
Alma Mater Studiorum−Università di Bologna

DOTTORATO DI RICERCA IN MATEMATICA
Ciclo XXXVI

Settore Concorsuale: 01/A5 - ANALISI NUMERICA

Settore Scientifico Disciplinare: MAT/08 - ANALISI NUMERICA

Regularization meets GreenAI:
a new framework for image reconstruction in

life sciences applications

Presentata da: Davide Evangelista

Coordinatore Dottorato:

Prof.ssa Valeria Simoncini

Supervisore:

Prof.ssa Elena Loli Piccolomini

Esame finale anno accademico 2023/2024





Alla Benni, mia compagna di vita,

Ai miei genitori, mio fratello,

Ai miei amici, Vito, Andre, Mello...





ABSTRACT

Ill-conditioned inverse problems frequently arise in life sciences, particularly in the context

of image deblurring and medical image reconstruction. These problems have been addressed

through iterative variational algorithms, which regularize the reconstruction by adding prior

knowledge about the problem’s solution. Despite the theoretical reliability of these methods,

their practical utility is constrained by the time required to converge. Recently, the advent

of neural networks allowed the development of reconstruction algorithms that can compute

highly accurate solutions with minimal time demands. Regrettably, it is well-known that

neural networks are sensitive to unexpected noise, and the quality of their reconstructions

quickly deteriorates when the input is slightly perturbed. Modern efforts to address this

challenge have led to the creation of massive neural network architectures, but this approach

is unsustainable from both ecological and economic standpoints. The recently introduced

GreenAI paradigm argues that developing sustainable neural network models is essential for

practical applications.

In this thesis, we aim to bridge the gap between theory and practice by introducing a

novel framework that combines the reliability of model-based iterative algorithms with the

speed and accuracy of end-to-end neural networks. Additionally, we demonstrate that our

framework yields results comparable to state-of-the-art methods while using relatively small,

sustainable models.

In the first part of this thesis, we discuss the proposed framework from a theoretical per-

spective. We provide an extension of classical regularization theory, applicable in scenarios

where neural networks are employed to solve inverse problems, and we show there exists a

trade-off between accuracy and stability. Furthermore, we demonstrate the effectiveness of

our methods in common life science-related scenarios.

In the second part of the thesis, we initiate an exploration extending the proposed method

into the probabilistic domain. We analyze some properties of deep generative models, re-

vealing their potential applicability in addressing ill-posed inverse problems.

Keywords: inverse problems, model-based methods, convolutional neural networks, greenAI,

computed tomography, image deblurring, life sciences, neural network stability, accuracy sta-

bility trade-off.





Contents

Introduction 1

I Inverse Problems: an optimization approach 9

1 Inverse Problems in Imaging: from optimization to data-driven algorithms 11

1.1 Ill-Posed Inverse Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Problems of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Image Deblurring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Sparse Computed Tomography . . . . . . . . . . . . . . . . . . . . . 15

1.3 Reconstruction algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.2 Model-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4 Datasets and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.4.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Neural Networks as reconstructors to solve ill-conditioned inverse prob-

lems 43

2.1 Reconstructors for the solution of linear inverse problems . . . . . . . . . . . 45

2.1.1 Accuracy vs. stability trade-off . . . . . . . . . . . . . . . . . . . . . 47

2.1.2 A sufficient condition for stability . . . . . . . . . . . . . . . . . . . . 48

2.2 Neural Networks as reconstructors . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2.1 Better conditioning implies better reconstructors: the ReNN approach 52

2.3 Stabilizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.1 Iterative algorithms as stabilizers for neural networks . . . . . . . . . 55

2.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4.1 Experiment A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4.2 Experiment B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4.3 Experiment C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



CONTENTS

2.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5.1 Comparison of ReNN, StNN and StReNN . . . . . . . . . . . . . . . 59

2.5.2 Comparison of StNN with different architectures and stabilization . . 62

2.5.3 Analysis with noise varying on the test set . . . . . . . . . . . . . . . 64

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 RISING: unsupervised and stable data-driven approach for SparseCT 69

3.1 The RISING framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1.1 Rapid Iterative Solver . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1.2 Iteration Network-based Gaining . . . . . . . . . . . . . . . . . . . . 73

3.2 Experimental design and implementation notes . . . . . . . . . . . . . . . . . 74

3.2.1 Data set of synthetic images . . . . . . . . . . . . . . . . . . . . . . 74

3.2.2 Data set of real medical images . . . . . . . . . . . . . . . . . . . . . 75

3.2.3 Network architecture and training . . . . . . . . . . . . . . . . . . . 75

3.2.4 Implementation notes . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Experimental results and discussion . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.1 Robustness of RISING with respect to data perturbation . . . . . . 76

3.3.2 Results on synthetic images . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.3 Results on real medical images . . . . . . . . . . . . . . . . . . . . . 80

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Robust non-convex approach 83

4.1 The TpV approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.1 The TpV Chambolle-Pock algorithm . . . . . . . . . . . . . . . . . . 86

4.1.2 The TpV-Net preprocessing . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Extensions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

II Deep Generative Models for image generation 95

5 A probabilistic approach to imaging 97

5.1 Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.1 A Taxonomy of Deep Generative Models . . . . . . . . . . . . . . . . 100

5.1.2 Deep Latent Variable Models . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Datasets and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Structure of the part II of the thesis . . . . . . . . . . . . . . . . . . . . . . . 108



CONTENTS

6 A survey on Variational Autoencoders 109

6.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 The vanilla VAE and its problems . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.1 The balancing issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.2 Variable collapse phenomenon . . . . . . . . . . . . . . . . . . . . . . 114

6.2.3 Aggregate posterior vs. expected prior mismatch . . . . . . . . . . . 115

6.2.4 Blurriness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.5 Disentanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 Two-Stage VAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4 Regularized VAE (RAE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5 Hierarchical Variational Autoencoder . . . . . . . . . . . . . . . . . . . . . . 123

6.6 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.6.1 Green AI and FLOPS . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.6.2 Architectures overview . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.7 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.7.1 Quality Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.7.2 Energetic evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7 Image embedding for denoising generative models 139

7.1 Denoising Diffusion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.1.1 Diffusion and reverse diffusion . . . . . . . . . . . . . . . . . . . . . . 140

7.1.2 The Diffusion Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.1.3 The Gravitational Analogy . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2 Denoising Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.3 Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.3.1 Gradient Descent Synthesis . . . . . . . . . . . . . . . . . . . . . . . 148

7.3.2 Embedding Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.3.3 Latent Space Interpolation . . . . . . . . . . . . . . . . . . . . . . . . 154

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Conclusions and Future Works 157







CONTENTS

List of Acronyms

ADMM Alternating Direction Method of Multipliers

AI Artificial Intelligence

BCCB Block Circulant with Circulant Block

CG Conjugate Gradient

CGLS Conjugate Gradient method for Least Squares

CNN Convolutional Neural Network

CP Chambolle-Pock

CT Computed Tomography

DDIM Diffusion Denoising Implicit Model

DDPM Diffusion Denoising Probabilistic Model

DGM Deep Generative Model

DGP Deep Generative Prior

DLVM Deep Latent Variable Model

DPC Discrete Picard Condition

ELBO Evidence Lower Bound

FBP Filtered Back Projection

GAN Generative Adversarial Network

LPP Learnt Post-Processing

MAP Maximum a-posteriori

MLE Maximum likelihood estimation

MRI Magnetic Resonance Imaging

MSE Mean Squared Error

NF Normalizing Flow

NN Neural Network

PSNR Peak Signal-to-Noise Ratio

ReLU Rectified Linear Unit

RMSE Root Mean Squared Error

SGD Stochastic Gradient Descent

SparseCT Sparse Computed Tomography

SSIM Structural Similarity Index Measure

TpV Total p-Variation

TV Total Variation

VAE Variational AutoEncoder



Introduction

Our ability to comprehend reality is confined to the things we can measure. To illustrate

this point, let’s imagine a scenario similar to Plato’s Cave Allegory. In this imaginary setup,

there’s a group of people confined in a cave, facing a blank wall. Behind them, a source of

light casts shadows of various objects onto the wall in front. It’s quite evident that they

won’t be able to gain a complete understanding of the actual objects being projected. For

instance, they can’t determine the object’s material or the texture of its surface because this

information isn’t included in the projected shadow. Their comprehension is limited to what

they can deduce from the information contained in the shadows they observe, along with

their pre-existing knowledge of reality. In particular, the problem of inferring properties of

an object of interest by observable quantities, obtained by experiments, is usually referred

to as inverse problem.

Inverse problems consistently appear in life sciences. For example in X-ray computed

tomography, where an image representing the interior of a body is inferred by a collection

of the intensities of X-ray beams that have been passed through the body, or in Magnetic

Resonance Imaging (MRI), where the resonance frequency of a strong magnetic field applied

to the body of a patient is used to estimate the composition of the tissues, or in microscopy

and astronomy, where the available information are inevitably blurred due to physical limi-

tation of the measurement system, and clear, sharp details has to be recovered by inference.

Practical solutions of inverse problems require advanced mathematical techniques, mainly

based on a formalization of the measurement process and on the prior knowledge on the so-

lution. Recently, the introduction of powerful data-driven methods such as neural networks,

opened the chance of developing algorithms able to infer important properties of the object

of interest with very few measurements. However, a clear mathematical understanding of

data-driven methods is still lacking in the literature, with the consequence that those algo-

rithms are unreliable and, practically, unused. Moreover, the exponential growth of neural

network architecture required to improve their prediction ability introduces sustainability

problems, both from an ecological point of view (due to the carbon dioxide emission caused

by the computation devices) and from an economical point of view, which limits the appli-

cability of the most advanced methods. The newborn field of GreenAI, discussed in greater

detail in the following, aims to shed light on these challenges, focusing on the sustainability

of the neural network-based algorithm rather than their performance.

1



2 CONTENTS

In this thesis, we focus on two case studies, namely image deblurring and sparse com-

puted tomography. We begin with classical regularization methods that are addressed using

optimization techniques. Subsequently, we explore the integration of these methods with

data-driven approaches, with the objective of leveraging the strengths of both variational

and deep learning methods. To this aim, we analyze the reliability of modern data-driven

methods solving the associated inverse problem and we propose some methods aiming to

solve these challenges, guided by the paradigm of ecological and economical sustainability

proposed by the GreenAI literature.

In the following, we will describe the problems considered in this thesis, with the intent

of analyzing their importance in the field of life sciences, and we describe the advantages

and disadvantages of modern algorithms employed to solve these problems. Finally, we will

introduce the methods proposed in this thesis which will be developed in detail in the next

chapters.

Image Deblurring

As already mentioned, image deblurring is an important inverse problem appearing in many

fields of life sciences, such as cell microscopy, astronomy, and other related topics such as

medical imaging. Talking about microscopy, when the object of interest is too small to

be measured directly, it is necessary to acquire it by systems such as the light microscope.

However, a portion of information gets lost during the acquisition process due to several

reasons, including:

• Diffraction Limit: due to the wave nature of light, when the measured object has a

resolution that is smaller than the wavelength of the light used by the optical system,

the acquired object appears blurred;

• Low Light Levels: microscopical objects are often acquired with inadequate illumi-

nation levels, resulting in noisy and blurred acquisition;

• Movement of the object: when the optical microscope is used to measure alive cells,

the micro-movement of the object causes motion blur artifact in the acquisition.

Whatever the reason, the acquired image often appears blurred, and advanced mathematical

tools are required to recover the information on the true, sharp image, to be able to see the

details of the object of interest.

Astronomical images acquired by telescopes shows similar blurring artifact, mainly due

to:

• Atmospheric Turbulence: as the light coming from astronomical objects passes

through the Earth’s atmosphere, it encounters variations in air density and temper-

ature, causing the light to refract and scatter. This turbulence results in a blurring

effect corrupting the acquisition;



CONTENTS 3

• Movement of the object: due to the Earth’s rotation and movement of the celestial

object, the acquisition from telescopes often shows motion blur artifacts that reduce

the amount of details observable by the image.

To understand the impact of the blurring effect on the measured data, Figure 1 shows the

real acquisition of a microscopical and an astronomical image. Both the acquisitions lack

important details, that have to be reconstructed by advanced mathematical techniques.

Figure 1: An example of blurred acquisition in microscopy and astronomy, taken from the

web. Left. The acquisition of a group of cells by a light microscope. Right. The first

acquisition of a black hole. The blurring effect is clearly visible in both the images.

Computed Tomography

The importance of X-ray computed tomography in life sciences is undoubted. Since its

invention at the beginning of 1900, it contributed to saving an uncountable number of human

lives, due to its application in medical diagnosis. The way it works is very simple: an X-

ray emitting source is positioned on one side of a patient, in such a way that the radiation,

emitted at a known intensity, passes through the body and gets collected by a detector, placed

on the opposite side of the patient itself. Since the tissues absorb a portion of the emitted

photons in a number proportional to their density, the amount of radiation measured by the

detector is smaller than it was when emitted. By acquiring multiple emissions at different

angles, it is possible to accurately reconstruct the density map of the interior of the body

in analysis and, consequently, to spot some alterations such as tumors or other unexpected

objects.

However, the radiation passing through the cells of the body can cause illness after

multiple acquisitions. For this reason, it is common in modern medical protocols to try to

reduce as much as possible the amount of radiation emitted on the patient, to a point that the

amount of information collected is not sufficient to accurately reconstruct the structure of the

body, resulting in an acquisition that shows severe streaking artifacts. In this setup, known



4 CONTENTS

as sparse computed tomography (SparseCT in the following), it is of primary importance to

develop mathematical methods to improve the quality of the reconstructed images, with the

intent of simplifying the identification of the diagnosis by the doctor.

The reconstruction task is made even harder by the limitations imposed by the medical

protocols. In particular, the algorithm must be:

• Efficient: the method has to be applied on very high-resolution images, usually con-

taining tenths of millions of pixels. For this reason, it has to be efficient enough to scale

with the dimensionality. This is a difficult challenge since, most of the time, accurate

reconstruction algorithms require high computational time to be applied.

• Fast: this is especially true when it has to be employed for real-time reconstruction,

such as when the tomographic acquisition is used to assist the doctor in surgery.

• Explainable: to use a reconstruction algorithm on real medical applications, it has

to be certificated. This is done by a procedure involving a large number of experts

who have to understand how the method works and what are its weaknesses. The

introduction of a new reconstruction technique thus requires it to be simple to explain

and understand.

• Stable: since the computed tomography acquisitions naturally present irregularities,

the method should be stable to modifications of the physical structure of the patient,

and to unexpected noise and blur that can appear due to problems with the device

and/or movement of the patient.

• Sustainable: since the number of daily acquisitions in an hospital is usually large,

the reconstruction method has to be sustainable, both in terms of carbon emissions

and economic requirements.

The listed requirements clarify that the mere introduction of advanced neural network tech-

niques is not sufficient to guarantee the applicability of the method to the real medical

framework. For this reason, we remark on the importance of the perspective of the GreenAI

and ExplainableAI fields to develop powerful methods satisfying the requirements imposed

by real medical applications. For example, Figure 2 shows the reconstruction of a com-

puted tomography acquisition in a SparseCT setup, performed by a very fast but inaccurate

method known as Filtered Back-Projection (FBP), and by a slow but very accurate iterative

algorithm. Note that, even if the details are better visible in the image on the right, modern

medical protocols still utilize the FBP method, since it better fits the medical constraint

listed above.



CONTENTS 5

Figure 2: An example of a SparseCT reconstruction with Left. the fast but inaccurate FBP

algorithm, and Right. a slow but accurate iterative algorithm.

Mathematical tools to solve inverse problems

Developing a good algorithm to solve inverse problems is probably even more important than

introducing new techniques to acquire measurements. To this aim, advanced mathematical

tools have been developed over the decades, leading to an extensive set of techniques, each

with its unique properties. Among all the methods, we can distinguish a category that excels

on the others for the accuracy of the reconstruction and the stability achieved: the class of

model-based algorithms. Briefly, a model-based algorithm considers a mathematical model

imitating the measurement process that maps the object of interest to the observable data

and returns an estimation of the object by inverting this process. For example, both the

Filtered Back-Projection (FBP) and the iterative methods described above are examples of

model-based algorithms. The main difference between the two is that the latter assumes

knowledge on the solution to interpolate the information contained in the data and generate

better solutions. Such kinds of algorithms, known as regularized variational methods and

described in detail in the following chapters, despite the great accuracy and stability that

they show in practical application, are rarely used in practice. This happens because of

two main reasons: first, the quality of the solution is strictly related to the mathematical

approximation of the measurement process and the considered prior knowledge of the solution

and second, the reconstruction involves highly computationally expensive algorithms that

are of limited use for real-time applications such as computed tomography.

Recently, the introduction of neural networks in the field of inverse problems allowed the

development of very fast and accurate algorithms to solve reconstruction problem, that does

not require any mathematical model for the measurement process. We will refer to this class

of methods as data-driven algorithms since they make use of large datasets to be tuned for



6 CONTENTS

the specific application of interest. However, their use is still limited in practice, because

of multiple challenges that are still unsolved. In particular, since they are purely trained

on data and no knowledge on the physical measurement process is taken into consideration,

they are prone to unwanted bias present in the collected data, and the details of how they

work are still unexplainable from a mathematical point of view. Moreover, it is known that

they suffer from severe stability problems, mainly due to the way they are trained and on

properties of the measurement operator.

A modern tentative solution to the challenges described above is to make the model more

and more complex, to be able to learn from a bigger amount of data, and, consequently, to

reduce the impact of the described issues. Consider for example the plot represented in Figure

3, taken from [1], that shows the number of free parameters (a quantity that is proportional

to the computational complexity of the model) of state-of-the-art neural networks over the

last decade, in logarithm scale. Note that the number of parameters has grown consistently

over the years, with an exceptional value of more than 1011 for the modern GPT-3 algorithm.

In [2], the authors showed that the computational complexity of modern neural networks

reflects in an unsustainable growth of the carbon dioxide emission required to give electricity

to the devices dedicated to the training of the models. The exponential increase in the

number of parameters also reflects in an increase in the economical requirements to train the

models, cutting off everyone who is not able to sustain the expenses, researchers included.

For this reason, the authors in [2] propose a new paradigm for neural networks, where the

computational complexity is taken into consideration together with their accuracy, named

GreenAI.

Contributions

Aware of the limitations described above, in this thesis we propose a new framework to solve

inverse problems related to life sciences. In particular, we consider a hybrid method, that

exploits the stability offered by model-based iterative algorithms, with the reconstruction

quality typical of end-to-end neural networks. By taking the physics of the model into

consideration as in regularized iterative methods, the resulting model exhibits increased

consistency and stability to unexpected noise in the data. Moreover, the reconstruction

problem is simplified by the model-based method, and the neural network requires fewer

parameters to obtain the same accuracy as classical end-to-end models. This makes the

framework more sustainable, as described in GreenAI literature, and reliable, as required for

life sciences applications, with minimal to no accuracy loss.

In particular, the framework is presented in Chapter 2 where, after a discussion on the

limitations of the classical regularization theory described in [3] when applied to end-to-end

neural networks, we propose an extension that allows to theoretically describe the stability

and accuracy performance of data-driven solvers to inverse problems. Moreover, in the same



CONTENTS 7

Figure 3: A plot representing the total number of parameters in state-of-the-art neural

network models over the year, showing that the performance gain correlates with the increase

in dimension of the model. The y-axis is represented in logarithmic scale. Image taken from

[1].

Chapter, we analyze the proposed framework from a theoretical perspective and we perform

extended empirical experiments on the image deblurring inverse problem. This analysis

suggests that the framework is stable and widely applicable to multiple realistic life science-

related inverse problems. Moreover, the algorithm can be executed on a very basic device,

such as a personal computer.

The method is then tested on a SparseCT inverse problem in Chapter 3, where the

framework shows its potential to recover accurate solutions to complex medical protocols.

In Chapter 4, we extend the method to non-convex reconstruction problems, such as

Total p-Variation regularization.

Finally, in the last part of the thesis, we begin an analysis of the sustainability of proba-

bilistic neural network-based methods, named generative models, that aims to set the basis

for an extension of the hybrid technique described above to stochastic models, that are known

to perform better in real applications and shows superior explainability. An extended dis-

cussion about this point is left to the end of the thesis.

List of Publications

[4] A. Asperti, D. Evangelista, E. Loli Piccolomini, A survey on Variational Autoen-

coders from a GreenAI perspective, SN Computer Science, 1st March 2021;



8 CONTENTS

[5] A. Asperti, D. Evangelista, M. Marzolla, Dissecting FLOPs along input dimen-

sions for GreenAI cost estimations, International Conference on Machine Learn-

ing, Optimization, and Data Science, 2021;

[6] E. Morotti, D. Evangelista, E. Loli Piccolomini, A green prospective for learned

post-processing in sparse-view tomographic reconstruction, Journal of Imag-

ing, 2021;

[7] E. Morotti, D. Evangelista, E. Loli Piccolomini,RISING a new framework for few-

view tomographic image reconstruction with deep learning, Computerized

Medical Imaging and Graphics, 2023;

[8] D. Evangelista, E. Morotti, J. Nagy, E. Loli Piccolomini, To be or not to be stable,

that is the question - stability and accuracy trade-off in neural networks for

inverse problems, Submitted at SIAM SISC, 2023;

[9] D. Bianchi, M. Donatelli, D. Evangelista, W. Li, E. Loli Piccolomini, Graph Lapla-

cian and Neural Networks for Inverse Problems in Imaging: GraphLaNet,

International Conference on Scale Space and Variational Methods in Computer Vision,

2023;

[10] D. Evangelista, E. Morotti, J. Nagy, E. Loli Piccolomini, Ambiguity in solving

imaging inverse problems with deep learning based operators, Journal of

Imaging, 2023;

[11] A. Asperti, D. Evangelista, S. Marro, F. Merizzi, Image embedding for denoising

generative models, Artificial Intelligence Review, 2023;

[12] E. Morotti, D. Evangelista, E. Loli Piccolomini, Increasing noise robustness of

deep learning-based image processing with model-based approaches, Nu-

merical Computations: Theory and Algorithms (NUMTA), 2023;



Part I

Inverse Problems: an optimization

approach

9





Chapter 1

Inverse Problems in Imaging: from

optimization to data-driven

algorithms

1.1 Ill-Posed Inverse Problems

As previously mentioned, the majority of the problems in life sciences can be mathematically

formulated as inverse problems. In these problems, an unknown term f , which resides in a

Hilbert space X , must be estimated from observed data g that lies in another Hilbert space

Y , given a sensing operator K that maps X to Y . Throughout this thesis, we assume that

K is a linear bounded operator, allowing us to formulate the problem as follows:

given g = Kf, recover (an approximation of) f. (1.1)

When addressing the problem in (1.1), it is important to determine whether a solution

exists and, if so, whether it can be reliably recovered from the available information. To this

end, we introduce the concept of an ill-posed problem. Hadamard defined a problem like

(1.1) to be well-posed [3, 13] if it satisfies the following criteria:

(HC1) For all g ∈ Y , a solution exists.

(HC2) For all g ∈ Y , the solution is unique.

(HC3) The solution depends continuously on g.

It’s important to note that this definition is related solely to properties of the linear

operator K. Specifically, a solution to (1.1):

1. exists for all g ∈ Y if and only if rg(K) = Y (i.e. K is subjective).

11



12 1. Inverse Problems in Imaging: from optimization to data-driven algorithms

2. is unique for all g ∈ Y if and only if K is injective.

3. depends continuously on g if and only if its inverse K−1 is continuous (or, equivalently,

bounded).

In the subsequent Sections, we will remark that for some significant problems in life

sciences, at least one of these conditions does not hold. It is worth noting that (HC1) is

almost always satisfied since, if g has been measured, it naturally fall within the range of K.
Conversely, achieving (HC2) and (HC3) can be challenging in practice. Moreover, additional

complexity is introduced as the formulation (1.1) has to be discretized in practice to be made

computationally feasible. During this process, the operator K gets discretized as a matrix

K ∈ Rm×n, while f and g naturally become vectors of dimension n and m, respectively. The

discretized version of the continuous formulation (1.1) thus reads:

given y = Kxgt, recover (an approximation of) xgt. (1.2)

It is worth noting that the conditioning properties of K are strictly related to the prop-

erties (HC1), (HC2) and (HC3) of its corresponding continuous formulation K. Indeed, it is
evident that if K does not satisfy (HC1) or (HC2), then its discretization K will not satisfy

them either. Furthermore, even when (HC2) holds for K, it does not necessarily mean that

it holds for K, since the discretization process can introduce non-injectivity, especially when

the number of measurements is limited and the resulting matrix becomes undersampled. In

this case, the solution to (1.2) is not unique, and it becomes necessary to introduce additional

information to establish uniqueness. Conversely, it is not hard to show that any non-singular

matrix K always satisfies (HC3), since the inverse of a discrete operator is another discrete

operator, which is trivially bounded. In [14], the authors noted that when K does not satisfy

(HC3), as it is the case when K is a compact operator, then the singular values of K quickly

decrease to 0, implying that unexpected noise into y gets amplified by the inverse of K in

the solution of (1.2). This property is referred to as discrete Picard condition (DPC) in the

literature and has been described for the first time in [15]. In the following, we will say that

a discrete linear operator K does not satisfy (DPC) if it comes from the discretization of a

continuous operator K that does not satisfy (HC3). Addressing problems where the K does

not satisfy (DPC) or (HC2), advanced techniques are required, as it will be elaborated on

later in this Chapter.

When the problem in (1.2) admits a solution, i.e. when K satisfies (HC1), various

techniques have been developed in the literature, ranging from direct methods, where the

solution is computed through an approximation of the inverse K−1, to iterative methods

that employ iterative algorithms to solve a variational problem, and more recently, neural

networks, which learn a mapping from Y to X from a dataset, achieving remarkable results.

The topic of ill-conditioned inverse problems obtained from the discretization of a con-

tinuous operator that does not satisfy the Hadamard condition of well-posedness has been



1.2 Problems of interest 13

extensively studied in the last few decades. This thesis mainly focuses on applications. For

a theoretical analysis, refer e.g. to [3, 14, 16, 17, 18, 19].

Structure of the Chapter This Chapter is organized as follows: in Section 2, we formally

introduce the problems of interest, namely image deblurring and computed tomography.

We will also outline the fundamental properties of their corresponding operators. Section

3 introduces the concept of a reconstruction algorithm, a key element in solving inverse

problems. We categorize the main methods into three groups: direct methods, model-based

methods, and data-driven methods. For each of them, we analyze their accuracy and stability

properties, emerging when applied to the solution of ill-conditioned inverse problems. In

particular, we highlight that challenges related to ill-conditioning also emerge with neural

networks and we propose techniques to approach them. Moreover, we will briefly discuss

the problem of sustainability concerning modern neural networks, with a focus on how it

can be attenuated. Finally, Section 4 introduces some experimental tools that will appear

frequently in the following Chapters, such as the metrics and the datasets we use.

1.2 Problems of interest

As mentioned in the Introduction, this thesis primarily addresses two distinct types of inverse

problems stemming from life sciences: image deblurring [20] and X-rays computed tomog-

raphy [21]. These two problems differ significantly in their nature, mathematical structure,

and the challenges they present. Image deblurring can be modeled as an invertible linear

system with a matrix K that is both surjective and injective, satisfying the first two con-

ditions of well-posedness. However, when the blurring operator K does not satisfy (DPC),

the associated inverse problem results in a system where noise in the data gets amplified

in the solution to the extent that the resulting image becomes unrecognizable. In con-

trast, computed tomography presents a linear system where the noise in the data gets only

slightly amplified. Its challenge arises from the medical requirements of sustainability and

reduced patient dose, leading to a highly sub-sampled matrix K that does not satisfy (HC2).

Hence, it necessitates the introduction of sophisticated mathematical techniques to ensure

the uniqueness of the solution.

The conditioning properties of both the image deblurring and the computed tomography

operators are consequences of them being the discretization of integral operators [14]. By

definition, a continuous operator K is an integral operator if it can be written as:

(Kf)(p) =
∫
Rn

k(p, z)f(z)dz, ∀p ∈ Rn, (1.3)

for some kernel k : Rn × Rn → R. The following Proposition shows that integral operators

fail to satisfy (HC3).



14 1. Inverse Problems in Imaging: from optimization to data-driven algorithms

Proposition 1.1. If K : L2(Rn) → L2(Rn) is an integral operator , then K is a compact

operator. In particular (see [3]), K does not satisfy (HC3).

Proof. See e.g. [3, 14].

Consequently, any discrete operator K that comes from the discretization of an integral

operator K, does not satisfy (DPC).

1.2.1 Image Deblurring

Image deblurring is one of the most well-known and extensively studied inverse problems

in imaging. It involves the task of recovering a clear, sharp image, denoted as xgt, from a

blurred, out-of-focus acquisition y. As we will soon discover, the associated operator K is

invertible but exhibits severe ill-conditioning, meaning that K−1 can perfectly reconstruct

noiseless acquisitions, but the quality of the reconstruction rapidly deteriorates when even

a small amount of noise is added to y. To formally introduce this problem, let’s consider

a continuous image f ∈ L2(R2) and assume that, instead of capturing f , we measure the

result, denoted as g ∈ L2(R2), of applying a Fredholm operator of the first kind [20], denoted

as K. This operation can be expressed as:

g(p) = (Kf)(p) =
∫
R2

k̃(z;p)f(z)dz ∀p ∈ R2. (1.4)

Here, k̃ : R2 × R2 → R2 is the blurring kernel associated with K. Equation (1.4)

can be further simplified by assuming that the kernel k̃ is shift-invariant, meaning that

k̃(z,p) = k̃(z − p,0) for all z,p ∈ R2. Under this assumption, Equation (1.4) becomes:

g(p) = (Kf)(p) =
∫
R2

k(z − p)f(z)dz, ∀p ∈ R2, (1.5)

where we define k(z − p) := k̃(z − p,0). In Equation (1.5), the operator K is uniquely

identified by the kernel k ∈ L2(R2). Specifically, we have:

k(p) = (Kδ0)(p), ∀p ∈ R2, (1.6)

where δ0 represents the Dirac delta function centered at the origin. Visualized as an image, δ0

represents a single point, and the kernel k(p) = (Kδ0)(p) characterizes how this single point

is spread by the operator K. For this reason, k(p) is commonly referred to as the Point Spread

Function (PSF). Furthermore, note that Equation (1.5) represents a convolution between

the PSF k and the unknown image f , i.e.

g(p) = (Kf)(p) = (k ∗ f)(p). (1.7)

Hence, the deblurring problem is often called deconvolution.



1.2 Problems of interest 15

In practical computational applications, we need to discretize this continuous process.

From Equation (1.5), it’s evident that K is a linear operator. Therefore, its discretization,

for example with a quadrature formula, leads to a linear system in the form:

y = Kxgt, (1.8)

where xgt ∈ X ⊆ Rn, y ∈ Y ⊆ Rn and K ∈ Rn×n. It is worth noting that since K

originates from the discretization of a 2-dimensional convolutional operator, it possesses a

specific structure known as BCCB (Block Circulant with Circulant Blocks), where circulant

signifies that each column has the same elements as the previous block, shifted by one, with

periodic boundary conditions [20].

In this thesis, we focus on a specific type of discrete blurring operator K, namely the

Gaussian blurring operator. Its point spread function (PSF), denoted as k, has shape s× s,

where s ∈ N is a parameter that in the following is assumed to be known, and is defined as

follows:

ki,j =
1∑

i′,j′ ki′,j′
exp

(
−(i− ic)

2 + (j − jc)
2

2σ2

)
, ic = jc =

⌊
s− 1

2

⌋
. (1.9)

From the perspective of the inverse problem in Equation (1.8), the conditioning properties

of the Gaussian blur matrix K hold particular significance. It is a symmetric matrix that

can be diagonalized by the 2-dimensional Fourier transform, as every BCCB matrix, with

nonzero eigenvalues. Consequently, K is both injective and surjective, satisfying (HC1) and

(HC2). As for the third criterion, it can be readily demonstrated that K does not satisfy

(DPC), since it comes from the discretization of the integral operator K defined in (1.4),

which does not satisfy (HC3) as indicated in Proposition 1.1.

1.2.2 Sparse Computed Tomography

In Medical Imaging, Computed Tomography (CT) [21, 22] is the task of reconstructing an

image xgt ∈ Rn, which represents the attenuation coefficients (a quantity that is strictly

related to the density of the tissues) of the interior of a patient, from the acquisition of the

intensity of a X-ray beam as it pass through its body. From a mathematical standpoint, let’s

consider the process depicted in Figure 1.1. In this setup, a source emits a beam of X-rays

through the body represented as xgt, each with a fixed, known intensity I0. As these X-rays

traverse xgt, some of the photons are absorbed by the patient’s tissues, resulting in the ac-

quired ray’s intensity I at a detector placed on the opposite side of the body. Specifically,

we denote I(p) as the intensity of a given X-ray at position p ∈ R2.

The physics governing this process, particularly the absorption of X-rays by tissues, is

described by the Beer-Lambert law:



16 1. Inverse Problems in Imaging: from optimization to data-driven algorithms

Figure 1.1: A schematic representation of the CT acquisition process.

dI(p) = −xgt(p)I(p)dp. (1.10)

It’s worth noting that Equation (1.10) can be solved as:

I(p) = I0 exp

(
−
∫
L[0,p]

xgt(z)dz

)
, (1.11)

where L[0,p] represents the trajectory of the X-ray being considered, from the origin to the

point p. If I1 is the intensity of the X-ray as measured by the detector, we can derive from

(1.11) that:

log
I1
I0

= −
∫
L

xgt(p)dp, (1.12)

where L is the trajectory of the X-ray from the origin to the detector. Importantly, since

I1 is measured for every ray, and I0 is known by design, the recovery problem is formulated as

reconstructing xgt(p) from measurements g(s) = log I1
I0
, where s ∈ R represents the measured

ray’s position. Clearly, it is impossible to reconstruct the complete density map xgt(p) from

a single projection g(s). To tackle this problem effectively, multiple rays are collected by

rotating the source around the object at various angles, acquiring multiple projections. For

any angular parameter Γ > 0, we consider the acquisition g(s,Θ), which represents the X-ray



1.2 Problems of interest 17

intensity at position s when the source is at angle Θ around the object. Mathematically,

this problem is closely related to the inversion of the Radon transform RΓ [23], defined as:

(RΓx
gt)(s,Θ) =

∫
L(s,Θ)

xgt(p)dp, (1.13)

where L(s,Θ) is the trajectory of the ray in position s at angle Θ. With this notation, the

continuous version of the CT reconstruction problem becomes:

from g(s,Θ) = (RΓx
gt)(s,Θ), recover xgt. (1.14)

From an analytical perspective, this problem is relatively easy to solve when Γ is suf-

ficiently large, as the operator RΓ is invertible. However, issues come out when RΓ gets

discretized. To do that, only a finite number nΘ of angles are sampled within the range

[0,Γ], denoted as Θ1, . . . ,ΘnΘ
, and a finite number nd of rays are considered for each angular

scan. Consequently, (1.14) turns into:

y = RΓx
gt, RΓ ∈ Rm×n, m = nd · nΘ. (1.15)

Note that the shape of the matrix RΓ depends on the number of discretized X-rays and

angles. If their count is not sufficiently large, the matrix becomes under-sampled, resulting in

a non-unique solution for (1.15). As modern medical protocols aim to minimize the number

of projection angles, due to their relationship with patient radiation exposure, this effectively

renders RΓ non-injective in practice. Moreover, RΓ comes from the discretization of an in-

tegral operator RΓ and consequently, from Proposition 1.1, it does not satisfy (DPC) [18].

Problems of this nature are referred to as Sparse Computed Tomography (SparseCT) in the

literature. In this thesis, our primary focus lies in addressing SparseCT problems, where the

non-injectivity of RΓ introduces stability issues that, while visually similar, are fundamen-

tally distinct from those encountered in deblurring problems. These issues necessitate the

introduction of stabilization techniques to mitigate the challenges posed by non-injectivity.

Furthermore, the geometry of the X-ray beam plays a central role in defining the prop-

erties of the associated operator. It is a common practice in the literature to deal with

what is known as parallel-beam CT, where the emitting source is assumed to have the same

shape as the detector, and the ray-beam consists of parallel, non-intersecting rays. In this

scenario, the associated Radon operator RΓ is normal-convolutional, indicating that its as-

sociated normal operator R∗
ΓRΓ corresponds to a convolution matrix, as it is proved in [24].

Although this property simplifies computations involving RΓ, it relies on assumptions that

are unrealistic in modern tomographic systems. In real-world scenarios, the emitting source

is often approximately a point, emitting X-rays radially from its center. This setup is re-

ferred to as Cone-Beam Computed Tomography (CBCT) [25, 26, 27, 28] in the 3-dimensional

case and Fan-Beam Computed Tomography [29, 30] in the 2-dimensional case. Figure 1.2



18 1. Inverse Problems in Imaging: from optimization to data-driven algorithms

Figure 1.2: An illustration of the parallel vs fan beam CT geometry. Left. Parallel Beam.

Right. Fan Beam.

visually represents the differences in the two modalities. Unlike parallel-beam CT, CBCT

and Fan-Beam CT do not satisfy the normal-convolutional properties, necessitating more

sophisticated approaches in developing the reconstruction algorithms [31]. To better align

with the requirements of realistic medical protocols, this thesis consistently assumes the

Fan-Beam Computed Tomography setup in the 2-dimensional experiments.

The non-injectivity of the Radon operator in the SparseCT setup and the absence of the

normal-convolutional properties of Fan-Beam geometry introduce challenges that, although

currently unsolved, we firmly believe to be of paramount importance to, at least, try to solve.

Advances on this field have the potential to streamline the diagnosis of certain diseases while

minimizing patients’ exposure to potentially harmful levels of radiation.

1.3 Reconstruction algorithms

After the introduction of the two operators of interest and their conditioning properties, we

now discuss the techniques used to address the associated inverse problem. It’s important to

note that in real applications, the measured data y is invariably corrupted by unpredictable

noise, often stemming from the electronics of the acquisition device. As a result, we now

consider an inverse problem in the form of:

yδ = Kxgt + e. (1.16)

Here, the noise e has a norm bounded by δ (i.e., ||e||2 ≤ δ), and for many applications, it



1.3 Reconstruction algorithms 19

is assumed to follow a zero-mean Gaussian distribution. Solving an inverse problem entails

finding a way to map the corrupted and noisy data yδ to an approximation of xgt. We refer

to these methods as reconstruction algorithms in the following. In the literature, numerous

reconstruction algorithms have been developed over the years, exploiting the specific prop-

erties of the tasks to which they are applied. These methods aim to strike a balance between

accurate and stable reconstructions. As we will explore in the following Sections, the inher-

ent ill-conditioning of the forward operator K can make any reconstruction algorithm more

unstable as it becomes more accurate. This creates a trade-off that must be optimized, as we

will discuss. Within the broad category of reconstruction algorithms, we can identify three

primary classes of methods: the direct methods, the iterative (model-based) methods, and

the data-driven methods. The remainder of this Section will delve into these three classes of

reconstruction algorithms, elucidating their interrelationships and the associated challenges.

1.3.1 Direct Methods

The category of direct methods encompasses all the algorithms designed to address (1.16)

by (approximately) inverting the operator K. Each direct technique relies, to some extent,

on the concept of the Moore-Penrose pseudoinverse of K [3]. To define it, let’s consider a

noiseless problem in the form of y = Kxgt. By definition y ∈ Rg(K), indicating that the

system has at least one solution, and possibly more. The Moore-Penrose pseudoinverse of

K, denoted as K†, is the linear operator that maps y to the solution of y = Kxgt with the

minimum norm. It’s worth emphasizing the main property of K† that can be useful for our

problems of interest:

Proposition 1.2. If K ∈ Rm×n is full-column rank (i.e. m ≥ n and rk(K) = n), then K†

has the simple expression:

K† = (K∗K)−1K∗. (1.17)

In particular, if m = n and K is invertible, then, K† = K−1. For this reason, K† is also

referred to as the generalized inverse.

Proof. Refer e.g. to [3].

Note that, as we observed in the introduction to Deblurring in the previous Section, when

y is corrupted by noise and K does not satisfy (DPC), direct inversion of K will amplify

the impact of the noise, making the image unrecognizable in practice. This occurs because

when we measure yδ = Kxgt + e, the solution K†yδ finds a value of x that satisfies the

system Kx = yδ, which differs from the desired solution, where we require Kx to be equal

to y. Consequently, direct approaches cannot be employed in scenarios where the forward

operator K does not satisfy (DPC), as is the case with deblurring inverse problems.



20 1. Inverse Problems in Imaging: from optimization to data-driven algorithms

xgt yδ K†yδ

Figure 1.3: The result obtained by applying the Moore-Penrose pseudoinverse operator to

an inverse problem where the operator K does not satisfy (DPC) and the datum is slightly

corrupted by noise. Left. the ground-truth image xgt. Center. the blurred and slightly noisy

version of xgt. Right. the reconstruction obtained by a direct method.

The results obtained by applying a direct method to an inverse problem where the op-

erator K does not satisfy (DPC) can be seen in Figure 1.3. In this experiment, we consider

an image xgt with dimensions 512× 512. This image is subjected to blurring by a Gaussian

blur operator with parameters s = 11 and σ2 = 1, whose definition can be found in Section

1.2.1. Subsequently, the blurred image is corrupted by additive Gaussian noise, with a norm

equal to 1% of the norm of the image. Finally, the pseudoinverse operator K† is applied to

yδ = Kx+ e in an attempt to reconstruct the image. Regrettably, the result is heavily cor-

rupted, highlighting that the Moore-Penrose pseudoinverse operator K† amplifies the noise

present in the image.

Conversely, direct methods are commonly applied in slightly ill-posed inverse problems

such as computed tomography, where the use of the pseudoinverse (known as the Filtered

Back Projection (FBP) algorithm) is widespread in real medical applications. To understand

how the FBP algorithm works, consider the case of a parallel-beam CT inverse problem

(similar discussions apply to the fan-beam setup). As previously mentioned, in this case

the operator K is a normal-convolutional operator, meaning that K∗K is a convolution

matrix. If the number of projections is sufficiently large, K∗K can be efficiently inverted in

the Fourier domain, functioning as a filter on the image it’s applied to. Consequently, the

pseudoinverse K†, computed as (K∗K)−1K∗ (from Proposition 1.2, since K is full-column

rank when the number of projections is adequate), essentially acts as a filter applied to

the back-projection (defined as the result of applying K∗ to the sinogram). This is why

the pseudoinverse is usually referred to as the Filtered Back Projection (FBP) operator, a

term commonly used in the literature. When the number of projections nΘ is low, as is the

case with SparseCT, the filter K∗K is not invertible. In such situations, the FBP operator



1.3 Reconstruction algorithms 21

must be approximated using pre-built filters, like the commonly used ramp filter. The re-

sulting operator is an approximation of the pseudoinverse K†, which exhibits poor quality

and prominent global artifacts in the reconstructed solution, degrading the image as evident

in Figure 1.4, where the FBP operator is applied to a SparseCT problem with nΘ = 60

projection angles are considered, uniformly sampled in the [0, π] range.

Figure 1.4: The result of the FBP operator on a SparseCT problem.

1.3.2 Model-Based Methods

To address the challenges posed by the severe ill-posedness of the blurring operator and

the non-invertibility of the normal operator in the SparseCT inverse problem, numerous ap-

proaches have been proposed in the literature. One of the most successful is to reformulate

the inverse problem as a regularized optimization problem [3, 19, 22], solved through the

application of iterative algorithms.

