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Abstract

The abundance of visual data and the push for robust AI are driving the need
for automated visual sensemaking. Computer Vision (CV) faces growing demand
for models that can discern not only what images “represent”, but also what they
“evoke.” This is a demand for tools mimicking human perception at a high seman-
tic level, categorizing images based on abstract concepts like freedom, danger, or
safety. However, automating this process is challenging due to entropy, scarcity,
subjectivity, and ethical considerations. These challenges not only impact per-
formance, but also underscore the critical need for interpretability, given existing
semantic and cultural gaps between raw pixel data and high-level visual semantics.

This dissertation aims to bridge these gaps by focusing on abstract concept-
based (AC) image classification, guided by three technical principles: situated
grounding, performance enhancement, and interpretability. We introduce ART-
stract, a novel dataset of cultural images annotated with ACs, serving as the foun-
dation for a series of experiments across four key domains: assessing the e↵ective-
ness of the end-to-end DL paradigm, exploring cognitive-inspired semantic inter-
mediaries, incorporating cultural and commonsense aspects, and neuro-symbolic
integration of sensory-perceptual data with cognitive-based knowledge.

Our results demonstrate that integrating CV approaches with semantic tech-
nologies yields methods that surpass the current state of the art in AC image
classification, outperforming the end-to-end deep vision paradigm both in regards
to performance and to explainability. The results emphasize the role semantic tech-
nologies can play in developing both e↵ective and interpretable systems, through
the capturing, situating, and reasoning over knowledge related to visual data.

Furthermore, this dissertation explores the complex interplay between technical
and socio-technical factors, emphasizing the importance of context in automati-
cally interpreting visual data and cultural connotations. By merging technical
expertise with an understanding of human and societal aspects, we advocate for
responsible labeling and training practices in visual media. These insights and
techniques not only advance e↵orts in CV and explainable artificial intelligence,
but also propel us toward an era of AI development that harmonizes technical
prowess with deep awareness of its human and societal implications.
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Chapter I.1

Introduction

I.1.1 The Era of Algorithmic Curation

I.1.1.1 Curating by Abstracting

The modern mass media landscape, including vast digitalization e↵orts by Cul-
tural Heritage (CH) institutions [47], is saturated with images. In this age of
visual abundance, the sheer volume of diverse imagery leads to users’ information
overload [181]. Consequently, there is a growing need for society to complement
traditional reading habits with a more visual perspective [334]. Amidst this visu-
ally overwhelming environment, hyperpop and glitch aesthetics (see Figure I.1.1)
have emerged as noteworthy responses by the tech-savvy Generation Z, reflecting
the quest for coherence in a world saturated with images. These aesthetics align
with a culture characterized by rapid information flow and the pursuit of meaning
within the visual chaos [399]. As suggested by Vassar, the hyperpop phenomenon
is an attempt suited to the psyche of the modern “six-hours-of-screen-time-a-day
individual,” to strive for some semblance of meaning amidst the disorder; an at-
tempt to coalesce a multitude of disparate meanings into some harmonious whole
[366].

This is a transition from the information age to an era demanding selection and
arrangement. In this shift, the ability to e↵ectively sift through vast amounts of
data is becoming the true source of intelligence and influence [300, 84, 181]. This
idea was already at the core of Borges’ premonitory short story “Funes the Mem-
orious” (1954) [50], about Professor Funes, a man who possesses an extraordinary
memory capable of recalling even the minutest details of his experiences. However,
despite his exceptional memory, Borges describes Funes as “not very capable of
thought” [50]. Borges explains this apparent contradiction by stating:

To think is to forget a di↵erence, to generalize, to abstract.

9
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(a) Mikey Joyce 2020a

a
https://www.instagram.com/mikeyjoyce/. Access date:

December 2023.

(b) Claire Barrow 2020a

a
https://www.instagram.com/claire_barrow/. Access

date: December 2023.

Figure I.1.1: Hyperpop collapses disparate visual meanings into semblances of
accord, symptomatic of an era characterized by visual overabundance.

Professor Funes’ cognitive challenge, his inability to forget, impedes him from gen-
eralizing over interconnected memories. Illuminating these profound connections
between memory, abstraction, and curation, Borges’ story anticipated modern neu-
roscientific and philosophical research [207, 284, 325, 285], and now resonates with
contemporary Artificial Intelligence (AI) research–currently dominated by Deep
Learning (DL)–as it aims to achieve robust AI, as defined by Marcus [237]:

Intelligence that [...] can be counted on to apply what it knows to a
wide range of problems in a systematic and reliable way, synthesizing
knowledge from a variety of sources such that it can reason flexibly and
dynamically about the world, transferring what it learns in one context
to another, in the way that we would expect of an ordinary adult.

This comprehensive vision of “robust” intelligence pursued by contemporary
AI research signifies a departure from mere data accumulation toward the sophisti-
cated synthesis and application of knowledge. However, similar to Funes, modern
AI still lacks the abstraction abilities typically found in an “ordinary adult.” In
other words, despite their extensive data storage capabilities, neither Funes nor
the DL paradigm have mastered the art of curation, which demands high-level
reasoning and abstraction.

https://www.instagram.com/mikeyjoyce/
https://www.instagram.com/claire_barrow/
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I.1.1.2 Automating High-Level Visual Sensemaking

Amidst visual hyperabundance and the rising popularity of AI, there is a height-
ened demand for automated curation, classification, and e�cient navigation of this
extensive visual terrain. This demand aligns with the evolving field of Computer
Vision (CV). Initially developed with the goal of achieving “complete image under-
standing” [168], the field of CV treats images as data [157] and generally facilitates
bottom-up access to extensive image repositories [18]. As such, it allows the si-
multaneous analysis of vast amounts of images, reducing the need for painstaking
individual examination. As a field, CV encompasses the construction of physi-
cal models of scenes, the understanding of how light interacts with scenes, and
the generation of low-, intermediate-, and high-level descriptions of scene content
[349]. It also seeks high-level interpretation from a wide array of visual data [55]
and aims to replicate the human capability of not only recovering image structure
but also of identifying what an image “represents.”

Over the past decade, the field of CV has undergone a profound transformation
driven by the advent of DL, specifically powered by Convolutional Neural Networks
(CNNs). DL techniques have harnessed the capabilities of extensive data and
powerful computing resources to tackle once-considered insurmountable challenges,
pushing the boundaries of what is achievable [275]. A compelling illustration of
this paradigm shift can be seen in image classification, notably catalyzed by the
breakthrough of Krizhevsky, Sutskever, and Hinton in 2012 [211]. Since then, DL
has consistently outperformed traditional methods in this domain [275]. CNNs and
other DL-based computer vision methods have now become indispensable tools,
enabling the classification and categorization of extensive image datasets, even
encompassing cultural imagery like advertisements [391] and artworks [71].

The remarkable success of the DL paradigm in CV over the past decade has
given rise to more complex demands: methods to capture not only what an image
“represents”, but also what an image “evokes”. This is a demand for tools that
can accurately replicate the nuanced manner in which humans perceive the visual
world, functioning at a “high semantic level” [174]. In essence, it represents an
endeavor to move machine vision away from Funes’ limitations, and towards gen-
uine abstraction and reasoning capabilities. This emerging trend transcends the
conventional focus of image classification on concrete classes, instead delving into
the automation of intricate visual reasoning tasks deeply intertwined with subjec-
tive and cultural dimensions. These tasks encompass classifying images based on
emotions [67, 257], discerning political a�liation [187], assessing beauty [149], and
even inferring personality traits [321] solely from raw visual data. For humans,
these tasks are heavily influenced by cultural contexts and biases. As such, the
demand for the automation of these tasks has redefined the expectations placed
upon CV models and the depth of knowledge they are tasked with acquiring.
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I.1.1.3 ACs in the Era of Algorithmic Visual Curation

Abstract concepts (ACs) such as comfort, freedom, or danger are becoming impor-
tant tools for advancing the next generation of automated visual indexing. These
concepts, which underlie the human expression of emotions, opinions, and ideas
through language [205], hold particular influence in categorizing and managing
visual data. This is because visual forms such as photographs and paintings are
thought to illustrate, and circulate, concepts both by providing links to depicted
objects through raw features–such as lines, color, shape, and size–as well as through
what Barthes called an image’s connotation: a second layer of meaning made from
culturally coded elements [33]. This indexing power of AC categories has been
widely recognized in the domain of CH, where controlled thesauri and classifica-
tion systems incorporate ACs to categorize visual materials [286]. Shared vocabu-
laries and ontologies such as Iconclass,1 Library of Congress,2 and the Getty’s Art
and Architecture Thesaurus3 o↵er pre-established ACs for association with visual
content.

The e↵ectiveness of ACs in the realm of visual indexing arises from their capa-
bility to bring together images that are visually diverse but semantically related
(see Figure I.1.2). This is because, by definition, ACs lack distinct, concrete refer-
ents and are triggered by diverse scenarios [52], establishing a parasitic relationship
between sensory-perceptual experiences and distributional linguistic data [101]. In
the cognitive science field, the term “abstract concepts” [53, 160, 371, 392] is used
for concepts that do not possess a single and perceptually bounded object as ref-
erent, and which have more variable content both within and across individuals
than concrete concepts [29, 52]. The mechanisms that underlie the formation and
use of ACs in human cognition are the object of study of the “Words As social
Tools” (WAT) cognitive theory [52], which sees words as tools to perform action
modifying the state of our social environment. In this sense, ACs are seen as tools
that change the state of humans’ inner processes, helping us formulate predictions
and facilitating perception, categorization, and thought [52]. Advances in neuro-
psychology posit that, as opposed to concrete concepts, ACs rely on semantic
rather than categorical similarity relations [92, 91], on associative relations [110],
on the social, event, and introspective aspects of situations [31] and on evoked
emotions [205, 370].

1https://iconclass.org. Access date: December 2023.
2https://www.loc.gov. Access date: December 2023.
3https://www.getty.edu/research/tools/vocabularies/aat. Access date: De-

cember 2023.

https://iconclass.org
https://www.loc.gov
https://www.getty.edu/research/tools/vocabularies/aat
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(a) Assortment of WhatsApp GIFs returned for the query love, illustrating the e�cacy of
ACs in visual indexing. ACs can unite visually diverse yet semantically related images,
facilitating e↵ective management of image collections.

(b) Assortment of Tate Gallery artworks returned for the query consumerism. Expert
curators labeled each artwork with the consumerism tag. Identifying a unifying AC for
these visually diverse artworks may challenge non-experts, highlighting the di�culty of
establishing universally agreed-upon ACs in visual indexing.

Figure I.1.2: ACs bridge cultural connotations with visual forms.
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I.1.2 AC Image Classification and Its Challenges

Given the pivotal role that ACs can play in the organization and categorization of
visual data, and the current trend in automating image classification for increas-
ingly abstract categories, the field of Abstract Concept-based image classification
(hereafter referred to as AC image classification) is gaining substantial attention
within computer vision, as will extensively be discussed in Chapter I.2. Within
this dissertation, we formulate AC image classification as a multi-class classifi-
cation problem. We opted for a single-label multi-class classification approach,
rather than a multi-label multi-class approach, to focus on identifying the most
prominent AC category for each image. This decision was made considering the
challenge of reconciling disparities within visual representations of ACs. In many
cases, images may not strictly belong to a single class, and ACs are not always
mutually exclusive. By focusing on a single-label approach, we aim to capture
the primary association between an image and its most salient AC. To clarify, the
task involves working with a dataset comprising images X = [I1, I2, . . . , Im], each
paired with corresponding ground truth labels Y = [y1, y2, . . . , ym]. These labels
are drawn from a set of K potential classes, where K encompasses a set of AC
categories, such as [death, danger, comfort, . . . , safety]. The primary objective is
to ascertain the optimal image representation, Ii, and model parameters, ✓, that
enable us to predict the label ŷi in such a way that it closely aligns with the true
label yi. This objective is succinctly expressed through the following equation:

ŷi = argmax(p(yi|Ii, ✓)) (I.1.1)

However, determining what the ideal image representation Ii should be, and
emphasizing features that evoke specific ACs is complex–even for humans–due to
the inherently elusive nature of these connections. In essence, identifying specific
attributes that “objectively” classify a set of images as a certain AC is a challenge
due to the diverse visual elements present (consider the examples in Figure I.1.2),
even for human observers. Unsurprisingly, CV methods, while striving to replicate
human perception, face similar challenges, as they rely on raw or concrete features.
These challenges in AC image classification can be distilled into four critical factors.

Scarcity: Ground Truths, Baselines, Shared Methods

The CV community has only recently “made first attempts in tackling content
which requires subjective judgment or abstract analysis” [174]. However, this
progress faces significant hurdles, primarily stemming from the limited availability
of AC ground truth labels in publicly accessible image datasets. This scarcity is
compounded by class imbalances in widely used image datasets like ImageNet [105],
which emphasize tangible object classes. The scarcity of well-defined abstract
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ground truth annotations [1, 8] poses a formidable obstacle in e↵ectively training
data-hungry models. Furthermore, data scarcity not only restricts research and
shared methodologies but also hinders the establishment of a well-defined task and
baseline benchmarks for AC image classification.

Figure I.1.3: Two images sharing a significant amount of low-level features (colors,
shapes), and depicted objects (policemen, gun, street, background trees), while
conveying contrasting higher-level semantics. The image on the left suggests an
AC like friendship, whereas the image on the right implies an AC such as violence.

Figure I.1.4: Two images sharing fewer low-level features, yet exhibiting similar
higher-level semantics. Both scenes are likely to be associated with the AC vio-
lence.
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(a) Two cultural images sharing lower-level features, but conveying
contrasting high-level meanings. Left: Tsukioka Yoshitoshi’s Child

Calms a Horse by Covering His Head with Her Jacket (1875). Right:
Yoshitoshi’s Tajima Seitaro Murders His Wife When She Refuses to

Return to Him (1875). Color woodblock prints, Herbert R. Cole Col-
lection, Los Angeles County Museum of Art. Wikimedia Commons.

(b) Two cultural images sharing high-level semantics but less low-level
features. Left: Artemisia Gentileschi’s Judith Beheading Holofernes

(1611-12), oil on canvas, 159 x 126 cm, Museo Nazionale di Capodi-
monte, Naples. Wikimedia Commons.

