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Abstract

The advent of high-temperature superconducting (HTS) materials has ushered
in a new era of technological possibilities, propelling them to the forefront of

cutting-edge scientific endeavors. HTS devices are frequently subjected to time-
dependent transport currents and external magnetic fields during operation, lead-
ing to energy losses within the HTS, namely AC losses, a phenomenon that can
potentially compromise device performance.

Accordingly, the development of robust tools for accurately estimating AC
losses in HTS devices and predicting the behavior of the device during operation
is of crucial importance. Conventional approaches, such as finite element method
(FEM) models, offer commendable predictive capabilities, yet they suffer from
substantial computational costs and are often not compatible with the time scale
of the design and prototyping phases of HTS device development. The computa-
tional time of 3D FEM models is prohibitively high in the cases of complex magnet
geometry like the central solenoid of a Tokamak fusion reactor.

To address this limitation, this thesis investigates alternative solutions: analyt-
ical formulae for the assessment of the instantaneous power dissipation, which were
applied to study the losses in the central solenoid of the DEMO machine, and a 3D
lumped parameter model employed in the study of tapes and no insulation HTS
(NI-HTS) coils. The proposed solutions, although not accurate as a full 3D FEM
model which remains the most reliable tool for the analysis of HTS devices, of-
fer significant advantages over conventional approaches. The main advantages are
reduced computational time, enhanced model flexibility, and improved scalability
for complex device geometries.
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Chapter 1

1 Introduction
This introductory chapter aims to impart readers with a comprehensive grasp

of superconductivity, empowering them to contextualize the work presented herein
within the broader field of superconductivity and grasp the fundamental principles
indispensable for comprehending the subsequent chapters.

1.1 Discovery of superconductivity

The discovery of superconductivity is credited to the Dutch physicist Heike
Kamerlingh Onnes (recipient of the 1913 Nobel Prize in Physics), who made this
groundbreaking observation in 1911. While conducting experiments on the elec-
trical properties of various materials at low temperatures at Leiden University
laboratories in the Netherlands, Onnes achieved a remarkable breakthrough in
1908 when he was the first to liquefy helium, the last of the inert gases to be
condensed, reaching an astoundingly low temperature of 4.2 Kelvin. This signif-
icant milestone paved the way for a new era of scientific exploration by enabling
researchers to conduct experiments at temperatures previously unattainable.

Three years later, in 1911, Onnes made another remarkable discovery when he
observed an abrupt and dramatic drop in the electrical resistivity of mercury to
negligible values, essentially becoming zero when the material was immersed in
liquid helium (Onnes famously described this phenomenon as the "disappearance"
of electrical resistance [22]. This remarkable observation, depicted in Fig. 1.1.1,
which showcases Onnes’s original data on the temperature dependence of mercury’s
electrical resistivity, defied the prevailing theories of the time, which predicted
a gradual decrease in electrical resistance with decreasing temperature. Onnes
concluded that mercury had entered a previously unknown state of matter, which
he baptized "superconductivity." This phenomenon, however, was not observed in
all materials, and it marked the emergence of a new class of materials known as
superconductors.
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Figure 1.1.1: Behaviour of the electrical resistance of mercury as a function of
the temperature, as reported by H. K. Onnes in 1911 [1].

1.2 Superconducting propierties

After stating that superconductors are materials that exist in a different state
of matter, it is important to define the properties of this state. The main difference
between the superconducting materials and the others is a sudden variation of the
electrical resistivity and perfect diamagnetism [23].

1.2.1 Superconducting transition of electrical resistivity

In classical electromagnetism theory, as the temperature of a material de-
creases, its electrical resistance diminishes due to the reduced vibrational motion
of the ions in its crystal lattice structure.

However, for ordinary metallic conductors, the resistance does not entirely
vanish at absolute zero (a temperature that cannot be practically attained) but
rather approaches a residual value attributed to imperfections within the crystal
lattice. Matthiessen’s rule, shown in 1.2.1 serves as an empirical model to quantify
this phenomenon [24]:
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ρ = ρt + ρ0 (1.2.1)

Where ρ is the material resistivity, ρt is thermal resistivity, which tends to
nullify tending to absolute zero, while the resistivity ρ0 depends on the degree
of purity of the crystal lattice. This last parameter can persist regardless of the
temperature. In Fig. 1.2.1 the trend of the electrical resistance of an ordinary
metal as a function of temperature is compared against that of an ideally pure
metal (ρ0 = 0) and a superconductor. It can be seen that when the superconducting
material is cooled down below a certain value of temperature its resistance sharply
drops to negligible values (ρ < 10-25 Ωm ). The temperature value at which the
electrical resistance of the superconductor drops is called the critical temperature
and is indicated as Tc.

Figure 1.2.1: Comparison of the electrical resistivity, as a function of tempera-
ture, of an ordinary metal an ideally pure metal and a superconductor.

1.2.2 Perfect diamagnetism: The Meissner-Ochsenfeld effect

Perfect diamagnetism is an idealized property exhibited by hypothetical perfect
conductors (ρ = 0), which theoretically can perfectly repel any external magnetic
field penetrating their interior. However, this phenomenon is restricted, in the
case of normal conductors, to materials cooled below a critical temperature (Tc)
of approximately 0 Kelvin (absolute zero) before the external magnetic field is
applied. If the cooling occurs after the field is applied, the magnetic field cannot
be expelled from the material’s interior.

3



Chapter 1

In contrast, superconductors can expel an external magnetic field from their
interior, regardless of whether the field is applied before or after the material is
cooled below its critical temperature, which can be significantly higher than ab-
solute zero. This remarkable phenomenon is known as the Meissner-Ochsenfeld
effect [25]. The Meissner-Ochsenfeld effect, a superconductivity hallmark, encap-
sulates the fundamental distinction between perfect conductors and superconduc-
tors. It can be stated that this effect is what truly defines a superconductor even
more than the sudden drop of electrical resistivity.

In Fig 1.2.2, the behavior of a perfect conductor, when subjected to an external
magnetic field, is shown in comparison to that of a superconductor. The left side
of Fig. 1.2.2 illustrates the response when the field is applied after both materials
have been cooled below their respective critical temperatures. In contrast, the
right side demonstrates the outcome when the field is applied before cooling.

Figure 1.2.2: Magnetic behavior of a perfect conductor, and a superconductor,
when subjected to an external magnetic field, as function on the temperature.

It is noteworthy that the distinction between a perfect conductor and a su-
perconducting material extends to the underlying mechanisms that produce their
diamagnetic properties. The fundamental origins of diamagnetism in superconduc-
tors and normal materials differ significantly. In normal materials, diamagnetism
arises directly from the orbital motion of electrons around atomic nuclei, induced
electromagnetically by the application of an external magnetic field. In supercon-
ductors, however, this illusion of perfect diamagnetism is not solely due to orbital
spin but arises from the persistent flow of currents, called screening currents, that
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generates a magnetic field opposed to that applied(the Meissner-Ochsenfeld effect).

The word "illusion" is used to emphasize that in reality, a superconductor is
not in a truly perfect diamagnetic state. While the interior of the superconductor
expels the external magnetic field, a small residual field persists in a thin layer near
the material’s surface. This region is defined by a parameter known as the pene-
tration depth, λ [26]. Within this distance, the magnetic field decays exponentially
from its external strength to zero, as shown in Fig. 1.2.3.

Figure 1.2.3: Penetration depth and magnetic field inside a superconductor. B0

is the value of the external magnetic field, inside the superconductor the magnetic
field follows the exponential law reported in the figure.

1.2.3 The critical surface: when a superconductor is such

As mentioned earlier, a superconducting material exhibits its peculiar prop-
erties only within specific operating conditions, characterized by a set of state
variables. Specifically, the temperature, magnetic field, and current density must
not exceed their critical values, denoted by Tc, Bc, and Jc, respectively. Exceeding
any of these limits triggers the material’s transition into a non-superconducting,
dissipative state. These three parameters exhibit a strong interrelationship (e.g.,
increasing the operating temperature reduces the critical current density of the
superconductor). Together, they define the so-called critical surface of the super-
conductor, depicted in Fig 1.2.4. The shape of the critical surface is dependent on
the type of superconductor, the quality of the manufacturing process, the impurity
content, and any potential damage incurred during operation.

It is important to note that the parameters defining the critical surface of a
superconductor are typically measured as average values across the entire material,
and often within a complex superconducting device. However, these parameters
may vary locally within the material due to possible anisotropies or inhomogeneous
manufacturing processes.
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Figure 1.2.4: Example of a critical surface of a generic superconducting material,
taken from [2].

The temperature, magnetic field, and current density are the main parameters
defining when a superconductor is indeed superconducting but are not the only
ones. The frequency plays a crucial role, in the behavior of a superconductor, a
superconductor is only free of losses only when the frequency is null. The critical
current density can be expressed as a function of the frequency [27]. Another
parameter that defines the superconducting state is the strain, which represents the
mechanical elongation per unit length of the material along a particular direction
due to applied stresses. Strain significantly impacts the critical current density of
a superconductor [28,29].

1.3 The superconducting materials

Ever since their discovery in 1911, superconducting materials have captivated
the scientific community with the immense potential they embody. Over the years,
a plethora of new superconductors have emerged, encompassing fundamental el-
ements, composite alloys, and ceramic materials. Based on their properties and
behavior, superconductors can be classified into various categories.

1.3.1 Magnetic classification: Type I and Type II superconductors

It is possible to classify the superconducting materials from an electromagnetic
point of view. Their response to an applied magnetic field is what determines if a
superconductor is of Type I or Type II.
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Type I superconductors exhibit a distinct magnetic behavior, conforming to
the principles outlined in Section 1.2.2. Specifically, when subjected to an exter-
nal magnetic field exceeding its critical value (Bc), the superconducting state of
the material abruptly ceases to exist, and its inherent properties vanish. Since Bc

typically ranges in the order of a few tens of milliteslas (mT), the practical ap-
plications of Type I superconductors are severely limited, particularly in scenarios
involving strong magnetic fields, such as electromagnets. This type of supercon-
ductor was the first to be discovered, and it encompasses numerous elements (as
illustrated in Fig. 1.3.1) and a few metal alloys.

Figure 1.3.1: Periodic table of elements with a focus on those capable of showing
superconducting properties. As shown, some of the elements are superconductors
only in particular conditions such as high pressure or laminated into thin film.
This is an important statement that reinforces the idea that superconductivity is
not an intrinsic property of the materials.

In 1935, L. Shubnikov and J. N. Rjabinin experimentally discovered a new
class of superconductors with distinct magnetic properties, differentiating them
from conventional superconductors [30]. Several years later, theoretical explana-
tions for these observations were proposed by V. L. Ginzburg and L. D. Lan-
dau [31], later refined by A. A. Abrikosov [32]. These materials, categorized as
Type II superconductors, exhibit a unique "double transition" characterized by
two distinct magnetic field thresholds (Bc1,Bc2). Within the lower critical magnetic
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field range, Bc1, their behavior mirrors that of Type I superconductors. However,
upon exceeding this remarkably low threshold, Type II superconductors do not
abruptly transition to a normal state but instead enter a mixed state where the
superconducting and normal states coexist. In this phase, the material’s perfect
diamagnetism is compromised, and magnetic field vortices, also known as fluxons
(quantum of magnetic field), begin to penetrate the material. The quantum of
the magnetic field is often represented as Φ0, its value amount to h

2e
, where h is

the Plack constant and e is the charge of the electron. These vortices form closed
regions that experience a transition to the normal state, while the surrounding
areas retain their superconductivity. The mixed state with the penetration in the
superconductor of fluxons is depicted in Fig. 1.3.2.

Figure 1.3.2: Graphic representation of the mixed state of a Type II supercon-
ductor.

From a macroscopic point of view, the material maintains its superconducting
behavior due to the limited size of the fluxons. The fluxon density increases as
the field strength rises. This mixed state persists until the upper critical magnetic
field, Bc2, is reached. Beyond this threshold, the material becomes fully pene-
trated by fluxons, losing its superconductive properties. As a consequence, Type
II superconductors offer significantly enhanced operating conditions compared to
Type I materials, as their Bc2 limit is considerably higher. In certain alloys, the
upper critical field can exceed the amplitudes of several Teslas (depending on the
temperature), making them suitable for magnetic applications. This explains why
almost all modern superconducting materials belong to Type II. For a better un-
derstanding, Fig 1.3.3 illustrates the contrasting magnetic behaviors of Type I and
Type II superconductors.
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Figure 1.3.3: On the left the magnetic behavior of a Type I superconductor, on the
right a Type II superconductor. The two graph are not in scale, Bc1 << Bc << Bc2.

1.3.2 Temperature classification: Low temperature vs High tempera-
ture superconductors

While the classification of superconductors into Type I and Type II is primar-
ily based on their magnetic behavior, an additional classification scheme can be
employed based on their critical temperature. The primary concern regarding the
practical implementation of superconducting materials in engineering applications
is the ability of the superconductor to function within operating conditions with-
out exceeding the critical surface, thereby preserving its worthwhile properties.
The most expensive requirement for a superconducting device to be able to work
is maintaining the cryogenic temperature. The requirement for operation at low
temperatures significantly raises the expense of superconducting technology. As a
result, enhancing the Tc of superconductors would not only broaden their applica-
bility but also make them more cost-efficient. In this respect, great progress has
been made over the years as shown in Fig. 1.3.4.

The classification of superconductors based on their critical temperatures yields
what are commonly referred to as low-temperature superconductors (LTS) and
high-temperature superconductors (HTS).

Low-temperature superconductors (LTS) exhibit a critical temperature of a few
degrees above absolute zero, necessitating cooling with liquid helium (primarily)
or hydrogen, both of which are expensive and require specialized handling. De-
spite these limitations, the LTS were the first type of superconductor discovered
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Figure 1.3.4: Timeline of the critical temperature of superconductors from 1911
to 2020 [3]. On the right one can see the liquid nitrogen temperature, which usu-
ally divides superconductors at high from superconductors at low temperatures.
Cuprates are displayed as blue diamonds and iron-based superconductors as yellow
squares. Magnesium diboride and other low-temperature or high-pressure metallic
BCS superconductors are displayed for reference as green circles.

and commercialized; their unitary cost is now comparable to that of traditional
conductors like copper [33]. Their electromagnetic properties have also undergone
significant advancements over the years, making them the primary superconduc-
tors employed in biomedical applications [34] and large-scale particle physics de-
vices [35]. Most LTS are based on niobium alloys, particularly NbTi and Nb3Sn.
These alloys are fabricated into flexible multifilament cables (e.g., Rutherford ca-
bles and Cable-in-Conduit conductors) capable of carrying massive currents. NbTi
is preferred due to its ductility, which simplifies and reduces the cost of its fabri-
cation using the powder-in-tube technique [34]. Nb3Sn, on the other hand, offers
superior performance (Bc2 exceeding 20 T at 4.2 K, while Bc2 is approximately 12
for NbTi at the same temperature), but its fabrication is more expensive due to
its brittleness and the requirement for thermal treatment after the winding into
its final configuration, using the so-called wind-and-react techniques.

A groundbreaking breakthrough in the field of superconductivity occurred in
1986 when G. Bednorz and A. Müller successfully transitioned a new class of
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ceramic materials (known as cuprates) into the superconducting state at a tem-
perature surpassing 30 K, which significantly exceeded the critical temperatures
of LTS materials and defied the prevailing theories at the time [36]. This Tc value,
conventionally established as the threshold distinguishing HTS from LTS, paved
the way for further research into numerous materials, leading to the development of
HTS with critical temperatures exceeding 77 K. This development holds immense
significance as it enables the utilization of liquid nitrogen as a coolant, a cryogenic
fluid less expensive and more readily available compared to liquid helium. To
date, the most extensively studied and commercially produced HTS materials be-
long to two categories: Bismuth-Strontium-Calcium-Copper-Oxides (abbreviated
as BSCCO, also known as first-generation HTS) and Rare Earth-Barium-Copper-
Oxides (abbreviated as (RE)BCO, also known as second-generation HTS). This
thesis work will be focused on the application of HTS materials of the REBCO
family so discussions about the characteristics of BSCCO HTS are omitted. The
HTS not only can work at a much higher temperature than the LTS but also pos-
sesses greater Jc and Bc, meaning that they can work in a much broader space of
operating conditions. A comparison of the critical surface of an HTS material and
an LTS one is shown in Fig 1.3.5.

Figure 1.3.5: Critical surface comparison between HTS (YBCO) and several LTS
(Nb based).

REBCO represents a family of ceramic compounds, where the Rare Earth ele-
ments can be Yttrium, Samarium, Neodymium, or Gadolinium. REBCOs stand as
the only superconductors capable of operating within a medium-to-high magnetic
field range (7–10 T) at temperatures exceeding 77 K. Furthermore, they exhibit
reduced anisotropy with respect to the magnetic field compared to BSCCO com-
pounds. Therefore, they are considered promising candidates for the development
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of future high-field magnets on a large scale.

Second-generation HTS are manufactured as tapes comprising various materi-
als, in which the superconducting compound constitutes a relatively small portion
of the conductor. The different materials are arranged in stacked layers, and
for this reason, they are often referred to as coated conductors. The REBCO
layer undergoes biaxial texturing during the manufacturing process to achieve an
optimal arrangement of its grains and ensure optimal performance. Achieving suf-
ficiently long tapes (several hundred meters) with homogeneous properties along
their length demands slow and expensive processes, which currently represent a
bottleneck for this technology. This is crucial to prevent weak points in a super-
conducting device, which can compromise overall performance, as in the case of a
coil.

Figure 1.3.6: Example of a second generation REBCO tape, manufactured by
Superpower inc., with all of the thickness of all the components illustrated. As
stated before the superconductor is only a small fraction of the tape. The substrate
is there for mechanical reasons, while the silver layer is a chemical stabilizer, bar-
ring oxygen from disrupting the superconductor chemical structure [4].

Fig. 1.3.6 provides an example of the structure of a second-generation HTS
tape: the metallic substrate ensures the flexibility of the conductor, the thin layers
beneath the superconductor are designated as buffer layers and they guarantee the
proper "growth" of the superconducting layer by organizing the structure of the
grains deposited, while the metallic layers are inserted as electrical and thermal
stabilizers. The cross-section of HTS tapes exhibits an unusual aspect ratio: it is
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a few tens of microns thick and a few centimeters wide.

1.3.3 Thermal stability

Superconducting devices and individual tapes are susceptible to a range of
heat sources during operation. These sources can be external, dictated by the spe-
cific application (e.g., particle showers in accelerator magnets or leaks/cracks in
cryogenic vessels), or internal. Internal heat sources originate from ohmic losses,
coupling losses, flux creep and flux flow mechanisms [37], and particularly, AC
losses [38], which are meticulously addressed in this work.

Upon cooling and connecting a superconductor to a power supply, the cryo-
genic system is tasked with effectively removing all heat introduced into the sys-
tem, maintaining the operating temperature at its designed value. This mandates
meticulous design of the refrigeration system and an accurate estimation of the
heat input from each source. Failure to achieve this balance or an unforeseen dis-
turbance of sufficient duration and intensity can induce a localized temperature
rise within the superconducting material. This in turn is equivalent to a localized
reduction of the critical current of the tape and can trigger a transition to the
resistive state, resulting in additional power dissipation due to Joule heating. If
the refrigeration system cannot remove this additional heat, the heat generation
can propagate to neighboring regions, causing the entire material to transition to
the resistive state. This irreversible transition is termed a quench, an undesirable
phenomenon for most applications. In contrast, if the equilibrium between heat
input and heat removal is maintained through diverse cooling mechanisms, the
resistive region can contract, a phenomenon known as recovery.

Quench protection systems are incorporated into nearly all devices, either ac-
tive (utilizing mechanical or superconducting switches) or passive (embedded into
the device design and not manually activated). Active quench protection systems
necessitate quench detection, which is more intricate in HTS compared to LTS
due to the lower Normal Zone Propagation Velocity (NZPV) in the former (rang-
ing from 2-10 cm/s for HTS [39] vs. up to 7.5 km/s for LTS [40]). The slower
NZPV in HTS favors the formation of hot spots, demanding finer control over the
device. An instance of a passive protection system involves coupling superconduct-
ing materials with conventional conductors during tape fabrication. This passive
protection method is visible in Fig. 1.3.6, where the copper layers are posed there
exactly for this reason in order to guarantee a certain degree of thermal stability.

Incorporating one or more metals that exhibit significantly lower resistivity
than the superconductor in its normal state, enhances the thermo-electrical stabil-
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ity of the tape or cable by promoting current-sharing behavior. Fig. 1.3.7 depicts
an equivalent electrical circuit of the HTS tape previously shown, illustrating the
sequential events that occur when the superconductor’s temperature rises due to
internal or external heat sources that exceed the cryogenic system’s cooling ca-
pacity. As long as the temperature remains below a critical threshold value, the
current sharing temperature (Tcs), the superconductor maintains a low resistance,
and the entire operating current flows through the superconducting layer of the
tape. This current-sharing temperature, is a function of the conductor configura-
tion, encompassing the properties of the superconductor and the adjacent metallic
layers. When the temperature surpasses Tcs but has not yet reached the critical
value, Tc, the superconductor’s resistance begins to approach that of the parallel-
connected metal. As a result, a portion of the operating current is transferred to
the metal, mitigating the excessive heat generation in the superconductor due to
Joule heating. If the temperature exceeds Tc, the superconductor transitions fully
to the resistive state, and its resistance exceeds that of the parallel metal. If the
current is not promptly interrupted, a substantial amount of heat will be generated
in the superconducting layer, potentially leading to permanent damage. In this
scenario, the operating current completely shifts to the metallic layers, thereby
protecting the superconductor.

Figure 1.3.7: Simplified circuit model of the current sharing phenomenon. Isc is
the current in the superconducting layer Icu is the current in the copper layer.

This state can persist for a brief period, as the cross-sectional area of the
metallic layers is insufficient to handle the full operating current. If the current
is not terminated expeditiously, these layers will also heat up and risk melting.
Furthermore, the high thermal conductivity of the parallel metals facilitates the
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redistribution of heat along the conductor, reducing the likelihood of hot-spot
formation and enhancing quench detection.

1.4 HTS application

This thesis is primarily concerned with the investigation of second-generation
HTS. The primary applications examined in this work are cables for fusion appli-
cations and non-insulated coils. It is also important to note that these are only two
of the many potential applications for these innovative materials, which, despite
their relative novelty and complexity, have already begun to find use in a variety of
applications or are being investigated to study their implementation. Some of the
applications of second-generation HTS are briefly reported here for informational
purposes: power cables [41–43], high field magnets [44–47], SMES [48,49] systems,
NMR spectrometers [50, 51] and MRI magnets [52, 53], wind generators [54, 55],
SFCL [56–58].

1.4.1 Review of HTS Cable Concepts for Fusion Applications

In this section, we intend to make a brief review of the different types/layouts
of HTS cables developed in recent years, and of particular relevance for fusion
applications. Regarding the development of fusion cables, the literature is growing
and enriched every day with new and interesting designs. Several conductor layout
and/or cabling methods have been proposed and investigated. Selected concep-
tual design are here reported: the Roebel Assembled Coated Conductor (RACC)
cable [5]; the Twisted Stacked Tape Cable (TSTC) [6, 59] the Round Soldered
and Twisted Stacked strand (RSTS) [7,60,61]; The Cross-Conductor (CroCo) [8];
the Stacked Tapes Assembled in Rigid Structure (STARS) [9]; the Quasi Isotropic
strand (Q-IS) [10]; the Conductor On Round Core (CORC) [11]; and the Slotted
Core TSTC cable (SC-TSTC) [62,63].