Definition of the optimization problem Consider an optimization problem of the form:

min
x∈Rn

J (Kx,yδ) + λR(x), (1.18)

where J is a measure of the distance between Kx and yδ and it is usually referred to

as fidelity term, λ > 0 is a scalar that balances the two terms in the optimization problem,

known as regularization parameter, while R formalizes the prior knowledge we have on the

true x by penalizing the solutions that do not follows that prior. Here, the choice of J is

usually determined by the statistics of the noise as input and, in particular, it is defined

as the logarithm of the likelihood distribution of the noisy data yδ given Kxgt [19]. For

example, when e is assumed to be Gaussian distributed, then J (Kx,yδ) = 1
2
||Kx− yδ||22,

while if e is Poisson noise, then J (Kx,yδ) = DKL(Kx||yδ), where DKL is the Kullback-

Leibler Divergence [18, 32]. On the other side, the choice of the regularizer R requires more



22 1. Inverse Problems in Imaging: from optimization to data-driven algorithms

attention and it is usually based on the conditioning properties of K and on the assumptions

on the structure of the set X of good images. Consequently, different considerations have to

be done with respect to the image deblurring and the SparseCT inverse problems.

When the forward operator K is a Gaussian blur operator, we have already shown that

it does not satisfy (DPC). It is thus natural to introduce a regularization term that in a way

substitutes K with a better-conditioned matrix, such that the solution of the regularized

problem does not amplify the noise as input. To do that, R(x) can be simply chosen to

be equal to ||Lx||22, where L ∈ Rd×n is any matrix such that ker(K) ∩ ker(L) = {0}. The

resulting optimization problem becomes

min
x∈Rn

1

2
||Kx− yδ||22 +

λ

2
||Lx||22, (1.19)

which is known as Tikhonov-regularized inverse problem [33], due to the name classicaly

attributed to this choice of R(x), which is Tikhonov-regularization term. Note that (1.19)

can be rewritten as:

min
x∈Rn

1

2
||K̃Lx− ỹδ||22, (1.20)

where we defined

K̃L =

[
K 0

0 λL

]
and ỹδ =

[
yδ

0

]
. (1.21)

The equation above defines a strictly convex optimization problem, whose solution exists

and is unique if and only if ker(K)∩ker(L) = {0} and can be computed by any optimization

algorithm such as the Conjugate Gradient Method for Least-Squares (CGLS) [34].

It can be shown that the matrix K̃L is better conditioned when compared to K. In

particular, it holds:

Proposition 1.3. If L = I, then the i-th singular value of K̃L is equal to
√

σ2
i + λ2, where

σi is the i-th singular value of K.

Proof. Let K = UΣV T be the SVD of K. Then:(
K̃L

)T
K̃L = KTK + λ2I = V ΣV T + λ2I = V

(
Σ+ λ2I

)
V T (1.22)

is the eigenvalue decomposition of
(
K̃L

)T
K̃L. Consequently, the i-th eigenvalue of

(
K̃L

)T
K̃L

is equal to σ2
i +λ2. Since the i-th singular value of K̃L is the square root of the i-th eigenvalue

of its associated normal operator, we conclude.

As a consequence of Proposition 1.3, K̃L is well-conditioned if λ is large enough. Clearly,

the solution of the Tikhonov-regularized inverse problem will be less accurate than the



1.3 Reconstruction algorithms 23

pseudo-inverse solution K†yδ when no noise is considered in yδ since approximating K with

KL introduces errors in the operator that reduces the quality of the reconstruction. Despite

that, introducing a regularizer stabilizes the operator, allowing it to obtain good-quality re-

sults when noise is present in the data. For example, in Figure 1.5, we compared the quality

of the reconstruction of the same experiments as in Figure 1.3, with Tikhonov regularization.

It is clear that, especially when low noise levels are considered, the Tikhonov reconstruction

has greater quality compared to the direct solution, as shown in the previous Figure.

xgt yδ
(
K̃L
)†

yδ

Figure 1.5: The result obtained by applying the Tikhonov regularization method to an

inverse problem where the operator K does not satisfy (DPC) and the datum is slightly

corrupted by noise. Left. the ground-truth image xgt. Center. the blurred and slightly

noisy version of xgt. Right. the reconstruction obtained by solving the Tikhonov regularized

inverse problem.

On the other side, when the system has infinite solutions such as in SparseCT, the

formulation of R becomes more complicated. In particular, to restrict the space of possible

solutions X to a singleton, it is common to assume that X has a sparse structure, meaning

that there exists a sparsifying transformation T : Rn → Rn, such that for any x ∈ X ,∑n
i=1 1(Tx)i ̸=0 =: ||Tx||0 ≤ s, where s ≪ n, while ||Tx||0 ≈ n for any x /∈ X . When this

is the case, we say that X is s-sparse [35, 36]. Note that, under this assumption, a natural

formulation for the solution of yδ = Kxgt + e would be:

min
x∈Rn

||Tx||0 s.t. Kx = yδ, (1.23)

or, by relaxing the constraint:

min
x∈Rn

||Tx||0 s.t. J (Kx,yδ) ≤ ϵ, (1.24)



24 1. Inverse Problems in Imaging: from optimization to data-driven algorithms

for some small ϵ > 0. Since the ℓ0-pseudonorm ||Tx||0 is non-convex and non-smooth, it is

common to substitute it in (1.24) by its convex relaxation ||Tx||1 =
∑n

i=1 |(Tx)i|, to obtain,

min
x∈Rn

||Tx||1 s.t. J (Kx,yδ) ≤ ϵ. (1.25)

The optimization problem (1.25) can be easily solved by considering the associated un-

constrained Lagrangian formulation:

min
x∈Rn

J (Kx,yδ) + λ||Tx||1, (1.26)

leading to an optimization problem such as (1.18), withR(x) = ||Tx||1. When T is a coordi-

nate change matrix, as is the case when it represents the Wavelet transform [37] or the Fourier

Transform [38], the problem (1.26) can be solved with algorithms like the Basis-Pursuit [36]

or FISTA [39]. In this case, the Compressive Sensing (CS) [35] literature proved important

recovery results. For example, if the matrix K satisfies a property called s-Restricted Isom-

etry Property (s-RIP), then under suitable hypothesis on the number of measurements m,

the global minimum x∗ for the strictly convex optimization problem (1.26) is a minimum

for (1.23) and satisfies ||x∗ − xgt||2 ≤ Cδ for a constant C > 0 (see [36] for more details).

In modern applications, it is common in the SparseCT literature to consider a particular

sparsifying transform T that is not a coordinate change but works better in practice: the

gradient operator. In particular, if x ∈ Rn represents a 2-dimensional image, then we define

Tx = Dx, where

Dx =

[
Dhx

Dvx

]
∈ R2n×n. (1.27)

Here, Dh and Dv are n × n matrices representing the discretization of the horizontal and

vertical derivative of x, respectively. The resulting optimization problem (1.26) reads:

min
x∈Rn

J (Kx,yδ) + λ||Dx||2,1, (1.28)

where we defined:

||Dx||2,1 =
n∑

i=1

√
(Dhx)2i + (Dvx)2i . (1.29)

To simplify the notation, ||Dx||2,1 it is commonly referred to as Total Variation and

indicated as TV(x) := ||Dx||2,1. With this notation, Equation (1.28) is:

min
x∈Rn

J (Kx,yδ) + λTV(x), (1.30)



1.3 Reconstruction algorithms 25

which is named Total Variation-regularized inverse problem [40, 41]. In practical appli-

cations, it is common to also enforce non-negative constraint for x, as digital images are

only defined for positive pixel values, leading to:

min
x≥0
J (Kx,yδ) + λTV(x). (1.31)

Since the above optimization problem is the sum of a convex, smooth functional J and

a convex, non-smooth term TV, it can be efficiently solved by the Chambolle-Pock (CP)

algorithm [42] for Total Variation minimization (named CP-TV in the following), or by the

Scaled Gradient Projection (SGP) [43] algorithm. A quick note on the definition (1.29): some

authors define TV(x) := ||Dhx||1 + ||Dvx||1. This is known as anisotropic Total Variation

functional, in contrast with the one defined in (1.29) which is the isotropic Total Variation

functional. Through this thesis, we will consistently consider the isotropic formulation in

(1.29).

In modern SparseCT algorithms, since D is not invertible and the discretization of the

fan-beam Radon transform RΓ does not satisfy the s-RIP conditions, theoretical robust re-

covery properties from the CS literature do not hold. Authors in [44] indicated that error

bounds similar to the one from CS literature hold in this case, while a complete under-

standing is still lacking. Despite that, the empirical analysis shows that minimizers of (1.30)

exhibit remarkable reconstruction quality even with very few discretization angles nΘ and

high noise levels.

Aware that Tikhonov and Total Variation regularizers are not necessarily the most effec-

tive regularizers for both image deblurring and SparseCT, in this thesis we mainly focus on

them as a case study for our proposed methods. Extending the methods introduced in my

PhD to more advanced regularizers is left as a future work.

Optimization algorithms From an optimization point of view, in this thesis we solve

Tikhonov-regularized inverse problems by the CGLS algorithm, while TV regularized in-

verse problems are solved by either the Chambolle-Pock or the Scaled Gradient Projection

algorithms. The remainder of this Section will delve into the specific form of each considered

algorithm.

Conjugate Gradient for Least Squares (CGLS) The CGLS algorithm is a very fast

iterative method for the solution of quadratic optimization problems, i.e. where the objective

function F(x) can be written as:



26 1. Inverse Problems in Imaging: from optimization to data-driven algorithms

F(x) = 1

2
xTKx− yTx+ c. (1.32)

In Equation (1.20), we already observed that the Tikhonov-regularized inverse problem

has this form, with K :=
(
K̃L

)∗
K̃L, y =

(
K̃L

)∗
ỹδ, c = 0. Note that, since F(x) is a

strictly convex function, its only minimum can be computed as ∇F(x) = 0. Straightforward

computation shows that the solution to this equation is the solution of the linear system

K∗Kx = K∗y, which is the system of normal equations associated with F(x).
Given a starting guess x(0) ∈ Rn, the CGLS method defines a sequence p(k) of K-

conjugate vectors (meaning that
(
p(s)
)T

Kp(t) = 0 for any s, t ∈ N), and updating

x(k+1) = x(k) + α(k)p(k), (1.33)

where α(k) > 0 is the step size. In particular, by renaming g(k) := −∇F(x(k)), the

K-conjugate vector p(k) is computed as:

β(k+1) =

(
g(k)
)T

Kp(k)

(p(k))
T
Kp(k)

,

p(k+1) = g(k) − β(k+1)p(k),

(1.34)

while the step size α(k) is chosen to maximize the decrease of F in the direction p(k) starting

from x(k), that is:

α(k+1) =
||g(k)||22

(p(k))
T
Kp(k)

. (1.35)

Algorithm 1 shows an efficient implementation of the described method. The importance

of this algorithm resides not only in its convergence speed, which is linear in the worst-case

scenario, but converges to the exact solution in at most n iterations, but also in the fact that

it does not require the matrix K to be stored in memory, since it requires only matrix-vector

and matrix transposed-vector operations. Consequently, it can be used in problems where

K is too large to be stored in memory but the application of K and its transposed can be

done efficiently, as it is the case in the image deblurring problem. In that case, the algorithm

returns an accurate solution to the ill-conditioned problem with low time requirements.

Scaled Gradient Projection (SGP) The Scaled Gradient Projection (SGP) algorithm

[25, 43] is a fast algorithm for the optimization of smooth objective functions F(x), where
it is possible to explicitly compute ∇F(x) at any point x ∈ Rn. Since we are interested in

utilizing this algorithm to solve (1.31), we note that the objective function is not smooth,

due to the TV(x) term being non-smooth at x = 0. To apply SGP to (1.31), it is thus



1.3 Reconstruction algorithms 27

Algorithm 1 Conjugate Gradient method for Least Squares (CGLS)

task minimize F(x) = 1
2
||Kx− y||22 for x ∈ Rn

input a starting guess x(0) ∈ Rn

initialize r(0) = y −Kx(0), g(0) = KTr(0)

for k ← 1 : n do

if k = 1 then

p(1) = g(0)

else

β(k+1) = − ||g(k)||22
||g(k−1)||22

p(k+1) = g(k) − β(k+1)p(k)

end if

α(k+1) =
||g(k)||22

||Kp(k+1)||22
x(k+1) = x(k) + α(k+1)p(k+1)

r(k+1) = r(k+1) − α(k+1)Kp(k+1)

g(k+1) = KTrk+1

end for

return x(n)

necessary to substitute the TV regularization term by a smooth approximation of it. A

common choice is to consider the TVβ functional, defined as

TVβ(x) =
n∑

i=1

√
(Dhx)2i + (Dvx)2i + β2, (1.36)

for a small β > 0. The resulting optimization problem

min
x≥0
J (Kx,yδ) + λTVβ(x), (1.37)

has a smooth objective function and can be solved by the SGP algorithm. It is an iterative,

gradient-based method, where for each iteration k ≥ 0, the iterate x(k) gets updated as

x(k+1) = x(k) + αkd
(k), (1.38)

with αk > 0 step-size and d(k) a descent direction. In particular, the descent direction of

SGP is chosen as:

d(k) = P+

(
x(k) − ηkSk∇F(x(k))

)
− x(k), (1.39)

where P+ : Rn → Rn is the projection on the non-negative axis, ηk is a step-size, and Sk

is a diagonal matrix known as scaling matrix, whose entries depends on ∇F(x(k)) [45]. In



28 1. Inverse Problems in Imaging: from optimization to data-driven algorithms

particular, consider a splitting of ∇F(x) into its positive and negative part, as

∇F(x) = V (x)− U(x), (1.40)

where V (x) > 0 and U(x) ≥ 0. Then the elements on the diagonal of Sk are computed as

s
(k)
i,i = min

(
ρk,max

(
1

ρk
,

x
(k)
i

Vi(x(k))

))
, (1.41)

where {ρk}k≥0 is a decreasing positive sequence, usually defined as ρk =
√
1 + k−2.1 · 1015

[46].

In our experiments, the step sizes ηk are selected by the alternating Barzilai-Borwein (BB)

method [47], which has been shown to accelerate convergence in many imaging applications

[43, 48]. In particular, let:

ηBB1
k+1 = argmin

ηk∈R
||(ηkSk+1)

−1s(k) − z(k)||2 =
(
s(k)
)T

S−1
k+1S

−1
k+1s

(k)

(s(k))
T
S−1

k+1z
(k)

, (1.42)

and

ηBB2
k+1 = argmin

ηk∈R
||s(k) − (ηkSk+1) z

(k)||2 =
(
s(k)
)T

Sk+1z
(k)

(z(k))
T
Sk+1Sk+1z(k)

, (1.43)

the classical Barzelai-Borwein rules [49] for ηk, where

s(k) = x(k+1) − x(k), z(k) = ∇F(x(k+1) −∇F(x(k). (1.44)

The alternating Barzelai-Borwein method select the step-size ηk+1 based on the the ratio

between ηBB2
k+1 and ηBB1

k+1 . In particular,

if
ηBB2
k+1

ηBB1
k+1
≤ τk :

ηk+1 = min{ηBB2
j , for j = max{1, k + 1−mη}, . . . , k, k + 1}, τk+1 = 0.9τk,

otherwise:

ηk+1 = ηBB1
k+1 , τk+1 = 1.1τk,

(1.45)

where mη is a non-negative integer and τk is a positive real number.

The resulting optimization algorithm, described in detail in Algorithm 2, has a theoret-

ical convergence rate of O( 1
k
) [50] but, for suitable choices of the scaling matrix Sk, it is

empirically very well comparable with other state-of-the-art algorithms [48, 50]. For this

reason, the SGP algorithm is commonly used among the SparseCT community.



1.3 Reconstruction algorithms 29

Algorithm 2 Scaled Gradient Projection (SGP)

task minimize smooth function F(x) with ∇F(x) = V (x)−U(x), V (x) > 0, U(x) ≥ 0

input a starting guess x(0) ≥ 0, γ, σ ∈ (0, 1), 0 < ηmin ≤ ηmax, kmax ∈ N
for k ← 1 : kmax do

compute g(k) = ∇F(x(k)

compute S(k) as in (1.41)

define ηk ∈ [ηmin, ηmax] with Barzelai-Borwei

compute d(k) = P+

(
x(k) − ηkSkg

(k)
)
− x(k)

find αk by the backtracking algorithm:

αk = 1

while F(x(k) + αkd
(k)) > F(x(k)) + σαk

(
g(k)
)T

d(k) do

αk ← γαk

end while

update x(k+1) = x(k) + αkd
(k)

end for

return x(k+1)

Chambolle-Pock (CP) The Chambolle-Pock (CP) algorithm is arguably the most used

iterative method to solve TV-regularized inverse problems. In its general formulation, it can

be used to minimize functionals of the form:

min
x∈Rn

F (Dx) +G(x), (1.46)

where both F and G are proper, convex, lower semi-continuous functions from Rn to R.
Note that there is no restriction on the smoothness of neither F and G, thus the method can

be applied to the general TV-regularized formulation (1.31) by setting F (Dx) = λTV(x)

and G(x) = J (Kx,yδ). To simplify the computation, in this paragraph, we will consider

J (Kx,yδ) = 1
2
||Kx − yδ||22, but similar arguments hold for general functions J . The CP

algorithm considers the primal-dual formulation of (1.46):

min
x∈Rn

max
z∈Rn

zTDx+G(x)− F ∗(z), (1.47)

where F ∗ is the convex conjugate of F [51]. Given a starting guess for both the primal

variable x(0) and the dual variable z(0), the update rule is as follows:


z(k+1) = (I + σ∂F ∗)−1

(
z(k) + σDx̄(k)

)
x(k+1) = (I + τ∂G)−1

(
x(k) − τD∗z(k+1)

)
x̄(k+1) = x(k+1) +Θ

(
x(k+1) − x(k)

) (1.48)



30 1. Inverse Problems in Imaging: from optimization to data-driven algorithms

where x̄(0) = 0, Θ ∈ [0, 1] is a parameter that we set equal to 1 in the experiments, while

σ > 0, τ > 0 are defined as σ = τ = 1
||M ||2 , where M is the operator obtained by concatenat-

ing K and D, and ||M ||2 is computed by the power method in all the experiments. Explicit

computation of (I + σ∂F ∗)−1 and (I + τ∂G)−1 for the TV-regularized inverse problem can

be found in [42], and in Algorithm 3. The theoretical convergence rate for the CP algorithm

is O( 1
k2
), which is slightly faster than that of SGP but emprically the performance of the

two methods is comparable.

Algorithm 3 Chambolle-Pock for Total Variation minimization (CP-TV)

task minimize convex function F(x) = F (Dx) +G(x)

input the operator K, corrupted data yδ ∈ Rm, regularization parameter λ > 0.

define M =

[
K

D

]
, Γ = ||M ||2, ν = ||K||2

||M ||2 , η = 2 · 10−3, τ = σ = Γ−1, Θ = 1

initialize primal variables x(0) = x̄(0) = 0, dual variables s(0) = 0 ∈ Rm, q(0) = 0 ∈ R2m

for k ← 1 : kmax do

update dual variable q(k+1) = q(k)+σ(Kx̄−yδ)
1+σλ

define s̄(k+1) = s(k) + σDx(k)

update dual variable s(k+1) = λs̄(k+1)

max{λ1,|s̄(k+1)|}
update primal variable x(k+1) = P+

(
x(k) − τ(KTq(k+1) + νDTs(k+1))

)
update x̄(k+1) = x(k+1) +Θ(x(k+1) − x(k))

end for

return x(k+1)

To conclude this Section, we underline the major drawback of iterative algorithms, es-

pecially those used to optimize TV-regularized inverse problems, which motivated my PhD

research. Even if the quality of the optimal point of those problems exhibits great accuracy

and superior stability at input noise, their best convergence rate is sublinear, which implies

that the number of iterations required to get close enough to the minimum point is usually

large. However, the medical application often requires computing the solution in a very low

time (of the order of at most one minute, if not real-time). This is impossible to achieve with

modern algorithms and technology, thus forcing medical protocols to use direct methods such

as FBP, with the instability issues described above.

1.3.3 Neural Networks

The advent of neural networks to the field of inverse problems is relatively recent. Although

they were theoretically introduced at the end of the last century, the technology was not

capable of handling the computational demands required for image reconstruction tasks until

the beginning of the last decade. This was made possible by the increased computing power



1.3 Reconstruction algorithms 31

of Graphics Processing Units (GPUs), enabling the efficient implementation of large-scale

convolutional neural networks for various image-to-image tasks. Modern GPUs are capable

of performing parallel computations at exceptional speeds, processing multiple images in a

fraction of a second. In this thesis, we will primarily work with neural networks, particularly

convolutional neural networks (CNNs) [24, 52, 53]. The beginning of this Section is dedicated

to a theoretical introduction to the neural network architectures used throughout the thesis,

highlighting their main advantages and disadvantages.

Definition of Neural Networks To begin, let’s define what a neural network is.

Definition 1.1. Given a neural network architectureA = (ν,S, ρ) where ν = (ν0, ν1, . . . , νL) ∈
NL+1, ν0 = m, νL = n, defines the width of each layer, S = (S1,1, . . . ,SL,L),Sj,k ∈ Rνj×νk is

the set of matrices representing the skip connections, and ρ : R→ R is a non-linear activation

function that is applied element-wise when calculated on a vector, we define the parametric

family of neural network with architecture A, parameterized by Θ ∈ Rs, as

FA
Θ = {ΨΘ : Rm → Rn; Θ ∈ Rs},

where for any yδ ∈ Rm, ΨΘ(y
δ) = zL is given by:z0 = yδ

zl+1 = ρ(W lzl + bl +
∑l

k=1 Sl,kz
k) ∀ l = 0, . . . , L− 1

(1.49)

and W l ∈ Rνl+1×νl and bl ∈ Rνl+1 is the weight matrix and the bias vector at layer l,

respectively.

It’s important to note that when no specific structure is assumed for the weight matrices

W l, the total number of parameters, denoted as s, can be calculated as:

s =
L−1∑
l=0

νlνl+1︸ ︷︷ ︸
param. of W l

+ νl+1︸︷︷︸
param. of bl

. (1.50)

This number can become exceedingly large, especially in problems with a high number

of pixels, even for relatively small values of L. To reduce the computational complexity

associated with such models, the authors in [52] proposed to restrict W l to be a convolution

matrix for all l = 0, . . . , L−1. In particular, for each layer l, consider a set of cl 2-dimensional

convolutional kernels with a shape of κ × κ. Then, if W l represents the matrix associated

with the convolution operation between this set of kernels and the output zl of the previous

layer, the number of free parameters in W l is clκ
2νl. This number is significantly lower than

νlνl+1, especially when κ ≪ νl, cl ≪ νl, as it is common in real applications. With this

constraint in place, the total number of parameters in the model becomes:



32 1. Inverse Problems in Imaging: from optimization to data-driven algorithms

s =
L−1∑
l=0

clκ
2νl︸ ︷︷ ︸

param. of W l

+ νl+1︸︷︷︸
param. of bl

, (1.51)

resulting in a linear growth in the total number of parameters with respect to the network’s

width, as opposed to quadratic growth. The resulting model, known as a Convolutional

Neural Network (CNN), serves as the foundation for nearly all modern neural network ar-

chitectures, including the networks we will explore in the following Sections. A variant of

classical CNNs are the strided Convolutional Neural Networks. In particular, each convo-

lutional layer l is associated with a parameter sl ∈ N, called the stride, which represents

the amount of downscaling applied to the output of the layer zl+1 before the next layer’s

application. If the processed image after l layers, denoted as zl and referred to as the

feature map in CNN literature, has dimensions (ml, nl), then the dimensions of the next

feature map zl+1, when processed by a strided convolutional layer with stride sl, become

(ml+1, nl+1) =
(

ml

sl
, nl

sl

)
. It’s important to note that classical convolutional neural networks

can be considered as strided CNNs with a stride of sl = 1 for all l = 0, 1, . . . , L − 1. The

number of scales in a Convolutional Neural Network refers to the number of convolutional

layers with a stride greater than 1. Consequently, a model is termed multi-scale when it

includes at least one layer with a stride greater than 1, and single-scale otherwise. Due to

their popularity it’s common, with a slight abuse of notation, to refer to them as convolu-

tional neural networks (CNNs) without specifying ’strided’.

A crucial property of Convolutional Neural Networks (CNNs) is their Receptive Field

(RF) [54]. To understand the concept of RF, let’s take as example a model with L convolu-

tional layers, each having a kernel size of κl = 3, as depicted in Figure 1.6. It’s evident that

each pixel in the feature map of the second layer is influenced only by a 3× 3 portion of the

first layer (the input of the network). Similarly, each pixel in the feature map of the third

layer is influenced by a 3×3 portion of the previous layer, and consequently by a 5×5 portion
of the input image. The number of input image pixels that affect the value of each pixel in

the l-th feature map is what we call the receptive field of the l-th layer. By continuing this

process through the network’s layers to the output, we can compute the receptive field of

the network, which represents the number of input image pixels that influence the network’s

output. This measurement is crucial because when reconstructing corrupted data containing

artifacts, understanding the RF helps ensure that the model captures and addresses these

artifacts accurately. In particular, when the artifacts are local, a small receptive field is

enough to give the model the ability to distinguish between the artifact and the image fea-

tures for the reconstruction, while when the artifacts are global, such as in the SparseCT

reconstruction, a large RF is required to produce an accurate reconstruction.



1.3 Reconstruction algorithms 33

Figure 1.6: A diagram to visually describe the receptive field in a three-layer neural network,

each with a kernel size of κl = 3. The red pixel in the third layer is influenced only by the

yellow square of the second layer, which is influenced by the yellow square of the first layer.

As a result, the receptive field of this network is equal to 5.

Since we are interested in comparing neural network architectures in terms of their re-

ceptive field, we need to derive a formula to compute it for any given network. For each

layer l, let κl and sl be its kernel dimension and stride, respectively. Moreover, let rl be the

receptive field, where the receptive field of the input layer is r0 = 1 by definition. The value

of rl can be computed with the recursive formula [54]:

rl = rl−1 + Al, (1.52)

where Al is the non-overlapping area between subsequent filter applications. Note that

Al can be simply computed as

Al = (kl − 1)
l∏

i=1

si, (1.53)

which implies that the receptive field at each l-th layer is:

r0 = 1

rl = rl−1 + (kl − 1)
∏l

i=1 si.
(1.54)

Equation (1.54) shows that the receptive field scales linearly with the depth of the network

if the kernel dimension is fixed, while it is exponentially related to the stride. For this reason,

utilizing strided convolutional layers exponentially enlarges the receptive field of the model.



34 1. Inverse Problems in Imaging: from optimization to data-driven algorithms

Our architectures We will now briefly present the three main architectures considered

in this thesis, namely the 3-layer single-scale fully convolutional neural network (3L-SSNet)

[6], the U-Net [55] and the Non-linear Activation-Free Network (NAFNet) [56].

3L-SSNet The 3L-SSNet [6] is a very simple end-to-end architecture designed to recon-

struct images from other images of the same shape. It is a three-layered fully Convolutional

Neural Network with a constant channel number, cl = 128 for l = 0, 1, 2 and kernels of

dimension (κ1, κ2, κ3) = (9, 5, 3). In particular, each layer is a Convolutional layer, followed

by a Batch Normalization layer and ReLU activation function. A draft of the structure of

the network is reported in Figure 1.7. The network does not contain stided convolutions,

hence it works in single-scale mode. As a consequence, its Receptive Field at the output

layer is small (15 × 15) and the resulting model will be unable to accurately recover global

artifacts, if present.

Figure 1.7: On the left: graphical representation of 3L-SSNet architecture; on the right:

details on the receptive fields for each of the three layers of the network (RF percentage with

respect to the input 512x512 image and size of RF). The name of the three layers follows

the notation in [57].

U-Net The U-Net is a popular multi-scale Convolutional Neural Network architecture

introduced in [55], that operates efficiently whenever the input image shows global artifacts.

It is a fully convolutional neural network with a symmetric encoder-decoder structure and

strided convolutions to enlarge its receptive field. The strides in the encoder layers naturally

divide the network into distinct levels of resolution, to which we will refer as g, g = 0, . . . ,G,
where G + 1 is the total number of levels in the network. At each level, a fixed number

ng of blocks B1, . . . Bng is applied. Specifically, each block is defined as a convolutional

layer with number cg of channels constant along the level, followed by a batch normalization

layer and then by a ReLU activation function. Given a baseline number of convolutional

channels c0 (that corresponds to the number of channels in the first level), we compute cg

for the next levels with the recursive formula cg+1 = 2cg, g = 0, . . . , L − 1. In particular,



1.3 Reconstruction algorithms 35

we fixed G = 4, n0 = · · · = n3 = 3 and c0 = 64 in the experiments. As already said,

the decoder is symmetric to the encoder, with upsampling convolutional layers instead of

strided convolutions. Moreover, to maintain high-frequency information, skip connections

are added between the last layer at each level of the encoder and the first layer at the

correspondent level of the decoder. To reduce the number of parameters with respect to

the original architecture [58], it is common to implement the skip connections as additions

instead of concatenations. A residual connection is added between the input layer and the

output layer too, following the implementation in [24]. As a result, the output of the model

can be described as

ΨΘ(y) = y + ΦΘ(y), (1.55)

which implies that the network has to learn the residual mapping between the input and the

expected output. For this reason, this model has been named Residual U-Net (ResU-Net) in

the literature. The importance of the residual connection has been observed in the theoretical

work [59] by Han et al., where the authors proved that the residual manifold containing the

artifacts is easier to learn than the true image manifold. For this reason, we will always

employ a residual U-Net architecture (depicted in details in Figure 1.8) throughout this

thesis.

Figure 1.8: On the right: graphical representation of ResUNet architecture; On the left:

details on the maximum receptive fields for each of the five levels of the network encoder

(RF percentage respect to the input 512x512 image and size of RF).

NAFNet The Nonlinear Activation Free Network (NAFNet), as introduced in [56], is a

state-of-the-art model designed for image restoration and inspired by the U-Net architec-

ture. In particular, as illustrated in Figure 1.9, the high-level diagram of the NAFNet aligns

seamlessly with that of the U-Net. Both architectures feature multiple levels of blocks of

layers arranged within a symmetric encoder-decoder structure. Additionally, to maintain



36 1. Inverse Problems in Imaging: from optimization to data-driven algorithms

information integrity, a skip connection is included between the encoder and the decoder at

each level of resolution. However, the distinguishing feature of the NAFNet architecture is

the construction of each individual block, which differs from the U-Net, as depicted in the

left portion of Figure 1.9. Specifically, while each block in the U-Net architecture comprises

a concatenation of a convolution layer, a ReLU activation function, and batch normalization,

NAFNet introduces a more intricate structure in each block. These blocks involve convolu-

tions, gates, normalization layers, and skip connections. It’s worth noting that, in line with

its name, NAFNet does not make use of any non-linear activation function, instead relying

on the complexity introduced by the gates for its expressiveness.

Figure 1.9: A diagram representing the UNet and NAFNet architectures.

Training a Neural Network Given a neural network architecture, a fundamental step in

its development is to train it. To do that, consider a dataset {(yi,xi)}Ni=1 ⊂ Y×X , together
with a loss function ℓ : Rn × Rn → R+. Training a network means finding the element

ΨΘ∗ ∈ FA
Θ that minimizes the average of the loss function over the whole dataset, i.e.

ΨΘ∗ = argmin
ΨΘ∈FA

Θ

1

N

N∑
i=1

ℓ (ΨΘ(yi),xi) . (1.56)

To do that, it is common to consider gradient-based stochastic optimization algorithms,

such as Stochastic Gradient Descent (SGD) [60] or the Adaptive Moment Estimation method

(Adam) [61]. Since the optimization problem (1.56) is highly non-convex, the solution com-

puted by those algorithms probably won’t be a global optimum. However, extended ex-

periments in the field show that the computed solution is close enough to the global opti-

mum, especially if residual architectures are employed [62]. In the following, we will always

consider the L2-norm as a loss function as it is common in the literature, meaning that

ℓ (ΨΘ(yi),xi) = ||ΨΘ(yi)− xi||22.



1.3 Reconstruction algorithms 37

Neural Networks for Inverse Problems Neural networks can be applied to solve in-

verse problems in multiple ways. The most common is to directly learn a mapping from the

corrupted data yδ = Kxgt + e to the corresponding xgt solution. This approach, named

end-to-end, is able to reconstruct the data with remarkable accuracy, basically incomparable

to any other reconstruction technique such as regularized variational methods. Moreover,

when the architecture of the model is a CNN, this operation can be done almost instanta-

neously if compared with the amount of time required to execute a whole iterative algorithm

to convergence. Note that, in this case, particular attention has to be given to the solution

of SparseCT inverse problems. Indeed, the Fourier slice Theorem shows that the Radon

transform can be seen as a coordinate change in the Fourier domain. As a consequence, the

mapping between the measured sinogram yδ and the solution xgt is highly non-local, thus

requiring a model with a receptive field that is as large as the sinogram itself. For this reason,

it is common in literature to pre-process the sinogram by applying a transform that maps yδ

back to the image space, in such a way that the reconstruction map becomes local and can

be performed by a CNN. This way, the neural network acts as a post-processing operator and

is named Learnt Post-Processing (LPP) [6] in the literature. A common choice is to use the

FPB as a pre-processing since, given that the Radon operator is normal-convolutional, the

application of the back-projection to the sinogram makes the transformation a convolution,

which can be easily solved by a convolutional neural network.

A drawback of the end-to-end approach is that, when unexpected noise is present in the

input of the network, the quality of the reconstruction degrades, as we will deeply discuss

in the following. My research was entirely dedicated to attenuating that particular kind

of instability, by combining techniques from the world of iterative algorithms with careful

architecture design.

Hybrid techniques, defined as the set of all the methods that combine neural networks in

variational algorithms to produce accurate and stable results, can be seen as the intersection

of the world of variational methods with the world of end-to-end neural network algorithms,

as depicted in Figure 1.10. Most state-of-the-art techniques reside in this class, ranging from

Unrolled methods [63, 64, 65] to Deep Image Prior (DIP) [66, 67], Plug-and-Play (PnP)

[68, 69] and Deep Generative Prior (DGP) [70, 71]. The common aspect of all those meth-

ods is that they consider the physics of the process (described by the forward operator K)

in the algorithm, with the intent of minimizing the impact of the noise and improving the

consistency of the solution. Indeed, it is known [72] that the instability to noise observed

with the end-to-end neural networks comes from the fact that, minimizing the average L2

loss among the training dataset, resulting in a a model that is too specific for the considered

task and, when unexpected noise is added to the input, since the model does not know the

physics of the acquisition process, it generates a solution that is far from the true image xgt.



38 1. Inverse Problems in Imaging: from optimization to data-driven algorithms

Figure 1.10: A diagram of the neural network techniques for inverse problems.

1.4 Datasets and Metrics

In this Section, we introduce the experimental setup frequently considered in the following

Chapters, with particular attention to the considered datasets, the metrics.

1.4.1 Datasets

We present here three datasets that will be used for the experiments in the following Chap-

ters: a slightly modified version of the GoPro dataset [73], containing photographic images

and mainly used for experiments in image deblurring, the widely used Mayo’s dataset [74],

containing a large number of Computed Tomography acquisitions of real patients, and the

COULE dataset, introduced in [7], containing synthetic images representing overlapping

ellipsis and lines, with the intent of simulating the interior of a human body.

GoPro The GoPro dataset contains 3,214 RGB images with a resolution of 1280 × 720,

representing the frames of videos recorded by a GoPro camera, released by NVIDIA in 2017.

To reduce the computational requirements to train our models, all the images have been

cropped to 256 × 256 patches, converted into greyscale, and normalized into [0, 1]. The

dataset has then been split into a training set containing 2103 images and a test set of 1111

images. We made the modified dataset public at https://huggingface.co/datasets/

TivoGatto/gopro_small.

https://huggingface.co/datasets/TivoGatto/gopro_small
https://huggingface.co/datasets/TivoGatto/gopro_small


1.4 Datasets and Metrics 39

Figure 1.11: Ground-truth images from the modified GoPro dataset, used for the training

of our models.

Mayo’s dataset To test the methods on real medical images, we have downloaded the

widely used AAPM Low Dose CT Grand Challenge dataset by the Mayo Clinic [75]. It

contains images of the human abdomen, reconstructed from full-dose acquisitions, in a reso-

lution of 512×512 pixels. In Figure 1.12 we depict one image with two zooms-in highlighting

areas with different anatomical structures, such as pulmonary details, Sections of ribs, and

low-contrast inter-costal muscles. As observable from Figure 1.12, real full-dose medical

images still present little noise and slightly visible streaking artifacts. This makes it quite

difficult to compute reliable metrics on the reconstructions by referencing them as ground

truth.

COULE To fully exploit the full-reference image quality assessment metrics and validate

our experiments, we created synthetic images and built few-view CT simulations. In par-

ticular, the Constrasted Overlapping Uniform Lines and Ellipses (COULE) dataset contains

430 sparse-gradient gray-scale images of size 256 × 256 with many overlying objects, vary-

ing in size and contrast with respect to the background. The left image of Figure 1.12

shows one image of the data set as an example. The whole data set is downloadable from

www.kaggle.com/loiboresearchgroup/coule-dataset.

1.4.2 Metrics

To quantitatively compare the results of our methods with other state-of-the-art techniques,

we measured reconstruction error based on three, commonly used metrics: the Root Mean

Squared Error (RMSE), the Peak Signal-to-Noise Ratio (PSNR) and the Structural Simi-

larity Image Metrics (SSIM). In the following, we will denote by x̃ ∈ Rn the reconstructed

signal by the considered model, while xgt represents the true solution we aim to recover.

www.kaggle.com/loiboresearchgroup/coule-dataset


40 1. Inverse Problems in Imaging: from optimization to data-driven algorithms

Figure 1.12: Ground-truth images from the COULE (on the left) and the Low Dose Mayo

(center) data sets, with two zoomed crops (on the right) on regions with different anatomical

structures.

RMSE The Root Mean Squared Error (RMSE) is among the most popular metrics that

measure the quality of the reconstructed signal. It is defined as:

RMSE(x̃,xgt) =

√
||x̃− xgt||22

n
. (1.57)

Clearly, the RMSE is simply the Euclidean distance between vectors x̃ and xgt, normalized

by the dimensionality. As a consequence, it follows the mathematical definition of distance

and, in particular, the smaller it is, the closer the vectors are.

PSNR The Peak Signal-to-Noise Ratio (PSNR) is a widely used metric to evaluate the

amount of noise remaining in the signal after the reconstruction. If both x̃ and xgt are in

the range [0, 1], it is defined as:

PSNR(x̃,xgt) = −10 log10
(
||x̃− xgt||22

)
. (1.58)

Due to the logarithm, the PSNR does not represent a distance and, due to the negative sign,

the quality of the reconstruction is better if the PSNR is large. Note that, since the squared

Euclidean distance between the reconstruction x̃ and the ground-truth xgt is processed by

a logarithm, a distance of few units in the PSNR signifies an exponential distance between

the two signals.

SSIM The Structural Similarity Image Metrics (SSIM) [76] is a metric used to evaluate

the qualitative similarity between two images. Given a parameter κ ∈ N, consider a set of N

overlapping windows of dimension κ × κ, in the same position between x̃ and xgt, denoted

as wx̃
i and wxgt

i for i = 1, . . . , N , respectively. Then, if µx̃
i and µxgt

i are the pixel mean of

wx̃
i , w

xgt

i , σx̃
i and σxgt

i are the pixel standard deviation of wx̃
i , w

xgt

i , then

SSIM(x̃,xgt) =
1

N

N∑
i=1

(
2µx̃

i µ
xgt

i + c1
) (

2σx̃xgt

i + c2
)(

(µx̃
i )

2 + (µxgt

i )2 + c1
) (

(σx̃
i )

2 + (σxgt

i )2 + c2
) . (1.59)



1.4 Datasets and Metrics 41

Importantly, the SSIM is always in the range [0, 1] and, since it measures the similarity

between two images, the higher the SSIM the more similar are the two images. An SSIM

equal to 1 represents perfectly equal signals.

Structure of the Thesis In the following Chapters, we will introduce a set of techniques,

developed during my PhD, to alleviate the problems related with the instability of the solu-

tion of ill-posed inverse problems to unexpected noise at input. It is organized as follows: in

Chapter 2 we introduce the concept of reconstructors as functions to solve inverse problems,

we analyze their main property and we propose a technique, named stabilizer, to increase

the stability of reconstructors. We also provide extended experiments on the Deblurring

inverse problem. In Chapter 3, we extend the ideas discussed in the previous Chapter to

the SparseCT inverse problem, designing an algorithm to stably reconstruct medical images

from sparse sinograms that does not require a dataset of ground-truth to be trained. We

name that model RISING. In Chapter 4 we realize that a good solution to the SparseCT

inverse problem requires the introduction of non-convex regularizers such as the ℓp-norm for

0 < p < 1. To this aim, we extend the methods from RISING to the non-convex setup in an

algorithm named TpV-RISING.



42 1. Inverse Problems in Imaging: from optimization to data-driven algorithms



Chapter 2

Neural Networks as reconstructors to

solve ill-conditioned inverse problems

In this Chapter, we address the linear inverse problems presented in the previous Chapter

(1.16):

yδ = Kxgt + e, ||e||2 ≤ δ, (2.1)

where we assume that K ∈ Rm×n is a full-rank matrix discretizing a continuous linear

operator not satisfying (HC3), such as deblurring [17], with m ≥ n. Moreover, we assume

that the noise e is sampled from a zero-mean Gaussian distribution with variance σ2I. We

already noted in the previous Chapter that, since K does not satisfy (DPC), computing a

solution of (2.1) is very challenging when noise affects the data.

Traditional model-based approaches tackle this problem as the minimization of an ob-

jective function containing a data-fit term and a regularization prior, with possible further

constraints on the solution, as remarked in Section 1.3.2. These terms theoretically grant

stability, but, in general, the computational time required by iterative solvers is high and it

may be necessary to choose many parameters, tuning them on the data.

In the last few years, as described in Section 1.3.3, end-to-end neural networks have been

introduced with great success for the solution of problem (2.1), since they are capable of

achieving greater accuracy than iterative regularized methods [68, 77, 78]. However, their

high accuracy is obtained at the expense of robustness with respect to noise on the input

data. In particular, they often produce poor results when applied to data corrupted by noise

different from the one learned in the training phase. Such a feature is usually referred to

as network instability. Some authors have studied the behavior of neural networks for the

solution of under-determined imaging inverse problems (i.e. m < n in equation (2.1)), in

the presence of noise on the data [72, 79, 80, 81, 82, 83, 84, 85]. However, to the best of our

knowledge, no works address the case of m ≥ n and, moreover, a mathematically grounded

understanding is still lacking.

43



44 2. Neural Networks as reconstructors to solve ill-conditioned inverse problems

Contributions The contribution of this Chapter is twofold: in the first part, we theoret-

ically investigate the properties of neural networks as solvers of discrete ill-posed problems,

by adapting the regularization theory presented in its generality by the authors in [3]. In

this setting, we formalize the two fundamental concepts of accuracy and stability for solvers,

and we derive a mathematical relation quantifying the trade-off between stability and accu-

racy and showing that it is not possible to increase a solver’s stability without decreasing

its accuracy. We also propose three solutions to improve stability while preserving high

accuracy, namely the REgularized Neural Network (ReNN), a ground truth-free approach

where the target images are the solution computed by a model-based method, the STabi-

lized Neural Network (StNN), where a pre-processing step defined by a few iteration of a

regularized iterative algorithm is provided to improve the robustness of the network, and a

combination of the two, named StReNN. In the second part of this Chapter, motivated by

the promising theoretical results of the first part, we tested the Stabilized Neural Network

approach on image deblurring, by considering two pre-processing schemes: one, denoted as

FiNN, applies a model-free low-pass filter to the datum before passing it as input to the

NN, the other, generically called Stabilized Neural Network (StNN), exploits an estimation

of the noise statistics and the mathematical modeling of both noise and image corruption

process. The accuracy and stability of those methods are compared with a classical, unsta-

bilized neural network, and tested with the three architectures introduced in Section 1.3.3.

Figure 2.1 shows a draft of the proposed frameworks, whose robustness is evaluated from a

theoretical perspective and tested on an image data set.

The methods described in this Chapter refer to my publications [8] and [10]. My personal

contributions to the cited works were in developing the theoretical framework, the code

implementation, and in the experimental setup. The code to replicate the experiments can

be found in our GitHub repositories for the cited works, at https://github.com/loibo/

ToBeOrNotToBeStable and

https://github.com/devangelista2/Ambiguity-in-solving-Inverse-Problems.