Figure I.1.5: Comparison of cultural images illustrating di↵erences in feature shar-
ing and high-level semantics.
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Entropy: Going Beyond the Surface

While strides have been taken towards achieving comprehensive image compre-
hension in computer vision, with impressive performance in tasks such as object
detection and image generation [25], this progression aligns with the deep learning
paradigm’s focus on low-level or concrete features, focused on tasks with perceptu-
ally bounded ground truths. Specifically, CV has had a strong focus on CNNs [217]
and other DL methods that target images’ low-level features, which have largely
banked on the decontextualized nature of visual signals. However, the field’s focus
on CNNs and their reliance on decontextualized visual signals becomes problem-
atic for high-level visual understanding tasks, because CNNs are tailored for high
intra-class similarity situations [42, 328]. As such, CNNs’ capabilities do not align
well with the inherent diversity and nuanced cultural nature of ACs, which by def-
inition lack distinctive bounded perceptual features (see Figures I.1.4 and I.1.3).
This challenge applies not only to natural but also cultural images (see Figure
I.1.5). Instead, abstract words are associated with higher dispersion ratings, re-
sulting in an entropic, broader range of images returned from a query [200, 215].
This diversity in visual signals challenges the development of algorithms that can
consistently recognize ACs from solely visual data. The wide variability in visual
representation adds complexity to the training process and requires strategies to
e↵ectively identify the core features that characterize these concepts.

Subjectivity: Bridging Semantic and Cultural Gaps

The field of CV grapples with a fundamental challenge known as the semantic gap,
defined by Smeulders as the “disparity between the information extracted from vi-
sual data and the interpretations it holds in specific contexts” [332, p. 1352]. In
the realm of AC image classification, this semantic gap is further compounded
by the diverse perspectives and cultural contexts of viewers. This diversity leads
to ground truth data that is inherently unpredictable due to subjective and cul-
tural biases: viewers’ individual backgrounds and experiences give rise to distinct
associations of ACs with images. For instance, a single image can elicit varying
a↵ective reactions based on cultural influences, personal attributes, and social cir-
cumstances [404]. In the context of Digital Humanities and computational visual
studies, van Noord has introduced the concept of the cultural gap [267], which
extends the semantic gap to encompass temporal and social dimensions. The
cultural gap accentuates the dissonance between the visual data extracted by ma-
chine vision and the interpretations derived by various cultural groups, especially
pronounced when dealing with polysemic images. The iconic 1989 Tank Man pho-
tograph (Figure I.1.6) provides a compelling example: it elicits distinct cultural
interpretations, symbolizing protest in much of Western media, but military re-
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straint according to Chinese o�cials, highlighting the diverse range of high-level
meanings a single image can convey [267, p. 3].

Figure I.1.6: The iconic 1989 photograph portrays an unidentified civilian, nick-
named ‘Tank Man,’ standing in protest in Tiananmen Square, Beijing. This image
exemplifies the cultural gap in visual interpretation, as it can be associated with
di↵erent AC categories, such as protest and restraint, depending on the viewer’s
cultural perspective and biases. Source: The Associated Press, originally pho-
tographed by Je↵ Widener.

Ethics: Stabilizing Unstable Meanings

The inherent cultural variability in how ACs are visually evoked not only intro-
duces technical complexity but also raises ethical concerns about whose perspec-
tives and values are being amplified through the automation of visual sensemak-
ing. Recent ethical concerns surrounding cultural bias in Computer Vision (CV)
pipelines have prompted the development of innovative frameworks aimed at trans-
parently representing the knowledge assumptions within datasets and deployed AI
systems, as discussed in works like [136, 252]. These concerns are particularly
pronounced when addressing culturally biased labels applied to images featuring
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human subjects, as demonstrated in studies such as [61, 60]. The complexity
deepens when dealing with ACs as target classes, as these abstract and subjective
categories are inherently shaped by social constructs and encompass a wide array
of meanings influenced by cultural and historical contexts and power systems. For
instance, labels such as beauty, danger, or terrorism applied to images of individu-
als are profoundly influenced by the context of annotation, reflecting the cultural
perspectives of the annotators. The critical idea here is that AI systems are not
neutral but instead power systems, which reflect the priorities, preferences, and
prejudices of those who shape the models and the data they are trained on [256,
48, 19]. The impact of these labels goes beyond the technical realm and signif-
icantly a↵ects individuals and communities [83]. When decontextualized labels
are employed in training data, they can persist in the development of automated
detection and classification systems. Utilizing AC image models without compre-
hending their decision-making processes can result in harmful outcomes, including
the perpetuation of prejudice and racism.

I.1.3 Core Technical Concepts

Considering the challenges in high-level visual understanding tasks like AC image
classification, we first center our research around three technical concepts:

I.1.3.1 Situated Grounding

The development of ethical AI necessitates transparency, accountability, and ethi-
cal considerations [87], especially for highly sensitive tasks like AC image classifica-
tion. Throughout this work, I will define and develop the core concept of situated
ground truths, aligned with Donna Haraway’s exploration of situated knowledges
[158]. It promotes ground truths rooted in complex, situated experiences rather
than an assumed universal, objective standpoint. This e↵ort is part of a greater
trend in CV: given that ground truth datasets for CV research heavily reflect
Western-centric perspectives, leading to inaccuracies when applied beyond this
context, novel frameworks aim to explicitly represent underlying knowledge as-
sumptions within datasets and deployed AI systems. Examples of such frameworks
include data sheets [136], as well as model cards [252]. Notable scholarly works
like [48, 256] adopt a decolonial perspective to critique AI, highlighting how these
technologies unwittingly reinforce colonial power dynamics and values. Similarly,
the authors of [19] challenge the traditional concept of a singular, definitive truth
in human annotation, introducing the concept of crowd truth rooted in subjective
human interpretation. Authors in [249] emphasize the importance of adopting
a power-aware approach to data design and production for equitable outcomes.
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This dissertation is guided by the idea of anchoring training data in a situated
manner to enable AI to engage with information aligned with human perspectives,
navigate complexities, and counteract biases stemming from assumed objectivity.

I.1.3.2 Performance

Performance is a key metric in AI and is used to evaluate new methods in CV,
including aspects such as accuracy, e�ciency, and robustness. As discussed above,
for high-level visual understanding tasks, achieving elevated performance is a tech-
nical challenge in and of itself. Addressing this issue involves not only mitigating
data scarcity but also acknowledging the influence of training dataset composition
and format on model performance. Critically, the complexity inherent in achieving
high performance in AC image classification paves the way for potential interdis-
ciplinary collaborations. Fields such as cognitive science or linguistics can o↵er
valuable insights into the processes that underlie human comprehension of visual
data and ACs. In this context, the pursuit of enhanced technical performance in
AC image detection may necessitate a greater emphasis on cognitive insights and
neuro-symbolic techniques, as suggested by Hitzler [165], compared to approaches
employed in more concrete visual tasks. Strategies such as informed learning with
prior knowledge and reasoning on background knowledge for visual tasks, as pro-
posed by Aditya et al. [4], show promise, leveraging the complementary strengths
and weaknesses of statistical (data-driven) and symbolic (knowledge-driven) ap-
proaches to AI—a challenge and opportunity widely recognized in modern AI [38].
In this regard, incorporating insights from symbolic inference systems enriched
with linguistic, sensory, perceptual, social, and cultural information can guide the
learning process.

I.1.3.3 Interpretability

Interpretability is the third foundational concept of this work. The concept’s
emergence can be seen as a response to the perceived “explanatory deficit” within
technical domains [44], driven by challenges posed by opaque deep models and the
recognition of biases that can lead to inequities. The subfield of eXplainable AI
(XAI) advocates for interpretability as a means to address these issues [254]. This
becomes particularly crucial in the context of AC image classification, as it heav-
ily relies on subjective, cultural, and interoceptive processes. The implications
of reusing models without explainability are substantial, as it can inadvertently
perpetuate harmful stereotypes or biased worldviews [272]. Consider, for exam-
ple, a CV system that boasts high performance in classifying images with the AC
freedom. While high-performance metrics like accuracy might seem impressive,
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their value diminishes if there is no insight into how the system makes its predic-
tions. The integration of interpretability into AI models not only reveals biases
but also aids in their correction, ensuring ethical alignment and enhanced per-
formance. Balancing model complexity with interpretability is a key challenge in
explainability. Complex models often excel in performance but lack transparency.
To address this, techniques like attention mechanisms, feature visualization, and
rule-based explanations can o↵er insights into decision-making. Another promis-
ing approach, similar to performance enhancement, involves integrating hybrid
symbolic-statistical systems. These systems combine semantic models with sym-
bolic reasoning, providing valid justifications for input/output correlations, ad-
dressing the ‘black-box’ problem in modern machine learning systems [380].

I.1.4 Research Focus and Objectives

Guided by the AC image classification’s challenges and the three core technical
concepts, this dissertation is structured around three central research questions:

RQ 1: To what extent can the end-to-end DL paradigm, connecting raw pixel values
directly to unsituated AC labels, address the task of AC image classification
in terms of both performance and interpretability?

RQ 2: Is it possible to automatically identify intermediary semantic features to
bridge the semantic gap between raw pixels and ACs? How might the uti-
lization of these features impact the performance and interpretability of AC
image classification?

RQ 3: Is it possible to enhance the performance and interpretability of AC image
classification by combining perceptual information with cultural and common-
sense knowledge?

These research questions form the basis of the dissertation’s structure, which
addresses specific challenges across three main areas:

• Deep Learning for Abstract Concept Image Classification (RQ 1):
Investigating the e↵ectiveness of state-of-the-art DL models in handling ACs
in image data through an end-to-end approach.

• Minding the Gap with Cognitive Intermediaries (RQ 2): Exploring
the potential of visual data descriptors to bridge the gap between raw pixels
and ACs via perceptual semantics.

• Reifying and Reasoning with Knowledge Graphs (RQ 3): Analyzing
the potential of semantic technologies in representing the commonsense and
cultural dimensions to enhance AC image classification.
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I.1.5 Structure of Contributions

This dissertation comprises five parts: Part I o↵ers essential research background,
while Parts II, III, and IV delve into each primary research area. Part V serves as
a comprehensive conclusion.

Part I: Background

This section establishes the foundational background for the dissertation, focusing
on high-level visual sensemaking and the role of Abstract Concepts (ACs), includ-
ing their definitions and cognitive foundations. Chapter I.2 lays essential ground-
work by surveying human high-level visual sensemaking in conjunction with the
aspiration of computer vision (CV) to automate this process. It explores the natu-
ral semantic hierarchy of images, from pixels to objects and higher-level concepts,
identifying ACs as semantic units at the apex of this ‘semantic pyramid.’ The
chapter delves into the challenges of automatically recognizing ACs in visual data,
systematically reviewing CV research dedicated to bridging this gap, and o↵ering
a comprehensive overview of the state of the art in automatic detection of ACs
from images.4 Chapter I.3 provides a concise foundation on the nature of ACs,
highlighting their diverse and nuanced characteristics from a cognitive science per-
spective. It introduces the cognitive concept of “acquired embodiment,” explain-
ing how abstract words become linked to sensory-motor information through their
associations with concrete words, thereby enhancing their representation. Addi-
tionally, the chapter explores the cognitive substrates of AC representation, laying
the groundwork for understanding how ACs are represented in the human brain
and how this knowledge can be applied to AI applications in subsequent parts of
the dissertation.

Part II: Defining + Benchmarking AC Image Classification

This part addresses Research Question 1, exploring two sub-research questions:

RQ.1.1 Is it feasible to construct an image dataset following the prin-
ciples of the end-to-end DL paradigm, where images are associated with
AC labels?

Chapter II.1 introduces ARTstract, a novel image dataset comprising over 14,000
cultural images labeled with ACs. The chapter details the dataset’s creation pro-
cess, including integration, composition, and statistics, highlighting class imbal-

4Under review for publishing at ACM Computing Surveys, https://dl.acm.org/
journal/csur

https://dl.acm.org/journal/csur
https://dl.acm.org/journal/csur
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ances among AC clusters. It also addresses the challenges of defining and captur-
ing AC ground truths, considering contextual variations. ARTstract serves as a
valuable resource for studying the relationship between visual content and ACs in
computational visual studies, digital humanities, art history, and cognitive science.

RQ.1.2 To what extent can the end-to-end DL paradigm address
the task of AC image classification in terms of representation, per-
formance, and explainability?

Chapter II.2 examines the e↵ectiveness of end-to-end DL in AC image classifi-
cation. It focuses on bridging the semantic gap by directly processing raw pixel
data and mapping it to AC target classes. This paradigm utilizes pre-trained
DL models to transform raw images (IRAW) into deep feature vectors (IDL) used
for classification, aiming to maximize class probabilities based on the transformed
image representation and model parameters. The chapter is organized into three
sections, each addressing specific research questions: representation, performance,
and explainability. Representation explores intraclass similarity within deep repre-
sentations, performance evaluates state-of-the-art deep models’ e↵ectiveness, and
explainability delves into the interpretability of the deep models. This last section
involves classification analysis, saliency maps, perceptual topology exploration,
and introduces a novel explainability technique called SD-AM, o↵ering insights
into model decision-making and human-readable feature visualizations.5

Part III: Minding the Gap with Cognitive Intermediaries

This part addresses the second research question, through two sub-research ques-
tions:

RQ.2.1 Is it possible to translate the cognitive science idea of acquired
embodiment into a computational method for detecting perceptual se-
mantics meaningful to AC visual evocation?

Chapter III.1 investigates the translation of the cognitive concept of acquired em-
bodiment into a computational method. This method aims to identify perceptual
semantics (PS), concrete sensory features that can visually ground ACs within
images in a data-driven manner. The chapter presents a proof of concept by ex-
perimenting with Tate Gallery artworks.6

5This work has been published as D.S. Martinez Pandiani et al. “Hypericons for interpretabil-
ity: decoding abstract concepts in visual data.” In: International Journal of Digital Humanities

(2023), pp. 1–40.
6This work has been published as D. S. Martinez Pandiani and V. Presutti. “Automatic

Modeling of Social Concepts Evoked by Art Images as Multimodal Frames.” In: Proceedings

of the Workshops and Tutorials held at LDK 2021 co-located with the 3rd Language, Data and

Knowledge Conference (LDK 2021) (2021)



24 I.1. Introduction

RQ.2.2 Can cognitive-inspired perceptual features be e↵ectively lever-
aged and employed to enhance image representations for improved per-
formance and explainability in the context of AC image classification?

Chapter III.2 explores the use of PS to bridge the semantic gap by automatically
extracting and exploiting concrete semantic labels from images. This paradigm
adopts a feature engineering approach that converts raw images (IRAW) into per-
ceptual semantic representations (IPS) that explicitly correspond to the presence
of more concrete PS. As a result, the IPS representation is characterized by a
more interpretable, symbolic foundation. We harness these image representations
to train interpretable classical Machine Learning (ML) techniques, such as Naive
Bayes, for AC image classification, maintaining performance comparable to CNNs
while enhancing interpretability.

Part IV: Reifying and Reasoning with Knowledge Graphs

This part addresses the third research question, through three sub-research ques-
tions:

RQ.3.1 Can the incorporation of ontology-based frameworks facilitate
automatic reasoning over PS to establish high-level concepts from com-
monsense linguistic knowledge?

Chapter IV.1 explores the possibility of automatically reasoning over the concrete
semantics of visual data to establish connections with high-level concepts, empha-
sizing interpretability. A method is developed to reason over visual descriptors’
textual labels and establish connections with linguistic frames using common-
sense knowledge. This work enhances multimodal sensemaking by establishing
interpretable connections between images and high-level conceptual frames via
ontology-based reasoning.7

RQ.3.2 Do PS serve as entry points for subjective and cultural biases
in their assignment to visual data, and if so, what e↵ective methods
can be employed for representing and addressing these biases?

