
DOTTORATO DI RICERCA IN

INGEGNERIA BIOMEDICA, ELETTRICA E DEI SISTEMI

Ciclo 36

Settore Concorsuale: 01/A6 – RICERCA OPERATIVA

Settore Scientifico Disciplinare MAT/09 – RICERCA OPERATIVA

MODELS AND ALGORITHMS FOR ROUTING AND SCHEDULING
OPTIMIZATION PROBLEMS

Presentata da: Francesco Cavaliere

Coordinatore Dottorato Supervisore

Michele Monaci Daniele Vigo

Co-supervisore

Michele Monaci

Esame finale anno 2024

Abstract

This thesis encompasses three distinct yet interrelated works, each contributing to the field of opti-
mization.

In the first work, an effective heuristic algorithm tackles the Capacitated Vehicle Routing Problem,
particularly addressing large-scale instances. The algorithm employs a combination of local search
and restricted Set Partitioning problem optimization, leveraging Helsgaun’s LKH-3 algorithm for
the local search phase. Notably, this approach consistently enhances solutions available on the CVR-
PLIB website.

The second work delves into the extension of the FILO framework, initially designed for the Ca-
pacitated Vehicle Routing Problem. The objective is two-fold: to be competitive with state-of-the-art
algorithms for simultaneous pickup and delivery problems, and to efficiently solve very large bench-
mark instances with numerous customers, all while maintaining linear scalability concerning prob-
lem size. A rigorous computational study validates the success in achieving both objectives.

The third work centers on PLATiNO, a Synthetic Aperture Radar Earth observation satellite. Effi-
cient activity planning is essential to maximize the satellite’s potential while adhering to platform
constraints. A genetic algorithm, combined with repair procedures and local search operators, ad-
dresses the intricacies of this planning. Additionally, Mixed Integer Linear Programming formula-
tions are utilized to provide precise estimations of optimal solution values. Extensive testing on real-
world benchmark instances demonstrates the algorithm’s proficiency in computing near-optimal
solutions within practical time limits.

2

Acknowledgments

I would like to express my heartfelt gratitude to several individuals who have played a key role in
my academic journey and personal growth during my doctoral studies.

First and foremost, I want to thank Luca Accorsi for his guidance and mentorship throughout my
Ph.D. His support and friendship have played a crucial role in shaping my research and overall
experience.

I am also grateful to my supervisors, Daniele Vigo and Michele Monaci, for the opportunities they
provided and the guidance they offered, which enriched my academic and research endeavors.

I want to thank Silvia, Alan, Antonio, and Federico for their friendship and for sharing with me this
three-year long journey.

My thanks go also to the entire group of researchers and professors of the OR group of the University
of Bologna, DEI department, for creating a friendly and welcoming environment and engaging in
insightful discussions.

Lastly, I appreciate the support of my parents, family, and friends during these transformative three
years. Their encouragement and belief in me have been a constant source of strength.

I am sincerely thankful to each of you for your contributions and support, which have been essential
to my academic growth and personal development.

3

Contents

1 Introduction 11
1.1 Chapter 2: An integrated local-search/set-partitioning refinement heuristic for the

Capacitated Vehicle Routing Problem . 12
1.2 Chapter 3: An Efficient Heuristic for Very Large-Scale Vehicle Routing Problems with

Simultaneous Pickup and Delivery . 14
1.3 Chapter 4: Daily Planning of Acquisitions and Scheduling of Dynamic Downlinks for

the PLATiNO Satellite . 15

2 An integrated local-search/set-partitioning refinement heuristic for the Capacitated Vehi-
cle Routing Problem 17
2.1 Introduction . 17
2.2 Previous work . 18
2.3 Algorithm Outline . 19

2.3.1 Phase 1: Lin, Kernighan and Helsgaun Heuristic 20
2.3.2 Phase 2: Column Generation Filtering . 26
2.3.3 Phase 3: Restricted Set Partitioning Problem Optimization 26
2.3.4 VRP Taxonomy . 27

2.4 Computational Results . 28
2.4.1 Original LKH vs New LKH . 29
2.4.2 Original LKH vs new LKH vs LS-CGH . 29
2.4.3 Statistical analysis of LS-CGH . 31
2.4.4 LS-CGH as a refinement tool for FILO . 31
2.4.5 CVRPLIB best-known solution improvements 31

2.5 Conclusions . 33

3 An Efficient Heuristic for Very Large-Scale Vehicle Routing Problems with Simultaneous
Pickup and Delivery 38
3.1 Introduction . 38
3.2 Problem description . 40
3.3 Literature review . 40
3.4 Solution Approach . 43

3.4.1 An overview of FILO framework . 44
3.4.2 The FSPD framework . 46

3.5 Computational Results . 51
3.5.1 Implementation and Experimental Environment 51
3.5.2 Parameter Tuning . 53
3.5.3 Testing on Instances from the Literature . 53
3.5.4 Testing on New Large-Scale Instances . 57

3.6 Algorithmic Components Analysis . 59
3.6.1 Segment Attributes Preprocessing . 59
3.6.2 Recreate Tuning . 62
3.6.3 Super-linear algorithmic phases management 66

3.7 Conclusions . 68
3.8 Acknowledgments . 70
3.9 Appendix A: Complete results . 71

3.9.1 VRPSPD Instances . 71

4

3.9.2 VRPMPD Instances . 74

4 Daily Planning of Acquisitions and Scheduling of Dynamic Downlinks for the PLATiNO
Satellite 81
4.1 Introduction . 81
4.2 Literature Review . 82
4.3 Problem Description . 83
4.4 Mathematical Formulation . 85

4.4.1 General scheduling constraints . 85
4.4.2 Memory management . 85
4.4.3 Relaxed Memory Management . 88

4.5 Genetic Algorithm Solution Approach . 89
4.5.1 Individual Representation . 90
4.5.2 Initial Population Generation . 90
4.5.3 Elitism . 90
4.5.4 Parent Selection . 91
4.5.5 Crossover and Elite Refinement . 91
4.5.6 Mutation . 92
4.5.7 Infeasibility Repair Procedures . 92
4.5.8 Local Search . 93
4.5.9 Indirect Dynamic Downlink Scheduling Algorithm 94

4.6 Exact and Relaxed Formulation Approaches . 96
4.7 Math-Heuristic Competitors . 96

4.7.1 Relax and Repair Heuristic . 97
4.7.2 Strenghtened Discrete-Memory Relaxation . 97
4.7.3 Hybrid Genetic Algorithm - Relax and Repair Heuristic 97

4.8 Computational Experiments . 97
4.8.1 Implementation and Experimental Environment 98
4.8.2 Parameters Definition and Tuning . 98
4.8.3 Instances Description . 98
4.8.4 Upper Bound computation . 99
4.8.5 Heuristic Results . 102

4.9 Conclusions . 105

5

List of Figures

2.1 On the left, the average speedup of the “New” LKH with respect to the original ver-
sion for 5 random seeds on the 57-X set. On the right the same chart including the 10
XXL instances. 29

2.2 Statistical analysis of percentage gap w.r.t. the best-known solution, on a representa-
tive subset of the 57-X and Belgium datasets. 33

2.3 Statistical analysis of percentage gap w.r.t. the best-known solution, on the ten in-
stances of Table 2.2 where LS-CGH performed best in terms of relative gap. 34

2.4 Statistical analysis of percentage gap w.r.t. the best-known solution, on the ten in-
stances of Table 2.2 where LS-CGH performed worst in terms of relative gap. 35

3.1 Illustration of segment concatenation associated with a swap move, in the case the
depot is not contained in the segments to be swapped (a) or is contained in one of
them (b). 49

3.2 Illustration of different insertion options. Although ν1 and ν2 are the closest customers
to ρ, inserting ρ in this position would introduce a considerable detour. On the other
hand, even if ν3 and ν4 are farther from ρ, the insertion cost of ρ between these two
customers is smaller. 51

3.3 Illustration of the results on the first seven instances of Salhi and Nagy (1999) X (left)
and Y (right) datasets. 56

3.4 Illustration of the results on the complete Salhi and Nagy (1999) X (left) and Y (right)
datasets. 56

3.5 Computing time required by different FSPD versions as a function of problem size for
X and XXL VRPSPD problem instances. 58

3.6 Typical evolution over time of the best solution found for XXL instances. The data
refers to instance Flanders2X with seed 0. The different convergence speed of the
algorithms is due to the simulated annealing criteria whose annealing schedule is
based on the total number of iterations while the initial and final temperatures are
kept fixed. 60

3.7 Plots of the average computing time with respect to instance size for the three REF
preprocessing techniques . 61

3.8 Plots of the average gaps sorted by size for the 4 recreate variants with recreate effort
of 50 and 100. For each instance, the values obtained for the 5 H, Q, T, X, and Y are
averaged together . 64

3.9 Plots of the average computing time with respect to instance size for the 4 recreate
variants with recreate effort of 50 and 100. For each instance, the values obtained for
the 5 H, Q, T, X, and Y are averaged together . 65

3.10 Plots of the average gaps sorted by size for the different levels of recreate effort and
FILO’s original recreate technique. 66

3.11 Plots of the average computing time with respect to instance size for the different
levels of recreate effort and FILO’s original recreate technique. 67

3.12 Speedup obtained substituting the C++ standard library sort algorithm, with Malte
Skarupke’s radix-sort implementation. 68

6

3.13 On the left, time comparison between preprocessing based on C++ standard library
sort algorithm (blue) and Malte Skarupke’s radix-sort implementation (red). For both
series, the trend-line is also reported. On the left, the same plot at a different scale with
the addition of the time needed by 100, 000 coreopt iterations. The two intersection
points represent a forecast of the size at which the preprocessing step will need the
same amount of time as the actual refinement step. 69

4.1 Illustration of grouping intervals resulting from DTO and DLO overlapping. 87
4.2 High-level structure of the proposed genetic algorithm. 90
4.3 Memory saturation representation. Given the DLO l, the satellite memory saturation

is computed before the start time of planned downlink activities (grayed areas) hap-
pening at times t0, t1 and t2. 93

4.4 Comparison of average gaps obtained by the 5 ”heuristic“ algorithms. The median is
shown at the left of each boxplot. 104

4.5 Memory profile computed with Algorithm IOM for a feasible plan (solid line) and a
relaxed plan resulting from the continuous-memory model (dashed line). 104

7

List of Tables

2.1 Speedups of the modified LKH (newLKH) with respect to the original one. The size
of the instances is computed as the number of customers plus the number of vehicles.
Results are for the 57-X and XXL sets. (*) For the Flanders2 instance, the number of
“trials” has been halved, since in the original algorithm 10, 000 “trials” would have
been computationally too expensive. 30

2.2 Comparison between the solution obtained in 200 minutes runs by: the original LKH
algorithm, Helsgaun’s LKH with our changes and inserted in our scheme (newLKH),
and our final LS-CGH algorithm (i.e., newLKH followed by RSP optimization). The
best result for each instance is highlighted in boldface. 32

2.3 Best result for 10 runs of FILO with 10 million iterations for the largest 57 instances
of the X data-set along with the improvement obtained after 200 minutes by our LS-
CGH algorithm. For the XXL instances, SA was disabled due to their extremely large
size. Entries in boldface highlight the cases where LS-CGH was able to improve the
FILO solution. 36

2.4 Best result for 10 runs of FILO with 10 million iterations for the XXL dataset along
with the improvement obtained after 200 minuted by our LS-CGH algorithm. 37

2.5 CVRPLIB best-known solution improvements by date. For the current best at the time
of writing (March 2021), the following code identifies the authors of the algorithm: (1)
Francesco Cavaliere, Emilio Bendotti, and Matteo Fischetti; (2) Eduardo Queiroga,
Eduardo Uchoa, and Ruslan Sadykov; (3) Vinícius R. Máximo and Mariá C.V. Nasci-
mento; (4) Thibaut Vidal; (5) Quoc Trung Dinh, Dinh Quy Ta, Duc Dong Do. 37

3.1 The CPU models used by algorithms from the literature and their single thread Pass-
Mark scores. 54

3.2 Results on the first seven instances of Salhi and Nagy (1999) CMTX and CMTY datasets.
Average gaps marked by an asterisk are actually the best gap obtained along several
runs. 55

3.3 Results on the complete Salhi and Nagy (1999) CMTX and CMTY datasets. Average
gaps marked by an asterisk are actually the best gap obtained along several runs. . . . 55

3.4 Results on the Dethloff (2001) and Montané and Galvão (2006) datasets. Average gaps
marked by an asterisk are actually the best gap obtained along several runs. 57

3.5 Results on the first seven instances of Salhi and Nagy (1999) CMTH, CMTQ, and
CMTT datasets. Average gaps marked by an asterisk are actually the best gap ob-
tained along several runs. 57

3.6 Results on the complete Salhi and Nagy (1999) CMTH, CMTQ, and CMTT datasets.
Average gaps marked by an asterisk are actually the best gap obtained along several
runs. 57

3.7 Results on the new large-scale VRPSPD XX, XY instances. 59
3.8 Results on the new very large-scale VRPSPD XXLX, XXLY instances. 59
3.9 Results on the new large-scale VRPMPD XH, XQ, and XT instances. 59
3.10 Results on the new very large-scale VRPMPD XXLH, XXLT, XXLQ instances. 60
3.11 Average computing time (in seconds) for the three REF preprocessing techniques . . . 61
3.12 Average gaps for the 4 recreate variants with recreate effort of 50 and 100. For each

instance, the values obtained for the 5 H, Q, T, X, and Y are averaged together 63

8

3.13 Average computing time (in seconds) for the 4 recreate variants with recreate effort
of 50 and 100. For each instance, the values obtained for the 5 H, Q, T, X, and Y are
averaged together . 63

3.14 Average gaps for the different levels of recreate effort and FILO’s original recreate
technique. 64

3.15 Average computing time (in seconds) for the different levels of recreate effort and
FILO’s original recreate technique. 65

3.16 Average gaps and computing time obtained using different fractions of the instance
size as recreate-effort. 66

3.17 Full results for dataset CMTX . 71
3.18 Full results for dataset CMTY . 71
3.19 Full results for dataset Dethloff . 72
3.20 Full results for dataset Montane . 72
3.21 Full results for dataset XX . 73
3.22 Full results for dataset XY . 74
3.23 Full results for dataset XXLX . 75
3.24 Full results for dataset XXLY . 75
3.25 Full results for dataset CMTH . 75
3.26 Full results for dataset CMTQ . 75
3.27 Full results for dataset CMTT . 76
3.28 Full results for dataset XH . 77
3.29 Full results for dataset XQ . 78
3.30 Full results for dataset XT . 79
3.31 Full results for dataset XXLH . 80
3.32 Full results for dataset XXLQ . 80
3.33 Full results for dataset XXLT . 80

4.1 Summary of medium instances and their key characteristics. Please note that Minit
and M f in are expressed as percentages of the total memory capacity, Mtot. 100

4.2 Summary of large instances and their key characteristics. Please note that Minit and
M f in are expressed as percentages of the total memory capacity, Mtot. 101

4.3 Relative percentage gaps computed by CPLEX on the medium dataset with two re-
laxed and two exact formulations, each within a one-hour time limit and executed
with 32 threads. Bold indicates bounds matching the best-known solution (found by
heuristics or during CPLEX optimization), and ∗ denotes cases where the time limit
was reached. 101

4.4 Relative percentage gaps achieved by CPLEX for the large dataset using the two re-
laxed formulations and two exact formulations. The optimization process was con-
strained to a one-hour time limit and executed with 32 threads. Bold values indi-
cate bounds that match the best-known solutions, which were found either through
heuristics or during CPLEX optimization. The symbol ∗ indicates that the optimiza-
tion reached the time limit, while ⋆ signifies that there are instances with unbounded
results excluded from the average. 102

4.5 Average and best relative percentage gaps achieved by the two exact formulations
and the three heuristics. These results were obtained within a time limit of 5 minutes
and executed with a single thread. Values matching the best-known solutions are
highlighted in bold. 102

4.6 Average and best relative percentage gaps achieved by the two exact formulations
and the three heuristics. These results were obtained within a time limit of 5 minutes
and executed with a single thread. Values matching the best-known solutions are
highlighted in bold. 103

9

List of Algorithms

1 High-level pseudocode for the LS-CGH algorithm. 20
2 High-level pseudocode for the LKH algorithm. 21
3 Simplified representation of the LINKERNIGHAN function inside the LKH algorithm . . 22

4 High-level structure of FILO. 44
5 Structure of a function that, given a customer to insert back into a solution, finds a good

insertion position. Note that we assume costs are symmetric. 52

6 High-level pseudocode for the IOM algorithm. 95

10

Chapter 1

Introduction

Combinatorial optimization is a discipline located at the intersection of mathematics, computer sci-
ence, and practical problem-solving. It carries a profound historical legacy, with its roots extending
into ancient times when individuals confronted challenges related to efficiency, resource manage-
ment, and logistical matters. In the present day, it stands as a cornerstone of contemporary compu-
tational science, providing methodologies to tackle complex decision-making issues.

Fundamentally, combinatorial optimization is a discipline dedicated to discerning the best solution
from a set of alternatives. It explores the intricate relationship between combinatorial choices and
the objective functions that guide them. Its historical origins are evident in classic problems like the
Traveling Salesperson Problem, which revolves around finding the most cost-effective route for a
merchant to visit multiple cities, and the Knapsack Problem, which focuses on optimizing the value
of carried items while adhering to capacity constraints.

As the world advanced, so did the field of combinatorial optimization. In the mid-20th century,
renowned mathematicians and computer scientists, such as Dantzig, Bellman, and Ford, developed
groundbreaking algorithms that formed the basis for solving combinatorial problems. These influ-
ential efforts led to the creation of methods like linear programming, network flows, and dynamic
programming, which played a crucial role in various real-world applications.

The practical uses of combinatorial optimization are vast, as it applies to many different industries
and fields. It helps improve manufacturing, manage resources effectively, and organize tasks effi-
ciently.

This thesis explores two main optimization challenges, vehicle routing and satellite activity plan-
ning. Our goal is to contribute to the field of optimization by offering solutions and showcasing
how they work in real-world situations. In the upcoming chapters, we will dive into each of these
areas, unraveling their complexities and highlighting the progress made.

One of the main topics of this work regards the Vehicle Routing Problem (VRP) and, more specifi-
cally, how to handle different variants of this problem seamlessly. VRPs are a group of optimization
problems that have gained significant attention due to their practical importance in transportation
and logistics. The VRP family includes well-known variations such as the Capacitated Vehicle Rout-
ing Problem (CVRP), the Vehicle Routing Problem with Time Windows (VRPTW), the Vehicle Rout-
ing Problem with Simultaneous Pickup and Delivery (VRPSPD), and others. These problems aim to
find the best routes for a group of vehicles to serve a set of customers while considering constraints
on vehicle capacity, time windows, and minimizing costs.

VRPs find applications in several areas, including:

• Field Service Management: VRP streamlines field service calls, which reduces travel time and
costs.

• Healthcare Services: VRP plans ambulance routes and home healthcare visits more efficiently.

• Last-Mile Delivery: E-commerce platforms use VRP to optimize the final package delivery
routes.

11

• Logistics and Supply Chain: VRP optimizes delivery routes, which reduces transportation
costs.

• Public Transportation: VRP improves bus and train schedules, leading to better passenger
service.

• Waste Management: VRP schedules waste collection routes, making it more cost-efficient.

The adaptability of VRPs to address real-world routing and scheduling challenges in these areas
makes it an invaluable tool for enhancing operational efficiency, cost reduction, and service qual-
ity.

1.1 Chapter 2: An integrated local-search/set-partitioning refine-
ment heuristic for the Capacitated Vehicle Routing Problem

In Chapter 2, we dive into the world of solving large-scale instances of the Capacitated Vehicle
Routing Problem (CVRP). This particular challenge involves the efficient construction of routes for a
group of delivery trucks to serve various customers while keeping within each truck’s capacity limit.
Our contribution lies in the design of an effective heuristic algorithm specifically tailored to tackle
not only the challenges presented by this problem but potentially also some of its variants.

Let us now present a formal definition of the CVRP, which is the original VRP variant introduced by
Dantzig and Ramser (1959).

Let G = (V, E) be a weighted graph, where V = {0, 1, . . . , n} represents a set of n + 1 vertices (or
nodes), and E is the set of edges connecting each pair of vertices. Vertex 0 corresponds to the depot,
while the other vertices from 1 to n represent the customers. We denote N = V \ {0} as the set of
customer nodes.

The problem involves distributing goods from the depot to each customer. Each customer i ∈ N is
associated with a demand value qi ≥ 0, representing the quantity of goods requested.

Let K = {1, . . . , |K|} denote the fleet of vehicles, assumed to be homogeneous, meaning that each
vehicle has the same maximum capacity Q. A vehicle serving a subset of customers S ⊆ N starts at
the depot, visits each customer in S once, and returns to the depot.

In the case where the travel costs are symmetric (cij = cji for all i, j ∈ V), the graph G = (V, E) is
undirected. In situations where there exist vertices i, j ∈ V with unequal travel costs depending on
the direction (cij ̸= cji), the problem is defined on a complete directed graph G = (V, A), where
A = {(i, j) ∈ V ×V : i ̸= j}, and it is referred to as asymmetric.

A route for a single vehicle is represented as a sequence of vertices p = (i0, i1, i2, . . . , is, is+1), where
i0 = is+1 = 0 (depot vertex), and the set S = {i1, . . . , is} ⊆ N, referred to as a cluster, includes all the
customers visited within the route.

Each route is considered feasible if it satisfies to the following constraints:

• Each customer, denoted as i, is visited exactly once within the route.

• The total sum of customer demands does not exceed the maximum vehicle capacity, repre-
sented by Q.

A feasible solution for the CVRP entails a collection of |K| routes, namely p1, . . . , p|K|, meeting the
following criteria:

• All routes, p1, . . . , p|K|, adhere to the feasibility constraints.

• The set of clusters, namely S1, . . . , S|K|, corresponding to these routes, collectively forms a
partition of the customer set N.

A formal model for the symmetric Capacitated Vehicle Routing Problem (CVRP) is presented, as
proposed by Laporte, Nobert, and Desrochers (1985):

12

min ∑
(i,j)∈E

cijxij (1.1a)

∑
(i,j)∈δ(j)

xij = 2, ∀j ∈ N (1.1b)

∑
(i,j)∈δ(S)

xij ≥ 2γ(S), ∀S ⊆ N (1.1c)

xij ∈ {0, 1, 2}, ∀(i, j) ∈ δ(0) (1.1d)

xij ∈ {0, 1}, ∀(i, j) ∈ E \ δ(0) (1.1e)

In this context, γ(S) signifies the minimum number of vehicles needed to serve all customers within
set S. Computing this value involves addressing the NP-Hard Bin Packing problem for the customer
subset S. Alternatively, a feasible lower bound, denoted as γ(S), for γ(S) can be determined using
the formula:

γ(S) :=

⌈
∑
i∈S

qi
Q

⌉

The binary variables xij represent whether edge (i, j) has been selected:

xij =

{
1 if (i, j) ∈ E is part of the solution
0 Otherwise

For a vertex subset S ⊂ V, the notation δ(S) denotes the set of edges with exactly one node in S.
When edges are directed, δ+(S) and δ−(S) are defined as the sets of in-arc and out-arc edges of S
respectively. Additionally, for simplicity, δ(i) := δ({i}) for all i ∈ V.

Concerning the model formulation, the objective function (1.1a) involves minimizing the cost of all
selected edges. Constraints (1.1b) ensure that each customer node has precisely two selected incident
edges. Constraints (1.1c), known as Generalized Subtour Elimination Constraints (GSECs), handle
Capacity Constraints, ensuring the feasibility of each route.

An alternative and common model for the CVRP (which is also valid for the VRPTW and VRP-
SPD), is the following Set-Partitioning (SP) formulation.

min ∑
p∈Ω

cpθp (1.2a)

∑
p∈Ω

θp = k (1.2b)

∑
p∈Ωi

θp = 1, ∀i ∈ N (1.2c)

θp ∈ {0, 1} (1.2d)

where the new symbols are defined as follows:

• Ω: Set of all the feasible vehicle routes in G.

• cp: Cost associated to each route p ∈ Ω.

• Ωi: subset of Ω routes that visit the customer i ∈ N.

• θp: binary value which is 1 if the route is in the optimal solution, 0 otherwise.

Constraints (1.2b) fix the number of routes equal to the number of vehicles, while (1.2c) are the
Set-Partitioning constraints that ensure that each customer is visited exactly once. The simplicity
of this formulation has an evident drawback: the number of θp variables, one for every possible

13

feasible route on the graph. However, this formulation has shown to be very effective for many VRP
variants.

At the heart of our algorithm lies the SP formulation just described. This approach neatly separates
considerations related to route feasibility and the composition of these routes into high-quality so-
lutions. Importantly, the proposed approach is versatile and can be readily extended to a wide array
of VRP variants with minimal adjustments.

Our approach takes inspiration from problem decomposition techniques, combining a local search
method with a restricted SP problem optimization. The local search phase harnesses the power
of Helsgaun’s LKH-3 algorithm, augmented with various implementation improvements. Con-
currently, the restricted SP formulation is solved using a commercial Integer Linear Programming
solver.

Decomposition methods are a vital tool in the realm of optimization, particularly for addressing
complex and computationally expensive problems. When dealing with large or hard optimization
tasks, employing a monolithic approach that involves all variables and constraints from a given for-
mulation, can be prohibitively costly. Decomposition methods offer an effective strategy by breaking
down the original complex problem into simpler subproblems. This approach leverages the inherent
structure and characteristics of the problem to facilitate more efficient optimization.

Examples of decomposition methods include Benders decomposition, Dantzig-Wolfe decomposi-
tion, and Lagrangian Decomposition (Wolsey and Nemhauser (1999)). These methods have proven
valuable for addressing optimization problems with an extensive number of constraints or variables
in their mathematical formulations.

The SP formulation’s generality makes it a versatile tool for tackling various VRP variants through
a technique that is inspired by the Dantzig-Wolfe decomposition, where additional constraints, pri-
marily affecting the feasibility of the routes, are implicitly represented by the route set.

Despite advancements in mathematical programming decomposition algorithms, they often fall
short when confronted with larger CVRP instances. Real-world scenarios frequently involve signifi-
cantly larger problem sizes, necessitating efficient heuristic algorithms that can deliver high-quality
solutions within reasonable computing times.

The primary objective of this chapter is to introduce a refinement heuristic that possesses the ca-
pability to enhance top-quality solutions. This algorithm is designed to complement, rather than
replace, state-of-the-art heuristics, in keeping with the spirit of many refinement heuristics in the
literature.

1.2 Chapter 3: An Efficient Heuristic for Very Large-Scale Vehi-
cle Routing Problems with Simultaneous Pickup and Deliv-
ery

Chapter 3 takes a deep dive into city logistics, focusing on the complexities of handling simultane-
ous pickup and delivery requests, often seen in crowded urban areas. The booming e-commerce
industry and the need to manage product returns make efficient logistics a top priority. In this chap-
ter, we present an algorithm that builds upon the Fast Iterated Local Search framework (FILO), as
introduced by Accorsi and Vigo (2021) for the CVRP. First, it aims to compete effectively with the
best algorithms designed for solving the VRPSPD and its specific variant known as mixed pickup
and delivery (VRPMPD). Second, it strives to efficiently solve new benchmark instances for these
problems, even when dealing with a large number of customers. All of this is accomplished while
ensuring that the algorithm’s computing time (empirically) scales linearly with the size of the prob-
lem.

The VRPSPD can be defined on an undirected graph G = (V, E). As for the CVRP, the vertex set V
can be partitioned into two subsets: V = {0} ∪ N, designating the depot (0) and the customers (N).
Associated with each edge (i, j) ∈ E is a cost cij. Each customer i ∈ N has a delivery demand di ≥ 0,
and a pickup demand pi ≥ 0. Both depot demands, d0 and p0, are set to zero.

14

A fleet of homogeneous vehicles with a capacity Q is stationed at the depot and is available for
customer service. The fleet may be unlimited or of a fixed size in different problem contexts from
existing benchmark instances. A solution for VRPSPD comprises a set R of Hamiltonian circuits,
referred to as "routes". These routes, start at the depot, visit specific customer subsets, and return to
the depot.

A solution is considered feasible if:

• Each customer is visited by exactly one vehicle.

• Each vehicle follows at most one route.

• Each vehicle route starts and ends at the depot.

• For every route, the pickup demand at the depot does not exceed Q.

• Vehicle capacity constraints are maintained after each customer visit, ensuring that no over-
loading occurs.

VRPSPD’s NP-hard nature stems from its generalization of the well-known CVRP. Various problem
formulations exist, based on two- or three-index decision variables. For an in-depth exploration of
this problem, readers may refer to the comprehensive survey by Koç, Laporte, and Tükenmez (2020),
which outlines four potential formulations.

The VRPMPD is a slight variant of VRPSPD. In VRPMPD, each customer i either has a positive
pickup quantity pi or a positive delivery quantity qi, but not both. This distinction leads to simple
adaptations of algorithms employed for VRPSPD.

Our comprehensive computational study validates the successful fulfillment of both our goals. How-
ever, adapting algorithms developed for the traditional CVRP to address more complex routing
constraints poses non-trivial challenges. Additional constraints introduced in variants like the one
considered in this chapter can significantly complicate the feasibility evaluation process.

With the traditional CVRP, the feasibility of route solutions can often be evaluated using a small set
of route attributes, such as demand-sum and distance-sum. However, when considering variants
like the VRPSPD, inserting or removing a customer from a route may lead to local infeasibilities,
requiring feasibility checks at a customer-level granularity.

To address this issue and establish a generic framework for handling complex routing constraints,
research efforts have led to various techniques. One notable approach is the concept of Resource
Extension Functions (REFs), originally proposed by Desaulniers et al. (1998). This framework offers
a flexible and efficient approach for handling diverse types of constraints across various Vehicle
Routing Problems (VRPs). The framework decouples the search strategy from the computation of
a global state (like in Kindervater and Savelsbergh (1997)), making it highly adaptable to different
VRP variants. A practical application of this framework is the segment REFs of Irnich (2008a), from
which we took great inspiration to design the extension of FILO to the VRPSPD.

1.3 Chapter 4: Daily Planning of Acquisitions and Scheduling of
Dynamic Downlinks for the PLATiNO Satellite

Chapter 4 marks a shift into the domain of satellite activity planning. PLATiNO, a Synthetic Aper-
ture Radar Earth observation satellite launched in 2023, operates through carefully designed activity
plans. These plans, generated routinely, encompass a spectrum of tasks, including acquisitions, ma-
neuvers, and downlinks. The core objective of these plans is to maximize the satellite’s profitability
by accommodating as many requests as possible, all while staying within the boundaries of platform
constraints. To address this intricate challenge, we introduce a genetic algorithm. This algorithm is
coupled with repair procedures and local search operators, meticulously designed to promptly fix
infeasible solutions and uncover high-quality local optima. Additionally, we harness the capabilities
of Mixed Integer Linear Programming formulations to provide tight bounds on the optimal solution
values and propose hybrid math-heuristics that work as competitors to the proposed genetic tech-
nique. Our approach undergoes rigorous testing on practical benchmark instances, derived from

15

real-world data kindly provided by Thales Alenia Space Italia. The results demonstrate the algo-
rithm’s proficiency in computing near-optimal solutions within realistic computational time.

The scheduling of satellite activities, whether in a single-satellite or multi-satellite environment,
has garnered considerable attention in the literature. While in this chapter we will focus predom-
inantly on single-satellite problems, it is important to acknowledge that satellite scheduling chal-
lenges span diverse industrial scenarios, each featuring specific satellite models, unique features,
and constraints. Typically, real-world satellite scheduling problems demand heuristic approaches
due to the constraint of producing high-quality solutions within limited computational time. The
choice of the appropriate scheduling technique often hinges on the specific satellite model employed.
For example, satellites like PLATiNO and SPOT5 have fixed acquisition times determined in ad-
vance, while Agile satellites offer greater flexibility in adjusting acquisition times within specified
windows. The literature underscores the importance of capturing satellite memory constraints, as
well as efficient scheduling of downlink activities. Although these aspects are often neglected or
approximated in many studies, they play a critical role in optimizing satellite operations.

With the PLATiNO satellite, the scheduling of both acquisition and downlink activities assumes
primary significance. In addition, the strategy must efficiently schedule the transmission of acquisi-
tions to ensure memory occupation remains within capacity limits. This task is further complicated
by the potential overlap of downlink operations with other scheduled tasks, creating a dynamic in-
terdependence between task selection and the resulting downlink windows. Indeed, a fundamental
aspect of satellite activity planning revolves around the choice of a downlink strategy. The efficient
transmission of satellite acquisitions to Earth is crucial for the overall effectiveness of satellite opera-
tions. This strategy must consider key factors such as priority levels, aging methods, and acquisition
categories, which significantly influence downlink activities.

Our algorithm is designed to allow a clear separation between the downlink strategy and the broader
planning process, enabling specialization for distinct usage scenarios. In our work, we adopt a sim-
plified yet practically significant strategy that maintains the core principles of these specializations
and their defining characteristics.

16

Chapter 2

An integrated
local-search/set-partitioning
refinement heuristic for the
Capacitated Vehicle Routing
Problem

In this chapter, an effective heuristic algorithm for large-scale instances of the Capacitated Vehicle
Routing Problem is proposed. The technique consists in a local search method entangled with a
restricted Set Partitioning problem optimization. Helsgaun’s LKH-3 algorithm has been used for
the local search phase, with a number of implementation improvements. The restricted Set Parti-
tioning formulation is solved by means of an exact commercial Integer Liner Programming solver.
The resulting algorithm is able to consistently improve the solutions obtained by a state-of-the-art
heuristic from the literature, as well as some of the best-know solutions maintained by the CVRPLIB
website.

2.1 Introduction

Firstly introduced by Dantzig and Ramser Dantzig and Ramser (1959), Vehicle Routing Problems
(VRPs) are a class of problems calling for a minimum-cost set of vehicle routes to serve a given set
of customers with known demands.

The Capacitated Vehicle Routing Problem (CVRP) is one of the most studied VRP versions, in which
the transportation request consists of the distribution of goods from a single depot to a set of cus-
tomers using homogeneous vehicles with a limited capacity. In the symmetric case, it can be defined
on a complete undirected graph G = (V, E) with edge costs ce’s and a special depot node d. Each
customer node i ∈ N = V \ {d} is characterized by its demand qi ≥ 0 which represents the amount
of goods requested, while each vehicle route must start and finish at d and has to visit a set of cus-
tomers whose total demand does not exceed a given capacity C. The overall number of vehicles to
be used is often fixed in advance.

Historically, many mathematical formulations have been proposed for this problem Laporte, Nobert,
and Desrochers (1985), Toth and Vigo (2014). Particularly relevant for our work is the so-called Set-
Partitioning (SP) formulation, common to many other VRP variants. In the SP formulation, the
objective is to find the best combination of feasible routes that partitions the customer nodes of the

17

graph, minimizing the overall cost, i.e.:

min ∑
p∈Ω

cpθp (2.1a)

∑
p∈Ω

θp = k (2.1b)

∑
p∈Ωi

θp = 1, ∀i ∈ N (2.1c)

θp ∈ {0, 1}, p ∈ Ω (2.1d)

where Ω is the set of feasible routes for the CVRP, cp is the cost associated to each route p ∈ Ω,
Ωi ⊂ Ω is the subset of routes that visit the customer i ∈ N, k is the required number of routes, and
θp is a binary variable which is 1 if the route p is in the optimal solution, 0 otherwise.

An important aspect of the SP formulation is its generality, as it easily extends to all VRP variants
where the additional constraints only affect the feasibility of the routes, hence they are implicitly rep-
resented by the route set Ω. However, a main drawback is represented by the cardinality of Ω, which
grows exponentially with the number of customers. To tackle this issue, only a subset of potentially-
relevant routes is explicitly generated, and optimization techniques like Column Generation Ford Jr
and Fulkerson (1958), Dantzig and Wolfe (1961) or Branch and Price Pecin et al. (2017), Fukasawa
et al. (2006) are used. Within these schemes, a Restricted SP (RSP) formulation is iteratively solved,
containing only a subset of routes.

Although several advanced mathematical programming decomposition algorithms have been pro-
posed in the last few decades, only relatively small instances—containing only few hundred customers—
have been solved to optimality Toth and Vigo (2014). Problems encountered in real-life scenarios are
often substantially larger, thus efficient heuristic algorithms are the only option available to obtain
good-quality solutions within acceptable computing times.

The aim of our paper is to design a powerful (yet time consuming) refinement heuristic which is able
to improve top-quality solutions. Thus, our method is meant to be used on top of a state-of-the-art
heuristic, more than to replace it. This is very much is the spirit of other refinement heuristics from
the literature, whose quality is certified by the capability of improving state-of-the-art solutions in a
final post-processing step.

The paper is organized as follows. Previous literature on CVRP heuristics is sketched in Section
2.2. In Section 2.3, the comprehensive strategy of our algorithm is described, along with the mod-
ifications and improvements applied. Extensive computational results are reported in Section 2.4,
showing that our method is able to consistently improve the solutions obtained by a state-of-the-art
heuristic from the literature, as well as some of the best-know solutions maintained in the CVRPLIB
website Pecin et al. (2023). Some conclusions are finally drawn is Section 2.5.

2.2 Previous work

A brief outline of the CVRP heuristics that are most relevant for our work follows.

Helsgaun’s Helsgaun (2009, 2017) heuristic, LKH-3 (whose code can be found in the dedicated web-
site Helsgaun (2020)), is a penalty-based extension of the famous Lin and Kerninghan Lin and
Kernighan (1973) heuristic (LK), able to tackle many VRP variants. Although less efficient with
respect to other state-of-the-art CVRP heuristics, LKH-3 (from now on, just LKH) plays a prominent
role in our work in that it is the building block of our local-search phase, so we next give a brief
description of this method.

Originally designed for the Traveling Salesperson Problem (TSP), the LKH algorithm is based on
the concept of r-Opt moves and r-optimality. In a r-Opt move, r edges from the current solution
are replaced by other r edges in such a way that another solution is obtained Helsgaun (2009). A
solution is said to be r-optimal if it is impossible to obtain a shorter tour by means of any r-Opt move
Helsgaun (2009). It is also intuitive that, for 0 ≤ r′ ≤ r, an r-optimal tour is also r′-optimal, and for
a tour of n city to be optimal, it must also be n-optimal. Furthermore, is also reasonable that the

18

probability for a r-optimal tour to be optimal grows with r Helsgaun (2009). However, the number
of possible r-Opt moves grows rapidly with the number of nodes of the graph, making it impossible
to fully explore the available moves for large values of r. For this reason, r is usually set to 2 or 3,
as the algorithm rapidly loses efficiency for larger numbers. To overcome this limit, the LK heuristic
introduces a scheme where the r value is decided at run-time, iteration after iteration. Initially, r is
set to 2, its minimal value, and then it is gradually increased searching for new potential pairs with
the following rationale: starting from the most “out-of-place” pair, the algorithm iterates searching
for the new most “out-of-place” pairs of the remaining set, repeating the search multiple times Lin
and Kernighan (1973). If an improvement is found, the search restarts from scratch, while it stops
otherwise. For further information, the reader can refer to Helsgaun (2009) for a brief explanation,
or to the original Lin and Kernighan’s paper Lin and Kernighan (1973).

Vidal et al. Vidal et al. (2012) propose HGS, a hybrid genetic algorithm combining the effectiveness
of their population based method with the Local-Search exploration of neighborhoods defined from
a set of operators.

Arnold and Sörensen’s Arnold and Sörensen (2019) knowledge-guided local search (KGLS) is an
effective Local-Search heuristic which adopts three different neighborhood-defining operators along
with a knowledge based penalization to avoid local optima.

Christiaens and Vanden Berghe Christiaens and Vanden Berghe (2020) develop a simple yet effective
algorithm named Slack Induction by String Removals (SISR), consisting in a ruin-and-recreate local
search heuristic.

In their recent work, Accorsi and Vigo Accorsi and Vigo (2021) propose FILO, a very efficient and
effective iterated local search heuristic, which through the combination of acceleration and localiza-
tion techniques is able to find state-of-the-art solutions for very large scale CVRP instances in a short
computing time. The algorithm adopts a large number of operator-defined neighborhoods and a
combination of a ruin-and-recreate scheme coupled with simulated annealing.

Sharing some similarities with the work presented in the present paper, Subramanian et al. Subra-
manian, Uchoa, and Ochi (2013) propose Iterated Local Search with Set Partitioning (ILS-SP), a hybrid
algorithm merging the effectiveness of a competitive iterated local search heuristic along with the
optimization a SP formulation that tries to heuristically find the best combination of the explored
routes. The adoption of a SP optimization phase has been also studied for many other heuristic
techniques, as in the works of Foster et al. Foster and Ryan (1976), Ryan et al. Ryan, Hjorring, and
Glover (1993), Rochat et al. Rochat and Taillard (1995), Kelly et al. Kelly and Xu (1999), De Franceschi
et al. De Franceschi, Fischetti, and Toth (2006), or Monaci and Toth Monaci and Toth (2006) for the
Bin-Packing Problem.

Finally, Queiroga et al. Queiroga, Sadykov, and Uchoa (2021) propose a heuristic working as a re-
finement technique to improve the solution obtained by other heuristics. Exploring a large solution
neighborhood, their algorithm is able to consistently improve near-optimal solutions. The adopted
technique is POPMUSIC Taillard and Helsgaun (2019), a matheuristic Fischetti and Fischetti (2018)
based on the VRPSolver Pessoa et al. (2020, 2021) exact solver for VRPs.

2.3 Algorithm Outline

The overall scheme of our approach can be subdivided into three main phases.

1. The LKH heuristics is executed, in parallel; from the solutions generated at the end of each
“trial” of the core LK algorithm, routes are extracted to populate a pool (called the “route
pool”).

2. Considering the Linear Programming (LP) relaxation of the SP formulation, a column-generation
pricing procedure is applied to “filter” the most meaningful routes from the pool.

3. The RSP formulation, considering only the selected routes, is solved with a given time limit.

The three phases above are iterated until a global time limit expires—or a maximum number of
repetitions is reached.

19

The described algorithm has been called Local Search - Column Generation Heuristic (LS-CGH) since
it uses the LKH heuristic to generate good candidate routes that are then fed to the RSP optimiza-
tion.

To better differentiate between the different types of iterations (one nested into the other), the fol-
lowing terms will be used:

• in accordance with the naming adopted by the LKH algorithm, the term “trial” refers to a
single pass of the core Lin-Kerninghan algorithm, ending when no more improving r-Opt
moves can be found.

• A “run” is a set of successive “trials”, each starting from the perturbed solution of the previous
one.

• The sequence of a single execution of LKH, followed by Column Generation filtering and the
RSP optimization, has been named “round”.

Our LS-CGH algorithm then consists in a number of “rounds”, repeating the three-phase scheme
multiple times. Each round is linked to the next one as it exploits the best solution found as its initial
solution, and also because the route pool is maintained between rounds.

A high-level representation of the three main phases of the algorithm is given in Algorithm 1. In the
pseudocode, the following functions are used:

• LKH: Calls the LKH-based heuristic described in Section 2.3.1 and in Algorithm 2. Returns
the best solution found by the algorithm (S), along with a populated route pool (P).

• CGFILTER: Applies the column-generation inspired filtering (described in Section 2.3.2) to the
route pool.

• SOLVERSP: Solves the restricted Set Partitioning formulation with a black-box Integer Linear
Programming (ILP) solver; see Section 2.3.3.

Algorithm 1: High-level pseudocode for the LS-CGH algorithm.
Input : Initial solution S.
Output: The best solution found.

1 FUNCTION LS-CGH(S)
2 begin
3 for Round← 1 to n_Rounds do
4 S, P←LKH(S);
5 P′ ← CGFILTER(P);
6 S← SOLVERSP(P′, S)
7 end
8 return S;
9 end

2.3.1 Phase 1: Lin, Kernighan and Helsgaun Heuristic

To integrate the LKH algorithm with our LS-CGH scheme—which has been implemented as multi-
thread C++ project—and also to improve its efficiency, a number of customizations have been ap-
plied to the original Helsgaun’s code available at Helsgaun (2020). A summary of the most relevant
changes are reported next.

• Due to the extensive use of global variables and non-reentrant primitives in the C code, the al-
gorithm was not “out-of-the-box” ready to be encapsulates into a multi-thread scheme. There-
fore we have systematically modified all global variables storage making them “thread local”,
and we have substituted all the non-reentrant C primitives with their corresponding reentrant
versions. After these changes, we were able to synchronize the code by means of a step-by-step
execution implemented upon pthread barrier.

• An improved synchronization has been implemented to equalize the duration of parallel “runs”.

• The Jonker and Volgenant’s mTSP-to-TSP transformation has been implemented to adapt so-
lutions generated by the RSP optimisation and make them compatible with the current LKH
instance.

20

• A basic control interface has been added to control the execution of the LKH algorithm and to
let successive LKH calls execute one after the other with a reduced overhead.

• A route extraction function has been implemented to obtain a suitable amount of diversified
routes to fill the route pool.

• The caching system already adopted within the algorithm has been extended and slightly im-
proved.

• The CVRP penalty function has been redesigned, improving its speed while maintaining the
exact same behaviour as the original one.

• A Simulated Annealing (SA) scheme has been added on top of the original solution acceptance
test, to improve the performance of the original algorithm and to perturb the initial solution in
the attempt of escaping from local optima.

For the sake of clarity, in what follows we will call “newLKH” our modified version of the LKH.
To give a clearer idea of the structure of the newLKH algorithm and of the introduced changes, a
sketch of this variant is given in Algorithm 2. The overall scheme resembles the original LKH, since
most of its logic is not affected by our changes. The two main additions are the route-extraction step
(EXTRACTROUTES), and the Simulated Annealing acceptance test (SATEST) called on every solution
returned by the LINKERNIGHAN function. To be more specific, the following functions appear in
the pseudocode:

• COST: Returns the cost of the input solution.

• KICK: Perturbs the input solution; see Section 24.

• LINKERNIGHAN: Calls Helsgaun’s implementation of the Lin-Kernighan heuristic on the in-
put solution, possibly refining it; see Algorithm 3 for a simplified overview of the main steps
of this phase.

• EXTRACTROUTES: Given a (possibly infeasible) tour, returns all its feasible routes.

• SATEST: Manages the current solution update according to the Simulated Annealing meta-
heuristic approach described in Section 24.

• TIMELIMITREACHED: Simple test that returns true if the given time limit for the phase 1 of the
LS-CGH has been reached, false otherwise.

Algorithm 2: High-level pseudocode for the LKH algorithm.
Input : Initial solution Sinit.
Output: The populated route pool P and the best solution found S∗.

1 FUNCTION LKH(Sinit)
2 begin
3 for Run← 1 to n_Runs do
4 S∗ ← S← Sinit;
5 for Trial ← 1 to n_Trials do
6 S← KICK(S);
7 S← LINKERNIGHAN(S);
8 P← EXTRACTROUTES(S);
9 if COST(S) < COST(S∗) then

10 S∗ ← S
11 end
12 S← SATEST(S∗, S);
13 if TIMELIMITREACHED() then
14 return S∗, P
15 end
16 end
17 end
18 return S∗, P
19 end

An overview of the LINKERNIGHAN function is provided in Algorithm 3, highlighting the positions
of the “Penalty” and “Flip” functions (to be described in Section 24 and Section 2.3.4, respectively).
The functions that appear in the pseudocode are as follows.

21

• BESTSPECIALOPTMOVE: Original LKH function which, given a solution, searches for a r-Opt
move that improves it, considering a restrict set of moves specialized for routing problems.
An array MrOpt[1..r] of 2-Opt moves and its size r are returned. The proposed move is thus
represented as a sequence of r 2-Opt moves to be applied, in sequence, to produce the final
r-Opt move; see Sections 24 and 2.3.4 for further details.

• FLIP: Original (for CVRP) or modified (for asymmetric problems) function that applies a single
2-Opt move to a solution; see Section 2.3.4 for details.

• PENALTY: Modified version of the original “Penalty” function that, given a solution, returns
its infeasibility level; see Section 24 for details.

Algorithm 3: Simplified representation of the LINKERNIGHAN function inside the LKH al-
gorithm

Input : Initial solution S.
Output: The refined solution S.

1 FUNCTION LINKERNIGHAN(S)
2 begin
3 P← PENALTY(S);
4 C ← COST(S);
5 MrOpt, r ←BESTSPECIALOPTMOVE(S);
6 do
7 Improved← f alse;
8 for t← 1 to r do
9 S← FLIP (S, MrOpt[t])

10 end
11 P′ ←PENALTY(S);
12 C′ ← COST(S);
13 if (P′ < P) OR (P′ = P AND C′ < C) then
14 P← P′;
15 C ← C′;
16 Improved← true
17 else
18 for t← r downto 1 do
19 S←FLIP(S, MrOpt[t])
20 end
21 end
22 while Improved;
23 return S
24 end

Our newLKH version containing all the speed-related optimizations (namely: the new Penalty func-
tion, the caching system and the new Flip function) is freely available, for research purposes Cava-
liere (2021).

Speed improvements

Some of the most relevant changes aimed at speeding up the execution of the original LKH code are
outlined next.

Cost function: To reduce the overhead related to the computation of distances between vertices,
the LKH algorithm uses, since its first version, a clever caching system proposed by Bentley Bentley
(1990). This caching system works with two arrays of the same size: one array is used to save the
used distances, while in the other one the smaller of the two node indices is saved as a signature.
The position of each distance-signature pair in their respective arrays is chosen with a fast hash
function. Thanks to this simple mechanism, both Helsgaun and Bentley report that the time with
TSP problems can be halved or more Bentley (1990), Helsgaun (2009).

In the LKH original cost function, several checks are performed before calling the computationally
expensive distance function. Indeed, depending on the VRP version and other internal parameters,
the required distance might have already been stored by previous operations. Thus, before calling
the distance function, all these fields are checked. The cache is checked as a last step, only if none of
the fields contains the required value. Even though the performed checks are usually less expensive

22

than a call to the distance function, searching all the places where the distance could have been stored
(which are not located adjacently in memory) can be slower than a direct check of the cache which,
very often, already contains the actual value required. For this reason, we have modified the original
cost function moving the cache check ahead, in a small prologue (often inlined by the compiler even
without linking time optimization, since it is defined in a shared header file) that first checks if the
requested cost is already stored inside the cache. Only when this step fails, it proceeds by calling the
remaining part of the cost function, performing all the field checks and, eventually, the final call to
the distance function. Furthermore, since distance and signature are always accessed together, the
subdivision into two distinct array have been modified into a single array containing the signature
and its distance adjacent in memory, to improve the cache-locality of this system.

Forbidden function: The “Forbidden” function tells if a given edge is part or not of the given
instance. A simple example of forbidden edges is the set of edges between depot copies—note that,
in the Jonker and Volgenan’s mTSP-to-TSP transformation Jonker and Volgenant (1988), multiple
copies of the depot are introduced. This function is heavily used by the algorithm, as shown by
our profiling. Since the caching mechanism proved to be a really effective improvement for the cost
function, we have implemented an analogous mechanism for the Forbidden function, using again
a small prologue to possibly skip not only all the checks made by the original one, but also the
function-call overhead.

Balanced workload: As previously described, we have modified the original LKH source code
to make it reentrant. The reason for this extensive modification has been the need of enabling a
parallel execution of multiple instances of the LKH algorithm. However, running different threads
in parallel, synchronized only at the beginning and at the end of each LKH call, often leads to an
unbalanced situation where some threads take less time than others. This difference varies randomly
with the status of the algorithm. To avoid the waste of potential computational resources, all the
threads are synchronized such that each parallel run ends only when the slowest one has ended. In
this way, fast runs (which sometimes are even twice as faster as the slowest one), can carry on with
their “trials”, avoiding to reach the phtread barrier early and then wait for the others to finish.

Some utility procedures have also been implemented to connect LKH with the remaining part of
our LS-CGH scheme. We next describe two main components of such an interface: the route pool
and the Jonker and Volgenant’s solution transformation.

Route Pool: To store the routes extracted by the solutions generated by the LKH we have imple-
mented a simple route pool. We have decided to use a data structure inheriting from C++ STL
std::unordered_set to avoid duplicates while keeping the best version of each route within the same
group of nodes. Every route is distinguished from the others by the set of visited customers (which
are saved as a sorted list), while the actual customer sequence and the length of the routes are up-
dated every time a better “duplicate” is found.

Jonker and Volgenant’s solution transformation: An important transformation, proposed by Jonker
and Volgenant Jonker and Volgenant (1988) and applied in LKH, is the mTSP-to-TSP conversion
which transforms an instance with m salespersons into a TSP instance with m− 1 copies of the de-
pot. This transformation is used to reduce the search space, decreasing the symmetry of mTSP and
other problems with multiple routes (e.g., CVRP). It is easy to see that when m− 1 identical copies
of the depot are introduced into the graph, for each tour there exists m! equivalent tours which only
differ by the order of the depot copies. This transformation deletes part of the edge of the graph, by
assigning to some selected nodes two depot copies to which they are allowed to be connected with,
and by forbidding the edges to the other depot copies—thus reducing the number of possible route
permutations.

A problem we encountered interfacing the RSP phase with the LKH one, concerns the compatibility
of the CVRP solutions produced. Indeed, the combination of routes with the Set-Partitioning ILP
optimization does not consider the Jonker and Volgenant’s mTSP-to-TSP transformation Jonker and
Volgenant (1988) applied within the LKH algorithm. When the ILP optimization generates CVRP
solutions, the transformation is applied to avoid the use of the forbidden edges. Our algorithm

23

follows the general directives advised in the original Jonker and Volgenant’s paper Jonker and Vol-
genant (1988), namely:

1. Starting from a general CVRP solution, the routes are extracted and the depot is removed,
obtaining a list of chains of customers.

