
ALMA MATER STUDIORUM · UNIVERSITÀ DI BOLOGNA

DOTTORATO DI RICERCA IN
DATA SCIENCE AND COMPUTATION

Ciclo XXXV

Settore Concorsuale: 03/D1 - Chimica e Tecnologie Farmaceutiche,
Tossicologiche e Nutraceutico-alimentari

Settore Scientifico Disciplinare: CHIM/08 - Chimica Farmaceutica

Network Analysis and Machine Learning Assist
Drug Repurposing and Safety Assessment

in Neurological Diseases

Presentata da: Luca Menestrina

Coordinatore Dottorato
Prof. Daniele Bonacorsi

Supervisore
Prof. Maurizio Recanatini

Co-supervisore
Prof. Andrea Cavalli

Esame Finale Anno 2024





Alla mia Famiglia





Abstract
In recent decades, two prominent trends have influenced the data modeling field,

namely network analysis and machine learning. This thesis explores the practical ap-
plications of these techniques within the domain of drug research, unveiling their mul-
tifaceted potential for advancing our comprehension of complex biological systems.
The research undertaken during this PhD program is situated at the intersection of
network theory, computational methods, and drug research.

Across six projects presented herein, there is a gradual increase in model complex-
ity. These projects traverse a diverse range of topics, with a specific emphasis on drug
repurposing and safety in the context of neurological diseases.
The aim of these projects is to leverage existing biomedical knowledge to develop in-
novative approaches that bolster drug research. The investigations have produced prac-
tical solutions, not only providing insights into the intricacies of biological systems,
but also allowing the creation of valuable tools for their analysis. In short, the achieve-
ments are:

• A novel computational algorithm to identify adverse events specific to fixed-dose
drug combinations.

• A web application that tracks the clinical drug research response to SARS-CoV-2.

• A Python package for differential gene expression analysis and the identification
of key regulatory "switch genes".

• The identification of pivotal events causing drug-induced impulse control disor-
ders linked to specific medications.

• An automated pipeline for discovering potential drug repurposing opportunities.

• The creation of a comprehensive knowledge graph and development of a graph
machine learning model for predictions.

Collectively, these projects illustrate diverse applications of data science and
network-based methodologies, highlighting the profound impact they can have in
supporting drug research activities.
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Introduction
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0 Thesis Overview

The main mission of science is that of solving problems, yet complex systems, by
their nature, elude an exhaustive description. Predicting the long-term behavior of
these systems remains a formidable challenge for science.[1] They have: diverse com-
ponents with intricate hierarchical interactions, behaviors spanning multiple scales,
and complicated transition laws. They possess a remarkable sensitivity to initial con-
ditions, and they are characterized by emergence of unpredictable phenomena, non-
equilibrium dynamics, combinatorial explosion, and self-organization.[2]
Complex systems science has the ambitious task of understanding the principles of
such systems, and explaining the emergent phenomena.[2]
Inherent complexity defines living matter, making it impossible to describe a living
being in terms of mere few variables.[1, 3] Indeed, it can represent the prototypical
exemple of a complex system.[1]

The PhD program in Data Science and Computation combined with the academic
discipline of pharmaceutical chemistry† appears ideally suited for this topic. Indeed,
during this PhD program several contemporary approaches were explored, exploiting
a variety of methods to tackle the comprehension of biological complex systems of
relevance for the drug research.

The content of this thesis follows the trajectory path of the PhD program and is
organized into three main sections: Introduction, Projects, and Conclusions.
The first part provides the essential theoretical background and context for the thesis. It
primarily focuses on two rising trends that have shaped the data modeling community
in recent decades: network analysis and machine learning[4, 5], with a brief mention
of graph machine learning. Additionally, it provides an overview of network applica-
tions in drug research.
The second part delves into the projects undertaken during the course of the PhD pro-
gram. Each chapter takes the form of a scientific article, with some having been pub-
lished during the program’s duration. These six projects exhibit a progressive increase

† Translation of "Settore Scientifico Disciplinare: CHIM/08 - Chimica Farmaceutica" following the
Consiglio Universitario Nazionale indications
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0 Thesis Overview

in model complexity, beginning with descriptive approaches, continuing to predictive
models, and culminating in a Knowledge Graph Machine Learning one. These projects
encompass a diverse array of topics, with a particular focus on drug repurposing and
safety for neurological diseases. Additionally, a data science project, carried out dur-
ing an international research period at Chemotargets in Barcelona (Spain), involves the
study of a vast pharmacovigilance dataset.
The last part summarizes the key findings, provides general conclusions, and presents
possible future prospects and directions.

Figure 1. Visual Overview of PhD Project Progression. This diagram illustrates a progressive
increase in complexity across the six projects undertaken during the PhD, starting with descriptive
approaches (COVIDrugNet, DEGA, and Drug-induced Impulsivity), transitioning to a predictive model
(Drug Repurposing Pipeline), and culminating in a Knowledge Graph Embedding Model (PATHOS
and LOGOS).

4
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1 Network Theory

The work "Solutio problematis ad geometriam situs pertinentis"[6] by Leonard
Euler is considered the first introduction to the notion of graphs. In it, he presents
the Königsberg Bridges problem which consists in finding a path through the city of
Königsberg (at Euler’s time a Prussian city, now Kaliningrad, Russia) crossing each of
its seven bridges exactly once. Euler’s abstraction represented the different parts of the
city as nodes (vertices), connected by bridges depicted as edges (links). By disregard-
ing real distances and focusing solely on the relationships between these nodes and
edges, Euler introduced the concept of graphs† as a powerful tool for studying com-
plex networks. Graphs provide a mathematical representation of real-world networks,
capturing the pairwise relations between various entities while discarding unneces-
sary details. Numerous everyday situations (systems) involve a collection of diverse
elements interconnected through multiple interactions, exhibiting an underlying net-
work structure. Frequently, it is this concealed network that holds the crucial insights
to comprehend these situations effectively.[8]
This abstraction enables researchers to comprehend the underlying structures and hid-
den connections within intricate systems effectively. Consequently, graphs have be-
come fundamental in analyzing diverse scenarios, from social networks and transporta-
tion systems to biological interactions and technological networks.)[9]

1.1 Basic Concepts

A graph is a collection of nodes (also called vertices) connected by edges (also
called links).[10] Mathematically, a graph G consists of an ordered pair (N,E), com-
prising a set of nodes N and a set of unordered pairs of nodes termed edges E ⊆
{{i, j} | i, j ∈ N}. A simple graph (Figure 1.2a), by definition, allows only one edge
between any two nodes and does not permit self-loops (self-interactions), which are
edges connecting nodes to themselves: E ⊆ {{i, j} | i, j ∈ N and i ̸= j}.
The typical mathematical notation used to denote a graph with |N| nodes and |E| edges

† Interestingly, it was J. J. Sylvester in 1878 who introduced the term "graph", drawing a parallel
between mathematics and chemical structures.[7]
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1 Network Theory

(a)

(b) (c)

Figure 1.1. Seven Bridges Problem. (a) Königsberg Map from 1613, (b) Original Euler’s represen-
tation from Solutio problematis ad geometriam situs pertinentis.Commentarii Academiae Scientiarum
Imperialis Petropolitana Tom.VIII Tab.VII p.128[6], (c) A graph representation of the same network.

is G(|N|, |E|)∗.[9]
When working with graphs, it’s a common practice to depict them using diagrams. In
these representations, nodes are typically visualized as points or small circles, while
edges are represented as line segments or curves connecting the respective nodes.[11,
12]
In graph theory, defining subgraphs is essential as it allows us to examine specific com-
ponents within a larger network. A subgraph of graph G, denoted as B, is a graph that

∗ Throughout this thesis, the number of elements contained in a set S = {..} will be denoted as |S|
(its cardinality), which is a common notation in the mathematical literature.
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1.1 Basic Concepts

inherits a subset of nodes NB from the node set NG and a subset of edges EB from the
edge set EG. In simpler terms, it’s a graph extracted fromG, comprising selected nodes
and edges while maintaining the relationships between those chosen elements.[13]

Adjacency Matrix The adjacency matrix is a fundamental representation of a graph,
presented as a binary matrix where a value of 1 indicates the presence of an edge
between two vertices, and 0 represents the absence of an edge.

Aij =

1, if there is an edge between nodes i and j, thus (i, j) ∈ E

0, otherwise
(1.1)

The rows and columns of this matrix share the same names, serving as identifiers for
the nodes in the graph.
When the adjacency matrix is empty, lacking any entries to define edges, the graph is
classified as empty as well. Conversely, when the adjacency matrix is fully populated,
signifying the presence of all potential edges, the graph is deemed complete. [9]
In cases where the graph is weighted, each edge is assigned a specific weight, leading
to what is known as a weighted graph (Figure 1.2b).
Additionally, graphs may have directional edges (Figure 1.2c), where the order of the
vertices matters, designating one vertex as the starting (source) point and the other as
the ending (target) point. Consequently, the adjacency matrix loses its symmetry along
the diagonal due to the distinction between source and target vertices (Aij ̸= Aji).

Adding complexity The study of network structures has evolved to accommodate
higher complexity and address real-world scenarios with greater fidelity. One illus-
trative example is found in multigraphs (Figure 1.2d), where a single pair of nodes
can be connected by multiple edges. Another fundamental aspect of such networks is
their data heterogeneity, where different types of nodes coexist, each representing dis-
tinct entities or attributes. This diversity enables the incorporation of various facets of
interconnected systems, making heterogeneous (or multipartite) networks more com-
prehensive models of complex phenomena (Figure 1.2e).[14, 15]
Among the frameworks capable of handling this intricate network architecture are mul-
tilayer networks (Figure 1.2f). A multilayer network consists of nodes, edges, and lay-
ers, each layer serving as a distinct level of connectivity. The interpretation of these

7



1 Network Theory

(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 1.2. Types of Networks (a) Simple Network, (b) Weighted Network, (c) Directed Network,
(d) Multigraph, (e) Heterogeneous Network, (f) Multilayer Network, (g) Multiplex, (h) Hypergraph.

layers relies on the specific implementation of the model, granting flexibility to capture
relationships of different scales and nature.[14, 15]
A specific class of multilayer networks is the multiplex network (Figure 1.2g). Mul-
tiplex networks consist of a single set of nodes interconnected by multiple types of
relations represented in separate layers. Each layer represents a unique type of link be-
tween the same set of nodes, providing a multi-faceted view of their interactions.[15]
Beyond traditional graphs and multilayer networks, another generalization is the con-
cept of hypergraphs (Figure 1.2h). In hypergraphs, edges can connect any number of
vertices, not just two, as in standard graphs. This extension offers even more expressive
power to model relationships that involve multiple entities simultaneously.[15]

8



1.2 Graph Properties

Knowledge Graphs Defining a knowledge graph (KG) precisely is challenging due
to the presence of multiple conflicting definitions in the literature.[16, 17] Here, a spe-
cific definition that considers KGs as heterogeneous directed and labeled multigraphs
will be adopted, building on top of the one given by the Schlichtkrull et al.[18] Thus,
a knowledge graph could be described as a graph-based data structure that contains
diverse types of vertices and edges, which can be defined as G = (N,E,R,Ψ). Each
edge within the graph is characterized by a relation type (r ∈ R), and represented as
a triplet value (u, r, v) ∈ E. The vertices, often referred to as entities, are categorized
into subsets based on their type (from the set Ψ ).[17]
KGs serve as structured representations of real-world information. Their ability to
model complex, structured data in a machine-readable manner has led to their exten-
sive use in various domains, including question answering, information retrieval, and
content-based recommendation systems.[19]
Although the initial entity in the triple is commonly known as the head entity, linked
to the tail entity through a relation, it’s worth noting that, due to their significant role in
encoding human reasoning and language, the components of triplets are often termed
as subject, predicate, and object.[18]

1.2 Graph Properties

To effectively work with graphs, certain definitions are essential:

Order, Size and Density The primary two attributes characterizing a graph are its
count of vertices and edges, often referred to as its order and size, respectively. For
simple graphs, the concept of graph density becomes relevant. Graph density can be
defined as the proportion of actual edges in relation to the maximum potential edges.
In undirected simple graphs, this ratio is calculated as follows:

D =
2|E|

|N|(|N| − 1)
(1.2)

For directed simple graphs, instead, the maximum potential edges double in compari-
son to undirected graphs (due to the presence of two directions for each edge). Conse-
quently, the formula for density in directed simple graphs becomes:

D =
|E|

|N|(|N| − 1)
(1.3)

9



1 Network Theory

A complete simple graph has the maximum number of edges, thus its density is equal
to 1.

Degree Node degree refers to the count of edges connected to a particular node. In
undirected graphs with vertices N, the degree of node i, denoted as k(i), is determined
by the sum of values within its corresponding row or column in the adjacency matrix:

ki =
∑

j=1,|N|

aij (1.4)

In directed graphs, the concept of node degree gives rise to the need for distinguishing
two distinct types. One relates to the number of edges directed toward a node (in-
degree), while the other represents the number of edges departing from a node (out-
degree). These quantities are formulated as follows:

kin
i =

∑
j∈N

aji kout
i =

∑
j∈N

aij (1.5)

Node with high degrees hold a crucial position within the graph and are frequently
referred to as hubs. Eliminating these nodes often results in the disconnection of the
network.[13]

Shortest Path, Distance and Diameter The shortest path is the minimum number
of edges required to travel from node i to node j if they are connected. The measure of
its length is referred to as the distance dij . As a result, the neighbors of a node include
all the nodes connected to it by just one edge.
The diameter D of a graph is defined as the greatest distance achievable between two
nodes within the graph.

Centrality

Graphs, though abstract, mirror intricate real-world networks, offering insight into
their complexity. Assessing the importance of nodes within these networks holds prac-
tical significance. Relevant examples include identifying influential individuals in so-
cial networks, pinpointing crucial nodes in digital and urban infrastructure, tracking
disease super-spreaders, and uncovering interactions between genes.
Nodes with many connections (recognized by their high degree) are often considered

10



1.2 Graph Properties

to have a pivotal role within graphs. Nonetheless, the concept of node importance de-
pends on both the underlying network structure and its concrete implications. Thus,
graph theory provides the more nuanced notion of node centrality. Diverse central-
ity measures have emerged, each providing a unique lens to assess node importance
within the intricate patterns inherent to real-world networks. Noteworthy among the
measures are:

Closeness Centrality The easiest approach to identify the most central node is to
find the node that efficiently reaches and directly influences other nodes of the network.
This is reflected in the identification of the node with the shortest average distance to
all others, thus maximizing its closeness centrality,[9, 13] which, for node i, is defined
as:

ccli =
1∑

j∈N dij
(1.6)

The closeness centrality measures the ability of an individual in a social network to
rapidly interact with others, making it essential for identifying influential people and
potential opinion leaders in various social contexts, including the identification of dis-
ease spreaders in epidemiological studies.

Betweenness Centrality An alternative method for evaluating the significance of a
node z is through its role as an intermediary between others, which means measuring
its betweenness centrality cbz. This is achieved by counting how many times the shortest
path (σij) connecting nodes i and j passes through the node in question.[9, 13]

cbz =
∑
j∈N

σz
ij

σij

(1.7)

Nodes of this kind play a vital role in maintaining network connectivity, as their re-
moval leads to network fragmentation.
The betweenness centrality is crucial in transportation or telecommunication networks.
It identifies vital nodes for traffic or information flow unveiling vulnerabilities.

Eigenvector Centrality Frequently, the importance of a node extends beyond its di-
rect connections, encompassing the influence of its neighbors. When a node is con-
nected to others of notable influence, its own impact is augmented compared to connec-
tions with less influential nodes. This is the core consideration of eigenvector centrality

11



1 Network Theory

ceigi . Consequently, a node has high eigenvector centrality if also its neighbors hold ele-
vated eigenvector centrality. This implies that the eigenvector centrality of node i aligns
with the average centralities of its nearest neighbors Hi = {j | (i, j) ∈ E∨ (j, i) ∈ E},
as expressed in:

ceigi =
1

λ

∑
j∈Hi

Aijc
eig
j (1.8)

where λ represents a constant. Elaborating on this concept, formulating centralities as
a vector c and rewriting this equation in matrix form:

λc = A · c (1.9)

reveals that c constitutes the primary eigenvector of the adjacency matrix with eigen-
value λ. The components of this leading eigenvector provide the eigenvector centrality
values for each node in the network. Defined in this manner, the eigenvector centrality
of each node depends on both the quantity and quality of its connections. While nodes
with numerous connections retain their significance, vertices with fewer yet more im-
pactful connections can surpass those with a greater number of less influential connec-
tions.[14, 20]
The eigenvector centrality plays a pivotal role in web search engines like Google by
ranking web pages based on their connections to other highly ranked pages, enhancing
the relevance and quality of search results.

Assortativity Nodes often exhibit a tendency to connect with others that share sim-
ilar attributes or properties. This phenomenon is termed assortativity, and it plays a
crucial role in understanding the structural patterns within a network. Assortativity can
be evaluated based on various properties, each offering insights into different aspects
of the network’s behavior. The most common approach involves assessing assortativ-
ity in terms of node degree. In this context, nodes with high degrees typically display a
preference for associating with other high-degree nodes, while low-degree nodes tend
to link with fellow low-degree nodes. Conversely, a situation where high-degree nodes
link with low-degree nodes is referred to as disassortativity. Degree assortativity can
be quantified using the assortative coefficient, which is a particular case of the Pearson
correlation coefficient. This number, ranging between -1 and 1, holds positive val-
ues in assortative networks, and negative values for those that are disassortative. A

12



1.2 Graph Properties

Figure 1.3. Network Centralities. Degree centrality (top left), closeness centrality (top right), be-
tweenness centrality (bottom left), eigenvector centrality (bottom right) of the same random geometric
graph.

coefficient of 0 suggests a network with random assortativity, where connections are
established without any specific pattern.[9, 13, 21]

Clustering Coefficient The clustering coefficient cc is another valuable parameter
for assessing node relationships within a network. This metric quantifies the degree to
which a node’s neighbors (H) are interconnected, representing the average fraction of
pairs of neighbors that share a direct connection.[9, 22] For a node i, with more than
one connection (k > 1), the clustering coefficient is computed as:

cci =
2ei

|H|i(|H|i − 1)
(1.10)

13



1 Network Theory

where ei is the count of edges connecting the neighbors of node i. Moreover, a global
clustering coefficient can be defined in relation to the entire network. It is computed
as the average of individual clustering coefficients, as shown in:

CC = ⟨cc⟩ = 1

|Nk>1|
∑

i∈Nk>1

cci (1.11)

Notably, nodes with a degree lower than 2 (k < 2) are omitted from the calculation of
the average clustering coefficient.[9, 13, 22, 23]

Clique The term clique refers to a maximal subgraph containing three or more nodes,
where all nodes within the group are directly connected to each other and no other node
is linked to all of them.
This definition can actually be broadened by relaxing the requirement of adjacency
and considering reachability instead. Accordingly, an n-clique is a maximal subgraph
where the maximum shortest path between any pair of nodes isn or less. This definition
aligns with the conventional one when n equals 1.[23]

Communities

Nodes in networks are often clustered into tightly connected groups with more
edges directed towards nodes in the same group than nodes outside of it. These groups
are usually called communities, but also clusters or modules. Many times, communi-
ties give hints about how a network is organized and what functions it serves.[24, 25]
Network modularity, a fundamental concept introduced by Newman[24], is a funda-
mental tool for evaluating how effectively a network can be divided into subgraphs.
The objective is to optimize the internal edges within each distinct community while
minimizing the connections that between different communities.
Evaluating the partition’s quality necessitates the definition of a symmetric matrix
(which dimensions are equal to the number of subgraphs), with entries eij indicating
half the fraction of edges linking subgraph i with subgraph j in the original graph.[25]
Subsequently, the diagonal values eii, representing the proportion of edges within
group i without the factor of a half, are compared with the corresponding quantity
in a null case (i.e., a random partition

(∑
j eij

)2).[24, 25]
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1.2 Graph Properties

The modularity Q is thus expressed as:

Q =
∑
i

(
eii −

(∑
j

eij
)2) (1.12)

Within the domain of community detection, numerous procedures are available. These
methods can be systematically categorized using a nomenclature introduced by New-
man: traditional computer science methods and sociological methods, as well as more
contemporary divisive and agglomerative approaches.[26] The first approach, favored
by graph theorists and mathematicians, centers around spectral analysis. The second,
embodied in hierarchical clustering, represents a principal technique employed by so-
ciologists. On the other and, divisive approaches employ a top-down strategy, recur-
sively removing nodes and edges. Conversely, agglomerative methods involve building
communities through recursive node grouping, utilizing a bottom-up process.[23]
Illustrating these categories, some key exemplars are: Spectral Analysis, Hierarchical
Clustering, Girvan-Newman, and Greedy Modularity.

Spectral Analysis In mathematics, the spectrum of a matrix is the set of its eigenval-
ues. In the context of graph theory, this spectrum is commonly computed for matrices
such as the adjacency matrix, its Laplacian, or their normalized counterparts. For an
undirected graph, the Laplacian L assumes the role of a symmetric matrix with dimen-
sions corresponding to the number of nodes. L’s diagonal elements signify node de-
grees, while off-diagonal elements mirror those of the adjacency matrix. Alternatively,
L can be expressed as the difference between the diagonal matrix of node degrees D
and the adjacency matrix A:

L = D −A (1.13)

Rows and columns of the Laplacian sum to zero, since Dii =
∑

j Aij . As a conse-
quence, the vector 1 = 1, 1, 1, ... is always an eigenvector with eigenvalue zero.[27]
If a network naturally separated into distinct components, non-overlapping commu-
nities Gk(k = 1 ... g), the Laplacian takes a block diagonal structure. Each block
represents the Laplacian of its respective component and has an eigenvector v(k) with
eigenvalue zero. The elements v(k)

i of this eigenvector equal 1 if node i resides in Gk,
and 0 otherwise∗. Thus, there will be g degenerate eigenvectors with eigenvalue 0.

∗ v
(k)
i =

1, if i ∈ Gk

0, otherwise
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In cases where a network doesn’t divide perfectly into communities, due to a handful
of edges that don’t align perfectly with the block-diagonal pattern, the previously stated
perfect scenario no longer holds true. Instead, a different scenario emerges. In gen-
eral, there will be the primary eigenvector 1 with an eigenvalue of zero, accompanied
by g− 1 eigenvalues that slightly deviate from zero∗. The corresponding eigenvectors
will be approximately represented as linear combinations of the previously defined v(k)

eigenvectors. By identifying eigenvalues marginally greater than zero and employing
linear combinations of corresponding eigenvectors, one can theoretically approximate
the underlying community blocks, even in cases of imperfect separation.[26]
Knowing the Laplacian’s spectrum, the mapping of nodes to communities can be per-
formed utilizing various vector clustering techniques. This mapping, termed spectral
embedding, involves computing the Laplacian matrix, finding the first k eigenvectors
associated with the k smallest eigenvalues, forming a matrix from these eigenvectors
(each row defines features of a specific node), and then clustering nodes using methods
like k-means[28], DBSCAN[29], etc.[27]

Hierarchical Clustering The concept underlying this method involves establishing
a similarity measure (xij) for node pairs (i, j) based on the given network structure.
With this measure in hand, a network initially comprising |N| disconnected nodes is
constructed. Edges are incrementally added between pairs of nodes in descending order
of similarity, starting with the most similar pair. It’s important to note that the newly
added edges are unrelated to those in the original network; the original network is
solely employed for calculating the similarity measure. As the similarity measure (x)
decreases and communities merge, the single linkage hierarchical clustering approach
progressively reduces the number of communities. The algorithm begins with |N|
components, each containing a single node, and culminates with a single component
encompassing all nodes. The components at each step are fully contained within the
components of the subsequent step, forming a hierarchical tree or dendrogram that
represents the entire progression of the algorithm.[30]

Girvan-Newman Girvan and Newman introduced an approach that shifts the focus
towards the edges that exhibit the least centrality, those that predominantly bridge dif-

∗ Slightly greater than zero, since all the eigenvalues of the graph Laplacian are non-negative.
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ferent communities, rather than aiming to the ones most central to communities.
This approach involves a generalization of the concept of betweenness centrality, trans-
lating it from nodes to edges. Edge betweenness becomes the quantification of short-
est paths between pairs of nodes traversing a given edge. This definition spots edges
positioned between communities, because if communities are connected by a sparse
number of intergroup edges, all shortest paths between different communities tend to
traverse these select edges (those with elevated betweenness). By systematically re-
moving these critical edges, the algorithm dissects the network, and unveils the under-
lying community structure.[23, 30]

Greedy Modularity To address community detection in large graphs, Newman in-
troduced a rapid algorithm rooted in optimizing modularity.[24] As exhaustive search
for all potential divisions would prove intractable due to exponential time complexity,
the method employs a "greedy" approach, iteratively joining small communities.
Beginning with individual-node communities, pairs of communities that determine
the greatest increase (or minimal decrease) in Q are sequentially merged. Importantly,
only pairs interconnected by edges are considered, since merging edge-disconnected
communities does not impact Q.
Optimized versions of this algorithm have been suggested by Clauset[31] and
Nguyen[32] to improve its efficiency.

Network Topologies and Models

In recent decades, the increased availability of large databases, optimized comput-
ing resources, and robust data analysis tools has facilitated the exploration of topolog-
ical attributes of various real-world systems. These studies revealed that most of real
networks often exhibit shared topological characteristics, such as relatively short char-
acteristic path lengths, elevated clustering coefficients, fat-tailed degree distributions,
degree correlations, and the presence of motifs and community structures.[23]
In the upcoming paragraphs, two key topological traits are explored, the small-world
effect and scale-free degree distributions, while also referencing the classical mathe-
matical framework of random graphs.
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Random Graphs The systematic exploration of random graphs, inaugurated by
Erdös and Rényi in 1959, led to the most extensively studied graph model: Erdös and
Rényi (ER) random graphs.[33] They proposed to study the properties of graphs as a
function of the increasing number of random connections, leveraging on probabilistic
methods.
Erdös and Rényi proposed a model to generate random graphs (GER(N,E)). Starting
with |N| isolated nodes, the graph evolves by linking randomly chosen pairs of nodes,
while prohibiting multiple connections, until edge count reaches |E|. It is important to
underline that this outcome is one realization within a statistical ensemble comprising
all possible connection combinations.[23, 33]

Small-world Networks The most famous experiment on the small-world effect, is
the one conducted by the psychologist Stanley Milgram in the 1960s.[34] While this
experiment didn’t reconstruct actual networks, it yielded insights into network struc-
ture. Participants were tasked with sending a letter through their acquaintance network
to a specific target individual, allowing the experiment to explore path length distribu-
tion. Remarkably, about one-fifth of the letters reached the target, passing through ap-
proximately six individuals on average (inspiring the popular concept of "six degrees
of separation"[35, 36]). This experiment stands as one of the earliest direct demonstra-
tions of the small-world effect, illustrating that a majority of vertex pairs in networks
are linked by short paths.
Watts and Strogatz proposed a method to construct graphs (GWS(N,E)) that exhibit
both the small-world property and a high clustering coefficient. This small-world
model begins with a one-dimensional regular lattice∗ of |N| nodes with periodic bound-
ary conditions (i.e., a ring). Each node is initially connected to its neighbors within k

lattice spacings, resulting in |N| × k edges. Subsequently, for each node, links con-
nected to clockwise neighbors are rewired with probability p to other nodes, ensuring
no double or self-edges emerge. This rewiring process allows the small-world model
to interpolate between a regular lattice and a configuration resembling a random graph.
At p = 0, the lattice remains regular, while p = 1 approaches a random graph. Inter-
mediate values of p, indeed, generate graphs with both the small-world property and

∗ While small-world models can be constructed on lattices of various dimensions or topologies, the
most studied case is the one-dimensional version.
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a non-trivial clustering coefficient. The emergence of long-range edges (shortcuts) is
evident by the rapid reduction in ⟨d⟩∗ (mean shortest distance between node pairs) once
p exceeds zero.[10, 22, 23, 36]

Scale-free Networks The fraction of nodes within the network that possess a degree
of k is denoted as p(k). Alternatively, p(k) represents the probability that a randomly
chosen node holds a degree of k. A plot illustrating p(k) for a specific network can be
generated by constructing a histogram based on the degree of nodes. This histogram
constitutes the network’s degree distribution.[36] In scenarios where all nodes exhibit
similar topological characteristics (as seen in regular lattices or random graphs), edges
would be uniformly distributed, leading to a binomial or Poisson degree distribution.
However, real-world networks frequently exhibit a pronounced right-skewed distribu-
tion.† Many of them, indeed, manifest power laws tails in their degree distributions:

p(k) ∝ k−α (1.14)

The scaling exponent α, often referred to as the power law exponent, typically ranges
from 2 to 3, and the degree value k must be equal to or greater than a threshold (which
is always greater than 1)[37, 38]
First coined as "scale-free"‡ networks by Barabasi in 1999[38], these networks are
identified by their consistent adherence to the same functional form across various
scales.[23]
As previously noted, real networks frequently deviate from simple graph models. Con-
sequently, analyzing degree distributions can become more intricate in certain cases.
For instance, heterogeneous graphs exhibit multiple degree distributions, each corre-
sponding to a specific node type. Alternatively, in the case of directed graphs, the

∗ For nodes i and j:
⟨d⟩ = 1

1
2 |N|(|N|+ 1)

∑
i≥j

di,j

† Non-symmetrical distribution in which most values are concentrated on the left (low degree), and
there’s a long tail extending to the right (a few nodes have exceptionally high degrees).

‡ Indeed, a functional form f(x) is deemed scale-free when it remains unchanged, apart from a
multiplicative factor, to the rescaling of the independent variable x. Thus, in this context, "power
law" and "scale-free" can be considered synonymous, since only power law distributions are the
solutions to f(ax) = bf(x).[36]
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degree distribution transforms into a function p(j, k) reliant on two variables, necessi-
tating the depiction of both in-degree and out-degree distributions.[36]
The prevalence of scale-free networks holds substantial implications for our compre-
hension of diverse phenomena, both natural and human-made, as power-law distribu-
tions play a pivotal role in numerous scientific contexts, influencing fields ranging from
biology and sociology to technology and information systems.[39, 40]

1.3 Network-based Predictions

Inherent patterns within networks, whether representing social relationships,
information flow, or intricate connections, can be leveraged for overcoming challenges
that can compromise the reliability of real network representations, such as technical
limitations, experimental errors, and data availability. Realizing this opens avenues for
predictive insights, offering a potent tool to comprehend and forecast various elements
within the structure of a network.
Predicting new edges within a network involves foreseeing the formation of con-
nections between existing or new nodes. This could include predicting potential
friendships in a social network, potential collaborations between researchers in a
co-authorship network, or potential interactions between proteins in a biological net-
work. The properties of nodes, as well as examining similarity in edge neighborhoods
(first neighbors, entire modules, or even the whole network), and analyzing sequential
snapshots of network topology, play a pivotal role in the prediction of connections.[41]
Similarly, predicting new nodes, means anticipating the emergence of new entities
within the network, for instance the appearance of new users in a social network,
new web pages in a hyperlink structure, or new proteins in a molecular interaction
network. Predicting nodes is more intricate than edge prediction, especially if they
bridge diverse network modules.[42]
At a broader level, there are cases where the network is so incomplete that very little
is known about its structure. Nevertheless, a comprehensive understanding of the
behavior of the complex system encoded by the network is often available. Unveiling
the underlying network from this system behavior implies envisioning its evolution
over time or under slightly different conditions, and is referred to as network inference
or reconstruction.[43, 44]
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In addition to predicting nodes, edges, and whole networks, the properties of these
individual components, as well as the properties of entire networks, can also be
foreseen.
Spanning across various domains, from social network analysis to information dissem-
ination, predictive approaches within networks play a pivotal role in offering valuable
insights into the behavior of interconnected systems going beyond mere discovery of
new components.[43]
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In 1956, John McCarthy first described "the science and engineering dedicated to
creating intelligent machines" with the term "artificial intelligence".[45, 46] It’s crucial
to emphasize that artificial intelligence (AI) doesn’t rely on some sort of wizardry, but
instead relies on the application of probability, statistics, and mathematics, leveraging
relevant data and hardware capacities.[46] Machines actually struggle with tasks that
humans find intuitive, appearing automatic and effortless, yet remain intricate to define
formally.[47]
In practice, much of contemporary AI research doesn’t aim to replicate human-like in-
telligence (also known as strong AI); instead, it focuses on automating execution and
decision-making processes for specific tasks (weak AI).[46]
The first generally recognized work about AI traces back to 1943, with Warren Mc-
Culloch and Walter Pitts attempting to simulate neural networks using computational
circuits (a concept now referred to as neural networks, despite only their superficial re-
semblance to actual neural structures).[48] McCulloch and Pitts proposed an artificial
neuron model where each neuron adopts an "on" or "off" state based on stimulation
from neighboring neurons. They demonstrated the ability of networks to compute
various functions and logical operations, suggesting the potential for learning within
appropriately designed networks.[47]
The subfield of AI exploring the ability to enhance performance through experience is
recognized as machine learning.[49] Unlike traditional explicit programming, machine
learning models undergo a "training" to uncover patterns within data.[46]
It’s crucial to emphasize that the nodes and edges within artificial neural networks
don’t inherently mirror real-world connections; instead, they employ mathematical op-
erations on inputs to generate outputs[46]. Nevertheless, owing to their capacity to
learn from input data, artificial neural networks present a powerful machine learning
technique for capturing nonlinear relationships among variables.[50]
The ability to process real raw data of conventional machine learning is limited. Rep-
resentation learning emerged as a collection of methods enabling machines to au-
tonomously infer the necessary representations for detection or classification directly
from raw data. Deep learning, a subset of representation learning, incorporates mul-
tiple layers of representation achieved through compositions of nonlinear modules,
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gradually transforming raw inputs into higher-level abstractions.[51] These encodings
capture essential features or representations of data in a lower-dimensional space while
preserving meaningful relationships and patterns. In the context of machine learning
and data analysis, this technique is called embedding.
The rapid expansion of big data∗, accompanied by advancements in computing ca-
pabilities †, alongside the improvement of machine learning algorithms, has allowed
the training of complex network architectures within manageable timeframes, utiliz-
ing massive datasets. This convergence has catalyzed the current surge of AI applica-
tions.[46]

2.1 Learning Techniques

Most learning techniques can be categorized into seven distinct classes: supervised
learning, unsupervised learning, semi-supervised learning, active learning, reinforce-
ment learning, transfer learning, and multitask learning.[46] The choice of appropriate
techniques should be guided by the specific requirements of the task, having each class
its own strengths and weaknesses. A brief overview of these approaches follows.

