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Irene che è sempre stata presente in ogni momento di questo dottorato. A lei rivolgo un

grazie speciale per esserci sempre stata.

ii



Acronyms

ACC Accuracy. xi, 43

AI Artificial Intelligence. 6, 35

ALIF Adaptive Leaky Integrate-and-Fire. 30, 32, 42, 45, 46

ANN Artificial Neural Network. vi, 1– 3, 6, 7, 29, 33, 34, 36, 54, 56

AUC Area Under the Curve. 66– 68

BP BackPropagation. 11

BPTT BackproPagation Through Time. vi, 2, 36, 44

BSA Ben’s Spiker Algorithm. 33

CNN Convolutional Neural Network. vi, 3, 4, 9, 10, 59, 67, 69– 71

CPS Cyber-Physical System. vi, 2

D2QN Double DQN. 25, 56

DFT Discrete Fourier Transform. 39

DL Deep Learning. 1, 6, 7

DVS Dynamic Vision Sensor. vi, viii, x, 3, 54– 58, 62, 63

eLSNN embedded LSNN. vi, ix– xi, 3, 46– 52

FFT Fast Fourier Transform. 40, 47, 51, 52

IF Integrate-and-Fire. 30

LIF Leaky Integrate-and-Fire. 30– 33, 42, 55, 56, 58

iii



iv

LSNN Long Short-Term SNN. vi, ix, xi, 2, 3, 36, 39– 42, 44– 47, 49, 52, 53

LSTM Long Short-Term Memory. 36, 44

LTD Long-Term Depression. 33

LTP Long-Term Potentiation. 33

MC Monte Carlo. 22, 23

MCC Matthews Correlation Coefficient. ix, xi, 43, 46– 48

MDP Markov Decision Process. 16– 18

MEMS Micro-ElectroMechanical System. vi, 2, 3, 35, 36, 52

MLP Multi-Layer Perceptron. ix, 8, 9, 12

MSE Mean Squared Error. 22

ODE Ordinary Differential Equation. 1, 29

POMDP Partially Observable Markov Decision Process. 18

PPO Proximal Policy Optimization. 25, 27, 28

PSD Power Spectrum Density. 38

RL Reinforcement Learning. vi, 1– 3, 7, 16, 17, 21, 22, 54, 56, 62, 63, 68, 69

RNN Recurrent Neural Network. ix, 11

ROC Rank-Order Coding. 33, 40

SGD Stochastic Gradient Descend. 13

SHM Structural Health Monitoring. vi, xi, 1, 2, 35, 36, 49, 50, 52

SL Supervised Learning. 7

SNE Sparse Neural Engine. 55– 57, 59, 61, 62, 69, 70

SNN Spiking Neural Network. vi, ix, xi, 1– 4, 29, 33– 36, 38, 39, 41, 43, 44,

47, 52, 54– 61, 68– 71

SOD Send On Delta. 32

SPI Serial Peripheral Interface. x, xi, 3, 49– 52



v

STBP Spatio-Temporal BackPropagation. vi, 3, 59

STDP Spike-Timing-Dependent Plasticity. 33

TCN Temporal Convolutional Network. 36, 44

TD Temporal Difference. 23

TTFS Time To First Spike. 32

UAV Unmanned Aerial Vehicle. vi, 3

UL Unsupervised Learning. 7



Abstract

Spiking Neural Networks ( SNNs) are a type of Artificial Neural Networks ( ANNs)

inspired by the structure and function of biological nervous systems. Unlike traditional

neural networks, SNNs use discrete spiking signals similar to neuron communication

in the human brain. This characteristic makes them ideal for real-time processing and

energy-efficient applications in Cyber-Physical Systems ( CPSs). The event-driven

behavior of SNNs provides efficient information processing and decision-making capa-

bilities within CPS domains.

Advancements in Structural Health Monitoring (SHM) are driven by the conver-

gence of IoT and machine learning. Recent studies have shown that low-cost MEMS

accelerometers can effectively monitor vibrations, with neural networks analyzing data

streams. In this research, I propose utilizing SNNs to detect early damage in motorway

bridges. Particularly, Long Short-Term SNNs ( LSNNs) show promise but involve com-

plex learning processes. This study examines the feasibility of using LSNNs for SHM

and compares their accuracy in determining structural health to other ANN models and

training algorithms. The findings suggest that SNNs can effectively identify structural

damage with comparable levels of accuracy to ANNs trained using BackproPagation

Through Time and e-prop methods. Furthermore, I conducted a thorough analysis of

an optimized embedded LSNN that utilized spike-based and current-based input en-

coding. The former implementation demonstrated a 54% reduction in execution time

compared to naive versions. However, it should be noted that spike-based encoding ne-

cessitated larger input vectors, leading to longer pre-processing and sensor access times.

Ultimately, transitioning this coding approach to the sensor level offers great potential

for creating a more energy-efficient monitoring system.

Moreover, I investigate the application of SNNs in an obstacle avoidance task for a

Unmanned Aerial Vehicle (UAV) using a RL algorithm. The implementation involves

training the SNN directly and utilizing a DVS as an event-based input source. To per-

form RL, I employ an adapted Spatio-Temporal BackPropagation (STBP) algorithm.

I evaluate the performance of the SNN by comparing it to a Convolutional Neural

Network (CNN) performing the same task. Additionally, I develop and train embedded

implementations of SNNs to measure latency and throughput in real-world deployments.

In addition, to evaluating obstacle avoidance capabilities, a comparison between SNNs

and CNNs reveals that SNNs exhibit superior energy efficiency. Specifically, SNNs

demonstrate a 6x decrease in energy consumption compared to CNNs.
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Chapter 1

Introduction

Spiking Neural Networks ( SNNs), which are the third generation of Artificial

Neural Networks ( ANNs), have gained significant attention in recent years due to their

resemblance to neural structures found in mammalian brains. This sets them apart from

earlier generations of ANNs [2].

The fundamental distinction between traditional neural networks, classified as second-

generation ANNs, and SNNs lies in their central computational component - the neuron.

In conventional ANNs, neurons are characterized by activation functions that calculate

their outputs based on input values. Conversely, SNNs utilize spiking neurons that

are distinguished by a collection of Ordinary Differential Equations ( ODEs). These

ODEs describe the spiking neuron as a dynamic system, where the membrane potential

accumulates over time as a concealed variable. When this membrane potential crosses a

predetermined threshold in an upward trajectory, the neuron generates spikes known as

events. These spikes enable asynchronous communication among neurons, contrasting

with the synchronous interactions seen in traditional ANNs. This paradigm shift opens

up new possibilities for neural network architecture.

SNNs offer numerous benefits due to their inherent characteristics, including low

latency, fast inference speed, and energy efficiency. Additionally, the temporal aspect of

SNN neurons makes them highly effective in domains that rely on time series data such as

Natural Language Processing, Structural Health Monitoring (SHM), and Reinforcement

Learning (RL).

This thesis consists of several chapters that cover various aspects of Deep Learning

(DL), ANNs, and SNNs. In the first chapter, I provide background information on

DL and ANNs. The second chapter delves into the fundamentals of SNNs. Moving

forward, in the third chapter, I present my work utilizing SNNs for SHM data analysis.

1



Introduction 2

Additionally, in the fourth chapter, we explore my research combining SNNs with RL.

Finally, concluding remarks are discussed in the last chapter.

1.1 Contributions

In this thesis, I will discuss two distinct aspects of SNNs in the Cyber-Physical

System (CPS) field: SHM and Obstacle Avoidance. The focus of structural health

monitoring is on classifying time series data, while obstacle avoidance deals with dynamic

environments.

1.1.1 Spiking Neural Networks for Structural Health Monitoring

The field of SHM is rapidly advancing, combining the potential of the Internet of

Things and state-of-the-art machine learning technologies. Recent research has demon-

strated the effectiveness of low-cost MEMS accelerometers in monitoring building vi-

brations, with neural networks used for analyzing the generated data streams. In this

work, I propose a novel approach to SHM using SNNs applied to MEMS data for

early detection of infrastructural damages in a motorway bridge. SNNs are inspired by

the human brain and offer potential benefits such as compactness and energy efficiency

compared to traditional network models. Specifically, Long Short-Term SNNs ( LSNNs)

have shown great promise in analyzing data streams but require an involved learning

process.

This research investigates the viability of LSNNs for SHM and compares their

accuracy with other ANN models and training models. The results indicate that SNNs

can effectively determine if a structure is healthy or damaged, achieving similar levels

of accuracy as ANNs. To achieve this, BackproPagation Through Time (BPTT)

and e-prop were utilized as training algorithms. Additionally, it was observed that the

inference times meet the real-time demands of SHM.

In addition, this research introduces an innovative method for detecting damage to

infrastructure through the use of edge devices. By employing a novel algorithm inspired

by the human brain, the solution utilizes LSNNs which are known for their energy

efficiency and compactness. The goal is to accurately identify structural damage by an-

alyzing data from affordable Micro-ElectroMechanical System (MEMS) accelerometers

directly at the sensor node. One key aspect is optimizing how MEMS data is encoded

in order to enhance SNN performance on low-power microcontrollers. The performance

and energy consumption of LSNN on a hardware prototype sensor node, which utilized
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an STM32 embedded microcontroller and a digital MEMS accelerometer, were ana-

lyzed. An environment called Hardware-in-the-Loop was used to evaluate the system

using data generated by virtual sensors connected to the physical microcontroller via

an SPI interface. This allowed for the evaluation of the system using real viaduct data

streams. The study also explored different on-sensor encoding techniques that simulated

a bio-inspired sensor capable of generating events instead of accelerations.

The findings revealed that the optimized embedded LSNN (eLSNN), utilizing spike-

based input encoding, demonstrated a 54% reduction in execution time compared to a

naive LSNN algorithm implementation found in current literature. The optimized e

LSNN required approximately 47 kCycles, which is comparable to the data transfer

cost from the Serial Peripheral Interface (SPI) interface. However, the spike-based

encoding technique necessitated larger input vectors to achieve the same classification

accuracy, resulting in longer pre-processing and sensor access times. Overall, event-based

encoding techniques slightly increased execution times (1.49x) while maintaining similar

energy consumption levels. Transitioning this coding approach to the sensor level has

the potential to eliminate this limitation and create a more energy-efficient monitoring

system as a whole.

1.1.2 Spiking Neural Networks for Obstacle Avoidance

Recent research has highlighted the potential of SNNs to provide energy-efficient and

fast inference capabilities on neuromorphic hardware. These studies have demonstrated

that SNNs can achieve competitive performance in comparison to traditional ANNs

for various classification tasks.

In this research study, I present a novel approach to address the obstacle avoidance

task for an Unmanned Aerial Vehicle (UAV) using a RL algorithm implemented with

SNNs. My implementation leverages the use of a Dynamic Vision Sensor (DVS) as

an event-based input source. Unlike previous approaches that utilize hybrid SNNs

without direct training, my method involves training the SNN directly. To enable this,

I propose an adaptation of the Spatio-Temporal BackPropagation (STBP) algorithm,

specifically tailored for RL purposes. The key focus of my investigation is on comparing

the performance of the SNN with a state-of-the-art Convolutional Neural Network

(CNN) designed for solving the same obstacle avoidance task. For evaluation, I created

a realistic training pipeline based on the AirSim framework.

In order to achieve accurate measurements of latency and throughput in embedded

deployments, I have developed and trained three different versions of embedded SNNs.

These implementations showcase the latest advancements in neuromorphic technology.
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Apart from assessing obstacle avoidance performance, I also conducted a comparison

between SNN and CNN algorithms. The findings indicate that the SNN algorithm

surpasses the CNN in terms of energy efficiency, demonstrating a 6× reduction in

energy consumption. Additionally, I investigated various hardware implementations of

SNN and analyzed aspects like energy consumption and spiking activity to gain further

insights.
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Chapter 2

Deep Learning

DL is a branch of Artificial Intelligence (AI) in which we teach a computer how to

learn and to do “intelligent” things.

Initially, the approach was to stand in front of a whiteboard and brainstorm on how

to create a code that could handle all the possible cases. Then write the code, which

can involve hundreds of lines, to achieve the task or solve a problem. After a good

amount of tests and trials, you were finally able to get a working solution 100% of the

time. However, as problems and tasks became more complex, this traditional approach

of manually coding solutions proved to be insufficient.

The emergence of deep learning has revolutionized the field by enabling machines

to learn and make decisions without explicit programming. For instance, in weather

forecasting, deep learning algorithms can utilize satellite image history to predict future

weather conditions. Likewise, in healthcare, these algorithms can analyze various data

sources to understand a person’s clinical situation. Additionally, deep learning plays a

crucial role in developing self-driving cars that rely on real-time decision-making based

on sensory inputs. Deep learning algorithms excel at automatically identifying patterns

and extracting features from large datasets for making predictions or classifications.

To achieve this, we construct a comprehensive structure for the deep learning model

and expose it to thousands of data samples so that the model can effectively learn key

features from the input data. These techniques are commonly referred to as data-driven

approaches.

Deep learning algorithms, known as ANNs, draw inspiration from the structure of

the brain. Within these networks, computational units are referred to as neurons and

the connections between them are called synapses. Each synapse is characterized by a

weight that represents its importance or strength.

6
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2.1 Basics

DL algorithms are built upon the concept of ANNs, which are computational

systems inspired by the structure and function of the human brain. With DL, we can

solve different types of tasks depending on the input of the system and on the available

information. The three primary machine learning paradigms are Supervised Learning

(SL), Unsupervised Learning (UL), and RL.

Among all three paradigms, supervised learning is widely recognized as the most

common and renowned paradigm. In SL, a dataset with complete knowledge and labels

is available for analysis. For instance, if we have a picture of a dog and we are aware that

it represents a dog. SL can be effectively utilized for classification and regression tasks.

UL, on the other hand, involves datasets without associated labels or prior knowledge.

UL is often employed in clustering techniques to group data based on their features as

well as in dimensionality reduction approaches where data representations are condensed

into fewer dimensions. RL stands out as another significant paradigm wherein an agent

learns through interaction with its environment to maximize cumulative rewards. Unlike

in other paradigms, here the collected data results from various interactions conducted

by the agent within the environment; however, precise information about actions taken

becomes less certain while suggestions about possible actions emerge instead.

DL relies on certain key components, regardless of the task or learning paradigm

being used. These components include data, architectures (or models), objective func-

tions, and optimization algorithms. Data plays a critical role in the success of DL

algorithms. Each example or data point consists of a set of features (or covariance)

that serve as inputs for predicting outcomes. Architectures or models in DL refer to

the structure of neural networks designed for specific tasks. This structure facilitates

the transformation from input data to output data, such as converting an image into a

probability value indicating its classification within a particular class. Additionally, the

objective function establishes the desired outcome that the model aims for during train-

ing. Typically, we define functions where a lower value indicates better performance;

in this case, we refer to it as a loss function. Lastly, optimization functions are used

to update the parameters of the DL model and minimize its objective function. Mod-

ern optimization functions utilize the gradient descent method wherein parameters are

adjusted iteratively using gradients calculated from their respective objective functions

with respect to model parameters.
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Figure 2.1: Two layers MLP with 4 input features, 5 hidden neurons, and 3 output
neurons.

2.2 Architectures

Deep learning utilizes neural network architectures or models that encompass the

arrangement of layers, number of neurons, and connections to perform various tasks

such as image recognition and natural language processing. These architectures serve as

blueprints for the behavior and functionality of the neural networks, enabling them to

efficiently carry out specific machine learning tasks.