• Roebel Assembled Coated Conductor (RACC) cable: In Fig. 1.4.1,
the Roebel concept for a high current (kA-class) low AC loss cable is shown.
RACC is a suitable assembling technique for conductors in magnet windings
due to the flat rectangular cross-section. The RACC employs pre-shaped
tapes into strands with the Roebel-specific meander geometry. The usually
very good bending properties of HTS coated conductors support the assem-
bling procedure of the RACC-cable.

• Twisted Stacked Tape Cable (TSTC): In the TSTC concept, the tapes
are simply stacked and twisted in order to increase the current capabilities
minimizing the AC losses. Freestanding flat tapes are torsionally twisted
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Figure 1.4.1: The Roeble Assembled Coated Conductor (RACC) cable based on
Roebel idea, reproduced from [5].

along the axis of the stack without an external tensile or compressive longi-
tudinal force, as shown in Fig. 1.4.2. The method allows the development
of high current, compact conductors for various applications such as power
transmission cables and high field magnets. The twisted stacked-tape cable
may be enclosed by an electrically conducting conduit as a stabilizer and
supporting structure. There are a few options to make the twisted stacked-
tape conductor: 1) Stack and twist, then clad, 2) Stack and clad, then twist,
or 3) Stack, and then embed in helical open grooves on a structured conduit.
Multi-stage cabling of this basic conductor allows the development of high
current conductors such as a cable-in-conduit conductor.

Figure 1.4.2: The Twisted and Stacked Tape Cable (TSTC), reproduced from [6].

• Round Soldered and Twisted Stacked (RSTS) strand: This concept,
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illustrated in Fig. 1.4.3, features a stack of soldered tapes enclosed between
two copper profiles, forming a round strand. Several of these strands can
be twisted together to reach high current capability. The main motivation
for twisting at strand and cable level is to obtain a full transposition of the
tapes, while the reduction of AC losses is a minor requirement.

Figure 1.4.3: The Round Soldered and Twisted Stacked (RSTS), reproduced from
[7].

• Cross-Conductor (CroCo): The Cross-Conductor (CroCo) is the HTS
design proposed by KIT. This concept is a modified type of TSTC, in which
tapes of different widths are employed in order to optimize the current that
can be transported in the same space. The CroCo layout also eases long-
length fabrication. This cable design is illustrated in Fig. 1.4.4

Figure 1.4.4: The Cross-Conductor (CroCo) concept, reproduced from [8].

• Stacked Tapes Assembled in Rigid Structure (STARS): The large-
current capacity HTS conductor shown in Fig. 1.4.5, referred to as STARS,
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is being developed by the incorporation of several innovative ideas, such as
the simple stacking of state-of-the-art REBCO coated conductors embedded
in a copper jacket, surrounded by electrical insulation inside a conductor,
and an outer stainless-steel jacket cooled by helium gas. This untwisted con-
figuration has the advantage of being simple to assemble and manufacture.
The formation of a non-uniform current distribution among the HTS tapes
in STARS cables could be accepted because of the high thermal stability.

Figure 1.4.5: The Stacked-Tapes Assembled in Rigid Structure (STARS), repro-
duced from [9].

• Quasi-Isotropic (Q-IS) strandAnother interesting configuration is the
Quasi Isotropic strand (Q-IS) shown in Fig. 1.4.6: the idea, in this case, is
to compose a strand stacking the HTS tapes horizontally and vertically. To
improve the thermal and mechanical properties, the superconducting core is
wrapped with aluminum foil about 1 mm thick and copper as the sheath. A
cabling method by mature technology of laser welding employed in optical
fiber power cable was used in the fabrication of practical long Q-IS. Under a
DC magnetic field of 0.1 T and 0.5 T, the maximum anisotropic values of nor-
malized critical current are only 1.73% and approximately 8%, respectively,
which indicates that the critical current of Q-IS has good enough isotropy at
least at lower magnetic field.

• Conductor On Round Core (CORC) In this cable layout, the HTS
tapes are wrapped on top of a round metallic core. This concept aims at
reaching tens of kA in >10 T magnetic field, which is a typical requirement
in fusion magnets. An interesting configuration is the CORC six-around-
one Cable-In-Conduit Conductors shown in Fig 1.4.7. This configuration
comprises a cable of six CORC strands helically wound around a rod or
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Figure 1.4.6: The Quasi-Isotropic Strand (Q-IS), reproduced from [10].

hollow tube. The CORC strands are relatively flexible and allow straight
forward twisting around the central core. The cable is inserted into a square,
round, or rectangular jacket. The jacket is ideally made of aluminum alloy,
which is mechanically strong while maintaining good electrical and thermal
properties. Internal forced flow gas cooling can be established via parallel
flow in a perforated tube and the voids between strands.

Figure 1.4.7: The Conductor-On-Round-Core (CORC), reproduced from [11].

• Slotted Core TSTC (SC-TSTC): The ENEA SC-TSTS CICC consists
of an aluminum core with several helical slots. Each slot contains a stack
of REBCO tapes, as depicted in Fig. 1.4.8 in the 6-slot version. At the
top of each stack, spacers are placed to ensure uniform compaction. To
protect the assembly from any damage occurring during drawing compaction
and jacketing processes, a stainless steel tape is wrapped around the cable.
Each slot has a square cross-section designed to accommodate 20–30 tapes
depending on their thickness. The central channel provides a path for the
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forced flow of supercritical Helium, such as to ensure optimal cooling of the
cable. Optionally, to enhance the cooling of the superconducting stacks, it is
possible to make use of secondary paths for the coolant, like the lateral gaps
and semi-circular grooves at the bottom of the stack. The conductor in Fig.
1.4.8 is targeted for a current of 25–35 kA at 4.2 K and 12–18 T, with the
current carrying capabilities determined largely by the choice of the coated
conductor tape and on the number of slots (5 or 6).

Figure 1.4.8: The Slotted-Core Twisted-Stacked Tape Conductor (SC-TSTC).

We end this section by stressing the fact that most of the proposed cables make
use of HTS tapes arranged in stacked configurations. The most promising candi-
dates for fusion applications seem to be those cables based on the TSTC concept:
a few tens of tapes are stacked together and enclosed in a copper round profile, to
emulate a round strand, or putting them on a core, obtaining a cable.

In this thesis, the focus is on investigating AC losses in TSTS, particularly for
the SC-TSTC configuration.

1.4.2 Non insulated HTS coils

As discussed in Section 1.3.3, quenches pose a significant challenge to the op-
eration of superconducting devices, particularly for HTS coils. Protection and
refrigeration systems are often over-engineered to address this issue, and the cur-
rent flowing through the windings is kept below the critical current. However, in
conventional coils where the turns are electrically insulated from each other, the
risk of local hot spot formation remains a concern. This is because the only alter-
native path for the current is through the metal layers of the tape, which can only
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handle limited current levels (current-sharing phenomenon). Therefore, prompt
detection of local quenches and rapid dissipation of stored energy through active
and/or passive protection systems are crucial.

A potential solution to quench protection challenges lies in utilizing non-insulated
(NI) coils, wound without electrical insulation between turns [64]. In these wind-
ings, the current can also flow in the radial direction (jumping from one turn to the
adjacent one), effectively bypassing damaged or quenched areas, thus enhancing
overall thermal stability [12,65–67]. Fig. 1.4.9 depicts a conceptual representation
of this defect-irrelevant behavior [12]. These coils are often referred to as self-
protecting, indicating their ability to fully recover from quenches without the need
for external protection mechanisms to dissipate stored energy [68]. The current
redistribution promotes heat diffusion over larger areas (easier to detect), which
can involve the entire coil, leading to gradual and global quench propagation thus
mitigating the formation of hot spots that would otherwise burn the tape. As a
result, the current supply can be more easily interrupted and resumed. Conse-
quently, an NI coil can be wound using tape with a minimal number of stabilizer
layers, increasing winding compactness and significantly reducing the amount of
tape required compared to its insulated counterpart to achieve the desired mag-
netic field [69].

Figure 1.4.9: Artistic representation of the radial flow of electric current in a NI
coil with local high-resistive sections [12].

The NI-HTS coils can typically be fabricated using either the pancake-wound
technique [70–73] or the layer-wound technique [74–79], each resulting in distinct
current distributions. In NI pancake coils, the turns are in close radial contact
with adjacent layers that are positioned relatively close along the tape length. In
NI layer-wound coils, on the other hand, a turn may be in contact with adjacent
turns that are significantly spaced apart along the tape length, depending on their
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location within the layers. As a result, the two configurations must be analyzed
independently. This work will provide in the following sections a circuit model for
layer wound coils, that can also be employed for other configurations.
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2 AC losses in HTS conductors
In the design of superconducting magnets, it is often necessary to estimate

the electromagnetic losses that result from a change of the external magnetic field
and/or the conductor transport current, these losses will be referred to as AC
losses. For large-scale magnets especially, a quantitative analysis of the losses
becomes quite important in order to determine the thermal budget. In many ap-
plications, such as a Tokamak device, the field coils are subjected to time-varying
fields and currents, and because of this, power is dissipated by the coils. More
in detail, the AC loss is generally subdivided into three contributions, namely the
hysteretic loss, originating from the shielding currents, the coupling loss, due to
the coupling currents, and the dynamic resistance loss, which is related to the
work done by the transport current power supply. The AC loss load, as a function
of time, is used as an input for transient thermo-hydraulic (TH) analyses. To
date, no tools have been proven reliable for evaluating AC losses in a large-scale
high-temperature superconductor (HTS) magnet [80]. Detailed models have been
developed for single HTS tapes, stacked tapes, or HTS coils with a diameter of
a few cm. The strategy for developing a reliable thermo-hydraulics model of an
HTS magnet could be either to apply the tools developed for LTS magnets also for
HTS magnets or to upscale the existing detailed models developed for small-scale
HTS applications.

This chapter will address the most commonly known numerical and analytical
formulation for the evaluation of AC losses in HTS conductors.

2.1 Constititive law of superconductor

2.1.1 Power law

Since the discovery of superconductivity, the scientific community developed
several relations for the characterization of the electromagnetic behavior of super-
conducting materials. The most commonly adopted empirical fit is denominated
the power law was first proposed in 1974 and its expression is reported in (2.1.1).

E = Ec

(
J

Jc

)n
J

|J|
(2.1.1)

where J is the current density, Jc is the critical current density of the tape, n
is the n-value (also called n index or power factor) and Ec is the critical electric
field. Conventionally, the critical electrical field is set equal to one of the following
values: 10 µV/m (lower critical field) or 100 µV/m (upper critical field). In the
following chapters of this work, the upper critical electric field is selected as the

23



Chapter 2

one to use.

From the power law is possible to derive an expression for the resistivity of the
superconducting material:

ρsc =
E

J
=

Ec

Jc

(
J

Jc

)n−1

(2.1.2)

Although the power law is widely used, the power law only well represents
the macroscopic behavior of a superconductor for moderate values of current den-
sity/electric field. When J > Jc the resistivity of the superconductor given by the
power law grows exponentially instead of saturating to the value of the normal
state resistance of the superconductor ρns.It is easily possible to upgrade (2.1.2)
to what is called the bounded power law:{

E = ρsc,bound(J)J

ρsc,bound =
ρnsρsc
ρns+ρsc

(2.1.3)

The bounded power law represents the resistivity of a superconductor as a
parallel combination of the resistivity of the superconductor in its normal state
and its superconducting state.

2.1.2 Critical state model

Less precise than the power law but nonetheless very useful in many analytical
formulations, is the critical state model. Many models of the critical state have
been proposed in literature here only the bean model is presented in detail.

The Bean critical state model [81,82] describes macroscopically the magnetiza-
tion of a type II superconductor when it is subjected to a time-varying magnetic
field. At the heart of the Bean critical state model lies the concept of maximum
current density, a critical value beyond which the superconducting state transitions
to a resistive state. This maximum current density, denoted by Jc, represents the
limit of superconductivity. Bean states that there is a maximum current density
that can flow in a superconductor and that if an electric field, even a small one,
is present, it induces the maximum current density. The equations of the Bean
model are written in (2.1.4).

J(t) =


Jc if ∃ t

′
< t | E(t

′
) > 0 & E(t

′′
) ≥ 0 ∀ t

′′
> t

′

−Jc if ∃ t
′
< t | E(t

′
) < 0 & E(t

′′
) ≤ 0 ∀ t

′′
> t

′

0 if E(t
′
) = 0 ∀ t

′ ≤ t

(2.1.4)
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In the Bean model, the critical current density is considered independent of
the field which is equivalent to the assumption that the applied fields are much
less than the critical fields. There exist several variations of the Bean model that
take into account the dependence of the critical current from the magnetic field.
These other models still abide by the other assumptions made by Bean and are
therefore still called critical state models.

2.2 Main analytical formulae

The computation of losses during electrodynamic transients is of paramount
importance for the dimensioning of the cryogenics system of HTS magnets. In
general, the application of analytical formulae requires the adoption of numerous
assumptions. In the literature, several formulae have been developed in order to
calculate losses due to time-varying fields and/or transport currents applied to
HTS conductors. The main assumption generally consists of a geometric simpli-
fication of the model. As a matter of fact, numerous formulae refer to the case
of individual HTS tapes. As for the analyses of tape stacks or cables, several ho-
mogenization techniques are required to limit the computational burden. In this
section, the main analytical models presented in the literature for the computation
of losses in HTS tapes are briefly described. For each of them, the model’s main
hypotheses are reported along with the main equations for the AC loss computa-
tion. Furthermore, the homogenization techniques mentioned above are described,
providing the reader with the corresponding analytical formulae.

2.2.1 Norris’ formulae

These analytical formulae for loss computation are among the most widely used
in the applied superconductivity community and were proposed by W. T. Norris
for both a rectangular section thin strip and an elliptical cross-section tape [83].
These formulae are suited to compute the losses due to an alternate transport
current flowing in the superconductor. Specifically, the formulae are used for the
computation of the so-called surface Bean model losses. The following assumptions
are adopted in the model:

• The geometry of the conductor is assumed as a thin strip, i.e. the tape
is approximated as a 1D object with the main dimension along its width,
neglecting its thickness and length (see next hypothesis).

• The conductor’s length is assumed to be infinite.

• The tape’s critical current density is independent of the external magnetic
field (thus neglecting the field orientation and magnitude).
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• The Critical State Model is adopted.

For superconducting wires carrying a transport current equal to their critical
current, the losses per cycle per unit length, expressed as L, can be computed as:

L =
1

2

(
µ0I

2
c

π

)
(2.2.1)

where Ic is the critical current of the tape. The formula can be generalized by
introducing the dependence on the amplitude of the transport current. The general
formula for a tape having a circular or elliptical cross-section is the following:

L =
µ0I

2
c

π

[
(1− F ) ln (1− F ) + (2− F )

F

2

]
(2.2.2)

where the parameter F corresponds to the ratio between the amplitude of the
transport current and the tape critical current F = Iop/Ic. For a tape having
a rectangular cross-section (as the REBCO tapes), the losses per cycle per unit
length can be expressed as

L =
µ0I

2
c

π

[
(1− F ) ln (1− F ) + (1 + F ) ln (1 + F )− F 2

]
(2.2.3)

2.2.2 Brandt’s formulae

Brandt proposed a formulation to compute the hysteresis losses of a type II
superconductor thin strip carrying a transport current and immersed in a perpen-
dicular applied magnetic field, indicated here as Ha [84]. Like the Norris model,
Brandt’s formulation starts from the critical state model. However, Brandt’s ap-
proach provides additional information, such as the current density and magnetic
field distributions computed in analytical form. The formulae derived can be ap-
plied to superconducting tapes with a rectangular cross-section. The losses in the
case of a perpendicular field [J/cycle/m] can be expressed as:

P = 4µ0a
2J∗

cHag (2.2.4)

where

g =
2Hc

Ha

ln

(
cosh

(
Ha

Hc

))
− tanh

(
Ha

Hc

)
(2.2.5)

Hc = J∗
c /π (2.2.6)

J∗
c = Jcd =

Ic
2a

(2.2.7)
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Figure 2.2.1: Example of application of Brandt’s formulae to the computation of
losses due to a time-varying field applied to a 1 mm x 4 mm tape with Ic = 100 A.

where a is the tape half-width, d is the superconductor thickness, and J∗
c is

called the sheet current density. An analytic formula for the losses in a parallel
field can also be retrieved through Brandt’s model and is presented in equation
(2.2.8). The losses are expressed as energy per cycle per unit volume [J/cycle/m3].

P =


2B2

a

µ0

β
3

if β ≤ 1

2B2
a

µ0

(
1
β
− 2

3β2

)
if β ≥ 1

(2.2.8)

Where:

Ba = Haµ0, β =
Ba

Bp

, Bp = µ0Jcd (2.2.9)

An example of the application of Brandt’s formulae to the calculation of losses
due to a time-varying field applied to a 1 mm x 4 mm tape, considered as a slab
(parallel field) or as a strip (perpendicular field) is reported in Fig. 2.2.1.
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2.2.3 Müller’s and Mawatari’s formulae for infinitely stacked tapes

Both K. H. Müller and Y. Mawatari proposed a formulation for the computation
of z-stacks and x-arrays of tapes made of metal–superconductor strips [13]. Thus,
the tape is considered to be composed of a superconducting thin layer and a
metallic substrate. Müller computes both the eddy current AC losses (power
dissipated in the metal substrate) and the AC hysteresis losses (power dissipated in
the superconductor itself). The losses for both eddy currents and hysteresis losses
are computed in the case of self-field and for an AC magnetic field perpendicular
to the tape.

Figure 2.2.2: Stack of infinitely long metal-superconductor strip along the z-axis
used for the application of Müller’s formula [13].

The first configuration for which the formulae were developed is shown in
Fig. 2.2.2. The subject of study is a z-stack of infinitely long (l → ∞) metal-
superconductor strips. An AC current (I = Imcos(ωt) with Im < Ic) is supplied to
each metal–superconductor strip along the y-direction of the z-stack. The currents
are in phase with each other. The frequency of the current (f = ω/2π) is assumed
as sufficiently low, so that the magnetic field generated by the eddy currents can
be neglected compared to the magnetic field generated by the transport currents.
For each tape, the eddy-current AC losses per unit length are given by:
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Figure 2.2.3: Stack of infinitely long metal-superconductor strip along the x-axis
used for the application of Muller’s formula [13].

Ped =
µ2
0

2π4

dm
ρ
aω2I2cF (2.2.10)

where the meaning of the geometric parameters a and D is illustrated in Fig.
2.2.2, while the function F is defined as follows:

F =
D

a

(
Im
Ic

)2 ∫ π

0

sin2 (ϕ)

(∫ πw/D

η̃(ϕ)

acosh2

(
sinh(η)

sinh(η̃)

)
dη

)
dϕ (2.2.11)

η̃(ϕ) = arcoh

(
cosh(πa/D)

cosh(πaImsin2(ϕ/2)/(DIc))

)
(2.2.12)

The hysteresis losses per unit of length per strip, with a field independent Jc,
can be computed as:

Phy =
µ0

π4
wI2c

(
D

a

)2 ∫ πa/D

η̃

(aπ
D

− η
)
arctanh

(
tanh2(η)− tanh2(η̃)

tanh2(aπ
D
)− tanh2(η̃)

)0.5

dη

(2.2.13)

η̃ = arcoh

(
cosh(πa/D)

cosh(πaIm/(DIc))

)
(2.2.14)

Now the formulae for the computation of the AC losses for a z-stack of tapes
due to an AC external magnetic field will be discussed. The assumption for the
computation of AC losses in a stack of tapes due to an external time-varying
magnetic field is that the AC field (Ha = Hmcos(ωt)) is applied in the z-direction,
i.e. perpendicular to the broad face of the tapes. The magnetic field generated
by the eddy currents is assumed to be negligible as compared to the sum of the
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external field and the self-field generated by the superconducting layers only. For
each tape, the eddy-current AC losses per unit of length are given by:

Ped =
µ2
0

3

dm
ρ
ω2W 3H2

mG (2.2.15)

G =

(
D

a

)3(
W

a

)−3
6

π4

∫ π

0

sin2 (ϕ)

(∫ πw/D

η̃(ϕ)

acosh2

(
cosh(η)

cosh(η̃)

)
dη

)
dϕ (2.2.16)

η̃(ϕ) = arcsinh

(
sinh(πa/D)

cosh(Hmsin2(ϕ/2)/(Hd))

)
(2.2.17)

Hd = Jcd/π (2.2.18)

The term in (2.2.15) by which the function G is multiplied corresponds to the
eddy current losses of an isolated metal strip having a width equal to 2W, thickness
dm, and resistivity rho exposed to a perpendicular AC magnetic field of frequency
ω/2π. The hysteresis losses per unit length per strip with a field independent Jc
are given by the following expression [85]:

Phy =
2µ0

π2
ωa2H2

d

∫ Hm/Hd

0

(
Hm

Hd

− 2η

)
ln

(
1 +

sinh2(aπ/D)

cosh2(η)

)
dη (2.2.19)

A different configuration can also be considered, consisting of an infinitely long
x-array (an infinite number of strips arranged as an array along the x-axis), as
shown in Fig. 2.2.3. It is assumed that the strips are electrically insulated from
each other. For each tape, the eddy-current AC losses per unit length can be
computed as:

Ped =
µ2
0

2π4

dm
ρ
ω2aI2cM (2.2.20)

Where

M =

(
Im
Ic

)2(
L

a

)∫ π

0

sin2 (ϕ)

(∫ πw/L

η̃(ϕ)

acosh2

(
sinh(η)

sinh(η̃)

)
dη

)
dϕ (2.2.21)

η̃(ϕ) = arccos

(
cos(πa/L)

cos(πaImsin2(ϕ/2)/(LIc))

)
(2.2.22)

The hysteresis losses per unit length per strip with a field independent Jc are
given by:
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Phy =
µ0

π4
ωI2c

(
L

a

)2 ∫ πa/L

η̃

(aπ
L

− 2η
)
arctanh

(
tan2(η)− tan2(η̃)

tan2(aπ/L)− tan2(η̃)

)0.5

dη

(2.2.23)
Where the following quantity has to be defined:

η̃ = arccos

(
cos(πa/L)

cos(πaIm/(LIc))

)
(2.2.24)

Finally, the formulae for the AC losses for an x-array of tapes due to an AC
external magnetic field are shown. For each tape, the eddy-current AC losses due
to an external magnetic field applied to the tape array per unit length are provided
by the following equation:

Ped =
µ2
0

3

dm
ρ
ω2W 3H2

mN (2.2.25)

where

N =

(
L

a

)3(
W

a

)−3
6

π4

∫ π

0

sin2 (ϕ)

(∫ πw/L

η̃(ϕ)

acos2
(
cos(η)

cos(η̃)

)
dη

)
dϕ (2.2.26)

η̃(ϕ) = arcsin

(
sin(πa/L)

cosh(Hmsin2(ϕ/2)/(Hd))

)
(2.2.27)

The hysteresis losses per unit length per strip with a field independent Jc [85]
are equal to :

Phy = −2µ0

π2
ωa2H2

d

(
L

a

)2 ∫ Hm/Hd

0

(
Hm

Hd

− 2η

)
ln

(
1 +

sin2(aπ/L)

cosh2(η)

)
dη

(2.2.28)
Both in the case of AC current and for an external AC field, as long as the

number of strips is large, the strips are sufficiently long and are supplied with an
equal current (if this is accounted for), end-effects can be neglected and the AC
losses of infinite arrays and stacks result similar to those of finite arrays and stacks.
In contrast, in the self-field case where the strips of an array/stack of finite length
are connected at both ends and a single current is supplied to this array/stack,
the current does not distribute equally among the strips and the AC losses differ
significantly from those computed using the formulae presented in this section.
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2.2.4 Infinite slab formulae

The formulae for the losses per unit of volume and cycle ([J/m3/cycle]) of an
infinite slab, subjected to an external magnetic field, are well described in [86–88],
are here reported in (2.2.29).