Chapter IV.2 focuses on capturing subjectivity and cultural bias in data label-
ing in a machine-readable way for training AI systems. A novel ontology-based
method, SituAnnotate, is introduced for situating ground truths in the context

7This work has been published as Fiorela Ciroku et al. “Automated multimodal sensemaking:
Ontology-based integration of linguistic frames and visual data.” In: Computers in Human

Behavior 150 (2024), p. 107997. Author order followed alphabetical arrangement.
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of their annotation. The chapter discusses challenges, approaches, provides selec-
tion guidelines, and presents real-world use cases with the case study of image
annotations.8

RQ.3.3 To what extent can the grounding of perceptual features within
their subjective, cultural, and commonsense contexts be leveraged to
enhance AC image classification in performance and interpretability?

Chapter IV.3 explores the use of Knowledge Graphs (KGs) to enhance the task of
AC image classification via the integration of perceptual semantics with cultural
and commonsense symbolic knowledge. The chapter introduces the ARTstract-
KG, which expands traditional image datasets by providing PS labels, contex-
tual annotations for all images, and pre-reasoned commonsense knowledge. The
chapter transforms PS representations of images (IPS) into structured KG for-
mat (IKG), linking images to perceptual, situational, and commonsense semantics.
Experiments involve embedding of the KG into vector space, resulting in vector
representations of images (IPS-KGE) based on situated KG information. These rep-
resentations are utilized in the AC image classification task. Additionally, hybrid
approaches are explored to bridge the gap between the end-to-end deep vision
paradigm and the situated perceptual knowledge paradigm. This approach en-
sures compatibility between representations, combining deep embodied features
(IDL) with embeddings from situated KG information (IKGE) to create an inte-
grated representation (IH). The chapter explores both absolute and relative rep-
resentations [261] of these embeddings for use in the AC image classification task.
Our results outperform the state of the art and o↵er enhanced interpretability.

Part V: Towards Hybrid Cognitive-Inspired AI

Chapter V.1 synthesizes the findings of the research, addresses the research ques-
tions, highlights significant contributions, identifies remaining inquiries and future
research directions, and provides reflective insights to guide future work.

8Parts of the chapter have been published as D.S. Martinez Pandiani and V. Presutti. “Coded
Visions: Addressing Cultural Bias in Image Annotation Systems with the Descriptions and
Situations Ontology Design Pattern.” In: 6th International Conference of Graphs and Networks

in the Humanities 2022: Technologies, Models, Analyses, and Visualizations (2022), while other
parts are in revision for publishing as D.S. Martinez Pandiani and V. Presutti. “Situated Ground
Truths: Enhancing Bias-Aware AI by Situating Data Labels with SituAnnotate.” In: Special

Issue on Trustworthy Artificial Intelligence of ACM Transactions on Knowledge Discovery from

Data (TKDD) (2024).





Chapter I.2

Seeing the Intangible: A Survey

Summary The field of Computer Vision (CV) was established with the am-
bitious goal of achieving complete image understanding, entailing a complete se-
mantic interpretation of input images. However, the exact nature of this goal
remains elusive. In human visual understanding hierarchies, there exists a top-
level category referred to as “high-level” semantics, housing the most intricate and
subjective information discernible from visual data. Within the CV field, there’s a
growing emphasis on classification and detection tasks focused on these “high-level
semantics,” albeit lacking a precise definition. Consequently, recent CV research
has introduced varied terminologies describing similar non-concrete semantic el-
ements, many of which represent Abstract Concepts (ACs). These ACs play a
pivotal role in high-level visual sensemaking and thus their significance extends
to advanced image management and retrieval processes. This survey systemati-
cally reviews CV research associating still images with high-level semantic units,
particularly focusing on tasks dealing with ACs. We first establish a clear charac-
terization of “high-level” semantics in human image understanding. Subsequently,
we identify tasks, datasets, and approaches associated with these high-level se-
mantics. We categorize the various CV tasks operating at this level and provide a
roadmap for future research to define and refine their utilization of the term “high-
level visual semantics.” We also conduct a systematic, in-depth review of research
addressing tasks most closely resembling AC-based image classification. This work
highlights a growing focus on culturally-dependent labels in CV, emphasizing the
importance of task- and context-specific datasets and the field’s evolving capability
to handle abstract semantics in visual data. Notably, it suggests that accumulat-
ing extensive datasets does not necessarily guarantee high F1 scores, underscoring
the need for more sophisticated approaches.

27
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I.2.1 Introduction

Visual imagery has historically been a potent medium for conveying both abstract
and concrete ideas, a significance evident in the vast amount of images shared daily
on social media [113]. This surge in visual content has fueled extensive research
in CV, primarily aimed at automating the indexing, retrieval, and management
of visual data, with applications spanning disciplines like sociology, media studies,
and psychology [187, 17]. CV’s data-driven approach, treating images as data,
has been pivotal, facilitated further by the recent deep learning (DL) paradigm
shift, leading to significant achievements in tasks such as image classification,
object detection, and image generation [25]. The remarkable success of the DL
paradigm in CV has led to more intricate demands, including the need for tools
capable of replicating human-like perception at a “high semantic level” [174]. This
includes using CV to classify images based on high-level notions, known as Abstract
Concepts (ACs), which have proven instrumental in various tasks such as emotion
classification [67, 257], political a�liation detection [187], beauty assessment [149],
and personality trait inference [321], all accomplished through raw visual data.

However, explicit definitions of high-level visual semantics, particularly ACs,
in machine vision are sparse. This lack of clarity, combined with the historical
emphasis on physical object detection grounded in low-level feature analysis, often
results in less impressive results in high-level semantic tasks compared to concrete
object classes [52]. Additionally, these tasks are influenced by cultural contexts
and human biases in perception, which redefine the depth of knowledge and un-
derstanding expected from CV models. Our survey systematically reviews CV
studies addressing the challenge of automatically classifying visual data based on
high-level semantic units. We clarify what constitutes “abstract” or “high-level”
semantics in the context of an image and identify CV tasks and automatic detection
approaches related to these semantics. Focusing on abstract concept-based image
classification (AC image classification), particularly in still images, we conduct a
comprehensive overview of the state of the art. This includes:

1. High-Level Semantic Units: Identification and clustering of high-level
semantic units, integrating insights from cognitive science, visual studies,
art history, and computer science.

2. High-Level CV Tasks: Surveying of the CV landscape to identify and
cluster tasks associated with high-level visual sensemaking, while examining
common methodologies and datasets.

3. AC Image Classification: We conduct a detailed review of works dealing
explicitly with AC image classification in still images.
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This chapter is structured as follows. Section I.2.2 provides an interdisciplinary
examination and characterization of what constitutes “full” or “high-level” seman-
tics in human visual understanding. In Section I.2.3, the methodology employed to
identify works related to the high-level semantics in the CV field is described. Sec-
tion I.2.4 surveys and categorizes CV tasks and works associated with high-level
visual understanding, facilitating the discovery of implicit CV research addressing
ACs. In Section I.2.5 we perform a thorough survey of CV-based works that re-
search tasks analogous to AC image classification. Section I.2.6 presents datasets
potentially relevant to the AC image classification task. The implications and
contributions of the survey are discussed in Section I.2.7. Ultimately, Section I.2.8
provides concluding remarks. More details are available and documented in a
specialized GitHub repository.1

I.2.2 Defining High-Level Visual Semantics

I.2.2.1 Three-Tiered Semantics

Figure I.2.1: The three tiers of the visual semantics hierarchy. Visual understand-
ing is often depicted as a multi-layered process, revealing three distinct levels of
semantics. The low level involves raw or elemental features, while the mid-level
encompasses individual objects, persons, and regions. In contrast, the high level
remains less defined and explored.

The concept that the perception and interpretation of visual meaning involve a

1https://github.com/delfimpandiani/seeing_the_intangible. Access date:
February 2024.

https://github.com/delfimpandiani/seeing_the_intangible
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multi-layered process is a shared perspective across various domains and applica-
tions, including cognitive science, CV, content-based image retrieval (CBIR), and
visual studies. This multi-layered nature was emphasized in the seminal paper by
Hare et al. (2006) [159], which discussed Smeulders’ idea of the “semantic gap” in
CV [332]. This paper also highlighted the common practice of referring to di↵erent
strata of meaning within images, a concept that has been pivotal in CBIR. We
delved deeper into several of these multi-layered approaches, drawing insights from
works by Panofsky (1955) [278], Shatford (1986) [327], Greisdorf and O’Connor
(2002) [150], Eakins (2000) [112], Jorgensen (2003) [188], Hare et al. (2006) [159],
and Aditya et al. (2019) [4]. This exploration revealed a general analogy wherein
three semantic tiers are used to delineate the human visual understanding process:
a “low-level,” a “mid-level,” and an “upper-” or “high-level” tier, corresponding
to increasing complexity, variability, and subjectivity (see Figure I.2.1). Most of
these approaches represented these layers using a pyramid analogy to illustrate a
hierarchical structure. Via a thorough analysis of the semantic elements assigned
to each of the layers by each of the foundational works, we noted that there was
a consensus in identifying and agreeing upon semantic units within both the low-
and mid-level layers. However, this consensus did not extend to the topmost layer.

At the base, the “low-level” layer (depicted in light blue in Figure I.2.1) encom-
passes raw or primitive features such as regions, edges, textures, colors, shapes,
and textures. Moving up to the “mid-level” layer (depicted in light purple in Fig-
ure I.2.1), this tier accommodates semantic entities like objects, persons, regions,
and places. Much of CV research has centered on this layer, emphasizing object
recognition and image segmentation. In contrast, the “high-level” layer of seman-
tics (depicted in dark purple in Figure I.2.1) remains less detailed and subject to
less consensus. This topmost tier, often associated with the concept of “full se-
mantics,” lacks an explicit and consistent definition, and characterization of what
types of semantic units belong in it. Instead, there appears to be a tacit shared
understanding of the kinds of content that may reside or be conceived within this
layer. In our analysis, this layer emerged as both elusive and significant, akin to
the “tip of an iceberg” regarding visual semantics, motivating our e↵orts to define
it more precisely.

I.2.2.2 Tip of the Iceberg: Upper Visual Semantics

Images may be sought “on the basis of their holistic content or message, as opposed
to the information embedded within them by dint of their depiction of certain
features” [115, p. 39]. Most work that attempts to name and characterize where
and how such holistic content arises thus moves in a layered way further away
from raw or primitive features, to arrive at the “highest” tier of the semantic
pyramid, referred to with di↵erent names: iconological layer [278], higher level of
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understanding [188], abstract content [327], abstract attributes [112], subjective
beliefs [150], higher level semantics [4], or full semantics [159].

Figure I.2.2: Tip of the iceberg: a deeper characterization of the top level of the
visual semantic pyramid. Drawing from a multidisciplinary exploration of semantic
entities associated with this upper semantic layer, we have identified four distinct
clusters of knowledge.

Part of the di�culty of solidifying a cross-disciplinary shared understanding of
high-level semantics is that, in comparison to the other levels, high-level under-
standing by humans is increasingly cognitively complex. Complex cognitive pro-
cesses, including abstraction, metonymic conveyance, adumbration, impression,
prototypical displacement [150], connotation [159, 327], evocation, and synthetic
intuition [278] are considered crucial tools for understanding visual semantics at
this “high level” of abstraction. However, it is generally thought that it is prac-
tically hard to grasp them using typical automatic image understanding and in-
dexing methods. As such, this highest level of abstraction in the interpretation of
image meaning or content is seen as a “seemingly insurmountable obstacle” to the
application of content-based image retrieval techniques [115].

In addition to cognitive complexity, subjectivity represents another challenging
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aspect when it comes to characterizing and automatically recognizing semantic
units within this level. Shatford’s widely cited insight encapsulates this notion
succinctly: “...the delight and frustration of pictorial resources is that a picture
can mean di↵erent things to di↵erent people” [327, p. 42]. Furthermore, a single
picture can convey diverse meanings not only to various people but also to the
same individual in di↵erent contexts or at di↵erent times of necessity. In line with
this perspective, Greisdorf [150] underscores the importance of interdisciplinary
perspectives as a foundational approach for modeling the attributes of the human
image cataloging process, because:

Those attributes tend to elude the indexing/cataloging process by ex-
ceeding the image indexing threshold due to individual viewer cognitive
displacement of objects and object features that give rise to disjunc-
tive prototypes that viewers may associate with the objects included
as part of the image composition. These adumbrative, impressionis-
tic and abstractionist concepts that relate viewer to image need to be
captured with some type of retrieval mechanism in order to enhance
retrieval e↵ectiveness for system users. [150, p. 11]

To better comprehend and communicate about these abstract semantics, there
is a need to precisely identify the semantic units that may belong to this layer and
potentially characterize their interrelationships. Thus, we systematically reviewed
the cited literature to provide a more detailed characterization of this apex of visual
semantics (see Figure I.2.2). We categorized the types of elements mentioned as
belonging to high-level visual semantics into four general groups:

• Commonsense semantics. This cluster is closely aligned with mid-level
semantics and is among the least subjective of the groups. It encompasses
semantic elements such as explicit or implied actions (“running”) [4, 159],
activities (“dance”) [4, 112], events (“parade”) [4, 112], relationships between
objects or object-object interactions (“man holding cup”) [4, 159], and object
purposes [112]. These elements fall under the category of “commonsense”
knowledge because they often exhibit a high level of consensus among viewers
and can be described within a logical framework.

• Emotional semantics. This cluster encompasses semantic information as-
sociated with emotions, encompassing moods, emotions [327], emotional cues
[150], emotional significance [112], and individualized a↵ects [150].

• Aesthetic semantics. This smaller cluster focuses on global aesthetic at-
tributes that pertain to the overall judgment of an image as a unified entity.
Semantic units within this cluster include atmosphere [150].



I.2.2 Defining High-Level Visual Semantics 33

• Inductive interpretative semantics. Positioned as the uppermost clus-
ter, this group contains some of the most complex, subjective, and culturally
encoded semantic elements within “high-level semantics.” It encompasses se-
mantic units like an image’s “aboutness” [327], significance [159], purpose,
and meaning [112], including intrinsic meaning [278]. Crucially, this cluster
includes symbols [327], symbolical values [150, 278], and abstract concepts
[4, 112, 327] as part of the top tier of visual semantics.

These clusters represent our initial e↵ort to provide a preliminary character-
ization of the high-level layer of visual semantics. Although they are presented
as distinct categories, there may be instances where semantic elements overlap
between clusters, such as the intersection of mood and aesthetics, atmosphere and
ACs, or emotion and ACs. Ongoing work may lead to further refinements and
revisions of this diagram.