Structure of the Chapter The Chapter is organized as follows. In Section 2.1 we intro-

duce the concept of reconstructor together with the definition of its accuracy and stability; in

Section 2.2, after considering as reconstructors Tikhonov and neural networks, we propose

a new regularized reconstructor, named ReNN. A new technique to obtain two stabilized

reconstructors, StNN and StReNN, is proposed in Section 2.3. In Section 2.4 and Section

2.5 we describe the experiments performed with the proposed new reconstructors. Finally,

in Section 2.6 we report some conclusions.

https://github.com/loibo/ToBeOrNotToBeStable
https://github.com/loibo/ToBeOrNotToBeStable
https://github.com/devangelista2/Ambiguity-in-solving-Inverse-Problems


2.1 Reconstructors for the solution of linear inverse problems 45

Figure 2.1: A graphical draft highlighting the introduction of pre-processing steps Fi and St

defining the proposed frameworks FiNN and StNN, respectively.

2.1 Reconstructors for the solution of linear inverse

problems

This Section establishes the theoretical background of the Chapter, providing essential def-

initions and preliminary results. To improve the readability of this Chapter, however, we

start by introducing the notation we will use in the following. We always consider the

ground-truth solution xgt to lie in a subset X of Rn, the set of admissible data. We denote

as Y = Rg(K,X ) the range of K over X . We assume Y to be dense-in-itself (i.e. with no

isolated point) so that, for any admissible xgt ∈ X and any neighborhood V of y = Kxgt,

there is at least an x′ ∈ X such that y′ = Kx′ ∈ V . For any δ > 0, we also define

Yδ = {y + e;y ∈ Y , ||e||2 ≤ δ}. Since Y is dense-in-itself, then also Yδ is dense-in-itself. To

solve problem (2.1), we formalize the concept of reconstructor.

Definition 2.1. Any continuous function Ψ : Rm → Rn, mapping y to x = Ψ(y), is called

a reconstructor.

Given a reconstructor Ψ, we define its accuracy.

Definition 2.2. A reconstructor Ψ : Rm → Rn is said to be η−1-accurate, with η > 0, if

η = sup
xgt∈X

||Ψ(Kxgt)− xgt||2.

Note that, without any other restriction, η could be infinite. To avoid any issue, we will

always consider reconstructors with finite η in the following.



46 2. Neural Networks as reconstructors to solve ill-conditioned inverse problems

Example 2.1. An accurate reconstructor of problem (2.1) is given by:

Ψ†(y) = K†y, (2.2)

whereK† is the pseudo-inverse matrix introduced in Section 1.3.1. In this case Ψ† : Rm → Rn

is ∞-accurate. Indeed, since K is full-rank, we already proved that K† = (KTK)−1KT .

Thus,

||Ψ†(Kxgt)− xgt||2 = ||(KTK)−1KT (Kxgt)− xgt||2 = ||(KTK)−1(KTK)xgt − xgt||2 = 0.

However, reconstructors are rarely applied to noise-free data, hence a focus on the ro-

bustness of reconstructors with respect to noise is necessary.

Definition 2.3. Let δ > 0 and Ψ be an η−1-accurate reconstructor applied to problem (2.1).

We define the δ-stability constant Cδ
Ψ of Ψ as

Cδ
Ψ = sup

xgt∈X
||e||2≤δ

||Ψ(Kxgt + e)− xgt||2 − η

||e||2
. (2.3)

We will consider in the following the realistic case of Cδ
Ψ <∞.

Definition 2.4. The reconstructor Ψ is said to be δ-stable for a given δ > 0 if Cδ
Ψ ∈ [0, 1).

A δ-stable reconstructor Ψ does not amplify corruptions which have norm less than δ (as

graphically represented in Figure 2.2), since from (2.3) we derive

||Ψ(Kxgt + e)− xgt||2 ≤ η + Cδ
Ψ||e||2 ∀ xgt ∈ X , ∀ ||e||2 ≤ δ.

Definition 2.5. We define the stability radius ρ of Ψ as

ρ = sup{δ > 0; Cδ
Ψ ∈ [0, 1)} . (2.4)

Example 2.2. A reconstructor with an infinite stability radius is the following. Given δ > 0, if

µ is a probability distribution over X (for example, µ is the normalized Lebesgue distribution

over X ), the reconstructor defined as

ΨX ,δ(yδ) =

∫
X
xµ(dx), ∀yδ ∈ Yδ

is δ-stable independently from the value of δ > 0. Indeed,

||ΨX ,δ(Kxgt + e)− xgt||2 =
∥∥∥∫

X
xµ(dx)− xgt

∥∥∥ ≤ ρ(X ),

where ρ(X ) is the radius of X , defined as ρ(X ) = inf{r > 0 : X ⊆ B(
∫
X xµ(dx); r)}. As a

consequence, the stability constant is infinite regardless δ and ΨX ,δ(y) has accuracy ρ(X )−1.



2.1 Reconstructors for the solution of linear inverse problems 47

Figure 2.2: Graphical representation of the δ-stability for an η−1-accurate reconstructor.

Example 2.3. The pseudo-inverse reconstructor Ψ†(y) in equation (2.2) is unstable for any

δ > 0 when K is ill-conditioned. Indeed,

||Ψ†(Kxgt+e)−xgt||2 = ||(KTK)−1(KTK)xgt+(KTK)−1KTe−xgt||2 = ||(KTK)−1KTe||2.

If K = UΣV T is the Singular Value Decomposition (SVD) of K, then

(KTK)−1KTe = (V Σ2V T )−1V ΣUTe = V Σ†UTe =
n∑

i=1

uT
i e

σi

vi,

which implies that ||(KTK)−1KTe||2 ≫ ||e||2 when K has singular values close to zero.

These examples shed light on a possible conflict between accuracy and stability for a

given reconstructor Ψ. In the next paragraphs, we study this relationship.

2.1.1 Accuracy vs. stability trade-off

We can derive a relation between accuracy and stability, which becomes particularly inter-

esting when K is ill-conditioned.

Lemma 2.4. Let Ψ : Rm → Rn be an η−1-accurate reconstructor. Then, for any xgt ∈ X
and for any δ > 0, ∃ ẽ ∈ Rm with ||ẽ||2 ≤ δ such that

||Ψ(Kxgt + ẽ)− xgt||2 ≥ ||K†ẽ||2 − η . (2.5)

Proof. See [8].



48 2. Neural Networks as reconstructors to solve ill-conditioned inverse problems

Since the corruption ẽ such that the relationship (2.5) holds depends on xgt, for any

xgt ∈ X , we will consider the set

E(xgt) = {e ∈ Rm; Equation (2.5) holds for e, for some δ > 0}. (2.6)

Theorem 2.5 (Trade-off Theorem). Under the same assumptions of Lemma 2.4 it holds

that, for any xgt ∈ X and for any ẽ ∈ E(xgt) with ||ẽ||2 ≤ δ,

Cδ
Ψ ≥

||K†ẽ||2 − 2η

||ẽ||2
. (2.7)

Proof. See [8].

Corollary 2.6. Given the assumptions of Theorem 2.5, if X = Rn, there is a constant

C(K) > 0 which depends only on K, such that

ρ ≤ 2

η−1C(K)
. (2.8)

Proof. The proof considers the SVD decomposition of K and, by applying triangular in-

equalities to the formula in Theorem 2.5, proves the relationship in the statement. The

proof also shows an explicit formula for C(K) which is equal to 1−σn

σn
. For the complete

proof see [8].

The relation (2.8) between the stability radius ρ and the accuracy η−1 suggests that there

exists a trade-off between accuracy and stability, showing that a very accurate reconstructor

is unstable for noise corruption larger than 2
η−1C(K)

. We remark that for ill-conditioned

problems C(K) = 1−σn

σn
can be very large, making the radius potentially very small.

Similarly, Theorem 2.5 shows that a reconstructor Ψ can be δ-stable only if its accuracy

is bounded.

Corollary 2.7. Given the assumptions of Theorem 2.5, there exists η̄(K, δ,X ) ∈ R∪{+∞},
such that any reconstructor Ψ with accuracy η−1 ≥ η̄(K, δ,X )−1 is δ-unstable, i.e. Cδ

Ψ ≥ 1.

Moreover, if X = Rn and η−1 ≥ 2
C(K)δ

, where C(K) = 1−σn

σn
, then Ψ is δ-unstable.

Proof. See [8].

2.1.2 A sufficient condition for stability

Whenever the reconstructor is (locally) Lipschitz continuous, we can also derive conditions

assessing stability. First of all, we recall the definition of locally Lipschitz continuous recon-

structors.



2.2 Neural Networks as reconstructors 49

Definition 2.6. Given Y ⊆ Rm and δ > 0, we define the δ-Lipschitz (also called local

Lipschitz) constant of Ψ over Y as:

Lδ(Ψ,Y) = sup
y∈Y,z∈Rm

||z−y||2≤δ

||Ψ(z)−Ψ(y)||2
||z − y||2

. (2.9)

If Lδ(Ψ,Y) <∞ for some δ > 0, then Ψ is said to be locally Lipschitz continuous.

Focusing on our problem (2.1), we are interested in the cases where Y = Rg(K,X ).
In this case, y ∈ Y implies that ∃ xgt ∈ X such that y = Kxgt and each z ∈ Rm with

||z−y||2 ≤ δ can be characterized by z = Kxgt + e for some e ∈ Rm with ||e||2 ≤ δ. Thus,

the definition of Lδ(Ψ,Y) can be rewritten as:

Lδ(Ψ,Y) = sup
xgt∈X
||e||2≤δ

||Ψ(Kxgt + e)−Ψ(Kxgt)||2
||e||2

.

From now on, we always assume Y = Rg(K,X ).

Proposition 2.8. Let Ψ : Rm → Rn be a reconstructor with accuracy η−1 > 0 and local

Lipschitz constant Lδ(Ψ,Y). Then, given ||e||2 ≤ δ, it holds:

||Ψ(Kxgt + e)− xgt||2 ≤ η + Lδ(Ψ,Y)||e||2 . (2.10)

Proof. See [8].

Corollary 2.9. Under the assumptions of Proposition 2.8,

Cδ
Ψ ≤ Lδ(Ψ,Y). (2.11)

Proof. The Corollary follows from the Proposition 2.8 by the minimality of Cδ
Ψ. A complete

proof can be found in [8].

Corollary 2.9 proves that Ψ is δ-stable if Lδ(Ψ,Y) < 1.

2.2 Neural Networks as reconstructors

In this Section, we analyze neural networks as particular reconstructors for problem (2.1).

Consider a sequence of approximators {ΨΘ}, depending on a vector of parameters Θ,

approximating a reconstructor Ψ. In the following Theorem, we prove that the stability of

ΨΘ is strongly related to the stability of Ψ.



50 2. Neural Networks as reconstructors to solve ill-conditioned inverse problems

Theorem 2.10 (Approximation Theorem for Reconstructors). Let Ψ be an η−1-accurate

reconstructor and let {ΨΘ}Θ∈Rs be a set of reconstructors with accuracy η−1
Θ for any Θ. We

define, for any Θ ∈ Rs:

∆(Θ) := sup
xgt∈X

||ΨΘ(Kxgt)−Ψ(Kxgt)||2,

and

∆δ(Θ) := sup
yδ∈Yδ

||ΨΘ(y
δ)−Ψ(yδ)||2.

If ∆(Θ)→ 0 when Θ→ Θ∗, then:

lim
∆(Θ)→0

ηΘ = η. (2.12)

Moreover, if ∆δ(Θ)→ 0 when Θ→ Θ∗
δ, then:

lim
∆δ(Θ)→0

Cδ
ΨΘ

= Cδ
Ψ. (2.13)

Proof. See [8].

Corollary 2.11. For any Θ ∈ Rs, it holds:

ηΘ ≤ η +∆(Θ). (2.14)

Proof. See [8].

Note that ∆(Θ) and ∆δ(Θ) are, in general, not independent, as proved in the following

proposition.

Proposition 2.12. For any δ > 0, let ∆(Θ) and ∆δ(Θ) be the quantities defined in Theorem

2.10. Then:

∆(Θ) ≤ ∆δ(Θ).

Proof. See [8].

An insight on the stability properties of ΨΘ can be obtained by the following proposition.

Proposition 2.13. Let ΨΘ be a reconstructor parameterized by Θ ∈ Rs, approximating

a reconstructor Ψ with error ∆(Θ) > 0. Let η−1
Θ and η−1 be the accuracy of ΨΘ and Ψ,

respectively. If:

∆(Θ) ≤ η̄(K, δ,X )− η (2.15)

for a fixed δ > 0, where η̄(K, δ,X ) is the constant defined in Corollary 2.7, then Cδ
ΨΘ
≥ 1.

Proof. See [8].



2.2 Neural Networks as reconstructors 51

In the following, we will consider as family {ΨΘ}Θ∈Rs the neural networks, with the

notation introduced in Definition 1.1.

Given S ⊆ X , consider the dataset D = {(yδ
i ,x

gt
i );x

gt
i ∈ S}Ni=1 of images such that, for

any i = 1, . . . , N , yδ
i = Kxgt

i +ei, ei ∼ N (0, σ2I). Recall from Section 1.3.3 that training a

neural network to solve the inverse problem (2.1) means finding the reconstructor ΨΘ ∈ FA
Θ

solving the minimization problem:

min
ΨΘ∈FA

Θ

1

N

N∑
i=1

ℓ(ΨΘ(y
δ
i ),x

gt
i ), (2.16)

where δ ≥ 0 and ℓ : Rn×Rn → R+ is the loss function. Whenever we choose as loss function

the Mean Squared Error (MSE) on noiseless data (δ = 0), (2.16) corresponds to:

min
ΨΘ∈FA

Θ

N∑
i=1

||ΨΘ(yi)− xgt
i ||22 = min

ΨΘ∈FA
Θ

N∑
i=1

||ΨΘ(Kxgt
i )−Ψ†(Kxgt

i )||22, (2.17)

which results in the minimization of ∆(Θ) as introduced in Theorem 2.10 with Ψ = Ψ†. We

will name this family as NN in the following.

We observe that when K is ill-conditioned, the value η̄(K, δ,X ) defined in Corollary 2.7

is large. This becomes particularly apparent when X = Rn, as under these circumstances,

η̄(K, δ,X ) is bounded below by a quantity depending on C(K) = 1−σn

σn
. Additionally,

the value of ∆(Θ∗) derived from NN training likely meets the established inequality in

Proposition 2.13, which leads to instability. This confirms that effective neural network

training can produce a very accurate but unstable reconstructor ΨΘ.

Recently, more than one approach has been proposed to soften this instability. One of

them is to modify the loss function ℓ to enforce consistency, as developed in [86, 87]. The

idea is to define ΨΘ such as

ΨΘ(y
δ) ∈ argmin

x∈Rn

1

2
||Kx− yδ||22. (2.18)

However, it has been proved that this approach does not fully solve instabilities [72].

Another common approach to reduce instabilities in neural networks is adversarial train-

ing [88], which can be implemented by data augmentation [89, 90]. The idea is to use equiv-

ariant transformations of K to generate new data. However, for ill-conditioned matrices,

enlarging the dataset potentially increases instability [72].

A third approach, called noise injection, consists of adding noise to the input of the

network during training. It has been proved in [91] that this is equivalent to adding a

Tikhonov regularizing term to the loss function. Even if, as explained in [92], this technique

improves the stability of the resulting network, it is however not clear to which extent the

accuracy of the resulting model is affected by noise injection and, moreover, how much noise

should be added to any input to maximize the trade-off between stability and accuracy.



52 2. Neural Networks as reconstructors to solve ill-conditioned inverse problems

In the following, we propose new approaches to stabilize accurate neural networks as

solvers of (2.1).

2.2.1 Better conditioning implies better reconstructors: the ReNN

approach

To introduce our proposal, we first consider Tikhonov method, already introduced in Section

1.3.2 and reported here to relate it with the reconstructor theory, representing a stable

reconstructor [19, 33], defined as:

Ψλ,L(yδ) = argmin
x∈Rn

1

2
||Kx− yδ||22 +

λ

2
||Lx||22, (2.19)

where λ > 0 is the regularization parameter and L ∈ Rd×n is a matrix such that ker(K) ∩
ker(L) = {0}. L is usually chosen to be the identity or the forward-difference operator. We

can prove the following proposition.

Proposition 2.14. Let δ > 0 and L ∈ Rd×n. Then ∃ λ > 0 such that

Cδ
Ψλ,L ≤ Lδ(Ψλ,L,Y) < 1. (2.20)

Proof. See [8].

Now, we can improve neural networks stability by re-defining their training, forcing the

convergence of ΨΘ towards Tikhonov regularized reconstructor Ψλ,L, which is δ-stable for a

suitable value of λ. To this aim, we train the neural network by computing:

min
ΨΘ∈FA

Θ

N∑
i=1

||ΨΘ(y
δ
i )−Ψλ,L(yδ

i )||22, (2.21)

which corresponds to the minimization of ∆δ(Θ) in Theorem 2.10. We will refer to such a

network as the Regularized Neural Network (ReNN) and we will indicate it as Ψλ,L
Θ .

We underline that ReNN does not require any ground-truth solution xgt since the tar-

get is computed from the corrupted datum yδ via the Tikhonov-regularized reconstructor.

Furthermore, in the training of ReNN, noise is present not solely to the input of the neural

network model, as is the case with NN, but also to the input of the Tikhonov-regularized

reconstructor, which is responsible for generating the target. In the following, we consider

for simplicity the case X = Rn, but similar results hold for a general X ⊂ Rn.

Why does ReNN exhibit greater stability than NN? Starting from inequality (2.15) it

is easy to notice that (2.21) corresponds to the minimization of ∆δ(Θ) in Theorem 2.10.

Moreover, by Theorem 2.12, if ∆δ(Θ) is small, as it is common when ΨΘ is a neural net-

work, then ∆(Θ) ∈ [0,∆δ(Θ)] is also small. Regarding the right hand side η̄(K, δ,X ) − η



2.3 Stabilizers 53

of Equation (2.15), it is noted that in this instance η = η(λ) and η(λ) → ∞ for λ → ∞.

Consequently, for sufficiently large values of λ, it is probable that ReNN does not fulfill the

inequality (2.15) that would lead to instability. Moreover, minimizing ∆δ(Θ) is crucial for

enforcing the method’s stability, as proven by Theorem 2.10, where we have shown that in

our hypothesis the stability constant Cδ

Ψλ,L
Θ

< 1 for sufficiently small ∆δ(Θ). Hence, effective

training of ReNN should produce an accurate and stable reconstructor. The pseudocode to

compute Ψλ,L
Θ is given in Algorithm 4.

Algorithm 4 Regularized Neural Network (ReNN)

input a collection {xgt
i }Ni=1 ⊆ X of data points, δ > 0, K ∈ Rm×n and Ψλ,L, A

for i← 1 : N do

Sample ei ∼ N (0, σ2I) such that ||ei||2 ≤ δ

Compute yδ
i ←Kxgt

i + ei

Compute Ψλ,L(yδ
i )

Append (yδ
i ,Ψ

λ,L(yδ
i )) to Dλ,L

end for

Find

argmin
ΨΘ∈FA

Θ

N∑
i=1

||ΨΘ(y
δ
i )−Ψλ,L(yδ

i )||22.

return a trained ReNN ΨΘ

2.3 Stabilizers

In this Section, we propose a further stabilization of neural networks by defining the concept

of stabilizer.

Definition 2.7. A continuous functions ϕ : Rm → Rt is a δ-stabilizer of a reconstructor

Ψ : Rm → Rn if:

1. ∀ e ∈ Rm with ||e||2 ≤ δ, ∃ Cδ
ϕ ∈ [0, 1) and ∃ e′ ∈ Rn with ||e′||2 = Cδ

ϕ||e||2 such that

ϕ(Kx+ e) = ϕ(Kx) + e′. (2.22)

2. ∃ γ : Rt → Rn such that Ψ = γ ◦ ϕ.

In this case, the reconstructor Ψ is said to be δ-stabilized. The smallest constant Cδ
ϕ for

which the definition holds is the stability constant of the stabilizer ϕ.



54 2. Neural Networks as reconstructors to solve ill-conditioned inverse problems

Note that, in the definition of δ-stabilizer, we only require a stability condition for ϕ in

the first item. Interestingly, given a δ-stabilized reconstructor Ψ = γ ◦ ϕ, we can estimate

the δ-stability constant Cδ
Ψ of Ψ by the constant Cδ

ϕ and the local Lipschitz constant of γ as

proved in the following proposition.

Proposition 2.15. Let Ψ : Rm → Rn be an δ-stabilized reconstructor, Ψ = γ ◦ ϕ. If Cδ
ϕ is

the constant defined in (2.22), Lδ(γ, T ) is the local Lipschitz constant of γ with T = ϕ(Y),
then

Cδ
Ψ ≤ Lδ(γ, T )Cδ

ϕ.

Proof. See [8].

Proposition 2.15 implies the following result:

Theorem 2.16. For any δ > 0, η1, η2 > 0, let Ψ1 = γ1 ◦ ϕ1 be an η−1
1 -accurate δ-stabilized

reconstructor, and let Ψ2 be an η−1
2 -accurate reconstructor. If:

Cδ
ϕ1
∈
[
0,

Cδ
Ψ2

Lδ(γ1, T )

]
, (2.23)

then:

Cδ
Ψ1
≤ Cδ

Ψ2
.

Proof. See [8].

This Theorem yields interesting consequences for the special case where Ψ1 and Ψ2 share

the same accuracy. For instance, when both Ψ1 = γ1◦ϕ1 and Ψ2 are η
−1-accurate, if Equation

(2.23) holds, the Theorem suggests that Ψ1 is preferable to Ψ2, as Ψ1 is more stable than

Ψ2. In addition, we can state the following result, whose proof is trivial.

Corollary 2.17. Let Ψ1 = γ1◦ϕ1 and Ψ2 = γ2◦ϕ2 be δ-stabilized reconstructors. If Equation

(2.23) holds, then Cδ
ϕ1
≤ Cδ

ϕ2
.

In the next Proposition, we show that the accuracy of any δ-stabilized reconstructor

strongly depends on how far is ϕ from an injective function. Indeed, it holds:

Proposition 2.18. Let ϕ : Rm → Rt be an δ-stabilizer for an η−1-accurate reconstructor

Ψ = γ ◦ ϕ. Let

σ(ϕ) := sup{||x1 − x2||2;x1,x2 ∈ X , ϕ(Kx1) = ϕ(Kx2)} . (2.24)

Then

η−1 ≤ 2

σ(ϕ)
. (2.25)

Proof. See [8].

Note that, if ϕ is the constant reconstructor, σ(ϕ) = ∞, which implies that for any γ,

the accuracy of Ψ = γ ◦ ϕ will be zero. Similarly, if σ(ϕ) <∞, then for any η−1 ∈ (0, 2
σ(ϕ)

],

there exists Ψ = γ ◦ ϕ that is η−1-accurate. A flexible way to define such a γ, which is

mathematically complex to describe, is to use a neural network.



2.4 Experimental Setup 55

2.3.1 Iterative algorithms as stabilizers for neural networks

Consider the variational regularized reconstructor Ψλ,L as in (2.19). Suppose we compute a

sequence of functions {ϕk}k∈N approximating Ψλ,L, i.e. :

lim
k→∞
||ϕk −Ψλ,L||L2 = 0.

A simple way to get it is to consider a convergent iterative algorithm for the solution of

(2.19): x(0) ∈ Rn

x(k+1) = Tk(x(k),yδ).

Then, for any k ∈ N we can define

ϕk(·,yδ) =
k

⃝
i=1
Ti(·,yδ), (2.26)

where ⃝ is the composition operator. Clearly, as a consequence of the convergence of the

iterates Tk, {ϕk}k∈N is a sequence of functions approximating Ψλ,L. We can now define an

δ-stabilizer by fixing K ∈ N and computing ϕk for some k ≥ K.

Proposition 2.19. Given a reconstructor Ψ : Rm → Rn with local Lipschitz constant

Lδ(Ψ,Y) < 1 and a sequence of functions {ϕk}k∈N approximating Ψ, there exists K ∈ N
such that for any k ≥ K, ϕk is an δ-stabilizer.

Proof. See [8].

Consider the case study of the Tikhonov regularized reconstructor Ψλ,L. We already

proved in Proposition 2.14 that Lδ(Ψ,Y) < 1 for some λ > 0. Moreover, from (2.19) we

know that Ψλ,L(yδ) is the solution of the normal equations system

(KTK + λLTL)x = KTyδ. (2.27)

By Proposition 2.19, the functions ϕk chosen as the iterates of an iterative method for the

solution of (2.27), such as the Conjugate Gradient for Least Squares (CGLS) [16], define

a stabilizer for a neural network ΨΘ. We can join either NN or ReNN with this stabilizer,

obtaining StNN and StReNN, respectively, whose implementation is reported in Algorithms

5 and 6. Figure 2.3 schematically represents all the proposed approaches.

2.4 Experimental Setup

To assess the theoretical issues proposed, we perform three experiments, denoted as A, B,

and C in the following. For each experiment, we test two aspects: first of all, we compute

an estimation of the accuracy and the δ-stability constant for some fixed δ > 0 in the three



56 2. Neural Networks as reconstructors to solve ill-conditioned inverse problems

Algorithm 5 Stabilized Neural Network (StNN)

input a collection D = {(yδ
i ,x

gt
i )}Ni=1 of data points, a convergent algorithm Tk for Ψλ,L,

an integer k ∈ N such that ϕk is an δ-stabilizer, A
Find

γΘ = argmin
γΘ∈FA

Θ

N∑
i=1

||γΘ(ϕk(y
δ
i ))− xgt

i ||22.

Define ΨΘ = γΘ ◦ ϕk

return a trained StNN ΨΘ

Algorithm 6 Stabilized Regularized Neural Network (StReNN)

input a collection D = {(yδ
i ,x

gt
i )}Ni=1 of data points, a parameter δ > 0, a convergence

algorithm Tk for Ψλ,L, an integer k ∈ N such that ϕk is an δ-stabilizer, A
for i← 1 : N do

Sample ei ∼ N (0, σ2I) such that ||ei||2 ≤ δ

Compute yδ
i ←Kxgt

i + ei

Compute Ψλ,L(yδ
i )

Append (yδ
i ,Ψ

λ,L(yδ
i )) to Dλ,L

end for

Find

γΘ = argmin
γΘ∈FA

Θ

N∑
i=1

||γΘ(ϕk(y
δ
i ))− xλ,L

i ||22.

Define ΨΘ = γΘ ◦ ϕk

return a trained StReNN ΨΘ

proposed frameworks, with the intent of verifying their ability to balance the accuracy-

stability trade-off. To this end, we define the empirical accuracy η̂−1 and the empirical

stability constant Ĉδ
Ψ, as:

η̂ = sup
xgt∈S

||Ψ(Kxgt)− xgt||2, (2.28)

and

Ĉδ
Ψ = sup

xgt∈S

||Ψ(Kxgt + e)− xgt||2 − η̂

||e||2
, (2.29)

where S ⊆ X is the test set and e is a noise realization from N (0, σ2I) with ||e||2 ≤ δ

(different realization for any datum xgt ∈ S).

To enhance the stochasticity of our tests, we repeated T = 20 times the experiments on

the test sets, with different realizations of noise. In the following, we report the maximum



2.4 Experimental Setup 57

Figure 2.3: A schematic representation of the proposed methods.

value of the computed parameters η̂ and Ĉδ
Ψ over the T experiments.

In this phase, we perform all the tests on the end-to-end U-Net architecture introduced

in Section 1.3.3, as depicted in Figure 2.3, with the intent of isolating the improvement given

by the framework to the network architecture. The stabilizer applied to StNN and StReNN

is obtained with k = 3 iterations of the CGLS algorithm applied on (2.19) and is indicated

as ϕk in the following. In the second part, we focus on the Stabilized Neural Networks

introduced in Section 2.3. In particular, we quantitatively and qualitatively compare the

results of the three different architectures introduced in Section 1.3.3, i.e. the 3L-SSNet,

the U-Net and the NAFNet, with two different stabilizers, namely the Tikhonov Stabilized

Neural Network (StNN) already considered and a newly introduced Filtered Neural Network

(FiNN). The latter is based on the intuition that a pre-processing step should reduce the

noise present in the input data. As a consequence, we consider as a pre-processing step

the application of a Gaussian denoising filter, which is a low-pass filter that reduces the

impact of noise on the high frequencies [93]. Thus, the resulting pre-processed image is a

low-frequency version of yδ and the neural network ΨΘ ∈ FA
Θ has to recover the high frequen-

cies corresponding to the image details. We will indicate this operator as ϕG in the following.

As a test case, we consider the image deblurring inverse problem introduced in Section

1.2.1, where K is the 2562 × 2562 Gaussian blur matrix described in Section 1.2.1, with

s = 11 and σ2 = 1.3. All the tests have been performed on the GoPro dataset, as described

in Section 1.4.1. From it, we built two datasets required from the experiments, as depicted



58 2. Neural Networks as reconstructors to solve ill-conditioned inverse problems

in Algorithms 4, 5 and 6:

• D = {(yδ
i ,x

gt
i );y

δ
i = Kxgt

i + ei}Ni=1 contains the images representing the blurred and

noisy version of xgt
i , by sampling ei ∼ N (0, σ2I).

• Dλ,L = {(yδ
i ,Ψ

λ,L(yδ
i ))}Ni=1 is constituted by the images obtained by applying the

Tikhonov reconstructor defined in (2.19) to the corrupted data, using L = I. In

particular, we choose λ heuristically and we computed Ψλ,L(yδ) by using the CGLS

algorithm [16] to solve the normal equations of (2.19).

2.4.1 Experiment A

In this first experiment, we trained the networks to solve the noiseless task yi = Kxgt
i to

fit the theoretical assumptions. Thus, we trained the neural networks of NN and StNN

approaches with the input D, ReNN and StReNN with the input Dλ,L.

We remark that by minimizing the MSE either on D or Dλ,L we are minimizing ∆(Θ)

as defined in Theorem 2.10. In order to test the stability of our frameworks with respect to

unseen noise on the data, we tested on noisy images yδ
i = yi + ei where e ∼ N (0, σ2I). In

the following, we will say that a test is in-domain if the data is corrupted with the same

amount of noise as in the training, out-of-domain if the amount of noise corrupting yδ is

different to those in the training.

2.4.2 Experiment B

Among the stabilizing solutions listed in Section 2.2, in this experiment, we tested noise

injection, which is considered the most reliable. Hence we modified the training of experiment

A by adding Gaussian noise with variance σI = 0.025 to the input of each network. We

observe that concerning StNN and StReNN, the noise has been added after stabilizing the

input. In this experiment, we have tested on noisy images with σ = 0.075 and σ = 0.105.

2.4.3 Experiment C

The last test aims at experimentally checking the results proved in the second part of Theo-

rem 2.10, where in equation (2.13) we state that, by reducing ∆δ(Θ), the stability constant

Cδ
ΨΘ

converges to Cδ
Ψ. In this experiment, we show that if we choose Ψ as the Tikhonov

reconstructor, we can modify the training of ReNN and StReNN methods to minimize ∆δ(Θ)

in place of ∆(Θ), aiming at dramatically improving their stability. To do that, we modified

the input Dλ,L of the training for ReNN and StReNN by introducing noise in the target, thus

obtaining D̂λ,L = {(Kxgt
i + ê,Ψλ,L(Kxgt

i + ê)}Ni=1 where ê ∼ N (0, σ̂2I) with σ̂ = 0.025.



2.5 Numerical Results 59

2.5 Numerical Results

In this Section, we present the results obtained in our deblurring experiments described in

Section 2.4.

2.5.1 Comparison of ReNN, StNN and StReNN

In the following, we compare the accuracy and the stability of the NN approach with the

ReNN, StNN and StReNN frameworks discussed in the previous Sections. We remark that

we consider the U-Net architecture for all these tests.

Results of Experiment A Table 2.1 reports the mean values of the empirical accuracy

η̂−1 and empirical stability constant Ĉδ
Ψ, computed on the test set, with the setup described

in Section 2.4.1. To graphically visualize the trade-off between accuracy and stability, we

plot in Figure 2.4a Ĉδ
Ψ versus η̂−1. As expected, NN has excellent accuracy but it lacks

stability; on the contrary, ReNN appears as a good trade-off between accuracy and stability,

since it shows a slightly higher value of η̂−1 with respect to NN, whereas its constant Ĉδ
Ψ is

dramatically lower (from a value greater than 32 in NN to about 10 in ReNN). With the

introduction of a stabilizer, we observe that StNN and StReNN are δ-stable since Ĉδ
Ψ < 1.

Finally, by comparing the deep learning-based frameworks with the variational reconstruc-

tor Ψλ,L
K , denoted as IS in the following, we observe that the proposed StNN and StReNN

improve the IS accuracy while preserving the stability.

In Figure 2.4b we plot the reconstruction error:

E(Ψ;xgt) = ||Ψ(yδ)− xgt||2 (2.30)

when the value of σ varies in the interval [0, 0.1] for all the considered reconstructors. We

observe that the errors of NN and ReNN methods increase very rapidly: for values of σ near

zero they have slightly lower reconstruction error, but StNN and StReNN perform much

better as σ increases. Moreover, we emphasize that the stabilizer introduced in StNN and

StReNN is very effective since the curves have a gentle slope with increasing σ. Finally, to

show the statistical behavior over all of the T = 20 tests, in Figure 2.5 we report the box

plots of η̂−1 and Ĉδ
Ψ (Figures 2.5a and 2.5b respectively). They show that the values lie in a

very small range, except for very few exceptions, confirming the robustness of the proposed

methods.

Results of Experiment B The results obtained in experiment B, described in Section

2.4.2, are reported in Table 2.2 and graphically shown in Figure 2.6. We remark that the

difference between this experiment and the previous one is noise injection in the input of each

network. Since this technique stabilizes the results, we have tested the methods with higher



60 2. Neural Networks as reconstructors to solve ill-conditioned inverse problems

δ̂ = 0 NN StNN ReNN StReNN IS

η̂−1 0.1287 0.1029 0.1296 0.0980 0.0940

Ĉδ
Ψ(σ = 0.01) 32.6398 0.9269 10.9700 0.7046 0.5392

Table 2.1: Values of empirical accuracy and stability constant obtained in experiment A.

(a) (b)

Figure 2.4: Results obtained in Experiment A. Left. Scatterplot of the stability constant

versus the accuracy. Right. Plot of E(Ψ;xgt) versus δ.

values of the noise standard deviation (σ = 0.075 and σ = 0.105). In Figure 2.6a, we observe

that Cδ
Ψ < 1 for all the reconstructors. Moreover, from the values of Cδ

Ψ reported in Table

2.2, it is evident that the stabilized reconstructors StNN and StReNN benefit a lot from

noise injection. In Figure 2.6 we plot the reconstruction error for increasing noise standard

deviation σ in [0, 0.025]. We observe that the error values of NN and ReNN methods are

almost constant, verifying that noise injection prevents instability (at least up to the noise

level introduced as input of the network). For values of σ > 0.025, the curves relative to NN

and ReNN grow rapidly, overtaking StNN and StReNN which show great stability even in

the case of high noise levels.

σI = 0.025 NN StNN ReNN StReNN

η̂−1 0.0764 0.0710 0.0761 0.0705

Ĉδ
Ψ(σ = 0.075) 0.7719 0.2408 0.7674 0.2495

Ĉδ
Ψ(σ = 0.105) 0.9632 0.3608 0.9516 0.3846

Table 2.2: Values of empirical accuracy and stability constant obtained in experiment B.



2.5 Numerical Results 61

(a) (b)

Figure 2.5: Boxplot of the results obtained in experiment A for accuracy (Left) and stability

constant (Right) with T = 20 executions.

(a) (b)

Figure 2.6: Results obtained in Experiment B. Left. Scatterplot of the stability constant

versus the accuracy. Right. Plot of E(Ψ;xgt) versus σ.

Results of Experiment C The results obtained in experiment C, described in Section

2.4.3, are reported in Table 2.3 and graphically shown in Figure 2.7. We remark that here we

aim to experimentally verify Theorem 2.10 by showing that if we train ReNN and StReNN

as described in Section 2.4.3, their accuracy and stability constant are close to those of Ψλ,L.

We test the reconstructors with σ = 0.075 and σ = 0.105. Figure 2.7a shows that the

markers relative to ReNN and StReNN are indeed close to the markers associated with IS.

Table 2.3 confirms that the accuracy of ReNN and StReNN, as well as the stability constant

of ReNN, well approximate those of IS. StReNN appears even more stable than IS since

its stability constant is lower than the one of IS by approximately 0.07. These results are

confirmed by Figure 2.7.



62 2. Neural Networks as reconstructors to solve ill-conditioned inverse problems

σ = 0.025 ReNN StReNN IS

η̂−1 0.0633 0.0639 0.0605

Ĉδ
Ψ(σ = 0.075) 0.1500 0.1238 0.2034

Ĉδ
Ψ(σ = 0.105) 0.2536 0.1865 0.2566

Table 2.3: Values of empirical accuracy and stability constant obtained in experiment C.

(a) (b)

Figure 2.7: Results obtained in Experiment C. Left. Scatterplot of the stability constant

versus the accuracy. Right. Plot of E(Ψ;xgt) versus δ.

2.5.2 Comparison of StNN with different architectures and stabi-

lization

In the following, we qualitatively and quantitatively compare the accuracy and the stability

of the NN, FiNN, and StNN reconstructions with the three different architectures presented

in Section 1.3.3.

Results of Experiment A We show and comment on the results obtained on experiment

A described in Section 2.4. We remark that the aim of these tests is to measure the accuracy

of the three considered neural reconstructors and of the stabilizers proposed in Section 2.3

and verify their sensitivity to noise in the input data. In a word, how these reconstructors

handle the ill-posedness of the imaging inverse problem.

To this purpose, we visually compare the reconstructions of a single test image by the

U-Net and 3L-SSNet in Figure 2.8. The first column of each block shows the results of the

end-to-end NN reconstructors, where the out-of-domain images are clearly damaged by the

noise. The FiNN and, particularly, the StNN stabilizer drastically reduce noise, producing

accurate results even for out-of-domain tests.

The computed values of accuracies and stability constants are reported in Table 2.4. Fo-



2.5 Numerical Results 63

In-Domain Out-of-Domain

NN FiNN StNN NN FiNN StNN
U
-N

et
3L

-S
S
N
et

Figure 2.8: Results from experiment A with U-Net and 3L-SSNet.

cusing on the estimated accuracies, the results confirm that NN with the U-Net architecture

is the most accurate method, followed by NAFNet and 3L-SSNet, as expected. As a con-

sequence of Theorem 2.4, the values of the stability constant Ĉδ
Ψ are in reverse order: the

most accurate is the less stable (notice the very high value of Ĉδ
Ψ for NN!). By applying

the stabilizers, the accuracy is slightly lower but the stability is highly improved (in most

of cases the constant is less than one), confirming the efficacy of the proposed solutions to

handle noise and, at the same time, maintain good image quality. In particular, StNN is a

stable reconstructor independently of the architecture.

η̂−1 Ĉδ
Ψ

NN FiNN StNN NN FiNN StNN

U-Net 0.118 0.085 0.087 36.572 2.519 0.878

3L-SSNet 0.082 0.055 0.072 2.563 0.148 0.243

NAFNet 0.104 0.080 0.078 15.624 1.053 0.434

Table 2.4: Estimated accuracy and stability constants for experiment A on out-of-domain

test (input images corrupted by noise with δ = 2.56).

To analyze the stability of the test set with respect to noise, we have plotted in Figure

2.9, for each test image, E(Ψ;xgt) − η̂ vs. ∥e∥2, where the reconstruction error is defined

in (2.30). With green and red dots we have plotted the experiments with stability constant

lower and greater than one, respectively, and with the blue dashed line the bisect. We

notice that the values reported in Table 2.4 for the empirical stability constant computed as

supremum (see Equation (2.29)) are not outliers but they are representative of the results

of the whole test set.



64 2. Neural Networks as reconstructors to solve ill-conditioned inverse problems

NN FiNN StNN

U
-N

et
3L

-S
S
N
et

Figure 2.9: Results from experiment A. Plot of E(Ψ;xgt)−η vs. ∥e∥2 for all the test images.

The blue dashed line represents the bisect.

Results of Experiment B In this experiment we used noise injection in the neural net-

works training, as described in Section 2.4. This quite common strategy reduces the net-

work’s accuracy but improves its stability with respect to noise. However, we show that the

reconstructions are not totally satisfactory when we test on out-of-domain images, i.e. when

input images are affected by noise of different intensities with respect to training.

Figure 2.10 displays the reconstructions obtained by testing with both in-domain (on the

left) and out-of-domain (on the right) images. Even if the NN reconstructions (column 4)

are not so injured by noise as in experiment A (see Figure 2.8), however, noise artifacts are

clearly visible, especially in U-Net and NAFNet. Both the stabilizers proposed act efficiently

and remove most of the noise. We observe that the restorations obtained with FiNN are

smoother but also more blurred with respect to the ones computed by StNN.

An overview of the tests is displayed by the boxplots of the SSIM values sketched in

Figure 2.11. The light blue, orange, and green boxes represent the results obtained with NN,

FiNN, and StNN methods, respectively. They confirm that the neural network’s performance

worsens with noisy data (see the different positions of light blue boxes from the left to the

right column), whereas the proposed frameworks including FiNN and StNN are far more

stable.

2.5.3 Analysis with noise varying on the test set

Finally, we have analysed the performance of the methods when the input image yδ is

corrupted by noise ∥e∥2 from N (0, σ2I), with σ2 varying.



2.6 Conclusions 65

In-Domain Out-of-Domain

NN FiNN StNN NN FiNN StNN
U
-N

et
3L

-S
S
N
et

N
A
F
N
et

Figure 2.10: Results from the experiment B. On the left, tests with images with the same

noise as in the training (σ = 0.025). On the right, tests on images with higher noise

(σ = 0.075).

In Figure 2.12 we plot, for one image in the test set, the absolute error between the

reconstruction and the true image vs. the noise standard deviation σ. In the upper row the

results from experiment A (we remark that in this experiment we trained the networks on

no noisy data). The NN error (blue line) is out of range for very small values of σ for both

U-Net and NAFNet, whereas the 3L-SSNet is far more stable. In all the cases, the orange

and green line shows that FiNN and StNN improve the reconstruction error. In particular,

StNN performs best in all these tests.

Concerning experiment B (in the lower row of the figure), it is very interesting to notice

that when the noise is smaller than the training one (corresponding to σ = 0.025) the NN

methods are the best performing for all the considered architectures. When σ ≃ 0.05 the

behavior changes and the stabilized methods are more accurate.

2.6 Conclusions

In this Chapter, we have theoretically formulated the concept of accuracy and stability in the

solution of a discrete linear inverse problem. With these tools in mind, we have performed a

theoretical analysis on deep learning-based reconstructors, proving, in Theorem 2.5, that it

is not possible to increase stability without decreasing the accuracy of a neural network. To

balance the trade-off between stability and accuracy we have proposed new deep learning-

based approaches: ReNN, which increases the stability by inheriting, in the network training,

regularization from a model-based scheme, and StNN, which stabilizes the solution process



66 2. Neural Networks as reconstructors to solve ill-conditioned inverse problems

In-Domain Out-of-Domain

U
-N

et
3L

-S
S
N
et

N
A
F
N
et

Figure 2.11: Boxplots for the SSIM values in experiment B. The light blue, orange and green

boxplots represent the results computed by NN, FiNN and StNN, respectively.