L =


2µ0H3

m

3Hp
if |Hm| ≤ |Hp|

2µ0HpHm(1− 2Hp

3Hm
) if |Hm| > |Hp|

(2.2.29)

Where the parameters are defined as follows, Hp = Jca, Hp is the penetration
field expressed in [A/m],a is the half-width of the slab, Jc is the critical current
density of the slab. and Hm is the amplitude of the magnetic field.

2.2.5 Schomborg’s formulae

Niclas Schonborg developed in his Ph.D. dissertation [89] numerous analytical
formulae for the estimation of magnetization losses in various case studies. In [90]
Schonborg presented a set of formulae for the magnetization losses, in case of AC
transport current in phase with a magnetic field orthogonal to the wide surface
of the tape, here reported in (2.2.30). Schonborg’s formulae evaluate the losses in
[J/m/cycle] and were developed for a thin strip (1D geometry). these formulae
are equivalent in the absence of an external magnetic field with Norris’ formula
(2.2.1). and in the absence of a transport current with Brandt’s formula (2.2.2).

L =
µ0I

2
m

π


S1 if Im

Ic
≤ tanh

(
Bm

Bf

)
S2 if Im

Ic
> tanh

(
Bm

Bf

) (2.2.30)

where

S1 = 2 coth-1

(
p1p2 + a20
p1ap2a

)
− 1

4
(p2p2a + p1p1a)

(
cosh-1

(
p2
a0

)
+ cosh-1

(
p1
a0

))
+

1

2
(p2a − p1a)

(
p2 cosh

-1

(
p2
a0

)
+ p1 cosh

-1

(
p1
a0

))
+

1

4
(p2a − p1a)

2 − 1

2
(p2a − p1a) (p1a + p2a)

(2.2.31)
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S2 = −2 coth-1

(
p1p2 + a20
p1ap2a

)
− 1

4
(p2p2a − p1p1a)

(
cosh-1

(
p2
a0

)
− cosh-1

(
p1
a0

))
+

1

2
(p2a + p1a)

(
p2 cosh

-1

(
p2
a0

)
+ p1 cosh

-1

(
p1
a0

))
− 1

4
(p2a + p1a)

2

(2.2.32)

And the parameters used are

Bf =
µ0Jc
π

x = w

√
1−

(
Im
Ic

)2
cosh

(
Bm

Bf

) p = w

(
Im
Ic

)
tanh

(
Bm

Bf

)

a0 =
x

w
p0 =

p

w
p1 = (1− p0) p2 = (1 + p0) p1a =

√
p21 − a20 p1a =

√
p22 − a20

(2.2.33)
Equation (2.2.31) holds in the low-current high-field regime, while (2.2.32)

holds in the high-current low-filed regime. The Jc used in the definition of the
penetration field for the strip geometry Bf in (2.2.33) is the critical surface current
density measured in [A/m], it can be obtained from the critical current density
used in the previous sections by dividing it for the thickness of the tape. The
length of the wide surface of the tape (so the width) is the parameter w in (2.2.33).
Comparison between (2.2.30), (2.2.2) and (2.2.6) is shown in Fig. 2.2.4, the data
reported are for a REBCO tape which parameters are in Table 2.2.1.

Table 2.2.1: Tape Parameters

Tape thickness 150 µm Tape width 4 mm
Superconductor 1 µm

critical current
1010 A/m2

thickness density (Jc)

As shown in Fig. 2.2.4 Schonborg’s formulae perfectly overlap with Brand’s
one when the transport current is null. The results from (2.2.30) are missing for
magnetic field above the value of 5Bf due to the hyperbolic functions in (2.2.30)
diverging. In Fig. 2.2.5 it is possible to better appreciate the impact of the trans-
port current in the AC losses, the penetration field Bf is equal to 4 mT with the
data provided in table 2.2.1.
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Figure 2.2.4: Comparison between Brandt’s formula, the slab formula, and
Schonborg’s formulae at different values of i, defined as the ratio between Im and
Ic.

Figure 2.2.5: Enlarged view of Fig. 2.2.4, showing only the results of Schonborg’s
formulae in the low field region (Bf = 4 mT).

2.2.6 Kajikawa’s formulae

The last analytical formulation proposed is the one that inspired the work re-
garding a new analytical formulation in this thesis. These formulae were presented
by K.Kajikawa and S. Awaji in [91–93]. The formulae in (2.2.34) can evaluate the
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Figure 2.2.6: Sketch of an infinite slab, the dimensions of the slab along the x
and r coordinates are considered infinite.

instantaneous power losses per unit of volume of an infinite superconducting slab
due to the action of both a transport current and an external magnetic field. The
transport current and the magnetic field are required to be in phase with each
other. These formulae hold only for the first energization of the slab, and only
when the time derivative of the transport current (and so the magnetic field in
phase with it) is positive. The main hypotheses used in the determination of these
formulae are:

• Use of the critical state model.

• use of the slab approximation: each superconducting stack is homogenized
and treated as an infinite slab, only one dimension is considered finite, and
its length is indicated as 2D (see Fig. 2.2.6).

P =
B2

p

2µ0


K1 if 0 ≤ Be < Bi

K2 if Bi ≤ Be < Bp

K3 if Be ≥ Bp

(2.2.34)

with K1, K2 and K3 defined as follows:
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K1 =
ḂeB

2
e

B3
p

+
Ḃe

Bp

[
2
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I
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−
(
Be

Bp

)2
]
+

İ

Ic

[(
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Bp

)2

+

(
I
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)2
]

(2.2.35)

K2 =
ḂeB

2
e

B3
p

+

(
I

Ic

)2
Ḃe

Bp

+ 2
Be

Bp

Iİ

I2c
(2.2.36)

K3 =
Ḃe

Bp

+ 2
Iİ

I2c
+

Ḃe

Bp

(
I

Ic

)2

(2.2.37)

In (2.2.34) Bp is the penetration field, is the value of the magnetic field that
once reached lets the superconducting slab be fully penetrated by the current
density.

Bp = µ0JcD (2.2.38)

Jc is the critical current density, while Bi is the self-field [93], defined as

Bi = Bp
I(t)

Ic
(2.2.39)

I(t) and Ic are the transport current and the critical current of the slab respectively.Ḃe

is the time derivative of the external field, while İ is the time derivative of the
transport current.

Despite the limitations previously described and the approximation introduced
by the hypothesis formulated, these formulae have successfully been used for the
evaluation of the hysteresis losses in large magnets [91].

2.2.7 Final remarks on analytical formulae

The analytical models described in this section have to be considered with great
care, given some relevant limitations. As a first limitation, their applicability is
limited to simple geometries; their reliability for use in structured tapes (filaments,
stabilizers, magnetic materials, etc.) or more complex geometries should be care-
fully checked. As a second limitation, these formulae are based on the Bean critical
state model. Thus, they cannot account for the magnetic field dependence of the
superconductor’s critical current density, as well as possible inhomogeneities of the
conductor itself. Typically, the formulae assume that the tapes have an infinite
length so that the end-effects cannot be taken into account. It is also assumed
that the external magnetic field is uniform and that the self-fields have simple
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time dependencies, such as those generated by an AC current or a current ramp.
Although they are very easy to implement, analytical models unfortunately can-
not give accurate results in complex cases. Another issue that arises is that most
of the formulae presented in this section provide an evaluation of AC losses in
terms of energy per cycle rather than instantaneous power. This limitation can
hinder the assessment of real-time device performance, as instantaneous power is
a more relevant metric for dynamic conditions especially for the evaluation of the
temperature margin. Nonetheless, analytical models are still extremely useful for
a quick assessment of the losses in simple configurations and for the validation of
numerical models, which are discussed in the next section.

2.3 Main numerical methods

Throughout the years, numerous finite element methods (FEM) models have
been devised to investigate the electromagnetic behavior of HTS tapes. These
models employ the time-dependent form of Maxwell’s equations to calculate the
temporal evolution of electric field and current density distributions in coated
conductors. The quantification of these quantities begins with the differential
formulation of Maxwell’s equations:

∇ · E = ρc
ϵ

∇ ·B = 0

∇× E = −∂B
∂t

∇×B = µ
(
J + ϵ∂E

∂t

) (2.3.1)

Where ρc is the charge density, µ is the magnetic permeability, and ϵ is the
electric permittivity.

Numerical models can give more reliable results than analytical ones, but they
require a much greater computational burden and are significantly more complex
to implement. In the first part of this section, the various formulations proposed in
the literature are briefly described. In the second part, selected numerical models
are presented, given their promising characteristics for application in the field of
fusion magnets. In the third part, homogenization techniques required to deal with
tape stacks or complex structures are described. The numerical models for the cal-
culation of AC losses in superconducting tapes are based on various formulations of
the laws of electromagnetism. Among these, it is worth mentioning the H formula-
tion, the A-V formulation, the T- Φ formulation, the T- A formulation and the E
formulation. The latter is not extensively adopted in the scientific community and
is thus not fully treated here. The fundamental equations of these formulations
are reported in Table 2.3.1. Each method utilizes a different set of equations and
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state variables, despite that the losses are always evaluated as the scalar product
of E and J. The comparisons between numerical models available in the literature
are not very numerous. Many comparisons were done in different configurations,
with corresponding different problem geometry, dimensionality, constraints, etc.
This might explain why the conclusions on the convenience of each method are
not unanimous in the scientific community, as explained in [94].

Table 2.3.1: Preminent numerical methods

Formulation Equations Definitions References

H formulation ∇× ρ∇×H = −µ∂H
∂t

J = ∇×H [95–101]

A-V ∇2A = µσ
(
∂A
∂t

+∇V
)

B = ∇×A,E = −∂A
∂t

−∇V [102–107]formulation ∇ · σ
(
∂A
∂t

−∇V
)

σ = σ(E)

T- Φ ∇ · µ(T−∇Φ) = 0 J = ∇×T,H = T−∇Φ [108–112]
formulation ∇× ρ∇×T = −µ∂(T−∇Φ)

∂t
ρ = ρ(J)

T- A ∇×
(

1
µ
∇×A

)
= J J = ∇×T [94, 100]

formulation ∇× (ρ∇×T) = −∂B
∂t

B = ∇×A [113–119]

E formulation ∇×∇× E = ∂(σE)
∂t

σ = σ(E), ∂B
∂t

= −∇× E [120–123]

2.3.1 H formulation

The H-formulation is one of the most widely adopted for the calculation of
losses in HTS tapes in the scientific community. It is derived from a combination
of the Ampere’s law and the Faraday’s law as follows in (2.3.2):

∇× ρ∇×H = −µ
∂(H+H0)

∂t
(2.3.2)

where H0 is the external magnetic field source term. This model can easily
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be implemented in commercial software such as COMSOL Multiphysics® [124].
A major drawback of this formulation is the need to set a finite resistivity in the
region outside the conductor (air), which may result in observing non-physical
leakage currents, as reported in [117]. This issue can be prevented through the use
of cohomology basis functions, treated in [100].

2.3.2 A- V formulation

The A-V formulation is one of the most extensively adopted approaches for the
solution of electromagnetic problems in different fields of application. However, it
is applied less frequently than the H-formulation in the modeling of HTS tapes.
The state variables are the electric scalar potential (V) and the magnetic vector
potential (A), defined by:

B = ∇×A, E = −∂A

∂t
−∇V (2.3.3)

The A-V formulation is represented by the following system of equations{
∇2A = µσ

(
∂A
∂t

+∇V
)

∇ · σ
(
∂A
∂t

−∇V
) (2.3.4)

This formulation is particularly advantageous when the vector potential can be
reduced to a scalar quantity, as is typical in 2D axisymmetric problems. The major
drawback of this approach is that numerical oscillations can be observed when the
superconductor power law is too sharp, i.e. is characterized by high values of
n-index (n > 25) [119]. These oscillations are mainly related to the numerical
calculation of the time derivative of the vector potential. Moreover, expressing the
constitutive law as E = σJ may cause problems in the non-linear solver since σ
can reach exceeding high values in a superconductor.

2.3.3 T - Φ formulation

This formulation is derived from Faraday’s law and Gauss’s magnetic law (∇ ·
B = 0). The state variables are the current vector potential T and the magnetic
scalar potential Φ, defined according to the following expressions:

∇×T = J, H = T+T0 −∇Φ (2.3.5)

where T0 represents the current source term. This formulation can be expressed
as: {

∇ · µ(T+T0 −∇Φ) = 0

∇× ρ∇× (T+T0) = −µ∂(T+T0−∇Φ)
∂t

(2.3.6)
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Although this method is sufficiently reliable, it is generally not adopted in
commercial software and thus it is not widely used. The main drawback of this
formulation, which hinders its wide diffusion in the scientific community, is the
complexity of the corresponding implementation. The main advantage of this
approach is that it automatically guarantees that the divergence of the current
density is always null. Therefore, differently from the H-formulation, this method
does not allow the numerical generation of leakage currents.

2.3.4 T- A formulation

This formulation was recently proposed by H. Zhang in [118], where it was
validated in the case of a thin-disc magnetization by comparing the results to
analytical ones. The model was also validated for a large number of HTS tapes
against the well-established H-formulation [113] and was implemented in the study
of stacks of REBCO coated conductors, coils [113], and HTS cables, such as con-
ductors on round core and twisted stacked-tape conductors [116]. The compu-
tation regions are subdivided into two parts: a superconducting region and a
non-superconducting one. The superconducting sheet is modeled using the T
formulation, while the non-superconducting space is modeled using the A formu-
lation. In this approach, the magnetic vector potential A is computed in the entire
geometry as:

∇×
(
1

µ
∇×A

)
= J (2.3.7)

where J is the current density, µ the permeability of the material and A is
defined as the magnetic vector potential, defined by the usual relation B = ∇×A.

The field vector T is also a vector potential, defined as J = ∇×T , and is only
computed in the superconducting domain as:

∇× (ρ∇×T) = −∂B

∂t
(2.3.8)

where ρ is the resistivity of the superconductor, derived from the power law. It
is important to notice that the A–formulation can be exchanged with the classic
H–formulation, leading in this case to the so-called T–H formulation.

2.4 Consideration on the main model and alternatives

The pros and cons of the numerical formulations described in the previous
sections are reported in Fig. 2.4.1, taken from references [14, 123,125]
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Figure 2.4.1: Advantages and drawbacks of the different formulations for the
computation of AC losses [14].

The following considerations can be made in the comparison between formula-
tions:

• Among the T- Φ formulation, the E formulation and the A- V formulation
to compute AC losses in straight tapes, the T- Φ formulation is the most
efficient.

• Although the A- V formulation only requires the computation of one variable
(A) at each node, the need to differentiate the vector potential with respect
to time and then insert it into a J(E) constitutive law generally leads to
convergence issues.

• The E formulation can be used too when the n index is not too large (n <
20). An example is presented for BSCCO tapes in [125]).

A comparative analysis should be applied to determine the best method for the
determination of AC losses in a superconducting device since proper benchmarking
is missing in the literature, as stated in [94]. In fact, starting from the tape level
and moving to more complex geometries, few comparative studies are reported in
the literature. Several other modeling techniques have been developed to determine
efficient numerical solutions for the computation of losses in HTS tapes. Some of
these other models will now be presented.

2.4.1 Campbell model

Proposed by A. M. Campbell in [126], this approach is based on the Bean
critical state model. In the literature, few applications of this model are presented,
but its peculiarities make it a useful tool for modeling HTS superconductors. The
model is based on the consideration that the numerical methods to compute the
losses in superconductors can be essentially divided into two categories:
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• Methods computing the critical state directly (not implementable in com-
mercial FEM software).

• Models using a non-linear E- J law, such as E ∝ Jn, where n is high (high
values of the n-index produce numerical instabilities). Thus, the “exact” crit-
ical state (n → ∞) can be seen as the limit of the power law characteristics
for high values of n.

The method proposed by Campbell solves the critical state directly, but it can
also be implemented in commercial software, which is the main peculiarity of this
approach. The method is based on the force–displacement curve of the vortex
flux lines and the equation can be expressed in terms of the magnetic vector
potential. The flux flow resistivity can be added and, since the term 1/n appears
(instead of the term n), the numerical instabilities can be avoided. The author
of the method states that it is particularly advantageous for problems involving
trapped flux where assuming a power law would lead to a decay, with a decay
rate dependent on the power index. For a tape subjected to an external field B,
carrying a transport current density J:

µ0J = ∇×∇A = −µ0Jc

(
1− e|

A
Bd

|
)

(2.4.1)

where d is the characteristic distance, typically about a quarter of the vortex
spacing. The final expression considering both the flux flow resistivity and the
variation of the direction of movement of the vortex, is equal to:

∇×∇A = −µ0Jp + k

[(
1− e

−
∣∣∣µ0Jc(A−Ap)

kBd

∣∣∣)] (2.4.2)

where ρ is the flux flow resistivity, which is current dependent, Ap is the peak
value of vector potential when the current or the field are raised from zero to their
maximum values, Jp is the corresponding current density, and k is given by the
expression

k = µ0Jcsgn(Ap − A)− µ0Jp (2.4.3)

The electric field and current density can be expressed as:

E = kJn; J =

(
Ȧ

k

) 1
n

(2.4.4)

which allows the viscous term in (2.4.2), namely (µ0Ȧ/ρ), to be simplified
asµ0J , which is generally a small number. This feature of the model is crucial
for granting the numerical stability of the problem. After solving (2.4.2) for the
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main model unknown, which is the vector potential, the fields E and J can be
determined as in (2.4.4). Finally, the AC losses can be evaluated as∫

E · JdV (2.4.5)

2.4.2 Thin strip approximation

This model was widely adopted by N. Amemiya in [15] to compute AC losses
in twisted multifilamentary coated superconductors. The model proposed was
developed from the power law of the superconductor and a thin strip geometric
approximation of the tape. The model was then implemented in a FEM code for
the calculus of the currents and the magnetic flux distribution, from which the
temporal evolution of the AC losses can be derived. The AC losses computed by
the model are due to an AC transverse magnetic field applied to the tape.

Figure 2.4.2: Model of filaments and groove between filaments: a conductive layer
comprising superconductor filaments and grooves filled with resistive material Rg

is the transverse resistance of groove between two filaments per unit of length [15].

The superconductor filaments are connected with each other through trans-
verse resistances and it is assumed that the grooves between filaments are filled
with a resistive material, as shown in Fig. 2.4.2.

The finite resistance between the filaments and the finite twist pitch in twisted
multifilamentary coated superconductors results in the frequency dependence of
the magnetic flux penetration process and frequency-dependent AC loss charac-
teristics. Since the conductive layer comprising the superconductor filaments and
grooves filled with resistive material is very thin, the thin strip approximation
described in [127] is adopted. It is assumed that the current flows only in the
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direction tangential to the wide face of the conductor.

The electromagnetic field distribution is assumed to be uniform along the thick-
ness of the tape, whereas the superconductor layer is modeled as a thin curved
surface that follows the three-dimensional shape of the tape (when the tape is not
straight), as shown in Fig. 2.4.3. The model proposed is based on the current
density vector potential T, with the use of the constitutive material law between
the electric field and the current density. Adding the Faraday’s law and the Biot
- Savart’s law yields:

∇×
(
1

σ
∇×T

)
+

∂

∂t

(
µ0

4π

∫∫∫
V

(
∇×T

′)× r

r3
dV

)
+

∂Bext

∂t
= 0 (2.4.6)

By applying the thin strip approximation, (2.4.6) can be reduced to:

(
∇×

(
1

σ
∇× nT

))
· n+

∂

∂t

(
µ0ts
4π

∫∫
S
′

(
∇× n

′
T

′)× r · n
r3

dS
′
+Bext · n

)
= 0

(2.4.7)
where T and T’ are the current vector potentials at the field point and source

point of the self-magnetic-field, respectively; n and n’, the normal vectors of the
wide face of the conductor at the field point and source point, respectively.Bext is
the external magnetic field, which is assumed orthogonal to the conductor at the
center of the twist pitch, as shown in Fig. 2.4.3.

Figure 2.4.3: Twisted multifilamentary coated conductor described with the thin
strip approximation model. The coated conductor is subdivided axially into short
flat sections and rotated along the conductor axis to form a twisted geometry [15].
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Thanks to the thin strip approximation, the current density component or-
thogonal to the wide face of the conductor is neglected. Thus, T has a component
normal to the wide face of the conductor alone, and the problem is reduced to
a two-dimensional problem for the scalar variable T on the plane parallel to the
wide face of the conductor.

2.4.3 Other, less widespread, numerical models

Integral approaches could help reduce the computation time when simulating
complex three-dimensional geometries; however, their reliability must be carefully
assessed. Integral methods solve the integral form of the PDE (partial differential
equation) instead of the differential ones presented in the previous sections. The
main weakness of the integral methods is that the matrix describing the system
is a full matrix instead of a sparse matrix typical of the finite element method
(FEM) approach. The full matrix needs to be stored using a large amount of
memory, much greater than the one required for sparse matrices. The memory
requirements typically increase with the square of the number of degrees of free-
dom (Dofs), which creates problems when dealing with large structures. Due to
these issues, the integral methods have not been widely applied in the scientific
community. However, given the recent development of efficient techniques of ma-
trix compression and the increase of memory in modern computers, these methods
could become a useful resource. The main integral methods are the boundary
integral methods (BIM) and the volume integral methods (VIM). The former is
based on solving the problem PDEs at the boundaries of the domain, thus gen-
erating a small number of Dofs, but is not suited for solving problems involving
superconductors, due to their inability to handle non-linearities [125]. The latter
can instead represent a valid solution even in cases involving non-linear constitu-
tive laws. The drawback is that the number of Dofs generated is greater than the
one resulting from the application of BIM methods. All the numerical methods
proposed in this document are general and can be applied to a large variety of
problems (structural analysis, fluid dynamics, etc.), but the partial element elec-
tric circuit (PEEC) proposed by A. Ruehli in [128] was developed specifically for
electromagnetic problems. The PEEC relies on a semi-analytical integral method
to determine the electrical components of an electric circuit representing the sys-
tem. Essentially, the domain is subdivided into a number of sub-domains, to each
of which an electric circuit is associated. This method was successfully applied
by Noguchi and Wang in the study of non-insulated REBCO pancakes [76]. Its
main advantage is to enable a connection between the model of the device under
analysis and an external electric circuit such as other electric components or the
electric network itself. Sophisticated variational methods may be more efficient
and flexible for the solution of 3D problems, but they require a very significant
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work for the identification of the various parameters and regimes. Several examples
of variational methods were proposed by L. Prigozhin [129] and E. Pardo [130].

2.5 Homogeneization techniques

To reduce the computational burden of the solvers, homogenization techniques
[16,17,129,131,132] must be adopted, although the solutions obtained are intrinsic
approximations of the real ones. Thus, the choice of the homogenization technique
must be carefully evaluated. An overview of the homogenization methods proposed
in the literature is presented in this section. The homogenization models that will
be presented are mainly applied to a stack of tapes. However, a model employed
for the study of coils (Neighbor approximation) is also reported, to better express
the idea that homogeneization is not exclusively used for stacks. Homogenization
techniques aggregate detailed microscopic properties of the conductor into bulk
properties that can be used to represent the homogenized system at larger length
scales and hence reduce computational cost.