I.2.2.3 Abstract Concepts and Visual Data

In the cognitive science field, the term abstract concepts (ACs) [53, 160, 371, 392],
e.g. violence, freedom or, danger, refer to complex situations which do not possess
a single and perceptually bounded object as referent, and which have more variable
content both within and across individuals than concrete concepts [29, 52]. The
mechanisms that underlie the formation and use of ACs are the object of study
of the “Words As social Tools” (WAT) cognitive theory [52, 54], which sees words
as tools to perform actions modifying the state of our social environment. In this
sense, ACs are seen as tools that change the state of humans’ inner processes,
helping us formulate predictions and facilitating perception, categorization, and
thought [52].

As such, ACs are valuable for tasks like automatic indexing, retrieval, and
managing visual data. Enser recognized over 20 years ago that concept-based
image retrieval methods would continue to be vital for archival image collections
[115, p. 206]:

At the highest level of abstraction in the interpretation of image mean-
ing or content, i.e. that which corresponds with Panofsky’s iconological
level, the human reasoning based on tacit or world knowledge which
underpins image indexing and retrieval operations poses a seemingly
insurmountable obstacle to the application of CBIR techniques. At this
level, we humans are able to ‘see’ within the primitive attributes of two
dimensional imagery the portrayal of love, power, benevolence, hard-
ship, discrimination, triumph, persecution and a host of other aspects
of the human condition. We are enabled, through the visual medium,
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to exercise skills in semiological analysis – the shared connotation of
the icon, metonym and metaphor, the understanding and appreciation
of two conceptually related but antithetical images

Importantly, the automatic association of ACs to images could lead to break-
throughs in a wide range of applications, including Web image search, online
picture-sharing communities, and scientific and academic endeavors. It would ben-
efit multiple applications by improving multimedia querying of digital libraries, as
automatically generated ACs could be used for Boolean search, as traditional meta-
data are. Furthermore, enabling machines to recognize the potential of images to
communicate ACs could be useful to CH institutions, to enhance their visual col-
lections’ documentation, descriptions, and mediation–for example, using detected
ACs to inform the design of multimodal interactive environments. Additionally,
it could benefit public institutions building narratives about their visual objects
to engage people from di↵erent backgrounds or with di↵erent abilities, companies
in the creative sector exploiting their already existing catalogues, and companies
building products or services related to specific abstract concepts.

Despite the considerable potential of ACs as descriptors of ‘aspects of the hu-
man condition’ for visual indexing, the CV community has only recently started
to tackle subjective and abstract content analysis [174]. At first glance, chal-
lenges associated with high-level visual semantics become evident, including sub-
jective perception influenced by personal and situational factors [404], a lack of
shared methods and communication among researchers, class imbalances in pop-
ular datasets, and increased variability in query results involving abstract words
[1, 200, 215]. Furthermore, there is no explicit task definition or specific purpose
datasets for AC image classification or AC detection from images. This lack of
clarity necessitates an additional aspect of this survey: to explore past CV research
that may have addressed the task implicitly, using di↵erent terminology.

I.2.3 Survey Methodology

The primary objective of this survey is to identify CV methodologies, tools, and
architectures designed for associating high-level semantic units, including ACs,
with still images. In this section, we will outline our selection criteria for choosing
papers within the CV field that address high-level abstract visual understanding
tasks. This includes the criteria applied to select relevant publication venues and
the keywords used for mining these repositories and venues. We will also elucidate
the process for sub-selecting works that underwent additional detailed analysis for
insights into AC image classification, and the criteria employed in the categoriza-
tion of such works that implicitly or explicitly relate to the task.
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Venue Selection Criteria Our venue selection was guided by two key factors:
relevance and impact. We initially narrowed our search to venues focused on CV,
aligning with our research area’s primary focus. Additionally, we assessed venue
impact using established criteria to ensure high-quality and significant selections,
thus confirming their suitability for our research. For journals, we initially ex-
clusively considered those with a Q1 rating in the field of Computer Vision and
Pattern Recognition, as determined by Scimago2. This criterion resulted in the
identification of 19 journals and one book series. Notably, we excluded journals
related to the medical field,3 leaving us with 15 selected journal venues. For confer-
ences, we exclusively considered those with an A* or A rating according to CORE4.
This selection process yielded four conferences that met our impact criteria. The
complete list of the 19 selected venues can be found in the Github repository.

Category Keywords
“Abstract” Adjectives
(synonyms, hyponyms of, or
similar to “abstract”)

abstract, intangible, non-concrete, non-physical, sym-

bolic, latent, evoked, implied, subjective, social, cul-

tural, moral, political, economic, a↵ective

“Concept” Nouns (syn-
onyms, hyponyms of, or simi-
lar to “concept”)

concept, object, idea, class, value, ideology, emotion,

a↵ect, sentiment, signal, attribute

CV Task Nouns (synonyms,
hyponyms of, or similar to
“detection”)

detection, classification, recognition, identification

Table I.2.1: Keywords for query construction, categorized into adjectives similar
or synonymous with ‘abstract’ and ‘high-level’, nouns denoting similar ontological
objects to ‘concepts’, and task nouns. This categorization enables the creation of
queries to identify works related to high-level concept detection or similar tasks.

Keywords and Query Building. High-level visual sensemaking within CV lacks
standardized nomenclature. The preliminary investigation into high-level semantic
units in Section I.2.2 revealed the interchangeable use of various terms to describe
abstract notions across multiple disciplines. Subsequently, we compiled a list of
keywords, considering the diverse terminology used to denote these concepts and

2https://www.scimagojr.com/. Access date: January 2021.
3Journal of the Optical Society of America A: Optics and Image Science and Vision, Inter-

national Journal of Computer Assisted Radiology and Surgery, Medical Image Analysis, and
Computerized Medical Imaging and Graphics

4http://portal.core.edu.au/conf-ranks/. Access date: January 2021.

https://www.scimagojr.com/
http://portal.core.edu.au/conf-ranks/
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high-level abstract understanding across di↵erent fields. Our search on major aca-
demic databases for publications related to AC image classification from a CV
perspective informed the final list of keywords. These keywords are categorized
into adjectives, nouns, and nouns describing related tasks like detection or identi-
fication. By combining terms from these categories, we aimed to construct queries
capable of identifying works related to AC image classification or similar tasks (see
Table I.2.1).

High Level Visual Understanding Search. The list of keywords was em-
ployed to construct search queries for the selected venues, with the inclusion of
the term “image.” All searches across the chosen venues were conducted using the
SCOPUS5 citation database. An exception was made for the ECCV Conference
and Workshop, as they were not accessible through this database. The results
were manually reviewed to collect papers specifically addressing high-level visual
understanding of still images, i.e., those dealing with some of the semantic ele-
ments identified in Section I.2.2. Through this process, 52 papers were gathered,
comprising 6 journal papers (2017–2021) and 44 conference papers (2008–2021).
Subsequently, a pruning phase was conducted to exclude articles meeting any of
the following criteria:

• Articles not written in English; only articles in the English language were
considered for this survey.

• Articles describing high-level visual semantics tasks applied exclusively to
moving images (e.g., videos), such as [108] and [93]. However, articles that
applied methods to both video and still images were considered.

• Articles addressing image captioning in a general context, without a focus
on high-level reasoning tasks (e.g., [219]).

• Articles describing methods that relied on additional data sources beyond
raw pixel data, particularly those dealing with multimodal or cross-modal
data (e.g., text and images from news articles together, etc.), as in [86], [356],
and [362].

• Articles centered on image generation (e.g., [288]).

• Articles dealing with high-level visual semantics tasks, such as cultural event
recognition, but produced within the context of the Chalearn LAP challenge
(e.g., [229], [302], [376], [379]), as these have been previously surveyed [118].

5https://www.scopus.com. Access date: May 2022.

https://www.scopus.com
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General Survey Criteria: This resulted in the selection of a total of 38 publi-
cations, comprising 4 journal papers and 34 conference papers. In our survey of
these 38 publications, we aim to identify several key criteria, including:

• Image Type: We examine whether the publications focus on natural pho-
tographs, art images, or other image types.

• Related Semantic Elements: We identify the high-level semantic units
of interest, including examples, in each of the publications.

• Datasets: We analyze the datasets used and whether the authors created
them for their research.

• Computer Vision Tasks: We categorize the explicit CV-related tasks ad-
dressed in each publication.

• CV Task Clusters: We classify each publication into relevant clusters of
CV tasks.

Subselection for In-Depth Surveying: Upon reviewing the initial set of 38
publications, we observed a wide spectrum of high-level CV tasks with broad cov-
erage of semantic units. To align with our core objective of studying ACs more
closely aligned with values and ideologies, we then did an additional round of sur-
veying for works addressing semantic units referred to as “symbols” [174, 390, 391,
191], “intent” [183], and “abstract topics” [354, 355]. We did not consider works
dealing with emotions, given the existence of a substantial number of surveys fo-
cused on them (e.g., [276]). By narrowing our selection, we ensured methodological
alignment with our research objectives. With a relatively limited number of qual-
ifying publications, we extended our exploration using a bottom-up approach. By
meticulously reviewing the bibliographic references of previously surveyed works,
we identified additional publications, including interconnected or extended works.
Notably, pairs like [391] extending [390] and [355] extending [354] were considered
together in our in-depth survey.

Specific In-Depth Criteria. For the 8 selected works, we conducted a more
detailed analysis, classifying them based on various dimensions. In addition to the
general dimensions, we introduced other criteria for our comprehensive survey:

• Explicit vs. Analogous/Related Task: Explicit task addressed versus
analogous AC image classification task.

• Model Architecture: Backbone architecture for the analogous task (e.g.,
CNN with perturbation, transformer with KG and GCN).
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• Reproducibility: Availability of software and data.

• Performance Metric: Reported macro F1 score for the analogous task, if
available.

• System Hybridity: Classification of the system as statistical, symbolic, or
hybrid based on [38]’s taxonomy.

I.2.4 Automatic High-Level Visual CV Tasks

Our survey aimed to evaluate the contemporary advancements in CV for auto-
matically detecting high-level semantic units in static images. Following the out-
lined methodology in Section I.2.3, we extensively searched top-rated publications
in Computer Vision and Pattern Recognition. This endeavor yielded 38 notable
publications, comprising 4 journal papers (2017-2021) and 34 conference articles
(2008-2021). Table I.2.4 presents an overview of our examination of selected works,
aiming to uncover significant trends in the application of CV technologies for high-
level visual semantic understanding. We explored various facets of these works,
including their targeted image domains (e.g., natural photographs, art images),
dataset utilization (and curation), and specific CV tasks addressed. Our primary
focus was to identify the high-level semantic units addressed by each paper con-
cerning static images, with illustrative examples provided where applicable. This
thorough analysis provided valuable insights into the exploration of Abstract Con-
cepts (ACs) within the existing literature.

Based on the table, distinct trends emerge, with a significant portion of this
research gravitating toward specific CV tasks. These tasks include situation recog-
nition [389, 344, 280, 222], social relation recognition [401, 377, 346, 223, 220, 147],
event recognition [388, 395, 56], visual persuasion and intent analysis [187, 183,
172, 154], automatic advertisement understanding [391, 390, 174], visual senti-
ment analysis [388, 358, 2], aesthetic evaluations [385, 149, 98], and analysis of
social and personality traits [321, 244, 186], including occupation [324], fashion
[199, 171], and group-level analyses [143, 127]. Other CV tasks include abstract
reasoning [337], a↵ordance reasoning [81], political bias detection [355], visual hu-
mor detection [72], and environmental variables prediction [198]. These task trends
seem to align with the identified semantic units in Section I.2.2, encompassing emo-
tions, events, aesthetics, atmosphere, object purposes, object-object interactions,
symbols, and more, reflecting the diverse landscape of high-level visual semantic
exploration.
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I.2.4.1 Clustering High-Level CV Tasks

Figure I.2.3: Computer Vision tasks that deal with “high-level semantics” or “high-
level visual understanding”, which have been mapped also to the previous multi-
disciplinary characterization of high-level semantics. Circled in red are the tasks
that were found to implicitly or explicitly deal with AC detection.

Based on these findings, we formulated a set of clusters for CV tasks associated
with high-level semantic units, and we assigned each publication to one or more
of these clusters (as shown in the last column of Table I.2.4). Subsequently, we
leveraged these outcomes to construct a cluster-based diagram illustrating CV
tasks linked to high-level visual reasoning (see Fig. I.2.3. This diagram partly
mirrors the structure of our high-level visual semantic unit diagram (Fig. I.2.2).
In this way, the diagram serves as an alignment of the extensive body of work in
CV pertaining to high-level visual reasoning and visual semantics with the same
conceptual and terminological framework expounded upon in Section I.2.2. We
identified five main clusters of related CV tasks that deal with high-level semantic
units:
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• Situational analysis. This cluster aligns with the commonsense semantics
category, focusing on actions, activities, roles, and object purposes, along
with the logical or common interactions among these elements. Within sit-
uational analysis, we can discern three primary sub-clusters of CV tasks.
Firstly, abstract reasoning tackles global semantic tasks rooted in logic, such
as assessing the symmetry of a chessboard or identifying its identity in various
images, as exemplified in [337]. The second sub-cluster, situation recognition,
as initially articulated by [389], revolves around summarizing the content of
an image comprehensively. This entails identifying the primary activity, in-
volved actors, objects, substances, locations, and most notably, the roles
these participants assume within the activity. This structured prediction
task goes beyond merely predicting the most prominent action, aiming to
forecast the verb and its frame, which consists of multiple role-noun pairs.
Finally, a substantial body of work is dedicated to event recognition, with a
specific focus on social and cultural events.

• Visual sentiment analysis. This cluster aligns with the previously iden-
tified emotional semantics category and is also referred to as Image Emo-
tion Analysis (IEA). Its primary goal is to comprehend how images elicit
emotional responses in individuals. Despite being relatively recent, this sub-
domain has witnessed substantial growth in recent years, resulting in an
extensive body of research and several surveys [276, 405]. Most studies have
concentrated on emotion detection, aiming to identify emotions like fear,
sadness, excitement, and contentment within natural images (as surveyed
by [405]). Some research has delved into the analysis of group emotions in
images, as outlined in [368]. In addition to natural images, this field has
explored other visual media types. Notably, automatic emotion detection
has been explored in the context of art images [69, 2] and memes [326].

• Aesthetic analysis. This cluster aligns with the previously identified aes-
thetic semantics category. Although relatively limited in volume, research
within this cluster predominantly revolves around the detection or predic-
tion of aesthetic value in images. These investigations encompass a range
of image types, including natural scenes [385], images of human faces [149],
and images as a whole [98].