2.6 Conclusions 67

U-Net 3L-SSNet NAFNet

Figure 2.12: Plots of the absolute error vs. the variance σ of the noise for one image in the

test set. Upper row: experiment A. Lower row: experiment B.

by reducing the impact of the noise on the input data with few iterations of a model-based

algorithm. Combining the two previous approaches we obtain StReNN, which approximates

the entire execution of a model-based iterative regularized solver. In the numerical exper-

iments on image deblurring, we compared our proposals with a standard neural network,

which exhibits high instability to noise perturbation on the data, by varying the network

architecture. The results show that our methods outperform end-to-end neural networks

even when stabilization techniques such as noise injection are introduced. In particular, the

proposed frameworks reduce the stability constant of NN up to 92% when stabilizers are

introduced in StNN and StReNN, with minimal accuracy loss of about 10 − 20% (in one

case we even gain accuracy with respect to neural networks). Regarding the choice of the

architecture, we show that the very simple 3L-SSNet overcomes UNet and NAFNet in every

test where the noise on test images exceeds the noise on the training set, combining the de-

sired characteristics of execution speed and high stability. The choice of the stabilizer is also

important. Indeed, we showed that the FiNN increases the stability of the NN-based restora-

tion, but the restored images appear too smooth and a few small details are lost somewhere.

On the other side, the Tikhonov StNN proposal, exploiting a model-based formulation of the

underlying imaging process, achieves the highest SSIM values in the most challenging out-of-

domain cases, confirming its great theory-grounded potential. It represents, indeed, a good

compromise between stability and accuracy. We finally remark that the proposed approach

can be simply extended to other imaging applications modeled as an inverse problem, such

as super-resolution, denoising, or tomography, where the neural networks learning the map



68 2. Neural Networks as reconstructors to solve ill-conditioned inverse problems

from the input to the ground truth image cannot efficiently handle noise in the input data.



Chapter 3

RISING: an unsupervised and stable

data-driven approach for Sparse

Computed Tomography

Combining healthy protocols with high-quality images is one of the most important compo-

nents of medical imaging and a crucial target for researchers involved in minimal invasive

Computed Tomography (CT). Radiologists, manufacturers, and medical physicists have im-

plemented many examination protocols as well as software and hardware modifications to

reduce the harmful ionizing radiations and pave the way to X-ray imaging for screening tests,

pediatric cases, or pre-surgical exams. There are two main techniques allowing for a signifi-

cant reduction of the total radiation exposure per patient. The first one consists of reducing

the X-ray tube current at each scan (Low-Dose CT ), without changing the traditionally

used CT full geometry. The resulting measured data is very noisy, due to excessive quantum

noise. The second practical way to lower the radiation per person consists of reducing the

number of X-ray projections (SparseCT ), which leads to incomplete tomographic data, but

very fast examinations.

In this Chapter, we focus on SparseCT images, but we reasonably argue that the pro-

posed algorithm could be also applied with success to low-dose CT. In the case of sub-sampled

data, the image reconstruction is tricky and conventional Filtered Back-Projection (FBP)

algorithms, widely exploited in classical CT, do not provide stable reconstructions as the re-

covered images typically suffer from severe striking artifacts, as already remarked in Section

1.3.1. The already introduced model-based iterative methods (see Section 1.3.2) represent a

widely used alternative approach. They model the image reconstruction as a mathematical

linear inverse problem which is solved, in the discrete setting, by minimizing a constrained or

unconstrained function combining a data-fitting term and a regularizer. Due to the lack of

projections, the SparseCT operator is non-injective and the associated inverse problem has

69



70 3. RISING: unsupervised and stable data-driven approach for SparseCT

infinite possible solutions [22]. The embedding of a sparsifying regularizer mitigates the lack

of many projection views, according to the Compressed Sensing theory [35]. An exhaustive

review of model-based reconstruction methods can be found in [94].

Recently, Deep Learning (DL) based methods have emerged over fully conventional and vari-

ational approaches for few-view tomographic reconstruction [95]. A widely used strategy is

the so-called Learnt Post Processing (LPP) approach, introduced in Section 1.3.3: a two-step

scheme where first a low-quality image with artifacts and noise is reconstructed with a fast

method (typically an FBP) and then a neural network suppresses the artifacts. Usually, the

network learns from a set of ground truth images, reconstructed from full dose acquisitions

in a long offline phase. The pioneering works by Han in 2016 and 2018 demonstrated the su-

periority of LPP strategies over some model-based iterative algorithms for SparseCT images

[59, 96].

Figure 3.1: Graphical draft of the proposed two-step RISING workflow for tomographic

reconstruction from few-view data.

The main disadvantage of model-based iterative reconstruction algorithms is their high

computational cost since they typically need several iterations to achieve high-quality re-

sults. In real systems, in order to fulfill the clinical requirements of time per exam, only

very few iterations of the algorithms can be performed, leading to a solution that is far from

being the best achievable one. However, by considering fast iterative methods, the images

reconstructed in a few iterations already contain many details of interest of the scanned

object [97, 28].

Focusing on LPP-based approaches, the work by Sidky et al. [98] claims and demonstrates

that these schemes do not compute the solution of the CT inverse problem and they can

introduce, in the reconstruction, structures not belonging to the scanned objects. On the



71

contrary, numerical evidence shows that model-based methods compute a good solution to

the inverse problem, according to the mathematical sense that will be defined in the next Sec-

tion. In addition, it is worth noticing that neural networks need to be trained on task-specific

data sets to properly learn both the degradation effects to be removed and the anatomical

details to be preserved, which characterize each typology of medical imaging; hence a further

relevant challenge for medical applications is the lack of precise training data [95].

Strong on this awareness, in this Chapter we propose to extend the StReNN framework,

introduced in Chapter 2, to the resolution of the SparseCT inverse problem. This method is

particularly promising in this scenario since it does not require any full-dose target image,

attenuating the difficulties related to data acquisition in the medical setup, cited in the last

paragraph. We refer to our proposal as the RISING (Rapid Iterative Solver with Iteration

Network-based Gaining) framework, whose graphical draft is depicted in Figure 3.1. RISING

is conceived as one reconstructing procedure, described by the two following steps, executed

in sequence:

• Starting from the sub-sampled projection data, a rapid model-based iterative algorithm

produces a preliminary coarse reconstruction, in a few iterations. The execution of only

a few iterations fits realistic time constraints. This step acts as a Stabilizer as described

in Section 2.4. Note that in this particular application, the pre-processing step is

necessary not only to enhance the method’s stability by mitigating the influence of

noise, similar to its role in image deblurring inverse problems, but also to incorporate

the prior information regarding the solution through the regularization term in the

initial reconstruction.

• The computed rough reconstruction is post-processed by a pre-trained convolutional

neural network, providing the RISING solution. By completing the iterations up to the

iterative method convergence, we obtain images used as targets for the neural network

training, as in the Regularized Neural Network (ReNN) scheme (see Section 2.3). This

ensures a fully consistent training set with respect to the system geometry, and it is

applicable to all types of medical images and few-view protocols.

Contributions This work has a dual purpose. On one side, we aim to combine the fast

execution of LPP methods with the stability of model-based iterative algorithms used in

sparse CT reconstruction. The variational robustness can face, in fact, the lack of projection

data and the presence of noise on the projections, thanks to the use of suitable regularization

functions acting as priors onto the solution. As the execution of a neural network is very

fast, the use of DL greatly speeds up the whole reconstruction.

On the other side, we intend to remedy the lack of task-specific CT data sets by using, for

network training, images created by the same system and under the same geometry used for



72 3. RISING: unsupervised and stable data-driven approach for SparseCT

the reconstruction. This is attainable for every CT system and makes the RISING frame-

work suitable for real use.

This Chapter is based on my publication [7]. My personal contributions to the cited

work were the development of the methods, the implementation of the code to test the

experiments and the experimental setup. The code to replicate the experiments is available

at https://github.com/loibo/RISING.

Structure of the Chapter The Chapter is organized as follows. In Section 3.1 we describe

the proposed RISING framework. In Section 3.2 we introduce the experimental settings con-

sidered to achieve the results reported and discussed in Section 3.3. At last, final conclusions

are drawn in Section 3.4.

3.1 The RISING framework

In this Section we describe the proposed RISING framework by focusing on the Rapid Iter-

ative Solver (RIS) phase in Section 3.1.1 and on the Iteration Network-based Gaining (ING)

phase in Section 3.1.2. For simplicity, we consider in this paper only the two-dimensional

case. The extension to three dimensions is straightforward.

3.1.1 Rapid Iterative Solver

In the discrete setting, the CT process of X-ray absorption is expressed as:

y = Kxgt (3.1)

where the unknown vector xgt ∈ Rn denotes the image to reconstruct, the right-hand side

term y is an m-dimensional vector containing the noisy projection measurements and the

m × n system matrix K is the discretization of the X-ray physical process projecting an

image onto the detector. We say that a system of linear equations is solvable in a subset

X of Rn if it admits a unique solution in X . In case of SparseCT protocols, Equation (3.1)

is not solvable in Rn since m < n, and the under-determined linear system admits infinite

solutions. According to the Compressed Sensing theory [35], if the desired solution xgt of

(3.1) is sparse in some transform T ∈ Rs×n, then Equation (3.1) is solvable in the subset

X = {x ∈ Rn| ||Tx||0 ≤ s} for s≪ n, where ∥ ·∥0 is the ℓ0 semi-norm counting the non-zero

elements of the vector argument. Hence the CT inverse problem can be reformulated as the

following minimization:

argmin
x∈X

∥Tx∥0 s.t. Kx = y. (3.2)

which admits a unique solution if K is full-rank.

https://github.com/loibo/RISING


3.1 The RISING framework 73

Equation (3.2) is usually relaxed in the following, more easily solvable, form:

argmin
x∈X

∥Tx∥1 s.t. Kx = y, (3.3)

where ∥ · ∥1 is the ℓ1 norm [99]. An unconstrained formulation of (3.3) can be stated as:

argmin
x
∥Kx− y∥22 + λ∥Tx∥1 (3.4)

where λ is a suitable positive parameter (also called regularization parameter). Convergent

iterative schemes, such as the lagged diffusivity fixed point algorithm [26] or FISTA [100],

are commonly exploited to solve (3.4). Sometimes, the constraint x ≥ 0 is added to (3.3)

or (3.4), to preserve the physical non-negativity property of the attenuation coefficients

[28, 101, 102].

In the following we will consider the particular minimization problem:

argmin
x≥0

∥Kx− y∥22 + λTVβ(x). (3.5)

where TVβ is a smoothed differentiable version of the Total Variation [103], obtained by

setting T as the image gradient discretization, to exploit sparsity in the image gradient

domain. It is defined as:

TVβ(x) =
n∑

i=1

√
(Dhx)

2
i + (Dvx)

2
i + β2 (3.6)

with β fixed small positive parameter.

Among the wide class of iterative solvers for the problem (3.5), we select the Scaled

Gradient Projection (SGP) algorithm, proposed in 2008 for image deblurring [43]. The SGP

has been successfully applied with some acceleration techniques for SparseCT reconstructions

in the papers [25, 97, 28], showing that the objects of interest are already distinguishable in

the image computed after very few iterations of the method. Regarding the convergence, it

is proved in [46] that the theoretical convergence rate of the SGP at the unique minimum

of (3.5) is O(1/k), even if empirical tests reveal that the SGP performances are closely

comparable to the convergence rate of optimal algorithms.

The first step of the RISING framework performs a predefined (and relatively small)

number M of iterations of the considered Rapid Iterative Solver (RIS). We remark that we

stop the SGP far before its convergence to meet the constraints imposed by clinical settings,

where very short computational times are admitted for the reconstruction process. The early

solution x(M) is denoted as xRIS in the following and it represents the input of the neural

network which enhances the image in a new perspective.

3.1.2 Iteration Network-based Gaining

The second step of the RISING framework implements the Iteration Network-based Gaining

(ING) task. From our previous works [25, 97] we know that, due to the empirical rapidity of



74 3. RISING: unsupervised and stable data-driven approach for SparseCT

the SGP, in the achieved coarse image reconstruction the anatomical structures are present

but typically more blurred and less visible than on the xIS image computed at the iterative

solver convergence. Hence, we train a CNN to learn the transformation mapping the early

solution xRIS to the corresponding xIS.

Formally, we denote with Tk the function describing the action of the j-th iteration of the

solver:

x(k+1) = Tk(x(k);y) ∀k ≥ 0.

Thus, the whole iterative process can be expressed as the concatenation of the following gM

and fM functions:

gM := TM−1 ◦ · · · ◦ T0 (3.7)

and

fM := TM∗ ◦ · · · ◦ TM+1 ◦ TM . (3.8)

where M∗ is the number iterations necessary to achieve the xIS solution. In fact, it holds:

fM(gM(x(0);y)) = xIS. (3.9)

Since we compute xRIS = gM(x(0);y) in the RIS step, in the ING phase we approximate fM

by learning the map from xRIS to xIS with a CNN. Ideally, if the network would perfectly

learn fM , its output xRISING should be equal to xIS. It is known that this is not prov-

able in practice; nevertheless, we show numerical evidence through very accurate RISING

reconstructions on simulations, in Section 3.3.

3.2 Experimental design and implementation notes

To numerically verify the feasibility of the RISING workflow, we develop numerical sim-

ulations on a data set of images with geometric elements, where measures of merits can

be computed, as well as real on a data set of medical images, to properly understand the

potential of RISING for clinical applications and settings. We generate the sinograms by

projecting the images of the data sets according to 2D fan-beam geometries, and by adding

zero-mean Gaussian noise to the projections.

This Section describes the experimental design, whereas the results are reported and

discussed in Section 3.3.

3.2.1 Data set of synthetic images

To fully exploit the full-reference image quality assessment metrics and validate our ex-

periments, we consider the Constrasted Overlapping Uniform Lines and Ellipses (COULE)

dataset, described in Section 1.4.1. The left image of Figure 3.2 shows one image of the

dataset as an example.



3.2 Experimental design and implementation notes 75

Figure 3.2: Ground-truth images from the COULE (on the left) and the Low Dose Mayo

(center) data sets, with two zoomed crops (on the right) on regions with different anatomical

structures.

To address sparse-view CT reconstructions, we considered different protocols: the first

one is a full angular acquisition with 1-degree spaced projections (we call it P360,360 in the

following); in the others, we reduce the number of acquired projections to 180 (P360,180) and

60 (P360,60).

3.2.2 Data set of real medical images

As real patient images, we have downloaded the widely used AAPM Low Dose CT Grand

Challenge data set by the Mayo Clinic [75], described in Section 1.4.1. In Figure 3.2 we

depict one image with two zooms-in highlighting areas with different anatomical structures,

such as pulmonary details, Sections of ribs, and low-contrast inter-costal muscles. On this

data set, we test the P360,360 protocol and a very sparse geometry with only 60 projections

in 180 degrees scanning trajectory (P180,60). As observable from Figure 3.2, real full-dose

medical images still present little noise and slightly visible streaking artifacts. This makes

it quite difficult to compute reliable metrics on the reconstructions by referencing them as

ground truth.

3.2.3 Network architecture and training

As CNN architecture we use the state-of-the-art ResU-Net architecture as described in Sec-

tion 1.3.3. Given the data set {(xRIS,i,xIS,i)}i=1,...,N , we denote by FΘ∗(xRIS,i) the action

of the neural network on the input xRIS,i and by xRISING,i = FΘ∗(xRIS,i) the network out-

put. We estimate the parameters Θ∗ by network training, where the loss function is set as

ℓ(xIS,i,xRISING,i) = ||xRISING,i − xIS,i||22, so that:

Θ∗ = argmin
Θ

1

N

N∑
i=1

ℓ(xIS,i,xRISING,i). (3.10)

The training is performed by running Adam for 100 and 50 epochs for the COULE

and Mayo datasets, respectively. The batch size is fixed equal to 8 in all the experiments

(this is the largest batch size usable in our Nvidia RTX A4000 GPU). The step size for



76 3. RISING: unsupervised and stable data-driven approach for SparseCT

the optimization algorithm decreases with polynomial decay, going from 10−3 to 10−5. To

increase the stability over the first iterations, we clip the gradient to 5.

3.2.4 Implementation notes

As already presented in Section 3.1.1, we use SGP as the iterative solver. In each iteration, we

use the class OpTomo of ASTRA toolbox [104, 105] to compute the matrix-vector products

Kx andKTy, whereK is the discretization of the fan-beam Radon transform as in equation

(3.1).

In our experiments, we set the smoothing parameter for the TV regularizer to β = 10−3, the

regularization parameter as λ = 10−5 for the Mayo data set and λ = 4 · 10−5 for the COULE

data set.

To generate the images xIS, we consider the following stopping conditions: ||∇J (x(k))||2 < τ1||∇J (x(0))||2
||x(k) − x(k−1)||2 < τ2||x(k−1)||2

(3.11)

where ∇J is the gradient of our objective function (3.5) and τ1 = τ2 = 10−6 in the experi-

ments. All the SGP inner parameters are taken from [25].

3.3 Experimental results and discussion

In this Section, we report and discuss the more representative numerical experiments per-

formed using the proposed workflow for tomographic image reconstruction from few-view

data.

3.3.1 Robustness of RISING with respect to data perturbation

We first analyze the robustness of the proposed RISING framework with respect to noise

on the sinogram. We compare it with an LPP-based traditional algorithm (called FBP-LPP

in the following), where the same U-Net architecture used in RISING is trained to map

low-quality FBP reconstructions to ground truth images [6]. We obtained a noisy projection

vector yδ from the non-noisy sinogram y as:

yδ = y + δ
||y||2
||e||2

e, δ = 0.01, (3.12)

where e is AWGN with standard deviation equal to one. We trained the networks on

reconstructions computed from the data yδ and, to verify the methods’ robustness, we tested

them both on sinograms yδ and yδ′ , corrupted by further noise:

yδ′ = yδ + δ′
||yδ||2
||e||2

e. (3.13)



3.3 Experimental results and discussion 77

Table 3.1: Results on the COULE synthetic test data set, under the P360,360 CT protocol,

reporting mean and standard deviation (StdDev) for different reconstructions obtained with

low noise data yδ (Equation (3.12)) and high noise data yδ′ (Equation (3.13)).

xFBP xRIS xFBP−LPP xRISING

Mean StdDev Mean StdDev Mean StdDev Mean StdDev

RE
yδ 0.1027 0.0089 0.2501 0.0319 0.0292 0.0097 0.0574 0.0869

yδ′ 0.2554 0.0132 0.2542 0.0302 0.1294 0.0333 0.0989 0.0128

SSIM
yδ 0.8926 0.0252 0.8113 0.0686 0.9969 0.0019 0.9801 0.0093

yδ′ 0.4891 0.0822 0.7916 0.0697 0.7475 0.1537 0.8982 0.0475

Figure 3.3 shows the boxplots of Relative Error (RE) and SSIM values drawn from the results

on the COULE data set, with the P360,360 geometry and δ = 0.05. They show that the quality

of the images by the FBP-LPP method highly decreases (especially for the SSIM metric)

when we consider the noisy data yδ′ , from the best to the worst values. The results obtained

with RISING framework are much more stable: the RE and SSIM values moderately worsen,

and the final scores outperform the FBP-LPP. Moreover, the RISING boxplot length in the

presence of noise is quite small, showing that the method performance does not have extreme

values on the whole test set. Table 3.1 reports the mean and standard deviation (StdDev

in the table) computed on the FBP reconstruction xFBP , the xRIS low-quality image and

on the two final outputs xFBP−LPP and xRISING. It confirms that RISING is much more

robust than FBP-LPP with respect to noise on the data.

The same information on the Mayo test set with geometry P180,60 and δ′ = 0.04 is reported

in Table 3.2. We underline that the SSIM values decrease by about 17% for FBP-LPP and

only 9.8% for RISING, when applied to high noise data yδ′ . This provides medical images

with the same outcomes obtained on synthetic data.

The previous findings confirm that the widely used FBP-LPP approach gives very good

results when applied to images corrupted by the same noise degradating the training samples:

in this case, it exploits at its best the information provided by the available ground truth

images and it outperforms RISING. On the contrary, when the sinograms are affected by

unseen noise (as it is common in real applications), the quality of the RISING reconstructions

is way better.

3.3.2 Results on synthetic images

In this paragraph, we focus on the synthetic COULE data set.

As first in-depth analysis, we set the geometry P360,360 and we compute the xRIS early

solution for M = {3, 5, 10}. Figure 3.4 shows the xRIS starting images in the top row and



78 3. RISING: unsupervised and stable data-driven approach for SparseCT

Table 3.2: Results on the Mayo test data set, under the P180,60 CT protocol, reporting mean

and standard deviation (StdDev) for different reconstructions obtained with low noise data

yδ (Equation (3.12)) and high noise data yδ′ (Equation (3.13)).

xFBP xRIS xFBP−LPP xRISING

Mean StdDev Mean StdDev Mean StdDev Mean StdDev

RE
yδ 0.4518 0.0264 0.1803 0.0249 0.1004 0.0164 0.1236 0.0294

yδ′ 1.300 0.0609 0.2326 0.0251 0.2026 0.0113 0.2041 0.0229

SSIM
yδ 0.3672 0.0620 0.8730 0.0283 0.9265 0.0148 0.9145 0.0175

yδ′ 0.085 0.0305 0.8016 0.0389 0.7689 0.0681 0.8231 0.0255

Table 3.3: Mean and standard deviation values of the quality metrics, evaluated on the

COULE test set for different RIS reconstructions under the P360,360 protocol.

M=3 M=5 M=10 convergence

Mean StdDev Mean StdDev Mean StdDev Mean StdDev

RE

xRIS 0.6152 0.0366 0.4996 0.0548 0.2700 0.0239 - -

xRISING 0.0681 0.0098 0.0784 0.0844 0.0781 0.0122 - -

xIS - - - - - - 0.0207 0.0051

SSIM
xRIS 0.2264 0.0262 0.3139 0.0919 0.7844 0.0481 - -

xRISING 0.9630 0.0133 0.9267 0.0389 0.9674 0.0140 - -

xIS - - - - - - 0.9980 0.0010



3.3 Experimental results and discussion 79

Figure 3.3: Results on the COULE synthetic test data set, under the P360,360 CT protocol.

On the x-axis the values of the metrics RE (top) and SSIM (bottom). On the y-axis the

framework used from low noise data yδ (Equation (3.12)) and high noise data yδ′ (Equation

(3.13))

.

the xRISING final reconstructions in the bottom row (relative to the example image of Figure

3.2). They show that the network is able to almost perfectly restore all three input images.

From Table 3.3 we observe that the xRISING images are very accurate, for M = {3, 5, 10},
highlighting that the number M of starting iterations seems not to notably influence the

final results. Moreover, the table shows that the xIS solution is a reliable target for the

network training since it approximates xgt very well.

To understand the behavior of our approach at increasing sparsity in the CT protocol,

we also test RISING at different geometric settings such as P360,360, P360,180 and P360,60. The

number of iterations used to generate xRIS is M = 10 and the M∗ iterations needed for

convergence is in [150, 300] for all the test images. In Table 3.4 we report the quality indices

evaluated on the test set in terms of mean and standard deviation. We first interestingly

observe that the values of all the xRIS outputs are very similar, independently from the

geometry. Considering the final reconstructions xRISING, we see that halving the number of

angles in P360,180 does not affect the mean values of the metrics; when the geometry is very

sparse in P360,60 the errors slightly increase. However, the values of the standard deviations

are small and very similar in all the tests, showing that the network has a stable behavior. As

before, the xIS solutions have excellent metrics, justifying the use of the RISING approach

even in the hardest case with only 60 angles. This shows that the considered compressed

sensing-based model (3.5) properly describes the reconstruction process independently of the



80 3. RISING: unsupervised and stable data-driven approach for SparseCT

Figure 3.4: Results on a test image from the COULE synthetic data set, under the P360,360 CT

protocol. First row, from left to right: xRIS with M = 3, M = 5 and M = 10 respectively;

second row, from left to right: the corresponding xRISING.

sparsity of the geometry (at least for the considered ones).

3.3.3 Results on real medical images

Now we present the results of RISING applied to the Mayo data set. The results obtained

with two sparse-view CT geometries, namely P360,360 and P180,60, are shown in Figure 3.5. The

left images are the xRIS = x(15) reconstructions. Even if only a small number of iterations

are performed, the main structures of the abdomen are visible; however, the images are still

blurry and few streaking artifacts are visible in the bottom image.

Our solutions xRISING are reported on the right. They both appear very accurate, the low-

contrast regions are correctly preserved and the noise is not visible. In the case of the more

challenging protocol P180,60, the thin details are less neat but still present and discernable.

Figure 3.6 plots the intensity profiles taken over the red line on the crop of Figure 3.2. In

particular, we compare the unseen target profile (black line) from xIS with the network input

xRIS curve (blue line) and the output xRISING curve (red line) for both the geometries. In

the left image (P360,360) we observe that starting from the input profile, quite far from the

black one, we obtain a result faithful to the target, mirroring that the CNN has accurately

learnt a map well approximating fM of (3.8). Also in the right image (P180,60) the line



3.4 Conclusions 81

Table 3.4: Mean and standard deviation values of the quality metrics, evaluated on the

COULE test set for different geometries.

P360,360 P360,180 P360,60

Mean StdDev Mean StdDev Mean StdDev

RE

xRIS 0.2700 0.0239 0.2706 0.0240 0.2834 0.0282

xRISING 0.0781 0.0122 0.0676 0.0123 0.1113 0.0223

xIS 0.0207 0.0051 0.0302 0.0077 0.0668 0.0147

SSIM

xRIS 0.7844 0.0481 0.7831 0.0485 0.7472 0.0643

xRISING 0.9674 0.0140 0.9741 0.0115 0.9493 0.0117

xIS 0.9980 0.0010 0.9951 0.0030 0.9753 0.0141

corresponding to the RISING solution almost overlaps the target one. At last, we underline

that the solutions xIS of the regularized model are very similar in the case of P360,360 and

P180,60 geometries.

3.4 Conclusions

We have proposed a novel framework, called RISING, for the reconstruction of a CT image

from few-views. RISING is ground truth-free, fast, and robust with respect to the noise,

hence it is a suitable framework for clinical real usage. The numerical experiments performed

both on synthetic and real medical images show that the RISING reconstructions are visually

accurate, even in a very sparse geometry with only 60 views in [0, 180] degrees. At last, we

underline that the RISING scheme is flexible since it can be set on different model-based

iterative reconstruction methods (not limited to the model in (3.5) and/or to the SGP

algorithm).



82 3. RISING: unsupervised and stable data-driven approach for SparseCT

Figure 3.5: Results on a test image from the Mayo data set, under the P360,360 (upper row)

and the P180,60 (bottom row) CT protocol. Left: xRIS; right: xRISING.

Figure 3.6: Intensity profiles taken on the horizontal red line depicted in 3.2, on the recon-

structions in Figure 3.5. The black, blue and red lines are the profile relative to xIS, xRIS

and xRISING, respectively. Left P360,360; right: P180,60.



Chapter 4

Robust non-convex model-based

approach for deep learning-based

image processing

Gradient sparsity is a commonly employed tool in imaging applications, such as image re-

construction and image processing. In particular, sparse gradients play a crucial role in com-

pressed sensing, enabling the reconstruction of high-quality images from a limited amount

of data. Forcing gradient sparsity is extremely useful in fields such as medical imaging,

where preserving boundaries of low-contrast objects is essential for accurate diagnosis and

treatment. In model-based approaches, the sparsity of a gradient is usually embedded as a

prior R in a minimization problem of the form:

min
x∈Rn

J (Kx,yδ) + λR(x) (4.1)

where x is an image in Rn, yδ is the acquired noisy sinogram, and J is a data fitting

operator.

It is well known that the ℓ0 quasi-norm, measuring the cardinality of its argument, is the

best possible sparsifying function, but its minimization is computationally very expensive.

Luckily, the signal recovery is still possible if one substitutes the ℓ1 norm to the ℓ0 quasi-norm

under suitable hypotheses [35, 99]. The resulting Total Variation (TV) prior (corresponding

to the ℓ1 norm of the image gradient magnitude) has been widely used in image processing for

more than two decades [106, 107], above all for tomographic applications [28, 40, 41, 108].

However, it also has certain drawbacks that need to be considered, as it typically over-

smoothes regions with fine details or textures.

In order to better approximate the ℓ0 quasi-norm, the ℓp, 0 < p < 1, the non-convex

sparsifying norm can be adopted. For a fixed p, the isotropic Total p-norm Variation (TpV)

83



84 4. Robust non-convex approach

of an image x ∈ Rn reads as:

TpV(x) := ||Dx||pp =
n∑

i=1

(√
(Dhx)2i + (Dvx)2i

)p
(4.2)

where (Dx)i =
√

(Dhx)2i + (Dvx)2i reflects the magnitude of the gradient image and Dh

and Dv denote the differences among two adjacent pixels in the horizontal and vertical

directions, respectively, as described in Section 1.3.2. TpV has already been successfully em-

ployed in a number of imaging applications such as image enhancement [109, 110] and image

reconstruction [111, 112, 113]. The drawback of non-convex minimization is the difficulty in

solving the optimization problem, admitting possible multiple local minima. Many efforts

have been made to propose efficient strategies or adapt the algorithms considered for convex

optimization to the non-convex case. In [114], the authors presented a proof of asymptotic

convergence of ℓp towards ℓ0 and demonstrated that even if the global minimum cannot be

guaranteed in this case, finding a local minimizer can produce an exact reconstruction of

sparse signals with many fewer measurements than in case of p = 1. Furthermore, the TpV

practical interest is limited by the difficulty of the computational stage. Non-convex iterative

minimization is often more computationally intensive and time-consuming than the convex

one, as it often requires more iterations to converge to a solution and may require solving

multiple sub-problems at each iteration. In addition, the dependence of the convergence so-

lution on the starting iterative guess makes the non-convex framework particularly difficult

to tackle.

Beyond a shadow of a doubt, a new wave of innovation is fundamentally changing the

image-processing sector and is represented by deep learning. While these models can achieve

high accuracy when used to enhance images as black boxes (even in a post-processing phase),

from an optimization perspective it is not even clear whether or not we are still addressing the

original associated and mathematically grounded imaging problem [98] and the reliability

of the final solutions must be discussed [6]. The lack of interpretability, or the inability

to understand how the model arrived at its decision, has motivated the design of hybrid

schemes as described in Section 1.3.3, where deep learning is used to foster the performances

of optimization schemes. We briefly recap the two main classes of algorithms as introduced in

Section 1.3.3 citing only a few of the several papers on this topic: (i) plug-and-play schemes,

where a denoising network is embedded in an iterative algorithm as regularizer [68, 115],

and (ii) unrolling methods, where a deep network architecture implements an optimization

solver and learns model parameters [63]. To those, we add the class of multi-step frameworks

[7, 116], that also contains the methods described in the previous Chapters, i.e. RISING

and StReNN.

To our knowledge, no one has already considered non-convex regularization in the last two

hybrid approaches. The only exception is [117] where a non-convex and non-smooth prior is

learned for image reconstruction and used in a descent algorithm.



4.1 The TpV approach 85

Contributions In this Chapter, we describe a new two-step learnable optimization frame-

work for solving non-convex image reconstruction problems, extending the RISING approach

described in the last Chapter to the non-convex optimization problem deriving by the TpV

regularizer. Specifically, in the first step, we apply a robust convolutional neural network to

input data to provide a coarse image with sparse gradients. We remark that neural networks

are generally non-stable with respect to noise when solving an ill-posed inverse problem.

We face this problem by applying a stabilizing strategy based on the TpV prior. Then,

the output of the network is used as the starting guess of an iterative solver tackling the

TpV-regularized imaging task. We denote our proposal as (TpV)2, i.e. TpV-squared, since

we force the TpV prior in both the two steps. We remark that we fully preserve convergence

properties and the mathematical characterization of the final solution, despite the use of

a neural network. In addition, we have performed numerical experiments for tomographic

imaging, and the results demonstrate that our (TpV)2 achieves good solutions but also in-

herits robustness from the data-driven step outperforming iterative non-convex algorithms.

This Chapter is based on my publication [12]. My personal contributions to the cited

works were the implementation of the code to test the experiments, partial development of

the method, and setting up the experiments. The code to replicate the experiments can be

found at: https://github.com/devangelista2/TpV_RISING.

Structure of the chapter The Chapter is organized as follows. In Section 4.1 we describe

the proposed (TpV)2 approach. In Section 4.2 we numerically test the proposed method on

a synthetic dataset, while in Section 4.3 we describe possible extensions and future works

related to this topic. At last, final conclusions are drawn in Section 4.4.

4.1 The TpV approach

In this paper, we consider imaging tasks stated as under-determined linear inverse problems

of forms:

yδ = Kx+ e, e ∼ N (0, σ2I) (4.3)

where x ∈ Rn is the grey-scale image we want to reconstruct from data yδ ∈ Rm affected by

white gaussian noise e of σ2I variance (being I ∈ Rm×m the identity matrix), K ∈ Rm×n is

the linear forward imaging operator, and n > m. Exemplar imaging applications are super-

resolution, where K denotes the downsampling operator and yδ the low-resolution image,

and tomographic image reconstruction from sparse measurements, where K models the X-

ray projections and yδ represents the sinogram data. Due also to the typical ill-posedness

of the inverse problems, it is convenient to introduce a regularization item and reformulate

the imaging task as the regularized optimization problem (4.1). In this work, we consider

https://github.com/devangelista2/TpV_RISING


86 4. Robust non-convex approach

Figure 4.1: Graphical representation of the proposed (TpV)2 procedure, applied to tomo-

graphic image reconstruction.

the following problem statement:

min
x

(
δB2(ϵ)(Kx− yδ) + λ||Dx||pp

)
(4.4)

where λ > 0 is the regularization parameter and the data fitting is expressed through the

indicator function δB2(ϵ) of the 2-norm ball B2(ϵ), which is defined as B2(ϵ) = {x ∈ Rn :

||x||2 ≤ ϵ} for a suitable ϵ > 0.

In this Section, we illustrate our (TpV)2 procedure to solve the TpV-regularized opti-

mization problem (4.4). It is also graphically represented in Figure 4.1, for tomographic

reconstruction from sub-sampled sinograms. As anticipated, it is designed in two steps, and

the TpV gradient sparsity prior plays an important role in both.

4.1.1 The TpV Chambolle-Pock algorithm

To solve the TpV-regularized problem (4.4), we use the reweighted Chambolle-Pock (CP)

algorithm illustrated in [111]. The CP algorithm has been first proposed for image processing

applications [42] and then efficiently used for convex TV-based image reconstruction from

sub-sampled tomographic data [118, 28].

Exploiting the reweighting strategy illustrated in [119], the CP has been applied to a refor-

mulation of the TpV non-convex minimization into a convex weighted TV problem. Indeed,

we can alter the objective function in (4.4) as:

min
x

(
δB2(ϵ)(Kx− yδ) + λ|| w⊙Dx ||1

)
(4.5)

introducing the element-wise product with the weights w ∈ Rn, defined by:

w =

(√
η2 + |Dx|2

η

)p−1

with a predefined η > 0. It is now possible to address problem (4.5) with a slightly modified

version of the CP algorithm, which we will denote in the following as TpV-CP. A pseudocode

of the TpV-CP algorithm is reported on Algorithm 7. We recall it is an iterative procedure

solving the primal-dual problem up to a convergence criterium [111]. Typically, hundreds of

iterations are required, hence the computational effort can be significant.



4.1 The TpV approach 87

Algorithm 7 Chambolle-Pock TpV (CP-TpV)

input: K,yδ,x(0), x̃, λ, p, maxit, tolf, tolx

define: M =

[
K

D

]
, Γ = ||M ||2, ν = ||K||2

||D||2 , η = 2 · 10−3

initialize: τ = σ = Γ−1, θ ∈ [0, 1]

initialize: primal variables x(0) = x(0) ∈ Rn and dual variables s(0) ∈ Rm, q(0) ∈ R2n as

zeros vectors

% Compute the re-weighting vector

w =

(√
η2+|Dx̃|2

η

)p−1

, w =

[
w

w

]
for k < maxit do

% Update the dual variables

q(k+1) = q(k)+σ(Kx−yδ)
1+σλ

s(k+1) = s+ σDx

s(k+1) = λw⊙s(k+1)

max{λw,|s(k+1)|}
% Update primal variable and project to the positive axis

x(k+1) = x(k) − τ(KTq(k+1) + νDTs(k+1))

x(k+1) = P+(x
(k+1))

x(k+1) = x(k+1) + θ(x(k+1) − x(k))

% Stopping criteria

if ||x(k+1)−x(k)||2
||x(k)||2+10−6 < tolx or ||Kx(k)−yδ||2√

m||yδ||∞ < tolf then

return x(k+1)

end if

end for

return x(k+1)

4.1.2 The TpV-Net preprocessing

As the numerical solution of a non-convex problem depends on the initial guess x(0) initialized

in the iterative solver, we want to find a good starting point effortless. This would also

possibly accelerate the convergence, reducing the number of iterations to achieve a good

minimum. In this regard, we believe neural networks can be of help. In fact, once pre-

trained, the forward processing of a NN is characterized by a very short computational time.

For this reason, before applying the TpV-CP algorithm, we use a network to preprocess the

data yδ and obtain a good x(0).

Precisely, we have designed an architecture that takes inspiration from a classical residual

UNet, similar to [7]. In the case of n > m, it is known that a fully convolutional neural

network is unable to recover the n-dimensional solution x of an inverse problem from the

m-dimensional data, due to the lack of translation-equivariance. Hence, we transform the



88 4. Robust non-convex approach

input yδ into a n-dimensional image (approximating the output) by applying a sequence

of M frozen, untrained layers. Such layers act as the first M iterations of an iterative

method, solving the TpV imaging problem from a pre-fixed starting guess x(0). We always

set x(0) as the zero constant image. In this scenario, we opt for the TpV-CP algorithm as

the underlying solver. As visible in the graphical draft of Figure 4.1, the input yδ is fed

to each, subsequent M layers by adding skip-connections. The result of this procedure is

then processed by a standard U-Net architecture as described in Section 1.3.3, to efficiently

produce an approximation of the target image. Because of the initial frozen layers, our

network embeds the TpV prior strongly, hence we denote it as TpV-Net.

We highlight that the U-Net structure needs supervised training. We can use ground truth

images, if available. Alternatively, we can use the images generated by the TpV-CP at

convergence, applying it to a set of available data {yδ
k}k to create a specific training set. In

this case, the network can properly learn the sparsifying pattern of the TpV-CP solutions

and replicate it onto its outputs.

4.2 Numerical Results

In this Section, we report and discuss results achieved with the proposed (TpV)2. It has been

applied to reconstruct images from synthetic tomographic measurements. We have used the

COULE dataset described in Section 1.4.1, whose 256× 256 gray-level images contain low-

and high-contrast objects, such as overlapping ellipses of uniform intensities, and dots.

Our tomographic simulation considers nα = 180 scans in a 180-degree angular range.

The detector has nd = 358 recording units. The additive noise e has a noise level of 0.003.

In the imaging model, we set p = 0.5 and λ = 0.006 as constants, whereas ϵ =

ϵ0
√
m||yδ||∞, with ϵ0 = 0.001 differs for every image. In the TpV-Net, we set M = 10.

The network has been trained to minimize the mean squared error between the prediction

of the network and the corresponding label, with Adam optimizer and a step size of 0.001,

for a total of 50 epochs. We always use the null image as the starting iterate of the TpV-CP

solver, whereas we stopped it at the k-th iteration if ||x(k) − x(k−1)||2 < 10−3. Indicatively,

it takes 180-300 iterations to achieve precise (numerical) solutions, in this setting.

In Table 4.1, we consider a couple of significant test images that have been processed

with the same setup but exhibit different results. In the table, we report the root mean

square error (RMSE) as described in Section 1.4.2 and the normalized TV value nTV =
1
n

∑2n
i=1(Dx)i to compare the Ground Truth (GT) images to the convergence solutions. In

the case of test image number 10, the TpV-CP convergence image has the smallest error,

and all the nTV values are close to the corresponding GT one. Independently from the

training settings, the TpV-Net images already have sparse gradients but the second step of

the (TpV)2 is necessary to strongly reduce the RMSE. As visible in Figure 4.2, when we



4.2 Numerical Results 89

Training to GT Training to TpV-CP

Image GT TpV-CP TpV-Net (TpV)2 TpV-Net (TpV)2

RMSE
10 - 0.0082 0.0649 0.0127 0.0654 0.0117

14 - 0.0212 0.0461 0.0081 0.0493 0.0080

nTV
10 0.0136 0.0148 0.0175 0.0150 0.0181 0.0148

14 0.0170 0.0262 0.0197 0.0179 0.0204 0.0180

Table 4.1: Quantitative metrics for image quality assessment, on test images.

Figure 4.2: Results on the test image number 10, by the (TpV)2 method trained with

convergence images as target. Left: GT; Center: TpV-Net; Right: (TpV)2. The zoomed red

square highlights a region of interest.

train our network with the TpV-CP images as target (thus avoiding GT images at all), the

mere TpV-Net method already provides a good image with thin details. However, the final

solution is much closer to the GT image, with almost perfect edges and great uniformity.

We highlight that it has been achieved in only 33 iterations of the TpV-CP algorithm, hence

the preprocessing has been effective in finding a good starting iterate.

Differently, the 14-th test image has been poorly reconstructed by the TpV-CP procedure,

in 470 iterations: the image appears noisy in Figure 4.3, its RMSE is higher than 2% and its

nTV reflects a high gradient magnitude. On the contrary, the (TpV)2 is not affected by the

instability issue of non-convex optimization, as the two reported images look homogeneous

and precise, and they only required about 65 iterations of TpV-CP in both cases. Also the

quality assessment metrics confirm this observation.



90 4. Robust non-convex approach

Figure 4.3: Results on the test image number 14. Left: TpV-CP at convergence; Center:

(TpV)2 trained with convergence images as target; Right: (TpV)2 trained with GT images

as target. The zoomed red square highlights a region of interest.

4.3 Extensions and Future Works

The (TpV)2 approach is a preliminary idea that can be further extended to a general method

that can be used to reliably find a stationary point to the ℓ0-norm optimization problem:

min
x≥0
J (Kx,yδ) + λ||Dx||0. (4.6)

To this aim, consider a generic TpV optimization problem, where the sparsity parameter p

and the regularization parameter λ are functions of a non-negative variable h ∈ N. Define:

x(h) ∈ argmin
x≥0

J (Kx,yδ) + λ(h)||Dx||p(h). (4.7)

Note that, if p(h)→ 0 as h→∞, then the sequence x(h) converges to a stationary point of

(4.6) as h→∞. Let fh(y
δ, x̃) be an iterative algorithm solving the non-convex optimization

problem (4.7) such as TpV-CP, starting from the initial guess x̃. The class of Iterated

methods consider the sequence x(h) defined as:

x(h+1) = fh(y
δ,x(h)). (4.8)

It is possible to show [120] that if p(h) and λ(h) satisfy some simple conditions, then the

iteration x(h) converges to a stationary point of the limiting problem (4.6).

In an extension of [12], we consider an iterated version of the TpV-CP algorithm where

the sparsity parameter p(h) and the regularization parameter λ(h) are automatically updated

with the updating rule in [120] that guarantees convergence to a local minima of (4.6). The

resulting method, presented in detail in Algorithm 8, shows promising results in preliminary

experiments.

We can then consider a sequence {f θ
h(y

δ), ·}h∈N of neural networks, each representing a

TpV-Net model solving the optimization problem (4.7), and compute

x̃(h+1) = f θ
h(y

δ, x̃(h)) (4.9)



4.3 Extensions and Future Works 91

Algorithm 8 Iterated Chambolle-Pock TpV (iTpV-CP)

input: K,yδ, λ(0) > 0, ϵ(0) > 0, α ∈ (0, 1), H ∈ N
initialize: x(0) = 0, p(0) = 1

for h < H do

compute:

x(h+1) = fh(y
δ,x(h))

using Algorithm 7 with starting point and x̃ equal to x(h), parameters λ(h), p(h) and

maxit = k(h)

compute: the value of the objective function

F [h] =
1

2
||Kx(h) − yδ||22 + λ(h)||w ⊙ |Dx(h)| ||1

% Update parameters

update: λ(h+ 1) by:

if h = 0 then

λ(h+ 1) = λ(h)/2

else

λ(h+ 1) = λ(h) · F [h]

F [h−1]

end if

update: p(h+ 1) = p(h) · α
end for

return x(H)

with x̃(0) = 0. As a result, the sequence {x̃(h)}h∈N will approximately converge to a stationary

point of (4.6). In particular, if we define the training error at step h as

ρh = sup
yδ=Kx†+e

x†∈X

||f θ
h(y

δ,x(h))− fh(y
δ,x(h))||2, (4.10)

and the Lipschitz constant of fh(y
δ,x(h)) with respect to x(h) as

Lh = sup
x1,x2∈Rn

||fh(yδ,x1)− fh(y
δ,x2)||2

||x1 − x2||2
, (4.11)

it holds:

Theorem 4.1. For any h > 0, let {f θ
h(y

δ,x(h))}h∈N be a sequence of neural networks ap-

proximating the iterated Chambolle-Pock algorithm fh(y
δ,x(h)). If ρh is the training error at

step h and Lh is the Lipschitz constant of fh(y
δ,x(h)) with respect to x(h), then if x(0) = x̃(0),

||x̃(h) − x(h)||2 ≤
h−1∑
i=0

ρi

h−1∏
j=i+1

Lj, (4.12)



92 4. Robust non-convex approach

where the product is defined to be 1 for i = h− 1.