2.5.1 Anisotropic homogeneous-medium approximation

This approach represents the most classical and widely used type of homoge-
nization. As shown in the sketch of Fig. 2.5.1, it is based on the assumption that a
finite stack of height 2b of thin superconducting tapes, all carrying a fixed current
I, can be approximated through an anisotropic superconducting bar with critical
current density defined as:

Jc =
I

2aD
(2.5.1)

where a is the half-width of the tape, and D is the distance between two
consecutive parallel tapes of the stack.

The current density in the homogenous bulk conductor must respect the fol-
lowing integral constraint: ∫

Jdx =
I

D
(2.5.2)

For small values of the ratio D/a, the anisotropic homogeneous-medium ap-
proximation gives a reasonably accurate estimate of the AC losses in a finite stack.
Then, the results obtained for a stack can be used to calculate the transport losses
in a pancake coil. Under the assumption of the critical state model that the critical
current density is independent of the magnetic flux density, an analytical formula
was obtained by Clem [16] for the calculation of the transport current AC losses
per unit of length along the y direction:
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Figure 2.5.1: Sketch of a finite stack of height 2b in the z direction of supercon-
ducting tapes of infinite length in the y direction to be homogenized in a single bulk
type conductor [16].

Q′ = 4Q
′

init (2.5.3)

where Q′
init is the energy per unit length dissipated upon the initial penetration

of magnetic flux and is expressed as follows

Q
′

init = −4Jc

∫ b

0

dz

∫ a

c(z)

(a− x)Bz(x, z)dx (2.5.4)

where b is the half height of the stack, c(z) defines the border of the region,
comprised between c(z) and a, over which the magnetic flux density in z direction
penetrates and the current density reaches its critical value. Bz is the compo-
nent of B along the direction orthogonal to the tape’s broad face. Prigozhin and
Sokolovsky improved in [129] the anisotropic homogeneous-medium approximation
introduced by Clem, by removing unnecessary simplifying assumptions on the cur-
rent density in the subcritical zone and on the shape of the boundary of such zone.
They could then derive a numerical algorithm based on the variational formula-
tion mentioned in Section 2.4.3. They demonstrated that if the number of tapes
reaches the order of one hundred, the numerical computations through variational
methods become very time-consuming while the homogeneous approximation gets
more advantageous.
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2.5.2 Neighbor approximation

This approach was presented by E. Pardo in [17] as a technique to accelerate
the computing process of an MMEV (multi magnetic energy variational) method
and to provide an alternative to another widely adopted homogenization method,
namely the uniform approximation. The neighbour approximation technique is
quite general, and can also be applied to FEM-based models. The approach is
based on approximating the effect of the whole coil on a certain turn as a given
applied magnetic field. In this sense, the technique is similar to the uniform
approximation. However, in the uniform approximation, the current density is
assumed uniform in all remaining turns apart from the one under analysis. The
issue with this approach is that the neighbouring turns shield the background
magnetic field, in a similar way as in a stack of tapes [130].

Therefore, neglecting this shielding effect of the neighbouring turns the usual
uniform approximation fails to predict the current density distribution in the coil
and the corresponding AC losses. In particular, this effect is important in wind-
ings manufactured as stacks of pancake coils wound from coated conductors. As
a matter of fact, in these windings, the shielding effect is very strong. In this
respect, good advances were made with the anisotropic homogeneous approxima-
tion detailed in the previous Sectio but Pardo states that this approach cannot
be applied neither to coils based on tapes or wires with a superconducting core of
non-negligible thickness (such as Bi-2223 tapes or Bi-2212 or MgB2 wires) nor to
pancake coils with a large separation between turns.

The neighbour approximation solves these issues by accounting for the magnetic
shielding effect due to the magnetization currents flowing in the neighbouring
turns. This approximation is based on the fact that the radial distance from the
tape under analysis where the magnetic field is affected by the non-uniformity of
the current density distribution is of the same order as the tape width. Therefore,
this methodology assumes that the current distribution is uniform only in the turns
that are located at a distance from the turn under analysis greater than a certain
threshold distance δ. As shown in Fig. 2.5.2 [17], this influence distance is in
the order of the tape width. In particular, the results reported in Fig. 2.5.2 were
obtained for a constant Jc, a transport current equal to 20% of the critical current,
and no applied magnetic field. The two curves shown in the plot correspond to
geometric lines parallel (grey) and perpendicular (red) to the tape surface, with
their origin at the center of the tape.

In the neighbour approximation to obtain J (or another state variable) in turn
i, the numerical method used calculates the non-uniform current distribution of J
in the set of turns Ti that respect the condition:
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Figure 2.5.2: Sketch of a finite stack of height 2b in the z direction of supercon-
ducting tapes of infinite length in the y direction to be homogenized in a single bulk
type conductor [17].

|rj − ri| ≤ δ (2.5.5)

where j ∈ Ti , and rj and ri are the central positions of the cross-section of
turns j and i, respectively. In the calculation, a certain total current I in each turn
of Ti and the applied magnetic field Ba and vector potential Aa created by the rest
of the turns are fixed. The values of Ba and Aa are

Ba(r) = I
∑
j∈Ti

bj(r)
1

Sj

Aa(r) = I
∑
j∈Ti

aj(r)
1

Sj

(2.5.6)

where Sj is the cross-sectional area of turn j, and bj(r) and aj(r) are the
magnetic field and vector potential, respectively created by turn j per unit of
current density, assuming a uniform current density. It is important to note that
the distribution of J is calculated in all turns of Ti, not only in the ith turn. Thus,
the shielding currents in the turns surrounding the turn of study are taken into
account.

Indicating with nT the number of turns discretized in detail (essentially the
turns belonging to the set Ti), which is referred to as the order of the method,
and with N the total number of turns of the coil, it was found out that only if
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Figure 2.5.3: Comparison of AC losses per cycle and tape length in a single pan-
cake obtained using different orders of the neighbour approximation, the uniform
approximation and the real ones [17].

Figure 2.5.4: Comparison of the normalized AC losses for a stack of pancakes
obtained through different orders of the neighbour approximation, the uniform ap-
proximation, and the real ones [17]).

the condition in (2.5.7) is verified, then the neighbour approximation reduces the
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overall computing time.

n2
T < N (2.5.7)

As shown in Figs. 2.5.3 and 2.5.4, this homogenization technique gives excellent
results, by speeding up the calculation without remarkable loss of accuracy with
respect to the detailed modeling of all individual turns.

2.5.3 Densification method

The densification is not regarded as a proper homogenization technique but
serves the same purpose of reducing the computational burden and is therefore
described here. This method was recently proposed by E. Berrospe-Juarez et al.
in [18]. In the densification method, the number of elements is reduced by em-
ploying a reduced number of densified tapes. The densified tapes merge a given
number of tapes into a single tape, during the densification process. The obtained
densified tapes preserve their original geometry and concentrate the transport cur-
rent of their surrounding tapes, while the surrounding tapes are erased, as shown
in Fig. 2.5.5. In classical homogenization, the electromagnetic behavior of the
original stack is preserved through the distribution of the transport current all
over the homogenized bulk, while with the densification technique, this require-
ment is met using the concentration of the transport current in the densified tapes.
The densified model does not include the normal conductors forming part of the
HTS tapes, the resistivity of superconducting subdomains of the densified tapes
is derived from the power law shown and is shown in (2.1.2), and the definition of
the critical current reported in (2.5.8) based on Kim’s critical state model [38].

Jc(B) =
Jc0

1 +

√
k2B2

∥+B2
⊥

B0

(2.5.8)

Where k is the anisotropic factor, B∥ and B ⊥ the components of B. The value
of Jc is replaced by a densified critical current density Jcd defined as

Jcd = dJc (2.5.9)

where d is the number of tapes merged into a single densified tape. The trans-
port current in the densified tapes is given by:

Itr = dIk (2.5.10)

where Ik is the transport current in the original non-densified tapes
It is necessary to add one integral constraint per densified tape with the proper

transport current Itr. It is important to notice that d doesn’t need to be an integer
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Figure 2.5.5: Example of application of densification for a stack of superconduct-
ing tape [18].

Figure 2.5.6: Example of non-homogeneous densification from [18].

and it can even differ from one densified tape to another, for example, a stack of
five tapes can be discretized with two densified tapes both with d = 2.5 or one
with d = 2 and the other with d = 3. Once the current density distribution is
computed, the losses can be calculated in the densified tapes. The losses in the
densified tapes are divided by their corresponding d, and these values are used
to interpolate the losses in each tape of the original stack. The accuracy of the
densified models may be degraded due to the nature of the densified tapes, which
generate larger self-fields and are located at larger distances between tapes than

52



Chapter 2

in the original non-densified model. Therefore, the number and the position of the
densified tapes must be carefully assessed. In the region where there is a larger
variation of the current density, it can be convenient to increase the number of
densified tapes. The densification of the tapes can be non-homogeneous, meaning
that in the region of interest more densified tapes can be used (dense region) than
in the other regions, see Fig. 2.5.6.

2.6 Final remarks on literature formulae and models

The main issues that may arise when simulating AC losses in a twisted stacked
conductor are listed in the following.

• Coupling of the tapes: the current distribution depends on the mutual in-
terferences between tapes, at least those belonging to the same stack of the
cable. It is therefore not possible to neglect the mutual interaction between
tapes; homogenization techniques such as the neighbor approximation should
be considered to describe the stack.

• 3D geometry: a 2-D approximation can reduce the computational burden
when considering short cable segments. However, when simulating large
magnets, these simplifying assumptions might not hold.

• Computational burden: the twisted stacked configuration introduces a greater
number of unknowns as compared to individual tapes. The formulation to
be adopted, as well as the solving approach (integral or differential), must
be carefully evaluated.

Concerning the tools available for modeling HTS, different approaches with
increasing levels of detail have been developed, both analytically and numerically.
Detailed 2D and 3D Finite Element models have been developed for HTS stacks or
small pancake coils, or peculiar cable layouts, such as power cables, TSTC, CORC,
and Roebel cables. The main purpose of these models has been so far the study
of AC losses or quench propagation in HTS tapes, stacks, small coils or cables.
However, scaling up such very detailed models to the magnet size has not been yet
achieved. The main issues that may arise when simulating AC losses in a twisted
stacked conductor are the coupling of the tapes and the current redistribution
among them, and the computational burden due to the huge number of elements
to be included in the model.
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3 New analytical formulation

3.1 Motivation

The European Union is working to develop a roadmap for harnessing fusion
energy beyond the ITER project [133]. The main goal is to create a conceptual
design for the demonstration power plant (DEMO) machine, which is expected to
be operational around 2050. Several studies have been conducted on the DEMO
magnet configuration [134–136] and the technologies that could be used [63, 137,
138]. One option being considered for the DEMO central solenoid (CS) is the
insertion of an HTS insert. The twisted stacked tape cable in conduit conductor
(CICC) configuration for HTS conductors is a promising solution to achieve the
required magnetic field of 15 T [139]. A possible design of the HTS cable based
on this technology is shown in Figure 3.1.1.

Figure 3.1.1: Artistic view of the REBCO CICC layout designed by ENEA,
composed of 10 stacks each with 30 tapes per stack [19].

As mentioned in previous chapters, calculating losses during magnet operation
is a crucial aspect of superconducting magnet design, particularly for pulsed coils
like the CS of a tokamak. Accurate knowledge of the instantaneous values of these
losses is essential to determine the magnet’s temperature margin [80]. Accurately
calculating these losses would require a 3D finite element method (FEM) model,
but the computational time for such models would be prohibitively high for the
complex geometry of a fusion reactor. As a result, the use of analytical formulae
has been proposed as an alternative approach [19, 91, 92, 140, 141]. This chapter
will present an original analytical formulation and methodology for estimating the
hysteresis losses in the SC-TSTC cable configuration described in Section 1.4.1
and shown in Figure 3.1.1. The formulation presented will give the instantaneous
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power losses for the case when both transport current and external magnetic field
are present. The twisted stacked geometry cannot be tackled straightforwardly
with analytical formulae (or even 1D/2D FEM model) so a methodology for the
application of analytical formulae to this kind of geometry will also be presented.

This work was carried out in collaboration with ENEA and Politecnico di
Torino under the auspices of the EUROfusion consortium to investigate the AC
losses in a potential HTS insert of the central solenoid of DEMO.

3.2 Analytical formulation

The idea was to follow the method used to obtain the formulae developed
by Kajikawa and Awaji, shown in section 2.2.6, to extend them after the first
magnetization. These formulae differently from all of the others presented have
the merit to give the hysteresis losses as instantaneous power losses instead of
energy loss (so averaged over a cycle), and to apply to the realistic case of both
a transport current and an external magnetic field present. Having an analytical
formulation that can predict, albeit with a certain error due to the assumption,
the instantaneous power losses of a cable design can be an important asset in the
designing phase of these kinds of conductors.

3.2.1 Hypothesys of study and developed formulae

The main assumptions made in this work are the following:

• Slab approximation: each superconducting stack is homogenized and treated
as an infinite slab, only one dimension is finite, and its length is indicated as
2D (see Fig. 2.2.6).

• Critical state model: the current density in a superconducting slab can only
assume the values 0 or ±Jc. Jc is the superconductor critical current density.

The formulae presented in this section enable the computation of the losses
per unit volume of a slab, P, expressed in [W/m3]. The general equation used to
develop these formulae is:

P =
1

2D

∫ D

−D

E(x) · J(x)dx (3.2.1)

E(x) is the electric field profile inside the slab, while J(x) is the current density
profile. Via the two assumptions presented in the previous section, it is possible
to analytically describe the expressions of both.
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E(x) can be obtained from Faraday’s Law:

∇× E = −∂B
∂t

(3.2.2)

In the slab geometry (see Fig. 3.2.1), with an external field directed along the
y axis (3.2.2) is reduced to (3.2.3)

∂Ez

∂x
=

∂By

∂t
(3.2.3)

J(x) is obtained from Ampere’s law:

∇× B = µ0J (3.2.4)

which in the slab geometry is reduced to:

Jz =
1

µ0

∂By

∂x
(3.2.5)

Other important parameters for the formulation are the penetration field Bp

(the value that the external field (Be) must reach during the first magnetization
to let the magnetic field fully penetrate the slab), and the self field Bi (the field
generated by the transport current).

Bp = µ0JcD, Bi = Bp

(
I

Ic

)
(3.2.6)

The parameter D is half of the finite dimension of the slab (Fig. 3.2.1), while
I is the value of the transport current, Ic is the critical current of the slab, and Jc
the critical current density.

During a ramp-up of the external field (and transport current), the profile of
B is as in (3.2.7). In (3.2.7) the field is written as a scalar having already stated
that the only non-null component is directed along the y axis.

B(x, t) =


sgn(Be −Bi)[|Be −Bi| − µ0Jc(D − x)] with x1 ≤ x ≤ D

0 with x2 < x < x1

Be +Bi − µ0Jc(D + x) with −D ≤ x ≤ x2

(3.2.7)
The term sgn(Be−Bi) in 3.2.7 is needed to account for Bi > Be, as a reminder

for what will come |Be −Bi| = sgn(Be −Bi)(Be −Bi), and by definition Bi ≤ Bp.
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x = −D

Be +Bi

B = 0 x2 x1

x = D

Be −Bi

2D

Be
I

y

z
x

Figure 3.2.1: Graphic representation of the field profile inside the slab, during the
first magnetization before the external magnetic field reaches Bp (case Be > Bi).

Recalling the definitions of Bp and Bi given in (3.2.6) the expressions of x1 and
x2 can be obtained imposing that B(x2) = B(x1) = 0:

x1 = D
Bp − |Be −Bi|

Bp

x2 = D
Be +Bi −Bp

Bp

(3.2.8)

The first equation of 3.2.7 can also be written, for better clarity, as:

B(x, t) = Be −Bi −
µ0Jc(D − x)

sgn(Be −Bi)
with x1 ≤ x ≤ D (3.2.9)

In case the external field reaches the penetration field, x1 and x2 collapse into
a single value x3, which defines the position of the neutral axis (where B=0).
Recalling that Bi ≤ Bp when Be = Bp then Be −Bi ≥ 0

x3 = D
I

Ic
(3.2.10)

The value of x3 is not fixed, as the transport current increases, so does x3,
meaning that the neutral axis shifts towards the right edges of the slab. A graphic
representation of the field profile during the first magnetization is shown in Fig.
3.2.1. The reaching of the penetration field is shown in Fig. 3.2.2.

Applying 3.2.3 the profile of E is obtained by integrating in space along the x
coordinate. The integration is performed separately on the left and right of the
neutral axis (coordinate where the electric field becomes null). The integration
constant is 0 due to E being null on the neutral axis. From now on, having
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x = −D

Be +Bi

B = 0 x3

x = D

Be −Bi

2D

Be

I

y

z
x

Figure 3.2.2: Graphic representation of the field profile inside the slab, during
the first magnetization when the external field reaches Bp (case Be > Bi).

x = −D

Be +Bi

B = 0
x3

x = D

Be −Bi

2D

Be

I

y

z
x

Figure 3.2.3: Graphic representation of the field profile inside the slab, during
the first magnetization after the external field exceeds Bp (case Be > Bi).

established that all the fields (E,B, and J) have only one component, the vectorial
notation will be omitted.

E(x) =

∫ x

x1

∂E

∂x
dx =

∫ x

x1

∂B(x)

∂t
dx =

∫ x

x1

∂ [sgn(Be −Bi)[|Be −Bi| − µ0Jc(D − x)]]

∂t
dx

=

∫ x

x1

∂ [sgn(Be −Bi)[|Be −Bi| − µ0Jc(D − x)]]

∂t
dx

=

∫ x

x1

∂(sgn(Be −Bi))
2(Be −Bi)

∂t
dx

(3.2.11)

58



Chapter 3

In the case under exam where the current and field are in phase, the term
sgn(Be − Bi) is constant. Knowing that E(x1) = 0 the integration constant is
therefore null. On the right side of the slab, the expression for E is the one in
(3.2.12)

E(x) =
∂(Be −Bi)

∂t
(x− x1) (3.2.12)

For the left side is mostly the same, knowing that E(x2) = 0, the expression of
the electric field is reported in (3.2.13)

E(x) = −
∫ x2

x

∂E

∂x
dx =

∂(Be +Bi)

∂t
(x− x2) (3.2.13)

Written below are the equations for the electric field and the current density
profile in a slab during the first positive magnetization (İ&Ḃ > 0).

Be < Bp E(x, t) =


∂(Be−Bi)

∂t
(x− x1) with x1 ≤ x ≤ D

0 with x2 < x < x1

∂(Be+Bi)
∂t

(x− x2) with −D ≤ x ≤ x2

(3.2.14)

Be ≥ Bp E(x, t) =


∂(Be−Bi)

∂t
(x− x3) with x3 ≤ x ≤ D

∂(Be+Bi)
∂t

(x− x3) with −D ≤ x ≤ x3

(3.2.15)

Be < Bp J(x, t) =


sgn(Be −Bi)Jc with x1 ≤ x ≤ D

0 with x2 < x < x1

−Jc with −D ≤ x ≤ x2

(3.2.16)

Be ≥ Bp J(x, t) =

sgn(Be −Bi)Jc with x3 ≤ x ≤ D

−Jc with −D ≤ x ≤ x3

(3.2.17)

The electric field and current density profile, inside the slab, are shown in Fig.
3.2.4 for the case depicted in Fig. 3.2.2. Where
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x = −D

−Jc

J = 0

x3

x = D

Jc

x = −D

Ezl

E = 0 x3

x = D

Ezr

Figure 3.2.4: Graphic representation of the electric field and current density
profile inside the slab, during the first magnetization when the external magnetic
field reaches Bp (case Be > Bi).

Ezl = −(D + x3)
∂(Bem +Bim)

∂t
, Ezr = (D − x3)

∂(Bem −Bim)

∂t
(3.2.18)

Applying 3.2.1 and the expressions of the field profiles ((3.2.17),(3.2.16),(3.2.15),(3.2.14))
it is possible to obtain 2.2.6. In (3.2.19) the steps for the third equation in 2.2.34(
condition Be > Bp).

P =
1

2D

∫ D

−D

E · Jdx =
1

2D

[∫ x3

−D

−Jc
∂(Be +Bi)

∂t
(x− x3)dx+

∫ D

x3

Jc
∂(Be −Bi)

∂t
(x− x3)dx

]
=

Jc
2D

[
(Ḃe − Ḃi)

[
x2

2
− xx3

]D
x3

− (Ḃe + Ḃi)

[
x2

2
− xx3

]x3

−D

]

=
Jc
2D

[
(Ḃe − Ḃi)

[
x2

2
− xx3

]D
x3

− (Ḃe + Ḃi)

[
x2

2
− xx3

]x3

−D

]

=
Jc
2D

[
(Ḃe − Ḃi)

[
D2

2
−Dx3 − (

x3
2

2
− x2

3)

]
− (Ḃe + Ḃi)

[
x3

2

2
− x2

3 − (
D2

2
+Dx3)

]]
=

Jc
2D

[
Ḃe

(
D2 + x2

3

)
+ Ḃi (2Dx3)

]
(3.2.19)

Including the definition of x3, Bi BP in (3.2.19) it is possible to obtain:

P =
B2

p

2µ0

 Ḃe

Bp

+
Ḃe

Bp

(
İ

Ic

)2

+ 2
I

Ic

Ḃi

Bp

 (3.2.20)
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Drawing upon the preceding discussion, it is possible to derive the formulae
for the instantaneous losses under conditions of negative ramp rates for both the
transport current and external magnetic field. These formulae are exact replicas
of the one in (2.2.34) with the sole modification of a sign change. A compact
formulation for the first magnetization can therefore be expressed as in (3.2.21).

P = sgn(İ)
B2

p

2µ0


K1 if 0 ≤ sgn(İ)Be < sgn(İ)Bi

K2 if sgn(İ)Bi ≤ sgn(İ)Be < Bp

K3 if sgn(İ)Be ≥ Bp

(3.2.21)

K1 =
ḂeB

2
e

B3
p

+
Ḃe

Bp

[
2
Be

Bp

I

Ic
−
(
Be

Bp

)2
]
+

İ

Ic

[(
Be

Bp

)2

+

(
I

Ic

)2
]

(3.2.22)

K2 =
ḂeB

2
e

B3
p

+

(
I

Ic

)2
Ḃe

Bp

+ 2
Be

Bp

Iİ

I2c
(3.2.23)

K3 =
Ḃe

Bp

+ 2
Iİ

I2c
+

Ḃe

Bp

(
I

Ic

)2

(3.2.24)

In the compact and extended version of the Kajikawa formulae, the function
sgn(İ) was used. This function’s only scope is to correct the application conditions
and the overall sign of the resulting losses, detecting if the magnetization is a
positive or negative one. In case the transport current is null, (3.2.21), are still
applicable but sgn(İ) must be changed with sgn(Ḃe). Equation (3.2.21) holds
only for the first magnetization. After that, the newly developed formulae must
be utilized.

The magnetic field of electric penetration,B∗, will now be defined it represents
the the value that Be must reach after the first magnetization for the electric field
to fully penetrate the slab. The penetration of the electric field is not monotonous:
when Be reaches B∗ there is a jump in the magnetic field profile inside the slab,
and E abruptly fills the slab. An example of a typical field profile inside the slab is
shown in Fig. 3.2.6. When Be is in phase with Bi, it is possible to obtain B∗ from
geometrical considerations on the magnetic field profile inside the slab. To derive
the expression of B∗, the following relation between B∗ and B∗

i (value reached by
the self-field when Be = B∗), is applied:

B∗
i = B∗Bim

Bem

, (3.2.25)

61



Chapter 3

x = −D

Bem +Bim

B∗ +B∗
i

x5

x = D

B∗ −B∗
i

Bem −Bimx4

2D

Be

I
y

z
x

Figure 3.2.5: Sketch of the magnetic field profile inside the slab after the external
magnetic field starts decreasing after reaching its maximum value Bem, (after a
previous ramp-up in the case of Be > Bi).