2.2.1 Multi Layer Perceptron

Multi-Layer Perceptrons ( MLPs) are the most basic form of deep networks. They

are comprised of multiple layers of neurons that are fully interconnected with the layer

below, receiving input, and influencing the layer above. In Fig. 2.1, an example MLP

is shown with four inputs, three outputs, and five hidden layers. This particular MLP

has two computation layers - one in the hidden layer and one in the output layer. The

forward step also referred to as inference, is executed by passing the input through each

layer in a neural network. This process involves calculating the affine transformation of

the input xxx ∈ Rd (in this example is just one sample) using the parameters of the first

layer WWW (1) ∈ Rh×d and bbb(1) ∈ Rh, denoted as zzz ∈ Rh:

zzz = WWW (1)xxx + bbb(1) (2.1)

Next, an activation function ϕ is applied to zzz to obtain output h:

hhh = ϕ(zzz) (2.2)

Finally, zzz ∈ Rq, which represents the output of the neural network, is obtained by

performing another affine transformation on hhh ∈ Rh using parameters WWW (2) ∈ Rq×h and
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bbb(2) ∈ Rq:

ooo = WWW (2)hhh + bbb(2) (2.3)

The weights, denoted as WWW , and biases, referred to as bbb, are considered parameters

in the network. These parameters undergo adjustments during the training process

to minimize the disparity between the predicted output of the network and the actual

output.

The affine transformation of an affine transformation is still an affine transformation:

ooo = WWW (2)(WWW (1)xxx + bbb(1)) + bbb(2) = WWW (2)WWW (1)xxx +WWW (2)bbb(1) + bbb(2) = WWWxxx + bbb (2.4)

However, relying solely on deep neural networks without incorporating non-linear

activation functions renders them ineffective in capturing complex relationships. This

limitation led to the introduction of non-linear activations, such as Eq. 2.2, which sig-

nificantly enhance the capabilities of neural networks in modeling intricacies and com-

plexities within data. Well-know activation functions are:

• ReLU [3]: ReLU(x) = max(x, 0)

• sigmoid: sigmoid(x) = 1
1+e−x

• tanh [4]: tanh(x) = 1−e−2x

1+e−2x

Neural networks with a single hidden layer have been recognized as universal approx-

imators due to their ability to learn any function. However, it is important to note that

this does not necessarily make them the optimal choice for all problem-solving scenarios.

In certain cases involving infinite-dimensional spaces, kernel methods have shown to be

more effective, as highlighted by the studies conducted in [5, 6]. Furthermore, deeper

networks can often lead to more efficient approximations of functions compared to wider

ones, as discussed in [7].

2.2.2 Convolutional Neural Networks

CNNs [8] are a specialized type of neural network that leverages the spatial re-

lationships in input data to discern patterns and features. This characteristic proves

especially beneficial when tackling tasks like image classification and object detection,

where the arrangement of pixels holds significance within the two-dimensional tensor

representation [9]. Furthermore, CNNs possess additional advantages: they exhibit a

reduced parameter count compared to MLP, and their architecture lends itself well to
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efficient parallelization on GPUs [10]. As a result, CNNs have gradually found applica-

tion in various one-dimensional domains such as audio analysis [11], text processing [12],

and time series analysis [13].

To ensure the algorithm’s ability to accurately classify images of dogs, even when

they are slightly rotated, scaled, or shifted, CNNs employ a moving path (kernel) that

traverses along the input axes in order to detect objects such as dogs. This spatial

invariance enables CNNs to respond consistently and identify the object regardless of

its position within the image. The principle behind this is called translation invariance.

Furthermore, CNN architectures emphasize different layers capturing specific in-

formation from an image based on their depths. The earlier layers focus on extracting

details from local regions of the image using locality principles while deeper layers aim

at identifying more complex and abstract features globally.

CNNs employ a mathematical convolution operation on the input data. In contin-

uous one-dimensional space, this operation is represented as:

(f ∗ g)(x) =

∫
f(zg(x− z)dz (2.5)

where the output value measures the overlap between two functions - one flipped and

shifted by x. However, in discrete spaces like images with two-dimensional tensors, we

need to modify the integral into a sum:

(f ∗ g)(i) =
∑
a

f(a)g(i− a) (2.6)

Therefore, we apply convolution along both axes for images:

(f ∗ g)(i, j) =
∑
a

∑
b

f(a, b)g(i− a, j − b) (2.7)

Images are not only characterized by their 2D tensor structure but also by their color.

In order to capture the full complexity of images, we aim to have a three-dimensional

representation. Instead of having just one hidden representation for each spatial posi-

tion, our goal is to have a vector of hidden representations associated with each spatial

position. These hidden representations can be visualized as multiple two-dimensional

grids stacked together, often referred to as “channels” or “feature maps”. Each channel

provides a spatially organized collection of extracted features for the subsequent layers.

As we move closer to the input layer, certain channels may specialize in edge detection

while others focus on recognizing textures. This hierarchical organization enables CNNs

to learn and remember intricate details [9].
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Figure 2.2: Example of RNN. On the left, the RNN is folded, while on the right, it
is unfolded.

2.2.3 Recurrent Neural Networks

Recurrent Neural Networks ( RNNs) are a class of deep learning models that aim

to capture sequential dynamics using recurrent connections. These connections, which

can be visualized as cycles within the network’s nodes, enable RNNs to extend their

predictions over multiple time steps or sequence steps. Unlike regular connections that

transmit activations from one layer to the next simultaneously within the same time step,

recurrent connections allow information to flow between adjacent time steps dynamically.

This means that when examining the unfolded representation shown in Fig. 2.2, RNNs

can be thought of as feedforward neural networks with shared parameters across these

time steps for both conventional and recurrent layers.

RNNs have demonstrated their effectiveness in various tasks such as handwriting

recognition [14], machine translation [15], and the recognition of medical diagnoses [16].

However, in recent times, RNNs have seen a significant shift in dominance, conceding

ground to Transformer models [17]. Nevertheless, it is important to acknowledge that

RNNs originally gained prominence as the preferred models for tackling intricate sequen-

tial structures in deep learning and continue to be fundamental models for sequential

modeling today.

2.3 Backpropagation

BackPropagation (BP) is a method for calculating the gradient of a neural net-

work’s parameters. It addresses the spatial credit assignment problem, which involves

determining which parameter should be adjusted to minimize the objective function

given an output. Backpropagation applies the chain rule from the output to the input of

each layer in order to calculate gradients for each layer’s parameters with respect to the

loss function. This process allows for efficient optimization and training of deep learning

models.

The initial step in applying the backpropagation algorithm involves performing a

forward pass. During this step, the inputs are fed into the neural network to compute



Deep Learning 12

the objective function. To illustrate, we will consider a two-layer MLP without biases.

Thus, the forward step can be described as follows:

zzz = WWW (1)xxx (2.8)

where the inputs of the neural network xxx ∈ Rd are multiplied by the first weight matrix

WWW (1) ∈ Rh×d. The resulting vector, zzz ∈ Rh, is then passed through an activation

function, denoted as ϕ, applied element-wise:

hhh = ϕ(zzz) (2.9)

hhh ∈ Rh which is the output of the previous layer, will be multiplied by the weights of

the second layer WWW (2) ∈ Rq×h to compute a final output vector denoted as:

ooo = WWW (2)hhh (2.10)

In order to assess how well our model performs on a single sample, we calculate the

loss term L using a specific loss function l, which takes into account both our predicted

outputs and corresponding labels:

L = l(ooo; y) (2.11)

The backpropagation algorithm enables us to efficiently compute gradients of the

network’s parameters with respect to L - that is, it computes how changes in each

parameter affect L:
∂L

∂WWW (2)
=

∂L

∂ooo

∂ooo

∂WWW (2)
=

∂L

∂ooo
hhhT (2.12)

∂L

∂hhh
=

∂L

∂ooo

∂ooo

∂hhh
= WWW (2)T ∂L

∂ooo
(2.13)

∂L

∂zzz
=

∂L

∂hhh

∂hhh

∂zzz
=

∂L

∂hhh
⊙ ϕ′(zzz) (2.14)

where ⊙ is an element-wise multiplication. Finally:

∂L

∂WWW (1)
=

∂L

∂zzz

∂zzz

∂xxx
=

∂L

∂zzz
xxxT (2.15)

2.4 Optimizers

Optimizers play a significant role in training deep learning models. These algorithms

are responsible for adjusting the model’s parameters (weights and biases) during training

to minimize the loss function and enhance the performance of the model on its given task.
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In deep learning, optimization is typically carried out through an iterative process where

the optimizer updates the parameters based on gradients obtained from calculating

changes in loss with respect to these parameters. Two well-known optimizer algorithms

that have gained popularity are the Stochastic Gradient Descend (SGD) and the Adam

algorithm [9].

2.4.1 Stochastic Gradient Descend

The widely adopted optimization algorithm in deep learning is SGD. Particularly

suited for handling large-scale datasets, it updates the model’s parameters using mini-

batches of training data [9]. At each learning step t, given the parameters θt, their

gradient ∇f(θt), and the leaning rate η, the update rule for these parameters can be

described as follows:

θt+1 = θt − η∇f(θt) (2.16)

The authors in [18] propose a method to compute the update by introducing a

momentum µ ∈ [0, 1]:

vt+1 = µvt − η∇f(θt) (2.17)

θt+1 = θt + vt+1 (2.18)

This additional term acts as a smoothing factor, similar to taking the mean, which

helps alleviate high-frequency variations in gradients.

2.4.2 Adam

Adam, introduced [19], is a widely embraced learning algorithm in the field of deep

learning. It combines features from SGD with momentum [18], Adagrad [20] optimizer,

and RMSProp [21] optimizer to create a powerful optimization algorithm. Despite its

popularity for its robustness and effectiveness, Adam faces challenges. For instance,

research conducted in [22] revealed instances where Adam could exhibit divergence due

to inadequate variance control. To address these issues, the authors of [23] proposed Yogi

as a solution for improving upon the limitations associated with Adam’s performance.
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2.5 Learning Paradigms

The term “learning paradigm” refers to a core methodology or framework through

which a machine learning system assimilates knowledge and generates predictions. These

paradigms establish the manner in which algorithms acquire insights from data and

create generalizations for accurate predictions and informed decisions.

2.5.1 Supervised Learning

Supervised learning refers to a category of tasks where there is a dataset consisting

of both input features and corresponding labels. The goal is to build a model that can

predict the labels based on the input features. Each example/sample in this context con-

sists of paired features and labels. The term “supervision” comes into play as experts or

supervisors provide the model with labelled examples to help determine optimal param-

eters. From a probabilistic perspective, we aim to estimate the conditional probability

of a label given input features.

Supervised learning is a fundamental paradigm in machine learning that serves as the

basis for many successful applications across various industries. This approach enables

us to estimate the probability of an unknown outcome based on specific available data,

making it applicable to tasks such as predicting cancer or non-cancer from an input

image, translating between languages, and forecasting stock values using historical data.

The learning process typically begins with the collection of a large dataset consisting

of examples, for which we have knowledge of their features. From this dataset, a random

subset is selected to obtain the ground truth labels for each example. This selected

subset, along with their corresponding labels, forms the training set. Next, this training

dataset is fed into a supervised learning algorithm, an algorithm that takes in a dataset

and outputs another function, known as the learned model. The learned model captures

patterns and relationships between inputs and outputs based on the provided data.

Finally, with the help of the learned model, predictions can be made for new inputs that

were not included in the original training set, usually part of the validation or test set.

By using the outputs generated by the model as predictions for these inputs’ respective

labels or outcomes.

2.5.1.1 Regression

A regression task is characterized by the nature of the target variable. For example,

consider a scenario where you are in the market for a new home and want to estimate
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its fair market value based on various attributes. In this case, the dataset would contain

historical home listings and their corresponding sales prices as labels. When the labels

can have arbitrary numerical values, it is referred to as a “regression” problem. The

main objective is to build a model that accurately predicts label values. Thus, regression

problems aim to answer questions such as “how many?” or “how much?”.

2.5.1.2 Classification

In classification tasks, the primary objective is for our model to analyze features, such

as pixel values in an image, and then make predictions concerning which category or class

the example belongs to from a discrete set of options. For instance, when recognizing

handwritten digits, there are typically ten classes corresponding to the digits 0 through

9. Binary classification occurs when there are only two classes involved; for example,

our dataset could consist of images of animals with labels assigned as either “cat” or

“dog”.

In contrast to regression, where the objective is to predict a numerical value, clas-

sification involves building a classifier that assigns predicted class labels. For instance,

in an animal classification scenario with classes {cat, dog}, a classifier may analyze

an image and generate a probability indicating whether it depicts a cat or not. This

probability can be interpreted as the confidence level of the classifier in its prediction

(e.g., 0.9 means 90% certainty). The magnitude of this probability reflects the model’s

uncertainty regarding the assigned class label.

When faced with a situation involving more than two potential classes, the problem

is referred to as “multiclass classification”. This type of problem often arises in tasks

such as recognizing handwritten characters, where the classes can range from 0 to 9

and include alphabets. In contrast to regression problems that aim to minimize squared

error loss, classification problems typically employ a different loss function known as

“cross-entropy”. The cross-entropy loss measures the difference between predicted class

probabilities and true class labels, making it ideal for training classifiers to accurately

assign classes.

2.5.2 Reinforcement Learning

Reinforcement learning is centred on the concept of optimizing a numerical reward

signal by learning how to take action. Unlike other forms of learning, where specific

actions are provided, reinforcement learning requires the learner to explore and discover

which actions yield the highest rewards through trial and error. This paradigm becomes
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Figure 2.3: The reinforcement training loop involves the agent taking an action at in
response to which the environment transitions and provides information about the new
state st as well as the reward received, denoted by rt.

more complex because not only these actions do impact immediate rewards but they

can also influence future situations and subsequent rewards. Trial-and-error exploration

and delayed reward outcomes are two defining features that distinguish reinforcement

learning from other approaches in machine learning.

To formally define the problem of reinforcement learning, we rely on principles from

dynamic systems theory. Specifically, we frame it as the optimal control of incompletely

known Markov Decision Process (MDP). The core concept here is to capture the fun-

damental aspects of the real challenge that a learning agent faces while interacting over

time with its environment in order to achieve a specific goal [24].

A learning agent must possess the capability to perceive and understand the state

of its environment to some degree. It should also be able to take actions that have an

impact on the state. Additionally, having one or more goals relating to the state of the

environment is crucial for effective decision-making [24].

MDPs encapsulate these three essential aspects (sensation, action, and goal) in their

simplest forms without oversimplifying any of them. Methods well-suited to tackle such

problems are considered reinforcement learning methods [24].

Reinforcement learning differs from supervised learning in several key ways. Firstly,

RL agents do not have access to a labelled dataset or an expert for guidance, which

means they lack an oracle. Secondly, the feedback received by RL agents is often

sparse, meaning that the neural network does not receive a reward at every timestep.

Finally, instead of relying on pre-existing labelled data, RL agents generate their own

data through interaction with the environment during training [25].

2.5.2.1 Basics

Reinforcement learning problems are commonly represented as a system consisting

of an agent and an environment. The generic RL loop, depicted in Fig. 2.3, illustrates

the iterative nature of RL. Agents, such as drones, cars, robots, humans, or neural
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networks interact with their environments and produce actions that induce changes

within them [25]. Simulators play a crucial role in RL by emulating agents and their

respective environments. As presented in Figure Fig. 2.3, the agent selects actions (at)

based on its policy function (π), which determines its decision-making process. These

chosen actions modify the environment through specified transition functions. During

this interactive process, feedback is received from the environment to evaluate the quality

of selected actions via rewards (rt) and updates regarding the new state reached by the

agent (st). Hence, a reinforcement learning system operates as a feedback control loop

where an agent interacts with an environment in order to maximize its objective. This

interaction is represented by signals denoted as (st, at, rt). These signals combine to

form what is referred to as an “experience” within this framework. This control loop

can continue indefinitely or come to an end either when a terminal state is reached or

after reaching the maximum specified time step, denoted as t = T . The duration from

t = 0 until the termination of the environment is referred to as an “episode.” During

each episode, a trajectory is formed, consisting of a sequence of experiences represented

by τ = (s0, a0, r0), (s1, a1, r1), .... For an agent to effectively learn a good policy in

this framework, it typically requires numerous episodes ranging from several hundred to

millions depending on the complexity of the problem being addressed [25].