2. The depot is copied, obtaining a number of depots equal to the number of vehicles.

3. All the chain endpoints (two for each chain) are considered. Accordingly to the transforma-
tion already in place within the current LKH instance, for each end point that results to be a
special customer (in the sense of the Jonker and Volgenant’s paper: a customer for which the
transformation has assigned only two depot copies) the required depots are assigned.

4. Then the main cycle of the transformation begins. Starting from one, all the chains are concate-
nated one after the other, ensuring that all the special customers are not linked with forbidden
depot copies.

New Penalty Function

Although quite effective in practice, the above improvements are of a minor theoretical relevance
since they simply accelerate the algorithm without modifying its original scheme—or provide an
interface for other modules to interact with it more freely. On the other hand, the Penalty function
modification has been characterized by a more prominent re-design of one of the main bottleneck
functions. LKH is characterized by a hard division between the penalty value of a solution, which
correlates to a measure of the “amount of constraint violation”, and the actual cost of the objective
function. At run-time, LKH gives higher priority to the improvement (i.e., decrease) of the penalty,
considering the edge-cost gain achieved by the proposed r-Opt move only when the penalty varia-
tion is zero.

For any given solution, the Penalty function computes the penalty value with a computational com-
plexity linear in the size of the CVRP solution. Inside LKH, such a solution is represented by a TSP
tour containing a number of depot copies equal to the number of vehicles (following the Jonker and
Volgenant Jonker and Volgenant (1988) symmetry-breaking transformation). In what follows, the
term “tour” will refer to this internal representation and it will not be a synonym for “route”, which
instead refers to the cycle covered by a singe vehicle.

The Penalty function is called inside the LKH to check a new proposed solution in the following
way:

1. A new r-Opt move is found and stored (decomposed as a series of 2-Opt moves) within the
LK function.

2. The move is applied to the best tour found in the current “trial”, named current tour, obtaining
a new proposed tour.

3. The penalty function is called to check the proposed tour.

4. If the proposed tour improves the penalty of the current tour, or keeps the penalty unchanged
while improving its cost, it becomes the new current tour, otherwise the saved r-Opt move is
reversed to obtain the original current tour.

Notice that, at any given time, the proposed and current tours are abstract concepts used to explain
their role, while the tour stored in memory is actually one which is first modified and then eventually
restored if it does not improve the previous one.

However, due to its strict policy requiring that the infeasibility level can never increase, the Penalty
function frequently rejects new candidates solutions. As a matter of fact, in almost all our tests
the function rejects the proposed tour more than 95% of the times, thus representing one of the
main bottlenecks for the entire algorithm. This observation enabled us to optimize the original LKH
scheme by speeding-up the frequent “rejecting” case, introducing a rarely executed “update” step,
thus resulting in a significant performance improvement. Indeed, the main change to the original
penalty function has been the restriction of the penalty checks to only the routes “touched” by the
proposed r-Opt move. Since the penalty function is called at every new potential change of the tour,
these are the only routes modified between successive calls of the penalty function.

24

As in the original code there is no route-related data structure, a basic one has been implemented
to store the route penalty for the current tour. Then, for each node, a reference to its route-data is
stored, in accordance to the current CVRP solution. Thanks to this additional information, one can
efficiently retrieve the current penalties of the routes touched by the proposed r-Opt move, as they
appear in the current tour.

As a further optimization, we observe that route penalties need to be stored only if the current tour
penalty is not yet zero. Indeed, when a feasible CVRP solution has been found (and the current
penalty is, therefore, zero), then the previous cumulative penalty of any subset of routes is also
zero. Therefore the previously described step can be completely avoided to further speed up the
function.

Finally, when a proposed tour is accepted, an update procedure needs to be executed to restore route-
data consistency.

Simulated Annealing

To avoid to get stuck in local optima, the original LKH algorithm uses a so-called “kick” strategy,
i.e., every time a “trial” of the core LK procedure cannot find any other move that improves the
current solution, a random r-Opt move (usually a double bridge 4-Opt move Applegate et al. (1999),
Applegate, Cook, and Rohe (2003), Helsgaun (2006), Martin, Otto, and Felten (1992)) is applied
to the current solution and the LK procedure is called again. As previously explained, a single
iteration of such scheme is named “trial” in the LKH context. This technique has however two
shortcomings:

• When LK is applied over a TSP instance that maps the VRP one, the additional constraints
applied through the penalties make the search space very sparse. Therefore, although effective
with true TSP instances, it can result to be not powerful enough to perturb the solution and
move from the current VRP local-optima.

• When a warmstart is provided to the algorithm, LKH starts from a potentially very good local
optimum from which it is not able to move (especially if such a warmstart has been produced
by previous iterations of the LKH algorithm itself). Therefore, a perturbing strategy able to
lead the search trajectory away from this starting point and to explore new solution neighbor-
hoods is needed.

As in the recent FILO heuristic Accorsi and Vigo (2021), we decided to integrate a Simulated Anneal-
ing (SA) Kirkpatrick, Gelatt, and Vecchi (1983) scheme into LKH, motivated also by the compatibility
of the original penalty-based scheme with such a technique.

Two overlapping SA schemes have been implemented, one based on the number of “trials”, and
one based on the LKH time limit. During the execution, the temperature is decreased for both the
SAs and the smaller one is considered for the actual SA acceptance test. In this way, when both
the trial and the time limits are given, the algorithm can automatically adapt to fit the tighter of the
two.

Inspired again by the SA implementation in FILO Accorsi and Vigo (2021), we have set up our SA
scheme as follows:

• The ratio between the initial temperature and the final one has been fixed to 100.

• Adopting the terminology introduced in Section 2.3.1, let z be the cost of the proposed solution,
z′ be the cost of the current solution used as a starting point, and Tt be the temperature at the
“trial” t of the algorithm. The solution z is accepted as new current solution if

z− z′ < Tt · ln(U[0, 1])

where U[0, 1] is a uniform random variable in the [0, 1] range.

• Two distinct temperatures are maintained during the execution, namely: Tt
trial which represent

the trial-based SA temperature, and Tt
time which is the temperature of the time-based one. The

actual temperature Tt is computed as the minimum of the two. Therefore, the update formulas
are:

Tt+1
trial = 0.011/MTRIAL · Tt

trial

25

Tt+1
time = 0.01∆t/TMAX · Tt

time

Tt+1 = min{ Tt+1
trial , Tt+1

time }

where MTRIAL is the maximum number of “trials”, ∆t is the time lasted from “trial” t and
“trial” t + 1, and TMAX is the time limit for the “run”.

• Finally, the initial temperature is computed as the value of the best solution obtained after 50
“trials”, multiplied by a factor c (say) defined as follows. As we aim for long runs, we have
distinguished the initial part of the algorithm (where the objective is to find a good solution
without getting stuck into local optima) from the second one (which tries to find improvements
to the given initial solution). For the first part a factor cz (say) has been used to scale the
initial temperature when no initial solution is provided to the algorithm, while cw (say) is the
same factor when an initial solution is present—because provided externally or from previous
rounds of the algorithm. After some preliminary computational tests, we have fixed cz =
2.5 · 10−3 and cw = 5 · 10−4.

2.3.2 Phase 2: Column Generation Filtering

The number of routes generated during the LKH execution is typically exceedingly large, hence a
technique to select the best routes is essential for the efficiency of the whole algorithm.

Considering our heuristic context, we need to balance two aspects: efficiency of the column gener-
ation phase, and RSP optimization speed. To achieve the former, a set of policies built around the
common objective of finding a good and relatively small subset of routes has been defined, from
which the RSP optimization could start. The initial core set of candidate routes consists in the selec-
tion of the “best” 8, 000 routes from the ordered list of all routes, sorted by non-decreasing solution
costs.

(Indeed, in our computational tests we have seen that values between 5, 000 and 10, 000 are adequate
for fast runs where the Set-Partitioning phase needs to be fast to avoid introducing large slow-down
for the whole LS-CGH algorithm.)

Starting from this core set, the following filtering techniques are applied:

1. The LP relaxation of the RSP containing only the initial set of route is iteratively solved using
the dual simplex algorithm. At each iteration, the reduced costs of the routes still in the route
pool are computed, saving the value of the most negative one, say cmin < 0. At this point,
the routes with a reduced cost less than 0.8 · cmin are added to the RSP, therefore inserting a
number of potentially useful columns at each iteration. This pricing procedure stops when all
reduced costs are nonnegative, or when a time limit is reached.

2. Since the previous policy often does not select enough routes, we also use a filtering criterion
akin to the one proposed by Caprara et al. Caprara, Fischetti, and Toth (1999) for the solution of
large-scale set covering problems. At every pricing iteration we also select, for each customer,
the ten routes with smallest (possibly positive) reduced costs. The pricing procedure stops
when the time limit is reached or when the cumulative sum of the reduced costs added during
the previous iteration, becomes nonnegative.

To handle the case in which the pricing procedure selects too many routes, we have set as a hard
bound value equal to 16, 000, i.e., twice the initial set size.

2.3.3 Phase 3: Restricted Set Partitioning Problem Optimization

The final step of our scheme consists in the solution of the RSP formulation. For this task we used
a state-of-the-art commercial MIP solver (IBM ILOG CPLEX 12.10). Although this is an exact algo-
rithm, it has been successfully integrated in our heuristic scheme by setting an aggressive time limit
and by an early activation of its “polishing procedure” Rothberg (2007).

It is worth observing that, as an alternative to the SP formulation, a Set Covering formulation might
be used, that would allow for route overlaps. (Note that multiple customer visits can be removed by
a short-cut post-processing procedure, that for instances with costs satisfying the triangle property
would even reduce the final solution cost.) However, as reported by Rochat and Taillard Rochat and

26

Taillard (1995), and confirmed by our own computational tests, the Set Covering formulation is sig-
nificantly slower to solve by our MIP solver, so we preferred to stay with the SP formulation.

2.3.4 VRP Taxonomy

To position our technique within the VRP scientific literature and to give a clearer idea of its appli-
cability to other VRP variants, we make use of the Pillac et al. Pillac et al. (2013) VRP taxonomy.
Broadly speaking, VRPs can be classified by the point of view of the instance data evolution, in this
sense that we have static problems where all the information is known beforehand, vs. dynamic prob-
lems where the information regarding the instance is known only during the optimization. Then,
we have deterministic vs. stochastic problems: in the former, all information is known exactly, while
in the latter the input data is modelled in the form of random variables. From the product of this
two classifications, one obtains four different classes:

• static and deterministic;

• dynamic and deterministic;

• static and stochastic;

• dynamic and stochastic.

The technique proposed in the present work specifically aims at problems of the first category: static
and deterministic, as this is the nature of our local search and set partitioning phases.

More precisely, our scheme can readily be extended to all the VRP variants characterized by solu-
tions with independent routes (i.e., variants that can be represented through the SP formulation,
needed for the SP-phase of our algorithm) and supported by LKH. Here is a brief list of possible
candidates:

• Multiple Travelling Salesman Problem (m-TSP)

• Capacitated Vehicle Routing Problem (CVRP)

• Capacitated Vehicle Routing Problem with Time Windows (CVRPTW)

• Vehicle routing problem with backhauls (VRPB)

• Vehicle routing problem with backhauls and Time Windows (VRPBTW)

• Vehicle routing problem with mixed pickup and delivery (VRPMPD)

• Vehicle routing problem with simultaneous pickup and delivery (VRPSPD)

• Vehicle routing problem with mixed pickup and delivery and time windowsb (VRPMPDTW)

• Vehicle routing problem with simultaneous pickup and delivery and time windows (VRP-
SPDTW)

Of course, for any such VRP variant one needs to implement a specialized feasibility check for the
routes found in the LKH solutions, to ensure that only feasible routes are inserted into the route
pool.

One could also extend our technique to other variants which are compatible with the TSP–tour
representation and the LKH penalty system. In this case, the implementation would be more in-
volved than in the previously cited variants (which are already supported by Helsgaun’s algorithm)
since, along with the definition of the Penalty function, also the the internal data structure should
be modified and extended. Similarly, all prepossessing steps (including the instance file parsing, the
application of potential reductions or other preprocessing operations that can simplify the search)
should be revised to account for the new variant.

New Flip Function

Within LKH, most VRP variants undergo an ATSP-to-TSP transformation Jonker and Volgenant
(1986), hence in what follows we will use the symmetric and asymmetric terms not to refer to the
cost of the arcs in the original problem formulation, but to the cost of the arcs of the LKH inter-
nal representation of the problem. For instance, a symmetric CVRPTW instance is converted to an

27

asymmetric one so as to remove all the finite-cost arcs which are not feasible due to the time-window
constraints. In this sense, among the above-mentioned variants, only the “m-TSP” and the “CVRP”
variants are viewed as symmetric problems, while all the others are asymmetric.

Within the LKH algorithm, whenever a 2-Opt move is applied, a function named Flip is called to
copy a portion (segment) of the TSP tour representation in its reversed order. The operation is part
of every 2-Opt move, although sometimes it could be avoided by applying more complex r-Opt
moves that maintain the orientation of every part of the solution. Within LKH, every r-Opt move
is decomposed into a sequence of 2-Opt moves, hence every r-Opt move must go through different
“flips”. If naively implemented, each flip operation has a O(n) complexity, and is often the main
bottleneck of any r-Opt move-based algorithm.

To improve its overall performance, LKH exploits a clever data structure due to Fredman et al. Fred-
man et al. (1995). Three versions of the Flip function are implemented, with complexity O(n) (naive
doubled-linked list version), O(

√
n) (two-level tree), and O(3

√
n) (three-levels tree), respectively. In

particular, the second one is usually adopted since it is able to maintain a good trade-off with the
size of common instances.

We observed that most of the proposed r-Opt are rejected by the Penalty function. As the Flip func-
tion is called every time an r-Opt move is applied, in the very likely “rejection” case the solution
undergoes two “flip” operations: one to produce a proposed tour, and another to restore the current
tour. As a result, this function can be optimized by introducing an “update” step when a better
solution is found, with a significant speedup for the most-common “rejection” case.

2.4 Computational Results

In the present section, we address the following questions:

• How effective are our improvements to the original LKH implementation, in particular in
terms of speed?

• Is our overall refinement heuristic able to improve the solutions found, in long computing
times, by a state-of-the-art CVRP heuristic such as FILO?

• Are we able to improve some best-known solutions from CVRPLIB library, thus providing
an implicit comparison will the best methods from the literature—that arguably have been
applied to the instances of this well-known library?

In the computational tests that follow, the Uchoa et al. Uchoa et al. (2017) X dataset has been used.
Following Queiroga et. al Queiroga, Sadykov, and Uchoa (2021), this dataset was restricted to its
largest 57 instances (called 57-X in what follows).

For speedup evaluation and for the final tests with the FILO heuristic, we also considered the XXL
set Arnold, Gendreau, and Sörensen (2019) which contains 10 instances of size up to 30, 000 cus-
tomers.

All the tests have been performed on Intel Xeon E3-1220 V2 CPUs, using up to 4 threads. We will
refer to the Gap of a solution with respect to the currently Best-Known Solution (BKS), defined
as:

Gap :=
Solution_value− BKS_value

BKS_value
.

When not available, an initial solution can be obtained by using one of several constructive methods
that LKH provides. In its default setting, a pseudo-random procedure is selected that takes into
account the possible presence of some restrictions on the edges of the graph, like the presence of
“fixed” edges. Another useful constructive CVRP algorithm implemented within LKH is the Clarke
and Wright (CW) saving algorithm Clarke and Wright (1964). Our computational experience shows
that, for the X dataset, the final solution quality does not depend too much on the selected construc-
tive heuristic. For the bigger XXL instances,instead, CW is often superior to the pseudo-random one,
as it starts from a solution that, even when infeasible, is of better quality. Thus, for the single-thread
speedup tests described in Section 2.4.1 we use CW for the initialization. For the comparison with
the original LKH in Section 2.4.2, instead, we use CW for the first thread, while for the remaining

28

threads we use the pseudo-random one to help increasing route pool variability. Notice that, for
both newLKH and LS-CGH, only the very first round makes use of such an initialization, while the
best solution found is used in the other rounds.

2.4.1 Original LKH vs New LKH

In this section, the original LKH is compared with our modified version. The comparison only
addresses the LKH phase of LS-CGH (i.e., without RSP and route extraction), both run in single-
thread for the same number of “trials”. As the implemented LKH changes do not alter the search
trajectory between the original version and the new one (when run in single-thread mode and when
the same random seed is used), the two versions visit the same solutions sequence and perform the
same algorithmic steps, hence producing the same final solution.

In Table 2.1 the speedup achieved by the new version is reported along with the size of the instance.
(Since inside the LKH each solution in represented by a TSP tour of length equal to the number
of customers plus the number of vehicles, we report this figure as the size of the instance.) Along
with the 57-X test-bed, the 10 XXL instances of the Belgium data-set has been considered in order to
evaluate the behaviour of the algorithm for a broader range of sizes.

For each test a single “run” of the LKH was executed, starting from a near-optimal warmstart. The
number of “trials” has been set to 10, 000 and 5 random seeds where tried for each instance. The
reported speedup is the average of the 5 speedups obtained by each seed.

Figure 2.1 (left) shows how the speedup scales with the size of the instance of the 57-X set. The linear
increase of the speedup with the size of the instances is further confirmed in Figure 2.1 (right) where
also the very large XXL instances are considered.

400 600 800 1,000 1,200

2

3

4

5

Size

Sp
ee

du
p

Speedup for instances 57-X instances

0 1 2 3

·104

0

20

40

60

Size

Sp
ee

du
p

Speedup for instances 57-X and 10 XXL instances

Figure 2.1: On the left, the average speedup of the “New” LKH with respect to the original version
for 5 random seeds on the 57-X set. On the right the same chart including the 10 XXL instances.

2.4.2 Original LKH vs new LKH vs LS-CGH

In order to asses the effectiveness of the proposed scheme, three different variants have been com-
pared. All the tests have been executed with the same time limit of 200 minutes, using 4 threads for
both the LKH “runs” and the CPLEX solver (when used).

In Table 2.2 we compare the original LKH, the new LKH and our LS-CGH methods, and report the
best gap reached (w.r.t the BKS) after 200 minutes. The “LKH” columns give the performance of the
original LKH algorithm, without the proposed improvements and executed without the “round”
subdivision adopted in our scheme. Four parallel threads with “runs” of 10, 000 “trials” have been
executed, until the time limit was reached. The “newLKH” columns give instead the solutions ob-
tained by our new LKH scheme, without the SP phase. All the improvements applied to the original
algorithm have been activated and the LKH “runs” (with 50, 000 “trials” each and a time limit of
2000 seconds for each “run”) have been subdivided into “rounds” of 4 parallel “runs”, providing
each round with the best solution found by the previous one. Finally, in the “LS-CGH” columns the

29

Table 2.1: Speedups of the modified LKH (newLKH) with respect to the original one. The size of the
instances is computed as the number of customers plus the number of vehicles. Results are for the
57-X and XXL sets. (*) For the Flanders2 instance, the number of “trials” has been halved, since in
the original algorithm 10, 000 “trials” would have been computationally too expensive.

Instance Size LKH Time newLKH Time SpeedUp
X-n303-k21 323 86 49 1.78
X-n308-k13 320 69 40 1.73
X-n313-k71 384 732 335 2.19
X-n317-k53 369 165 87 1.89
X-n322-k28 349 166 89 1.87
X-n327-k20 346 73 41 1.78
X-n331-k15 345 51 29 1.76
X-n336-k84 421 788 330 2.39
X-n344-k43 386 163 84 1.94
X-n351-k40 390 377 180 2.09
X-n359-k29 387 153 77 1.98
X-n367-k17 383 91 48 1.92
X-n376-k94 469 210 96 2.19
X-n384-k52 436 606 263 2.31
X-n393-k38 430 146 70 2.08
X-n401-k29 429 231 108 2.13
X-n411-k19 429 109 55 1.99
X-n420-k130 549 262 94 2.79
X-n429-k61 490 398 166 2.39
X-n439-k37 475 64 32 2.02
X-n449-k29 477 400 170 2.36
X-n459-k26 484 182 82 2.21
X-n469-k138 607 894 270 3.31
X-n480-k70 549 275 103 2.66
X-n491-k59 549 518 190 2.72
X-n502-k39 540 108 47 2.32
X-n513-k21 533 60 27 2.22
X-n524-k153 678 812 206 3.94
X-n536-k96 631 1145 353 3.25
X-n548-k50 597 185 69 2.68
X-n561-k42 602 130 50 2.59
X-n573-k30 602 248 87 2.83
X-n586-k159 744 571 149 3.82
X-n599-k92 691 2184 611 3.57
X-n613-k62 674 397 127 3.12
X-n627-k43 669 322 102 3.16
X-n641-k35 675 398 131 3.04
X-n655-k131 785 211 66 3.20
X-n670-k130 802 944 231 4.08
X-n685-k75 759 499 141 3.53
X-n701-k44 744 328 96 3.41
X-n716-k35 750 417 128 3.25
X-n733-k159 892 343 83 4.13
X-n749-k98 846 845 211 4.01
X-n766-k71 836 863 207 4.17
X-n783-k48 830 528 144 3.67
X-n801-k40 840 234 68 3.45
X-n819-k171 990 1791 373 4.81
X-n837-k142 978 582 129 4.50
X-n856-k95 950 186 53 3.52
X-n876-k59 934 760 182 4.16
X-n895-k37 932 950 235 4.04
X-n916-k207 1122 811 150 5.41
X-n936-k151 1092 884 172 5.13
X-n957-k87 1043 239 60 4.00
X-n979-k58 1036 919 209 4.39
X-n1001-k43 1043 434 101 4.32
Antwerp1 6342 1052 77 13.62
Antwerp2 7119 1992 129 15.43
Brussels1 15511 4287 157 27.34
Brussels2 16181 7660 240 31.98
Flanders1 20683 7037 215 32.80
Flanders2 30255 17166 306 56.01
Ghent1 10484 2028 106 19.07
Ghent2 11109 4469 226 19.75
Leuven1 3202 670 69 9.77
Leuven2 4045 710 102 6.94

results for our complete LS-CGH algorithm are reported, thus including the same setup as in the
newLKH columns with the addition of the SP phase.

Both newLKH and LS-CGH show a significant decrease in the average gap, as well as a consistently
lower gap for each instance in the 57-X set.

It is worth noting that the LKH algorithm involves a large number of parameters to tune: in our

30

tests, we used the default values provided in the scripts available in Helsgaun’s website. In Table
2.2, a significant improvement is shown already by our own version of LKH (namely, newLKH).
This is due to three main factors.

• The improved time performance of the algorithm allowed for the exploration of a larger num-
ber of r-Opt moves with respect to the original LKH.

• The SA in the first round, applied with a high initial temperature, takes better advantage of
a large number of “trials”. The search descent is therefore less steep (w.r.t. the number of
“trials”), and also less prone to get stuck into local optima.

• The adopted “round” subdivision, in which the best solution obtained is used as warmstart
for the next “round”, greatly improves the efficacy of the algorithm to refine the solutions in
long runs.

Finally, with the addition of CG filtering and RSP optimization, further improvements have been
obtained.

2.4.3 Statistical analysis of LS-CGH

A statistical analysis of percentage gaps obtained for multiple runs on a representative subset of the
studied instances has been carried out. From the 57-X dataset, we have chosen seven representative
instances selected as suggested by Queiroga et al. Queiroga, Sadykov, and Uchoa (2021) so as to
cover all the different characteristics considered during the generation of the whole X dataset. As to
the Belgium data set, two (Antwerp1 and Flanders1) out of the ten instances have been randomly
chosen. For these two instances, simulated annealing has been disabled because, for these sizes, the
time limit is not enough to get stuck into local optima. Thus, the use of simulated annealing would
only make local search slower without the benefit of the broader exploration that would happen
with a much longer time limit. For each instance, ten runs with different random seeds have been
executed, and the corresponding box-plots are reported in Figure 2.2.

According to the plot, a low variation is experienced for the Belgium instances. This can be explained
by the fact that, for these very large problems, the 200-minute time limit is quite restrictive, hence
the algorithm had less time to find local optima in which getting stuck. For the seven instances from
the 57-X dataset, instead, the computing time allowed let the algorithm reach several local optima,
hence the higher variance due to implemented diversification mechanisms—exceptional cases being
the X-n469-k138 and X-n979-k58 instances with their outliers.

Figures 2.3 and 2.4 report a similar analysis for the ten instances in Table 2.2 for which LS-CGH got
the best and worst relative gaps, respectively.

2.4.4 LS-CGH as a refinement tool for FILO

To asses the ability of improving the solution obtained by state-of-the-art heuristic algorithms, our
proposed scheme has been tested starting from the best solution obtained by FILO Accorsi and Vigo
(2021). As previously described, FILO is a recent fast and effective heuristic, especially designed for
instances of very large size as those in the XXL dataset. The solutions obtained by FILO on a very
large number of instances from the literature are available online Accorsi and Vigo (2020).

Our test consisted in a long run (200 minutes) of our algorithm starting from the best solutions
obtained by the 10M-iteration runs of FILO. For each instance, we selected the best solution among
those produced by FILO in 10 runs with different random seeds.

As shown in Tables 2.3 and 2.4, our LS-CGH algorithm is consistently able to improve many of the
solution produced by FILO, lowering the average gap to 0.076% for the largest 57 instances of the X
data-set, and to 0.079% for the XXL data-set.

2.4.5 CVRPLIB best-known solution improvements

During the months preceding the writing of the paper, our LS-CGH algorithm was consistently and
repeatedly able to improve the best-known solutions (BKSs) for a number of instances from the
literature, competing with many other algorithms developed by different groups around the world.

31

Table 2.2: Comparison between the solution obtained in 200 minutes runs by: the original LKH
algorithm, Helsgaun’s LKH with our changes and inserted in our scheme (newLKH), and our final
LS-CGH algorithm (i.e., newLKH followed by RSP optimization). The best result for each instance
is highlighted in boldface.

Instance LKH newLKH LS-CGH
Sol Gap Sol Gap Sol Gap

X-n303-k21 21877 0.65% 21803 0.31% 21805 0.32%
X-n308-k13 25995 0.53% 25900 0.16% 25919 0.23%
X-n313-k71 96097 2.18% 95330 1.37% 94604 0.60%
X-n317-k53 78409 0.07% 78361 0.01% 78355 0.00%
X-n322-k28 30061 0.76% 29968 0.45% 29850 0.05%
X-n327-k20 27800 0.97% 27640 0.39% 27619 0.32%
X-n331-k15 31289 0.60% 31103 0.00% 31103 0.00%
X-n336-k84 143175 2.92% 142122 2.16% 141194 1.50%
X-n344-k43 42417 0.87% 42201 0.36% 42156 0.25%
X-n351-k40 26343 1.73% 26133 0.92% 26016 0.46%
X-n359-k29 51807 0.59% 51652 0.29% 51579 0.14%
X-n367-k17 22955 0.62% 22824 0.04% 22814 0.00%
X-n376-k94 147807 0.06% 147720 0.00% 147713 0.00%
X-n384-k52 67082 1.73% 66403 0.71% 66389 0.68%
X-n393-k38 38519 0.68% 38335 0.20% 38260 0.00%
X-n401-k29 66485 0.50% 66481 0.49% 66373 0.33%
X-n411-k19 19890 0.90% 19780 0.34% 19756 0.22%
X-n420-k130 108247 0.42% 107946 0.14% 107798 0.00%
X-n429-k61 66135 1.05% 65742 0.45% 65460 0.02%
X-n439-k37 36559 0.46% 36402 0.03% 36422 0.09%
X-n449-k29 56118 1.60% 55569 0.61% 55363 0.24%
X-n459-k26 24508 1.53% 24226 0.36% 24176 0.15%
X-n469-k138 223542 0.77% 222320 0.22% 222021 0.09%
X-n480-k70 90031 0.65% 89698 0.28% 89566 0.13%
X-n491-k59 67355 1.31% 66739 0.39% 66894 0.62%
X-n502-k39 69317 0.13% 69254 0.04% 69226 0.00%
X-n513-k21 24428 0.94% 24268 0.28% 24275 0.31%
X-n524-k153 154662 0.04% 154616 0.01% 154605 0.01%
X-n536-k96 95924 1.14% 95224 0.40% 95032 0.20%
X-n548-k50 87031 0.38% 86836 0.16% 86762 0.07%
X-n561-k42 42998 0.66% 42854 0.32% 42794 0.18%
X-n573-k30 51053 0.75% 50835 0.32% 50799 0.25%
X-n586-k159 191487 0.62% 190593 0.15% 190482 0.09%
X-n599-k92 115113 6.14% 111324 2.65% 110475 1.87%
X-n613-k62 60467 1.57% 60136 1.01% 59736 0.34%
X-n627-k43 63000 1.34% 62395 0.37% 62356 0.31%
X-n641-k35 64551 1.36% 64205 0.82% 64109 0.67%
X-n655-k131 106943 0.15% 106857 0.07% 106780 0.00%
X-n670-k130 147052 0.49% 146812 0.33% 146407 0.05%
X-n685-k75 69310 1.62% 68554 0.51% 68474 0.39%
X-n701-k44 82933 1.23% 82521 0.73% 82344 0.51%
X-n716-k35 44186 1.87% 43637 0.61% 43603 0.53%
X-n733-k159 137622 1.05% 136477 0.21% 136359 0.13%
X-n749-k98 78682 1.83% 77863 0.77% 77738 0.61%
X-n766-k71 115728 1.15% 114910 0.43% 114776 0.31%
X-n783-k48 73497 1.53% 72822 0.60% 72704 0.44%
X-n801-k40 73976 0.92% 73469 0.22% 73484 0.24%
X-n819-k171 161871 2.37% 159287 0.74% 159101 0.62%
X-n837-k142 195666 1.00% 194453 0.37% 194269 0.27%
X-n856-k95 89473 0.57% 89036 0.08% 89102 0.15%
X-n876-k59 100297 1.01% 99930 0.64% 99986 0.69%
X-n895-k37 56497 4.90% 54827 1.80% 54575 1.33%
X-n916-k207 331620 0.74% 330093 0.28% 329643 0.14%
X-n936-k151 134163 1.09% 133169 0.34% 133146 0.32%
X-n957-k87 86197 0.86% 85606 0.16% 85526 0.07%
X-n979-k58 120354 1.16% 119977 0.84% 119685 0.60%
X-n1001-k43 74142 2.47% 72820 0.64% 72966 0.84%
Average 1.16% 0.48% 0.32%

The current BKSs are maintained in the CVRPLIB website Pecin et al. (2023), where the history of
the obtained improvements is also reported. As stated in the website, everyone can submit new
BKSs, without a description of the applied techniques. This fact has enabled a number of different
“competitors” to submit many improvements, especially for the difficult instances of the X and XXL
datasets. Different techniques have been applied to these instances, both refining heuristic starting
from the previous BKS, and “standalone” ones starting from scratch.

In our case, for 30 large-scale well-studied instances from the CVRPLIB, we have been able to im-
prove the BKSs from literature several times, providing a total of 105 improved BKSs. At the time of
writing (March 2021), 14 BKSs produced by our LS-CGH heuristic are still unbeaten; see Table 2.5.
After an initial testing phase where the ensemble of proposed techniques was still incomplete, all
the new BKS have been obtained using the same parameter setting, with the only exception of the

32

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

X-n393-k38

X-n469-k138

X-n561-k42

X-n670-k130

X-n716-k35

X-n801-k40

X-n979-k58

Antwerp1

Flanders1

Percentage Gap

Percentage Gaps for a Representative Set of Instances

Figure 2.2: Statistical analysis of percentage gap w.r.t. the best-known solution, on a representative
subset of the 57-X and Belgium datasets.

overall time limit which was set to infinity. Thus, for each instance we “manually” monitored the
time lasted from the last improvement, and aborted the code when no improvement was found in
the least 24 hours.

2.5 Conclusions

In this work a new CVRP refining heuristic, LS-CGH, has been proposed. We use a custom parallel
and optimized version of the Lin-Kerninghan-Helsgaun heuristic to generate a large pool of feasible
CVRP routes, and exploit an LP-based pricing procedure to “filter” the most meaningful ones to
feed a Set Partitioning model producing the final CVRP solution. Our optimized version of the LKH
heuristic is available, for research purposes, at https://github.com/c4v4/LKH3.

The LS-CGH algorithm succeeded in improving several of the best solutions obtained by a recent
state-of-the-art heuristic (FILO) in 10M iterations. In addition, a log of the best-known solutions
obtained in the past months by our method is publicly available on the CVRPLIB website Pecin
et al. (2023), witnessing its ability to improve 105 solutions obtained by the best CVRP heuristics
internationally competing on the same testbed.

In future work, our proposed method can be adapted to other routing problems, including the Ca-
pacitated Vehicle Routing Problem with Time Windows (CVRPTW), the Capacitated Arc Routing
Problem (CARP), the Vehicle Routing Problem with Backhauls (VRPB), and many others. Since LKH
itself is able to address some of these VRP variants, it can be used as route generator as suggested in
the present work.

33

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

X-n317-k53

X-n367-k17

X-n376-k94

X-n420-k130

X-n502-k39

X-n655-k131

X-n331-k15

X-n524-k153

X-n429-k61

X-n322-k28

Percentage Gap

Percentage Gaps for a Representative Set of Instances

Figure 2.3: Statistical analysis of percentage gap w.r.t. the best-known solution, on the ten instances
of Table 2.2 where LS-CGH performed best in terms of relative gap.

Acknowledgements

This work was partially supported by MiUR, Italy. We thank three anonymous referees for their
constructive comments.

Statements and Declarations

Funding This work was partially supported by MiUR, Italy.

Conflict of interest The authors declare that have no conflict of interest.

Competing Interests The authors have no relevant financial or non-financial interests to disclose.

Author Contributions All authors contributed to the study and development of this work. All
authors read and approved the final manuscript.

Data Availability The datasets used the current study are either public, or available from the cor-
responding author on reasonable request.

Code Availability The optimized version of the LKH heuristic is available, for research purposes,
at https://github.com/c4v4/LKH3 (DOI 10.5281/zenodo.6644959)

34

0 0.2 0.4 0.6 0.8 1 1.2

X-n749-k98

X-n491-k59

X-n819-k171

X-n641-k35

X-n384-k52

X-n876-k59

X-n1001-k43

X-n895-k37

X-n336-k84

X-n599-k92

Percentage Gap

Percentage Gaps for a Representative Set of Instances

Figure 2.4: Statistical analysis of percentage gap w.r.t. the best-known solution, on the ten instances
of Table 2.2 where LS-CGH performed worst in terms of relative gap.

35

Table 2.3: Best result for 10 runs of FILO with 10 million iterations for the largest 57 instances of the
X data-set along with the improvement obtained after 200 minutes by our LS-CGH algorithm. For
the XXL instances, SA was disabled due to their extremely large size. Entries in boldface highlight
the cases where LS-CGH was able to improve the FILO solution.

Instance FILO-10M LS-CGH
Sol Gap Sol Gap

X-n303-k21 21744 0.037% 21744 0.037%
X-n308-k13 25862 0.012% 25862 0.012%
X-n313-k71 94084 0.044% 94084 0.044%
X-n317-k53 78355 0.000% 78355 0.000%
X-n322-k28 29854 0.067% 29854 0.067%
X-n327-k20 27556 0.087% 27556 0.087%
X-n331-k15 31103 0.003% 31103 0.003%
X-n336-k84 139249 0.099% 139195 0.060%
X-n344-k43 42064 0.033% 42064 0.033%
X-n351-k40 25936 0.154% 25922 0.100%
X-n359-k29 51507 0.004% 51505 0.000%
X-n367-k17 22814 0.000% 22814 0.000%
X-n376-k94 147713 0.000% 147713 0.000%
X-n384-k52 66024 0.130% 65996 0.088%
X-n393-k38 38287 0.071% 38269 0.024%
X-n401-k29 66187 0.050% 66187 0.050%
X-n411-k19 19756 0.223% 19755 0.218%
X-n420-k130 107825 0.025% 107798 0.000%
X-n429-k61 65502 0.081% 65455 0.009%
X-n439-k37 36395 0.011% 36395 0.011%
X-n449-k29 55312 0.143% 55280 0.085%
X-n459-k26 24141 0.008% 24140 0.004%
X-n469-k138 222363 0.243% 222038 0.096%
X-n480-k70 89471 0.025% 89457 0.009%
X-n491-k59 66529 0.069% 66491 0.012%
X-n502-k39 69227 0.001% 69226 0.000%
X-n513-k21 24201 0.000% 24201 0.000%
X-n524-k153 154607 0.009% 154605 0.008%
X-n536-k96 95343 0.524% 95278 0.453%
X-n548-k50 86707 0.008% 86704 0.005%
X-n561-k42 42751 0.080% 42751 0.080%
X-n573-k30 50736 0.124% 50736 0.124%
X-n586-k159 190694 0.199% 190686 0.194%
X-n599-k92 108612 0.148% 108609 0.145%
X-n613-k62 59618 0.139% 59572 0.062%
X-n627-k43 62189 0.040% 62184 0.032%
X-n641-k35 63740 0.088% 63735 0.080%
X-n655-k131 106780 0.000% 106780 0.000%
X-n670-k130 147066 0.502% 146481 0.102%
X-n685-k75 68339 0.196% 68318 0.165%
X-n701-k44 81951 0.034% 81950 0.033%
X-n716-k35 43424 0.118% 43417 0.101%
X-n733-k159 136274 0.064% 136265 0.057%
X-n749-k98 77430 0.208% 77399 0.168%
X-n766-k71 114638 0.193% 114638 0.193%
X-n783-k48 72464 0.108% 72457 0.098%
X-n801-k40 73311 0.008% 73307 0.003%
X-n819-k171 158734 0.388% 158703 0.367%
X-n837-k142 193967 0.119% 193948 0.109%
X-n856-k95 89001 0.040% 88966 0.001%
X-n876-k59 99412 0.114% 99412 0.114%
X-n895-k37 53906 0.085% 53898 0.071%
X-n916-k207 329789 0.185% 329660 0.146%
X-n936-k151 133019 0.229% 132999 0.214%
X-n957-k87 85467 0.002% 85467 0.002%
X-n979-k58 119043 0.056% 119043 0.056%
X-n1001-k43 72414 0.082% 72405 0.069%
Average 0.101% 0.076%

36

Table 2.4: Best result for 10 runs of FILO with 10 million iterations for the XXL dataset along with
the improvement obtained after 200 minuted by our LS-CGH algorithm.

Inst FILO-10M LS-CGH
Sol Gap Sol Gap

Antwerp1 477619 0.072% 477598 0.067%
Antwerp2 291528 0.054% 291493 0.042%
Brussels1 502278 0.102% 502217 0.090%
Brussels2 345747 0.056% 345706 0.044%
Flanders1 7248491 0.106% 7246624 0.080%
Flanders2 4382341 0.163% 4380571 0.122%
Ghent1 469894 0.077% 469860 0.070%
Ghent2 258118 0.122% 258090 0.111%
Leuven1 192915 0.035% 192909 0.032%
Leuven2 111544 0.130% 111541 0.127%
Average 0.092% 0.079%

Table 2.5: CVRPLIB best-known solution improvements by date. For the current best at the time
of writing (March 2021), the following code identifies the authors of the algorithm: (1) Francesco
Cavaliere, Emilio Bendotti, and Matteo Fischetti; (2) Eduardo Queiroga, Eduardo Uchoa, and Ruslan
Sadykov; (3) Vinícius R. Máximo and Mariá C.V. Nascimento; (4) Thibaut Vidal; (5) Quoc Trung
Dinh, Dinh Quy Ta, Duc Dong Do.
Instance Prev.BKS 3-May-20 18-May-20 17-June-20 30-July-20 8-Aug-20 20-Aug-20 10-Oct-20 15-Dec-20 30-Jan-21 BKS Authors

X-n351-k40 25928 25919 25896 2
X-n384-k52 65943 65941 65938 3
X-n459-k26 24141 24140 24139 4
X-n536-k96 94950 94921 94846 2
X-n561-k42 42722 42717 42717 1
X-n573-k30 50717 50708 50673 50673 1
X-n641-k35 63737 63723 63684 63684 1
X-n670-k130 146446 146332 146332 1
X-n685-k75 68252 68245 68205 4
X-n716-k35 43414 43412 43373 43373 1
X-n766-k71 114487 114456 114417 114417 1
X-n783-k48 72393 72386 72386 1
X-n801-k40 73311 73305 73305 1
X-n819-k171 158249 158247 158121 2
X-n876-k59 99331 99330 99303 99299 4
X-n895-k37 53946 53935 53928 53870 53860 4
X-n936-k151 132907 132881 132812 132715 2
X-n957-k87 85478 85474 85465 4
X-n979-k58 119008 118996 118976 2
X-n1001-k43 72402 72397 72369 72355 2
Antwerp1 479021 478775 478674 478091 478019 477535 477277 2
Antwerp2 294319 293953 293802 292597 292511 291468 291450 291400 291387 291371 291371 1
Brussels1 504392 504175 504023 503407 503350 502144 501916 501854 501767 501767 1
Brussels2 353285 352658 352012 349602 348740 345627 345616 345565 345553 345551 5
Flanders1 7273695 7272444 7270362 7256529 7256400 7245214 7242182 7241290 7240845 7240845 1
Flanders2 4480972 4469477 4455217 4405678 4402841 4378434 4377986 4377626 4377524 4375193 4375193 1
Ghent1 471084 470902 470818 470329 470306 469838 469602 469586 469532 4
Ghent2 261676 260987 260553 259712 259486 258010 258002 257958 257954 257802 257802 1
Leuven1 193343 193244 193220 193092 193059 192894 192848 4
Leuven2 112751 112378 112280 111860 111794 111499 111489 111447 111399 111399 1

37

Chapter 3

An Efficient Heuristic for Very
Large-Scale Vehicle Routing Problems
with Simultaneous Pickup and
Delivery

The demand for e-commerce delivery has increased rapidly in the last few years, especially during
the COVID-19 pandemic and in the city logistics context. Such a fast growth does not come with-
out its challenges. For example, the quick increase in deliveries occurs simultaneously with a large
amount of returned goods, thus both such processes must be faced together. More specifically, online
purchases are at least three times more likely to be returned than items bought in a store. In 2021,
a record $761 billion of merchandise was returned, according to estimates in a recent report from
the U.S. National Retail Federation. On the other hand, collecting defective goods and/or deliver-
ing new packages in the urban areas of densely populated cities can impact strongly the economic,
social, and environmental policies adopted by the public authorities. Hence, designing an effective
algorithm for the vehicle routing problem with a large number of simultaneous pickup and/or de-
livery locations is a relevant task. The aim of this work is to provide an algorithm which extends the
FILO framework, originally proposed and specifically designed for the Capacitated Vehicle Rout-
ing Problem, accomplishing two objectives: first, being competitive with the state–of–the–art algo-
rithms for the so-called vehicle routing problem with simultaneous pickup and delivery, and with
its special case known as mixed pickup and delivery; second, efficiently solving new benchmark
instances for these problems with a very large number of customers, while maintaining linear scal-
ability of the computing time with respect to the problem size. The extensive computational study
performed in this paper shows that both these objectives are achieved successfully by the proposed
algorithm.

3.1 Introduction

The impact of the gig economy has triggered increased waste and returned goods which need to be
dealt with through recycling, alternative uses, or even donation. Although Amazon does not share
its overall returns numbers, in 2021 the U.S. National Retail Federation estimates that 16.6% of all
merchandise sold during the holiday season was returned, up more than 56% with respect to the
previous year. For online purchases, the average rate of return was even higher, at nearly 21%, up
from 18% in 2020. With $469 billion of net sales revenue last year, Amazon’s returns numbers are
likely staggering. In this context, the relevance of the policies devoted to the management of the
reverse flow of goods from the customers stimulated recent studies in the field of reverse logistics.
These studies are focused on operational problems related to the daily plan of routes where pickup
and delivery services can occur at the same location. On the other hand, the growing concern about
global warming and the greenhouse effect due to environmental pollution, produced great inter-

38

est in the optimal usage of the fleet of vehicles in transportation problems. More specifically, U.S.
returns generate 16 million metric tons of carbon emissions during their complicated reverse jour-
ney and up to 5.8 billion pounds of landfill waste each year, according to returns solution provider
Optoro (https://info.optoro.com/hubfs/The%20Optoro%202020%20Impact%20Report.pdf). The
best way to manage the collection of waste and recycling goods in city logistics is the key to the
success in the remanufacturing processes leading to economic, social, and environmental benefits,
which result in reducing costs of raw materials, distribution, collection costs, and so forth (Hornstra
et al. (2020), Shafiee, Ghomi, and Sajadieh (2021), Santana et al. (2021)). Since several stakeholders
work in urban areas (Taniguchi and Heijden (2000)), the goals can differ depending on the actors
involved: public authorities pursue objectives focused on the collective utility, while private com-
panies seek mainly to increase their economic benefits by both reducing their costs and ensuring a
good quality of service. The combination of different objectives and different points of view stimu-
lates the development of efficient algorithms to face both deliveries and pickups simultaneously in
city logistics areas (Taniguchi et al. (2001)), where the number of customers to be visited on the same
day can be very large. Suffice it to say that Amazon delivered 4.2 billion packages in the year 2020
alone, and each Amazon driver usually delivers up to 300 parcels daily in urban areas. Based on the
previous concerns, the topic of reverse logistics combined with environmental policies was recently
included in the management of supply chains.

In this context, the design of optimal route plans where the vehicles collect unsold, damaged, or
obsolete packages and deliver goods to the customers is a very complex task. This complexity comes
from dealing with several constraints related to the vehicle capacity, the nature of the products to
be collected (e.g., small and large packages), time windows, and demand conditions (Arenas et al.
(2017), Delgado-Antequera et al. (2020), Shafiee, Ghomi, and Sajadieh (2021)). The focus of this
paper is on a specific class of vehicle routing problems that arise in many real applications where a
large number of customers require a pickup and/or a delivery service in very dense urban areas. In
these areas, the big players of e-commerce, such as Amazon and Alibaba, require daily route plans
where, as well as several operational constraints like time windows and route duration, the delivery
of packages and the pickup of returned goods can occur simultaneously in the same locations, or
where a returned good is picked up or, alternatively, a package is delivered. The last-mile service for
these companies is typically based on predefined delivery areas which are assigned to one or more
vehicles so as to simplify the routing design and implicitly enforce positive features such as driver
consistency. However, variability in demand patterns and density as well as in traffic conditions,
together with increasing pressure on improving the level of service for customers may result in
substantial inefficiencies of these models which may need to be evaluated against models which
allow the daily planning of routes on large undivided areas. Furthermore, in some cases, pickup and
delivery requests may be served in separate routes. In this context, the capability of solving large-
scale routing problems with pickup and delivery may represent an important asset for evaluating
and redesigning delivery areas and shift towards operations models based on larger areas. For these
reasons, we concentrate in this paper on an important family of routing problems with simultaneous
pickup and delivery with the aim of developing solution methods that are capable of solving, within
short computing time, problem instances with several thousands of customers, thus being one or
two orders of magnitude larger than those solved by the existing algorithms from the literature.
These problems are referred to, respectively, as the Vehicle Routing Problem with Simultaneous
Pickup and Delivery (VRPSPD) and as the Vehicle Routing Problem with Mixed Pickup and Delivery
(VRPMPD), where VRPMPD is clearly a special case of VRPSPD. Although these problems only
partially model all the features arising in the problems found in practice, they allow us to model the
main aspects (pickup and delivery) arising in large distribution areas. The contribution of this work
to the literature focused on these two problems is twofold:

• problem-oriented: we design a tailored heuristic scheme, based on the FILO framework, pro-
posed by Accorsi and Vigo (2021) for the Capacitated VRP. The algorithm, called FSPD uses
an iterated local search (ILS) engine that handles the problem-specific constraints through the
well-known resource extension functions (REFs), initially proposed by Desaulniers et al. (1998)
and whose use within metaheuristics was introduced by Irnich (2008a). The algorithm, called
FSPD, solves medium to very large-scale instances of the VRPSPD and the VRPMDP. To assess
its effectiveness, we solve several VRPSPD and VRPMDP literature benchmark instances and
show that the proposed algorithm performs very well compared to the existing state-of-the-art
algorithms;

39

https://info.optoro.com/hubfs/The%20Optoro%202020%20Impact%20Report.pdf

• algorithm-oriented: the proposed algorithm is characterized by a local search engine support-
ing the REFs framework and by a tailored recreate strategy allowing to explore effectively the
neighborhoods of the search space. These features of the algorithm allow the solution of very
large-scale instances of strongly constrained VRPs such as VRPSPD and VRPMDP by keeping
a linear trend of the computational time of the algorithm as the size of the instances increases.

The paper is organized as follows. Section 3.2 describes the problems and the corresponding com-
plexity. Section 3.3 provides a comprehensive literature review of the most recent work on VRPSPD
and VRPMPD. In Section 3.4, we describe the proposed heuristic and we highlight all the new fea-
tures that are introduced to solve very large-scale instances of the VRPSPD and VRPMPD. Section 3.5
presents the details of the experimental design and the results of our computational study. Finally,
Section 3.7 provides some conclusions and discusses future work.

3.2 Problem description

The VRPSPD can be described as a graph theoretical problem defined on an undirected graph G =
(V, E), where V is the vertex set and E is the edge set. The vertex set V is partitioned into V =
{0} ∪ Vc where 0 is the depot and Vc is the set of customers. A cost cij is associated with each edge
(i, j) ∈ E. Moreover, we assume that the cost matrix satisfies the triangle inequality. Each customer
i ∈ Vc requires an integer quantity di ≥ 0, called delivery demand, from the depot and sends an
integer quantity pi ≥ 0, called pickup demand, to the depot. Moreover, we have d0 = p0 = 0.

A fleet of homogeneous vehicles with capacity Q is located at the depot and available to serve the
customers. In different problem settings associated with the existing benchmark instances, such
fleet can either be unlimited or has a fixed dimension. Recalling that a Hamiltonian circuit is a
closed cycle visiting a set of customers exactly once, a VRPSPD solution is composed of a set R of
Hamiltonian circuits, called routes, each of them, say r, starting from the depot, visiting a subset
of customers and coming back to the depot. A solution is feasible if a) each customer is visited by
exactly one vehicle; b) each vehicle travels at most one route; c) each vehicle route starts from and
ends at the depot; d) the route pickup demand pr = ∑i∈r pi at the depot, for each r ∈ R, does not
exceed Q; e) the vehicle capacity constraint should be satisfied after the visit of each customer of any
route, in such a way the vehicle is not overloaded after each customer visit.

The VRPSPD is NP-hard since it generalizes the well-known capacitated vehicle routing problem
(CVRP). There exist different formulations of the VRPSPD, based on two- or three-index decision
variables. We refer the reader to the recent survey of Koç, Laporte, and Tükenmez (2020), in which
four possible formulations of the problem under consideration are detailed.

The VRPMPD is a slight variant of the VRPSPD in which, for each customer i, either pi or qi is
strictly positive but not both. In the scientific literature, the VRPMPD is always defined in this way
and the algorithms proposed to solve this problem are simple adaptations of those used for the
VRPSPD.

3.3 Literature review

The VRPSPD was originally introduced by Min (1989), who developed a model and a heuristic
method based on a “Cluster First - Route Second” approach, applied to solve a real case of a public
library distribution system. After this seminal paper, during the last three decades a significant
number of papers devoted to VRPSPD and its variants has been published, because of the practical
importance of the problem for distribution companies.

A great help in reviewing the scientific literature on the topic comes from the already mentioned
survey of Koç, Laporte, and Tükenmez (2020). The survey includes a detailed discussion, among
others, of the heuristics developed for solving the classical VRPSPD. The relevant cited papers are
29 and are grouped according to the following heuristic types: classical construction and improve-
ment heuristics (3 papers), local search metaheuristics (15 papers), population search heuristics (6
papers), and ant colony heuristics (5 papers). All papers are presented by providing a performance
comparison of the proposed heuristics on some benchmark datasets. The most frequently used
benchmark datasets for VRPSDP are:

40

• Salhi and Nagy (1999) dataset, containing 28 instances with 50−199 customers randomly dis-
tributed derived from the well-known CMT instances of the CVRP. The dataset is, in turn,
decomposed into two subsets, denoted as X and Y and called CMTX and CMTY in this paper,
each including 14 instances. The CMTY set is obtained by exchanging the demands of every
customer in set CMTX. The number of customers in each subset is always between 50 and 199
customers and the pickup and delivery demands are swapped in the two subsets. Moreover,
half of the instances in each subset include an additional constraint on the maximum length of
every route. However, some algorithms have been tested only on the 14 instances (i.e., seven
for each subset), not including the maximum length constraint. Double precision values have
been used for distances and demands;

• Dethloff (2001) dataset, containing 40 instances with 50 customers each and with different
customers distribution;

• Montané and Galvão (2006) dataset, containing 18 instances with 100, 200, and 400 customers,
derived from VRP with time windows test problems.

The collected results in Koç, Laporte, and Tükenmez (2020) show that the best solutions are obtained
by Subramanian, Uchoa, and Ochi (2013) and by Vidal et al. (2014). This claim is also confirmed by
the recent paper by Christiaens and Vanden Berghe (2020).

Since the survey covers the period from 1989 to part of 2019, we limit ourselves to updating, in a
strict chronological order, the existing literature on the topic.

Simsir and Ekmekci (2019) proposed a new metaheuristic for the VRPSDP, which implements an
artificial bee colony (ABC) algorithm, based on the foraging behaviors of honey bee colonies in
natural life. The ABC algorithm has been tested on Dethloff (2001) instances, and it allows obtaining
feasible solutions within a reasonable computational time. However, much more effort should be
required to improve the performance of the method, since the cost obtained for all the test problems
is always worse than the best-known solution (BKS) available.