Bem and Bim represent the peak values of the external magnetic field and self-
field, respectively. Due to the assumption of the critical state model, the slope of
the magnetic field profile inside the slab, tan(α), is fixed at µ0Jc. The following
system can thus be written:{

tan(α) = µ0Jc

tan(α) =
(Bem+Bim)−(B∗−B∗

i )

2D

(3.2.26)

By combining (3.2.25) and (3.2.26) the expression of B∗ is obtained as:

B∗ = Bem

(
Bem +Bim − 2Bp

Bem −Bim

)
(3.2.27)

During the ramp down from the maximum values reached in the first magne-
tization, the field profile inside the slab is reported in (3.2.28). T ′ is the instant at
which the first magnetization ends. It coincides with the start of the ramp down.

B(x, t) =


sign(Be −Bi)[|Be −Bi|+ µ0Jc(D − x)] with x4 ≤ x ≤ D

B(x, t = T ′) with x5 < x < x4

Be +Bi + µ0Jc(D + x) with −D ≤ x ≤ x5

(3.2.28)
The first equation of (3.2.28) can also be written as :

B(x, t) = Be −Bi +
µ0Jc(D − x)

sign(Be −Bi)
with x4 ≤ x ≤ D (3.2.29)

62



Chapter 3

x = −D

Bem +Bim

B∗ +B∗
i

x6

x = D

B∗ −B∗
i

Bem −Bim

2D

Be

I
y

z
x

Figure 3.2.6: Sketch of the magnetic field profile inside the slab when the external
magnetic field reaches B∗, after a previous ramp-up in the case of Be > Bi.

The second condition in (3.2.28) is the initial condition of the ramp down, the
field profile at the end of the previous cycle (first magnetization). As previously
done, the term sign(Be−Bi) is necessary to consider the possibility that Be < Bi,
which implies that the field profile is reversed. To derive the definitions of x4 and
x5 (see Fig. 3.2.5) it is necessary to impose that the magnetic field evaluated by
(3.2.28) is equal to that obtained at the end of the first magnetization (so when
Be = Bem and Bi = Bim). The first equation in 3.2.7 and 3.2.28 evaluated in
x = x4 must be equal. The same is done for the third equation in 3.2.7 and 3.2.28
at x = x5. Obtaining:

x4 =
D

2Bp

(
2(Bim −Bem +Be −Bi)

sign(Be −Bi)sign(Bem −Bim)

sign(Be −Bi) + sign(Bem −Bim)
+ 2Bp

)
(3.2.30)

x5 = D
Bem +Bim −Be −Bi − 2Bp

2Bp

(3.2.31)

The intersection point x4 exists only as long as Be > B∗. When Be reaches B∗,
x4 collapse into x5, both becoming x6 (see Fig. 3.2.6). So (3.2.30) can be rewritten
as (3.2.32) and x6 is defined as equal to x5.

x4 = D
Bim −Bem +Be −Bi + 2Bp

2Bp

(3.2.32)

As long as the external magnetic field is higher than the magnetic field of
electric penetration the region comprised between x4 and x5 is free of electric field,
due to the magnetic field profile inside the slab not changing over time. This means
that the region of the slab comprised between x4 and x5 is not contributing to the
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power dissipation. The expressions of the field profiles are provided in (3.2.44),
(3.2.45),(3.2.46) and (3.2.47).

Be > B∗ E(x, t) =


∂(Be−Bi)

∂t
(x− x4) with x4 ≤ x ≤ D

0 with x5 < x < x4

∂(Be+Bi)
∂t

(x− x5) with −D ≤ x ≤ x5

(3.2.33)

Be > B∗ J(x, t) =


−sign(Be −Bi)Jc with x4 ≤ x ≤ D

J(x, t = T ′) with x5 < x < x4

Jc with −D ≤ x ≤ x5

(3.2.34)

Be < B∗ E(x, t) =


∂(Be−Bi)

∂t
(x− x6) with x6 ≤ x ≤ D

∂(Be+Bi)
∂t

(x− x6) with −D ≤ x ≤ x6

(3.2.35)

Be < B∗ J(x, t) =

−sign(Be −Bi)Jc with x6 ≤ x ≤ D

Jc with −D ≤ x ≤ x6

(3.2.36)

By using the equation of the field profiles in (3.2.1) we can reach a set of
formulae that describe the instantaneous losses in an infinite slab after the first
magnetization, during a ramp down of the transport current and magnetic field
(3.2.37). It is important to note that no assumptions have been made about the
shape of the wave of I and Be, these formulae are completely generic and can be
applied to whichever waveform of I and Be.

P = − 1

16µ0Bp


A1d if Bem < Bim

A2d if Be ≥ B∗

A3d if Be < B∗

(3.2.37)

Where

A1d =
(
Ḃe + Ḃi

)
(Bem +Bim − (Be +Bi))

2

−
(
Ḃe − Ḃi

)
(−(Bim −Bem)−Be +Bi)

2
(3.2.38)
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A2d =
(
Ḃe + Ḃi

)
(Bem +Bim − (Be +Bi))

2

+
(
Ḃe − Ḃi

)
(−(Bim −Bem)−Be +Bi)

2
(3.2.39)

A3d = 4Bp
2

[(
Ḃe + Ḃi

)(
1− Bi

Bp

)2

+
(
Ḃe − Ḃi

)(
1 +

Bi

Bp

)2
] (3.2.40)

The same procedure employed insofar can be used to obtain the analytical
expression for the instantaneous power losses due to a ramp-up of the transport
current (and magnetic field) after the first magnetization. As already shown, what
matters is the knowledge of the field profiles inside the slab. Assuming the ramp
up starts after the end of the previous ramp down, the magnetic field profile is
shown in Fig. 3.2.7. The ramp-down ended reaching the values of −Bem and
−Bim.

Be +Bi

B = 0

−(Bem +Bim)

Be −Bi

−(Bem −Bim)

2D

Be

I

y

z
x

x8

x7

Figure 3.2.7: Graphic representation of the field profile inside the slab, during
the first instant of a ramp up right after a ramp down (case Be > Bi).

When Be reaches −B∗ the intersection point x7 collapses into x8. The new
point is therefore called x9, causing the abrupt penetration of the electric field in
the whole slab. In (3.2.41), T ′′ is the instant of time at which the ramp-down
stops.
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B(x, t) =


sign(Be −Bi)[|Be −Bi|+ µ0Jc(D − x)] with x7 ≤ x ≤ D

B(x, t = T ′′) with x8 < x < x7

Be +Bi − µ0Jc(D + x) with −D ≤ x ≤ x8

(3.2.41)

x7 = D
Bim −Bem −Be +Bi + 2Bp

2Bp

(3.2.42)

x8 = D
Bim +Bem +Be +Bi − 2Bp

2Bp

(3.2.43)

Be < −B∗ E(x, t) =


∂(Be−Bi)

∂t
(x− x7) with x7 ≤ x ≤ D

0 with x8 < x < x7

∂(Be+Bi)
∂t

(x− x8) with −D ≤ x ≤ x8

(3.2.44)

Be < −B∗ J(x, t) =


−sign(Be −Bi)Jc with x7 ≤ x ≤ D

J(x, t = T ′′) with x7 < x < x7

−Jc with −D ≤ x ≤ x8

(3.2.45)

Be > −B∗ E(x, t) =


∂(Be−Bi)

∂t
(x− x9) with x9 ≤ x ≤ D

∂(Be+Bi)
∂t

(x− x9) with −D ≤ x ≤ x6

(3.2.46)

Be > −B∗ J(x, t) =

−sign(Be −Bi)Jc with x9 ≤ x ≤ D

−Jc with −D ≤ x ≤ x9

(3.2.47)

The analytical formulae for the ramp-up are expressed in (3.2.48).

P =
1

16µ0Bp


A1u if Bem < Bim

A2u if Be ≤ −B∗

A3u if Be > −B∗

(3.2.48)
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Where

A1u =
(
Ḃe + Ḃi

)
(Bem +Bim + (Be +Bi))

2

−
(
Ḃe − Ḃi

)
((Bim −Bem)−Be +Bi)

2
(3.2.49)

A2u =
(
Ḃe + Ḃi

)
(Bem +Bim + (Be +Bi))

2

+
(
Ḃe − Ḃi

)
((Bim −Bem)−Be +Bi)

2
(3.2.50)

A2u = 4Bp
2

[(
Ḃe + Ḃi

)(
1 +

Bi

Bp

)2

+
(
Ḃe − Ḃi

)(
1− Bi

Bp

)2
] (3.2.51)

The formulae for the ramp-down and ramp-up after the first magnetization
(3.2.37) and (3.2.48) can be combined in a compact form as shown in [19]. The
final formulation can be written as:

P =
sgn(İ)
16µ0Bp


A1 if Bem < Bim

A2 if sgn(İ)Be ≤ −B∗

A3 if sgn(İ)Be > −B∗

(3.2.52)

Where:

A1 =
(
Ḃe + Ḃi

)(
Bem +Bim + sgn(İ)(Be +Bi)

)2
−
(
Ḃe − Ḃi

)(
sgn(İ)(Bim −Bem)−Be +Bi

)2 (3.2.53)

A2 =
(
Ḃe + Ḃi

)(
Bem +Bim + sgn(İ)(Be +Bi)

)2
+
(
Ḃe − Ḃi

)(
sgn(İ)(Bim −Bem)−Be +Bi

)2 (3.2.54)

A3 = 4Bp
2

[(
Ḃe + Ḃi

)(
1 + sgn(İ)

Bi

Bp

)2

+
(
Ḃe − Ḃi

)(
1− sgn(İ)

Bi

Bp

)2
] (3.2.55)
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As already mentioned for the formulae in (3.2.21), in (3.2.52) the term sgn(İ)
can be exchanged with sgn(Ḃe) in case the transport current is null.

3.2.2 Validation trough FEM models comparison

The formulae in (3.2.52) together with (3.2.21) can be applied to compute the
losses in a slab for any cycle of transport current and magnetic field, as long as
the two are in phase with each other. The formulae can be applied to the study
of tapes and stacks of tapes, to compute the losses due to either an orthogonal
magnetic field or a parallel one [19,91,92]. The direction of the field is determined
with respect to the wide surfaces of the tapes. Examples of instantaneous losses
in time for a sinusoidal transport current and external orthogonal magnetic field,
at 50 Hz, are shown from Fig. 3.2.8 to Fig. 3.2.13. The losses presented refer to
an infinite slab which can then be assumed as a representation of a stack of an
extremely high number of tapes. The infinite stack’s tape main data are reported
in Table 3.2.1. These cases are used to illustrate the instantaneous loss behavior
and the impact of the transport current on the losses. Due to their reliance on sim-
plified slab geometries, these formulae may introduce inaccuracies when applied
to geometries significantly different from slabs (even the 40-tape stack presented).
An analysis of the inaccuracies introduced is shown later in this section.

Table 3.2.1: Tape Parameters

Tape thickness (t) 150 µm Tape width (w = 2a) 4 mm
Superconductor 1 µm

critical current
1010 A/m2

thickness (d) density (Jc)

It can be seen from Fig. 3.2.8 to Fig. 3.2.13 that the transport current has
a role in enhancing the peak value of the instantaneous losses. The impact of
the transport current is more noticeable in the low-field region where the main
contribution to the losses is due to the transport current itself. In the case of a
low external magnetic field (Figs. 3.2.8 to 3.2.10) the peak of the instantaneous
losses amount to 1.8 kW/m−3 without any transport current. However, when the
transport current reaches half of its critical value, the losses peak jumps to 254
kW/m3. This trend continues as the current increases further. At 70% of the
critical current, the losses peak reaches a substantial 660 kW/m3. The presence
of a transport current causes an increase of the losses peak, in the cases proposed,
of 14000% and 36000% respectively. A steady increase of the peak value of the
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losses due to the transport current is present also in the high-field case (Figs. 3.2.11
to 3.2.13). The effect of the transport current is less pronounced, causing an in-
crease of only 67% and 117% respectively compared to the case without current
applied (peak power loss 2.4 MW/m3).

Figure 3.2.8: Instantaneous power losses in a superconducting infinite slab sub-
jected to a sinusoidal, magnetic field orthogonal to the wide surface of amplitude
0.1Bp and no transport current .

The definitions in (3.2.56) are needed to understand how to define the penetra-
tion field and scale the losses when using (3.2.52). If the external field is orthogonal
to the wide surface of the tape/ stack of tapes under study, then the finite dimen-
sion of the slab (2D) is the width of the tape. If the external field is parallel to
the wide surface the finite dimension is the thickness of the tape.

Be = B∥ D = d/2 Q∥ = P · V
Be = B⊥ D = a λ = d/t Q⊥ = P · V /λ

(3.2.56)

Q⊥ are the losses to the ortogonal field, Q∥ those due to the parallel field, P
the losses evaluated by (3.2.52) and V is the volume of superconducting material.
In the case of a field with a generic orientation it was demonstrated in [92] that
the losses can be treated as shown in (3.2.57) by decomposing the magnetic field.

Q ≈ Q⊥ +Q∥ (3.2.57)
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Figure 3.2.9: Instantaneous power losses in a superconducting infinite slab sub-
jected to a sinusoidal magnetic field orthogonal to the wide surface of amplitude
0.1Bp and transport current of amplitude 0.5Ic.

Figure 3.2.10: Instantaneous power losses in a superconducting infinite slab sub-
jected to a sinusoidal, magnetic field orthogonal to the wide surface of amplitude
0.1Bp and transport current of amplitude 0.7Ic.

The developed formulae were applied to analyze a simplified case study, in
which a superconducting slab is subjected to an external magnetic field applied
orthogonal to its wide face. The superconducting slab results from a homogeniza-
tion of a stack composed of 40 tapes. Each tape is 4 mm wide and 100 µm thick;

70



Chapter 3

Figure 3.2.11: Instantaneous power losses in a superconducting infinite slab sub-
jected to a sinusoidal, magnetic field orthogonal to the wide surface of amplitude
1.1Bp and no transport current.

Figure 3.2.12: Instantaneous power losses in a superconducting infinite slab sub-
jected to a sinusoidal, magnetic field orthogonal to the wide surface of amplitude
1.1Bp and transport current of amplitude 0.5Ic.

the engineering critical current density (Jc,e) is set to 2.2 × 109 Am−2. The field
varies sinusoidally in time at a frequency of 50 Hz, in phase with the transport
current. Homogenization is the key to treating stacks of tapes as slabs (although
non-infinite), the homogenization performed is based on the one described in sec-
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Figure 3.2.13: Instantaneous power losses in a superconducting infinite slab sub-
jected to a sinusoidal, magnetic field orthogonal to the wide surface of amplitude
1.1Bp and transport current of amplitude 0.7Ic.

tion 2.5.1. The current density of the superconductor is spread along the whole
stack, for the case of a single tape it would mean that J0 = Jcλ, where J0 is the
homogenized current density.

The results of the analytical formulae were compared in two case studies with
those of a 1D FEM model implemented in COMSOL Multiphysics® [124] (see Fig.
3.2.14). The 1D model solves the following magnetic field diffusion equation:

∂B(x, t)

∂t
− ∂

∂x

(
ρ

µ0

∂B(x, t)

∂x

)
= 0

B(x, t) = (sgn(x)Bim +Bem) sin (t) ; |x| = D

(3.2.58)

The second equation in (3.2.58) represents the Dirichlet boundary conditions
applied, t is time, x the spatial coordinate (|x| ≤ D), and ρ the resistivity of the
superconducting slab. B(x, t) is the field profile along the x direction at time t.
Two case studies were analyzed:

a ) the amplitude of the external field is 1 T and the ratio between the am-
plitude of the transport current and the critical current (i = Im/Ic) is set to
0.2.

b ) the amplitude of the external field is 1 T and i is set to 0.4.
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The maximum difference between the 1D FEM model and the analytical formu-
lae is respectively 34 W/m for the first case study and 118 W/m for the second
one. The average relative error between the results of the two formulations is
1%. The losses in J/(m3cycle) can be obtained by integrating the power values
reported in Fig. 3.2.14, and dividing by the cross-section area of the stack. The
losses estimated by the analytical formulae are 3.5 × 105 J/m3 in case a) and
1.2×106 J/m3 in case b). The values of the losses per cycle have the same order of
magnitude (1MJ/(m3cycle)) as those experimentally measured on similar stacked
cables [142], and also on different geometries (CORC) [143]. As can be seen in
Fig. 3.2.14, the impact of the transport current on the magnetization losses is not
negligible.

Figure 3.2.14: Comparison between the results of the analytical formulae in
(3.2.52) and of the 1D FEM model [19]. The two cases presented here refer to
a sinusoidal transport current in phase with an orthogonal magnetic field applied,
to a 40-tape stack. The amplitude of the magnetic field in both cases a) and b) is
set to 1 T while the amplitude of the transport current is set in case a) to 0.2Ic
and in case b) to 0.4Ic.

The comparison between the analytical formulae and the 1D fem model is ex-
tremely good, and this is to be expected. FEM models operating in 1D implicitly
make the same assumptions as a slab model. A more representative comparison is
shown in Fig. 3.2.15, which shows the behavior of the AC losses predicted by three
different analytical formulations (the Brandt formula, the slab formula, and the
presented formulation), and a 2D FEM model based on the H-formulation. The
models were applied to study a 100-tape stack subjected to an orthogonal external
magnetic field and different values of transport current, both sinusoidal at 50 Hz
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and in phase with each other. The main parameters of the stack are reported in
Table 3.2.2. The Brandt formula holds only for a single strip of superconductor
without transport current, and is, therefore, unable to account for the shielding
effect of the stack even in the case of no transport current (i = 0). The shielding
effect determines a reduction of the losses in a stack of tapes due to magnetic
shielding of the tapes at the edges with respect to those at the center of the stack.
This situation is similar to the behavior of the shielding currents in a single tape
tape where the center of the tape carries a lower current than the edges. This effect
is shown via simulation with the 2D FEM in Fig. 3.2.16. The slab formula can
take into account the shielding effect of the tapes but only hold with no transport
current. The new formulation developed can take into account the shielding effect
of the tapes of the stack and holds even in the presence of transport current (i >
0). It is worth noting that without transport current the curves of the AC losses
for the new formulation and the slab formulae are perfectly overlapped.

Figure 3.2.15: AC losses in a 100-tape stack subjected to an orthogonal external
magnetic field and different values of transport current, both sinusoidal at 50 Hz.
Labeled as "new" the results obtained from the proposed formulae.

The 2D FEM model is also based on a homogenization, which was necessary
to reduce the computation burden and allow the simulation to reach convergence.
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Figure 3.2.16: AC losses with no transport current as a function of the external
field, and of the number of tapes in the stack. The dots represents the results ob-
tained from the 2D FEM model while the lines are the losses predicted by analytical
formulae for a thin strip (Brandt) and an infinite slab (Brandt).

Table 3.2.2: Simulation Parameters 2D FEM comparison

Tape thickness 150 µm Tape width 4 mm
Number of 100 Superconductor 1 µmtapes thickness

Jc 1× 1010A/m2 Homogenized Jc 6.67× 107A/m2

Two different homogenizations were applied one after the other. At first, only the
superconducting layers of the stack were modeled, then each superconducting layer
was homogenized with the tape to which it belongs. Finally, all the homogenized
tapes were further homogenized between themselves. The final result is a slab
with a width equal to the width of the tapes, and a thickness equal to the sum of
the thickness of all the tapes. Simulations were performed to determine the error
committed between the results of the model based on the final homogenization and
the initial one. The percentage error ranges from 5% at low values of the external
field and drops to 0.1% for Be > Bp. Fig. 3.2.15 stress once again the importance
of including the effect of the transport current in the AC loss computation. At
lower values of the magnetic field, the losses due to the transport current are highly
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relevant. For high values of the magnetic field, the contribution of the transport
current is less dominant but still present, and the analytical formulae predict a
higher value of loss when the transport current is present in the slab geometry
than in the single tapes (Brandt).

Discrepancies between the analytic and the 2D FEM results are due to the
aspect ratio of the stack not being representative of an infinite slab. For a 100-tape
stack, with the parameters in Table 3.2.2, the aspect ratio is only 3.75. Despite
that, the behavior of the losses is correctly represented by the formulae developed
here (3.2.52).

3.3 Application to SC-TSTC

This study only focuses on the computation of the hysteresis losses in HTS
conductors realized with the twisted stacked CICC configuration. The losses due
to coupling currents between the different stacks are not computed here. It should
be recalled that recent designs allow reducing these losses by a factor of 10 thanks to
a sectorized core including inserts of high-resistivity material [144]. Thus the main
contribution to the losses of a conductor are the hysteresis losses. A framework
for the qualitative assessment of AC losses in SC-TSTC (the one in Fig. 3.1.1
was studied) via analytical formulation was developed and applied for the study
of an HTS insert in the magnet configuration of the central solenoid of DEMO.
Currently, the framework is comprised of:

• A software for the computation of the magnetic field created by the magnet
system under investigation

• A software for the analysis of the losses through the analytical formulae
developed

• A post processor for the display and print of the data

For the tools developed to work some assumptions are needed:

• Axis symmetry: the external magnetic field in the magnet configuration
studied is axisymmetric, which allows treating the electromagnetic problem
as a 2D one, greatly reducing the computational burden.

• Magnetic field homogenization: all the stacks of the same cable are consid-
ered subjected to the same external magnetic field, computed at the center
of the cable (z = r = 0, in Fig. 3.3.1).
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• Substitutive stacks: one twist pitch of the cable of length Lp, is subdivided
into a given number of elements N along the twist pitch itself. The losses
are then calculated over straight pieces of stacks having different angular
positions along the twist pitch. The straight stack composed of N elements,
each with length l = Lp/N , is called a substitutive stack, see Fig. 3.3.1. The
use of the substitutive stacks makes it possible to treat the twisting of the
conductor with the formulae presented here;

• Magnetic coupling: the magnetic coupling between different stacks is not
taken into account.

The computation of the magnetic field is performed through a 2D axisymmetric
FEM model implemented In FORTRAN [145]. The software for the evaluation of
the magnetization losses was developed in MATLAB [146], and it is available as
a stand-alone program working in any Windows environment. The framework de-
veloped is extremely flexible and can be adapted to various analytical formulations.

In Fig. 3.3.1 the angular positions of the N elements are presented in the same
plane, even though they are located on different rz planes at a distance l from
each other. These stacks belong to the same substitutive stack (see Fig. 3.3.1).
Be is the external magnetic field, which is calculated at the center of the cable,
and ∠Be is the angle between Be and the r -axis. n is the unit vector orthogonal
to the tape surface, and α is the angle between n and the r -axis. B⊥ and B∥ are
the orthogonal and parallel components of the magnetic field with respect to the
tape.

3.3.1 Input data

The required inputs for the computation of the magnetization losses are:

1. Evolution in time of the currents in the magnets (input from file)

2. Geometry of the magnets (input from keyboard, position, and number of
turns)

3. Coordinates of the field points, i.e. points where the magnetic field is evalu-
ated (in our case the center of the cables

The configuration studied is a combination of the central solenoid (CS) magnets
and poloidal field magnets, which are those mainly contributing to the total field in
the CS magnets. The Geometry of the magnets is not reported as it is a property
of the EUROfusion Consortium and is still under development.
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Figure 3.3.1: Example of a subdivision in 10 elements, of a twisted stack and
and resulting substitutive stack.