The environment evolves based on the action taken, as determined by a transition

function formulated using a MDP. This mathematical framework is used to model se-

quential decision-making. To better understand why transition functions are represented

as MDPs, let’s examine a general formulation. The state at time t + 1 is dependent on

the previous states and actions:

st+1 ∼ P (st+1|(s0, a0), (s1, a1), ..., (st, at)) (2.19)

where at time step t, the next state st+1 follows a probability distribution P conditioned

on the entire history. This implies that the likelihood of transitioning from state st to

st+1 is influenced by all preceding states and actions throughout the episode. Designing a

transition function in this manner can be demanding, particularly for lengthy episodes.

Such a transition function would need to account for numerous combinations of past

effects occurring at any given point. Furthermore, this formulation adds complexity to

an agent’s policy, and its action-generating function, since it must consider the complete

history of states and actions when determining how to act [25].

To ensure the practicality of the transition function in the environment, we incor-

porate it into a MDP by assuming that the transition to the next state st+1 is solely

dependent on the previous state st and action at. This assumption, referred to as the
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Markov property, simplifies our new transition function:

st+1 ∼ P (st+1|st, at) (2.20)

where the next state, denoted as st+1, is probabilistically determined by a distribution

P that depends on the current state st and action at. This simplified transition function

adheres to the Markov property, which means that the current state and action at

time step t provide sufficient information to completely determine the probability of

transitioning to the next state at time step t+ 1. Despite its simplicity, this formulation

remains powerful and versatile. Many processes, including games, robotic control, and

planning, can be expressed using this form [25].

To this point, our focus has been on simplifying the concept of states. However,

it is important to acknowledge that there are two types of states within the context of

reinforcement learning:

• Observed State (st): This state is generated by the environment and directly

observed by the agent. It serves as the foundational information for decision-

making and action-taking.

• Internal State of Environment (sintt ): This represents the internal state specific

to an environment, which may contain additional information or details about its

current conditions. The environment utilizes this internal state during transitions

to subsequent states.

In a traditional MDP, it is assumed that the observed state equals the internal state

of the environment (st = sintt ). This assumption allows for simplified learning since the

agent’s information about the current state aligns with what the environment utilizes

to transition to the next state. However, it is important to note that the equivalence

does not always hold true. In certain cases, there may be a discrepancy between these

two states. This concept gives rise to what is known as a Partially Observable Markov

Decision Process (POMDP). In a POMDP, the state st that is visible to the agent only

provides partial information about the actual state of the environment (st ̸= sintt ). This

introduces an added layer of complexity as agents now have to make decisions based

on incomplete or partially observable information. Despite being more challenging, this

representation better reflects many real-world scenarios and adds realism to decision-

making processes in various domains [25].

Deep reinforcement learning algorithms can be categorized as on-policy or off-policy,

and this distinction affects how training iterations use data. An algorithm is classified

as on-policy if it learns directly from the policy being used. This means that during
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training iterations with different versions of the policy (e.g., π1, π2, π3, ...), only the

current policy is used to generate training data. As a result, any data generated by

previous policies becomes irrelevant and must be discarded. On-policy methods are

conceptually simple but tend to require a large amount of training data for meaningful

improvements due to their sample efficiency [26]. In contrast, an algorithm is considered

off-policy if it does not require the exclusive use of data generated by the current policy.

Instead, it can utilize data collected from various policies during training. As a result, off-

policy methods are generally more sample-efficient as they can leverage a wider range of

collected data over time. However, implementing this approach may require significantly

more memory to store and reuse the accumulated data throughout training [26].

2.5.2.2 Learnable Functions

To formalize a reinforcement learning problem, it is essential to define the objective

that the agent seeks to maximize. We can start by defining the return R(τ), using a

trajectory from an episode, τ = (s0, a0, r0), ..., (sT , aT , rT ):

R(τ) = r0 + γr1 + γ2r2 + ... + γT rT =
T∑
t=0

γtrt (2.21)

where the return is the discounted sum of rewards in a trajectory. The discount factor

γ falls within and represents how much weight is given to future rewards compared to

immediate ones [25].

The objective J(τ) is expressed as the expectation of the returns over multiple

trajectories:

J(τ) = Eτ∼π[R(τ)] = Eτ∼π

[
T∑
t=0

γtrt

]
(2.22)

The return R(τ) includes the sum of discounted rewards γtrt over all time steps t =

0, ..., T . Conversely, J(τ) represents the average return across multiple episodes. This

expectation takes into account the inherent stochasticity in actions and the environment,

recognizing that the return may vary in repeated runs [25]. Maximizing the objective

function J(τ) is equivalent to maximizing the return. The choice of the discount factor

γ, which belongs in the range, plays a crucial role in determining how future rewards

are valued:
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• A smaller γ makes the agent more “shortsighted”, giving less importance to re-

wards in distant time steps. If γ = 0, only the initial reward r0 is considered:

R(τ)γ=0 =
T∑
t=0

γtrt = r0 (2.23)

• A larger γ makes the agent more “farsighted”, assigning greater significance to

rewards in distant future time steps. When γ = 1, all rewards from every time

step receive equal weight:

R(τ)γ=1 =

T∑
t=0

γtrt =

T∑
t=0

rt (2.24)

For problems with an infinite time horizon, it is necessary to set γ < 1 to ensure that

there exists an upper bound for the objective function. In finite-time horizon problems,

selecting an appropriate value for γ becomes critical as it impacts problem-solving com-

plexity. Different values of γ lead to different trade-offs between immediate and future

rewards, shaping both agent behaviour and the learning process accordingly [25].

In reinforcement learning, there are three primary functions that an agent could

learn: the policy, the value function and the environment model [25].

The policy (π) plays a fundamental role in this control loop as it generates the

actions needed to navigate and interact with the environment. The policy is a function

that maps states to actions. An action sampled from a policy is denoted as a ∼ π(s).

The policy can be stochastic, meaning it may probabilistically output different actions

for the same state, which can be represented as π(a|s) to denote the probability of an

action a given a state s. It defines how an agent chooses actions in the environment to

maximize its objective [25].

The value functions provide valuable insights into the objective and aid the agent in

evaluating the desirability of states and available actions based on their expected future

returns. There are two distinct types of value functions:

V π(s) = Es0=s,τ∼π

[
T∑
t=0

γtrt

]
(2.25)

Qπ(s, a) = Es0=s,a0=a,τ∼π

[
T∑
t=0

γtrt

]
(2.26)
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The V-function (Eq. 2.25) assesses the quality of a state by considering its expected

future returns when adhering to a given policy π from the current state s. On the other

hand, the Q-function evaluates the anticipated future returns associated with taking a

specific action a within state s under policy π [25].

Finally, the transition function, denoted as P (s0|s, a), plays a crucial role in pro-

viding information about the environment. When an agent acquires knowledge of this

function through learning, it gains the ability to anticipate and predict the subsequent

state s1 that will occur after taking action a in state s. By utilizing this acquired knowl-

edge of the transition function, the agent can simulate or “envision” how its actions

will influence and shape future states without requiring direct interaction with the en-

vironment. This predictive capability empowers the agent to effectively plan ahead and

make well-informed decisions based on its anticipation of how the environment is likely

to respond to different choices it makes [25].

Depending on the learnable function, the RL algorithm can be value-based, policy-

based, model-based, or a combination of them.

The V-function and the Q-function are closely related, with the former being an

expectation of the latter over Q-values for all possible actions in a given state under a

specific policy:

V π(s) = Ea∼π(s)[Q
π(s, a)] (2.27)

However, determining which function is better suited for learning poses an important

question [25].

The V-function has a significant drawback as it does not take into account the

value of individual actions. This means that knowing the value of a state alone does

not provide information on which action to choose in order to transition to a more

favorable state. To overcome this limitation, one possible approach is to compute all

potential future V-values for each possible action, referred to as V π(s′)1. However,

this method can be computationally intensive and may not be feasible in situations

where resetting environmental states back to previous steps is impractical. For example,

consider calculating the V-value during a complex chess game; such calculations would

require substantial computational resources and time constraints [25].

A potential solution to this challenge can be found in the Q-function. Unlike the

V-function, the Q-function offers agents a more direct mechanism for decision-making.

By calculating the Q-value for each available action a in a given state s, agents are able

to select the action with the highest corresponding Q-value. In an optimal scenario,

1To make the notation more compact we substitute t+ 1 with ′, e.g, st+1 will be s′.
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Q∗(s, a) represents the optimal expected value obtained from taking action a in state

s. This signifies that by understanding and utilizing this optimal Q-value, agents can

pursue actions that result in maximum rewards and ultimately guide them toward an

optimal policy [25].

It is important to note that learning the Q-function in deep reinforcement learning

is a more computationally complex and data-intensive task compared to learning the V-

function. In order to obtain a reliable estimate for V π(s), it is necessary for the training

data to adequately cover the state space. However, in order to achieve an accurate

estimate for Qπ(s, a), it is required that the training data covers all possible state-action

pairs (s, a). Since the combined state-action space can be significantly larger than just

the state space itself, gathering enough data becomes challenging when trying to learn

a robust estimation of Q-function [24]. As a result, RL algorithms often approximate

Qπ(s, a) instead of obtaining its exact value in practice by using learned value functions

for action selection purposes.

2.5.2.3 Double Deep Q-Network

The process of learning a neural network to estimate the policy, known as a value

network, follows a specific workflow. Initially, trajectories τi are generated and for each

state-action pair (s, a), we make predictions on Q̂-values as our estimations. These

predicted Q̂-values serve as our initial beliefs. We then utilize these trajectories to

create target Qtar-values. The primary goal is to minimize the discrepancy between

our predictions and these target values using regression loss methods such as Mean

Squared Error (MSE). This iterative process is repeated multiple times, resembling

supervised learning workflows where every prediction corresponds with predetermined

targets. However, in reinforcement learning scenarios like this one, it is necessary that

we devise means of generating these target values for each trajectory since they are not

given beforehand [25].

Given N trajectories τi, i ∈ 1, ..., N starting in state s with the agent taking action

a, we can calculate an estimate of Qπ
tar(s, a) using Monte Carlo (MC) sampling. This

estimate is obtained by averaging the returns from all trajectories:

Qπ
tar:MC(s, a) =

1

N

N∑
i=1

R(τi) (2.28)

If we have access to an entire trajectory τi, it becomes possible to compute the

actual Q-value achieved by the agent for each (s, a) pair within that trajectory. This
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calculation aligns with the definition of the Q-function presented in Eq. 2.26 where future

cumulative discounted rewards are expected values starting from a single instance and

equal to cumulative discounted reward from the current time step till the end of the

episode. Essentially, Eq. 2.28 shows the MC estimate for Qπ(s, a) can be performed

even with N = 1, i.e., using just one trajectory [25].

The consequence of this process is that each (s, a) pair in the dataset is assigned

a target Qtar-value, effectively labelling the dataset. However, one drawback of using

MC sampling is the need to wait for episodes to complete before any data from those

episodes can be utilized for learning. Eq. 2.28 emphasizes this requirement as it relies

on having access to rewards throughout the trajectory starting from (s, a). Given that

episodes can have multiple time steps T , this leads to delays in the training process.

Consequently, an alternative strategy called Temporal Difference (TD) learning has

been motivated as an option for learning Q-values [25].

TD learning introduces a fundamental insight: Q-values for the current time step

can be defined recursively in terms of Q-values for the next time step:

Qπ(s, a) = Es′∼p(s′|s,a),r∼R(s,a,s′)[r + γEa′∼π(s′)[Q
π(s′, a′)]] (2.29)

where R(s, a, s′) is the reward function of the environment. Eq. 2.29, referred to as

the Bellman equation, holds exactly when the Q-function aligns with the policy π. It

not only describes the recursive nature of Q-values but also provides a methodology for

learning them. Similar to MC sampling, TD learning involves deriving target values,

Qπ
tar(s, a), for each (s, a) pair using the temporal difference concept. Assuming we have

a neural network, denoted as Qθ, to represent the Q-function, we estimate the right-

hand of Eq. 2.29 using Qθ. In each training iteration, we update our Q-value predictions

Q̂π(st, at) to make them closer to the target values Qπ
tar(st, at). This approach is effective

because the action-value function Qπ
tar(st, at) takes into account information from one

time step ahead compared to Q̂π(st, at), which only considers the immediate reward

r from the next state s′. As a result, Qπ
tar(st, at) provides slightly more insight into

how the trajectory will unfold in the long run. This methodology operates under the

assumption that knowledge about maximizing cumulative rewards gradually becomes

apparent as the trajectory progresses and is not initially available at the beginning of

an episode - an inherent characteristic of reinforcement learning problems [25].

However, building Qπ
tar(st, at) using Eq. 2.29 presents two challenges related to

the presence of two expectations within the equation. Firstly, the outer expectation

Es′∼p(s′|s,a),r∼R(s,a,s′)[...] deals with the next state and reward. When considering a col-

lection of trajectories τ1, τ2, ..., τN , where each τi consists of set of tuples (s, a, r, s′),
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it is important to note that only one instance of the next state s′ is available for each

(s, a, r, s′) tuple due to selecting an action. In deterministic environments, focusing solely

on the actual observed next state suffices; however, stochastic environments bring forth

challenges as taking action a in state s can lead to multiple potential future states while

only one is observed at each step. This issue can be resolved by focusing on the example

that corresponds to the observed next state, even though it may introduce variance in

the Q-value estimate, especially in stochastic environments. To simplify the estimation

process, a single example can be used to estimate the distribution over the next states

s′ and rewards r [25]. This leads to a reexpression of the Bellman equation:

Qπ(s, a) = r + γEa′∼π(s′)[Q
π(s′, a′)] (2.30)

Another challenge is related to the inner expectation Ea′∼π(s′)[...] in Eq. 2.29 which

involves actions in the next state s′. Since Q-value estimates for all possible actions in

the next state s′ are available through current Q-function estimates, determining the

required probability distribution over actions for this expectation becomes challenging.

To address this issue, two approaches are commonly used: SARSA [27] and DQN [28]

algorithms.

In the case of DQN, the solution is to choose the action with the maximum Q-value:

Qπ(s, a) ≈ r + γ max
a′i

Qπ(s′, a′i) = Qπ
tar(s, a) (2.31)

This approach assumes an implicit policy where the action selected with certainty (prob-

ability 1) is the one with the highest Q-value. The equation remains valid because in

Q-learning, being greedy towards Q-values constitutes an implicit policy. This policy

is defined as optimal policy [24] and, thanks to it, the DQN is considered an off-policy

algorithm since the data used in training can be collected from different policies [25].

The DQN algorithm can be improved through two key adjustments. The first im-

provement involves the use of a target network for computing Qπ
tar(s, a). In the original

DQN algorithm, Qπ
tar(s, a) continuously changes as it depends on Q̂π(s, a). During train-

ing, the parameters θ of the Q-network are adjusted to minimize the difference between

predicted and target values. However, this can be challenging when there are frequent

changes in Qπ
tar(s, a) during training steps [29].

To address this issue, a target network with parameters ϕ is introduced. The target

network acts as a secondary neural network that represents a delayed copy of the primary

Q-network Qπθ used for calculating predictions. By employing this separate target
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network Qπϕ , we can calculate more stable values for Qπ
tar(s, a) using an updated Bellman

equation:

Q
πϕ

tar(s, a) = r + γ max
a′

Qπϕ(s′, a′) (2.32)

Periodically, the parameters ϕ are updated to match the current values of θ. This

update process is referred to as a replacement update.

The second improvement in the DQN framework is called Double DQN (D2QN) [30,

31]. This modification aims to address the issue of overestimating Q-values. In Qπ(s′, a′),

there are several factors that can lead to inaccuracies in the Q-values: imperfections in

neural network function approximation, limited exploration by agents, and environmen-

tal noise affecting observations. As a result, it is expected that some errors will exist

in Qπ(s′, a′), leading to an overestimation of Q-values. Moreover, when there are more

actions available in a given state s′, there is an increased likelihood of overestimation

occurring. The original DQN has been observed to overestimate Qπ(s, a) for frequently

visited pairs (s, a), which could be problematic if agent exploration is not evenly dis-

tributed across all possible actions. In these cases, the distorted ranking caused by

overestimated Q-values may result in suboptimal action selections.