• Social signal processing. This distinct cluster does not directly align with
any of the previously identified clusters of the high-level semantics pyramid.
It encompasses research related to Social Signal Processing, a broad field ded-
icated to constructing computational models for sensing and understanding
various human social signals, including emotions, attitudes, personalities,
skills, roles, and other forms of human communication. Within this cluster,
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several endeavors utilize CV techniques to detect non-concrete social as-
pects within images. In the realm of natural images, e↵orts have delved into
discerning persuasive intent in political photographs [187], identifying de-
ception [57, 396], categorizing social relationship types (e.g., kinship, friend-
ship, romantic, and professional relationships) [221], and gauging intimacy
[79]. Group or crowd images have garnered particular attention, with vari-
ous methodologies developed to automatically recognize non-concrete group
attributes, including social cohesion [173, 22], leadership [336], warmth, and
dominance [402], excitement [365], and engagement in student groups [364].
However, social signal processing tasks in the context of art images remain
relatively underexplored, with some research focusing on automatically de-
tecting the trustworthiness of depicted individuals in art images [308].

• Visual rhetorical analysis. This cluster exhibits a strong correlation with
inductive interpretative semantics, focusing on understanding the intrinsic
and implicit meaning and the purpose of images, akin to the concept of
inductive interpretative semantics. It encompasses research related to visual
persuasion and rhetorical techniques. Notably, much of this work has been
concentrated in the subdomain of automatic advertisement understanding.
While the visual rhetoric of images has traditionally been explored in Media
Studies, the computational study of this field has gained prominence in the
last five years, with a significant contribution from the authors of [174].
Within this cluster, one notable sub-cluster revolves around visual persuasion
[187]. This subfield assesses whether images of politicians present them in
a positive or negative light by analyzing facial expressions, gestures, and
image backgrounds, using features to discern the persuasive intent behind
the visuals.

It is worth noting that categorizing certain works into distinct clusters can be
challenging, as some research e↵orts overlap between these domains. For instance,
[143] explores the impact of group-level a↵ect in identifying the most influential
person within images of groups. This study straddles the subdomains of both
visual sentiment analysis and social signal processing, highlighting the intercon-
nected nature of these research areas.

I.2.4.2 Discussion on High-Level CV Tasks

Social and Sociocultural Emphasis in High-Level Visual Semantics

The survey encompasses a wide array of semantic units (see Table I.2.4), but social
aspects, including emotions, relationships, and social events, constitute one of the
most recurrent themes. This emphasis on human-centered concepts underscores
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Semantic Unit Type Examples References

events dining, roadtrip, parade [127, 56, 395]
relationship type siblings, colleagues, lovers [374, 220, 346, 147, 223]
relationship intimacy friendliness, warmth [403]
social dimension leader, influential person [143]
personality trait dominance, competence, neuroticism [244, 186, 172, 321]
communicative intent trustworthy, powerful, mastery, harmony [172, 183]
occupation waiter, clergy [324]
political a�liation democrat, republican [187]
political bias liberal, conservative [355]
aesthetics female beauty, aesthetic value [98, 149]
atmosphere crime rate, scenicness [198, 385]
fashion style hipster, bohemian [199, 171]
humor humor, funninness [72]
object purposes obstacle, audience, destination, a↵ordance [389, 222, 81, 344, 280]
object interaction identity, symmetry [337]
symbolical values danger, comfort, freedom [174, 390, 355, 391]
rhetorics atypicality [154]

Table I.2.3: Types of High-Level Semantics Extracted from Images

Image Type Datasets References

natural images ImageNet [105], Occupation Database [324],
PEC Data Set [56], Situnet a.k.a imSitu [389],
PyschoFlickr [89], PISC [221], PIPA-relation [346],
ScenicOrNot [385], ADE-A↵ordance [80], SWiG
[280], Intentonomy [183], WIDER [395]

[98, 324, 56, 198, 389,
321, 221, 346, 385,
222, 81, 344, 147, 223,
280, 183, 395]

facial images A↵ectNet [259], SEWA [204], Social Relation
Dataset [403]

[186, 149, 244, 401,
358]

fashion images Style Embedding Dataset [171] [199, 171]
group images Images of Groups [127], GAF-personage [143] [127, 374, 143]
political images Visual Persuasion [187], Politics [355] [186, 187, 172, 355]
advertisements Ads Dataset [174] [174, 155, 390, 391]
artworks ArtEmis [2] [2]
clipart AVH Dataset [72] [72]

Table I.2.4: Types of Images Analyzed for High-Level Semantics

the growing significance of sociocultural elements in high-level visual semantics
research, and highlights a substantial and growing body of research in CV that
focuses on social aspects like social relationship recognition, visual rhetorical anal-
ysis, and situational analysis. This signifies a notable shift towards understanding
the intricate interplay between visual content and societal contexts, reflecting the
increasing importance of sociocultural elements in this research domain.
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Diversifying Image Types

While the majority of surveyed works (approximately 75%) predominantly revolve
around natural photographs, shedding light on the importance of real-world im-
agery in high-level semantic research, a notable inclusion of publications dealing
with cultural images stands out. These cultural images span artistic, historical,
and advertisement domains, hinting at an evolving inter- or cross-disciplinary ap-
proach within these types of CV tasks. This evolving trend underscores the growing
relevance of cultural images and signifies that CV is extending its reach beyond
conventional photography, engaging with diverse and culturally significant visual
contexts.

Task-Specific Dataset Creation

Particularly noteworthy is the finding that an overwhelming majority, approxi-
mately 75%, of studies exploring high-level semantics have embarked on the cre-
ation of bespoke datasets. This observation hints at the inherent complexities
in attempting to generalize across a wide spectrum of cognitively intricate tasks,
where the one-size-fits-all approach of general-purpose datasets may fall short.
This trend reflects the intricate and task-specific nature of endeavors related to
high-level semantic units, often requiring datasets customized to address the nu-
ances of the research objectives.

Research Output and Transformative Moments

The survey results demonstrate a pronounced rise in publications concerning high-
level semantic units in top CV venues over a 15-year duration. Substantial in-
creases in these types of publications in top CV venues seem to coincide with two
pivotal moments for the CV field, 2012 and 2017 (see Figure I.2.4). Specifically,
our results suggest a potential correlation between higher interest in high-level
tasks in CV research and the rise of DL around 2012, impulsed by the intro-
duction of AlexNet [211]. Before this breakthrough, CV predominantly relied on
traditional ML techniques and manual feature engineering, facing di�culties in
high-level semantic tasks. However, the advent of deep neural networks revolu-
tionized the field by enabling autonomous learning of hierarchical features from
data, and Convolutional Neural Networks (CNNs) played a pivotal role in these
developments, empowering the field to tackle intricate aspects of visual semantics.
Our survey specifically underscores a substantial increase in publications related to
high-level visual understanding post-2012 which coincides with the greater trend
in the field of CV. Building on this momentum, CV entered another transforma-
tive phase in 2017, marked by significant advancements in various subfields. This
period expanded the scope of high-level semantic tasks, driven by innovations



I.2.5 In-Depth Survey of ACs in CV 47

such as YOLO (You Only Look Once) and its improvements [292, 291], which
revolutionized real-time object detection, Mask R-CNN [164], which extended the
popular Faster R-CNN framework to enable instance segmentation to identify
pixel-level object boundaries, and progress in pose estimation [194], among oth-
ers. The strong increase in publications after 2017 suggests that researchers in CV
recognized that they now possessed the tools and methodologies to delve deeper
into complex abstract semantics within visual data, propelling the field to tackle
previously challenging tasks.

Figure I.2.4: Two inflection points, (2012) and (2017), that seem to correlate with
the increasing interest in CV tasks dealing with high-level visual semantics.

I.2.5 In-Depth Survey of ACs in CV

As explained in Section I.2.3, to align our research focus with the association of
ACs to visual data, we initiated a systematic subselection process to identify the
works most closely dealing with tasks analogous to AC image classification. We
specifically sought works emphasizing ACs as socially shared meanings embodying
values and ideologies, so we did a targeted approach to study works addressing
semantic units termed “symbols,” “intent,” and “abstract topics.” By narrowing
our selection, we identified 8 closely related works and classified them based on
various dimensions. These dimensions included explicit versus analogous/related
tasks, architectural models, reproducibility, macro F1 scores, and the hybridity of
the systems. The results can be found in Tables I.2.5 and I.2.6.

Overlap in Abstract Concept Examples The AC examples employed across
the surveyed works exhibit striking similarity. However, it is crucial to highlight
that not all works share identical target classes due to variations in vocabulary
and task definition. This divergence in target vocabulary hampers the ability to
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Year Work Title Img
Type

Dataset Own
Data

Data
Size

AC Exam-
ples

2016 [8] Abstract Concept and Emotion Detec-
tion in Tagged Images with CNNs

SM NUS-

WIDE

⇥ 14K love, travel,
beauty

2017 [174] Automatic understanding of image
and video advertisements

Ad Ads

Dataset

X 14K danger, fun,
beauty

2019 [390,

391]

Interpreting the Rhetoric of Visual
Advertisements

Ad Ads

Dataset

X 14K danger, fun,
beauty

2021 [354,

355]

Predicting Visual Political Bias Using
Webly Supervised Data

P Politics X 1M abortion,
justice,
democrat

2021 [183] Intentonomy: A dataset and study to-
wards human intent understanding

SM Intentonomy X 14K harmony,
power,
beauty

2022 [191] Symbolic image detection using scene
and knowledge graphs

Ad Ads

Dataset

⇥ 8K danger, fun,
beauty

Table I.2.5: Overview of CV studies and associated datasets for tasks closely
resembling AC image classification. Ad: Advertisement, SM: Social Media, P:
Political.

Year Work Explicit
Task

Related
Task

Model Rep. Macro
F1

Hybridity

2016 [8] AC detection AC detection CNN with tag-specific bi-

nary classifiers

⇥ 0.18 Statistical

2017 [174] Automatic ads

understanding

Symbolism

detection

CNN with region attention-

based image classifier

X 0.16 Statistical

2019 [390,

391]

Automatic ads

understanding

Symbolism

detection

Undefined classifier and

knowledge base

X – Hybrid

2021 [354,

355]

Visual political

bias detection

Image-word

alignment

CNN multimodal feature

learner, visual-only test time

X 0.25* Statistical

2021 [183] Intent

recognition

Intent

detection

CNN with perturbation ap-

proach

X 0.23 Hybrid

2022 [191] Symbolic image

classification

Symbolism

detection

Transformer with KG, CGN,

and attention

X 0.15 Hybrid

Table I.2.6: In-depth examination of model architectures and performance in CV
work analogous to AC image classification. AC: Abstract Concept. CNN: Convo-
lutional Neural Network. GCN: Graph Convolutional Network.

leverage the same datasets e�ciently. There is evidently a demand for a shared
dataset that compiles culturally rich images tagged with a common set of ACs.
Such a resource could benefit future research by promoting data consistency and
facilitating cross-work comparisons.

Diversity in Image Types While the broader category of high-level visual
understanding includes a prevalence of natural images, we observe a more concen-
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trated focus on images with strong socio-cultural connotations or layers in works
dealing with ACs. Notably, these images predominantly encompass social media
content, advertisements, and political imagery. What sets these images apart is
their cultural richness, as they often convey nuanced socio-cultural information
that standard natural images may lack.

Emphasis on Advertisements It is noteworthy that a significant portion of
the works are centered around advertisements and employ the same dataset [174,
390, 392, 191]. This suggests that the domain of advertisements is a good domain
for the task and provides a rich source of data for the exploration of ACs in images.

Creation of Domain-Specific Datasets Many of the surveyed works take the
initiative to collect and present their own datasets. This underlines the critical
importance of domain-specific data for the task of AC image classification.

Consistent Dataset Magnitude Most works in this survey operate with datasets
ranging from 8,000 to 14,000 images. It is important to note that the dataset size
remains relatively consistent across these works. However, there is an exception
in the case of [354], which generates an extensive 1 million-image dataset for their
primary research focus, but in a weakly supervised way. Critically, the dataset
size for the subtask of image-word alignment is not explicitly reported.

Comparable Related Tasks It is evident that many of the related tasks are
comparable. They often share similar target concepts, such as beauty. This ob-
servation indicates that there is a degree of research overlap between these tasks.
This connection, although present, had not been explicitly highlighted before.

Dominance of CNN Architectures Out of the six approaches analyzed, four
employ Convolutional Neural Network (CNN) architectures as the backbone of
their model structures. This prevalence suggests that deep learning paradigms,
particularly CNNs, constitute a cornerstone of state-of-the-art AC image classifi-
cation tasks.

Significance of F1 Score and Reporting Challenges Within this body of
work, it is evident that the F1 score holds greater importance as a model evalua-
tion metric than accuracy. This underscores the essential role of the F1 score as
the primary performance measure in the realm of AC image classification. How-
ever, a noteworthy challenge emerges concerning the reporting of these metrics.
In specific instances, the analogous task for some works exists as a subtask within
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the broader context of the work’s primary objective. For example, symbolism pre-
diction constitutes a subtask within the larger framework of understanding visual
advertisements. As a result, performance scores related to the analogous tasks
may not be explicitly reported for all works, as observed in [390, 391]. Notably,
this reporting gap posed a particular challenge when evaluating the highest F1
score work, namely [355], where we had to compute the score ourselves.6 This
process was necessary to assess the model’s performance for more abstract classes.

Performance Challenges and Critical Questions The F1 scores attained in
the realm of AC image classification reveal a significant challenge: they tend to
be notably lower when compared to classes of a more concrete nature. Further-
more, the work that boasts the highest F1 score [355] only marginally outperforms
the second-best in this regard. This observation is intriguing, considering that
the highest-performing work benefits from two distinct advantages over its coun-
terparts. Firstly, it operates with a substantially larger dataset, comprising one
million images, two orders of magnitude greater than those employed by other
works. Secondly, this work leverages a training approach that might be considered
considered ‘cheating’, as, during the training phase, the model has access to and
learns from textual documents (news articles) the images were collected from. We
decided to keep this work as, even though this added textual information confers
an advantage, at test time the approach does not have access to text. Despite this
substantial data magnitude and training advantage, the F1 scores achieved re-
main relatively low, illuminating the intricate and demanding nature of AC image
classification tasks.

Importance of Hybrid Approaches The prevalence of hybrid models in half
of the surveyed works suggests that a purely statistical approach may be insu�cient
for AC image classification tasks. The inclusion of symbolic knowledge, whether
through intermediary features or external knowledge and reasoning, appears to be
a necessity in this domain. This observation highlights the growing relevance of
hybrid AI systems for addressing the complexity of AC image classification.