Hof and Schneider (2019) proposed an adaptive large neighborhood search combined with a path-
relinking approach, called ALNS-PR, to address the VRPSPD. The competitiveness of the ALNS-PR
algorithm is shown on the CMTX and CMTY set of instances of Salhi and Nagy (1999). Due to the
way by which the set CMTY is derived from CMTX, the authors claim that the algorithm provides
equivalent optimal solutions for both the CMTX and the CMTY variant of each instance, where
the routes of one solution correspond to the reversed routes of the other. Finally, the ALNS-PR is
tested also on the sets of Dethloff (2001) and Montané and Galvão (2006). The ALNS-PR algorithm
was not able to reach the BKS available only in four cases. Even though a precise time compari-
son among the tested algorithms is impossible, the authors attempt to translate the computational
times of all methods into a common time measure that takes into account the processors used, by
using the Passmark scores (see PassMark® Software (2020)) of the processors used in the different
computational studies. The average computational time of the ALNS-PR algorithm, even though
competitive, remains significantly larger than these of the other tested methods. Another issue of
the algorithm is related to the many parameters to be defined and tuned to run it. The authors ob-
served that three parameters have a stronger impact on solution quality compared to the remaining
ones. So, they used 10 instances from the 14 test problems of Salhi and Nagy (1999) to evaluate the
best values of these parameters. These values are then kept unmodified for the tuning phase of the
other parameters.

Christiaens and Vanden Berghe (2020) developed a new general heuristic, named slack induction
by string removals (SISR), for solving the capacitated VRP and several of its variants, including
VRPSPD and VRPMDP. The heuristic is based on an iterative scheme composed of a ruin method, in
which randomly selected customers are removed from the current solution to generate the so-called
spatial slack, and a recreate method, represented by a greedy insertion method, which is used to
reconstruct a feasible solution. Finally, a fleet minimization procedure can be used when minimizing
the number of vehicles is a primary objective of the problem. In the case of VRPSPD, SISR has been
tested on the whole benchmark set of Salhi and Nagy (1999) and compared against the results of the
algorithms of Subramanian, Uchoa, and Ochi (2013) and of Vidal et al. (2014). In 22 cases out of 28,
SISR reaches, on average, the BKS.

Hornstra et al. (2020) proposed an adaptive ALNS metaheuristic for solving the variant of VRPSDP

41

including handling costs. However, the metaheuristic has been also applied to the classical version
of the problem. The proposed algorithm is based on the same ALNS scheme defined by Ropke and
Pisinger (2006), strengthened by a local search procedure to possibly improve iteratively the current
solution. Five different local search operators are used (reinsertion, exchange, intra 2-opt, inter 2-opt
and inter 3-opt), and a new solution is accepted or not through a simulated annealing acceptance cri-
terion. The metaheuristic has been tested on the set of 14 instances of Salhi and Nagy (1999) without
distance constraints and on those of Dethloff (2001). For the first set of instances, the algorithm finds
11 BKSs out of 14 reported in Polat (2017). It is worth noting that the authors seem to have generated
instances in set CMTY slightly differently from other authors, and this impacts the computation of
the objective function value. The BKSs reported in Polat (2017) were reached in 26 out of 40 instances
for the second benchmark dataset.

Hamzadayı, Baykasoğlu, and Akpınar (2020) proposed a Single Seekers Society (SSS) algorithm for
solving the VRPSPD. The SSS algorithm (also known as “social evolutionary algorithm”) is a meta-
heuristic that enables cooperation between different local search heuristics, each of them exploring
the search space with its own parameters separately. The local search heuristics incorporated in the
SSS algorithm are several, and among them, we find a greedy search, a random search, a simulated
annealing, and a genetic algorithm. The SSS algorithm has been tested for the VRPSDP on the bench-
mark set of 14 instances of Salhi and Nagy (1999) and of Dethloff (2001). The algorithm has been
able to reach almost all of the BKSs provided by several competing algorithms. While the average
gaps are very small when compared to the competitors, nothing is reported about the computa-
tional time. The authors just report an average value of 10 minutes for all problem instances, which
is about an order of magnitude higher than the computing time required by other state-of-the-art
methods.

Olgun, Koç, and Altıparmak (2021) developed a hyper-heuristic (HH-ILS) algorithm based on it-
erative local search and variable neighborhood descent heuristics to solve the green version of the
VRPSPD. Extensive computational experiments have been conducted to analyze the performance of
the proposed algorithm also for the standard VRPSPD problem, by using the classical benchmark
instances of Salhi and Nagy (1999) and of Dethloff (2001). The HH-ILS has obtained 38 BKSs out of
40 instances of Dethloff (2001). Among the problems of Salhi and Nagy (1999), the HH-ILS algorithm
obtained five BKSs in comparison with those achieved by several competitive algorithms.

Park et al. (2021) proposed a genetic algorithm for solving VRPSPD. The comparison has been con-
ducted with widely-used neighborhood search methods, but not on the standard test problems, so
it is hard to say if the proposed method outperforms the best available algorithms.

Finally, in the recent paper of Öztaş and Tuş (2022), a hybrid metaheuristic for the VRPSPD is pre-
sented. It is a combination of iterated local search, variable neighborhood descent, and threshold
acceptance metaheuristics. Iterated local search is used as the main framework of the proposed
algorithm and is initialized with a solution generated with a nearest neighbor heuristic. Variable
neighborhood descent provides intensification in the search space by randomly ordering the neigh-
borhood structures. A perturbation mechanism allows exploring different parts of the search space,
taking the opportunity to exploit non-improving solutions encountered in the search space by using
an adaptive threshold acceptance. The results obtained on the first 14 benchmark instances of Salhi
and Nagy (1999) show that in 10 cases the BKS has been obtained. The proposed algorithm is very
competitive with other algorithms both in terms of solution quality and computational time also
for Dethloff (2001) problems where it obtained the BKS for all these instances. Finally, the results
obtained on the instances of the dataset of Montané and Galvão (2006) show that the algorithm is
able to reach the BKS value from the literature in 8 out of 18 medium–sized problems.

The VRPMPD has been used to model real situations occurring in the food industry, where produc-
tion locations must be visited together with delivery locations to account for the food regulations re-
quiring delivery within the next 12h after the start of production (Oesterle and Bauernhansl (2016)).
The most relevant contributions to the VRPMPD have been reviewed in the papers of Koç and La-
porte (2018) and Santos et al. (2020). There are several benchmark datasets for the VRPMPD. The
most used in the literature is the one derived from the dataset designed by Salhi and Nagy (1999)
and composed of 42 test instances that range in size from 50 to 199 customers. These instances
are grouped into three subsets referred to as CMTT, CMTQ and CMTH obtained from the CMT in-
stances of the capacitated VRP. In set CMTT the proportion of pickup customers is 10%, while this
value increases to 25% and 50% in sets CMTQ and CMTH, respectively. Also in this case the last

42

seven instances in each dataset include a maximum distance constraint in addition to the capacity
constraint and, therefore, were not considered by some authors. Other datasets are used in papers
focusing on problems that have the VRPMPD as a special case. These datasets are briefly described
in the sequel where appropriate.

The state-of-the-art on heuristics for the VRPMDP is represented by some of the papers which focus
on VRPs and their variants, such as the paper of Goksal, Karaoglan, and Altiparmak (2013), where
they designed a heuristic algorithm based on particle swarm optimization that uses a local search
implemented through a variable neighborhood descent algorithm. The proposed algorithm outper-
forms the reactive tabu search developed by Wassan, Nagy, and Ahmadi (2008) on a set of instances
that are derived from the VRPSPD data set of Dethloff (2001). More precisely, it improves 101 out of
120 BKSs found by the tabu search. For the 12 instances, in which the designed algorithm performs
worse than the reactive tabu search, the results are still within 0.01% of the BKS obtained by the
heuristic proposed by Wassan, Nagy, and Ahmadi (2008). In addition, this algorithm obtains the
best solutions within a computational time smaller than that required by its competitor. The com-
parison on the instances derived from the dataset designed by Salhi and Nagy (1999) is performed
against the reactive tabu search of Wassan, Nagy, and Ahmadi (2008), the large neighborhood search
of Ropke and Pisinger (2006) and the ant colony system of Gajpal and Abad (2009). It shows that
the algorithm reaches 16 best solutions out of 42 possible solutions and three new best solutions
for the test instances 2, 4, and 12 of the CMTQ dataset. The comparison with the competitive algo-
rithms in terms of computational burden shows that the proposed algorithm needs slightly greater
computational time. In the following, we analyze the performance of some previously mentioned
algorithms focused on the VRP and its variants, in which significant improvements on the BKSs of
the VRPMPD are also provided.

The hybrid algorithm proposed by Subramanian, Uchoa, and Ochi (2013) has been tested on the
VRPMPD benchmark instances derived from the dataset designed by Salhi and Nagy (1999). A
comparison is performed with the large neighborhood search of Ropke and Pisinger (2006) and
the ant colony system of Gajpal and Abad (2009). The proposed algorithm obtains the BKS in 25
instances and it improves the result of another 12. It outperforms both competitive algorithms in
terms of solution quality.

The Unified Hybrid Genetic Search metaheuristic of Vidal et al. (2014) is tested on the VRPMPD
benchmark instances derived from the dataset designed by Salhi and Nagy (1999). A compari-
son with the algorithms of Anagnostopoulou, Repoussis, and Tarantilis (2013) and of Subramanian,
Uchoa, and Ochi (2013) is performed. The algorithm is able to obtain the best gap of +0.00% which
is the same as Subramanian, Uchoa, and Ochi (2013). These results are reached within an average
computing time of 2.46 minutes.

The hybrid heuristic designed by Hof and Schneider (2019) is tested on the VRPMPD instances
derived from the dataset designed by Salhi and Nagy (1999) and the obtained results are compared
with the ones achieved by the heuristics designed by Subramanian, Uchoa, and Ochi (2013), and
by Vidal et al. (2014). The performance is comparable in terms of: a) average percentage gap of
the best solution quality based on several runs to the BKS, and b) average percentage gap of the
average solution quality to the BKS. These gaps are equal to +0.00% and +0.18%, respectively. The
resulting time in seconds is comparable with the one provided by Subramanian, Uchoa, and Ochi
(2013).

Finally, the method designed by Christiaens and Vanden Berghe (2020) is tested on the VRPMPD in-
stances derived from the dataset designed by Salhi and Nagy (1999), and the performance of the pro-
posed method is compared with the heuristics presented in Subramanian, Uchoa, and Ochi (2013)
and in Vidal et al. (2014). The comparison is done according to the average cost, the best cost, and
the average calculation time in minutes obtained after 50 runs per instance. The proposed algorithm
provides results similar to the ones achieved by Vidal et al. (2014) in terms of quality. Furthermore,
it improved two BKSs.

3.4 Solution Approach

In this section, we describe the proposed heuristic, called Fast ILS localized optimization for Si-
multaneous Pickup and Deliver problems (FSPD for short in the following), which we designed to

43

solve VRPSPD and VRPMPD. The FSPD algorithm is an extension of the FILO framework, origi-
nally proposed and specifically tailored for the CVRP by Accorsi and Vigo (2021). Because of the
high specialization of FILO for CVRP, extending the framework to more constrained VRP variants,
such as those described in Section 3.2, requires a substantial redesign effort if one wants to preserve
the effectiveness and scalability characteristics of the original approach. Therefore, FSPD includes
several new features with respect to the original FILO framework, which enhance its performance
on constrained variants of the VRP. Although we focus here on VRPSPD-related problems, and in
particular on those that were described in Section 3.2. We shall note that FSPD approach could
be more easily extended to other VRP variants, provided that the associated constraints can be ex-
pressed in terms of REFs (see Desaulniers et al. (1998) and Section 3.4.2) to efficiently handle them
within local search. However, the extension of FSPD to different VRP variants may require further
design changes to boost its effectiveness.

In the following sections, we first provide a brief overview of FILO framework, then we describe
in detail the extensions we implemented in FSPD to consider pickup and delivery constraints. In
particular, we examine the REF implementation and how some of the components of the original
approach have been updated to specifically cope with the VRPSPD and VRPMPD.

3.4.1 An overview of FILO framework

In this section, we briefly outline the main characteristics of FILO approach, while the modifica-
tions introduced in FSPD are discussed in detail in the following ones. The reader is referred to
Accorsi and Vigo (2021) for a more comprehensive description of FILO framework and its basic
features.

Algorithm 4: High-level structure of FILO.
Input : Instance I, random seed s, number of core optimization iterations ∆CO
Output: Final solution S∗

1 PROCEDURE FILO(I, s)
2 begin
3 R← RANDOMENGINE(s);
4 S← CONSTRUCTIONPHASE(I);
5 S← ROUTEMINIMIZATION(S, R);
6 S∗ ← S;
7 for ∆CO iterations do
8 S′ ← S;
9 S′ ← RUIN(S′, R);

10 S′ ← RECREATE(S′, R);
11 S′ ← LOCALSEARCH(S′, R);
12 if COST(S′) < COST(S) then
13 S∗ ← S′;
14 end
15 if SIMULATEDANNEALINGACCEPT(S′, S) then
16 S← S′;
17 end
18 end
19 return S∗;
20 end

Algorithm FILO is a randomized and efficient algorithm, which, as already mentioned, was specifi-
cally designed for the effective solution of large–scale instances of the CVRP. A schematic outline of
FILO is depicted in Algorithm 4. FILO is designed to be run multiple times on the same instance,
and each run initializes the random engine with a seed received as an input (Line 3). An initial solu-
tion is created with a restricted version of the Clarke and Wright (1964) savings algorithm, proposed
by Arnold, Gendreau, and Sörensen (2019) for large-scale instances, which computes only a linear
number of savings. Then, a route minimization procedure is possibly applied, whenever the initial
solution uses more routes than a greedily estimated number.

The main core optimization iteration (Lines 7-18) is based on the well-known iterated local search (ILS)
paradigm (see Lourenço, Martin, and Stützle (2003)). During this procedure, a shaking step (Lines 9
and 10), which is performed in a ruin-and-recreate fashion, and a local search step (Line 11) interleave
for a prefixed number ∆CO of iterations. When a local optimum is generated after the local search

44

application, it is possibly accepted as the current working solution with a probabilistic acceptance
rule based on a simulated annealing criterion (Lines 15-17).

The feature of FILO which contributes the most to its efficiency is the locality of the application of
its procedures. That is, both the shaking and the local search applications perform changes in a
very limited, and spatially delimited, area of the solution. This makes every ILS iteration almost
independent from the instance size.

The locality of the shaking procedure is obtained by the ruin-and-recreate procedure itself, which is
designed to remove a set of customers that are spatially located close to each other, as better detailed
in Section 20. On the other hand, the local search locality is obtained by means of a heuristic pruning
technique called selective vertex caching (SVC), which keeps track, at any time, of a solution area that
has been recently modified. This is, in practice, obtained by managing the vertices recently involved
in solution changes through a limited-size set in which exceeding vertices are evicted following a
least-recently-changed policy. We should note that even if locality makes the computational effort of
a core optimization iteration practically independent from instance size, the algorithm still includes
some linear-time routinary operations, such as solution copy at Lines 13 and 16, which, however,
have a limited impact on the overall computing time of an iteration.

We next describe in more detail the two components of a core optimization iteration.

Shaking.

The shaking step, builds from the current solution S a new one, S′, to be used as starting point for
the local search. As previously mentioned, the shaking is performed in a ruin-and-recreate fashion.
More precisely, during the ruin step, starting from a random seed customer i, a total number ωi
of customers is removed from the current solution. The customers to be removed are identified by
a random walk starting from the seed customer. The length ωi of such random walk is an adap-
tive parameter that is iteratively adjusted to the current instance and solution structure to produce
neighbor solutions having a quality that is neither too close nor too far from the current one. The
recreate step greedily reinserts the removed customers once they have been, with equal probability,
either randomly shuffled or sorted according to either their distance from the depot or their demand.
For more details on the shaking procedure, the reader is referred to Section 2 of Accorsi and Vigo
(2021).

Local Search.

At each core optimization iteration, a local optimum is obtained by means of a sophisticated local
search engine that combines accelerations and heuristic pruning techniques. In particular, the pro-
cedure uses vertex-wise {granular neighborhoods (GNs, see Toth and Vigo (2003) and Schneider,
Schwahn, and Vigo (2017)) and the above-mentioned SVC to heuristically reduce the neighborhood
cardinality and spatially localize the local search applications. More in detail, a GN is a restricted
local search neighborhood that allows for the identification of a subset of neighbor solutions through
what are known as move generators. A move generator is an instance arc that is used to uniquely
identify a move of a local search procedure, and thus a neighboring solution. We define the set of
move generators to be composed of arcs that connect every vertex to its K nearest neighbor. In its
vertex-wise definition, GN allows to consider, for every vertex i, a variable number 0 ≤ ki ≤ K of
move generators, thus enabling the algorithm to intensify the search where it could be more effec-
tive. In addition, we use static move descriptors (SMDs, see Zachariadis and Kiranoudis (2010) and
Beek et al. (2018)) as an acceleration technique to efficiently explore these neighborhoods. An SMD
is a data structure that, for a given neighborhood, uniquely identifies a local search move and the
associated cost variation, denoted as delta, obtained by applying such a move to the current solution.
SMDs are stored inside specialized data structures that keep the moves sorted according to their ef-
fectiveness and enable the precise update of all, and only, the SMDs whose delta might have been
affected by the application of any given move. For a more detailed description of how GNs, SVC,
and SMDs are designed and efficiently combined for the CVRP, the reader can refer to Section 2.2 of
Accorsi and Vigo (2021).

45

3.4.2 The FSPD framework

The extension of FILO framework to more constrained VRPs requires a substantial effort to incorpo-
rate the handling of problem-specific constraints while retaining the efficiency and scalability of the
main procedures. In FSDP, this is achieved by mainly extending three components of the algorithm,
namely:

• the initial solution construction (Line 4 of Algorithm 4) that should now produce a feasible
solution for the problem at hand;

• the shaking step, where both ruin and recreate must incorporate problem-specific features, and

• the local search engine which must perform efficiently the feasibility check of the solutions
with respect to the problem constraints.

To handle efficiently VRPSPD and VRPMPD characteristics in FSPD, a number of new features were
added to the original approach. Most of these features are required to support the handling of
additional constraints which are more complex with respect to the CVRP ones. To this end, we
introduced two major innovations in the original FILO approach, namely:

• an extension of the local search engine to support the well-known resource extension functions
(REFs) (see, Desaulniers et al. (1998) and Irnich (2008a));

• a generalization of the original recreate strategy aimed at handling multi-attribute VRPs.

These changes mainly affect the recreate and the local search steps (lines 10 and 11 of Algorithm
4). In particular, a major redesign of these steps is required because of the additional workload
associated with the REFs framework. In the following, we describe in detail the new features of
FSPD starting from the REFs handling which is preparatory to all other changes.

Resource Extension Functions.

A significant challenge when adapting CVRP algorithms to other VRP variants is effectively han-
dling the additional constraints these variants may introduce. It is important to note that the task
of handling constraints efficiently is not equally simple to manage. As discussed earlier, the FILO
framework has already proven to be efficient in handling capacity constraints and constraints related
to the maximum distance a route can cover in the CVRP. For these constraints, evaluating the impact
of a single solution change only requires a small set of additional “cumulative” route attributes, like
demand-sum or distance-sum. More in detail, the demand-sum represents the total load of the en-
tire route, serving as a sufficient indicator of route feasibility. Additionally, when new customers are
added to or removed from a route, efficiently updating the demand-sum involves simply adding or
subtracting their respective demands, a process that scales with the number of customers involved.
Similar consideration apply to distance-sum which is the total length of the route used to check
feasibility of maximum distance constraints.

With different VRP variants, however, we may no longer have the ability to compute the feasibility
by using only a constant number of route attributes. For example, when we consider VRPSPD
or VRPMPD, this property is lost because the insertion of a customer into a route can cause local
infeasibilities throughout the whole route, which forces us to consider the feasibility at a customer
granularity (e.g., by scanning the entire route). For this reason, cumulative route attributes as in
CVRP are no longer sufficient.

When considering the VRPSPD, the load while traversing a given route can either increase or de-
crease from customer to customer, thus making the load profile non-monotonic along the route.
In this case, there are no constant-size route attributes that can both represent the route feasibility
status, and at the same time can be updated at every new change of the route with a number of op-
erations proportional to the nodes involved in the move. Thus, more general approaches are needed
if one wants to handle this type of constraint efficiently.

An attempt to address this issue, while also trying to propose a generic framework to treat complex
routing constraints, has been initially proposed by Kindervater and Savelsbergh (1997). Their ap-
proach consists of three main ingredients: (i) limiting the search strategy to a lexicographic search,
(ii) storing some key information in global variables that are queried for feasibility checks, and (iii)

46

updating such global variables at every move application. With these elements, a generic heuris-
tic can be developed to address different VRP variants efficiently. By leveraging the lexicographic
search pattern, once we have carried out a first feasibility check, the following ones can be sped up
by reusing the information obtained from the previous one. The main drawback of this technique
regards the constraint imposed on the search, which is limited to a specific scheme.

Desaulniers et al. (1998) proposed the concept of resource extension functions (REFs), a more gen-
eral and flexible framework to handle different types of constraints regarding both VRP and crew-
scheduling problems. In his work, Irnich (2008b) describes the first framework which merges some
of the information-handling techniques proposed by Kindervater and Savelsbergh (1997) along with
the REF framework introduced by Desaulniers et al. (1998). The resulting segment REFs provide a
general yet efficient way to develop heuristics for a broad variety of VRPs. The key idea of this
framework consists in decoupling the search strategy from the computation of global variables. The
segment REF can be computed by using specialized data structures to reduce both the size and the
computational time needed in the preprocessing and during the updates, while the search strategy
can be of any type with the only caveat that just concatenations can be executed for feasibility checks.
Another important state-of-the-art example of such a general heuristic algorithm is represented by
the UHGS algorithm of Vidal et al. (2014), which is able to successfully tackle a large class of differ-
ent VRP variants leveraging the flexibility of the REFs framework. For a more in-depth description
and theoretical analysis of how such a framework can be constructed, the reader is referred to Irnich
(2008b).

Now, let us delve into the task of defining an appropriate collection of resources and REFs for a given
problem. Considering how REFs operate, we are looking for a set of resources of size R (possibly
constant), that is able to check the feasibility of an associated segment in O(R) operations. Moreover,
given the resources of two segments that we want to concatenate, we need a function that computes
the resources associated with the segment obtained by the concatenation performing O(R) opera-
tions. Let us consider the CVRP as the first practical example. As previously stated, the feasibility
status of a “CVRP-route” can be represented by its demand-sum. In general, we can extend the use
of the demand-sum as a resource to represent the feasibility of any route segment. Regarding the
concatenation REF, it simply consists of the sum of the demand-sum of the input segments. If we
want to use the REF framework to compute the feasibility of the route obtained from the insertion
of a new customer i inside a route, we first have to obtain the demand-sums of the segment from
the depot to the customer before i, and that of the segment from the customer after i to the depot.
Concatenating the former with the demand of i, and then the result with the latter we obtain the
demand-sum of the new route after the insertion. Suppose we have the two segments resources
available, we can execute the two concatenations and the corresponding feasibility check with only
O(R) operations, which, for the demand-sum is O(1). However, note that in the CVRP case re-
stricting the feasibility check to only concatenations can actually harm the overall efficiency of the
algorithm. This variant in fact supports other operations which (depending on algorithmic design
choices) can be simpler and faster but are incompatible with the REF framework. In the previous
example, we could have performed the addition of the demand of customer i to the demand-sum of
the route and checked the result against the capacity. Unfortunately, the ability to perform feasibility
checks using only resources at a route granularity and the ability to add or subtract resources is valid
for only few VRP variants, such as the CVRP.

When we consider more complex variants, such as the VRPSPD, REFs can actually help to handle a
more complex set of constraints in a uniform and efficient way. Regarding the feasibility, we need to
check if the load exceeds the vehicle capacity at any point of the route sequence. The most obvious
value that carries such information is the maximum load reached within the route. However, given
two segments with only their respective maximum loads M1 and M2, there is no way to compute the
maximum load M3 resulting from their concatenation by using only O(R) operations, with R = 1 in
this case.

Intuitively, the resulting maximum load M3 would be obtained as the maximum between M1 and
M2 plus a term that accounts for the concatenation. Considering the first segment, along with M1, we
need to account for the new deliveries that are carried out in the second segment (whose sum is D2)
since all those deliveries have to be already inside the vehicle at the start of the resulting segment.
In the same way, we need to add the pickup-sum P1 of the first segment to M2, because, in addition
to the vehicle load due to the second segment, now it also has to consider all the pickups previously

47

carried out during the first one. Therefore, to handle pickup and delivery constraints with arbitrary
concatenations between segments we need to store and update three resources, namely:

• M: maximum load;

• P: pickup-sum;

• D: delivery-sum;

Then, as described in Vidal et al. (2014), the O(R) concatenation operation will be:

• M3 = max{M1 + D2, M2 + P1}

• P3 = P1 + P2

• D3 = D1 + D2

In addition, the resources for a single customer i will be initialized as Mi = max{pi, di}, Pi = pi, and
Di = di.

Local Search Engine extension to support REFs.

The extension to the more generic REFs framework requires some major algorithmic changes also
in the ruin-and-recreate procedure and in each operator of the local search step. As previously dis-
cussed, the CVRP capacity constraints with which the original FILO had to deal with can be handled
efficiently in a fairly simple way. Instead, when we need to handle more complex constraints, such
simplicity is lost. As described in Section 3.4.2, every feasibility check is executed on top of a given
segment resource. Therefore the resource of each route must be computed first. To do so, the route is
split into sub-segments, which are then concatenated together. The split is not random, as it clearly
tries to use, as much as possible, pre-computed segments, so as to minimize the number of needed
concatenations. As in the example of Section 3.4.2, if we consider the simple case where we want to
insert a customer in a given position of a route, what is needed to compute the resource of the route
obtained after the move will be:

• the resource of the segment starting at the depot and ending at the vertex before the insertion
point;

• the resource associated with the single-customer segment of the customer we want to insert;

• the resource starting from the vertex after the insertion point up to the depot.

With these resources, by simply applying two concatenation operations we can obtain the complete
resource of the route that would be produced by the move, and, therefore, we can evaluate its feasi-
bility.

Looking in general at the moves applied within our algorithm we can find two main scenarios:

1. We want to insert a segment into a route that did not contain that segment before.

2. We want to relocate a segment to a different position within the same route.

The first case is, for example, found during the recreate phase of the ruin-and-recreate procedure,
where we want to insert single customers inside the solution, one at a time. But it can also be found
in the local search in any operator dealing with different routes, such as exchange, relocate, SPLIT,
and TAIL moves. In all such cases, dealing always with two different routes simplifies the feasibility
check for both of them, since the associated resource function computation simply resembles what
we have previously described.

On the other hand, a more complex operation is needed when dealing with the second case. When
we want to move a segment within the same route, the most efficient resource computation (that
minimizes the number of concatenations needed) is not always the same. In particular, it is different
if the segment is moved in a forward or backward position, and if the segment contains or not the
depot. Furthermore, when dealing with exchange moves, which relocate two segments within the
same route by swapping their position, these considerations must be combined.

For the sake of completeness, in what follows we describe the different scenarios we have to address
for the operators of our LS scheme.

48

Figure 3.1: Illustration of segment concatenation associated with a swap move, in the case the depot
is not contained in the segments to be swapped (a) or is contained in one of them (b).

m1 s1 m2 m3s2

m1 s2 m2 m3s1

m1s1 m2s2 s1

m2s1 m1s2 s1

(a)

(b)

Let us first consider the case where two segments are swapped within a single route because it is the
case that needs special handling. Let s1, s2 ⊂ S be the two route segments that we want to swap. Like
in the original algorithm Accorsi and Vigo (2021), we consider segments having a length between 0
and k, with all their meaningful combinations and avoiding repetitions (e.g., the case 0-0 does not
produce a change, while the case 2-3 explores the same moves as the case 3-2, so just one of then is
considered). In addition, we consider the possibility of reversing one or both segments. For every
intra-route swap we need to account for the following two aspects:

1. which one of the segments appears first in the route;

2. whether one of the two segments may contain the depot.

Without loss of generality, we assume that s1 end is always before s2 start. Whenever this is not the
case we can swap the two segments and proceed as described.

If the depot is not within one of the segments, then the new route (and its resource) can be composed
by concatenating five segments (four if one of the segments has length 0), as in Figure 3.1(a).

On the other hand, let us assume that the depot is included within segment s1 (the same will apply
in case it is in s2). Then, s1 needs to be split into two parts: the first from its start to the depot, and
the second from the depot to its end. Then, the new route will be obtained by the concatenation of
five segments: (i) the segment from the depot up to the end of s1, (ii) the segment that was between
s2 and the start of s1, (iii) segment s2, (iv) the segment that was between the end of s1 and s2, and,
finally, (v) the first half of s1, from its start to the depot, as is shown in Figure 3.1(b).

Segment Resources Computation.

A number of different approaches can be adopted to obtain the resources of a given segment. They
all leverage on the compromise between the number of moves tested versus the number of moves ac-
tually applied. Indeed, pre-computing some of the resources used with REFs that might be queried
afterwards can be a very advantageous technique when only a few moves are actually applied and
update procedures are seldom invoked. The main examples from the literature are those described
in Vidal et al. (2014) where for each route, along with the depot–to–node and node–to–depot re-
sources, all the segment resources corresponding to sub-segments up to a certain size are stored, and
that of Irnich (2008b), which allows the maintenance of a constant time complexity for the queries,
at the cost of heavier pre-processing and update operations.

Considering that our LS exchange operators grow up to a maximum size of three, we adopted the
following implementation choices:

• For every customer we compute the resources from the depot to that customer included, and
from that customer (included) to the depot;

• For every segment resource, we also compute and store the resource of the same segment
obtained when we reverse it;

49

• Optionally, we considered a version where we compute and store the resources of all the sub-
segments containing up to three customers (we tested the usefulness of these resources in
Section 3.6.1).

Every update operation has been specialized to minimize the number of updated resources, trying to
compute only those that have actually been changed by the last applied move, because recomputing
the resources for the entire route caused a substantial overhead.

Finally, in one of the preprocessing variants that we considered, we decided to store resources for
segments of size up to three, avoiding larger sizes because of the bottleneck due to the simple copy
of a solution (with its meta-data) into another. This operation is executed at the start of every core
iteration. Because of the lightweight iterations performed by FSPD, we noticed that it is one of the
most time-consuming operations of the entire algorithm (even when properly optimized and vector-
ized by the compiler). To further reduce the size of the stored sub-segments, we decided to store the
resources for both directions of each segment together, because there is usually a substantial overlap
between the data of the two. More specifically, the pickup-sum and delivery-sum are respectively
symmetric and identical for both directions, therefore, by storing segments-resources of opposite
directions together, we reduced the number of attributes from 6 to 4, thus matching the number of
attributes used in Irnich (2008a).

Improved Recreate procedure.

In FSPD the recreate step of the ruin-and-recreate algorithm has been completely redesigned with
respect to FILO because, with the addition of REF handling, we noticed a substantial slow-down in
the original procedure when dealing with very large instances. We argue this is mostly due to the
feasibility checks which are now performed insertion-position-wise instead of route-wise as in the
FILO case. For more computational details, a comparison with different recreate-phase implemen-
tations is reported in Section 3.6.2.

In FILO, to identify the insertion position of a removed customer, the entire solution was scanned in
search of the best possible position. For the CVRP this was a relatively inexpensive procedure since
only one feasibility check was necessary for each route in which the customer could be inserted.
Instead, in FSPD the feasibility of every single candidate insertion position needs to be evaluated
with an independent check involving REFs. To overcome the resulting considerable slow-down,
the recreate procedure has been redesigned to limit the number of insertion position checks. More
precisely, in FSPD the insertion positions are not explored by iterating on the solution as before.
Instead, for each customer to be re-inserted in the solution, a pre-computed list of all the neighbors,
sorted by their distance, is considered. Following the order of the list enables the introduction of an
early-exit criterion that drastically reduces the number of checked insertion positions while keeping
most of the quality of the solution produced.

Algorithm 5 displays the main procedure that, given a customer not in the solution, tries to find the
best insertion position. More formally, let T be the set containing the customers to be inserted in
the current partial solution S during the recreate phase. For every customer ρ ∈ T, we explore its
neighbor-list Nρ containing all the customers, sorted by their distance from ρ (Line 6).

We initialize the best insertion position as that in a newly created single-customer route containing
only ρ and the depot d (Line 3). This best insertion position is associated with its insertion cost c∗

and with the vertices πρ, σρ ∈ S between which ρ is inserted. Note that initially πρ = σρ = d.

Then, in the main loop, we consider insertion positions in the order given by Nρ. We introduce
a hard upper bound NR on the number of neighbors that can be considered to localize and speed
up the recreate procedure, while also preserving most of the resulting solution quality. In this way,
we apply the same rationale of the granular neighborhood technique used within the local search.
A detailed analysis of the tradeoff between the speed-up and the solution quality associated with
different pruning techniques is given in Sections 3.6.2 and 3.6.2.

However, when iterating over Nρ we must consider some further implementation details. Let
ν ∈ Nρ be the neighbor customer considered in the current iteration. This neighbor is associated
with two possible insertion positions: one between PRED(ν), i.e. the predecessor of ν, and ν, and
the second one between ν and its successor, SUCC(ν). Considering both positions at every itera-
tion would evaluate twice each insertion position: i.e., once when considering ν as a neighbor, and

50

Figure 3.2: Illustration of different insertion options. Although ν1 and ν2 are the closest customers
to ρ, inserting ρ in this position would introduce a considerable detour. On the other hand, even if
ν3 and ν4 are farther from ρ, the insertion cost of ρ between these two customers is smaller.

ν1 ν2

ν3 ν4
ρ

a second time when considering PRED(ν) or SUCC(ν) as a neighbor of ρ). To avoid such double
checks, we apply two precedence rules. We always consider the insertion position only if the dis-
tance D(PRED(ν), ρ) (Line 16) or the distance D(ρ, SUCC(ν)) (Line 22) is greater than the distance
D(ρ, ν). Thus, each insertion position is evaluated only once. In the rare case in which the two dis-
tances are equal, we then consider the customer indexes and we evaluate the insertion only when
PRED(ν) < ν or ν < SUCC(ν). In this way, leveraging on the fact that Nρ is sorted, we ensure that
insertion positions are considered sorted by their shortest introduced edge, and we can exit at any
point of the loop knowing that every other remaining insertion position would introduce longer
edges. Note, however, that this does not imply that these remaining insertion positions have also a
greater cost than the already considered ones. In fact, every insertion consists of the addition of two
edges to the solution and the removal of one, which can always result in a net cost of zero in metric
instances (see Figure 3.2 for an example where an insertion position between farther customers is
preferable). When the cost of an insertion position is checked at Lines 18 and 24, we first compute
the associated cost, and then, if it is better than the cost of the current best insertion position c∗, we
also check the feasibility of the insertion by using the ISINSERTFEASIBLE function, which computes
the maximum load of the route using the involved segments resources as described in section 3.4.2.
More specifically, we concatenate the resources of the segment before the insertion point, the re-
sources of the inserted node, and the resources of the segment after the insertion point. In this way,
we obtain the new maximum load of the route that is compared with the vehicle capacity to check
the feasibility.

3.5 Computational Results

Computational testing has the main objective of assessing the performance of the proposed ap-
proach. More precisely, we want to show that FSPD is a useful generalization capable of solving
constrained VRPs without sacrificing scalability. To this end, we compare the FSPD performance
with the best VRPSPD and VRPMPD state-of-the-art algorithms, and we present an extensive com-
putational study on new large-scale VRPSPD and VRPMPD instances.

3.5.1 Implementation and Experimental Environment

The proposed algorithm was implemented in C++ and compiled using gcc-11.3. The experiments
were performed on a 64-bit mini-computer with an AMD Ryzen 5 PRO 4650GE CPU, running at 3.3
GHz with 16GB of RAM (single-channel) on a GNU/Linux Ubuntu 22.04 operating system.

Three different versions of FSPD algorithm version have been tested. The first one is the basic fast
version, called FSPD, performing 100, 000 core optimization iterations, the second, called FSPD-mid,
performing 500, 000 iterations, and the last one, called FSPD-long, performing 1, 000, 000 iterations.
Because of the randomized nature of FSPD algorithm, for each instance, the algorithms have been
run 10 times with different random seeds. All benchmark instances we used and the solutions we
obtained are available at https://github.com/falcopt/FSPD.

51

https://github.com/falcopt/FSPD

Algorithm 5: Structure of a function that, given a customer to insert back into a solution,
finds a good insertion position. Note that we assume costs are symmetric.

Input : Partial solution S, customer to insert ρ
Output: Customers πρ, σρ ∈ S between which ρ will be inserted

1 FUNCTION FINDBESTINSERT(S, ρ)
2 begin

// Initialize candidate previous and successor nodes to the depot
3 πρ ← σρ ← d;
4 c∗ ← 2 · Dd,ρ;
5 i← 0;
6 for ν ∈ Nρ do
7 if i ≥ NR then // Early exit criterion
8 return πρ, σρ;
9 end

10 if ν /∈ S then
11 continue;
12 end
13 i← i + 1;
14 πν ← PRED(ν, S);
15 σν ← SUCC(ν, S);

// Recall that, since Nρ is sorted, distances less than Dρ,ν have already been checked
16 if Dπν ,ρ > Dρ,ν or (Dπν ,ρ = Dρ,ν and πν > ν) then
17 c′ ← Dπν ,ρ + Dρ,ν − Dπν ,ν;
18 if c′ < c∗ and ISINSERTFEASIBLE(ρ, S, πν, ν) then
19 πρ, σρ, c∗ ← πν, ν, c′;
20 end
21 end
22 if Dρ,σν > Dν,ρ or (Dρ,σν = Dν,ρ and ν > σν) then
23 c′′ ← Dν,ρ + Dρ,σν − Dν,σν ;
24 if c′′ < c∗ and ISINSERTFEASIBLE(ρ, S, ν, σν) then
25 πρ, σρ, c∗ ← ν, σν, c′′;
26 end
27 end
28 end
29 return πρ, σρ;
30 end

52

3.5.2 Parameter Tuning

The parameter tuning process was initialized with values directly taken from the original FILO
approach. We then followed a sequential tuning strategy in which the algorithm behavior was eval-
uated while changing one parameter at a time. The goal was to tune FSPD in the same way as FILO
was tuned. In particular, FSPD was tuned so as to achieve good results in reasonable computing
time on existing literature instances, still maintaining the scalability to be effectively applied to very
large-scale instances. Most parameters were kept at the values proposed in the original FILO ap-
proach. In this regard, the only change with the original parameters of FILO has been the simulated
annealing final temperature. We noticed that with larger instances better results could be obtained
with a lower final temperature. Therefore, as a small change from the original approach used by
FILO (which sets the final temperature as a 1

100 of the initial one), we decreased the final value ac-
cordingly with the instance size. More specifically, given an initial temperature Si we set the final
temperature S f =

10
1000+N Si where N is the number of customers of the instance. As described in the

next sections, we also tuned the new components, namely:

• the preprocessing technique used to precompute segment resources (Section 3.6.1),

• the way to consider the insertion positions considered in the new recreate phase (Section 3.6.2),

• the value of the pruning factor for the new recreate phase (Section 3.6.2)

3.5.3 Testing on Instances from the Literature

Simultaneous pickup and delivery problems have been extensively studied during the past years,
and several relevant benchmark instance sets have been proposed in the literature. In this section,
we provide an overview of the performances of state-of-the-art algorithms on literature benchmark
instances and compare them with our proposed method. Since most algorithms have been applied to
more than one dataset, as well as more than one problem, in the following we provide a brief descrip-
tion of every competitor, then in Sections 3.5.3 and 3.5.3 we illustrate the results for every dataset.
Only the best-performing competitors that adopted the most used rounding and instance defini-
tion conventions have been considered. Our overall testing shows the actual capability of FSPD
approach to achieve state-of-the-art quality within the short computing times required by 100,000
iterations of the standard version. Furthermore, as expected, allowing a larger number of iterations
to the approach, as in FSPD-mid and long, is beneficial in terms of solution quality improvement
and still keeps the approach competitive and acceptable in terms of computing time.

• ALNS-PR: the hybrid algorithm combining adaptive local search (ALS) and path relinking of
Hof and Schneider (2019).

• ILS-RVND-SP: the ILS heuristic of Subramanian, Uchoa, and Ochi (2013).

• SISR: the ruin-and-recreate algorithm of Christiaens and Vanden Berghe (2020).

• UHGS: the population-based method of Vidal et al. (2014).

• h_PSO: the hybrid discrete particle swarm optimization of Goksal, Karaoglan, and Altiparmak
(2013).

• ACSEVNS: the hybrid heuristic based on ant colony and variable neighborhood search of
Kalayci and Kaya (2016).

• PVNS: the perturbation-based variable neighborhood search algorithm of Polat et al. (2015).
Note that, for this algorithm, the computing times reported are those of the best out of 10 runs
(in terms of solution quality).

• ILS-RVND-TA: the hybrid ILS of Öztaş and Tuş (2022).

• VLBR: the adaptive memory approach of Zachariadis, Tarantilis, and Kiranoudis (2010). Note
that, for this algorithm, the computing times reported are those to reach the best solution and
not the total ones.

Detailed information about which dataset the above algorithms have been tested is provided in the
section corresponding to each dataset.

53

To better compare our results with other algorithms executed on different hardware configurations,
we roughly scaled computing times by using the single-thread rating defined by PassMark® Soft-
ware (2020). At the time of writing, our CPU has a score of 2632. The CPU time of competing
methods is thus scaled to match our CPU score. In particular, their scaled time is defined by
t̂ = t · (PA/PB), where PA is the competing method’s CPU single-thread rating, PB is our CPU rating,
and t is the raw computing time proposed in the competing method paper. We are fully aware that
CPU-benchmark scores are not intended as a precise measure to scale and compare algorithms times,
but instead only as a qualitative measure to partially account for different hardware. Indeed, the al-
gorithms adopted to produce such scores can differ substantially from the algorithms considered in
this work. Furthermore, along with the CPU also main memory speed and the whole system per-
formance should be measured to produce a real representative score, especially in memory-bound
routing heuristics where sparsity is often exploited to prune the search at the cost of cache–locality.
Nevertheless, we think such a raw scaling represents a more fair comparison of algorithms speed
with respect to simply reporting the originally published running times.

Table 3.1 summarizes, for every algorithm, the CPU on which it was run and the associated single
thread score at the time of writing. Note that no score is available for the AMD Opteron 250 CPU
used by Vidal et al. (2014). Therefore, for this algorithm, we scaled times by considering the ratio of
CPU frequency instead of that of scores.

If not differently mentioned, all computing times reported in the tables in the column marked (Time)
are the average total times over multiple runs, whereas in columns marked (Time∗), we report,
where available, the average times to reach the best solution of the run. Finally, columns marked
(Avg) report the average percentage gaps of the solution S found by the algorithm with respect to
the best-known solution value (BKS), computed as 100 · (COSTS− BKS)/BKS. Note that for some
algorithms only the gap of the best solution found along different runs is reported. In these cases,
we reported in the tables the best gap and marked it with an asterisk.

Algorithm CPU Score

ALNS-PR Intel Core i5-6600 @ 3.30GHz 2283
ILS-RVND-SP Intel Core i7-870 @ 2.93GHz 1392
SISR Intel Xeon E5-2650 v2 @ 2.60GHz 1675
UHGS AMD Opteron 250 @ 2.4GHz 649
h_PSO Intel Xeon X5460 @ 3.16GHz 1377
ACSEVNS Intel Xeon E5-2650 @ 2.00GHz 1257
PVNS Intel Core2 Duo T5750 @ 2.00GHz 738
ILS-RVND-TA Intel Core i7-7500U @ 2.70GHz 1940
VLBR Intel Core2 Duo T5500 @ 1.66GHz 590
FSPD AMD Ryzen 5 PRO 4650GE @ 3.3GHz 2632

Table 3.1: The CPU models used by algorithms from the literature and their single thread PassMark
scores.

VRPSPD Benchmark Instances.

The current standard benchmark instances sets for the VRPSPD have been proposed in Salhi and
Nagy (1999), Dethloff (2001) and Montané and Galvão (2006). Since not all the algorithms we se-
lected have been tested on all datasets, in the following, we separately illustrate the results on each
of them.

Testing on Salhi and Nagy (1999) Instances. In Salhi and Nagy (1999), two sets of instances for
VRPSPD, called CMTX and CMTY, have been generated from the classical CVRP instances proposed
by Christofides, Mingozzi, and Toth (1979). More precisely, CMTX instances redefine for every
customer i, the delivery demand di as di = ri · qi and the pickup demand pi as pi = (1− ri) · qi
where the ratio ri = min{xi/yi, yi/xi} and, xi and yi are the x and y coordinates, respectively. The
set CMTY is defined by swapping di and pi demands of set CMTX. In both sets, seven out of 14
instances define an additional constraint on the maximum length of every route. Double-precision
values have been used for distances and demands. Several algorithms only solved the first seven
instances without this constraint. Therefore, we separately report the results on CMTX and CMTY
in two tables, whereas complete results are reported in Appendix 3.9.

54

https://www.cpubenchmark.net/cpu.php?cpu=AMD+Ryzen+5+PRO+4650GE&id=3843
https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core+i5-6600+%40+3.30GHz&id=2594
https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core+i7-870+%40+2.93GHz&id=832
https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+E5-2650+v2+%40+2.60GHz&id=2042
https://cpu-benchmarks.com/cpu/amd-opteron-250/
https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+X5460+%40+3.16GHz&id=1297
https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+E5-2650+%40+2.00GHz&id=1218
https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core2+Duo+T5750+%40+2.00GHz&id=989
https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core+i7-7500U+%40+2.70GHz&id=2863
https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core2+Duo+T5500+%40+1.66GHz&id=922
https://www.cpubenchmark.net/cpu.php?cpu=AMD+Ryzen+5+PRO+4650GE&id=3843

Table 3.2 reports the results on the first seven instances only, whereas Table 3.3 includes all 14 in-
stances of each subset. Both tables clearly show that FSPD in its fast setting is among the best-
performing algorithms and requires quite short computing times, whereas its mid and long versions
strongly outperform the competing algorithms while requiring computing times of a handful of
minutes and comparable with those of the competitors. To better investigate the dominance relation
among FSPD and the existing algorithms, we performed an extensive statistical analysis following
the procedure described in Christiaens and Vanden Berghe (2020). In particular, we conducted a
one-tailed Wilcoxon signed-rank test (Wilcoxon (1945)) to test whether FSPD, in its three versions,
is equivalent to or dominates each competing method. Our analysis shows, with a significance level
α = 0.025, that:

• On CMTX instances FSPD-mid and long dominate ILS-RNVD-SP and PVNS.

• On CMTY instances FSPD-mid and long dominate ILS-RNVD-SP.

• In all other cases FSPD neither dominates nor is dominated by competing algorithms.

Table 3.2: Results on the first seven instances of Salhi and Nagy (1999) CMTX and CMTY datasets.
Average gaps marked by an asterisk are actually the best gap obtained along several runs.

Algorithm X Y
Avg Time* Time Avg Time* Time

ALNS-PR 0.000* – 105.611 0.009* – 121.481
ILS-RVND-SP 0.307 – 149.569 0.290 – 143.291
SISR 0.240 – 391.930 0.212 – 391.767
UHGS 0.013 – 43.053 0.015 – 39.629
h_PSO 0.081* – 100.532 0.121* – 110.809
ACSEVNS 0.018 – 49.747 0.019 – 48.724
PVNS 0.024 – 34.240 0.022 – 24.333
ILS-RVND-TA 0.970 – 68.396 1.006 – 68.068
VLBR 0.111* 4.557 – 0.111* 3.702 –
FSPD 0.013 5.261 28.524 0.017 5.139 28.626
FSPD-mid 0.002 16.286 148.623 0.001 15.762 148.293
FSPD-long 0.000 23.465 299.800 0.000 17.766 305.624

Table 3.3: Results on the complete Salhi and Nagy (1999) CMTX and CMTY datasets. Average gaps
marked by an asterisk are actually the best gap obtained along several runs.

Algorithm X Y
Avg Time* Time Avg Time* Time

ALNS-PR 0.240 – 91.488 0.215 – 99.419
ILS-RVND-SP 0.234 – 101.411 0.220 – 98.899
SISR 0.145 – 487.390 0.128 – 481.853
ACSEVNS 0.031 – 85.996 0.031 – 84.440
PVNS 0.116 – 68.298 0.114 – 61.214
FSPD 0.056 7.574 35.661 0.065 8.330 35.673
FSPD-mid 0.018 29.300 182.381 0.026 27.598 183.794
FSPD-long 0.013 47.846 372.412 0.022 38.941 376.797

The excellent compromise between quality and speed of FSPD with respect to the existing meth-
ods from the literature is further supported by the performance charts of Figures 3.3 and 3.4, which
illustrate the trade-off between the average percentage gap and the average computing time. The
various versions of FSPD clearly dominate the competing methods. The only exception is repre-
sented by ACSEVNS which obtains on the full dataset slightly better solutions than FSPD in its
short setting but is inferior to FSPD-mid and long.

Testing on Dethloff (2001) and on Montané and Galvão (2006) Instances. We complete the testing
on VRPSPD by considering the datasets proposed by Dethloff (2001) and Montané and Galvão (2006)
which were considered by some algorithms from the literature. Dethloff (2001) proposed a dataset

55

50 100 150 200 250 300

0

1

2

3

4

5
·10−2

FSPD

FSPD-mid
FSPD-long

t̂ (s)

A
ve

ra
ge

%
ga

p

UHGS
ACSEVNS

PVNS

0 50 100 150 200 250 300

0

1

2

3

4

5
·10−2

FSPD

FSPD-mid FSPD-long

t̂ (s)

A
ve

ra
ge

%
ga

p

UHGS
ACSEVNS

PVNS

Figure 3.3: Illustration of the results on the first seven instances of Salhi and Nagy (1999) X (left) and
Y (right) datasets.

0 100 200 300 400 500
0

0.1

0.2

0.3

FSPD

FSPD-mid FSPD-long

t̂ (s)

A
ve

ra
ge

%
ga

p

ALNS-PR
ILS-RVND-SP

SISR
ACSEVNS

PVNS

0 100 200 300 400 500
0

0.1

0.2

0.3

FSPD

FSPD-mid FSPD-long

t̂ (s)

A
ve

ra
ge

%
ga

p

ALNS-PR
ILS-RVND-SP

SISR
ACSEVNS

PVNS

Figure 3.4: Illustration of the results on the complete Salhi and Nagy (1999) X (left) and Y (right)
datasets.

with 40 Euclidean instances with 50 customers and two types of customer distribution. The first type
(with prefix SCA) have the customers randomly distributed in the square (0, 0)− (100, 100), while
the other type (CON) scatters half of the customers as in the SCA type, and the other half is con-
centrated in the square (100

3 , 100
3)− (200

3 , 200
3). The delivery amounts are chosen randomly while the

pickup amount is obtained from the delivery amount multiplied by a random number in the range
[0.5− 1.5]. Montané and Galvão (2006) proposed 18 instances, ranging from 100 to 400 customers,
created by adapting literature instances of the VRP with time windows. The aggregate results of
the comparison between FSPD and its competitors are reported in Table 3.4. The table clearly shows
that FSPD in all its versions is very competitive both in terms of performance and speed with respect
to the existing algorithms. Furthermore, our statistical analysis shows that on Montane instances all
versions of FSPD dominate the competing methods except ILS-RVND-SP which however takes more
than five times of computing time. On Dethloff instances, all versions of FSPD dominate both AC-
SEVNS and ILS-RVND-TA which are the only methods that report average results over several runs.
We also note that on Dethloff instances FSPD obtains average gaps which are equivalent to the best
ones obtained by ALNS-PR, h_PSO, and VLBR.

VRPMPD Benchmark Instances.

The most used benchmark from the literature for VRPMPD are the three sets proposed by Salhi and
Nagy (1999). Also in this case the instances are derived from the CVRP instances of Christofides,
Mingozzi, and Toth (1979), by defining every second, fourth, or tenth customer of the instance as
a pickup-only customer with a demand equal to the original CVRP demand. The other customers
are instead defined as delivery-only customers and keep the original CVRP demand as delivery de-

56

Table 3.4: Results on the Dethloff (2001) and Montané and Galvão (2006) datasets. Average gaps
marked by an asterisk are actually the best gap obtained along several runs.

Algorithm Montane Dethloff
Avg Time* Time Avg Time* Time

ALNS-PR 0.374 – 856.708 0.000* – 9.167
ILS-RVND-SP 0.077 – 1933.605 – – –
h_PSO – – – 0.000* – 1.598
ACSEVNS – – – 0.011 – 2.926
ILS-RVND-TA 0.890 – 452.206 0.084 – 7.425
VLBR 0.469* 21.573 – 0.000* 0.732 –
FSPD 0.173 14.691 33.593 0.000 0.489 30.971
FSPD-mid 0.115 67.696 170.895 0.000 0.602 155.923
FSPD-long 0.080 137.224 340.496 0.000 0.674 311.992

mand. The three resulting datasets are denoted as CMTH, CMTQ, and CMTT, respectively. Results
for these datasets are reported in Table 3.5 for the first seven instances without maximum distance
constraint, and in Table 3.6 for the complete datasets. Both tables show that also for VRPMPD our
algorithm generally obtains better or comparable average gaps with respect to the best existing al-
gorithms at the expense of an acceptable increase in the computing time. We note that ALNS-VR,
h_PSO, and VLBR report only the best result obtained in several runs, and also in this case FSPD
average gaps are better or comparable. This is further confirmed by the results of the statistical
analysis that shows that all FSPD variants dominate ALNS-PR on both CMTH and CMTQ datasets.
FSPD-mid and long dominate ILS-RVND-SP on the CMTQ dataset, while in all other cases, FSPD
neither dominates nor is dominated by the competing algorithms.