The Double DQN algorithm utilizes two separate Q-function estimates based on

different sets of experiences. To select the action with the highest Q-values, one estimate

is used while another estimate is used to calculate the Q-value for determining the

target value. Using a second trained Q-function helps reduce positive bias and improves

accuracy in estimating Q-values. Hence, implementing D2QN requires two distinct

neural networks: ϕ and θ. The network θ selects actions, while ϕ computes the Q-value

for (s′, a′) using this equation:

Qπ
tar:D2QN (s, a) = r + γQπϕ(s′, argmax

a′
Qπθ(s′, a′)) (2.33)

By employing this strategy, overestimation issues are minimized, leading to more accu-

rate action selection within the framework of DQN algorithm.

2.5.2.4 Proximal Policy Optimization

Before delving into Proximal Policy Optimization (PPO) [32], we need to introduce

a few more concepts: i) the advantage function and ii) the performance collapse.

The advantage function Aπ(st, at) is a learnable function that measures the relative

superiority or inferiority of a specific action compared to the average action chosen by
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the policy in a given state. It is defined as:

Aπ(st, at) = Qπ(st, at)− V π(st) (2.34)

This concept offers several valuable properties. Firstly, when considering the ex-

pected value of Aπ(st, at), it equals zero. This implies that if all available actions are

approximately equally advantageous in a given state, then the advantage function will

be close to zero for all actions. As a result, during training using Aπ as guidance for

updating policy probabilities through reinforcement signals will maintain relatively sta-

ble probabilities for these actions over time. In contrast, other methods rely on absolute

state or state-action values which may not be zero under similar circumstances and thus

lead to more significant adjustments in action probabilities [25].

Another challenging situation arises when the selected action performs worse than

the average action, even though the expected return is still positive. This means that

Qπ(st, at) but Aπ(st, at) < 0. Ideally, in such cases, we would want to reduce the

likelihood of selecting this action since there are better alternatives available. The Aπ

method aligns more closely with this intuitive behaviour as it discourages choosing that

particular action. Conversely, using Qπ(st, at) may inadvertently encourage the selection

of the suboptimal action, which contradicts our expectations [25].

The advantage function also provides a comparative perspective. It evaluates the

state-action pair Qπ(st, at), determining whether taking action will result in a better or

worse outcome compared to the value of the state V π(st). Importantly, it avoids penal-

izing an action solely based on the current unfavourable state of the policy. Likewise, it

does not give excessive credit to an action for being in a favourable state. This approach

is beneficial because an action can only influence future trajectories and not how the

policy arrived at its current state. Therefore, evaluating actions based on their impact

on future outcomes is more rational [33].

In the training process of reinforcement learning, there are situations wherein the

agent’s performance declines and it becomes necessary to restart the training from

scratch. This occurrence is a result of how the optimization process develops.

In the field of reinforcement learning, a sequence of policies denoted as π1, π2, ..., πn

is explored within the policy space Π. Each policy can be expressed as πθ where θ

represents the parameters existing in parameter space ϕ. The aim is to find the optimal

policy by searching for an appropriate set of parameters represented by ϕ ∈ Φ. To

regulate the magnitude of parameter updates during this search process, a learning rate

α is used:

∆θ = α∇θJ(πθ) (2.35)
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The challenge arises because the mapping between the policy space and parameter space

is not always direct, and the distances in both spaces may not align. Let’s consider

two pairs of parameters, (θ1, θ2) and (θ2, θ3), where they have equal distances in the

parameter space: dθ(θ1, θ2) = dθ(θ2, θ3). However, their corresponding policies (πθ1 , πθ2)

and (πθ2 , πθ3) do not necessarily have the same distance:

dθ(θ1, θ2) = dθ(θ2, θ3) ̸⇔ dπ(πθ1 , πθ2) = dπ(πθ2 , πθ3) (2.36)

This misalignment creates a challenge in selecting the appropriate step size α for

updating parameters. Determining how small or large of a step in the parameter space

corresponds to changes in the policy space is not straightforward. If α is too small,

training will be time-consuming and the policy may become trapped in suboptimal

solutions. On the other hand, if α is too large, the movement in the policy space might

exceed regions that contain good policies, causing a decline in performance. This leads to

an updated policy that performs significantly worse and generates inadequate trajectory

data for subsequent updates, further degrading the overall policy quality [25].

To overcome this challenge, an optimal algorithm should dynamically modify the

step size of the parameters based on the current position of the policy in both policy

and parameter spaces. This adjustment ensures that the new policy remains within a

certain range, known as the trust region, around the old policy. The boundaries of this

neighbourhood are defined as trust region constraints to prevent significant degradation

in performance [25].

PPO comprises a set of algorithms designed to address the trust region constraints

problem. There are two variations within this algorithm family: i) PPO with adaptive

KL penalty, and ii) PPO with clipped surrogate objective [25].

The first variation, PPO with adaptive KL penalty, introduces a KL penalty and

utilizes the following KL surrogate objective:

JKLPEN (θ) = maxθEt[rt(θ)At − βKL(πθ(at|st)||πθold(at|st)] (2.37)

Here, β serves as an adaptive coefficient that governs the extent of the imposed KL

penalty; higher values permit greater differences between π and πold. The term r(θ)At

denotes the surrogate gradient which is defined as:

JCLI(θ) = Et

[
πθ(at|st)
πθold

Aθold
t

]
= Et[rt(θ)At] (2.38)
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The second variation in the PPO family is referred to as PPO with clipped surrogate

objective:

JCLIP (θ) = Et[min
θ

(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At] (2.39)

In this case, ϵ establishes constraints for policy updates.



Chapter 3

Spiking Neural Networks

SNNs are often seen as the third iteration of ANNs [2]. This classification is pri-

marily due to their resemblance to the functioning of mammalian brains, distinguishing

them from earlier generations of ANNs.

The key distinction between traditional neural networks, which belong to the second

generation of ANNs, and SNNs lies in their fundamental computational unit - the neu-

ron. In conventional ANNs, neurons are defined by activation functions that determine

their output based on input values. In contrast, SNNs utilize spiking neurons character-

ized by a set of ODEs. An ODE system is utilized to represent the spiking neuron as a

dynamic system, where a hidden state called the membrane potential accumulates over

time. Once this membrane potential surpasses a predefined threshold on the upward

trend, the neuron emits an event referred to as a spike. These spikes function as the

primary means for neurons to communicate with one another, and a sequence of spikes

is known as a spike train. The existence of spikes in SNNs allows for asynchronous

communication among neurons, which diverges from the synchronous nature observed

in standard ANNs.

SNNs possess several advantageous characteristics due to their complex structure.

They have the capability to replicate key characteristics found within mammalian brains

such as low latency, rapid inference speed, and energy efficiency. These qualities make

SNNs highly promising for various applications, specifically those that require brain-

inspired computing capabilities.

29



Spiking Neural Networks 30

3.1 Neuron Models

Neuroscience presents various models of neurons, each with its own level of com-

plexity and biological plausibility. The Hodgkin-Huxley model [34] stands out for ac-

curately describing neural behaviour in terms of ion channels and currents. However,

due to its complexity, alternative neuron models have been proposed as more practical

options. These include the Integrate-and-Fire model, the Leaky Integrate-and-Fire

model, and the Adaptive Leaky Integrate-and-Fire model [35]. By choosing these mod-

els, researchers strike a balance between preserving biological accuracy and managing

computational demands.

3.1.1 Integrate-and-Fire Model

The Integrate-and-Fire (IF) neuron model, initially introduced [36], was one of the

earliest computational representations of neurons. This concept emerged during a period

when researchers lacked direct measurement techniques for observing the electrical and

chemical processes occurring within live neurons. Instead, it offers a simplified depiction:

the neuron’s membrane can be likened to a capacitor that gradually accumulates and

stores electrical charge over time [37].

The name “Integrate-and-Fire” highlights two key behaviours exhibited by this

model: 1. Current Integration: The neuron progressively integrates incoming electrical

current across time, similar to how a capacitor accrues charge. 2. Firing: When the

voltage across the neuron’s membrane surpasses a specific threshold value, it generates

an action potential denoted also as fire or spike. In this particular model, the voltage

of the neuron’s membrane changes over time as it integrates incoming currents. This

integration process is determined by the following equation:

C
dv(t)

dt
= I(t) (3.1)

where C is the membrane capacitance, v(t) is the membrane voltage at a given time,

and I(t) is the input current of the neuron. Essentially, the neuron accumulates and

combines incoming currents over time.

To determine when a spike occurs in the neuron, a threshold voltage called vth is

introduced. When the membrane voltage exceeds this threshold, triggering mechanisms

cause an action potential or spike to be generated. This behaviour aligns with neu-

rophysiological principles where reaching a certain threshold initiates firing activities.

Following each spike event, there is a reset procedure implemented. The membranes’

voltages are restored to their resting state vrest. This resetting mechanism agrees with
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observed physiological phenomena where various ionic currents involving potassium ions

actively contribute to gradually bringing back neurons’ potential difference towards their

resting states.

IF models often include an absolute refractory period (tref ) to account for the phys-

iological process that prevents neurons from firing immediately after a spike. During

this refractory period, the neuron’s voltage remains at the resting potential vrest:

3.1.2 Leaky Integrate-and-Fire Model

The Leaky Integrate-and-Fire (LIF) model [36, 38, 39] is a significant advancement

in understanding the physiological aspects of neuron membranes. Unlike ideal capacitors,

actual neuron membranes exhibit slow leakage of current over time. This gradual leakage

allows the membrane voltage to gradually return to its resting potential, incorporating

a “forgetting” mechanism into the LIF model.

The dynamics of the LIF model can be described using the following equation:

C
dv(t)

dt
= −(v(t)− vrest) + I(t) (3.2)

where C represents membrane capacitance while R is the membrane resistance. The

term v(t) refers to membrane voltage and vrest denotes resting potential. Additionally,

I(t) signifies the input current received by the neuron. The inclusion of the resistance

term R accounts for current leakage from the cell’s membrane. When no external inputs

are present, the membrane voltage asymptotically returns back to its resting potential:

τ
dv(t)

dt
= −v(t) + I(t) (3.3)

which can be rewritten as:

v(t + 1) = v(t)e−
dt
τ + I(t) (3.4)

Similar to the IF model, the LIF model also features a resetting procedure following

a spike. After firing, the membrane voltage is reset to the resting potential, maintaining

consistency with the IF model’s physiological principles. It can be hard reset:

v(t + 1) =

vrest if z(t) = 1

v(t + 1) if z(t) = 0
(3.5)



Spiking Neural Networks 32

or soft reset:

v(t + 1) =

v(t)− vthr if z(t) = 1

v(t + 1) if z(t) = 0
(3.6)

3.1.3 Adaptive Leaky Integrate-and-Fire Model

The Adaptive Leaky Integrate-and-Fire (ALIF) [40] neuron model represents a

modified version of the traditional Leaky Integrate-and-Fire neuron model, incorporating

adaptivity in the dynamics of membrane potential. This variation aims to capture

specific aspects of neuronal behaviour that are not accounted for in the conventional

LIF model.

One notable distinction between the ALIF and LIF models is the inclusion of an

adaptation mechanism in the former. This adaptive mechanism enables dynamic changes

to occur in the firing threshold of the neuron based on its recent spiking activity:

at = ρat−1 + zt−1 (3.7)

At = vth + βat (3.8)

Where at represents an adaptive component, At is the adaptive threshold, β denotes

a multiplicative term, ρ signifies the decay factor, and zt−1 corresponds to the output

spike.

3.2 Input Encoding

Different encoding strategies are utilized to transform continuous input into spiking

input, depending on the nature of the input. One such method is the Send On Delta

(SOD) [41] spike encoding technique. This approach detects noteworthy amplitude

fluctuations, whether positive or negative and encodes them as spikes. The process

involves examining each sample of the input signal and generating spikes whenever

significant changes in amplitude occur. To determine significance, the current signal

value is compared with the previous spike’s amplitude using a defined threshold. Positive

and negative variations are stored separately for future reference.

The Time To First Spike (TTFS) encoding method, widely used for image encoding,

encodes each pixel based on its intensity [42, 43]. High-intensity pixels generate spikes

that arrive earlier, while low-intensity pixels produce spikes that arrive later in time.
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The LIF neuron model is a biologically plausible approach for encoding real-valued

signals into spike trains. In this method, the input signal is fed to a LIF neuron

corresponding to a specific frequency channel index. Spikes are generated when the

membrane potential of the neuron reaches a pre-defined threshold [44].

The Ben’s Spiker Algorithm (BSA) is a widely recognized time series encoding

method that falls under the category of stimulus estimation methods [45–47]. It utilizes

linear filtering to estimate the stimulus of a biological neuron based on a sequence of

spikes. BSA involves convolving the input signal with a finite impulse response filter and

generating spikes when there is a significant deviation between the filtered signal and

the input signal, surpassing a predetermined threshold value. However, determining

optimal filter parameters and threshold values poses as an intricate challenge often

resolved through grid search techniques by employing the Signal-Noise Ratio as an error

metric [48].

The authors of [49] examine various biological encoding techniques. These tech-

niques involve using the timing of spikes in multiple neurons to encode information.

The effectiveness of signal encoding depends on the number of neurons utilized. One

method involves storing information in the delay between a stimulus and the first spike

of a neuron, with all other neurons being inhibited by this first spike resulting in single-

spike encoding. Another approach called latency code encodes information based on time

intervals between spikes across different neurons. Rank-Order Coding (ROC) is also

discussed where information is encoded based on the specific order of spike occurrences.

In this method, each neuron can only fire once per sample.

3.3 Training Methods

SNNs can be trained using a variety of learning algorithms, including STDP-based,

gradient-based, and conversion from ANN to SNN.

Spike-Timing-Dependent Plasticity (STDP) is an essential biological process that

adjusts the strengths of connections between neurons. In one common form of biological

STDP, if a presynaptic neuron fires just before a postsynaptic neuron (around 10 ms),

their connection strength is increased in what is known as Long-Term Potentiation

(LTP). Conversely, if the presynaptic neuron fires after the postsynaptic neuron, the

connection weakens through Long-Term Depression (LTD). The change in synaptic

weight ∆w can be calculated using the following rule:
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∆w =

Ae
−|tpre−tpost

τ tpre − tpost ≤ 0, A > 0

Be
−|tpre−tpost

τ tpre − tpost > 0, B < 0
(3.9)

where w represents the synaptic weight, A and B are the learning rates, and τ is the

time constant (e.g., 15 ms) for the learning window. This rule models both long-term

potentiation and long-term depression, with adjustments based on the time difference

between pre- and postsynaptic spikes. SNNs often utilize modified versions of this rule

rather than an exact biological implementation.

The second category of learning algorithms focuses on updating network parameters

through the process of backpropagation (Sec. 2.3). However, this approach encounters

difficulty due to the non-differentiable nature of spiking neuron activation functions. In

order to overcome this challenge, an approximation of the derivative is employed using

surrogate functions. Popular choices for surrogate functions h(v) include equations such

as:

h(v) =
1

a
sign

(
|v − vthr| <

a

2

)
(3.10)

h(v) =

(√
a

2
− a

4
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)
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(
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− |v − vthr|

)
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a
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h(v) =
1√
2πa

e−
(v−vthr)

2

2a (3.13)

where a represents the peak width of the derivative. The four functions mentioned,

listed from top to bottom, correspond to the derivative of the rectangular function, the

polynomial function, the sigmoid function, and the Gaussian function, as described in the

reference [50]. Well-known algorithms that adopt this training paradigm are STBP [50],

SpikeProp [51], Slayer [52], and e-prop [40].

The third approach involves converting an artificial neural network into a spiking

neural network. In this method, the ANN is first trained and then transformed into

an SNN. However, there are certain drawbacks to this approach. For instance, it does

not fully utilize the temporal characteristics during training and may result in a small

drop in accuracy. One popular framework that implements this training procedure is

NengoDL [53].