3.3.2 Procedure details

Details about the procedure followed in this framework are shown in Fig. 3.3.2,
operating with the analytical formulation developed, the losses are those of a
slab and are evaluated per unit of volume. The start of the process, for the
evaluation of the AC losses within the framework developed, is supplying the input
data regarding the geometry and the currents of the magnets together with the
coordinates of the field points in which the magnetic field will be evaluated. Then
the software will compute the magnetic field generated and the time derivative of
both the currents and the magnetic field. It will then start evaluating the losses
in each of the N elements composing the substitutive stack representing one twist
pitch of the REBCO cable. Once the losses per unit of volume of a slab are
evaluated for each longitudinal element of a substitutive stack, these values are
multiplied by the volume of the superconductor in each element and then summed
up to obtain the losses of a stack. Since by hypothesis, there is no magnetic
coupling between the stacks of a cable, the total loss of one twist pitch of the
cable is the sum of the losses of the single stacks. The losses of a twist pitch
are then multiplied by the number of twist pitches along a turn of the central
solenoid and summed to the losses of the other turns to obtain the total losses of
the insert. Table 3.3.1 illustrates the parameters of the cable and tapes used in the
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Figure 3.3.2: Flowchart of the developed procedure, the content of the box in the
bottom left is a detailed description of the step "evaluate losses per unit of volume
of a slab".

simulation alongside other parameters such as the operating temperature and the
time step. The temperature is considered to be fixed and does not change during
the simulation time.

3.3.3 Results

The developed procedure was tested by computing losses in the HTS insert
of the DEMO CS for a simplified test-case study. In this analysis, the transport
current in all the conductors (so the current in both the central solenoid magnets

Table 3.3.1: Simulation Parameters DEMO insert

Temperature 4.5 K Number of turns 460
Tape thickness (t) 150 µm Tape width (2a) 4 mm
Tapes per stack 30 Stacks per cable 10
Cable diameter 33 mm Twist pitch 1 m
Superconductor 2 µm

Time 0.5 sthickness (d) step
Inter-distance (g) 148 µm Volume element (V) 2ad/N m3
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Figure 3.3.3: Total losses of the REBCO insert in all the CS modules per meter,
calculated with different numbers of elements in the substitutive stack [19].

and poloidal field magnets) follows a trapezoidal cycle with a current ramp-rate of
150 A/s and a flat-top value of 30 KA. The peak magnetic field obtained in this
test case is 10 T, with a ramp rate of 50 mT/s. This case study does not follow a
real plasma scenario for the DEMO tokamak, in which the transport current is not
in phase with the magnetic field and each conductor of the CS and PF may have
a different evolution in time of the transport current. The case study investigated
was only used to probe the results of the analytical formulation in a simplified
plasma scenario, with nominal values of the transport current. The corresponding
losses were computed with a different number of elements, changing the discretiza-
tion of the conductor twist pitch with values of N ranging from 4 to 180. Fig. 3.3.3
shows the total losses in the HTS insert for the different discretizations adopted.
Apart from the case with 4 and 10 elements, a good agreement between the curves
is found with N greater than 20. As proof of the good quality of the convergence
of the results the L2-norm of the difference between the results obtained with N
= 180 and all other cases is presented in Table 3.3.2.

Table 3.3.2: L2 norm of results with different number of elements

N=4 N=10 N=20 N=72
4 2.1 0.54 0.13
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The L2-norm drops from 14 for N = 4 to 0.13 for N = 72. The discretization
with N = 20 represents a reasonable trade-off between accuracy and computation
time. The overall CPU time for N = 20 is 45 minutes for the whole computation
of both the magnetic field and the magnetization losses, for a 4-core, 3.60 GHz
Intel(R) Core(TM) i7-7700 processor. The peak value of the losses amounts to 4.7
W/m, while the total losses per cycle are equal to 6.4 MJ/m [19].

3.4 Extension beyond the "in phase" assumption

Although the presented formulae are valuable, they are constrained by the
assumption of in-phase transport current and external magnetic field. In practical
applications, this condition is often not satisfied. To address this limitation, we
can employ the methodology introduced at the beginning of this Chapter to derive
new formulae that hold for not-in-phase current and field configurations. The
configuration of the current and field chosen for the application of the new formulae
is that proposed in Fig. 3.4.1. The transport current (indicated in Fig. 3.4.1 via the
self-field Bi generated, see (3.2.6)) increases from 0 to 0.7 times the critical current
Ic in 1.5 seconds, then remains constant for 1 second before decreasing to 0 in the
following 1.5 seconds. The external magnetic field increases from 0 to 1.2 times
the penetration field Bp in 2 seconds, then remains constant for 0.5 seconds before
decreasing to 0 in 1 second and staying at 0 T for the remainder of the simulation.
The scenario analyzed is similar in its behavior to one of the proposed plasma
cycles of the divertor tokamak test (DTT) facility currently under construction at
ENEA [147]. To study this current-field configuration an analytical formula was
developed that holds when the external magnetic field is null and the self-field
is ramping down [20]. The new formula presented in (3.4.1) has a limited range
of applications. However, other formulations can be derived for all the possible
combinations of current and field profiles. The purpose of this section is to prove
that analytical formulae can still be found and be useful in case studies of technical
interest.

P = − Ḃi

16Bpµ0

[
(2Bp −Bi0 −Bi))

2 + (Bi0 −Bi)
2] (3.4.1)

The term Bi0 is the value of the self-field when Be becomes zero. The case
study in Fig. 3.4.1 was chosen to show all the different loss mechanisms in a slab,
and is representative of a real plasma scenario [147].

The condition occurring when Be reaches zero is not accounted for in (3.2.52).
The reason for this is apparent by looking at the magnetic field profile in Fig.
3.4.2. When t = 3.5 s, there is a rigid shift down of the magnetic field profile. The
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Figure 3.4.1: Time evolution of the external magnetic field (Be) and the self-field
(Bi), in the studied case [20].

electric field fills the slab increasing the losses in a similar way as already described
during the derivation of (3.2.52), when Be reaches B∗. therefore, to compute the
losses in the last 0.5 s of simulation, (3.4.1) has to be employed.

The parameters of the stack under study, with the new formula, are reported
in Table 3.4.1, while the behaviors of Be and Bi are shown in Fig. 3.4.1. The
results obtained are shown in Fig. 3.4.3. They are compared to those of the 1D
FEM model used previously for the validation of (3.2.52). An excellent agreement
is found between the two validating the novel formula proposed. To obtain these
results, from t = 0 s to t = 2 s the formulae for the first magnetization (3.2.21)
are applied. At t = 1.5 s the drop in the losses is due to the transport current
being stationary, and the plateau seen in Fig. 3.4.3 from t = 1.5 s to 2 s, is
due to Be reaching, and then overcoming Bp. Once Be = Bp, the whole slab is
filled with current and electric field, thus all the slab contributes to the loss process.

After t = 2.5 s a combination of (3.2.52) and (3.4.1) must be used to calculate
the losses. From t = 2.5 s to t = 3.5 s Be and Bi are apparently ramping down
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Figure 3.4.2: Time-resolved representation of the magnetic field profile within
the slab, in the case under consideration. Data obtained from 1D COMSOL sim-
ulation. The region enclosed by the two dotted lines is devoid of electric field (E)
at t = 3 s, having the profile not changed until then [20].

in phase with each other: using (3.2.52) it might seem possible to evaluate the
losses, but this is incorrect. At t = 3.18 s it is possible to notice that the self-
field outvalues the external one. This condition is not taken into consideration in
(3.2.52). The expression presented in (3.2.52) can still be applied to evaluate the
losses in this time interval, but the definition of B∗ in (3.2.27) cannot be applied.
The real value of the magnetic field of electric penetration must be obtained from
the field profile in the slab. At t = 3.3 s, Be = B∗, and a spike in the value of the
losses is found, due to the fact that the slab is filled with both current and electric
field. Before reaching the condition Be = B∗, the slab is fully penetrated by the
current but the central part is free of electric field thus not generating any losses.
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Table 3.4.1: Simulation Parameters new formulae

Tape thickness 100 µm Tape width 4 mm
Number of 40 Superconductor 1 µmtapes thickness

Jc 4× 1010A/m2 Homogenized Jc 4× 108A/m2

Figure 3.4.3: Comparison of instantaneous power dissipation in a 40 tape stack,
between the 1D FEM model and the analytical formulation developed. Evolution
in time of the external and self magnetic field is shown in Fig. 3.4.1 [20].
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3.5 Final considerations

A novel set of equations for the analytical evaluation of hysteresis losses in an
infinite slab, subjected to the actions of both a transport current and an external
magnetic field, has been developed. The formulae presented here allow us to study
generic cycles of the transport current, provided that these are in phase with the
magnetic field. An extension to the case where the external magnetic field and
the transport current are not in phase with each other has been proved possible,
but a compact set of equations cannot be found due to the dependence of the
magnetic field of electric penetration on the particular field profile inside the slab.
These equations have been tested in various conditions and compared with the
results of 1D and 2D FEM models, implemented in COMSOL Multiphysics, to
validate their results. The results obtained proved the validity of the formulation
presented in this work, although further analysie need to be carried out to finely
define the error in employing a formulation for an infinite slab to a finite stack of
superconducting tapes.

A method to account for the twisting of the stacked tapes when using the ana-
lytical formulae presented has been developed. The substitutive stacks technique
has been applied to the calculation of AC losses in the whole REBCO insert of
the DEMO CS magnet for a simplified case study. The convergence study per-
formed shows that subdividing a cable twist pitch length, 1 meter long, into 20
sub-elements for the substitutive stacks allows reaching a good accuracy within a
reasonable computation time.

A tool for the analytical computation of magnetization losses in HTS twisted
stacked conductors for fusion application has also been developed. The model
developed allows, using a novel analytical formulation, estimating the AC losses
within an acceptable time and is flexible enough to be adapted to different magnet
and cable configurations and analytical formulations.
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4 Circuit model for NI-HTS coils
High-field magnets are key components in many research fields and industrial

applications. To achieve the magnetic field needed for these applications the most
efficient solution is the use of superconducting magnets. One of the main tech-
nical limitations in the use of superconducting magnets is the quench, which can
determine irreversible damage to the magnet. A reduction of the risks associated
with a quench in high-temperature superconducting (HTS) devices can be achieved
through the use of no-insulation (NI) coils [64, 79, 148–151]. The non insulated
superconducting technology allows the current to redistribute between turns of
the coil during a quench. The radial currents flow from one turn to the adjacent
ones, thus reducing the azimuthal current flowing along the normal zone and the
corresponding joule losses. This, in turn, mitigates the risk of damage to the su-
perconducting tape [65–67, 152, 153]. The main issues of the non insulated HTS
technology are related to the flow of current from turn to turn, also in the absence
of quenches, due to inductive effects. This leads to large time constants of both
the coil charge and discharge phases [154]. Various solutions were implemented
to overcome these shortcomings, ranging from active control of the current source
to controlled insulation between turns, (see [155–157]). Superconducting coils are
normally designed to work with the same current in each turn. The knowledge of
the current redistribution during charges or quenches is useful to predict the coil
behavior in terms of time constants and AC losses.

The study of non insulated (NI) high-temperature superconducting (HTS) coils
can be undertaken using a 3D finite element method (FEM) model based on the
formulation presented in Section 2.3. However, a major drawback of the FEM
approach is that it necessitates the use of an extremely fine mesh to accurately
represent the behavior of the coil, which often translates into an increase in compu-
tational time that may not be feasible during the design phase of the component.
Additionally, the increased computational demands and the complexity of the
model could lead to non-convergence issues, potentially jeopardizing the validity
of the simulations. Therefore, a circuital approach emerges as a more efficient and
reliable alternative to the more intricate FEM modeling.

To evaluate the current distribution and AC losses in NI-HTS coils, numerous
circuit models were recently developed [76, 152, 158]. However, only a few include
the computation of the screening currents in the model [159,160]. In this work, a
nonlinear non-planar 3D circuit model, suited to analyze both radial and screen-
ing currents in NI coils, based in part on the concepts defined in [159, 160] and
developed in FORTRAN is presented. The code can thus compute the current
distribution in operating conditions of the coil and give an estimation of the AC
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losses.

4.1 Model parameters and solving methods

This first part of this section focuses on the definition of the key parameters
defining the geometry of the model and the three kinds of resistances employed
therein.

To better represent the phenomenology of the coil, a detailed representation of
the tape composing the coil is needed. The tape is subdivided not only across its
full length (so across the azimuthal direction of the coil) but also across its width,
into a series of sub-elements. This discretization is necessary to study the effect of
the magnetization currents, allowing a non-uniform current distribution inside the
individual tape. The parameters defining the model geometry are the number of
turns of the coil Nt, the number of layers Nl, the number of longitudinal divisions
of a turn Nd, and the already mentioned number of sub-elements Ns. The equiva-
lent circuit model of a layer-wound coil is presented in Fig.4.1.1 for the simple case
of a coil with two layers and two turns. Each turn in Fig 4.1.1 is divided into two
parts (Nd = 2) to permit a connection with the adjacent turns through contact
resistances. A contact resistance is placed at the end of each division. Although
the results proposed in this work are aimed at the study of layer wound NI-HTS
coils, the model developed can be applied to the study of tapes, stacks of tapes,
or pancake coils just by modifying the topology of the network. The circuit model
in Fig. 4.1.1 can also perfectly represent the geometry of a pancake coil, the only
differences would be in the calculation of the lumped parameters and thus the
geometry data input of the code.

The equivalent lumped parameters circuit depicted in Fig. 4.1.1, is obtained
with a two sub-elements division of the tape. The presence of two sub-elements
results in two identical planar circuit networks connected by the interelements
resistances Rinter. Each planar network (highlighted in blue and orange in Fig.
4.1.1) is representative of a sub-element. As the number of sub-elements increases,
new planar networks identical to the previous ones are included in the model, and
connected via the interelements resistances, the same way the orange circuit is
connected to the blue one. The first longitudinal elements of the first layer of
each sub-element grid are connected to the source. In this case, an ideal current
generator is selected. Alternatively, it is possible to use an ideal voltage generator.
The last longitudinal elements of the last layer of each sub-element network are
connected to the source so that each planar circuit is closed on it. The longitudi-
nal element is shown in detail in Fig. 4.1.2. The longitudinal inductances and the
mutual inductances between them are evaluated numerically from an integration
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Figure 4.1.1: Equivalent 3D circuit model for a layer wound coil with two turns
and two layers (Nt = Nl = 2). Each turn is split in half (Nd = 2) to accommodate
the connection between layers (Rcon). The tape is split in half along its width
(Ns = 2). Below the circuit network a sketch of the cross-section of the coil. In
blue the first sub-element, in orange the second one. Nbra is the total number of
circuit elements. The enumeration of the elements is the same as those of the
currents [21].
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Figure 4.1.2: Zsc is the series of the longitudinal resistance Rlong and the longi-
tudianl inductance Llong. Llong is an inductor mutually coupled with all the other
inductors in the network. This configuration is strictly viable when solving the
circuit with the loop current method.

of the scalar potential [145]. The equivalent circuit model defined this way is a
nonplanar, nonlinear electric network and can be conveniently solved by the loop
currents method. The state equation method was also considered, combined with
the nodal analysis. Both solving methods will be discussed later

The formulae for the longitudinal resistance (Rlong) and the interelements
(Rinter) resistance, defined by Ohm’s law and the power law (2.1.2), are reported in
(4.1.1) and (4.1.2). The interelements resistances allow the current redistribution
inside the tape by connecting the different subelements.

Rlong,i(J
∗
long,i) = ρsc(J

∗
long,i)

Llong

Along

(4.1.1)

Rinter,i(J
∗
inter,i) = ρsc(J

∗
inter,i)

Linter

Ainter

(4.1.2)

Llong = L/(NlNdNt), Linter = w/Ns

Along = wt/Ns, Ainter = tL/(NlNdNt)
(4.1.3)

It is defined with L the total length of the superconducting tape, w the width of
the tape, and t the thickness of the superconducting layer inside of the tape. Along

and Ainter are the cross sections over which the longitudinal and interelements
currents flow respectively. Ilong is the current flowing in the longitudinal direction,
along the resistance Rlong. Iinter is the current flowing between two sub-elements,
along the resistance Rinter. Both the current Iinter and Ilong are flowing in the AB
plane of the superconductor, meaning that for the definition of the longitudinal
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and interelements resistance (4.1.1) and (4.1.2), it is possible to use the formulae
for the resistivity of the superconductor (ρsc).

Rlong

il

Llong

Rinter

iint,1
Rinter

iint,2

Rinter

iint,3

Rinter

iint,4

Figure 4.1.3: Example of one of the possible connections of a longitudinal com-
ponent, used to determine the value of its current density from the currents in the
adjacent branches trough (4.1.4).

J∗
long,i =

√(
Ilong,i
Along

)2

+

(
∆Iinter,i
FAinter

)2

(4.1.4)

∆Iinter,i =
F∑

n=1

Iinter,n (4.1.5)

In the case shown in Fig. 4.1.3, the coefficient in (4.1.4) would become as
shown in (4.1.6).

Ilong,i = il, ∆Iinter,i =
4∑

k=1

iint,k, F = 4 (4.1.6)

Regarding (4.1.4), a brief explanation is necessary. When using a lumped
parameters circuit it is necessary to correctly define its parameters, such as the
longitudinal resistances via (4.1.1). The resistance is dependent on the modulus
of the current density J, defined in (4.1.7), where l̂ is the unit vector along the
longitudinal coordinate, and t̂ the unit vector along the transverse one.

J = Jl l̂ + Jintt̂ (4.1.7)
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However, in a lumped parameters model, sections of the coil are modeled
through a single circuit element (Rlong in the case under exam). This compo-
nent only represents the longitudinal component of the current density, through
the current carried (Ilong). The flow of the transversal component of J can be
represented through the interelements resistances Rinter. Therefore Jlong, the lon-
gitudinal component of J, is equal to Ilong/Along as if it were constant along the
longitudinal direction. Instead, the Jinter (transversal component of J) is obtained
as an average between the value at the start of Rlong and at its end, see (4.1.5).
F is the number of interelements resistances connected to the nodes of the ith lon-
gitudinal element (see Fig. 4.1.3). This value is not equal for all the longitudinal
circuit elements, it can assume a value of either 2 or 4.

In the author’s opinion, this is the best way to correctly represent the lon-
gitudinal and transverse current density in the spatial region represented by the
longitudinal component Rlong. Employing (4.1.4) is a necessary step to account
for the nonlinearity of the superconductor. The positive direction of the current
in all the interelements resistances shown in Fig. 4.1.3 is the same, this condition
remains true also when analyzing the real circuit in Fig. 4.1.1 (with the choice
of the positive direction of the currents adopted). This condition means that the
current density in the transversal direction can be obtained as a simple mean of
the current density in each zone represented by the interelements resistances (see
(4.1.5)) without any further consideration on the sign of the interelements currents.

J∗
inter,i =

√(
∆Ilong,i
SAlong

)2

+

(
Iinter,i
Ainter

)2

(4.1.8)

∆Ilong,i =
S∑

n=1

Ilong,n (4.1.9)

In the case shown in Fig. 4.1.4, the coefficient in (4.1.8) becomes as shown in
(4.1.10).

Iinter,i = ii, ∆Ilong,i =
4∑

k=1

ilong,k, S = 4 (4.1.10)

The same remarks made for (4.1.4) can also be applied to (4.1.8). In the case
of a transversal circuit element Rinter, the current density along the element is the
transversal component of J, while the longitudinal component is obtained as an
average between all the current densities of the longitudinal elements connected
to Rinter. As previously shown, even in this case the average between the current
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Rlong

ilong,1

Llong

Rinter

ii

Rlong

ilong,2

Llong

Rlong

ilong,3

Llong

Rlong

ilong,4

Llong

Figure 4.1.4: Example of one of the possible connections of an interelements
resistance, used to determine the value of its current density from the currents in
the adjacent branches trough (4.1.8).

densities in the longitudinal elements can be computed without any changes to the
sign of the currents. S is the number of longitudinal elements connected to the
nodes of the ith interelements resistance (see Fig. 4.1.4), as F is not constant for
all the interelements resistances and can assume a value of either 4 or 2.

The definitions of the longitudinal and interelement resistance given in (4.1.1)
and (4.1.2) do not take into consideration the transition of the superconductor
towards the normal state expressed in (2.1.3). Before proceeding with the descrip-
tion of the model a quick overview of the impact of this assumption is provided.
The superconducting state is in parallel with the normal one, this is expressed in
(4.1.11).

E = ρnJn = ρsc(Jsc)Jsc (4.1.11)

Where ρsc(Jsc) is the resistivity of the superconducting state, and Jsc is the
current density in the superconducting state see (4.1.12). The term ρn is the
resistivity of the normal state, and Jn is the current density in the normal state.
The total current density in the REBCO can therefore be expressed as in (4.1.13).
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ρsc =
Ec

Jc

(
Jsc
Jc

)n−1

(4.1.12)

J = Jsc + Jn (4.1.13)

Equation (4.1.11) can be written as:

E = Ec

(
Jsc
Jc

)n

= ρn(J − Jsc) ⇒
ρn
Ec

(J − Jsc)−
(
Jsc
Jc

)n

= 0 (4.1.14)

Knowing the total current density J , it is possible to obtain the superconduct-
ing current density Jsc, solving numerically (4.1.14). Thus, the resistivity of the
superconductor is obtained via (4.1.15).

ρ(J) =
ρnρsc(Jsc)

ρn + ρsc(Jsc)
(4.1.15)

If the Jsc is not evaluated solving (4.1.14), and instead the resistivity of the su-
perconductor is evaluated via (4.1.16) the error committed becomes non-negligible
only at high values of the critical current density see Figs. 4.1.5 and 4.1.6. The
parameters of the tape used to obtain Figs. 4.1.5 and 4.1.6 are shown in Table
4.1.1, and the value for ρn is taken from [161].

ρ(J) =
ρnρsc(Jsc)

ρn + ρsc(Jsc)
(4.1.16)

Table 4.1.1: HTS parameters

ρn 20 µΩm Ec 1 µV/cm
Jc 1010 A/m2 n 32

The difference between using (4.1.15) or just the power law as done here, is
shown in Fig. 4.1.7. The error becomes relevant only after the current density
becomes greater than 1.5Jc, a condition that never occurs in the case studies
presented in this thesis.

The contact resistance (Rcon) depends on the geometry of the coil, i.e. the
values of Nd and Ns and the value of the contact resistance between two turns
(Rc). Rcon is the turn-to-turn contact resistance between two turns of different
layers in the same sub-element.

93



Chapter 4

Figure 4.1.5: Percentage error of the value of the superconducting resistivity
between (4.1.15) and (4.1.16) in the low current density region.

Figure 4.1.6: Percentage error of the value of the superconducting resistivity
between (4.1.15) and (4.1.16) in the high current density region.
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Figure 4.1.7: Percentage error of the value of the superconducting resistivity
between (4.1.15) and (2.1.1).