Proof. We proceed by induction over h > 0. For h = 1, it holds,

||x̃(1) − x(1)||2 = ||f θ
0 (y

δ, x̃(0))− f0(y
δ,x(0))||2

= ||f θ
0 (y

δ,x(0))− f0(y
δ,x(0))||2 ≤ ρ0.

(4.13)

Similarly, for h = 2,

||x̃(2) − x(2)||2 = ||f θ
1 (y

δ, x̃(1))− f1(y
δ,x(1))||2

≤ ||f θ
1 (y

δ, x̃(1))− f1(y
δ, x̃(1))||2︸ ︷︷ ︸

≤ρ1

+ ||f1(yδ, x̃(1))− f1(y
δ,x(1))||2︸ ︷︷ ︸

≤L1||x̃(1)−x(1)||2

≤ ρ1 + L1||x̃(1) − x(1)||2 ≤ ρ1 + L1ρ0.

(4.14)

Now, we assume that (4.12) holds for h and we want to show that it holds for h+ 1.

||x̃(h+1) − x(h+1)||2 = ||f θ
h(y

δ, x̃(h))− fh(y
δ,x(h))||2

≤ ||f θ
h(y

δ, x̃(h))− fh(y
δ, x̃(h))||2 + ||fh(yδ, x̃(h))− fh(y

δ,x(h))||2
(4.15)

but ||f θ
h(y

δ, x̃(h))− fh(y
δ, x̃(h))||2 ≤ ρh by definition, while

||fh(yδ, x̃(h))− fh(y
δ,x(h))||2 ≤ Lh||x̃(h) − x(h)||2 ≤ Lh

h−1∑
i=0

ρi

h−1∏
j=i+1

Lj (4.16)

by inductive hypothesis. Consequently,

||x̃(h+1) − x(h+1)||2 ≤ ρh + Lh

h−1∑
i=0

ρi

h−1∏
j=i+1

Lj = ρh +
h−1∑
i=0

ρi

h∏
j=i+1

Lj

= ρh

h∏
j=h+1

Lj +
h−1∑
i=0

ρi

h∏
j=i+1

Lj =
h∑

i=0

ρi

h∏
j=i+1

Lj,

(4.17)

which proves the Theorem.

A deeper understanding on the estimate of the Theorem above can be obtained by as-

suming both {ρh}h and {Lh}h to be limited. Note that this is not a restrictive condition

in practice since {ρh}h is intuitively bounded by the training, while {Lh}h approaches 0 as

h → ∞, since it is known the in a converging iterative algorithm, the last iterations are

closer to the identity. When this is the case, let ρ = suph ρh and L = suph Lh. Then,

||x̃(h) − x(h)||2 ≤
h−1∑
i=0

ρi

h−1∏
j=i+1

Lj ≤
h−1∑
i=0

ρ

h−1∏
j=i+1

L = ρ

h−1∑
i=0

Li (4.18)

which is the sum of a geometric sequence. Thus,

||x̃(h) − x(h)||2 ≤ ρ

h−1∑
i=0

Li = ρ
Lh − 1

L− 1
→ ρ

1− L
, (4.19)



4.4 Conclusion 93

if L < 1. On the other side, if L > 1, the above relationship is uninformative since the right-

hand side diverges. An alternative estimate can be obtained by considering the following

Corollary of the above Theorem.

Corollary 4.2. Under the same assumptions of Theorem 4.1, if Lθ
h is the Lipschitz constant

of f θ
h(y

δ,x(h)) with respect to x(h), it holds

||x̃(h) − x(h)||2 ≤
h−1∑
i=0

ρi

h−1∏
j=i+1

Lθ
j , (4.20)

where the product is defined to be 1 for i = h− 1.

Proof. Same as the proof of Theorem 4.1, by changing the roles of fh(y
δ,x(h)) and f θ

h(y
δ,x(h)).

An interesting consequence of the Corollary above is the following: if each step of the

iterative Chambolle-Pock algorithm has Lipschitz constant which is bounded by a constant

L < 1, then training a network that minimizes the training error ρ leads to a solution whose

distance to the optimum is bounded by ρ
1−L

, which is small if the network is expressive

enough. If instead, the Lipschitz constant of the iterative Chambolle-Pock algorithm is

greater than 1, then it is recommended to constraint the network architecture such that

Lθ
h < 1 for any h, which can be obtained e.g. by techniques such as spectral normalization

or gradient penalty. Indeed, if the supremum Lθ of Lθ
h is bounded by 1, then by the Corollary

4.2,

||x̃(h) − x(h)||2 ≤ ρ
h−1∑
i=0

(Lθ)i = ρ
(Lθ)h − 1

Lθ − 1
→ ρ

1− Lθ
. (4.21)

Clearly, by constraining the network architecture, the training error ρ will be bigger, but the

insight above shows that this will cause just a linear increase to the error of the model, while

the increase would be exponential if Lθ would be greater than 1. Note that this is coherent

with the results obtained in [8, 10], where limiting the Lipscitz constant to be lower than 1

was a sufficient condition that implies stability.

Numerical results showing the effectiveness of this method and a complete understanding

of the way it works are still a work in progress.

4.4 Conclusion

Deep learning and optimization are two different approaches to solve imaging tasks, each

with its own strengths and weaknesses. We have proposed an algorithm exploiting all their

strengths, to solve a non-convex minimization problem with a data-driven speed-up enforcing

the convergence to a reliable minimum. Results achieved on tomographic reconstructions



94 4. Robust non-convex approach

have confirmed the effectiveness of our (TpV)2 algorithm, outperforming the robustness of

mere iterative solvers for non-convex optimization, with respect to noise and algorithmic

parameters.



Part II

Deep Generative Models for image

generation

95





Chapter 5

A probabilistic approach to imaging:

generative models in a GreenAI

perspective

So far, we’ve dealt with a scenario in which the variables x ∈ X and y ∈ Y , representing the

unknown image and the corresponding data, are deterministic, and the operator mapping one

to the other is also deterministic. In this context, the only stochastic element is introduced

by the noise, which affects the mathematical representation of the fidelity term J (Kx,y)

in the optimization problem discussed in Section 1.3.2. In this Chapter, which introduces

the second part of my thesis, we intend to change the perspective and shift to a probabilistic

approach. In this new framework, we consider X and Y as sub-manifolds of Rn and Rm,

respectively. More specifically, we assume that two probability distributions, denoted as µgt

and µY , exist in such a way that X = supp(µgt) and Y = supp(µY ).

To simplify the computation, we make the assumption that both µgt and µY are absolutely

continuous. This implies the existence of probability density functions pgt(x) and pY (y), such

that for any measurable set A ⊆ Rn and B ⊆ Rm, it holds:

µgt(A) =

∫
A

pgt(x)dx,

µY (B) =

∫
B

pY (y)dy.

(5.1)

The introduction of probability density functions allows us to reframe the image reconstruc-

tion process in terms of the conditional probabilities of x and y.

In particular, consider the probabilistic version of the inverse problem introduced in

Section 1.3, i.e. given a matrix K ∈ Rm×n, a noise realization e ∈ Rm and

yδ = Kxgt + e, xgt ∼ pgt(x), (5.2)

97



98 5. A probabilistic approach to imaging

recover an approximation of xgt. To solve this problem, the probabilistic counterpart of the

direct methods introduced in Section 1.3.1 is the so-called Maximum Likelihood Estimation

(MLE). The idea of MLE is that, given the observed data yδ and the corruption process K,

the reconstruction x∗ is defined as the value that maximizes the conditional probability of

observing yδ given x. In formula:

x∗ = argmax
x∈X

p(y|x), (5.3)

where the conditional probability p(y|x) is commonly referred to as likelihood. For example,

when the noise e is a sample from a zero-mean Gaussian distribution, i.e. e ∼ N (0, σ2I),

then

p(y|x) = N (Kx, σ2I), (5.4)

and an MLE solution can be computed by solving the optimization problem obtained by

taking the negative logarithm of the likelihood distribution in (5.3):

x∗ = argmin
x∈X

− log p(y|x) = argmin
x∈X

1

2σ2
||Kx− yδ||22. (5.5)

Clearly, when K is ill-conditioned, the MLE suffers from the same instability observed in

the direct solution approach to inverse problems. A solution is to consider the Maximum A-

Posteriori (MAP) approach, where the a-posteriori distribution p(x|y) is maximized instead

of the likelihood. As p(x|y) is generally unknown, it is common practice to estimate it by

employing Bayes’ Theorem:

p(x|y) = p(y|x)pgt(x)
p(y)

, (5.6)

whose maximum can be obtained by taking the negative logarithm, similar to what was done

in (5.5). The resulting optimization problem can be expressed as follows:

x∗ = argmin
x∈X

− log p(x|y) = argmin
x∈X

− log p(y|x)︸ ︷︷ ︸
likelihood

− log pgt(x)︸ ︷︷ ︸
prior

, (5.7)

where the likelihood is dependent on the model K, as in (5.5), while the prior distribution

pgt(x) relies on the structure of X , given that, according to our assumption, X = supp(µgt),

and pgt(x) represents the density of µgt. Note that (5.7) is similar to the regularized for-

mulation described in Section 1.3.2, where the likelihood represents the fidelity term and is

related to the corruption process, while the prior represents the regularaization functional,

related with X .

Since the likelihood p(y|x) is given when the statistics of the noise are known, a significant

challenge is to find an approximation for the unknown distribution pgt(x). Part of my PhD

research focused on the analysis of neural network techniques to approximate this distribution

using a dataset S ⊆ X consisting of independent identically distributed (i.i.d.) samples from

pgt(x). These methods, used to approximate pgt(x), belong to the category of Generative

Models [121].



5.1 Generative Models 99

5.1 Generative Models

As already remarked, generative models are mathematical models used to approximate the

distribution pgt(x) of the data. In particular, we assume that we have access to a set of N

independent identically distributed points x(i) ∼ pgt(x) for i = 1, . . . , N . The set of these

points is indicated as S ⊆ Rn in the following. To find an appropriate approximation for

pgt(x), we consider a family of probability densities PΘ = {pΘ : Rn → R; Θ ∈ Rs} and find

the optimal distribution pΘ∗ ∈ PΘ such that pΘ ≈ pgt. To do that, it is common to consider

the optimization problem:

pΘ∗ = argmin
pΘ∈PΘ

DKL(pgt||pΘ), (5.8)

where DKL(pgt||pΘ) is the Kullback-Leibler divergence [122] between p and pΘ, defined as:

DKL(pgt||pΘ) = Ex∼pgt(x) [log pgt(x)− log pΘ(x)] . (5.9)

Note that a solution of (5.8) effectively leads to a distribution pΘ∗ ≈ pgt, since it is easy

to prove [122] that for any distributions p, q,

DKL(p||q) ≥ 0,

DKL(p||q) = 0 ⇐⇒ p = q,
(5.10)

which implies that the distribution pΘ∗ that minimizes DKL(pgt||pΘ) is the closest element

to pgt in PΘ.

The optimization problem (5.8) can be further simplified by noting that by the definition

of Kullback-Leibler divergence,

argmin
pΘ∈PΘ

DKL(pgt||pΘ) = argmin
pΘ∈PΘ

Ex∼pgt(x) [log pgt(x)]− Ex∼pgt(x) [log pΘ(x)]

= argmin
pΘ∈PΘ

Ex∼pgt(x) [− log pΘ(x)] ,
(5.11)

which is the Maximum Likelihood Estimation of the distribution pΘ(x). For this reason,

Generative Models that are trained to minimize the Kullback-Leibler divergence with the

unknown distribution pgt are referred to as MLE-based Generative Models.

Among the wide variety of MLE-based Generative Models, this thesis focuses on a specific

category that has gained popularity in recent years due to its impressive results – the class

of Deep Generative Models (DGM). A Generative Model is considered a DGM if pΘ(x) is

parameterized, at least in part, by a neural network. For instance, one can define pΘ(x) =

N (µΘ(z),ΣΘ(z)), where z is a variable containining information about x, and µΘ and ΣΘ

are the neural networks that parameterize the distribution pΘ. The specific form of pΘ and

the assumptions used to solve (5.8) characterize the DGM method. Based on this, we can

create a taxonomy of the various approaches to DGM.



100 5. A probabilistic approach to imaging

Figure 5.1: A taxonomy of the MLE-based DGMs.

5.1.1 A Taxonomy of Deep Generative Models

Figure 5.1 shows a diagram describing the interrelationship between the main categories in

which MLE-based DGM are divided, which takes inspiration from [123]. In particular, at

the first level of the diagram, there are the Explicit Density and the Implicit Density models.

Explicit Density Models In Explicit Density Models, we explicitly define a functional

form for the family of distribution PΘ = {pΘ(x); Θ ∈ Rs} and, given a loss function L(Θ),

we optimize:

Θ∗ = argmin
Θ∈Rs

L(Θ). (5.12)

The resulting distribution is explicit in the sense that, after training, it is possible to

access pΘ∗(x) directly. It can be used not only to get samples from it but also to get

statistics that, if PΘ is expressive enough, are strongly related to the statistics of pgt(x).

A drawback of Explicit Density models is that, since the functional form of PΘ has to be

fixed a priori, they usually lack in expressiveness, and they perform worse when compared

to Implicit Density models, especially if the distribution pgt(x) is extremely complex, such

as when pgt(x) is the distribution of natural high-dimensional images.

In the category of Explicit Density models, we can distinguish two classes of methods.

The first one, usually referred to as tractable models, assumes that the distribution pΘ(x)

has a tractable form and that log pΘ(x) can be computed efficiently. Consequently, the loss

function can be defined as:

L(Θ) = min
Θ∈Rs

Ex∼pgt(x) [− log pΘ(x)] . (5.13)

We remark that minimizing L(Θ) is equivalent to minimize the Kullback-Leibler diver-

gence between pgt(x) and pΘ(x). While the Tractable approach is theoretically the most



5.1 Generative Models 101

desirable, the assumption that pΘ(x) is tractable proves to be overly restrictive in most

high-dimensional scenarios. Consequently, models resulting from this approach lack expres-

siveness, leading to a learned distribution pΘ∗ which is significantly different from pgt(x). In

this category, the most successful approach, known as Normalizing Flows (NF) [124], excels

in low-dimensional settings but struggles to scale effectively to high dimensions, where other

types of DGMs outperform them.

To enhance the expressiveness of the resulting distribution, untractable Explicit Density

models do not rely on the assumption that pΘ(x) is tractable. Consequently, the MLE in

Equation (5.11) cannot be explicitly computed and has to be approximated. In particular,

this class of models employs a tractable upper bound for the MLE estimation as their loss

function, i.e.,

L(Θ) ≥ Ex∼pgt(x) [− log pΘ(x)] . (5.14)

As a result, a minimizer of L(Θ) is approximately a minimizer of Ex∼pgt(x) [− log pΘ(x)],

and the approximation error depends on the approximation gap, defined as

AG(Θ) = L(Θ)− Ex∼pgt(x) [− log pΘ(x)] , for any Θ ∈ Rs. (5.15)

The representative models in this class are the Variational Autoencoders (VAEs) [4, 125,

126]. Since understanding all the advantages and disadvantages of VAEs is a part of my

PhD project, these models will be described in depth in the next Chapter.

Implicit Density Models The Implicit Density models are characterized by the fact that

no explicit functional form for pΘ(x) is provided by the trained network, which is only used

to build an algorithm to sample from the learned distribution pΘ(x), which is approximately

equal to pgt(x). Note that while we could potentially compute an explicit form for the dis-

tribution by repeatedly sampling from pΘ(x), the number of samples required to obtain a

sufficiently good approximation is impractical in practice, due to the curse of dimensionality.

The different classes of Implicit Density models are distinguished by the way the sample

from pΘ(x) is obtained. In particular, an Implicit Density model is indirect if the sample is

obtained by an iterative algorithm, such as a Markov chain, designed in a way that pgt(x)

is the limiting distribution. The principal drawback of Indirect Implicit Density models is

that, due to their iterative nature, it is unclear how many iterations are required to reach

convergence and consequently, the computation required to obtain a single sample is usually

extensive. However, indirect Implicit Density Models have recently gained popularity, pri-

marily due to the success of Diffusion Models [127], which are described in detail in Chapter

7. These models are now considered state-of-the-art in the field of Deep Generative Models

due to their ability to generate high-quality samples. Modern image generation software,



102 5. A probabilistic approach to imaging

such as DALL·E [128], are based on Diffusion Models.

On the other side, an Implicit Density model is direct if the sampling is generated directly

by the neural network, which is trained to map a random input into a point distributed as

pgt(x). A representative method in this class is the Generative Adversarial Network (GAN)

[123, 129, 130], whose introduction in 2016 marked a turning point in the neural network

literature. Indeed, the incredible quality of the generation of GANs showcased the potential

of Deep Generative Models, leading to an interest in the field that still continues today.

5.1.2 Deep Latent Variable Models

An interesting aspect regarding Deep Generative Models is their exceptional ability to ap-

proximate very high-dimensional distributions pgt(x) as it is the case, for example, when X
is the set of natural images. To be able to achieve such a result, a general assumption in

DGM literature is that, any observable variable x ∈ X is associated with a latent variable,

which cannot be measured directly, containing high-level information on x. From now on,

let z ∈ Rs represent a vector or latent variables. Then,

pΘ(x) =

∫
z∈Z

pΘ(x, z)dz, (5.16)

where Z ⊆ Rs is the set of admissible latent variables, i.e. the support of the prior distri-

bution p(z). Since z is, by assumption, a vector containing information on the observable

variables x, we can identify two tasks related to p(x, z), namely the inference, where given

x ∼ pgt(x), one has to find a latent variable z associated with x, i.e. z ∼ p(z|x), and the

generation, where a sampled z ∼ p(z) is used to sample x ∼ p(x|z). This thesis primarily

focuses on the second application, where the high-dimensionality of x is addressed by in-

troducing a low-dimensional latent variable z ∼ p(z). Subsequently, x is sampled from a

learned approximation pΘ(x|z) of p(x|z). Note that this description naturally leads to the

decomposition:

p(x, z) = p(z)p(x|z), (5.17)

from which:

pgt(x) =

∫
z∈Z

p(x|z)p(z)dz = Ez∼p(z) [p(x|z)] . (5.18)

This decomposition, together with the expression in Equation (5.16), suggests a simple

way to learn a model pΘ(x) approximating pgt(x). Indeed, if we assume p(z) is known, as

it is commonly done in literature, then

pΘ(x) ≈ pgt(x) ⇐⇒ pΘ(x|z) ≈ p(x|z). (5.19)



5.1 Generative Models 103

Since in general p(x|z) has a simpler form than pgt(x), the problem of learning an

approximation of p(x|z) is better conditioned with respect to the original DGM problem

while leading to the same result. Models that are trained to approximate p(x|z) are called

Latent Variable Models (LVM). In particular, when the distribution pΘ(x|z) is defined as a

neural network, the resulting model is named Deep Latent Variable Model (DLVM) [131].

The most representative models of each class of DGM described in the last Section, i.e. the

VAEs, GANs, NFs, and Diffusion Models, are DLVMs. In the remaining part of this Section,

we will describe in detail the four models, as a reference for the subsequent Chapters.

VAEs A Variational Autoencoder is an Explicit Density Model, where a neural network

is trained to explicitly compute the generative distribution pΘ(x|z), mapping the latent to

the observable variables, leading to a distribution pΘ(x) whose computation relies on the

decomposition pΘ(x) = Ez∼p(z) [pΘ(x|z)]. In particular, in Variational Autoencoders, we

utilize a pair of networks. The first one, known as the encoder, is trained to infer latent

variables z from an input datum x ∼ pgt(x). For each input x, we establish an encoder

distribution qϕ(z|x) = N (µϕ(x), σ
2
ϕ(x)), where the mean µϕ(x) and variance σ2

ϕ(x) are the

outputs of a neural network with x as input. We sample a latent variable z ∼ qϕ(z|x), and
with high probability, it will correspond to a latent variable associated with x.

The second network, referred to as the decoder, is trained to generate a new sample

x ∼ pΘ(x|z) = N (µΘ(z), σ
2
x) from the latent variable z. Here, µΘ(z) is the output of the

neural network with input z, and σ2
x is a hyperparameter that determines the expressiveness

of the resulting model.

These two models are jointly trained as follows: for any sample x ∼ pgt(x) drawn

from S, the encoder network samples a latent variable z ∼ qϕ(z|x) associated with x.

This z is then processed by the second network, which returns a sample x̃ ∼ pΘ(x|z).
The loss function is designed to minimize the reconstruction error between the input x

and the final output x̃, while also trying to align the distribution of the encoded variables

qϕ(z) = Ex∼pgt(x) [qϕ(z|x)] with the prior distribution p(z) for z. Specifically, the loss

function of Variational Autoencoders, commonly referred to as the Evidence Lower Bound

(ELBO) [125], is defined as:

ELBO(Θ, ϕ) = Ex∼pgt(x)

[
Ez∼qϕ(z|x) [− log pΘ(x|z)] +DKL(qϕ(z|x)||p(z))

]
. (5.20)

It can be shown [125] that ELBO(Θ, ϕ) provides an upper bound for the Maximum

Likelihood Estimation (MLE) of pΘ(x) for any Θ, ϕ, i.e.:

ELBO(Θ, ϕ) ≥ Ex∼pgt(x) [− log pΘ(x)] , (5.21)

implying that the parameters Θ∗, ϕ∗ that minimize ELBO(Θ, ϕ) are an approximation of

the MLE solution. In practice, p(z) is often assumed to be a normal distribution, with

p(z) = N (0, I), which makes optimizing ELBO(Θ, ϕ) computationally efficient.



104 5. A probabilistic approach to imaging

After the model is trained, new samples x can be generated by first sampling z ∼ p(z) =

N (0, I), and then x ∼ pΘ(x|z). For more in-depth details on how Variational Autoencoders

operate, refer to the next Chapter, where they are explained in greater detail.

GANs Generative Adversarial Networks are Implicit Density Models, whose working mech-

anism is similar to that of VAEs. In particular, given a latent variable z sampled from a

known distribution p(z), usually defined to be N (0, I), a generative network is considered to

generate a sample x = GΘ(z). The quality of the generation is assessed by another network,

called discriminator, which is trained to distinguish between real images and fake images

generated by GΘ. A generation x = GΘ(z) is good if it is able to fool the discriminator

into being classified as a real image. The two models are jointly trained, so that while the

ability of the generator to fool the discriminator increases, the accuracy of the discriminator

increases as well, requiring the first model to further improve.

From a mathematical point of view, the learned distribution pΘ(x) is the push-forward

of the latent distribution p(z), i.e.

pΘ(x) = (GΘ)# p(z). (5.22)

Due to the complexity provided by the mappingGΘ, the push-forward distribution cannot

be explicitly computed, for which the GANs are implicit density models.

NFs Normalizing Flows are Explicit Density Models, whose structure permits an ex-

plicit minimization of the Kullback-Leibler divergence between the ground-truth distribution

pgt(x) and the learned distribution pΘ(x). In particular, let z ∼ p(z) = N (0, I) be a vector

of latent variables, and let GΘ(z) be a continuous, invertible function mapping the latent

variable z to an x ∈ X . In Normalizing Flows, we consider the change of variable formula for

probability distributions to explicitly compute the distribution of the generated x ∼ pgt(x)

from the known distribution p(z) of the latent variables, i.e.

pΘ(x) = p(G−1
Θ (x)) det

(
∂G−1

Θ (x)

∂x

)
. (5.23)

Consequently, the Kullback-Leibler divergence between pgt(x) and pΘ(x) can be explicitly

computed as

DKL(pgt(x)||pΘ(x)) ∝ − log pΘ(x) = − log p(G−1
Θ (x))− log det

(
∂G−1

Θ (x)

∂x

)
. (5.24)

To define a model GΘ(z) which is continuous, invertible, and expressive enough to be able

to approximately fit the high-dimensional ground-truth distribution pgt(x), in Normalizing

Flows we assume that GΘ(z) is defined by L simple transformations G1
Θ, G

2
Θ, . . . , G

L
Θ, each



5.1 Generative Models 105

being an invertible neural network, whose composition defines the transformation GΘ. Note

that, if GΘ(z) = (GL
Θ ◦GL−1

Θ ◦ · · · ◦G2
Θ ◦G1

Θ)(z), then its inverse G−1
Θ can be computed as:

G−1
Θ (x) =

((
G−1

Θ

)1 ◦ (G−1
Θ

)2 ◦ · · · ◦ (G−1
Θ

)L−1 ◦
(
G−1

Θ

)L)
(x) . (5.25)

Given that, (5.24) becomes:

− log pΘ(x) = − log p(G−1
Θ (x))−

L∑
l=1

log det

(
∂
(
G−1

Θ

)l
(x)

∂x

)
, (5.26)

which can be easily computed if the derivative of Gl
Θ(x) is simple for any l.

It’s important to note that, while the composition of multiple, simpler invertible functions

offers flexibility, the constraint that the resulting model GΘ(z) must be invertible limits its

expressiveness. This limitation makes the method impractical for very high-dimensional

scenarios, such as when X represents the set of natural images. Nevertheless, the advantage

of being able to explicitly compute the optimal distribution in terms of the Kullback-Leibler

divergence makes this method highly effective when the ground-truth distribution pgt(x) is

relatively simple to approximate, as is the case in low-dimensional generative problems.

Diffusion Models Diffusion Models are Implicit Density Models with Indirect Sampling

Method. In particular, let x0 ∼ pgt(x) be a sample from the ground-truth distribution, and

define a Markov Chain, called diffusion process, that increasingly corrupts x0 to pure noise.

In particular, let

pgt(xt|xt−1) = N
(√

βtxt−1, (1− βt)I
)

(5.27)

be the transition probability from time t − 1 to time t, where {βt}t≥1 is a sequence of real

numbers in the (0, 1) range. It can be shown that,

pgt(xt|x0) = E(x1,...,xt−1)∼pgt(x1:t−1)

[
t∏

s=1

pgt(xs|xs−1)

]
= N (

√
αtx0, (1− αt)I) , (5.28)

where αt =
∏t

s=1 βt for any t ≥ 1, and αt → 0 as t → ∞. Note that this implies that,

as t increases to infinity, then pgt(xt|x0) approaches a normal distribution N (0, I). If T

is sufficiently large so that xT is close to a normal distribution, then xT is referred to

as latent variable in the field of diffusion models, and the stochastic process modeling the

transformation from the initial distribution pgt(x0) to the normal distribution is the inference

process.

To define the corresponding generative process, mapping the normally distributed latent

variables xT back to samples x0 from the ground-truth distribution, the Markov Chain

pgt(xt|xt−1) can be inverted, and the resulting process pgt(xt−1|xt) can be approximated,

step-by-step, by a distribution pΘ(xt−1|xt,x0) parameterized by a neural network. This is



106 5. A probabilistic approach to imaging

usually done by training a denoising network fΘ(xt) to approximately recover the image

x0 ∈ X such that xt ∼ pgt(xt|x0). Then, the distribution pΘ(xt−1|xt) can be defined as

pΘ(xt−1|xt) = pgt(xt−1|x̃0), where x̃0 = fΘ(xt) is the denoised version of xt by the network

fΘ.

After training, a new sample is generated by sampling xT ∼ N (0, I) and then by itera-

tively compute xt−1 ∼ pΘ(xt−1|xt) for t = T, . . . , 1. We remark that since the new sample

x0 is obtained by a Markov Chain, the learned distribution pΘ(x0) cannot be explicitly

computed. However, the quality of samples generated by Diffusion Models is remarkable.

Moreover, modern Diffusion Model algorithms allow the parameter T that determines how

close xT is to a Gaussian distribution to be chosen relatively small. This makes Diffusion

Models a viable option for complex and high-dimensional generative tasks. In Chapter 7,

this kind of method will be analyzed and described in detail.

5.2 Datasets and Metrics

In this Section, we will introduce the most common datasets used to test DGM methods

and the metrics that can be used to assess the quality of the generated results. We remark

that, to compare the ability of Generative Models in approximating the distribution pgt(x),

we consider the task of image generation. This task is relatively simple to describe: after

the model pΘ(x) has been trained, we employ it to sample a set of realizations from pΘ(x) ≈
pgt(x). Then, we compare the similarity of the generated samples with a reference test

set. The closer the generated images are to the test set, the better the model approximates

pgt(x).

5.2.1 Datasets

We present here four datasets that will be used for the experiments in the following Chapters:

MNIST, a dataset of low-dimensional images representing hand-written digits, CIFAR10, a

dataset containing natural images of different categories, Oxford Flower, containing RGB

images of flowers, and a modified version of CelebA, the famous dataset containing a large

number of human faces.

MNIST MNIST [132] is a widely used benchmark dataset for image generation tasks.

It comprises 60,000 grayscale images with a resolution of 28 × 28 pixels, each representing

handwritten digits from 0 to 9. The images have a consistent black background and exhibit

a variety of handwriting styles, adding diversity to the dataset.

CIFAR10 CIFAR10 [133], like MNIST, is a benchmark dataset used for image generation.

It consists of 60,000 RGB images with a resolution of 32 × 32 pixels and is categorized



5.2 Datasets and Metrics 107

into ten classes: airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks.

Generating CIFAR10 images is considered a challenging task due to their low resolution and

the complexity of the content.

Oxford Flowers The Oxford Flowers dataset [134] comprises 1,020 RGB images with

various resolutions, depicting different types of flowers. In our experiments, the data has

been pre-processed to a standardized shape of 64× 64 pixels.

CelebA CelebA [135] is a large-scale dataset containing 202,599 RGB images of celebrities’

faces. The images have a resolution of 178× 218 pixels and depict faces with different poses

and expressions. In our experiments, we pre-processed the dataset by center-cropping each

image to a dimension of 64× 64 pixels, preserving the essential features.

5.2.2 Metrics

Assessing the quality of generated images poses a significant challenge because there is no

ground-truth to serve as a reference for comparison. Traditional image quality metrics like

RMSE, PSNR, and SSIM, which rely on comparing generated images to ground-truth images,

cannot be used in this context. Therefore, there is a need to develop perception-based metrics

that measure the similarity of generated images to a reference dataset. These metrics often

leverage the activations of layers in a pre-trained classification network. One widely used

metric of this type is the Frechét Inception Distance (FID), which will be explained in the

following Section.

FID The idea of Frechét Inception Distance (FID) [136] is to evaluate the quality of gen-

erated data by comparing the probability distribution of generated versus real images. How-

ever, the dimension of X is typically too large to allow a direct, significant comparison.

Moreover, adjacent pixels are highly correlated, reducing their statistical relevance. To solve

this issue, Frechét Inception Distance considers, instead of raw data, their internal repre-

sentations generated by some third-party, agnostic network. In particular, the Inception v3

network [137] trained on Imagenet is used for this purpose; Inception is usually preferred over

other models due to the limited amount of pre-processing performed on input images (images

are rescaled in the interval [−1, 1], sample wise). The activations that are traditionally used

are those relative to the last pooling layer, with a dimension of 2048 features.

Given the activations a1 and a2, relative to real and generated images, and called µi, i =

1, 2 and Ci, i = 1, 2 their empirical mean and covariance matrix, respectively, the Fréchet

Distance between a1 and a2 is defined as:

FID(a1,a2) = ||µ1 − µ2||2 + Tr(C1 +C2 − 2(C1C2)
1
2 ), (5.29)

where we indicate with Tr the trace of a matrix.



108 5. A probabilistic approach to imaging

A problem of FID, is that it is extremely sensible to a number of different factors such as:

the weights of the Inception network (which has been trained on ImageNet), the dimension

of the datasets of real/generated images to be compared, the dimension of input images fed

to Inception (which has to be rescaled), and the resizing algorithm. Moreover, articles in

the literature are not always fully transparent on the previous points, which may explain

some discrepancies and the difficulty one frequently faces in replicating results. All our

experiments have been conducted with ”defaults” values: the standard Inception checkpoint

inception_v3_2016_08_28/inception_v3.ckpt, 10,000 images of dimension 299 × 299,

rescaled by means of bilinear interpolation.

5.3 Structure of the part II of the thesis

In the following Chapter, we will describe the results of a set of experiments done during my

PhD, with the intent of deeply understanding the properties of generative models. In par-

ticular, in Chapter 6, we compare multiple variants of the classical Variational Autoencoder

in terms of their ability to generate new images. For each architecture, we also measure the

number of Floating Points Operations (FLOPs) required to generate a single sample, since

it is known to be a metric that correlates with the computational cost, as suggested in [2, 5].

In Chapter 7, we describe the deterministic version of the classical Diffusion Models, namely

the Denoising Diffusion Implicit Models (DDIM) [138] and we investigate some properties

of their latent space.



Chapter 6

A survey on Variational Autoencoders

from a GreenAI perspective

Data generation, that is the task of generating new realistic samples given a set of training

data, is a fascinating problem of AI, with many relevant applications in different areas,

spanning from computer vision to natural language processing and medicine. Due to the

curse of dimensionality, the problem was practically hopeless to solve, until Deep Neural

Networks enabled the scalability of the required techniques via learned approximators. In

recent years, deep generative models have gained a lot of attention in the deep learning

community, not just for their amazing applications, but also for the fundamental insight they

provide into the encoding mechanisms of Neural Networks, the extraction of deep features,

and the latent representation of data.

In spite of the successful results, deep generative modeling remains one of the most

complex and expensive tasks in AI. Training a complex generative model typically requires a

lot of time and computational resources. To make a couple of examples, the hyper-realistic

Generative Adversarial Network for face generation in [139] required training on 8 Tesla

V100 GPUs for 4 days; the training of BERT [140], a well-known generative model for NLP,

takes about 96 hours on 64 TPU2 chips.

As remarked in [2], this computational cost has huge implications, both from the ecolog-

ical point of view and for the increasing difficulties for academics, students, and researchers,

in particular those from emerging economies, to do competitive, state-of-the-art research. As

a good practice in Deep Learning, one should give detailed reports about the financial cost

of training and running models, in such a way as to promote the investigation of increasingly

efficient methods.

In this chapter, we offer a comparative evaluation of some recent generative models.

In particular, our focus is on the so-called Variational Autoencoders [141, 142] (VAEs),

introduced in Section 5.1.2.

Variational Autoencoders are very popular inside the scientific community [143, 144],

109



110 6. A survey on Variational Autoencoders

both due to their strong probabilistic foundation, which has been introduced in Section 5.1.2

and will be recalled in Section 6.1, and the precious insight on the latent representation

of data. However, in spite of the remarkable achievements, the behavior of Variational

Autoencoders is still far from satisfactory; there are a number of well-known theoretical and

practical challenges that still hinder this generative paradigm (see Section 6.2), and whose

solution drove the recent research on this topic.

Contributions This chapter is based on my paper [4]. The contributions of this article

are twofold. First of all, we provide a benchmark of the most important variants of the clas-

sical Variational Autoencoder, showing that most of the known challenges regarding VAEs

are still present in these variants. In particular, we focus on a restricted subset of recent

architectures that, in our opinion, deserve a deeper investigation, for their paradigmatic

nature, the elegance of the underlying theory, or some key architectural insight. The three

categories of models that we shall compare are the Two-stage model [145], the Regularized

Autoencoder [146], and some versions of Hierarchical Autoencoders, such as the recent Nou-

veau VAE [147]. Secondly, we discuss the relationship of the discussed VAEs variants with

the GreenAI paradigm, showing that often, increased generation quality leads to increased

ecological impact.

My personal contributions to this work were to write the code and the experimental

setup. A running implementation in TensorFlow 2 for this chapter is available on our GitHub

repository https://github.com/devangelista2/GreenVAE.

Structure of the Chapter This Chapter is meant to offer a self-contained introduction to

the topic of Variational Autoencoders, just assuming the basic knowledge of neural networks

already described in the previous Chapter. In Section 6.1 we start with the theoretical

background, discussing the strong and appealing probabilistic foundation of this class of

generative models. In Section 6.2 we address the way theory is translated into a vanilla neural

net implementation, and introduce the many issues arising from this operation: balancing

problems in the loss function (Section 6.2.1), posterior collapse (Section 6.2.2), aggregate

posterior vs. prior mismatch (Section 6.2.3), blurriness (Section 6.2.4) and disentanglement

(Section 6.2.5).

In the next three Sections we give a detailed mathematical introduction to the three

classes of models for which we provide a deeper investigation, namely the Two-Stage ap-

proach in Section 6.3, the regularized VAE in Section 6.4 and hierarchical models in Section

6.5. Section 6.6 is devoted to describing our experimental setting: we discuss the metrics

used for the comparison, and provide a detailed description of the neural network archi-

tectures. In Section 6.7 we provide the results of our experimentation, making a critical

discussion. In the conclusive Section 6.8 we summarize the content of the article and draw

https://github.com/devangelista2/GreenVAE


6.1 Theoretical Background 111

a few considerations on the future of this field, and the challenges ahead.

6.1 Theoretical Background

In this Section, we extend the introduction to Variational Autoencoders (VAEs) from Section

5.1.2, describing theoretical details and deriving the so-called Evidence Lower Bound (ELBO)

adopted as a learning objective for this class of models.

We recall that to deal with the problem of generating realistic data points, we consider

a dataset S = {x(1), . . . ,x(N)} ⊂ X , where X is the manifold of good data, and we assume

that there exists a ground-truth distribution µgt supported on X , absolutely continuous with

density pgt(x). We also assume that the distribution pgt(x) factorize as:

pgt(x) = Ez∼p(z)[pgt(x|z)], (6.1)

where z ∈ Rs is the latent variable associated with x, distributed with a simple distribution

p(z), as we did in Section 5.1.2.

We also recall that in DLVMs, one usually considers a family of probability distributions

{pΘ(x|z); Θ ∈ Rs}, parameterized by a neural network, and optimizes Θ to minimize the

Kullback-Leibler distance between pgt(x) and pΘ(x) = Ez∼p(z)[pΘ(x|z)], which is equivalent

to compute the Maximum Likelihood Estimation of pΘ(x):

pΘ∗ = argmax
Θ∈Rs

Ex∼pgt(x) [log pΘ(x)] . (6.2)

Unfortunately, (6.2) is usually computationally infeasible. For this reason, VAEs define

another probability distribution qϕ(z|x) named encoder distribution which describes the

relationship between a data point x ∈ X and its latent variable z ∈ Rs and optimizes ϕ and

Θ such that:

Θ∗, ϕ∗ = argmin
Θ,ϕ

Ex∼pgt(x)[DKL(qϕ(z|x)||pΘ(z|x))] (6.3)

where DKL(qϕ(z|x)||pΘ(z|x)) = Ez∼qϕ(z|x)[log qϕ(z|x)− log pΘ(z|x)] is the Kullback-Leibler

divergence between qϕ(z|x) and pΘ(z|x).

But

DKL(qϕ(z|x)||pΘ(z|x)) = Ez∼qϕ(z|x)[log qϕ(z|x)− log pΘ(z|x)]
= Ez∼qϕ(z|x)[log qϕ(z|x)− log pΘ(x|z)− log pΘ(z) + log pΘ(x)]

= DKL(qϕ(z|x)||p(z))− Ez∼qϕ(z|x)[log pΘ(x|z)] + log pΘ(x).

(6.4)



112 6. A survey on Variational Autoencoders

x qϕ(z|x)

σ2
ϕ(x)

µϕ(x)

*

+ϵ z pθ(x|z) x̂

Figure 6.1: A diagram representing the VAE architecture. The stochastic component ϵ in

the gray diamond is sampled from N (0, I).

Thus:

Ez∼qϕ(z|x)[log pΘ(x|z)]−DKL(qϕ(z|x)||p(z)) = log pΘ(x)−DKL(qϕ(z|x)||pΘ(z|x))
≤ log pΘ(x),

(6.5)

where we used that DKL(qϕ(z|x)||pΘ(z|x)) ≥ 0. Equation (6.5) implies that the left-hand

side Ez∼qϕ(z|x)[log pΘ(x|z)]−DKL(qϕ(z|x)||p(z)) is a lower bound for the logarithm of pΘ(x).

For this reason, it is usually called ELBO (Evidence Lower BOund).

Since ELBO is more tractable than MLE, it is used as the cost function for the training

of neural networks in order to optimize both Θ and ϕ:

LΘ,ϕ(x) := Ez∼qϕ(z|x)[log pΘ(x|z)]−DKL(qϕ(z|x)||p(z)), (6.6)

LΘ,ϕ := Ex∼pgt(x)[LΘ,ϕ(x)]. (6.7)

It is worth to remark that ELBO has a form resembling an autoencoder, where the term

qϕ(z|x) maps the input x to its latent representation z, and pΘ(x|z) decodes z back to x.

Figure 6.1 shows a diagram representing the basic VAE structure.

For generative sampling, we forget the encoder and just exploit the decoder, sampling

the latent variables according to the prior distribution p(z) (that must be known).

6.2 The vanilla VAE and its problems

In this section, we explain how the theoretical form of the ELBO (eq. 6.6) can be translated

into a numerical loss function exploitable for the training of neural networks. This will allow

us to point out some of the typical problems that affect this architecture and whose solution

drove the design of the variants discussed in the sequel.

In the vanilla VAE, we assume qϕ(z|x) = N (µϕ(x), σ
2
ϕ(x)), so that learning qϕ(z|x)

amounts to learning its two first moments. Similarly, we assume pΘ(x|z) has a Gaussian

distribution around a decoder function µΘ(z). The functions µϕ(x), σ
2
ϕ(x) and µΘ(z) are

modelled by deep neural networks.

If the model approximating the decoder function µΘ(z) is sufficiently expressive (as it is

the case for deep neural networks), the shape of the prior distribution p(z) does not really



6.2 The vanilla VAE and its problems 113

matter, and for simplicity, it is assumed to be a normal distribution p(z) = N (0, I). The

term DKL(qϕ(z|x)||p(z)) is hence the KL-divergence between two Gaussian distributions

N (µϕ(x), σ
2
ϕ(x)) and N (0, I) and it can be computed in closed form as:

DKL(N (µϕ(x), σϕ(x)),N (0, I)) =
1

2

s∑
i=1

µϕ(x)
2
i + σ2

ϕ(x)i − log(σ2
ϕ(x)i)− 1, (6.8)

where s is the dimension of the latent space. The previous equation has an intuitive ex-

planation as a cost function. By minimizing µϕ(x) for x varying on the whole dataset, we

are centering the latent space around the origin (i.e. the mean of the prior). The other

component is preventing the variance σ2
ϕ(x) from dropping to zero, implicitly enforcing a

better coverage of the latent space.

Coming to the reconstruction loss Ez∼qϕ(z|x)[log pΘ(x|z)], under the Gaussian assumption,

we already remarked that the logarithm of pΘ(x|z) is the quadratic distance between x and

its reconstruction µΘ(z). The variance of this Gaussian distribution can be understood as a

parameter balancing the relative importance between reconstruction error and KL-divergence

[131].

The problem of integrating sampling with backpropagation during training is solved by

the well-known reparametrization trick proposed in [141, 142], where the sample is performed

using a standard distribution (outside of the backpropagation flow), and this value is rescaled

with µϕ(x) and σϕ(x).

The basic model of the Vanilla VAE that we just outlined is unfortunately hindered by

several known theoretical and practical challenges. In the next Sections, we give a short

list of important topics that have been investigated in the literature, along with a short

discussion of the main works addressing them.