Chapter 4

Supervised Learning with SNNs

Continuous monitoring of physical processes using distributed sensors is a crucial

field, especially in SHM. SHM aims to ensure the safety of structures such as buildings

and bridges by detecting structural changes caused by damage. AI with IoT and edge

computing presents an opportunity to address these challenges effectively. I can poten-

tially optimize data transmission overhead and improve response times by implementing

AI detection algorithms directly on IoT sensor nodes. With the advent of low-cost, low-

power, and increasingly accurate MEMS accelerometers, their application in distributed

SHM is gaining popularity [54].

Furthermore, there have been proposed techniques to compress data from MEMS

sensors located on different nodes before transmitting it to cloud storage and analytic

facilities, aiming for signal compression at the edge [55]. Additionally, modal estimation

methods directly on the sensor have been suggested to identify significant peaks in the

acquired signal spectrum from MEMS data [56].

In order to enhance the efficacy of distributed structural health monitoring detec-

tion, recent proposals have focused on optimizing machine learning algorithms for edge

computing. This involves utilizing code and libraries that are specifically developed for

low-power microcontrollers [57, 58], which enables the implementation of these algo-

rithms directly on the sensor or at an edge node.

An example illustrating this approach is found in hazard monitoring applications

that utilize event-triggered single-channel micro-seismic sensors combined with advanced

signal processing techniques. In such cases, a Convolutional Neural Network can be

implemented on a low-power microcontroller as described in [59].

SNNs have gained considerable interest in the research community across various

domains, including SHM. This enthusiasm stems from their brain-inspired, event-based

35
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nature which holds promise for reducing energy requirements compared to traditional

ANNs [60–64]. While ANNs have been successfully applied in SHM applications [54, 65–

68], there is an increasing focus on SNNs due to their potential for more efficient

information processing through sparse computations. For example, in [69], feedforward

SNNs were employed for cost-effective inspection of damaged buildings using MEMS

sensors.

However, the existing state of SHM applications lacks a comprehensive integration

of a data processing pipeline that directly applies SNNs on the sensor node. SNNs

have shown efficacy in handling time-series data from sensors, particularly when recur-

rent neural networks are involved [70]. Therefore, rather than using simpler feed-forward

architectures, I have opted to explore recurrent SNNs for SHM data processing. Specifi-

cally, my focus is on an advanced implementation known as LSNN, which was introduced

and documented in [71]. This choice is motivated by its appealing signal processing ca-

pabilities and learning potential within the context of structural health monitoring.

Furthermore, the analysis of input signal encoding is being explored due to its signif-

icant impact on subsequent computations and energy consumption. While SNNs have

been successfully applied with event-based inputs such as pixel variations from Dynamic

Vision Sensor cameras [72], they are also effective in processing continuous data streams

as demonstrated in speech recognition applications [71]. However, determining the opti-

mal encoding method for anomaly detection tasks in the field of SHM has not yet been

exhaustively studied.

This study involves the implementation and evaluation of a low-power Spiking Neural

Network on a sensor node with a commercial microcontroller and MEMS accelerometer.

In this chapter, I present a comprehensive analysis comparing LSNN to Temporal

Convolutional Network (TCN) and LSTM models, where LSNN is trained using both

BPTT and e-prop methods. Both these methods are used to directly train the SNNs,

in order to enhance the capabilities of the SNNs in the training phase. Furthermore,

an investigation is conducted to examine the impact of input coding on performance

metrics such as processing cycles and energy consumption in the microcontroller. To

validate these comparisons, real data collected from a highway viaduct is utilized. The

results demonstrate that LSNN has the ability to accurately detect structural variations

associated with deterioration.
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Figure 4.1: Monitoring system installation.

Figure 4.2: Mean natural frequency shift before and after scheduled maintenance.

4.1 Dataset

The object of my investigation is a viaduct on the A32 Torino-Bardonecchia highway,

specifically, the section supported by two pairs of concrete pillars. My research focuses

on this particular section and its sensors that have been installed for data analysis in

preparation for necessary maintenance work to enhance the structural integrity of the

viaduct.

The data acquisition system described in Fig. 4.1 consists of five sensor nodes, each

featuring an STM32F4 microcontroller. These nodes capture acceleration and temper-

ature data along three axes. The collected data is then transmitted to the cloud via a

Raspberry Pi3 gateway with 4G connectivity. The interconnection between these nodes

occurs through CAN-BUS communication with the gateway It is important to empha-

size that the data acquisition system solely collects the raw data without conducting

any local signal processing at the edge. In this configuration, all data analysis occurs in

the cloud. The accelerometers sample data at a rate of 25.6 kHz to prevent aliasing and

then subsample it to achieve a final output frequency (fs) of 100 Hz.

The cloud-based component comprises of a data-ingestion function responsible for

receiving and storing incoming sensor readings from the gateway. Additionally, there are

regularly scheduled analysis tasks implemented to monitor the structural health status

of the bridge [73].
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Figure 4.3: First data preprocessing and encoding pipelines.

The microcontroller unit utilized in this study is an ARM 32-bit Cortex-M4 chip

running at a frequency of 168 MHz. It has 192 kB of SRAM and 1 MB of Flash memory,

making it a popular choice for edge applications due to its energy-efficient design. No-

tably, the MCU incorporates a floating-point unit and a digital signal-processing library.

For data transmission and processing, the system utilizes a Raspberry Pi 3 module B

as the gateway device [74]. This gateway has a Broadcom BCM2837 System-on-a-Chip.

The SoC comprises four cores based on the Cortex-A53 architecture operating at 1.2 GHz

with support for x64 instructions. Additionally, it includes 1 GB of DDR2 RAM. The

Ubuntu operating system runs on the Raspberry Pi device and facilitates communication

tasks using widely-supported Python interfaces such as MQTT brokers [75].

In terms of cloud infrastructure, there are separate storage resources along with

computing nodes hosted on IBM’s cloud service platform.

The viaduct underwent a technical intervention to strengthen its structure, resulting

in changes in the bridge’s natural frequencies. Fig. 4.2 visually shows how the PSD of

the vibrations was altered before and after the intervention.

I utilize this unique dataset as a representation of an aged viaduct compared to a

healthy one. The signals obtained after the intervention are considered normal data

from a healthy bridge, while the data collected before maintenance is seen as anomalies

since they were recorded on a damaged and aged structure. Although these data do

not cover the entire history of the viaduct, they provide valuable insight into vibration

patterns during two distinct structural phases of the bridge.

4.2 Preprocessing

In the studies that follow, I utilize two distinct preprocessing procedures and three

encoding techniques. One of these techniques is event-based and results in spiking

output, while the other two are current-based and produce scalar outputs that are fed

into the SNNs.

One of the preprocessing approaches with the current coding strategy follows a series

of steps shown in Fig. 4.3:
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• The trace from each sensor was divided into segments lasting for T seconds, with

each segment containing ϕ samples (ϕ = T ∗ fs). These segments were then split

into W sub-segments W = w0, . . . , wW−1, where each sub-segment contains φ

samples (φ ≤ ϕ).

• The signal power for each sub-segment w was calculated using the formula:

Pw =
1

φ

φ−1∑
t=0

w2
t (4.1)

• If the signal power of at least one sub-segment exceeded a predetermined threshold

Pth, the entire segment was considered a valid dataset sample; otherwise, it was

discarded.

• The Discrete Fourier Transform (DFT) was used to calculate the spectral power

P for each sub-segment. It was calculated using the following equation:

P =
|X|2

φ
, X = DFT(w) (4.2)

Since the DFT is an even function, only half of φ, denoted as s = φ/2, were

considered as input for the SNN.

• To eliminate high frequencies associated with vehicle approach frequencies that

could affect classifier performance, a low-pass filter with a cutoff frequency (fc) of

7 Hz was applied to the spectral power during filtering.

During dataset construction, I had flexibility in selecting parameters T and W ,

which influenced the input features represented by

s =
φ

2
=

ϕ

2W
=

Tfs
2W

(4.3)

The number of samples in training and validation sets varied depending on segment

length; longer segments resulted in fewer dataset samples. The output of this algorithm

will be the input of the LSNN.

The second algorithm for preprocessing, depicted in Fig. 4.4, provides flexibility in

how its output can be used. It can either serve as the current input for LSNN or be

transformed into an event-based signal that acts as the input for LSNN. Below are the

step-by-step details:

• After collecting data from the sensor, only the z-axis values are retained due to

their higher sensitivity to vehicle passages. These z-axis data points are sampled

at a rate of 100 Hz and then downsampled to 12.5 Hz.
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Figure 4.4: Second data preprocessing and encoding pipelines.

• Only the windows corresponding to vehicle passages are extracted by applying

signal thresholding methods.

• The power spectra are calculated using the Fast Fourier Transform (FFT) on these

windows. Two options are considered for the number of input neurons: 50 or 150.

Practical considerations were taken into account to make this choice, as a larger

number of inputs would result in an excessively large input weight matrix (W In)

for a relatively small network, while a smaller number of inputs may not capture

sufficient signal features. Each window representing a vehicle’s data contains either

100 or 300 coefficients, corresponding to an 8 or 24-second time interval.

• These FFT coefficients serve as the input for the encoding stage. In Current-

Driven encoding, each coefficient is assigned to an LSNN neuron for a fixed du-

ration called tinf .

• In the event-driven encoding approach, I employ the ROC algorithm. This algo-

rithm encodes each coefficient as a spike time interval. Higher coefficients result

in shorter “time-to-spike” intervals, meaning that coefficients with higher energy

levels - which are more crucial for damage detection - will generate spikes earlier.

Conversely, lower coefficients will produce spikes later on. It should be noted that

tinf denotes the inference time for each sample and any neuron that fails to fire

within t < tinf becomes unable to do so thereafter. The ROC encoding algorithm

used is outlined in Alg. 1.
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Algorithm 1 Compute Time-to-Event

Require: A signal S of I coefficients and a inference time tinf
Ensure: A Time-to-Event T array of I spiking intervals
m = min(S)
M = max(S)
for i← 0 to I − 1 do

t = (S[i]−m)/(M −m)
tcheck = round(1/t)
if tcheck ≤ tinf then

T[i] = tcheck
end if

end for

Figure 4.5: SNN’s architecture. The blue ensemble represents the forward part, while
the green one is the backward part. The former is used in the mono-directional LSNN
while, in the bi-directional, the network has both components.

4.3 LSNN

Fig. 4.5 illustrates the network utilized in this investigation. It comprises the fol-

lowing elements:

• Input Layer: Consisting of N sources.

• Two Recurrent Ensembles: Each ensemble includes M neurons. The connection

between the input layer and ensembles follows an all-to-all pattern, resulting in

two connection matrices, namely W In,x ∈ RM,N .

• Recurrent Connections: Both ensembles are connected to each other with a recur-

rent all-to-all configuration, employing two matrices denoted as WRec,x ∈ RM,M .

• Output Layer: Comprised of K neurons. The ensembles are fully interconnected

with this output layer through two additional connection matrices: WOut,x ∈ RK,N

To enable bi-directionality in the LSNN, two recurrent ensembles are utilized. The

blue ensemble (F) is responsible for processing forward samples and can be used in both
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mono- and bi-directional LSNN configurations. On the other hand, the green ensemble

(B) is exclusively employed when a bi-directional LSNN is desired and samples are fed

in reverse order.

In this work, I utilized the ALIF model (Sec. 3.1.2) due to its ability to incorporate

recent spiking activity, which is an improvement over standard LIF neurons. ALIF

neurons have two hidden states: the membrane potential and the adaptive threshold.

The equation governing the membrane potential (vtj) of an ALIF neuron is as follows:

vtj =

α︷ ︸︸ ︷
e−

δt
τm vt−1

j +

Lif→Lif︷ ︸︸ ︷∑
i ̸=j

WRec
ji zt−1

i +

In→Lif︷ ︸︸ ︷∑
n

W In
jn x

t
i−

Reset︷ ︸︸ ︷
vthz

t−1
j (4.4)

ztj =

1 if vtj ≥ vth and rtj ̸= 1

0 otherwise
(4.5)

Here, τm represents the membrane decay constant, x denotes network inputs, zi char-

acterizes the pre-synaptic activity of recurrent neurons, and zj signifies the activity of a

particular neuron for which the membrane voltage is computed.

The adaptive threshold (At
j) is described by:

atj =

ρ︷︸︸︷
e−

δt
τa at−1

j + zt−1
j

At
j = vth + ξatj

(4.6)

ztj =

1 if vtj ≥ At
j and rtj ̸= 1

0 otherwise
(4.7)

Here, τa represents the threshold decay constant, and ξ is a constant fixed at 0.07.

The network’s output is determined by the post-synaptic activity of the K output neu-

rons:

ytk = βyt−1
k +

∑
j

WOut
kj ztj + bk (4.8)

The parameter τo signifies the decay constant of the membrane potential of the neurons.
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Table 4.1: SNN Experiment Results. ACC is the accuracy, MCC is the Matthews
Correlation Coefficient, T represents the length in seconds of the samples, and W is the
number of sub-segments.

Dataset Network1
Exposure Time2

ACC MCC

1 5 10 1 5 10

T10-W05

TCN 92.1 - - 0.84 - -
LSTM 92.0 - - 0.83 - -
LSTM* 92.7 - - 0.85 - -

LSNN - BPTT 66.4 82.3 88.0 0.29 0.66 0.75
LSNN - eP.R 54.7 83.2 86.4 0.36 0.67 0.73

LSNN* - BPTT 60.9 87.0 87.9 0.41 0.73 0.74
LSNN* - eP.R 69.0 85.7 86.3 0.33 0.70 0.72

T10-W10

TCN 90.8 - - 0.81 - -
LSTM 90.7 - - 0.81 - -
LSTM* 91.3 - - 0.82 - -

LSNN - BPTT 68.8 84.8 83.2 0.46 0.70 0.67
LSNN - eP.R 73.9 84.9 83.9 0.56 0.70 0.69

LSNN* - BPTT 77.8 84.6 85.4 0.61 0.69 0.70
LSNN* - eP.R 75.6 81.6 82.9 0.57 0.64 0.65

T50-W05

TCN 95.0 - - 0.90 - -
LSTM 95.1 - - 0.90 - -
LSTM* 95.1 - - 0.90 - -

LSNN - BPTT 71.4 93.6 94.4 0.50 0.86 0.88
LSNN - eP.R 80.1 92.1 93.8 0.56 0.84 0.87

LSNN* - BPTT 78.7 93.0 95.6 0.64 0.85 0.90
LSNN* - eP.R 74.6 93.3 94.5 0.59 0.86 0.88

T50-W10

TCN 95.6 - - 0.91 - -
LSTM 94.9 - - 0.90 - -
LSTM* 95.1 - - 0.90 - -

LSNN - BPTT 89.0 94.5 94.1 0.78 0.88 0.88
LSNN - eP.R 88.2 93.9 93.4 0.76 0.87 0.86

LSNN* - BPTT 87.2 91.9 92.2 0.75 0.83 0.86
LSNN* - eP.R 84.5 92.6 93.4 0.71 0.84 0.86
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Figure 4.6: The graph on the right shows how accuracy changes when increasing
the exposure time on T50-W05 and T50-W10 datasets. On the left, we can see a
distribution of accuracy based on the number of spectral features and dataset type.

4.4 Results

4.4.1 Comparison among LSNNs, TCN, and LSTM

Table 4.1 presents the results obtained by various LSNN models and compares

them to state-of-the-art neural networks such as TCN and LSTM. The LSNN models

were trained using different techniques: e-prop random, adaptive e-prop, and BPTT.

However, it should be noted that the LSNN model trained with adaptive e-prop did

not achieve comparable results to the other methods and will not be discussed further.

The table also indicates that LSNN-eP.R has slightly lower accuracy compared to

LSNN- BPTT, suggesting that e-prop is an approximation of BPTT. This decrease in

accuracy aligns with the findings presented in [71].

Fig. 4.6.left, the impact of exposure time (texp) on network performance can be

observed. Generally, increasing texp results in improved accuracy. This is because SNNs

require more time to observe an input in order to transition from a transient state and

adapt to new patterns. However, this trend does not hold for LSNN-Mn-eP.R and

LSNN-Mn- BPTT networks as they only experience a slight decrease in accuracy at

W = 10, which can be attributed to the increase in time depth from 50 to 100 integration

steps.