Supervised Learning The core characteristic of supervised learning lies in the avail-
ability of labeled data‡. Through iterative assessments, the model’s effectiveness is
measured, and the feedback on the system’s performance is exploited to finely adjust
internal parameters, ultimately aiming to minimize deviations from the desired out-
come.[46, 52]

Unsupervised Learning Unsupervised learning algorithms are employed when ac-
tual responses to the data are absent, precluding the use of feedback for evaluating
the model’s solutions. In this scenario, the model recognizes patterns within the data
and organizes input samples into distinct clusters. Alternatively, unsupervised learning

∗ Big data refers to vast and intricate datasets that surpass the capabilities of conventional data
analysis tools, presenting challenges in terms of volume, velocity, variety, and veracity (the "four
Vs").[50]

† Such as Graphic Processing Units (GPUs) and Tensor Processing Units (TPUs).
‡ Data accompanied by a corresponding tag, annotation, or "label" that represents the desired output

or outcome associated with that data point.
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methods can also be utilized to effectively reduce the dimensionality of the data.[46]

Semi-supervised Learning When a substantial amount of input data is accessible,
yet only a subset holds known annotations, the application of semi-supervised learning
models gains importance. This approach harnesses unlabeled data to either modify or
reprioritize hypotheses drawn from limited labeled data. The process generally con-
sists of utilizing a supervised learning algorithm to initial model training using avail-
able annotated data. Following this, the trained model is applied to predict labels for
unlabeled data. Subsequently, the model is refined by integrating these newly assigned
pseudo-labels with the original annotated data. The effectiveness of semi-supervised
learning relies on the careful selection of pertinent a priori assumptions, specifically
about the distribution of unlabeled data and the function inferred from the annotated
set, that align with the underlying problem structure.[46]

Transductive Learning In cases where information is limited, accurate estimation
of a function within a defined data region can be achievable, while facing challenges
in obtaining high accuracy across the entire dataset. Transductive learning, similar
to semi-supervised learning, uses all available data: labeled and unlabeled instances.
However, it focuses on generating precise predictions for a designated subset of in-
stances (the unlabeled ones), in contrast to inductive learning (the supervised and semi-
supervised approaches described earlier), which aims to generalize across the complete
dataset.[4, 53, 54]

Active Learning Active learning is a specialized interpretation of semi-supervised
learning in which the algorithm actively interact with a user or an alternative source of
information to collect labels for unlabeled data residing in the most uncertain regions
of the input space. Unlike conventional semi-supervised techniques that aim to lever-
age the latent structure of unlabeled data to enhance label predictions, active learning
is designed to minimize the quantity of labeled examples necessary for effective learn-
ing.[46]

Reinforcement Learning Reinforcement learning revolves around discovering op-
timal actions to maximize a numerical reward signal. Unlike most machine learning
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approaches, explicit action instructions aren’t provided to the model. Instead, it ex-
plores actions to discover those yielding the highest rewards. This involves analyzing
the environment, executing actions to manipulate it, and assessing the outcomes. In
intriguing and complex scenarios, actions can impact not only immediate rewards but
also subsequent situations, affecting all future rewards. The emphasis isn’t on char-
acterizing learning algorithms, but rather on characterizing the learning problem it-
self. The distinctive attributes of trial-and-error search and delayed rewards define the
essence of reinforcement learning.[46, 55]

Transfer Learning In machine learning, it’s widely assumed that training and test
data should share the same feature space and distribution. However, transfer learn-
ing introduces a family of algorithms that question and relax this assumption. These
methods learn and transfer valuable insights from established data domains (sources)
to novel data domains (targets), aiming to improve predictive performance in the target
domain.[46, 56]

Multitask Learning Multitask learning diverges from single-task learning by simul-
taneously addressing multiple tasks that share the same set of features. It leverages
domain information present in the training signals from these related tasks to learn a
shared internal representation that enhances generalization. This approach functions
as an inductive transfer strategy, enhancing overall learning by concurrently acquiring
insights from each task and utilizing a shared representation to mutually benefit the
learning process of different tasks.[46, 57]

2.2 Graph Machine Learning

The impact of deep learning was revolutionary in computer vision [58] and natural
language processing [59], yet its applicability remained bounded by the prerequisites
of data structure regularity. The convergence of network analysis and machine learn-
ing gives rise to graph machine learning (GML), enabling the utilization of graph
structures and other non-uniform datasets (such as point clouds, meshes, manifolds,
etc.).[4]
At the core of GML methods lies the fundamental concept of acquiring valid feature
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representations for nodes, edges, or complete graphs. Notably, graph neural networks
(GNNs), specialized deep neural network architectures tailored for graph-structured
data, systematically enhance the node features within a graph through iterative infor-
mation propagation from neighboring nodes.[4]
The majority of machine learning techniques applied to graphs are made of two dis-
tinct components: a versatile encoder and a task-specific decoder.[60] The encoder is
responsible for embedding the graph’s nodes or the entire graph into a feature space of
reduced dimensions. For embedding complete graphs, a common approach involves
first embedding individual nodes and then applying a permutation invariant pooling
function (such as sum, max, or mean) to generate a representation at the graph level.
On the other hand, the decoder computes the output that pertains to the specific task
under consideration.[4]
Furthermore, GML tasks, much like traditional machine learning tasks, can be clas-
sified using various dichotomies: supervised/unsupervised, inductive/transductive,
and node-level/graph-level. For example, predicting the chemical properties of small
molecules based on their chemical structures is a supervised (inductive) graph-level
task. In this scenario, the model leverages labeled data to learn how to predict chemical
properties for given chemical structures. On the other hand, the task of identifying
closely associated protein groups within a protein-protein interaction (PPI) graph
falls under the category of unsupervised node-level tasks. Meanwhile, predicting
the biological functions of proteins based on their interactions within a PPI graph
corresponds to a node-level transductive task.[4]

Knowledge Graph Machine Learning

The application of Knowledge Graphs (KGs) spans numerous sectors, both in
industry and academia, fueling extensive research into large-scale information ex-
traction from diverse sources. Despite these endeavors, it’s widely recognized that
even the most sophisticated KGs are not complete or perfect.[61, 62] Consequently,
researchers have investigated various techniques to fix inaccuracies and fill in missing
information within KGs, a task often referred to as Knowledge Graph Completion
or Knowledge Graph Augmentation. KG expansion can involve extracting new facts
from external sources, experimentally generating new facts, or inferring missing facts
based on the existing ones within the KG.[19]
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This latter approach, known as Link Prediction (LP), has become an increasingly
active research domain, particularly benefiting from the surge in machine learning
and deep learning techniques. The majority of LP models leverages KG components
to learn low-dimensional representations, commonly referred to as Knowledge Graph
Embeddings, then using them to infer new facts.[19]
Traditional machine learning algorithms usually work by taking a feature vector as
input and learning a mapping from this vector to a predictive output. In contrast, incor-
porating object’s relationships into its representation, Statistical Relational Learning
(SRL) is dedicated to constructing statistical models for relational data such as the
structures found in Knowledge Graphs. SRL techniques can be applied to existing
KGs to develop LP models that predict new facts (triples) by exploiting the underlying
information within the existing facts.[63]
Utilizing the previously described notation (Section 1.1), where each KG fact is
structured as a triple (h, r, t) with h representing the head (subject), r as the relation
(predicate), and t denoting the tail (object), LP techniques predict the accurate entity
to complete (h, r, ?) (tail prediction) or (?, r, t) (head prediction).[19]
The majority of LP models rely on embeddings to establish a scoring function
f(h, r, t)∗ for assessing the credibility of a given fact (h, r, t). During the prediction
phase, when presented with an incomplete triple (h, r, ?), the missing tail entity is
inferred as the one that, upon inclusion in the triple, produces the highest score:[19]

t = argmax
e ∈ E

f(h, r, e) (2.1)

Figure 2.1. Knowledge Graph Machine Learning. The knowledge graph is constructed using the
available data sources. Subsequently, vector representations (embeddings) are learned for entities
and relations, which can be employed for a variety of machine learning tasks.

∗ Where h, r, and t are the embedding vectors of h, r, and t.
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Network theory represents a potent analytical tool for exploring complex systems,
particularly in the context of living organisms. Embracing the principles of network
science, this approach captures the holistic behavior of a system and highlights emer-
gent properties that result from intricate interactions among its components.[13] This
methodology is useful in understanding the pathophysiological basis of diseases, con-
ceptualized as emergent properties arising from complex interplays within living sys-
tems.[3] Recently, network models have played a pivotal role in characterizing drug-
disease relationships and shedding light on various aspects of drug research.[3] These
models depict nodes representing entities connected either physically or conceptu-
ally, forming a dynamic framework to untangle the intricacies of these complex sys-
tems.[43]

3.1 Network Biology, Pharmacology, and Medicine

In 1957, C. H. Waddington diverged from the prevailing Mendelian "one gene -
one phenotype" model, pioneering a new perspective that highlighted the influence of
gene networks on cellular states and developmental outcomes.[64] He proposed that
phenotypes arise from stable conditions (states) of gene networks and the transitions
between them.[64, 65] This concept lays the foundation for network biology, a disci-
pline dedicated to unraveling the complex interactions among molecules constituting
vital functional units driving physiological functions at the cellular, tissue, and organ
levels.[66, 67]
A parallel transformation can be observed in the traditional target-centered approach
to treating diseases, which traces its origins to the pioneering work of Paul Ehrlich and
his renowned statement "Corpora non agunt nisi fixata".[68] Despite being inherently
reductionist, the "one disease-one target-one drug" model drove scientists to focus on
molecules and their interactions, and served as the foundation for much of the research
that led to the development of many of the medicines used nowadays.[3] Nevertheless,
it has become increasingly evident that numerous effective drugs exert their effects
on multiple targets rather than a singular one, a phenomenon called polypharmacol-
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ogy.[69] Indeed, the integration of systems biology and the expansion of the "omics"
technologies has prompted a shift in the drug discovery paradigm towards what is now
known as network pharmacology.[3, 69]
This strategy finds its place within the framework of network medicine, an established
discipline rooted in the application of principles of network theory and network biol-
ogy to disease mechanisms and pharmacotherapy [70, 71]. The key concept of network
medicine is that the comprehension of drug actions and the design of innovative phar-
macological treatments extends beyond the consideration of isolated protein targets
directly associated with a disease. Instead, it necessitates the consideration of the sub-
network of proteins interacting with the specific target(s) implicated in the disease; this
interconnected group is commonly referred to as the "disease module".[3]

3.2 Network Types

Outlined below are some notable network types that hold significant relevance in
the domain of drug research.

Signaling and Metabolic Networks The architecture of a signaling network consists
of two main components: upstream signaling pathways and downstream gene regula-
tory networks. The upstream component is responsible for transmitting extracellular
information to transcription factors through receptors and mediators. Its pathways are
structured and characterized by cross-talks, which are directed interactions between
them. Cross-talks, while enhancing functional diversity and adaptability, require pre-
cise regulation to maintain output specificity and input fidelity. Complementing this,
in the downstream section, microRNAs play a crucial role in gene expression modu-
lation by attaching to complementary sequences of DNA transcription factor binding
sites.[43]
In metabolic networks, nodes represent metabolites, connected by edges indicating
possible biochemical conversions. Edges depict reactions and, when the reaction is
not spontaneous, the associated enzymes. While metabolites are relatively universal,
the configuration of specific biochemical reactions linking them tends to be organism-
specific.[43]
Analyzing signaling and metabolic networks that have undergone pathological changes
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can reveal potential drug targets, whose dysfunction contributes to the development of
specific diseases.[43]

Protein-protein Interaction Networks Protein-protein interaction (PPI) networks,
often referred to as interactomes, depict relationships between proteins, with nodes
representing proteins and edges denoting their direct physical interactions. Interac-
tome data is acquired using diverse techniques like high-throughput methods, text
mining, and predictions. Estimated at approximately 650,000 interactions,[72] the full
complexity of the human interactome remains to be unveiled.
Data quality presents a key challenge due to sampling bias, missing interactions,
false positives, and data coherence issues. For instance, large interactome hubs might
emerge from aggregated data, neglecting critical protein attributes like conformations,
posttranslational modifications, isoforms, expression differences and localizations.[73]
It is worth highlighting the tendency for soluble proteins to have more connections
compared to membrane proteins,[74] and that steric hindrances impose limitations on
the maximum number of simultaneous interactions.[43]
Furthermore, it’s noteworthy that interactome modules often align with significant
cellular functions.[75] Additionally, essential proteins exhibit a higher degree com-
pared to the average, and they tend to participate in a diverse range of functions.[43]
In drug research, specific network properties of PPI networks offer valuable insights.
Disease-associated proteins typically don’t serve as interactome hubs, except in cases
like cancer, where tightly interconnected hubs emerge due to somatic mutations.[76–
78] Potential drug targets often bridge multiple network modules and exhibit more
connections than the average protein node.[43] To minimize side effects, it’s cru-
cial to target non-hub nodes with intermediate neighbor counts, ensuring controlled
perturbations in the interactome.[43]

Protein Structure Networks In protein structure network representations (also
called protein contact networks, amino acid networks, residue interaction networks,
or protein meta-structures), nodes depict amino acid side chains, and edges are shaped
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by physical distances between these side chains (measured between α or β carbons∗

or the side chains’ center of mass). In unweighted networks, edges are drawn when
two side chains are closer than a threshold distance (usually ranging from 4 to 8.5
Ångström†).[43, 79]
Protein structure networks exhibit "small world" properties, facilitating rapid drug-
induced conformational changes through efficient communication among amino
acids.[80–82] Protein structure networks have modules, which often encode protein
domains. High-centrality, inter-modular bridges play a key role in the transmission of
allosteric changes. Protein structure networks serve as efficient tools for identifying
crucial amino acids involved in intra-protein signal transmission.[83]

Drug-Target Networks In a drug-target (DT) network, if a protein is recognized as
a target for a drug, a connection is established between them. This network configura-
tion, represented as a bipartite graph, enables the extraction of two biologically insight-
ful network projections, each encompassing distinct node types: drugs or targets. The
drug projection (DP) network, exclusively comprises drug nodes, where connections
link two drugs sharing a common target. Similarly, the complementary target projec-
tion (TP) network features protein nodes, and edges are drawn when two proteins are
targeted by at least one mutual drug. The visualization of drug-protein associations
within this network framework offers a valuable overview of the ongoing landscape of
drug discovery.[37, 84]

Drug-drug Interaction Networks Within drug-drug interaction networks, nodes
correspond to drugs, while edges depict the interactions between them. These inter-
actions arise when one drug’s pharmacological effects is modified by another drug,
frequently resulting in clinical outcomes that are difficult to predict, including adverse
drug reactions. Such interactions can lead to diverse effects, wherein one drug may
either amplify or attenuate the intended effect of the other drug, and in some cases,

∗ In organic chemistry, carbon atoms are designated with Greek letters, starting from the carbon atom
immediately following the one bonded to the functional group. In the context of amino acids and
proteins, theα-carbon is the carbon atom in the backbone (which is the central chain of atoms in the
amino acid structure) adjacent to the carbonyl carbon, and the β-carbon occupies the subsequent
position as the second one in line.

† 1 Ångström = 10−10 meters.
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even trigger an unexpected response.[85]

Chemical Structure Networks The structure of chemical compounds can be visu-
alized as a network, often referred to as a chemical graph.[7] Here, atoms within the
molecule serve as nodes, and the covalent bonds that link them together form the edges.
This network representation can accommodate multiple edges to depict various bond-
ing interactions. The descriptive attributes from this network framework are valuable
assets in quantitative structure-activity relationship (QSAR) models.[43]

Chemical Space Networks Chemicals can be described based on diverse proper-
ties, such as molecular mass, lipophilicity, and topological features. These descriptors
collectively define a multi-dimensional space, often termed chemical space.[86] This
concept holds growing significance across various chemical domains, particularly in
medicinal chemistry and chemical biology.[87] However, conventional representations
of chemical space suffer the "curse of dimensionality"∗.[88, 89] This challenge can be
effectively addressed by adopting a network-based approach, allowing a more manage-
able representation.[87]
Indeed, chemical space networks (CSNs) have emerged as a valuable approach to vi-
sualize and comprehend relationships within datasets of small molecules.[87, 90] In
a typical CSN, nodes represent compounds and are linked by edges that can convey
diverse relationships between them.[90] These relationships encompass fingerprint-
based Tanimoto similarity[91], substructure-based similarity[92], or asymmetric Tver-
sky similarity[93], among others. When CSN edges reflect a continuous spectrum of
similarity values, such as fingerprint-based Tanimoto similarity, the incorporation of
a minimum threshold value permits to control the number of edges. Specifically, an
edge is drawn if the relationship value between compounds matches or surpasses the
specified threshold. Conversely, in scenarios like CSNs based on matched molecular
pair (MMP)†, edges indicate binary relationships, connecting only MMPs.[92, 95]

∗ As the number of dimensions increases, the volume of the space expands rapidly, leading to sparse
data distribution. Ensuring reliable outcomes often demands exponentially larger datasets as di-
mensionality grows.

† A pair of compounds that differ from each other by a single modification at a specific structural
site.[94]
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Knowledge Graphs Basic network models have long been employed to represent
complex interactions in biomedical systems. While these models have shown impres-
sive performance, they often struggle to capture the semantic richness of diverse rela-
tionships among biomedical entities. To overcome this limitation, recent approaches
have shifted towards employing multi-relational networks, exemplified by knowledge
graphs.[96] Knowledge graphs integrate information from expert-derived sources into
a graph structure, where nodes represent biomedical entities and edges symbolize re-
lationships between them.[16]
KGs find extensive applications in various biomedical challenges, spanning from elu-
cidating protein functions to prioritizing disease-associated genes and suggesting safer
drug alternatives for patients. They offer valuable insights into drug properties, such
as predicting interactions between drugs, identifying potential molecular targets for
drugs, and discovering novel therapeutic possibilities for established drugs.[16]
One prevalent approach is KG embedding (KGE), showcased in projects like Het-
ionet[97] and PharmaKG[96], which maps the intricate graph structure into a lower-
dimensional space while retaining essential topological features.[96]

3.3 Network Applications

The process that leads from the identification of a disease or clinical condition
to the marketing of a drug treating it, is long and complex.[98] It starts with tar-
get identification and validation, followed by hit∗ discovery and the selection of lead
molecules†. These leads then undergo optimization through chemoinformatics, drug
efficiency assessments, and ADMET (drug absorption, distribution, metabolism, ex-
cretion and toxicity) studies, ensuring desirable drug candidate characteristics.[4, 43,
98] Subsequently, pre-clinical research evaluates toxicity, pharmacokinetics, pharma-
codynamics, and efficacy through in vitro and in vivo studies. With compelling pre-
clinical data, the drug advances to three successive phases of human clinical trials.[4,
98]
In the review titled "Network modeling helps to tackle the complexity of drug–disease
∗ A primary active compound, demonstrating non-promiscuous binding behavior and surpassing a

specified threshold value in a given assay or assays.[99]
† Prototypical compounds exhibiting activity and selectivity in a pharmacological or biochemically

relevant screening process.[99]
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systems"[3], various methods for modeling complex drug-disease systems were exam-
ined. Below, several crucial stages within the drug discovery and development process
that can notably benefit from the application of network tools are presented.

Molecular Properties Prediction Selecting molecules with heterogeneous yet de-
sirable chemical properties can help avoid the need to screen millions of compounds,
resulting in reduced costs and time for drug discovery.[4, 46] Recent research has
demonstrated that utilizing graph-based representations results in superior predictive
accuracy for molecular property tasks when compared to non-graph methods, while
also providing enhanced model interpretability.[4, 100]

Target Identification Target identification involves the search for a key molecular
target pivotal to the pathophysiology of a disease, susceptible to modulation for ther-
apeutic impact, hopefully reversing the disease condition. Systems biology employs
a network approach, bridging disease biology and genetic influences to uncover such
intervention points. These targets, then, necessitate experimental validation and com-
prehensive evaluation, including factors like accessibility and efflux pumps, to ensure
their viability.[4]

De Novo Design In drug design, generating molecules with a high likelihood of inter-
acting effectively with a specific target is vital.[44] The approach of in silico de novo
drug design has emerged as an effective strategy for narrowing down the chemical
space, facilitating the discovery of compounds for chemogenomic research and initiat-
ing hit-to-lead optimization.[46] This method revolves around producing new or mod-
ified molecular structures that possess desired properties. Traditionally, this challenge
is tackled through inverse QSAR problems, generating structures within the constraints
of established QSAR models. This involves defining an inverse-mapping function that
translates molecular activity into chemical descriptors, which in turn guides the cre-
ation of novel compounds.[101]
Recent years have witnessed the rise of AI, particularly deep learning models, as po-
tent tools for de novo molecular design.[44, 101] Initial AI-driven drug discovery pre-
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dominantly employed SMILES∗ strings as input representations, capitalizing on pre-
existing sequence learning architectures that were adapted for this purpose.[44] While
successful in generating credible molecules, the SMILES approach harbors inherent
limitations compared to graph-based methods. SMILES models must simultaneously
accommodate both chemical rules and grammar, thus wasting valuable representation
resources. Graph-based models, instead, circumvent the need to learn grammar rules,
therefore conserving representation capacity for the primary learning task and offering
an inherently more efficient alternative to SMILES representations.[44] Additionally,
subgraphs within this approach can be interpreted as molecular fragments, facilitating
more intuitive analysis. Furthermore, graph-based models enable the explicit incorpo-
ration of chemical constraints on complete molecules and fragments.[44]

Drug Repurposing In response to escalating drug development costs, researchers
are exploring the utilization of existing drugs, whether approved or in development as
therapies, for indications beyond their original intended use.[4, 46] The rationale be-
hind this is that recommending an existing molecule is arguably simpler than designing
one from scratch.[4]
Repurposed treatments are estimated to constitute around 30% of newly FDA-approved
drugs and their associated revenues, with the potential to repurpose up to 75% of ex-
isting entities.[4] Repurposing is possible due to many drugs having multiple targets,
and the presence of shared characteristics among diverse diseases, including genetic
factors, molecular pathways, and clinical features.[46] An important incentive for drug
repurposing is addressing unmet therapeutic needs of rare or neglected diseases.[46]
Computational drug repurposing has evolved from traditional approaches like chem-
ical similarity assessment and molecular docking to innovative methodologies rooted
in systems biology.[46]

Drug Combinations Combination drugs have proven particularly effective in dis-
eases characterized by complex aetiology or evolutionary components, which com-
monly give rise to treatment resistance. They can enhance convenience and compli-
ance through fixed-dose formulations, achieve synergistic effects, broaden the thera-
∗ The Simplified Molecular Input Line Entry System is an efficient chemical notation system de-

signed for chemical information processing, which employs a compact and intuitive grammar based
on molecular graph theory.[102]
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peutic spectrum, and combating disease resistance, among other benefits.[4]
The vast number of possible pairwise combinations involving just two drugs presents
a daunting combinatorial challenge for a brute force empirical laboratory testing ap-
proach. To put it into perspective, considering approximately 4,000 approved drugs, it
would be necessary to conduct ∼8 million experiments to assess all conceivable two-
drug combinations at a single dose. Additionally, these combinations would need to
be evaluated across roughly 3,000 human diseases. Moreover, the potential variations
in dosage, timing of treatments, and delivery methods are virtually limitless.[4]
Efforts to systematically identify drug combinations that deliver both substantial clin-
ical efficacy and minimal toxicity often rely on intuition and experience rather than
well-defined principles.[103] Network-based methodologies have provided a promis-
ing foundation to move beyond the conventional "one-drug, one-target" mindset, en-
abling the exploration of the "multiple-drugs, multiple-targets" paradigm by targeting
multiple disease proteins within a disease module, while also aiming to mitigate toxi-
city.[4]

Drug Safety The safety profile of a compound is determined by its adverse impact
on an organism or its components, which could encompass cells, organs, and other
substructures. Assessing toxicity stands as one of the most central and demanding
stages within the drug discovery and development process. Since developing reliable
high-throughput assays for extensive in vivo and in vitro bioassays is a costly and time-
consuming endeavor, there is a strong need for rapid, cost-effective, and consistent
computational alternatives.[46]
The efficacy of deep learning applications in this context is closely tied to the quality
of encoding functions used to map molecular structural information into fixed-size
vectors. To address this limitation, various graph-based learning architectures have
been introduced, which are designed to automatically extract suitable features from
raw molecular graphs.[46]
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4 Aim of the Work

This thesis aims to make optimal use of available biomedical knowledge investi-
gating approaches to support drug research, with a specific focus on drug repurposing
and drug safety. By integrating network theory and data science techniques, the ob-
jective is to unveil novel insights into the complex relationships between biological
components and drugs. Through a series of projects ranging from descriptive anal-
yses to predictive modeling, this thesis endeavors to advance our comprehension of
drug effects, contributing to the development of safer and more efficient pharmaceu-
tical interventions. Ultimately, this work seeks to bridge the gap between traditional
pharmaceutical research and the emerging paradigms of network analysis and machine
learning, offering perspectives for the future of drug discovery and healthcare.
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Part II

Projects
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5 Projects Overview

The projects undertaken during the PhD course are presented here with the struc-
ture of scientific articles, encompassing introductions, methodologies, results and con-
clusions.
These projects can be categorized into three main types: descriptive conceptual mod-
els, aimed to interpret the complex characteristics of biological systems; computational
models designed for predictive tasks on biological systems; and a plain data analysis
project.
The objectives and areas of focus of each project are:

• Exploration of the clinical drug research response to COVID-19 (Section 6.1).

• Identification of crucial regulators from gene expression data (Section 6.2).

• Inspection of drug-induced impulsivity associated to dopaminergic agents (Sec-
tion 6.3).

• Selection of potential repurposable drugs and combinations to treat Huntington’s
disease and multiple sclerosis (Section 7.1).

• Collection and aggregation of relevant biological data into a KG to make predic-
tions based on it (Section 7.2).

• Investigation of adverse events that are more frequent in fixed-dose drug combi-
nations compared to the individual components (Section 8.1).
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6 Descriptive Models

6.1 COVIDrugNet

The COVID-19 pandemic, caused by SARS-CoV-2, presented an unprecedented
global health issue, necessitating a massive, and diversified but concerted response
from the scientific and medical communities. Among the many strategies employed
to combat the virus, drug development and clinical trials have played a crucial role
in seeking effective therapeutic solutions. In this context, a valuable resource was in-
troduced in the form of the web-based application COVIDrugNet, as described in the
paper "COVIDrugNet: a network-based web tool to investigate the drugs currently in
clinical trial to contrast COVID-19" published in Scientific Reports in 2021.[37] This
tool offers a user-friendly interface to comprehensively and continuously monitor the
evolving landscape of drugs in clinical trials for the treatment of COVID-19. The press-
ing need for a platform like COVIDrugNet arose from the dynamic nature of clinical re-
search during a pandemic, where the identification of promising therapeutic candidates
and understanding their biological and pharmacological implications is of paramount
importance. COVIDrugNet, accessible at http://compmedchem.unibo.it/covidrugnet,
provides a means for us to navigate this complex ecosystem of drug trials, facilitating
real-time exploration and analysis.
In this paper, we describe the functionalities of COVIDrugNet and present illustrative
examples of how this tool can be employed to gain insights into the ongoing clini-
cal trials. By harnessing the power of network-based analysis, we demonstrate how
COVIDrugNet enables users to probe the consistency of therapeutic approaches with
existing biological and pharmacological evidence. Such analyses can help in com-
prehending the implications of proposed drug options and, ultimately, in guiding the
search for more effective therapies against COVID-19.

Details

Authors Luca Menestrina, Chiara Cabrelle, Maurizio Recanatini

Type Research Article
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Status Published

Title COVIDrugNet: a network-based web tool to investigate the drugs currently in
clinical trial to contrast COVID-19

Journal Scientific Reports

DOI 10.1038/s41598-021-98812-0

Data Availability The full code for the collection, building and analysis of the net-
works is available in the GitHub repository at https://github.com/LucaMen
estrina/COVIDrugNet. It is entirely written in Python. All data generated
or analyzed in this study is publicly available on the GitHub repository. Fur-
thermore, some data is easily downloadable from the web tool itself: all tables
in tab-separated values (tsv) format and the networks in various formats (adja-
cency list, pickle, cytoscape json, graphml, gexf, edges list, multiline adjacency
list, tsv, png and jpg).
Supplementary data can also be accessed at the original publication.
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COVIDrugNet: a Network-based Web Tool
to Investigate the Drugs Currently in Clinical Trial
to Contrast COVID-19

6.1.1 Introduction

The outbreak of the COVID-19 pandemic caused by SARS-CoV-2 at the begin-
ning of 2020 has shocked the population worldwide. A year and a half later, (August
2021) about 200 million confirmed cases of COVID-19 have been reported by WHO
included more than 4.2 million deaths (https://covid19.who.int/). As expected, in
such a mankind threatening situation, the scientific community put in place a great
effort to help countering the spread of the virus, as evidenced among the other things
by the huge number of papers dealing with various aspects of the disease appeared
in the literature. For instance, the LitCovid literature hub[104] has collected around
160,000 articles as of August 2021 covering arguments categorized as general, mech-
anism, transmission, diagnosis, treatment, prevention, case report and forecasting.
As regards the COVID-19 treatment, the race to the vaccine against SARS-CoV-2
started immediately after the isolation of the viral genome[105] and gave the first results
as soon as December 2020. Moreover, despite the exploration of different approaches
like, e.g., the infusion of plasma from human survivors[106], the pharmacological op-
tion, namely small molecule drugs and antibodies, is being actively pursued. However,
the route to a new drug is long and costly, and the classical drug discovery pipeline
is not compatible with the need of rapid intervention on a population of millions of
patients. At the moment, a viable alternative seems to be the repurposing of known
drugs[107], i.e., the use for the treatment of COVID-19 of drugs currently on the mar-
ket for different therapeutic purposes.
Known drugs that are currently in clinical or pre-clinical study for the treatment of
COVID-19 are aimed either at inhibiting viral or human targets involved in some of
the processes of viral entry and replication, or at treating inflammation and tissue in-
jury consequent to the viral infection[108, 109]. Even though it might seem that a
direct antiviral approach could lead to a straightforward solution, only few of the ex-
isting antivirals have performed well in the clinic so far. On the other hand, a number
of drugs used for the most disparate therapeutic indications and entered into clinical
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trials even with an uncertain rationale[110] are showing preliminary promising results.
However, as it has been observed[111], a real "repurposing tsunami" has invested the
biomedical community, so much so that today it is difficult not only to keep track of
the results of the trials, but also to follow the new proposals.
With the aim of helping researchers navigate the sea of outcomes and reports coming
from the studies on COVID-19, some institutions and companies have developed on-
line platforms that collect and organize both literature and data, eventually providing
free access to the latter. For example, the already mentioned LitCovid hub[104] (https:
//www.ncbi.nlm.nih.gov/research/coronavirus/) is a daily updated source of relevant
articles retrieved from PubMed. Other platforms dealing with data on drugs and chem-
icals, like, e.g., CHEMBL[112] (https://www.ebi.ac.uk/chembl/), PubChem[113]
(https://pubchem.ncbi.nlm.nih.gov/), or DrugBank[114] (https://www.drugbank.ca/),
have introduced special sections dedicated to COVID-19-related information. In ad-
dition, more specialized resources have appeared on the web to help accessing and
analyzing COVID-19 data, mainly in the fields of epidemiology, genomics, interac-
tomics, and, to a lesser extent, pharmacology. In this class of web tools, it is worth
mentioning CORDITE (CORona Drug InTEractions database)[115], a web interface
that provides a database of potential drugs, targets, interactions, and relative publica-
tions obtained from a manually curated selection of literature sources. With the same
purpose of facilitating the data analysis, the COVID-19 Drug and Gene Set Library
was built as an online collection of COVID-19 related drugs and genes.[116] A com-
prehensive critical review on this kind of web tools has recently been published by
Mercatelli et al.[117]
Considering the great amount of valuable scientific information that has already been
produced and published, and that will be presumably produced for some time more on
COVID-19 related topics, it could be useful to look at the whole scenario of results,
to foster the acquisition of that knowledge that can only emerge from consideration of
both the totality and the complexity of data. In other words, and limiting ourselves to
the pharmacological treatment issue, one might think of presenting and analyzing the
information on proposed drugs in a way that takes into account not only the different
types of data (chemical, biological, genomic, etc.), but also the relationships among
them, that is on a network basis. The context is that of network medicine.[118] An
attempt in this direction has recently been proposed by Korn et al.[119], who devel-
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oped a knowledgebase and an online platform (COVID-KOP) to integrate the existing
biomedical information with the newly acquired knowledge on COVID-19. By means
of this web tool, one can easily produce an aggregate graph connecting, e.g., COVID-
19 phenotypic features to a drug studied for treating the disease, through the genes
known to be linked to both. Still in the context of network medicine, CoVex is another
platform that offers the user the possibility to explore the SARS-CoV-2 virus-host-
drug interactome for drug repurposing aims.[120] In addition, we want to mention
CovMulNet19[121] that at present looks like the most thorough network-based tool
allowing to integrate the available genotypic and phenotypic information on COVID-
19, like, SARS-CoV-2 proteins, their human partners, as well as symptoms, diseases,
and drugs. Finally, Coronavirus canSAR[122] is a freely available resource that offers
druggable interactomes of SARS-CoV-2 proteins and human proteins, as well as re-
ports about 3D structures, drugs, and clinical trials.
In a specifically drug-focused context, the network medicine approach assumes the
overcoming of the old "one drug, one target, one disease" concept in favor of a more
outright "multi-drug, multi-target, multi-disease" approach.[69] The exploration of a
such complex system of interactions can be aided by the construction of a drug-target
network.[84] In reference to the COVID-19 case, drug-target networks based on host-
virus protein-protein interactions (PPIs) have already been built and examined[123–
125] with the aim of repurposing already approved drugs.
Here, we present the COVID-19 Drugs Networker (COVIDrugNet: http://compmedc
hem.unibo.it/covidrugnet), a web application that offers a different point of view on
anti-COVID-19 drugs by allowing a network-based analysis of the DrugBank dataset
of potential repurposed drugs currently in clinical trial. The freely accessible applica-
tion automatically retrieves the data from DrugBank, builds the drug-target network,
and allows the user to carry out some basic network analysis. Moreover, we show how,
using COVIDrugNet, some peculiar aspects of the proposed pharmacological options
against COVID-19, in terms of substances, targets, and their interrelationships can be
revealed. Although what is reported here is an instant analysis based on current data,
the continuous updating of COVIDrugNet will allow us to follow the future develop-
ment of the drugs proposed for the treatment of the disease, thus providing an always
updated view of the COVID-19 system pharmacology.
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6.1.2 Results and Discussion

