Deep learning and spatial transcriptomics to investigate thyroid tumors

Maloberti, Thais (2024) Deep learning and spatial transcriptomics to investigate thyroid tumors, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze biomediche e neuromotorie, 36 Ciclo. DOI 10.48676/unibo/amsdottorato/11321.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (7MB)

Abstract

There are many diseases that affect the thyroid gland, and among them are carcinoma. Thyroid cancer is the most common endocrine neoplasm and the second most frequent cancer in the 0-49 age group. This thesis deals with two studies I conducted during my PhD. The first concerns the development of a Deep Learning model to be able to assist the pathologist in screening of thyroid cytology smears. This tool created in collaboration with Prof. Diciotti, affiliated with the DEI-UNIBO "Guglielmo Marconi" Department of Electrical Energy and Information Engineering, has an important clinical implication in that it allows patients to be stratified between those who should undergo surgery and those who should not. The second concerns the application of spatial transcriptomics on well-differentiated thyroid carcinomas to better understand their invasion mechanisms and thus to better comprehend which genes may be involved in the proliferation of these tumors. This project specifically was made possible through a fruitful collaboration with the Gustave Roussy Institute in Paris. Studying thyroid carcinoma deeply is essential to improve patient care, increase survival rates, and enhance the overall understanding of this prevalent cancer. It can lead to more effective prevention, early detection, and treatment strategies that benefit both patients and the healthcare system.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Maloberti, Thais
Supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
thyroid carcinoma, spatial transcriptomics, deep learning
URN:NBN
DOI
10.48676/unibo/amsdottorato/11321
Data di discussione
21 Marzo 2024
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^