Fig. 4.6.right illustrates the relationship between accuracy and the number of input

features (s). The highest accuracy is achieved within a range of 250 to 500 features.

Once beyond this range, the network’s performance declines due to difficulties in training

1Models with “*” use a bi-directional network variant
2Used in SNN models only
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Parameter Description Explored Values

N Input neurons 50, 150
τm Recurrent layer membrane potential decay 20, 30
τo Output layer membrane potential decay 3, 10, 30
vthc Spike threshold coefficient 0.01, 0.03
βc Adaptive threshold coefficient 1.7, 1.8
τac Adaptive threshold decay 0.5, 1.0

tinf Inference ticks 5, 10, 20
regc Loss regularization coefficent 1, 100, 300
regr Firing rate regularization coefficent 0.01, 0.001

Table 4.2: LSNN parameters explored

the large input weight matrix W In. Conversely, when s < 250, there is insufficient

information available for effective network operation. Surprisingly, increasing subsample

numbers does not consistently improve accuracy; specifically, LSNN with only 250 input

features and W = 10 exhibited worse performance compared to LSNN with 500 features

and W = 5.

4.4.2 Comparison between current-driven inputs and event-driven

The LSNN network architecture, as depicted in Figure Fig. 4.5, is a mono-directional

neural network comprising 20 ALIF neurons and two output neurons used for classifying

the bridge into its respective classes. The study investigates different hyperparameters

classified into two groups: network parameters and training parameters. A summary of

these parameters can be found in Table 4.2. Various network parameters were investi-

gated during the study. These include:

• Input Number (N): Two values, 50 and 150, were considered for this parameter.

N refers to the number of input neurons in the initial layer, and selecting an

appropriate value is crucial to achieving a balance between network complexity

and its ability to extract meaningful features from the input signal.

• Membrane Time Constant (τm): Two values, 20 and 30, were explored for this

parameter. It determines how quickly the membrane potential decays in the re-

current layer. A higher value indicates that it takes longer for a neuron to return

to its resting potential.

• Output Membrane Time Constant (τo): Three values - 3, 10, and 30 - were eval-

uated as options for this parameter. These are used to determine how rapidly the

membrane potential decays in the output neurons.
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• Output Membrane Time Constant (τo): Three values - 3, 10, and 30 - were eval-

uated as options for this parameter. These are used to determine how rapidly the

membrane potential decays in the output neurons.

• The spike threshold coefficient (vthc): Two values, namely 0.01 and 0.03, to deter-

mine the neurons’ spike threshold.

• Adaptive Threshold Increase Constant (βc): Two different values, 1.7 and 1.8,

were investigated. This constant is utilized in calculating the increment of the

adaptive threshold in ALIF neurons.

• Adaptive Threshold Decay Constant (τac): Two different values, 0.5 and 1, were

investigated. This constant governs how quickly the adaptive threshold decays

over time.

The training loss is comprised of two components (Eq. 4.10): the classification loss

(Lp) calculated using cross-entropy and the weighted firing-rate loss (Lfr). Lfr is com-

puted as the discrepancy between the firing rate activity of the network and the firing

rate regularization coefficent regr (Eq. 4.9). This thorough exploration of hyperpa-

rameters aids in comprehending their influence on both computational complexity and

internal activity within LSNN.

Lfr =
1

2

∑
j

(
1

nT

nT∑
t=1

ztj − regr

)2

(4.9)

L = Lp + Lfr ∗ regc (4.10)

Several training parameters were investigated, including the inference time (tinf )

which was tested with values of 5, 10, and 20. The regularization coefficient (regc) was

explored using values of 1, 100, and 300 to compute the weighted firing-rate loss during

network training. Additionally, firing rate regularization coefficent (regr) was examined

at rates of both 0.01 and 0.001 to determine the desired firing rate in the weighted

firing-rate loss calculation (Table 4.2).

4.4.2.1 Accuracy vs. N and tinf hyperparameters

In this study, an exhaustive search was conducted to evaluate the impact of dif-

ferent hyperparameters and eLSNN variations on network accuracy. The Matthews

Correlation Coefficient (MCC) was used as a metric to measure accuracy on the test set,
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Figure 4.7: The x-axis represents the number of Inference Ticks, while the y-axis shows
the MCC. Each data point depicts a different LSNN configuration with its unique set
of hyperparameters. The percentage indicated corresponds to the proportion of SNNs
plotted out of the total number of configurations explored, which was 1728.

which consisted of samples related to vehicle passages on a bridge section before and

after maintenance. Figure 4.7 illustrates the relationship between network accuracy and

various configurations. The plot only includes configurations that resulted in eLSNNs

with MCC values equaling or exceeding 0.6, which corresponds to an accuracy of 0.77

or higher. A horizontal line at MCC = 0.75 represents “good” configurations with

accuracies above approximately 0.88.

The x-axis of the figure displays three sets of plots, representing different values for

inference ticks (tinf ). Each set includes a plot for current-driven eLSNNs and another

one for event-driven eLSNNs. Within each plot, there are configurations of eLSNN

that achieve an MCC value higher than 0.6. The percentage of these configurations

out of the total evaluated (1728 for each type) is shown at the bottom of each plot.

Configurations with an input number equal to 50 are depicted by blue bins, while those

with an input number equal to 150 are represented by orange bins. In terms of struc-

tural health monitoring, the input number (N) corresponds to twice the magnitude of

spectral components obtained from the FFT, which is equivalent to double the number

of acceleration samples necessary for sensor data in conducting eLSNN inference.

The combination of these parameters (tinf and N) constitutes the first-order hyper-

parameters that impact eLSNN inference execution time and energy consumption, as

discussed in the next section. For current-driven eLSNNs, the largest number of accept-

able configurations is achieved with an input number (N) of 50, which also corresponds

to lower computational complexity. In contrast, event-driven eLSNNs require an input

number (N) of 150 to achieve acceptable configurations. Additionally, for current-driven

eLSNNs, accuracy improves with larger inference ticks, having acceptable configurations

with N = 50 and tinf = 5, as well as several with N = 50 and tinf = 10, 20. However,



Supervised Learning with SNNs 48

Figure 4.8: A) Cycle count for the event-driven eLSNN in different configurations.
It includes variations in input numbers and inference ticks, computed on minimal,
median, and maximal spike activities on the input layer (x). B) Cycle count for the
current-driven eLSNN with variations in spike activities on the recurrent/hidden layer
(z), computed on minimal, median, and maximal settings. Different colours represent
different numbers of input configurations for each eLSNN network. All networks have
10 inference ticks.

this is not the case for event-driven eLSNNs, as their MCC does not significantly

improve with increasing tinf .

4.4.3 Execution time vs. activity-factors

The distribution of non-zero elements in the input layer for event-driven eLSNNs

is depicted in Figure 4.9.B. This distribution depends on two hyperparameters, namely

inference ticks (tinf ) and number of inputs (N). Each point along the y-axis represents

a different configuration of these hyperparameters. The plot reveals that the number of

events, spikes, or non-zero elements in the input layer (x) is more significant and exhibits

greater variability compared to the recurrent/hidden layer (Figure 4.8.B). Additionally,

both the average and standard deviation of input events/spikes/non-zero elements in-

crease as I have higher values for input numbers and inference ticks.

The execution time of event-driven eLSNN for different configurations of the hyper-

parameters is shown in Figure 4.8.A. The plot demonstrates that both inference ticks

and the number of events (x) have an impact on the execution time. There is a lin-

ear increase in execution time with higher values of these parameters. Notably, unlike

current-driven eLSNNs, the input number (N) does not directly affect the execution

time for event-driven eLSNNs but indirectly through its relationship with x.
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Figure 4.9: A) A breakdown of the cycle count for the best configurations of event-
driven (event) and current-driven (current) eLSNN, computed on median activity
conditions. B) The distribution of spikes in the input for different configurations of the
event-driven eLSNN, with corresponding input numbers and inference ticks.

Figure 4.10: The current consumption patterns of the best eLSNN networks per-
forming SHM applications are shown in the waveforms. Two sets of inputs were used:
current inputs (top) and event inputs (bottom). The waveforms were obtained by re-
ducing the MCU clock to 16 MHz and setting the SPI clock to 2 MHz, allowing for a
clearer depiction of different stages in the application.

Stage
Current-Driven

Time Cycles Current Power Energy
[µs] [#] [mA] [mW] [µJ]

SPI 542 - 5.01 16.53 8.96
FFT 41 6971 38.76 127.91 5.24
ABS 26 4284 36.58 120.71 3.14
Encoding - - - - -
eLSNN 215 36036 40.26 132.86 28.56

Total 824 47291 - - 45.90
Mean - - 16.88 55.70 -

Table 4.3: The power analysis of the SHM application featuring the best LSNNs
tested. The SPI master transfers data at a clock speed of 8 MHz. The SPI stage
includes three components: i) transferring data via SPI, ii) reconfiguring the system-
on-chip’s clock to 168 MHz after waking up from SLEEP mode, and iii) converting
sensor data from raw integers to floating-point format.
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Stage
Event-Driven

Time Cycles Current Power Energy
[µs] [#] [mA] [mW] [µJ]

SPI 949 - 4.33 14.29 13.56
FFT 101 16968 38.17 125.96 12.72
ABS 50 8316 35.97 118.70 5.94
Encoding 32 5459 42.65 140.75 4.50
eLSNN 99 16631 38.20 126.06 12.48

Total 1231 47374 - - 49.20
Mean - - 12.11 39.97 -

Table 4.4: The power analysis of the SHM application featuring the best eLSNNs
tested. The SPI master transfers data at a clock speed of 8 MHz. The SPI stage
includes three components: i) transferring data via SPI, ii) reconfiguring the system-
on-chip’s clock to 168 MHz after waking up from SLEEP mode, and iii) converting
sensor data from raw integers to floating-point format.

4.4.4 Event-driven vs. Current-driven

Fig. 4.9.A presents a detailed analysis of the total number of cycles needed by the

median inference time for current-driven and event-driven eLSNNs. The breakdown

showcases the different computational phases involved in executing an eLSNN for various

configurations, with a focus on N and tinf hyperparameters and using the median sample

data considering both x and z.

The chart displays all the N - tinf hyperparameter combinations for current-driven

eLSNNs, while only configurations with inference ticks equal to 5 are shown for event-

driven eLSNNs, as they are considered the most energy-efficient networks.

In comparing the different networks, it is observed that the two highest-performing

eLSNN configurations, with MCC ≥ 0.75, are N = 150 and tinf = 5 for event-driven

eLSNNs and N = 50 and tinf = 5 for current-driven eLSNNs. Notably, the event-

driven eLSNN requires less than half of the cycles compared to the current-driven

eLSNN. This indicates that the event-driven variant is significantly more efficient (over

50%) in comparison to its current-based counterpart.

It should be noted that this finding does not take into consideration the preprocessing

of the input sample, which has a significant impact on the input number and is especially

relevant for the chosen event-driven eLSNN configuration. Interestingly, even though

the event-driven eLSNN configured with N = 50 and tinf = 5 is the most efficient in

terms of execution time, it falls slightly below the MCC threshold at 0.72.

In Figure 4.9.A, different patterns represent the number of cycles required for various

computational phases (Eq. 4.4, 4.5, 4.6, 4.7, and 4.8), including the following:
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• Phase 0: Compute αv (Eq. 4.4)

• Phase 1: Compute W Inx (Eq. 4.4)

• Phase 2: Compute WRecz (Eq. 4.4)

• Phase 3: Compute ξat (Eq. 4.6)

• Phase 4: Compute ρa + z (Eq. 4.6)

• Phase 5: Compute z (Eq. 4.5)

• Phase 6: Compute y (Eq. 4.8)

• Phase 7: Prepare for the next iteration

Phase 1 is the most time-consuming step in current-driven eLSNNs as it involves

a full matrix-vector multiplication. Phases 0 and 3 each require N multiplications, and

their execution times become more noticeable with increasing tinf . This breakdown

provides insight into how the computational load is distributed across different phases

and contributes to the overall execution time.

Fig. 4.10 depicts the current consumption of the MCU during various processing

steps, including reading sensor values via SPI interface, preprocessing the sample ( FFT

+ ABS), and computing the eLSNN kernel. The left plot represents the current-driven

eLSNN in its optimal configuration, while the right plot illustrates the event-driven

eLSNN in its optimal configuration.

On the one hand, the event-driven eLSNN kernel requires fewer cycles than the

current-driven eLSNN. However, it also requires three times as many sensor readings

to compute an inference for a given input sample. This increase in sensor readings

adds complexity to the computational process and results in higher cycle counts needed

for reading data from SPI, performing FFT calculations, and computing absolute

values. Furthermore, compared to the current-driven eLSNN, the event-driven approach

involves an additional preprocessing step that includes coding spectral components into

spikes/events.

The network with the current input necessitates a matrix-vector multiplication for

each input tick tinp = tinf/texp. In this particular case, there is only one input tick and

a sole matrix-vector multiplication occurs. However, even with just one computation,

it significantly increases the number of cycles required. Fig. 4.10.A clearly shows this

phase lasting from approximately milliseconds 2 to 3, whereas it is absent in Fig. 4.10.B.

This analysis provides insight into the impact of processing steps on both current-

driven and event-driven eLSNNs’ current consumption. It highlights the trade-offs
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between computational efficiency, sensor readings, preprocessing steps, and energy con-

sumption for optimal performance.

Table 4.3 and Table 4.4 summarize the observed effects. Although the event-driven

eLSNN kernel requires fewer cycles (54%) compared to the current-driven eLSNN net-

work, the total computation time is 1.51 times longer for the event-driven eLSNN due

to a longer SPI transfer time. However, even with this additional execution time, it

still meets the real-time requirements of the SHM application

The energy consumption of both event-driven and current-driven eLSNN flavours is

comparable, ranging from 46-49 µJ. This shows that although the event-driven eLSNN

requires extra execution time, the lower power cost of the SPI transfer (with DMA)

compensates for it in terms of overall energy consumption between the two flavours.

Further research could focus on investigating temporal coding methods and imple-

menting coding directly on the MEMS sensor in the time domain. By using on-sensor

coding techniques, it may be possible to eliminate the requirement for FFT and decrease

the data volume that needs to be read from the MEMS sensors. This would result in

reduced energy consumption within the sensor node.

4.5 Conclusion

This study explores the potential of LSNNs for structural health monitoring applica-

tions and compares their effectiveness to ANNs. Through experiments, it was observed

that LSNNs can effectively analyze input sequences and perform classification tasks.

The versatility and robustness of LSNNs were demonstrated by testing them on dif-

ferent versions of the dataset with varying spectral features and signal lengths. The

best-performing LSNN model, trained using e-prop, achieved a classification accuracy

of MCC = 0.88 in distinguishing between damaged and healthy conditions of a bridge.

These results highlight not only the capabilities of SNNs in SHM but also indicate the

possibility of energy-efficient hardware platforms powered by neuromorphic accelerators.

Additionally, I introduced an enhanced version of the LSNN specifically designed

for SHM applications on microcontroller-based platforms. I investigated the operational

behaviour of spiking neural networks, with a particular focus on evaluating the benefits

and trade-offs associated with event-driven inputs.

In my investigation, I focused on examining different methods for encoding input

data and assessing their impact on system performance and energy usage. My results

reveal the trade-offs between the operational requirements of eLSNNs and the overhead
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associated with transferring data, providing guidance for selecting optimal configurations

that balance energy efficiency and performance. Through empirical analysis of real-world

applications, I demonstrate that LSNNs are a viable approach in structural health

monitoring, achieving accuracy MCC ≥ 0.75 while minimizing energy consumption

and computational overhead, particularly when compared to the expenses incurred from

transferring data.



Chapter 5

Reinforcement Learning with

SNNs

RL tasks naturally involve a temporal aspect and are known for their complexity.