6.1.2.1 COVID-19 Drugs Networker

The COVID-19 Drug Networker (COVIDrugNet, Figure 6.1) is a web tool designed
for the exploration of the landscape of the drugs currently in clinical trials to combat
the SARS-CoV-2 infection. The web app is based on a network approach that supports
both visualization and analysis of the complex scenario of repurposed drugs for the
COVID-19 and related conditions. The core of the web tool are the interactive graphs
and the additional features that allow one to explore drug and target data, as well as
networks properties. The main graph represents a bipartite Drug-Target network (DT
network, Figure 6.2a), where the nodes are drugs and targets that are connected if a
relation between them is reported in DrugBank. Since bipartite networks are usually
investigated by compressing their information into two monopartite networks called
projections[126], COVIDrugNet provides two of such networks only having drugs or
targets as nodes: in the following, we refer to them as Drug and Target projections,
(DP and TP, respectively; Figure 6.2b and 6.2c).
As regards the user interface, it is basically divided into the main and the Advanced

Tools blocks. The first one allows users to immediately access the main body of infor-
mation, capturing the holistic view of the current drug repurposing status for COVID-
19. However, a more in-depth examination of the data is possible, by taking advantage
of some more specialized graph analysis tools provided in Advanced Tools.
In detail, the main block includes the graph, and the Charts and Plots and Graph Prop-
erties sections (Figure 6.1). As mentioned before, the heart of each web page is the
interactive graph with its related information box (Node Info) that provides a summary
documentation of single drug/target nodes hovered over or individually selected. The
box contains links to some databases providing the available information related to in-
dividual properties of both drugs and targets. In addition, a multiple node selection
brings up the Inspected Data hidden section that displays detailed information of the
selected nodes in a tabular format. By the way, networks and tables can be downloaded
in different formats to allow an external analysis of the data.
Node coloring options are provided, useful to visualize some node attributes related
to therapeutic, biological, or network-based features. For instance, in the DP graph
(Figure 6.2b) the user can decide to color the nodes according to the Anatomical Ther-
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Figure 6.1. The COVIDrugNet Web Tool. A screenshot of the main block of the Drug-Target Network
page. It displays the fundamental features accessible in the web tool that allow the user to inspect
the network and its properties.
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Figure 6.2. COVIDrugNet Networks. The three networks generated and available for inspection
in COVIDrugNet. (a) Drug-Target Bipartite Network. It is the main network, and it is built connecting
drugs currently in clinical trial present in the COVID-19 Dashboard of DrugBank[114] and their reported
targets. The red nodes are drugs, and the light blue ones are targets. (b) Drug Projection. It is built
from the Drug-Target network and contains only drugs. The nodes are color coded on the basis of
their first level ATC codes (retrieved from DrugBank[114]). (c) Target Projection. It is built from the
Drug-Target network and contains only targets. The nodes are color coded according to their protein
class (retrieved from ChEMBL[112]). The networks were generated by means of the Python package
NetworkX[127].
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apeutic Chemical (ATC) code or the clinical trial phase, while in the TP graph (Fig-
ure 6.2c) the color coding allows one to spot protein family, protein class or cellular
location. Moreover, in the DT network and in both projections, it is possible to color
the nodes based on some network attributes - i.e., degree, centrality measures or node
grouping - considering the entire graph or the major component. To examine all these
properties at a glance, the web tool also provides the Chart and Plot section, in which
the pie charts - or bar chart in the case of the ATC code coloring option - are updated
accordingly to the node coloring option to show the relative proportions between the
values of that property. In this area of the projection web pages, the web tool also
provides the plot of the nodes degree distribution. Among the graph interactive fea-
tures, the Highlight a node dropdown menu is useful to find nodes by name, and the
button HIGHLIGHT BY PROPERTY allows a customized filtering on node properties
to highlight and/or download a specific nodes selection. In the Graph Properties sec-
tion, some centrality measures useful to analyze the network topology are displayed in
a downloadable table. A short explanation of each computed property is provided in a
Glossary in the Help page.
Regarding the Advanced Tools block, it contains three sections: Clustering, Advanced
Degree Distribution and Current Virus-Host-Drug Interactome. The Clustering sec-
tion is dedicated to the node grouping analysis carried out through different methods
(see Nodes Grouping in Section 6.1.5.3). In particular, we thought it could be of in-
terest to examine the grouping of the nodes in the projection graphs, as, e.g., in per-
spective it might reveal possible trends in the selection of drugs to be repurposed or
privileged areas of intervention in the biology of the infected cells. To this aim, the
web app allows for three different techniques of investigation of the networks partition-
ing: spectral analysis combined with K-means clustering[127], Girvan-Newman[27]
and greedy modularity community detection[30] methods. The plot in this Clustering
section reports either the eigenvalues distribution used in the application of the spectral
clustering method, or the modularity trend in the Girvan-Newman community detec-
tion method. Both plots are interactive and allow the user to choose the level (number)
of grouping.
The Advanced Degree Distribution section presents an interactive chart of the degree
distribution and some of its possible distribution fittings compared to those of an Erdős-
Rényi equivalent graph (see Degree Distribution Fitting in Section 6.1.5.3).
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Finally, the Current Virus-Host-Drug Interactome section displays a bipartite network
built on the basis of experimental studies and checked for protein targets present in the
DT network (see below for details). As mentioned before, the network table is down-
loadable, to provide interested users with the possibility of rebuilding and manipulating
the graph.

6.1.2.2 Graphs Analysis

In Figure 6.2, the graphs representing the networks generated by COVIDrugNet
are displayed. The DT network is a disconnected network with a large connected com-
ponent accounting for 85.1% of nodes (1248 out of 1466). This structure reminds
that of the general drug-target network reported elsewhere[84], where most drugs have
more than one target and several drugs can share the same target(s). However, from
inspection of the graph, it immediately appears that there are two drug nodes that heav-
ily affect the network topology by showing an exceedingly high degree compared to
all other nodes: Fostamatinib and Artenimol, having 305 and 186 direct neighbors,
respectively. For both drugs, this reflects a number of reported targets that is consid-
erably higher than the average (<7), being 6.9 and 4.2 times higher, respectively, than
that of Cannabidiol that, with 44 targets, is the third in rank for the highest number
of neighbors in the DT network. Indeed, these two drugs show a peculiar behavior
strongly affecting the network structure not only in the DT, but consequently also in
the TP graph where they cause the formation of two highly intra-connected clumps
of nodes. To take this aspect under consideration and possibly clarify its role in re-
spect to the topology of both the whole drug-target network and the projections, in the
following, we compared the results of the network analyses carried out on the entire
networks and on the graphs containing all nodes except Artenimol, Fostamatinib and
their exclusive direct neighbors.
As a first step in the analysis, we tried to assess the character of the monopartite pro-
jection networks DP (290 nodes) and TP (1176 nodes), i.e., whether they belong to
the random network category or are scale-free. Scale-free networks have a character-
istic organization, in which there is a limited number of nodes with a high number of
neighbors (called hubs) and an abundance of nodes having a low degree.[24] This ar-
rangement can be found in plenty of real-world networks, from the World Wide Web
to citations in science, from social interactions to metabolic maps.[24, 38] Both DP
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and TP show a significant difference from an equivalent (same number of nodes and
probability of edge creation) Erdős-Rényi graph[9] (Figure A.1). To further investigate
on the scale-freeness of the networks, we considered three properties for each graph:
the degree distribution, the relationship between clustering coefficient and degree, and
the ability to withstand targeted attacks compared to random failures.
In order to address the scale-free character of both networks by evaluating the fitness of
the degree distribution to a power-law, we employed the approach reported by Broido
et al.[33], which applied a previously defined rigorous method.[128] This analysis was
carried out on both the entire DP and TP networks and also in cases where Artenimol
and Fostamatinib as well as their exclusive direct neighbors were removed.
In the DP network, the degree distribution could be described by a power-law, sug-
gesting that these networks are plausibly scale-free (Figure A.2a,b). However, other
heavy-tailed distributions cannot be ruled out (Figure A.2c,d). The situation for the
TP network is less clear-cut, at least in the case of the entire network. To advance an
explanation for these results, we observe that, these networks are small, such that they
would probably not provide enough data for clearly electing a distribution form. Still,
they are unequivocally dissimilar to random networks.
The inspection of both the clustering coefficient and the robustness evaluation is best
illustrated considering the two projections one at a time.
Looking at the DP network and specifically at its clustering coefficient, it shows a ten-
dency to decrease as the degree increases (Figure A.3a,b), implicating the existence
of a few hubs connecting peripheral nodes of high degree. Also, there is an evident
distinction between the response to a targeted attack and to a random failure[39] (Fig-
ure A.4a). In the first case, nodes with the highest degree are progressively removed
from the network, causing it to break apart quickly. On the other hand, if the nodes to
be dismissed are chosen randomly, the connectedness of the network is almost unaf-
fected. Notably, these findings are strengthened by the fact that carrying out the same
investigation on a network from which Artenimol and Fostamatinib are excluded, leads
to almost identical results (Figure A.4b).
The same examination carried out on the TP network does not yield equally unam-
biguous conclusions. As stated above, the targets linked to Artenimol and Fostama-
tinib compose two almost-clique aggregations, which distort the morphology of the
network. The relationship between clustering coefficient and degree is strongly de-
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pendent on the presence of these two exceptionally connected drugs (Figure A.3c,d).
When they are not taken into account, the inverse proportionality is fairly visible. Nev-
ertheless, if they are considered, the scatterplot displaying this relationship is warped,
due to the formation of two separate but remarkably dense groups representing the
targets connected to Artenimol and Fostamatinib. The check of the robustness of the
network by comparing the responses to targeted attacks or random failures gives a re-
sult that agrees with that obtained from the DP network. The communities related to
the two "super-spreaders" simply introduce a delay in the fragmentation of the network,
since they are made of a multitude of nodes with equally high degree (Figure A.4c,d).
Anyhow, this shift does not alter the network robustness to random failures and the
susceptibility to targeted attacks.
As a final remark on the networks organization, we stress that all results and conclu-
sions presented here are just a snapshot of the continuously evolving COVID-19 drug
repurposing scene, and that it will be worthwhile to follow the time progression of this
system. For instance, in the future, the growth of the network could smooth out or even
hide the effects of Artenimol and Fostamatinib that now we observe so evidently. In
respect of this, we recognize a different response of the DP and TP networks to the
influence of these nodes. The former is less affected, since the vast majority of the
targets related to both drugs are not shared by others, such that the information related
to these proteins vanishes in the projection process. On the contrary, the latter suf-
fers a huge impact, showing a situation that is antithetical to the previous one. Here,
the proteins amass together constituting two highly intra-connected jumbles, which are
poorly linked to the rest of the network. A continuous growth and the ability of self-
organizing are two key features of scale-free networks, which frequently describe real
complex systems[24]. These characteristics are shown by both projections, and indeed
their scale-freeness is supported by their degree distribution, the relation of clustering
coefficient to degree, and their robustness. Mainly due to the influence of Artenimol
and Fostamatinib, these properties are manifest in the DP network, but not so neat in
the TP one.
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6.1.2.3 Applications to COVID-19 Repurposed Drugs: Network-based Infer-
ences

To illustrate the capabilities of COVIDrugNet, in the following we report some
example considerations that can be derived from the analysis of the DT network, and
of the projection graphs relating to drugs (DP) and targets (TP).

Figure 6.3. First Level ATC Code Distribution. A bar chart displaying the count of nodes for every
first level ATC code (anatomical/pharmacological main group). The total count is higher than the
number of nodes in the DP, because more than one ATC code can be assigned to a single drug.

Drugs Examining the DP network with nodes colored by ATC code (https://ww
w.whocc.no/atc/structure_and_principles/) (Figure 6.2b) can reveal at a glance
which therapeutic areas are mostly covered by the repurposed drugs presently in clini-
cal trials. In the Charts and Plots section of the COVIDrugNet Drug Projection page,
the nodes categories distribution is shown, from which it appears that all the 14 main
anatomical/pharmacological groups (1st level codes) are represented, even though with
different numbers of drugs. Not taking into consideration the 50 substances for which
an ATC code is not yet reported, the remaining 240 drugs are distributed in three top
ranked groups: C (Cardiovascular system), A (Alimentary tract and metabolism), and
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J (Antiinfectives for systemic use) comprising 49, 39, and 38 active substances, respec-
tively (Figure 6.3). Then, two other highly populated ATC groups follow: B (Blood
and blood forming organs), and L (Antineoplastic and immunomodulating agents) both
counting 31 drugs. By considering the composition of the bars that reports the distri-
bution of drugs in the 3rd level groups for each 1st level ATC code (visible in the web
tool), one can have a more detailed picture of the actual pharmacological approaches
to COVID-19 treatment. First, it is worth noting that the drugs belonging to the J group
are located mostly out of the main connected component of the graph, accordingly to
the fact that they share a target with a very small number of other drugs. Conversely,
substances of the A and C groups mostly populate the main connected component,
indicating a high level of promiscuity among them as regards the targets. Also, we
observe that most drugs classified in the C, A, J, B, L, N, and P groups show just one
ATC code, while drugs in D, G, R, S, M, and H belong to more than one ATC group.
Even though the ATC system is not aimed at providing direct therapeutic indications
and considering also that more than one code can be assigned to individual medicines,
the landscape of pharmacological interventions against the SARS-CoV-2 infection
emerging form the DP network appears rather intricate. Overall, it mostly confirms
that the drugs in clinical trials are aimed at contrasting both the viral infection pro-
cess (antivirals in J group, agents acting on the renin-angiotensin system in C group),
and its pathological consequences at systemic level (substances in A, B, L, and other
groups). These approaches are in line with evidence recognizing that, as the severity of
the COVID-19 increases - apparently in consequence of a dysregulated host immune
response - various pathophysiological mechanisms are activated leading to hemato-
logical (mainly thromboembolic) manifestations and, eventually, multi-organ dysfunc-
tions.[129, 130] In addition, bacterial superinfections have been reported in COVID-19
patients, and even though the issue is still debated[131], antibiotics belonging to the J
group are actually in the current treatment guidelines.[132]
Indeed, even this brief analysis of the ATC codes distribution among the substances
currently in clinical trials highlights a complex and multifaceted drug repurposing
scenario consequent to the fact that the COVID-19 is a multi-systemic disease re-
quiring a well-equipped therapeutic armamentarium and possibly a combined poly-
pharmacological intervention.[133]
To provide an example of using COVIDrugNet focused on a group of drugs, we could
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take into consideration the inhibition of the virus attachment and entry into the host
cell. It is believed that SARS-CoV-2 enters the target cell mainly through an endocytic
pathway that exploits the ability of its Spike (S) protein to bind the human Angiotensin-
converting enzyme 2 (ACE2) receptor. Subsequently, S is cleaved by the Transmem-
brane protease serine 2 (TMPRSS2) to provide the S2 subunit necessary for the mem-
brane fusion.[134, 135] The drug repurposing activity aimed at preventing this step
of the viral infection points to blocking the protein targets ACE2 and TMPRSS2, or
to raising the endosomal pH in order to prevent the S processing.[109] To retrieve in-
formation on drugs in clinical trial for this purpose, we can highlight the target nodes
Angiotensin-converting enzyme 2 and Transmembrane protease serine 2 in the DT
network of COVIDrugNet and check the "Inspected targets" table below for drugs
reported to bind those targets. Here, we can find among others Chloroquine (CQ),
Hydroxychloroquine (HCQ), and Bromhexine that are reported as ACE2 binders, and
Camostat and Bromhexine reported as TMPRSS2 inhibitors. Notably, it is known that
CQ and HCQ are also able to raise the endo-lysosomal pH thus inhibiting the protease
activities and preventing the cleavage of S protein.[135] In addition, recent evidence
suggests the combined use of Camostat and CQ (together with another drug, arbidol,
an inhibitor of the virus-host cell membrane fusion with no known targets) to contrast
the entry routes of SARS-CoV-2.[136] Finally, in the DP graph, one can select all the
mentioned drugs and check the status of the clinical trials in which they are involved
in the "Node Info" box on the right.

Targets The TP network of Figure 6.2c is a targetome that shows the relationships
among the known targets of the proposed COVID-19 drugs. Here, two nodes (proteins)
are linked if they are reported as targets of at least one of the drugs in the DrugBank
COVID-19 database, and in this sense it is different from a typical interactome based
on PPIs. The network is made by 1176 nodes and 70873 edges and shows a main
connected component comprising 1037 nodes (88.2%). Human targets are 1008 (909
in the main connected component).
Looking at this graph provides another point of view on the pharmacological ap-
proaches taken to contrast the COVID-19. The network of the targets involved in the
action of the drugs in clinical trials helps one to obtain a comprehensive view of the
biological processes affected by the action of drugs. Actually, from the analysis of the
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Figure 6.4. Virus–Host–Drug Interactome. The Virus–Host–Drug Interactome built on the basis of
the merged datasets from Gordon et al.[124] and Chen et al.[137] Proteins (circles) are displayed in
red if viral and in blue if human. The human proteins present in the TP network are shown as yellow
circles, and the corresponding drugs currently in clinical trials against COVID-19 as green squares.
The human proteins binding more than one viral target are highlighted as blue circles with pink contour.
The network visualization was generated through Cytoscape 3.8.2.[138]

target proteins and their interactions it could be possible to trace the cellular pathways
influenced by drugs. A study in this regard is currently underway. Instead, starting
from the TP network, we carried out a different analysis that took into consideration
both the data here presented on repurposed drugs now in clinical trials (a top-down
view), and the molecular data on SARS-CoV-2 infection obtained from recent exper-
imental studies and exploited to propose drugs to be repurposed (a bottom-up view).
As regards the latter, we refer to the human-virus interactomes developed by Gordon
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et al.[124] and more recently by Chen et al.[137] These interactomes are PPI networks
that show which human proteins are bound directly by SARS-CoV-2 proteins to allow
the virus to enter into the human cells, replicate, assemble and be released. Both
research groups followed an experimental approach to identify the human proteins,
using affinity purification (AP), and AP together with proximity labeling-based tech-
niques, respectively, coupled with mass spectrometry. Merging the Gordon and Chen
results, we obtained an extended list of 732 human proteins experimentally identified
as interactors of the 29 viral proteins. Comparing this list with that of the human drug
targets of the TP network (1008), we found that only 45 out of the 732 human proteins
able to bind the viral ones are present in the TP as reported targets of drugs in clinical
trials. In Figure 6.4, we show the integrated host-virus interactome (also available in
the Advanced Tools block of COVIDrugNet), where the 45 proteins common to both
lists are highlighted (yellow circles). We also checked the DT network of Figure 6.2a
for drugs associated with these 45 targets and found 29 substances acting on them
(Table 6.1) shown in the interactome of Figure 6.4 (green squares) linked to their
targets. This is an example of how the information provided by the COVIDrugNet
DT interactome can complement the one contained in human-virus PPI networks like
those of Gordon and Chen. Note that the 29 substances hit direct neighbors of the viral
proteins, thus interfering with the related viral processes. We see from Figure 6.4 that
Artenimol and Fostamatinib, seemingly by virtue of their high target promiscuity, are
able to hit simultaneously several targets, thus affecting various viral processes and
allowing to foresee a better therapeutic efficacy. If confirmed by clinical results, these
would be clear cases of poly-pharmacological multi-target actions exerted by single
substances, a nice fit into the paradigm of network pharmacology.
Another interesting aspect emerging from inspection of the interactome of Figure 6.4
is that 20 human proteins (blue circles with pink contour) bind to two viral targets,
thus acting as bridges between two node communities and playing a key role in the
formation of the large connected component of the graph (Table 6.2). From a drug
discovery perspective, such proteins would be ideal targets to fight the virus, as neu-
tralizing them would help to disrupt the network of PPIs necessary to carry on the viral
infection and replication processes. Unfortunately, none of these proteins appear in
the TP network, implying that there is no substance targeting them among those listed
in the DrugBank database of repurposed drugs presently in clinical trial. However, we
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browsed some databases (DrugBank[114], DrugCentral[139] and ChEMBL[112]) in
the search for bioactive substances reported to bind these 20 proteins and found that
4 of them are reported as targets of known drugs (Table 6.3). As can be seen from
Table 6.3, many of the drugs listed therein have not yet been considered for therapy,
while some of them are already in clinical trial for COVID-19 treatment even though
their action on the proteins in the interactome is not reported in DrugBank. The former
ones could be further possible candidates for COVID-19 drug repurposing in light of
their ability to interfere with more than one process critical for the virus.

Gene Name Protein Name Associated Drugs

GSK3B Glycogen synthase kinase-3 beta Fostamatinib

PRKACA cAMP-dependent protein kinase catalytic subunit alpha Fostamatinib

DHFR Dihydrofolate reductase
Methotrexate,
Trimethoprim

ACTG1 Actin, cytoplasmic 2 Artenimol

DDR1 Epithelial discoidin domain-containing receptor 1
Imatinib,

Fostamatinib

RIPK1 Receptor-interacting serine/threonine-protein kinase 1 Fostamatinib

RDH12 Retinol dehydrogenase 12 Vitamin A

COQ8B Atypical kinase COQ8B, mitochondrial Fostamatinib

IMPDH2 Inosine-5’-monophosphate dehydrogenase 2 Ribavirin

ERBB4 Receptor tyrosine-protein kinase erbB-4
Zanubrutinib,
Fostamatinib

NEK9 Serine/threonine-protein kinase Nek9 Fostamatinib

CIT Citron Rho-interacting kinase Fostamatinib

HSPA8 Heat shock cognate 71 kDa protein Artenimol

TBK1 Serine/threonine-protein kinase TBK1 Fostamatinib

HDAC2 Histone deacetylase 2
Valproic acid,
Simvastatin,
Atorvastatin
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RPS9 40S ribosomal protein S9 Artenimol

MARK2 Serine/threonine-protein kinase MARK2 Fostamatinib

DNMT1 DNA (cytosine-5)-methyltransferase 1 Decitabine

GGCX Vitamin K-dependent gamma-carboxylase Menadione

SIRT5 NAD-dependent protein deacylase sirtuin-5, mitochondrial
Nicotinamide,

Suramin

RPS8 40S ribosomal protein S8 Artenimol

EGFR Epidermal growth factor receptor

Fostamatinib,
Lidocaine,

Zanubrutinib,
Abivertinib

RPS13 40S ribosomal protein S13 Artenimol

SREBF1 Sterol regulatory element-binding protein 1
Omega-3 fatty

acids

RPS6 40S ribosomal protein S6 Artenimol

MTHFR Methylenetetrahydrofolate reductase Cyanocobalamin

MARK3 MAP/microtubule affinity-regulating kinase 3 Fostamatinib

PLOD2 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 Ascorbic acid

VDAC1 Voltage-dependent anion-selective channel protein 1 Cannabidiol

RPS6KA6 Ribosomal protein S6 kinase alpha-6 Fostamatinib

RPS17 40S ribosomal protein S17 Artenimol

FLT4 Vascular endothelial growth factor receptor 3
Nintedanib,
Fostamatinib

PLAT Tissue-type plasminogen activator Iloprost

SIGMAR1 Sigma non-opioid intracellular receptor 1 Noscapine

GPX1 Glutathione peroxidase 1
Cannabidiol,
Glutathione

SLC5A2 Sodium/glucose cotransporter 2 Dapagliflozin

CSNK2A2 Casein kinase II subunit alpha’ Fostamatinib

ATP6V1A V-type proton ATPase catalytic subunit A
Alendronic acid,

Artenimol
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RPL23A 60S ribosomal protein L23a Artenimol

CSNK2B Casein kinase II subunit beta Quercetin

RPL10 60S ribosomal protein L10 Artenimol

NEU1 Sialidase-1 Oseltamivir

MARK1 Serine/threonine-protein kinase MARK1 Fostamatinib

MELK Maternal embryonic leucine zipper kinase Fostamatinib

ERBB2 Receptor tyrosine-protein kinase erbB-2
Zanubrutinib,
Fostamatinib

Table 6.1. Protein-Drug Associations for Common Targets between the Virus-Host Interactome and
the Drug-Target Network.

6.1.3 Limitations

Our study is not exempt from some drawbacks that are common in data analysis,
and regard mainly the data availability and quality. We based COVIDrugNet on the
DrugBank Dashboard dedicated to COVID-19 pandemic, and although this public and
free resource is known for the high reliability of the datasets, missing data or delayed
updating can occur. This is evident for some drugs under clinical trial shown in Ta-
ble 6.3 that have known targets yet not reported in their DrugBank file. Moreover,
not all the drugs or proteins investigated here are completely characterized and clas-
sified, and this adds some uncertainty and noise to our results. Also, some bias could
be incorporated in the knowledge we started from. For instance, the number of tar-
gets associated to a specific drug could considerably depend on the amount of research
carried out on that medicine rather than on the actual biological interactions it has.
This issue could be partially mitigated by a more extensive integration of data from
a wider variety of databases. Very similar considerations can be drawn on the other
databases that we exploited to retrieve auxiliary data: STRING[140], DisGeNet[141],
SWISS-MODEL[142], RCSB-PDB[143], UniProt[144] and ChEMBL[112]. Further-
more, as mentioned in Section 6.1.5.1, the drug-target network was built considering
only protein targets, hence nucleic acid targets were not included. However, biomolec-
ular targets other than proteins are a minority[145] and this led us to not integrate them.
Despite the massive efforts of the scientific community, SARS-CoV-2 and COVID-19
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Viral Proteins Human Proteins Name

NSP13, NSP10 TUBA3E Tubulin alpha-3E chain

ORF9C, NSP6 NDUFAF1
Complex I intermediate-associated protein 30,

mitochondrial

NSP3, ORF8 FKBP10 Peptidyl-prolyl cis-trans isomerase FKBP10

M, ORF3a ATF6 Cyclic AMP-dependent transcription factor ATF-6 alpha

M, ORF7b STX10 Syntaxin-10

ORF7b, ORF14 LRRC8E Volume-regulated anion channel subunit LRRC8E

M, ORF3a TUBGCP3 Gamma-tubulin complex component 3

NSP6, ORF14 SLC4A2 Anion exchange protein 2

ORF8, NSP3 HYOU1 Hypoxia up-regulated protein 1

M, ORF7b STX6 Syntaxin-6

M, ORF3a TUBGCP2 Gamma-tubulin complex component 2

ORF10, N MAP7D1 MAP7 domain-containing protein 1

N, NSP8 DDX10 Probable ATP-dependent RNA helicase DDX10

ORF9c, NSP6 WFS1 Wolframin

M, ORF3b PITRM1 Presequence protease, mitochondrial

ORF7b, M ANO6 Anoctamin-6

ORF7b, NSP7 LMAN2 Vesicular integral-membrane protein VIP36

M, NSP6 CAV1 Caveolin-1

ORF9c, ORF7b SCAP
Sterol regulatory element-binding protein

cleavage-activating protein

ORF3a, ORF7b ALG5 Dolichyl-phosphate beta-glucosyltransferase

Table 6.2. Human Proteins that Interact with More than One Viral Protein in the Virus-Host Interac-
tome.

continue to be largely puzzling. Experimental assays are the solid ground on which
we all start to build our hypotheses, yet also these investigations may have bias and a
moderate amount of uncertainty. We have to keep this into consideration, when exam-
ining the merged interactomes by Gordon et al.[124] and Chen et al.[137] given their
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Human Proteins Name Known Drugs

TUBA3E Tubulin alpha-3E chain

Podophyllotoxina,
CYT997b, Docetaxelc,

Vincristinec, Verubulinc,
Indibulinc,

Trastuzumab–Emtansinec,
Ixabepilonec, Sagopilonec,
Eribulinc, Fosbretabulinc,

Mirvetux-
imab–Soravtansinec,

Paclitaxelc, Plinabulinc,
Polatuzumab–Vedotinc,

Vinblastinec, Crolibulinc,
Fosbretabulinc,

Cabazitaxelc, Davunetidec,
Paclitaxel–Poliglumexc,
Vinfluninec, Lexibulinc,

Colchicinedc, Vinorelbinec

NDUFAF1
Complex I intermediate-associated protein

30, mitochondrial
Metforminde, NV-128f,

ME-344f

FKBP10
Peptidyl-prolyl cis-trans isomerase

FKBP10
Tacrolimusdg

ATF6
Cyclic AMP-dependent transcription

factor ATF-6 alpha
Pseudoephedrineh

Table 6.3. Known Drugs Targeting Human Proteins that Interact with more than One Viral Protein in
the Virus-Host Interactome.

a Retrieved from DrugCentral (https://drugcentral.org/target/Q6PEY2/)
b Retrieved from DrugBank (https://go.drugbank.com/drugs/DB05147)
c Retrieved from ChEMBL (https://www.ebi.ac.uk/chembl/g/#browse/mechanisms_of_action/fil

ter/target.target_chembl_id:CHEMBL2095182)
d Drugs currently in clinical trial for COVID-19
e Retrieved from DrugCentral (https://drugcentral.org/target/Q9Y375/)
f Retrieved from ChEMBL (https://www.ebi.ac.uk/chembl/g/#browse/mechanisms_of_action/fil

ter/target.target_chembl_id\protect\protect\leavevmode@ifvmode\kern+.2222em\relaxCHEMB
L2363065)

g Retrieved from DrugCentral (https://drugcentral.org/target/Q96AY3/)
h Retrieved from DrugBank (https://go.drugbank.com/drugs/DB00852)
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considerable difference. Additionally, the identification of a PPI in vitro unfortunately
does not guarantee that the same interaction occurs also in vivo.

6.1.4 Conclusions

The COVID-19 pandemic poses a huge problem of public health that requires the
implementation of all available approaches to contrast it, and drugs are one of them. In
this context, we observed an unmet need of depicting the continuous evolving scenario
of the ongoing drug clinical trials through an easy-to-use freely accessible online tool.
Starting from this consideration, we developed COVIDrugNet, a web app that allows
one to watch and keep up to date on how the drug research is responding with its ar-
senal of known repurposed drugs to the health threat represented by the SARS-CoV-2
infection. We have shown some examples of how one could explore the whole land-
scape of medicines currently in clinical trial and try to probe the consistency of actual
treatments with the biological evidence being accumulated on the virus infection and
its systemic pathological consequences in humans. The complex network of protein
targets affected by the repurposed drugs can be confronted with the host-virus inter-
actome, and this may offer new hints on drugs currently in use or to be proposed for
clinical investigation. From this comparison, we have been able to single out some hu-
man proteins that contact two viral counterparts, and that might be possible new targets
for anti-COVID-19 drugs. Finally, given that, as already noticed by others[110], sev-
eral treatments proposed for COVID-19 are still lacking a known mechanism of viral
inhibition or even a pharmacological rationale, careful analyses of the drug-target data
as those reported in the present work might help to understand the molecular impli-
cations of these pharmacological options, and eventually improve the search for more
effective therapies.

6.1.5 Methods

6.1.5.1 Data Acquisition

The set of drugs in clinical trial for the treatment of COVID-19 (731 on August
11, 2021) was retrieved from the dedicated web page of DrugBank (https://www.
drugbank.ca/covid-19). Both experimental unapproved substances, and drugs in
clinical trials were considered, and duplicates were removed (more than one trial is
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going on for some drugs). The set was also filtered for both the number of heavy
atoms (to exclude inorganic compounds), and the availability of data (a drug was not
added if it was not present in the PubChem database). This cleaning step reduced
the number of drugs considered to 397. From the same site and from PubChem, we
gathered some features related to structure, as well as pharmacological classification,
pharmacodynamics, and pharmacokinetics of each drug (Table 6.4). Drugs for which
no targets were reported in DrugBank were discarded (290 remaining). As regards the
drug targets, they were retrieved from DrugBank, and in this case we collected some
information on classification, biology, and pharmacology of each protein. A detailed
description of the features and the data sources are reported in Table 6.5.