Table 3.5: Results on the first seven instances of Salhi and Nagy (1999) CMTH, CMTQ, and CMTT
datasets. Average gaps marked by an asterisk are actually the best gap obtained along several runs.

Algorithm H Q T
Avg Time* Time Avg Time* Time Avg Time* Time

ALNS-PR 0.171 – 146.069 0.215 – 117.152 0.124 – 95.241
ILS-RVND-SP 0.060 – 129.589 0.036 – 131.835 0.017 – 145.005
SISR 0.074 – 419.095 0.076 – 393.021 0.091 – 338.200
UHGS 0.053 – 42.884 0.055 – 37.685 0.021 – 31.111
h_PSO 0.295* – 90.211 0.215* – 101.235 0.174* – 91.758
FSPD 0.066 2.386 32.064 0.089 4.979 31.083 0.058 6.456 31.924
FSPD-mid 0.045 4.246 166.354 0.044 16.329 162.497 0.044 19.365 168.544
FSPD-long 0.022 10.600 332.113 0.031 22.777 325.808 0.042 36.249 333.019

Table 3.6: Results on the complete Salhi and Nagy (1999) CMTH, CMTQ, and CMTT datasets. Aver-
age gaps marked by an asterisk are actually the best gap obtained along several runs.

Algorithm H Q T
Avg Time* Time Avg Time* Time Avg Time* Time

ALNS-PR 0.169 – 116.208 0.211 – 102.163 0.177 – 86.929
ILS-RVND-SP 0.104 – 92.048 0.091 – 92.650 0.086 – 98.131
SISR 0.041 – 508.691 0.065 – 486.899 0.090 – 425.641
UHGS 0.079 – 39.175 0.053 – 38.023 0.069 – 32.126
FSPD 0.062 6.590 37.520 0.077 8.550 36.527 0.098 8.157 34.317
FSPD-mid 0.032 24.862 191.916 0.028 27.289 188.760 0.086 25.449 178.201
FSPD-long 0.012 42.777 383.658 0.022 41.418 381.668 0.075 50.021 352.333

3.5.4 Testing on New Large-Scale Instances

Real-world applications of pickup and delivery problems, such as those arising in city logistics,
may involve hundreds if not thousands of points to be served. As shown in the previous section

57

0 0.5 1 1.5 2 2.5 3

·104

0

500

1,000

1,500

2,000

#customers

Ti
m

e
(s

)

FSPD
y = 6.63 · 10−3x + 31.6
FSPD-mid
y = 3.14 · 10−2x + 160
FSPD-long
y = 6.29 · 10−2x + 317

Figure 3.5: Computing time required by different FSPD versions as a function of problem size for X
and XXL VRPSPD problem instances.

the existing algorithms, including FSPD, prove able to find near-optimal solutions for VRPSPD and
VRPMPD involving up to 100-200 points. However, the computing times required to find such
high-quality solutions typically grow quadratically with the instance size, thus requiring prohibitive
efforts for the solution of realistic-size instances involving thousands of customers. Our FSPD ap-
proach, as the original FILO algorithm for CVRP, is instead designed to preserve a linear growth of
the computational effort with respect to the problem size thanks to the careful implementation of
the local search and the various methods which enhance the locality of the search. As a contribution
to future research in the routing with pickup and the delivery area, we propose new benchmarks
involving much larger instances of the problems so that future algorithms may be assessed in more
practically relevant scenarios. To this end, and in line with previous literature, we extended to VRP-
SPD and VRPMPD the existing large and very-large-scale benchmarks available for the CVRP. More
precisely, we considered two widely used benchmark datasets for CVRP, namely the well-known
X dataset proposed by Uchoa et al. (2017) involving 100 to 1,000 customers and the XXL instances
proposed by Arnold, Gendreau, and Sörensen (2019), including ten instances ranging from 3,000 to
30,000 customers. The new benchmark instances together with those from the literature are available
at https://github.com/falcopt/FSPD.

In the next sections, we describe the results of the application of FSPD to the new X and XXL in-
stances so as to provide a new reference point for the evaluation of algorithms. In addition, the
testing confirms what was already proved in the instances from the literature. On the one side,
FSPD obtains good quality solutions and the quality is significantly improved when a larger num-
ber of iterations is allowed. On the other side, the growth of the computing time required by FSPD
is almost linear with respect to instance size as clearly depicted in Figure 3.5, where all data points
(#customers, Time (s)) fit well the linear regressions.

In the following sections, we give in detail the results obtained for the X and XXL instances of
VRPSPD and VRPMPD. In all tables, the average percentage gaps are computed with respect to the
best solution found by our algorithm during all the experiments and the parameter tuning.

VRPSPD X and XXL Benchmark Instances.

In Table 3.7 we give the results obtained by our algorithm run in its three different settings for the
XX and XY datasets obtained from the X benchmark of Uchoa et al. (2017) as proposed by Salhi
and Nagy (1999) and described in Section 3.5.3. The same procedure has been applied to the XXL
instances of Arnold, Gendreau, and Sörensen (2019) obtaining the VRPSPD instances sets XXLX and
XXLY for which the results are given in Table 3.8.

By observing the tables it can be seen that the quality on large-scale instances is within 1% to 3%
from the best solutions found across all our experiments already with the standard version of FSPD,
although running it for a longer time provides a substantial benefit in terms of gap reduction. The
average time for X instances is below 0.5, 2.5, and 5 minutes for FSPD, FSPD-mid, and FSPD-long,

58

https://github.com/falcopt/FSPD

Table 3.7: Results on the new large-scale VRPSPD XX, XY instances.

Algorithm XX XY
Avg Time* Time Avg Time* Time

FSPD 0.769 28.905 36.019 0.776 28.359 35.922
FSPD-mid 0.365 135.261 180.511 0.382 134.260 179.671
FSPD-long 0.279 267.001 361.192 0.253 261.489 358.289

Table 3.8: Results on the new very large-scale VRPSPD XXLX, XXLY instances.

Algorithm XXLX XXLY
Avg Time* Time Avg Time* Time

FSPD 2.814 104.867 105.059 2.741 104.007 104.221
FSPD-mid 0.936 516.885 518.687 0.897 511.611 513.295
FSPD-long 0.305 1040.386 1045.203 0.226 1025.770 1028.897

respectively. For XXL instances the quality improvement is more drastic when more time is allowed
and the solution improvement is constant until the last iterations, as can be observed by the com-
parison of the Time∗ and Time columns. This is further illustrated in Figure 3.6 where the evolution
along time of the best solution found by the three different FSPD versions is depicted on an XXL
instance. Note that, the different convergence speed of the algorithms shown in the figure is due to
the simulated annealing criteria whose annealing schedule is based on the total number of iterations
while the initial and final temperatures are kept fixed. By observing the figure it is arguable that
with even longer runs FSPD may further improve the solution quality, although such improvement
could be relatively marginal. The running time for XXL instances is below 2, 10, and 20 minutes for
FSPD, FSPD-mid, and FSPD-long, respectively.

VRPMPD Benchmark Instances.

As for the VRPSPD large-scale instances, six new datasets have been generated using the same ap-
proach described in Section 3.5.3. In particular, starting from the X dataset for CVRP proposed by
Uchoa et al. (2017) we generated dataset XH, XQ, and XT VRPMPD datasets for which the results
are reported in Table 3.9.

Table 3.9: Results on the new large-scale VRPMPD XH, XQ, and XT instances.

Algorithm XH XT XQ
Avg Time* Time Avg Time* Time Avg Time* Time

FSPD 0.665 28.013 36.923 0.323 34.172 41.283 0.350 32.689 40.693
FSPD-mid 0.317 131.377 185.643 0.160 163.705 206.805 0.179 158.888 205.110
FSPD-long 0.225 255.780 372.402 0.105 322.414 412.839 0.133 310.485 412.412

Similarly, starting from the XXL instances for CVRP proposed by Arnold, Gendreau, and Sörensen
(2019) we generated datasets XXLH, XXLQ, and XXLT, for which the results are presented in Table
3.10.

The testing on VRPMPD substantially confirms our observations made for large and very large-scale
VRPSPD instances.

3.6 Algorithmic Components Analysis

This section provides some insights on the main new algorithmic components introduced in FSPD
to better understand their role and impact on the overall algorithm.

3.6.1 Segment Attributes Preprocessing

The first aspect we considered regards the resource data that we compute initially and update with
each change in the solution as introduced in Section 3.4.2. This particular aspect solely affects the

59

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

3.2

3.4

3.6

·106

Time (s)

So
lu

ti
on

va
lu

e

FSPD
FSPD-mid
FSPD-long

Figure 3.6: Typical evolution over time of the best solution found for XXL instances. The data refers
to instance Flanders2X with seed 0. The different convergence speed of the algorithms is due to the
simulated annealing criteria whose annealing schedule is based on the total number of iterations
while the initial and final temperatures are kept fixed.

Table 3.10: Results on the new very large-scale VRPMPD XXLH, XXLT, XXLQ instances.

Algorithm XXLH XXLT XXLQ
Avg Time* Time Avg Time* Time Avg Time* Time

FSPD 2.172 98.195 98.478 1.165 103.306 103.503 1.283 102.984 103.181
FSPD-mid 0.607 474.207 475.908 0.286 502.077 503.345 0.322 503.715 505.082
FSPD-long 0.161 952.016 955.609 0.077 1003.172 1005.620 0.094 1004.766 1008.189

time efficiency of the algorithm and has no impact on the search trajectory itself.

There are various approaches that can enhance algorithm speed through the utilization of resources
and REFs. The effectiveness of these techniques can vary depending on the algorithm and the fre-
quency and type of resource usage.

We explored three different types of preprocessing techniques:

• No preprocessing (JIT): In this approach, every resource is computed from scratch whenever
it is required.

• Forward and backward resources storage (BA): We store the resources from the depot to each
node (forward) and from the node back to the depot (backward) along the current route. All
other resources are computed from scratch when needed.

• Forward and backward resources (FULL), along with sub-segment resources storage: in addi-
tion to the forward and backward resources, we also store the resources of route segments up
to size three (the longest segments treated in our local search operators).

Given that each main core iteration of the FSPD algorithm focuses on a localized set of nodes, de-
termining the most effective technique is not straightforward. On one hand, employing advanced
preprocessing techniques can prevent repetitive computations of the same resources. At the same
time, incorporating meta-data into the solution data structure increases the cost of the copy opera-
tion. This copy operation is applied at every iteration and can significantly contribute to the overall
computing time, particularly when paired with lightweight iterations as in the case of FSPD. This
aspect generated a tradeoff between the amount of resources computed on the spot and those that
are precomputed. As we noticed during the FSPD development, this tradeoff is highly sensitive to
the specific algorithmic choices and it may vary with different algorithmic designs (primarily de-
pending on the number of resources queried at each iteration). To reduce the tuning space, during
our tests, we fixed all the other algorithmic components to their best-performing version. To eval-
uate the scaling behavior of the techniques under investigation, we employed a dataset comprising
seven instances from the minimal subset of the dataset proposed by Uchoa et al. (2017), as defined

60

in Queiroga et al. (2020). These seven instances encompass the complete range of characteristics
considered in the entire dataset. Furthermore, we added ten instances from the dataset introduced
by Arnold, Gendreau, and Sörensen (2019), resulting in a total of 17 instances. For each instance,
we considered the five variants, namely H, T, Q, X, and Y, obtained as previously described. Con-
sequently, our tuning set comprises 85 instances, ranging from 393 to 30,000 customers, considering
both VRPSPD and VRPMPD variants.

To enhance the reliability of the results, each test was repeated ten times, by using different random
seeds.

Table 3.11: Average computing time (in seconds) for the three REF preprocessing techniques
Instance Size RR50-JIT RR50-BA RR50-FULL RR100-JIT RR100-BA RR100-FULL

X-n393-k38 393 39.071 31.752 31.911 42.127 32.983 32.949
X-n469-k138 469 37.836 36.405 35.884 38.338 36.771 36.177
X-n561-k42 561 47.572 35.305 35.920 59.005 39.433 40.094
X-n670-k130 670 55.390 47.492 47.328 63.143 51.593 51.764
X-n716-k35 716 57.283 40.835 41.574 72.802 45.945 47.099
X-n801-k40 801 57.021 41.469 42.001 68.398 46.283 47.004
X-n979-k58 979 70.397 53.188 53.937 84.073 58.135 59.267
Leuven1 3001 82.923 63.738 66.503 111.187 78.692 82.398
Leuven2 4001 252.233 69.351 74.471 463.928 93.141 100.279
Antwerp1 6001 98.124 73.807 86.438 139.122 94.786 109.886
Antwerp2 7001 186.427 72.295 88.176 354.677 101.770 121.114
Ghent1 10001 114.597 94.322 126.418 164.403 123.085 153.062
Ghent2 11001 257.955 86.567 120.883 455.457 110.374 142.928
Brussels1 15001 126.798 110.382 124.407 192.600 139.499 152.215
Brussels2 16001 244.423 111.574 123.324 424.538 136.827 148.378
Flanders1 20001 174.658 158.814 172.003 262.721 190.944 205.542
Flanders2 30001 411.580 181.283 217.633 702.112 205.574 241.551
Avg 136.135 76.975 87.577 217.566 93.284 104.218

103 104

101.5

102

102.5

Size

Ti
m

e(
s)

RR50-JIT
RR50-BA

RR50-FULL
RR100-JIT
RR100-BA

RR100-FULL

Figure 3.7: Plots of the average computing time with respect to instance size for the three REF pre-
processing techniques

We tested the three variants with recreate-effort values of 50 and 100, which display the best trade-
offs between quality and computing time as shown in Section 3.6.2. The results of our testing are
reported in Table 3.11 and in Figure 3.7. Since we are mostly interested in studying the scaling pro-
file of the different configurations, for each instance we aggregate the five variants (H, Q, T, X, Y)
and the ten different random seeds, showing the average value obtained.

When examining the computing time relative to the instance size, we observe that the first variant,
without preprocessing, performs competitively in instances characterized by relatively short routes,
while requiring significantly more time for instances with longer routes. Among the other two pre-
processing techniques, the second exhibits better overall running times. Although one might intu-
itively expect that computing route segments up to size three (matching the length of the segments

61

exchanged by our local search operators) would be an obvious choice, in reality, these sequences are
small enough to be quickly computed. Consequently, storing them as additional data has not been
proved advantageous for the proposed algorithm.

3.6.2 Recreate Tuning

In this section, we will examine in depth the algorithmic alternatives we considered in the recreate
phase of FSPD which required several new features with respect to the original FILO approach, as
we have previously described in Section 3.4.2.

Recreate Phase Variants.

In the proposed approach, we have redesigned this step for the purpose of improving its efficiency.
Previously, we provided a simplified overview of the underlying rationale behind the new imple-
mentation. In this section, we will examine four distinct variants that introduce changes to imple-
mentation details and assess their impact on the overall algorithm performance.

First of all, a simple yet effective technique already used in the literature (e.g. Christiaens and Van-
den Berghe (2020)), regards the use of a fast, route-wise, heuristic check for the feasibility, that skips
all the routes whose pickup-sum or delivery-sum would exceed the capacity in case a given cus-
tomer would be inserted into it. This is clearly a necessary but not sufficient condition for feasibility,
and, being performed at the route level it is often able to quickly discard entire routes, greatly reduc-
ing the number of possible insertion locations considered especially when iterating over the whole
solution as in the original FILO recreate phase (which we considered in the tests that follow).

Recalling what has been described in Section 3.4.2, the proposed recreate phase incorporates an intu-
itive parameter that, given a node, indicates the number of its neighbors considered for reinsertion
into the solution. However, there exist multiple ways for counting these neighbors, each associated
with a different combination of computational effort, resulting quality, and generalization capabili-
ties.

Given a customer c that we wish to reintroduce back into the solution, we considered four alterna-
tives for counting the neighbors during the recreate phase:

• Variant 1 (V1): Considers only the NR nearest neighbors of c.

• Variant 2 (V2): Considers the NR nearest neighbors for which at least one of the two adjacent
insertion positions is feasible.

• Variant 3 (V3): Considers the NR nearest neighbors which are inside routes that satisfy the
route-wise feasibility check.

Furthermore, we introduced a fourth variant (V4), which incorporates the route-wise feasibility
check in the second version as well. This inclusion aims to reduce the computing time while having
no impact on the search trajectory, which remains identical to the one of V2.

We used the same dataset of Section 3.6.1, since, also in this case, our main focus was on achieving a
good scaling profile.

We conducted tests on the four recreate variants using two different recreate pruning levels: 50 and
100. Table 3.14 and Table 3.15 present respectively the average relative gaps with the BKS and the
computing time. Also in this case, the results are sorted by instance size and the average over the five
instance variants (X, Y, H, Q, T), and the ten random seeds is displayed for each generating CVRP
instance. Figure 3.8 shows how the quality is affected by different neighbor counting methodologies
while Figure 3.9 compare computing time with the different version, using logarithmic scales to
more clearly depict the profile of each version.

The first version, while being the fastest, produces solutions of noticeably lower quality in instances
where routes are already nearly filled. This results in an average gap of 2.48 and 2.14 for the pruning
levels of 50 and 100, respectively.

The second version exhibits characteristics opposite to the first one. It effectively handles solutions
with full routes, as full routes do not result in wasting candidate positions. Consequently, it achieves
average gaps of 1.52 and 1.51 for the pruning levels of 50 and 100 respectively. However, the repeated

62

Table 3.12: Average gaps for the 4 recreate variants with recreate effort of 50 and 100. For each
instance, the values obtained for the 5 H, Q, T, X, and Y are averaged together

Instance Size RR50-V1 RR50-V2 RR50-V3 RR50-V4 RR100-V1 RR100-V2 RR100-V3 RR100-V4

X-n393-k38 393 1.028 0.495 0.515 0.495 0.694 0.483 0.497 0.483
X-n469-k138 469 6.011 0.922 0.937 0.922 4.415 0.938 0.954 0.938
X-n561-k42 561 1.524 0.909 0.886 0.909 1.234 0.844 0.862 0.844
X-n670-k130 670 3.553 1.176 1.206 1.176 3.086 1.416 1.403 1.416
X-n716-k35 716 1.294 0.806 0.794 0.806 1.082 0.890 0.876 0.890
X-n801-k40 801 1.123 0.503 0.487 0.503 0.889 0.430 0.406 0.430
X-n979-k58 979 1.057 0.657 0.651 0.657 0.875 0.693 0.673 0.693
Leuven1 3001 1.149 0.895 0.898 0.895 0.995 0.872 0.860 0.872
Leuven2 4001 3.125 2.712 2.746 2.712 2.791 2.593 2.620 2.593
Antwerp1 6001 2.810 1.828 1.850 1.828 2.615 1.880 1.883 1.880
Antwerp2 7001 3.028 2.076 2.126 2.076 2.658 2.064 2.062 2.064
Ghent1 10001 1.696 1.440 1.441 1.440 1.595 1.424 1.428 1.424
Ghent2 11001 2.924 2.274 2.292 2.274 2.647 2.198 2.201 2.198
Brussels1 15001 2.439 2.044 2.030 2.044 2.279 2.047 2.050 2.047
Brussels2 16001 3.469 2.752 2.753 2.752 3.111 2.572 2.591 2.572
Flanders1 20001 1.860 1.149 1.154 1.149 1.619 1.212 1.213 1.212
Flanders2 30001 4.097 3.181 3.182 3.181 3.714 3.037 3.028 3.037
Avg 2.482 1.519 1.526 1.519 2.135 1.505 1.506 1.505

Table 3.13: Average computing time (in seconds) for the 4 recreate variants with recreate effort of 50
and 100. For each instance, the values obtained for the 5 H, Q, T, X, and Y are averaged together

Instance Size RR50-V1 RR50-V2 RR50-V3 RR50-V4 RR100-V1 RR100-V2 RR100-V3 RR100-V4

X-n393-k38 393 29.721 40.228 31.752 31.617 31.003 42.226 32.983 32.635
X-n469-k138 469 32.709 43.423 36.405 36.182 34.067 43.676 36.771 36.280
X-n561-k42 561 31.402 45.051 35.305 35.457 32.805 52.988 39.433 39.421
X-n670-k130 670 44.079 57.169 47.492 47.313 47.864 64.350 51.593 51.486
X-n716-k35 716 39.034 58.798 40.835 40.735 41.189 71.988 45.945 45.912
X-n801-k40 801 38.163 78.957 41.469 41.246 41.393 101.709 46.283 45.934
X-n979-k58 979 48.422 99.309 53.188 52.982 52.160 117.119 58.135 58.088
Leuven1 3001 52.772 234.843 63.738 63.490 58.201 351.164 78.692 78.677
Leuven2 4001 58.590 80.476 69.351 70.403 68.647 128.535 93.141 94.956
Antwerp1 6001 61.899 311.514 73.807 73.325 67.619 513.920 94.786 94.675
Antwerp2 7001 65.545 113.792 72.295 73.093 73.023 257.753 101.770 104.163
Ghent1 10001 78.463 526.760 94.322 93.810 86.429 1009.430 123.085 121.309
Ghent2 11001 85.059 116.448 86.567 87.132 93.868 253.690 110.374 111.445
Brussels1 15001 99.824 356.427 110.382 109.748 108.559 784.853 139.499 138.058
Brussels2 16001 109.082 142.812 111.574 111.889 117.931 379.514 136.827 137.285
Flanders1 20001 144.216 518.407 158.814 157.883 153.589 1027.148 190.944 189.886
Flanders2 30001 182.405 217.978 181.283 181.798 192.000 303.370 205.574 205.998
Avg 70.670 178.964 76.975 76.947 76.491 323.731 93.284 93.306

feasibility computations significantly slow down the overall algorithm, causing the second version
to take more than twice the computing time, on average, when compared to the first version.

The last two versions address the limitations of the first ones by introducing the heuristic route-wise
feasibility check, which provides a rapid rejection mechanism for infeasible insertion positions. As
can be observed from the results, this simple check proves to be particularly effective in improving
the quality of the first version with V3 (Table 3.12) and in accelerating the second version with V4
(Table 3.13).

However, employing this check to speed up the first version results in a technique that is not easily
generalizable to other VRP variants. Not all variants may have a similar route-wise feasibility check,
or if such a check exists, it may possess different infeasibility detection capabilities, thereby affecting
the quality of the obtained solutions. Moreover, counting only the positions that pass this check cre-
ates a technique that is effective for the tested instances but lacks any quality guarantees. There may
exist instances where the solutions have routes capable of passing the heuristic route-wise feasibility
check but fail the position-wise feasibility check. Thus, although both these variants perform well
in practice, we selected variant V4 over V3, as we consider it a more robust technique. The choice
of V4 provides us with the expectation of better generalization of our technique when extended to
other variants that may have different route-wise feasibility checks.

Lastly, we can observe that counting only the neighbors that have at least one feasible insertion
position nearby produces very similar results for both versions with recreate-effort levels of 50 and
100, while significantly reducing the computing time of the former case.

63

X-
n3

93
-k

38
X-

n4
69

-k
13

8
X-

n5
61

-k
42

X-
n6

70
-k

13
0

X-
n7

16
-k

35
X-

n8
01

-k
40

X-
n9

79
-k

58
Le

uv
en

1
Le

uv
en

2
A

nt
w

er
p1

A
nt

w
er

p2
G

he
nt

1
G

he
nt

2
Br

us
se

ls
1

Br
us

se
ls

2
Fl

an
de

rs
1

Fl
an

de
rs

2
Av

er
ag

e

0

2

4

6

G
ap

%

RR50-V1
RR50-V2
RR50-V3
RR50-V4

RR100-V1
RR100-V2
RR100-V3
RR100-V4

Figure 3.8: Plots of the average gaps sorted by size for the 4 recreate variants with recreate effort of
50 and 100. For each instance, the values obtained for the 5 H, Q, T, X, and Y are averaged together

Tuning of Ruin and Recreate Pruning Factor.

After selecting a suitable recreate variant, we can focus on the tuning of the recreate-effort, i.e., the
parameter controlling the level of pruning during the recreate phase. By tuning this parameter, we
can strike a favorable balance, preserving most of the original solution quality while significantly
reducing computing time.

We examined a total of eight different configurations. The first configuration corresponds to the
original recreate phase of FILO (marked as RR-OLD in the following tables), which scans the entire
solution in search of insertion points. Notably, when the pruning factor is sufficiently high, sim-
ple solution iterations prove to be faster than scanning the neighbor list of the node intended for
insertion. We explored seven additional versions with varying values of recreate-effort, aiming to
identify a range that could work reasonably well even for instances with a customer count in the
tens of thousands. Specifically, we considered versions with recreate-effort values of 5, 10, 25, 50,
100, 250, and 500 (marked as RR5, . . . , RR500 OLD in the following tables).

Table 3.14: Average gaps for the different levels of recreate effort and FILO’s original recreate tech-
nique.

Instance Size RR5 RR10 RR25 RR50 RR100 RR250 RR500 RR-OLD

X-n393-k38 393 0.534 0.488 0.432 0.495 0.483 0.435 0.431 0.477
X-n469-k138 469 0.914 0.936 0.969 0.922 0.938 0.922 0.893 0.923
X-n561-k42 561 0.879 0.800 0.761 0.909 0.844 0.803 0.843 0.885
X-n670-k130 670 1.022 0.999 1.154 1.176 1.416 1.376 1.364 1.428
X-n716-k35 716 0.991 0.869 0.811 0.806 0.890 0.873 0.898 0.906
X-n801-k40 801 0.654 0.590 0.489 0.503 0.430 0.438 0.489 0.447
X-n979-k58 979 0.442 0.464 0.598 0.657 0.693 0.731 0.772 0.780
Leuven1 3001 1.035 0.956 0.855 0.895 0.872 0.888 0.885 0.910
Leuven2 4001 3.209 2.931 2.935 2.712 2.593 2.619 2.692 2.676
Antwerp1 6001 2.066 1.954 1.852 1.828 1.880 1.862 1.910 1.993
Antwerp2 7001 2.592 2.389 2.156 2.076 2.064 2.041 2.181 2.257
Ghent1 10001 1.551 1.466 1.433 1.440 1.424 1.500 1.497 1.569
Ghent2 11001 2.930 2.749 2.459 2.274 2.198 2.165 2.187 2.165
Brussels1 15001 2.251 2.157 2.041 2.044 2.047 2.107 2.131 2.235
Brussels2 16001 3.481 3.238 2.946 2.752 2.572 2.525 2.575 2.590
Flanders1 20001 1.282 1.179 1.122 1.149 1.212 1.287 1.328 1.434
Flanders2 30001 3.774 3.631 3.374 3.181 3.037 3.009 3.035 3.143
Avg 1.742 1.635 1.552 1.519 1.505 1.505 1.536 1.578

64

103 104

102

103

Size

Ti
m

e(
s)

RR50-V1
RR50-V2
RR50-V3
RR50-V4

RR100-V1
RR100-V2
RR100-V3
RR100-V4

Figure 3.9: Plots of the average computing time with respect to instance size for the 4 recreate vari-
ants with recreate effort of 50 and 100. For each instance, the values obtained for the 5 H, Q, T, X,
and Y are averaged together

Table 3.15: Average computing time (in seconds) for the different levels of recreate effort and FILO’s
original recreate technique.

Instance Size RR5 RR10 RR25 RR50 RR100 RR250 RR500 RR-OLD

X-n393-k38 393 27.553 28.110 29.709 31.582 32.863 33.511 33.956 28.427
X-n469-k138 469 34.584 35.146 36.476 36.055 36.575 37.099 37.070 35.461
X-n561-k42 561 29.457 30.267 32.617 35.629 39.742 44.418 47.067 32.979
X-n670-k130 670 43.197 43.920 45.507 47.653 51.927 58.988 62.903 48.803
X-n716-k35 716 33.639 34.946 37.582 41.204 46.498 53.319 57.413 41.976
X-n801-k40 801 31.918 33.342 37.049 41.527 46.367 50.254 53.409 38.767
X-n979-k58 979 44.394 46.005 49.547 53.366 58.584 66.981 74.152 56.579
Leuven1 3001 46.198 47.837 53.723 63.824 79.039 103.857 122.230 85.116
Leuven2 4001 47.049 50.508 58.086 70.036 94.854 174.096 309.472 375.175
Antwerp1 6001 51.897 53.873 60.979 73.638 94.871 138.071 180.523 144.853
Antwerp2 7001 50.404 53.368 60.583 73.210 104.037 202.471 336.417 331.962
Ghent1 10001 66.414 68.478 77.513 93.558 121.560 171.436 213.405 235.539
Ghent2 11001 66.160 69.183 76.095 87.107 111.546 194.489 324.823 504.103
Brussels1 15001 85.665 88.211 96.026 110.744 138.808 206.171 282.118 387.810
Brussels2 16001 91.481 94.439 101.356 112.080 137.055 218.398 356.726 759.884
Flanders1 20001 131.096 133.115 141.788 158.230 190.755 278.504 405.867 679.633
Flanders2 30001 160.188 162.793 169.937 181.775 206.219 332.927 566.347 1974.249
Avg 61.253 63.149 68.504 77.131 93.606 139.117 203.759 338.901

Tables 3.14 and 3.15 report respectively the average gap and computing times for the tested recreate-
effort values. As in the previous sections, in this case, we have been mainly focused on achieving
a good tradeoff with very large instances, and thus we have used the same dataset, comprising 7 X
instances and 10 XXL ones. As in the previous tables, we report the results by aggregating both the
five variants (X, Y, H, Q, T) and the ten random seeds run for each one of them.

From the obtained results, we observed that recreate-effort values of 50 and 100 represent the best
tradeoff between quality and speed. As clearly displayed in Figures 3.10 and 3.11, versions with
recreate-effort below 50 exhibit faster execution but suffer from a decrease in quality, particularly
with large instances. On the other hand, instances with recreate-effort values above 100 demon-
strate longer computing times while also yielding equal or lower average solution quality in extreme
cases. Therefore, recreate-effort values of 50 and 100 can be considered suited to get a favorable bal-
ance between quality and speed. We selected the value of 50 for our complete computational tests
displayed in Appendix 3.9.

Tuning of Ruin and Recreate Pruning Factor – Small instances.

With some surprise, during our testing we observed that recreate-effort values of 50 or 100 can
have a detrimental effect in a few of the smaller classical instances. This observation aligns with

65

X-
n3

93
-k

38
X-

n4
69

-k
13

8
X-

n5
61

-k
42

X-
n6

70
-k

13
0

X-
n7

16
-k

35
X-

n8
01

-k
40

X-
n9

79
-k

58
Le

uv
en

1
Le

uv
en

2
A

nt
w

er
p1

A
nt

w
er

p2
G

he
nt

1
G

he
nt

2
Br

us
se

ls
1

Br
us

se
ls

2
Fl

an
de

rs
1

Fl
an

de
rs

2
Av

er
ag

e

1

2

3

4

G
ap

%

RR5
RR10
RR25
RR50
RR100
RR250
RR500

RR-OLD

Figure 3.10: Plots of the average gaps sorted by size for the different levels of recreate effort and
FILO’s original recreate technique.

the findings from the tuning process discussed in the previous section, which revealed that a large
recreate-effort can negatively impact solution quality even for very large instances.

To address this issue, we devised an additional criterion to control the value of recreate-effort specif-
ically for smaller instances, thereby targeting the opposite end of the size spectrum compared to the
previous tests. We assigned different fractions of the instance size to determine the recreate-effort
value. To merge the two criteria, we selected the minimum recreate-effort computed using both
approaches.

We conducted tests using the following instance-size fractions: 0%, 1%, 2%, 5%, 10%, 20%, 50%, and
100%.

The tuning was performed using a second dataset composed of the five variants X, Y, H, Q, and T
from the dataset by Salhi and Nagy (1999), along with the 18 instances from Montané and Galvão
(2006). Consequently, this second dataset encompasses a total of 88 instances, ranging from 50 to
400 customers.

Table 3.16: Average gaps and computing time obtained using different fractions of the instance size
as recreate-effort.

RR50-0% RR50-1% RR50-2% RR50-5% RR50-10% RR50-20% RR50-50% RR50-100%

Gap 0.127 0.094 0.103 0.098 0.094 0.092 0.130 0.130
Time(s) 32.520 32.177 32.135 33.304 34.475 35.439 36.153 36.192

We observed remarkable robustness in our approach, as shown in Table 3.16 which reports the aggre-
gated average relative gap and computing time for all the instances considered in this small dataset.
When we set a recreate-effort value lower than 50 neighbors, the problematic instances ceased to
yield noticeably poor results. All the fractions proved to work comparably well in terms of comput-
ing times. Consequently, we arbitrarily decided to employ 20% of the instance size as the second
criterion. This choice was based on the fact that, when combined with a maximum recreate-effort of
50 neighbors, it yielded a slightly better average gap for the smaller instances.

3.6.3 Super-linear algorithmic phases management

One of the main innovations introduced in FSPD is a more appropriate handling of some steps
which absorb an increasing portion of the overall computational effort when dealing with large-
scale instances.

66

103 104

102

103

Size

Ti
m

e(
s)

RR5
RR10
RR25
RR50

RR100
RR250
RR500

RR-OLD

Figure 3.11: Plots of the average computing time with respect to instance size for the different levels
of recreate effort and FILO’s original recreate technique.

Currently, the largest of the popular instances that can be found in the literature for routing problems
is a CVRP instance which contains 30, 000 customers proposed by Arnold, Gendreau, and Sörensen
(2019). With respect to instance sizes in the most used benchmarks, this is already one or two orders
of magnitude larger and presents a new and different set of challenges to tackle in the development
of new algorithms. FSPD already inherits from FILO an overall design explicitly tailored for in-
stances of this size (e.g., the GNs, SVC, and SMD have been mixed together to make XXL instances
tractable). However, with the current hardware capabilities, we are reaching a limit in both the per-
formance of some steps of the algorithm and in its memory occupation. Currently, our algorithm
with 30, 000 customers uses around 10GByte of main memory at its peak. The two main sources of
such memory occupation are the quadratic-size cost matrix, and the nearest-neighbors matrix, which
for each vertex contains a sorted list of the other vertices sorted by distance thus also requiring a to-
tal number of O(N2) elements. Therefore, even if with the current maximum-sized instances we can
still maintain the same approach that we have with smaller ones, it is also clear that we are close to
the limit and that to further increase the instance size we need to adapt our algorithm. Luckily, the
problem of the cost matrix can be solved simply by either computing the distance using the relative
distance function when edge costs are implicit (which can be coupled with a small cache to greatly
speed up the process like in Bentley (1990) and Helsgaun (2000), or by retrieving it from a file when
the matrix cost is explicit, with the associated overhead. At the same time, the neighbors-matrix can
be reduced in two different ways:

• by heuristically limiting the number of neighbors for each customer, which makes the used
space linear, but also introduces a trade-off with the solution quality which rapidly degrades
when not enough neighbors are selected;

• by adopting more complex data structures (e.g., k-d trees), which can provide the full list of
sorted neighbors while requiring less space.

Another problem that might occur regards the computation effort needed to obtain the neighbors-
matrix, which, using standard techniques, requires O(N2logN) because the full list of vertices must
be sorted for each vertex. Currently, this step requires about 20% of the total time of the algorithm
for instances of 30, 000 customers and 100, 000 core iterations of the algorithm. We drastically re-
duced such time by replacing the standard sorting algorithm that can be found in the C++ STL with
the efficient implementation of radix-sort by Skarupke (2016), thus halving the time taken by this
step. Figure 3.12 reports the speedup obtained due to this algorithmic change for different instance
sizes. Furthermore, to have a qualitative idea of the asymptotic behavior we might expect when
we address instances with more than 30, 000 customers, we performed a brief analysis of the steps
of the algorithm which displays a super-linear time complexity. To this end, we run the X-n1001-
k43 instance of the X dataset proposed by Uchoa et al. (2017) involving 100 to 1,000 customers,
and each XXL instance proposed by Arnold, Gendreau, and Sörensen (2019), including up to 30,000

67

0 5 10 15 20 25 30
1

1.5

2

2.5

3

·103 #customers

Ti
m

e
(s

)

ska::sort vsstd::sort speedup

speedup

Figure 3.12: Speedup obtained substituting the C++ standard library sort algorithm, with Malte
Skarupke’s radix-sort implementation.

customers, with 10 different seeds by using both standard sort and radix-sort. In these runs, we
measured the time needed by the pre-processing phase and that of the core optimization (coreopt)
phase when performing 100, 000 iterations, to evaluate the ratio between the two.

To produce a very rough forecast of what we might expect from larger instances, we first com-
puted a trend-line for both the preprocessing based on the standard sorting and radix-sort (see Fig-
ures 3.13)

As we can see, the trend lines fit the points for both the preprocessing data very well, while the core-
opt iterations are quite scattered (the average linear complexity is still maintained). If we extend the
trend-lines until the preprocessing time reaches the coreopt iterations time, we can notice that at an
instance size of around 80, 000 customers, the standard sort preprocessing last as much as the coreopt
iterations, while the radix-sort preprocessing holds up until around 210, 000 customers.

From this very rough analysis, we can see that current preprocessing techniques already occupy a
good fraction of the total computational time (around 20% for the bigger 30, 000-customers instance).
With these sizes, switching to a faster sorting algorithm can be a simple and fast fix to the problem,
since the change can be applied affecting only a few lines of code.

However, we might expect that when (and if) sizes of hundreds of thousands are reached, quadratic
steps will need to be completely avoided and other more sophisticated techniques (based for exam-
ple on k-d trees as in Bentley (1990)) might become the best-suited choice, even though definitely
more complex to implement.

3.7 Conclusions

In this paper, we present an effective heuristic, called FSPD, for two challenging VRPs arising in
the city logistics context, namely the VRPSPD and the VRPMPD. In addition to the comparison of
FSPD with the best state-of-the-art VRPSPD and VRPMPD algorithms, which shows its competi-
tiveness, extensive computational experiments are performed on very large-scale instances of the
problems. This is the first computational study ranging from classical medium-sized benchmarks
to very large-scale ones for these problems. The statistical analysis shows that FSPD, in its short
version, is almost always comparable or better than the other algorithms despite being a very fast
algorithm, while FSPD-long is always comparable or better. The added value of FSPD relies on its
capability to solve nowadays realistic-sized instances that are one or two orders of magnitude larger
than those included in the most used benchmarks while keeping its time performance within a lin-
ear scalability trend. It is worth pointing out that such scalability is reached while dealing with new
features with respect to the original FILO framework proposed by Accorsi and Vigo (2021) for the
CVRP. Computational results demonstrate the effectiveness of FSPD in solving large-scale instances.
Remarkably, results show that FSPD reaches good quality solutions with 100, 000 core optimization

68

0 5 10 15 20 25 30
0

20

40

60

·103 #customers

Ti
m

e
(s

)
std::sort vs ska::sort preprocessing

std::sort
ska::sort

81 213

490

1,186

·103 #customers

Ti
m

e
(s

)

Qualitative forecast

std::sort
ska::sort
coreopt it.

Figure 3.13: On the left, time comparison between preprocessing based on C++ standard library sort
algorithm (blue) and Malte Skarupke’s radix-sort implementation (red). For both series, the trend-
line is also reported. On the left, the same plot at a different scale with the addition of the time
needed by 100, 000 coreopt iterations. The two intersection points represent a forecast of the size at
which the preprocessing step will need the same amount of time as the actual refinement step.

69

iterations while remaining below a computing time of 0.5 minutes.
There are several directions for future work. First, the new technologies introduced new challenges
in classical VRP frameworks, such as the possibility of providing fast services to a large number of
customers in a very short time (Same Day Delivery) within the urban areas of mega-cities. Thus,
there is value in studying how to serve such a large number of customers, while considering several
features within a more general project that studies the very large-scale multi-attribute VRPs. Sec-
ond, in addition to customer service, it is worth investigating VRPs on large-scale instances where
the workload for drivers/couriers is balanced.

3.8 Acknowledgments

This research was partially funded by the U.S. Air Force Office of Scientific Research [Award FA8655-
21-1-7046], and by the University of Calabria through project grant CIG8929018ABE.

70

3.9 Appendix A: Complete results

3.9.1 VRPSPD Instances

Table 3.17: Full results for dataset CMTX
Instance Size BKS FSPD FSPD-mid FSPD-long

Best Avg Time* Time Best Avg Time* Time Best Avg Time* Time
CMT1X 50 466.77 0.001 0.001 24.844 0.067 0.001 0.001 124.455 0.072 0.001 0.001 249.026 0.073
CMT6X 50 555.43 0.000 0.000 37.211 0.282 0.000 0.000 186.859 0.322 0.000 0.000 372.287 0.320
CMT2X 75 684.21 0.000 0.036 22.101 1.734 0.000 0.012 118.980 5.747 0.000 0.000 229.207 9.507
CMT7X 75 900.12 0.000 0.011 39.300 15.499 0.000 0.000 194.769 42.788 0.000 0.000 447.297 31.736
CMT3X 100 721.27 0.000 0.002 31.228 8.436 0.000 0.000 158.772 22.878 0.000 0.000 320.911 36.976
CMT12X 100 662.22 0.000 0.019 26.918 1.782 0.000 0.000 147.968 1.383 0.000 0.000 295.159 1.551
CMT8X 100 865.5 0.000 0.000 45.847 0.264 0.000 0.000 232.025 0.386 0.000 0.000 459.830 0.345
CMT14X 100 821.75 0.000 0.000 55.554 0.061 0.000 0.000 277.739 0.068 0.000 0.000 555.542 0.068
CMT11X 120 833.92 0.000 0.000 29.447 8.885 0.000 0.000 148.534 43.832 0.000 0.000 302.089 63.411
CMT13X 120 1541.14 0.112 0.125 42.300 28.276 0.112 0.112 226.241 105.158 0.112 0.112 476.908 183.574
CMT4X 150 852.46 0.000 0.026 31.608 5.269 0.000 0.000 156.520 17.889 0.000 0.000 327.979 16.213
CMT9X 150 1160.68 0.000 0.000 42.537 8.289 0.000 0.000 228.073 24.365 0.000 0.000 465.816 27.213
CMT5X 199 1029.25 0.000 0.006 33.524 10.653 0.000 0.000 185.133 22.198 0.000 0.002 374.231 36.523
CMT10X 199 1373.4 0.000 0.561 36.841 16.542 0.000 0.131 167.271 123.111 0.000 0.069 337.484 262.328
Avg 0.008 0.056 35.661 7.574 0.008 0.018 182.381 29.300 0.008 0.013 372.412 47.846

Table 3.18: Full results for dataset CMTY
Instance Size BKS FSPD FSPD-mid FSPD-long

Best Avg Time* Time Best Avg Time* Time Best Avg Time* Time
CMT1Y 50 466.77 0.001 0.001 24.477 0.072 0.001 0.001 122.938 0.051 0.001 0.001 246.201 0.051
CMT6Y 50 555.43 0.000 0.000 36.897 0.409 0.000 0.000 186.365 0.250 0.000 0.000 371.916 0.251
CMT2Y 75 684.21 0.000 0.062 23.087 2.698 0.000 0.000 112.867 8.157 0.000 0.000 239.402 3.970
CMT7Y 75 900.12 0.000 0.022 39.822 15.862 0.000 0.000 205.490 59.457 0.000 0.000 436.220 37.259
CMT3Y 100 721.27 0.000 0.000 30.545 10.145 0.000 0.000 163.016 16.880 0.000 0.000 334.039 22.731
CMT12Y 100 662.22 0.000 0.000 26.361 1.738 0.000 0.000 141.755 2.487 0.000 0.000 289.171 1.831
CMT8Y 100 865.5 0.000 0.000 45.782 0.379 0.000 0.000 229.994 0.356 0.000 0.000 460.101 0.393
CMT14Y 100 821.75 0.000 0.000 55.490 0.059 0.000 0.000 278.928 0.059 0.000 0.000 560.044 0.057
CMT11Y 120 833.92 0.000 0.019 29.770 8.454 0.000 0.000 153.974 29.438 0.000 0.000 322.282 34.718
CMT13Y 120 1541.14 0.112 0.125 43.237 28.884 0.112 0.112 224.685 103.909 0.112 0.112 477.372 183.735
CMT4Y 150 852.46 0.000 0.022 33.176 3.734 0.000 0.005 164.604 27.015 0.000 0.000 342.566 13.044
CMT9Y 150 1160.68 0.000 0.000 41.617 11.240 0.000 0.000 224.586 27.521 0.000 0.000 469.208 33.002
CMT5Y 199 1029.25 0.000 0.017 32.966 9.134 0.000 0.000 178.898 26.303 0.000 0.000 365.711 48.018
CMT10Y 199 1373.4 0.020 0.642 36.190 23.807 0.000 0.252 185.018 84.485 0.000 0.197 360.926 166.119
Avg 0.009 0.065 35.673 8.330 0.008 0.026 183.794 27.598 0.008 0.022 376.797 38.941

71

Table 3.19: Full results for dataset Dethloff
Instance Size BKS FSPD FSPD-mid FSPD-long

Best Avg Time* Time Best Avg Time* Time Best Avg Time* Time
CON3-0 50 616.52 0.000 0.000 31.196 0.025 0.000 0.000 155.940 0.025 0.000 0.000 311.215 0.025
CON3-1 50 554.47 0.000 0.000 32.289 0.030 0.000 0.000 161.520 0.030 0.000 0.000 323.138 0.030
CON3-2 50 518.0 0.000 0.000 27.323 1.106 0.000 0.000 141.699 1.088 0.000 0.000 283.938 0.965
CON3-3 50 591.19 0.000 0.000 39.432 0.036 0.000 0.000 197.229 0.036 0.000 0.000 394.520 0.036
CON3-4 50 588.79 0.000 0.000 30.274 0.018 0.000 0.000 151.248 0.018 0.000 0.000 302.311 0.018
CON3-5 50 563.7 0.000 0.000 33.022 0.008 0.000 0.000 164.857 0.008 0.000 0.000 329.584 0.008
CON3-6 50 499.05 0.000 0.000 30.946 0.227 0.000 0.000 155.519 0.170 0.000 0.000 311.991 0.182
CON3-7 50 576.48 0.000 0.000 25.273 0.029 0.000 0.000 126.506 0.029 0.000 0.000 253.042 0.029
CON3-8 50 523.05 0.000 0.000 38.753 0.019 0.000 0.000 193.890 0.019 0.000 0.000 387.429 0.019
CON3-9 50 578.25 0.000 0.000 29.456 0.053 0.000 0.000 147.319 0.051 0.000 0.000 294.417 0.051
CON8-0 50 857.17 0.000 0.000 32.992 0.258 0.000 0.000 165.926 0.351 0.000 0.000 331.254 0.331
CON8-1 50 740.85 0.000 0.000 42.967 0.031 0.000 0.000 214.963 0.032 0.000 0.000 429.293 0.032
CON8-2 50 712.89 0.000 0.000 45.895 1.067 0.000 0.000 234.921 0.769 0.000 0.000 470.116 0.737
CON8-3 50 811.07 0.000 0.000 40.588 0.044 0.000 0.000 202.551 0.043 0.000 0.000 404.838 0.044
CON8-4 50 772.25 0.000 0.000 31.389 0.056 0.000 0.000 157.198 0.056 0.000 0.000 313.771 0.056
CON8-5 50 754.88 0.000 0.000 34.712 0.164 0.000 0.000 174.614 0.104 0.000 0.000 349.575 0.103
CON8-6 50 678.92 0.000 0.000 27.894 0.177 0.000 0.000 139.807 0.145 0.000 0.000 280.360 0.244
CON8-7 50 811.96 0.000 0.000 37.280 1.084 0.000 0.000 189.655 2.239 0.000 0.000 381.345 1.606
CON8-8 50 767.53 0.000 0.000 30.549 0.081 0.000 0.000 153.232 0.081 0.000 0.000 306.221 0.081
CON8-9 50 809.0 0.000 0.000 37.828 0.041 0.000 0.000 190.007 0.041 0.000 0.000 379.266 0.041
SCA3-0 50 635.62 0.000 0.000 25.546 9.762 0.000 0.000 139.594 11.110 0.000 0.000 282.481 13.891
SCA3-1 50 697.84 0.000 0.000 28.652 0.008 0.000 0.000 143.200 0.008 0.000 0.000 285.806 0.008
SCA3-2 50 659.34 0.000 0.000 28.706 0.004 0.000 0.000 143.466 0.004 0.000 0.000 287.867 0.004
SCA3-3 50 680.04 0.000 0.000 31.088 0.130 0.000 0.000 155.878 0.114 0.000 0.000 311.785 0.090
SCA3-4 50 690.5 0.000 0.000 31.435 0.004 0.000 0.000 157.408 0.004 0.000 0.000 314.486 0.004
SCA3-5 50 659.9 0.000 0.000 24.976 0.005 0.000 0.000 124.813 0.005 0.000 0.000 249.747 0.005
SCA3-6 50 651.09 0.000 0.000 33.908 0.025 0.000 0.000 169.327 0.025 0.000 0.000 338.857 0.026
SCA3-7 50 659.17 0.000 0.000 24.921 0.203 0.000 0.000 124.901 0.281 0.000 0.000 249.535 0.281
SCA3-8 50 719.47 0.000 0.000 29.351 0.007 0.000 0.000 146.442 0.007 0.000 0.000 292.750 0.007
SCA3-9 50 681.0 0.000 0.000 33.762 0.005 0.000 0.000 169.186 0.005 0.000 0.000 337.769 0.005
SCA8-0 50 961.5 0.000 0.000 26.492 0.058 0.000 0.000 132.645 0.058 0.000 0.000 265.138 0.058
SCA8-1 50 1049.65 0.000 0.000 23.267 0.195 0.000 0.000 117.412 0.209 0.000 0.000 234.047 0.203
SCA8-2 50 1039.64 0.000 0.000 28.403 0.735 0.000 0.000 144.010 1.556 0.000 0.000 288.402 0.992
SCA8-3 50 983.34 0.000 0.000 22.471 0.094 0.000 0.000 112.655 0.091 0.000 0.000 225.801 0.092
SCA8-4 50 1065.49 0.000 0.000 30.986 0.074 0.000 0.000 155.611 0.074 0.000 0.000 311.137 0.074
SCA8-5 50 1027.08 0.000 0.000 24.618 0.228 0.000 0.000 124.031 0.267 0.000 0.000 248.229 0.266
SCA8-6 50 971.82 0.000 0.000 30.722 0.451 0.000 0.000 154.777 0.859 0.000 0.000 310.478 0.714
SCA8-7 50 1051.28 0.000 0.000 21.481 2.619 0.000 0.000 110.498 3.705 0.000 0.000 223.581 5.193
SCA8-8 50 1071.18 0.000 0.000 31.479 0.103 0.000 0.000 158.312 0.103 0.000 0.000 315.587 0.102
SCA8-9 50 1060.5 0.000 0.000 26.540 0.299 0.000 0.000 134.131 0.267 0.000 0.000 268.556 0.311
Avg 0.000 0.000 30.971 0.489 0.000 0.000 155.923 0.602 0.000 0.000 311.992 0.674

Table 3.20: Full results for dataset Montane
Instance Size BKS FSPD FSPD-mid FSPD-long

Best Avg Time* Time Best Avg Time* Time Best Avg Time* Time
r101 100 1009.95 0.000 0.013 23.357 4.729 0.000 0.000 120.181 18.959 0.000 0.000 250.054 22.297
r201 100 666.2 0.001 0.001 37.703 0.365 0.001 0.001 189.603 0.682 0.001 0.001 380.578 0.721
c101 100 1220.18 0.066 0.217 32.057 8.183 0.000 0.060 188.556 10.109 0.000 0.042 352.814 96.090
c201 100 662.07 0.000 0.000 42.832 0.056 0.000 0.000 214.868 0.070 0.000 0.000 429.813 0.070
rc101 100 1059.32 0.000 0.000 25.323 3.507 0.000 0.000 137.292 2.473 0.000 0.000 275.495 3.755
rc201 100 672.92 0.000 0.000 31.163 0.075 0.000 0.000 156.573 0.077 0.000 0.000 313.372 0.077
R1_2_1 200 3353.8 0.057 0.325 25.588 15.934 0.050 0.157 135.676 73.274 0.057 0.108 259.883 137.040
R2_2_1 200 1665.58 0.000 0.000 40.989 2.209 0.000 0.000 208.628 1.265 0.000 0.000 425.191 1.938
C1_2_1 200 3628.51 0.008 0.088 29.241 26.946 0.000 0.043 143.397 121.977 0.000 0.005 278.911 236.639
C2_2_1 200 1726.59 0.000 0.000 34.469 26.393 0.000 0.009 182.240 103.582 0.000 0.000 367.048 193.600
RC1_2_1 200 3303.7 0.117 0.429 29.017 15.429 0.099 0.335 136.881 83.119 0.000 0.209 280.759 171.067
RC2_2_1 200 1560 0.000 0.000 43.277 1.036 0.000 0.000 219.438 0.593 0.000 0.000 439.902 0.642
R1_4_1 400 9519.45 0.143 0.447 30.032 26.930 0.041 0.162 146.209 125.251 0.001 0.157 297.610 239.586
R2_4_1 400 3546.49 0.000 0.176 36.358 20.128 0.000 0.059 183.213 95.827 0.000 0.027 382.383 258.013
C1_4_1 400 11047.19 0.387 0.596 33.742 32.482 0.380 0.566 163.859 156.751 0.099 0.459 321.797 310.134
C2_4_1 400 3539.5 0.067 0.285 37.273 26.112 0.000 0.171 177.445 163.477 0.000 0.136 352.313 311.347
RC1_4_1 400 9447.53 0.325 0.529 31.111 30.242 0.369 0.514 161.269 150.300 0.010 0.300 298.659 283.678
RC2_4_1 400 3403.7 0.000 0.003 41.148 23.680 0.000 0.000 210.787 110.746 0.000 0.000 422.350 203.338
Avg 0.065 0.173 33.593 14.691 0.052 0.115 170.895 67.696 0.009 0.080 340.496 137.224