In recent years, SNNs have emerged as a promising tool for solving RL problems

efficiently [40]. The appeal of SNNs in this context stems from two key factors. Firstly,

the inherent time dimensionality and dynamic nature of SNNs enable them to effectively

retain information within the membrane potential. Secondly, empirical findings indicate

that SNNs outperform traditional ANNs in terms of expressiveness [2].

In the past, reinforcement learning tasks were mainly performed on powerful com-

putational platforms. However, there is now a trend towards running complex cognitive

tasks on resource-limited platforms such as nano- and pico-sized vehicles. This shift em-

phasizes the attractiveness of using spiking neural networks due to their energy efficiency,

which makes them well-suited for these emerging applications [76].

5.1 Dynamic Vision Sensor

DVS is a neuromorphic sensor that mimics the functioning of animal eyes. Unlike

traditional cameras, the DVS only generates events when there is a change in log

Figure 5.1: Comparison between an RGB image and a DVS image.

54
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luminance, disregarding static background information and reducing redundant data

transmission. The output of the DVS consists of asynchronous and sparse events, each

containing pixel coordinates, timestamps, and polarity values {-1, 1}.

In my study, a drone equipped with a DVS camera is utilized as an input source

for the agent. The agent then employs a neural network to acquire knowledge about

its surroundings and make decisions regarding navigation and obstacle avoidance. An

illustrative example of simulated DVS output alongside a comparison with an RGB

image is presented in Figure Fig. 5.1. In the right-hand side DVS image, events are

depicted by red pixels (positive events), blue pixels (negative events), and black pixels

indicating background activity (no events). The left-sided image represents the RGB

version of the scene for reference purposes.

5.2 Neuromorphic Platforms

Neuromorphic platforms can be categorized into two main types: analogue and

mixed-signal, and digital SNN accelerators. Platforms falling into the former category

are typically more efficient, offering a smaller neuron area footprint for the same neuron

model [77, 78]. However, their neuron functionality often relies on technology-specific

implementations, operating individual transistors in their sub-threshold regime. Con-

sequently, significant engineering efforts are required for porting to different technology

nodes.

On the other hand, digital neuromorphic platforms implement less complex neuron

models, typically based on LIF or its derivatives [79–82]. These platforms use equation-

solver data paths composed of digital elementary adders and multipliers. Notably, digital

neuromorphic platforms find applications beyond neuromorphic simulation, enabling fast

integration into digital SoCs [83] and technology porting [84].

Across various state-of-the-art neuromorphic hardware, common characteristics in-

duce approximations in SNN models. Both Loihi [79] and Spinnaker2 [85] support

biases, while SNE omits them to avoid slowing down simulations and increasing energy

consumption. Access to membrane potential at runtime enhances network expressive-

ness, with Spinnaker2 allowing it [85], Loihi providing access only at the simulation’s

end [79], and Sparse Neural Engine (SNE) lacking this capability.

SNE, with high quantization weights (4 bits) and significantly lower energy consump-

tion, embodies a worst-case scenario, imposing multiple approximations on the neuron

model. Hence, the targeted deployment platform for the quantized spiking neural net-

work in this study is an implementation of SNE [84]. SNE is a fully digital, non-Von
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Figure 5.2: The setup process involves converting RGB frames into DVS frames,
which are then inputted into the network. The network generates a Q-function as
output, which is utilized to determine the appropriate action for the drone to execute.

Neumann data-flow architecture with DMA capabilities, implementing a programmable

number of digital LIF neurons. Integration into a conventional SoC involves connecting

it to two dedicated memory ports and one configuration advanced peripheral bus (APB).

SNE utilizes an explicit coordinate list (COO) representation encoded on 32 bits

to address and consume single events (input feature maps) linearly stored in the main

system memory. The architecture features a dedicated local memory to store up to 256

3×3 4-bit-quantized convolutional kernels. The firing threshold and LIF exponential de-

cay time constant are held by dedicated configuration registers and can be programmed

at runtime. In this work, reference is made to an SNE configuration with 8 parallel

computing engines, each simulating 1024 configurable LIF output neurons.

5.3 SNNs with D2QN

The main purpose of this research is to evaluate the effectiveness of utilizing an

SNN in an RL algorithm, in particular D2QN, specifically for tasks involving obstacle

avoidance. To accomplish this, a comparative analysis is conducted between the SNN-

based approach and an ANN-based version previously discussed in [86]. The core

components utilized for this comparison are outlined in Fig. 5.2.

My assessment starts by feeding RGB frames as input to a DVS simulator. This

simulator converts the frames into DVS images. These DVS images are then used as

input for neural networks that model the Q-function. The result from these networks

is represented as a Q-array, which determines the action taken by the agent based on

selecting the maximum value within it.

After comparing the approaches of SNN and ANN, I move forward to create a

framework for simulating the behaviour of SNE [84]. In this framework, I incorpo-

rate both membrane potentials and weights quantization to align with the limitations

imposed by the hardware target implementation.
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In addition, I engage in developing a novel architecture for SNN that is specifically

designed to function smoothly within the SNE framework. My approach involves uti-

lizing different training algorithms and adapting various SNN topologies to effectively

address the limitations imposed by both the hardware implementation and the specific

reinforcement learning task.

5.3.1 Spiking Neural Network and DVS Input Model

My research explores the utilization of Spiking Neural Networks in reinforcement

learning tasks, which necessitates considering various aspects related to network archi-

tecture and input representation for SNNs employed in classification tasks.

In classification tasks, SNNs operate over multiple computational time steps referred

to as “ticks” (N). During these ticks, the same input data is repeatedly presented to the

network, and its spike activity is measured for class assignments. This iterative process

allows the network to adapt and reach an optimal state for performance. Recent studies

have emphasized that tuning the duration of each tick is a crucial hyperparameter with

a potential impact on network performance [87].

Two common methods are used to keep the input constant for a specific period.

First, in the case of event-based input like frames from a DVS camera, the input

sequence is recorded and replayed multiple times [88]. This guarantees that the network

processes the same data repeatedly for a desired duration. Secondly, when a RGB or

grayscale frame is provided as input, it remains constant for a specified period of time.

During this duration, the encoding technique transforms the frame into spike trains. This

transformation can be achieved through different methods: i) Mapping pixel values to

the probability of neuronal firing to create spike trains [89]. ii) Utilizing pixel values

as a source of electrical current for neurons in the input layer which affects their firing

rates [40].

To ensure the persistence of input information, these strategies are employed to allow

the spiking neural network to reach a stable state and achieve accurate classification.

Selecting an encoding strategy can have implications for the network’s performance and

computational efficiency.

My research focuses on reinforcement learning using event-based inputs, which are

characterized by temporal variations and encoding as spike events. These inputs are

obtained through a simulator for a DVS camera. In the context of reinforcement

learning, the network’s objective is to observe and interact with the environment in order

to estimate a Q-function. Unlike classification tasks, there is no predefined sequence to
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classify. Therefore, it is not feasible to record and repeat scenes as the network must

process input events in real-time as they occur. Moreover, the network operates within

time constraints due to the agent’s need for prompt decision-making and navigation in

its environment. To accommodate these factors, I choose to directly utilize the spikes

produced by the DVS camera as input for the network. This strategy not only reduces

latency but also guarantees real-time processing of input information by the network.

The network receives a series of DVS (differential) images that are combined to-

gether. The total number of ticks in the network (N) matches the number of provided

DVS frames. The SNN analyzes all the combined frames and generates an estimated

output for the Q-function. To prevent excessive delay, it is recommended to keep the

number of stacked frames relatively low as a design consideration. My experimental

findings suggest that my approach can achieve satisfactory accuracy with just three

stacked frames, proving its feasibility.

To adapt the event-based input and time dynamics of SNNs for the reinforcement

learning task, I incorporate certain considerations in my approach. First, to account for

the fact that SNNs can only handle positive spikes and the inherent temporal nature of

SNNs, I convert negative DVS events into positive events. These converted events are

then directed to a separate input channel alongside the positive events. As a result, two

input channels are required: one for positive events and another for converted negative

events. Second, I present stacked frames as a temporal sequence of samples to the SNN

in order to detect environmental status. The number of time steps (“ticks”) is equal to

the number of stacked frames S, where S represents 3 in my specific setup configuration

(N = S = 3). During this process, each individual frame is presented to the network for

a duration equivalent to 1 tick.

The neural network used for the reinforcement learning task includes two types

of neurons: i) LIF neurons in the hidden layer, and ii) non-spiking LIF neurons in

the output layer. Both types of neurons have a bias term. This particular network

configuration is considered my baseline SNN, referred to as SCNN.

Modern neural network architectures, which are commonly used in advanced appli-

cations, often consist of billions of parameters that are represented as single-precision

floating-point values for numerical stability during training. However, this choice comes

at the cost of increased memory usage [90]. These neural networks can have substantial

memory footprints, typically requiring several tens of gigabytes. This poses a challenge

when deploying these networks on embedded computing platforms with limited available

memory.
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Table 5.1: Three instances of neuron output values calculated using different ap-
proaches. In these illustrations, I utilize a duration of three ticks (N = 3).

Case 1 Case 2 Case 3

Output

Activity

Spikes
z0 = 0; z1 = 0;

z2 = 0
z0 = 0; z1 = 1;

z2 = 1
z0 = 1; z1 = 1;

z2 = 1
i: 1/N ∗

∑
i zi 0 0.67 1

ii:
∑

i 2i ∗ zi 0 6 7
iii: Eq. 3.4 & Eq. 3.5 v(t) < vth vth vth
iv: Eq. 3.4 v(t) ∈ (−∞,∞) v(t) ∈ (−∞,∞) v(t) ∈ (−∞,∞)

In order to evaluate the practicality of implementing an SNN-based agent on actual

neuromorphic hardware, I have made adjustments to the SNN model to conform with

the limitations and capabilities of these hardware platforms. Furthermore, I have em-

ployed quantization methods to minimize memory demands and ensure suitability for

embedded devices [91].

In this context, I am investigating quantization techniques to decrease the preci-

sion of network parameters and internal representations in order to ensure compatibility

with the targeted SNE neuromorphic accelerator. Traditional approaches for quantiza-

tion involve transitioning from 32-bit or 64-bit floating-point representations to smaller

16-bit floating-point representations. However, I am exploring more aggressive quanti-

zation strategies that aim for significantly reduced bitwidth parameters, such as using

4-bit quantized network weight parameters and 8-bit quantized internal membrane po-

tential representation [92]. This level of quantization is specifically tailored to meet the

requirements of the SNE neuromorphic accelerator.

It is noteworthy to mention that in SNNs, the intermediate feature maps, which are

the outputs generated by neural network layers, are intrinsically quantized with 1-bit

activations. Unlike continuous-valued activations in conventional CNNs, the activation

function of SNN layers generates binary events that indicate when a neuron’s membrane

potential surpasses a threshold at a specific time point.

5.3.2 The Adaptation of STBP for Q-function Estimation

In this study, I focus on utilizing the SNN to estimate a Q-function for reinforcement

learning. The accurate representation of the Q-function is crucial in navigating complex

environments using photorealistic simulations. To achieve high expressiveness, I adopted

the STBP training algorithm proposed in [50], which is specifically designed for training
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Table 5.2: Comparison between the features of a fully customized neuron and the
neuron in SNE.

Features LIF Neuron
SNE LIF
Neuron

Bias ✓ ✗

No-spiking neuron ✓ ✗

Type of reset Hard & Soft Hard
Access to v(t) ✓ ✓

Acces to z(t) ✓ ✓

SNNs in classification tasks. This algorithm relies on a pseudo-derivative (Eq. 3.10) and

uses average output activity as a key component.

Table 5.1 provides three examples for each of the output strategies discussed below.

These examples are computed using a specific number of time steps (N), which in this

case is set to 3. The first row represents the plot of the output activity, while the second

row shows the output activity translated into spike events.

• Mean Output Activity: This strategy calculates the average output activity, re-

sulting in limited expressiveness since the output values are constrained within.

The possible levels for outputs (nol) are directly determined by the number of time

steps (N) in the network: nol = N + 1.

• Time to Spike: To increase expressiveness, I can consider “time to spike” from my

last layer. Using this approach expands my range with nol = 2N possible levels for

outputs.

• In order to enhance the expressiveness of the output, one approach is to utilize

the membrane potential v(t) of spiking neurons in the output layer. This allows

for a wider range of values within the interval v(t) ∈ (∞, vthr], resulting in an

effectively infinite number of output levels (nol =∞). It should be noted that this

implementation cannot exceed values greater than vthr.

• To overcome the limitation mentioned above, an alternative option is to employ

non-spiking LIF neurons as the output. This enables a broader span of values for

the output membrane potential within v(t) ∈ (−∞,∞), and therefore leads to an

effectively infinite number of output levels (nol =∞).
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Table 5.3: Networks architecture. HR-LIF stands for Hard-reset LIF and NS LIF for
Non-spiking LIF

CNN SCNN eSCNN qeSCNN pqeSCNN

Input channels 3 2 2 2 2
CONV1 (16, 8, 4) (16, 8, 4) (16, 8, 4) (16, 8, 4) (16, 8, 4)
CONV2 (32, 8, 4) (32, 8, 4) (32, 8, 4) (32, 8, 4) (32, 8, 4)
FC1 512 512 512 512 512
FC2 5 5 5 5 5
Bias ✓ ✓ ✗ ✗ ✗

Hidden neurons ReLU HR LIF HR LIF HR LIF HR LIF
Output neurons Linear NS LIF NS LIF NS LIF NS LIF
Quantization ✗ ✗ ✗ Full quantized No last layer

5.3.3 Spiking Neural Network on SNE Embedded Neuromorphic Ac-

celerator

To meet the requirements of the SNE accelerator, modifications are made to the

neuron model, and weight quantization is applied in adapting the SNN model. The

discrepancies between the software neuron model and SNE implementation are summa-

rized in Table 5.2, with a notable distinction being the exclusion of bias from the neuron

model to align with that of SNE. This adapted network is denoted as eSCNN.

When utilizing SCNNs on embedded neuromorphic hardware such as SNE, it is

necessary to encode the network parameters such as weights and membrane potential

using a bit-width that the hardware can accommodate. Specifically, on SNE, weights

are encoded as 4-bit signed integers, while the LIF membrane potential, which serves as

an internal neuron state variable, is represented with 8 bits.

Quantlib [91], a software tool that facilitates the quantization of weights to meet

specific numerical precision requirements, has been enhanced to support the implemen-

tation of the LIF function as an activation function on SNE hardware. This updated

version allows for the deployment of fully quantized SNE networks, which consist of

non-spiking neurons in the last layer and spiking neurons in all other layers. The re-

sulting network is referred to as qeSCNN. Quantizing both the weights and membrane

potential according to hardware constraints is essential for ensuring efficient operation

of the SNN on the SNE platform.

Another variation of the SNN implementation was utilized in addition to qeSCNN.

In this version, the final layer operates on the general-purpose microcontroller of the

SNE platform. This modification allows for increased numerical precision: i.e. nol

value is not limited to 8 bit. The purpose of this adjustment is to account for any

possible reduction in expressiveness within the SNN caused by limited time steps used
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in the decision layer. This network is referred to as pqeSCNN. Further details regarding

compared networks can be found in Table 5.3.

In order to assess the accuracy of inference on the SNE hardware platform, I sim-

ulated the behaviour of LIF neurons implemented on SNE. This simulation involved

replicating the 8-bit membrane potential decay performed on real hardware using a

lookup table, as well as simulating how the neuron’s membrane potential is updated

when a spike occurs and how it resets once the threshold is exceeded, returning to its

resting value. These simulations were conducted by extending the base neural network

classes defined in the Quantlib framework [91].

The synaptic connectivity supported by SNE includes both convolutional and fully

connected types.

5.4 Training and Evaluation Framework

In this section, I provide an overview of the simulator utilized for training the drone

on obstacle avoidance. This includes details about the environment characteristics, RL

parameters, and DVS configuration.