6.1.5.2 Networks Construction

We chose to inspect the data in the form of a graph. All networks presented in the
web app and in the paper were built by means of the NetworkX software.[127]

6.1.5.3 Network Analysis

Node Attributes Some suitable node attributes (Degree, Closeness Centrality, Be-
tweenness Centrality, Eigenvector Centrality, Clustering Coefficient, VoteRank) were
calculated through NetworkX. The only property we tweaked was the result of the
VoteRank because its algorithm draws up a ranking of nodes based on an iterative
voting system[146] without assigning a specific value to each one of them. Thus, we
translated this ranking into a score for each node on the basis of its position and the
total number of nodes with the following method:

IF node in rank

score = length(rank) - index_in_rank(node)

ELSE

score = 0

Nodes Grouping Dividing a network into groups, clusters, or communities could be
useful to unveil not trivial patterns of interaction. It is accomplished by splitting the
network into subgroups that have the fewest possible number of connections between
them[10]. In this work, we took advantage of (and provide access to in the webtool)
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Feature Description Source

ID DrugBank unique identification code DrugBank[114]

SMILES
The chemical structure string notation for drugs.

SMILES were recovered from PubChem if
available, otherwise from DrugBank

PubChem[113]
DrugBank[114]

ATC code level 1
The broad-based level of the ATC classification

system identifying the fourteen
anatomical/pharmacological groups

DrugBank[114]

ATC identifier ATC code DrugBank[114]

Targets

Entities to which the drug binds or interacts with,
resulting in an alteration of their normal function

and thus in desirable therapeutic effects or
unwanted adverse effects

DrugBank[114]

Enzymes
Proteins that facilitate a metabolic reaction that

transforms the drug into one or more metabolites
DrugBank[114]

Carriers
Proteins that bind to the drug and modify its

pharmacokinetics, e.g., facilitating its transport in
the blood stream or across cell membranes

DrugBank[114]

Transporters
Proteins that move the drug across the cell

membrane
DrugBank[114]

Drug Interactions
Drugs that are known to interact, interfere or

cause adverse reactions when taken with this drug
DrugBank[114]

Trials
Identifiers of clinical trials with the respective

phase
DrugBank[114]

Table 6.4. Drugs Features.

three of the most common algorithms for this purpose: spectral clustering[27], Girvan-
Newman community detection[30], and greedy modularity community detection[24].
The first one makes use of the spectrum of the graph Laplacian to convey the infor-
mation about the graph partition.[27] The division is then carried out on this data
by a k-means clustering algorithm (see the Supplementary Information for more de-
tail). In the second case, communities are recognized employing the Girvan-Newman
method.[30] It is a hierarchical method based on the progressive removal of the edges
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Feature Description Source

Gene Short identifier of the unique gene name DrugBank[114]

Organism Organism where the protein comes from DrugBank[114]

Cellular Location The protein cellular location DrugBank[114]

Drugs
List of known drugs related with the protein (e.g.,

agonists, antagonists, inhibitors...)
DrugBank[114]

ID UniProt unique identification code DrugBank11

STRING Interaction
Partners

Known and predicted protein-protein interactions
(both physical and functional) only in Homo
Sapiens and with a minimum score of 0.95

STRING[140]

Diseases
Disease groups with an Evidence Index of 1 (see
https://www.disgenet.org/dbinfo#section44 for

more information)
DisGeNET[141]

PDBID
Protein Data Bank identification code (the

structure with the best resolution)
SWISS-

MODEL[142]

Protein
Classification

The first and the second level of Protein Target
Classification are named Protein Class and

Protein Family respectively
ChEMBL[112]

Table 6.5. Targets Features.

with the highest betweenness centrality from the graph, causing it to break into sets of
smaller constituents. The partition with the best modularity is shown, but the user can
manually choose an arbitrary number of communities in the web tool. The greedy mod-
ularity community detection method[24] pursues the graph division through a bottom-
up approach (opposite to the previous one), by exploiting a "greedy" algorithm that
progressively associates the nodes into groups that maximize the modularity. It starts
with all nodes separated into single communities and recursively merges the couple of
them that brings to the highest modularity increasing, until the point that joining two
communities would lead to a modularity reduction.
These tasks were accomplished through in-house Python scripts, mainly making use
of the packages NetworkX and Scikit-learn[147].

70

https://www.disgenet.org/dbinfo#section44


6.1 COVIDrugNet

Degree Distribution Fitting A network is commonly considered to be scale-free if
the degree distribution of its nodes follows a power-law[38], which has the form:

p(x) ∝ x−α (6.1)

where the scaling exponent α is higher than 1 (usually between 2 and 3) and the degree
value x is equal or greater than xmin (which is always higher than 1). To the best of
our knowledge, the most severe scale-freeness test is presented by Broido et al.[128]
that take advantage of a rigorous mathematical procedure[39] to assess the validity of
a power-law distribution to describe the investigated degrees. Here, we followed their
approach probing the fitting of a power-law to the degree distributions of both projected
networks DP and TP (with and without the Artenimol and Fostamatinib nodes). As a
first step, the parameters of the best fitting power-law are determined (xmin with a stan-
dard Kolmogorov-Smirnov minimization approach, and then α with a discrete maxi-
mum likelihood estimation) employing the Python package Powerlaw[148]. Then, the
fitting is evaluated considering the p-value of the Kolmogorov-Smirnov distance (com-
puted with a semi-parametric bootstrap), and of the xmin and α (bootstrap). If p ≥ 0.1,
the degree distribution is considered plausibly scale-free. Lastly, the chosen power-law
distribution is compared to four non-scale-free alternatives (using loglikelihood ratio
tests), to evaluate if it is favored over the others. Such alternatives are the exponentially
truncated power-law, the exponential, the stretched exponential (Weibull) and the log-
normal. This entire procedure was carried out using an in-house Python script, with a
large employment of the Python package Powerlaw. A more thorough explanation and
method validation are provided in the Supplementary Information.

Robustness Scale-free networks (contrary to random Erdős-Rényi graphs) have an
exceptional tolerance against random failures, but at the same time they are very vul-
nerable to targeted attacks.[129] We investigated the robustness of these networks eval-
uating their diameter (as a measure of interconnectivity) throughout a process of node
removal. We took into account both targeted attacks and random failures and compared
the results. In the first case, at every iteration the node with the highest degree was cho-
sen and removed. In the other case, a node was selected randomly and eliminated. In
this latter condition, the average of multiple 100 runs was considered in order to avoid
misinterpretations induced by a single random choice. This procedure was carried out
through an in-house Python script.
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6.1.5.4 COVIDrugNet Implementation and Deployment

COVIDrugNet is mainly composed by the collector and the web tool itself. Both
are written in Python, but the purpose of the former is to collect the data from web
databases, build the graphs, compute some properties, and store everything in pickle
format. The latter, instead, retrieves the data from the created database and sets up the
front-end part of COVIDrugNet with Python Dash.[149] The web tool deployment was
carried out with Apache[150] through the mod_wsgi interface in an Ubuntu server.

72



6.2 DEGA

6.2 DEGA

This project originated as a response to the need for a Python-based tool to facil-
itate differential gene expression analysis. It later expanded its scope to incorporate
a network-based methodology, which can give useful insights into the conditions in
study.
DEGA, the resulting Python package, has undergone validation by closely reproduc-
ing the results of DESeq2, a well-established tool in the field. This validation was
conducted using the same dataset DESeq2 was originally tested on.
Beyond its role in differential expression analysis, DEGA integrates a network-based
approach to identify a subset of pivotal regulatory genes referred to as "switch genes".
These switch genes exhibit significant associations with pronounced changes in var-
ious biological contexts. A case study involving glioblastoma demonstrates DEGA’s
capacity to unveil key regulatory genes with potential implications for understanding
and treating this complex disease.

Details

Authors Luca Menestrina, Maurizio Recanatini

Type Application Note

Status In preparation

Data Availability The package is available on the Python Packaging Index (https:
//pypi.org/project/DEGA) and on GitHub (https://github.com/LucaMenestrin
a/DEGA). All the datasets and scripts for reproducing the experiment, as well
as the obtained tables and figures, are provided in the validation folder on the
GitHub repository.
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DEGA: A Python Package for Differential Gene Expres-
sion Analysis with Enhanced Functionality for Dataset
Exploration and Results Interpretation

6.2.1 Introduction

Differential gene expression analysis is a tool for understanding the underlying
molecular changes that occur in response to various stimuli, such as disease, envi-
ronmental factors, or treatments. This method is used to identify genes that have an
expression significantly different between two or more biological conditions.
This task is usually carried out employing R packages[151], the most common ones
being edgeR[152], limma[153] and DESeq2[154].
It is possible to call R packages from Python using rpy2 (https://rpy2.github.io/) how-
ever, this would force the user to have both languages (Python and R) installed on the
machine, and to be familiar with both.
Here we introduce DEGA, a Python implementation of the widely used R package DE-
Seq2.
The opportunity to perform a differential expression analysis directly within Python
translates mainly to a more straightforward approach for Python users to such a rele-
vant analysis. Furthermore, providing access to a wider community, it could lead to
improvements both in the method and in its implementation, or even to the develop-
ment of new approaches.

To illustrate the potentiality of DEGA, we present a compelling case study in the
context of glioblastoma.
Glioblastoma (GBM), the most frequently diagnosed malignant brain tumor in adults,
accounts for approximately 14.5% of central nervous system (CNS) cancers.[155] Pa-
tients with GBM often experience a spectrum of symptoms, such as headaches, focal
neurologic deficits, confusion, memory loss, personality changes, or seizures.[156]
While there have been recent advances in understanding the genetic, epigenetic, and
molecular subtypes of gliomas, the current standard-of-care treatment for GBM still
revolves around surgical resection, followed by a course of radiotherapy with concur-
rent and adjuvant chemotherapy.[157] Nevertheless, despite these significant treatment
efforts, glioblastoma remains an incurable disease, with patients facing a grim prog-
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nosis of 12 to 15 months of survival (median 14.6 months).[156]
Recent research has delved into the initial molecular pathogenesis of these tumors, fo-
cusing on alterations in cellular signal transduction pathways and the development of
resistance to therapy.[156]

Utilizing DEGA’s enhanced functionalities, including switch gene identifica-
tion[158], we aim to pinpoint pivotal genes that hold the potential to provide valuable
insights into the pathogenesis of glioblastoma and serve as possible therapeutic
targets. These switch genes appear to act as crucial regulators, driving significant
transcriptomic transitions, and are identified through the analysis of a co-expression
network. Characterized by interactions extending beyond their own community,
minimal local hub connectivity, and predominantly negative correlations with their
interaction partners, switch genes represent a unique group within the co-expression
network landscape.

6.2.2 Methods

6.2.2.1 Differential Expression Analysis

DEGA (Differentially Expressed Genes Analysis) is a Python package, which im-
plements the algorithm presented in DESeq2 for identifying genes having an expres-
sion significantly different between two biological conditions.
Here is a brief description of the key steps performed by DEGA. The input is a matrix
of raw counts, which reflect gene abundance but are also influenced by the sequencing
analysis. DEGA deals with this point normalizing the counts, dividing them by the cor-
responding size factor. Each sample-specific size factor is computed as the median of
ratios of sample’s counts (kij) to a pseudo-reference (obtained by taking the geometric
mean across samples):

SizeFactorj = median
i

kij( m∏
v=1

kiv

)1/m
(6.2)

The counts distributions are modeled by a negative binomial distribution, which is
defined by two parameters: mean and dispersion (a measure of the variability of the
data, defining the relationship between the variance and the mean of the counts).

75



6 Descriptive Models

kij ∼ NB(mean = µij, dispersion = αi) (6.3)

Where kij is the count for gene i and sample j, µij is the mean, and αi is the gene-
specific dispersion parameter.
The mean is easily calculated from the observed normalized counts, but the dispersion
is trickier given the usually very low number of samples. This issue is overcome
assuming that the dispersions of genes having similar expression levels are similar in
turn. Thus, the information coming from similarly expressed genes is used for estimat-
ing the dispersions. The procedure follows three steps. First of all, the dispersion is
estimated for each gene separately, then a curve is fitted to these gene-wise dispersion
estimates, and lastly, the dispersions that are not evaluated as outliers are shrunken
toward the values predicted by the curve.
The subsequent step is to fit a generalized linear model in order to determine the log2
fold change and the p-value.

log2(qij) =
∑
r

(
xjr · βir

)
(6.4)

Where xjr is the design factor, βir is the log2 fold change between the conditions,
and qij is a parameter proportional to the expected true concentration of fragments of
sample j:

qij =
µij

SizeFactorj
(6.5)

The p-values are corrected for multiple tests (using the procedure of Benjamini-
Hochberg[159], avoiding loss of power employing an independent filtering on the
mean of normalized counts).
In the end, outliers are detected on the basis of Cook’s distance[160] and then
automatically handled.

6.2.2.2 Switch Genes Identification

Furthermore, for applications other than differential testing (e.g., clustering and
machine learning analyses), DEGA offers some methods for counts transformations
(variance stabilizing, regularized log, and shifted log). Some convenient data explo-
rations (e.g., correlations, PCA, etc.) are already implemented in DEGA along with
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some other useful data visualizations.
One of DEGA’s valuable tools for dataset exploration and result interpretation is the
identification of switch genes.
To demonstrate its capabilities, we utilized RNA-Seq data from the glioblastoma
(GBM) dataset[161] of the TCGA (The Cancer Genome Atlas) repository[162].
We identified the significant differentially expressed genes using DEGA’s main al-
gorithm (considering only genes with log2 fold change higher than 1, and adjusted
p-value less than 0.01, see Section 6.2.2.1). Subsequently, for the identification of
switch genes, DEGA offers a modification of the co-expression network approach
previously outlined by Paci et al. [158, 163]. The co-expression networks were
constructed based on the Pearson correlation coefficient[164] between the expres-
sion levels of each pair of genes. Nodes in the network represent RNA transcripts,
and connections between nodes indicate significant correlation or anti-correlation
of gene expression. The significance of the edges was granted through a two-step
filtering process applied to the correlation matrix. Initially, p-values for two-tailed
t-tests were computed for all correlations and corrected for multiple testing using
the Benjamini-Hochberg method[159] (DEGA also offers alternative adjustment
methods). A significance threshold of 0.01 was used. Subsequently, the remaining
values underwent a secondary filtering step, where a correlation threshold was chosen
to retain at least 95% of the nodes within the largest component. (users can customize
these thresholds within DEGA).
In contrast to the original k-means clustering method, DEGA utilized a greedy-
modularity clustering approach[24, 31] to identify communities in the network
associated with switch genes.
A heatmap of the nodes was generated according to their topological properties. The
extracted switch genes were identified as markers of the shift from healthy to diseased
patients. The plane was defined by two parameters: normalized within-module degree
(a measure of the interconnectedness between a node and other nodes within its
module):

zig =
kin
i − k̄Ci

σCi

(6.6)

(where kin
i is the number of links of node i to nodes in its module Ci, k̄Ci

and σCi
are

the average and standard deviation of the total degree distribution of the nodes in the
module Ci), and clusterphobic coefficient (a measure of the "fear" of a node of being

77



6 Descriptive Models

confined within a cluster, drawing an analogy to claustrophobia):

Ki
π = 1−

(
kin
i

ki

)2

(6.7)

(where kin
i and ki are the internal and the total degree of node i, respectively)

It was divided into seven regions (R1-R7) defining specific node roles[165]:

Nonlocal hub (zg < 2.5)

R1 Ultra-periferal nodes (Kπ = 0)

R2 Peripheral nodes (Kπ ≤ 0.625)

R3 Nonhub connectors (0.62 < Kπ ≤ 0.8)

R4 Nonhub kinless nodes (Kπ > 0.8)
In this region, those having APCC < 0 are deemed switch genes

Local hub (zg ≥ 2.5)

R5 Provincial hubs (Kπ = 0.3)

R6 Connector hubs (Kπ ≤ 0.75)

R7 Kinless hubs (Kπ < 0.75)

Nodes were colored according to their average Pearson correlation coefficient (APCC)
value. Red nodes represented nodes positively correlated in expression with their
interaction partners, while blue nodes exhibit an average negative correlation in ex-
pression with their interaction partners. Blue nodes (APCC < 0, being on average
anti-correlated with their neighbors) falling in region R4 represented the switch genes
characterized as not being a hub in their own cluster (zg < 2.5) and having many links
outside their own cluster (Kπ > 0.8), indicating their predominant connections outside
their module.

6.2.3 Results and Discussion

We evaluated DEGA differential expression analysis results comparing them with
those obtained by DESeq2 on the Bottomly et al. dataset[166], the same DESeq2 was
tested on when it was proposed[154]. This dataset contains RNA-seq data about two
different strains of mice.
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This validation is illustrated in a Jupyter notebook which is available at https://github
.com/LucaMenestrina/DEGA/blob/main/validation/DEGA.ipynb.
Given the aim of identifying the significantly up- and down-regulated genes, the two
key values obtained by the differential expression analysis are the log2 fold changes
(positive if the gene is upregulated, negative otherwise) and the adjusted p-values
(for statistical soundness). As it is shown in Figure 6.5a, DEGA reproduces almost
perfectly the log2 fold changes of DESeq2 (Adjusted p-values are compared in Fig-
ure 6.5b).

(a) (b)

Figure 6.5. DEGA Results Compared to DESeq2 Ones. Comparison of log2 fold changes (a) and
adjusted p-values (b) (with and without shrinkage, top and bottom, respectively) obtained by DESeq2
(vertical axis) and DEGA (horizontal axis).

After validating DEGA’s differential expression analysis using a benchmark
dataset, we proceeded to evaluate its performance in a real-life application, analyz-
ing the glioblastoma dataset sourced from TCGA. We first identified differentially
expressed genes (1066 were upregulated and 734 downregulated) and subsequently
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Figure 6.6. Heatmap of Nodes in GBM Network. A heatmap representing nodes within the glioblas-
toma correlation network. The dots in the plot, which represent nodes in the correlation network, are
categorized into seven regions (labeled as R1 to R7) based on their clusterphobic coefficient (Kπ)
on the x-axis. The clusterphobic coefficient measures how likely a node is to interact with nodes
in different modules. The y-axis represents their within-module degree of communication (zg). The
color of each dot corresponds to the APCC (Average Pearson Correlation Coefficien) value, which is
indicated on a color scale from red (positive APCC) to blue (negative APCC). Switch genes are blue
dots in region R4.

employed DEGA’s functionality to find switch genes.
DEGA identified a set of 24 switch genes (Figure 6.6, blue dots in region R4): PTBP1,
VIM, HMG20B, GNAI3, CCDC80, RBBP8, SYDE1, TGIF2, TRIP10, BCL2L12,
TNFRSF19, SMO, TRIM5, TGFB1I1, CMTM3, RAB13, PDIA4, WEE1, FAM111A,
SHOX2, PLEKHF2, TGIF1, F2R, EPHB4.
While the majority of these genes are directly associated with GBM, a select few
deserve individual attention for their significant roles in the context of GBM:

TBP1 knockdown promotes neural differentiation of glioblastoma cells through its
interaction with the UNC5B receptor, leading to the suppression of cancer cell
proliferation both in vitro and in vivo.[167]

BCL2L12, known for its multifunctional nature, plays a critical role in promoting in-
tense therapeutic resistance in GBM. It operates on two key nodes of cytoplasmic
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and nuclear signaling cascades. Additionally, it is a target of a drug that has ad-
vanced to phase 0 clinical trials, underscoring its therapeutic potential. [168,
169]

TNFRSF19 significantly contributes to GBM by promoting migration, invasion, and
resistance. It exerts its effects through modulating various factors, including
Pyk2-Rac1, JAK1-STAT3, and RKIP.[170–172]

PDIA4 plays a regulatory role in the progression and angiogenesis of GBM.[173, 174]

WEE1 is a major regulator of the G2 checkpoint. Its inhibition abrogates the G2 arrest
phase, impeding DNA repair processes and leading to mitotic catastrophe and
subsequent cell death.[175, 176]

The inclusion of BCL2L12 and WEE1 among the switch genes is particularly signifi-
cant. These genes, which are subjects of ongoing phase 0 clinical trials, not only val-
idate our results but also underscore the potential of this approach in revealing novel,
disease-specific therapeutic targets.

The GitHub repository includes also a Jupyter notebook that illustrates this case
study, which is accessible at https://github.com/LucaMenestrina/DEGA/blob/main/c
ase_study/switch_GBM.ipynb.

6.2.4 Limitations

While DEGA presents a promising approach for differential gene expression anal-
ysis and network-based insights, it is important to recognize areas for potential growth.
While DEGA’s computational performance may currently be slower compared to es-
tablished tools like DESeq2, its innovative features offer unique opportunities for anal-
ysis. Additionally, while DEGA does not encompass the entirety of DESeq2’s func-
tionalities, it provides a solid foundation upon which future enhancements can be built.
Moving forward, there is exciting potential for DEGA to optimize its computational ef-
ficiency and expand its feature set, further solidifying its position as a valuable tool.

6.2.5 Conclusions

We implemented DEGA, a Python package that performs differential expression
analyses. Our package demonstrated its validity by closely replicating results obtained

81

https://github.com/LucaMenestrina/DEGA/blob/main/case_study/switch_GBM.ipynb
https://github.com/LucaMenestrina/DEGA/blob/main/case_study/switch_GBM.ipynb


6 Descriptive Models

with the widely recognized DESeq2 tool when applied to the Bottomly et al. dataset.
This confirms the reliability and effectiveness of DEGA in conducting differential ex-
pression analysis.
Our application of DEGA to the Glioblastoma (GBM) dataset from the TCGA repos-
itory has provided valuable insights into this complex disease. Leveragning DEGA’s
functionality, we have identified a selection of switch genes that play pivotal roles in
the context of glioblastoma. These findings contribute to improving our understand-
ing of the underlying molecular mechanisms and potential therapeutic targets for this
deadly brain tumor.
DEGA is designed to be easily accessible by the vast Python user community, ensuring
that researchers can effortlessly perform differential expression analyses. By extending
its accessibility to a broader user base, we aim to foster a collaborative environment,
enabling further refinements and enhancements in both the method and its implemen-
tation.
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6.3 Drug-induced Impulsivity

This research developed from the pressing demand for more understanding in guid-
ing pharmacological treatments, vigilant monitoring, and precise interventions to al-
leviate the distressing impact of drug-induced impulsivity. Characterized by a loss of
behavioral control, drug-induced impulsivity encompasses behaviors as significant as
pathological gambling, hypersexuality, compulsive shopping, and hyperphagia. Nev-
ertheless, despite its profound effects, its impact is not comprehensively addressed by
existing tools.
This extensive analysis resulted from a collaborative endeavor involving a multidisci-
plinary team of experts in psychiatry, pharmacology, pharmacovigilance, statistics, and
network analysis. The primary objective is to address a substantial knowledge gap con-
cerning adverse drug reactions linked to dopaminergic agents, particularly pramipexole
and aripiprazole. These medications find widespread use in the treatment of Parkin-
son’s Disease and mood and psychotic disorders, respectively.
Leveraging disproportionality and network analyses within the FDA Adverse Event
Reporting System (FAERS), events associated with impulsivity induced by these two
drugs were uncovered, along with potential exacerbating factors. These findings un-
ravel the complex landscape of drug-induced impulsivity, revealing its profound im-
pact on patients’ lives, spanning psychosocial, psychosomatic, metabolic, and sexual
dimensions.
Beyond its immediate findings, this study holds significant implications for the design
of future clinical investigations into the impact of drug-induced impulsivity on pa-
tients’ quality of life. The goal is to provide a clearer understanding of its multifaceted
burden and contribute to effective measures for its mitigation.

Details

Authors Michele Fusaroli*, Stefano Polizzi*, Luca Menestrina*, Valentina Giunchi,
Luca Pellegrini, Naomi Fineberg, Daniel Weintraub, Maurizio Recanatini, Gas-
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Title Unveiling the Hidden Toll of Drug-Induced Impulsivity: A Network Analysis of
the FDA Adverse Event Reporting System.

Journal medRxiv

DOI 10.1101/2023.11.17.23298635

Data Availability The data we used comes from the FDA Adverse Event Reporting
System (FAERS), and is made publicly available by the FDA as quarterly data
downloadable at https://fis.fda.gov/extensions/FPD-QDE-FAERS/FPD-Q
DE-FAERS.html. The algorithm for cleaning FAERS data is open-source
at https://github.com/fusarolimichele/DiAna, and the cleaned database is
available on an OSF repository (ht tps://osf.io/k9v6s/) and through the R
package DiAna.
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Unveiling the Hidden Toll of Drug-Induced Impulse
Control Disorders: A Network Analysis of the FDA
Adverse Event Reporting System.

6.3.1 Abstract

Introduction: Adverse drug reactions significantly impact patients’ lives, yet their
influence is often underestimated in treatment decisions and monitoring. Impulsivity
induced by dopaminergic agents can lead to impaired social functioning and quality of
life.
Aim: This study assesses impulsivity burdens from pramipexole and aripiprazole, pin-
pointing key symptoms for targeted mitigation.
Method: Leveraging data from the FDA Adverse Event Reporting System (January
2004 - March 2022), we employed the Information Component to identify the syn-
drome of signs and symptoms disproportionately co-reported with drug-induced im-
pulsivity. Using composite network analyses (PPMI, Ising, ϕ) we characterized clus-
ters of co-reported events (i.e., subsyndromes). Finally, we assessed the secondary
impact of drug-induced impulsivity modeling our dataset as a chain of directed con-
nections (Bayesian network).
Results: The drug-induced impulsivity syndrome (respectively 56 and 107 events
in pramipexole and aripiprazole recipients), primarily encompassed psychiatric, so-
cial, and metabolic events, segregated into subsyndromes such as delusional jealousy
and dopamine dysregulation syndromes among pramipexole recipients, and obesity-
hypoventilation syndrome and social issues among aripiprazole recipients. Anxiety
and economic problems emerged as pivotal nodes in the exacerbation of the syndromes.
Conclusions: Drug-induced impulsivity places a substantial burden on patients and
their families, with manifestations shaped by the underlying disease. Network ap-
proaches, exploring intricate symptom connections and identifying pivotal symptoms,
complement traditional techniques and clinical judgment, providing a foundation for
informed prescription and targeted interventions to alleviate the burden of adverse drug
reactions.
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6.3.2 Introduction

Adverse drug reactions (ADRs) significantly impact patients’ well-being[177] by
extending beyond organic diseases and trespassing into psychological illness[178] and
social sickness[179]. For instance, immunodeficiency perturbs social activities, dys-
phonia hinders teaching roles, and sexual dysfunction intricately affects relationships
and personal identity. Despite their profound effects, ADRs are often inadequately
recognized, resulting in compromised patient-doctor relationships[180], prolonged
hospitalization[181], and a pervasive decline in Quality of Life (QoL)[182]. This
disregard extends to patient-reported outcomes, crucial for QoL assessment and
patient-centered care[183], often relegated to the margins in prescribing information
or package inserts[184]
Drug-induced impulsivity, classified as "impulse control disorders induced by other
specified psychoactive substance (6C4E.73)" in the International Classification of
Diseases (ICD-11) category of disorders due to substance use, represents a distress-
ing group of conditions marked by a loss of behavioral control. This pathological
disinhibition can yield behaviors as pervasive as pathologic gambling, hypersexuality,
compulsive shopping, and hyperphagia, the so-called "four knights of Impulse Control
Disorder"[185]. Additionally, behaviors like stealing, hair pulling, and compulsive
hoarding[186, 187] contribute to the intricate tapestry of drug-induced impulsivity.
The first reports of drug-induced impulsivity were linked to dopamine receptor ago-
nists like pramipexole, ropinirole, rotigotine, licensed for treating Parkinson’s disease
(PD)[188] and restless legs syndrome (RLS)[189, 190]. More recently, the role of
partial dopamine agonists like aripiprazole, brexpiprazole, cariprazine, licensed for
treating psychosis and mood disorders, has also emerged[191].
Within the landscape of PD, drug-induced impulsivity unfurls a complex narra-
tive. Initially, it may manifest as heightened motivation and hobbyism, known as
"honeymoon period"[192]. However, even when concealed in subclinical forms[193],
drug-induced impulsivity holds the potential to significantly erode patients’ QoL[194].
This erosion, appraised through metrics like the PDQ-39 scale[195], encompasses
diverse neuropsychiatric and somatic domains including mobility, daily activities,
stigma, social support, communication[196], urinary and sexual function, sleep,
attention, and cardiovascular symptoms[197]. The impact extends beyond patients
to affect caregivers, who grapple with their own set of health issues, depression, and
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social impediments[198].
Nevertheless, conventional evaluations frequently fall short in encompassing neu-
ropsychiatric symptoms, altered behavior patterns, financial hardships, and legal
entanglements[199], failing to capture the full spectrum of these disorders. This
underscores the crucial need for an integrative approach, considering the perspectives
of both patients and caregivers and acknowledging the complex interconnections
between symptoms[200].
The US FDA Adverse Event Reporting System (FAERS), a public global repository
gathering spontaneous reports on suspected ADRs from patients and healthcare
professionals, stands as a powerful data source for this purpose[201]. Remarkably,
patients offer unique insights into the experiences and impacts of ADRs on QoL,
surpassing the information provided by healthcare professionals[202–206].
Moreover, network analyses, providing the means to investigate complex systems
consisting of multiple interacting entities, present a promising avenue. Specifically,
they enable the analysis and visualization of ADRs as interwoven symptoms and signs
rather than isolated events[207], a composite syndrome encompassing psychosocial
implications.
Our investigation into the intricacies of drug-induced impulsivity aligns with three
overarching goals. The first is to untangle the components of the syndrome of
drug-induced impulsivity. Through examining the interplay of symptoms and their
consequences, we aim to gain a deeper understanding of how these syndromes mani-
fest and affect patients’ lives.
Our second goal is to identify distinct sub-syndromes within the broader spectrum
of drug-induced impulsivity, i.e., whether symptoms fall into distinct clusters, with
different clinical consequences.
Our third goal is to identify pivotal symptoms that centrally contribute to exacerbating
the syndrome of drug-induced impulsivity. By pinpointing these key symptoms, we
aim to pave the way for targeted interventions that alleviate the adverse effects on
patients’ lives.
In pursuing these goals, our study focuses on recipients of pramipexole and arip-
iprazole, chosen as representative instances: pramipexole, a dopamine agonist used
in neurological conditions, and aripiprazole, a dopamine partial agonist employed
in psychiatric disorders. Through this focused investigation, we aim to illuminate
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the complexities of drug-induced impulsivity, exploring how the same ADR might
manifest differently in various populations. Specifically, we anticipate that younger
and more stigmatized individuals taking aripiprazole may bear a heavier burden
compared to older individuals with stronger social support prescribed pramipexole. A
better understanding of the impact of these ADRs on quality of life could contribute
to informed decision-making for patients and caregivers, laying the foundation for
interventions capable of alleviating the toll exacted by impulsivity.

6.3.3 Materials and Methods

6.3.3.1 Study Design

The study design (Figure 6.7) involved downloading and cleaning FAERS reports
(Step 1), identifying aripiprazole and pramipexole recipients, and selecting cases
recording drug-induced impulsivity within these two populations (Step 2). Dispro-
portionality analysis defined the syndrome as events statistically co-reported with
drug-induced impulsivity, rather than with other suspected reactions of the same drug
(Step 3). Subsequently, three parallel network analyses identified sub-syndromes as
clusters of co-reported events (Step 4). Finally, a Bayesian Network (Step 5) provided
insights into the potential direction of associations and the secondary impact of
drug-induced impulsivity (Step 5).

Step 1 - Data Preprocessing We downloaded FAERS quarterly data (January 1st,
2004, to March 31st, 2022) in ASCII format[208]. Adverse events were coded to
the Medical Dictionary for Regulatory Activities (MedDRA®, version 25.0) preferred
terms (PTs)[209], while drugs were standardized to active ingredients[210, 211]. The
latest report version was retained, and rule-based deduplication was applied to reduce
redundancy (cfr. https://github.com/fusarolimichele/DiAna).

Step 2 - Case Retrieval Analyzing aripiprazole and pramipexole recipients sepa-
rately, we identified cases as reports recording impulsivity. Following FAERS coding
of events to MedDRA, we employed PTs that were specifically curated for investigating
drug-induced impulsivity within the FAERS database[186]. These PTs encompassed
a range of manifestations, including gambling, hypersexuality, compulsive shopping,
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Figure 6.7. Pipeline of the Study. Showing step-by-step the study design.

hyperphagia, gaming, setting fires, stealing, hoarding, excessive exercise, overwork,
compulsive wandering, body-focused repetitive behaviors, stereotypy, and impulsiv-
ity[186]. A cautious approach is imperative during interpretation, as MedDRA terms
used for reporting suspected ADRs may not align directly with terms in other frame-
works like the Diagnostic and Statistical Manual of mental disorders (DSM-5-TR) and
ICD-11, which may refer to idiopathic conditions.
To explore potential risk factors for impulsivity, demographic characteristics, out-
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comes, and reporter contributions (e.g., healthcare practitioners, patients, lawyers)
were compared between cases and non-cases within each population, using the Chi-
square test for categorical and Mann-Whitney test for continuous variables. To address
multiple testing, we applied the Holm-Bonferroni correction with a significance level
of 0.05.