6.2.1 The balancing issue

The VAE loss function is the sum of two distinct components, with somehow contrasting

effects

LΘ,ϕ(x) := Ez∼qϕ(z|x)[log pΘ(x|z)]︸ ︷︷ ︸
log-likelihood

−γ DKL(qϕ(z|x)||p(z))︸ ︷︷ ︸
KL-divergence

. (6.9)

The log-likelihood loss is just meant to improve the quality of reconstruction, while

the Kullback-Leibler component is acting as a regularizer, pushing the aggregate inference

distribution qϕ(z) = Ex∼pgt(x)[qϕ(z|x)] towards the desired prior p(z).

Log-likelihood and KL-divergence are frequently balanced by a suitable parameter, al-

lowing tuning of their mutual relevance. The parameter is called γ, in this context, and it is

considered as a normalizing factor for the reconstruction loss.

Privileging log-likelihood will improve the quality of reconstruction, neglecting the shape

of the latent space (with ominous effects on generation). Privileging KL-divergence typically



114 6. A survey on Variational Autoencoders

results in a smoother and normalized latent space, and more disentangled features [148, 149];

this usually comes at the cost of a more noisy encoding, finally resulting in more blurriness in

generated images. [150]. Discovering a good balance between these components is a crucial

aspect for the effective training of VAEs.

Several techniques for the calibration of γ have been investigated in the literature, com-

prising an annealed optimization schedule [151] or a policy enforcing minimum KL contribu-

tion from subsets of latent units [152]. These schemes typically require hand-tuning and, as

observed in [153], they easily risk interfering with the principled regularization scheme that

is at the core of VAEs.

An alternative possibility, investigated in [145], consists in learning the correct value for

the balancing parameter during training, which also allows its automatic calibration along

the training process.

In [154] it is observed that considering the objective function used in [145] in order to

learn γ, the optimal γ parameter is in fact proportional to the current reconstruction error;

so learning can be replaced by a mere computation, using e.g. a running average. This

has a simple and intuitive explanation: what matters is to try to maintain a fixed balance

between the two components during training: if the reconstruction error decreases, we must

proportionally decrease the KL component that could otherwise prevail, preventing further

improvements. The technique in [154] is simple and effective: we shall implicitly adopt it in

all our VAE models unless explicitly stated differently. A similar technique has been recently

investigated in [155], where the KL-divergence is used as feedback during model training for

dynamically tuning the balance of the two components.

6.2.2 Variable collapse phenomenon

The KL-divergence component of the VAE loss function typically induces a parsimonious

use of latent variables, some of which may be altogether neglected by the decoder, possibly

resulting in an under-exploitation of the network capacity; if this is a beneficial side effect

or regularization [145, 156] or an issue to be solved [153, 157, 158, 159], it is still debated.

The variable collapse phenomenon has a quite intuitive explanation. If, during training, a

latent variable gives a modest contribution to the reconstruction of the input (in comparison

with other variables), then the Kullback-Leibler divergence may prevail, pushing the mean

towards 0 and the standard deviation towards 1. This will make the latent variable even

more noisy, in a vicious cycle that will eventually induce the network to completely ignore

the latent variable (see Figure 6.2, Left).

As described in [160], one can easily get empirical evidence of the phenomenon by adding

some artificial noise to a variable and monitoring its evolution during training (Figure 6.2,

Right). The contribution of a latent variable to reconstruction is computed as the difference

between the reconstruction loss when the variable is masked with respect to the case when



6.2 The vanilla VAE and its problems 115

KL−divergence
prevails

loglikelyhood

P(X | z) low

Q(z|X)  pushed

towards N(0,1)

confusion of z
augmented 

Figure 6.2: (Left) The vicious cycle leading to the variable collapse. (Right) An empirical

demonstration of the phenomenon: we apply a progressive noise to a latent variable, re-

ducing its contribution to reconstruction; at some point, KL-divergence prevails, enlarging

the sampling variance of the variable and making it even more noisy; the phenomenon has a

catastrophic nature, leading to a complete collapse of the variable. If we remove the artificial

noise, the variable gets reactivated. Pictures borrowed from [160].

it is normally taken into account; we call this information reconstruction gain.

When the reconstruction gain of the variable is less than the KL-divergence, the variable

gets ignored by the network: its correspondent mean value will collapse to 0 (independently

from x) and its sampling variance is pushed to 1. Sampling has no impact on the network,

precisely because the variable is ignored by the decoder.

The variable collapse phenomenon is, to some extent, reversible. However, reactivating

a collapsed variable is not a completely trivial operation for a network, probably due to

saturation effects and vanishing gradients.

6.2.3 Aggregate posterior vs. expected prior mismatch

The crucial point of VAEs is to learn an encoder to produce an aggregate posterior distribution

qϕ(z) = Ex∼pgt(x)[qϕ(z|x)] close to the prior p(z). If this objective is not achieved, the

generation is doomed to fail.

Before investigating ways to check the intended behavior, let us discuss how the Kullback-

Leibler divergence term in (6.9) acts on the distance between qϕ(z) and p(z). So, let us



116 6. A survey on Variational Autoencoders

average over x:

Ex∼pgt(x)[DKL(q(z|x)|p(z))]
= −Ex∼pgt(x)[H(q(z|x))] + Ex∼pgt(x)[H(q(z|x), p(z))] by def. of KL

= −Ex∼pgt(x)[H(q(z|x))] + Ex∼pgt(x)[Ez∼q(z|x)[log p(z)]] by def. of entropy

= −Ex∼pgt(x)[H(q(z|x))] + Ez∼q(z)[log p(z)] by marginalization

= −Ex∼pgt(x)[H(q(z|x))]︸ ︷︷ ︸
Avg. Entropy

of q(z|x)

+ H(q(z), p(z))︸ ︷︷ ︸
Cross-entropy of

q(x) vs p(z)

by def. of entropy

(6.10)

By minimizing the cross-entropy between q(z) and p(z) we are pushing one towards the

other. Jointly, we try to augment the entropy of q(z|x); under the assumption that q(z|x)
is Gaussian, its entropy is 1

2
log(eπσ2): we are thus enlarging the (mean) variance, further

improving the coverage of the latent space, essential for generative sampling.

As a simple sanity check, one should always monitor the moments of the aggregate

posterior distribution q(z) during training: the mean should be 0, and the variance 1. Since

collapsed variables could invalidate this computation (both mean and variance are close to

0), it is better to use an alternative rule [161]: if we look at q(z) = Epgt(x)[q(z|x)] as a

Gaussian Mixture Model (GMM), its variance σ2
GMM is given by the sum of the variances

of the means Epgt(x)[µϕ(x)
2] and the mean of the variances Epgt(x)[σ

2
ϕ(x)] of the components

(supposing that Epgt(x)[µϕ(x)]=0):

σ2
GMM = Epgt(x)[µϕ(x)

2] + Epgt(x)[σ
2
ϕ(x)] = 1 (6.11)

where in this case µϕ(x) and σ2
ϕ(x) are the values computed by the encoder.

This is called variance law in [161] and can be used to verify that the regularization effect

of the KL-divergence is properly working.

The big problem is that even if the two first moments of q(z) are 0 and 1, this does not

imply that it should look like a Normal (meaning that the KL-divergence got lost in some

local minimum, contenting itself with adjusting the first moments of the distributions).

The potential mismatch between q(z) and the expected prior p(z) is a problematic aspect

of VAEs that, as observed by many authors [161, 162, 163], could seriously compromise the

whole generative framework. Attempts to solve this issue have been made both by acting

on the loss function [164] or by exploiting more complex priors [152, 165, 166].

An interesting possibility, that has been recently deployed in the Hyperspherical VAE

[167], consists in replacing the Gaussian Distribution with the von Mises-Fisher (vMF) dis-

tribution [168], that is a continuous distribution on the N -dimensional sphere in use in

directional statistics.

An orthogonal, drastic alternative consists in renouncing to work in the comfortable

setting of continuous latent variables, passing instead in the discrete domain. This approach



6.2 The vanilla VAE and its problems 117

is at the core of the Vector Quantized VAE [169] (VQ-VAE): each latent variable is forced

to occupy a position in a finitely sampled space so that we can treat each latent variable as

a s-dimensional vector in a space of dimension n. This discrete encoding is exploited during

sampling, where the prior is learned via a suitable autoregressive technique.

Clustering, GMM, and Two-stage

In case input data are divided into subcategories (as in the case of MNIST and Cifar10),

or have macroscopic attributes like, say, a different color for hairs in the case of CelebA,

we could naturally expect to observe this information in the latent encoding of data [170].

In other words, we could imagine the latent space to be organized in clusters, (possibly)

reflecting macroscopic features of data.

To make an example, Figure 6.3 describes the latent encoding of MNIST digits, with a

different color for each class in the range 0-9.

Figure 6.3: Latent encoding of MNIST digits in a latent space of dimension 2. Digits in

different categories are represented with a different color. Observe: (1) the overall (rough)

Gaussian-like disposition of all digits and (2) the typical organization in clusters, in contrast

with the uni-modal objective of KL-regularization.

We can clearly observe that different digits naturally organize themselves in separate

clusters. While the overall distribution still has a Gaussian-like shape, the presence of clusters

may obviously contrast with the required smoothness of the internal encoding, introducing

regions with higher/lower probability densities. Observe e.g. the gaps between some of the

clusters: sampling in such a region will eventually result in a poor generative output. In

other words, clustering could be one of the main sources for the mismatch between the prior

and the aggregate posterior.



118 6. A survey on Variational Autoencoders

While the phenomenon is evident in a low-dimensional setting, it is more difficult to

observe and testify it in higher dimensions. Remember that one of the VAE assumptions is

that, as far as you have a sufficiently expressive decoder, the prior does not really matter

since the decoder will be able to turn each distribution into the desired one [131].

Still, it makes sense to try to exploit clustering and a natural approach consists in using

a GMM model. Several works have been done in this direction. The simplest approach, fol-

lowed in [146], is to superimpose a GMM of fixed dimension on the latent space via ex-post

estimation using standard machine learning techniques (this is also the approach we shall

follow in some of our tests). Alternatively, the GMM model can be learned. In the Varia-

tional Deep Embedding approach [170] (VaDE), which essentially provides an unsupervised

clustering model, the relevant statistics of the GMM are estimated via Maximum Likelihood

Estimation, in a way similar to the Vanilla case (see also [171] for a similar, slightly more

sophisticated approach).

In the so-called Two-Stage model [145], a second VAE is trained to learn an accurate

approximation of q(z); samples from a Normal distribution are first used to generate samples

of q(z), passed to the actual generator of data points. We shall give an extensive discussion

of to the Two-Stage approach in Section 6.3.

In [172], it is proposed to give an ex-post estimation of q(z), e.g. imposing a distribution

with a sufficient complexity (they consider a combination of 10 Gaussians, reflecting the ten

categories of MNIST and Cifar10). A suitable regularization technique alternative to KL

is used to induce the desirable smoothness of the latent space. A deeper analysis of this

approach is done in Section 6.4.

An additional and interesting issue of the Two-Stage model concerns the similarity mea-

sure to use as a loss function in the second stage. In [145], the traditional mean squared

error and categorical cross entropy are considered. However, we discovered that cosine dis-

tance works amazingly better. We did not get to cosine distance by trial and error, but by

a long and deep investigation on latent representations. These results will be the object of

a forthcoming article.

6.2.4 Blurriness

Variational Autoencoders (VAEs), in comparison with alternative generative techniques,

usually produce images with a characteristic and annoying blurriness. The phenomenon

can also be observed in terms of the mean-variance of pixels in generated images, which is

significantly lower than that for data in the training set [173].

The source of the problem is not easy to identify, but it is likely due to averaging,

implicitly underlying the VAE frameworks (and, more generally, the whole autoencoder

approach). In the presence of multimodal output, a loglikelihood objective typically results

in averaging and hence blurriness [129].



6.2 The vanilla VAE and its problems 119

Variational Autoencoders are intrinsically multimodal, both due to dimensionality re-

duction and to the sampling process during training.

Several attempts to solve the issue by acting on the reconstruction metrics have been

made. Structural similarity (frequently used for deblurring purposes) does not seem to be

effective [174]. Better results can be obtained by considering deep hidden features extracted

from a pre-trained image classification model, like e.g. VGG19 [175]. In models of the VAE-

GAN family [176, 177, 178], the reconstruction loss is altogether replaced by a discriminator

trying to distinguish real images from generated ones. The use of a discriminator, assessing

the quality of generated data and acting on the density of the prior, is also a basic component

of the recent VAEPP model (VAEs with a pullback prior) [179].

The most promising approaches are however based on iterative/hierarchical approaches

[180, 181, 147]. In these architectures, following the idea of latent Gaussian models [182], the

vector of latent variables z is split into L groups of latent variables zl, l = 1, ..., L and the

density over the variable of interest is constructed sequentially, in terms of latent variables

of lower indices. For instance, the prior p(z) would be written as an autoregressive density

of the following kind:

p(z) =
L∏
l=1

pl(zl|z<l). (6.12)

.

Similarly, the inference probability would be decomposed as:

qϕ(z|x) =
L∏
l=1

q
(l)
ϕ (zl|x, z<l), (6.13)

where q
(l)
ϕ (zl|x, z<l) is the encoder density of the l-th group. Suitable (iterative) neural net-

works modules are used to sequentially compute the relevant statistics of these distributions,

in terms of previous outputs.

As an example of these architectures, the structure of NVAE will be detailed in Section

6.6.2.

The advantage of this approach is that it usually allows to work with a larger number of

latent variables, responsible for small and progressive adjustments of generated samples.

6.2.5 Disentanglement

Besides the task of generating new images, [148] and [149] noticed that VAEs can also be

used to learn an efficient way to represent the data, with important applications in transfer

learning and classification.

To understand this phenomenon, suppose that there exists a set of true generative fac-

tors v = (v1, . . . ,vS) ∈ RS such that pgt(v|x) =
∏S

i=1 pgt(vi|x) (i.e. v are conditionally

independent given x) and that each vi encodes a meaningful feature of the data point x



120 6. A survey on Variational Autoencoders

generated by it. Under the assumption that s ≥ S, the latent variables z = (z1, . . . ,zk)

learnt during the training are a redundant representation of v in a basis where the features

are not disentangled. To learn an optimal latent representation of the input image x, it is

necessary to train the network in such a way that S coordinates of z are related to v, while

the other s− S coordinates can be used to improve the reconstruction of x, recovering the

high frequency components that are missing in v.

In β-VAE [149, 148], this constraint is imposed by noting that in the ELBO function the

prior distribution p(z) = N (0, I) forces the decoder qϕ(z|x) to learn a vector z where each

variable is independent of each other. To improve disentanglement, we should hence induce

the DKL term to be as small as possible, which can be achieved by augmenting the decoder

variance γ to be greater than 1. Unfortunately, since :

Epgt(x)[DKL(qϕ(z|x)||p(z))] = DKL(qϕ(z)||p(z)) + Iqϕ(X;Z),

where Iqϕ(X;Z) is the mutual information between X and Z with respect to the joint dis-

tribution qϕ(x, z) = qϕ(z|x)pgt(x), by pushing DKL(qϕ(z|x)||p(z)) to zero, the mutual in-

formation between X and Z is also minimized, reducing the reconstruction efficiency of the

network. This problem is addressed in [183, 184] where the ELBO is modified by adding

more parameters with the intent to improve disentanglement without losing too much per-

formance.

6.3 Two-Stage VAE

To address the mismatch of aggregate posterior versus the expected prior, Bin Dai and David

Wipf in [145], introduced the Two-Stage VAEs.

The idea behind this model is to train two different VAEs sequentially. The first VAE is

used to learn a good representation qϕ(z|x) of the data in the latent space without guaran-

teeing exactly q(z) = p(z), whereas the second VAE should learn to sample from the true

q(z) without using the prior distribution p(z). A scheme of the implementation follows (a

detailed architectural description is given in Section 6.6.2):

• Given a data set S = {x(1), . . . ,x(N)}, train a VAE with a fixed latent dimension s,

possibly small.

• Generate latent samples Z = {z(1), . . . ,z(N)} via z(i) ∼ qϕ(z|x(i)), i = 1, . . . N . By

design, these samples are distributed as qϕ(z) = Epgt(x)[qϕ(z|x)], but likely not as

p(z) = N (0, I).

• Train a second VAE with parameters (Θ′, ϕ′) and latent variable u ∼ p(u) = N (0, I)

of dimension s to learn the distribution qϕ(z) with Z as the dataset.



6.4 Regularized VAE (RAE) 121

• Sample new images by ancestral sampling, i.e. by first sampling u ∼ p(u), then

generate a z value by pΘ′(z|u) and finally x ∼ pΘ(x|z).

The theoretical foundation of the Two-Stage VAE algorithm is well presented in [145].

We summarize here the main results. The two VAEs aim at separating the components of the

ELBO loss function (6.9), by suitably using the decoder variance γ. Remarking that pgt(x) is

the unknown data distribution which we desire to learn and that pΘ(x) = Ez∼qϕ(z)[pΘ(x|z)]
is the learned distribution, we hope that pΘ(x) ≈ pgt(x) ∀x.

Unfortunately, this is not always possible. In fact, there is a critical distinction between

the cases where the dimension of the data n and the latent space dimension s are equal, and

the case where n > s.

As a matter of fact, in the first case, it is possible to prove that, under suitable assump-

tions, for the optimal choice of the parameters (Θ∗, ϕ∗) it holds that pΘ∗(x) = pgt(x) almost

everywhere (i.e. VAEs strongly converges to the true distribution pgt(x)). In the second

case, only weak convergence, in the sense that
∫
A
pΘ∗(x)dx =

∫
A
pgt(x)dx where A is an

open subset of Rn, can be proved (see Theorems 1 and 2 in [145]).

In the first stage, since the ambient dimension is obviously greater than the latent space

dimension (i.e. n > s), for the previous results only a weak convergence is guaranteed; the

parameter γ is chosen in this case in order to get a good reconstruction (Theorem 4 in [145]).

In the second stage by construction, the data variable z and its correspondent latent variable

u have the same dimension, hence the unknown distribution qϕ(z) is exactly identified by

the VAE. As a consequence it is possible to sample directly from qϕ(z), without using the

prior p(z), thus bypassing the problem of mismatch between the aggregate posterior and the

prior distributions.

6.4 Regularized VAE (RAE)

One of the most interesting variations of vanilla VAE is the work of Partha Ghosh and Mehdi

S. M. Sajjadi [172], where the authors tried to solve all the problems related to the classical

VAE by completely changing the way of approaching the problem. They pointed out that, in

their typical implementation, VAEs can be seen as a regularized Autoencoder with Additive

Gaussian Noise on the decoder input. In their work, the authors argued that noise injection

in decoder input can be seen as a form of regularization since it implicitly helps to smooth

the function learned by the network.

To get a new insight into this problem, they took into consideration the distinct compo-

nents of ELBO already introduced in (6.9):

LΘ,ϕ(x) := Ez∼qϕ(z|x)[log pΘ(x|z)]︸ ︷︷ ︸
:=LREC(Θ,ϕ)

−γ DKL(qϕ(z|x)||p(z))︸ ︷︷ ︸
:=LKL(ϕ)

, (6.14)



122 6. A survey on Variational Autoencoders

where LREC is a term that measures the distance between the input and the reconstruction,

whereas LKL is a regularization term that enforces the aggregate posterior to follow the prior

distribution.

To show how LKL(ϕ) regularizes the loss, in [172] the Constant-Variance VAEs (CV-

VAEs) [172] have been investigated, where the encoder variance σ2
ϕ(x) is fixed for every

x ∈ S and thus treated as a hyperparameter σ2. In this situation,

LREC(Θ, ϕ) = −Ez∼qϕ(z|x)

[1
2
||x− µΘ(z)||22

]
(6.15)

LKL(ϕ) = DKL(qϕ(z|x)||p(z)) = ||µϕ(x)||22 + C (6.16)

LΘ,ϕ(x) = −Epgt

[
Ez∼qϕ(z|x)

[1
2
||x− µΘ(z)||22

]
− γ||µϕ(x)||22

]
. (6.17)

We observe that the expression in (6.17) is a Mean Squared Error (MSE) with L2 regu-

larization on µϕ(x).

The authors proposed to substitute noise injection in the decoder input with an explicit

regularization scheme in a classical CV-VAE. This is done by modifying the cost function

LΘ,ϕ = Epgt(x)[LREC(Θ, ϕ)− γLKL(ϕ)− λLREG(Θ)] where LREG(Θ) is a regularizer for the

decoder weights, while γ, λ ≥ 0 are regularization parameters.

Whereas LREC(Θ, ϕ) = −Ez∼qϕ(z|x)[
1
2
||x − µΘ(z)||22] and LKL(ϕ) = 1

2
||z||22 are fixed a

priori by the CV-VAE architecture, LREG(Θ) needs to be defined. The choice for LREG(Θ)

identifies the specific kind of network. Ghosh and Sajjadi proposed three possible choices

for LREG(Θ):

• L2-Regularization, where LREG(Θ) = ||Θ||22 is simply the weight decay on the decoder

parameters.

• Gradient Penalty, where LREG(Θ) = ||∇µΘ(µϕ(x))||22 bounds the gradient norm of the

decoder with respect to its input, enforcing smoothness.

• Spectral Normalization, where each weight matrix Θl in the decoder is normalized by

an estimate of its largest singular value: ΘSN
l = Θl

s(Θl)
(the estimate s(Θl) can be easily

obtained with one iteration of the power method).

Moreover, they argued that removing noise injection from the decoder input prevents

from knowing the distribution of latent variables, thus losing the generative ability of the

network. They solved this problem by proposing an ex-post density estimation, where the

distribution of the latent variables is learned a posteriori, by fitting Z = {zi; zi = µϕ(x
i)}

with a GMM model qδ(z) with a fixed number of components and then sampling z from

qδ(z) to generate new samples from pΘ(x|z). The generative model defined in this way is

called Regularized Autoencoder (RAE).



6.5 Hierarchical Variational Autoencoder 123

6.5 Hierarchical Variational Autoencoder

To improve the quality of the generation in Variational Autoencoders, Kingma et al. [152]

strengthened the inference network qϕ(z|x) with the powerful Normalizing Flows [124] in-

troduced by Rezende and Mohamed in 2015. The idea of Normalizing Flows is to begin with

a latent variable z0 sampled by a simple distribution qϕ(z0|x), and to iteratively construct

more complex variables by applying transformations zt = ft(zt−1) for t = 1, . . . , T . By

observing that the DKL expression is:

DKL(qϕ(zT |z<T ,x)||p(zT )) = EzT∼qϕ(zT |z<T ,x)

[
log qϕ(zT |z<T ,x)− log p(zT )

]
, (6.18)

its implementation requires the computation of the logarithm of qϕ(zT |, z<T ,x). If the func-

tions ft(·) are simple enough, it is possible to efficiently use them to compute log qϕ(zT |z<T ,x)

as:

log qϕ(zT |z<T ,x) = log qϕ(z0|x)−
T∑
t=1

log det
∣∣∣ ∂ft
∂zt−1

∣∣∣, (6.19)

where ∂ft
∂zt−1

is the Jacobian matrix of ft(zt−1) computed by repeatedly applying the well-

known change of variable theorem to the multi-variate random variable zT defined as:

zT = fT (fT−1(. . . (f1(z0)) . . . )). (6.20)

An interesting aspect concerning Normalizing Flows is that, under suitable assumptions,

they are provably universal, in the sense defined in [185]. As already mentioned, the first

successful integration of Normalizing Flows in VAEs was by Kingma et al. in [152], where

they introduced Inverse Autoregressive Flows (IAF). The idea was to define ft(zt−1) as a

simple affine function of the form:

zt = ft(zt−1) = µt + σt ⊙ zt−1, ∀t = 1, . . . , T, (6.21)

where z0 ∼ qϕ(z0|x) = N (µϕ(x), σ
2
ϕ(x)).

Figure 6.4 schematically represents the unrolling of equation (6.21).

We highlight that the IAF introduces a natural order in the latent variables. For this

reason, we will refer to this kind of model as Hierarchical Variational Autoencoder (HVAE).

In this paradigm, we will refer to each zt as a group of latent variables, and we will collect

the set of all groups in a vector z = (z0, . . . ,zT ) where the variables are written in the order

defined above.

If we distinguish between the encoder (inference) network qϕ(z|x) and the decoder (gener-

ative) network, we need to choose if the ordering of latent variables is the same in the two

parts of the network (bottom-up inference), or if it is reversed (bidirectional inference) as

shown in Figure 6.5.



124 6. A survey on Variational Autoencoders

x qϕ(z1|x)

σ2
1

µ1

*
+

ϵ

z1

qϕ(z2|x)

σ2
2

µ2

*
+

z2

qϕ(zT |x)

σ2
T

µT

*
+

zT

...

...

...

IAF IAF IAF

Figure 6.4: A scheme of Inverse Autoregressive Flow. Each white box represents one iteration

of equation (6.21), where µt, σ
2
t are generated by the encoder qϕ(zt|x).

z1

z2

z3

x

+

z1

z2

z3

x

=

z1

z2

z3

x x

... ... ... ...

Top-Down

Generative Model

Bottom-Up

Inference Model

VAE with

Bottom-Up Inference

(a)

z1

z2

z3

x

+

z1

z2

z3

x

=

z1

z2

z3

x x

... ... ... ... ...

Top-Down

Generative Model

Bidirectional

Inference Model

VAE with

Bidirectional Inference

(b)

Figure 6.5: Diagrams that schematically represent Hierarchical VAE in two different config-

urations: Bottom-Up Inference (a) and Bidirectional Inference (b).

As it is clear from Figure 6.5, in bottom-up inference the image x ∈ Rn is encoded

to z = (z1, . . . ,zT ) independently from the prior p(z) =
∏T

t=1 p(zt|z<t); in the generative

phase the image is reconstructed by taking zT as the final output of the encoder, and then

sampling each zt, t = T − 1, . . . , 0 from the prior distribution independently from qϕ(zt|x)
(i.e. the encoder and decoder are independent of each other). We underline that this fact

makes the bottom-up inference training unstable.

Conversely, in bidirectional inference, the process of generating latent variables is shared

between the two parts of the network, which makes the training easier, although the design

of the network is a bit more difficult.

Since the results of vanilla IAF are not competitive with the state-of-art, we will not use

them in our future analysis (see the original paper for more information), whereas we will

focus our experimental results on two powerful variants of IAF, making use of bidirectional

inference and residual blocks to generate high-quality images.



6.6 Experimental setting 125

6.6 Experimental setting

For each variant of Variational Autoencoder discussed in the previous section, we provide

detailed benchmarks on some traditional datasets listed in Section 5.2.1, that is MNIST,

CIFAR10, and CelebA. The specific architectures which have been tested are described

in the following. All models have been compared using standard metrics, assessing both

their energy consumption through the number of Floating Point Operations (FLOPS) (see

Section 6.6.1), and their performance via the so-called Frechèt Inception Distance [136],

introduced in Section 5.2.2. Numerical results are given in Section 6.7, along with examples

of reconstructed and generated images.

6.6.1 Green AI and FLOPS

The paradigm of Green AI [2] is meant to raise attention to the computational efficiency of

neural models, encouraging a reduction in the amount of resources required for their train-

ing and deployment. This concept is not as trivial as it seems; in fact, most traditional AI

research (referred to as Red AI) targets accuracy rather than efficiency, exploiting massive

computational power, and resulting in rapidly escalating costs; this trend is not sustain-

able for various reasons, it is environmentally unfriendly [186], socially not inclusive and

inefficient.

The computation of floating point operations (FLOPS) was advocated in [2] as a measure

of the efficiency of models; the main advantages of this measure are that it is hardware-

independent and has a direct (even if not precise) correlation with the running time of the

model [187]. There are also known problems related to FLOPs, mostly related to the fact

that memory access time can be a more dominant factor in real implementations (see the

“Trap of FLOPs” discussion in [188]).

So, while we shall adopt FLOPS for our comparison, we shall also investigate performance

through more traditional tools, like Tensorboard, in order to gain confidence in the reliability

of FLOPs-based assessments.

6.6.2 Architectures overview

In this section, we provide detailed descriptions of the several different neural network ar-

chitectures we have been dealing with, each one inspired by a different article. For each

of them, different possible configurations have been investigated, varying the number and

dimension of layers, as well as the learning objectives. Moreover, since some of the tech-

niques considered are not dependent on the encoder/decoder structure, we also tested a mix

of different architectures, hyperparameter configurations, and optimization objectives.



126 6. A survey on Variational Autoencoders

3 32

Input

128 16

Conv1

256 8

Conv2

512 4

Conv3

1024 2

Conv4
12
8

FC

12
8

12
8

z 512 8

Conv2T
256 16

Conv1T

3 32

Output

Figure 6.6: Graphical representation of the Vanilla VAE architecture. The yellow, orange,

and green boxes represent convolutional, downsampling and dense layers, respectively.

Vanilla Convolutional VAE

In our first experiment, we followed the same structure of [172], which is a simple CNN

architecture where we doubled the number of channels for each Convolution, and we down-

sampled the spatial dimension by 2 (see Figure 6.6).

The encoder is structured as follows. In the first layer, the input image of dimension (n, n, 3)

(where n = 32 and n = 64 in CIFAR10 and CelebA, respectively) was passed through a

convolutional layer with 128 channels and stride equals 2, to obtain 128 images of dimension

(n/2, n/2). This operation is repeated for 256, 512, 1024 channels. The result is flattened

and passed through two Dense layers to obtain the mean and the variance of the latent

variables.

The decoder has the same structure as the encoder, with Transposed convolutions and Up-

sample layers.

Each convolutional filter has kernel size 4 and ReLU activation function, except for the last

layer of the decoder, where we used a sigmoid activation to ensure that the output is in the

range [0, 1].

Resnet-like

The Resnet-like architecture was adopted in [145]. The main difference of this network

with respect to the Vanilla VAE is that, before downsampling, the input is processed by

a so-called Scale Block, which is just a sequence of Residual Blocks. In turn, a Residual

Block is an alternated sequence of BatchNormalization and Convolutional layers (with unit

stride), intertwined with residual connections. The number of Scale Blocks at each scale of



6.6 Experimental setting 127

the image pyramid, the number of Residual Blocks inside each Scale Block, and the number

of convolutions inside each Residual Block are user-configurable hyperparameters.

ResBlockResBlock

ScaleBlock

bn + relu

conv / fc

bn + relu

conv / fc

+ +

bn + relu

conv / fc

bn + relu

conv / fc

ScaleBlock 2

Conv

  Avg. pooling

fc fc

x

µ z σ z

Encoder

fc

Sigmoid

x

Conv

ScaleBlock N

Upsample

ScaleBlock 1

z

Reshape

Decoder

Upsample

ScaleBlock fc

ScaleBlock N

Downsample

ScaleBlock 2

Downsample

ScaleBlock 1

(a) (b)

Figure 6.7: (a) Scale Block. The Scale Block is used to process features at a given scale; it

is a sequence of Residual Blocks intertwined with residual connections. A Residual Block

is an alternation of batch normalization layers, rectified linear units, and convolutions. (b)

The input is progressively downsampled via convolutions with stride 2, intermixed by Scale

Blocks; at a given scale, a global average pooling layer extracts features that are further

processed via dense layers to compute mean and variance for latent variables. The decoder

is essentially symmetric.

In the encoder, at the end of the last Scale Block, a global average level extracts spatial

agnostic features. These are first passed through a so-called Dense Block (similar to a

Residual Block but with dense layers instead of convolutions), and finally used to synthesize

mean and variance for latent variables.

The decoder first maps the internal encoding z to a small map of dimension 4 × 4 ×
base dim via a dense layer suitably reshaped. This is then up-sampled to the final expected

dimension, inserting Scale Blocks at each scale.



128 6. A survey on Variational Autoencoders

Two-Stage VAE

To check to what extent the Two-Stage VAE improves the generation ability of a Variational

Autoencoder, we tried to fit a second stage to every model we tested, following the architec-

ture described in the following and graphically represented in Figure 6.7.

The encoder in the second stage model is composed of a couple of Dense layers of dimen-

sion 1536 and ReLU activation function, followed by a concatenation with the Input of the

model and then by another Dense layer to obtain the latent representation u with the same

dimension of z, following what’s described in Section 6.3. The decoder has exactly the same

structure as the encoder.

As already described, we used the cosine similarity as the reconstruction part of the ELBO

objective function.

We observed that to improve the quality of the generation, the second stage should be trained

for a large number of epochs.

Convolutional RAE

In our implementation of RAE, we followed exactly the same structure as in Convolutional

Vanilla VAE, with the sole difference that, in RAEs, the latent space is composed of just

one fully connected layer representing the variable z (see Figure 6.8).

In our tests, we only compared L2 and GP regularization, with parameter λ heuristically

computed to achieve the best performance.

NVAE

The model is organized in a bottom-up inference network and a top-down generative network

(see Figure 6.9). Each one of the two networks is composed of a hierarchy of modules at

different scales. Each scale is composed of groups of sequential (residual) blocks.

During generation, each module computes from the current input hl a prior p(zl|hl) (hl

depends from z<l): after sampling from this prior, the result is combined in some way with

the current input hl, the two pieces of information are processed together and passed to the

next module.

During inference, we extract the latent representation at stage l by synthesizing a mean

and a standard deviation for q(zl|x,hl): since this information depends from hl, we expect to

provide additional information, not already available by previous latent encodings. Moreover,

the computation of hl, is done by the top-down network, that is hence a sub-network of the

inference network. During training, both networks are trained together.

Each network has a hierarchical organization at different scales. Each scale is composed

of groups of Blocks.

Both Encoder Blocks (EB) and Decoder Blocks (DB) have similar architectures and are

essentially composed of an alternated sequence of BatchNormalization and Convolutional



6.6 Experimental setting 129

3 32

Input

128 16

Conv1

256 8

Conv2

512 4

Conv3

1024 2

Conv4
12
8

FC 512 8

Conv2T
256 16

Conv1T

3 32

Output

Figure 6.8: Graphical representation of the RAE architecture. The yellow, orange, and green

boxes represent convolutional, downsampling and dense layers, respectively. The red circle

underlines the sole architectural difference between our implementation of VanillaVAE and

RAE, i.e. the fact that in the latter, the latent space is composed of a single Dense layer

that directly encodes to z, while in VanillaVAE the encoding is performed by a couple of

Dense layers that represents the mean and the variance of a Gaussian distribution.



130 6. A survey on Variational Autoencoders

x

r

r

r

x̃

r

r

r

z1

z2

z3

+

+

+

+

+

h

(a)

x̃

r

r

r

z1

z2

z3

+

+

+

h

(b)

Figure 6.9: The whole NVAE architecture (a) and a focus on its decoder (b).

layers, separated by nonlinear activation layers, and intermixed with residual connections

(so, very similar to the Scale Block discussed in the previous section). A few technical

novelties are however introduced by the authors:

• the recent Swish activation function f(u) = u
1+e−u [189] is used instead of Relu, Elu,

or other more traditional choices;

• a Squeeze-and-Excitation (SE) layer [190] is added at the end of each block;

• a moderate use of depthwise separable convolutions [191] is deployed in order to reduce

the number of parameters of the network.

Table 6.1 gives a summary of hyperparameters used in training NVAE on the datasets

addressed in this article, borrowed from [147]. D2 indicates a latent variable with the spatial



6.6 Experimental setting 131

dimensions of D ×D. As an example, the MNIST model consists of two scales: in the first

one, we have five groups of 4 × 4 × 20-dimensional latent variables: in the second one, we

have 10 groups of 8× 8× 20-dimensional variables.

Hyperparameter MNIST Cifar10 CelebA

Input size 28× 28 32× 32 64× 64

Epochs 400 400 90

BatchSize 200 32 16

Normalizing Flows 0 2 2

Scales 2 1 3

Groups per Scale 5,10 30 5,10,20

Spatial dims of z per Scale 42, 82 162 82, 162, 322

Channel dims of z 20 20 20

Initial Channels in Enc. 32 128 64

Residual Cells per Group 1 2 2

GPUs 2 8 8

Total Train time (h) 21 55 92

Table 6.1: Summary of the hyperparameters used in the training of NVAE on the datasets

used in the experiments.

The figures of merit in Table 6.1 help to understand the key novelty of NVAE, that is in

the massive usage of space located latent variables. Consider for instance the case of Cifar10.

The original input of dimension 32× 32× 3 is first transformed to dimension 16× 16× 128

and then, without any further downscaling, processed through a long sequence of residual

cells (30×2). At each iteration, a huge number of latent variables (16×16×20) is extracted

and used for the internal representation, which hence has a dimension widely larger than

the input. Due to this fact, as is also observed by the authors in the appendix, it is not

surprising that most of the variables will collapse during training.

Working with such a huge number of latent variables introduces a lot of issues; in par-

ticular, it becomes crucial to balance the KL component of variables belonging to different

groups. To this aim, the authors introduce additional balancing coefficients γl to ensure that

a similar amount of information is encoded in each group (see [147], appendix A):

DKL(q(z|x)||p(z)) =
L∑
l=1

γlEz<l∼q(z<l|x)[DKL(q(zl|x, z<l)||p(zl|z<l))].

The balancing coefficient γl is kept proportional to the KL term for that group, in such

a way to encourage the model to revive the latent variables in that group when KL is low,

and to clip them if KL is too high. Additionally, γl is also proportional to the size of each

group, to encourage the use of variables at lower scales.



132 6. A survey on Variational Autoencoders

NVAE architectures have a relatively small number of parameters, due to the extensive

use of convolutions and depthwise separable convolutions; however, they require a massive

amount of memory, and huge computational power: for the configuration used for Cifar10,

composed of 30 groups at scale 16× 16, we estimated the number of flops for the inference

phase larger than 100G.

Due to this reasons, we experimented with a sensibly lighter architecture, just composed

of 5 groups, with a few additional convolutions to augment the receptive fields of the spatially

located latent variables. The good news is that the network, even in this severely crippled

form, still seems to learn; however, results are really modest and below the performances of

different networks with comparable complexity.

HFVAE

As we already remarked, the main novelty of NVAE is in the massive exploitation of a huge

number of spatially located latent variables. In order to test the relevance of this architec-

tural decision, we also tested a different variant of the hereditary architecture of Figure 6.9,

where we drop the spatial dimension for latent variables, using instead a Featurewise Linear

Modulation Layer [192] to modulate channels according to the internal representation. In ad-

dition, the first approximation h1 is directly produced from the latent variable set z0 through

a dense transformation. The general idea is that at lower scales we decide the content of the

resulting image, while stylistic details at different resolutions (usually captured in channels

correlations [193]) are added at higher scales. We call this variant HFVAE (Hereditay Film

VAE); a similar architecture has been investigated in [194].

6.7 Numerical results

In this section, we provide quantitative evaluations for some configurations of the models

previously discussed. The precise configurations (layers, channels, blocks, etc.) are discussed

below.

The datasets used for the comparison are CIFAR10 and CelebA: in a GreenAI perspective,

we are reluctant to address more complex datasets, at higher resolutions, that would require

additional computational resources and additional costs. On CelebA, we just evaluated a

subset of particularly interesting models.

For each model, we provide the following figures:

• Params: the number of parameters;

• FLOPs: an estimation of number of FLOPS (see Section 6.6.1 for more details);

• MSE: the mean reconstruction error ×103;



6.7 Numerical results 133

• REC: the FID value computed over reconstructed images;

• GEN1: the FID value computed over images generated by a first VAE;

• GEN2: the FID value computed taking advantage of a second VAE;

• GMM: the FID value computed by superimposing a GMM of ten Gaussians1 on

the latent space. In the case of hierarchical models, the GMM is computed on the

innermost set of latent variables.

The following list provides a legenda for the names of models used in the following tables:

• CNN-by-lz: Vanilla VAE with CNN architecture, basedim of y channels and latent

space of dimension z.

• L2-RAE-by-lz: L2-RAE with CNN architecture, basedim of y channels and latent

space of dimension z.

• GP-RAE-by-lz: GP-RAE with CNN architecture, basedim of y channels and latent

space of dimension z.

• Resnet-sx-by-lz: Resnet-like model, with x ScaleBlocks, a basedim of y channels,

and a latent space of dimension z.

• HFVAE-sx-by-lz: HFVAE with x scales, ScaleBlocks, a basedim of y channels, and

a latent space of dimension z at hereditary scales; the base latent dimension z0 is 64.

• NVAE-zx-by-lz: NVAE with x latent variables channels, a basedim of y and z latent

groups of the same scale.

6.7.1 Quality Evaluation

Here we draw a few conclusions about the design of Variational Autoencoders deriving from

the previous investigation (Tables 6.2 and 6.3) and our past experience with VAEs.

• The decoder is more important than the encoder. For instance, in the ResNet architec-

ture latent features are extracted via a GlobalAverage layer, obtaining robust features,

less prone to overfitting.

• Working with a larger number of latent variables improves reconstruction, but this

does not eventually imply better generation. This is e.g. evident when comparing the

two Resnet-like architectures with latent spaces of dimension 128 and 100.

1Augmenting the number of Gaussians does not sensibly improve generation



134 6. A survey on Variational Autoencoders

Model Params FLOPs MSE REC GEN1 GEN2 GMM

CNN-b128-l128 31,034,755 2,397M 2.8 27.6 96.2 96.8 89.0

L2-RAE-b128-l128 30,510,339 2,395M 1.2 9.9 108.1 88.4 78.2

GP-RAE-b128-l128 30,510,339 2,395M 1.2 10.6 118.0 97.6 76.4

Resnet-s4-b48-l128 16,179,363 1,431M 1.5 37.2 110.0 93.9 96.3

Resnet-s4-b48-l100 16,064,619 1,430M 1.6 37.5 102.9 88.4 91.4

Resnet-s4-b64-l64 27,766,275 2,539M 1.7 36.5 94.2 78.8 85.1

HFVAE-s4-z4-l48 27,139,755 1,163M 1.8 45.9 93.3 90.8 90.0

HFVAE-s4-z12-l64 48,113,051 2,085M 1.3 33.3 89.0 85.7 86.4

NVAE-z10-b100-l4 8,305,521 4,478M 3.2 62.6 96.1 87.4 91.4

Table 6.2: Summary of the results obtained with the networks in the first column on Cifar10.

Model Params FLOPs MSE REC GEN1 GEN2 GMM

CNN-b128-l64 40,668,419 4,104M 3.2 48.4 66.9 56.2 55.2

L2-RAE-b128-l64 27,359,043 4,102M 3.3 39.8 230.2 61.7 45.1

GP-RAE-b128-l64 27,359,043 4,102M 3.2 41.2 230.6 65.3 47.0

Resnet-s4-b32-l64 19,330,627 2,924M 2.8 51.4 66.0 54.9 57.4

Resnet-s4-b48-l64 38,996,003 6,452M 2.5 46.8 61.7 50.8 54.5

Resnet-s3-b64-l64 21,370,179 5,949M 2.6 39.2 59.3 44.9 45.8

Table 6.3: Summary of the results obtained with the networks in the first column on CelebA.

• Fitting a GMM over the latent space [172] is a cheap technique (it just takes a few

minutes) that invariably improves generation, both in terms of perceptual quality and

FID score. This fact also confirms the mismatch between the prior and the aggregated

posterior discussed in Section 6.2.3.

• The second stage technique [145] typically requires some tuning in order to properly

work, but when it does it usually outperforms the GMM approach. Tuning may involve

the loss function (we used cosine similarity in the following), the architecture of the

second VAE, and the learning rate (more generally, the optimizer’s parameters).

• Hierarchical architectures are complex systems, difficult to understand and to work

with (monitoring/calibrating training is a really complex task). We cannot express an

opinion about NVAE, since its complexity trespasses our modest computational facili-

ties, but simpler architectures like those described in [180] or [181], in our experience,



6.7 Numerical results 135

do not sensibly improve generation over a well-constructed traditional VAE.

• The loss of variance for generated images [173] (see Section 6.2.4) is confirmed in all

models, and it almost coincides with the mean squared error for reconstruction.

A qualitative comparison between the different models in generating images can also be done

by looking at the images in the Appendix.

