Visual Communication Use Case”. In: 2023 IEEE International Symposium on Circuits
and Systems (ISCAS). 2023. DOI: 10.1109/ISCAS46773.2023.10181732 (cit. on pp. 17,
52, 53).

[16]lowRISC CIC. OpenTitan Official Documentation. https://opentitan.org/book/doc/
introduction.html. 2019 (cit. on p. 17).

[17]C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier, P.
Wagle, and Q. Zhang. “StackGuard: Automatic Adaptive Detection and Prevention
of Buffer-Overflow Attacks”. In: Proceedings of the 7th Conference on USENIX Security
Symposium - Volume 7. USENIX Association, 1998 (cit. on pp. 20, 51).

[18]C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, and H. Leather. ProGraML: Graph-
based Deep Learning for Program Optimization and Analysis. 2020. arXiv: 2003.10536
[cs.LG] (cit. on pp. 9, 10, 35, 45, 46).

[19]C. Cummins, P. Petoumenos, Z. Wang, and H. Leather. “End-to-End Deep Learning of
Optimization Heuristics”. In: 2017 26th International Conference on Parallel Architectures
and Compilation Techniques (PACT). 2017, pp. 219–232. DOI: 10.1109/PACT.2017.24
(cit. on pp. 8, 12, 35, 36, 39, 45, 46).

[20]L. Dagum and R. Menon. “OpenMP: An Industry-Standard API for Shared-Memory
Programming”. In: IEEE Comput. Sci. Eng. 5.1 (Jan. 1998), pp. 46–55. DOI: 10.1109/
99.660313 (cit. on p. 25).

[21]P. Davide Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Flamand, and
L. Benini. “Slow and steady wins the race? A comparison of ultra-low-power RISC-
V cores for Internet-of-Things applications”. In: 2017 27th International Symposium
on Power and Timing Modeling, Optimization and Simulation (PATMOS). 2017. DOI:
10.1109/PATMOS.2017.8106976 (cit. on pp. 17, 52).

70 Bibliography

https://doi.org/10.1109/iccd53106.2021.00071
https://doi.org/10.1145/3054924
https://doi.org/10.1109/SP.2019.00076
https://doi.org/10.1109/SPW.2018.00025
https://arxiv.org/abs/2011.10566
https://doi.org/10.1109/ISCAS46773.2023.10181732
https://opentitan.org/book/doc/introduction.html
https://opentitan.org/book/doc/introduction.html
https://arxiv.org/abs/2003.10536
https://arxiv.org/abs/2003.10536
https://doi.org/10.1109/PACT.2017.24
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/PATMOS.2017.8106976

[22]A. De, A. Basu, S. Ghosh, and T. Jaeger. “FIXER: Flow Integrity Extensions for Embedded
RISC-V”. In: 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE).
2019. DOI: 10.23919/DATE.2019.8714980 (cit. on pp. 22, 52, 58, 59, 61, 63).

[23]L. Delshadtehrani, S. Canakci, B. Zhou, S. Eldridge, A. Joshi, and M. Egele. “PHMon: A
Programmable Hardware Monitor and Its Security Use Cases”. In: 29th USENIX Security
Symposium (USENIX Security 20). 2020 (cit. on pp. 22, 52, 61).

[24]L. Delshadtehrani, S. Eldridge, S. Canakci, M. Egele, and A. Joshi. “Nile: A Pro-
grammable Monitoring Coprocessor”. In: IEEE Computer Architecture Letters (2018).
DOI: 10.1109/LCA.2017.2784416 (cit. on pp. 22, 52, 61).

[25]H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. “Dark silicon
and the end of multicore scaling”. In: 2011 38th Annual International Symposium on
Computer Architecture (ISCA). 2011, pp. 365–376 (cit. on p. 35).

[26]R.-V. Foundation. The RISC-V Instruction Set Manual Volume I: User-Level ISA Document
Version 2.2. https://riscv.org/wp- content/uploads/2017/05/riscv- spec-
v2.2.pdf. 2019 (cit. on p. 21).

[27]A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini. “PULP-NN: accelerating quan-
tized neural networks on parallel ultra-low-power RISC-V processors”. In: Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
378.2164 (Dec. 2019), p. 20190155. DOI: 10.1098/rsta.2019.0155 (cit. on p. 18).