72

Table 3.21: Full results for dataset XX

Instance Size BKS FSPD FSPD-mid FSPD-long
Best Avg Time* Time Best Avg Time* Time Best Avg Time* Time

X-n101-k25 101 19781.0 0.000 0.134 28.216 5.144 0.000 0.009 159.032 12.428 0.000 0.000 324.199 12.633
X-n106-k14 106 17156.0 0.035 0.052 38.808 17.232 0.000 0.027 202.470 100.145 0.000 0.035 433.734 126.785
X-n110-k13 110 11813.0 0.000 0.000 30.688 2.913 0.000 0.000 165.194 2.764 0.000 0.000 331.890 2.858
X-n115-k10 115 10238.0 0.000 0.000 52.178 0.041 0.000 0.000 262.068 0.041 0.000 0.000 522.815 0.041
X-n120-k6 120 10120.0 0.000 0.000 47.174 0.423 0.000 0.000 238.012 0.367 0.000 0.000 476.316 0.408
X-n125-k30 125 40033.0 0.032 0.076 33.827 20.812 0.000 0.038 173.536 108.724 0.012 0.044 356.124 211.030
X-n129-k18 129 18933.0 0.000 0.081 27.437 15.647 0.000 0.028 142.167 66.141 0.000 0.019 283.025 138.852
X-n134-k13 134 8046.0 0.771 1.269 34.023 16.373 0.000 0.900 165.459 75.223 0.460 1.061 362.866 107.666
X-n139-k10 139 11182.0 0.000 0.845 35.385 9.143 0.000 0.605 186.204 35.023 0.000 0.630 363.487 89.417
X-n143-k7 143 11924.0 0.000 0.579 40.434 2.387 0.017 0.568 216.098 8.913 0.017 0.530 440.382 12.177
X-n148-k46 148 31022.0 0.100 0.479 27.167 21.842 0.000 0.460 156.802 86.795 0.000 0.358 317.981 160.194
X-n153-k22 153 17226.0 0.000 0.024 36.040 29.959 0.000 0.031 180.968 126.362 0.000 0.037 373.986 233.553
X-n157-k13 157 12041.0 0.199 0.448 36.020 21.342 0.125 0.220 188.959 88.088 0.000 0.167 376.635 173.469
X-n162-k11 162 11699.0 0.000 0.207 37.615 6.134 0.000 0.020 161.265 67.108 0.000 0.008 330.996 141.764
X-n167-k10 167 14173.0 0.000 0.027 34.700 8.748 0.000 0.004 188.902 18.324 0.000 0.000 391.160 20.254
X-n172-k51 172 31714.0 0.000 0.944 29.599 21.560 0.255 0.586 161.978 92.227 0.057 0.448 323.299 172.255
X-n176-k26 176 29553.0 0.328 1.764 29.684 27.520 0.000 0.617 136.630 105.569 0.146 0.818 311.982 160.014
X-n181-k23 181 18461.0 0.022 0.043 37.638 22.704 0.022 0.035 195.635 114.062 0.000 0.016 398.350 199.548
X-n186-k15 186 17194.0 0.401 0.777 28.928 19.078 0.244 0.471 163.065 66.678 0.000 0.452 323.788 188.695
X-n190-k8 190 13287.0 0.008 0.080 39.336 31.487 0.000 0.035 201.932 139.005 0.000 0.033 398.245 290.447
X-n195-k51 195 32656.0 0.260 0.663 29.061 22.876 0.000 0.214 148.789 76.953 0.000 0.193 298.409 156.401
X-n200-k36 200 36513.0 0.260 1.660 30.562 26.641 0.227 1.424 147.115 115.882 0.000 1.277 289.430 236.953
X-n204-k19 204 14985.0 0.000 0.208 30.116 21.426 0.000 0.103 154.462 84.706 0.000 0.057 306.780 150.625
X-n209-k16 209 20609.0 0.112 0.309 34.136 11.610 0.000 0.135 172.966 56.592 0.092 0.227 359.116 113.650
X-n214-k11 214 8501.0 0.024 0.481 33.409 16.804 0.000 0.276 179.992 59.551 0.000 0.273 359.042 116.459
X-n219-k73 219 83037.0 0.067 0.231 38.230 30.808 0.000 0.085 190.589 143.377 0.011 0.075 391.347 314.527
X-n223-k34 223 29633.0 0.074 0.789 29.335 21.451 0.000 0.490 157.003 69.580 0.051 0.232 292.896 214.642
X-n228-k23 228 19563.0 0.573 0.858 38.361 34.578 0.000 0.632 190.434 156.872 0.026 0.611 384.702 303.694
X-n233-k16 233 15284.0 0.092 0.207 33.733 20.968 0.000 0.155 178.685 109.772 0.131 0.175 363.126 155.523
X-n237-k14 237 18359.0 0.000 0.263 31.555 23.951 0.000 0.160 157.345 101.630 0.000 0.194 319.440 217.916
X-n242-k48 242 51806.0 0.382 0.797 25.193 19.803 0.087 0.367 127.949 104.665 0.000 0.192 256.902 195.971
X-n247-k50 247 23839.0 0.428 1.205 37.472 32.650 0.000 0.662 185.190 137.471 0.008 0.564 365.878 290.088
X-n251-k28 251 26275.0 0.225 0.987 31.142 25.086 0.015 0.674 152.123 125.658 0.000 0.636 319.660 239.171
X-n256-k16 256 14339.0 0.021 0.145 35.625 21.417 0.000 0.013 176.077 117.158 0.000 0.029 359.677 192.600
X-n261-k13 261 18246.0 0.225 0.789 31.436 22.236 0.148 0.451 156.086 112.956 0.000 0.366 314.730 204.756
X-n266-k58 266 49863.0 0.331 0.783 31.798 25.618 0.146 0.423 166.929 112.218 0.000 0.342 352.214 208.645
X-n270-k35 270 26257.0 0.366 0.713 30.311 26.658 0.000 0.517 158.582 114.461 0.263 0.487 309.083 192.907
X-n275-k28 275 16937.0 0.000 0.172 36.758 33.457 0.071 0.120 190.689 146.386 0.053 0.095 370.151 317.898
X-n280-k17 280 22688.0 0.304 1.223 30.372 25.834 0.013 0.383 146.943 130.811 0.000 0.421 301.596 230.629
X-n284-k15 284 14443.0 0.055 0.251 33.786 25.950 0.014 0.118 175.800 133.898 0.000 0.040 344.778 273.209
X-n289-k60 289 66904.0 0.646 0.879 33.876 30.255 0.112 0.464 168.647 117.730 0.000 0.249 321.061 286.412
X-n294-k50 294 34845.0 0.494 0.858 26.731 23.148 0.000 0.424 129.824 108.057 0.175 0.405 254.911 212.970
X-n298-k31 298 24601.0 0.089 0.429 29.152 26.592 0.000 0.120 152.912 93.358 0.012 0.109 304.213 206.789
X-n303-k21 303 16113.0 1.800 1.952 35.630 32.998 0.025 1.185 176.264 146.336 0.000 1.356 364.285 320.024
X-n308-k13 308 18142.0 0.039 1.665 38.235 31.760 0.000 1.416 201.479 146.296 0.006 1.052 377.005 308.887
X-n313-k71 313 67716.0 0.325 0.581 36.148 33.292 0.028 0.226 177.967 142.761 0.000 0.183 356.894 279.324
X-n317-k53 317 50180.0 0.949 1.059 41.697 37.867 0.052 0.835 206.190 193.622 0.000 0.645 412.185 394.903
X-n322-k28 322 22567.0 0.133 0.372 31.159 28.394 0.000 0.299 157.387 110.455 0.049 0.230 320.151 234.448
X-n327-k20 327 20292.0 0.172 0.667 37.612 28.375 0.123 0.371 182.880 151.220 0.000 0.199 357.400 286.228
X-n331-k15 331 21492.0 0.437 0.737 34.603 29.551 0.000 0.486 171.714 128.524 0.368 0.476 347.510 202.825
X-n336-k84 336 95486.0 0.651 0.815 30.362 26.869 0.175 0.336 149.814 133.930 0.000 0.223 294.770 249.285
X-n344-k43 344 31239.0 0.288 0.743 32.098 28.944 0.048 0.251 159.062 123.724 0.000 0.300 314.082 259.012
X-n351-k40 351 18536.0 0.059 0.295 31.367 29.527 0.000 0.111 160.948 141.187 0.000 0.072 319.200 258.192
X-n359-k29 359 31898.0 1.009 1.753 30.423 26.678 0.326 0.959 153.818 128.632 0.000 0.575 303.800 254.670
X-n367-k17 367 18246.0 0.088 0.148 35.595 33.462 0.000 0.080 181.603 162.519 0.044 0.092 360.151 314.166
X-n376-k94 376 101172.0 0.060 0.265 37.003 35.507 0.155 0.239 193.787 162.571 0.000 0.125 360.205 336.822
X-n384-k52 384 42851.0 0.576 0.985 29.787 26.728 0.000 0.313 153.674 136.534 0.037 0.380 315.398 248.664
X-n393-k38 393 29201.0 0.151 0.416 32.151 29.961 0.096 0.241 161.878 140.327 0.000 0.162 328.697 284.925
X-n401-k29 401 54341.0 0.099 0.198 42.021 38.589 0.020 0.137 214.758 186.680 0.000 0.117 426.584 336.168
X-n411-k19 411 15043.0 0.166 0.672 37.370 33.904 0.027 0.166 182.459 159.078 0.000 0.140 367.066 340.271
X-n420-k130 420 72085.0 0.770 1.034 29.882 28.336 0.000 0.349 143.351 136.242 0.141 0.292 290.800 265.351
X-n429-k61 429 46224.0 0.469 0.841 29.790 27.306 0.225 0.444 151.951 116.524 0.000 0.252 293.492 263.596
X-n439-k37 439 27125.0 0.358 0.632 36.596 31.222 0.000 0.167 179.587 158.161 0.081 0.214 373.583 331.491
X-n449-k29 449 35679.0 0.135 0.816 32.022 29.560 0.064 0.399 161.028 141.748 0.000 0.391 332.829 282.497
X-n459-k26 459 20957.0 0.072 0.318 38.784 33.093 0.038 0.130 191.950 166.526 0.000 0.110 392.052 323.010
X-n469-k138 469 135415.0 0.414 0.974 30.426 28.930 0.051 0.455 148.704 125.690 0.000 0.145 267.973 231.851
X-n480-k70 480 60589.0 0.160 0.511 35.817 33.094 0.160 0.291 176.572 161.348 0.000 0.107 357.880 331.384
X-n491-k59 491 48961.0 0.159 0.850 33.874 32.311 0.016 0.286 168.267 162.578 0.000 0.065 325.171 311.865
X-n502-k39 502 51691.0 0.025 0.081 45.373 43.829 0.008 0.034 228.304 216.819 0.000 0.019 456.739 431.494
X-n513-k21 513 19879.0 0.282 0.824 39.482 33.714 0.000 0.407 198.599 160.333 0.000 0.384 392.103 342.272
X-n524-k153 524 95946.0 0.893 1.287 36.154 34.614 0.197 0.532 176.289 168.823 0.000 0.327 350.801 342.825
X-n536-k96 536 64843.0 0.689 0.924 37.563 36.193 0.133 0.524 177.229 174.260 0.000 0.477 355.587 339.947
X-n548-k50 548 55523.0 0.362 0.509 38.858 37.379 0.086 0.340 197.830 182.030 0.000 0.230 388.788 361.511
X-n561-k42 561 32607.0 0.448 1.155 36.558 33.959 0.000 0.544 180.785 163.408 0.058 0.337 356.570 308.359
X-n573-k30 573 33826.0 0.381 0.707 46.517 45.462 0.000 0.128 221.029 205.152 0.068 0.145 441.611 388.989
X-n586-k159 586 126539.0 0.772 0.936 33.982 32.753 0.000 0.315 167.376 163.790 0.013 0.197 335.781 322.323
X-n599-k92 599 72328.0 0.611 1.029 31.384 30.070 0.281 0.449 155.261 147.833 0.000 0.262 309.197 298.498
X-n613-k62 613 43443.0 0.960 1.589 32.672 31.084 0.470 0.583 161.595 150.049 0.000 0.449 324.451 293.108
X-n627-k43 627 43999.0 0.089 1.017 41.553 39.784 0.102 0.377 205.092 197.020 0.000 0.182 407.271 388.573
X-n641-k35 641 41913.0 0.489 0.756 36.820 35.451 0.103 0.218 179.751 167.381 0.000 0.087 360.252 330.364
X-n655-k131 655 78413.0 0.473 0.626 40.892 39.383 0.075 0.242 190.391 180.709 0.000 0.163 376.331 357.125
X-n670-k130 670 97671.0 0.550 1.387 41.429 39.724 0.349 0.655 203.668 197.498 0.000 0.315 399.300 385.661
X-n685-k75 685 50534.0 0.704 1.207 35.746 33.844 0.000 0.380 177.737 167.626 0.093 0.242 356.016 347.680
X-n701-k44 701 54279.0 0.582 0.913 37.938 36.662 0.103 0.375 188.677 175.298 0.000 0.163 378.696 353.271
X-n716-k35 716 35640.0 0.398 0.723 40.980 39.471 0.028 0.230 199.525 195.262 0.000 0.174 399.714 387.941
X-n733-k159 733 98507.0 0.870 1.160 33.230 31.622 0.367 0.520 158.157 154.542 0.000 0.222 313.688 298.824
X-n749-k98 749 50990.0 0.661 0.977 37.642 37.192 0.222 0.473 186.800 174.861 0.000 0.383 369.837 361.715
X-n766-k71 766 71818.0 1.372 2.344 41.389 40.061 0.272 0.705 205.542 194.563 0.000 0.422 406.026 392.698
X-n783-k48 783 46580.0 0.573 0.863 42.166 39.743 0.000 0.373 210.649 194.819 0.131 0.304 417.341 397.327
X-n801-k40 801 47741.0 0.375 0.639 42.345 40.726 0.052 0.238 209.506 201.053 0.000 0.137 419.418 410.529
X-n819-k171 819 111809.0 0.744 1.032 36.543 35.658 0.000 0.323 171.632 168.303 0.004 0.191 343.169 336.967
X-n837-k142 837 122876.0 1.095 1.582 35.133 34.468 0.225 0.561 169.514 167.399 0.000 0.235 330.193 322.632
X-n856-k95 856 60399.0 0.377 0.743 47.089 45.243 0.091 0.331 228.973 221.535 0.000 0.288 454.395 443.504
X-n876-k59 876 66901.0 0.317 0.521 46.394 45.080 0.000 0.170 226.288 217.535 0.027 0.129 450.136 436.291
X-n895-k37 895 37758.0 1.759 2.572 46.553 44.486 0.519 0.908 226.645 212.513 0.000 0.563 444.732 427.116
X-n916-k207 916 217951.0 0.908 1.235 37.091 36.574 0.240 0.429 170.611 168.139 0.000 0.194 335.866 328.784
X-n936-k151 936 93219.0 1.012 1.254 46.284 45.092 0.031 0.549 225.982 219.523 0.000 0.290 440.922 428.150
X-n957-k87 957 59054.0 0.520 0.804 49.751 49.035 0.103 0.276 246.242 238.920 0.000 0.196 489.032 479.280
X-n979-k58 979 97862.0 0.426 0.780 53.391 52.449 0.068 0.409 259.646 250.985 0.000 0.229 520.609 502.497
X-n1001-k43 1001 49219.0 2.105 2.726 45.450 43.095 0.100 0.694 227.155 221.222 0.000 0.140 455.039 429.477
Avg 0.383 0.769 36.019 28.905 0.074 0.365 180.511 135.261 0.026 0.279 361.192 267.001

73

Table 3.22: Full results for dataset XY

Instance Size BKS FSPD FSPD-mid FSPD-long
Best Avg Time* Time Best Avg Time* Time Best Avg Time* Time

X-n101-k25 101 19781.0 0.000 0.189 28.198 6.665 0.000 0.011 145.051 21.335 0.000 0.026 303.865 27.671
X-n106-k14 106 17162.0 0.012 0.012 40.147 21.102 0.000 0.010 208.392 87.192 0.000 0.010 420.887 160.514
X-n110-k13 110 11813.0 0.000 0.059 29.168 4.656 0.000 0.000 154.141 8.457 0.000 0.000 311.433 11.218
X-n115-k10 115 10238.0 0.000 0.000 52.176 0.045 0.000 0.000 260.412 0.045 0.000 0.000 522.836 0.045
X-n120-k6 120 10120.0 0.000 0.000 44.874 1.268 0.000 0.000 230.341 1.379 0.000 0.000 461.027 1.989
X-n125-k30 125 40033.0 0.035 0.078 32.482 22.277 0.027 0.064 178.436 89.863 0.000 0.029 357.366 167.513
X-n129-k18 129 18933.0 0.011 0.170 27.852 15.134 0.000 0.008 133.670 75.170 0.000 0.013 274.294 147.551
X-n134-k13 134 8083.0 0.297 0.777 32.877 19.454 0.000 0.417 173.704 44.783 0.000 0.468 356.644 85.530
X-n139-k10 139 11182.0 0.617 0.945 35.491 9.655 0.000 0.662 170.674 45.260 0.000 0.569 348.598 77.092
X-n143-k7 143 11924.0 0.000 0.517 39.994 2.315 0.000 0.372 215.454 3.836 0.000 0.396 428.244 14.539
X-n148-k46 148 30970.0 0.365 0.669 26.786 20.718 0.000 0.402 149.258 92.148 0.136 0.320 273.337 202.332
X-n153-k22 153 17226.0 0.000 0.059 36.831 31.208 0.000 0.062 187.127 133.109 0.000 0.030 366.783 265.323
X-n157-k13 157 12041.0 0.108 0.419 35.267 21.049 0.000 0.161 168.057 118.906 0.000 0.133 343.767 184.730
X-n162-k11 162 11699.0 0.000 0.414 37.372 9.796 0.000 0.069 172.972 58.667 0.000 0.021 351.998 135.439
X-n167-k10 167 14173.0 0.000 0.022 35.910 6.310 0.000 0.000 197.780 9.109 0.000 0.000 391.102 19.068
X-n172-k51 172 31722.0 0.404 0.870 30.684 22.581 0.236 0.590 156.427 82.614 0.000 0.385 322.422 160.397
X-n176-k26 176 29545.0 0.633 1.733 28.903 23.371 0.190 0.796 136.876 89.754 0.000 0.158 276.413 197.777
X-n181-k23 181 18450.0 0.081 0.107 38.746 20.420 0.000 0.072 193.723 110.287 0.070 0.081 401.405 195.839
X-n186-k15 186 17194.0 0.308 0.881 29.427 15.765 0.000 0.484 166.592 64.833 0.000 0.265 320.589 140.307
X-n190-k8 190 13287.0 0.000 0.096 41.559 27.471 0.000 0.022 196.637 140.212 0.000 0.018 392.242 280.939
X-n195-k51 195 32592.0 0.236 0.749 30.667 21.353 0.218 0.439 159.082 68.879 0.000 0.318 307.209 136.386
X-n200-k36 200 36511.0 0.687 1.985 30.086 25.211 0.208 1.440 145.453 114.768 0.000 0.826 270.709 213.217
X-n204-k19 204 14985.0 0.060 0.239 29.197 19.026 0.060 0.161 163.902 52.629 0.000 0.094 305.771 145.050
X-n209-k16 209 20574.0 0.224 0.570 35.232 12.761 0.170 0.330 184.949 44.074 0.000 0.206 358.966 83.158
X-n214-k11 214 8501.0 0.000 0.994 33.689 17.387 0.047 0.578 176.498 71.017 0.000 0.363 340.923 139.907
X-n219-k73 219 83029.0 0.107 0.215 40.048 32.339 0.004 0.127 182.984 154.203 0.000 0.059 430.275 323.824
X-n223-k34 223 29691.0 0.162 0.744 30.450 23.903 0.034 0.351 150.720 110.134 0.000 0.408 319.869 231.319
X-n228-k23 228 19586.0 0.434 0.691 37.149 30.296 0.092 0.594 189.466 134.672 0.000 0.598 378.272 273.507
X-n233-k16 233 15284.0 0.190 0.259 34.572 21.554 0.098 0.207 175.531 104.564 0.000 0.186 350.524 168.873
X-n237-k14 237 18359.0 0.000 0.165 29.549 20.808 0.000 0.141 153.540 95.888 0.000 0.136 320.108 184.047
X-n242-k48 242 51832.0 0.174 0.613 26.581 22.951 0.000 0.287 140.750 99.614 0.042 0.133 266.162 189.961
X-n247-k50 247 23841.0 0.331 1.201 37.454 31.047 0.189 0.762 195.079 146.482 0.000 0.391 374.115 312.413
X-n251-k28 251 26267.0 0.129 0.709 29.453 25.130 0.000 0.777 155.400 132.368 0.046 0.421 314.772 229.152
X-n256-k16 256 14339.0 0.021 0.121 35.992 23.264 0.000 0.028 179.937 92.515 0.000 0.007 349.365 234.475
X-n261-k13 261 18248.0 0.438 1.139 30.836 20.691 0.077 0.823 170.340 102.718 0.000 0.404 316.455 207.450
X-n266-k58 266 50000.0 0.322 0.652 31.803 25.847 0.190 0.295 158.608 128.500 0.000 0.150 343.951 192.799
X-n270-k35 270 26287.0 0.365 0.720 30.705 24.890 0.285 0.718 155.927 99.218 0.000 0.418 293.254 205.475
X-n275-k28 275 16949.0 0.024 0.167 38.257 30.384 0.000 0.091 192.642 146.746 0.012 0.081 393.140 238.259
X-n280-k17 280 22688.0 0.145 1.409 30.762 25.575 0.071 0.549 147.805 120.607 0.000 0.258 293.537 233.247
X-n284-k15 284 14444.0 0.028 0.102 35.150 30.071 0.000 0.053 177.921 139.939 0.000 0.046 362.597 261.371
X-n289-k60 289 67020.0 0.521 0.735 32.925 29.660 0.201 0.311 170.640 136.618 0.000 0.181 326.516 267.301
X-n294-k50 294 34745.0 0.460 1.094 26.983 22.581 0.469 0.726 132.096 98.923 0.000 0.563 253.473 181.204
X-n298-k31 298 24562.0 0.326 0.880 28.264 22.000 0.008 0.313 144.709 100.456 0.000 0.207 292.898 201.143
X-n303-k21 303 16117.0 1.930 2.131 37.035 30.777 0.000 1.543 184.669 128.343 0.099 1.395 383.551 194.663
X-n308-k13 308 18143.0 0.424 1.665 39.665 32.441 0.000 0.622 192.316 146.452 0.033 0.689 407.631 191.736
X-n313-k71 313 67781.0 0.179 0.446 33.708 30.926 0.041 0.200 164.457 147.786 0.000 0.139 335.053 290.255
X-n317-k53 317 50243.0 0.683 0.897 43.756 40.845 0.669 0.832 222.616 203.707 0.000 0.711 425.603 394.474
X-n322-k28 322 22579.0 0.009 0.584 32.198 26.537 0.000 0.230 161.121 114.422 0.022 0.202 321.931 209.837
X-n327-k20 327 20319.0 0.128 0.451 35.677 27.563 0.034 0.274 185.610 141.911 0.000 0.260 365.416 270.879
X-n331-k15 331 21525.0 0.153 0.372 33.978 27.780 0.000 0.214 174.017 110.894 0.181 0.294 349.373 218.026
X-n336-k84 336 95361.0 0.618 0.894 29.954 28.061 0.077 0.422 145.111 131.587 0.000 0.264 292.372 262.290
X-n344-k43 344 31209.0 0.157 0.692 30.391 28.486 0.000 0.443 152.581 126.556 0.093 0.368 307.291 245.756
X-n351-k40 351 18518.0 0.130 0.300 31.129 26.394 0.189 0.225 153.957 139.711 0.000 0.161 309.572 272.273
X-n359-k29 359 31924.0 0.861 1.174 30.888 28.510 0.000 0.586 154.390 138.513 0.025 0.377 318.944 254.444
X-n367-k17 367 18244.0 0.093 0.176 36.039 31.850 0.000 0.123 182.587 152.224 0.000 0.095 363.268 312.511
X-n376-k94 376 101104.0 0.195 0.289 34.211 30.948 0.000 0.163 176.833 162.941 0.026 0.142 343.171 310.078
X-n384-k52 384 42821.0 0.404 0.968 29.686 26.042 0.000 0.504 152.642 131.243 0.208 0.314 306.144 240.064
X-n393-k38 393 29209.0 0.113 0.458 32.230 28.741 0.041 0.228 163.012 146.010 0.000 0.139 330.794 276.859
X-n401-k29 401 54339.0 0.094 0.259 41.471 34.725 0.000 0.122 208.145 188.392 0.028 0.108 412.326 364.742
X-n411-k19 411 15043.0 0.226 0.658 37.796 34.987 0.000 0.163 181.976 165.909 0.000 0.117 365.668 339.283
X-n420-k130 420 72128.0 0.284 0.687 29.119 27.030 0.236 0.413 143.954 126.131 0.000 0.279 289.823 270.673
X-n429-k61 429 46248.0 0.659 0.908 29.902 27.677 0.000 0.347 145.106 122.926 0.076 0.332 298.660 239.705
X-n439-k37 439 27049.0 0.580 0.911 37.373 30.333 0.222 0.542 186.579 173.728 0.000 0.434 369.382 316.002
X-n449-k29 449 35737.0 0.143 0.559 31.553 27.960 0.000 0.335 156.741 148.222 0.031 0.191 318.375 278.731
X-n459-k26 459 20964.0 0.091 0.279 39.121 33.407 0.005 0.117 189.499 164.562 0.000 0.077 385.905 335.240
X-n469-k138 469 135368.0 0.927 1.197 30.207 28.938 0.166 0.345 138.335 128.768 0.000 0.286 273.984 247.428
X-n480-k70 480 60581.0 0.413 0.565 34.557 32.785 0.050 0.244 174.289 158.657 0.000 0.109 343.940 325.825
X-n491-k59 491 48961.0 0.198 0.964 34.246 30.799 0.000 0.203 168.769 160.894 0.049 0.103 334.536 301.896
X-n502-k39 502 51689.0 0.019 0.082 45.869 43.872 0.000 0.038 230.113 221.331 0.014 0.035 458.879 435.131
X-n513-k21 513 19889.0 0.176 0.672 39.903 35.287 0.272 0.405 203.916 158.547 0.000 0.426 409.178 350.187
X-n524-k153 524 95980.0 0.996 1.352 36.128 34.443 0.123 0.609 177.430 168.915 0.000 0.292 344.524 327.074
X-n536-k96 536 64904.0 0.549 0.864 35.101 33.375 0.388 0.604 176.338 162.538 0.000 0.420 344.914 322.071
X-n548-k50 548 55522.0 0.200 0.471 38.880 36.037 0.067 0.247 198.768 190.322 0.000 0.283 385.391 364.904
X-n561-k42 561 32583.0 0.565 0.941 35.934 33.451 0.000 0.439 180.501 169.444 0.068 0.401 356.358 323.682
X-n573-k30 573 33846.0 0.086 0.603 45.591 40.960 0.000 0.185 232.462 215.015 0.009 0.098 463.384 439.086
X-n586-k159 586 126581.0 0.485 0.938 34.492 33.712 0.094 0.386 163.863 160.928 0.000 0.200 326.529 313.914
X-n599-k92 599 72296.0 0.830 1.065 30.874 28.980 0.252 0.482 150.547 141.047 0.000 0.280 297.217 261.618
X-n613-k62 613 43463.0 0.810 1.463 32.882 30.107 0.439 0.767 163.167 154.771 0.000 0.425 323.452 307.402
X-n627-k43 627 43946.0 0.412 1.370 40.730 38.331 0.100 0.671 201.478 196.904 0.000 0.191 399.520 378.690
X-n641-k35 641 41906.0 0.530 0.934 37.339 34.957 0.019 0.296 186.419 172.844 0.000 0.184 371.671 352.296
X-n655-k131 655 78386.0 0.500 0.693 40.038 37.093 0.073 0.278 183.004 171.865 0.000 0.136 360.145 339.691
X-n670-k130 670 97628.0 0.713 1.423 40.977 38.540 0.186 0.449 199.369 191.539 0.000 0.212 388.362 373.890
X-n685-k75 685 50523.0 0.798 1.023 35.419 34.536 0.194 0.473 177.526 165.165 0.000 0.285 348.850 330.194
X-n701-k44 701 54293.0 0.534 1.001 36.428 34.248 0.004 0.241 183.231 171.819 0.000 0.157 370.379 338.288
X-n716-k35 716 35634.0 0.323 0.688 40.155 38.127 0.073 0.306 196.146 189.404 0.000 0.193 390.962 383.000
X-n733-k159 733 98482.0 1.005 1.273 32.162 31.648 0.000 0.466 156.005 148.805 0.062 0.300 310.377 296.843
X-n749-k98 749 50983.0 0.634 1.050 35.726 34.688 0.161 0.496 173.440 166.757 0.000 0.290 345.858 336.774
X-n766-k71 766 71805.0 1.228 1.913 42.461 41.590 0.386 0.699 203.084 196.851 0.000 0.365 397.887 383.951
X-n783-k48 783 46551.0 0.535 0.958 41.326 37.617 0.200 0.547 203.288 193.395 0.000 0.342 401.207 370.613
X-n801-k40 801 47729.0 0.394 0.742 42.418 40.212 0.000 0.238 209.650 197.428 0.019 0.179 416.448 407.792
X-n819-k171 819 111646.0 0.862 1.206 35.976 34.926 0.316 0.575 170.101 164.248 0.000 0.267 332.434 316.679
X-n837-k142 837 123100.0 0.696 1.372 36.425 35.929 0.000 0.413 170.241 164.075 0.056 0.209 339.689 331.444
X-n856-k95 856 60370.0 0.030 0.673 46.510 45.096 0.197 0.283 227.383 222.920 0.000 0.162 447.109 434.449
X-n876-k59 876 66926.0 0.267 0.465 48.123 46.978 0.057 0.177 234.228 230.553 0.000 0.090 469.391 451.899
X-n895-k37 895 37836.0 1.364 2.284 46.131 41.862 0.309 0.721 224.526 210.373 0.000 0.358 447.984 418.147
X-n916-k207 916 217877.0 1.071 1.268 37.927 37.596 0.237 0.472 181.822 177.447 0.000 0.227 360.079 352.325
X-n936-k151 936 93117.0 0.758 1.057 45.444 43.901 0.111 0.435 221.406 215.791 0.000 0.282 438.820 430.606
X-n957-k87 957 58998.0 0.386 1.013 49.050 46.979 0.327 0.565 242.858 232.498 0.000 0.362 479.218 468.843
X-n979-k58 979 97882.0 0.345 0.832 53.314 52.568 0.109 0.336 257.612 250.335 0.000 0.237 505.877 473.284
X-n1001-k43 1001 49013.0 2.626 3.230 46.023 43.703 0.382 1.116 228.125 219.127 0.000 0.478 455.963 441.079
Avg 0.387 0.776 35.922 28.359 0.097 0.382 179.671 134.260 0.014 0.253 358.289 261.489

3.9.2 VRPMPD Instances

74

Table 3.23: Full results for dataset XXLX
Instance Size BKS FSPD FSPD-mid FSPD-long

Best Avg Time* Time Best Avg Time* Time Best Avg Time* Time
Leuven1 3001 137432.0 0.932 1.218 65.488 65.073 0.419 0.481 329.570 327.087 0.000 0.250 659.847 654.346
Leuven2 4001 82194.0 4.394 4.971 70.306 69.953 1.644 2.396 359.552 352.060 0.000 0.758 727.248 710.583
Antwerp1 6001 346563.0 2.698 3.224 77.058 76.901 0.775 0.952 388.364 387.647 0.000 0.224 783.741 779.454
Antwerp2 7001 214177.0 2.301 2.748 81.572 81.198 0.455 0.798 424.125 421.947 0.000 0.308 860.962 855.353
Ghent1 10001 365418.0 1.871 1.966 96.911 96.751 0.487 0.633 473.888 472.513 0.000 0.169 962.729 958.717
Ghent2 11001 214337.0 2.680 2.873 87.083 87.027 0.923 1.353 445.665 444.920 0.000 0.672 896.875 891.461
Brussels1 15001 376294.0 2.640 2.845 111.955 111.813 0.517 0.717 544.159 543.906 0.000 0.161 1097.920 1096.056
Brussels2 16001 279692.0 2.853 3.043 112.825 112.665 0.503 0.709 563.807 562.629 0.000 0.180 1124.116 1122.973
Flanders1 20001 5217403.0 1.298 1.447 160.615 160.561 0.331 0.435 769.671 769.114 0.000 0.129 1539.105 1536.640
Flanders2 30001 3201225.0 3.644 3.803 186.779 186.725 0.706 0.889 888.068 887.024 0.000 0.197 1799.487 1798.281
Avg 2.531 2.814 105.059 104.867 0.676 0.936 518.687 516.885 0.000 0.305 1045.203 1040.386

Table 3.24: Full results for dataset XXLY
Instance Size BKS FSPD FSPD-mid FSPD-long

Best Avg Time* Time Best Avg Time* Time Best Avg Time* Time
Leuven1 3001 137644.0 0.849 1.066 66.024 65.626 0.210 0.334 324.768 320.977 0.000 0.173 646.863 642.210
Leuven2 4001 82346.0 4.028 4.788 69.928 69.140 1.298 2.359 363.295 357.124 0.000 0.669 719.824 712.136
Antwerp1 6001 347231.0 2.948 3.281 74.749 74.657 0.714 0.898 369.409 368.823 0.000 0.101 737.793 734.318
Antwerp2 7001 214035.0 2.469 2.794 80.162 79.950 0.391 0.764 418.696 416.235 0.000 0.282 854.779 851.140
Ghent1 10001 365724.0 1.720 1.889 93.789 93.645 0.416 0.594 455.572 454.904 0.000 0.113 912.854 910.597
Ghent2 11001 215520.0 2.147 2.313 86.591 86.430 0.438 0.777 446.559 445.425 0.000 0.118 892.264 887.701
Brussels1 15001 375939.0 2.883 3.053 110.735 110.676 0.779 0.874 537.589 537.053 0.000 0.219 1065.935 1064.555
Brussels2 16001 279479.0 2.889 3.145 113.083 112.958 0.486 0.706 563.014 562.087 0.000 0.174 1129.187 1127.220
Flanders1 20001 5221438.0 1.149 1.406 160.430 160.315 0.331 0.416 771.296 770.930 0.000 0.073 1535.166 1534.707
Flanders2 30001 3197711.0 3.473 3.677 186.718 186.677 1.061 1.251 882.756 882.555 0.000 0.338 1794.305 1793.114
Avg 2.456 2.741 104.221 104.007 0.612 0.897 513.295 511.611 0.000 0.226 1028.897 1025.770

Table 3.25: Full results for dataset CMTH
Instance Size BKS FSPD FSPD-mid FSPD-long

Best Avg Time* Time Best Avg Time* Time Best Avg Time* Time
CMT1H 50 465.02 0.000 0.000 25.594 0.371 0.000 0.000 128.983 0.215 0.000 0.000 258.028 0.202
CMT6H 50 555.43 0.000 0.000 37.175 0.273 0.000 0.000 186.798 0.335 0.000 0.000 375.356 0.276
CMT2H 75 662.63 0.000 0.000 32.389 0.620 0.000 0.000 165.432 0.377 0.000 0.000 330.803 0.374
CMT7H 75 900.12 0.000 0.049 44.743 9.866 0.000 0.000 210.221 81.726 0.000 0.000 433.205 97.906
CMT3H 100 700.94 0.000 0.000 30.247 0.211 0.000 0.000 151.747 0.257 0.000 0.000 304.416 0.337
CMT12H 100 629.37 0.000 0.000 31.441 1.167 0.000 0.000 162.175 2.671 0.000 0.000 325.936 3.275
CMT8H 100 865.5 0.000 0.000 45.430 0.399 0.000 0.000 229.476 0.332 0.000 0.000 460.592 0.330
CMT14H 100 821.75 0.000 0.000 55.013 0.069 0.000 0.000 275.624 0.070 0.000 0.000 555.154 0.070
CMT11H 120 818.05 0.000 0.000 32.215 4.920 0.000 0.000 173.814 5.330 0.000 0.000 351.889 5.136
CMT13H 120 1542.86 0.000 0.000 43.943 30.506 -0.013 0.000 227.205 101.478 0.000 0.000 454.047 159.533
CMT4H 150 828.12 0.000 0.288 35.538 4.566 0.000 0.314 187.501 14.875 0.000 0.153 359.589 58.586
CMT9H 150 1160.68 0.000 0.000 40.430 12.508 0.000 0.000 219.484 37.002 0.000 0.000 455.038 45.266
CMT5H 199 978.74 0.000 0.173 37.026 4.849 0.000 0.000 194.823 5.999 0.000 0.000 394.131 6.290
CMT10H 199 1372.2 0.000 0.354 34.100 21.941 0.000 0.140 173.534 97.409 0.000 0.012 313.031 221.300
Avg 0.000 0.062 37.520 6.590 0.000 0.032 191.916 24.862 0.000 0.012 383.658 42.777

Table 3.26: Full results for dataset CMTQ
Instance Size BKS FSPD FSPD-mid FSPD-long

Best Avg Time* Time Best Avg Time* Time Best Avg Time* Time
CMT1Q 50 489.74 0.001 0.001 27.953 0.075 0.001 0.001 140.368 0.057 0.001 0.001 280.722 0.057
CMT6Q 50 555.43 0.000 0.000 37.572 0.368 0.000 0.000 189.772 0.239 0.000 0.000 379.003 0.282
CMT2Q 75 731.26 0.000 0.071 26.973 2.964 0.000 0.000 141.154 3.310 0.000 0.000 274.018 11.413
CMT7Q 75 900.69 0.000 0.000 32.303 17.960 0.000 0.000 183.527 14.585 0.000 0.000 370.130 20.657
CMT3Q 100 747.15 0.000 0.000 35.816 0.147 0.000 0.000 180.011 0.132 0.000 0.000 358.834 0.132
CMT12Q 100 729.25 0.000 0.004 26.926 3.065 0.000 0.001 146.778 4.790 0.000 0.000 295.095 7.949
CMT8Q 100 865.5 0.000 0.000 45.126 0.372 0.000 0.000 226.560 0.339 0.000 0.000 453.440 0.316
CMT14Q 100 821.75 0.000 0.000 55.104 0.062 0.000 0.000 278.106 0.062 0.000 0.000 552.757 0.062
CMT11Q 120 939.36 0.000 0.000 36.716 9.724 0.000 0.000 205.656 16.166 0.000 0.000 412.531 30.601
CMT13Q 120 1542.86 0.000 0.000 44.424 30.886 -0.013 0.000 227.828 101.720 0.000 0.000 469.176 156.924
CMT4Q 150 913.93 0.147 0.165 36.103 5.385 0.147 0.147 187.235 8.766 0.147 0.147 379.848 9.679
CMT9Q 150 1161.24 0.000 0.000 44.665 5.889 0.000 0.000 236.144 11.717 0.000 0.000 480.258 11.126
CMT5Q 199 1104.87 0.204 0.384 27.096 13.493 0.000 0.162 136.280 81.083 0.000 0.073 279.608 99.609
CMT10Q 199 1374.18 0.000 0.451 34.608 29.308 0.000 0.089 163.225 139.083 0.000 0.084 357.936 231.044
Avg 0.025 0.077 36.527 8.550 0.010 0.028 188.760 27.289 0.011 0.022 381.668 41.418

75

Table 3.27: Full results for dataset CMTT
Instance Size BKS FSPD FSPD-mid FSPD-long

Best Avg Time* Time Best Avg Time* Time Best Avg Time* Time
CMT1T 50 520.06 0.000 0.000 35.610 0.048 0.000 0.000 180.936 0.048 0.000 0.000 361.065 0.048
CMT6T 50 555.43 0.000 0.000 30.041 0.086 0.000 0.000 150.097 0.055 0.000 0.000 299.428 0.055
CMT2T 75 782.77 0.000 0.028 23.019 1.409 0.000 0.000 123.303 2.550 0.000 0.000 238.690 0.875
CMT7T 75 903.05 0.000 0.000 30.700 0.091 0.000 0.000 153.304 0.088 0.000 0.000 306.864 0.089
CMT3T 100 798.07 0.000 0.000 26.821 3.261 0.000 0.000 142.190 5.839 0.000 0.000 286.631 3.643
CMT12T 100 787.52 0.000 0.000 37.572 0.801 0.000 0.000 192.759 0.767 0.000 0.000 386.977 0.541
CMT8T 100 865.54 0.000 0.000 41.721 0.950 0.000 0.000 209.960 0.778 0.000 0.000 419.796 0.867
CMT14T 100 826.77 0.000 0.000 33.469 0.271 0.000 0.000 169.168 0.256 0.000 0.000 338.447 0.258
CMT11T 120 998.8 0.000 0.000 34.769 15.637 0.000 0.000 199.117 39.988 0.000 0.000 386.647 77.781
CMT13T 120 1541.14 0.112 0.112 44.028 30.568 0.099 0.111 227.734 101.674 0.112 0.112 450.265 164.587
CMT4T 150 990.39 0.000 0.000 34.257 7.293 0.000 0.000 184.385 12.711 0.000 0.000 362.584 30.581
CMT9T 150 1162.55 0.000 0.001 37.527 22.779 0.000 0.000 198.782 70.439 0.000 0.000 412.127 127.745
CMT5T 199 1218.77 0.325 0.377 31.423 16.742 0.156 0.308 157.121 73.652 0.000 0.293 308.542 140.276
CMT10T 199 1381.04 0.549 0.852 39.483 14.265 0.429 0.792 205.962 47.439 0.179 0.650 374.594 152.947
Avg 0.070 0.098 34.317 8.157 0.049 0.086 178.201 25.449 0.021 0.075 352.333 50.021

76

Table 3.28: Full results for dataset XH

Instance Size BKS FSPD FSPD-mid FSPD-long
Best Avg Time* Time Best Avg Time* Time Best Avg Time* Time

X-n101-k25 101 19265.0 0.052 0.450 26.877 13.289 0.000 0.269 144.467 44.386 0.000 0.212 302.006 88.880
X-n106-k14 106 14873.0 0.000 0.001 38.007 21.045 0.000 0.000 203.684 57.930 0.000 0.000 424.702 96.782
X-n110-k13 110 11153.0 0.000 0.000 30.488 4.600 0.000 0.000 160.247 6.332 0.000 0.000 323.156 8.925
X-n115-k10 115 10156.0 0.000 0.000 44.705 0.018 0.000 0.000 224.178 0.018 0.000 0.000 447.366 0.018
X-n120-k6 120 9716.0 0.000 0.000 36.686 2.107 0.000 0.000 192.072 2.584 0.000 0.000 384.645 3.996
X-n125-k30 125 33107.0 0.187 1.001 38.410 22.468 0.000 0.412 185.626 81.839 0.000 0.037 371.510 179.618
X-n129-k18 129 18054.0 0.000 0.080 28.833 14.000 0.000 0.012 142.018 63.366 0.000 0.005 295.358 114.299
X-n134-k13 134 7418.0 0.000 0.303 35.231 16.603 0.000 0.093 163.643 63.385 0.000 0.049 359.618 105.125
X-n139-k10 139 10834.0 0.572 0.572 49.819 0.254 0.342 0.540 247.166 10.771 0.000 0.444 473.967 49.619
X-n143-k7 143 11750.0 0.979 1.216 43.551 6.766 0.085 0.980 200.553 33.840 0.000 0.789 402.507 60.465
X-n148-k46 148 27230.0 0.408 0.605 33.251 20.516 0.176 0.383 159.927 100.048 0.000 0.326 333.241 157.347
X-n153-k22 153 14699.0 0.000 0.189 35.842 25.433 0.000 0.135 207.346 78.028 0.000 0.122 388.903 205.774
X-n157-k13 157 11077.0 0.063 0.097 46.760 27.832 0.000 0.045 224.156 105.784 0.000 0.018 451.567 192.152
X-n162-k11 162 11175.0 0.045 0.396 34.556 7.073 0.000 0.082 169.984 35.279 0.000 0.083 350.748 62.872
X-n167-k10 167 13965.0 0.000 0.191 35.022 13.929 0.000 0.138 186.582 34.733 0.000 0.132 392.576 72.683
X-n172-k51 172 27443.0 0.011 0.442 32.466 25.727 0.000 0.285 182.400 88.319 0.051 0.257 370.331 143.925
X-n176-k26 176 28961.0 0.000 0.038 34.683 26.185 0.000 0.000 181.859 121.409 0.000 0.000 368.444 197.694
X-n181-k23 181 15584.0 0.000 0.174 39.916 22.323 0.051 0.119 197.059 92.408 0.000 0.138 422.026 191.696
X-n186-k15 186 16029.0 0.000 0.769 31.836 12.460 0.000 0.293 155.351 49.441 0.000 0.142 306.625 93.193
X-n190-k8 190 10400.0 0.000 0.086 37.992 17.279 0.000 0.030 205.879 72.536 0.000 0.039 416.484 131.163
X-n195-k51 195 28575.0 0.049 0.603 33.508 20.659 0.000 0.294 162.764 102.239 0.000 0.106 330.896 177.586
X-n200-k36 200 33129.0 0.085 0.214 32.014 28.563 0.039 0.187 161.818 127.632 0.000 0.139 334.033 236.205
X-n204-k19 204 14271.0 0.000 0.015 34.299 21.280 0.000 0.000 182.418 65.814 0.000 0.000 366.948 125.657
X-n209-k16 209 19416.0 0.170 0.685 31.698 18.107 0.000 0.126 177.323 62.906 0.000 0.086 358.848 98.663
X-n214-k11 214 8058.0 0.621 0.836 40.533 12.493 0.372 0.608 198.362 56.136 0.000 0.539 371.816 142.134
X-n219-k73 219 63552.0 0.065 0.167 52.248 28.644 0.000 0.059 263.656 132.978 0.000 0.045 569.213 198.096
X-n223-k34 223 25194.0 0.000 0.701 28.409 23.041 0.000 0.261 144.134 105.625 0.000 0.147 290.228 197.668
X-n228-k23 228 17212.0 0.035 0.077 32.392 27.573 0.006 0.031 162.694 134.906 0.000 0.012 322.619 279.242
X-n233-k16 233 14374.0 0.000 0.202 36.309 18.746 0.000 0.053 177.192 89.983 0.000 0.015 359.701 167.401
X-n237-k14 237 17854.0 0.000 0.376 31.799 19.913 0.000 0.042 172.666 66.166 0.000 0.007 342.185 130.778
X-n242-k48 242 47216.0 0.555 1.180 29.382 21.477 0.000 0.431 150.604 96.929 0.085 0.295 293.307 173.045
X-n247-k50 247 22842.0 0.018 0.903 42.068 31.073 0.088 0.524 215.750 161.398 0.000 0.291 461.784 281.606
X-n251-k28 251 23880.0 0.000 0.435 28.835 24.737 0.004 0.192 150.473 113.323 0.034 0.150 327.799 201.427
X-n256-k16 256 13587.0 0.000 0.035 42.423 17.913 0.000 0.000 219.574 76.843 0.000 0.000 435.485 131.482
X-n261-k13 261 17989.0 0.334 1.162 35.892 20.129 0.334 0.665 174.889 95.365 0.000 0.387 353.477 165.180
X-n266-k58 266 43351.0 0.302 0.613 31.903 26.305 0.016 0.315 163.074 103.514 0.000 0.211 324.665 231.973
X-n270-k35 270 22557.0 0.058 0.182 30.732 22.943 0.004 0.047 158.787 123.240 0.000 0.134 324.440 228.079
X-n275-k28 275 13957.0 0.000 0.132 32.495 27.490 0.000 0.049 175.952 136.674 0.000 0.037 335.608 251.569
X-n280-k17 280 21920.0 0.456 1.106 37.764 27.505 0.611 0.775 187.053 135.807 0.000 0.594 376.792 298.321
X-n284-k15 284 13914.0 0.122 0.474 34.991 21.179 0.007 0.216 178.567 84.929 0.000 0.155 361.437 180.127
X-n289-k60 289 53645.0 0.414 0.692 33.468 29.283 0.000 0.255 175.315 140.174 0.071 0.214 339.661 244.888
X-n294-k50 294 29439.0 0.187 0.837 28.722 21.623 0.112 0.359 150.764 96.130 0.000 0.217 296.789 222.627
X-n298-k31 298 22601.0 0.022 0.522 31.675 22.711 0.018 0.079 170.107 137.090 0.000 0.080 352.717 205.343
X-n303-k21 303 15311.0 0.144 0.624 35.608 21.446 0.000 0.570 182.489 86.608 0.039 0.466 359.382 189.857
X-n308-k13 308 17909.0 0.670 2.354 39.258 27.695 0.000 0.807 187.050 128.519 0.084 0.584 388.328 246.495
X-n313-k71 313 52922.0 0.425 0.877 30.932 25.955 0.440 0.507 155.791 123.154 0.000 0.514 310.548 284.125
X-n317-k53 317 42704.0 0.028 0.164 46.278 42.032 0.000 0.074 231.325 220.442 0.002 0.056 454.320 434.685
X-n322-k28 322 20292.0 0.000 0.411 31.322 25.545 0.000 0.182 163.424 118.562 0.000 0.074 324.453 196.700
X-n327-k20 327 19004.0 0.495 0.926 33.702 23.965 0.184 0.573 169.805 136.865 0.000 0.476 354.160 201.596
X-n331-k15 331 20404.0 0.206 0.395 32.950 27.159 0.034 0.124 161.853 133.836 0.000 0.113 325.945 257.273
X-n336-k84 336 78262.0 0.222 0.685 32.627 29.375 0.138 0.343 160.689 151.112 0.000 0.139 319.239 288.741
X-n344-k43 344 26616.0 0.346 0.620 28.620 23.400 0.150 0.368 144.121 122.251 0.000 0.280 285.596 235.785
X-n351-k40 351 17065.0 0.334 0.766 31.069 25.155 0.164 0.382 154.967 113.030 0.000 0.261 304.664 251.956
X-n359-k29 359 30994.0 0.519 0.828 31.261 28.212 0.065 0.427 153.407 130.043 0.000 0.272 314.338 240.770
X-n367-k17 367 15534.0 1.017 1.577 37.698 26.272 0.315 0.957 184.180 133.172 0.000 0.838 371.367 256.203
X-n376-k94 376 79505.0 0.033 0.174 41.935 37.992 0.000 0.138 216.401 187.199 0.000 0.098 421.511 357.465
X-n384-k52 384 39670.0 0.600 0.791 29.397 25.470 0.015 0.319 148.061 125.687 0.000 0.175 290.576 232.101
X-n393-k38 393 24675.0 0.401 0.718 32.033 27.276 0.215 0.436 161.351 135.782 0.000 0.251 318.975 248.559
X-n401-k29 401 37559.0 0.266 0.453 37.943 33.916 0.136 0.289 189.875 152.098 0.000 0.205 382.386 304.193
X-n411-k19 411 13762.0 0.094 0.818 36.677 30.927 0.051 0.350 181.539 157.876 0.000 0.294 362.810 270.545
X-n420-k130 420 62929.0 0.421 0.764 30.617 29.312 0.167 0.455 150.807 135.809 0.000 0.359 304.022 259.598
X-n429-k61 429 40564.0 0.311 0.690 29.223 25.846 0.175 0.410 143.676 123.965 0.000 0.243 296.465 252.110
X-n439-k37 439 23932.0 0.134 0.830 35.253 31.626 0.004 0.152 168.745 155.788 0.000 0.167 340.636 312.158
X-n449-k29 449 34134.0 0.498 0.821 33.507 30.800 0.278 0.489 168.964 144.580 0.000 0.286 348.298 312.807
X-n459-k26 459 16389.0 0.085 0.564 36.229 32.516 0.092 0.339 184.294 148.325 0.000 0.096 355.593 313.124
X-n469-k138 469 121262.0 0.428 0.832 34.033 32.255 0.075 0.265 167.072 145.923 0.000 0.153 330.014 305.983
X-n480-k70 480 50929.0 0.295 0.545 33.275 30.176 0.175 0.370 164.771 152.972 0.000 0.245 335.428 311.918
X-n491-k59 491 39991.0 0.883 1.128 32.175 28.597 0.153 0.475 161.166 145.244 0.000 0.389 324.781 288.520
X-n502-k39 502 38142.0 0.052 0.227 46.465 43.856 0.000 0.157 238.532 222.511 0.037 0.155 465.634 445.257
X-n513-k21 513 18863.0 0.382 1.119 41.177 31.313 0.000 0.840 215.034 129.073 0.053 0.638 405.579 238.902
X-n524-k153 524 87859.0 0.730 1.315 45.667 43.211 0.382 0.556 225.766 217.428 0.000 0.466 451.687 427.960
X-n536-k96 536 53430.0 0.700 1.084 38.426 36.748 0.095 0.423 185.558 177.558 0.000 0.230 363.669 345.321
X-n548-k50 548 49629.0 0.095 0.469 34.959 32.918 0.095 0.210 174.853 156.365 0.000 0.210 345.754 325.083
X-n561-k42 561 28190.0 0.518 1.312 35.541 31.015 0.035 0.387 175.908 152.258 0.000 0.182 348.681 303.853
X-n573-k30 573 28756.0 0.372 0.620 43.309 40.454 0.104 0.345 215.113 192.946 0.000 0.189 423.622 381.834
X-n586-k159 586 104695.0 0.448 0.667 36.264 34.420 0.030 0.174 178.114 165.926 0.000 0.149 367.038 324.666
X-n599-k92 599 62516.0 0.539 0.762 32.177 29.592 0.043 0.309 160.345 142.624 0.000 0.239 318.628 283.465
X-n613-k62 613 37394.0 0.685 0.902 31.478 29.344 0.029 0.236 158.068 143.637 0.000 0.312 320.645 281.217
X-n627-k43 627 35778.0 0.187 0.555 38.999 36.758 0.061 0.191 193.291 181.824 0.000 0.070 384.244 371.383
X-n641-k35 641 38426.0 0.856 1.131 37.321 35.484 0.115 0.324 189.987 173.972 0.000 0.269 376.832 347.684
X-n655-k131 655 58522.0 0.154 0.246 47.202 46.250 0.031 0.127 232.031 221.863 0.000 0.083 462.042 446.161
X-n670-k130 670 86862.0 0.813 1.188 49.523 48.425 0.000 0.629 244.310 226.710 0.158 0.387 483.134 468.533
X-n685-k75 685 42293.0 0.674 0.993 35.857 34.464 0.440 0.598 176.361 157.693 0.000 0.342 350.437 329.949
X-n701-k44 701 47773.0 0.687 1.203 39.284 37.619 0.174 0.423 196.723 183.331 0.000 0.233 398.670 339.511
X-n716-k35 716 26624.0 1.232 1.537 39.807 38.290 0.740 1.051 197.578 180.701 0.000 0.829 400.144 376.828
X-n733-k159 733 78945.0 0.252 0.680 35.845 34.464 0.009 0.209 175.929 169.333 0.000 0.145 347.710 336.795
X-n749-k98 749 45591.0 0.656 0.941 36.382 34.323 0.178 0.372 178.379 169.262 0.000 0.155 354.531 340.702
X-n766-k71 766 67064.0 0.705 1.173 43.799 42.554 0.000 0.559 218.649 205.074 0.084 0.502 432.094 420.499
X-n783-k48 783 44079.0 0.873 1.242 40.566 39.243 0.261 0.471 204.979 186.456 0.000 0.306 401.918 370.197
X-n801-k40 801 43900.0 0.326 0.591 38.535 38.027 0.027 0.243 191.284 182.453 0.000 0.194 383.057 367.121
X-n819-k171 819 88466.0 0.665 0.875 38.651 36.946 0.123 0.408 186.158 180.993 0.000 0.305 368.376 342.659
X-n837-k142 837 106845.0 0.680 0.947 38.380 37.887 0.082 0.373 186.506 183.259 0.000 0.157 369.648 353.826
X-n856-k95 856 52058.0 0.290 0.520 44.342 42.665 0.079 0.260 218.471 209.153 0.000 0.209 433.320 421.140
X-n876-k59 876 55683.0 0.542 0.902 44.853 43.758 0.092 0.330 221.500 218.296 0.000 0.148 437.196 420.846
X-n895-k37 895 34905.0 0.771 1.260 42.079 39.837 0.498 0.694 207.947 190.448 0.000 0.639 418.303 379.532
X-n916-k207 916 176175.0 0.607 0.936 40.853 39.889 0.244 0.330 191.314 188.088 0.000 0.167 376.200 364.294
X-n936-k151 936 80655.0 0.484 0.801 51.721 48.788 0.052 0.307 252.505 242.870 0.000 0.180 500.763 484.539
X-n957-k87 957 50863.0 0.250 0.667 45.954 43.353 0.116 0.236 226.447 220.094 0.000 0.229 455.615 438.534
X-n979-k58 979 67077.0 0.304 0.518 51.280 50.481 0.148 0.284 258.124 252.542 0.000 0.106 508.833 493.716
X-n1001-k43 1001 44761.0 0.395 0.986 43.537 42.754 0.194 0.434 224.553 215.883 0.000 0.373 446.121 427.417
Avg 0.316 0.665 36.923 28.013 0.098 0.317 185.643 131.377 0.007 0.225 372.402 255.780