6To achieve this, we calculated the average F1 score based on the reported F1 scores for the
analogous image-word alignment tasks. We excluded scores related to the names of politicians
and media outlets due to their concreteness, specifically: ’cnn,’ ’trump,’ ’clinton,’ ’donald,’ ’paul,’
’fox,’ ’clinton,’ ’hillary,’ ’obama,’ and ’republican.’ The resulting F1 score was calculated based
on the average scores for the following words: ’administration,’ ’political,’ ’conference,’ ’meet-
ing,’ ’prime,’ ’committee,’ ’host,’ ’minister,’ ’foreign,’ ’justice,’ ’bill,’ ’democrats,’ ’election,’ ’me-
dia,’ ’candidate,’ ’vote,’ ’speech,’ ’deal,’ ’Thursday,’ ’voters,’ ’congress,’ ’abortion,’ ’democratic,’
’Tuesday,’ ’news,’ ’racist,’ ’white,’ ’illegal,’ ’presidential,’ ’republicans,’ ’supreme,’ ’gay,’ ’senate,’
’immigration,’ and ’immigrants.’
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I.2.6 Relevant Datasets

Many popular image datasets used in CV o↵er low or no coverage of non-concrete
concepts, such as ImageNet [105] and Tencent ML-Images dataset [386]. Others,
like JFT [345], an internal dataset at Google, include non-concrete classes but are
not publicly released. We identified additional datasets that contain at least some
images annotated with non-concrete labels.

I.2.6.1 Natural Images

• NUS-WIDE [80]: Comprising 27,000 Flickr images, each associated with
hashtag-like tags (approximately 4,000 unique tags).

• Open Images [213]: Comprises 9 million images with annotations for 19,794
classes from JFT. But while some non-concrete classes like peace, pollution,
and violence are present, they are long-tailed and explicitly designated as
non-trainable.

• MultiSense [139]: Comprising 9,504 images annotated with English, Ger-
man, and Spanish verbs.

• VerSe [140]: Containing 3,518 images annotated with one of 90 verbs.

• UNSPLASH7: The complete version of this dataset contains over 4.8 mil-
lion high-quality photographs accompanied by 5 million keywords including
some ACs.

• BabelPic [65]: Comprising 14,931 images tagged with 2,733 non-concrete
synsets, created by cleaning the image-synset associations from the BabelNet
Lexical Knowledge Base.

• Persuasive Portraits of Politicians [187]: Comprising 1,124 images of
politicians, each labeled with ground-truth persuasive intents of 9 types and
syntactical features of 15 types.

• Politics [355]: Comprising 1 million images tagged with left- or right-wing
political bias; each image accompanied by the text (news articles) in which
they were originally embedded.

• BNID BreakingNews [234]: Comprising approximately 10,000 images
sourced from breaking news events labeled with 77 di↵erent classes. More
than half of these classes are abstract representations not directly related to
objects (e.g., law, policy, G20).

7https://github.com/unsplash/datasets. Access date: May 2021.

https://github.com/unsplash/datasets
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I.2.6.2 Art Images

• WikiArt Emotions [258]: Comprising 4,000 pieces of art featuring anno-
tations for the emotions evoked in the observer.

• ARTemis [2]: This dataset includes 455,000 emotion attributions and ex-
planations provided by humans for 80,000 artworks sourced from WikiArt,
including visual similes, metaphors, and subjective references to personal
experiences.

• SemArt [135]: A multi-modal dataset designed for the semantic under-
standing of art. It contains fine art painting images, each associated with
attributes and a textual artistic comment.

• The Tate Gallery Collection8: Tate Gallery’s collection metadata fea-
turing 70,000 artworks tagged with a taxonomy covering a wide spectrum of
concrete to non-concrete concepts.

• ArtPedia [338]: Encompasses a collection of 2,930 paintings and 28,212
textual sentences that not only describe the visual content of the paintings
but also provide additional contextual information.

I.2.6.3 Advertisement Images

• Ad Dataset [174]: Comprising 64,832 image ads with comprehensive anno-
tations that cover various aspects, including the topic, sentiment, persuasive
strategies, and symbolic references employed in the ads.

I.2.6.4 Datasets for Connecting ACs to Cultural Images

While these datasets encompass labels or classes extending beyond traditional
concrete concepts, they may not consistently o↵er high-quality tags for ACs. One
contributing factor is the ambiguity surrounding the origins of these tags, often ag-
gregated from online sources. In our comprehensive examination of each dataset,
we have discerned select datasets where images bear explicitly recorded AC labels,
denoting human-provided annotations. Informed by insights gained from scruti-
nizing CV works dedicated to tasks analogous to AC image classification (Section
I.2.5), we have directed our attention toward cultural images, potentially featuring
superior AC tags. We provide details of these datasets in Table I.2.7

8https://github.com/tategallery/collection. Access date: May 2021.

https://github.com/tategallery/collection
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Dataset Name Image Type Size Primary Focus
Ads Dataset advertisements 13,938 Features ACs as ’symbolism’
Tate Gallery visual artworks 70,000 Rich tag taxonomy that spans concrete

tags and ACs
ARTemis visual artworks 80,000 Utterances include ACs
ArtPedia visual artworks 2,930 Visual descriptions include ACs

Table I.2.7: Datasets with explicitly recorded AC labels

Ads Dataset This dataset is one of the very few datasets that have explicit,
single ACs as tags for its images. The subset with AC tags is composed of 13,938
images and prominently features symbolism associated with ACs. The dataset
provides a list of 221 symbols, each accompanied by bounding boxes. These sym-
bols often represent common abstract ideas such as danger, fun, nature, beauty,
death, sex, health, and adventure.

The Tate Gallery Collection The gallery’s collection metadata, consisting of
70,000 artworks, is publicly accessible through a GitHub repository. The dataset
boasts a rich tag taxonomy that spans a wide spectrum of concepts. It covers both
concrete (e.g., vacuum cleaner and shoe) and non-concrete (e.g., consumerism and
horror) subjects under categories like “universal concepts”, making it a valuable
resource for exploring abstract and non-abstract concepts.

ARTemis Although this dataset primarily focuses on emotions, encompassing
455,000 emotion attributions and explanations related to 80,000 artworks from
WikiArt, it extends its scope to include ACs like freedom and love. Notably, the
dataset authors have conducted an analysis to gauge the degree of abstract ver-
sus concrete language within ARTemis. To measure abstractness or concreteness,
they employed the lexicon introduced by [59], which assigns a rating from 1 to 5
reflecting the concreteness of around 40,000 word lemmas. In this assessment, a
randomly selected word from ARTemis received a concreteness rating of 2.81, as
opposed to COCO, which received a rating of 3.55 (with a statistically significant
p-value).

ArtPedia Comprises 2,930 paintings and 28,212 textual sentences. Out of these
sentences, 9,173 are specifically dedicated to providing visual descriptions. Upon
manual examination, it becomes evident that these visual descriptions include
references to ACs, similar to what can be found in ARTemis. An example of
a visual description is “Mistress and servant, a power relationship, maybe some
deeper emotional bondage,” demonstrating the dataset’s potential to be curated
to explore and better understand ACs within visual art.
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I.2.7 Discussion

In the realm of human visual sensemaking and understanding, the term ‘’ char-
acterizes complex, subjective, and abstract visual reasoning, albeit with a diverse
focus on various semantic units. Section I.2.2 delves into multidisciplinary anal-
ysis of this “tip of the iceberg” of high-level semantics and categorizes them into
clusters based on their inherent characteristics and attributes. We identified four
clusters of high-level semantics. These include commonsense semantics, covering
more objective and widely accepted semantic elements such as actions, activities,
events, relationships, and object purposes, emotional semantics, covering aspects
related to emotions, moods, emotional cues, and individualized a↵ects; aesthetic
semantics, which evaluates global aesthetic attributes contributing to overall image
judgments; and inductive interpretative semantics, encompassing complex, subjec-
tive, and culturally encoded elements like ACs, symbols, and symbolical values.

Our comprehensive analysis of 38 publications from top-rated CV venues in Sec-
tion I.2.4 provides a structured categorization of high-level semantic understand-
ing in CV, facilitating a comprehensive understanding of the field’s landscape. We
have organized these high-level visual reasoning clusters into five main categories.
Situational analysis focuses on actions, activities, roles, and object purposes, incor-
porating abstract reasoning, situation recognition, and event recognition. Visual
sentiment analysis explores how images elicit emotional responses, encompassing
emotion detection across various image types.Aesthetic analysis centers on detect-
ing or predicting aesthetic value in images across di↵erent categories. Social signal
processing delves into the recognition of non-concrete social aspects and the study
of group attributes in images. Finally, visual rhetorical analysis concentrates on
discerning intrinsic and implicit meanings in images, particularly in the context
of visual persuasion and advertisement understanding. These distinct clusters col-
lectively provide a comprehensive framework for understanding high-level visual
reasoning in CV, revealing the diverse areas of research and their interconnected-
ness.

Several critical lessons and emerging patterns have come to light from this
survey of CV high-level tasks. First, there is a notable inclusion of sociocultural
elements within this research domain, with research increasingly focusing on socio-
cultural aspects like emotions, relationships, and social events. This shift reflects
the growing recognition of the importance of societal contexts within the field.
Additionally, the survey shows that researchers are diversifying their approach to
image types. While natural photographs remain a significant focus, there is a clear
expansion into cultural images, signaling an evolving interdisciplinary approach in
CV. Furthermore, the survey highlights the prevalence of task-specific datasets,
underlining the necessity of tailoring data to meet the unique demands of various
research objectives. Moreover, there’s a clear trajectory of research evolution in
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the field. The survey demonstrates substantial growth in publications, particularly
post-2012 and post-2017. This growth aligns with the ascent of deep learning and
transformative moments in CV. It signifies the field’s increasing awareness of its
capability to address the intricate world of abstract semantics in visual data.

The in-depth survey into works dealing with tasks analogous to Abstract Con-
cept (AC) image classification (Section I.2.5,) o↵ers valuable insights and lessons.
Notably, it becomes evident that amassing humongous amounts of data, even with
datasets comprising one million images, does not necessarily guarantee high F1
scores in AC image classification. This observation challenges the prevailing no-
tion that massive data alone can address the complexity of this task, highlighting
the need for more sophisticated approaches. Furthermore, adding textual infor-
mation to the training process bestows an advantage, yet the F1 scores achieved,
even with this favorable setup, remain relatively low. This underscores the intri-
cate and demanding nature of AC image classification, emphasizing the need for
novel techniques beyond data augmentation.

Another important lesson from the survey is the recognition of mid-level fea-
tures, such as objects and facial expressions, as potentially crucial elements in AC
image classification. Understanding the significance of these intermediary features
can guide the development of more e↵ective models, improving the accuracy of
classifying ACs in images. Moreover, the prevalence of hybrid approaches in the
surveyed works suggests that a purely statistical approach may fall short in the
realm of AC image classification. To tackle the complexities associated with ACs
in images, the inclusion of symbolic knowledge, whether through intermediary fea-
tures or external knowledge and reasoning, emerges as a necessity. This finding
highlights the growing relevance of hybrid AI systems that can seamlessly inte-
grate statistical and symbolic knowledge to address the multifaceted nature of AC
image classification tasks.

I.2.8 Conclusions

There is a significant body of work focused on automating high-level visual un-
derstanding tasks to mirror the most complex cognitive processes and subjective
sensemaking inherent to human visual perception. This survey has revealed that a
noteworthy focal point within this research landscape pertains to the investigation
of social and socio-cultural cues and signals. These works explore semantic units
that closely align with what cognitive science classifies as “abstract concepts,”
encompassing social and cultural values and ideologies, denoted by various terms
such as “symbols,” “intents,” or “abstract topics.” These are intricately tied to
the domain of visual rhetorics, and our comprehensive exploration of this territory
has unearthed several pivotal insights with direct implications for the advance-
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ment of high-level visual understanding, especially within the realm of AC image
classification.

Foremost among these insights is the recognition that, even when operating
with substantial datasets, including those comprising millions of images, achieving
high F1 scores in AC image classification remains a formidable and persistent chal-
lenge. This observation prompts a reconsideration of the notion that accumulating
vast amounts of data alone serves as the primary panacea [355]. Additionally, the
incorporation of supplementary information, such as textual content, and the ju-
dicious consideration of mid-level features such as objects and facial expressions,
emerges as a critical avenue for enhancing performance. Critically, the prevalence
of hybrid models in AC image classification work underscores the insu�ciency of
exclusively relying on statistical methodologies. The imperative inclusion of sym-
bolic knowledge, whether through intermediary features or external knowledge and
reasoning, is demonstrated as an essential component in this domain. This trend
accentuates the growing significance of hybrid AI systems, poised to tackle the
intricate and multifaceted challenges inherent to AC image classification tasks.



Chapter I.3

Cognitive Insights into AC
Representation

Summary This background chapter first outlines the types of ACs this disser-
tation is explicitly interested in. It then explores a central issue in contemporary
cognitive neuroscience research: understanding how ACs are represented in the
human brain. It discusses the two primary avenues of semantic memory research–
distributional models and embodied cognition– as well as the more recent idea of
the “multiple representations view,” of ACs, which suggests that both distribu-
tional and embodied information coexist in the grounding problem of ACs. This
approach seeks to merge sensorimotor grounding with linguistic, emotional, and
social experiences, allowing more human-like semantic knowledge to emerge. The
chapter also delves into the cognitive substrates of ACs, focusing on acquired
embodiment, relationality, and emotionality, highlighting the complexity and mul-
tidimensionality of AC representation in the human brain. These insights serve
as the foundational knowledge for the subsequent chapters in this dissertation,
which leverage these cognitive concepts for practical applications in AC image
classification.

57
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I.3.1 Ontological Considerations

ACs are hard to characterize as a unitary kind because they come in great variety,
including concepts as diverse as social roles, mental states, institutional, temporal,
emotional, and numerical concepts [54]. Therefore, a mapping into an ontological
framework is helpful. In an attempt to map these cognitive ACs to a founda-
tional ontology, namely DOLCE [133], the initial guess is that ACs include the
following ontological classes: SocialObject (most of them: concepts, descriptions,
information objects, social agents, collections), Abstract (formal entities, abstract
regions -including space and time), and AbstractQuality (attributes of abstracts).
Specifically, the non-concrete concepts of interest in this dissertation are what are
referred to as social objects in DOLCE, more specifically as social concepts in
the ontological sense expounded by [245]–immaterial products whose conventional
constitution involves a network of relations among social agents. Thus, the ACs
intended in this work are ontologically social objects [129], that refer to “cognitive
objects with a social capital” [102], that is, cognitive clusters of prototypical sit-
uations which often involve social interactions and societal dynamics. I adhere to
Masolo et al.’s [245] characterization of social concepts as immaterial constructs
formed within a community. These are concepts that depend on agents who,
through established conventions, not only create, employ, and discuss them but
also accept their significance. In the context of this work, ACs include emotions
(e.g., sadness), as well as abstract social, cultural, economic, and political values
(e.g., freedom, leadership) and ideologies (e.g., racism, consumerism).