Event (y) Other events Sum

ICDs (x) nn1E1 nn1E0 nn1

No ICDs nn0E1 nn0E0 nn0

Sum nE1 nE0 N
Table 6.6. 2-way Contingency Table. The table shows the different instances that can be observed
when considering pathologic impulsivity and a specific event. Legend: E = event; I = ICDs; 1 =
presence; 0 = lack; N = total.

Step 3 - Disproportionality Analysis: The Drug-induced Impulsivity Syndrome
We conducted a disproportionality analysis to identify events frequently co-reported
with drug-induced impulsivity, separately for aripiprazole and pramipexole recipients
(see Table 6.6). Disproportionate reporting was assessed using the Information Com-
ponent (IC)[212], also known as pointwise mutual information (PMI) in information
theory[213, 214]. The IC compares the actual co-reporting of two events x (i.e., drug-
induced impulsivity) and y (i.e., any specific event) with their expected co-reporting if
their probability were independent[213]. To mitigate the risk of false positives for
infrequent events[215], a shrinkage or smoothing approach was applied by adding
k = 0.5 to both the numerator and denominator. Significance was determined using
IC025 > 0 (p(y, x) > p(x) · p(y)).

IC(x, y) = PMI(x, y) = log2
p(y, x)

p(x), p(y)
= log2

nI1E1 ·N
nI1 · nE1

≈ log2
nI1E1 + 0.5
nI1

·nE1

N
+ 0.5

(6.8)
IC(x, y)025 = IC − 3.3 · (nI1E1 + 0.5)

1/2 − 2 · (nI1E1 + 0.5)
3/2 (6.9)

IC(x, y)975 = IC + 2.4 · (nI1E1 + 0.5)−
1/2 − 0.5 · (nI1E1 + 0.5)−

3/2 (6.10)

Step 4 - Network Analysis: Sub-syndromes Building on insights from prior studies
on drugs[216] and events[207, 217, 218] co-occurrence, our network analysis aimed to
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unveil sub-syndromes. Using three established network estimations as distinct math-
ematical representations (PPMI, Ising, ϕ) and excluding negative links (i.e., potential
mutually exclusive events), we explored co-reporting patterns.
The positive pointwise mutual information (PPMI) focused on cases where events
were reported together (the n11 case), applying additive smoothing (k = 1, d = N◦

events)[219].
Bootstrap and Bonferroni adjustments assessed statistical significance, with a 0.01
threshold.

PPMIx,y = max

(
log2

(n11 + k) · (N + kd)

(n1∗ + k) · (n∗1 + k)
, 0

)
(6.11)

The Ising model computed partial logistic regression coefficients (β) considering the
impact of all other events[220]. Positive coefficients meant two events tend to be re-
ported together. A LASSO method pruned out weak links, eliminating spurious asso-
ciations but potentially losing weak genuine relationships[221].

Isingx,y = max

(
1

2
βx,yβy,x, 0

)
(6.12)

The β coefficient[222], akin to the conventional correlation coefficient, is close to one
when two events tend to be reported together, to zero if they are indifferently concomi-
tant or mutually exclusive. The Bonferroni adjustment was applied with a significance
threshold of 0.01. The p-value was computed by using a χ2 probability distribution
with one degree of freedom[222].

ϕx,y = max

(
n11n00 − n10n01√

n1∗n0∗n∗1n∗0
, 0

)
(6.13)

For each population, the three networks shared identical nodes but varied in links.
We used modularity maximization[223] and the greedy modularity algorithm[24] to
detect clusters of co-reported signs and symptoms. Between networks we compared
degree of link overlap (Jaccard similarity index[224]), goodness of partitioning (clus-
tering modularity); cluster agreement (Purity index[225–227]), link density (ratio be-
tween actual links and possible links), and interconnectedness among neighbors (small
worldness[228]).

Step 5 - Bayesian Network: The Secondary Impact of Drug-induced Impulsivity
To uncover potential ramifications following drug-induced impulsivity, we estimated
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the conditional probabilities of chained events. The resulting Bayesian network is both
directed, offering insights into plausible causal relationships, and acyclic, ensuring that
any chain originating from a node does not loop back to itself. The network was derived
through 1000 bootstraps, optimizing the BIC score with the hill climbing algorithm.
We computed the average network retaining links exceeding a threshold computed via
L1 minimization.
Evaluation focused on nodes with the highest out-degree centrality and the main man-
ifestations of drug-induced impulsivity.

6.3.4 Results

6.3.4.1 Case Retrieval

After preprocessing the FAERS quarterly data, we retrieved 12,030,756 distinct
reports: 27,601 pramipexole recipients and 80,238 aripiprazole recipients. Suspected
drug-induced impulsivity was documented in 7.49% pramipexole recipients (n=2,066;
mainly gambling disorder: 1,345, 4.87%; hypersexuality: 612, 2.22%; impulsivity:
453, 1.64%; compulsive shopping: 384, 1.39%;, and hyperphagia: 334, 1.21%) and
in 4.50% aripiprazole recipients (n=3,609; mainly gambling disorder: 2,067, 2.58%;
hypersexuality: 1,077, 1.34%; compulsive shopping: 1,029, 1.28%; hyperphagia:
868, 1.08%; and impulsivity: 730, 0.91%).
Among pramipexole recipients, drug-induced impulsivity was more frequently re-
ported in males (57.42% vs. 36.99%, p<0.001), with lower median age (56 vs. 67,
p<0.001), often non-serious outcomes (i.e., no death, disability, or hospitalization;
44.87% vs. 33.58%, p<0.001), and PD as indication (see Figure 6.8). Similarly,
among aripiprazole recipients, drug-induced impulsivity was more common in males
(48.59% vs. 40.72%, p<0.001), but with hospitalization more common (33.39% vs.
23.39%, p<0.001), and an important portion of reports submitted by lawyers (34.08%
vs. 1.10%, p<0.001).

6.3.4.2 Disproportionality Analysis: The Drug-induced Impulsivity Syndrome

A total of 56 events were disproportionally reported with pramipexole-related
impulsivity. The highest IC was found for obsessive-compulsive disorder (OCD,
reporting rate = 26.77%; IC median = 3.47, 95% CI = 3.33-3.57), emotional distress
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Figure 6.8. Characteristics of the Investigated Populations. The figure presents information about
two populations extracted from the deduplicated FAERS database - one consisting of reports related
to pramipexole and the other consisting of reports related to aripiprazole. Within these populations,
cases of pathologic impulsivity were identified. The figure compares drug-induced impulsivity cases
and the reference group (other reports recording the drug), considering the indication for use. Only
the two most prevalent indications were taken into account. For each drug and indication, the caption
describes the percentage of reports with the specified indication, the percent of reports involving
males, and the median and interquartile range of ages. In the drug-induced impulsivity cases sections,
green and red arrows indicate variables that are respectively higher or lower than expected based on
the reference group.

(21.35%; 3.42, 3.26-3.54), marital problem (1.11%; 3.30, 2.61-3.79), dependence
(2.37%; 3.26, 2.79-3.6), economic problems (6.05%; 3.15, 2.85-3.36), compulsions
(1.74%; 3.05, 2.49-3.44), fear (4.65%; 2.95, 2.61-3.19), eating disorder (2.47%; 2.95,
2.49-3.28), personality change (2.66%; 2.93, 2.49-3.26), and suicide attempt (5.28%;
2.74, 2.43-2.97).
A total of 107 events were disproportionally reported with aripiprazole-related impul-
sivity. The highest IC was found for bankruptcy (10.58%; 4.43, 4.26-4.55), divorce
(7.59%; 4.38, 4.19-4.53), homeless (6.93%; 4.37, 4.16-4.52), shoplifting (5.02%;
4.37, 4.12-4.54), neuropsychiatric symptoms (4.74%; 4.35, 4.1-4.53), loss of employ-
ment (12.64%; 4.33, 4.18-4.44), theft (5.79%; 4.32, 4.09-4.48), economic problems
(37.85%; 4.28, 4.19-4.34), sexually transmitted disease (3.05%; 4.24, 3.93-4.47), and
OCD (33.19%; 4.16, 4.07-4.23) (see Figure 6.9).
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Figure 6.9. Secondary Impact of Drug-induced Impulsivity. The dendrogram shows the events
disproportionally reported with aripiprazole and pramipexole-related impulsivity. Events are gathered
by clinical similarity in alternately colored slices, labeled on the outer border with a name and an icon.
Disproportionalities are shown as dots organized in two colored rings, each representing a drug/case
population. The dots’ size is proportional to the percent of reports showing the event, the color is
darker for stronger disproportionality (higher median Information Component).

6.3.4.3 Network Analysis: Sub-syndromes

In the second step we estimated the networks using three different approaches and
identifying clusters of events. We included a total of 120 nodes (107 events dispropor-
tionally reported with impulsivity + 13 impulsivity-related terms) and 70 nodes (56
+ 14) for the aripiprazole and pramipexole network, respectively. Although the nodes
remained constant, edges, clusters, and network properties were different (Table 6.7).
The most central nodes (degree centrality) were the ones with the highest occurrence
in Ising and the lowest occurrence in PPMI. The Jaccard similarity was higher for
Ising-ϕ, while for ϕ-PPMI half of the links were different. The clustering was more
overlapping between ϕ-PPMI, followed by ϕ-Ising and PPMI-Ising, as captured by
the purity index. ϕ and PPMI tended to group together multiple Ising clusters. For
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both drugs, the central clusters included cognitive disorders (e.g., cognitive impair-
ment, memory impairment), bipolar disorder, and depression. Among aripiprazole
recipients (Figure 6.10), the prominent cluster also includes stress and its psychophys-
ical manifestations (irritability, headache, sleep disorders, decreased appetite, weight
loss, constipation, and myalgia), together with panic attack and auditory hallucinations.
Another stress-related sub-syndrome included migraine, nightmares, back and abdom-
inal pain, arthralgia, reflux, diarrhoea, and hyperidrosis. Gambling and shopping were
strictly related to social issues (hoarding, unemployment, homeless, bankruptcy, di-
vorce, theft), suicide attempts, and through hypersexuality with unintended pregnancy
and sexually transmitted diseases. Hyperphagia was co-reported with obesity, sleep
apnoea syndrome, sedation, amnesia, and hypertension. Blood alterations, such as in-
creased lipids, transaminases, and glucose in the blood, were reported together.
Among pramipexole recipients (Figure 6.11), the prominent cluster also includes ap-

athy, delusion, and economic problems. A sub-syndrome included terms related to
dopamine dysregulation syndrome (a manifestation of pathological impulsivity marked
by excessive levodopa use[229], which can be co-administered with dopamine ago-
nists to better control motor symptoms), such as drug dependence and withdrawal, and
on and off phenomenon. Hallucinations, irritability, and crying were reported with
delusional jealousy, hypersexuality, and marital problems. Hyperphagia was associ-
ated with weight increase, somnolence, insomnia, and disturbance in attention. Fear,
anxiety, pain, stress, and depression were associated with suicide attempts. Finally,
body-focused repetitive behaviors and stealing behaviors showed strong co-reporting.

6.3.4.4 Bayesian Network: The Secondary Impact of Drug-induced Impulsivity

The Bayesian Network yielded insights into the directional associations between
co-reported events (see Figure 6.12). High out-degree centrality identified pivotal
events that likely heightened the likelihood of reporting other events. Since this di-
rected network only generates hypotheses, we preferred temporal terminology (i.e.,
preceding and following) to causal terminology even if no temporality was taken into
account.

In pramipexole recipients, anxiety (3.55), emotional distress (2.92), and gambling
(2.30) attained the highest out-degree centrality. Anxiety preceded insomnia (with irri-
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Figure 6.10. The Secondary Impact of Aripiprazole-induced Impulsivity. The network shows the
events disproportionally reported with aripiprazole-related impulsivity and their pattern of co-reporting.
Drug-induced impulsivity manifestations are shown as squares and other events as circles. Node
colors identify clusters from the Ising estimation, dashed contours for the ϕ estimation, and colored
contours for the PPMI estimation. The link width represents the weight of the links of the Ising, here
chosen over the others because they are fewer and more conservative. The layout has been manually
adjusted to reduce the overlapping. The layout calculated using a spring model with, as weight, the
weights from the individual networks and the average of the weights of the three networks, after
rescaling them from 0 to 1, is shown in the supplementary material.

tability, somnolence, and attention disturbances), stress and depression (with suicide),
fear, OCD, and emotional distress. Emotional distress preceded pain and injury (with
major depression and economic problems), abnormal thinking and behavior, weight
gain, and pathologic gambling. Furthermore, hypersexuality preceded delusional jeal-
ousy and marital difficulties, compulsive shopping stealing behaviors, and hyperphagia
weight increase.
In aripiprazole recipients, economic problems (5.97), gambling (4.15), and hyperpha-
gia (2.33) attained the highest out-degree centrality. Economic problems preceded
theft, hoarding, divorce, loss of employment, homelessness, suicide, sex dysfunc-
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Figure 6.11. The Secondary Impact of Pramipexole-induced Impulsivity. The network shows
the events disproportionally reported with pramipexole-related impulsivity and their pattern of co-
reporting. Drug-induced impulsivity manifestations are shown as squares and other events as cir-
cles. Node colors identify clusters from the Ising estimation, dashed contours for the ϕ estimation,
and colored contours for the PPMI estimation. The link width represents the weight of the links of
the Ising, here chosen over the others because they are fewer and more conservative. The layout
has been manually adjusted to reduce the overlapping. The layout calculated using a spring model
with, as weight, the weights from the individual networks and the average of the weights of the three
networks, after rescaling them from 0 to 1, is shown in the supplementary material.

tion, sexually transmitted diseases, and eating disorder. Gambling preceded aggres-
sivity, suicide, cognitive disorders, hyperphagia, and paraphilia. Hyperphagia pre-
ceded somnolence and fatigue (with stress, attention disturbances, myalgia, cough),
hunger, weight increase (with constipation), obesity (with hypertension), compulsive
wandering, and paraphilic disorders. Anxiety preceded depression (with sleep dis-
orders and suicide), fear and panic attacks (with relationship issues), pain and injury
(with emotional distress, disability, anhedonia, and economic problems). Furthermore,
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Figure 6.12. The Secondary Impact of the Main Drug-induced Impulsivity, Aripiprazole and
Pramipexole. The ego-networks extracted from the Bayesian Network show the potential direction
of the co-reporting relationships between the events, thus providing insight into the direct and indirect
impact of drug-induced impulsivity. Nodes linked to hyperphagia, hypersexuality, pathological gam-
bling, and compulsive shopping are represented. Only out-neighbors of order equal or less than 1
are shown here, together with out-neighbors of order 2 considered relevant for clinical interpretation.

hypersexuality preceded sexual dysfunction, sexually transmitted diseases, unintended
pregnancy, and loss of employment, compulsive shopping eating disorders and eco-
nomic problems.
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6.3.5 Discussion

6.3.5.1 Summary and Key Results

Patients and caregivers should be informed about the potential impact of drugs
inducing impulsivity on their QoL. Investigating aripiprazole and pramipexole, we
captured the main clinical scenarios at risk of drug-induced impulsivity. Dispropor-
tionality analysis revealed features of the impulsivity syndrome for each scenario, en-
compassing mainly psychosocial events but also organic conditions. Network analy-
sis identified sub-syndromes such as delusional jealousy (also known as Othello syn-
drome[230] and dopamine dysregulation syndrome (i.e., the excessive use of levodopa)
in pramipexole recipients, and obesity-hypoventilation syndrome (historically Pick-
wickian syndrome) and social issues in aripiprazole recipients. The Bayesian Network
highlighted directional associations, potentially suggesting secondary consequences of
drug-induced impulsivity. Anxiety and economic problems emerged as pivotal events
that could be potentially targeted to disrupt the chain of events and alleviate the burden
of drug-induced impulsivity: for instance, monitoring and effectively managing anxi-
ety or providing financial guidance or legal guardianship to prevent wasteful spending.
Since marital problems affect caregivers’ QoL and increase the risk of early placement
in nursing homes[198], addressing delusional jealousy and economic problems, iden-
tified as factors preceding marital problems, may be critical for preserving wellbeing
in pramipexole recipients.
While aripiprazole and pramipexole offer clear benefits, the substantial impact on pa-
tients’ and caregivers’ QoL should be acknowledged and considered in the monitoring
and management of dopamine agonist therapies.

6.3.5.2 Case Retrieval

Our findings align with established risk factors, including male gender and younger
age[231, 232], Parkinson’s Disease (PD)[233, 234] and depression[235]. Commonly
reported impulsivity manifestations included the "four knights"[185] (i.e., gambling,
shopping, hyperphagia, and hypersexuality), garnering special attention due to their
pronounced impact on QoL. Other manifestations were body-focused repetitive be-
haviors, paraphilic disorders, and hoarding.
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6.3.5.3 Disproportionality Analysis: The Drug-induced Impulsivity Syndrome

Pramipexole and aripiprazole recipients differ significantly. Pramipexole is pri-
marily administered to older patients with hypodopaminergic conditions, characterized
by motor impairment and reduced motivational drive. These patients, well managed
and supported by caregivers because of the later onset and clear neurologic origin of
the disease may experience a mitigated drug-induced impulsivity burden. Conversely,
aripiprazole is prescribed to younger patients with mood and psychotic disorders, often
linked to hyperdopaminergic states and a pre-existing diathesis for impulsivity. Chal-
lenges for caregivers and social support are heightened in these cases due to earlier on-
set, psychiatric origins, and stigma, potentially leading to a greater burden. Over a third
of aripiprazole cases were submitted by lawyers, suggesting potential overreporting for
legal compensation (cfr., Abilify lawsuit)[236], but also a response to underdiagnosis
by physicians hesitant to attribute behavioral changes to the drug in the presence of
underlying psychiatric conditions. Intriguingly, an ascertainment bias may also arise
because neurologists prescribing pramipexole may be less attuned to psychiatric issues
than psychiatrists prescribing aripiprazole, further underscoring the contrast in the re-
ported impact on QoL for these two drugs.
By performing the disproportionality analysis on each drug population, comparing re-
ports involving impulsivity with those encompassing various reactions other than im-
pulsivity, we addressed indication bias and other confounding factors. This compara-
tive analysis served as a rigorous filter, allowing us to sift through the complex data and
unveil the genuine characteristics associated with impulsivity, as well as those arising
from the dynamic interaction between impulsivity and the underlying drug or disease,
excluding traits tied solely to the underlying drug or disease.
This approach revealed a complex syndrome, characterized by psychosocial, cognitive,
psychosomatic, and metabolic events. The burden of drug-induced impulsivity appears
more pronounced in aripiprazole recipients, with functional (or psychosomatic) man-
ifestations and social issues impacting work, relationships, and economics.

6.3.5.4 Network Analysis: Sub-Syndromes

Network analysis, employing three estimation methods, revealed potential subsyn-
dromes associated with specific impulsivity expressions in the two populations (Fig-
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ure 6.13). The Ising delineated well-defined clusters, while PPMI and ϕ emphasized
inter-clusters relationships.
In both populations, cognitive and mood disorders, significant in their association with
drug-induced impulsivity and contribution to disability development[237] played cen-
tral role. Obesity-hypoventilation syndrome[238], involving weight gain, cognitive
and sleep disorders, and sedation, was consistent in both populations, but seemingly
heavier in aripiprazole recipients (also reporting obesity, sleep apnoea syndrome, hy-
pertension, and metabolic blood alterations, highlighting the link between hyperphagia
and diabetes onset[239]).
For aripiprazole recipients, the prominent cluster included sleep disorders and stress,

Figure 6.13. Drug-induced Iimpulsivity Syndrome, Aripiprazole and Pramipexole. The main
syndrome, representing one or more strongly interconnected central clusters of symptoms and signs
identified through network analysis, is depicted as the central figure. Other potential sub-syndromes
are shown on the sides highlighted with a colored square.

connected to a psychosomatic sub-syndrome involving migraine, back and abdomi-
nal pain, reflux, diarrhoea, constipation, and hyperidrosis. Gambling and shopping
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were linked to pervasive social issues, theft, and suicidal ideation (expected during
hyperdopaminergic impulsive states[240]). Hypersexuality was linked to unintended
pregnancy, sexually transmitted diseases, and sexual dysfunction.
Among pramipexole recipients, the prominent cluster included apathy, delusion, and
economic problems. The dopamine dysregulation sub-syndrome[241], closely related
to impulsivity but primarily associated with levodopa and apomorphine[242], involved
on and off phenomenon (oscillations in effectiveness and motor and motivational symp-
toms), excessive levodopa use to avoid off phases, and dopamine agonist withdrawal
syndromes (DAWS) upon discontinuation[243]. A cluster aligned with paranoid delu-
sional jealousy (false and unwavering belief in the partner’s unfaithfulness), often seen
in PD with drug-induced hypersexuality[244]presented challenges in marital relation-
ships, potentially resulting in early placement in a nursing home[245]. We also found
a cluster with fear, pain, stress, anxiety, depression, and suicidal ideation, indicative of
the transformation of reward-driven impulsivity into stressful risk-averting compulsiv-
ity over time[246]. Finally, the co-reporting of two archetypal compulsive symptoms,
body-focused repetitive behaviors and stealing behaviors, was evident.

6.3.5.5 Bayesian Network: The Secondary Impact of Drug-induced Impulsivity

The interplay of events within the context of drug-induced impulsivity is intricate
and multifaceted. Events reported alongside drug-induced impulsivity may result from
impulsivity itself (like financial problems from gambling) or predispose individuals to
impulsivity (e.g., bipolar disorder). Sometimes, events can both trigger and be ex-
acerbated by drug-induced impulsivity (e.g., anxiety[247, 248]). Sometimes events
are concomitantly mentioned for precision, such as in cases of semantic overlap (e.g.,
theft and shoplifting, or injury and brain injury). Events associated with drug-induced
impulsivity may even be synonyms for well-known impulsivity expressions (e.g., rest-
lessness, referring to excessive wandering and poriomania[244]), or could be the very
reason for prescribing the drug, as seen in the off-label use of aripiprazole to prevent be-
havioral and cognitive decline in brain injury[249] or to address drug dependence[250,
251].
The Bayesian Network a directed acyclic graph representing our dataset, revealed po-
tential directional associations, enabling formulation of hypotheses about clinically
plausible causal sequences. Anxiety emerged as a central factor, preceding insom-
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nia, irritability, cognitive impairment, stress, injury, pain (linked to disability and eco-
nomic problems), depression, and even suicidal ideation. Drug-induced impulsivity
manifestations appeared to exacerbate each other. Economic problems had the highest
out-degree centrality among aripiprazole recipients, preceding theft, relationship dif-
ficulties, and suicidal ideation.
The Bayesian Network provides clinicians with valuable insights on the pivotal nodes
that could be targeted by interventions to disrupt the cascade of events and ameliorate
the secondary impact of drug-induced impulsivity. It also highlighted secondary ram-
ifications of main impulsivity manifestations: hypersexuality precedes marital prob-
lems through delusional jealousy in pramipexole recipients, while it precedes unin-
tended pregnancy and sexually transmitted diseases in aripiprazole recipients; hyper-
phagia precedes weight increase in pramipexole recipients and obesity, somnolence,
and cognitive impairment in aripiprazole. Marital problems, following delusional jeal-
ousy and economic problems in pramipexole recipients, may be of particular interest
since they are associated with an early placement in nursing homes[245]. Finally, the
Bayesian Network seems to support the higher secondary impact of drug-induced im-
pulsivity in aripiprazole recipients.

6.3.5.6 Limitations and Further Developments

While this study provides valuable insights into the intricate interplay of events
related to drug-induced impulsivity and its subsequent implications, it is crucial to ac-
knowledge its limitations.
Spontaneous reports, while uniquely granting access to patients’ perspective, are sus-
ceptible to biases like under-reporting, missing data, and unverified reliability, prevent-
ing reliable incidence or prevalence estimates. The high contribution of reports from
lawyers may have influenced the higher psychosocial impact attributed to aripiprazole-
induced impulsivity. Nonetheless, this study sets the foundation for further studies and
a potential score to assess the impact of ADRs on QoL.
Limitations in network analysis methodologies adopted include the Ising estimation’s
assumptions (pairwise interaction, linear effects, and binary variables), and the in-
ability to account for time and severity in symptom manifestation. The incorporation
of negative links could facilitate a more nuanced separation of symptoms that infre-
quently co-occur. The Bayesian Network lacks bidirectional relationships and cyclic
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feedback loops and would require the inclusion of all shared cause between any two
events (causal Markov condition) limiting its capacity to illuminate causality. These
limitations could be rectified by integrating clinical longitudinal data and embedding
temporal aspects into the network analysis.
Looking ahead, a broader definition of drug-induced impulsivity could improve sen-
sitivity in case retrieval. Conditions like suicide attempts, hypersomnia, obsessive-
compulsive symptoms, explosive anger, personality changes, disturbance in attention,
and drug dependence might represent different expressions of this underdefined con-
dition, warranting further exploration[186, 242].

6.3.6 Conclusion

The profound impact of drug-induced impulsivity reverberates across patients and
their families, encompassing psychosocial challenges and organic complications such
as metabolic syndrome (in the case of hyperphagia), and sexual health issues (in the
case of hypersexuality). Recognizing these potential consequences is crucial for in-
formed pharmacological management and diligent patient monitoring. Network anal-
ysis has revealed intriguing co-reporting patterns among adverse events, leading to
their classification as sub-syndromes. Notable examples include is the emergency of
obesity-hypoventilation syndrome with hyperphagia and associations of hypersexual-
ity with delusional jealousy in pramipexole recipients and unintended pregnancy and
sexually transmitted diseases in aripiprazole recipients. Our parallel approach effec-
tively avoids the risk of disease-related diathesis compromising analytical integrity,
enhancing the robustness of our findings.
For clinicians, this study emphasizes the potential burden of drug-induced impulsiv-
ity, and therefore the necessity of meticulous scrutiny into patients’ medical histories.
Factors such as age, gender, pre-existing mood disorders and family history should be
red flags, warranting heightened vigilance. While transitioning to an alternative active
ingredient may mitigate impulsivity, it is not always feasible or adequate. Monitor-
ing for potential complications, as unveiled in our work (e.g., obesity-hypoventilation
syndrome and delusional jealousy), is pivotal when such transitions are not a viable
solution. For example, an overlooked delusional jealousy may result in marital prob-
lems and early nursing home placement.
Central to our findings is the pivotal realization that drug reactions rarely occur in iso-
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lation; instead, they manifest as syndromes with diverse signs and symptoms. These
can be direct reactions to the drug itself, secondary consequences to the reaction, risk
factors for the reaction, or comorbidities. Causal chains and loops can contribute to
symptom aggravation and chronicity. Identifying syndromes and sub-syndromes, com-
bining network strategies with traditional techniques and clinical judgment, proves a
potent strategy for delving into the secondary impact of adverse drug reactions and
fostering heightened awareness within clinical practice.
In sum, the intricate relationships between signs and symptoms, coupled with the in-
sights from the Bayesian Network, underscore the multifaceted nature of drug-induced
impulsivity. More significantly, it equips clinicians with indispensable tools to discern
intervention points, decipher causal sequences, and mitigate the cascading secondary
effects associated with drug-induced impulsivity. In doing so, this study contributes
to advancing our comprehension and management of drug-induced impulsivity, ulti-
mately enhancing the well-being and care of affected patients.
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Aripiprazole (120 nodes)
gambling disorder (N=2057), economic problems (1366), obsessive-compulsive disorders (1198)

Ising ϕ PPMI

Links (density %) 301 (4.2%) 1185 (16.6%) 1254 (17.6%)
Central node (1◦) economic problems irritability overwork

Heaviest links (1− 3◦) AP below therapeutic
– effect variable; theft
– shoplifting; effect
incomplete – effect

variable

AP below therapeutic
– effect variable; AP
below therapeutic –

toxicity; effect
variable – toxicity

overwork –
pyromania;

kleptomania –
overwork; overwork –

poriomania
Clusters N 10 5 4

Clustering modularity 0.71 0.59 0.46
Small worldness (ω)a 0.26 0.04 0.03
Jaccard (out of max)b 0.25 (0.25) 0.56 (0.95) 0.21 (0.24)

Purity indexc 0.68 0.89 0.59

Pramipexole (70 nodes)
gambling disorder (N=1340), obsessive-compulsive disorders (553), hypersexuality (543)

Ising ϕ PPMI

Links (density %) 85 (3.5%) 240 (9.9%) 576 (23.9%)
Central node (1◦) gambling disorder mental disorder pyromania

Heaviest links (1− 3◦) body-focused
disorders –

kleptomania; mental
impairment – mental
disorder; on and off

phenomenon –
dyskinesia

emotional distress –
pain; emotional

distress –
obsessive-compulsive
disorder; hyperphagia

– weight increased

poriomania –
pyromania; gaming

disorder – pyromania;
gaming disorder –

poriomania

Clusters N 10 6 4
Clustering modularity 0.66 0.51 0.15
Small worldness (ω) -0.01 0.29 0.47
Jaccard (out of max) 0.34 (0.35) 0.23 (0.42) 0.12 (0.15)

Purity index 0.44 0.66 0.39
Table 6.7. Network Properties. The table shows the network properties for the three networks
estimated for aripiprazole and pramipexole, respectively, and for their comparison.

a A small world has a ω = Lr
L

− C
Cl

≈ 0 ⇒ the shortest path length L is similar to that of an equivalent random network
r and the clustering coefficient C is similar to that of an equivalent lattice network l.

b J(A,B) =
|A∩B|
|A∪B| .

c Purity = 1
N

Kmin∑
k=1

max
π

nk,π , with Kmin the minimum clusters, and max
π

nk,π the maximum elements.
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7.1 Unsupervised Pipeline for Drug Repurposing

Drug repurposing, introduced in Section 3.3, involves the identification of new ther-
apeutic applications for established pharmaceutical agents, harnessing existing knowl-
edge to accelerate drug development while preserving cost-effectiveness.
Within this work, as detailed in the article "An unsupervised computational pipeline
identifies potential repurposable drugs to treat Huntington’s disease and multiple scle-
rosis" published in Artificial Intelligence in the Life Sciences in 2022, an automated
computational pipeline designed for selecting drugs for repurposing and screening their
potential combinations was presented.[252] The process of drug selection is guided by
the proximity of these drugs to disease-relevant genes within the protein-protein in-
teractome, while considering the influence of these drugs on the expression of genes
linked to the disorder. Furthermore, this approach incorporates the prioritization of
combined therapeutic strategies, a procedure informed by the positioning of drug tar-
gets within the human interactome, also accounting for known drug-drug interactions.
These efforts yielded a promising collection of molecules and potential combinations
considerable for the treatment of Huntington’s disease and multiple sclerosis. Notably,
this pipeline extends its potential beyond these specific disorders, serving as a versatile
tool for identifying novel therapeutic possibilities for other complex diseases.

Details

Authors Luca Menestrina, Maurizio Recanatini

Type Research Article

Status Published

Title An unsupervised computational pipeline identifies potential repurposable drugs
to treat Huntington’s disease and multiple sclerosis

Journal Artificial Intelligence in the Life Sciences

DOI 10.1016/j.ailsci.2022.100042

107

http://orcid.org/0000-0002-3397-7737
http://orcid.org/0000-0002-0039-0518
https://www.sciencedirect.com/science/article/pii/S2667318522000125
https://www.sciencedirect.com/science/article/pii/S2667318522000125
https://www.sciencedirect.com/science/article/pii/S2667318522000125
https://doi.org/10.1016/j.ailsci.2022.100042


7 Predictive Models

Data Availability The whole generated data is publicly available from the GitHub
repository https://github.com/LucaMenestrina/UnsupervisedComputationa
lFrameworkForDrugRepurposing, as well as the full code for the collection,
building and analysis. A detailed reference of the source data is provided in
the file "data/sources/sources.json" of the aforementioned repository (for
every database are reported: name, version, license, employed files, URL and
date of access).
Supplementary data can also be accessed at the original publication.
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7.1 Unsupervised Pipeline for Drug Repurposing

An Unsupervised Computational Pipeline Identifies
Potential Repurposable Drugs to Treat
Huntington’s Disease and Multiple Sclerosis

7.1.1 Introduction

Discovering a new drug and bringing it to the market is a process both money and
time-consuming. Instead, relying on established drugs, computational drug reposi-
tioning offers a valuable alternative approach for providing promising treatments for
disorders without a cure.[107, 253] In recent years, a plethora of computational ap-
proaches to drug repurposing have been proposed and applied to a wide variety of
therapeutic areas.[254] Most of such approaches rely either on machine learning or on
the traditional methods of computational drug design, even though some conceptually
innovative ideas have brought to the light the possibility of taking new paths towards
the prediction of potentially repurposable drugs. One of such ideas is based on a sys-
tem view and takes the human protein-protein interactome as a reference network to
quantify the relatedness between drugs and diseases by calculating the distance be-
tween drug targets and disease-associated proteins. This distance has been proposed
as a suitable metrics to measure the "proximity" between drugs and diseases.[255]
Recently, leveraging on the concept of drug-disease proximity,[256] novel drug indi-
cations for the treatment of cardiovascular diseases[103, 256], cancers[257], COVID-
19[258], Alzheimer’s disease[259] have been proposed, demonstrating how a network-
based approach could successfully assist the selection of drugs to be repurposed.

In this work, we assembled an automated computational pipeline by integrating
a recently developed scheme to screen repurposable drugs that combines a network-
based technique with an analysis of biological and experimental data,[260, 261] with
a strategy for filtering all the possible drug combinations.[103] Initially, the proce-
dure estimates the proximity between the disease-related proteins and the drug targets
on the protein-protein interactome, performing a first selection of candidates. Then,
only those drugs that significantly influence the expression of disease-related genes are
considered plausible for repurposing. Finally, evaluating the separation of these drugs’
targets on the human interactome and taking into consideration the known drug-drug
interactions, combined therapies are prioritized. The workflow of the procedure is
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schematically illustrated in Figure 7.1. The entire process is automated in order to re-
duce human intervention, thus accelerating the whole procedure and limiting execution
errors.