77

Table 3.29: Full results for dataset XQ

Instance Size BKS FSPD FSPD-mid FSPD-long
Best Avg Time* Time Best Avg Time* Time Best Avg Time* Time

X-n101-k25 101 21901.0 0.078 0.132 34.924 7.966 0.078 0.084 174.497 41.869 0.000 0.070 367.857 60.218
X-n106-k14 106 20203.0 0.000 0.012 31.496 23.965 0.000 0.005 171.991 102.771 0.000 0.001 338.208 235.771
X-n110-k13 110 12855.0 0.210 0.266 31.728 4.996 0.000 0.169 157.923 21.453 0.000 0.090 303.471 52.313
X-n115-k10 115 11208.0 0.000 0.289 36.447 1.390 0.000 0.000 188.487 2.073 0.000 0.000 378.539 2.428
X-n120-k6 120 11540.0 0.000 0.000 43.047 0.961 0.000 0.000 220.194 1.431 0.000 0.000 441.201 1.964
X-n125-k30 125 43331.0 0.713 0.770 35.730 26.224 0.000 0.355 187.027 121.614 0.000 0.252 370.680 297.258
X-n129-k18 129 21898.0 0.023 0.390 29.425 13.455 0.009 0.169 146.704 67.861 0.000 0.178 328.808 60.423
X-n134-k13 134 8977.0 0.000 0.059 39.648 18.532 0.000 0.016 223.921 47.006 0.000 0.025 447.801 78.338
X-n139-k10 139 12106.0 0.000 0.467 41.277 6.635 0.000 0.000 221.595 15.820 0.000 0.000 457.014 16.633
X-n143-k7 143 13424.0 0.000 0.264 33.655 16.173 0.000 0.070 164.389 67.477 0.000 0.039 327.346 106.037
X-n148-k46 148 34428.0 0.000 0.264 45.934 17.176 0.000 0.238 210.947 106.565 0.000 0.139 470.222 124.627
X-n153-k22 153 17004.0 0.000 0.019 43.348 29.084 0.000 0.000 217.659 161.526 0.000 0.000 439.835 297.206
X-n157-k13 157 13543.0 0.000 0.001 48.248 43.853 0.000 0.000 240.856 172.128 0.000 0.000 518.634 260.982
X-n162-k11 162 12186.0 0.000 0.000 39.233 5.202 0.000 0.000 211.968 9.025 0.000 0.000 436.814 4.785
X-n167-k10 167 17258.0 0.000 0.070 38.673 14.399 0.000 0.009 191.647 56.374 0.000 0.012 408.520 124.105
X-n172-k51 172 36146.0 0.014 0.058 39.244 24.687 0.014 0.065 210.838 134.380 0.000 0.034 412.348 313.624
X-n176-k26 176 35442.0 0.003 0.157 34.684 27.924 0.000 0.005 178.933 120.607 0.000 0.002 366.850 242.183
X-n181-k23 181 20123.0 0.000 0.039 43.768 19.491 0.000 0.000 219.102 110.558 0.000 0.000 446.944 222.080
X-n186-k15 186 19828.0 0.000 0.106 32.566 14.670 0.000 0.028 154.445 79.817 0.000 0.017 316.547 140.319
X-n190-k8 190 13620.0 0.029 0.096 32.845 23.055 0.000 0.081 170.826 120.886 0.029 0.046 339.351 222.806
X-n195-k51 195 34301.0 0.000 0.151 37.783 22.269 0.000 0.085 202.701 92.478 0.000 0.099 423.629 235.087
X-n200-k36 200 44628.0 0.179 0.242 38.613 30.692 0.000 0.188 198.612 160.079 0.150 0.187 379.705 287.784
X-n204-k19 204 16328.0 0.000 0.107 34.560 20.833 0.000 0.058 169.374 64.189 0.000 0.069 344.975 104.005
X-n209-k16 209 24736.0 0.263 0.335 30.995 24.637 0.000 0.242 154.331 122.805 0.008 0.242 322.334 222.576
X-n214-k11 214 9409.0 0.266 0.480 33.883 20.610 0.000 0.118 166.860 71.150 0.000 0.080 326.258 183.930
X-n219-k73 219 89853.0 0.004 0.013 88.899 79.595 0.002 0.010 461.613 381.198 0.000 0.007 855.413 729.933
X-n223-k34 223 32722.0 0.229 0.437 36.637 32.325 0.006 0.271 192.758 140.493 0.000 0.145 390.444 227.392
X-n228-k23 228 21070.0 0.000 0.474 38.103 32.575 0.000 0.006 179.447 160.524 0.000 0.000 344.783 296.825
X-n233-k16 233 16458.0 0.462 0.493 33.750 23.456 0.000 0.262 163.624 111.734 0.298 0.393 383.672 105.968
X-n237-k14 237 21940.0 0.055 0.080 34.508 27.588 0.059 0.063 172.313 132.329 0.000 0.056 351.957 260.777
X-n242-k48 242 63944.0 0.034 0.212 37.357 34.196 0.002 0.123 213.144 144.935 0.000 0.091 440.475 287.564
X-n247-k50 247 29446.0 0.380 1.072 57.361 48.316 0.000 0.459 247.909 201.556 0.000 0.448 505.751 419.195
X-n251-k28 251 30356.0 0.049 0.282 32.146 24.881 0.020 0.084 166.245 139.138 0.000 0.084 321.647 279.282
X-n256-k16 256 16000.0 0.087 0.087 43.440 22.670 0.006 0.079 233.433 80.141 0.000 0.079 493.583 122.240
X-n261-k13 261 21715.0 0.101 0.241 32.414 23.301 0.000 0.252 170.544 107.609 0.101 0.174 354.609 191.350
X-n266-k58 266 56216.0 0.411 0.632 36.844 28.373 0.169 0.443 185.465 161.070 0.000 0.294 399.054 294.148
X-n270-k35 270 28147.0 0.394 0.556 33.583 20.397 0.025 0.373 158.284 142.251 0.000 0.352 319.503 230.796
X-n275-k28 275 17468.0 0.097 0.395 38.742 28.542 0.046 0.201 197.736 161.844 0.000 0.129 387.643 281.095
X-n280-k17 280 27553.0 0.152 0.343 35.360 30.479 0.000 0.221 185.680 158.821 0.051 0.204 367.108 332.549
X-n284-k15 284 16677.0 0.000 0.167 37.454 29.899 0.060 0.149 187.357 126.080 0.000 0.086 367.889 248.520
X-n289-k60 289 71464.0 0.249 0.375 39.657 31.271 0.069 0.303 219.550 139.592 0.000 0.192 431.134 323.863
X-n294-k50 294 36682.0 0.322 0.618 31.944 24.082 0.038 0.300 153.161 140.176 0.000 0.200 322.926 231.508
X-n298-k31 298 27344.0 0.037 0.217 31.346 25.865 0.022 0.046 144.303 124.779 0.000 0.052 294.272 244.960
X-n303-k21 303 17957.0 0.000 0.089 31.349 28.388 0.000 0.022 161.649 128.181 0.000 0.000 319.257 253.424
X-n308-k13 308 21418.0 0.009 0.331 45.261 33.047 0.005 0.264 239.812 166.430 0.000 0.202 460.880 294.074
X-n313-k71 313 73302.0 0.282 0.501 38.914 36.883 0.190 0.259 198.007 185.485 0.000 0.222 411.615 361.187
X-n317-k53 317 61527.0 0.031 0.090 57.615 54.119 0.000 0.026 285.794 268.560 0.008 0.032 563.729 517.289
X-n322-k28 322 24881.0 0.004 0.124 32.364 25.921 0.000 0.038 165.688 129.077 0.000 0.029 336.207 256.177
X-n327-k20 327 23159.0 0.194 0.650 33.316 27.605 0.000 0.383 171.420 123.400 0.047 0.272 347.676 248.082
X-n331-k15 331 25273.0 0.032 0.126 34.457 25.880 0.004 0.073 177.814 114.307 0.000 0.057 347.821 246.321
X-n336-k84 336 106481.0 0.186 0.387 38.568 33.853 0.038 0.218 203.181 152.682 0.000 0.098 401.184 328.429
X-n344-k43 344 33844.0 0.112 0.328 31.709 28.425 0.041 0.117 158.582 126.414 0.000 0.068 305.535 276.982
X-n351-k40 351 20558.0 0.141 0.496 32.109 26.615 0.112 0.427 164.699 139.871 0.000 0.289 327.803 285.073
X-n359-k29 359 40159.0 0.127 0.349 34.258 30.235 0.045 0.188 172.986 142.927 0.000 0.122 342.630 283.229
X-n367-k17 367 18738.0 0.027 0.058 41.741 33.337 0.011 0.064 219.627 172.176 0.000 0.037 424.937 366.851
X-n376-k94 376 111347.0 0.026 0.070 72.888 69.504 0.004 0.021 364.198 340.870 0.000 0.026 741.758 712.779
X-n384-k52 384 50170.0 0.476 0.684 35.274 32.593 0.165 0.325 173.431 146.242 0.000 0.246 343.836 304.706
X-n393-k38 393 30847.0 0.412 0.553 32.271 29.881 0.178 0.323 163.234 146.413 0.000 0.203 316.296 280.582
X-n401-k29 401 51626.0 0.054 0.188 44.077 40.967 0.012 0.065 221.234 200.426 0.000 0.053 439.337 410.978
X-n411-k19 411 16569.0 0.205 0.261 38.048 33.918 0.000 0.187 192.247 174.892 0.109 0.202 389.709 336.746
X-n420-k130 420 84151.0 0.106 0.196 37.952 35.805 0.021 0.093 191.204 180.898 0.000 0.053 383.847 353.787
X-n429-k61 429 52307.0 0.260 0.428 33.791 30.080 0.000 0.159 173.747 156.308 0.042 0.173 352.406 324.350
X-n439-k37 439 29742.0 0.128 0.205 38.776 35.778 0.017 0.079 189.417 168.984 0.000 0.079 380.929 351.129
X-n449-k29 449 44048.0 0.402 0.841 33.181 28.775 0.070 0.630 172.399 139.505 0.000 0.353 343.694 296.947
X-n459-k26 459 19890.0 0.045 0.295 37.743 34.515 0.055 0.144 192.685 172.872 0.000 0.113 387.184 330.957
X-n469-k138 469 167977.0 0.607 0.833 44.076 40.801 0.105 0.364 210.114 198.209 0.000 0.209 445.348 371.439
X-n480-k70 480 69091.0 0.061 0.229 37.626 34.888 0.036 0.148 187.540 173.226 0.000 0.096 375.426 345.082
X-n491-k59 491 51820.0 0.152 0.274 36.828 33.608 0.008 0.162 184.705 164.927 0.000 0.122 366.527 342.691
X-n502-k39 502 52852.0 0.070 0.113 55.070 53.281 0.008 0.049 276.718 268.225 0.000 0.046 549.899 527.697
X-n513-k21 513 21482.0 0.261 0.691 36.419 30.689 0.293 0.525 186.204 172.768 0.000 0.273 364.874 295.106
X-n524-k153 524 118435.0 0.244 0.434 56.974 55.039 0.011 0.421 296.126 280.555 0.000 0.334 606.046 510.726
X-n536-k96 536 72872.0 0.180 0.475 40.233 39.315 0.000 0.120 192.321 186.293 0.010 0.100 387.350 359.664
X-n548-k50 548 67134.0 0.164 0.321 40.894 38.739 0.013 0.115 207.131 196.065 0.000 0.066 400.512 369.458
X-n561-k42 561 34480.0 0.110 0.356 35.538 32.449 0.000 0.226 181.948 153.849 0.003 0.191 356.166 338.222
X-n573-k30 573 39936.0 0.120 0.329 45.109 41.826 0.090 0.240 229.109 208.793 0.000 0.179 456.976 432.951
X-n586-k159 586 146421.0 0.087 0.310 44.327 41.964 0.071 0.134 222.755 211.550 0.000 0.049 460.075 439.380
X-n599-k92 599 83343.0 0.323 0.485 40.535 38.460 0.174 0.285 213.272 206.746 0.000 0.196 413.631 389.275
X-n613-k62 613 47640.0 0.386 0.551 33.081 30.884 0.000 0.212 165.757 159.251 0.052 0.157 328.221 305.672
X-n627-k43 627 48432.0 0.095 0.247 44.390 43.029 0.002 0.082 219.370 212.153 0.000 0.067 438.981 416.966
X-n641-k35 641 50006.0 0.246 0.424 40.686 38.976 0.010 0.202 201.682 188.845 0.000 0.202 412.592 370.459
X-n655-k131 655 81739.0 0.031 0.061 58.345 54.811 0.000 0.021 280.948 264.901 0.006 0.033 578.428 554.002
X-n670-k130 670 108912.0 0.814 1.215 52.050 50.723 0.000 0.564 250.923 241.878 0.132 0.458 507.354 490.801
X-n685-k75 685 54616.0 0.271 0.489 37.801 35.555 0.020 0.251 186.070 175.600 0.000 0.180 374.045 351.157
X-n701-k44 701 63946.0 0.291 0.551 40.473 39.011 0.000 0.206 203.440 191.394 0.120 0.246 403.449 374.119
X-n716-k35 716 33751.0 0.320 0.540 44.617 42.247 0.083 0.203 218.843 207.538 0.000 0.097 434.447 423.983
X-n733-k159 733 105784.0 0.131 0.361 41.735 39.993 0.101 0.199 205.695 197.724 0.000 0.129 415.201 391.061
X-n749-k98 749 59460.0 0.237 0.490 41.438 39.346 0.020 0.222 207.110 196.341 0.000 0.173 415.216 405.869
X-n766-k71 766 88150.0 0.353 0.432 48.808 46.778 0.000 0.295 243.168 237.195 0.001 0.300 487.736 479.374
X-n783-k48 783 58120.0 0.148 0.433 42.658 39.871 0.151 0.230 213.930 202.591 0.000 0.093 426.091 401.762
X-n801-k40 801 57194.0 0.175 0.309 42.697 41.300 0.000 0.175 214.374 202.717 0.026 0.144 424.011 409.592
X-n819-k171 819 120766.0 0.315 0.485 44.363 42.682 0.179 0.256 215.367 208.397 0.000 0.184 425.893 416.411
X-n837-k142 837 148464.0 0.252 0.389 45.413 44.167 0.000 0.140 225.113 217.419 0.036 0.081 449.068 437.149
X-n856-k95 856 69722.0 0.149 0.219 47.846 46.497 0.067 0.133 234.573 229.223 0.000 0.067 458.093 445.529
X-n876-k59 876 75152.0 0.301 0.553 49.396 47.935 0.072 0.323 239.609 231.343 0.000 0.171 476.011 461.848
X-n895-k37 895 44105.0 0.243 0.812 43.639 40.977 0.000 0.251 216.522 204.700 0.000 0.149 432.944 397.283
X-n916-k207 916 247445.0 0.355 0.444 48.217 46.362 0.112 0.202 247.619 244.334 0.000 0.127 481.028 464.557
X-n936-k151 936 104488.0 0.379 0.644 52.572 51.681 0.099 0.246 257.894 244.016 0.000 0.175 513.884 495.366
X-n957-k87 957 66802.0 0.105 0.229 47.414 45.249 0.012 0.103 232.452 227.098 0.000 0.075 466.819 454.606
X-n979-k58 979 91727.0 0.809 0.886 56.905 54.594 0.089 0.569 279.053 268.513 0.000 0.434 553.941 533.660
X-n1001-k43 1001 57512.0 0.383 0.621 44.156 42.320 0.028 0.279 222.046 211.329 0.000 0.238 440.875 420.038
Avg 0.173 0.350 40.693 32.689 0.034 0.179 205.110 158.888 0.012 0.133 412.412 310.485

78

Table 3.30: Full results for dataset XT

Instance Size BKS FSPD FSPD-mid FSPD-long
Best Avg Time* Time Best Avg Time* Time Best Avg Time* Time

X-n101-k25 101 25090.0 0.000 0.017 38.867 9.451 0.000 0.001 203.930 38.320 0.000 0.002 432.294 77.970
X-n106-k14 106 23069.0 0.000 0.139 37.162 13.492 0.000 0.039 211.465 42.591 0.000 0.007 405.517 189.155
X-n110-k13 110 14214.0 0.000 0.039 32.287 3.436 0.000 0.022 162.168 13.196 0.000 0.000 318.401 31.587
X-n115-k10 115 12211.0 0.000 0.000 36.649 0.203 0.000 0.000 184.638 0.214 0.000 0.000 368.896 0.210
X-n120-k6 120 12854.0 0.016 0.100 32.641 16.383 0.000 0.075 172.279 51.600 0.016 0.057 347.370 96.162
X-n125-k30 125 49986.0 0.012 0.519 39.337 29.407 0.000 0.085 169.491 92.635 0.000 0.008 366.117 107.462
X-n129-k18 129 26103.0 0.000 0.077 30.483 17.321 0.000 0.083 174.445 82.650 0.000 0.009 332.815 168.359
X-n134-k13 134 10147.0 0.000 0.035 38.378 22.114 0.000 0.000 184.950 112.105 0.000 0.000 384.214 162.968
X-n139-k10 139 13052.0 0.000 0.001 38.988 1.080 0.000 0.000 199.823 2.035 0.000 0.000 401.495 2.836
X-n143-k7 143 14802.0 0.000 0.407 29.692 10.800 0.000 0.068 141.199 53.310 0.000 0.029 280.763 107.206
X-n148-k46 148 38826.0 0.000 0.084 41.372 27.548 0.000 0.009 225.414 98.571 0.000 0.000 458.441 171.089
X-n153-k22 153 19166.0 0.063 0.106 42.681 33.224 0.026 0.067 215.785 163.644 0.000 0.037 425.199 314.242
X-n157-k13 157 15561.0 0.000 0.013 48.459 43.888 0.000 0.000 239.194 216.499 0.000 0.001 489.156 420.174
X-n162-k11 162 13478.0 0.015 0.142 45.385 13.219 0.030 0.088 243.804 36.221 0.000 0.049 454.155 134.213
X-n167-k10 167 19275.0 0.021 0.181 30.155 17.956 0.021 0.090 160.565 72.937 0.000 0.022 324.988 118.526
X-n172-k51 172 41802.0 0.005 0.013 43.060 35.644 0.000 0.003 227.690 183.847 0.000 0.002 447.897 355.191
X-n176-k26 176 44695.0 0.007 1.306 46.389 33.932 0.000 0.550 217.047 183.796 0.000 0.014 388.323 275.168
X-n181-k23 181 23481.0 0.000 0.067 48.881 32.746 0.000 0.007 212.311 120.385 0.000 0.003 436.969 241.181
X-n186-k15 186 22118.0 0.005 0.005 32.905 12.444 0.000 0.004 184.541 69.469 0.000 0.004 368.404 120.059
X-n190-k8 190 15345.0 0.013 0.081 34.230 25.534 0.007 0.055 171.014 123.057 0.000 0.022 342.214 259.533
X-n195-k51 195 40119.0 0.192 0.321 38.194 26.138 0.000 0.250 223.782 78.285 0.000 0.119 405.621 193.703
X-n200-k36 200 53699.0 0.011 0.141 42.396 29.917 0.000 0.012 194.074 164.825 0.000 0.022 408.570 240.148
X-n204-k19 204 18405.0 0.033 0.060 35.081 22.605 0.000 0.016 181.267 140.930 0.000 0.021 356.481 296.312
X-n209-k16 209 28480.0 0.063 0.149 30.522 23.521 0.004 0.097 158.085 120.299 0.000 0.042 308.040 213.834
X-n214-k11 214 10147.0 0.148 0.425 31.950 15.843 0.000 0.082 163.243 98.447 0.000 0.011 350.375 115.759
X-n219-k73 219 106528.0 0.002 0.003 111.900 97.312 0.001 0.002 586.011 484.533 0.000 0.001 1174.502 971.021
X-n223-k34 223 37176.0 0.221 0.339 36.160 32.660 0.000 0.193 177.959 132.850 0.000 0.099 335.730 299.860
X-n228-k23 228 23853.0 0.017 0.127 33.388 30.269 0.025 0.129 173.691 146.727 0.000 0.089 342.973 299.749
X-n233-k16 233 18037.0 0.000 0.074 36.203 25.129 0.000 0.011 172.584 137.146 0.000 0.008 348.078 281.787
X-n237-k14 237 24974.0 0.088 0.307 32.727 25.427 0.024 0.118 173.223 100.333 0.000 0.094 349.037 252.090
X-n242-k48 242 75119.0 0.000 0.156 38.414 32.812 0.000 0.189 192.516 142.436 0.000 0.071 447.797 317.951
X-n247-k50 247 34957.0 0.154 0.524 53.246 35.276 0.009 0.253 239.388 217.045 0.000 0.129 482.853 412.052
X-n251-k28 251 35525.0 0.025 0.457 32.273 25.545 0.028 0.290 176.462 148.272 0.000 0.143 337.773 252.839
X-n256-k16 256 17585.0 0.000 0.063 34.445 27.132 0.000 0.026 170.544 129.728 0.000 0.019 337.376 260.282
X-n261-k13 261 24572.0 0.000 0.153 33.799 22.500 0.016 0.270 172.753 116.480 0.000 0.085 337.110 201.275
X-n266-k58 266 67782.0 0.056 0.220 40.368 32.774 0.000 0.097 222.580 169.391 0.007 0.065 439.577 344.371
X-n270-k35 270 32171.0 0.134 0.386 31.391 26.979 0.003 0.159 152.689 110.235 0.000 0.087 307.139 180.033
X-n275-k28 275 19644.0 0.000 0.158 41.536 38.451 0.000 0.125 207.843 168.166 0.000 0.091 415.187 332.474
X-n280-k17 280 31515.0 0.143 0.591 33.946 31.153 0.013 0.055 166.074 147.305 0.000 0.066 332.482 299.460
X-n284-k15 284 18905.0 0.127 0.317 34.915 29.133 0.000 0.170 174.758 121.154 0.042 0.188 361.024 240.708
X-n289-k60 289 87470.0 0.000 0.356 47.981 41.211 0.018 0.142 248.843 166.692 0.043 0.146 479.178 393.891
X-n294-k50 294 43375.0 0.203 0.336 32.156 28.597 0.000 0.143 158.770 126.009 0.095 0.260 329.423 242.447
X-n298-k31 298 31758.0 0.050 0.315 27.162 25.317 0.000 0.186 139.938 98.574 0.006 0.151 276.056 225.443
X-n303-k21 303 20240.0 0.104 0.256 32.912 26.682 0.005 0.098 163.443 137.370 0.000 0.105 322.269 265.927
X-n308-k13 308 24367.0 0.008 0.549 38.620 29.766 0.213 0.528 204.713 115.388 0.000 0.294 381.632 278.709
X-n313-k71 313 85629.0 0.207 0.340 37.389 34.162 0.000 0.170 181.590 155.446 0.012 0.154 377.514 348.232
X-n317-k53 317 71661.0 0.000 0.029 61.625 56.284 0.000 0.014 314.147 298.068 0.006 0.021 613.840 564.252
X-n322-k28 322 28085.0 0.256 0.474 30.886 26.079 0.057 0.294 152.915 126.917 0.000 0.165 297.830 254.138
X-n327-k20 327 25753.0 0.054 0.820 35.134 28.633 0.000 0.311 166.812 147.219 0.175 0.330 346.679 268.424
X-n331-k15 331 28460.0 0.004 0.247 34.043 29.302 0.000 0.074 167.932 152.126 0.000 0.076 334.025 286.491
X-n336-k84 336 125720.0 0.138 0.331 35.398 32.744 0.000 0.109 172.711 155.979 0.004 0.104 367.312 293.394
X-n344-k43 344 38520.0 0.109 0.336 31.162 28.071 0.213 0.281 157.882 138.843 0.000 0.245 317.327 248.459
X-n351-k40 351 23684.0 0.139 0.415 31.425 28.027 0.089 0.173 153.842 145.609 0.000 0.115 302.679 277.987
X-n359-k29 359 46945.0 0.288 0.504 31.302 28.911 0.000 0.226 154.211 135.618 0.051 0.133 314.778 259.081
X-n367-k17 367 21654.0 0.171 0.730 42.369 39.013 0.102 0.769 220.850 173.418 0.000 0.806 510.614 270.415
X-n376-k94 376 134666.0 0.005 0.049 85.506 77.423 0.000 0.031 446.810 309.820 0.001 0.023 878.682 765.964
X-n384-k52 384 59344.0 0.118 0.306 37.659 32.681 0.032 0.192 199.047 154.417 0.000 0.107 383.033 297.678
X-n393-k38 393 35186.0 0.185 0.330 31.913 29.780 0.102 0.190 158.072 144.735 0.000 0.158 314.484 286.914
X-n401-k29 401 61902.0 0.128 0.206 45.443 43.382 0.031 0.144 233.750 219.281 0.000 0.078 468.703 421.186
X-n411-k19 411 18625.0 0.000 0.235 36.198 34.482 0.129 0.208 182.757 177.577 0.102 0.164 364.798 346.006
X-n420-k130 420 99301.0 0.107 0.165 40.540 38.431 0.053 0.089 200.904 183.703 0.000 0.060 408.052 341.688
X-n429-k61 429 60716.0 0.156 0.377 35.290 32.617 0.000 0.142 174.755 159.340 0.016 0.141 350.826 317.999
X-n439-k37 439 33453.0 0.093 0.157 37.323 33.847 0.006 0.078 180.754 161.315 0.000 0.090 370.443 337.720
X-n449-k29 449 51028.0 0.123 0.417 34.366 30.777 0.125 0.227 169.291 155.520 0.000 0.173 340.053 290.623
X-n459-k26 459 22510.0 0.204 0.415 35.670 32.498 0.009 0.359 184.673 167.718 0.000 0.183 358.818 327.731
X-n469-k138 469 202649.0 0.525 0.777 44.631 42.611 0.240 0.372 199.862 186.655 0.000 0.269 424.450 387.550
X-n480-k70 480 81819.0 0.125 0.241 37.944 36.406 0.070 0.123 181.170 164.596 0.000 0.059 374.860 336.311
X-n491-k59 491 60730.0 0.199 0.451 35.731 33.655 0.058 0.214 182.398 170.955 0.000 0.102 360.480 325.409
X-n502-k39 502 62729.0 0.041 0.068 57.611 55.817 0.013 0.047 292.330 280.497 0.000 0.046 575.841 555.975
X-n513-k21 513 23056.0 0.000 0.347 37.632 34.964 0.052 0.117 192.879 179.647 0.048 0.141 381.361 318.636
X-n524-k153 524 138782.0 0.164 0.481 53.950 50.283 0.017 0.182 270.822 259.613 0.000 0.214 558.787 539.286
X-n536-k96 536 85175.0 0.195 0.639 41.464 39.542 0.097 0.432 199.795 189.857 0.000 0.197 382.394 370.594
X-n548-k50 548 79026.0 0.028 0.141 43.028 41.095 0.000 0.078 214.766 204.826 0.023 0.070 428.871 398.971
X-n561-k42 561 39267.0 0.446 0.782 36.036 34.401 0.000 0.420 176.701 169.159 0.150 0.332 347.393 325.904
X-n573-k30 573 46237.0 0.065 0.309 45.489 42.981 0.000 0.122 225.883 210.050 0.000 0.046 445.316 417.314
X-n586-k159 586 172982.0 0.309 0.407 47.358 44.567 0.029 0.154 230.976 222.650 0.000 0.146 460.988 443.152
X-n599-k92 599 99152.0 0.182 0.379 40.723 38.178 0.100 0.190 210.104 201.985 0.000 0.083 406.288 370.350
X-n613-k62 613 54298.0 0.271 0.468 33.677 32.216 0.000 0.222 161.744 149.331 0.026 0.183 324.490 302.184
X-n627-k43 627 57242.0 0.093 0.267 44.828 43.352 0.000 0.113 223.044 216.600 0.016 0.119 442.751 422.629
X-n641-k35 641 58278.0 0.182 0.408 40.681 38.793 0.014 0.166 204.895 193.096 0.000 0.104 406.613 370.436
X-n655-k131 655 96769.0 0.018 0.054 67.568 61.840 0.000 0.028 339.587 299.246 0.008 0.020 659.981 625.474
X-n670-k130 670 133617.0 0.254 0.667 56.244 53.326 0.238 0.425 278.752 264.774 0.000 0.202 549.036 525.027
X-n685-k75 685 62677.0 0.268 0.461 38.691 36.522 0.043 0.230 186.016 180.891 0.000 0.155 375.284 353.567
X-n701-k44 701 74837.0 0.417 0.592 41.181 39.263 0.000 0.194 205.358 193.940 0.045 0.147 406.942 388.706
X-n716-k35 716 39434.0 0.320 0.543 43.358 42.821 0.010 0.219 217.888 209.844 0.000 0.094 431.691 411.798
X-n733-k159 733 123851.0 0.270 0.353 42.534 40.725 0.052 0.143 206.267 196.256 0.000 0.095 414.929 392.652
X-n749-k98 749 71545.0 0.245 0.546 40.072 38.405 0.145 0.211 201.313 193.609 0.000 0.112 400.338 384.891
X-n766-k71 766 103657.0 0.179 0.357 47.525 44.975 0.035 0.130 237.472 229.031 0.000 0.138 475.340 450.568
X-n783-k48 783 66085.0 0.133 0.365 42.253 40.477 0.020 0.204 209.536 189.739 0.000 0.126 419.047 407.896
X-n801-k40 801 67122.0 0.054 0.236 43.357 40.522 0.055 0.120 214.408 206.407 0.000 0.071 430.650 412.779
X-n819-k171 819 144690.0 0.274 0.492 41.399 39.827 0.037 0.178 195.672 190.212 0.000 0.064 390.693 359.881
X-n837-k142 837 175138.0 0.285 0.439 50.763 49.457 0.073 0.167 227.473 214.507 0.000 0.079 456.169 436.037
X-n856-k95 856 81204.0 0.084 0.191 51.755 50.797 0.010 0.117 251.409 245.692 0.000 0.064 503.410 479.781
X-n876-k59 876 90507.0 0.336 0.762 47.952 47.577 0.033 0.427 228.328 223.577 0.000 0.170 444.913 435.728
X-n895-k37 895 49904.0 0.383 0.644 43.394 41.472 0.170 0.347 213.465 207.092 0.000 0.153 419.581 395.048
X-n916-k207 916 298667.0 0.398 0.507 48.751 47.117 0.067 0.179 236.869 228.939 0.000 0.093 449.745 421.801
X-n936-k151 936 120742.0 0.476 0.634 50.860 48.843 0.074 0.280 247.007 238.961 0.000 0.294 493.780 479.244
X-n957-k87 957 78057.0 0.186 0.245 50.217 48.598 0.000 0.105 249.290 242.193 0.035 0.075 496.077 473.039
X-n979-k58 979 108570.0 0.157 0.269 54.610 52.779 0.000 0.074 274.911 263.375 0.002 0.053 546.628 524.792
X-n1001-k43 1001 66711.0 0.429 0.763 44.729 43.883 0.100 0.330 221.390 214.297 0.000 0.229 438.371 428.170
Avg 0.124 0.323 41.283 34.172 0.032 0.160 206.805 163.705 0.009 0.105 412.839 322.414

79

Table 3.31: Full results for dataset XXLH
Instance Size BKS FSPD FSPD-mid FSPD-long

Best Avg Time* Time Best Avg Time* Time Best Avg Time* Time
Leuven1 3001 114189.0 0.902 1.192 57.257 56.821 0.123 0.335 287.228 284.111 0.000 0.133 572.301 566.699
Leuven2 4001 76187.0 1.244 1.657 76.717 75.283 0.224 0.498 390.784 384.092 0.000 0.143 782.492 774.700
Antwerp1 6001 277391.0 1.270 1.539 64.310 64.228 0.269 0.357 316.557 315.305 0.000 0.101 633.918 628.605
Antwerp2 7001 185142.0 2.138 2.396 67.286 67.134 0.214 0.620 343.886 341.744 0.000 0.255 699.515 694.561
Ghent1 10001 271224.0 1.670 1.812 83.367 83.336 0.382 0.550 403.475 402.782 0.000 0.054 803.289 801.747
Ghent2 11001 163972.0 2.641 2.958 88.894 88.586 0.564 0.836 459.459 458.249 0.000 0.381 940.444 935.345
Brussels1 15001 302630.0 1.966 2.034 101.942 101.877 0.436 0.609 492.033 491.384 0.000 0.065 982.451 981.226
Brussels2 16001 222184.0 2.984 3.393 114.324 114.149 0.659 0.776 568.799 567.907 0.000 0.164 1159.963 1157.090
Flanders1 20001 4070908.0 1.271 1.410 147.368 147.303 0.358 0.486 690.899 690.719 0.000 0.118 1374.369 1373.876
Flanders2 30001 2692883.0 3.205 3.331 183.312 183.233 0.876 1.007 805.964 805.780 0.000 0.196 1607.350 1606.307
Avg 1.929 2.172 98.478 98.195 0.411 0.607 475.908 474.207 0.000 0.161 955.609 952.016

Table 3.32: Full results for dataset XXLQ
Instance Size BKS FSPD FSPD-mid FSPD-long

Best Avg Time* Time Best Avg Time* Time Best Avg Time* Time
Leuven1 3001 151052.0 0.441 0.539 64.564 63.882 0.000 0.108 319.472 316.041 0.014 0.070 638.852 631.708
Leuven2 4001 92568.0 0.646 0.850 70.139 69.701 0.178 0.349 353.287 349.661 0.000 0.184 705.398 693.365
Antwerp1 6001 372610.0 0.542 0.588 75.213 75.146 0.098 0.164 376.007 374.818 0.000 0.062 749.548 745.529
Antwerp2 7001 234127.0 1.255 1.376 69.584 69.367 0.229 0.393 354.702 352.865 0.000 0.112 713.130 710.750
Ghent1 10001 365274.0 0.798 0.884 97.661 97.512 0.132 0.207 484.013 483.687 0.000 0.045 971.599 969.672
Ghent2 11001 209515.0 1.328 1.512 88.300 88.148 0.203 0.316 458.872 458.001 0.000 0.069 925.009 922.058
Brussels1 15001 395568.0 1.219 1.289 112.614 112.531 0.277 0.370 549.912 549.177 0.000 0.054 1097.312 1096.318
Brussels2 16001 282942.0 2.056 2.242 112.724 112.632 0.345 0.503 558.367 557.181 0.000 0.096 1113.451 1112.731
Flanders1 20001 5580410.0 0.719 0.816 161.615 161.567 0.241 0.277 786.900 786.724 0.000 0.096 1555.288 1553.964
Flanders2 30001 3513440.0 2.640 2.740 179.397 179.353 0.410 0.530 809.293 808.998 0.000 0.155 1612.299 1611.561
Avg 1.164 1.283 103.181 102.984 0.211 0.322 505.082 503.715 0.001 0.094 1008.189 1004.766

Table 3.33: Full results for dataset XXLT
Instance Size BKS FSPD FSPD-mid FSPD-long

Best Avg Time* Time Best Avg Time* Time Best Avg Time* Time
Leuven1 3001 177105.0 0.352 0.460 66.059 65.580 0.119 0.209 329.082 325.810 0.000 0.109 654.726 648.416
Leuven2 4001 103576.0 0.703 1.292 66.227 65.534 0.058 0.307 324.347 319.930 0.000 0.116 645.503 640.436
Antwerp1 6001 434312.0 0.459 0.511 77.686 77.531 0.100 0.145 386.221 385.180 0.000 0.056 774.017 770.870
Antwerp2 7001 270063.0 0.928 1.065 69.609 69.460 0.188 0.314 354.793 353.611 0.000 0.095 707.649 704.445
Ghent1 10001 429480.0 0.597 0.650 100.929 100.780 0.144 0.177 491.837 491.042 0.000 0.020 974.587 973.866
Ghent2 11001 238958.0 1.485 1.713 85.479 85.430 0.262 0.339 440.448 440.102 0.000 0.086 883.547 880.552
Brussels1 15001 461696.0 0.874 0.998 115.473 115.421 0.237 0.279 561.922 561.132 0.000 0.047 1118.340 1117.921
Brussels2 16001 321980.0 1.817 1.938 110.023 109.885 0.408 0.475 539.192 538.846 0.000 0.110 1085.982 1084.337
Flanders1 20001 6599087.0 0.621 0.669 166.781 166.713 0.163 0.200 813.679 813.454 0.000 0.062 1628.515 1627.951
Flanders2 30001 4053751.0 2.285 2.355 176.767 176.728 0.269 0.414 791.934 791.663 0.000 0.071 1583.334 1582.927
Avg 1.012 1.165 103.503 103.306 0.195 0.286 503.345 502.077 0.000 0.077 1005.620 1003.172

80

Chapter 4

Daily Planning of Acquisitions and
Scheduling of Dynamic Downlinks
for the PLATiNO Satellite

PLATiNO is a small Synthetic Aperture Radar Earth observation satellite launched in 2023. The
operational life of the satellite is controlled by an activity plan, generated on a routine basis, which
includes acquisitions, maneuvers, and downlinks. The aim of the plan is to satisfy as many requests
as possible, thus maximizing the satellite exploitation, without violating platform constraints. We
develop a genetic algorithm, which is hybridized with repair procedures to fix infeasible solutions
and local search operators to quickly identify high-quality local optima. In addition, we model the
problem using Mixed Integer Linear Programming formulations to provide tight estimations of the
optimal solution value. We test our heuristic algorithm on several realistic benchmark instances
derived from real-world data provided by Thales Alenia Space Italia and compare the quality of the
solutions with the bound values produced by the formulations. The computational results show
that our approach is able to compute near-optimal solutions within computing times that are fully
compatible with the real-world application.

4.1 Introduction

PLATiNO is a program managed by Agenzia Spaziale Italiana (ASI), the Italian Space Agency, fo-
cused on the development of a small satellite (50-300 kg) platform, characterized by a high level of
adaptability to specific customer needs and easy-tailored for a wide set of Earth observations and
telecommunication missions and constellations. PLATiNO program includes the development of
two satellites: PLATiNO-1, equipped with a Synthetic Aperture Radar (SAR) sensor, and PLATiNO-
2, equipped with a Thermal Infra-Red sensor, launched in 2022 and 2023, respectively.

PLATiNO-1, from now on referred to as PLATiNO, is a civil EO SAR mission aimed at monitoring
the Mediterranean area; imaging can be performed both in passive and active modes, with a ground
resolution of up to 1 meter.

The mission is split into two phases, lasting 1 and 1.5 years respectively:

• In Phase 1 the satellite will be in formation with either a COSMO-SkyMed or “Cosmo Seconda
Generazione” satellite, at 619 km altitude. In this phase, the PLATiNO SAR sensor will mainly
work as a bistatic SAR, a configuration in which the COSMO-SkyMed SAR is the transmitter
while the PLATiNO SAR is the receiver.

• During Phase 2, the satellite orbit altitude will be reduced to 410 km, and the SAR sensor will
mainly operate in monostatic mode, working both as a transmitter and a receiver.

Thales Alenia Space Italia (TASI), in collaboration with the CIRI-ICT inter-department research cen-
ter of the Alma Mater Studiorum University of Bologna, developed an efficient and effective genetic

81

algorithm for the PLATiNO mission planner.

This mission planner algorithm takes into account several specific mission constraints, which in-
clude:

1. Absence of SAR electronic steering: PLATiNO antenna is fixed to the platform and a limited set
of directive beams is available. This implies that the satellite has to reorient the SAR antenna at
each new acquisition. In this scenario, the algorithm has to plan sets of acquisitions requiring
a similar off-nadir angle (and so similar platform attitude), provided that some operational
constraints are satisfied.

2. Management of high-priority acquisitions occurring during data downlink: PLATiNO requires
flexible planning including data downlink interruption, fast re-orientation and acquisition,
and downlink resumption. For this reason, the PLATiNO planning algorithm must take into
account flexible and dynamic management of the downlink activities, in which time windows
have to be automatically adjusted to maximize the total number of acquisitions while satisfy-
ing the satellite operational constraints.

A noteworthy distinction in this problem compared to several previous studies in the literature (see
Section 4.2) is that downlink activities must be scheduled in their respective downlink opportunities
and they may also conflict with acquisition opportunities.

The primary goal of this collaboration is the development of a "solver-free" heuristic algorithm that
can run within a short computing time (i.e., at most 5 minutes, single-thread on a standard PC),
thus providing a base-prototype for further development by the TASI team. To this end, this paper
introduces a novel mission planning algorithm that allows flexible acquisition scheduling while con-
sidering various mission constraints, such as satellite memory management and dynamic schedul-
ing of downlink activities. The proposed heuristic is computationally evaluated on a benchmark of
realistic instances provided by TASI. Furthermore, we define both exact and relaxed mathematical
formulations of the problem, which enabled us to compute upper bounds on the optimal solution
values. Given the effectiveness of modern commercial optimization solvers, especially when ap-
plied to a subset of the test instances, we have designed and tested a number of math-heuristics as
possible competitors to the algorithm developed for TASI.

The rest of the paper is organized as follows. Section 4.2 surveys the current state-of-the-art on rel-
evant planning algorithms, whereas Section 4.3 provides a comprehensive description of the key
features and constraints of the PLATiNO mission planning. In Section 4.4 we introduce a mathemat-
ical formulation of the problem and a relaxation that allows to compute tight dual bounds. Section
4.5 presents the details of our proposed heuristic algorithm. Section 4.6 discusses the formulation
used to compute an upper bound, while Section 4.7 introduces formulation-based competitors. Ex-
perimental results are presented in Section 4.8. Finally, in Section 4.9, we review the achieved results,
discuss potential algorithm extensions, and outline future activities.

4.2 Literature Review

There is a large literature facing the scheduling of satellite activities in both single and multi-satellite
environments. In this section, we mainly review single-satellite problems and algorithms used to
solve them, as this is the target of the current research. We refer to Barkaoui and Berger (2020),
Wang, Demeulemeester, and Qiu (2016), Wang et al. (2015) for a comprehensive overview of the al-
gorithms proposed for this class of problems. Each contribution in the literature is typically tailored
towards the resolution of a specific industrial scenario, using a precise satellite model and handling
specific features and constraints. Most real-world problems are, as expected, solved by means of
heuristic approaches due to the need to obtain high-quality solutions for large instances in short
computing time. Many heuristics are based on greedy constructive algorithms Bensana et al. (1999),
possibly with look-ahead and back-tracking capabilities Bianchessi and Righini (2008), genetic algo-
rithms Li, Xu, and Wang (2007), Mansour and Dessouky (2010), tabu search Vasquez and Hao (2001),
Bensana et al. (1999), Cordeau and Laporte (2005), Lin and Liao (2004), Lin et al. (2005) and iterated
local search Peng et al. (2018). The literature also includes a few exact algorithms, mainly based on
dynamic programming Gabrel and Vanderpooten (2002), Hall and Magazine (1994), Lemaitre et al.
(2002) and Russian doll search Bensana et al. (1999), Benoist and Rottembourg (2004).

82

The problems addressed also depend on the type of satellite that is used. For example, SPOT5
satellites Mansour and Dessouky (2010), Vasquez and Hao (2001), Zhang et al. (2013), Bensana et al.
(1999) only perform acquisitions starting at fixed times (i.e., determined apriori), whereas Agile
satellites Li, Xu, and Wang (2007), Liu et al. (2017), Tangpattanakul, Jozefowiez, and Lopez (2015)
are more flexible and can postpone or anticipate acquisitions within specific time-windows possibly
at the expense of the quality of the resulting image. In most problems, the management of the
satellite memory, as well as the scheduling of downlink activities, is typically neglected or strongly
approximated. For example, in Li, Xu, and Wang (2007), Liu et al. (2017), Mansour and Dessouky
(2010), Vasquez and Hao (2001), Luo et al. (2017), Bensana et al. (1999), Lin and Liao (2004), Lin et al.
(2005) the satellite memory is only modeled using a capacity constraint, whereas downlink activities
are not taken into account. A notable exception is given in Bianchessi and Righini (2008), where a
satellite is considered that can perform acquisition and downlink operations at the same time, with
no need to account for the latter during the planning of the former activities.

Conversely, with the PLATiNO satellite, as discussed in the introduction, both acquisition and
downlink activities must be scheduled; in addition, the former operations may even overlap with
downlink visibility windows, generating a race over the use of the satellite. The acquisition win-
dows (namely, the sensing start and stop times) are computed by a dedicated algorithm, invoked
before the start of the planning phase. This is due to the need to maximize the quality of the image:
all the programming parameters of the SAR sensor are computed taking into account a series of in-
puts, such as the acquisition mode, the area of interest, and the morphology of the terrain. Therefore,
similarly to the SPOT5 satellites, from a “planning” point of view, the acquisitions do not require to
be scheduled inside a given time window, but only to be selected (i.e., planned).

4.3 Problem Description

The PLATiNO planning and scheduling problem requires to determine an optimal set of acquisition
requests (ARs) that the satellite has to serve during a given time horizon. Each AR is associated
with a geographical area, and is characterized by a positive priority and by a positive memory size.
As the satellite may pass several times over the same geographical area, each AR can be satisfied
within different data-take opportunities (DTOs), each associated with a time window during which
the satellite may acquire a picture of the required area while meeting strict quality requirements.
The overall objective of the problem is to maximize the sum of the priorities of the selected ARs.
An acquired DTO is stored in the satellite memory. Given the finite capacity of this memory, stored
acquisitions have to be sent back to Earth during specific downlink opportunities (DLOs), each defined
by a time window associated with the visibility cone of a ground station antenna. In the PLATiNO
satellite, while DTO and DLO time windows can overlap, the satellite can perform only one of these
operations at a time.

During a DLO, multiple acquisitions are downlinked, following a predefined set of criteria depen-
dent on the particular scenario in which the PLATiNO satellite is employed. As discussed in Section
4.3, a simplified yet well-defined downlink policy has been designed to encapsulate the complexities
and underlying principles of real-world scenarios.

Note that, regardless of the downlink policy, it may not be possible to downlink all stored acquisi-
tions during the current satellite plan; in this case, the remaining stored data are considered part of
the initial satellite storage during the planning activity of the following day. Finally, in some pre-
determined time windows, called platform activity windows (PAWs), the satellite is unavailable (e.g.
because it has to perform orbit correction activities) and neither acquisition nor downlink can be
executed. Thus, neither DTOs nor DLOs may overlap with PAWs. In general, however, PAWs can
be managed during a preprocessing step, by removing (or resizing) all activities overlapping with a
PAW.

Typically, the large number of potential ARs and the constraints of the satellite make it impossible
to serve all requests. It is thus necessary to set up an optimization tool to select a subset of ARs that
is eventually served during the planning horizon.

In the following, we list the operational and physical constraints ruling the PLATiNO satellite activ-
ities.

83

Time conflicts As the satellite can perform one operation at a time, all planned operations must
be executed sequentially. This implies that the time windows for each pair of planned activities
(i.e., DTO, DLO, or PAW) must not overlap. In addition, a minimum time between the end of an
activity and the start of the following one must be guaranteed, because the satellite must complete
the possibly required maneuvers. The maneuver time depends on the current satellite attitude and
on the forthcoming activity that has to be performed. Indeed, each activity is in fact associated
with a specific attitude describing the orientation in space that the satellite must set up in order to
accomplish it. In addition, to perform an acquisition and obtain a clear picture, the satellite has to
be stabilized, an operation that requires a constant stabilization time.

Operational profile The satellite must not exceed a maximum number of acquisitions for any orbit
around the Earth. Given that the satellite performs many orbits of the same duration during its daily
schedule, this constraint is modelled by imposing a maximum number of acquisitions in any rolling
window of that duration. We observe that, this constraint implicitly limits the energy consumption
of the satellite during its activities.

Memory The satellite has an internal storage with limited capacity, that cannot be exceeded. Dur-
ing DLOs, data that have been stored during acquisitions can be transmitted, thus releasing some
memory.
Though being an approximation of the real one, the downlink policy that is considered has a prac-
tical relevance from the application side. We assume that acquired data can be downloaded at a
constant rate, which depends on the specific satellite used and which imposes an upper bound on
the amount of data that can be transmitted to the Earth in a given downlink window. In addition,
only complete acquisitions can be transmitted, i.e., partial downlink of the data for later completion
is not allowed. Finally, the total amount of used memory at the end of the planning cannot exceed a
given threshold, to avoid overconstrained situations in the following schedule.

The problem can be formally stated as follows. Let A be the set of ARs to be fulfilled. Let D =
{1, ..., N} be the set of N DTOs and Λ = {1, ..., L} be the set of L DLOs. Without loss of generality,
we assume that both sets D and Λ are sorted by non-decreasing starting time of the activities.

Each AR may be satisfied by different DTOs; in particular, for each AR a ∈ A, we denote by DAR
a ⊆ D

the set of DTOs that allow acquisition of AR a.

Each DTO i ∈ D associated with an AR a ∈ A (i.e., i ∈ DAR
a) is associated with

• the priority pi of AR a;

• the amount of memory mi occupied by AR a;

• a start time si and a finish time fi during which the satellite may capture the image.

For each pair (i, j) of distinct DTOs, we denote by γ(i, j) the maneuver-time needed for setting the
satellite up to acquire DTO j right after DTO i; we assume that this value includes the time needed
for stabilization of the satellite as well.

Each DLO l ∈ Λ is characterized by a time window [σl , ϕl] during which the satellite can downlink
acquisitions. To perform a downlink, the satellite’s orientation has to be set to maintain alignment
with the ground-based antenna. The technical time for this operation depends on the last acquired
DTO. For this reason, for each DTO i and DLO l, we denote by γ+

l (i) the maneuver time needed to
transition from the DTO acquisition to hte DLO operation. Conversely, we let γ−l (i) denote the time
needed for the transition from DLO l to DTO i.

Finally, the problem is characterized by the following parameters:

• Torbit is the time needed by the satellite to complete an orbit around the Earth;

• Cmax is the maximum number of acquisitions that the satellite can perform during a single
orbit;

• Tacq is the minimum time between two planned acquisitions, even if no maneuvers are needed;

• Rdl is the downlink rate, i.e., the amount of memory freed per unit of time during a downlink
activity;

84

• Mtot is the maximum satellite memory that can be used at any given time;

• Minit is the initial satellite memory occupation;

• M f in is the maximum final memory occupation.