[28]M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi, E. Flamand, F. K.
Gürkaynak, and L. Benini. “Near-Threshold RISC-V Core With DSP Extensions for
Scalable IoT Endpoint Devices”. In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 25.10 (2017), pp. 2700–2713. DOI: 10.1109/TVLSI.2017.2654506
(cit. on p. 18).

[29]F. Glaser, G. Tagliavini, D. Rossi, G. Haugou, Q. Huang, and L. Benini. “Energy-Efficient
Hardware-Accelerated Synchronization for Shared-L1-Memory Multiprocessor Clusters”.
In: IEEE Transactions on Parallel and Distributed Systems 32.3 (2021), pp. 633–648. DOI:
10.1109/TPDS.2020.3028691 (cit. on p. 19).

[30]D. Grewe, Z. Wang, and M. F. P. O’Boyle. “Portable mapping of data parallel programs to
OpenCL for heterogeneous systems”. In: Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). 2013, pp. 1–10. DOI: 10.1109/
CGO.2013.6494993 (cit. on pp. 11, 27, 28).

[31]D. J. Hemanth. “Automated feature extraction in deep learning models: A boon or a
bane?” In: 2021 8th International Conference on Electrical Engineering, Computer Science
and Informatics (EECSI). 2021, pp. 3–3. DOI: 10.23919/EECSI53397.2021.9624287
(cit. on p. 11).

[32]RISC-V Zisslpcfi ISA extension for Control-Flow Integrity. 2023 (cit. on p. 52).

[33]G. Jurman, S. Riccadonna, and C. Furlanello. “A comparison of MCC and CEN error
measures in multi-class prediction”. In: PloS one 7.8 (2012), e41882 (cit. on p. 43).

[34]D. P. Khatri, G. Song, and T. Zhu. Heterogeneous Computing Systems. 2022. arXiv:
2212.14418 [eess.SY] (cit. on p. 35).

Bibliography 71

https://doi.org/10.23919/DATE.2019.8714980
https://doi.org/10.1109/LCA.2017.2784416
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://doi.org/10.1098/rsta.2019.0155
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TPDS.2020.3028691
https://doi.org/10.1109/CGO.2013.6494993
https://doi.org/10.1109/CGO.2013.6494993
https://doi.org/10.23919/EECSI53397.2021.9624287
https://arxiv.org/abs/2212.14418

[35]P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and
D. Krishnan. Supervised Contrastive Learning. 2021. arXiv: 2004.11362 [cs.LG] (cit. on
p. 41).

[36]A. Kurth, W. Ronninger, T. Benz, M. Cavalcante, F. Schuiki, F. Zaruba, and L. Benini. “An
Open-Source Platform for High-Performance Non-Coherent On-Chip Communication”.
In: IEEE Transactions on Computers (2021), pp. 1–1. DOI: 10.1109/tc.2021.3107726
(cit. on p. 16).

[37]C. Lattner and V. Adve. “LLVM: a compilation framework for lifelong program analysis
& transformation”. In: International Symposium on Code Generation and Optimization,
2004. CGO 2004. 2004, pp. 75–86. DOI: 10.1109/CGO.2004.1281665 (cit. on pp. 5, 7,
23, 28).

[38]J. Li, L. Chen, Q. Xu, L. Tian, G. Shi, K. Chen, and D. Meng. “Zipper Stack: Shadow
Stacks Without Shadow”. In: Computer Security – ESORICS 2020. 2020 (cit. on p. 61).

[39]A. Magni, C. Dubach, M. O’Boyle, and B. Pizzi. “Automatic Optimization of Thread-
Coarsening for Graphics Processors”. In: Proceedings of the 23rd International Conference
on Parallel Architectures and Compilation. 2014 (cit. on p. 23).

[40]J. Merrill. “Generic and gimple: A new tree represen-tation for entire functions”. In:
2003 (cit. on p. 5).

[41]T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient Estimation of Word Representa-
tions in Vector Space. 2013. arXiv: 1301.3781 [cs.CL] (cit. on p. 13).

[42]F. Montagna, S. Mach, S. Benatti, A. Garofalo, G. Ottavi, L. Benini, D. Rossi, and G.
Tagliavini. “A Low-Power Transprecision Floating-Point Cluster for Efficient Near-Sensor
Data Analytics”. In: IEEE Transactions on Parallel and Distributed Systems 33.5 (2022),
pp. 1038–1053. DOI: 10.1109/TPDS.2021.3101764 (cit. on p. 18).