I.3.2 The Queer Complexity of ACs

The challenges encountered in the attempts to automate the task of AC image
classification underscore the intricate and dynamic nature of ACs. This is due
to their ambiguity, subjectivity, and context-dependency, as, by cognitive science
standards, they are “inherently queer” and transgressive concepts [247]. Unlike
concrete concepts, which trigger neural areas linked to actions related to their
referents, ACs defy this pattern by not consistently activating sensorimotor re-
gions. The transgressive nature of ACs manifests in their ability to transcend the
limitations of this binary confinement. Importantly, the queerness of ACs arises
from their resistance to fixed, simplistic, or normative definitions, a resistance that
poses both a significant technical and ethical challenge due to their elusive, sub-
jective, and context-dependent nature. Thus, to approach the task of AC image
classification more e↵ectively, embracing this queerness and leveraging it to our
advantage seems crucial. Consequently, we must gain a deeper understanding of
AC representation in the human brain and explore how to harness it within the
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realm of AI for associating visual data with these intricate ACs. In the field of
cognitive science, “understanding how abstract concepts might be represented is a
crucial problem for contemporary research” [53, p. 1]. Understanding how mean-
ing is represented is the core problem of modern semantic memory research, which
has chiefly operated on two independent paths: distributional semantic models
and embodied cognition [100].

I.3.3 Distributional vs. Embodied View

Distributional models suggest that meaning can be inferred from the contexts
(almost always operationalized as language contexts) in which words appear. As
such, the meaning of concepts is derived from and represented in terms of statistical
patterns of co-occurrence with other words in a language, based on Firth’s (1957)
supposition that “you shall know a word by the company it keeps” [122].

On the other hand, embodied approaches propose that meaning finds its roots
in our sensory, perceptual, motor, interoceptive, and introspective interactions
with the environment (e.g., [30]. These theories also emphasize the significance
of context, as discussed in reviews by [393] and [394]. However, in embodied
theories, context is considered situated and grounded. To grasp the meaning of
a word, we engage in a mental simulation of the bodily experiences associated
with encountering that concept “in the wild” [30]. Importantly, this simulation is
context-dependent and influenced by an individual’s personal history.

I.3.4 Multiple Representations View

More recently, reconciliation between these two representations of meaning has
been the focus of much research, specifically by considering distributional and
embodied information as fundamentally the same type of data, entangled and
mutually influencing each other across multiple timescales [100]. The emergence
of such “multiple representation views” has been especially crucial for ACs [14],
with the latest research pointing towards their grounding in sensorimotor systems
while also involving linguistic, emotional and social experiences as well as internal
experiences [100] (see Figure I.3.1). In this sense, it is thought that “uniting dis-
tributional and embodied data under a common framework provides a potential
solution to [...the grounding] problem of abstract concepts’” [100, p. 5], with at-
tempts being made to conjunctly represent all these di↵erent types of information.
Increasingly, emergent representations are not simply the sum-total of feature-
based and distributional linguistic representations: it is the interaction between
experiential and linguistic data that allows for more human-like semantic knowl-
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edge to emerge [15]. In this sense, we know words by the linguistic and perceptual
company they keep [232].

Figure I.3.1: The multidimensional grounding of the AC “freedom” according to
cognitive science WAT theory. As explained by [52] Similarly to concrete concepts,
freedom has the potential to activate sensory modalities, as well as interoception
and proprioception. For instance, when it evokes scenes like lying on the grass with
friends and gazing at the sky, it may elicit the tactile sensation of the cool grass
against the body. Alternatively, when simulating the act of freeing oneself from
a rope, it might reproduce proprioceptive sensations associated with the body’s
movements while constrained by the rope. This multifaceted grounding accounts
for the diverse array of visual sensations associated with the AC of “freedom.” The
figure is a direct replication from [54].
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I.3.5 Cognitive Substrates of Abstract Concepts

In cognitive science research, key features and representational substrates of ACs
are the focus of much research [369, 141, 167]. Three cognitive aspects of ACs are of
special interest to this work, as they are potentially translatable into computational
frameworks: acquired embodiment, relationality, and emotionality.

I.3.5.1 Acquired Embodiment

The multiple representations view has been modeled in neuroscientific research
that merges sensory-motor (S-M) information with distributional statistics from
natural language [15, 111, 340], demonstrating how S-M knowledge linked with
a particular word can be indirectly extended to its lexical associates [185]. Ho↵-
man and McClelland (2018) [167] introduced a computational framework known
as the ’hub-and-spoke model’, which combines a hub-and-spoke architecture with
a bu↵er that can be influenced by prior context [167]. Building on their findings,
they propose the concept of acquired embodiment to explain how abstract words
become connected to sensory-motor (S-M) information through their associations
with concrete words. In their research, as shown in Figure I.3.2, they present evi-
dence illustrating this concept. They plot the activations for S-M features shared
by all members of a category when the network encounters both representative
concrete and abstract words. For concrete words, the network is trained to acti-
vate the corresponding S-M features upon encountering them, resulting in a clear,
binary pattern of S-M activation. In contrast, during training, abstract words do
not provide targets for S-M units, aligning with the notion that ACs lack direct
associations with sensory-motor experiences. Consequently, the activity of these
units remains unconstrained during the learning process. Nevertheless, as demon-
strated in the figure, when presented with abstract words, the network gradually
activates S-M features associated with the concrete items with which they regularly
co-occur.

An important distinction in Ho↵man et al.’s [167] model of acquired embod-
iment is its context-dependent nature. This is exemplified in the bottom half of
Figure I.3.2, where distinct S-M activations are observed for the same abstract
words in varying contexts. For instance, when journey follows cashier, it triggers
strong activation of the vehicle-related S-M units due to the frequent co-occurrence
of the two words in discussions about modes of transport. Conversely, when jour-
ney follows duchess, it induces weak activation, as the two words rarely co-occur in
contexts related to vehicles. Therefore, the specific S-M information activated by
abstract words hinges on the specific context in which they are encountered, align-
ing with findings that demonstrate how context shapes the types of sensory-motor
knowledge participants access in response to words [167].
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Figure I.3.2: Abstract words come to be linked to sensory-motor (S-M) informa-
tion by their associations with concrete words—a process called “acquired embod-
iment.” S-M unit activations for a selection of concrete and abstract words. (A)
Activations of S-M units shared by the members of each category, in response to
a selection of words. (B) Activation of S-M units in response to the same abstract
word in two di↵erent contexts. Figure reproduced directly from [167].

The concept of acquired embodiment presents an intriguing avenue for enhanc-
ing computer vision tasks, as it holds potential for improving the representation
of images with regard to ACs in machine-readable formats. A notable advantage
of this concept lies in its capacity to deduce experiential attributes for ACs that
might otherwise lack robust sensorimotor associations or possess fewer sensory-
perceptual links. For instance, if the AC death frequently co-occurs with the term
co�n, which strongly embodies sensory-perceptual attributes such as the color
black, we can consider utilizing this acquired association between black and death
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to influence image representations or guide the training process of image classifi-
cation based on these complex semantic notions.

I.3.5.2 Relationality

According to [123], ACs are content-flexible schemata: specifiers of multiple se-
mantic relations between entities, which allow for a fairly unconstrained range of
entities to fill the schema. For example, the concept of di↵erence can emerge from
the relationship(s) between two objects compared on a physical dimension, such as
their shape, as well as from the relationship(s) between two people, compared on
a mental dimension, such as their emotional responses to an event. Advances in
cognitive science posit that, as opposed to concrete concepts, ACs rely on semantic
rather than categorical similarity relations [91] and on associative relations [110].
In other words, ACs are specifiers of relations between entities, allowing for a fairly
unconstrained range of fillers to fit the schema. As such, a possibility is that the
detection of ACs may rely on the detection of other types of semantic relation-
ships between discrete objects in images. However, detecting such relationships
and interactions tends to be a cognitive task, integrating perceptual information
into conclusions about the relationships between objects in a scene [58, 121]. A
cognitive understanding of our visual world thus requires that we complement
computers’ ability to detect objects with abilities to describe those objects [180]
and understand their relationships within a scene [306].

I.3.5.3 Emotionality

The idea that internal, and especially a↵ective, states may play a role in the repre-
sentation of abstract words and concepts is not new [12, 11, 29]. [205] demonstrate
that emotional content plays a crucial role in the processing and representation of
ACs, showing that statistically, abstract words are more emotionally valenced than
concrete words. They propose that the acquisition of words denoting emotions,
moods, or feelings may be a crucial stepping stone in the development of abstract
semantic representations, and that di↵erences between concrete and abstract words
arise because of a general statistical preponderance of a↵ective information for ab-
stract words (and sensorimotor information for concrete words). [369] also report a
functional magnetic resonance imaging experiment that shows greater engagement
of the rostral anterior cingulate cortex, an area associated with emotion processing
in abstract processing. A correlation analysis of more than 1,400 English words
further showed that abstract words, in general, receive higher ratings for a↵ec-
tive associations (both valence and arousal) than concrete words, supporting the
view that engagement in emotional processing is generally required for processing
abstract words.





Part II

Defining + Benchmarking AC
Image Classification

65





Chapter II.1

The ARTstract Image Dataset:
AC Visual Evocation

Summary In this chapter, we introduce the ARTstract image dataset, a valu-
able resource for investigating the intersection of visual data and ACs within the
realm of CV and computational visual studies. ARTstract is curated from four
diverse datasets, combining high-resolution cultural images related to ACs. This
dataset addresses challenges related to AC labeling in cultural images, and pro-
vides a tool for researchers to explore the interplay between visual content and
conceptual meaning. The chapter discusses the dataset’s creation, integration,
composition, and statistics, revealing a significant class imbalance among AC clus-
ters. Additionally, the chapter touches on the challenges of defining and capturing
ACs within the dataset, acknowledging their cultural and contextual nuances and
biases. Despite these limitations, ARTstract serves as a foundation for further
research in areas such as digital humanities, art history, and cognitive science,
o↵ering a valuable resource to experiment with explainable computer vision meth-
ods and inspire the development of more culturally sensitive and diverse AC image
datasets.

67
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II.1.1 A Novel Resource for Investigating ACs

In alignment with our exploration of the intricate challenges posed by ACs within
the realm of computer vision and computational visual studies, we introduce the
ARTstract dataset, a resource that addresses the gaps and complexities discussed
thus far. This dataset presents a tool for researchers seeking to delve into the inter-
section of visual data and abstract ideas. Comprising an array of high-resolution
images encompassing cultural artworks and advertisements, each associated with
ACs, ARTstract emerges as a significant asset to advance our understanding of
the interplay between visual content and conceptual meaning.

As discussed in Section I.2.6 of Chapter I.2, while many image datasets o↵er
labels for concrete concepts, it can be challenging to find high-quality tags for
ACs due to the ambiguity in their origins, often collected from online sources.
One significant insight from our survey was the identification of datasets that
explicitly record AC labels, potentially providing superior data for training models
for the task of AC image classification. Specifically, four datasets were identified
as potential resources that could be combined, as they all share a common focus
on cultural images and include ACs in labels or metadata.

As such, ARTstract was curated by combining data from these four datasets,
namely ArtPedia [338], ARTemis [2], the Ads Dataset [174], and the Tate Collec-
tion metadata. The inclusion criteria for images were twofold: relevance to the
task of AC image classification and high resolution. By adopting this approach,
ARTstract encapsulates a diverse range of visual materials that have inherently
interwoven abstract ideas within their imagery.

II.1.2 Data Sources

The Ads Dataset (ADVISE) [174, 390] This dataset includes over 64,000
image ads covering a diverse range of subjects. Each image ad is tagged with its
topic, the sentiment it attempts to inspire in the viewer, and the strategy it uses
to convey its message. The dataset also includes “symbols” that the ads use, a
common technique used in advertising to convey meaning and emotions to the
viewer, such as the concept of “peace” symbolically represented by a dove. The
dataset includes 13,938 ad images with 221 AC symbol tags, each with correspond-
ing bounding boxes, and then clustered into 53 symbol clusters. The most common
symbolic ACs are danger, fun, nature, beauty, death, sex, health, and adventure.

The Tate Gallery It houses the United Kingdom’s national collection of British
art, as well as international modern and contemporary art. Their collection meta-
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Figure II.1.1: ARTstract contains cultural images including paintings, visual art-
works, and advertisements, such as the ones pictured evoking the AC of “death”.
Clockwise from top left: The Apotheosis of War (1871) by Vasily Vereshchagin,
Tretyakov Gallery, Moscow, Russia, public domain; Panasonic: Where no vacuum
has gone before (2014) advertisement by Y and R; Christ Carrying the Cross (1660)
by Jacob Jordaens, Rijksmuseum, Amsterdam, Netherlands, public domain; The
Axe E↵ect (2003) advertisement by Lowe Bull Calvert Pace; The head of Christ
(1864) by Edouard Manet, public domain; Mess of fish (1940) by Paul Klee, public
domain.

data of 70,000 artworks, available as a Github repository,1 includes complete
records of most artists and artworks in the collection, along with image and thumb-
nail URLs. The Tate’s subject taxonomy for labeling their artworks is a unique
feature of the dataset, including a wide spectrum of subject tags. The taxonomy
was expert-led, developed alongside the digitization of the Tate’s collection, and
organized in a hierarchical structure. Critically, the rich tag taxonomy covers both
concrete (e.g., vacuum cleaner and shoe) and non-concrete (e.g., consumerism and
horror) subjects under categories like “universal concepts”, making it a valuable
resource for exploring abstract and non-abstract concepts.

ARTemis [2] A large-scale dataset providing data about the interplay between
visual content, its emotional e↵ect, and its language explanations, ARTemis focuses

1https://github.com/tategallery/collection. Access date: March 2021.

https://github.com/tategallery/collection
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on the a↵ective experience triggered by visual artworks and asks annotators to
indicate the dominant emotion they feel for a given image, as well as to provide
a grounded verbal explanation for their emotion choice. The dataset contains
455K emotion attributions and explanations from humans on 80K artworks from
WikiArt. It provides a rich set of signals for both the objective content and the
a↵ective impact of an image, creating associations with ACs, such as freedom and
love. Notably, the dataset authors have conducted an analysis to gauge the degree
of abstract versus concrete language within ARTemis. To measure abstractness
or concreteness, they employed the lexicon introduced by [59], which assigns a
rating from 1 to 5 reflecting the concreteness of around 40,000 word lemmas. In
this assessment, a randomly selected word from ARTemis received a concreteness
rating of 2.81, as opposed to COCO, which received a rating of 3.55 (with a
statistically significant p-value).

ArtPedia [338] A dataset of paintings with both visual and contextual descrip-
tions, it contains over 2,930 images, and the manual annotation of each sentence
as either visual or contextual allows for a comprehensive analysis of the visual
and semantic content of the dataset. Additionally, ArtPedia is the only dataset to
contain both types of artistic sentences, making it a valuable resource for devel-
oping visual-semantic models capable of jointly discriminating between visual and
contextual sentences of the same painting. Upon manual examination, it becomes
evident that these visual descriptions include references to ACs, similar to what
can be found in ARTemis. For instance, some examples from the dataset illustrate
this well: “Mistress and servant, a power relationship, maybe some deeper emo-
tional bondage,” or “The foam might suggest that the tree is caught on an unseen
rock; there is ambiguity in whether this location is a small respite of stability or
highlights the imminent danger of reaching the fall’s edge.”