Figure 7.1. Pipeline Flowchart. The flowchart shows the sources and the steps of the automated
procedure to screen repurposable drug candidates and prioritize their combinations.

We applied this pipeline to Huntington’s disease (HD) and multiple sclerosis (MS)
because, despite the fact that they are both neurological disorders, their different na-
ture could represent a challenge for our strategy, and the outcomes could give us in-
sights into its methodological strengths and limitations. HD, is reported as a typical
monogenic disease, even though many other genes are known to influence its pro-
gression,[262] while for MS a single genetic cause has not been found yet, probably
because many factors play an important role in the etiology. Indeed, MS fits well the
definition of complex disease to be considered in the framework of network medicine.
On the other hand, HD was included in our study in order to test the capabilities of the
proposed method in a case where different clinical phenotypes might be related to a
disease module eventually influenced by genetic modifiers leading to different patho-
physiological states.[262–264]

HD is the most common monogenic neurological disorder. The onset is typically
in the early stage of adult life, and it is characterized by motor dysfunction, cogni-
tive impairment, and neuropsychiatric features.[262, 265] The autosomal dominant
mutation that causes HD is located in the HTT gene, and it consists in a cytosine-
adenosine-guanine trinucleotide repetition (CAG, encoding glutamine) leading to an
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overexpansion of the polyglutamine (polyQ) tail in the huntingtin protein. The mu-
tated protein tends to aggregate and accumulate, forming inclusion bodies that have
deleterious consequences for the neural cell. Both the inclusion bodies and the length
of the CAG expansion are proven to play an important role in the development of the
disease. The clearance of the first ones slows the HD progression, while the longer the
CAG expansion, the earlier the disease may manifest.[265] The remaining uncertainty
on the course of HD can be ascribed to other genetic differences in the genome of the
patients.[262, 264]

MS is both the most frequent non-traumatic disabling disease in young adults[266]
and the commonest demyelinating disease.[267] The etiology and the mechanism caus-
ing its worsening progression are still unclear, nevertheless it has been proven that a
complex interplay of genetic and environmental factors is important.[268, 269] The
main known risk factors are smoking, childhood obesity, infection with the Epstein-
Barr virus, and low vitamin D levels.[269]
MS is generally viewed as a two-phases autoimmune disease, in which initially fo-
cal inflammatory processes cause a relapsing-remitting form of the disease, and sub-
sequently demyelinating plaques (lesions resulted by the previous immune response)
and oligodendrocyte damage lead to neurodegeneration and non-relapsing progressive
course.[267, 269] MS is commonly characterized by progressive spastic paraparesis,
cognitive impairment, and sensory and cerebellar dysfunctions.[269]

Both HD and MS are still lacking resolutive treatments[270, 271], whose devel-
opment needs a deeper knowledge of the underlying mechanisms[272]. To this aim,
network-based models, as the ones we utilized in this study, could be adequate theoret-
ical tools for investigating such multifactorial disorders. They would allow us to take
into account the latent complex structure of these diseases without losing a compre-
hensive view[13]. Through the methodology presented here, we were able to collect
a number of approved drugs and their plausible combinations that could be proposed
for the treatment of HD and MS.

7.1.2 Methods

The workflow of this study can be outlined in the following steps (Figure 7.1):
(1) collection of disease-related genes; (2) gene sets validation through enrichment
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analysis; (3) collection of drugs, targets, protein interaction data, and construction of
protein-protein interactome; (4) computation of drug-disease proximity on the human
protein-protein interactome; (5) estimation of drug-induced gene expression signature
enrichment; (6) calculation of drug-drug separation on the human interactome. Except
for the collection of the disease-related genes, each operation is performed by a Python
3 script, and the entire procedure is brought together and coordinated by a main file in
the same programming language.

7.1.2.1 Collection of Disease-Related Genes

For each of the two considered diseases, a set of related genes was retrieved from
KEGG[273] (https://www.genome.jp/kegg/), OMIM [274] (https://www.omim.org/),
PheGenI [275] (https://www.ncbi.nlm.nih.gov/gap/phegeni), DISEASES [276](https:
//diseases.jensenlab.org/search), and DisGeNET [141](https://www.disgenet.org/).
Briefly, for HD, 306 genes were retrieved from the KEGG Huntington Disease pathway
"hsa05016"; 152 querying OMIM for "Huntington Disease"; 1 from the DISEASES
database and 17 were those associated to "Huntington Disease" on DisGeNET and
having an Evidence Index (https://www.disgenet.org/dbinfo#section36) of at least
0.95.
On the other hand, for MS, 160 genes were the result of querying OMIM for "Multiple
Sclerosis"; 89 were collected from PheGenI with NHGRI (National Human Genome
Research Institute) genome-wide association study as source and a p-value< 1×10−8;
5 were retrieved from the DISEASES database; 30 gathered from DisGeNET with the
same conditions applied to HD. The genes were mapped to official gene symbols taking
advantage of the NCBI database and then combined.

7.1.2.2 Ontology (GO, HPO) Enrichment Analysis

Functional enrichment analysis is often employed to perform a preliminary analysis
on an investigated gene set. Examining the Gene Ontology[277] (GO, http://geneonto
logy.org/) and the Human Phenotype Ontology[278] (HPO, https://hpo.jax.org/) asso-
ciations, we gained insights on biological processes, molecular functions, cellular com-
ponents and phenotypes most frequently associated to those genes. We conducted the
functional enrichment analysis using the Python library GOATOOLS[279] and consid-
ered significantly enriched only those terms with a false discovery rate (FDR, p-value
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corrected for multiple comparisons using the Benjamini-Hochberg procedure[159])
lower than 1× 10−4. We then looked at the first 20 terms ranked on the basis of their
fold enrichment (computed as the ratio of the percentage of genes in the study set re-
lated to a specific term, divided by the corresponding percentage in the background,
i.e., the entire human proteome).

7.1.2.3 Drugs and Targets Collection, Gene Expression Profiles Retrieval and
Protein-Protein Interactome Construction

Drugs information was collected from DrugBank[114] (version 5.1.9). Only those
molecules having at least one human protein as target are considered, obtaining 5,798
drugs and 2,755 corresponding targets.
Drug-induced gene expression profiles were retrieved from the Library of Inte-
grated Network-based Cellular Signatures[280] (LINCS, profiles "GSE70138"
and "GSE92742"), downloaded from Gene Expression Omnibus[281] (GEO,
http://www.ncbi.nlm.nih.gov/geo). Due to the fact that we are inspecting neuro-
logical disorders, those signatures tested on neural cell lines (NEU, NPC, SHSY5Y)
were examined for both diseases. Additionally, in order to consider disease-specific
features, also muscular cell lines (SKB, SKL) were included for HD, and haematopoi-
etic and lymphoid tissue cell lines (L60, JURKAT, NOMO1, PL21, SKM1, THP1,
U937, WSUDLCL2) for MS. Furthermore, to guarantee maximum reliability of the
results, only the data about the Best Inferred Genes (BING) in every dataset (drug
signature) in these profiles was kept. The BING subset includes 978 landmark genes
and 9 196 inferred genes, which are identified among the 12 328 genes in the L1000
assay by Subramanian et al.[282] evaluating the most reliable inference predictions.
Extensive interactions among proteins are a key factor in accomplishing many biolog-
ical processes and functions. For this reason, we opted for a network-based approach
to evaluate the correlation between drugs and diseases or drugs and other drugs. We
built a human protein-protein interaction (PPI) network combining data from eight
publicly available resources: Agile Protein Interactomes DataServer[283] (APID,
http://cicblade.dep.usal.es:8080/APID/init.action), Biological General Repository
for Interaction Datasets[284] (BioGRID, https://thebiogrid.org/), The Human Refer-
ence Interactome[285] (HuRI, http://www.interactome-atlas.org/), InnateDB[286]
(https://www.innatedb.com/), INstruct[287] (http://instruct.yulab.org/), IntAct[288]

113

http://cicblade.dep.usal.es:8080/APID/init.action
https://thebiogrid.org/
http://www.interactome-atlas.org/
https://www.innatedb.com/
http://instruct.yulab.org/


7 Predictive Models

(https://www.ebi.ac.uk/ intact/home), SignaLink[289] (http://signalink.org/),
and Search Tool for the Retrieval of Interacting Genes/Proteins[140] (STRING,
https://string-db.org/). Table B.1 gives additional info about the interactions reported
in the databases and the applied filters.
The retrieved interactions were then combined, obtaining a network consisting of
20,445 nodes (genes/proteins) and 1,125,173 edges (interactions). Consistency is
granted by the fact that all listed proteins are mapped to official gene symbols taking
advantage of the NCBI database. Since the protein-protein interactome is the support-
ing pillar of the whole procedure, we assessed its validity comparing the results of the
entire analyses based on two other interactomes. The first rerun was carried out on the
widely recognized interactome from Cheng et al.[256] (16,677 unique proteins and
243,603 experimentally confirmed protein–protein interactions). The second one was
performed on a drastically restricted version of our own interactome (16,954 proteins
and 246,080 interactions), in which only interactions from low throughput studies
(listing less than 20 interactions) were included.

7.1.2.4 Network Proximity

Proteins related to a specific disease are unlikely to be scattered throughout the
interactome, rather, they tend to group together forming the so-called disease mod-
ule.[290] The relationship between a drug and a disease could be estimated by means
of an unsupervised and unbiased network-based approach[255], which quantifies the
interplay of drug targets and disease-related genes measuring a network proximity.
Here we used a recently modified version of such method[260] that includes a term
(ω) for taking into account the degree of the drug targets directly into the distance cal-
culation. Given G, the set of disease-related genes; T , the set of drug targets; and
d(g, t), the shortest path length between nodes g (g ∈ G) and t (t ∈ T ) in the human
protein-protein interactome; the distance d(G, T ) between each drug and the disease
was calculated as:

d(G, T ) =
1

|T |
∑
t∈T

min
g∈G

(
d(g, t) + ω

)
(7.1)

where ω weights the targets based on their node degree in the interactome (ω =

− ln(D + 1) if the target is related to the disease, ω = 0 otherwise). D is the degree
of the target in the PPI network.
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Then, for each drug, the significance of its association to the investigated disease was
assessed comparing the measured distance to that of a dummy reference distribution.
This reference was obtained computing 10,000 times the distance (d(G,R), defined
by Equation (7.1)) between the disease-related genes and randomly selected (from
the human interactome) sets of proteins (R) matching the number of the drug targets.
Since the degree of the drug targets is already taken into consideration in the distance
calculation, the sampling of the randomly selected proteins is facilitated having to
match only the number and not also the degree distribution of the drug targets. The
mean µd(G,R) and standard deviation σd(G,R) of the reference distribution were used to
normalize the observed distance into a proximity value (z-score):

z(G, T ) =
d(G, T )− µd(G,R)

σd(G,R)

(7.2)

7.1.2.5 Inverted Gene Set Enrichment Analysis

Starting from the hypothesis that effective drugs should be able to restore the
healthy expression of genes deregulated by a disease, the drugs with signatures most
enriched in disease-related genes should also be the most promising ones in treating
such disease. In order to gain this knowledge, an Inverted Gene Set Enrichment
Analysis[260] (IGSEA) on the datasets (drug signatures) of LINCS was performed,
looking for the disease-related genes under study. For each analyzed dataset, the
normalized enrichment score and the p-value (estimated comparing the enrichment
score with those of a null distribution generated from 100,000 permutations) were
computed for measuring the enrichment magnitude and its statistical significance,
respectively. The resulted p-values were then corrected for multiple comparison
using the Benjamini-Hochberg procedure[159], obtaining the FDR. If the dataset
was significantly enriched (FDR < 0.25), the corresponding drug was considered a
potential drug candidate.

7.1.2.6 Network Separation

An important aspect in investigating drug combinations is to evaluate whether the
two drug-target modules are overlapped (overlapping exposure) or separated (com-
plementary exposure) on the human protein-protein interactome.[103] In the case of
overlapping exposure, there is a higher similarity in chemical, biological, functional,
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and clinical profiles. The desired combinations, instead, are those with complemen-
tary exposure, both drugs being topologically and pharmacologically distinct. In the
latter case, the two drugs synergistically cooperate in treating the disease, yet each one
in its own way.
As we did for computing the drug-disease proximity, also for measuring drug-drug
separation sAB in drug combinations, we employed a network-based approach[103,
290]:

sAB = ⟨dAB⟩ −
⟨dAA⟩+ ⟨dBB⟩

2
(7.3)

where A is the target module of one drug and B that of the other. Here, the mean
shortest distances (calculated with Equation (7.1) with the weight ω fixed to 0) between
the target modules of each drug (⟨dAA⟩ and ⟨dBB⟩, computable only for drugs with at
least two targets) are compared to the mean shortest distance between all possible A-
B target pairs (⟨dAB⟩). When computing the distances between A-B target pairs, if a
protein is targeted by both drugs, its distance is zero by definition. A drug combination
exposure is deemed complementary if sAB ≥ 0, overlapping otherwise.

7.1.3 Results

7.1.3.1 Computational Framework

In this study, we automated the pipeline shown in Figure 7.1 for screening repur-
posable drug candidates and prioritizing their combinations. In order to run, the script
only requires the disease name, the disease-related genes, and the cell lines of interest
as inputs. This procedure consists of: collecting, cleaning and organizing the source
data (disease-related genes, drugs, targets, protein interactions, drug-induced gene ex-
pression signatures); identifying repurposable drug candidates evaluating both their
proximity to the disease and their effect on the expression of the disease-related genes;
screening the possible drug combinations on the basis of their relative exposure and
known interactions. The output of the routine is a collection of tables (tab-separated
values files) and plots, recording both intermediate and final results.
Compared to previous related works[260, 261], such a systematic strategy should be
more efficient and have an improved reproducibility thanks to the organization and
standardization of both the overall study and results. Additionally, it takes a step for-
ward since it evaluates also possible combined therapies.
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The single steps and the outcomes of the application of the framework to HD and MS
are presented and discussed in the following.

7.1.3.2 Disease-Related Genes Collection and Validation

We gathered the disease-related genes as described in the Methods section: this re-
sulted in 451 and 217 genes associated to HD and MS, respectively. In order to evaluate
whether these genes were representative of the investigated diseases, we performed an
enrichment analysis on GO and HPO terms. This allowed us to check if the most en-
riched biological processes, molecular functions, cellular components and phenotypes
were in accordance with previous knowledge.

Prior studies relate HD to dysfunctions in transcription, intracellular signaling, in-
tracellular transport, endocytic recycling, and mitochondria.[262] This knowledge is
consistent with the biological processes, cellular components and molecular functions
that we found to be enriched (Figure 7.2A, Figure B.1A and B). The same holds for the
phenotypes, which are associated to negativism, social and occupational deterioration,
mitochondrial and nervous issues (Figure B.1C).[262, 265]

MS is an autoimmune disorder whose inflammatory infiltrates contain T-
lymphocytes and B-cells, and leads to oligodendrocyte damage and demyelina-
tion.[269] This is coherent with the enriched terms in our analysis (Figure 7.2B and
Figure B.2).

The fact that the obtained results were confirmed by the literature suggested that
the gathered genes were representative of the diseases under study.
Furthermore, as in Menche et al. [290], the disease modules were tested to be non-
random gene aggregates. The size of the largest connected component of the disease
module was compared to the size of the one obtained by randomly picking the pro-
teins (matching the number of the disease-related genes) from the interactome. For
both diseases, the disease module resulted to be significantly larger than the random
counterpart, allowing us to state that they cannot be attributed to a casual aggregation
of genes.

117



7 Predictive Models

Figure 7.2. Enriched Biological Processes. The bubbleplots display the top 20 most enriched
Gene Ontology terms relative to biological processes for Huntington’s disease (A) and multiple scle-
rosis (B). On the horizontal axis, the fold enrichment is shown. The color encodes the negative of the
false discovery rate logarithm, and the size represents the gene ratio (computed as the ratio of the
percentage of genes in the study set related to a specific term, divided by the corresponding percent-
age in the background, i.e., the entire human proteome).

7.1.3.3 Repurposable Drugs Selection

The network-based proximity analysis, leveraging on the potential of a system view,
could suggest valuable drugs able to interfere with the disease molecular determinants
in a non-trivial way (i.e., not only directly targeting disease-related genes). The idea
behind this method is that drugs proximal to the disease module should be more effec-
tive than distant ones, as shown by Guney et al. in an extensive analysis that considered
known diseases and disease-associated genes, as well as drugs and their targets.[255]
Following Peng’s protocol[260], the procedure compares the distribution of the dis-
tances between drug targets and disease-related proteins to that of a reference collec-
tion (see Section 7.1.2 and Figure 7.3). For both diseases, it was possible to identify
a distance value below which the two density curves (drugs and reference) drop dra-
matically. In particular, the reference density assumes negligible values for distances
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below this point (Figure 7.3, green part of the plot). We elected such distance value
(Figure 7.3, vertical green line) as the threshold to discriminate drugs associated to the
diseases. These distances are 0.68 and 0.71 (corresponding to proximity: -0.53 and
–0.98) for HD and MS, respectively. From this analysis, 685 (11.8%) out of the 5,798
drugs collected from DrugBank were considered significantly proximal medicaments
for HD, and 475 (8.2%) for MS.

Figure 7.3. Distance Distributions. The distribution of the distance between drug targets and
disease-related proteins (solid blue line) compared to that of a reference collection (dashed orange
line), for Huntington’s disease (A) and multiple sclerosis (B). On the vertical axis, the kernel density
estimation of the distribution is shown. The plot is divided into two parts by the chosen distance
threshold (green line, see Section 7.1.2).

In order to evaluate the impact of a drug on the disease, we examined the effect of
its administration on the expression of the disease-related genes in relevant cell lines
(see Section 7.1.2). We pursued this objective by performing an Inverted Gene Set
Enrichment Analysis (IGSEA) on 896 drugs, observed in 6,212 LINCS expression
datasets for HD and 960 drugs in 5,579 datasets for MS. This analysis resulted in 843
and 600 significantly enriched drugs, for HD and MS respectively.

The drugs that were both significantly enriched and proximal to the disease were
deemed to be repurposable drug candidates: 138 for HD and 38 for MS. The inter-
actions between the MS-related-genes, the drug targets, and the repurposable drug
candidates are visualized in Figure 7.4 (and Figure B.3 for HD), showing how drugs
can be related to the disease through their targets.
Unfortunately, only a small portion of the proximal drugs has data in the LINCS
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database (21.9% for HD and 13.7% for MS). Even though the IGSEA analysis in-
creases the reliability of the results, it dramatically reduces the number of molecules
that can be investigated and possibly proposed. This has to be taken into account when
evaluating the outcomes of the study.

Figure 7.4. Multiple Sclerosis Gene-Target-Drug Network. The Sankey diagram illustrates the
interconnections between disease-related genes, drug targets, and drugs. Each drug (right column)
is connected to its reported targets (middle column), which, in turn, are proximal on the human inter-
actome to some of the disease-associated proteins (left column). Drugs are colored by the respective
ATC code, and the FDR of the IGSEA analysis (see Section 7.1.2) is reported in the label.
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To be more confident on the pool of predicted repurposable drugs, we replicated the
entire procedure using three different interactomes. Our original one and the two net-
works used to validate it differ both in size and in listed interactions (see Section 7.1.2).
Despite these differences, the repurposable drug sets suggested for both investigated
diseases resulted fairly consistent. In the case of HD, 138 drugs were prioritized based
on the original interactome, 110 on Cheng’s one, 133 on our restricted interactome.
It is noteworthy that all the molecules retrieved from the two smaller interactomes are
included among those of the first one. A very similar conclusion could be drawn for
MS, for which the procedure predicted 39 drugs with the large interactome, 26 with
Cheng’s one, and 29 with the severely constrained version of our interactome.

7.1.3.4 Drug Combinations

Combined therapies and multi-targeted agents have proven to offer significant
advantages over monotherapy, presenting higher efficacies and less adverse reac-
tions.[103, 291] Due to combinatorial explosion, however, it is generally not feasible
to test all theoretically possible associations. For this reason, we adopted a recent
methodology proposed by Cheng et al.[103], which is based on the estimation of
target neighborhoods separation on the human protein-protein interactome. Taking
advantage of that, the investigated combinations may be screened on the basis of
the pharmacological relationship between drugs (see Section 7.1.2). Additionally,
we looked in DrugBank for approved associations and interactions that increase the
risk or severity of adverse effects. In this way, we ended up having an assortment of
plausible combinations and identifiable in the annotated heatmaps of Figure 7.5 for
HD and of Figure B.4 for MS.

7.1.4 Discussion

7.1.4.1 Protein-Protein Interactomes

For both diseases, the repurposable drug pools predicted using the three interac-
tomes are in reasonable concordance. However, it is significant that the execution of
the pipeline on our interactome, compared to the same procedure on Cheng’s interac-
tome, improves the prediction adding 7 drugs with evidence from clinical trials, 9 from
in vivo studies, 1 from in vitro experiments for HD, and 5 clinically tested drugs and
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Figure 7.5. Huntington’s Disease Drug Combinations. The annotated heatmap provides info
about possible combinations of the selected drugs. A combination is marked with × if an interaction
is reported in DrugBank, and with # if it is present in an approved formulation. The lower-left part
of the heatmap shows the separation of the inspected drugs, color coded from blue (no separation)
to red (strongly separated). The upper-right portion, instead, displays the kind of exposure: violet if
overlapping and green if complementary. At the leftmost part, the ATC codes of the drugs are reported
along with a dendrogram of their hierarchical clustering.
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1 investigated in an animal model for MS.
This outcome seems to suggest that injecting more input data in the procedure (still
maintaining high reliability standards) leads to increased performance, which is per-
fectly in line with the Big Data perspective.[50]

7.1.4.2 Repurposable Drugs

Among the drugs selected to tackle HD (138), several (17) have been clinically
tested and suggested, many show strong evidence from in vivo tests (35) or promising
results from in vitro assays (9). The most noticeable examples being selisistat[292],
lisuride[293], valproic acid[294], and risperidone[270].

Selisistat was found to be safe, well tolerated, and capable of reaching a plasma
concentration compatible with the SirT1 inhibition, which has been shown to restore
transcriptional dysregulation in models of HD.[292] Lisuride is able to induce a tempo-
rary yet significant improvement in the motor performance of patients with hyperkine-
sia caused by HD.[293] Valproic acid was shown to be a possible alternative treatment
for HD patients suffering from myoclonic hyperkinesia.[294] Risperidone has bene-
ficial effects in the treatment of psychiatric manifestations and stabilization of motor
symptoms in patients with HD.[270]

Inspecting the drugs screened for MS (38), we obtained a comparable outcome:
7 of them are clinically studied and 9 experimented on animal models. Most of the
drugs in clinical trials aim to alleviate the symptoms, while the only one we found
to be capable of reducing relapses is Escitalopram[295] for which there is evidence
suggesting it may be an effective and well-tolerated treatment for preventing stress-
related relapses in women with MS[295].

Examining the Anatomical Therapeutic Chemical (ATC) codes of the repurpos-
able drugs, the first thing to notice is the predictable prevalence of drugs associated to
the ATC code N (Nervous System) for both diseases. Apart from this, the most com-
mon codes for HD repurposable drugs are C (Cardiovascular) and L (Antineoplastic
and Immunomodulating Agents). The first group is mainly represented by statins,
used to cope with the cholesterol impairment typical of HD patients.[296] The im-
munomodulating agents are principally immunosuppressants and histone deacetylases
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inhibitors, the last ones aimed at recovering from the histone hypoacetylation common
in neurological disorders.[297]
For MS, instead, the second most frequent code is L (Antineoplastic and Immunomod-
ulating Agents). Some relevant examples are ruxolitinib, paclitaxel, tamoxifen,
and thalidomide, which are capable of attenuating experimental autoimmune en-
cephalomyelitis and in inducing remyelination.[298–302]

7.1.4.3 Drug Combinations

Observing the obtained results (depicted as annotated heatmaps in Figure 7.5 for
HD and Figure B.4 for MS) it is interesting to highlight that drugs that do not have
ATC codes associated to them are also those with few (or nothing at all) reported
interactions. This suggests that they are not sufficiently characterized and additional
studies on them are needed before further consideration.
The collected plausible combinations are numerous, but the association of or-
phenadrine (DB01173) and caffeine (DB00201) for HD deserves to be highlighted.
These molecules are present along with acetylsalicylic acid (ASA) in an FDA ap-
proved formulation for muscular pain relief. This medication is noteworthy for
many reasons. First of all, pain is a known issue in HD and could be an important
non-motor symptom[303, 304] thus, its treatment should not be neglected. Further-
more, orphenadrine showed to be effective in preventing neurotoxicity in rats with a
chemically-induced condition that mimics the histological and neurochemical features
of HD.[305] Additionally, low dosages of caffeine showed to be beneficial in HD
animal models.[306] Finally, ASA was included in the formulation for relieving pain
and decreasing swelling. Even though ASA was proximal to HD, it was not included
in our results because its data was not available in LINCS for the investigated cell
lines. However, it is actually profitable for the present aim, since it showed to prevent
protein aggregation in several neurodegenerative diseases.[307] Further assessments
are needed, but this could be an interesting point where to start.
A reasonable hypothesis for treating MS might be an association of two drugs
sufficiently separated from each other as escitalopram (DB01175) and tofacitinib
(DB08895) or ruxolitinib (DB08877), capable of affecting complementary parts of
the disease module. Figure 7.6 shows the network of the interactions among proteins
associated to MS (all circles) and highlights those targeted by escitalopram and
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tofacitinib (dark green and dark blue, respectively). Among these targets, two of
them, namely HRH1 for escitalopram (dark green circle) and TYK2 for tofacitinib
(dark blue circle), belong to the MS disease module, while those that are not directly
related to MS are depicted as triangles (maintaining the same color coding). In order
to better illustrate the influence on the disease module of the two drugs in terms of
protein-protein interactions, the first neighbors of the drug targets are colored lighter
(light green for neighbors of targets of escitalopram, and light blue for tofacitinib’s
ones). It can be seen that overall the targets of both escitalopram and tofacitinib or
their first neighbors can influence a reasonable part of the disease module without
redundantly interfering with the same MS proteins. In fact, our analysis showed
that these drugs are proximal to MS and significantly influence proteins associated
to this disease. Additionally, no interactions between them have been reported in
DrugBank. Moreover, we found experimental evidence supporting this inference.
Escitalopram is a selective serotonin re-uptake inhibitor (ATC code: N, Nervous) that
in humans proved to prevent stress-related relapses.[295] Tofacitinib and ruxolitinib
showed promising effects in animal models: the first one enhancing remyelination
and improving myelin integrity[308], and the second one ameliorating the severity of
the disease[298]. Furthermore, they are Janus kinase (JAK) inhibitors (ATC code:
L, Antineoplastic and Immunomodulating Agents) and the JAK/STAT pathway is
aberrantly activated in MS.[271, 309]
In the other drug combinations, which are sufficiently separated (see Section 7.1.2,
green on the heatmaps) and for which no adverse interactions are reported (not anno-
tated with an× in the heatmaps), valuable clues for polypharmacological interventions
could be found. A working hypothesis might be to choose two drugs tackling different
aspects of a disease, for instance belonging to distinct ATC codes.

7.1.5 Limitations

Despite our best efforts, this study is not exempt from some shortcomings that are
common in data analysis, and regard mainly the data availability and quality. This
could have led us to miss some promising compounds and, at the same time, it may
compromise some of the analyses.
A complete characterization of all available drugs and human proteins is surely not
at hand, and this has repercussions on many aspects of the study, like, e.g., the human

125



7 Predictive Models

Figure 7.6. Escitalopram and Tofacitinib Complementary Exposure. The network displays the
proteins associated to MS (circles) and highlights those targeted by escitalopram and tofacitinib (dark
green and dark blue, respectively). Targets that are not related to MS are indicated as triangles. In
order to better illustrate the influence of these two molecules given by the tight interconnection of
the proteome, the first neighbors of the drug targets are depicted in a lighter color (light green for
neighbors of targets of escitalopram, and light blue tofacitinib’s ones).
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protein-protein interactome construction, drug association to biological processes, cel-
lular components, molecular functions and phenotypes, and drug induced gene expres-
sion profiles retrieval. Only sometimes, this issue could be partially mitigated by an
extensive integration of data from a wider variety of databases. Noteworthy, puzzling
examples could be the drug-target association and the availability of expression data
in LINCS. The number of targets associated to a specific drug could considerably de-
pend on the amount of research carried out on that medicine rather than on the actual
biological interactions it has. This influences the drug-disease proximity evaluation.
Additionally, as stated above, the LINCS database does not provide expression profiles
for all the drugs selected by network proximity, limiting by far the choice space for
drug repurposing.
Furthermore, if the knowledge we have about drugs is incomplete, the one we have
on their combination is even sparser. This, obviously, affects our ability to screen and
judge plausible associations.
Moreover, it could be argued that, even though the drug-disease proximity is evaluated
with a rigorous geometrical approach, the choice of the distance threshold we use for
discriminating drug efficacy is quite discretionary.

7.1.6 Conclusions

Here, we extended an unsupervised computational framework for drug repurposing
with a network-based analysis for screening the possible drug combination therapies.
Applying this pipeline to HD and MS, we identified several repurposable drug candi-
dates, some of which have already been studied in humans. Eventually, we ended up
with 138 potential drugs for HD and 38 for MS. Their plausible combinations are nu-
merous, but this work can help to prioritize them. While these results are exploratory
and should be experimentally verified before further consideration, they could provide
valuable clues for improving the management of HD and MS.
Finally, this pipeline demonstrated to be effective on both investigated diseases, even
though they have a different nature. For this reason, it could potentially provide new
suggestions also for other complex disorders.
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7.2 PATHOS and LOGOS

Here, it is presented the project that stands as the most complex and powerful,
marking the culmination of this PhD course.
This study transcends conventional network models by embracing the vast semantic
diversity of relationships among biomedical entities. Gathering vast datasets from di-
verse sources, spanning numerous entity types, we have integrated them to create the
comprehensive knowledge graph named PATHOS (PATHologies of HOmo Sapiens).
PATHOS serves as the foundation for our knowledge-driven predictions. Subsequently,
we implemented LOGOS (Learning Optimized Graph-based representations of Object
Semantics), a knowledge graph embedding model capable of generating predictions
relevant to drug research.
The choice of the name PATHOS pays homage to ancient Greek culture. In this con-
text, "pathos" (πάθoς) relates to emotions, sufferings and experiences. In the philo-
sophical tradition, "logos" (λóγoς) represents rationality and explanation. This aligns
seamlessly with the knowledge graph embedding model’s function of providing rea-
soned predictions based on the structured knowledge contained within the PATHOS
knowledge graph. In this pairing, LOGOS complements PATHOS by offering rational
insight into the depths of human sufferings.
PATHOS and LOGOS demonstrated their potential in three paradigmatic case stud-
ies (with a focus on neurological diseases): drug repurposing for Alzheimer’s disease,
phenotype selection for Huntington’s disease, and the identification of proteins linked
to multiple sclerosis.

Details

Authors Luca Menestrina, Maurizio Recanatini

Type Research Article

Status In Preparation

Data Availability The whole generated data is publicly available from the GitHub
repository https://github.com/LucaMenestrina/PATHOS_LOGOS, as well
as the full code for the collection, building and analysis. A detailed reference
of the source data is provided in the file "data/sources/sources.json" of
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the aforementioned repository (for every database are reported: name, version,
license, employed files, URL and date of access).
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Knowledge Graph and Machine Learning Help the Re-
search of Drugs Aimed at Neurological Diseases

7.2.1 Introduction

Traditional network models have been widely used to depict intricate interactions
within biomedical systems. Although these models have demonstrated impressive ca-
pabilities, they often face challenges in capturing the semantic complexity inherent
in the diverse relationships among biomedical entities. In response to this limitation,
recent approaches have embraced the use of multi-relational networks, such as knowl-
edge graphs (KG).[96]. KGs incorporate insights from expert-curated sources into a
structured graph format, where nodes correspond to biomedical entities, and edges de-
note the connections between them[16].
There are a lot of different heterogeneous biomedical pharmacological databases rep-
resentable by KGs, each specializing in a specific domain. These diverse datasets serve
a crucial role in progressing biomedical research, education, and diagnostic advance-
ments. Researchers leverage these resources for a multitude of applications, includ-
ing drug repurposing, as exemplified by Hetionet[97], ParmaKG[96], and PharMeBI-
Net[310].