[43]A. One. “Smashing the Stack for Fun and Profit”. In: Phrack 7.49 (Nov. 1996) (cit. on
p. 19).

[44]E. Parisi, F. Barchi, A. Bartolini, G. Tagliavini, and A. Acquaviva. “Source Code Classi-
fication for Energy Efficiency in Parallel Ultra Low-Power Microcontrollers”. In: 2021
Design, Automation & Test in Europe Conference & Exhibition (DATE). 2021, pp. 878–883.
DOI: 10.23919/DATE51398.2021.9474085 (cit. on p. 39).

[45]M. Payer, A. Barresi, and T. R. Gross. “Lockdown: Dynamic control-flow integrity”. In:
arXiv preprint arXiv:1407.0549 (2014) (cit. on p. 22).

[46]R. Roemer, E. Buchanan, H. Shacham, and S. Savage. “Return-Oriented Programming:
Systems, Languages, and Applications”. In: ACM Trans. Inf. Syst. Secur. (Mar. 2012).
DOI: 10.1145/2133375.2133377 (cit. on pp. 20, 51).

[47]D. Rossi, F. Conti, A. Marongiu, A. Pullini, I. Loi, M. Gautschi, G. Tagliavini, A. Capo-
tondi, P. Flatresse, and L. Benini. “PULP: A parallel ultra low power platform for next
generation IoT applications”. In: 2015 IEEE Hot Chips 27 Symposium (HCS). 2015
(cit. on pp. 18, 23, 25, 30).

72 Bibliography

https://arxiv.org/abs/2004.11362
https://doi.org/10.1109/tc.2021.3107726
https://doi.org/10.1109/CGO.2004.1281665
https://arxiv.org/abs/1301.3781
https://doi.org/10.1109/TPDS.2021.3101764
https://doi.org/10.23919/DATE51398.2021.9474085
https://doi.org/10.1145/2133375.2133377

[48]D. Rossi, I. Loi, F. Conti, G. Tagliavini, A. Pullini, and A. Marongiu. “Energy efficient
parallel computing on the PULP platform with support for OpenMP”. In: 2014 IEEE
28th Convention of Electrical & Electronics Engineers in Israel (IEEEI). 2014, pp. 1–5.
DOI: 10.1109/EEEI.2014.7005803 (cit. on p. 24).

[49]K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi.
“Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained Address Space Layout
Randomization”. In: 2013 IEEE Symposium on Security and Privacy. 2013. DOI: 10.
1109/SP.2013.45 (cit. on p. 51).

[50]C. Spang, Y. Lavan, M. Hartmann, F. Meisel, and A. Koch. “DExIE - An IoT-Class
Hardware Monitor for Real-Time Fine-Grained Control-Flow Integrity”. In: Journal
of Signal Processing Systems (2022). DOI: https://doi.org/10.1007/s11265-021-
01732-5 (cit. on pp. 22, 52, 58–61, 63, 65).

[51]N. Stojanovski, M. Gusev, D. Gligoroski, and S. Knapskog. “Bypassing Data Execution
Prevention on MicrosoftWindows XP SP2”. In: The Second International Conference on
Availability, Reliability and Security (ARES’07). 2007, pp. 1222–1226. DOI: 10.1109/
ARES.2007.54 (cit. on p. 20).

[52]J. E. Stone, D. Gohara, and G. Shi. “OpenCL: A Parallel Programming Standard for
Heterogeneous Computing Systems”. In: Computing in Science & Engineering 12.3
(2010), pp. 66–73. DOI: 10.1109/MCSE.2010.69 (cit. on pp. 11, 27, 36, 37).

[53]S. Szeghalmy and A. Fazekas. “A Comparative Study of the Use of Stratified Cross-
Validation and Distribution-Balanced Stratified Cross-Validation in Imbalanced Learn-
ing”. In: Sensors 23.4 (2023). DOI: 10.3390/s23042333 (cit. on p. 39).

[54]L. Szekeres, M. Payer, T. Wei, and D. Song. “SoK: Eternal War in Memory”. In: 2013
IEEE Symposium on Security and Privacy. 2013, pp. 48–62. DOI: 10.1109/SP.2013.13
(cit. on p. 20).