We assume Minit ≤ M f in ≤ Mtot, i.e., that the initial memory is smaller or equal than the final one,
thus ensuring that an empty plan is always a feasible solution.

The problem calls for the determination of a scheduling of the satellite activities, and for determining
a sequence of DTOs and DLOs so that feasibility constraints are satisfied and the sum of the priorities
of selected ARs is a maximum.

4.4 Mathematical Formulation

We now present a mathematical formulation of the problem described above.

For each DTO i ∈ D, we introduce a binary di with the following meaning:

di =

{
1 if DTO i is inserted into the plan
0 otherwise i ∈ D.

The objective function is then

max ∑
i∈D

di pi (4.1)

subject to the constraint hereafter defined.

4.4.1 General scheduling constraints

The first set of constraints impose that, for each AR a ∈ A, at most one associated DTO is selected,
namely

∑
i∈DAR

a

di ≤ 1 a ∈ A (4.2)

There must be enough time between two planned DTOs for the satellite to accomplish the necessary
maneuvers. Note also that a minimum time Tacq must always be considered between two successive
acquisitions.

di + dj ≤ 1, ∀ i, j ∈ D : (si ≤ sj) ∧ (fi + max{Tacq, γ(i, j)} > sj) (4.3)

For any given orbit time window Torbit, the number of acquisitions must not be greater than a con-
stant value Cmax, which depends on the antennas’ uplink capabilities and on satellite energy con-
sumption.

∑
i∈D:

sj≤si<sj+Torbit

di ≤ Cmax j ∈ D (4.4)

4.4.2 Memory management

To model memory management through the plan, we define a set of time intervals [s, f] with s, f
being two arbitrary time instants of the plan. Let us define the parameterized subsets Ds f = {i ∈
D : si < f ∧ fi > s} containing all the DTOs whose time windows overlap the time interval start-
ing at s and ending at f . For each interval defined in the next paragraphs, we will introduce the
corresponding binary variables ts f that express if a given time window is active in the model.

85

A necessary requirement for any interval to be considered active is that no DTO that overlaps with
that interval has been selected. Therefore, for any variable ts f that will be introduced, the following
constraint is enforced:

ts f ≤ 1−
∑i∈Ds f

di

|Ds f |
(4.5)

Then, we consider 4 scenarios.

DLO intervals Given a DLO l ∈ Λ, we define the interval [σl , ϕl]. The corresponding variable tσl ϕl
does not require additional constraints, because (4.5) already models the activation criterion.

DLO to DTO intervals Let us consider a DLO l ∈ Λ and a DTO i ∈ D, we define the values
sl

i = si − γ−l (i) as the time instant at which any downlink activity has to be stopped to leave enough
time for the maneuver towards DTO i ∈ D. DLO to DTO intervals are defined between the start of
any DLO l ∈ Λ and each sl

i with i ∈ D : σl < sl
i < ϕl . The corresponding variables tσl sl

i
require the

additional activation constraints:

tσl sl
i
≤ di l ∈ Λ, i ∈ D : σl < sl

i < ϕl (4.6)

since, to be considered active, the corresponding DTO i has to be selected in the plan.

DTO to DLO Intervals Symmetrically with the previous case, we model the ending part of the
DLO windows considering the intervals [f l

i , ϕl] for each DLO l ∈ Λ and DTO i ∈ D : f l
i < ϕl .

Similarly to time instant sl
i , the values f l

i = fi + γ+
l (i) are defined to account for the first time

instant from which downlink operations can start when DTO i ∈ D is executed. The corresponding
variables t f l

i ϕl
require the additional activation constraints:

t f l
i ϕl
≤ di l ∈ Λ, i ∈ D : σl < f l

i < ϕl (4.7)

DTO to DTO Intervals Finally, the fourth case represents all the intervals between pairs of DTOs
i, j ∈ Dσl ϕl : fi < sj overlapping a given DLO l ∈ Λ. These intervals are active if constraints (4.5) are
satisfied and if DTOs i and j are both selected in the plan.

t f l
i sl

j
≤

di + dj

2
l ∈ Λ, i, j ∈ Dσlϕl : fi < sj (4.8)

Occasionally, given two intervals [s1, f1] and [s2, f2], it might happen that both s1 = s2 and f1 =
f2 hold true, resulting in a naming conflict for the symbols defined for such intervals. While this
presents a symbol-naming issue, it can be trivially addressed by introducing an index to distinguish
between duplicated sets of names. However, for clarity’s sake, we do not apply such a notation in
the present description, assuming that such a case does not happen.

Intervals Aggregation

In light of the definition of the set of intervals corresponding to variables t, a straightforward ap-
proach to model the acquisition downlink would involve defining binary variables that indicate
whether a given DTO is downlinked during a particular time interval. However, it becomes evident
that the number of intervals increases quadratically with the number of DTOs overlapping each
DLO. Multiplying this quantity by the number of DTOs can result in a model that quickly grows in
size, making it challenging to solve, even for relatively small instances. As a consequence, due to the
fact that only one of two overlapping time intervals can be chosen at any given moment, we group
such intervals together to reduce the number of required variables. For the sake of brevity, we focus
on describing solely the formulation derived after this aggregation.

As just mentioned, overlapping intervals are inherently mutually exclusive, meaning that only one
can be active at any given time. Furthermore, within each interval, only DTOs that have been ac-
quired beforehand can be downlinked, while DTOs coming after the starting time of the interval
remain non-downlinkable due to either their temporal position or overlapping status.

86

Grouping overlapping intervals that share the same initial time instant significantly reduces the
number of downlink variables. To illustrate this concept, consider Figure 4.1: if a DLO encompasses
four overlapping DTOs, it results in the generation of 15 potential interval variables, which is pro-
portional to the square of the number of overlapped DTOs. However, by aggregating intervals with
an identical starting time instant, the number of clusters remains linear and equals the number of
DTOs plus one.

1

2

3

4

5

DLO

DTOs

Figure 4.1: Illustration of grouping intervals resulting from DTO and DLO overlapping.

For each cluster of intervals, identified by their starting time, and for each potentially acquired DTO
(those whose time window ends before the start of the cluster), we can introduce a binary variable
denoted as y:

ysi =

{
1 if DTO i ∈ D is downlinked during an interval starting at s
0 otherwise l ∈ Λ

Here, for a given DLO l ∈ Λ, the time instants take values in the set

s ∈ Sl = {σl} ∪ { f l
i ∀i ∈ D : σl < f l

i < ϕl}.

Each y variable can only be active if one of the underlying intervals is active. Additionally, the total
memory downlinked within the cluster cannot exceed the maximum memory that can be down-
linked during the currently active interval. Both conditions can be enforced through a single con-
straint:

∑
i∈D:
f l
i <s

mkysi ≤
[
(ϕl − s)tsϕl + ∑

i∈Dsϕl

(sl
i − s)tssl

i

]
RD l ∈ Λ, s ∈ Sl (4.9)

The memory constraints are defined as follows:

∑
i∈D:
f l
i≤ŝ

midi − ∑
h∈Λ

∑
s∈Sh :
s<ŝ

∑
i∈D:
f h
i <s

miysi ≤ Mtot l ∈ Λ, ŝ ∈ Sl (4.10)

A constraint is defined at the starting time of every potential downlink operation. The first term in
the constraint represents the memory occupied by completed acquisitions, while the second term
accounts for the memory freed during the previous downlinks.

In addition to the previous constraints, a final memory test must also be performed at the very end
of the plan, to check that not only the maximum memory load is not exceeded, but also that the final

87

memory occupation requirement is met.

∑
i∈D

midi − ∑
l∈Λ

∑
s∈Sl

∑
i∈D:
f l
i <s

miysi ≤ M f in (4.11)

Given that memory load decreases monotonically during downlink operations, contrasted with its
monotonically non-decreasing profile in all other time intervals (as visually depicted in Figure 4.3),
monitoring memory load during this finite set of time instances suffices to evaluate the memory
feasibility of the plan.

Additionally, each y variable can only be equal to 1 when its corresponding DTO activation variable
is also equal to 1.

∑
l∈Λ:
σl≥ f l

i

∑
s∈Sl

ysi ≤ di i ∈ D (4.12)

4.4.3 Relaxed Memory Management

The formulation discussed in the previous section proves effective in finding optimal solutions for
many instances provided by TASI. This is particularly evident in cases where optimal plans are not
tightly constrained by memory limitations. However, when dealing with instances characterized by
heavy memory usage, the proposed formulation often fails at closing the optimization gap within a
reasonable time limit. Additionally, the resulting bound closely aligns with the one obtained when
considering the model without memory constraints, which tends to be relatively weak, as demon-
strated in Section 4.8.4. Given that memory usage is a prominent aspect of the problems under con-
sideration, we explored a relaxation of the problem. This relaxation allows us to retain the memory
aspect in the model while relaxing some constraints to simplify the optimization process.

Specifically, we make the following relaxations:

• We disregard the time required for maneuvers between DTOs and DLOs, considering only the
constant stabilization time required before each acquisition.

• We permit partial downlinking of acquisitions, actually removing the discrete nature of down-
link scheduling.

This approach treats memory occupation as a homogeneous quantity that can be increased with new
acquisitions and reduced to match the exact amount transmittable to Earth within the downlink time
windows.

Optimal solutions derived from this relaxed model allow us to compute a dual bound. This bound
becomes valuable when the complete formulation struggles to find the optimal solution, or when
optimization tasks are challenging due to problem size. Furthermore, as we describe in Section 4.6
the following relaxed model of the memory, can be merged with the exact model, even if redun-
dant, to improve the linear relaxation of the exact model and help the optimization process in both
convergence speed and feasible solution quality when the optimization is stopped because the time
limit is reached.

Similar to the complete model, the relaxation uses variables:

di =

{
1 if DTO i ∈ D is inserted into the plan
0 otherwise i ∈ D

The objective function and constraint from (4.1) to (4.4) remain unchanged. All variables and con-
straints related to exact memory management described in Section 4.4.2 are disregarded. Instead,
we introduce additional constraints to model the satellite memory and downlink management re-
quirements in a relaxed way. To achieve this, we introduce two sets of continuous variables denoted
as δ and µ. For each DLO l ∈ Λ, δl and µl represent the amount of memory downlinked during DLO
l ∈ Λ and the amount of memory occupied at the beginning of DLO l ∈ Λ, respectively.

88

The following constraint establishes the amount of memory used at the beginning of the first DLO,
scheduled at time σ0:

µ0 = Minit + ∑
i∈D:
si≤σ0

dimi (4.13)

Subsequent values of µl+1 for l ∈ Λ \ {L} are computed based on µl , incorporating the memory of
DTOs acquired in between and subtracting the estimated memory freed during DLO l:

µl+1 = µl − δl + ∑
i∈D:

σl<si≤σl+1

dimi l ∈ Λ \ {L} (4.14)

To impose constraints on memory capacity, we bound variables µ as follows:

µl ≤ Mtot l ∈ Λ (4.15)
(4.16)

Finally, the memory usage at the end of the plan is constrained by:

µL − δL + ∑
i∈D:
si≥σL

dimi ≤ M f in (4.17)

To limit the amount of memory downlinked during each DLO, we impose bounds on the δ variables.
First of all, constraints (4.18) ensure that the memory freed does not exceed the satellite’s capability
to free memory during the given time window. The time window is defined by subtracting the time
spent acquiring the DTOs that overlap with the DLO from its length:

δl ≤
[
(ϕl − σl)− ∑

i∈Dσl ϕl

di(min{ fi, ϕl} −max{si, σl})
]

RD l ∈ Λ. (4.18)

Note that we could not use sl
i and f l

i values to obtain a tighter bound accounting for maneuver
times in the previous constraints. This is due to DTO–DTO transitions that make the use of sl

i and f l
i

inappropriate since they would account for maneuvers from and towards the DLO l ∈ Λ that does
not take place.

Constraints (4.19) ensure that the memory downlinked does not exceed the memory used:

δl ≤ µl + ∑
i∈D:

σl<si∧ fi<ϕl

dimi l ∈ Λ (4.19)

Model (4.1) – (4.4), (4.13) – (4.19) can be solved directly using a MILP solver, allowing for the quick
computation of an upper bound on the optimal solution value.

4.5 Genetic Algorithm Solution Approach

As previously mentioned, a key requirement for our collaboration with TASI was to avoid using
solver-based techniques. This requirement stemmed from TASI’s intention to adopt the proposed
approach for various satellite classes and different downlink policies, which may not always be
compatible with a concise and efficient mathematical formulation. To address this challenge, we
chose to employ a custom heuristic technique.

To solve the PLATiNO planning and scheduling problem, we propose a metaheuristic based on the
genetic algorithm (GA) paradigm. Initially, an initial population is generated using a randomized
constructive heuristic. Subsequently, the standard GA phases of selection, crossover, and mutation
are executed until a termination criterion is met, such as a predefined number of iterations or a time
limit. Since crossover and mutation may yield solutions that violate one or more constraints, we

89

Initial Population
Generation

Update
Best Solution

Is Termination

Condition Met?

Yes

No
Elitism Parent

Selection

Crossover

Replace
Population

MutationRepairLocal Search

Elite
Refinement

Return
Best Solution

Figure 4.2: High-level structure of the proposed genetic algorithm.

employ a set of repair procedures to ensure the feasibility of the solutions. Additionally, we enhance
the GA by incorporating local search procedures designed to increase the likelihood of discovering
local optima corresponding to high-quality solutions.

The high-level structure of our proposed approach is illustrated in Figure 4.2, and the subsequent
sections provide detailed descriptions of each step.

4.5.1 Individual Representation

Each individual of the population, encoding a problem solution, consists of the sequence of planned
DTOs sorted according to their starting time. A plan does not contain DLOs or PAWs but implic-
itly encodes them in the time intervals between planned DTOs. Downlink activities are scheduled
whenever enough time is available during a DLO window, keeping into account the satellite ma-
neuvers. More details about the DLO scheduling are given in Section 4.5.9. Finally, the fitness of a
plan is defined by the sum of the priorities of served ARs.

4.5.2 Initial Population Generation

The initial population is created by using a simple greedy randomized constructive heuristic able to
generate an arbitrary number of (probably) unique initial feasible plans. More precisely, each plan
is generated by the following steps:

1. DTOs are randomly shuffled.

2. DTOs are considered, one at a time, in the order resulting from the shuffling. A DTO is added
to the plan if the following joint conditions are satisfied:

• it serves an AR not already served by the current plan;

• adding the DTO does not introduce a time conflict with any other DTO in the plan.

3. Once all DTOs have been considered, a possibly overfilled plan, yet satisfying the time conflict
constraint, has been generated.

4. In order to obtain a plan that is feasible with respect to the remaining constraints, repair pro-
cedures (later described in Section 4.5.7) are applied. More precisely, these procedures are
executed sequentially by checking and, in case of violations, fixing first the operational profile,
and then the memory constraint.

The above procedure is executed n̄ times, then the |P| plans with the highest fitness value are selected
to be the initial solutions for population P.

4.5.3 Elitism

Elitism, initially introduced in De Jong (1975), is a simple technique that consists of retaining a
fraction of the best-fit plans within subsequent generations so that they are not lost (and thus not
selected during the parent selection phase) due to the application of crossover or mutation. In our
implementation, just before the parent selection phase, we replace the worst plan in the population
with the best (or elite) plan found up to the current iteration.

90

4.5.4 Parent Selection

The selection of pairs of plans, called parents, that is used in the subsequent crossover phase, follows
a variation of the classical fitness-proportional (or roulette wheel) selection method. Both parents
are randomly selected, however, the probability pi of selecting plan i as the first parent is defined as
pi = fi/ ∑j∈P f j where fi denotes the fitness, equal to the objective function, of plan i and P is the
set of plans defining the population. The second parent is, instead, uniformly randomly selected.
Because the crossover (described in Section 4.5.5) generates a single offspring from a pair of parents,
a number of pairs equal to the number of individuals in the population are selected.

4.5.5 Crossover and Elite Refinement

The crossover design is crucial in tightly constrained problems. A completely random crossover
would in fact produce strongly infeasible offspring (i.e., new plans derived from already existing
ones), exacerbating the effects of repair procedures, which would recover solutions feasibility at the
expense of a heavy perturbation, thus possibly wasting most of the potential advantages given by
the recombination of parents. For this reason, we designed two crossover variants, called multi-point
and local-search crossovers, that both preserve at least the time conflict feasibility of the generated off-
spring and ensure each AR is served by a single DTO. This way, the new offspring, being much closer
to feasibility, are less perturbed by the application of the repair procedures. The two crossovers are
applied in distinct phases of the algorithm, to better exploit their characteristics. During each gen-
eration, the multi-point crossover is applied with probability pc = 0.90 to the pair of parents chosen
by the parent selection procedure. Once all pairs have been processed, the population is entirely
replaced by the newly generated offspring. When for a pair of parents the crossover is not applied,
they are simply copied unchanged into the new population. The local search crossover, instead, is
applied at the end of each generation during the elite refinement procedure to further enhance the
elite plan. The following paragraphs provide a detailed description of both procedures.

Multi-point crossover The multi-point crossover combines two parents to generate a new plan.
The resulting plan is defined by crossing multiple times parents in such a way as to ensure that each
AR is not served more than once and there is no time conflict constraint violation.

The procedure starts by setting two indices, i1 and i2, to the beginning of the first and second parent,
respectively, and by creating a new empty plan P . A value n is randomly chosen such that, on
average, the new plan P is obtained by crossing the parents a desired number of times. Next, the
sequences of DTOs of the first parent indexed between i1 and i1 + n− 1 included and of the second
parent indexed between i2 and i2 + m − 1 are compared. The value i2 + m − 1 is the index of the
last DTO of the second parent having a finish time smaller than the finish time of DTO indexed
by i1 + n in the first parent. A fitness value is computed for each sequence by simulating their
insertion into plan P . During this procedure, DTOs serving an already served AR or violating the
time conflict constraint are removed from their respective sequence. Finally, the resulting sequence
with the largest fitness value is inserted into P . Indices are updated to i1 = i1 + n and i2 = i2 + m
and they are further increased until they both point to the first DTO, in the respective parent, that
does not conflict with the current last DTO of plan P , taking into account also the maneuvers time.
Once both parents have been scanned, a newly created plan P , possibly violating the operational
profile and memory constraints, has been created.

Local-search crossover As the multi-point crossover, the local-search one combines two parents to
generate a single offspring. The procedure can be seen as a sort of local search operator generating a
new plan resulting from the possible improvement of the first parent by using the second as a source
of sequences of DTOs.

First, a list of common DTOs found in both parents is created. This list induces a partitioning of both
parents into consecutive intervals between two common DTOs, called segments. For each interval,
the fitness of the associated segment is computed. Whenever the second parent has a segment hav-
ing a better fitness than the original one, the former is used to replace the latter, thus improving the
overall fitness of the first parent. Replacing a feasible sequence of the first parent with a feasible
sequence of the second one preserves the time conflict feasibility, however, as for the multi-point

91

crossover, no check is done regarding the memory and operational profile constraints, which are
then repaired at the end of the procedure in order to make the newly generated plan feasible.

Because this particular crossover is likely to create a copy of the best between the two plans, thus
drastically reducing the population diversity, it is not well suited as a crossover step during the
standard genetic algorithm phases. In the proposed algorithm, we use the local-search crossover in
the elite refinement phase (see Figure 4.2) with the aim of further improving the current elite plan
by accumulating in it the best DTO-sequences available in the current population. Let E be the elite
plan, the overall elite refinement phase, inspired by the genetic algorithm proposed by Nagata and
Kobayashi (2013), is defined as follows.

1. First, plans in the population are randomly shuffled.

2. For each plan P ∈ P (considered in the order defined by the first step):

(a) The local-search crossover is applied between the elite plan E and P resulting in a candi-
date elite plan Ê .

(b) Repair procedures are called on Ê .

(c) The candidate elite plan Ê is accepted if it is better than the elite plan E .

The procedure is performed during every generation of the genetic algorithm, and, for performance
reasons, only one iteration over the entire population is executed.

4.5.6 Mutation

Given a plan P , to avoid the premature convergence of the algorithm, a mutation is applied to each
individual in the population with probability pm = 0.45. The mutation randomly adds a number
m of DTOs serving ARs not already acquired with m equal to the nearest integer to fm · |P|. The
value of fm = 0.04 is used to scale the mutation intensity to the current plan length |P|. To increase
the level of diversification, the procedure does not check whether inserting a given DTO violates the
time conflict, operational profile, or memory constraints.

4.5.7 Infeasibility Repair Procedures

A repair procedure is associated with each problem constraint. When a plan violating a given con-
straint is detected, the corresponding repair procedure performs some changes to restore the feasi-
bility, possibly worsening the plan’s fitness. We next describe for each constraint how the associated
repair procedure restores the plan feasibility.

Time conflicts These constraints are local to every pair of consecutive DTOs, thus, enforcing the
plan feasibility after every incremental change can be done in constant time, as during the crossover
application. However, being the mutation-free to add DTOs possibly violating the current con-
straint, a repair procedure is needed. The repair procedure iterates through the plan and, whenever
a pair of consecutive conflicting DTOs is found, it removes the second one.

Operational profile Whenever an infeasible orbit time window is found (i.e., a time window cor-
responding to the duration of an orbit in which the number of planned DTOs is greater than the
predetermined limit Cmax), the procedure randomly selects a DTO from such time-window and re-
moves it. This operation is repeated until the orbit becomes feasible.

Memory The satellite memory occupation is computed using the algorithm described in Section
4.5.9, taking into account constraints introduced in Section 4.3. The satellite storage occupation is
then checked before every planned downlink activity (thus potentially multiple times during the
same DLO window). Whenever the memory occupation exceeds the memory capacity, the plan
feasibility is restored by randomly removing DTOs that are currently stored, until the memory occu-
pation becomes feasible. Note that, since the downlink is computed heuristically, even the removal
of a DTO may cause a previously feasible plan to become infeasible, since the downlink order may
change. As a consequence, the memory repair procedure must be performed as the final repair
procedure, and it must be repeated until a complete scan of the plan does not report any memory

92

DTOs

DLO k

Memory

t0 t1 t2

Figure 4.3: Memory saturation representation. Given the DLO l, the satellite memory saturation is
computed before the start time of planned downlink activities (grayed areas) happening at times
t0, t1 and t2.

violation (i.e., no DTOs have been removed by the current application of the memory repair proce-
dure), which, however, happens rarely.

4.5.8 Local Search

We designed two local search procedures, denoted as SWAP01 and SWAP11, aimed at improving
the fitness of a given feasible plan. Both procedures perform simple and localized changes that
preserve the feasibility of the current plan. In particular, SWAP01 tries to find a spot in the plan
where a DTO can be inserted, while SWAP11 tries to replace a planned DTO with another one that is
not planned, provided that this change improves the plan fitness. Both procedures follow a greedy
first-improvement strategy in which the first locally feasible choice found (see the fast memory check
below) is immediately implemented, and whenever the resulting plan is globally feasible, the change
is accepted.

Fast (local) memory check Due to the downlink policy, evaluating whether a local change in a
plan violates the memory constraint cannot be accomplished in constant time. We thus introduced
the concept of memory saturation to heuristically filter out changes that may likely violate the mem-
ory constraint. More precisely, we define with satellite memory saturation, satt, the satellite memory
occupation induced by the sequence of acquisitions and downlink activities that happened up to
time t included. In particular, for a given plan, we are interested in the subset of times t correspond-
ing to the beginning of planned downlink activities. As an example, in Figure 4.3, the values of
satt0 , satt1 and satt2—identifying the satellite memory usage before performing the associated down-
link activities—can be used to quickly reject changes occurring in the interval between two planned
downlink start times. Before executing any local search procedure, these values can be computed
during a preprocessing phase in which we linearly scan the plan and store the memory occupation
before the beginning of any planned DLO (see Section 4.5.9).

Before performing any change identified by a local search move, values satt, with t appropriately
selected according to the specific change the move is currently evaluating, are checked for a quick
rejection test.

As an example, consider a SWAP01 application that is trying to insert a candidate DTO i having si
and fi as start and finish time, respectively. A time t is identified as the time associated with the first
planned downlink activity after fi. This can be efficiently done by means of a binary search, provided
that downlink activities are sorted according to their start times. Whenever mi + satt > Mtot, the
change is immediately rejected.

Note that, even if the application is locally feasible (and thus not rejected by the fast memory check),
because of the complex downlink requirements, it may result in a globally infeasible plan (e.g., the
memory storage in a subsequent part of the plan may be exceeded due to this change). Thus, in case
of acceptance, the whole plan must be checked against the memory constraint.

Similar reasoning can be done for the SWAP11 operator in which, however, the memory mj of the
replaced DTO j can be subtracted from satt whenever the candidate DTO i and the removed one j
share the same downlink activity starting at time t. The local memory rejection test then becomes
mi −mk + satt > Mtot.

Finally, once a change to the plan is accepted, memory saturation values must be recomputed.

93

Details of SWAP01

The execution of a SWAP01 move is decomposed into two sequential steps called insertion and back-
tracking. During the insertion step, a number of candidate DTOs satisfying the above-described fast
memory check as well as the time conflicts and operational profile constraints are inserted into the
plan with the aim of making it as full as possible. Candidate DTOs are identified by considering ARs
not already served in the plan under examination. The ARs order is randomized before each oper-
ator application. Then, in the second backtracking step, the resulting plan is evaluated with respect
to the standard memory constraint. As long as a violation of this constraint is identified, a randomly
selected DTO, chosen among those previously inserted in the first step, is removed. The two-step
decomposition allows for a more efficient procedure execution in which the number of times the
time-consuming memory constraint is evaluated is kept as low as possible.

Details of SWAP11

The SWAP11 operator considers replacing any planned DTO with a not planned one that has a better
fitness (i.e., priority) and fits—with respect to the satellite maneuvers—in the position of the replaced
one. To speed up the search, for each planned DTO, we can limit the set of candidate DTOs to
those time-conflicting with the planned one. This list can be composed once during a preprocessing
step.

Given a planned DTO we are trying to replace, the list of its time-conflicting DTOs is considered to
identify a candidate DTO that satisfies the fast memory check, and the operational profile constraint
and does not conflict with the previous and next planned DTO. If a candidate DTO satisfies the
above constraints and better fitness is found, the planned DTO is replaced with the candidate one,
and the memory constraint is evaluated over the complete plan. In case of violations, the change is
undone and the search continues.

Because checking whether replacing all possible planned DTOs can be very time-consuming, we
implemented a simple yet effective technique to improve the efficiency of the SWAP11 procedure
by performing a heuristic pruning of its neighborhood. The technique, which is inspired by the
Selective Vertex Caching described in Accorsi and Vigo (2021), makes each plan aware of the plan
points that have been edited during the current GA generation by storing nearby planned DTOs
into a cache. In particular, each DTO that is added to the plan is also added to the cache, while
when a DTO is removed the previous and next planned DTOs are added to the cache. The SWAP11
procedure, instead of considering all planned DTOs, considers only the DTOs found in the cache
as well as their successors and predecessors. The cache of plans in the population is cleared at the
beginning of each generation so as to focus the SWAP11 application on the limited plan points that
were recently changed during the current generation.

4.5.9 Indirect Dynamic Downlink Scheduling Algorithm

As discussed in Section 4.5.1, the representation of downlink activities does not involve a direct
encoding within an individual plan. Instead, it is derived as an outcome of the specific set of
planned DTOs. To achieve this, a deterministic algorithm called ITERATEOVERMEMORY (IOM) is
employed. This algorithm computes the memory usage pattern associated with a given plan and,
whenever a DLO provides sufficient time, it schedules the downlink of stored acquisitions through
the DOWNLINKDTOS routine. Since this operation is performed for each available downlink inter-
val, it is essential that the algorithm remains lightweight to prevent introducing significant compu-
tational overhead whenever downlink scheduling is determined. Moreover, this approach serves as
a customization point that facilitates the adaptation of downlink policies. It effectively separates the
planning logic for acquisition scheduling from the subsequent transmission to Earth.

The objective here is to select a subset of currently stored acquisitions, optimizing the release of
memory within the constraints of the downlink time capacity and the discretization requirements
outlined in Section 4.3. This problem results to be an instance of 0-1 Knapsack Problem (KP). Given
the heuristic context, we solve these KP instances using the greedy heuristic proposed by Dantzig
Dantzig (1957). In this heuristic, items are sorted based on their profit-to-weight ratio, and the
knapsack is filled by including the sorted elements until the capacity is reached.

94

It’s worth noting that employing a heuristic approach for downlink scheduling may potentially pre-
vent the overall algorithm from finding the optimal solution, particularly if achieving optimality in
downlink scheduling is critical. However, our computational tests, as detailed in Section 4.8, indi-
cate that the genetic algorithm consistently identifies near-optimal solutions despite the suboptimal
nature of the downlink scheduling process.

The algorithm receives in input the plan P , a list of DLOs D, sorted by increasing start time, and
the initial satellite memory state M, which may contain acquisitions performed during a previous
planning activity that still need to be downlinked. Algorithm 6 shows the high-level pseudocode
of procedure IOM. The algorithm iterates over both the input plan P and the sorted list of DLOs
D, emulating the acquisitions made and the memory occupation through the plan. When a down-
link operation can be executed, the DOWNLINKDTOS routine is invoked to identify which stored
acquisitions are downlinked and, thus, removed from the satellite’s internal storage. For the sake of
clarity, technical details, not relevant to the understanding of the general idea behind the algorithm,
have been omitted (e.g., the maneuvers between DLOs and DTOs).

Algorithm IOM is among the core components of the proposed approach. It is used by all func-
tionalities interacting with the satellite memory and downlink activities. In particular, it is used to
compute the memory saturation used for the fast memory check (Section 4.5.8) as well as to check
and repair the memory constraint (Section 4.5.7).

Algorithm 6: High-level pseudocode for the IOM algorithm.
1 ITERATEOVERMEMORY (P ,D, M);

Input: A plan P , a list of DLOs D sorted by start time, the initial satellite memory state M

2 begin
3 i← j← 0;
4 while (i < |P|) ∨ (j < |D|) do
5 if j < |D| then
6 if i < |P| then
7 dlstop ← min{ϕj, fPi};
8 else
9 dlstop ← ϕj;

10 end
11 if i > 0 then
12 dlstart ← max{σj, sπi−1};
13 else
14 dlstart ← σj;
15 end
16 if (dlstart < ϕj) ∧ (dlstop > σj) then
17 PREDLOFUNC(P , M);
18 DOWNLINKDTOS(M, dlstart, dlstop);
19 end
20 end
21 if (j = |D|) ∨ ((i < |P|) ∧ (fπi−1 < ϕj)) then
22 STOREDTO(M,Pi);
23 POSTDTOFUNC(P , M);
24 i← i + 1;
25 else
26 j← j + 1;
27 end
28 end
29 PREENDINGFUNC(P , M)

30 end

We denote by Pi the DTO in the position i of plan P . Moreover, dlstart and dlstop represent, for
each potential downlink activity, the start and stop time of communications with ground station
antennas. These values are defined by considering the intervals between each pair of planned DTOs
occurring during a DLO, and by assessing whether the interval can be used to downlink some stored
acquisition. Note that algorithm IOM assumes that DLOs visibility cones (and thus their associated
start and finish times) do not overlap with each other. Such an assumption is fully compatible with
the problem requirements defined by TASI.

The function DOWNLINKDTOS performs the downlink scheduling given the current satellite mem-
ory state M and the downlink activity time interval [dlstart, dlstop]. After its execution M is freed

95

from the downlinked acquisitions. On the other hand, the function STOREDTO manages newly
encountered acquisitions by storing them into M.

IOM is used to accomplish three different operations: (i) the computation of the memory saturation,
(ii) the feasibility test, and (iii) the repairing of the memory constraint. To this extent, we have
inserted three customization points called PREDLOFUNC, POSTDLOFUNC, and PREENDINGFUNC,
which are employed in the following way:

• PREDLOFUNC is called before starting a potential downlink activity at time t = dlstart, which
may eventually result in the decrease of the satellite memory occupation. It is used by (iii) the
memory repair procedure, after having checked whether the memory occupation is greater
than Mtot. Or by (i) the computation of the satellite memory saturation, where value satt is
defined to be equal to the current memory occupation.

• POSTDLOFUNC is used during (ii) the memory constraint check (e.g., during local search pro-
cedures) to quickly return as soon as an infeasibility is detected.

• PREENDINGFUNC performs the same task as PREDLOFUNC (i.e., operations (i) and (iii)), but
at the end of the plan, using M f in instead of Mtot as satellite memory capacity.

4.6 Exact and Relaxed Formulation Approaches

In addition to the development of additional heuristic algorithms, as discussed in Section 4.7, we
have considered calculating an upper bound on the optimal solution using both relaxed and exact
formulations to evaluate the quality of the solutions generated by the proposed Genetic Algorithm
planner.

We have considered four formulations in total:

• No-Memory Relaxation: Defined by constraints (4.1) – (4.4), this is the quickest formulation to
compute. When it returns a feasible solution, we can conclude that, for that specific instance,
the memory aspect can be disregarded.

• Continuous Memory Relaxation: Defined by constraints (4.1) – (4.4) and (4.13) – (4.19), this
lightweight formulation is often able to provide a tight bound due to its partial consideration
of memory constraints.

• Discrete Memory Exact: Defined by constraints (4.1) – (4.12), this exact formulation exhibits a
weak linear relaxation, making it less effective with memory-intensive instances.

• Strengthened Discrete Memory Exact: Combining constraints (4.1) – (4.19), this formulation merges
the strengths of the second and third formulations to enhance the Discrete Memory model
with the tighter linear relaxation of the Continuous Memory formulation, making it able to
often find the optimal solution value or the best bound with most instances.

The last two formulations were also tested as heuristic algorithms in Section 4.8 to evaluate the
performance of modern commercial MILP solvers when used as heuristics.

4.7 Math-Heuristic Competitors

As stated in Section 4.1, the main output of the collaboration with TASI has been the design and
development of an efficient solver-free prototype that could obtain near-optimal solutions within
the short time limit of five minutes. To this end, most of the effort of this work has gone into the
development of the Genetic Algorithm approach described in Section 4.5 and here tested against
other competitors’ algorithms obtained by instead enabling the use of MILP solvers. What has been
clear from the preliminary phases of the development has been that, once we neglect the memory
aspects, commercial MILP solvers like CPLEX are very good at solving the satellite daily planning
at optimality. In search of a way to exploit such proficiency even when memory constraints are
considered, we implemented 3 alternative heuristic techniques hereafter described.

96

4.7.1 Relax and Repair Heuristic

To ensure efficient scalability, the hybridized technique focuses solely on utilizing the relaxed for-
mulation discussed in Section 4.4.3. Specifically, we have developed a standalone math-heuristic,
which we named Relax and Repair (RR), based on the relaxed formulation (4.1) – (4.4) and (4.13) –
(4.19).

As the name implies, RR takes advantage of the effectiveness of commercial MILP solvers to rapidly
generate a diverse set of solutions while exploring the Branch and Bound tree. When one of these
solutions is found, a callback function is invoked to assess its feasibility. If the solution is found
feasible, it is retained as it is; otherwise, it undergoes the repair procedure outlined in Section 4.5.7.
The repaired solution is then returned as a primal-heuristic solution, while the original infeasible
solution is rejected.

Since both the feasibility test and the repair procedures rely on the heuristic downlinking policy
described in Section 4.5.9, rejecting solutions found infeasible by these heuristic criteria invalidates
the bound naturally produced by the MILP solver. Consequently, this straightforward technique
can produce feasible solutions, while the resulting bound remains equivalent to the one produced
before the introduction of no-good constraints that prevent maybe-infeasible solutions.

4.7.2 Strenghtened Discrete-Memory Relaxation

One of the most straightforward ways to approach the problem once we have set up a MILP formu-
lation is to utilize commercial solvers with a time limit to obtain heuristic solutions. These solvers are
equipped with heuristic algorithms designed to rapidly generate near-optimal solutions, leveraging
the information provided by the MILP framework.

In this context, we selected the better-performing of our two exact formulations and directed the
optimization to run with a single thread, stopping after a time limit of five minutes. This setup
allows for comparison with other heuristic techniques.

This approach offers several advantages, including the potential to find the optimal solution and
halt the optimization before the time limit is reached. Moreover, if the optimal solution is not found
within five minutes, this approach still provides a valid upper bound, which offers valuable in-
sights into the solution quality. However, there are drawbacks to this method. First, when the time
limit is reached, there is no guarantee that the internal heuristics may yield competitive results. It
is indeed possible that the returned solution is of much lower quality compared to other problem-
specific techniques. Then, the use of a MILP model comes with scalability challenges, making it
unsuitable for handling large-scale instances due to memory requirements and extended optimiza-
tion times.

4.7.3 Hybrid Genetic Algorithm - Relax and Repair Heuristic

To leverage the strengths of a rapid math-heuristic, capable of efficiently generating numerous so-
lutions within a short computational time, and a Genetic Algorithm approach that can be initialized
by high-quality individuals, we propose a straightforward hybridization strategy. This approach in-
volves splitting the available time limit into two equal halves: during the first half, the RR algorithm
is executed, providing the resulting solutions as the initial individuals for the subsequent Genetic
Algorithm run.

This method brings two key advantages: (i) The upper limit we get from the mathematical model
(before adding no-good constraints) lets us stop the heuristic search when the optimization gap
becomes small enough. (ii) The RR solutions usually contain sequences of DTOs of excellent quality.
This makes the heuristic search more effective, helping it quickly find high-quality solutions.

4.8 Computational Experiments

The computational testing had the objective of assessing the performance of the proposed solution
approach. To this extent, the algorithm was tested on a dataset of instances derived from real-world
data realized by the TASI team and tailored to specifically stress the algorithm with tight constraints

97

and a wide range of instance sizes. Moreover, the results are validated against the four formulations
listed in Section 4.6.

4.8.1 Implementation and Experimental Environment

The proposed algorithm was implemented in C++ and compiled using GCC 11.4. The experiments
were performed on a 64-bit desktop computer with an AMD Ryzen 9 5950X CPU, with 64 GB of
RAM. We used CPLEX 12.10 CPLEX (2019) to solve the four MILP formulations. Regarding the
bound computation, for all the four formulations considered, CPLEX has been run without restric-
tions on the number of threads (which for our machine are a maximum of 32 logical threads and
16 physical cores) and with a time limit of one hour. For the heuristic algorithms testing, all the
runs were executed using a single thread with a time limit of five minutes, in accordance with TASI
requirements listed in Section 4.1. Finally, since the proposed algorithm contains randomized com-
ponents and the runs are time-based, for each instance, we performed 10 runs using seeds from 1 to
10.

4.8.2 Parameters Definition and Tuning

The algorithm makes use of a number of parameters ruling its behavior. They are described in the
following list, along with the adopted values:

• |P| = 70, population size;

• n̄ = 2000, number of plans generated during the initial population generation (see Section
4.5.2);

• pℓ = 0.25, probability of applying the local search;

• pc = 0.90, probability of applying the multi-point crossover;

• fc = 0.77, parameter determining the number of crossing points used in the multi-point
crossover as a fraction of the length of the plans involved. In particular, the number of crossing
points used when performing a multi-point crossover application between plans P1 and P2 is
the nearest integer to fc ·min{|P1|, |P2|};

• pm = 0.45, probability of applying the mutation;

• fm = 0.04, parameter determining the number of mutations as a fraction of the length of the
plan. In particular, the number of mutations applied to a plan P is the nearest integer to
fm · |P|.

The parameters have been tuned by using a Bayesian optimization (BO) approach (see Bergstra
et al. (2015)) applied on preliminary set of instances for a total number of 100 attempts. Moreover,
during the BO, parameters could have values taken from the following uniform discrete distribu-
tions:

• |P| in [10, 100] with a step of 10;

• n̄ in [1000, 10000] with a step of 1000;

• pℓ in [0.00, 1.00] with a step of 0.05;

• pc in [0.00, 1.00] with a step of 0.05;

• fc in [0.01, 1.00] with a step of 0.01;

• pm in [0.00, 1.00] with a step of 0.05;

• fm in [0.01, 1.00] with a step of 0.01.

The resulting tuning was then used during the solution of all instances.

4.8.3 Instances Description

Several benchmark instances have been provided by TASI to test the proposed GA approach. In par-
ticular, the instances aim at modeling potential scenarios occurring during a realistic daily planning

98

activity performed by TASI, ranging from “lighter” days where the satellite might be left idle for a
good portion of the plan, to more intensive days where the strategic choice regarding the acquisi-
tions to take is of key importance. Moreover, some of them also have a particular focus on stressing
the several constraints of the problem in order to test the overall robustness of the algorithm (so that
it may be applied to similar satellites with minor modifications). More specifically, in the following
list we detail the distributions for the main parameters.

• The planning horizon duration H takes a value between 3, 6, 9, 12, 18, and 24 hours.

• The number of ARs ranges from 250 to 3500 to model days with few and several requests. The number
of DTOs is highly correlated to the number of ARs. In particular, given the satellite trajectory and the
planning horizon, the instances have an average of about 2 DTOs per AR. Note that DTOs overlapping
with PAWs are filtered out.

• The memory occupation of stored acquisitions is defined according to one of the following uniform dis-
tributions: U(60, 120) (large requests, small variability), U(3, 120) (large variability), U(3, 30) (small re-
quests, large variability), U(15, 30) (small requests, small variability), and 0.8 ·U(3, 30) + 0.2 ·U(60, 120)
(several small requests, and few large requests).

• A total number of three ground stations for the downlink of acquisitions were considered. They are
located at Matera (Italy), Troll (Antarctica), and Svalbard (Norway). Note, however, that not all ground
stations are always made available to all instances.

• We consider scenarios in which the satellite starts with an initial memory occupation ranging from 0% to
100%. By consequence, in order for the empty plan to be feasible, the final memory occupation is selected
in the range 0% to 100% to be at least equal to the initial memory occupation.

• The are three classes of memory constraint tightness: normal, tight, and very tight. According to the
selected class, the satellite memory is defined in order to contain a maximum fraction of the total number
of ARs.

• Similarly, for the operational capacity there are three classes (normal, tight, and very tight) ruling the
maximum number of acquisitions that can be performed during a satellite orbit.

• Finally, the priority of ARs has been selected by TASI to emulate real-world scenarios.

The dataset contains 80 instances, 20 of which are large-scale, with a number of ARs greater than 1000. These
large-scale instances, while not adhering to real-world scenarios for the PLATiNO-1 satellite, are considerably
more common for other classes of satellites, and for this reason, they have been provided in the test bed.

Tables 4.1 and 4.2 provide an overview of the primary characteristics of the medium-sized and larger datasets
respectively.

4.8.4 Upper Bound computation
We have computed a valid upper bound for all instances in the test bed, and the results are summarized in
Table 4.3 and 4.4. To measure the relative gaps, we use the formula:

Relative Gap = 100 · (UB− LB)
UB

Here, UB represents the upper bound derived from the considered formulation, and LB is the best-known
feasible solution obtained through any heuristic or formulation.

Table 4.3 presents several formulations for comparison. The first formulation, without memory considerations,
is included to identify cases where memory constraints are not critical, and this simpler relaxation can find
feasible solutions. The second model, the continuous memory relaxation, partially models memory downlink.
It serves two key purposes: (i) it computes a valid upper bound for all instances, even the large-scale ones, and
(ii) it provides insights into potential improvements if partial downlinking of acquisitions were feasible.

Additionally, we include the discrete-memory exact formulation, which, while valid, features a weaker linear
relaxation that hinders optimization speed. When it fails to reach the optimum, it generates a less robust upper
bound, often weaker than the faster continuous memory relaxation.

Finally, the strengthened discrete-memory approach combines the best aspects of the previous two methods,
making it the overall top performer on average. It’s worth noting that, in some cases, the continuous-memory
approach might produce a slightly better upper limit than the strengthened discrete-memory approach when

99

Table 4.1: Summary of medium instances and their key characteristics.
Please note that Minit and M f in are expressed as percentages of the total
memory capacity, Mtot.

Instance Best Bound Best Sol Gap |A| |D| |Λ| H Mtot Minit% Mfin% Cmax
day0.12_250_0 833 833 0.00 250 421 0 3 277 17 64 2000
day0.12_250_1 4502 4502 0.00 250 423 5 3 147 14 67 133
day0.12_250_2 6065 6065 0.00 250 412 2 3 1597 12 58 13
day0.12_250_3 3175 3175 0.00 250 419 1 3 147 43 76 13
day0.12_250_4 7964 7964 0.00 250 427 5 3 417 0 100 13
day0.25_250_0 2514 2514 0.00 250 430 0 6 2990 14 74 67
day0.25_250_1 7764 7764 0.00 250 427 5 6 513 0 100 7
day0.25_250_2 927 949 2.37 250 432 5 6 30 0 100 67
day0.25_250_3 2560 2560 0.00 250 426 1 6 215 34 36 7
day0.25_250_4 2818 2818 0.00 250 427 0 6 152 10 79 67
day1_250_0 4917 4917 0.00 250 510 15 24 133 13 25 250
day1_250_1 4008 4008 0.00 250 488 4 24 282 62 63 17
day1_250_2 2383 2383 0.00 250 504 14 24 14 16 44 2
day1_250_3 5507 5507 0.00 250 494 26 24 19 19 65 2
day1_250_4 1900 1900 0.00 250 521 15 24 39 0 73 2
day0.25_500_5 3099 3099 0.00 500 833 9 6 32 36 42 13
day0.25_500_6 5989 5989 0.00 500 837 4 6 108 19 19 13
day0.25_500_7 15 15 0.00 500 869 0 6 2176 66 66 2000
day0.25_500_8 10037 10037 0.00 500 831 5 6 44 29 46 2000
day0.25_500_9 3181 3272 2.86 500 849 6 6 684 29 42 133
day0.5_500_5 1976 2023 2.38 500 861 10 12 119 9 15 7
day0.5_500_6 6952 6953 0.01 500 866 5 12 149 23 23 67
day0.5_500_7 7078 7147 0.97 500 876 10 12 151 10 40 1000
day0.5_500_8 3090 3090 0.00 500 850 2 12 2998 33 57 7
day0.5_500_9 1800 1800 0.00 500 831 8 12 103 34 38 1000
day1_500_5 2843 2843 0.00 500 975 15 24 398 30 30 33
day1_500_6 5587 5587 0.00 500 989 3 24 632 43 44 3
day1_500_7 5690 5703 0.23 500 998 3 24 357 28 29 500
day1_500_8 3145 3145 0.00 500 956 13 24 85 41 53 3
day1_500_9 2818 2869 1.81 500 992 16 24 74 34 43 3
day0.38_750_10 8897 8897 0.00 750 1277 0 9 512 60 77 2000
day0.38_750_11 10289 10364 0.73 750 1270 11 9 202 22 24 133
day0.38_750_12 11150 11150 0.00 750 1285 4 9 156 63 63 13
day0.38_750_13 3665 3665 0.00 750 1276 2 9 4428 19 53 133
day0.38_750_14 3787 3931 3.80 750 1267 2 9 306 17 17 13
day0.75_750_10 5756 5783 0.47 750 1296 18 18 346 0 100 7
day0.75_750_11 7069 7076 0.10 750 1418 4 18 83 9 27 67
day0.75_750_12 9120 9634 5.64 750 1419 17 18 131 33 34 1000
day0.75_750_13 12767 12912 1.14 750 1365 3 18 411 41 42 7
day0.75_750_14 12453 12453 0.00 750 1361 20 18 143 31 31 7
day1_750_10 755 756 0.13 750 1495 4 24 111 29 30 50
day1_750_11 10836 10993 1.45 750 1433 15 24 42 14 69 750
day1_750_12 4348 4364 0.37 750 1476 4 24 297 74 75 50
day1_750_13 1054 1054 0.00 750 1467 4 24 406 39 39 50
day1_750_14 4593 4786 4.20 750 1494 26 24 47 17 19 50
day0.5_1000_15 1779 1912 7.48 1000 1798 8 12 1070 99 100 2000
day0.5_1000_16 12119 12120 0.01 1000 1676 6 12 98 12 15 133
day0.5_1000_17 5851 5851 0.00 1000 1670 6 12 1971 0 100 13
day0.5_1000_18 3849 3849 0.00 1000 1757 1 12 2374 17 17 2000
day0.5_1000_19 18529 18588 0.32 1000 1769 9 12 176 55 69 13
day1_1000_15 13302 13345 0.32 1000 1943 14 24 43 55 55 67
day1_1000_15 6405 6405 0.00 1000 1974 16 24 37 42 69 7
day1_1000_16 857 857 0.00 1000 1954 4 24 589 29 30 7
day1_1000_16 2368 2368 0.00 1000 1973 27 24 82 34 63 7
day1_1000_17 5943 5943 0.00 1000 1952 2 24 420 14 16 67
day1_1000_17 2576 2665 3.45 1000 1961 17 24 35 28 33 67
day1_1000_18 6706 6706 0.00 1000 1928 27 24 81 18 57 7
day1_1000_18 17700 17704 0.02 1000 1978 4 24 739 23 50 000

100

Instance Best Bound Best Sol Gap |A| |D| |Λ| H Mtot Minit% M f in% Cmax
day1_1000_19 4584 4741 3.42 1000 1949 26 24 143 20 55 67
day1_1000_19 20392 20406 0.07 1000 1979 17 24 25 21 30 7

Table 4.2: Summary of large instances and their key characteristics. Please
note that Minit and M f in are expressed as percentages of the total memory
capacity, Mtot.

Instance Best Bound Best Sol Gap |A| |D| |Λ| H Mtot Minit% Mfin% Cmax
day1_1500_0 11098 11614 4.65 1500 2970 16 24 296 12 12 1500
day1_1500_1 6671 6902 3.46 1500 2972 26 24 686 39 71 1500
day1_1500_2 14459 15397 6.49 1500 2946 27 24 165 36 37 1500
day1_1500_3 21211 21399 0.89 1500 2931 15 24 296 42 42 100
day1_2000_4 18137 19627 8.22 2000 3932 16 24 274 71 72 2000
day1_2000_5 12568 12568 0.00 2000 3903 26 24 561 9 30 13
day1_2000_6 3710 3735 0.67 2000 3935 27 24 284 0 0 13
day1_2000_7 17641 18314 3.81 2000 3890 26 24 63 17 37 133
day1_2500_8 6614 6887 4.13 2500 4875 26 24 227 0 100 2500
day1_2500_9 10066 10334 2.66 2500 4913 13 24 114 99 100 167
day1_2500_10 3049 3198 4.89 2500 4942 15 24 362 35 35 2500
day1_2500_11 38028 38463 1.14 2500 4872 15 24 99 36 65 167
day1_3000_12 59269 59428 0.27 3000 5836 14 24 1637 16 74 200
day1_3000_13 19363 21080 8.87 3000 5918 16 24 408 14 14 200
day1_3000_14 50273 54608 8.62 3000 5819 27 24 796 24 24 3000
day1_3000_15 3526 3670 4.08 3000 5971 14 24 432 61 77 3000
day1_3500_16 5788 5933 2.51 3500 6880 26 24 403 28 61 3500
day1_3500_17 3794 3899 2.77 3500 6854 15 24 374 39 40 23
day1_3500_18 35177 35614 1.24 3500 6819 26 24 1598 71 79 233
day1_3500_19 49758 51364 3.23 3500 6920 14 24 398 23 25 23

it’s stopped due to time constraints. This happens because the continuous-memory approach finishes its op-
timization process, giving a valid, mixed integral upper bound, while the strengthened discrete-memory ap-
proach just returns the limit obtained from linear relaxations in the Branch and Bound tree. However, this
difference never exceeds 1 unit for the medium-sized test group.

For large-scale instances, as shown in Table 4.4, both exact formulations in most cases are unable to compute
valid upper bounds. Therefore, we rely on the relaxed models to establish valid upper bounds for validating
the heuristic results.

Table 4.3: Relative percentage gaps computed by CPLEX on the medium dataset with two relaxed and two exact formulations, each
within a one-hour time limit and executed with 32 threads. Bold indicates bounds matching the best-known solution (found by
heuristics or during CPLEX optimization), and ∗ denotes cases where the time limit was reached.