KGs are employed in various sectors, driving extensive research into the ex-
traction of large-scale information from diverse sources. Nevertheless, it is widely
acknowledged that even the most sophisticated KGs exhibit incompleteness or im-
perfections.[61, 62] Consequently, researchers have explored diverse techniques to
correct inaccuracies and supplement missing information within KGs, often referred to
as Knowledge Graph Completion or Knowledge Graph Augmentation. The expansion
of KGs may involve extracting new facts from external sources, generating new facts
through experimentation, or inferring missing facts based on the existing KG.[19]
This latter approach, known as Link Prediction (LP), has emerged as a thriving
research domain, notably benefiting from the advancements in machine learning and
deep learning techniques. The majority of LP models harness KG components to
acquire low-dimensional representations, commonly referred to as Knowledge Graph
Embeddings (KGE), which are then employed for the inference of new facts.[19]
Unlike traditional machine learning algorithms that rely solely on feature vectors,
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Knowledge Graph Embedding Models (KGEMs) integrate an object’s relationships
into its representation. KGEMs predict new facts (triples) by leveraging the inherent
information within existing facts.[63]

As explained in Chapter 2, KGEMs generally necessitate the parameterization of
all nodes n ∈ N (entities) and edge types r ∈ R (relations).[63] Assuming vector
embeddings, shallow encoders map these sets to d-dimensional vectors fn : n → Rd

and fr : r → Rd. Importantly, these encoders scale linearly with respect to the number
of entities and relations, resulting in an entity embedding matrix with O(|N |) space
complexity.∗

This strategy can be effective when applied to small, standard benchmark datasets
such as Freebase[311] with approximately 15,000 nodes and WordNet[312] with
around 40,000 nodes. However, training on more extensive graphs, such as YAGO
3-10[313] featuring 120,000 nodes or WikiKG2[314] with approximately 2.5 million
nodes, presents significant computational challenges.
In a parallel with Natural Language Processing (NLP), shallow node encoding in KGs
resembles shallow word embedding, which learns a vocabulary of the most frequent
words while treating rarer ones as out-of-vocabulary (OOV). In NLP, the OOV issue
has been addressed by enabling the creation of infinite combinations with a finite
vocabulary, thanks to subword units. Inspired by this, similar strategies were explored
for tokenizing entities within large knowledge graphs (G = (N,E,R) constituted
of |N| nodes, |E| edges, and |R| relation types), resulting in a substantial reduction
in parameter complexity, improved generalization, and the natural representation of
new, previously unseen entities using a fixed vocabulary. To achieve this, tokenization
relies on atomic units analogous to subword units, rather than encompassing the entire
set of nodes.
In pursuit of this goal, NodePiece, introduced by Galkin et al.[315], presents an
anchor-based method for learning a fixed-size vocabulary V (|V| ≪ |N|) applicable
to any connected multi-relational graph. A selected subset of nodes (called anchors,
a ∈ A, A ⊂ N) along with all relation types, constitute the set of atoms, which
enables the representation of all possible nodes, with the construction of a combina-
torial array of sequences from a limited atom vocabulary (V = A ∪ R). In contrast to

∗ The emphasis is typically placed on entities since the number of relations |R| is usually orders of
magnitude smaller than |E|.
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shallow methods, each node n undergoes tokenization∗, resulting in a unique hash(n)†

formed by k closest anchors, za‡ discrete anchor distances and m immediate relations
(Figure 7.7). A crucial component for constructing a node embedding is the encoder
function enc(n) : hash(n) → Rd, which converts the result of the tokenization of a
node to its embedding, projecting it from R(k+m)×d to Rd.

hash(n) =
[{

ai
}k

,
{
zai
}k

,
{
rj
}m] (7.4)

Taking advantage of this method, the overall parameter allocation is now reduced to a

Figure 7.7. NodePiece Tokenization. Using three anchor points, a1, a2, and a3, a target node is
tokenized, resulting in a hash that includes the top-k nearest anchors, their respective distances to the
target node, and the relational context of outgoing relations from the target node. This sequence of
hashed information is encoded, generating a distinctive embedding. The addition of inverse relations
ensures network connectivity. Adapted from Galkin et al.[315]

small fixed-size atom vocabulary and the encoder function’s complexity ((k+m)× d

instead of |N| × d+ |R| × d).
Galkin et al.[315] demonstrated that employing a fixed-size NodePiece vocabulary
combined with a simple encoder still leads to competitive outcomes across various
∗ Representation of an element with a sequence of other entities called tokens. In NLP, a token is a

sequence of characters in some particular document that are grouped together as a useful semantic
unit for processing.

† A hash function is a mathematical function that takes data of variable sizes as input and produces
a fixed-size output.

‡ Given a graph G and a node n, the anchor distance zai
∈ [0, diameter(G)] with the anchor node

ai is defined as the shortest path distance between ai and n in the graph G.
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tasks, encompassing link prediction, node classification, and relation prediction. Ad-
ditionally, the use of anchor-based hashing enables to operate effectively in both in-
ductive settings and out-of-sample scenarios, accommodating unseen entities during
the inference phase.

In this work, we created a comprehensive KG that we named PATHOS (PATHolo-
gies of HOmo Sapiens) collecting and integrating data on relevant biological entities
from 24 distinct databases. Moreover, we developed LOGOS (Learning Optimized
Graph-based representations of Object Semantics), a KGEM capable of providing pre-
dictions based on PATHOS.
To evaluate the capabilities of LOGOS, we carried out three crucial case studies: drug
repurposing for Alzheimer’s disease (AD), phenotype selection for Huntington’s dis-
ease (HD), and the identification of proteins related to multiple sclerosis (MS). These
studies showcase the potential of our integrated KG and KGEM to address pressing
issues in the field of drug research.
Neurological disorders, like AD, HD, and MS, have profound implications for human
health and well-being, resulting in significant suffering and disability. Yet, despite
decades of research, effective treatments for these conditions remain elusive. There-
fore, our work not only contributes to advancing scientific understanding but also holds
the promise of assisting in the development of innovative solutions for these and other
diseases.

7.2.2 Methods

7.2.2.1 KG Construction (PATHOS)

The analysis of biological systems, diseases, and therapies necessitates the inte-
gration of data from various sources. This integration poses unique challenges, prin-
cipally consisting by the diverse formats and conflicting identifiers employed by each
data source. Our approach to addressing these challenges is detailed in the subsequent
sections on Data Collection and Data Integration.

Data Collection PATHOS draws upon a collection of data from 24 public databases
(see Table 7.1 and Table C.2) renowned for their high-quality structured information
pertaining to relevant biological entities. Our data collection exclusively focused on
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Homo sapiens.
The source data, stored in a variety of formats, required the development of unique

parsers for each data source to enable their transformation into a standardized file for-
mat suitable for integration.

Data Integration After standardizing the data, we conducted a merging process, dur-
ing which duplicate entries were eliminated to prevent redundancy, while maintaining
data integrity. This consistency was maintained by mapping all listed entities to offi-
cial identifiers, including NCBI Entrez ID, MONDO, DrugBank, and more (For the
complete reference, please see Table 7.1).
As a result of this integration effort, we generated a TSV (Tab-separated values) file
having eight columns (subject, relation, object, subjectName, objectName, subject-
Type, objectType, source) and 4,487,349 rows.

7.2.2.2 KG Embedding Model (LOGOS)

We utilized PyKEEN (Python KnowlEdge EmbeddiNgs, version 1.10.1), an open-
source Python package designed for KGEs.[327] This tool enables the construction of
KGEMs by offering a diverse range of interaction models, training methodologies, loss
functions, and the capacity to explicitly model inverse relations.
Indeed, within PyKEEN, a KGEM is constructed as a composite structure with four
key components:

1. Interaction Model: we chose NodePiece for its reduced memory footprint and
its capability of handling out-of-sample scenarios, as explained above).[315]

2. Loss Function: we applied the self-adversarial negative sampling (NSSA) loss
function as proposed by Sun et al.[328], since negative sampling has proven quite
effective for KGE[329].

3. Training Approach: in training under the open world assumption (OWA),
triples that are not included in the KG are treated as unknown, resulting in
over-generalization and poor model performance.[63] Instead, we opted for the
stochastic local closed world assumption (sLCWA), which considers a random
subset of head and tail generation strategies from LCWA as negative triples.
This choice offers several advantages, including reduced computational load,
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Database Content ID Format

1 NCBI[316] Protein NCBI

2 APID[283] Protein NCBI

3 BioGRID[284] Protein NCBI

4 HuRI[285] Protein NCBI

5 InnateDB[286] Protein NCBI

6 INstruct[287] Protein NCBI

7 IntAct[288] Protein NCBI

8 SignaLink[289] Protein NCBI

9 STRING[140] Protein NCBI

10 HPRD[317] Protein NCBI

11 PINA[318] Protein NCBI

12 UniProt[319] Protein NCBI

13 HGNC[320] Protein NCBI

14 PRO[321] Protein NCBI

15 DisGeNET[141] Protein, Disease NCBI,
MONDO

16 MONDO[322] Disease MONDO

17 DISEASES[276] Disease MONDO

18 Bgee[323] Protein, Anatomical Entities NCBI,
Various from Uberon

19 Uberon[324] Anatomy Various from Uberon

20 PathwayCommons[325] Pathway Various from PC

21 HPO[278] Phenotype Various from HPO

22 GO[277]
Molecular Function,
Biological Process,
Cellular Location

GO

23 DrugBank[114] Drug DrugBank

24 DrugCentral[326] Drug DrugBank
Table 7.1. PATHOS Sources. List of all the databases employed for the construction of the KG
PATHOS. The main type of content and the relative ID format are also reported. For a list of all the
individual files see Table C.2.
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minimal updates to embeddings, and flexibility for integrating new negative
sampling strategies.

4. Inverse Relations: we included inverse triples because they are necessary for
the employed version of NodePiece to maintain reachability of each node and
balance in- and out-degrees.∗

This extensive toolset within PyKEEN facilitated the development and fine-tuning of
LOGOS, our KGEM, to meet the specific needs of our research.

7.2.2.3 NodePiece

To optimize the hyperparameters for the NodePiece model, we utilized the dedi-
cated function offered by PyKEEN.
Among the most crucial parameters, we employed a 2-layer MLP aggregation encoder,
consistent with the NodePiece original paper (ReLU activation and dropout rate of 0.1).
The embedding dimension was set at 128, and we worked with 20 entity tokens and 5
relation tokens for each node. Our approach included a total of 10,000 anchors, 80%
of them were the top degree nodes and 20% were randomly selected. Negative triples
were generated corrupting positive triples with the Bernoulli method[330]. The train-
ing loop followed a stochastic local closed-world assumption, and the learning rate was
set at 0.0001.
Further details and additional hyperparameters can be found in Appendix C.

Interaction Functions Numerous embedding models specific for knowledge graphs
have been developed, primarily differing in the scoring of the plausibility of a given
triple. In this section, we provide a brief overview of the interaction (scoring) functions
explored in our study. These selected functions are well-established in the literature,
encompass diverse methodologies, and have started to be investigated within the field
of drug discovery.[331]

TransE TransE utilizes a straightforward vector summation in the latent space,
where the head entity embedding is added to the relation embedding, bringing the
∗ For each relation r ∈ R a corresponding inverse relation rinv is introduced. Consequently, the

task of predicting the head entity of a (r, t)-pair (thus: (?, r, t)) becomes the task of predicting the
tail entity of the corresponding inverse pair (t, rinv) (that means: (t, rinv, ?)).
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result close to the tail embedding:[332]

f(h, r, t) = −||h+ r − t||F (7.5)

Where F is typically either the L1 or L2 norm.∗

However, this method doesn’t effectively capture one-to-many, many-to-one, and
asymmetric relations in practical settings, as the embedding is accurate only when
each entity and relation appears in just one fact.

DistMult DistMult employs a vector for each relation type, represented as a di-
agonal square matrix to significantly reduce the parameter count.[333] However, this
means that it is constrained to model symmetric relations exclusively. Its scoring func-
tion is:

f(h, r, t) = h⊤diag(r)t (7.6)

ComplEx In ComplEx, the entity and relation embeddings are complex valued
(h, r, t ∈ CK , K being the dimensionality of the embeddings).[329] Its scoring func-
tion becomes:

f(h, r, t) = Re(h⊗ r ⊗ t) (7.7)

Where Re() takes only the real value from the complex number, and ⊗ is the standard
componentwise multi-linear dot product.†[334]
This allows ComplEx to handle both symmetric and asymmetric relations effectively.

RotatE Integrating concepts from various existing models, RotatE employs com-
plex valued embeddings for entities and relations. RotatE forces the modulus of the
relation vector to be 1 (∀i |ri| = 1), and operates in a way that the relation rotates the
head to tail entities.[328]

f(h, r, t) = −||h⊙ r − t|| (7.8)
∗ A norm (||x||), in mathematics, is a function mapping elements from a vector (x) to non-negative

real numbers. In a certain way, it behaves like a distance from the origin. In general, a p-norm (Lp,

with p a real number p ≥ 1) is: ||x||p :=
( n∑

i=1

|xi|p
)1/p

Which means that a L1 norm (the taxicab or Manhattan distance) is: ||x||1 =
∑
i

|xi|, and the L2

(Euclidean distance) is: ||x||2 =
√∑

i

x2
i

† (a⊗ b⊗ c) :=
∑

k akbkck
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Where ⊙ is the Hadamard product.
This design enables RotatE to handle various relation types, including symmetric,
asymmetric, inversion, and composition relations.

7.2.2.4 Learning Process

The learning process of LOGOS, as a supervised model, begins with the generation
of embeddings using a Multilayer Perceptron (MLP). This MLP encodes a hash of tok-
enized sequences of anchors for each node in the knowledge graph (see Section 7.2.1).
Subsequently, the model scores both positive and negative triples within the training
dataset, with the aim of ranking true triples higher than false triples. Parameters are up-
dated iteratively to minimize the loss during this learning process, and its performance
is evaluated on the validation set.

7.2.2.5 Training Strategy

To ensure robust model performance assessment, we employed a random split of
the initial dataset of triples into three distinct subsets: a training set (80% of the data),
a validation set (10% of the data), and a test set (10% of the data). This stratified parti-
tioning allowed us to perform rigorous hyperparameter optimization using the training
and validation sets. In the end, the model’s performance was evaluated on the test set,
which it had never encountered during training.
To account for stochasticity[335], we retrained each of the models five times and eval-
uated their performance on the same test set. The model that on average exhibited the
best performance was employed for the subsequent case studies (hyperparameters in
Appendix C).

7.2.2.6 Transductive Link Prediction

The task is that of link prediction, which involves the completion of triples of in-
terest either inserting the missing head or tail. Since no new entities are introduced in
the triples (the set of nodes in the knowledge graph remains unchanged), this task is
considered transductive.
During this phase, LOGOS leverages on the embeddings learned during the training
phase to score the triples completed with all the possibile entities in the KG, construct-

138



7.2 PATHOS and LOGOS

ing a ranking based on the results.

7.2.2.7 Evaluation Protocol

In our evaluation process, we implemented a ranking procedure. To assess the
model’s performance, each validation or test triple underwent a corruption process, in
which the head entity hi was removed and replaced by each entity ei ∈ E\hi in turn.
Subsequently, we calculated a score for each triple, sorted these scores in ascending
order to determine the rank of the correct triple (h, r, t), and then repeated this process
for the tail entity as well. The overall model performance was evaluated based on the
results of both head and tail corruption procedures (using the mean).
Our evaluation metrics included the mean reciprocal rank (MRR), its adjusted version
(AMRR)[336], and the fraction of correct entities in the top-k rank positions (Hits@k)
for various values of k: 1, 3, and 10, as well as the adjusted Hits@10.
Additionally, for downstream tasks, we incorporated another widely recognized metric:
the areas under the receiver operating characteristic curve (AUC-ROC).
We followed the approach proposed by Bordes et al.[332] ensuring that all corrupted
triples did not belong to the original dataset. Additionally, we considered the realistic
ranking, for which the rank of an entity is calculated as the mean of the optimistic rank
(where the entity is ranked first among those with equal scores) and the pessimistic
rank (where the entity is ranked last among those with equal scores), following the
method proposed by Berrendorf et al.[336]

7.2.2.8 Case Studies

In order to demonstrate the capabilities and versatility of PATHOS and LOGOS,
we applied them to three distinct case studies in the field of neurological diseases:
inferring novel drug candidates for repurposing, selecting plausible phenotypes, and
identifying disease-related proteins.
For each case study, we asked LOGOS to complete a triple, either suggesting the sub-
ject or the object. In response, it generated a ranked list of entities from the knowledge
graph, positioning the most promising candidates at the top. We then verified that
the correct entity types were prioritized, assessed the results against the known triples
available in PATHOS, and conducted a thorough literature search to find supporting
evidence for the top-ranked entities.
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Drug Repurposing for Alzheimer Disease We asked LOGOS to complete the triple
(?, indication, Alzheimer’s disease). Subsequently, we conducted a literature search for
evidence supporting the top 15 suggested drugs.

Huntington’s Disease Phenotype Prediction For this case study, the triple to com-
plete was: (Huntington disease, has_phenotype, ?). From the top 50 selected pheno-
types, we filtered out those present in the training or validation set, and ensured their
consistency with known symptoms and Huntington’s disease phenotypes.

Proteins Related to Multiple Sclerosis In this case study, we aimed to identify the
subject of the triple (?, related_to_disease, multiple sclerosis). To validate the cor-
rectness of the answer, we assessed the molecular functions and biological processes
enriched in the first 100 proteins within the ranking.
For gene ontology enrichment analysis, we leveraged PANTHER (v 17.0)[337], a pow-
erful and up-to-date tool that seamlessly integrates with the Gene Ontology (GO) web-
site. This system is well-maintained with current GO annotations, ensuring reliable
and comprehensive functional annotations. To assure robust results, only gene sets
with false discovery rate (FDR) p-values below 0.05 were included in the analysis.

7.2.3 Results and Discussion

In this section, we will delve into the outcomes of our study, showcasing the twofold
contributions of our work: the KG and the KGEM. First, we will provide a descriptive
analysis of the knowledge graph, then we will present three compelling case studies,
demonstrating the power of our model, focusing on neurological diseases.

Furthermore, we will present the results of our comparative analysis of interaction
functions, providing a clear rationale for our selection of the best-performing one for
the case studies.

7.2.3.1 Data Analysis

PATHOS, our comprehensive biomedical knowledge graph, represents a vast net-
work of interconnected information, encompassing 174,367 entities categorized into
17 distinct types. These entities are linked by 4,487,349 relations, spanning 158 unique
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types. Among the most prominent node types within PATHOS are proteins, biological
processes, diseases, anatomical entities, molecular functions, phenotypes, and drugs
(for a complete list check Table C.1). Particularly noteworthy are proteins, diseases
and drugs, with 61,862 protein entities, 23,232 disease entities and 8,282 drug enti-
ties.
This multifaceted knowledge graph serves as the foundation for our data-driven in-
vestigations, enabling us to explore and extract valuable insights in the fields of drug
repurposing and disease characterization.

Figure 7.8. PATHOS Metagraph. A graphical representation of the relationships and connections
within PATHOS

Figure 7.8 illustrates the metagraph, which is a graphical representation of the re-
lationships and connections within PATHOS. Notably, proteins, as the central entity
type with the most nodes and connections, play a pivotal role in shaping the structure
of this knowledge graph.
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7.2.3.2 Comparison of Interaction Functions

Table 7.2 provides an overview of the performances of several interaction functions,
all the models were trained with the same hyperparameters.

DistMult TransE ComplEx RotatE

AMRR 0.139 ± 0.008 0.036 ± 0.004 0.221 ± 0.014 0.175 ± 0.008

Adjusted Hits@10 0.237 ± 0.006 0.074 ± 0.007 0.369 ± 0.010 0.301 ± 0.005
Table 7.2. Interaction Functions Comparison. Adjusted mean reciprocal rank and adjusted
hits@10 scores for evaluating LOGOS with different interaction functions on the test set. Mean ±
standard deviation of 5 replicas.

Surprisingly, the best-performing model, ComplEx, is not the most recent one, RotatE
(which is second in line). In light of these results, we selected the ComplEx model
with the best AMRR for our subsequent case study predictions.

7.2.3.3 Drug Repurposing for Alzheimer’s Disease

Our evaluation of LOGOS’s performance involved multiple steps. Initially, we
verified its ability to prioritize drugs, which, in this case, is the correct entity type
for completing the triple. Remarkably, out of the first 1,000 proposed entities, 997
were indeed drugs, demonstrating LOGOS’s strong capability to prioritize them and
achieving a ROC-AUC of 0.99.
Subsequently, we focused on specific predictions for Alzheimer’s disease (AD) in-
dications. For drugs already linked to AD in PATHOS (Epicriptine, Donepezil,
Tacrine, Aducanumab, Galantamine, Ipidacrine, Rivastigmine, Acetylcarnitine), the
ROC-AUC reached 0.94, considering only the drugs in the ranking (otherwise the
ROC-AUC would have been of 1).
Table 7.3 shows the top 15 highest-scoring novel drug repurposing candidates for AD,
including the canonical name of the drug, evidence category and PMID (literature ref-
erence supporting the interpretation). Among these top 15 predicted drug candidates,
6 drugs are validated for treating AD based on literature evidence, while 2 candidates
exhibit a potential relationship with AD.
Some noteworthy examples include Daratumumab, Clomethiazole, and Fusidic
acid. Daratumumab, an FDA-approved human antibody targeting CD38 for mul-
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DrugBankID Drug Name Evidence Category PMID

1 DB01588 Prazepam

2 DB06470 Clomethiazole
Neuroprotective and

proposed
27129593[338],
24116891[339]

3 DB00541 Vincristine

4 DB00234 Reboxetine Neuroprotective in
animal model

31297718[340]

5 DB09331 Daratumumab In clinical trial

32144994[341],
33343293[342],
35300725[343],
35516416[344]

6 DB11089 Docusate

7 DB00625 Efavirenz Proposed 36581878[345]

8 DB02703 Fusidic acid Relateda 34537590[346]

9 DB00514 Dextromethorphan
Neuroprotective and
potential protective

effect against dementia
36113413[347]

10 DB06282 Levocetirizine

11 DB03754 Tromethamine Relatedb 8380642[348]

12 DB01551 Dihydrocodeine

13 DB06654 Safinamide Proposed 35001806[349]

14 DB06788 Histrelin

15 DB08877 Ruxolitinib

Table 7.3. Prioritized Drugs for AD. 15 highest-scoring drug repurposing candidates for Alzheimer’s
Disease. It reports: DrugBank ID, canonical name, evidence category and literature reverence.

a Aggregation inhibitor and disaggregator of silk fibroin, it was suggested as a treatment for protein
aggregation disorders.

b Blocks amyloid beta channels, a mechanism that was proposed as a useful strategy for drug dis-
covery for treatment of AD

tiple myeloma, is currently in a phase two clinical trial (NCT04070378) for mild
to moderate AD due to its immunomodulatory effects on non-plasma cells and its
potential to cross the blood-brain barrier.[343] Clomethiazole, an anticonvulsant
with demonstrated neuroprotective properties, is considered a promising candidate
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for future combination therapies addressing neuronal injury[338] and could serve
as a lead compound for anti-neurodegenerative drug discovery[339]. Fusidic acid
is of particular interest as it aligns with one of the key theories about Alzheimer’s
disease etiology: protein aggregation. Indeed, this compound has been suggested as a
therapeutic approach for protein aggregation disorders.[346]

7.2.3.4 Huntington’s Disease Phenotype Prediction

The top 5,967 entities (over 174,367 possible entities) in the ranking were pheno-
types, reaffirming LOGOS’s ability to determine the appropriate entity type for com-
pleting the triple.
Focusing solely on phenotypes, the ROC-AUC for those already cataloged in PATHOS
reached 0.97.
Among the first 50 phenotypes (see Table C.3), 14 were part of training sets (with
none in the validation nor test sets). Impressively, an additional 16 matched descrip-
tions found in relevant literature references: dementia, tremor, muscle spasm, abnor-
mality of extrapyramidal motor function, dysarthria, shuffling gait, ataxia, postural
tremor, generalized-onset seizure, drooling[350, 351], abnormal autonomic nervous
system physiology[352], abnormality of somatosensory evoked potentials[353, 354],
muscle weakness[355]. This outcome not only validates LOGOS’s capabilities, but can
also suggest potential research avenues for clinical applications, aiming to enhance the
anamnesis process.

7.2.3.5 Proteins Related to Multiple Sclerosis

Out of the entire pool of 174,367 entities, the model correctly prioritized proteins,
with the top 17,479 entities in the ranking belonging to this category, underscoring
LOGOS efficiency in identifying the appropriate entity type for the task.
For validating the gene ranking, we assessed the ROC-AUC for known ones in
PATHOS, resulting in a high score of 0.97.
To provide a more detailed assessment, we examined the first 100 proteins (see
list in Table C.4) in the ranking, carrying out a gene ontology (GO) enrichment
analysis. This analysis revealed strong associations with biological processes (see
Table C.5) related to MS: chronic inflammation regulation or response (chronic
inflammatory response to antigenic stimulus, regulation of chronic inflammatory
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response to antigenic stimulus), toll-like receptors (toll-like receptor TLR6:TLR2 sig-
naling pathway), macrophage (positive regulation of cellular response to macrophage
colony-stimulating factor stimulus), vitamin D (positive regulation of vitamin D
biosynthetic process, positive regulation of calcidiol 1-monooxygenase activity).
Concerning molecular functions related to MS (see Table C.6), the analysis identified
relationships with: anandamide (anandamide 11,12 epoxidase activity, anandamide
8,9 epoxidase activity, anandamide 14,15 epoxidase activity)[356, 357], death receptor
(death receptor agonist activity)[358], NAD (NAD+ nucleotidase, cyclic ADP-ribose
generating, NAD(P)+ nucleosidase activity)[359, 360], MHC class II (MHC class II
protein complex binding)[361].

7.2.4 Limitations

The project, while achieving its core objectives, is not without limitations. Some
difficulties are common to many data science initiatives and relate primarily to data
availability and model development. For instance, information regarding all biologi-
cal entities remains unavailable, and the data (and consequently the relations) we do
possess is notably skewed towards the most extensively studied entities. Additionally,
incoherence of entity identifiers among source databases can result in errors during
data integration and linkage. Moreover, the stability and maintenance of the source
databases used for PATHOS are essential for keeping it up-to-date. Any disruptions or
inconsistencies in these source databases may affect the quality of the KG.
While PATHOS is comprehensive, there may still be valuable data types, such as chem-
ical and physical information, side effects or druggability, that are not included. The
absence of certain entity and relation types may limit the range of insights and predic-
tions that can be made.
On the model development side, LOGOS was thoughtfully constructed and optimized.
However, like any model, there is room for improvement. Potential enhancements in-
clude exploring better encoding techniques, increasing embedding size, and optimizing
the selection of anchor entities for even more accurate predictions.
In summary, while the project has achieved its primary objectives, it is important to
recognize these limitations, and addressing them in the future could further improve
the capabilities of PATHOS and LOGOS.
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7.2.5 Conclusions

In conclusion, we gathered and integrated data on relevant biological entities from
24 distinct databases, creating the comprehensive knowledge graph PATHOS.
Additionally, we developed LOGOS, a knowledge graph embedding model, and eval-
uated its capabilities across three critical tasks: drug repurposing for Alzheimer’s dis-
ease, phenotype selection for Huntington’s disease, and the identification of proteins
related to multiple sclerosis.
LOGOS succeeded in each of these tasks, demonstrating its potential to help drug re-
search and foster innovative advancements in the field.
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8.1 Emergent Adverse Events in Single-pill Combina-
tions

This project was conducted during a research period at Chemotargets in Barcelona,
Spain. It was prompted by the Pharmacovigilance Risk Assessment Committee
(PRAC) warning (issued on the 30th September 2022) regarding serious renal, gas-
trointestinal, and metabolic toxicities associated with the combination of ibuprofen
and codeine.†

Leveraging the capabilities of the ClarityPV‡ pharmacovigilance platform, which has
been developed by Chemotargets to consolidate drug safety data throughout the entire
lifetime of a drug (including safety pharmacology, preclinical toxicology, clinical
safety, and postmarketing reports) the safety signals§ related to the ibuprofen and
codeine combination were examined. Prominent safety signals, namely renal tubular
acidosis and hypokalaemia, align with the PRAC warning, and these signals were not
associated with the individual drugs.
Encouraged by these initial results and recognizing the absence of a systematic ex-
ploration of safety signals for drug combinations versus individual drugs, this project
embarked on a comprehensive analysis of the integrity of medicinal products and
safety data within ClarityPV. The objective was to identify and rank all potential
safety concerns specifically related to drug combinations.

Details

Authors Luca Menestrina, Ricard Garcia-Serna, Jordi Mestres

Type Research Article

Status In Preparation
† https://www.ema.europa.eu/en/news/meeting-highlights-pharmacovigilance-risk-assessment-c

ommittee-prac-26-29-september-2022
‡ https://claritypv.com
§ A safety signal is the information on a new or known adverse event that is potentially caused by a

medicine and that warrants further investigation.
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Detection of Safety Signals for Fixed-dose Drug
Combinations

8.1.1 Introduction

The identification of adverse events associated with drug therapies is a critical as-
pect of pharmacovigilance, ensuring the safety and well-being of patients.[362] Fixed-
dose combinations, which consist of two or more drugs combined into a single formu-
lation, have gained popularity in medical practice due to their potential benefits such
as improved adherence and simplified dosing regimens.[363] However, it is crucial to
assess whether fixed-dose combinations pose any additional risks compared to their
individual drug components.

In this study, we aimed to investigate adverse events that are more frequently ob-
served in fixed-dose combinations compared to the individual drugs they contain. To
achieve this, we leveraged ClarityPV[364], a comprehensive pharmacovigilance plat-
form, and employed a computational algorithm specifically designed for this analysis.
This algorithm facilitated the systematic evaluation of large-scale pharmacovigilance
data, allowing us to identify and rank relevant triplets of drug combinations and asso-
ciated adverse events overrepresented when compared to the individual drugs.

8.1.2 Methods

8.1.2.1 Data Collection

Data was collected from ClarityPV, a comprehensive pharmacovigilance plat-
form developed by Chemotargets, integrating safety data across the entire lifetime of
drugs, including information on safety pharmacology, preclinical toxicology, clinical
safety, and postmarketing reports from various spontaneous reporting systems such
as FAERS (FDA Adverse Event Reporting System)[365], VigiBase[366], JADER
(Japanese Adverse Drug Event Report), and VAERS (Vaccine Adverse Event Report-
ing System)[367]. Data collection began by identifying all fixed-dose combinations
(here referred to as "single-pill" combinations) available in the ClarityPV database,
which represent specific drug formulations where multiple active ingredients are
combined into a single dosage form. Then the associated adverse drug reactions
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(ADRs) reported in patients who took these single-pill combinations were retrieved.
To ensure the reliability and quality of the data, reports with a high number of
molecules or ADRs (those exceeding the 99th percentile of their respective distri-
butions) were excluded, thereby eliminating outliers that could potentially bias the
analysis.
Additionally, cases in which the indication was erroneously reported as an ADR were
removed to eliminate potential data entry errors.

8.1.3 Metrics Computation

The Proportional Reporting Ratio (PRR) is a widely used pharmacovigilance met-
ric that measures the strength of the association between a specific drug (or drug com-
bination) and an adverse drug reaction.[368]
Given this contingency table:

Number of reports Analysed ADR All other ADRs

Analised drug a b
All other drugs c d

Table 8.1. PRR Contingency Table. The table shows the number of reports categorized by the
presence or absence of the adverse drug reaction (ADR) and the drug in study.

We can define the PRR as:
PRR =

a
a+b
c

c+d

(8.1)

PRRs were calculated for five different conditions: i) single-pill combinations
(when the fixed-dose drug is reported with the brand name), ii) individual drugs
within the combinations (also when only one of them is reported), iii) individual
drugs co-subministered (both the components of the fixed-dose are reported together,
irrespectively of the brand name), iv) exclusive combinations (when in the report ap-
pear only the drugs within the combination and no other substances), and v) exclusive
combinations without single-pills (when in the report appear only the drugs within the
combination, excluding the cases in which the brand name is reported).
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In order to compare the PRR obtained for the different conditions, we computed
the relative change:

relative change =
PRRsingle_pill −

n∑
i=1

PRRdrugn

n
n∑

i=1
PRRdrugn

n

(8.2)

This metric provides insights into the variation of PRR between the single-pill and the
two individual drugs.

8.1.3.1 Filtering

To focus on the most relevant cases, the results were filtered based on a specific
criterion, ensuring that only the most relevant side effects were considered. After an-
alyzing the distribution of PRR values for each side effect across all drugs, all those
where the single-pill calculated value was not among the higher 25% were discarded
for that single-pill. With this, we kept only those side effects with high overreporting
in comparison to the general drug population.

8.1.4 Results and Discussion

The analysis of the pharmacovigilance data contained in ClarityPV yielded a rank-
ing of triplets, each representing a specific fixed-dose combination and its associated
adverse events at the highest causality level.
In this section, we present the findings obtained from our computational algorithm,
emphasizing its effectiveness in identifying relevant cases.

Within the dataset, a total of 43,208 triplets were identified, encompassing 551
single-pill fixed-dose combinations and 543 individual drugs, forming the basis for
our analysis. The most frequently observed individual drugs included hydrochloroth-
iazide (3,706 instances), amlodipine (1,860 instances), paracetamol (2,493 instances),
aspirin (1,635 instances), metformin (1,723 instances), and ethinylestradiol (1,648 in-
stances).
These drugs are commonly used in clinical practice, with hydrochlorothiazide and am-
lodipine primarily prescribed for hypertension management, paracetamol and aspirin
serving as analgesics, metformin being a widely used oral antidiabetic medication, and
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ethinylestradiol being a component in many hormonal contraceptives.
Shifting our attention to ADRs, our analysis detected a total of 1,044 distinct ADRs
associated with the analyzed triplets. Notably, the three most prevalent ADRs, namely
drug reaction with eosinophilia and systemic symptoms syndrome (519 instances),
hypersensitivity (494 instances), and anaphylactic reaction (485 instances), represent
typical reactions to extraneous substances in the body. However, more serious ADRs,
including neuroleptic malignant syndrome (406 instances), acute pancreatitis (388 in-
stances), noninfectious encephalopathy/delirium (375 instances), and cardiomyopathy
(373 instances), followed these more generic and classic reactions.