Rcon = RcNdNs (4.1.17)

The total number of longitudinal elements is Nlong = (2−m)NlNtNsNd, where
m is a parameter that takes into account the resolution method used. If the system
is solved using the state equations method, the value of m is 0, while using the
loop currents method m is 1. The number of inductors is Nind = Nlong/(2 −m),
it coincides with the number of longitudinal branches if solving with the loop
current method. The matrix of the mutual inductances is a full one with dimension
[Nind, Nind], due to each inductor being coupled with all the others. The number
of contact resistances between different turns is Ncont = Ns(NtNd − 1)(Nl − 1),
while the number of superconducting interelements resistances is Ninter = (Ns −
1)(NlNtNd− 1). The total number of circuit components in the network is Nbra =
1 + Nlong + Ncont + Nintra, where the plus one is due to the source generator.
The number of nodes is defined as N = 2 + Ns(Nlong/((2 − m)Ns) − 1). In
our model the numeration of the circuit element is not casual, it is chosen to
allow one to identify the type of the branch (longitudinal, interelements, contact,
source). The first longitudinal element of the first layer of the first subelement is
the circuit element number one. After that, the numeration increases following
the longitudinal components of the subelement. In each subelement, there are
Nln = Nind/Ns longitudinal branches. After all the longitudinal elements of the
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first subelements are numbered the numeration restarts from the first transversal
element of the subelement, and there are Ntn = (NtNd − 1)(Nl − 1) transversal
elements per subelement. Then the interelements elements, if any, are numbered,
and in a subelement there are (Ns−1)(NlNtNd−1)/Ns. Once the first subelement
is fully numbered the numeration starts from the second one, following the same
principles, and so on. The last circuital element is always the source generator,
which is connected between node 1 and the last node of the circuit N. The N th

node is taken as the reference node for the state equation method.

4.1.1 State equations method

The state equation method [162–164], also known as the state space approach,
is a fundamental technique for analyzing and simulating electrical circuits. Un-
like traditional circuit analysis methods that focus on Kirchhoff’s laws, the state
equation method adopts a more abstract and mathematical approach, transform-
ing the circuit into a dynamic system with a set of state variables and equations.
The state variables represent the essential characteristics of the circuit that change
over time, such as the voltage in the capacitors or the currents in the inductors.
The state equations, on the other hand, describe the relationships between these
state variables and the external inputs to the circuit. These equations are typically
linear differential equations, which govern the circuit’s dynamic behavior.

In the case under analysis, the state variables are the currents flowing in the
inductors, and the differential system that needs to be solved is the one in (4.1.18).

[M ]
d

dt
Iind = V(Iind) (4.1.18)

The matrix [M] is the matrix of the mutual inductances, Iind is the vector of
the state variables, while V(Iind) is the vector of the voltages of the inductors. To
be a system of state equations, V(Iind) has to be expressed as a function of the
state variables. To do so, the nodal analysis [164,165] is applied, a brief description
is reported here.

The nodal analysis is a solution procedure used for bipolar circuits to determine
all the node potentials of the circuit and from these the values of the branch cur-
rents and voltages. The main advantage of the nodal analysis is that for a network
with n nodes and l branches, it requires the solution of only n-1 equations, with
a reduction in the number of equations compared to the n-1 nodal equations and
l-n+1 loop equations obtained by directly applying all the linearly independent
Kirchhoff laws. The n-1 equations solved in the method are the Kirchhoff laws for
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the currents in all the nodes except the one chosen as a reference.

The procedure for applying the nodal analysis is as follows:

1. Choose a node of the network as a reference node. The potential in that
node is considered known and is commonly set to zero.

2. Assign an orientation to the branches of the circuit under consideration to
define whether the currents enter or exit the corresponding nodes.

3. Apply Kirchhoff’s current law to the nodes other than the reference node.

4. Use the constitutive laws of the bipolars in each branch to express the branch
currents in terms of the node potentials.

5. Solve the system obtained, calculating the voltages at the unknown nodes.

The system of solution equations obtained using the described procedure ap-
pears in the following form:

[G]V = H (4.1.19)

Where [G] is the conductance matrix defined in (4.1.20) and (4.1.21), V is the
vector of the nodal potential, while H is the vector of the known term dependent
on the source see (4.1.22).

[G] =


g1,1 g1,2 . . . g1,n−1

g2,1 g2,2
...

... . . . ...
gn−1,1 . . . . . . gn−1,n−1

 (4.1.20)

gi,i =
∑

gi , gi,j = −
∑
i ̸=j

gi,j (4.1.21)

The elements on the diagonal of [G] are the sums of the conductances connected
to the nodes for which the equation is written (gi, generic conductance connected
to node i), while the elements off the diagonal are the sum of the conductances
between that node and all the others (gi,j conductance between nodes i and j).

V =


V1

V2
...

Vn−1

 , H =


h1

h2
...

hn−1

 hi =
∑

αIi (4.1.22)
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The elements of the known term H, hi, are the sum of the currents of the cur-
rent generators connected to the node ith, which are the currents in the inductors.
In the application of the nodal analysis, inductors are considered as current gener-
ators. Their impressed current values are the currents of the inductors themselves,
which have to be known. The currents are considered negative if they exit the
node or positive if they enter it; the direction of the currents is taken into account
by the coefficient α. The node potentials are then obtained as in (4.1.23):

V = [G]−1H(Iind) (4.1.23)

It is now possible to describe how the solving method was implemented and
the main issues encountered in its application.

Assuming t0 as the start time of the simulation and tf as the end time, the
chosen solver (Runge Kutta 4-5 [166], implicit Euler [167], etc.) solves the ordinary
differential equations (ODE) with a time step ∆t. The time integration step is
not necessarily constant and is actively adapted by the routine implemented. At
each t (time instant requested by the solver within the ∆t) the circuit is solved
through the nodal analysis to obtain the voltages in the inductors, which are the
known terms of the system of state equations. To apply the nodal analysis, it is
necessary to know the values of the resistors in the circuit network. Some of the
resistances in the circuit are nonlinear functions of the current. It is assumed that
the values of the interelements resistors are constant over time intervals that are
longer than the integration time step. The choice to keep the resistances constant
over the integration interval is dictated by the need to reduce calculation times.

This assumption in turn determines a first problem with this solution method:
the integration step ∆t must be sufficiently small to consider the approximation
valid. It should be taken into account that the nonlinear resistance depends on
the current, which varies during the time interval ∆t. The assumption of constant
resistance is therefore valid only if the current variations are small during the
interval ∆t.

A second issue is represented by the presence of inductor cut sets; the studied
network is therefore degenerate and cannot be solved. To overcome this problem,
it is necessary to add a fictitious resistance Rp in parallel to the series longitudinal
inductor and resistance. This results in changing the circuit configuration from
that shown in Fig. 4.1.2 to that shown in Fig. 4.1.8. The inclusion of this fictitious
resistance makes the circuit less representative of the physical reality and its value
(which should tend to infinity for an ideal representation) has a direct impact
on the time constant of the circuit and on the calculation time required for its
solution. Simulations show that increasing the value of Rp increases the solution
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time of the circuit. If Rp is sufficiently large, it is possible to reach convergence to
a correct value of the solution.

Figure 4.1.8: Longitudinal component configuration of the circuit model devel-
oped, used when solving with the state variable method coupled with the nodal anal-
ysis to prevent cut sets of inductor.

4.1.2 Loop currents method

To address the limitations of the state equation method when combined with
nodal analysis, an alternative solver was developed based on the current loop
method [164, 168]. In this section, a brief explanation of the method itself will be
presented, followed by a detailed discussion on how to implement it in the pre-
sented case.

To understand the loop currents method, it is necessary to introduce the defi-
nition of tree and cotree [164]. In graph theory, a tree is a set of branches of the
graph that connect all the nodes of the circuit without forming any closed path.
The cotree is the set of branches of the graph that do not belong to the tree. It is
important to note that the tree and the cotree are not uniquely defined.

The loop currents method is a solution procedure for two-terminal circuits
that is suitable for determining all the currents in the cotree branches of the cir-
cuit network. It can be shown that all the currents in the circuit elements are a
linear combination of the cotree currents. The main advantage of the loop currents
method is that for a network with n nodes and l branches, it requires the solution
of only l-n+1 equations, as opposed to the n-1 nodal equations and the l-n+1 loop
equations obtained by directly applying the linearly independent Kirchhoff’s laws.
The l-n+1 equations considered are Kirchhoff’s voltage laws in all the fundamen-
tal loops. A fundamental loop is a loop of the circuit containing a single cotree
branch, while all the other branches of the loop belong to the tree.
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The resolving procedure for the loop currents methods is as follows:

1. Choose a tree of the circuit.

2. Identify the fundamental loops.

3. Assign an orientation to the branches of the circuit under consideration and
to the currents of the fundamental loops.

4. Use the constitutive laws of the two-terminal elements in each branch to
express the branch voltages in terms of the cotree currents.

5. Write the Kirchhoff’s voltage law (KVL) for all the fundamental loops.

6. Solve the resulting system, calculating the cotree currents.

The first step is to identify a tree for the circuit. The structure of the circuital
model allows for a straightforward identification of the tree. The longitudinal cir-
cuit elements of the first subelement are all part of the tree. All the longitudinal
circuit elements (except for the last one in each subelement) of the subsequent
subelements are also part of the tree. The source generator is always treated as
the last cotree branch. The remaining branches are therefore part of the cotree,
which includes all the interelements resistances and all the contact resistances.
Looking at the circuit in Fig. 4.1.1, the tree is composed of the circuit elements
numbered from 1 to 8 (longitudinal components of the first subelement) and those
numbered from 12 to 18. These considerations are implemented in the code devel-
oped so that nearly no computational time is spent searching for a tree.

In the absence of current generators in the circuit, the resulting system is as
follows:

[R]I = V (4.1.24)

In our model, the source can either be a current generator or a voltage genera-
tor. When using the current generator, the loop current method is still applicable,
and the number of equations drops by one. It is not necessary to write an equation
for the current source because that current is already known. Therefore, (4.1.24)
is always valid.

[R] is the matrix of resistances, defined in (4.1.25) and (4.1.26).

[R] =


r1,1 r1,2 . . . r1,l−n+1

r2,1 r2,2
...

... . . . ...
rl−n+1,1 . . . . . . rl−n+1,l−n+1

 (4.1.25)
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ri,i =
∑

ri , ri,j = −
∑
i ̸=j

ri,j (4.1.26)

The elements on the diagonal of [R] are the sum of the resistances of the loop
to which the equation corresponds; the elements off the diagonal are the sum of
the resistances in common between the loop under consideration and the adjacent
loops (ri,j is the resistance in common between loops i and j) taken with a positive
or negative sign depending on whether the resistances in common are crossed in the
same direction or opposite direction by the two loop currents. The unknowns of
the problem (the cotree currents), compose the vector I see (4.1.27). The elements
of the known term V represent the sum of the voltages of the voltage generators
in the loop under consideration, see (4.1.28). The coefficient α takes into account
the orientation of the loop.

I =


I1
I2
...

Il−n+1

 (4.1.27)

V =


v1
v2
...

vl−n+1

 vi =
∑

αVi (4.1.28)

It is now described how to write the equations with the loop current method for
the circuit model developed in this work. To obtain a more compact and precise
mathematical formulation, let us consider the case where the numeration of the
branches is so that the first l-n+1 branches belong to the cotree, and so the first
l-n+1 currents of the current vector are the cotree currents. The writing of the
generic kth equation of the system assumes that the kth loop is composed of the
kth cotree branch and rk tree branches. The kth equation for the generic loop is
shown in Fig. 4.1.9 is therefore:

vk +

rk∑
m=1

αk,mvk,m = 0 (4.1.29)

Where rk is the number of tree branches in the kth loop, ak,m is the coefficient
that takes into account the positive direction chosen for the loop current. As shown
in Fig. 4.1.9, the positive direction of the loop current is chosen in accordance with
the positive direction of the current in the cotree branch that identify the loop.
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k
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Figure 4.1.9: Generic representation of the Kth fundamental loop. The compo-
nent labeled as "k" is the cotree branch, while the other are the tree branches. The
positive direction of the loop current is shown via the curved arrow line.

The function s is defined as the loop index function, s(k,m) is the index of
the mth tree branch in the kth fundamental loop. For example if s(k,m) = 10, it
means that the mth tree branch in the kth fundamental loop is the tenth element
of the circuit. Equation (4.1.29), always holds, but the expression for the volt-
age changes depending on whether the component is an inductor, a resistor, or, as
it is in the present model, a series of both. The possible cases will now be examined.

If the tree branch of index s(k,m) is an inductor, then the constitutive rela-
tionship of the branch is as follows:

vk,m =

Nlong∑
w=1

Ms(k,m),a(w)

dia(w)

dt
(4.1.30)

where Nlong is the number of longitudinal components in the circuit, which in
this case coincides with the number of inductors. The function a(w) is another
index function; it returns the index of the wth inductor. Using another example
for the sake of clarity, having a(w) = 10 means that the wth inductor corresponds
to the tenth component (circuit element) of the circuit. The coefficients M are the
self and mutual inductances.

ia(w) =
l−n+1∑
h=1

ca(w),hih (4.1.31)

Equation (4.1.31) shows how each current in the circuit can be obtained as a
combination of the l-n+1 fundamental loop currents. The currents in the funda-
mental loops coincide with the cotree currents. The term ca(w),h is a coefficient
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that can only take the values 0 or 1. Introducing (4.1.31) into (4.1.30) yields:

vk,m =

Nlong∑
w=1

Ms(k,m),a(w)

l−n+1∑
h=1

ca(w),h
dih
dt

=
l−n+1∑
h=1

Nlong∑
w=1

Ms(k,m),a(w)ca(w),h

 dih
dt

=
l−n+1∑
h=1

M∗
k,m,h

dih
dt

(4.1.32)

Equation (4.1.32) represents the relationship between the voltage across each
inductor and the derivatives of the currents in it and all the other inductors in the
circuit.

Instead, if the s(k,m)th circuit element is a pure resistor, the constitutive re-
lation of the branch changes from (4.1.30) to (4.1.33).

vk,m = Rs(k,m)(J
∗
s(k,m))is(k,m) = Rs(k,m)(J

∗
s(k,m))

l−n+1∑
h=1

cs(k,m),hih (4.1.33)

The same notation used for (4.1.1) and (4.1.2) is used in (4.1.33), denoting that
the resistance of the Kth branch (which is a tree branch and therefore a super-
conducting longitudinal resistance), is dependent on the modulus of the current
density. The modulus of the current density is in turn dependent not only on the
current in the Kth branch, as stated by (4.1.4) and (4.1.8).

In the circuit model the tree branches, which as previously stated correspond
to the longitudinal circuit elements, are composed only of R-L series components
(see Fig. 4.1.2) and never by a single inductor (which is not present at all) or by a
single resistor. Therefore, the expression for the voltage of a generic tree branch,
vk,m, is as in (4.1.34).

vk,m = Rs(k,m)(J
∗
s(k,m))

l−n+1∑
h=1

cs(k,m),hih +
l−n+1∑
h=1

M∗
k,m,h

dih
dt

(4.1.34)

Having defined a formulation for the tree branches, the same will be proposed
for the cotree branches. A cotree branch can be either a pure resistor or an R-L
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series.

If the kth cotree branch is a pure resistor its voltage vk can be expressed as:

vk = Rk(J
∗
k )ik = Rk((J

∗
k )

l−n+1∑
h=1

ck,hih (4.1.35)

Therefore the kth resolving equation is written as:

l−n+1∑
h=1

[∑
m

αk,mM
∗
k,m,h

]
dih
dt

+
l−n+1∑
h=1

[
Rk(J

∗
k )ck,h +

∑
m

αk,mRs(k,m)(J
∗
s(k,m))

]
ih = 0

(4.1.36)
The expressions in (4.1.35) and so in (4.1.36) hold when the kth cotree branch

is a superconducting resistor, so the interelements resistances. In case the cotree
branch is a contact resistance, the only difference would be that Rk is not a func-
tion of the current density.

If the kth cotree branch is an R-L series, its voltage vk can be expressed as
follows:

vk = Rk(J
∗
k )ik +

Nlong∑
w=1

Ma(k),a(w)

dia(k)
dt

= Rk(J
∗
k )

l−n+1∑
h=1

ck,hih +

Nlong∑
w=1

Ma(k),a(w)

l−n+1∑
h=1

ca(w),h
dih
dt

= Rk(J
∗
k )

l−n+1∑
h=1

ck,hih +
l−n+1∑
h=1

Nlong∑
w=1

Ma(k),a(w)ca(w),h

 dih
dt

= Rk(J
∗
k )

l−n+1∑
h=1

ck,hih +
l−n+1∑
h=1

M∗
k,h

dih
dt

(4.1.37)

The kth solving equation is then written as:

l−n+1∑
h=1

[
M∗

k,h +
∑
m

αk,mM
∗
k,m,h

]
dih
dt

+

l−n+1∑
h=1

[
Rk(J

∗
k )ck,h +

∑
m

αk,mRk(J
∗
k )(is(k,m))

]
ih = 0

(4.1.38)
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The resulting system that needs to be solved can be expressed in matrix form
as:

[M̄ ]
dI

dt
+ [R(I)]I = 0 (4.1.39)

The matrix [M̄ ] is the matrix of the coefficients and is a combination of the
matrix of the mutual inductances. I is the vector of the cotree currents, and [R(I)]
is a nonlinear matrix dependent on the resistances of the circuit.

A simple example is now proposed for the application of the loop current
method. The equivalent circuit of a three-turn, two-layer coil is shown in Fig.
4.1.10. For simplicity, each turn is considered as a whole tape: Nd = Ns = 1,
Nt = 3, and Nl = 2. The nodes of the circuit are shown in blue, while the circuit
element number is shown in red. The positive direction of the currents in each
element is shown in Fig. 4.1.10. The tree and cotree of the circuit are highlighted
in Fig. 4.1.11.

Zsc1

i1
2

Zsc2

i2
3

Zsc3

i3

4

Zsc 4

i4
5

Zsc 5

i5
6

Zsc 6

i6
7

Iop

9

1

Rcon

7 i7

Rcon

8 i8

Figure 4.1.10: Equivalent circuit of a two-layer, three-turns, layer wound coil.
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Figure 4.1.11: Highlighted in red are the tree branches, while in green are the
cotree branches.

The cotree branches are the circuit elements numbered 7, 8, and 9. There
are only three cotree branches, one of which is the current source. This means
that there are only two unknowns in the problem. I, the vector of the cotree
currents, is defined in (4.1.40), while Ilong the vector of the tree currents is defined
in (4.1.41). The fundamental loop associated with circuit element 7 (first cotree
branch) is composed of the following elements: 7-2-3-4-5. The fundamental loop
corresponding to the second cotree branch is constituted by the following sequences
of branches: 7-2-3-4-5. The resolving equations for the fundamental loops are
reported in (4.1.42) and (4.1.43).

I =


i7
i8
i9

 (4.1.40)

Ilong =



i1
i2
i3
i4
i5
i6


(4.1.41)
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Rconi7 =Rlong(J
∗
2 )i2 +

6∑
i=1

M2,i
dii
dt

+Rlong(J
∗
3 )i3 +

6∑
i=1

M3,i
dii
dt

+

Rlong(J
∗
4 )i4 +

6∑
i=1

M4,i
dii
dt

+Rlong(J
∗
5 )i5 +

6∑
i=1

M5,i
dii
dt

(4.1.42)

Rconi8 = Rlong(J
∗
3 )i3 +

6∑
i=1

M3,i
dii
dt

+Rlong(J
∗
4 )i4 +

6∑
i=1

M4,i
dii
dt

(4.1.43)

All the tree currents are now expressed as a function of the cotree ones:

Ilong(i) =
3∑

j=1

ci,jI(j) ⇒ Ilong = [C]I (4.1.44)

[C] =


0 0 1

−1 0 1
−1 −1 1
−1 −1 1
−1 0 1
0 0 1

 (4.1.45)

4.1.3 Final considerations on the solving methods

Of the two circuit analysis methods discussed in the previous sections, the loop
currents method appears to be the most suited for this circuit and has thus been
selected for this study. This is primarily attributable to the employed circuit’s re-
semblance to the actual device being investigated and its reduced number of circuit
elements compared to the one needed for the state equation method. However, the
formulation still may encounter difficulties in particular cases, as demonstrated in
the following example.

Considering the circuit sketched in Fig. 4.1.12, the cotree is composed of the
resistors Ra, Rb, Rc, and the current generator. It is possible to express the currents
of the tree branches as a combination of the currents ia, ib, ic and Iop:

i1 = ic − ia

i2 = ia − ib

i3 = ib − ic + Iop

(4.1.46)
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The resolving system can then be written as follows:


(L1 + L2)

dia
dt

− L2
dib
dt

− L1
dic
dt

= R1(ic − ia)−R2(ia − ib)−Raia

−L2
dia
dt

+ (L2 + L3)
dib
dt

− L3
dic
dt

= R2(ia − ib)−R3(ib + Iop − ic)−Rbib − L3
dIop
dt

−L1
dia
dt

− L3
dib
dt

+ (L1 + L3)
dic
dt

= −R1(ic − ia) +R3(ib + Iop − ic)−Rcic + L3dIop
dt

(4.1.47)
As done for the previous example and stated in the method description, the

equation of the fundamental loop belonging to the source generator is omitted as
that loop current is known and is equal to Iop. The system of equations in (4.1.47)
can be written in matrix form as:

[M̄ ]
d

dt
I = K (4.1.48)

where

M̄ =

(L1 + L2) −L2 −L1

−L2 (L2 + L3) −L3

−L1 −L3 (L1 + L3)

 (4.1.49)

R2

i2

L2R
1

i1

L
1

Ra
ia Rb

ib

R
3

i3

L 3

Rc
ic

Iop(t)

Figure 4.1.12: Generic circuit, comprising all the main elements of the circuit
model previously described.
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I =


ia
ib
ic

 (4.1.50)

K =

−(R1 +R2 +Ra) R2 R1

R2 −(R2 +R3 +Rb) −R3

R1 R3 −(R1 +R3 +Rc)


ia
ib
ic


+


0

−L3
dIop
dt

L3
dIop
dt


(4.1.51)

The matrix [M̄ ] multiplying the time derivative of the cotree currents is the
matrix of coefficients, but in this case, it is a singular matrix with a null determi-
nant. Summing all the equations of the system gives an algebraic equation linking
the three cotree currents:

Raia +Rbib +Rcic = 0 (4.1.52)

The purpose of this simplified example is to demonstrate that: whenever a loop
of cotree branches is formed in a circuit with time-dependent elements (inductor
or capacitor), and the circuital elements within the loop are purely algebraic, the
system of differential equations written through the loop current method cannot
be solved using any ordinary differential equation (ODE) solver.

In our circuit model, an algebraic loop of cotree branches is formed for each
configuration of the coil that verifies the condition in (4.1.53).

Ns > 1 & Nl > 1 & (Nt||Nd) > 1 (4.1.53)

To overcome this issue several different approaches are available. The first
solution is to change the solver of the differential equation. The problem is no
longer a system of ODE, but a system of algebraic-differential equations that needs
to be solved through a DAE solver [169].

The second option is to include all the inductances linked to the contact resis-
tance in the model so that no algebraic loops can be formed. This would increase
the dimension of the matrix of mutual inductances [M ] (which is full), increasing
the computation burden.

A third possibility is to try to find a different tree of the circuit that could
exclude the possible formation of cotree algebraic loops.

The last option is to introduce a small enough quantity, (ϵ), on the diagonal of
the coefficient matrix obtained from the original circuit. This last option is akin to
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introducing an uncoupled inductance in all the cotree branches. This latter option
is the solution that was implemented.

4.2 Circuit model applied to straight tapes

The first application of the circuit model is the study of the AC losses due to
the transport current in straight tapes. This analysis is necessary to understand
if the discretization of the tape proposed is able to represent the characteristic
behavior of the current inside the tape (screening currents). The results obtained
from the equivalent circuit model were compared with those of a 2D finite element
method (FEM) model (using the A-V formulation 2.3.4), developed in [170] and
already validated with experimental data and the Norris’ formula (2.2.1).