6.7.2 Energetic evaluation

Before comparing the energetic footprint of the different models, let us briefly discuss the

notion of FLOPs as a measure of computational efficiency. FLOPs have been computed by

a library for Tensorflow Keras under development at the University of Bologna, and inspired

by similar works for PyTorch (see e.g. https://github.com/sovrasov/flops-counter.

pytorch). FLOPs only provide an abstract, machine-independent notion of complexity;

typically, only the most expensive layers are taken into account (those with superlinear com-

plexity with respect to the size of inputs). The way this quantity will result in an actual

execution time and energetic consumption does however largely depend on the underlying

hardware, and the available parallelism. As an example, in Table 6.4 we compare the exe-

cution time for a forward step over the test set of Cifar10 (10K) for a couple of hardware

configurations. The first one is a Laptop with an NVIDIA Quadro T2000 graphics card

and a CPU Core i7-9850H; the second one is a workstation with an Asus GeForce DUAL-

GTX1060-O6G graphic card and a CPU intel Core i7-7700K. Observe the strong dependency

from the batch size, that is not surprising but worth recalling (see [195] for a critical analysis

of the performance of Neural Networks architectures). Of course, as soon as we move the

computation to a cloud, execution times are practically unpredictable.

Unfortunately, as we shall see, even for a given computational device, the relation between

FLOPs and execution time is quite aleatory.

Following the traditional paradigm, we compare performances on the forward pass. This

is already a questionable point; on one side, it is true that this reflects the final usage of

the network when it is deployed in practical applications; on the other side, it is plausible

to believe that training still takes a prevalent part of the lifetime of any neural network.

Restricting the investigation to forward time means not taking into account some expensive

techniques of the training of modern systems, such as regularization components. For exam-

ple, it is possible to notice that in Table 6.5, L2-RAE and GP-RAE have exactly the same

number of FLOPs, since in terms of forward execution they are equal. However, we highlight

that the training of GP-RAE is almost ten times slower than the training of L2-RAE. This

is a consequence of the fact that the regularization term of GP-RAE involves the compu-

tation of the decoder gradient with respect to the latent variables, which is an expensive

operation not required in L2-RAE. Consequently, even if the two models have more or less

https://github.com/sovrasov/flops-counter.pytorch
https://github.com/sovrasov/flops-counter.pytorch


136 6. A survey on Variational Autoencoders

Network bs100 bs10 bs1

Resnet-s4-b48-l128 3.0± 0.2 6.0± 0.2 33.3± 0.4

4.9± 0.2 8.8± 0.2 49.5± 0.5

Resnet-s4-b48-l100 2.86± 0.1 5.9± 0.2 32.9± 0.4

4.8± 0.2 8.7± 0.2 49.1± 0.5

Resnet-s3-b64-l64 4.4± 0.2 9.± 0.3 47.8± 0.4

7.2± 0.2 13.5± 0.2 78.6± 0.5

Table 6.4: Average Forward Time (in seconds) over the Cifar10 Test Set (10k images) for

different networks, hardware, and batch size (bs). The two times entries in each cell refer to

different machines: the first is a Laptop with an NVIDIA Quadro T2000 graphics card and

a Core i7-9850H CPU; the second is a workstation with an Asus GeForce DUAL-GTX1060-

O6G graphic card and an Intel Core i7-7700K CPU.

the same performance in terms of generation quality, L2-RAE should be preferred, since its

training is cheaper. Moreover, taking into account only the FLOPs of the model, the actual

convergence speed of systems is neglected.

The results of the energetic evaluation on the forward pass are given in Table 6.5; inference

times have been computed over a workstation with an Asus GeForceDUAL-GTX1060-O6G

graphic card and an intel Core i7-7700K CPU. The same results have also been expressed in

graphical form in Figure 6.10, relative to a batch size of dimension 1. In the plot, we omit

L2-RAE and GP-RAE, since their architectures and figures are essentially analogous to the

basic CNN; similar for some Resnet architectures.

As it is clear from these results, there is no precise correlation between FLOPS and

execution time. As an example, from Table 6.5, we see that HFVAE requires a computation

time 4-6 times higher than the others in the face of the lowest number of FLOPS. One of the

possible reasons for this behavior is, in our opinion, the fact that the total computation time

also includes memory access time in addition to FLOPS. As observed by several authors

(see e.g. [188]), memory access time is a crucial factor in real implementations, as densely

packed data might be read faster than a few numbers of scattered values. For instance, while

depthwise convolutions greatly reduce the number of parameters and FLOPS, they require

more fragmented memory access, harder to implement efficiently. In future works, we intend

to deeper investigate other causes for the absence of correlation between FLOPS and time.



6.8 Conclusions 137

Model Params FLOPS bs100 bs10 bs1

CNN-b128-l128 31,034,755 2,397M 5.8 ± 0.1 9.0 ± 0.1 54.1 ± 0.4

L2-RAE-b128-l128 30,510,339 2,395M 11.6 ± 0.2 13.9 ± 0.2 57.3 ± 0.5

GP-RAE-b128-l128 30,510,339 2,395M 12.5 ± 0.2 14.1 ± 0.2 56.3 ± 0.5

Resnet-s4-b48-l128 16,179,363 1,431M 4.9± 0.2 8.8± 0.2 49.5± 0.4

Resnet-s4-b48-l100 16,064,619 1,430M 4.8± 0.2 8.7± 0.2 49.1± 0.4

Resnet-s4-b64-l64 27,766,275 2,539M 7.2± 0.2 13.5± 0.2 78.6± 0.5

HFVAE-s4-z4-l48 27,139,755 1,163M 13.1± 0.2 29.2± 0.3 207.0± 1.1

HFVAE-s4-z12-l64 48,113,051 2,085M 21.3± 0.3 48.7± 0.4 325.2± 1.6

Table 6.5: Average Forward Time (in seconds) over the Cifar10 Test Set (10k images) for

different architectures and different batch size (bs); times refer to a workstation equipped

with an Asus GeForceDUAL-GTX1060-O6G GPU and an Intel Core i7-7700K CPU.

Figure 6.10: FLOPs versus Execution time. From the plot we can evince the little relation

between the two figures but, possibly, at a magnitude level.

6.8 Conclusions

In this chapter, we presented a critical survey of recent variants of Variational Autoencoders,

referring them to the several problems that still hinder this generative paradigm. In view of

the emerging GreenAI paradigm [2], we also focused attention on the computational cost of



138 6. A survey on Variational Autoencoders

the different architectures. The main conclusions of our investigation are given in Section

6.7.1, and we shall not try to summarize them here; we just observe that, while we strongly

support the GreenAI vision, we must eventually find better metrics than FLOPs to compare

the energetic performance of neural networks, or more realistic way to compute them.

The constant improvement in generative sampling during the last few years is very promis-

ing for the future of this field, suggesting that state-of-the-art generative performance can

be achieved or possibly even improved by carefully designed VAE architectures.



Chapter 7

Image embedding for denoising

generative models

Denoising Diffusion Models (DDM) [127] are rapidly imposing as the new state-of-the-art

technology in the field of deep generative modeling, challenging the role held so far by

Generative Adversarial Networks [196]. The impressive text-to-image generation capability

shown by models like DALL·E [128] and Imagen [197], recently extended to videos in [198],

clearly proved the qualities of this technique, comprising excellent image synthesis quality,

good sampling diversity, high sensibility and easiness of conditioning, stability of training

and good scalability.

In very rough terms, a diffusion model trains a single network to denoise images with

a parametric amount of noise and generates images by iteratively denoising pure random

noise. This latter process is traditionally called reverse diffusion since it is meant to “invert”

the direct diffusion process consisting in adding noise. In the important case of Implicit

Diffusion models [138], reverse diffusion is deterministic, but obviously not injective: many

noisy images can be denoised to a single common result. Let us call emb(x) (embedding

of x) the set of points whose reverse diffusion generates x. The problems we are interested

in are investigating the shape of emb(x) (e.g. is it a connected, convex space?), finding a

“canonical” element in it (i.e. a sort of center of gravity), and, in case such a canonical

element exists, finding an efficient way to compute it. This would allow us to embed an

arbitrary image into the “latent” space of a diffusion model, providing functionality similar

to GAN-recoders [199], or to encoders in the case of Variational AutoEncoders [4, 125].

Contributions This Chapter is based on the publication [11], where we aim to study the

embedding space of diffusion models. In particular, we focus on Non-Markovian Diffusion

Models known as DDIM, and we show that the associated embedding space has some re-

markable properties, such as unicity with respect to training and model architecture, and

we show that elements of emb(x) can be efficiently computed by gradient descent. After

139



140 7. Image embedding for denoising generative models

that, we introduce a neural network, named embedding network, that maps any image x0 to

its canonical embedding, i.e. to a representative element in emb(x0). Extensive experiments

on the embedding network show its ability to generate elements of the embedding space,

opening to chances for a deeper study.

My personal contribution to the work was to analyze and explain the theory, and to write

down some of the experiments proposed. The source code of the experiments described in

this Chapter is available at the GitHub repository https://github.com/asperti/Embedding-

in-Diffusion-Models, along with links to weights for pre-trained models.

Structure of the Chapter The Chapter is structured as follows. Section 7.1 is devoted

to formally introducing the notion of Denoising Diffusion Models, in addition to the deter-

ministic variant of Denoising Diffusion Implicit Models we are particularly interested in. In

the same Section, we also discuss an intuitive interpretation of denoising diffusion models in

terms of a “gravitational analogy” (Section 7.1.3), which drove many of our investigations

and plays an important role in understanding the structure of datapoint embeddings. A

major consequence of this interpretation, which to the best of our knowledge has never been

pointed out before, is the invariance of the latent space with respect to different models: a

given seed, passed as input to different models, always produces the same image. In Section

7.2, we provide architectural details about our implementation of the Denoising Diffusion

model. Our methodology to address the embedding problem is discussed in Section 7.3. Two

main approaches have been considered, one based on a gradient descent technique, which

allows us to synthesize large clouds of different seeds in the embedding space of specific data

points (Section 7.3.2), and another one based on training a neural network to compute a

single “canonical” seed for the given image: essentially, a sort of encoder. Conclusions and

future works are discussed in Section 7.4.

7.1 Denoising Diffusion Models

In this Section, we provide a general overview of diffusion models from a mathematical

perspective. All results in Section 7.1.1 and Section 7.1.2 are known in the literature; in

Section 7.1.3 we propose an original interpretation of the reverse diffusion process in terms

of a gravitational collapse of the latent space over the data manifold.

7.1.1 Diffusion and reverse diffusion

Consider the distribution pgt(x0) from which the data is generated. We recall that Denoising

Diffusion Probabilistic Models (DDPM) [127], being a DLVM as described in Section 5.1.2,

aim to approximate pgt(x) by a generative distribution pΘ(x0), which is assumed to have

https://github.com/asperti/Embedding-in-Diffusion-Models
https://github.com/asperti/Embedding-in-Diffusion-Models


7.1 Denoising Diffusion Models 141

the form

pΘ(x0) =

∫
pΘ(x0:T )dx1:T (7.1)

for a given time range horizon T > 0, where

pΘ(x0:T ) = pΘ(xT )
T∏
t=1

pΘ(xt−1|xt) (7.2)

with pΘ(xT ) = N (0, I) and pΘ(xt−1|xt) = N (µΘ(xt, αt), σ
2
t I). We also recall that the

diffusion model pgt(x0:T ) is considered to be a Markov chain of the form

pgt(xt|xt−1) = N

(√
αt

αt−1

xt−1,
(
1− αt

αt−1

)
I

)
, (7.3)

with {αt}t∈[0,T ] being a decreasing sequence in the interval [0, 1]. Note that, differently from

the introduction done in Section 5.1.2, we renamed

βt =
αt

αt−1

. (7.4)

The parameters of the generative model pΘ(x0) are then trained to fit pgt(x0) by mini-

mizing the negative Evidence Lower Bound (ELBO) loss, defined as

L(Θ) = −Ex∼pgt(x0:T )[log pΘ(x0:T )− log pgt(x1:T )]. (7.5)

The ELBO loss can be rewritten in a computable form by noticing that, as a consequence

of Bayes’ Theorem, pgt(xt−1|xt,x0) = N (µ̃(xt,x0), σ
2
qI). Consequently,

L(Θ) =
T∑
t=1

γtExt∼pgt(xt|x0)

[
∥µΘ(xt, αt)− µ̃(xt,x0)∥22

]
, (7.6)

which can be interpreted as the weighted mean squared error between the reconstructed im-

age from pΘ(xt|x0) and the true image obtained by the reverse diffusion process pgt(xt−1|xt,x0)

for each time t.

In [138], the authors considered a non-Markovian diffusion process

pgt,σ(x1:T |x0) = pgt,σ(xT |x0)
T∏
t=2

pgt,σ(xt−1|xt,x0), (7.7)

where pgt,σ(xT |x0) = N (
√
αTx0, (1− αT )I), and

pgt,σ(xt−1|xt,x0) = N
(
µσt(x0, αt−1), σ

2
t I
)

(7.8)



142 7. Image embedding for denoising generative models

with

µσt(x0, αt−1) =
√
αt−1x0 +

√
1− αt−1 − σ2

t

xt −
√
αtx0√

1− αt

. (7.9)

This construction implies that the forward process is no longer Markovian, since it depends

both on the starting point x0 and on xt−1. Moreover, [138] proved that, with this choice

of pgt,σ(x1:T |x0), the marginal distribution pgt,σ(xt|x0) = N (
√
αtx0, (1− αt)I), recovers the

same marginals as in DDPM, which implies that xt can be diffused from x0 and αt by

generating a realization of normally distributed noise ϵt ∼ N (0, I) and defining

xt =
√
αtx0 +

√
1− αtϵt. (7.10)

Note that when in Equation (7.8) σt = 0, the reverse diffusion pgt,σ(xt−1|xt,x0) becomes

deterministic. With such a choice of σt, the resulting model is named Denoising Diffusion

Implicit Models (DDIM) by the authors in [138]. Interestingly, in DDIM, the parameters

of the generative model pΘ(xt−1|xt) can be simply optimized by training a neural network

ϵ
(t)
Θ (xt, αt) to map a given xt to an estimate of the noise ϵt added to x0 to construct xt as

in (7.10). Consequently, pΘ(xt−1|xt) becomes a δ
f
(t)
Θ
, where

f
(t)
Θ (xt, αt) =

xt −
√
1− αtϵ

(t)
Θ (xt, αt)√

αt

. (7.11)

Intuitively, the network in (7.11) is just a denoiser that takes as input the noisy image xt

and the variance of the noise αt and returns an estimate of the denoised solution x0. In

DDIM, one can generate new data by first considering random Gaussian noise xT ∼ pΘ(xT )

with αT = 1. Then, xT is processed by f
(T )
Θ (xT , αT ) to generate an estimation of x0, which

is then corrupted again by the reverse diffusion pgt(xT−1|xT , f
(T )
Θ (xT , αT )). This process is

repeated until a new datum x0 is generated by f
(1)
Θ (x1, α1).

The sampling procedure of DDIM generates a trajectory {xT ,xT−1, . . . ,x0} in the im-

age space. In [200, 201] the authors found that the (stochastic) mapping from xT to x0

in DDPM follows a score-based stochastic differential equation (SDE), where the dynamic

is governed by terms related to the gradient of the ground-truth probability distribution

from which the true data is generated. The sampling procedure for DDIM can be obtained

by discretizing the deterministic probability flow [200] associated with this dynamics. Con-

sequently, training a DDIM model leads to an approximation of the score function of the

ground-truth distribution.

7.1.2 The Diffusion Schedule

An important aspect in implementing diffusion models is the choice of the diffusion noise

{αt}Tt=1, defining the mean and the variance of pgt(xt|x0). In [127], the authors showed that



7.1 Denoising Diffusion Models 143

the diffusion process pgt(xt|x0) converges to a normal distribution if and only if αT ≈ 0.

Moreover, to improve the generation quality, αt has to be chosen such that it slowly decays

to 0. The specific choice for the sequence αt defines the so-called diffusion schedule.

In [127], the authors proposed to use linear or quadratic schedules. This choice was

criticized in [202, 203] since it exhibits a too steep decrease during the first time steps,

causing difficulties during generation for the neural network model. To remedy this situation,

alternative scheduling functions with a gentler decrease have been proposed in the literature,

such as the cosine or continuous cosine schedule. The behavior of all these functions is

compared in Figure 7.1.

Figure 7.1: Comparison of different schedules. Generation is better if noise variance does

not change too abruptly, so cosine and continuous cosine schedules usually work better than

linear or quadratic ones.

The quantity of noise added by each schedule is also represented in Figure 7.2, where a

single image is injected with increasing noise according to the given schedule. It is not hard

to see that the cosine and the continuous cosine schedules exhibit a more uniform transaction

between the original image and the pure noise.

7.1.3 The Gravitational Analogy

Similarly to other generative models, developing an intuition of the actual behavior of diffu-

sion models (and of the mapping from a latent encoding to its visible outcome) can be chal-

lenging. In this Section, we propose a simple gravitational analogy that we found extremely

useful to get an intuitive grasp of these models, and which suggested us some interesting

conjectures about the actual shape of the embedding clouds for each object.

Simply stated, the idea is the following. You should think of the datapoints as corps

with a gravitational attraction. Regions of the space where the data manifold has high

probability are equivalent to regions with high density. The denoising model essentially

learns the gravitational map induced over the full space: any single point of the space gets

mapped to the point where it would naturally “land” if subject to the “attraction” of the



144 7. Image embedding for denoising generative models

Figure 7.2: Increasing noise added by the different scheduling: in order, from top to bottom,

linear, quadratic, cosine, and continuous cosine schedules. For each row, from left to right,

the time t is increased linearly from 0 to T . The corresponding αt for each schedule and for

any t is reported above each image.

data manifold.

In more explicit terms, any point z of the space can be seen as a noisy version of any

point x in the dataset. The “attraction” exerted by x on z (i.e. the loss) is directly propor-

tional to their distance, usually an absolute or quadratic error. However, the probability of

training the network to reconstruct x from z has a Gaussian distribution N (x, σ2
zI), with

σ2
z depending on the denoising step. Hence, the weighted attraction exerted by x on z at

each step is

G(x) = Ez∼N (x,σ2
zI)

[∥x− z∥1] (7.12)

To get a grasp of the phenomenon, in Figure 7.3 we compare the gravitational low for a

corp x with the weighted attraction reported in Equation (7.12), under the assumption that

the variance σ has to be compared with the radius of the corp (with constant density, for

simplicity).

According to the gravitational analogy, the embedding space emb(x) of each datapoint

x should essentially coincide with the set of points in the space corresponding to trajectories

ending in x. We can study this hypothesis on synthetic datasets. In Figure 7.4 we show the

gravitational map for the well-known “circle” (a) and “two moons” datasets (b); examples

of embeddings are given in figures (c) and (d).

From the pictures, it is clear in which way the model “fills the space”, that is associating

to each datapoint x all “trajectories” landing in x. The trajectories are almost straight and

oriented along directions orthogonal to the data manifold. We believe that this behavior can

be formally understood by exploiting the dynamics of the trajectories introduced in [200],

as mentioned in Section 7.1. We aim to deeply investigate those aspects in future work.

The most striking consequence of the “gravitational” interpretation is, however, the in-



7.1 Denoising Diffusion Models 145

Figure 7.3: Gravitational analogy. The orange line is the usual gravitational low for a body

with a radius of 1 and constant density. The blue line is the weighted attraction G(x) as a
function of x. The two lines have been rescaled to have an equal integral.

dependence of the latent encoding from the neural network or its training: the gravitational

map only depends on the data manifold and it is unique, so distinct networks or different

trainings of the same network, if successful, should eventually end up with the same results.

This seems miraculous: if we pick a random seed in an almost immense space, and pass it

as input to two diffusion (deterministic) models for the same dataset, they should generate

essentially identical images.

We experimentally verified and confirmed the previous property on a large number of

variants of generative diffusion models and different datasets (see Figure 7.5 for some results

relative to CIFAR10, MNIST and Oxford Flowers). In particular, we tested different variants

of the U-Net, with different numbers of downsampling blocks, different channel dimensions,

and different layers in each block. We also optionally added different kinds of attention

layers, in the traditional spatial form, or acting on channels like in squeeze-and-excitation

layers [190] or in the recent NAFNet [56].

Provided generative models produce acceptable samples, the average quadratic distance

between images generated by different generators on the same latent seed is always very

small: typically, two to three orders of magnitude smaller than the average quadratic distance

between random samples.

The fact that the same encoding works for different models seems to be peculiar to this

kind of generative models. In [204], it was observed that we can essentially pass from a

latent space to another of different generative models with a simple linear map: however, an

identity or even a permutation of latent variables does not usually suffice1.

1It remains to be checked if imposing a spatial structure to the latent space of GANs and VAEs is enough

to induce uniqueness in that case too.



146 7. Image embedding for denoising generative models

(a) circles (b) two moons (c) circle (d) two moons

Figure 7.4: Gravitational map and embeddings for the “circles” (a,b) and “two moons”

(c,d) datasets. Datapoints are in blue. We consider a dense grid of seeds in the latent

space, depicted in green. To visualize the maps (a) and (c) we draw an arrow pointing from

each seed to the corresponding point generated by reverse diffusion (in red). To visualize

embeddings (b) and (d) we consider a set of elements in the datasets, and for each element

x we consider all points in the grid generating a sample x̂ sufficiently close to x.

7.2 Denoising Architecture

The pseudocodes explaining training and sampling for diffusion models are respectively given

in Algorithms 9 and 10 below.

Algorithm 9 Training

1: repeat

2: x0 ∼ pgt(x0)

3: t ∼ Uniform(1,..,T)

4: ϵ ∼ N (0, I)

5: Take gradient descent step on ||ϵ −
ϵΘ(
√
αtx0 +

√
1−αtϵ, αt)||2

6: until converged

Algorithm 10 Sampling

1: xT ∼ N (0, I)

2: for t = T, ..., 1 do

3: ϵ = ϵΘ(xt, αt)

4: x̃0 =
1√
αt
(xt − 1−αt√

1−αt
ϵ)

5: xt−1 =
√
αt−1x̃0 +

√
1− αt−1ϵ

6: end for

As a denoising network, it is quite standard to consider a conditional variant of the U-Net.

This is a very popular network architecture originally proposed for semantic segmentation

[55] and subsequently applied to a variety of image manipulation tasks. In general, the net-

work is structured with a downsample sequence of layers followed by an upsample sequence,

with skip connections added between the layers of the same size.

To improve the sensibility of the network to the noise variance, αt is taken as input,

which is then embedded using an ad-hoc sinusoidal transformation by splitting the value

in a set of frequencies, in a way similar to positional encodings in Transformers [205]. The

embedded noise variance is then vectorized and concatenated to the noisy images along the

channel axes before being passed to the U-Net. This can be done for each convolution blocks



7.2 Denoising Architecture 147

Figure 7.5: Uniqueness of the generative model. Different diffusion models generate essen-

tially identical images when fed with the same seed. The two models in the picture are

different versions of the U-Net: the first one has three downsampling blocks with channels

[32, 64, 128], and the second one has four dowsampling blocks with channels [48, 96, 192, 384].

The training sets are CIFAR10 (top), MNIST (middle), and Oxford Flowers 102 (bottom).

Seeds have been randomly generated.

separately, or just at the starting layer; we adopted the latter solution due to its simplicity

and the fact that it does not seem to entail any loss in performance.

Having worked with a variety of datasets, we used slightly different implementations

of the previously described model. The U-Net is usually parameterized by specifying the

number of downsampling blocks, and the number of channels for each block; the upsampling

structure is symmetric. The spatial dimension does not need to be specified, since it is

inferred from the input. Therefore, the whole structure of a U-Net is essentially encoded in

a single list such as [32, 64, 96, 128] jointly expressing the number of downsampling blocks

(4, in this case), and the respective number of channels (usually increasing as we decrease

the spatial dimension).

For our experiments, we have mainly worked with two basic architectures, mostly adopt-

ing [32, 64, 96, 128] for simple datasets such as MNIST of Fashion MNIST, and using more

complex structures such as [48, 96, 192, 384] for CIFAR10 or CelebA. We also used differ-

ent U-Net variants to extensively test the independence of the latent encoding discussed in

Section 7.1.3.



148 7. Image embedding for denoising generative models

7.3 Embedding

We experimented with several different approaches for the embedding task. The most effec-

tive ones have been the direct synthesis through gradient descent, and the training of ad-hoc

neural networks. Both techniques have interesting aspects worth discussing.

The gradient descent technique is intrinsically non-deterministic, producing a variegated

set of “noisy” versions of a given image x, all able to reconstruct x via reverse diffusion. The

investigation of this set allows us to draw interesting conclusions on the shape of emb(x).

Gradient descent is, however, pretty slow. A direct network can be trained to compute a

single element inside emb(x). Interestingly enough, this single element seems to be very close

to the average of all noisy versions of x synthesized by the previous technique, suggesting

evidence of its “canonical” nature.

The two techniques will be detailed in the following subsections.

7.3.1 Gradient Descent Synthesis

In Section 7.1.3, we computed the shape of embeddings for a few synthetic datasets by

defining a dense grid of points in the latent space and looking for their final mapping through

the reverse denoising process. Unfortunately, the number of points composing the grid grows

exponentially in the number of features, and the technique does not scale to more complex

datasets.

A viable alternative is the gradient descent approach, where we synthesize inputs starting

from random noise, using the distance from a given target image as the objective function.

In particular, given a sample x0 ∈ Rn, we propose solving the minimization problem

min
xT∈Rd

1

2
∥fΘ(xT , {αt}t∈[0,T ])− x0∥22 (7.13)

where fΘ(xT , {αt}t∈[0,T ]) models the sampling process described above with schedule {αt}t∈[0,T ].

Due to the non-convex nature of (7.13), the obtained solution strongly depends on the start-

ing guess that initializes the optimization algorithm. Thus, by repeating the procedure above

with different starting guesses x0
T ∼ N (0, I), we were able to obtain multiple samples from

emb(x0).

Generation usually requires several thousand steps, but it can be done in parallel on a

batch of inputs. This allows us to compute, within a reasonable time, a sufficiently large

number of samples in emb(x) for any given x (Figure 7.6). Having a full cloud of data, we

can use standard techniques like PCA to investigate its shape, as well as to study how the

image changes when moving along the components of the cloud (see Section 7.3.1). For PCA

investigations we need an embedding cloud with a dimension larger than the dimension of

the latent space. We typically worked with clouds of 2,000 points for MNIST and Fashion

MNIST and 4,000 points for CIFAR10.



7.3 Embedding 149

Figure 7.6: Examples of seeds in the latent space. The image on the left is the original. On

the right, we see 5 different seeds and their corresponding generations through the reverse

diffusion process.

A first interesting observation is that the average Euclidean distance among samples in

emb(x) is typically very high, around 0.9: they are not concentrated is a small portion of the

latent space. However, they seem to occupy a convex region. In Figure 7.7 we show images

obtained by reverse diffusion from 100 random linear combinations of seeds belonging to the

embedding of the image on the left: all of them result in very similar reconstructions of the

starting image.

Figure 7.7: Linear combination of seeds. Given the original image (1 and 3) we compute

by gradient descent a large cloud of seeds (4K) in its embedding. Then, we compute 100

internal points, as a 1-sum random linear combination of the given seeds. Images 2 and 4

contain the results of these linear combinations. All generated images are similar between

each other and are very close to the original image. Therefore, all internal points seem to

belong to the embedding.



150 7. Image embedding for denoising generative models

Figure 7.8: Progressive averaging in CIFAR10 and CelebA. The first row shows seeds com-

puted as the mean of a progressive number of seeds in emb(x), in a linear progression between

1 and 16

; the second row shows their respective output through the reverse denoising process. The

output is very similar. Additionally, observe that the original image becomes identifiable in

the seeds, even averaging a relatively small number of samples.

Due to the convexity of the space, its mean is also comprised in it. In Figure 7.8 we see the

reconstructions obtained by considering as seed the average of a progressive number of seeds.

The resulting images stabilize soon, although the result is slightly more blurry compared to

using a single seed. The seeds on the borders of emb(x) seem to provide slightly better

reconstructions than internal points (which makes the quest for a “canonical”, high-quality

seed even more challenging).

PCA Decomposition

Principal Component Analysis allows us to fit an ellipsoid over the cloud of datapoints,

providing a major tool for investigating the actual shape of embeddings. According to

the “gravitational” intuition exposed in Section 7.1.3, emb(x) should be elongated along

directions orthogonal to the data manifold: moving along those directions should not sensibly

influence generation, which should instead be highly affected by movements along minor

components. Moreover, since the data manifold is likely oriented along a relatively small



7.3 Embedding 151

number of directions (due to the low dimensionality of the manifold), we expect that most

PCA components in each cloud will be orthogonal to the manifold, and have relatively high

eigenvalues.

For instance, in the case of the clouds of

seeds for CIFAR10, eigenvalues along all

3072 components typically span between

0.0001 and 4. We observe significant mod-

ifications only moving along the minor

components of the clouds: in fact, they

provide the shortest way to leave the em-

bedding space of a given point. However,

as soon as we leave the embedding space

of x we should enter the embedding space

of some “adjacent” point x′. In other

words, the minor components should de-

fine directions inside the data manifold,

and possibly have a “semantical” (likely

entangled) interpretation.

Figure 7.9: Fashion MNIST: movements along

directions with minimal eigenvalues. The two

groups of images refer to different components:

starting from a mean seed generating the im-

age in the middle, we move along a given com-

ponent by the indicated positive or negative

factor of the normalized eigenvector. Observe

the progressive change in intensity and shape.

7.3.2 Embedding Networks

The second approach consists in training a neural network to directly compute a sort of

“canonical” embedding for each image of the data manifold. The network takes as input an

image x and produces a seed zx ∈ emb(x); the loss function used to train the network is

simply the distance between x and the result x̂ of the denoising process starting from zx.

We tested several different networks; metrics relative to the most significant architectures

are reported in Table 7.1. A visual comparison of the behavior of the different networks is

given in Figure 7.10, relative to CIFAR10. More examples on CelebA are given below. We

started our investigation with a very simple network: a single convolution with a 5 × 5

kernel. The reason for this choice is that, according to the discussion we made in the

introduction and the visualization of the mean element of the embedding clouds of Figure

7.8, we expected the latent encoding to be similar to a suitably rescaled version of the source

image. The results on a simple dataset like MNIST confirmed this hypothesis, but on more

complex ones like CIFAR10 it does not seem to be the case, as exemplified in Figure 7.10.

We then progressively improved the model’s architecture by augmenting their depth and

channel dimensions, with the latter being typically the most effective way to improve their

performance. In the end, the best results were obtained with a U-Net architecture that

is practically identical to the denoising network. Many additional experiments have been

performed, comprising autoencoders, residual networks, inception modules, and variants



152 7. Image embedding for denoising generative models

with different padding modalities or regularizations. However, they did not prove to be

particularly effective and were thus dropped from our discussion.

Network Params MSE

MNIST Fashion CIFAR10 Oxford CelebA

MNIST Flowers

layers: 1 conv. 5×5 78 0.00704 0.0152 0.0303 0.0372 0.0189

layers: 3 conv. 5×5
channels: 16-16-out 7,233 0.00271 0.00523 0.0090 0.0194 0.0101

layers: 3 conv. 5×5
channels: 64-64-out 105,729 0.00206 0.00454 0.0061 0.0153 0.00829

layers:
2conv.5×5
3conv.3×3

859,009 0.00121 0.00172 0.0038 0.00882 0.00396

channels:

128-128-128-128-out

U-Net 9,577,683 0.000361 0.000890 0.0012 0.00248 0.00147

Table 7.1: Comparing the Mean Square Error (MSE) through the embedding-reconstruction

process using different embedding networks; the MSE standard deviation is below the last

reported decimal. The number of parameters refers to the instance of the network for the

CelebA dataset.

In Figure 7.11, we show some examples of embeddings and relative reconstructions in the

case of the CelebA dataset.

The quality of the reconstruction is definitely high, with just a slight blurriness. There

are two possible justifications for the tiny inaccuracy of this result: it could either be a

fault of the generator, which is unable to create the requested images (as it is frequently the

case with Generative Adversarial Networks [204]), or it could be a fault of the Embedding

Network, which is unable to compute the correct seed.

To better investigate the issue, we performed two experiments. First, we restricted the

reconstruction to images produced by the generator: in this case, if the Embedding network

works well, it should be able to reconstruct almost perfect images. Secondly, we tried to

improve the seeds computed by the Embedding Network through gradient descent, looking

for better candidates.

We report the result of the first experiment in Figure 7.12.

While the reconstruction is qualitatively accurate, we can also confirm the effectiveness in

a more analytical way. In Table 7.2 we compare the mean squared error of the reconstruction

starting from original CelebA images versus generated data: the latter is sensibly smaller.

The fact that embedding works better for generated images is, however, not conclusive:

it could either be explained by a deficiency of the generator, unable to generate all images



7.3 Embedding 153

Figure 7.10: Visual comparison with different Embedding Networks. We consider a set of test

images from CIFAR10 (first row) and compute the embedding with one of the Embedding

Networks of Table 7.1. We then use the embeddings to generate the corresponding images

(remaining rows).

Figure 7.11: Embedding examples for the CelebA dataset. The first row contains the original

examples, the second the synthesized latent seed, and the third the reconstructed image.

Reconstruction is very good, with just a slight blurriness.

in the CelebA dataset, or just by the fact that generated images are “simpler” than real

ones (observe the well-known patinated look, which is typical of most generative models)

and hence more easily embeddable.



154 7. Image embedding for denoising generative models

Figure 7.12: Embedding examples on generated images. In this case, we start from images

created by the generator (first row) and re-embed them inside the latent space (second row)

using the Embedding Network. In the third row, we show the reconstruction, which is almost

perfect. This could be either explained by a deficiency of the generator, or just by the fact

that generated images are “simpler”, and hence can be more easily embedded than real ones.

Source Images MSE

Dataset 0.00147

Generated 0.00074

Table 7.2: Reconstruction error. In the first case, images are taken from the CelebA dataset:

in the second case, they have been generated through the reverse diffusion process. The

mean squared error (MSE) was computed over 1000 examples. Both experiments achieve a

small reconstruction error, although the second one is even smaller.

Even the results of the second experiment are not easily deciphered. From a visual point

of view, refining the embedding through gradient descent is not producing remarkable results,

as exemplified in Figure 7.13. However, numerically, we see an improvement from an MSE

of 0.00147 to an MSE of 0.00058, which seems to suggest some margin of improvement for

the embedding network.

In conclusion, both the generator and the embedder can likely still be improved. How-

ever, a really interesting research direction seems to be the possibility to modify the latent

representation to improve the realism of the resulting image, even if possibly not in the

direction of the original. Therefore, a basic embedder, even if not fully accurate, could still

provide the starting point for very interesting manipulations.

7.3.3 Latent Space Interpolation

A typical application of the embedding network is for the investigation of semantical prop-

erties of the latent space, starting from real samples and their attributes. As a preliminary



7.4 Conclusions 155

Figure 7.13: Gradient descent fine-tuning. The seeds obtained through the embedding net-

work (second row) are refined through gradient descent (fourth row). The respective resulting

reconstructions are depicted in rows 3 and 5. The improvement is almost imperceptible.

step in this direction, in this Section we provide examples of latent-space interpolations: the

crucial additional ability added by the embedder is in the choice of the starting and ending

point, that can be the embeddings of real data samples: this allows us to produce smooth

interpolations between any pair of images in the dataset.

In Figure 7.14 we show an example relative to the CelebA dataset. The linear interpo-

lation in the visible space between a source and a target sample, depicted in the first row,

does not produce satisfactory results: the superposition of the two images is clearly visible,

introducing annoying artifacts. A better result can be achieved by first embedding both

source and target into the latent space, and them moving along their (linear) interpolation

(second row). The images generated from the interpolated latent points provide a smooth

transition from the source to the target, as shown in the third row of Figure 7.14. In this case,

the “artifacts” of the latent representations are automatically corrected by the generator,

trained to produce realistic faces.

7.4 Conclusions

In this Chapter, we addressed the problem of embedding data into the latent space of De-

terministic Diffusion models, providing functionality similar to the encoder in a Variational

Autoencoder, or the so-called recoder for Generative Adversarial Networks. The main source

of complexity when inverting a diffusion model is the non-injective nature of the generator:



Figure 7.14: Interpolation between samples of the CelebA dataset. In the first raw, we have

the linear interpolation between the source and the target. In the second raw, the linear

interpolation between the latent embedding of the source, and the latent embedding of the

target. In the third raw, the reconstructed images.

for each sample x, there exists a cloud of elements z able to generate x. We call this set

the embedding of x, denoted as emb(x). We performed a deep investigation of the typical

shape of emb(x), which suggests that embeddings are usually orthogonal to the dataset.

These studies point to a sort of gravitational interpretation of the reverse diffusion process,

according to which the space is progressively collapsing over the data manifold. In this

perspective, emb(x) is just the set of all trajectories in the space ending in x. We tested

our interpretation on both low- and high-dimensional datasets, highlighting a quite amazing

result: the latent space of a DDIM generator does not significantly depend on the specific

generative model, but just on the data manifold. In other words, passing the same seed

as input to different DDIMs will result in almost identical outputs. In order to compute

embeddings, we considered both gradient descent approaches, as well as the definition and

training of specific Embedding Networks. We showed that, among all the architectures we

tested, a U-Net obtained the best results, achieving a high-quality reconstruction from both

a quantitative and qualitative point of view.

Embedding networks have a lot of interesting applications, largely exemplified in the

introduction. More generally, the simplicity and ease of use of Embedding Networks open a

wide range of fascinating perspectives about the exploration of semantic trajectories in the

latent space, the disentanglement of the different aspects of variations, and the possibility

of data editing. We thus hope that our results, by expanding the current understanding of

generative models, can guide future research efforts.



Conclusion and Future Works

The aim of this thesis was to present innovative frameworks to solve inverse problems related

to life sciences, such as image deblurring and sparse computed tomography, by neural net-

works. This has been done by considering a hybrid approach, where iterative, model-based

algorithms are employed to guarantee stability in the solution, both to unexpected noise in

the data and to global, striking artifacts. The proposed methods are listed in the first part

of the thesis. The second part is dedicated to an exploration of the properties of two Deep

Generative Models, namely the Variational Autoencoders and the Diffusion Models. The

second part is the beginning of a research project where we aim to introduce a new hybrid

framework, joining together the stability and the consistency guaranteed by the model-based

algorithms with the flexibility offered by generative models. A deeper discussion of this idea

will be given in the Future Work section.

In Chapter 2, we extended the widely known mathematical properties of reconstruction

algorithms in inverse problems, introduced in [3], to neural networks, where the lack of

convergence to the true solution in the noiseless limit, makes it necessary to introduce the

concept of accuracy of a reconstruction algorithm. The theoretical analysis shows the exis-

tence of a trade-off between accuracy and stability for any reconstruction method applied to

ill-conditioned inverse problems. In the second part, we introduced a new framework, called

StReNN, which considers a model-based iterative algorithm as a pre-processing step to a

neural network, leading to a method that exhibits greater stability than the classical end-

to-end neural networks, with negligible accuracy loss. Extensive tests considering various

architectures and pre-processing methods on the image deblurring inverse problem showed

that the proposed framework surpasses most state-of-the-art end-to-end neural networks

when the input image is corrupted by unexpected noise.

In Chapter 3, we considered a hybrid scheme, similar to StReNN, in the solution of

SparseCT inverse problems, where the non-injectivity of the forward operator leads to a

reconstruction algorithm with infinite solutions. The resulting method, named RISING, was

shown to surpass the classical LPP algorithm in both performance and stability. Moreover,

the proposed scheme didn’t require any ground-truth solution, making it viable for real

medical applications where collecting pairs of associated full dose - low dose acquisition is

157



unfeasible.

In Chapter 4, we extended the RISING scheme to the non-convex optimization setup.

In particular, we employed a Total p-Variation regularization scheme, obtaining promising

results.

In Chapter 6, we reviewed modern architectures for Variational Autoencoders, and we

compared their performance over multiple datasets. The comparison has been done by con-

sidering the ability to generate new images, similar to those of the test set, and measured

by a widely used metric called Fréchet Inception Distance (FID). The sustainability of the

compared methods is also taken into account, by computing the number of Floating Points

Operations (FLOPs) required by each network to generate a single image, following the

paradigm of GreenAI.

Finally, in Chapter 7, we considered a variant of the modern Diffusion Models, named

Denoising Diffusion Implicit Models (DDIM), and we analyzed some features of the associ-

ated latent space. In particular, we observed that the latent encoding of any given image

is invariant to changes in network architectures and training setup. We then proposed to

consider a neural network, called embedding network, that maps any image to one of its

latent encodings. We also compared the performance of the embedding network against a

classical, gradient descent-based algorithm designed to find the latent encodings of an image,

and showed that our proposed method is able to generate comparable encodings in just a

fraction of a second, compared to the tenth of minutes required by the classical approach.

Future Works

The methods proposed in the thesis can be further extended. In the following, we discuss

two major extensions: the first one, called GraphLa+, is an extension of my publication [9],

while the second one makes use of the considerations made on the Generative Models (and

in particular Diffusion Models) in [11], to solve inverse problems in a way that is closely

related to the concept of Deep Generative Priors (DGP), discussed in [70]. We recall that an

alternative extension has already been discussed in Section 3.3, where we propose to adapt

the (TpV)2 method to solve iterated reweighted non-convex optimization problems, with

provable convergence.

GraphLa+ Consider the L2 − L1 variational problem

min
x∈Rn

1

2
||Kx− yδ||22 + λ||Lx||1, (7.14)

where L ∈ Rn×n is any matrix such that ker(K) ∩ ker(L) = {0}. In [9], we consider the

case where L is the discretization of the graph laplacian operator on an initial guess x̃ of the



ground-truth solution xgt. In particular, let X̃ be the graph associated with x̃, i.e. a graph

with n nodes, each corresponding to a pixel of x̃, such that there exists an edge connecting

the i-th and the j-th node if and only if w(i, j) > 0, where:

w(i, j) =

e−
1
σ2 |x̃(i)−x̃(j)|2 if i ̸= j and ||i− j||∞ < R

0 otherwise.
(7.15)

Given that, the graph laplacian operator ∆x̃ ∈ Rn×n is defined as:(
∆x̃
)
i
=
∑
j∈X̃

w(i, j)(x(i)− x(j)). (7.16)

It is known [206, 207] that the quality of the reconstruction of 7.14 is dependent on how well

x̃ approximates xgt. For this reason, we propose to compute x̃ by a neural network, whose

ability to recover the structure of the true solution is undoubted. In [9] we show that this

algorithm called GraphLaNet, is able to surpass the reconstruction quality of both the neural

network and the classical graph laplacian methods. In future work, we aim to theoretically

justify this approach, proving the convergence of this method to the true solution xgt when

the noise level δ approaches 0, and error bounds based on the discrepancy between x̃ and

xgt.

Deep Generative Prior with Diffusion Models In [70], the author describes a tech-

nique to solve inverse problems in the form of (1.2) with a generative model, called Deep

Generative Prior (DGP). In particular, let pθ(x) be a DLVM and let Gθ(z) be the neural

network mapping a sampled latent variable z ∈ Z to a new sample x ∼ pθ(x|z). We al-

ready observed that, especially when K does not satisfy (HC2), the direct solution of the

unregularized least squares problem

x∗ = argmin
x∈Rn

1

2
||Kx− yδ||22, (7.17)

fails in approximating the true solution xgt. A solution is regularize the problem, by con-

straining the solution x∗ to be in the set X of good solutions, i.e. by solving:

x∗ = argmin
x∈Rn

1

2
||Kx− yδ||22 such that x ∈ X . (7.18)

In Section 5.1 we remarked that a basic assumption in generative models is that X =

supp(µgt), where µgt is the distribution of ground-truth data, with density pgt(x). After

training, the DLVM pθ(x) is approximately equal to pgt(x) which implies that, by definition,

X ≈ Rg(Gθ). Equation (7.18) reads:

x∗ = argmin
x∈Rn

1

2
||Kx− yδ||22 such that ∃z ∈ Z, with Gθ(z) = x, (7.19)



from which

x∗ = G(z∗),

z∗ = argmin
z∈Z

1

2
||KGθ(z)− yδ||22.