The ranking order for the identified triplets was determined based on the relative
change, which served as a measure of the increase of adverse event occurrence for
fixed-dose combinations compared to the baseline incidence for the corresponding in-
dividual drugs.
Considering a threshold of 1 for the relative change can be convenient as it directs the
attention to cases where the adverse event occurrence for a drug combination is at least
twice as high as the mean of that for the individual drugs, ensuring that associations
with a more pronounced increase in risk are prioritized. By applying this criterion to
filter the results, we detected 3402 triplets relating single-pill combinations and over-
represented adverse events. These associations involved 828 adverse events for 378
single-pill combinations.

Notably, our findings align with previously reported cases documented in the liter-
ature (some relevant examples are presented in Table 8.2), providing validation for the
accuracy of the algorithm in identifying known adverse events.

Before delving into the literature-backed triplets, it could be worth it to inspect the
first entries of the ranking. In most of these initial cases, the lack of substantial medical
evidence to demonstrate that the ADRs are overrepresented in the single-pill combi-
nation compared to the individual components can be reasonably explained.
For instance, the first most frequent single-pill combination in this set, which involves
ciprofloxacin, dexamethasone, displays a relatively high incidence of ear-related ADRs
(Ear infection, Ear swelling, Tympanic membrane perforation, Ear discomfort, Ear
pain). However, upon closer examination, these ADRs might be better characterized
as indications rather than side effects of the medication. A similar interpretation can be
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Drug1 Drug2 ADR
Drug1
PRR

Drug2
PRR

Single-pill
PRR

Relative
change

43 ibuprofen codeine Renal tubular
acidosis

11.43 4.42 211.12 25.64

232 tinidazole norfloxacin Fixed eruption 58.86 33.92 414.83 7.95

305 tinidazole norfloxacin Drug eruption 15.52 6.80 86.63 6.76

363 ibuprofen codeine Metabolic
acidosis

3.41 2.31 19.43 5.80

393 olanzapine fluoxetine Hyperlipidaemia 8.96 3.18 38.78 5.39

439 naproxen esomeprazole Renal failure 3.69 12.02 47.37 5.03

472 ibuprofen codeine Hypokalaemia 0.89 1.48 6.91 4.83

534 tinidazole norfloxacin
Severe cutaneous

adverse
reactions (SMQ)

4.00 3.94 21.33 4.37

622 olanzapine fluoxetine
Blood

triglycerides
increased

18.26 2.76 51.33 3.88

711 olanzapine fluoxetine Blood cholesterol
increased

8.87 2.73 25.88 3.46

777 fluorouracil folinate Conjunctivitis 1.85 1.88 7.99 3.27

1040 fluorouracil folinate
Conjunctival

disorders (SMQ)
0.97 1.13 3.73 2.56

1174 naproxen esomeprazole
Renal toxicity

(DME)
2.32 7.88 16.82 2.30

Table 8.2. Relevant Emergent ADRs. The table shows some relevant examples of fixed-dose com-
binations presenting an adverse drug reaction that is overrepresented compared to the individual
drugs.

applied to the third most common entry, which includes gentamicin and prednisolone,
where Conjunctivitis (but also Keratitis and Eye pain) may be inherent to the drug’s
intended use.
Considering the fourth most frequent entry, a combination of aspirin and omeprazole,
some ADRs such as Aspirin-exacerbated respiratory disease, Asthma/bronchospasm
(smq), and Nasal polyps, are typical (they have a high PRR) also of aspirin use alone.
On the other hand, there are also cases that could be worth a more thorough analysis.
A relevant example is the combination of naloxone and hydromorphone, which ap-
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pears to be strongly linked to gastrointestinal bleeding (Haematochezia, Gastrointesti-
nal haemorrhage (smq), Ischaemic colitis (smq), Haemorrhage terms (excl laboratory
terms) (smq)). This association is not as pronounced when considering the individual
drugs separately.

Within the following results, several noteworthy findings have emerged. In par-
ticular, we have identified key cases that validate the accuracy of our approach and
provide further insights into the safety profiles of fixed-dose combinations.
One of the key outcomes is the presence of cases involving ibuprofen and codeine,
which were the focus of scrutiny by the European Medicines Agency’s Pharmacovigi-
lance Risk Assessment Committee (EMA PRAC) that motivated this project.∗[369] It
is interesting to notice that the case of these two drugs, associated with renal tubular
acidosis, occupies the position 42 in the ranking, which is the highest among the cases
that we found having evidence in the literature.
Furthermore, four other notable examples have emerged from our analysis.
The combination of olanzapine and fluoxetine was found being implicated in the
worsening of total cholesterol and triglyceride levels.[370] This is reflected in the
identified adverse drug reactions, such as increased blood triglycerides, increased
blood cholesterol, and hyperlipidemia.
Another noteworthy finding involves the combination of fluorouracil and folinate,
which has been associated with conjunctivitis and conjunctival disorders.[371]
Similarly, the combination of tinidazole and norfloxacin has shown an association with
skin hyperpigmentation, drug eruption, and severe cutaneous adverse reactions.[372–
374]
However, probably, the most significant and clinically relevant case we have iden-
tified is the association of naproxen and esomeprazole with renal failure. Notably,
this combination has received attention from the EMA, leading to the issuance of
a PRAC assessment report that states that the causal relationship between the es-
omeprazole/naproxen and tubulointerstitial nephritis (with possible progression to
renal failure) is at least a reasonable possibility and instructs the amendment of the

∗ https://www.ema.europa.eu/en/documents/prac-recommendation/new-product-information-w
ording-extracts-prac-recommendations-signals-adopted-26-29-september-2022_en.pdf
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information associated to products containing these drugs.∗

These findings underscore the potential utility of the proposed computational algo-
rithm in aiding the identification of emergent adverse events.

8.1.5 Limitations

Despite our best efforts, this study is not exempt from certain limitations commonly
encountered in pharmacovigilance report analyses. The first one is about the quality
of the reports analyzed, including factors such as completeness, order, and cleanness.
Due to the reliance on spontaneously reported ADRs, the accuracy and consistency of
the information within these reports may vary. Furthermore, this study did not consider
the dosage of individual drugs, which could potentially influence the occurrence and
severity of adverse events in drug combinations. Additionally, in the process of ana-
lyzing pharmacovigilance reports, the indication of a drug is sometimes erroneously
reported as ADR. Another limitation is the inherent variability in the number of re-
ports available for individual drugs or single-pill formulations, which could impact the
robustness of the analysis. Finally, it is worth noting that this study focused on combi-
nations of two molecules, so potential interactions involving more than two molecules
were not considered. Despite these limitations, the findings of this study provide valu-
able insights into detecting emerging adverse events in drug combinations, but further
research is warranted to address these limitations and enhance the comprehensiveness
and accuracy of such analyses.

8.1.6 Conclusions

In conclusion, this study successfully developed and implemented a computational
algorithm aimed at identifying adverse events specific to fixed-dose drug combina-
tions that were highly overrepresented when compared to the individual drugs. The
consistency between our findings and prior knowledge indicates the reliability and ef-
fectiveness of the computational approach employed in this investigation.

The first entries in the ranking challenge us to distinguish unique ADR profiles
∗ https://www.ema.europa.eu/en/documents/psusa/esomeprazole/naproxen-cmdh-scientific-concl

usions-amendments-product-information-implementation-timetable-psusa/00001270/202204
_en.pdf
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8.1 Emergent Adverse Events in Single-pill Combinations

in single-pill combinations versus individual components, underscoring the need for
a meticulous analysis to accurately identify and understand ADRs in the context of
combination therapies.
Despite this, at the top of our ranking, we detected 13 associations between single-pill
combinations and overrepresented adverse events that are supported by the literature.
These associations involved 13 adverse events for 5 single-pill combinations, including
top-selling pairs like ibuprofen-codeine, that had already been addressed by regulatory
agencies worldwide.

By uncovering specific combinations and associated adverse events, this research
provides valuable insights that can inform future studies and facilitate informed clin-
ical decision-making in the realm of drug safety and pharmacovigilance. Moreover,
the methodology employed in this study holds promise as a foundation for the de-
velopment of a tool capable of promptly raising alerts regarding disproportionately
reported adverse drug reactions in fixed-dose combinations compared to their individ-
ual drug components, greatly enhancing pharmacovigilance efforts. These findings
also emphasize the need for continued monitoring and evaluation of fixed-dose drug
combinations as they are prescribed to the population.

With this work, we lay the groundwork for future investigations and highlight the
necessity of collaborative efforts among researchers, healthcare professionals, and reg-
ulatory agencies to ensure the safe and effective use of fixed-dose drug combinations
in clinical practice. Through comprehensive pharmacovigilance measures and collab-
orative research, we can improve patient safety and optimize the use of fixed-dose drug
combinations, ultimately enhancing the quality of healthcare delivery.
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9 Outcomes and Future Perspectives

In this thesis, applications of network theory and machine learning to drug re-
search are presented, showcasing their multifaceted potentialities in advancing our
understanding of complex biological systems. The research efforts were grounded in
the pursuit of knowledge at the intersection of network theory, computational meth-
ods, and drug research. As this study comes to a conclusion, the key contributions,
findings, and implications derived from this research are distilled.
The initial goal, as stated in chapter 4, was to leverage available biomedical knowledge
to explore novel approaches supporting drug research. The studies have yielded
practical solutions that address challenges in the field. These solutions have not only
offered insights into the complexities inherent to biological systems but have also
provided valuable tools to navigate and manipulate these intricacies.

More specifically, the outcomes drawn from each project are:

COVIDrugNet COVIDrugNet, a web application that allows users to capture a holis-
tic view and keep up to date on how the clinical drug research has responded to the
SARS-CoV-2 infection was developed.
Careful analyses of the COVID-19 drug-target system, based on COVIDrugNet, can
help to understand the biological implications of the proposed drug options, and even-
tually improve the search for more effective therapies.

DEGA DEGA, a python package for differential gene expression analysis was pro-
posed. It also includes the capability of identifying key regulatory genes (switch genes)
which are likely to play a pivotal role in driving significant changes across various bi-
ological contexts. The application of this tool revealed critical regulatory genes with
potential implications for understanding and treating glioblastoma.

Drug-induced Impulsivity Taking advantage of the FDA Adverse Events Report-
ing System, pivotal events driving the exacerbation of drug-induced impulse control
disorders associated to aripiprazole and pramipexole were identified, primarily encom-
passing psychiatric, social and metabolic events.
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9 Outcomes and Future Perspectives

Unsupervised Pipeline for Drug Repurposing An automated pipeline for identify-
ing potential repurposable drugs and combinations was presented. It eventually col-
lected a number of plausible opportunities to treat Huntington’s disease and multiple
sclerosis.

PATHOS and LOGOS A comprehensive KG about relevant biological data was
built, and a GML model able to make predictions based on it was developed. This
KGE model has demonstrated its versatility by succeeding in tasks such as drug repur-
posing for Alzheimer’s disease, phenotype selection for Huntington’s disease, and the
identification of genes related to multiple sclerosis.

Emergent Adverse Events in Single-pill Combinations A computational algo-
rithm aimed at identifying adverse events specific to fixed-dose drug combinations
that are highly overrepresented when compared to the individual drugs was developed
and implemented.

The study, including each of the projects within it, is not immune to certain limi-
tations common in data analysis, regarding mainly data availability and quality.
The complete characterization of all biologically relevant entities remains a formidable
challenge, and this limitation reverberates across various aspects of the study. Partial
mitigation of this issue has been achieved through an extensive integration of data
from a diverse array of databases. However, it is evident that more data is imperative,
and while some may be obtained by organizing unstructured data into more structured
machine-readable formats, a substantial portion will only be accessible through con-
ducting further experiments and assays. Moreover, the research, like a significant por-
tion of current endeavors, primarily centers on proteins, and it is essential to broaden
the focus to include additional omics, with particular attention to RNA.
It’s important to recognize that data in this field is in a perpetual state of evolution. On-
line resources, while beneficial for their capacity to facilitate updates, can pose limita-
tions when they become unavailable, potentially impeding the execution of pipelines,
either partially or entirely.

A pivotal aspect shaping the future of this research is the dynamic evolution of data
in this field. The expansion of data sources by adding more data, incorporating new
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data types, and correcting inaccuracies and mistakes is a continual process. Staying
up-to-date and adapting the research methodologies accordingly is paramount for stay-
ing at the forefront of drug research.
Another critical aspect is the quality and standardization of data, ensuring them is an
ongoing challenge. Collaborative efforts that focus on the curation and verification of
data can lead to more uniform, complete and higher quality data.
In addition, fostering collaboration with other researchers and promoting interdisci-
plinary studies is essential. Collaboration and knowledge exchange with researchers
from different fields would lead to a broader perspective, richer and more innovative
insights.
Ultimately, in this game, open science and open data play a pivotal role, they will guide
future research toward greater accuracy, comprehensiveness, and applicability.

In conclusion, this research underscores the value of data science and network-
based methodologies in addressing the complex effects of drugs on biological systems.
Looking ahead, and acknowledging the dynamic nature of scientific exploration, ded-
ication remains to adapt to evolving data and promote open science and data sharing
within the specialized domain. These efforts aim to foster a more profound comprehen-
sion of biological systems, ultimately facilitating the development of safer and more
effective drugs. This, in turn, contributes to the advancement of the field of drug re-
search.
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A COVIDrugNet

Table A.1. Fittings Evaluation. The table provides the log-likelihood and respective p-value for
each function fitted on every analyzed network. For the power-law function, the Kolmogorov-Smirnov
distance (D) is provided, and the fitting is considered plausible if the respective p-value is at least 0.1.

Drug Projection (Entire) Drug Projection

D p-value D p-value

Power-Law 0.07 2.4 ×10−1 0.05 3.3 ×10−1

Likelihood-ratio p-value Likelihood-ratio p-value

Truncated Power-Law -0.58 2.8 ×10−1 -8.01 6.3 ×10−5

Exponential 0.91 6.9 ×10−1 15.71 6.6 ×10−2

Stretched Exponential -0.42 5.8 ×10−1 -6.80 4.8 ×10−3

Lognormal -0.33 5.9 ×10−1 -5.92 7.1 ×10−3

Target Projection (Entire) Target Projection

D p-value D p-value

Power-Law 0.22 0.0 0.06 9.5 ×10−2

Likelihood-ratio p-value Likelihood-ratio p-value

Truncated Power-Law -329.39 0.0 -9.43 1.4 ×10−5

Exponential -349.29 1.0 ×10−21 -3.57 5.6 ×10−1

Stretched Exponential -397.78 1.66 ×10−54 -9.27 6.6 ×10−4

Lognormal -317.17 1.1 ×10−51 -8.86 1.1 ×10−3
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A COVIDrugNet

Figure A.1. Degree Distribution. The degree distributions of both the drug (a) and target (b) pro-
jections (red), compared to those of equivalent random graphs (blue). The last ones were generated
with the Erdős-Rényi model[33], keeping the same number of nodes and probability of edge creation
(ratio between the actual number of edges and the maximum possible edges) of the network they are
compared with.
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Figure A.2. Degree Distribution Fittings. The degree distributions of the entire drug projection (a)
and entire target projection (c) networks, and of the corresponding graphs in which all nodes except
Artenimol, Fostamatinib and their exclusive direct neighbors were present (b and d, respectively). On
each distribution the following functions are fitted: power-law (orange), truncated power-law (green),
exponential (red), stretched exponential (violet) and lognormal (brown). In every chart the probability
density function (PDF, blue) is shown too.
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A COVIDrugNet

Figure A.3. Clustering Coefficient and Degree Relationship. The relationship between the clus-
tering coefficient and the degree of nodes in the entire drug projection (a), the entire target projection
(c) networks, and the corresponding graphs in which all nodes except Artenimol, Fostamatinib and
their exclusive direct neighbors were present (b and d, respectively).
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Figure A.4. Network Robustness. The comparison of the network diameter variation in response
to targeted attacks (in blue) and random failures (in orange). The investigation was carried out on the
entire drug projection (a), the entire target projection (c) networks, and the corresponding graphs in
which all nodes except Artenimol, Fostamatinib and their exclusive direct neighbors were present (b
and d, respectively).
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B Unsupervised Pipeline for Drug
Repurposing

Table B.1. Source Databases for the Human Protein-protein Interactome Construction.

Database Nodes Edges Filters Notes

APID 15,313 131,509
Quality level 1. Interactions proven by 2 or more

experimental evidences.

BioGRID 19,498 680,439

HuRI 8,185 51,941
Ensembl IDs mapped to

official gene symbols
using NCBI database.

InnateDB 15,495 166,882

Confidence score: NP ≥ 1. There is at least one
publication supporting the interaction that has never

been used to support any other interaction
(http://wodaklab.org/iRefWeb/faq).

INstruct 3,616 6,569

IntAct 4,136 7,853
Confidence value: intact-miscore ≥ 0.6. Threshold

for high confidence
(https://doi.org/10.1093/database/bau131).

SignaLink 16,484 324,688
Only if source is: SignaLink, ACSN, InnateDB,

Signor, PhosphoSite, TheBiogrid, ComPPI, HPRD,
IntAct, OmniPath.

STRING 16,916 415,645

Combined score ≥ 700. Threshold for high
confidence https://string-db.org/help/faq/#how-to-e
xtract-high-confidence-07-interactions-from-infor

mation-on-combined-score-in-proteinlinkstxtgz
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B Unsupervised Pipeline for Drug Repurposing

Figure B.1. Huntington’s Disease Enriched GO and HPO Terms. The bubbleplots display the
top most enriched Gene Ontology (A, molecular functions; B, cellular components) and Human Phe-
notype Ontology (C) terms for Huntington’s disease. On the horizontal axis, the fold enrichment is
shown. The color encodes the negative of the false discovery rate logarithm, and the size represents
the gene ratio (computed as the ratio of the percentage of genes in the study set related to a specific
term, divided by the corresponding percentage in the background, i.e., the entire human proteome).
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Figure B.2. Multiple Sclerosis Enriched GO and HPO Terms. The bubbleplots display the top most
enriched Gene Ontology (A, molecular functions; B, cellular components) and Human Phenotype
Ontology (C) terms for multiple sclerosis. On the horizontal axis, the fold enrichment is shown. The
color encodes the negative of the false discovery rate logarithm, and the size represents the gene
ratio (computed as the ratio of the percentage of genes in the study set related to a specific term,
divided by the corresponding percentage in the background, i.e., the entire human proteome).
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B Unsupervised Pipeline for Drug Repurposing

Figure B.3. Huntington’s Disease Gene-Target-Drug Network. The Sankey diagram illustrates the
interconnections between disease-related genes, drug targets, and drugs. Each drug (right column)
is connected to its reported targets (middle column), which, in turn, are proximal on the human inter-
actome to some of the disease-associated proteins (left column). Drugs are colored by the respective
ATC code, and the FDR of the IGSEA analysis (see Section 7.1.2) is reported in the label.
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Figure B.4. Multiple Sclerosis Drug Combinations. The annotated heatmap provides info about
possible combinations of the selected drugs. A combination is marked with × if an interaction is
reported in DrugBank, and with # if it is present in an approved formulation. The lower-left part of
the heatmap shows the separation of the inspected drugs, color coded from blue (no separation)
to red (strongly separated). The upper-right portion, instead, displays the kind of exposure: violet if
overlapping and green if complementary. At the leftmost part, the ATC codes of the drugs are reported
along with a dendrogram of their hierarchical clustering.

199





C PATHOS and LOGOS
Table C.1. Node Types in PATHOS.

Type # Nodes

protein 58908

biologicalProcess 27668

disease 23314

anatomicalEntity 14288

molecularFunction 11228

phenotype 8641

drug 8282

sequence 8067

proteinModification 4954

cellularComponent 4054

pathway 3968

proteinFamily 518

cell 226

proteinComplex 221

sequenceGroup 25

peptide 4

entityHavingProteicPart 1
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C PATHOS and LOGOS

Table C.2. Source Files for PATHOS.

Source License File Version

1 NCBI Public Domain Homo_sapiens.gene_info.gz 2023-07-04
(accessed: 2023-07-04)

2 APID CC-BY-NC 9606_Q1.txt accessed: 2023-07-04

3 BioGRID MIT BIOGRID-ORGANISM-4.4.223.tab.zip 4.4.223
(accessed: 2023-07-04)

4 HuRI CC BY 4.0 HuRI.tsv 2020-03-09
(accessed: 2023-07-04)

5 InnateDB
DESIGN SCIENCE

LICENSE
all.mitab.gz 2022-01-29

(accessed: 2023-07-04)

6 INstruct

All rights reserved
(Authorization obtained
by e-mail contact with

Haiyuan Yu
<haiyuan.yu@cornell.edu>)

sapiens.sin 2020-08-13
(accessed: 2021-10-05)

7 IntAct CC-BY 4.0 intact.zip 2023-06-03
(accessed: 2023-07-04)

8 SignaLink CC BY-NC-SA 3.0 slk3db_dump_json.tgz 2022-03-11
(accessed: 2023-07-04)

9 STRING CC BY 4.0 human.name_2_string.tsv.gz 2019-01-27
(accessed: 2023-07-04)

10 STRING CC BY 4.0 9606.protein.links.full.v11.5.txt.gz 2021-10-30
(accessed: 2023-07-04)

11 HPRD
Freely Available

for non-commercial
purposes

HPRD_FLAT_FILES_041310.tar.gz 2016-08-20
(accessed: 2022-05-30)

12 PINA

Freely Downloable
All Rights Reserved

(check with the
develop team

https://omics.bjcancer.org
/pina2012/contact.do)

Homo sapiens-20140521.tsv 2014-10-27
(accessed: 2022-05-30)

13 DisGeNET CC BY-NC-SA 4.0 disease_mappings.tsv.gz 2020-05-15
(accessed: 2023-07-04)

14 DisGeNET CC BY-NC-SA 4.0 curated_gene_disease_associations.tsv.gz 2020-05-07
(accessed: 2023-07-04)

15 MONDO CC BY 4.0 mondo.obo 2023-07-03
(accessed: 2023-07-04)

16 HPO Freely Available
(with conditions)

hp.obo accessed: 2023-07-04

17 HPO Freely Available
(with conditions)

phenotype.hpoa accessed: 2023-07-04

18 HPO Freely Available
(with conditions)

genes_to_phenotype.txt accessed: 2023-07-04

19 DISEASES CC BY 4.0 human_disease_knowledge_filtered.tsv 2023-07-02
(accessed: 2023-07-04)
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20 UniProt CC BY 4.0 HUMAN_9606_idmapping.dat.gz 2023-06-28
(accessed: 2023-07-04)

21 PathwayCommons

Freely Available,
under the license terms of
each contributing database
(www.pathwaycommons

.org/pc2/datasources)

PathwayCommons12.All.uniprot.gmt.gz 2019-09-18
(accessed: 2023-07-04)

22 HGNC Freely Available gene_with_protein_product.txt 2023-07-03
(accessed: 2023-07-04)

23 GO CC BY 4.0 goa_human.gaf.gz accessed: 2023-07-04

24 GO CC BY 4.0 go.obo accessed: 2023-07-04

25 PRO CC BY 4.0 pro_reasoned.obo 68.0
(accessed: 2023-07-04)

26 Uberon CC-BY 3.0 human-view.obo accessed: 2023-07-04

27 Bgee CC0 1.0 Homo_sapiens_expr_simple.tsv.gz 2021-02-15
(accessed: 2021-10-05)

28 DrugBank CC BY-NC 4.0 all-full-database 5.1.10
(accessed: 2023-05-23)

29 DrugCentral CC BY-SA 4.0 drug2disease.tsv 2023-05-10
(accessed: 2023-07-04)
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C PATHOS and LOGOS

LOGOS Hyperparameters

Batch Size : 256

Num Epochs : 100

Training Loop : sLCWA

Optimizer : Adam

Learning Rate : 0.0001

Loss : NSSA

Adversarial Temperature : 0.6868102318671975

Margin : 50

Model : NodePiece

Aggregation : MLP

Embedding Dimension : 128

Entity Initializer : Xavier Uniform

Interaction : ComplEx

Number of Tokens : 20, 5

Tokenizers :

Searcher : ScipySparse

Max Iter : 100

Selection : MixtureAnchorSelection

Number of Anchors : 10,000

Ratios : 0.8, 0.2

Selections : Degree, Random

Negative Sampler : Bernoulli

Number of Negatives per Positive : 100
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Table C.3. First 50 Phenotypes Selected for Huntington’s Disease.

ID Name Train Set Val Set Test Set

1 HP:0030015 Female anorgasmia

2 HP:0002072 Chorea

3 HP:0003324 Generalized muscle weakness

4 HP:0000716 Depression

5 HP:0000741 Apathy

6 HP:0002307 Drooling

7 HP:0002340 Caudate atrophy

8 HP:0002362 Shuffling gait

9 HP:0002174 Postural tremor

10 HP:0002529 Neuronal loss in central nervous system

11 HP:0002460 Distal muscle weakness

12 HP:0002071
Abnormality of extrapyramidal motor

function

13 HP:0001283 Bulbar palsy

14 HP:0012332
Abnormal autonomic nervous system

physiology

15 HP:0001336 Myoclonus

16 HP:0002151 Increased serum lactate

17 HP:0001332 Dystonia

18 HP:0002921
Abnormal cerebrospinal fluid

morphology

19 HP:0001288 Gait disturbance

20 HP:0008652 Autonomic erectile dysfunction

21 HP:0001260 Dysarthria

22 HP:0003387
Decreased number of large peripheral

myelinated nerve fibers

23 HP:0006801 Hyperactive deep tendon reflexes

24 HP:0000726 Dementia

25 HP:0002063 Rigidity

26 HP:0002922 Increased CSF protein concentration

27 HP:0002197 Generalized-onset seizure

28 HP:0030319 Weakness of facial musculature
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C PATHOS and LOGOS

29 HP:0012751
Abnormal basal ganglia MRI signal

intensity

30 HP:0001251 Ataxia

31 HP:0012416 Hypercapnia

32 HP:0100021 Cerebral palsy

33 HP:0000738 Hallucinations

34 HP:0003394 Muscle spasm

35 HP:0025331 Upgaze palsy

36 HP:0007377
Abnormality of somatosensory evoked

potentials

37 HP:0012670 Orthostatic syncope

38 HP:0001337 Tremor

39 HP:0011289 EEG with temporal sharp slow waves

40 HP:0001324 Muscle weakness

41 HP:0002120 Cerebral cortical atrophy

42 HP:0000737 Irritability

43 HP:0009045 Exercise-induced rhabdomyolysis

44 HP:0000488 Retinopathy

45 HP:0002141 Gait imbalance

46 HP:0000739 Anxiety

47 HP:0000511 Vertical supranuclear gaze palsy

48 HP:0000802 Impotence

49 HP:0410263 Brain imaging abnormality

50 HP:0040141 Tardive dyskinesia

Table C.4. First 100 Proteins Related to Multiple Sclerosis.

ID Name Train Set Val Set Test Set

1 TTR transthyretin

2 ALB albumin

3 TSNAX-DISC1
TSNAX-DISC1 readthrough (NMD

candidate)

4 MIR885 microRNA 885

5 POMC proopiomelanocortin

6 SHBG sex hormone binding globulin
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7 ADIPOQ
adiponectin, C1Q and collagen domain

containing

8 SLC10A2 solute carrier family 10 member 2

9 CYP2D6
cytochrome P450 family 2 subfamily D

member 6

10 TF transferrin

11 MIR99A microRNA 99a

12 MIR346 microRNA 346

13 CNR2 cannabinoid receptor 2

14 MIR505 microRNA 505

15 CYP2C8
cytochrome P450 family 2 subfamily C

member 8

16 TNF tumor necrosis factor

17 CP ceruloplasmin

18 CYP2B6
cytochrome P450 family 2 subfamily B

member 6

19 VEGFA vascular endothelial growth factor A

20 ACE2 angiotensin converting enzyme 2

21 GSTM1 glutathione S-transferase mu 1

22 IL6 interleukin 6

23 RBP4 retinol binding protein 4

24 MIR412 microRNA 412

25 CYP2E1
cytochrome P450 family 2 subfamily E

member 1

26 TLR4 toll like receptor 4

27 MIR433 microRNA 433

28 SLC30A6 solute carrier family 30 member 6

29 MIR766 microRNA 766

30 MIR192 microRNA 192

31 VKORC1
vitamin K epoxide reductase complex

subunit 1

32 MIR218-1 microRNA 218-1

33 HMOX1 heme oxygenase 1

34 DAOA D-amino acid oxidase activator

35 MTHFR methylenetetrahydrofolate reductase

36 TYK2 tyrosine kinase 2
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C PATHOS and LOGOS

37 HLA-DQA2
major histocompatibility complex, class

II, DQ alpha 2

38 GJB5 gap junction protein beta 5

39 MIR17 microRNA 17

40 IL10 interleukin 10

41 MIR98 microRNA 98

42 PTGS2 prostaglandin-endoperoxide synthase 2

43 PSCA prostate stem cell antigen

44 EDN1 endothelin 1

45 IGHG1
immunoglobulin heavy constant gamma

1 (G1m marker)

46 EPHX2 epoxide hydrolase 2

47 FGF2 fibroblast growth factor 2

48 FAXDC2
fatty acid hydroxylase domain

containing 2

49 TRH thyrotropin releasing hormone

50 OXT oxytocin/neurophysin I prepropeptide

51 SCN10A
sodium voltage-gated channel alpha

subunit 10

52 ERGIC3 ERGIC and golgi 3

53 MIR296 microRNA 296

54 TFF2 trefoil factor 2

55 MIR3622B microRNA 3622b

56 INS insulin

57 LRP2 LDL receptor related protein 2

58 PLCG2 phospholipase C gamma 2

59 NGF nerve growth factor

60 THBD thrombomodulin

61 TLR6 toll like receptor 6

62 MIR30B microRNA 30b

63 FCGR1A Fc gamma receptor Ia

64 SCD stearoyl-CoA desaturase

65 WT1 WT1 transcription factor

66 HLA-DPB1
major histocompatibility complex, class

II, DP beta 1
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67 MPO myeloperoxidase

68 GC GC vitamin D binding protein

69 SH2B3 SH2B adaptor protein 3

70 IGF2 insulin like growth factor 2

71 PRKCQ protein kinase C theta

72 IFNG interferon gamma

73 SLC22A1 solute carrier family 22 member 1

74 PROC
protein C, inactivator of coagulation

factors Va and VIIIa

75 UGT1A1
UDP glucuronosyltransferase family 1

member A1

76 FXYD6
FXYD domain containing ion transport

regulator 6

77 HP haptoglobin

78 SERPINA1 serpin family A member 1

79 HLA-DRB1
major histocompatibility complex, class

II, DR beta 1

80 MIR218-2 microRNA 218-2

81 TLR2 toll like receptor 2

82 PPARG
peroxisome proliferator activated

receptor gamma

83 ZAP70
zeta chain of T cell receptor associated

protein kinase 70

84 UCN urocortin

85 CHRNB2
cholinergic receptor nicotinic beta 2

subunit

86 MIR708 microRNA 708

87 MSR1 macrophage scavenger receptor 1

88 ATP1B2
ATPase Na+/K+ transporting subunit

beta 2

89 ABCB1
ATP binding cassette subfamily B

member 1

90 APOC3 apolipoprotein C3

91 SLCO1B1
solute carrier organic anion transporter

family member 1B1

92 HELLPAR
HELLP associated long non-coding

RNA
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C PATHOS and LOGOS

93 MIR629 microRNA 629

94 LRP1 LDL receptor related protein 1

95 MS4A1 membrane spanning 4-domains A1

96 CCR2 C-C motif chemokine receptor 2

97 C2 complement C2

98 IFNB1 interferon beta 1

99 EPO erythropoietin

100 RNASE3 ribonuclease A family member 3

Table C.5. First 10 Enriched Biological Processes.

ID Label Fold Enrichment FDR

1 GO:0002439
chronic inflammatory response

to antigenic stimulus
242.26 0.0028

2 GO:0038124
toll-like receptor TLR6:TLR2

signaling pathway
242.26 0.0028

3 GO:1990268 response to gold nanoparticle 242.26 0.0028

4 GO:1903974

positive regulation of cellular
response to macrophage
colony-stimulating factor

stimulus

242.26 0.0028

5 GO:0042496
detection of diacyl bacterial

lipopeptide
242.26 0.0027

6 GO:0060557
positive regulation of

vitamin D
biosynthetic process

242.26 0.0027

7 GO:0017187
peptidyl-glutamic acid

carboxylation
161.51 0.0042

8 GO:1904466
positive regulation of matrix
metallopeptidase secretion

161.51 0.0042

9 GO:0002874
regulation of chronic inflammatory response

to antigenic stimulus
161.51 0.0042

10 GO:0060559
positive regulation of

calcidiol 1-monooxygenase activity
161.51 0.0042
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Table C.6. First 10 Enriched Molecular Functions.

ID Label Fold Enrichment FDR

1 GO:0062188
anandamide 11,12
epoxidase activity

161.51 0.0239

2 GO:0062187
anandamide 8,9

epoxidase activity
161.51 0.0233

3 GO:0038177
death receptor
agonist activity

121.12 0.0321

4 GO:0062189
anandamide 14,15
epoxidase activity

121.12 0.0313

5 GO:0061809
NAD+ nucleotidase,
cyclic ADP-ribose

generating
45.42 0.0112

6 GO:0050135 NAD(P)+ nucleosidase activity 45.42 0.0104

7 GO:0008392
arachidonic acid

epoxygenase activity
45.42 0.0101

8 GO:0023026
MHC class II protein

complex binding
35.89 0.0022

9 GO:0070330 aromatase activity 27.95 0.0310

10 GO:0005179 hormone activity 18.93 0.0000
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