Instance Best Known No-Mem Cont-Mem Discr-Mem Strght-Mem
Sol Bound UB Gap% Time UB Gap% Time UB Gap% Time UB Gap% Time

day0.12_250_0 833 833 833 0.00 0.20 833 0.00 0.21 833 0.00 0.21 833 0.00 0.22
day0.12_250_1 4502 4502 4502 0.00 0.23 4502 0.00 0.27 4502 0.00 9.99 4502 0.00 10.21
day0.12_250_2 6065 6065 6065 0.00 0.31 6065 0.00 0.35 6065 0.00 0.41 6065 0.00 0.42
day0.12_250_3 3175 3175 3217 1.31 0.27 3188 0.41 0.33 3175 0.00 1352.00 3175 0.00 26.92
day0.12_250_4 7964 7964 7964 0.00 0.57 7964 0.00 0.34 7964 0.00 10.88 7964 0.00 10.64
day0.25_250_0 2514 2514 2514 0.00 0.34 2514 0.00 0.37 2514 0.00 0.39 2514 0.00 0.38
day0.25_250_1 7764 7764 7764 0.00 0.21 7764 0.00 0.23 7764 0.00 1.71 7764 0.00 1.67
day0.25_250_2 927 949 1348 31.23 0.36 950 2.42 0.75 1073 13.61 3600∗ 949 2.32 3600∗
day0.25_250_3 2560 2560 3802 32.67 0.26 2560 0.00 0.64 2560 0.00 0.38 2560 0.00 0.56
day0.25_250_4 2818 2818 2994 5.88 0.40 2818 0.00 0.54 2818 0.00 0.33 2818 0.00 0.43
day1_250_0 4917 4917 6253 21.37 0.15 5056 2.75 0.94 4917 0.00 73.56 4917 0.00 47.09
day1_250_1 4008 4008 6663 39.85 0.20 4064 1.38 0.33 4010 0.05 3600∗ 4008 0.00 3.07
day1_250_2 2383 2383 4344 45.14 0.15 2394 0.46 0.58 2383 0.00 8.44 2383 0.00 3.52
day1_250_3 5507 5507 5507 0.00 0.09 5507 0.00 0.11 5507 0.00 9.67 5507 0.00 9.75
day1_250_4 1900 1900 2127 10.67 0.12 1900 0.00 0.69 1900 0.00 8.32 1900 0.00 8.00
day0.25_500_5 3099 3099 3237 4.26 0.95 3105 0.19 1.08 3099 0.00 165.85 3099 0.00 163.51
day0.25_500_6 5989 5989 7724 22.46 0.69 5991 0.03 0.84 5989 0.00 2.36 5989 0.00 2.57
day0.25_500_7 15 15 2588 99.42 2.17 15 0.00 0.67 15 0.00 0.69 15 0.00 0.69
day0.25_500_8 10037 10037 10472 4.15 0.79 10037 0.00 1.39 10037 0.00 1.19 10037 0.00 1.35
day0.25_500_9 3181 3272 3420 6.99 1.26 3286 3.20 1.78 3420 6.99 3600∗ 3272 2.78 3600∗
day0.5_500_5 1976 2023 4610 57.14 1.04 2027 2.52 2.11 3138 37.03 3600∗ 2023 2.32 3600∗
day0.5_500_6 6952 6953 8350 16.74 0.95 6957 0.07 0.87 7751 10.31 3600∗ 6953 0.01 3600∗
day0.5_500_7 7078 7147 7843 9.75 0.51 7151 1.02 1.44 7763 8.82 3600∗ 7147 0.97 3600∗
day0.5_500_8 3090 3090 3090 0.00 0.68 3090 0.00 0.78 3090 0.00 23.03 3090 0.00 24.86
day0.5_500_9 1800 1800 4847 62.86 0.84 1818 0.99 0.91 1801 0.06 3600∗ 1800 0.00 90.60
day1_500_5 2843 2843 10489 72.90 1.89 2863 0.70 2.52 3354 15.24 3600∗ 2843 0.00 391.25
day1_500_6 5587 5587 7665 27.11 0.34 5595 0.14 0.41 5588 0.02 3600∗ 5587 0.00 31.77
day1_500_7 5690 5703 11075 48.62 0.72 5808 2.03 0.81 10855 47.58 3600∗ 5703 0.23 3600∗
day1_500_8 3145 3145 3145 0.00 0.35 3145 0.00 0.38 3145 0.00 22.20 3145 0.00 22.81
day1_500_9 2818 2869 4054 30.49 0.72 2884 2.29 1.09 3098 9.04 3600∗ 2869 1.78 3600∗
day0.38_750_10 8897 8897 10730 17.08 1.17 8897 0.00 1.20 8897 0.00 1.22 8897 0.00 1.23
day0.38_750_11 10289 10364 11308 9.01 1.55 10364 0.72 3.58 11242 8.48 3600∗ 10364 0.72 3600∗
day0.38_750_12 11150 11150 13606 18.05 1.65 11181 0.28 2.33 11150 0.00 1939.70 11150 0.00 254.94
day0.38_750_13 3665 3665 3665 0.00 1.36 3665 0.00 1.76 3665 0.00 47.27 3665 0.00 50.80
day0.38_750_14 3787 3931 4967 23.76 1.97 3940 3.88 2.65 4958 23.62 3600∗ 3931 3.66 3600∗
day0.75_750_10 5756 5783 6512 11.61 0.90 5787 0.54 1.72 6467 10.99 3600∗ 5783 0.47 3600∗
day0.75_750_11 7069 7076 13572 47.91 1.69 7149 1.12 2.97 11785 40.02 3600∗ 7076 0.10 3600∗

101

Instance Best Known No-Mem Cont-Mem Discr-Mem Strght-Mem
Sol Bound UB Gap% Time UB Gap% Time UB Gap% Time UB Gap% Time

day0.75_750_12 9120 9634 10114 9.83 0.95 9634 5.34 1.76 10088 9.60 3600∗ 9635 5.35 3600∗
day0.75_750_13 12767 12912 20149 36.64 5.04 13998 8.79 3.60 18844 32.25 3600∗ 12912 1.12 3600∗
day0.75_750_14 12453 12453 12453 0.00 0.91 12453 0.00 1.00 12453 0.00 85.81 12453 0.00 87.84
day1_750_10 755 756 5521 86.32 2.78 759 0.53 2.65 2378 68.25 3600∗ 756 0.13 3600∗
day1_750_11 10836 10993 12825 15.51 0.65 11142 2.75 1.70 11031 1.77 3600∗ 10993 1.43 3600∗
day1_750_12 4348 4364 10060 56.78 2.33 4476 2.86 3.07 9541 54.43 3600∗ 4364 0.37 3600∗
day1_750_13 1054 1054 10695 90.14 3.17 1060 0.57 2.00 8578 87.71 3600∗ 1054 0.00 96.57
day1_750_14 4593 4786 10504 56.27 1.62 4802 4.35 3.73 5532 16.97 3600∗ 4786 4.03 3600∗
day0.5_1000_15 1779 1912 7126 75.04 2.70 1916 7.15 3.02 4526 60.69 3600∗ 1912 6.96 3600∗
day0.5_1000_16 12119 12120 14454 16.15 2.65 12126 0.06 2.63 12917 6.18 3600∗ 12120 0.01 3600∗
day0.5_1000_17 5851 5851 5851 0.00 3.08 5851 0.00 3.12 5851 0.00 111.68 5851 0.00 111.17
day0.5_1000_18 3849 3849 16593 76.80 5.44 3849 0.00 2.13 165169 97.67 3600∗ 3849 0.00 72.72
day0.5_1000_19 18529 18588 21846 15.18 2.48 18588 0.32 3.69 20317 8.80 3600∗ 18589 0.32 3600∗
day1_1000_15 13302 13345 16580 19.77 3.03 13345 0.32 4.71 13883 4.18 3600∗ 13346 0.33 3600∗
day1_1000_15 6405 6405 6990 8.37 1.52 6426 0.33 1.80 6405 0.00 1093.87 6405 0.00 681.66
day1_1000_16 857 857 8494 89.91 9.33 859 0.23 4.55 177530 99.52 3600∗ 857 0.00 193.81
day1_1000_16 2368 2368 2368 0.00 1.21 2368 0.00 1.95 2368 0.00 534.68 2368 0.00 536.19
day1_1000_17 5943 5943 14587 59.26 2.80 5960 0.29 2.72 14222 58.21 3600∗ 5943 0.00 145.80
day1_1000_17 2576 2665 5820 55.74 2.82 2665 3.34 8.60 3650 29.42 3600∗ 2665 3.34 3600∗
day1_1000_18 6706 6706 6706 0.00 1.49 6706 0.00 1.69 6706 0.00 1049.83 6706 0.00 1064.72
day1_1000_18 17700 17704 21091 16.08 1.53 17706 0.03 3.64 21091 16.08 3600∗ 17704 0.02 3600∗
day1_1000_19 4584 4741 5120 10.47 1.76 4741 3.31 3.27 5120 10.47 3600∗ 4741 3.31 3600∗
day1_1000_19 20392 20406 20795 1.94 1.58 20418 0.13 2.76 20434 0.21 3600∗ 20406 0.07 3600∗
Averages 26.24 1.48 1.13 1.83 14.90 2089.26 0.70 1569.16

Table 4.4: Relative percentage gaps achieved by CPLEX for the large dataset using the two relaxed formulations and two exact
formulations. The optimization process was constrained to a one-hour time limit and executed with 32 threads. Bold values indicate
bounds that match the best-known solutions, which were found either through heuristics or during CPLEX optimization. The
symbol ∗ indicates that the optimization reached the time limit, while ⋆ signifies that there are instances with unbounded results
excluded from the average.

Instance Best Known No-Mem Cont-Mem Discr-Mem Strght-Mem
Sol Bound UB Gap% Time UB Gap% Time UB Gap% Time UB Gap% Time

day1_1500_0 11098 11614 17771 37.55 2.71 11614 4.44 4.24 147762 92.49 3600∗ inf – 3600∗
day1_1500_1 6671 6902 13146 49.25 5.67 6902 3.35 6.85 inf – 3600∗ inf – 3600∗
day1_1500_2 14459 15397 17417 16.98 2.22 15397 6.09 3.44 inf – 3600∗ inf – 3600∗
day1_1500_3 21211 21399 25343 16.30 6.55 21399 0.88 8.80 105514 79.90 3600∗ inf – 3600∗
day1_2000_4 18137 19627 24018 24.49 6.59 19627 7.59 9.07 inf – 3600∗ inf – 3600∗
day1_2000_5 12568 12568 12568 0.00 14.23 12568 0.00 17.57 inf – 3600∗ inf – 3600∗
day1_2000_6 3710 3735 3953 6.15 5.19 3735 0.67 5.52 inf – 3600∗ inf – 3600∗
day1_2000_7 17641 18314 19043 7.36 5.38 18314 3.67 7.16 inf – 3600∗ inf – 3600∗
day1_2500_8 6614 6887 14015 52.81 8.50 6887 3.96 10.07 442968 98.51 3600∗ 442968 98.51 3600∗
day1_2500_9 10066 10334 21312 52.77 13.95 10334 2.59 9.37 233144 95.68 3600∗ inf – 3600∗
day1_2500_10 3049 3198 7229 57.82 10.38 3198 4.66 11.76 inf – 3600∗ inf – 3600∗
day1_2500_11 38028 38463 42935 11.43 30.41 38463 1.13 32.88 inf – 3600∗ inf – 3600∗
day1_3000_12 59269 59428 59853 0.98 14.24 59428 0.27 16.46 inf – 3600∗ inf – 3600∗
day1_3000_13 19363 21080 25768 24.86 12.11 21080 8.15 14.35 280713 93.10 3600∗ inf – 3600∗
day1_3000_14 50273 50745 54608 7.94 17.05 50745 0.93 22.50 inf – 3600∗ inf – 3600∗
day1_3000_15 3526 3670 7527 53.16 10.15 3670 3.92 11.24 104127 96.61 3600∗ inf – 3600∗
day1_3500_16 5788 5933 8162 29.09 15.62 5933 2.44 16.68 inf – 3600∗ inf – 3600∗
day1_3500_17 3794 3899 13954 72.81 65.13 3899 2.69 59.16 inf – 3600∗ inf – 3600∗
day1_3500_18 35177 35614 42735 17.69 38.49 35614 1.23 45.97 inf – 3600∗ inf – 3600∗
day1_3500_19 49758 51364 62145 19.93 39.00 51364 3.13 57.41 inf – 3600∗ inf – 3600∗
Averages 27.97 16.18 3.09 18.53 92.72⋆ 3600.00⋆ 98.51⋆ 3600.00⋆

4.8.5 Heuristic Results

In this section, we outline the tests conducted to evaluate the performance of the proposed GA
and compare it with the heuristics described in Section 4.7. The results for medium and large-
sized instances are reported in Tables 4.5 and 4.6, respectively. Additionally, we provide boxplots
illustrating the results for the medium-sized test bed in Figure 4.4. Please note that in this section,
the relative percentage gaps are computed between the best upper bound obtained by any of the
methods considered in Section 4.8.4 and the lower bound obtained by the current method for the
specific instance. In other words, while the previous section fixed the lower bound for each instance
and allowed the upper bound to vary depending on the method used, this section fixes the upper
bound and then varies the lower bound accordingly.

Table 4.5: Average and best relative percentage gaps achieved by the two exact formulations
and the three heuristics. These results were obtained within a time limit of 5 minutes and
executed with a single thread. Values matching the best-known solutions are highlighted in
bold.

Instance Best Known Relax&Repair Strght-Mem Genetic Hybrid-GRR
Sol Bound Best Avg Best Avg Best Avg Best Avg

day0.12_250_0 833 833 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
day0.12_250_1 4502 4502 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
day0.12_250_2 6065 6065 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
day0.12_250_3 3175 3175 0.00 0.01 0.00 0.00 0.00 0.03 0.00 0.00
day0.12_250_4 7964 7964 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
day0.25_250_0 2514 2514 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
day0.25_250_1 7764 7764 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
day0.25_250_2 927 949 3.79 5.22 2.32 3.08 2.32 2.69 2.32 2.57
day0.25_250_3 2560 2560 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00
day0.25_250_4 2818 2818 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
day1_250_0 4917 4917 1.50 3.27 0.00 0.02 0.22 0.39 0.28 0.48
day1_250_1 4008 4008 0.22 0.25 0.00 0.00 0.22 0.40 0.22 0.24
day1_250_2 2383 2383 0.00 0.31 0.00 0.00 0.00 0.01 0.00 0.00
day1_250_3 5507 5507 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
day1_250_4 1900 1900 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

102

Instance Best Known Relax&Repair Strght-Mem Genetic Hybrid-GRR
Sol Bound Best Avg Best Avg Best Avg Best Avg

day0.25_500_5 3099 3099 0.23 0.93 0.00 0.00 0.00 0.20 0.00 0.09
day0.25_500_6 5989 5989 0.02 0.02 0.00 0.00 0.03 0.05 0.02 0.02
day0.25_500_7 15 15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
day0.25_500_8 10037 10037 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
day0.25_500_9 3181 3272 3.97 4.42 2.78 3.23 2.78 3.30 2.78 2.78
day0.5_500_5 1976 2023 5.68 11.65 5.19 6.72 3.51 4.03 3.26 3.62
day0.5_500_6 6952 6953 0.04 0.15 0.01 0.02 0.24 0.34 0.04 0.09
day0.5_500_7 7078 7147 1.73 2.48 1.11 1.43 1.09 1.13 0.99 1.07
day0.5_500_8 3090 3090 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00
day0.5_500_9 1800 1800 0.83 1.35 0.00 0.31 1.50 2.56 0.33 0.65
day1_500_5 2843 2843 9.67 11.32 0.00 0.10 7.70 7.98 7.18 7.72
day1_500_6 5587 5587 0.02 0.05 0.00 0.00 0.07 0.13 0.02 0.04
day1_500_7 5690 5703 2.40 9.20 0.23 0.28 1.32 1.79 0.72 1.04
day1_500_8 3145 3145 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00
day1_500_9 2818 2869 8.12 10.10 2.89 4.28 4.08 5.05 4.50 5.13
day0.38_750_10 8897 8897 0.00 0.00 0.00 0.00 0.01 0.12 0.00 0.00
day0.38_750_11 10289 10364 1.35 1.66 1.07 1.32 1.03 1.15 0.97 1.05
day0.38_750_12 11150 11150 0.04 0.08 0.00 0.00 0.02 0.04 0.02 0.03
day0.38_750_13 3665 3665 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
day0.38_750_14 3787 3931 5.83 7.94 3.66 5.12 3.74 4.09 3.79 3.96
day0.75_750_10 5756 5783 1.07 1.37 0.66 1.44 0.80 1.08 0.71 0.84
day0.75_750_11 7069 7076 2.11 3.60 0.73 2.19 2.05 2.85 1.13 1.45
day0.75_750_12 9120 9634 16.73 19.06 8.05 9.32 5.34 6.25 5.36 6.10
day0.75_750_13 12767 12912 1.25 9.75 1.12 5.58 1.25 1.26 1.25 1.26
day0.75_750_14 12453 12453 0.00 0.00 0.00 0.00 0.04 0.06 0.00 0.00
day1_750_10 755 756 0.79 3.10 0.13 0.22 2.51 3.31 0.26 0.50
day1_750_11 10836 10993 12.54 14.34 2.70 3.67 1.70 2.29 1.64 1.70
day1_750_12 4348 4364 5.93 6.48 0.37 0.37 0.82 1.14 0.78 0.86
day1_750_13 1054 1054 0.00 0.00 0.00 0.38 0.66 1.40 0.00 0.00
day1_750_14 4593 4786 9.97 11.46 9.67 11.90 4.05 4.73 4.03 4.35
day0.5_1000_15 1779 1912 9.10 11.49 8.94 12.78 7.79 9.08 7.74 8.06
day0.5_1000_16 12119 12120 0.12 0.15 0.02 0.09 0.36 0.41 0.05 0.06
day0.5_1000_17 5851 5851 0.00 0.00 0.00 0.00 0.05 0.15 0.00 0.00
day0.5_1000_18 3849 3849 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
day0.5_1000_19 18529 18588 0.50 0.65 0.41 0.97 0.36 0.43 0.38 0.40
day1_1000_15 13302 13345 1.02 1.37 0.85 1.24 0.49 0.66 0.43 0.49
day1_1000_15 6405 6405 0.14 0.32 0.06 0.40 0.19 0.45 0.14 0.14
day1_1000_16 857 857 5.95 6.11 0.00 0.00 5.13 5.87 4.78 5.06
day1_1000_16 2368 2368 0.00 0.00 0.00 0.00 0.13 0.60 0.00 0.00
day1_1000_17 5943 5943 0.13 0.21 0.00 0.00 0.94 2.77 0.12 0.18
day1_1000_17 2576 2665 9.98 13.05 10.92 15.85 3.83 4.73 3.79 4.07
day1_1000_18 6706 6706 0.00 0.00 0.00 3.42 0.00 0.20 0.00 0.00
day1_1000_18 17700 17704 0.06 0.15 0.02 0.23 0.17 0.25 0.05 0.07
day1_1000_19 4584 4741 9.01 9.88 13.18 17.71 3.42 4.45 3.31 3.60
day1_1000_19 20392 20406 0.53 0.70 0.76 1.50 0.07 0.08 0.07 0.08
Averages 2.21 3.06 1.30 1.92 1.20 1.50 1.06 1.16

Table 4.6: Average and best relative percentage gaps achieved by the two exact formulations
and the three heuristics. These results were obtained within a time limit of 5 minutes and
executed with a single thread. Values matching the best-known solutions are highlighted in
bold.

Instance Best Known Relax&Repair Strght-Mem Genetic Hybrid-GRR
Sol Bound Best Avg Best Avg Best Avg Best Avg

day1_1500_0 11098 11614 10.78 13.95 100.00 100.00 4.49 6.01 4.44 5.23
day1_1500_1 6671 6902 5.56 6.82 80.06 80.06 3.35 3.65 3.45 3.65
day1_1500_2 14459 15397 17.52 20.62 100.00 100.00 6.53 7.10 6.09 6.94
day1_1500_3 21211 21399 1.35 1.47 0.93 1.45 1.21 1.26 0.88 0.94
day1_2000_4 18137 19627 14.11 17.32 99.70 99.70 8.11 9.66 7.59 8.29
day1_2000_5 12568 12568 0.00 0.00 95.32 95.32 0.26 0.49 0.00 0.00
day1_2000_6 3710 3735 2.68 3.64 100.00 100.00 0.94 1.49 0.67 0.84
day1_2000_7 17641 18314 7.30 8.85 100.00 100.00 4.23 5.13 3.67 3.90
day1_2500_8 6614 6887 7.11 7.58 100.00 100.00 6.19 6.77 3.96 4.21
day1_2500_9 10066 10334 4.43 5.03 100.00 100.00 5.99 7.09 2.59 3.12
day1_2500_10 3049 3198 12.45 13.25 99.47 99.47 6.16 6.43 4.66 5.34
day1_2500_11 38028 38463 1.50 1.64 99.40 99.40 1.22 1.28 1.13 1.16
day1_3000_12 59269 59428 0.34 0.41 100.00 100.00 0.33 0.40 0.27 0.29
day1_3000_13 19363 21080 28.25 31.15 100.00 100.00 9.81 11.10 8.15 8.68
day1_3000_14 50273 50745 1.61 2.21 99.97 99.97 1.24 1.84 0.93 0.97
day1_3000_15 3526 3670 9.78 11.20 100.00 100.00 5.59 6.02 3.92 4.47
day1_3500_16 5788 5933 5.38 6.54 100.00 100.00 3.49 4.07 2.44 3.17
day1_3500_17 3794 3899 4.13 4.35 98.67 98.67 8.18 9.62 2.69 3.00
day1_3500_18 35177 35614 1.69 2.05 100.00 100.00 1.32 1.36 1.23 1.26
day1_3500_19 49758 51364 5.02 5.79 100.00 100.00 3.37 4.92 3.13 4.25
Averages 7.05 8.19 93.68 93.70 4.10 4.79 3.10 3.48

The initial heuristic we examine is the Relax and Repair heuristic, as detailed in Section 4.7.1. Table
4.5 shows that this approach performs remarkably well with instances that are not strongly limited
by memory constraints, resulting in a small median relative gap, as portrayed in Figure 4.4. In such
scenarios, the relaxation effectively identifies either the optimal solution or a close approximation,

103

Relax&Repair Strght-Mem Genetic Hybrid-GRR

0

5

10

15

20

0.2 0
0.4 0.1

A
ve

ra
ge

%
ga

p

Figure 4.4: Comparison of average gaps obtained by the 5 ”heuristic“ algorithms. The median is
shown at the left of each boxplot.

M f in

Mtot

Time

M
em

or
y

oc
cu

pa
ti

on

Memory profile

Figure 4.5: Memory profile computed with Algorithm IOM for a feasible plan (solid line) and a
relaxed plan resulting from the continuous-memory model (dashed line).

which is then rapidly improved to reach the optimum. However, for memory-intensive instances,
this method performs poorly, producing solutions with relative gaps of nearly 20% when compared
to the best bounds obtained. This discrepancy is clearly evident in the box plot, where the extended
upper whisker surpasses that of all other considered heuristics.

This disparity can largely be attributed to a substantial variance between the continuous-memory
profile and the actual profile. For instance, consider Figure 4.5, which displays the memory pro-
file computed with Algorithm IOM for a feasible plan and the one obtained by solving the relaxed
model. To meet the requirements outlined in Section 4.3, the plan derived from the relaxed model
would necessitate a satellite with approximately four times the available memory. This discrep-
ancy significantly influences the effects of the repair procedures, leading to a notable degradation in
solution quality.

Nonetheless, when dealing with large-scale instances, this technique still manages to obtain rela-
tively competitive results.

The second heuristic we consider is the strengthened discrete-memory formulation. For medium-
sized instances, this approach outperforms others in terms of the median relative gap, as shown in
Figure 4.4. However, the same plot reveals a significant number of outliers, indicating instability in

104

this method. While it often finds exceptionally good (often optimal) solutions, it can also produce so-
lutions of lower quality when it fails. On average, for medium-sized instances, it achieves a relative
gap of 1.92%. The results are completely different for large instances, where this method, based on
the full problem formulation, struggles to find non-trivial solutions, making it the worst-performing
technique in this size range.

Next, we have the solver-free version of the Genetic algorithm. Although it has the worst overall
median relative gap (as seen in Figure 4.4), it still ranks as the second-best technique on average. The
results for medium-sized instances maintain stability within a 10% relative gap. However, it tends to
find fewer instances at the optimum compared to other methods, causing the higher median relative
gap.

Finally, we examine the Genetic Algorithms - Relax and Repair hybridization, which proves to be
the best-performing heuristic. In this hybrid approach the Relax and Repair serves two purposes:
(i) it obtains optimal solutions for instances with low memory demands, reducing the median and
average relative gap, and (ii) it generates a diversified collection of solutions containing high-quality
DTO sequences. When the Genetic Algorithm is invoked, it generally addresses the shortcomings
of the Relax and Repair methods, producing good-quality solutions even for instances where the
continuous-memory relaxation yields weak bounds.

Concerning large-scale instances, the last two methods, based on the Genetic Algorithm, excel, re-
sulting in an average relative gap of 4.79% for the Genetic Algorithm alone and 3.48% for the Hy-
bridized version.

4.9 Conclusions

In this paper, we introduced a hybrid genetic algorithm (GA) designed to address the daily planning
of acquisitions and downlink activity scheduling for the PLATiNO satellite. Our GA incorporates
local search and repair methods to improve its convergence towards high-quality solutions. Ad-
ditionally, we proposed mathematical formulations to either fully or partially model the problem,
leveraging them to compute valid upper bounds, which in turn validate our computational out-
comes.

Our proposed algorithm, requiring just a few minutes of computational time, consistently produces
solutions with an average gap of approximately 1.5% compared to the upper bounds for medium-
sized instances and less than 4% for larger ones. Furthermore, we implemented alternative heuristic
approaches to assess the performance of solver-based techniques.

Our results demonstrate that, in the context of this particular problem, commercial solvers can sig-
nificantly enhance heuristic quality, yet they may not be the optimal standalone solution, especially
when faced with memory-requiring instances.

105

Bibliography

Accorsi L, Vigo D, 2020 FILO repository. https://github.com/acco93/filo.

Accorsi L, Vigo D, 2021 A fast and scalable heuristic for the solution of large-scale capacitated vehicle routing problems.
Transportation Science 55(4):832–856.

Anagnostopoulou A, Repoussis P, Tarantilis C, 2013 Grasp with path relinking for vehicle routing problems with
clustered and mixed backhauls. Technical report, Athens University of Economics and Business.

Applegate D, Bixby R, Chvátal V, Cook W, 1999 Finding tours in the TSP. Technical report, University of Bonn,
Germany.

Applegate D, Cook W, Rohe A, 2003 Chained Lin-Kernighan for large traveling salesman problems. INFORMS Journal
on Computing 15(1):82–92.

Arenas I, Sánchez A, Armando C, Solano L, Medina L, 2017 Cvrptw model applied to the collection of food donations.
Proceedings of the International Conference on Industrial Engineering and Operations Management, 1307—-1314
(Bogotá D.C.).

Arnold F, Gendreau M, Sörensen K, 2019 Efficiently solving very large-scale routing problems. Computers & Opera-
tions Research 107:32–42.

Arnold F, Sörensen K, 2019 Knowledge-guided local search for the vehicle routing problem. Computers & Operations
Research 105:32 – 46, URL http://dx.doi.org/10.1016/j.cor.2019.01.002.

Barkaoui M, Berger J, 2020 A new hybrid genetic algorithm for the collection scheduling problem for a satellite constel-
lation. Journal of the Operational Research Society 71(9):1390–1410.

Beek O, Raa B, Dullaert W, Vigo D, 2018 An efficient implementation of a static move descriptor-based local search
heuristic. Computers & Operations Research 94:1 – 10, URL http://dx.doi.org/https://doi.org/10.
1016/j.cor.2018.01.006.

Benoist T, Rottembourg B, 2004 Upper bounds for revenue maximization in a satellite scheduling problem. 4OR
2(3):235–249.

Bensana E, Verfaillie G, Agnese J, Bataille N, Blumstein D, 1999 Exact and inexact methods for the daily management
of an earth observation satellite. Proceeding of the international symposium on space mission operations and ground
data systems, 507–514.

Bentley JL, 1990 K-d trees for semidynamic point sets. Proceedings of the sixth annual symposium on Computational
geometry, 187–197.

Bergstra J, Komer B, Eliasmith C, Yamins D, Cox DD, 2015 Hyperopt: a python library for model selection and
hyperparameter optimization. Computational Science & Discovery 8(1):014008.

Bianchessi N, Righini G, 2008 Planning and scheduling algorithms for the cosmo-skymed constellation. Aerospace Sci-
ence and Technology 12(7):535–544.

Caprara A, Fischetti M, Toth P, 1999 A heuristic method for the set covering problem. Operations Research 47(5):730–
743.

Cavaliere F, 2021 newLKH repository. https://github.com/c4v4/LKH3, URL http://dx.doi.org/10.5281/
zenodo.6644959.

Christiaens J, Vanden Berghe G, 2020 Slack induction by string removals for vehicle routing problems. Transportation
Science 54(2):417–433.

Christofides N, Mingozzi A, Toth P, 1979 The vehicle routing problem, volume 1 (Wiley Interscience).

Clarke G, Wright JW, 1964 Scheduling of vehicles from a central depot to a number of delivery points. Operations
Research 12(4):568–581.

Cordeau JF, Laporte G, 2005 Maximizing the value of an earth observation satellite orbit. Journal of the Operational
Research Society 56(8):962–968.

CPLEX, 2019 IBM Ilog CPLEX optimizer 12.10 callable library.

Dantzig GB, 1957 Discrete-variable extremum problems. Operations Research 5(2):266–277.

106

https://github.com/acco93/filo
http://dx.doi.org/10.1016/j.cor.2019.01.002
http://dx.doi.org/https://doi.org/10.1016/j.cor.2018.01.006
http://dx.doi.org/https://doi.org/10.1016/j.cor.2018.01.006
https://github.com/c4v4/LKH3
http://dx.doi.org/10.5281/zenodo.6644959
http://dx.doi.org/10.5281/zenodo.6644959

Dantzig GB, Ramser JH, 1959 The truck dispatching problem. Management Science 6(1):80–91.
Dantzig GB, Wolfe P, 1961 The decomposition algorithm for linear programs. Econometrica: Journal of the Econometric

Society 767–778.
De Franceschi R, Fischetti M, Toth P, 2006 A new ILP-based refinement heuristic for vehicle routing problems. Mathe-

matical Programming 105(2):471–499.
De Jong KA, 1975 An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D. thesis, University of

Michigan, USA.
Delgado-Antequera L, Laguna M, Pacheco J, Caballero R, 2020 A bi-objective solution approach to a real-world waste

collection problem. Journal of the Operational Research Society 71(2):183—-194.
Desaulniers G, Desrosiers J, Solomon MM, Soumis F, Villeneuve D, et al., 1998 A unified framework for deter-

ministic time constrained vehicle routing and crew scheduling problems. Fleet management and logistics, 57–93
(Springer).

Dethloff J, 2001 Vehicle routing and reverse logistics: The vehicle routing problem with simultaneous delivery and pick-
up. OR-Spektrum 23(1):79–96, URL http://dx.doi.org/https://doi.org/10.1007/PL00013346.

Fischetti M, Fischetti M, 2018 Matheuristics. Martí R, Pardalos PM, Resende MGC, eds., Handbook of Heuristics,
121–153 (Cham: Springer International Publishing).

Ford Jr LR, Fulkerson DR, 1958 A suggested computation for maximal multi-commodity network flows. Management
Science 5(1):97–101.

Foster BA, Ryan DM, 1976 An integer programming approach to the vehicle scheduling problem. Journal of the Opera-
tional Research Society 27(2):367–384.

Fredman ML, Johnson DS, McGeoch LA, Ostheimer G, 1995 Data structures for traveling salesmen. Journal of
Algorithms 18(3):432–479.

Fukasawa R, Longo H, Lysgaard J, De Aragão MP, Reis M, Uchoa E, Werneck RF, 2006 Robust branch-and-cut-
and-price for the capacitated vehicle routing problem. Mathematical Programming 106(3):491–511.

Gabrel V, Vanderpooten D, 2002 Enumeration and interactive selection of efficient paths in a multiple criteria graph for
scheduling an earth observing satellite. European Journal of Operational Research 139(3):533–542.

Gajpal Y, Abad P, 2009 Multi-ant colony system (macs) for a vehicle routing problem with backhauls. European Jour-
nal of Operational Research 196(1):102–117, URL http://dx.doi.org/https://doi.org/10.1016/j.ejor.
2008.02.025.

Goksal F, Karaoglan I, Altiparmak F, 2013 A hybrid discrete particle swarm optimization for vehicle routing problem
with simultaneous pickup and delivery. Computers & Industrial Engineering 65(1):39–53, URL http://dx.doi.
org/https://doi.org/10.1016/j.cie.2012.01.005.

Hall NG, Magazine MJ, 1994 Maximizing the value of a space mission. European Journal of Operational Research
78(2):224–241.

Hamzadayı A, Baykasoğlu A, Akpınar Ş, 2020 Solving combinatorial optimization problems with single seekers soci-
ety algorithm. Knowledge-Based Systems 201-202:106036, URL http://dx.doi.org/https://doi.org/10.
1016/j.knosys.2020.106036.

Helsgaun K, 2000 An effective implementation of the lin–kernighan traveling salesman heuristic. European
Journal of Operational Research 126(1):106–130, URL http://dx.doi.org/https://doi.org/10.1016/
S0377-2217(99)00284-2.

Helsgaun K, 2006 An effective implementation of K-opt moves for the Lin-Kernighan TSP heuristic. Ph.D. thesis,
Roskilde University. Department of Computer Science.

Helsgaun K, 2009 General k-opt submoves for the Lin–Kernighan TSP heuristic. Mathematical Programming Computa-
tion 1(2):119–163.

Helsgaun K, 2017 An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling salesman and
vehicle routing problems. Technical report, Roskilde Universitet, URL http://dx.doi.org/10.13140/RG.
2.2.25569.40807.

Helsgaun K, 2020 LKH-3. http://akira.ruc.dk/~keld/research/LKH-3.
Hof J, Schneider M, 2019 An adaptive large neighborhood search with path relinking for a class of vehicle-routing

problems with simultaneous pickup and delivery. Networks 74(3):207–250, URL http://dx.doi.org/https:
//doi.org/10.1002/net.21879.

Hornstra R, Silva A, Roodbergen K, Coelho L, 2020 The vehicle routing problem with simultaneous pickup and
delivery and handling costs. Computers & Operations Research 115:104858, URL http://dx.doi.org/https:
//doi.org/10.1016/j.cor.2019.104858.

Irnich S, 2008a Resource extension functions: properties, inversion, and generalization to segments. OR Spectrum 30:113
– 148, URL http://dx.doi.org/10.1007/s00291-007-0083-6.

Irnich S, 2008b A unified modeling and solution framework for vehicle routing and local search-based metaheuristics.
INFORMS Journal on Computing 20(2):270–287.

107

http://dx.doi.org/https://doi.org/10.1007/PL00013346
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2008.02.025
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2008.02.025
http://dx.doi.org/https://doi.org/10.1016/j.cie.2012.01.005
http://dx.doi.org/https://doi.org/10.1016/j.cie.2012.01.005
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2020.106036
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2020.106036
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(99)00284-2
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(99)00284-2
http://dx.doi.org/10.13140/RG.2.2.25569.40807
http://dx.doi.org/10.13140/RG.2.2.25569.40807
http://akira.ruc.dk/~keld/research/LKH-3
http://dx.doi.org/https://doi.org/10.1002/net.21879
http://dx.doi.org/https://doi.org/10.1002/net.21879
http://dx.doi.org/https://doi.org/10.1016/j.cor.2019.104858
http://dx.doi.org/https://doi.org/10.1016/j.cor.2019.104858
http://dx.doi.org/10.1007/s00291-007-0083-6

Jonker R, Volgenant T, 1986 Transforming asymmetric into symmetric traveling salesman problems: erratum. Opera-
tions Research Letters 5(4):215–216.

Jonker R, Volgenant T, 1988 An improved transformation of the symmetric multiple traveling salesman problem. Oper-
ations Research 36(1):163–167.

Kalayci CB, Kaya C, 2016 An ant colony system empowered variable neighborhood search algorithm for the vehicle
routing problem with simultaneous pickup and delivery. Expert Systems with Applications 66:163–175, URL
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2016.09.017.

Kelly JP, Xu J, 1999 A set-partitioning-based heuristic for the vehicle routing problem. INFORMS Journal on Computing
11(2):161–172.

Kindervater GA, Savelsbergh MW, 1997 10. vehicle routing: handling edge exchanges. Local search in combinatorial
optimization (John Wiley & Son).

Kirkpatrick S, Gelatt CD, Vecchi MP, 1983 Optimization by simulated annealing. science 220(4598):671–680.

Koç Ç, Laporte G, 2018 Vehicle routing with backhauls: Review and research perspectives. Computers & Operations
Research 91:79–91, URL http://dx.doi.org/https://doi.org/10.1016/j.cor.2017.11.003.

Koç Ç, Laporte G, Tükenmez I, 2020 A review of vehicle routing with simultaneous pickup and delivery. Comput-
ers & Operations Research 122:104987, URL http://dx.doi.org/https://doi.org/10.1016/j.cor.2020.
104987.

Laporte G, Nobert Y, Desrochers M, 1985 Optimal routing under capacity and distance restrictions. Operations Re-
search 33(5):1050–1073.

Lemaitre M, Verfaillie G, Jouhaud F, Lachiver JM, Bataille N, 2002 Selecting and scheduling observations of agile
satellites. Aerospace Science and Technology 6(5):367–381.

Li Y, Xu M, Wang R, 2007 Scheduling observations of agile satellites with combined genetic algorithm. Third Interna-
tional Conference on Natural Computation (ICNC 2007), volume 3, 29–33.

Lin S, Kernighan BW, 1973 An effective heuristic algorithm for the traveling-salesman problem. Operations Research
21(2):498–516.

Lin WC, Liao DY, 2004 A tabu search algorithm for satellite imaging scheduling. 2004 IEEE International Conference
on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583), volume 2, 1601–1606.

Lin WC, Liao DY, Liu CY, Lee YY, 2005 Daily imaging scheduling of an earth observation satellite. IEEE Transactions
on Systems, Man, and Cybernetics-Part A: Systems and Humans 35(2):213–223.

Liu X, Laporte G, Chen Y, He R, 2017 An adaptive large neighborhood search metaheuristic for agile satellite scheduling
with time-dependent transition time. Computers & Operations Research 86:41–53.

Lourenço HR, Martin OC, Stützle T, 2003 Iterated Local Search, 320–353 (Boston, MA: Springer US), ISBN 978-0-
306-48056-0, URL http://dx.doi.org/10.1007/0-306-48056-5_11.

Luo K, Wang H, Li Y, Li Q, 2017 High-performance technique for satellite range scheduling. Computers & Operations
Research 85:12–21.

Mansour MA, Dessouky MM, 2010 A genetic algorithm approach for solving the daily photograph selection problem of
the spot5 satellite. Computers & Industrial Engineering 58(3):509–520.

Martin O, Otto SW, Felten EW, 1992 Large-step markov chains for the TSP incorporating local search heuristics. Oper-
ations Research Letters 11(4):219–224.

Min H, 1989 The multiple vehicle routing problem with simultaneous delivery and pick-up points. Transporta-
tion Research Part A: General 23(5):377–386, URL http://dx.doi.org/https://doi.org/10.1016/
0191-2607(89)90085-X.

Monaci M, Toth P, 2006 A set-covering-based heuristic approach for bin-packing problems. INFORMS Journal on Com-
puting 18(1):71–85.

Montané A, Galvão R, 2006 A tabu search algorithm for the vehicle routing problem with simultaneous pick-up and
delivery service. Computers & Operations Research 33(3):595–619, URL http://dx.doi.org/https://doi.
org/10.1016/j.cor.2004.07.009.

Nagata Y, Kobayashi S, 2013 A powerful genetic algorithm using edge assembly crossover for the traveling salesman
problem. INFORMS Journal on Computing 25(2):346–363.

Oesterle J, Bauernhansl T, 2016 Exact method for the vehicle routing problem with mixed linehaul and backhaul cus-
tomers, heterogeneous fleet, time window and manufacturing capacity. Procedia CIRP 41:573–578, URL http:
//dx.doi.org/https://doi.org/10.1016/j.procir.2015.12.040, research and Innovation in Manu-
facturing: Key Enabling Technologies for the Factories of the Future – Proceedings of the 48th CIRP
Conference on Manufacturing Systems.

Olgun B, Koç Ç, Altıparmak F, 2021 A hyper heuristic for the green vehicle routing problem with simultaneous pickup
and delivery. Computers & Industrial Engineering 153:107010, URL http://dx.doi.org/https://doi.org/
10.1016/j.cie.2020.107010.

108

http://dx.doi.org/https://doi.org/10.1016/j.eswa.2016.09.017
http://dx.doi.org/https://doi.org/10.1016/j.cor.2017.11.003
http://dx.doi.org/https://doi.org/10.1016/j.cor.2020.104987
http://dx.doi.org/https://doi.org/10.1016/j.cor.2020.104987
http://dx.doi.org/10.1007/0-306-48056-5_11
http://dx.doi.org/https://doi.org/10.1016/0191-2607(89)90085-X
http://dx.doi.org/https://doi.org/10.1016/0191-2607(89)90085-X
http://dx.doi.org/https://doi.org/10.1016/j.cor.2004.07.009
http://dx.doi.org/https://doi.org/10.1016/j.cor.2004.07.009
http://dx.doi.org/https://doi.org/10.1016/j.procir.2015.12.040
http://dx.doi.org/https://doi.org/10.1016/j.procir.2015.12.040
http://dx.doi.org/https://doi.org/10.1016/j.cie.2020.107010
http://dx.doi.org/https://doi.org/10.1016/j.cie.2020.107010

Öztaş T, Tuş A, 2022 A hybrid metaheuristic algorithm based on iterated local search for vehicle routing problem with
simultaneous pickup and delivery. Expert Systems with Applications 202:117401, URL http://dx.doi.org/
https://doi.org/10.1016/j.eswa.2022.117401.

Park H, Son D, Koo B, Jeong B, 2021 Waiting strategy for the vehicle routing problem with simultaneous pickup
and delivery using genetic algorithm. Expert Systems with Applications 165:113959, URL http://dx.doi.org/
https://doi.org/10.1016/j.eswa.2020.113959.

PassMark® Software, 2020 Professional cpu benchmarks. URL https://www.passmark.com/index.html, visited
on 2022-06-03.

Pecin D, Pessoa A, Poggi M, Uchoa E, 2017 Improved branch-cut-and-price for capacitated vehicle routing. Mathemat-
ical Programming Computation 9(1):61–100.

Pecin D, Pessoa A, Poggi M, Uchoa E, 2023 CVRPLIB - Updates. http://vrp.atd-lab.inf.puc-rio.br/index.
php/en/updates.

Peng G, Vansteenwegen P, Liu X, Xing L, Kong X, 2018 An iterated local search algorithm for agile earth observation
satellite scheduling problem. 2018 SpaceOps Conference, 2311.

Pessoa A, Sadykov R, Uchoa E, Vanderbeck F, 2020 A generic exact solver for vehicle routing and related problems.
Mathematical Programming 183:483–523.

Pessoa A, Sadykov R, Uchoa E, Vanderbeck F, 2021 VRPSolver. https://vrpsolver.math.u-bordeaux.fr/.
Pillac V, Gendreau M, Guéret C, Medaglia AL, 2013 A review of dynamic vehicle routing problems. European Journal

of Operational Research 225(1):1–11.
Polat O, 2017 A parallel variable neighborhood search for the vehicle routing problem with divisible deliveries and pickups.

Computers & Operations Research 85:71–86, URL http://dx.doi.org/https://doi.org/10.1016/j.cor.
2017.03.009.

Polat O, Kalayci CB, Kulak O, Günther HO, 2015 A perturbation based variable neighborhood search heuristic for solv-
ing the vehicle routing problem with simultaneous pickup and delivery with time limit. European Journal of Oper-
ational Research 242(2):369–382, URL http://dx.doi.org/https://doi.org/10.1016/j.ejor.2014.10.
010.

Queiroga E, Frota Y, Sadykov R, Subramanian A, Uchoa E, Vidal T, 2020 On the exact solution of vehicle routing
problems with backhauls. European Journal of Operational Research 287(1):76–89, URL http://dx.doi.org/
https://doi.org/10.1016/j.ejor.2020.04.047.

Queiroga E, Sadykov R, Uchoa E, 2021 A POPMUSIC matheuristic for the capacitated vehicle routing problem. Com-
puters & Operations Research 136:105475.

Rochat Y, Taillard ÉD, 1995 Probabilistic diversification and intensification in local search for vehicle routing. Journal of
heuristics 1(1):147–167.

Ropke S, Pisinger D, 2006 An adaptive large neighborhood search heuristic for the pickup and delivery problem with
time windows. Transportation Science 40(4):455–472, URL http://dx.doi.org/https://doi.org/10.1287/
trsc.1050.0135.

Rothberg E, 2007 An evolutionary algorithm for polishing mixed integer programming solutions. INFORMS Journal on
Computing 19(4):534–541.

Ryan DM, Hjorring C, Glover F, 1993 Extensions of the petal method for vehicle routeing. Journal of the Operational
Research Society 44(3):289–296.

Salhi S, Nagy G, 1999 A cluster insertion heuristic for single and multiple depot vehicle routing problems with back-
hauling. Journal of the Operational Research Society 50(10):1034–1042, URL http://dx.doi.org/https:
//doi.org/10.1057/palgrave.jors.2600808.

Santana JC, Guerhardt F, Franzini C, Ho LL, Júnior SRR, Cânovas G, Berssaneti F, 2021 Refurbishing and recycling
of cell phones as a sustainable process of reverse logistics: A case study in brazil. Journal of Cleaner Production 283.

Santos M, Amorin P, Marques A, Carvalho A, Póvoa A, 2020 The vehicle routing problem with backhauls towards
a sustainability perspective: a review. TOP 28:358—-401, URL http://dx.doi.org/https://doi.org/10.
1007/s11750-019-00534-0.

Schneider M, Schwahn F, Vigo D, 2017 Designing granular solution methods for routing problems with time windows.
European Journal of Operational Research 263(2):493–509, URL http://dx.doi.org/10.1016/j.ejor.2017.
04.059.

Shafiee RE, Ghomi SF, Sajadieh M, 2021 Reverse logistics network design for product reuse, remanufacturing, recycling
and refurbishing under uncertainty. Journal of Manufacturing Systems 60:473–486.

Simsir F, Ekmekci D, 2019 A metaheuristic solution approach to capacitied vehicle routing and network optimization. En-
gineering Science and Technology, an International Journal 22(3):727–735, URL http://dx.doi.org/https:
//doi.org/10.1016/j.jestch.2019.01.002.

Skarupke M, 2016 I wrote a faster sorting algorithm. https://probablydance.com/2016/12/27/
i-wrote-a-faster-sorting-algorithm, accessed: 2022-07-24.

109

http://dx.doi.org/https://doi.org/10.1016/j.eswa.2022.117401
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2022.117401
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2020.113959
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2020.113959
https://www.passmark.com/index.html
http://vrp.atd-lab.inf.puc-rio.br/index.php/en/updates
http://vrp.atd-lab.inf.puc-rio.br/index.php/en/updates
https://vrpsolver.math.u-bordeaux.fr/
http://dx.doi.org/https://doi.org/10.1016/j.cor.2017.03.009
http://dx.doi.org/https://doi.org/10.1016/j.cor.2017.03.009
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2014.10.010
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2014.10.010
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2020.04.047
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2020.04.047
http://dx.doi.org/https://doi.org/10.1287/trsc.1050.0135
http://dx.doi.org/https://doi.org/10.1287/trsc.1050.0135
http://dx.doi.org/https://doi.org/10.1057/palgrave.jors.2600808
http://dx.doi.org/https://doi.org/10.1057/palgrave.jors.2600808
http://dx.doi.org/https://doi.org/10.1007/s11750-019-00534-0
http://dx.doi.org/https://doi.org/10.1007/s11750-019-00534-0
http://dx.doi.org/10.1016/j.ejor.2017.04.059
http://dx.doi.org/10.1016/j.ejor.2017.04.059
http://dx.doi.org/https://doi.org/10.1016/j.jestch.2019.01.002
http://dx.doi.org/https://doi.org/10.1016/j.jestch.2019.01.002
https://probablydance.com/2016/12/27/i-wrote-a-faster-sorting-algorithm
https://probablydance.com/2016/12/27/i-wrote-a-faster-sorting-algorithm

Subramanian A, Uchoa E, Ochi LS, 2013 A hybrid algorithm for a class of vehicle routing problems. Computers &
Operations Research 40(10):2519–2531.

Taillard ÉD, Helsgaun K, 2019 POPMUSIC for the travelling salesman problem. European Journal of Operational
Research 272(2):420–429.

Tangpattanakul P, Jozefowiez N, Lopez P, 2015 A multi-objective local search heuristic for scheduling earth observa-
tions taken by an agile satellite. European Journal of Operational Research 245(2):542–554.

Taniguchi E, Heijden RVD, 2000 An evaluation methodology for city logistics. Transport Reviews 20(1):65–90.

Taniguchi E, Thompson R, Yamada T, van Duin R, 2001 City logistic—network modelling and intelligent transport
systems (Pergamon, Amsterdam).

Toth P, Vigo D, 2003 The granular tabu search and its application to the vehicle-routing problem. INFORMS Journal on
Computing 15(4):333–346, URL http://dx.doi.org/10.1287/ijoc.15.4.333.24890.

Toth P, Vigo D, 2014 Vehicle routing: problems, methods, and applications (SIAM, Philadelphia, PA), URL https:
//epubs.siam.org/doi/abs/10.1137/1.9781611973594.

Uchoa E, Pecin D, Pessoa A, Poggi M, Vidal T, Subramanian A, 2017 New benchmark instances for the capacitated
vehicle routing problem. European Journal of Operational Research 257(3):845–858.

Vasquez M, Hao JK, 2001 A “logic-constrained” knapsack formulation and a tabu algorithm for the daily photograph
scheduling of an earth observation satellite. Computational optimization and applications 20(2):137–157.

Vidal T, Crainic TG, Gendreau M, Lahrichi N, Rei W, 2012 A hybrid genetic algorithm for multidepot and periodic
vehicle routing problems. Operations Research 60(3):611–624.

Vidal T, Crainic TG, Gendreau M, Prins C, 2014 A unified solution framework for multi-attribute vehicle routing
problems. European Journal of Operational Research 234(3):658–673, URL http://dx.doi.org/https://doi.
org/10.1016/j.ejor.2013.09.045.

Wang J, Demeulemeester E, Qiu D, 2016 A pure proactive scheduling algorithm for multiple earth observation satellites
under uncertainties of clouds. Computers & Operations Research 74:1–13.

Wang J, Demeulemeester E, Qiu D, Liu J, 2015 Exact and inexact scheduling algorithms for multiple earth observation
satellites under uncertainties of clouds. Available at SSRN 2634934 .

Wassan N, Nagy G, Ahmadi S, 2008 A heuristic method for the vehicle routing problem with mixed deliveries and
pickups. Journal of Scheduling 11(2):149—-161.

Wilcoxon F, 1945 Individual comparisons by ranking methods. Biometrics Bulletin 1(6):80–83, URL http://www.
jstor.org/stable/3001968.

Wolsey LA, Nemhauser GL, 1999 Integer and combinatorial optimization, volume 55 (John Wiley & Sons).

Zachariadis EE, Kiranoudis CT, 2010 A strategy for reducing the computational complexity of local search-based meth-
ods for the vehicle routing problem. Comput. Oper. Res. 37(12):2089–2105, URL http://dx.doi.org/10.1016/
j.cor.2010.02.009.

Zachariadis EE, Tarantilis CD, Kiranoudis CT, 2010 An adaptive memory methodology for the vehicle routing problem
with simultaneous pick-ups and deliveries. European Journal of Operational Research 202(2):401–411, URL http:
//dx.doi.org/https://doi.org/10.1016/j.ejor.2009.05.015.

Zhang D, Guo L, Cai B, Sun N, Wang Q, 2013 A hybrid discrete particle swarm optimization for satellite scheduling
problem. IEEE conference anthology, 1–5.

110

http://dx.doi.org/10.1287/ijoc.15.4.333.24890
https://epubs.siam.org/doi/abs/10.1137/1.9781611973594
https://epubs.siam.org/doi/abs/10.1137/1.9781611973594
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2013.09.045
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2013.09.045
http://www.jstor.org/stable/3001968
http://www.jstor.org/stable/3001968
http://dx.doi.org/10.1016/j.cor.2010.02.009
http://dx.doi.org/10.1016/j.cor.2010.02.009
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2009.05.015
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2009.05.015

	Introduction
	Chapter 2: An integrated local-search/set-partitioning refinement heuristic for the Capacitated Vehicle Routing Problem
	Chapter 3: An Efficient Heuristic for Very Large-Scale Vehicle Routing Problems with Simultaneous Pickup and Delivery
	Chapter 4: Daily Planning of Acquisitions and Scheduling of Dynamic Downlinks for the PLATiNO Satellite

	An integrated local-search/set-partitioning refinement heuristic for the Capacitated Vehicle Routing Problem
	Introduction
	Previous work
	Algorithm Outline
	Phase 1: Lin, Kernighan and Helsgaun Heuristic
	Phase 2: Column Generation Filtering
	Phase 3: Restricted Set Partitioning Problem Optimization
	VRP Taxonomy

	Computational Results
	Original LKH vs New LKH
	Original LKH vs new LKH vs LS-CGH
	Statistical analysis of LS-CGH
	LS-CGH as a refinement tool for FILO
	CVRPLIB best-known solution improvements

	Conclusions

	An Efficient Heuristic for Very Large-Scale Vehicle Routing Problems with Simultaneous Pickup and Delivery
	Introduction
	Problem description
	Literature review
	Solution Approach
	An overview of FILO framework
	The FSPD framework

	Computational Results
	Implementation and Experimental Environment
	Parameter Tuning
	Testing on Instances from the Literature
	Testing on New Large-Scale Instances

	Algorithmic Components Analysis
	Segment Attributes Preprocessing
	Recreate Tuning
	Super-linear algorithmic phases management

	Conclusions
	Acknowledgments
	Appendix A: Complete results
	VRPSPD Instances
	VRPMPD Instances

	Daily Planning of Acquisitions and Scheduling of Dynamic Downlinks for the PLATiNO Satellite
	Introduction
	Literature Review
	Problem Description
	Mathematical Formulation
	General scheduling constraints
	Memory management
	Relaxed Memory Management

	Genetic Algorithm Solution Approach
	Individual Representation
	Initial Population Generation
	Elitism
	Parent Selection
	Crossover and Elite Refinement
	Mutation
	Infeasibility Repair Procedures
	Local Search
	Indirect Dynamic Downlink Scheduling Algorithm

	Exact and Relaxed Formulation Approaches
	Math-Heuristic Competitors
	Relax and Repair Heuristic
	Strenghtened Discrete-Memory Relaxation
	Hybrid Genetic Algorithm - Relax and Repair Heuristic

	Computational Experiments
	Implementation and Experimental Environment
	Parameters Definition and Tuning
	Instances Description
	Upper Bound computation
	Heuristic Results

	Conclusions