(7.20)

Since the latent variables z ∈ Z are distributed as p(z) = N (0, I) by definition, then the

optimization problem above can be reformulated as:

x∗ = G(z∗),

z∗ = argmin
z∈Rs

1

2
||KGθ(z)− yδ||22 +

λ

2
||z||22.

(7.21)

This particular formulation of the inverse problem is known as Deep Generative Prior

(DGP) and the quality of its solution is strictly related to the ability of the generator Gθ(z)

in approximating pgt(x).

A key limitation of the application of Diffusion Models in a DGP approach is that in

their classical formulation, their generator Gθ(z) is a stochastic transformation of z, since it

is defined as an iterative algorithm (the reverse diffusion described in Chapter 7) where at

each step a stochastic realization of noise is added to the processed input. For this reason,

an optimization problem such as (7.21) is stochastic, and solving it is non-trivial in practice.

The observations we did in [11] are important for two reasons: first, the considered variant of

diffusion models (the DDIM), allows for a deterministic generator Gθ(z), that can be easily

plugged in (7.21). Second, the observation that the latent encoding of any input image x

is invariant to changes in network architectures, can be exploited to derive flexible models,

where multiple variants of DDIM with different mathematical properties are considered in

an alternated scheme, with the intent of optimizing the accuracy-stability trade-off.



Bibliography

[1] Liane Bernstein, Alexander Sludds, Ryan Hamerly, Vivienne Sze, Joel Emer, and

Dirk Englund. Freely scalable and reconfigurable optical hardware for deep learning.

Scientific reports, 11(1):3144, 2021.

[2] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green AI. Commun.

ACM, 63(12):54–63, 2020.

[3] Heinz Werner Engl, Martin Hanke, and Andreas Neubauer. Regularization of inverse

problems, volume 375. Springer Science & Business Media, 1996.

[4] Andrea Asperti, Davide Evangelista, and Elena Loli Piccolomini. A survey on vari-

ational autoencoders from a green AI perspective. SN Computer Science, 2(4):301,

2021.

[5] Andrea Asperti, Davide Evangelista, and Moreno Marzolla. Dissecting FLOPs along

input dimensions for GreenAI cost estimations. In International Conference on Ma-

chine Learning, Optimization, and Data Science, pages 86–100. Springer, 2021.

[6] Elena Morotti, Davide Evangelista, and Elena Loli Piccolomini. A green prospective

for learned post-processing in sparse-view tomographic reconstruction. Journal of

Imaging, 7(8):139, 2021.

[7] Davide Evangelista, Elena Morotti, and Elena Loli Piccolomini. RISING: A new frame-

work for model-based few-view CT image reconstruction with deep learning. Comput-

erized Medical Imaging and Graphics, 103:102156, 2023.

[8] Davide Evangelista, James Nagy, Elena Morotti, and Elena Loli Piccolomini. To be

or not to be stable, that is the question: understanding neural networks for inverse

problems, 2024.

[9] Davide Bianchi, Marco Donatelli, Davide Evangelista, Wenbin Li, and Elena Loli Pic-

colomini. Graph Laplacian and Neural Networks for Inverse Problems in Imaging:

GraphLaNet. In International Conference on Scale Space and Variational Methods in

Computer Vision, pages 175–186. Springer, 2023.

161



162 BIBLIOGRAPHY

[10] Davide Evangelista, Elena Morotti, Elena Loli Piccolomini, and James Nagy. Ambigu-

ity in Solving Imaging Inverse Problems with Deep-Learning-Based Operators. Journal

of Imaging, 9(7), 2023.

[11] Andrea Asperti, Davide Evangelista, Samuele Marro, and Fabio Merizzi. Image em-

bedding for denoising generative models. Artificial Intelligence Review, pages 1–23,

2023.

[12] Elena Morotti, Davide Evangelista, and Elena Loli Piccolomini. Increasing noise ro-

bustness of deep learning-based image processing with model-based approaches. Nu-

merical Computations: Theory and Algorithms NUMTA 2023, page 155, 2023.

[13] J. Hadamard. Sur les problèmes aux dérivés partielles et leur signification physique.

Princeton University Bulletin, 13:49–52, 1902.

[14] Christian Clason. Regularization of inverse problems. ArXiv, abs/2001.00617, 2020.

[15] Per Christian Hansen. The discrete picard condition for discrete ill-posed problems.

BIT Numerical Mathematics, 30(4):658–672, 1990.

[16] Per Christian Hansen. Rank-deficient and discrete ill-posed problems: numerical as-

pects of linear inversion. SIAM, 1998.

[17] Per Christian Hansen. Discrete inverse problems: insight and algorithms. SIAM, 2010.

[18] Mario Bertero, Patrizia Boccacci, and Christine De Mol. Introduction to inverse prob-

lems in imaging. CRC press, 2021.

[19] Otmar Scherzer, Markus Grasmair, Harald Grossauer, Markus Haltmeier, and Frank

Lenzen. Variational methods in imaging. Springer, 2009.

[20] Per Christian Hansen, James G Nagy, and Dianne P O’leary. Deblurring images:

matrices, spectra, and filtering. SIAM, 2006.

[21] Avinash C Kak and Malcolm Slaney. Principles of computerized tomographic imaging.

SIAM, 2001.

[22] Jennifer L Mueller and Samuli Siltanen. Linear and nonlinear inverse problems with

practical applications. SIAM, 2012.

[23] Frank Natterer. The mathematics of computerized tomography. SIAM, 2001.

[24] Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey, and Michael Unser. Deep

convolutional neural network for inverse problems in imaging. IEEE Transactions on

Image Processing, 26(9):4509–4522, 2017.



BIBLIOGRAPHY 163

[25] Elena Loli Piccolomini, V.L. Coli, E. Morotti, and L. Zanni. Reconstruction of 3D

X-ray CT images from reduced sampling by a scaled gradient projection algorithm.

Comp. Opt. Appl., 71:171–191, 2018.

[26] E Loli Piccolomini and E Morotti. A fast total variation-based iterative algorithm for

digital breast tomosynthesis image reconstruction. Journal of Algorithms & Compu-

tational Technology, 10(4):277–289, 2016.

[27] Elena Loli Piccolomini, Vanna Lisa Coli, Elena Morotti, and Luca Zanni. Reconstruc-

tion of 3d X-ray CT images from reduced sampling by a scaled gradient projection

algorithm. Computational Optimization and Applications, 2018.

[28] Elena Loli Piccolomini and Elena Morotti. A model-based optimization framework

for iterative digital breast tomosynthesis image reconstruction. Journal of Imaging,

7(2):36, 2021.

[29] TM Peters and RM Lewitt. Computed tomography with fan beam geometry. Journal

of Computer Assisted Tomography, 1(4):429–436, 1977.

[30] Frédéric Noo, C Bernard, FX Litt, and P Marchot. A comparison between filtered

backprojection algorithm and direct algebraic method in fan beam CT. Signal pro-

cessing, 51(3):191–199, 1996.

[31] Jiangsheng You, Gengsheng L Zeng, and Zhengrong Liang. FBP algorithms for atten-

uated fan-beam projections. Inverse Problems, 21(3):1179, 2005.

[32] Mario Bertero, Patrizia Boccacci, and Valeria Ruggiero. Inverse imaging with Poisson

data. IOP Publish, page 115, 2018.

[33] Andrei Nikolaevich Tikhonov, AV Goncharsky, VV Stepanov, and Anatoly G Yagola.

Numerical methods for the solution of ill-posed problems, volume 328. Springer Science

& Business Media, 1995.

[34] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

[35] David L Donoho. Compressed sensing. IEEE Transactions on information theory,

52(4):1289–1306, 2006.

[36] Simon Foucart, Holger Rauhut, Simon Foucart, and Holger Rauhut. An invitation to

compressive sensing. Springer, 2013.

[37] Mallat Stephane. A wavelet tour of signal processing. Elsevier, 1999.

[38] Øyvind Ryan, P Ryan, and Peters. Linear Algebra, Signal Processing, and Wavelets:

A Unified Approach. Springer, 2019.



164 BIBLIOGRAPHY

[39] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[40] Vicent Caselles, Antonin Chambolle, and Matteo Novaga. Total variation in imaging.

Handbook of mathematical methods in imaging, 2015.

[41] Ludwig Ritschl and et al. Improved total variation-based CT image reconstruction

applied to clinical data. Physics in Medicine & Biology, 2011.

[42] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex

problems with applications to imaging. Journal of mathematical imaging and vision,

40:120–145, 2011.

[43] Silvia Bonettini, Riccardo Zanella, and Luca Zanni. A scaled gradient projection

method for constrained image deblurring. Inverse problems, 25(1):015002, 2008.

[44] Giovanni S Alberti, Alessandro Felisi, Matteo Santacesaria, and S Ivan Trapasso. Com-

pressed sensing for inverse problems and the sample complexity of the sparse radon

transform. arXiv preprint arXiv:2302.03577, 2023.

[45] Henri Lanteri, Muriel Roche, and Claude Aime. Penalized maximum likelihood image

restoration with positivity constraints: multiplicative algorithms. Inverse problems,

18(5):1397, 2002.

[46] S Bonettini, F Porta, and V Ruggiero. A variable metric inertial method for convex

optimization. SIAM J. Sci. Comput, 31(4):A2558–A2584, 2016.

[47] Giacomo Frassoldati, Luca Zanni, and Gaetano Zanghirati. New adaptive stepsize

selections in gradient methods. Journal of industrial and management optimization,

4(2):299–312, 2008.

[48] Federica Porta, Marco Prato, and Luca Zanni. A new steplength selection for scaled

gradient methods with application to image deblurring. Journal of Scientific Comput-

ing, 65(3):895–919, 2015.

[49] Jonathan Barzilai and Jonathan M Borwein. Two-point step size gradient methods.

IMA journal of numerical analysis, 8(1):141–148, 1988.

[50] S. Bonettini and M. Prato. New convergence results for the scaled gradient projection

method. Inv. Probl., 31(9):1196–1211, 2015.

[51] Heinz H Bauschke, Patrick L Combettes, Heinz H Bauschke, and Patrick L Combettes.

Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, 2017.



BIBLIOGRAPHY 165

[52] Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. Convolutional networks

and applications in vision. In Proceedings of 2010 IEEE international symposium on

circuits and systems, pages 253–256. IEEE, 2010.

[53] Hanming Zhang, Liang Li, Kai Qiao, Linyuan Wang, Bin Yan, Lei Li, and Guoen Hu.

Image prediction for limited-angle tomography via deep learning with convolutional

neural network. arXiv preprint arXiv:1607.08707, 2016.

[54] Hung Le and Ali Borji. What are the Receptive, Effective Receptive, and Projec-

tive Fields of Neurons in Convolutional Neural Networks? arXiv e-prints, page

arXiv:1705.07049, 2017.

[55] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks

for biomedical image segmentation. In International Conference on Medical image

computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[56] Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image

restoration. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv,

Israel, October 23–27, 2022, Proceedings, Part VII, pages 17–33. Springer, 2022.

[57] Hu Chen, Yi Zhang, Weihua Zhang, Peixi Liao, Ke Li, Jiliu Zhou, and Ge Wang. Low-

dose FBP via convolutional neural network. Biomedical optics express, 8(2):679–694,

2017.

[58] Jiaxi Wang, Li Zeng, Chengxiang Wang, and Yumeng Guo. ADMM-based deep recon-

struction for limited-angle CT. Physics in Medicine & Biology, 64(11):115011, 2019.

[59] Yo Seob Han, Jaejun Yoo, and Jong Chul Ye. Deep residual learning for com-

pressed sensing CT reconstruction via persistent homology analysis. arXiv preprint

arXiv:1611.06391, 2016.

[60] Jorge Nocedal. Optimization methods for large-scale machine learning [j]. Siam Review,

60(2), 2016.

[61] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[62] H Li, Z Xu, G Taylor, C Studer, and T Goldstein. Visualizingthelosslandscapeofneu-

ralnets. arXiv preprint arXiv:1712.09913, 2017.

[63] Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable,

efficient deep learning for signal and image processing. IEEE Signal Processing Mag-

azine, 38(2):18–44, 2021.



166 BIBLIOGRAPHY

[64] Jinxi Xiang, Yonggui Dong, and Yunjie Yang. Fista-net: Learning a fast iterative

shrinkage thresholding network for inverse problems in imaging. IEEE Transactions

on Medical Imaging, 40(5):1329–1339, 2021.

[65] Carla Bertocchi, Emilie Chouzenoux, Marie-Caroline Corbineau, Jean-Christophe Pes-

quet, and Marco Prato. Deep unfolding of a proximal interior point method for image

restoration. Inverse Problems, 36(3):034005, 2020.

[66] A Vedaldi, V Lempitsky, and D Ulyanov. Deep image prior. International Journal of

Computer Vision, 128(7):1867–1888, 2020.

[67] Pasquale Cascarano, Andrea Sebastiani, Maria Colomba Comes, Giorgia Franchini,

and Federica Porta. Combining weighted total variation and deep image prior for nat-

ural and medical image restoration via ADMM. In 2021 21st International Conference

on Computational Science and Its Applications (ICCSA), pages 39–46. IEEE, 2021.

[68] Pasquale Cascarano, Elena Loli Piccolomini, Elena Morotti, and Andrea Sebastiani.

Plug-and-play gradient-based denoisers applied to FBP image enhancement. Applied

Mathematics and Computation, 422:126967, 2022.

[69] Ernest Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, and Wotao

Yin. Plug-and-play methods provably converge with properly trained denoisers. In

International Conference on Machine Learning, pages 5546–5557. PMLR, 2019.

[70] M. A. G. Duff, N. D. F. Campbell, and M. J. Ehrhardt. Regularising inverse problems

with generative machine learning models. Journal of Mathematical Imaging and Vision,

2023.

[71] Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alexandros G Dimakis, and Jon

Tamir. Robust compressed sensing MRI with deep generative priors. Advances in

Neural Information Processing Systems, 34:14938–14954, 2021.

[72] Nina M. Gottschling, Vegard Antun, Anders C. Hansen, and Ben Adcock. The trou-

blesome kernel – on hallucinations, no free lunches and the accuracy-stability trade-off

in inverse problems, 2023.

[73] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional

neural network for dynamic scene deblurring. In CVPR, 07 2017.

[74] Baiyu Chen, Shuai Leng, Lifeng Yu, David Holmes III, Joel Fletcher, and Cynthia

McCollough. An open library of CT patient projection data. In Medical Imaging

2016: Physics of Medical Imaging, volume 9783, pages 330–335. SPIE, 2016.



BIBLIOGRAPHY 167

[75] C McCollough. Tu-fg-207a-04: Overview of the Low Dose CT Grand Challenge. Med-

ical physics, 43(6Part35):3759–3760, 2016.

[76] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity

for image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals,

Systems & Computers, 2003, volume 2, pages 1398–1402. Ieee, 2003.

[77] Jaweria Amjad, Jure Sokolić, and Miguel RD Rodrigues. On deep learning for inverse

problems. In 2018 26th European Signal Processing Conference (EUSIPCO), pages

1895–1899. IEEE, 2018.

[78] Chang Min Hyun, Seong Hyeon Baek, Mingyu Lee, Sung Min Lee, and Jin Keun

Seo. Deep learning-based solvability of underdetermined inverse problems in medical

imaging. Medical Image Analysis, 69:101967, 2021.

[79] Vegard Antun, Francesco Renna, Clarice Poon, Ben Adcock, and Anders C Hansen.

On instabilities of deep learning in image reconstruction and the potential costs of AI.

Proceedings of the National Academy of Sciences, 117(48):30088–30095, 2020.

[80] Yixing Huang, Tobias Würfl, Katharina Breininger, Ling Liu, Günter Lauritsch, and

Andreas Maier. Some investigations on robustness of deep learning in limited angle to-

mography. InMedical Image Computing and Computer Assisted Intervention–MICCAI

2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceed-

ings, Part I, pages 145–153. Springer, 2018.

[81] Patricia M Johnson, Geunu Jeong, Kerstin Hammernik, Jo Schlemper, Chen Qin,

Jinming Duan, Daniel Rueckert, Jingu Lee, Nicola Pezzotti, Elwin De Weerdt, et al.

Evaluation of the robustness of learned MRI image reconstruction to systematic de-

viations between training and test data for the models from the fastmri challenge.

In Machine Learning for Medical Image Reconstruction: 4th International Workshop,

MLMIR 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, October

1, 2021, Proceedings 4, pages 25–34. Springer, 2021.

[82] Jan Nikolas Morshuis, Sergios Gatidis, Matthias Hein, and Christian F Baumgartner.

Adversarial robustness of MRI image reconstruction under realistic perturbations. In

Machine Learning for Medical Image Reconstruction: 5th International Workshop,

MLMIR 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22,

2022, Proceedings, pages 24–33. Springer, 2022.

[83] Matthew J Muckley, Bruno Riemenschneider, Alireza Radmanesh, Sunwoo Kim,

Geunu Jeong, Jingyu Ko, Yohan Jun, Hyungseob Shin, Dosik Hwang, Mahmoud

Mostapha, et al. Results of the 2020 fastmri challenge for machine learning MRI

image reconstruction. IEEE transactions on medical imaging, 40(9):2306–2317, 2021.



168 BIBLIOGRAPHY

[84] Chi Zhang, Jinghan Jia, Burhaneddin Yaman, Steen Moeller, Sijia Liu, Mingyi Hong,

and Mehmet Akçakaya. Instabilities in conventional multi-coil MRI reconstruction

with small adversarial perturbations. In 2021 55th Asilomar Conference on Signals,

Systems, and Computers, pages 895–899. IEEE, 2021.

[85] Matthew J Colbrook, Vegard Antun, and Anders C Hansen. Can stable and accu-

rate neural networks be computed?–on the barriers of deep learning and Smale’s 18th

problem. arXiv preprint arXiv:2101.08286, 2021.

[86] Harshit Gupta, Kyong Hwan Jin, Ha Q Nguyen, Michael T McCann, and Michael

Unser. CNN-based projected gradient descent for consistent CT image reconstruction.

IEEE transactions on medical imaging, 37(6):1440–1453, 2018.

[87] Yixing Huang, Alexander Preuhs, Günter Lauritsch, Michael Manhart, Xiaolin Huang,

and Andreas Maier. Data consistent artifact reduction for limited angle tomography

with deep learning prior. In International workshop on machine learning for medical

image reconstruction, pages 101–112. Springer, 2019.

[88] Zhengxia Zou, Tianyang Shi, Zhenwei Shi, and Jieping Ye. Adversarial training for

solving inverse problems in image processing. IEEE Transactions on Image Processing,

30:2513–2525, 2021.

[89] Daniel Obmann, Linh Nguyen, Johannes Schwab, and Markus Haltmeier. Aug-

mented NETT regularization of inverse problems. Journal of Physics Communications,

5(10):105002, 2021.

[90] Zalan Fabian, Reinhard Heckel, and Mahdi Soltanolkotabi. Data augmentation for

deep learning based accelerated MRI reconstruction with limited data. In International

Conference on Machine Learning, pages 3057–3067. PMLR, 2021.

[91] Chris M Bishop. Training with noise is equivalent to Tikhonov regularization. Neural

computation, 7(1):108–116, 1995.

[92] Simon Arridge, Peter Maass, Ozan Öktem, and Carola-Bibiane Schönlieb. Solving

inverse problems using data-driven models. Acta Numerica, 28:1–174, 2019.

[93] Rafael C Gonzalez. Digital image processing. Pearson education india, 2009.

[94] C. Graff and E. Sidky. Compressive sensing in medical imaging. Appl. Opt., 54(8):C23–

C44, 2015.

[95] Ge Wang, Jong Chu Ye, Klaus Mueller, and Jeffrey A Fessler. Image reconstruction is

a new frontier of machine learning. IEEE transactions on medical imaging, 37(6):1289–

1296, 2018.



BIBLIOGRAPHY 169

[96] Yoseob Han and Jong Chul Ye. Framing U-Net via deep convolutional framelets:

Application to sparse-view CT. IEEE transactions on medical imaging, 37(6):1418–

1429, 2018.

[97] R Cavicchioli, J Hu, E Loli Piccolomini, E Morotti, and L Zanni. A first-order primal-

dual algorithm for convex problems with applications to imaging. GPU acceleration

of a model-based iterative method for digital breast tomosynthesis. Scientific Reports,

10(1):120–145, 2020.

[98] Emil Y Sidky, Iris Lorente, Jovan G Brankov, and Xiaochuan Pan. Do CNNs solve the

CT inverse problem? IEEE Transactions on Biomedical Engineering, 68(6):1799–1810,

2020.

[99] Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty princi-

ples: Exact signal reconstruction from highly incomplete frequency information. IEEE

Transactions on information theory, 52(2):489–509, 2006.

[100] Qiaofeng Xu, Deshan Yang, Jun Tan, Alex Sawatzky, and Mark A Anastasio. Acceler-

ated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam

CT image reconstruction. Medical physics, 43(4):1849–1872, 2016.

[101] Emil Y Sidky, Rick Chartrand, John M Boone, and Xiaochuan Pan. Constrained TpV

minimization for enhanced exploitation of gradient sparsity: Application to CT image

reconstruction. IEEE journal of translational engineering in health and medicine, 2:1–

18, 2014.

[102] Zenith Purisha, Juho Rimpeläinen, Tatiana Bubba, and Samuli Siltanen. Controlled

wavelet domain sparsity for x-ray tomography. Measurement Science and Technology,

29(1):014002, 2017.

[103] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based

noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1):259 – 268, 1992.

[104] Wim van Aarle, Willem Jan Palenstijn, Jan De Beenhouwer, Thomas Altantzis, Sara

Bals, K. Joost Batenburg, and Jan Sijbers. The ASTRA Toolbox: A platform for

advanced algorithm development in electron tomography. Ultramicroscopy, 157:35–47,

2015.

[105] Wim van Aarle, Willem Jan Palenstijn, Jeroen Cant, Eline Janssens, Folkert Ble-

ichrodt, Andrei Dabravolski, Jan De Beenhouwer, K. Joost Batenburg, and Jan Si-

jbers. Fast and flexible x-ray tomography using the astra toolbox. Opt. Express,

24(22):25129–25147, Oct 2016.



170 BIBLIOGRAPHY

[106] Curtis R Vogel and Mary E Oman. Iterative methods for total variation denoising.

SIAM Journal on Scientific Computing, 1996.

[107] Tony Chan et al. Recent developments in total variation image restoration. Mathe-

matical Models of Computer Vision, 2005.

[108] Zhen Tian and et al. Low-dose CT reconstruction via edge-preserving total variation

regularization. Physics in Medicine & Biology, 2011.

[109] Mila Nikolova and et al. Fast nonconvex nonsmooth minimization methods for image

restoration and reconstruction. IEEE Trans on Image Processing, 2010.

[110] Buxin Chen and et al. Non-convex primal-dual algorithm for image reconstruction in

spectral CT. Computerized Medical Imaging and Graphics, 2021.

[111] Emil Y. Sidky and et al. Constrained TpV minimization for enhanced exploitation of

gradient sparsity: Application to CT image reconstruction. IEEE Journal of Transla-

tional Engineering in Health and Medicine, 2014.

[112] Ailong Cai and et al. Efficient TpV minimization for circular, cone-beam computed to-

mography reconstruction via non-convex optimization. Computerized Medical Imaging

and Graphics, 45:1–10, 2015.

[113] Hanming Zhang, Linyuan Wang, Bin Yan, Lei Li, Ailong Cai, and Guoen Hu. Con-

strained total generalized p-variation minimization for few-view x-ray computed to-

mography image reconstruction. PLoS One, 11(2):e0149899, 2016.

[114] Rick Chartrand. Exact reconstruction of sparse signals via nonconvex minimization.

IEEE Signal Processing Letters, 2007.

[115] Ulugbek S Kamilov and et al. A plug-and-play priors approach for solving nonlinear

imaging inverse problems. IEEE Signal Processing Letters, 2017.

[116] Siqi Ye, Zhipeng Li, Michael T McCann, Yong Long, and Saiprasad Ravishankar.

Unified supervised-unsupervised (super) learning for x-ray CT image reconstruction.

IEEE Transactions on Medical Imaging, 40(11):2986–3001, 2021.

[117] Yunmei Chen and other. Learnable descent algorithm for nonsmooth nonconvex image

reconstruction. SIAM Journal on Imaging Sciences, 2021.

[118] Emil Y Sidky, Jakob H Jørgensen, and Xiaochuan Pan. Convex optimization problem

prototyping for image reconstruction in computed tomography with the Chambolle–

Pock algorithm. Physics in Medicine & Biology, 2012.



BIBLIOGRAPHY 171

[119] Emmanuel J Candès, Michael B Wakin, and Stephen P Boyd. Enhancing sparsity by

reweighted L1 minimization. Journal of Fourier analysis and applications, 2008.

[120] D Lazzaro, E Loli Piccolomini, and F Zama. A nonconvex penalization algorithm with

automatic choice of the regularization parameter in sparse imaging. Inverse Problems,

35(8):084002, 2019.

[121] Achraf Oussidi and Azeddine Elhassouny. Deep generative models: Survey. In 2018

International Conference on Intelligent Systems and Computer Vision (ISCV), pages

1–8, 2018.

[122] Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

[123] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint

arXiv:1701.00160, 2016.

[124] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normaliz-

ing flows. In Francis R. Bach and David M. Blei, editors, Proceedings of the 32nd

International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July

2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 1530–1538.

JMLR.org, 2015.

[125] Diederik P. Kingma and Max Welling. An introduction to variational autoencoders.

Found. Trends Mach. Learn., 12(4):307–392, 2019.

[126] Ruoqi Wei, Cesar Garcia, Ahmed ElSayed, Viyaleta Peterson, and Ausif Mahmood.

Variations in variational autoencoders - a comparative evaluation. IEEE Access, PP:1–

1, 08 2020.

[127] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic mod-

els. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,

and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:

Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,

December 6-12, 2020, virtual, 2020.

[128] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierar-

chical text-conditional image generation with clip latents, 2022.

[129] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets.

In Advances in Neural Information Processing Systems 27: Annual Conference on

Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec,

Canada, pages 2672–2680, 2014.



172 BIBLIOGRAPHY

[130] Abdul Jabbar, Xi Li, and Bourahla Omar. A survey on generative adversarial networks:

Variants, applications, and training, 2020.

[131] Carl Doersch. Tutorial on variational autoencoders. CoRR, abs/1606.05908, 2016.

[132] Li Deng. The mnist database of handwritten digit images for machine learning research.

IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[133] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny

images. University of Toronto, 2009.

[134] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a

large number of classes. In 2008 Sixth Indian conference on computer vision, graphics

& image processing, pages 722–729. IEEE, 2008.

[135] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces at-

tributes (CelebA) dataset. Retrieved August, 15(2018):11, 2018.

[136] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp

Hochreiter. Gans trained by a two time-scale update rule converge to a local nash

equilibrium. In Advances in Neural Information Processing Systems 30: Annual Con-

ference on Neural Information Processing Systems 2017, 4-9 December 2017, Long

Beach, CA, USA, pages 6629–6640, 2017.

[137] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew

Wojna. Rethinking the inception architecture for computer vision. In 2016 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,

NV, USA, June 27-30, 2016, pages 2818–2826. IEEE Computer Society, 2016.

[138] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models.

In 9th International Conference on Learning Representations, ICLR 2021, Virtual

Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[139] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of

gans for improved quality, stability, and variation. In 6th International Conference

on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,

2018, Conference Track Proceedings. OpenReview.net, 2018.

[140] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-

training of deep bidirectional transformers for language understanding. In Jill Burstein,

Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,



BIBLIOGRAPHY 173

Volume 1 (Long and Short Papers), pages 4171–4186. Association for Computational

Linguistics, 2019.

[141] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd In-

ternational Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,

April 14-16, 2014, Conference Track Proceedings, 2014.

[142] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-

propagation and approximate inference in deep generative models. In Proceedings of

the 31th International Conference on Machine Learning, ICML 2014, Beijing, China,

21-26 June 2014, volume 32 of JMLR Workshop and Conference Proceedings, pages

1278–1286. JMLR.org, 2014.

[143] R. Wei and A. Mahmood. Recent advances in variational autoencoders with repre-

sentation learning for biomedical informatics: A survey. IEEE Access, 9:4939–4956,

2021.

[144] Ashley Spindler, James E. Geach, and Michael J. Smith. Astrovader: Astronomical

variational deep embedder for unsupervised morphological classification of galaxies and

synthetic image generation, 2020.

[145] Bin Dai and David P. Wipf. Diagnosing and enhancing VAE models. In Seventh

International Conference on Learning Representations (ICLR 2019), May 6-9, New

Orleans, 2019.

[146] Abhishek Kumar, Ben Poole, and Kevin Murphy. Regularized autoencoders via relaxed

injective probability flow. In Silvia Chiappa and Roberto Calandra, editors, The 23rd

International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26-

28 August 2020, Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine

Learning Research, pages 4292–4301. PMLR, 2020.

[147] Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical variational autoencoder.

CoRR, abs/2007.03898, 2020.

[148] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew

Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual

concepts with a constrained variational framework. In International conference on

learning representations, 2016.

[149] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guil-

laume Desjardins, and Alexander Lerchner. Understanding disentangling in beta-VAE.

arXiv preprint arXiv:1804.03599, 2018.



174 BIBLIOGRAPHY

[150] Alexander A. Alemi, Ben Poole, Ian Fischer, Joshua V. Dillon, Rif A. Saurous, and

Kevin Murphy. Fixing a broken ELBO. In Proceedings of the 35th International

Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,

July 10-15, 2018, pages 159–168, 2018.

[151] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Józefowicz, and

Samy Bengio. Generating sentences from a continuous space. CoRR, abs/1511.06349,

2015.

[152] Diederik P. Kingma, Tim Salimans, Rafal Józefowicz, Xi Chen, Ilya Sutskever, and

Max Welling. Improving variational autoencoders with inverse autoregressive flow. In

Advances in Neural Information Processing Systems 29: Annual Conference on Neural

Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages

4736–4744, 2016.

[153] Serena Yeung, Anitha Kannan, Yann Dauphin, and Li Fei-Fei. Tackling over-pruning

in variational autoencoders. CoRR, abs/1706.03643, 2017.

[154] Andrea Asperti and Matteo Trentin. Balancing reconstruction error and Kullback-

Leibler divergence in variational autoencoders. IEEE Access, 8:199440–199448, 2020.

[155] Huajie Shao, Zhisheng Xiao, Shuochao Yao, Aston Zhang, Shengzhong Liu, and Tarek

Abdelzaher. ControlVAE: Tuning, analytical properties, and performance analysis,

2020.

[156] Andrea Asperti. Sparsity in variational autoencoders. In Proceedings of the First

International Conference on Advances in Signal Processing and Artificial Intelligence,

ASPAI, Barcelona, Spain, 20-22 March 2019, 2019.

[157] Yuri Burda, Roger B. Grosse, and Ruslan Salakhutdinov. Importance weighted au-

toencoders. CoRR, abs/1509.00519, 2015.

[158] Brian Trippe and Richard Turner. Overpruning in variational bayesian neural net-

works. In Advances in Approximate Bayesian Inference workshop at NIPS 2017, 2018.

[159] Ali Razavi, Aäron van den Oord, Ben Poole, and Oriol Vinyals. Preventing posterior

collapse with delta-vaes. In 7th International Conference on Learning Representations,

ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[160] Andrea Asperti. Variational autoencoders and the variable collapse phenomenon. Sen-

sors & Transducers, 234(6):1–8, 2019.

[161] Andrea Asperti. About generative aspects of variational autoencoders. In Machine

Learning, Optimization, and Data Science - 5th International Conference, LOD 2019,

Siena, Italy, September 10-13, 2019, Proceedings, pages 71–82, 2019.



BIBLIOGRAPHY 175

[162] Matthew D. Hoffman and Matthew J. Johnson. ELBO surgery: yet another way to

carve up the variational evidence lower bound. In Workshop in Advances in Approxi-

mate Bayesian Inference, NIPS, volume 1, 2016.

[163] Mihaela Rosca, Balaji Lakshminarayanan, and Shakir Mohamed. Distribution match-

ing in variational inference, 2018.

[164] Ilya O. Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schölkopf. Wasser-

stein auto-encoders. CoRR, abs/1711.01558, 2017.

[165] Jakub M. Tomczak and Max Welling. VAE with a vampprior. In International Confer-

ence on Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa

Blanca, Lanzarote, Canary Islands, Spain, pages 1214–1223, 2018.

[166] Matthias Bauer and Andriy Mnih. Resampled priors for variational autoencoders.

CoRR, abs/1810.11428, 2018.

[167] Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M. Tom-

czak. Hyperspherical variational auto-encoders. In Amir Globerson and Ricardo Silva,

editors, Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial In-

telligence, UAI 2018, Monterey, California, USA, August 6-10, 2018, pages 856–865.

AUAI Press, 2018.

[168] N. I. Fisher, T. Lewis, and B. J. J. Embleton. Statistical Analysis of Spherical Data.

Cambridge University Press, 1987.

[169] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete repre-

sentation learning. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.

Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances

in Neural Information Processing Systems 30: Annual Conference on Neural Infor-

mation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages

6306–6315, 2017.

[170] Junyuan Xie, Ross B. Girshick, and Ali Farhadi. Unsupervised deep embedding for

clustering analysis. In Maria-Florina Balcan and Kilian Q. Weinberger, editors, Pro-

ceedings of the 33nd International Conference on Machine Learning, ICML 2016, New

York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference

Proceedings, pages 478–487. JMLR.org, 2016.

[171] Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew C. H. Lee, Hugh

Salimbeni, Kai Arulkumaran, and Murray Shanahan. Deep unsupervised clustering

with gaussian mixture variational autoencoders. CoRR, abs/1611.02648, 2016.



176 BIBLIOGRAPHY

[172] Partha Ghosh, Mehdi S. M. Sajjadi, Antonio Vergari, Michael J. Black, and Bernhard

Schölkopf. From variational to deterministic autoencoders. In 8th International Con-

ference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,

2020. OpenReview.net, 2020.

[173] Andrea Asperti. Variance loss in variational autoencoders. In Machine Learning,

Optimization, and Data Science - 6th International Conference, LOD 2020, Siena,

Italy, September 10-13, 2020, July 19-23, 2020, Proceedings, volume To appear of

Lecture Notes in Computer Science. Springer, 2020.

[174] Alexey Dosovitskiy and Thomas Brox. Generating images with perceptual similarity

metrics based on deep networks. In Daniel D. Lee, Masashi Sugiyama, Ulrike von

Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural Infor-

mation Processing Systems 29: Annual Conference on Neural Information Processing

Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 658–666, 2016.

[175] Xianxu Hou, LinLin Shen, Ke Sun, and Guoping Qiu. Deep feature consistent varia-

tional autoencoder. CoRR, abs/1610.00291, 2016.

[176] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole

Winther. Autoencoding beyond pixels using a learned similarity metric. In Maria-

Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of the 33nd Interna-

tional Conference on Machine Learning, ICML 2016, New York City, NY, USA, June

19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pages 1558–

1566. JMLR.org, 2016.

[177] Yongqin Xian, Saurabh Sharma, Bernt Schiele, and Zeynep Akata. F-VAEGAN-D2: A

feature generating framework for any-shot learning. In IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20,

2019, pages 10275–10284. Computer Vision Foundation / IEEE, 2019.

[178] Rui Gao, Xingsong Hou, Jie Qin, Jiaxin Chen, Li Liu, Fan Zhu, Zhao Zhang, and Ling

Shao. Zero-VAE-GAN: Generating unseen features for generalized and transductive

zero-shot learning. IEEE Trans. Image Process., 29:3665–3680, 2020.

[179] Wenxiao Chen, Wenda Liu, Zhenting Cai, Haowen Xu, and Dan Pei. VAEPP: vari-

ational autoencoder with a pull-back prior. In Haiqin Yang, Kitsuchart Pasupa,

Andrew Chi-Sing Leung, James T. Kwok, Jonathan H. Chan, and Irwin King, edi-

tors, Neural Information Processing - 27th International Conference, ICONIP 2020,

Bangkok, Thailand, November 23-27, 2020, Proceedings, Part III, volume 12534 of

Lecture Notes in Computer Science, pages 366–379. Springer, 2020.



BIBLIOGRAPHY 177

[180] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wier-

stra. DRAW: A recurrent neural network for image generation. In Proceedings of

the 32nd International Conference on Machine Learning, ICML 2015, Lille, France,

6-11 July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages

1462–1471. JMLR.org, 2015.

[181] SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S Morcos,

Marta Garnelo, Avraham Ruderman, Andrei A Rusu, Ivo Danihelka, Karol Gregor,

et al. Neural scene representation and rendering. Science, 360(6394):1204–1210, 2018.

[182] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C. Courville,

and Yoshua Bengio. A recurrent latent variable model for sequential data. In Corinna

Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett,

editors, Advances in Neural Information Processing Systems 28: Annual Conference on

Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,

Canada, pages 2980–2988, 2015.

[183] Emile Mathieu, Tom Rainforth, N. Siddharth, and Yee Whye Teh. Disentangling disen-

tanglement in variational autoencoders. In Kamalika Chaudhuri and Ruslan Salakhut-

dinov, editors, Proceedings of the 36th International Conference on Machine Learning,

ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings

of Machine Learning Research, pages 4402–4412. PMLR, 2019.

[184] Babak Esmaeili, Hao Wu, Sarthak Jain, Alican Bozkurt, N. Siddharth, Brooks Paige,

Dana H. Brooks, Jennifer G. Dy, and Jan-Willem van de Meent. Structured dis-

entangled representations. In Kamalika Chaudhuri and Masashi Sugiyama, editors,

The 22nd International Conference on Artificial Intelligence and Statistics, AISTATS

2019, 16-18 April 2019, Naha, Okinawa, Japan, volume 89 of Proceedings of Machine

Learning Research, pages 2525–2534. PMLR, 2019.

[185] Priyank Jaini, Ivan Kobyzev, Yaoliang Yu, and Marcus Brubaker. Tails of Lipschitz

Triangular Flows. In Proceedings of the 37th International Conference on Machine

Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of

Machine Learning Research, pages 4673–4681. PMLR, 2020.

[186] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quan-

tifying the carbon emissions of machine learning, 2019.

[187] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of deep neural

network models for practical applications, 2017.

[188] Yunho Jeon and Junmo Kim. Constructing fast network through deconstruction of

convolution. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,



178 BIBLIOGRAPHY

Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information

Processing Systems 31: Annual Conference on Neural Information Processing Systems

2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 5955–5965, 2018.

[189] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation func-

tions, 2017.

[190] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu. Squeeze-and-excitation

networks. IEEE Trans. Pattern Anal. Mach. Intell., 42(8):2011–2023, 2020.

[191] F. Chollet. Xception: Deep learning with depthwise separable convolutions. In 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1800–

1807, 2017.

[192] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C.

Courville. Film: Visual reasoning with a general conditioning layer. In Sheila A.

McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI

Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of

Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Ad-

vances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February

2-7, 2018, pages 3942–3951. AAAI Press, 2018.

[193] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer using

convolutional neural networks. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages

2414–2423. IEEE Computer Society, 2016.

[194] Danilo Branca. Generazione di attributi facciali mediante feature-wise linear modula-

tion. Master’s thesis, University of Bologna, 2020.

[195] Alfredo Canziani, Eugenio Culurciello, and Adam Paszke. Evaluation of neural network

architectures for embedded systems. In IEEE International Symposium on Circuits and

Systems, ISCAS 2017, Baltimore, MD, USA, May 28-31, 2017, pages 1–4. IEEE, 2017.

[196] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on im-

age synthesis. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy

Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Information Pro-

cessing Systems 34: Annual Conference on Neural Information Processing Systems

2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 8780–8794, 2021.

[197] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Den-

ton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi,

Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J. Fleet, and Mohammad



BIBLIOGRAPHY 179

Norouzi. Photorealistic text-to-image diffusion models with deep language understand-

ing. CoRR, abs/2205.11487, 2022.

[198] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi,

and David J Fleet. Video diffusion models. arXiv:2204.03458, 2022.

[199] Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei Zhou, and Ming-Hsuan

Yang. GAN inversion: A survey. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2022.

[200] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano

Ermon, and Ben Poole. Score-based generative modeling through stochastic differential

equations. arXiv preprint arXiv:2011.13456, 2020.

[201] Valentin Khrulkov and Ivan Oseledets. Understanding DDPM latent codes through

optimal transport. arXiv preprint arXiv:2202.07477, 2022.

[202] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion

models. Advances in neural information processing systems, 34:21696–21707, 2021.

[203] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion proba-

bilistic models. In International Conference on Machine Learning, pages 8162–8171.

PMLR, 2021.

[204] Andrea Asperti and Valerio Tonelli. Comparing the latent space of generative models.

Neural Computing & Applications, 35:3155—-3172, 2023.

[205] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in

Neural Information Processing Systems 30: Annual Conference on Neural Information

Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–

6008, 2017.

[206] Alessandro Buccini and Marco Donatelli. Graph Laplacian in ℓ2 − ℓq regularization

for image reconstruction. In 2021 21st International Conference on Computational

Science and Its Applications (ICCSA), pages 29–38. IEEE, 2021.

[207] Davide Bianchi, Alessandro Buccini, Marco Donatelli, and Emma Randazzo. Graph

Laplacian for image deblurring. ETNA, 55:169–186, 2022.


	Introduction
	I Inverse Problems: an optimization approach 
	Inverse Problems in Imaging: from optimization to data-driven algorithms
	Ill-Posed Inverse Problems
	Problems of interest
	Image Deblurring
	Sparse Computed Tomography

	Reconstruction algorithms
	Direct Methods
	Model-Based Methods
	Neural Networks

	Datasets and Metrics
	Datasets
	Metrics


	Neural Networks as reconstructors to solve ill-conditioned inverse problems
	Reconstructors for the solution of linear inverse problems
	Accuracy vs. stability trade-off
	A sufficient condition for stability

	Neural Networks as reconstructors
	Better conditioning implies better reconstructors: the ReNN approach

	Stabilizers
	Iterative algorithms as stabilizers for neural networks

	Experimental Setup
	Experiment A
	Experiment B
	Experiment C

	Numerical Results
	Comparison of ReNN, StNN and StReNN
	Comparison of StNN with different architectures and stabilization
	Analysis with noise varying on the test set 

	Conclusions

	RISING: unsupervised and stable data-driven approach for SparseCT
	The RISING framework
	Rapid Iterative Solver 
	Iteration Network-based Gaining 

	Experimental design and implementation notes
	Data set of synthetic images 
	Data set of real medical images 
	Network architecture and training 
	Implementation notes 

	Experimental results and discussion
	Robustness of RISING with respect to data perturbation  
	Results on synthetic images  
	Results on real medical images  

	Conclusions

	Robust non-convex approach
	The TpV-squared approach
	The TpV Chambolle-Pock algorithm 
	The TpV-Net preprocessing

	Numerical Results
	Extensions and Future Works
	Conclusion


	II Deep Generative Models for image generation 
	A probabilistic approach to imaging
	Generative Models
	A Taxonomy of Deep Generative Models
	Deep Latent Variable Models

	Datasets and Metrics
	Datasets
	Metrics

	Structure of the part II of the thesis

	A survey on Variational Autoencoders
	Theoretical Background
	The vanilla VAE and its problems
	The balancing issue
	Variable collapse phenomenon
	Aggregate posterior vs. expected prior mismatch
	Blurriness
	Disentanglement

	Two-Stage VAE
	Regularized VAE (RAE)
	Hierarchical Variational Autoencoder 
	Experimental setting
	Green AI and FLOPS
	Architectures overview

	Numerical results
	Quality Evaluation
	Energetic evaluation

	Conclusions

	Image embedding for denoising generative models
	Denoising Diffusion Models
	Diffusion and reverse diffusion
	The Diffusion Schedule
	The Gravitational Analogy

	Denoising Architecture
	Embedding
	Gradient Descent Synthesis
	Embedding Networks
	Latent Space Interpolation

	Conclusions

	Conclusions and Future Works