The tape geometry can be obtained by setting Nl = 1 and Nt = 1, and setting
the routine for the evaluation of the mutual inductance matrix to work on 3D
parallelepipeds instead of arches with rectangular sections used for the analysis
of coils with curved tapes. The longitudinal subdivision of the tape is Nd, and
the number of subdivisions across its width is indicated by Ns. The graphical
representation of the tape subdivision is presented in Fig. 4.2.1, while in Fig. 4.2.2
the subelements are highlighted on the tape geometry.

4.2.1 Convergence study and experimental validation

The first simulations performed consisted of the evaluation of losses due to a
sinusoidal transport current with frequency f and a ratio between the peak current
and the critical current set to 0.7. The other relevant data are reported in Table
4.2.1. A convergence study was performed to determine the minimum number of
circuit elements required for numerical convergence, namely the values of Nd and
Ns. The results of the convergence study are shown in Fig. 4.2.3 and Fig. 4.2.4.

Table 4.2.1: Simulation Parameters 4 mm YBCO tape

Tape Length (L) 0.3 m Jc 1010 A/m2

Thickness sc. layer (t) 1.5 µm Tape width (w) 4 mm
frequency 50 Hz Ic 60 A
n-index 43 Peak current (Im) 42 A

Ec 100 µV/m Simulation time 0.04 s
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These results indicate that at least 50 sub-elements across the tape width are
needed to correctly represent the screening currents inside a 4 mm tape ( see Fig.
4.2.3). Once the right amount of sub-elements Ns needed for a good representation
of the screening currents is reached, the impact of the longitudinal discretization
Nd is almost negligible Fig. 4.2.4. The average relative difference between the re-
sults obtained via the detailed circuit model and the Norris formula is 5.5%, while
for the 2D FEM model, it is only 1.3%. The results obtained with the equivalent
circuit model are in good agreement with both benchmarks. In the simulations
presented here, only the superconducting layer of the tape is modeled with the
circuit model. The instantaneous power losses are shown in Fig. 4.2.5. Their be-
havior in time is coherent with what is expected. The losses are lower during the
first magnetization (first peak of the sinusoidal transport current). After that, the
losses stabilize to a periodic behavior. The losses are obtained using Ohm’s law on
each resistive circuit element. Only the second cycle was used in the determination
of the AC losses to avoid the influence of the first magnetization and be coherent
with the Norris formula.

Fig. 4.2.6 represents the spatial current distribution along the width of the tape
as a function of time. Fig. 4.2.6 shows the current over time of selected circuit
elements belonging to the first longitudinal element. It is worth noting that the
current in the tape is symmetrically distributed across its width: the current in
the first subelement (Ns = 1) is the same as the last one (NS = 100) and the same
is true for all the other subelements. The current is lower in the center of the
tape (subelements number 49 and 51) due to the shielding of the external parts
of the tape (subelements numberer 1 and 100). The current increases toward the
extremities of the tape. It is higher, and even distorted due to nonlinear effects,
at the edges of the tape. This behavior is also in accordance with the theoretical
predictions. The computation times for all the simulations performed for the cir-
cuit model of the 4 mm YBCO straight tape are shown in table 4.2.2. In the table
the effecting time to solve the circuit after calculating the matrix of the mutual
inductances is indicated as "Solving time". The time for the computation of the
matrix of the mutual inductances is indicated as "Time inductance matrix". For
comparison, the 2D FEM model requires 66 s to reach a solution. All the simu-
lations were performed on a 4-core, 3.60 GHz Intel(R) Core(TM) i7-7700 processor.

The ODE system was solved by the TRX2 method [171], with the Newton-
Rhapson’s technique adopted to solve the nonlinear equation at each step of the
ODE [172]. An analytic Jacobian matrix is used for this purpose. To ensure the
correctness of the results, the ODE system was also solved by the Cash-Karp Em-
bedded Runge-Kutta of 5th order method [166]. Both methods yield the same
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Table 4.2.2: Computation time comparison

Nd Ns Time inductance matrix [s] Solving time [s]
5 5 0.234 0.810
5 10 0.641 0.515
5 20 1.624 1.157
5 30 3.124 1.900
5 40 4.906 2.703
5 50 7.234 3.454
5 60 9.75 5.063
5 70 12.81 6.733
5 80 16.53 8.073
5 90 20.06 11.34
5 100 24.31 14.25
2 60 3.220 1.530
10 60 5.374 14.17
15 60 41.10 27.90
20 60 63.64 48.09

results. The analytical Jacobian calculation method is now presented. The defini-
tion of the Jacobian matrix for a generic system f dependent on the variables x is
in the following:

[J ] =


∂f1
∂x1

∂f2
∂x1

. . . ∂fn
∂x1

∂f1
∂x2

∂f2
∂x2

...
... . . . ...

∂f1
∂xn

. . . . . . ∂fn
∂xn

⇒ Ji,j =
∂fi
∂xj

(4.2.1)

In the presented case, when solving with the loop currents method, the system
takes the form reported in (4.1.39) and (4.1.48). This means that the function f
can be written as:

f = −[R]I, I =


i1
...
in

 (4.2.2)

I is the vector of the cotree currents, while [R] is the matrix of resistances (see
example in (4.1.51)). Recalling the definition given in (4.1.2) we can write:
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fi = −
ri∑

k=1

Rs(i,k)

(
n∑

j=1

Cs(i,k),jij

)
(4.2.3)

Which yelds:

Ji,m = −
ri∑

k=1

[
∂Rs(i,k)

∂im

(
n∑

j=1

Cs(i,k),jij

)
+Rs(i,k)

(
n∑

j=1

Cs(i,k),j
∂ij
∂im

)]
(4.2.4)

∂ij
∂im

=

{
0 if j ̸= m

1 if j = m
(4.2.5)

∂Rs(i, k)

∂im
=


0 if Rs(i, k) is a contact resistance
A1 if Rs(i, k) is a longitudinal resistance
A2 if Rs(i, k) is an interelements resistance

(4.2.6)

If the resistance of the kth branch of the ith fundamental loop Rs(i, k) is a
longitudinal resistance, we need to address the dependence of that resistance on
the interelements resistances connected to the kth branch of the ith fundamental
loop. Using the definition of the longitudinal resistance 4.1.1, the power law (2.1.1)
and (4.1.4) we can write:

A1 =
∂Rlong,i

∂im
(4.2.7)

Rlong,i =
Ec

Jc

(
J∗
long,i

Jc

)(n−1)
Llong

Along

(4.2.8)
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∂Rlong,i

∂im
=

Ec

Jc

Llong

Along

(n− 1)

(
J∗
long,i

Jc

)(n−2)
1

Jc

∂J∗
long,i

∂im

=
Ec

Jc

Llong

Along

(n− 1)

(
J∗
long,i

Jc

)(n−2)
1

Jc

(Ilong,i
Along

)2

+

(∑F
i=1 Iinter,i
Ainter

)2
− 1

2

(
1

A2
long

∂Ilong,i
∂im

+
1

(FAinter)2

F∑
i=1

∂Iinter,i
∂im

)

=
Ec

Jc

Llong

Along

(n− 1)

(
J∗
long,i

Jc

)(n−3)
1

J2
c

(
1

A2
long

∂Ilong,i
∂im

+
1

(FAinter)2

F∑
i=1

∂Iinter,i
∂im

)

= Klong

(
J∗
long,i

Jc

)(n−3)
1

J2
c

(
1

A2
long

∂Ilong,i
∂im

+
1

(FAinter)2

F∑
i=1

∂Iinter,i
∂im

)

= Flong,i

(
1

A2
long

∂Ilong,i
∂im

+
1

(FAinter)2

F∑
i=1

∂Iinter,i
∂im

)
(4.2.9)

Where Klong is a constant in common to all the longitudinal resistances, and
Flong,i is a function of (J∗

long,i). The same treatment of (4.2.9) can be applied to
the interelements resistances, which yields:

A2 =
∂Rinter,i

∂im
= Finter,i

(
1

A2
inter

∂Iinter,i
∂im

+
1

(SAlong)2

S∑
i=1

∂Ilong,i
∂im

)
(4.2.10)

Finter,i =
Ec

Jc

Linter

Ainter

(n− 1)

(
J∗
inter,i

Jc

)(n−3)
1

J2
c

(4.2.11)

All the Iint,i are cotree currents, so that (4.2.5) can be applied. The Ilong,i
can either be cotree or tree currents if the latter they have to be expressed as a
combination of cotree current and then employ (4.2.5).

The results obtained from the code are also compared to the experimental data
presented in [170]. The tape and transport current data are in Table 4.2.3. To
assess the losses in the low transport current regime Im < 0.2Ic the number of
subelements needs to be increased. The comparison of the losses is presented in
Figs. 4.2.7 and 4.2.8. The percentage error between the circuit model results and
the experimental data is shown in Fig. 4.2.9.
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Figure 4.2.1: Visual representation of the discretization of the superconducting
layer of the tape with Ns = 5, Nd = 10. Each element in figure, is represented by
a circuit element as the one in Fig. 4.1.2

Figure 4.2.2: Sketch of a tape divided into subelements. In the figure the subele-
ments number 1 and Ns are indicated.
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Figure 4.2.3: Dependence of the AC losses of the tape on the number of sub-
elements (Ns), with a fixed number of longitudinal elements (Nd = 5). The dotted
lines represent respectively the results obtained with the Norris formula and the 2D
FEM model.

Figure 4.2.4: Dependence of the AC losses of the tape on the number of longi-
tudinal elements (Nd), with a fixed number of subelements (Ns = 60). The dotted
lines represent respectively the results obtained with the Norris formula and the 2D
FEM model.
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Figure 4.2.5: Instantaneous power losses of an individual YBCO tape subjected
to a sinusoidal transport current. The discretization of the tape employed is with
Ns = 100, Nd = 5, and Nt = Nl = 1. Increasing the number of sub-elements
allows one to smooth the curve.

Figure 4.2.6: Currents in various sub-elements of the first longitudinal element
of the tape. The superposition of the curves shows symmetry in the current dis-
tribution. The Current in the sub-elements on the edges of the tape is higher than
the one in the middle. Simulation performed with Nd = 5 and Ns = 100.
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Table 4.2.3: Tape and current parameters of experimental results

Tape Length (L) 0.1 m Jc 4.034× 1010 A/m2

Thickness sc. layer (t) 1.5 µm Tape width (w) 4 mm
frequency 50 Hz Ic 242 A
n-index 43 Peak current (Im) 23 - 208 A

Figure 4.2.7: Comparison of the AC losses, as the average power dissipated in a
cycle, between experimental data and the circuit model.

118



Chapter 4

Figure 4.2.8: Comparison of the AC losses, as the average power dissipated in a
cycle, between experimental data and the circuit model.

Figure 4.2.9: Percentage error between the experimental data and the circuit
model results. In the region where the peak current is below 0.2Ic the number of
subelements is increased to correctly evaluate the losses.
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4.2.2 Frequency investigation of losses

The circuit model was also applied to simulate the AC losses in a 12 mm Su-
perpower YBCO tape, whose main data are reported in Table 4.2.4, at different
frequencies and amplitudes of the sinusoidal transport current. The AC losses of
this tape were measured in the laboratories of RSE spa and are compared to the
results of the model developed. As for the previous case study, two periods were
evaluated. For starter, the results of the circuit model are compared with the Nor-
ris formula, and shown in Fig. 4.2.10. A good agreement between the analytical
and numerical results is found even in these operating conditions. To reach con-
vergence with this wider tape, the number of sub-elements used was accordingly
scaled. This means that at least 150 subelements have to be introduced in the
discretization to correctly simulate the effect of the screening currents. In these
simulations the number of subelements was set to 180. In Fig. 4.2.11 the AC losses
are presented in a linear scale to better emphasize the differences, as can be seen,
the circuit model perfectly reproduces the results of the FEM model.

Table 4.2.4: Parameters Superpower Tape

L 0.17 m Jc 2.75 ×1010 A/m2

t 1.5 µm w 12 mm
Ec 100 µV/m n-index 32

The differences between the analytical formula and the circuit model change
depending on both the frequency and the transport current, but stay in good
agreement as shown in table 4.2.5. A very good agreement is found between the
FEM model and the circuit model as shown in table 4.2.6. Also, in this case, the
circuit model results faster than the FEM model. The circuit model requires a
total computation time of 68 s for the evaluation of the AC losses in the case of
Im/Ic = 0.7 at 50 Hz, (where Im is the amplitude of the transport current), while
the FEM model requires a total of 1231 s.

The comparisons between the experimental results for AC losses and the nu-
merical results predicted by the circuit model are shown in Fig. 4.2.12. The error
between the two sets of results is reported in Fig. 4.2.13. There is a good agreement
between the two data sets, the relative error decreases as the transport current ap-
proaches the critical current.

120



Chapter 4

Figure 4.2.10: AC losses (in terms of average power dissipated in a cycle) as a
function of both transport current and frequency. Results from a simulation with
Nd = 5 and Ns = 180, the number of sub-elements is increased due to convergence
requirements.

Figure 4.2.11: Comparison of the AC losses at 50 Hz, between the three formu-
lations employed.
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Table 4.2.5: Percentage difference circuit model vs analytical formula

Im/Ic

Frequency 25 Hz 50 Hz 100 Hz

0.2 -11.4% -4.9% 1.8%
0.25 -7.8% -2.2% 2.9%
0.4 -9.8% 3.43% 7.7%
0.5 2.36% 6.8% 10.9%
0.6 8.6% 13.2% 17.6%
0.7 10.4% 15.1% 19.5%
0.8 12.5% 17.3% 21.7%
0.9 18.2% 23.3% 27.9%

Table 4.2.6: Percentage difference circuit model vs FEM at 50 Hz

Im/Ic difference [%]
0.2 -10.4
0.25 -4.9
0.4 3.1
0.5 1.6
0.6 2.6
0.7 2.6
0.8 2.7
0.9 2.6
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Figure 4.2.12: Comparison of the AC losses, at several frequencies Hz, derived
from the circuit model and the experimental measures.

Figure 4.2.13: Relative percentage error between the circuit model and the
experimental data presented in Fig. 4.2.12.
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4.3 Circuit model applied to coils

After demonstrating the validity of the solving method of the developed code,
and demonstrating that the results obtained are in agreement with those of other
validated formulations, the circuit model was used to study a NI-HTS coil. The
parameters of the coil are reported in Table 4.3.1, the discretization employed is
with Nd = 2, so every half turn a contact resistance between layers is placed, and
Ns = 50 (the tape is divided into fifty subelements). The equivalent circuit of the
coil is shown in Fig. 4.3.1.

Table 4.3.1: Simulation Parameters NI-HTS coil

Tape Length (L) 2.51 m Jc 1010 A/m2

Thickness sc. layer (t) 1.5 µm Tape width (w) 4 mm
frequency 50 Hz Ic 60 A
n-index 43 Peak current (Im) 42 A

Ec 100 µV/m Simulation time 0.04 s
Tape thickness 150 µm Rc 0.5 mΩ

The total AC losses amount to 2.53 × 10−6[J/cycle/m], nearly 78% of which
are caused by the dissipation in the contact resistances, while the rest occurs in
the superconducting material, specifically due to the longitudinal resistances. The
losses in the interelements resistances, so due to the dissipation during the current
redistribution in the tape, are negligible.

Table 4.3.2: Results simulation NI-HTS coil

Peak instantaneous losses 2.58× 10−4 W/m
Total AC losses 2.53× 10−6 J/m/cycle

AC losses of Rcon 1.97× 10−6 J/m/cycle
AC losses of Rlong 5.62× 10−7 J/m/cycle
AC losses of Rinter 5.56× 10−20 J/m/cycle

The behavior of some of the longitudinal, transversal, and interelements cur-
rents of the first layer of the first sub-element is shown in Fig. 4.3.2. The longi-
tudinal currents are much higher than both the transversal and the interelements
ones. The transversal currents, flowing along the contact resistances, are plotted
in Fig. 4.3.3, while the interelements ones are in Fig. 4.3.4 and Fig. 4.3.5. The
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Figure 4.3.1: Part of the equivalent circuit of the NI-HTS coil simulated, the
numbers of the currents match those of the components.

currents in the contact resistances have a phase shift compared to those in the
longitudinal resistances. This current is flowing due to the inductive effects in the
longitudinal branches. The counter-electromotive force arising in the longitudinal
inductors is forcing the current to flow on the contact resistances generating a
noticeable power dissipation.

The simulation of two periods (0.04 s) takes 4 hours and 24 minutes, of which
1 hour and 5 minutes for the computation of the inductance matrix. The compu-
tation of the inductance matrix can be done only once if the geometry of the coil
studied does not change.
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Figure 4.3.2: Behavior in time of the longitudinal and transversal currents in
the first layer of the first sub-element of the coil, and the interelements currents
between the first layer of the first sub-element and the first layer of the second
sub-element.

Figure 4.3.3: Enlarged view of the transversal currents in Fig. 4.3.2.
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Figure 4.3.4: Enlarged view of the interelements currents in Fig. 4.3.2.

Figure 4.3.5: Zoom of Fig. 4.3.4
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Figure 4.3.6: interelements currents of the first subelement.

In Fig. 4.3.2 the label Ilong = x means that the longitudinal current plotted
belongs to the xth longitudianl components, the same for the contact and interele-
ments currents. In Fig. 4.3.2, only the longitudinal and interelements currents of
the first layer are plotted. Due to the symmetry of the problem, the longitudinal
currents in the second layer are the same, while the interelements currents are the
same with a changed sign. All the interelements currents of the first subelement
are shown in Fig. 4.3.6. The longitudinal currents in the first subelement are
plotted in Fig. 4.3.7. In Fig. 4.3.4 is possible to see that the current redistribution
along the width of the tape mainly occurs at the end of the first turn (Iinter = 2
corresponds to the current labeled i23 in Fig. 4.3.1). In Fig. 4.3.8 and Fig. 4.3.9
the behavior in time of the longitudinal resistances of the first subelement, while
in Fig. 4.3.10 the interelements resistances.
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Figure 4.3.7: Longitudinal currents of the first subelement.

Figure 4.3.8: Longitudinal resistances the first subelement.
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Figure 4.3.9: Longitudinal Resistances of circuit elements number 3 to 6. Es-
sentially an enlarged view of some of the currents in Fig. 4.3.8

Figure 4.3.10: interelements resistances of the first subelement. The resistances
of the interelements elements 2 to 6 are several orders of magnitudes lower than
those of the interelements elements 1 and 7.
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4.4 Final considerations on the circuit model

This thesis presents the development of a versatile circuit model for the analysis
of both insulated and non insulated superconducting coils. The model’s adaptabil-
ity extends beyond coil geometries (both insulated and non-insulated), making it
applicable to straight tapes, tape stacks, and various configurations with minor
modifications to the circuit topology while maintaining the underlying code struc-
ture. This chapter delves into the essential considerations for model development,
encompassing the representation of discretized device components using circuit el-
ements and various approaches for circuit analysis. Notably, a promising solution
strategy, not covered in this chapter but under ongoing investigation, involves a fu-
sion of the state equation method and the current loops method. This integration
could eliminate the need for parallel resistances (see Fig. 4.1.8) and the emer-
gence of algebraic loops in a differential system of equations (see section 4.1.3). A
hallmark of this model lies in its ability to accurately compute screening currents
within the tape and their impact on AC losses. The importance of the screening
currents can be seen in Fig. 4.3.2 where the current flowing along the width of
the tape in particular regions, is comparable with the longitudinal currents. The
model’s efficacy has been successfully demonstrated through comparison with an
analytical formula and a 2D FEM model in various case studies involving a single
straight tape. The comparison outcomes affirm the model’s accurate loss evalu-
ation, validating the feasibility of a circuital model approach for tape analysis.
Furthermore, the circuit model albeit being a 3D representation of the tape was
capable of performing simulation faster, and with the same accuracy, as a 2D FEM
model. Moreover, the model has been successfully applied to analyze a small NI
HTS layer-wound coil. Ongoing validation efforts will involve comparing the cir-
cuit model to FEM models and experimental data. As of now, the proposed model
is a nonlinear electrical circuit incorporating non-thermal behavior. Future inves-
tigations will focus on establishing a suitable coupling between the circuit model
and a thermal model of the coil.
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5 Conclusions
This thesis presents a comprehensive review of the established analytical and

numerical models proposed in the literature for studying high-temperature super-
conducting (HTS) devices. Following a careful evaluation of the solutions available
in the literature, this work is focused on developing rapid alternatives to the com-
puting demanding finite element method (FEM) models for analyzing complex
HTS devices.

The first outcome of the work is a series of analytical formulae that signifi-
cantly broaden the applicability range of existing formulae. The utility of this
novel formulation lies in its ability to provide analytical expressions for assessing
the instantaneous power losses resulting from the synergistic action of both an
applied current and an external magnetic in a superconducting slab. The formu-
lae proposed can be applied to generic cycles of transport current and magnetic
field, provided that they are in phase with each other. The new formulae were
validated by comparison with 1D and 2D FEM models. Along with these formu-
lae, a technique for applying the findings developed to the intricate geometry of
twisted stacked tapes has been investigated, leading to the concept of "substitu-
tive stacks". Both the developed formulae and the substitutive stacks method have
been integrated into a framework capable of providing a qualitative assessment of
instantaneous losses in large-scale magnet geometries. The framework has been
utilized to analyze the losses in a HTS insert of the DEMO central solenoid.

While the developed analytical formulae are currently restricted to scenar-
ios where the transport current and magnetic field are in phase, the underlying
methodology employed to derive them has the potential to determine new formulae
that extend beyond this limitation. This potential was realized by deriving a new
formula specifically for the case where the magnetic field becomes null while the
transport current is still decreasing during a ramp-down operation. This formula
was successfully validated against a 1D FEM model, demonstrating the robustness
of the proposed methodology. However, the critical parameter, the magnetic field
of electric penetration, cannot be solely determined from geometric considerations.
The magnetic field of electric penetration is highly dependent on the specific case
study, implying that a globally applicable and compact analytical formulation is
not currently feasible.

The second significant achievement of the thesis is the development of a nonlin-
ear, nonplanar lumped parameters circuit model specifically tailored for the study
of HTS devices, with a particular focus on non insulated HTS coils. The distin-
guishing feature of this circuit model lies in its capacity to accurately assess the
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magnetization currents originating within the superconducting tape as well as the
radial currents flowing from turn to turn.

A comprehensive study was conducted on the most suitable solution methods
for the developed circuit model. This study meticulously evaluated the strengths
and weaknesses of each method. The accuracy of the circuit model in assess-
ing magnetization currents within superconducting tapes was validated through
rigorous comparison against the findings of analytical formulae and a previously
experimentally validated 2D FEM model. These comparisons were conducted
across a range of superconducting tapes, varying in width and critical current,
encompassing diverse transport current amplitudes and frequencies from 25 Hz to
100 Hz. The circuit model demonstrated a remarkable computational efficiency,
achieving significant speedup compared to the 2D FEM model without compro-
mising accuracy. This finding underscores the potential of the circuit model as a
viable alternative for computationally demanding HTS studies. An NI-HTS coil
geometry was investigated. The model successfully predicts the current redistri-
bution between the coil layers and within the tapes composing it, thus enabling
the evaluation of the instantaneous power dissipation.

The developed circuit model is not confined to coil geometries, as evidenced
by the successful application to tape studies. Its applicability can even extend to
stacked tapes, Roebel cables, CORC cables, CROCO cables and other configura-
tions.
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