[55]S. VenkataKeerthy, R. Aggarwal, S. Jain, M. S. Desarkar, R. Upadrasta, and Y. N. Srikant.
“IR2VEC: LLVM IR Based Scalable Program Embeddings”. In: ACM Trans. Archit. Code
Optim. 17.4 (Dec. 2020). DOI: 10.1145/3418463 (cit. on pp. 12–14, 39).

[56]Z. Wang, G. Tournavitis, B. Franke, and M. F. P. O’boyle. “Integrating Profile-Driven
Parallelism Detection and Machine-Learning-Based Mapping”. In: ACM Trans. Archit.
Code Optim. (Feb. 2014) (cit. on p. 23).

[57]F. Zaruba and L. Benini. “The Cost of Application-Class Processing: Energy and Per-
formance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI
Technology”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems (Nov.
2019). DOI: 10.1109/tvlsi.2019.2926114 (cit. on pp. 15, 52).

[58]J. Zhang, W. Chen, and Y. Niu. DeepCheck: A Non-intrusive Control-flow Integrity Check-
ing based on Deep Learning. 2019. arXiv: 1905.01858 [cs.CR] (cit. on p. 21).

[59]M. Zhang and R. Sekar. “Control Flow Integrity for COTS Binaries”. In: 22nd USENIX
Security Symposium (USENIX Security 13). Washington, D.C.: USENIX Association, Aug.
2013, pp. 337–352 (cit. on p. 21).

Bibliography 73

https://doi.org/10.1109/EEEI.2014.7005803
https://doi.org/10.1109/SP.2013.45
https://doi.org/10.1109/SP.2013.45
https://doi.org/https://doi.org/10.1007/s11265-021-01732-5
https://doi.org/https://doi.org/10.1007/s11265-021-01732-5
https://doi.org/10.1109/ARES.2007.54
https://doi.org/10.1109/ARES.2007.54
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.3390/s23042333
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1145/3418463
https://doi.org/10.1109/tvlsi.2019.2926114
https://arxiv.org/abs/1905.01858

	Abstract
	Abbreviations
	1 Introduction
	1.1 Challenges in system performance
	1.2 Challenges in system security
	1.3 Outline

	2 Background
	2.1 Techniques for source code analysis
	2.1.1 Source code language abstraction
	2.1.2 Source code structure analysis
	2.1.3 Source Code Representation

	2.2 Architecture of the reference RISC-V platform
	2.2.1 CVA6 and Host Domain architecture
	2.2.2 Root-of-Trust architecture
	2.2.3 Programmable Multi-Core Accelerator architecture

	2.3 Security and Binary Exploitation
	2.3.1 Code-Reuse Attacks and Return-Oriented Programming
	2.3.2 Control-Flow Integrity

	3 Machine Learning-based Device Configuration
	3.1 Introduction
	3.2 Methods
	3.2.1 Methodology
	3.2.2 Dataset description
	3.2.3 Energy model
	3.2.4 Feature selection

	3.3 Results
	3.3.1 Test Bed
	3.3.2 Dataset analysis
	3.3.3 Optimal configuration selection

	3.4 Conclusions

	4 Deep Learning-based Heterogeneous Device Mapping
	4.1 Introduction
	4.2 Methodology
	4.2.1 DeepLLVM network topology
	4.2.2 Enhanced auxiliary inputs processing pipeline
	4.2.3 Siamese training topology and Contrastive Loss

	4.3 Results
	4.3.1 Machine learning models and training hyper-parameters
	4.3.2 Impact of auxiliary input preprocessing
	4.3.3 Comparative results

	4.4 Conclusions

	5 Control-Flow Integrity enforcement in the Root-of-Trust
	5.1 Introduction
	5.2 CFI Extensions and OpenTitan Firmware
	5.2.1 SoC Modifications and CFI Mailbox
	5.2.2 Host Core Modifications
	5.2.3 OpenTitan Firmware Design

	5.3 Experimental Results
	5.3.1 OpenTitan firmware analysis
	5.3.2 Runtime overhead
	5.3.3 Hardware utilization overhead

	5.4 Security Assumptions and Implications
	5.5 Conclusions

	6 Conclusions
	Bibliography