5.4.1 Simulation Environment and DVS Model

To enable the reinforcement learning agent’s training for obstacle avoidance, a simu-

lator environment is utilized. For this purpose, AirSim [93] is selected as the simulator of

choice. Built on Unreal Engine 4 [94], AirSim provides realistic physics simulations and

rendering capabilities. Its photo-realistic nature enables neural networks to be trained

in a simulated setting while still maintaining acceptable performance when deployed in

real-world scenarios [95].

To integrate the DVS into the simulation, I employ a DVS simulator called v2e [96].

This tool accurately models the dynamics and noise associated with DVS. By integrating

v2e into AirSim, I can process the images generated within the simulator environment

using this tool. The processed DVS data is then utilized as input for training an RL

agent in a realistic and dynamic event-based sensor environment.

5.4.2 Training and Evaluation Setup

To conduct experiments and evaluation of reinforcement learning models for obstacle

avoidance, a simulated environment is utilized in this study. The setup closely follows
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10 m

(a) Training lane.

10 m

(b) Lane 1.

10 m

(c) Lane 2.

Figure 5.3: The arrangement of obstacles in the three lanes. The first row depicts the
representation from the top, while the second row shows the representation from the
left side.

the framework presented in [86], with three distinct lanes implemented within Unreal

Engine 4. These lanes span 70 meters along the y-axis and feature diverse obstacles

that mimic real-world challenges faced by drones or agents. Outlined details of the lanes

include:

• Fig. 5.3(a): Training lane will serve as the designated area for training my RL

model. This lane has been designed with 16 obstacles to provide a suitable level of

challenge for effective model training. Furthermore, I will also utilize this lane for

evaluating the performance of the trained model and assessing its effectiveness.

• Fig. 5.3(b): Lane 1 features a simpler setup with only 9 obstacles. This configura-

tion allows for a more direct assessment of the model’s fundamental capabilities.

• Fig. 5.3(c): Lane 2 is densely packed with 25 obstacles. This setting aims to test

the model’s performance in complex scenarios.

In this setup, the interaction between the environment and the agent involves two

primary types of data: observations and rewards.

The input data for the agent consists of three pre-processed frames obtained from a

DVS. These DVS frames were generated using v2e, a tool that simulates the function-

ality of real DVS cameras [96]. The v2e toolbox generates frames that are expressed as

a series of tuples, wherein each tuple comprises the following details:

• Timestamp: The exact time when the event (alteration in log-luminance) hap-

pened.

• X-coordinate: The horizontal location where the event was detected on the pixel.

• Y-coordinate: The vertical position where the event was identified on the pixel.

• Polarity: This value can either be 1 or -1, denoting an increase or decrease in

log-luminance respectively.
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The agent uses rewards as a form of feedback to guide the learning process. In this

particular environment, the rewards are calculated using a predefined formula:

R(s, a) = γy∆y − γcC − γaA (5.1)

where, R denotes the reward assigned to a particular state s and action a, while γy,

γc, and γa are regularization factors that assign different weights to specific components

of the reward. ∆y represents the vertical distance between the current position of the

agent and its desired goal. C acts as an indicator if there has been any collision with

obstacles along the way. Lastly, A signifies the action chosen by the agent in response

to its environment.

To determine the value of action A, the following process is followed:

• If the action corresponds to maintaining the current course (index 4), then A is

assigned a value of 0.

• For all other actions, A is assigned a value of 1.

The C flag signifies if there has been a collision or if the agent has surpassed the

maximum allowable number of actions (M). The episode concludes when either the

agent reaches its goal or when C = 1.

The agent conveys its decision through actions, and this environment is defined by

discrete action options. These options include:

• 0: steer left to avoid obstacles

• 1: steer right to avoid obstacles

• 2: move downwards to avoid obstacles

• 3: move upwards to avoid obstacles

• 4: maintain the current course.

All the parameters used in the simulation are in Table 5.4.
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(a) Training lane. (b) Lane 1. (c) Lane 2.

Figure 5.4: Performance of the networks in three lanes using Normalized AUC, which
was computed using bins of 10 meters.

Table 5.5: Networks performance.

Normalized AUC Drones reaching the goal
Training lane Lane 1 Lane 2 Training lane Lane 1 Lane 2

Random 21.70 19.83 26.63 0% 1% 0%

CNN 92.79 78.94 37.74 89% 70% 26%
SCNN 99.34 98.51 99.5 98% 98% 98%
eSCNN 91.67 48.30 44.64 77% 28% 17%
qeSCNN 2.86 2.83 2.86 0% 0% 0%
pqeSCNN 38.20 37.61 37.23 0% 0% 0%

5.5 Results

5.5.1 Neural Networks Performance

The performance evaluation methodology explained in this section concentrates on

two primary metrics: the Normalized Area Under the Curve and the overall count of

drones that successfully reach their assigned objectives.

The Area Under the Curve (AUC) is a well-known measure used to evaluate classifier

effectiveness. However, for this research, I have redefined the AUC to quantify the

cumulative distance achieved by a specified number of drones. In this case, the AUC is

calculated using the formula:

AUC =
∑
rd

d (5.2)

where rd represents the distance that d drones have successfully navigated. Essentially,

this revised definition of AUC enables us to assess overall drone performance across

different distances.

To address variations in bin sizes or segments of the environment, it is important

to normalize the AUC by dividing it by the width of these bins. This ensures that

performance evaluation remains consistent regardless of environmental setups or bin

widths.
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The success rate of drones in completing their tasks can be measured by the total

number of drones that reach their goals. This metric indicates the proportion of deployed

drones that successfully navigate and arrive at their designated destinations.

Fig. 5.4 illustrates the performance of the network in 10-meter bins across the three

lanes, while Table 5.5 provides metrics such as Normalized AUC values and the percent-

age of drones that reach the 70-meter goal. In order to establish a baseline, I compared

it against a random agent’s performance represented by the blue bars. Amongst the

neural networks evaluated, it is observed that SCNN (green bars) outperforms others

consistently reaching toward end locations for all three lanes with an accuracy rate of

98%. On the contrary, CNN (orange bars) achieves this milestone approximately at

rates of 89%, 70%, and merely only around 17% respectively for Training lane, Lane

1, and Lane 2 thus depicting inferior temporal task handling capabilities highlighting

SCNN’s generalization performances compared to artificial neural networks.

The architecture of the eSCNN (depicted by red bars) is similar to that of the

SCNN, but it does not include biases. It achieves success rates of only 77%, 28%, and

17% in Training lane, Lane 1, and Lane 2, respectively. This difference highlights the

importance of biases in enhancing the network’s ability to achieve its goals effectively.

Although the performance of the eSCNN is generally lower compared to that of the

CNN, both networks exhibit similar behaviours in terms of goal attainment in Training

lane and Lane 2. However, a significant decrease can be observed for the third bin in

Lane 1 which indicates difficulties faced by eSCNN when navigating through a series of

obstacles due to lack of expressiveness caused by insufficient biases. This visual analysis

aligns with numerical data presented in Table 5.5.

Both the qeSCNN (purple bars) and the pqeSCNN (brown bars) networks have

undergone post-training quantization. However, they differ in terms of which layer is

quantized. The performance of the network with a quantized last layer (qeSCNN) is

noticeably worse compared to other models. It does not even reach the second bin

in Fig. 5.4. On the other hand, the unquantized last layer of the pqeSCNN executed

on an 8-core RISC-V-based cluster performs better, reaching up to the fourth bin in

Training lane and the third bin in both Lane 1 and Lane 2.

The decreased efficiency of the qeSCNN can be attributed to the limited expressive-

ness of its final layer. With only 256 levels available to represent the Q-function, it faces

challenges in handling complex tasks. On the other hand, the pqeSCNN takes advantage

of a wider dynamic range, achieving similar accuracy as the SCNN and eSCNN in bins

one and two (Fig. 5.4). However, performance begins to decline starting from bin three

due to approximations introduced by post-training quantization.
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(b) Inference energy.
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(c) Inference latency.

Figure 5.5: Convolutional layers are indicated as “Cn”, Linear layers are indicated as
“Ln”, and “IN” indicates the network input activity from the event camera.

Table 5.6: Number of the total operation and inference energy for the proposed
approach and the baseline CNN executed on a reference state-of-the-art hardware ac-
celerator [1]. Estimates are based on the highest energy per inference reported by the
author.

Network
Number of
Operations

Inference
Energy

CNN 23.2 MOP
24.11µJ a

(3.6µJ b)
qeSCNN 2.9 MOP 0.62µJ
pqeSCNN 2.9 MOP 0.66 µJ

a Energy per inference estimate based on the number of MAC executed on the reference hardware
accelerator [1]

b Energy per inference estimate on the reference hardware accelerator with energy cost scaled to the
SNE technology.

Despite the fact that the random agent reached the sixth bin and the pqeSCNN only

reached the fourth, it was found that the latter achieved a higher Normalized AUC as

shown in Table 5.5. This is because of consistently poor performance by the random

agent, while the pqeSCNN displayed declining performance starting from the third bin

onwards (Fig. 5.4).

5.5.2 Spiking Neural Network Footprint

Energy and latency estimates for the quantized SNN running on digital embed-

ded neuromorphic platforms are presented in this section. These estimates have been

calculated based on the spike activity in the input and hidden layers of the network.

The input activity estimates were derived from the complete dataset used to train the

network in the RL task proposed in [84].

In Fig. 5.5, I can see three important metrics that are derived from the spike activity

of the quantized SNN. In Fig. 5.5.a, it is evident that there is an increase in activity as
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I go deeper into the network. This outcome was anticipated because, during training,

there was no penalty for having high spike activity. As a result, redundant synaptic

connections may have increased in the deeper layers [97]. Since the accelerator aims

to achieve energy-to-activity proportionality, this spike activity has a direct impact on

inference energy consumption and latency. Both these metrics scale accordingly with

activity levels.

In Fig. 5.5.b, the energy consumption of the SNE platform is shown for each network

layer. The convolutional layers have fewer synaptic operations due to their sparsity in

the early layers. As a result, on average, these layers require less energy compared to

the linear ones.

The energy consumption during inference is significantly impacted by the network’s

activity. The average total energy required for a complete inference is 0.62µJ/inf, with

variations depending on the input stream of events from the event camera within the field

of view. For the dataset used, estimated energy consumption ranges from a minimum of

0.41µJ/inf to a maximum of 0.85µJ/inf. It should be noted that reducing spike activity

in hidden layers was not specifically trained during the RL training phase, as shown

in Fig. 5.5.a.This variability in energy consumption during inference can be attributed

to this lack of explicit training focus

Fig. 5.5.c illustrates the estimated inference latency for the suggested SNN running

on the SNE platform. On average, the inference latency is 2.4ms, with a minimum of

1.7ms, and a maximum of 3.14ms.

These findings indicate that the navigation and obstacle avoidance task can be suc-

cessfully performed at a frame rate similar to or higher than the reported performance

of state-of-the-art neural networks deployed on resource-constrained platforms in small

drones, such as Dronet. The deployment of Dronet on an embedded System-on-Chip

with a RISC-V cluster has been optimized to achieve an energy consumption of 15mJ

per inference.

In comparison to this approach, the combination of the proposed reinforcement

learning strategy and efficient deployment on specialized neuromorphic hardware can

result in a significant improvement in energy efficiency by more than three orders of

magnitude.

To conduct an energy analysis between the CNN and SNN models, both workloads

were broken down into fundamental operations, such as multiplication or addition. The

findings are outlined in Table 5.6.
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CNN operations are typically represented by MACs (multiply and accumulate) for

computing output pixel values. On the other hand, SNN involves additions during the

sparse weight accumulation on membrane potential and multiplications for implementing

the exponential decay of membrane potential.

The results presented in Table 5.6 clearly illustrate the superior energy efficiency of

executing SNN inference on dedicated hardware compared to CNN. The sparse nature

of SNN allows for significantly fewer operations, resulting in lower energy consumption.

Even when considering the energy consumed by a reference CNN accelerator [1] and

scaling those numbers to the SNE technology, the energy cost remains substantially

lower for SNE, approximately six times less.

5.6 Conclusions

This study aimed to tackle the issue of training Spiking Neural Networks for effective

obstacle avoidance tasks, particularly on advanced neuromorphic hardware called SNE.

The following are the main contributions and discoveries made in this research:

• I have created a robust and realistic training pipeline for networks involved in

obstacle avoidance tasks. To achieve this, I utilized Unreal Engine 4 as an envi-

ronment simulator, AirSim as a UAV simulator, and v2e to convert RGB frames

from Unreal Engine 4 into Dynamic Vision Sensor frames.

• To overcome the obstacle avoidance task, I opted to train a Spiking Neural Net-

work from scratch instead of converting an existing Artificial Neural Network. My

approach involved adapting the Spatio-Temporal BackPropagation SNN train-

ing method to evaluate the membrane potential of the output neurons for action

assessment at each step.

• To simulate the behaviour of SNNs in real neuromorphic hardware, a QuantLab

plugin was developed for quantizing weights and membrane potential.

• A study was conducted to compare the performance of different SNN architec-

tures, including SCNN, eSCNN, qeSCNN, and pqeSCNN, with a CNN trained

in Reinforcement Learning. The results showed that SCNN had superior perfor-

mance compared to the other architectures. It achieved a success rate of 98% in

reaching the end of all three lanes, while CNN only achieved up to 89% success

in its trained lane. Additionally, it was found that biases played a significant role

in network performance as seen by a drop in performance for eCNN due to their

absence.
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• The energy consumption and latency of the SNN were assessed as if it was executed

on specialized hardware. The evaluation showed that, on average, a complete

inference required 9.73µJ/inf with an average latency of 33.35µs. It was observed

that spike activity strongly influenced both energy and latency, although in this

study there was no specific training to minimize activity levels.

• I compared the energy consumption of both embedded SNNs (qeSCNN and

pqeSCNN) to that of the CNN. The findings revealed that even without explicitly

training for minimal spike activity, both SNNs utilized approximately 6 times less

energy in comparison to the CNN.



Chapter 6

Conclusion

Within the field of Cyber-Physical Systems, this thesis explored two distinct appli-

cations of Spiking Neural Networks: Structural Health Monitoring and Obstacle Avoid-

ance. The former focuses on classifying time series data for the purpose of identifying

structural integrity, while the latter involves navigating dynamic environments to avoid

obstacles.

Structural Health Monitoring (SHM): My research focused on the application

of Long Short-Term SNNs in Structural Health Monitoring, comparing their performance

to that of Artificial Neural Networks. The LSNN models proved to be highly effective in

analyzing input sequences and successfully performing classification tasks. In fact, the

best-performing LSNN achieved an MCC score greater than 0.88 when distinguishing

between damaged and healthy bridge conditions. These results highlight the potential of

SNNs in SHM applications and their ability to contribute to energy-efficient neuromor-

phic accelerators. Additionally, I developed an enhanced variant of LSNN specifically

designed for microcontroller-based platforms, studying the impact of event-driven inputs

along with energy efficiency considerations. My analysis revealed important trade-offs

between energy consumption and data transfer costs, providing valuable insights into

optimal configurations for real-world implementations.

Obstacle Avoidance with SNNs on Neuromorphic Hardware: I have devel-

oped a robust training pipeline for obstacle avoidance using Unreal Engine 4, AirSim, and

v2e to simulate obstacle scenarios. Through reinforcement learning, I trained an SNN

from scratch by introducing an adapted Spatio-Temporal BackPropagation method. I

compared four different SNN architectures: SCNN, eSCNN, qeSCNN, and pqeSCNN,

along with a CNN trained in Reinforcement Learning. The results showed that the per-

formance of SCNN was superior to the other architectures with a success rate of 98% in

reaching the end of all three lanes. This highlights the importance of biases since their

72
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absence in eSCNN led to decreased performance. Furthermore, the evaluation of energy

consumption and latency of SNNs when deployed on neuromorphic hardware revealed

the potential for energy-efficient and low-latency neuromorphic inference.

Combined Insights: In summary, the research findings indicate that SNNs demon-

strate versatility and promise in diverse applications such as SHM and decision-making

tasks. Their energy efficiency, low latency, and high performance make them attractive

options for deployment on specialized hardware platforms.
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