II.1.3 AC Selection and Definition

The ARTstract dataset employs evoked clusters as a method for labeling the ACs
represented in each image. Evoked clusters are collections of ACs that frequently
appear together in specific contexts. This concept of clustering abstract symbols
for their visual evocation was first introduced in the Ads Dataset [174] and has
been adopted in limited prior research on AC image classification within the realm
of computer vision, as seen in works like [390] and [191]. While it is critical to
note that these cluster categories are not flawless and definitely lack complete
objectivity, they are currently the benchmark for AC image classification. This is
why we have chosen to retain them in the creation of this dataset. The original
clusters were derived from an analysis of the co-occurrence of ACs in advertising
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images, and some choices made in the cluster creation process reflect a Western
bias, such as the inclusion of the term “america” within the freedom cluster, which
does not universally apply. However, we have preserved the clusters as they are
for two key reasons. First, we aimed to ensure that our work could be compared
to existing research, thus advancing the state of the art. Second, our focus is
on understanding the biases embedded within these concepts rather than their
universality. Nevertheless, we strongly advocate for future research to explore
more culturally-sensitive and diverse AC datasets.

Beginning with the clusters sourced from the Ads Dataset, we aimed to curate
a subset of clusters that held the greatest relevance for our study on ACs from a
cognitive science perspective. To achieve this, we adopted an approach grounded
in cognitive science research insights. Specifically, we cross-referenced the clusters
from [174] with a comprehensive list of ACs derived from foundational cognitive
science work [160]. In this process, we identified clusters containing words that
met two specific criteria: a) they were present in the cognitive science study of
[160], and b) they garnered abstractness ratings under 3.75 in (the lower the more
abstract), following cognitive science standards as presented in [160]. By leverag-
ing the findings of cognitive science research, our goal was to pinpoint a diverse
range of ACs that would significantly contribute to our exploration of the intricate
relationship between ACs and visual imagery. To further refine our selection, we
deliberately excluded AC clusters that had already been extensively examined in
the computer vision literature, such as emotions (e.g., happiness and love [257])
and violence [290]. After this meticulous selection process, we identified seven
clusters of ACs, with the cluster words defined by [174], which we found to be
well-suited for our research. These clusters are:

• comfort: comfort, cozy, soft, softness

• danger: danger, peril, risk

• death: death, lethal, suicide, funeral

• fitness: exercise, fitness, running

• freedom: america, freedom, liberty

• power: force, power, powerful

• safety: safety, security

II.1.4 Image Mining and Processing

We aligned images from the four datasets with the chosen clusters. This matching
process involved distinct procedures for each of the original data sources. In the
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cases of the Tate and ADVISE datasets, individual images have words as individual
tags. For each AC cluster, we systematically pinpointed images bearing at least
one of the cluster’s associated words, and simultaneously recorded the frequency
of usage of these cluster words, indicative of their evocation strength. As for
ARTemis and ArtPedia, we delved into the “‘utterances” and “visual sentences,”
respectively, seeking instances where these contained any of the cluster-evoking
terms. Upon discovering such instances, we deemed them as evocations. In par-
allel with our approach in the other datasets, we tallied these evocations, and
detailed and comprehensive information about these steps can be accessed within
the GitHub repository.2 An example of the kinds of images that were collected is
visible in Figure II.1.2.

Figure II.1.2: Cultural images tagged with the AC danger in ARTstract. This
example shows that AC labels are semantically di↵used and associated with visu-
ally variant images. From left to right: The Roaring Forties (1908) by Frederick
Judd Waugh, Metropolitan Museum of Art, public domain; The Hippopotamus
and Crocodile Hunt (1615) by Peter Paul Rubens, Alte Pinakothek in Munich,
Germany, public domain; Untitled advertisement by Telecinco against domestic
violence; Tales of Mystery and Imagination by Edgar Allan Poe (1923) by Harry
Clarke, Metropolitan Museum of Art, public domain.

II.1.5 Dataset Integration and Composition

In the ARTstract dataset, each of the 14,795 images is associated with a single
AC cluster. The images are in JPG format with a resolution of 512x512 pixels.
For each image assignment, we diligently tracked various metadata, including the
source dataset and unique identifier (ID), alongside crucial details such as the evo-
cation strength and evidence of the evocation. This comprehensive documentation
process allows for in-depth analysis of the dataset’s composition and insights into

2https://github.com/delfimpandiani/ARTstract_Seeing_abstract_
concepts. Last access date: February 2024.

https://github.com/delfimpandiani/ARTstract_Seeing_abstract_concepts
https://github.com/delfimpandiani/ARTstract_Seeing_abstract_concepts
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Split Total Comfort Danger Death Fitness Freedom Power Safety
Train 11818 4984 1124 2207 632 409 2174 288
Val 1485 614 138 280 92 46 280 35
Test 1492 603 170 257 102 51 276 33
Total 14795 6201 1432 2744 826 506 2730 356

Table II.1.1: ARTstract Dataset Statistics

the association between visual imagery and ACs. The ARTstract dataset boasts
a total of 14,795 images, with each image being labeled with one of the seven
AC clusters. These images are provided in JPG format and maintain a consistent
resolution of 512x512 pixels.
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Figure II.1.3: Pie Chart of Concept Distribution

For detailed statistics and a breakdown of the dataset by cluster assignments,
please consult Table II.1.1. This table o↵ers a comprehensive view of the dataset,
showcasing the total number of images and their distribution across the seven
distinct AC clusters in the training, validation, and test splits, providing valuable
insights into the dataset’s composition. In addition, Figure II.1.3, depicted as
a pie chart, highlights the distribution of AC clusters in the ARTstract dataset.
Notably, the dataset displays a significant class imbalance, with certain clusters,
including comfort, death, and power contributing substantially to the dataset. This
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visualization o↵ers an initial overview of the dataset’s composition. To mitigate
the class imbalance’s potential impact on model generalization, we also o↵er a
“balanced” subset of ARTstract. In this subset, clusters with over 1,000 instances
are capped at 1,000 images, while clusters with fewer than 1,000 instances retain
all their images, ensuring a more balanced cluster representation. See Figure II.1.4
for the statistics of the training, validation, and test datasets.

II.1.6 ARTstract and its Coverage

The ARTstract dataset is a new resource for cultural heritage and computer vi-
sion research, particularly useful for studies pertaining to digital humanities, art
history, and cognitive science. However, some key limitations of the dataset are
related to the inherent nature of attempting to create a clear definition of an
AC. Furthermore, as we chose to reuse and combine existing datasets, ARTstract
is bound by choices made by the creators of these datasets. We acknowledge
that ACs are inherently culturally motivated, this is perhaps most visible in the
ADVISE dataset as the advertising domain is highly culturally contextualized.
However, also in ArtPedia and the Tate Gallery Western (European) art makes
up a larger proportion which has a direct impact on ARTstract’s coverage and
representation. Within these artworks, certain themes and symbols form a shared
conceptual grounding to their intended audiences [278], therefore these datasets
are suited to use for our purpose, with the caveat that they represent a partic-
ular context. The coverage limitation within ARTstract stems partly from the
intrinsic challenge of cultural bias when assigning labels and meanings to images,
particularly concerning ACs. Moving forward, it is imperative to expand coverage
and enhance the explicit contextualization of labels, dispelling the notion of their
objectivity.

Despite its limitations, ARTstract fills a significant gap by providing much-
needed data for tasks related to AC image classification. Critically, we believe that
the richness and diversity of the ARTstract dataset provide a unique opportunity
for exploring and experimenting with explainable CV methods. The dataset o↵ers
a testing ground for existing and novel explainable CV methods, demonstrating
the potential of combining technical methods with hermeneutic work to develop
interpretable systems. Moreover, the significance of the ARTstract dataset goes
beyond its value as a resource for cultural heritage and CV research. The evocation
of ACs is complex, subjective, and culturally variant, and as such, we hope that
the development of this dataset can be a source of inspiration to expand it with
more complex, situated, and multicultural perspectives.
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Figure II.1.4: Split-specific statistics of the distribution of ARTstract.
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II.1.7 Limitations and Further Directions

While ARTstract serves as a pioneering dataset for AC image classification, it
exhibits limitations regarding its diversity and size. Currently, ARTstract is pre-
dominantly Euro- and Western-centric, with a majority of its content sourced from
Western projects, leading to a bias towards European and North American art and
culture. Additionally, the dataset’s size is relatively small compared to other art
datasets such as WikiArt [258], Web Gallery of Art [70], or the TICC Printmaking
Dataset [268]. This size limitation hampers the e↵ectiveness of models that rely
on large sets of input images, thereby impeding progress in state-of-the-art image
classification tasks [76]. Multiple further directions can be taken with this work
to start facing these limitations, including:

1. Addressing Cultural Bias and Diversity:

• Identify and embed the cultural bias inherent in attributing abstract
meanings to visual data through labels, in a manner that can be under-
stood by machines [241]. Subsequent research should prioritize explic-
itly tracking and rendering machine-readable diverse cultural contexts
and their corresponding evocations of ACs. This approach would pro-
vide alternative perspectives and insights on these concepts.

• Enrich the ARTstract dataset with a wider range of cultural images,
including those from non-Western perspectives, to capture a broader
spectrum of AC evocation. This diversity would better represent the
cultural richness and subjectivity inherent in high-level visual under-
standing.

• Obtain human annotations of ACs from annotators with diverse cul-
tural backgrounds to assess and enhance the reliability of ARTstract.
Incorporating human-checked tags and tracking them using tools like
knowledge graphs could significantly improve the dataset’s utility.

2. Dataset Size Limitations:

• Extend ARTstract to include more and other types of artistic creations.
An interesting approach is that of extending it using automatic tagging
of images and other media by using techniques from the natural lan-
guage processing domain [226], such as the extraction of AC from de-
scriptive sentences using topic modeling [197] or linguistic frames [281].

• Expand the cluster definitions within ARTstract to encompass a wider
array of words, languages, and cultural nuances. Aligning with re-
sources like WordNet [251] and BabelNet [262] can provide a more
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comprehensive definition of clusters, while relevant ontologies [26, 46]
can o↵er semantically richer descriptions. This would allow for better
integration with other relevant artwork information.

II.1.8 Conclusion

In this chapter, we introduced the ARTstract dataset, a curated collection of high-
resolution cultural images associated with AC labels. ARTstract serves as a valu-
able resource for exploring the relationship between visual content and abstract
ideas, addressing challenges related to AC labeling in cultural images. Curated
from four diverse datasets, it encapsulates a wide range of visual materials with
abstract ideas interwoven within their imagery. However, the dataset exhibits
limitations in diversity and size, primarily being Euro- and Western-centric and
relatively small compared to other art datasets. Moving forward, e↵orts to enhance
these aspects are critical to unlocking its full potential. Additionally, mitigating
cultural bias and enhancing AC labeling reliability are essential for improving the
dataset’s usability and e↵ectiveness for research purposes. In conclusion, ART-
stract represents a pioneering dataset for investigating ACs in visual media.





Chapter II.2

End-to-End Deep Vision: Deep
Learning AC Image Classification

Summary This chapter critically assesses the e�cacy of state-of-the-art deep
learning (DL) models for classifying images based on ACs. Anchored by the intro-
duction of the ARTstract dataset in Chapter II.1, this chapter delves into the uti-
lization of feature vector representations extracted from state-of-the-art DL mod-
els, and attempts to interpret the cultural meanings assimilated by these models.
The chapter is structured around three fundamental components, each addressing
one sub-research question in the domain of deep AC image classification. The first
section (Section II.2.4) delves into the analysis of intraclass similarity within deep
representations of image clusters tagged with the same concept. It hypothesizes re-
duced similarity for clusters associated with ACs, due to the inherent flexibility of
such concepts. The second section (Section II.2.5) is dedicated to the training and
performance evaluation of state-of-the-art DL classification models, with a primary
focus on Convolutional Neural Network (CNN) models for AC image classification.
It anticipates potentially lower performance compared to traditional image clas-
sification tasks, and in line with F1 scores from related tasks (see Chapter I.2.
The third section (Section II.2.6) delves into the realm of model explainability,
recognizing the challenges in generating human-understandable explanations from
black-box systems. Our approach encompasses diverse methods, including saliency
map generation, perceptual topology exploration, and the introduction of a novel
non-traditional explainability technique, known as SD-AM. SD-AM o↵ers valuable
insights into model decision-making and the creation of human-readable feature
visualizations. In sum, this chapter significantly contributes to our understanding
of AC image classification and the interpretability of DL models.

79
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II.2.1 Introduction

The contemporary shift to an era characterized by selection and curation has ele-
vated the importance of automatic models for navigating and comprehending vast
troves of visual data. These models are now expected to handle abstract visual
reasoning tasks, such as predicting personality traits [321], political bias [355],
and intents [183]. As emphasized in the introduction (Chapter I.1) and survey
on the state of the art (Chapter I.2) of this dissertation, a significant aspect of
these evolving expectations is the central role that ACs are assuming within au-
tomated visual processing. The diversity and divergence present in visual signals
evoking individual ACs, however, present a formidable challenge to conventional
methodologies rooted in the CV domain. Although CNNs o↵er immense promise,
they are intrinsically optimized for tasks characterized by high intraclass similar-
ity [42, 328]—qualities that conflict with the inherent heterogeneity and culturally
nuanced nature of ACs. Thus, the task of detecting ACs within visual data can
be seen as a complex “wicked problem”, lacking clear-cut solutions and molded
by multifaceted cultural intricacies [297]. The increasing utilization of CNNs for
wicked problem tasks like AC detection raises questions about the delicate knowl-
edge assimilated by these models. Thus, their explainability becomes crucial in
understanding how they handle complex socio-cultural visual reasoning tasks.

Explainability can be seen as a response to the perceived “explanatory deficit”
in technical disciplines [44]. It stems from the challenges posed by opaque DL
models and the recognition of problematic biases that can lead to inequities. The
emerging subfield of eXplainable AI (XAI) advocates for interpretability as a means
to address these issues [254]. In this context, the ability to explain predictions
is crucial and informative of the heuristic process itself [272]. We argue that
for the socio-cultural-cognitive task of AC image classification–which is based on
subjective, cultural, and interoceptive processes–the perils of model reuse without
explainability are high, as it can potentially echo harmful stereotypes or visions of
the world based on prejudice, racism, and other biased worldviews.

This chapter critically engages with the prevalent trend of automating high-
level visual reasoning via DL–placing exclusive reliance on visual signals–prominently
featuring CNNs. We delve into this trend, scrutinizing the knowledge sought by
CNNs and the knowledge they ultimately encapsulate. In the context of deep ma-
chine vision, we are especially interested in the explainability techniques of class
activation mapping (CAM) and activation maximization (AM), also known as fea-
ture visualization (FV). CAM identifies the salient regions of an image that are
considered important by the model in a classification task. It has been used, for
instance, to identify where CNN models localize symbols in iconography classi-
fication [363]. FV (AM), on the other hand, involves the generation of images
that visualize what a neuron in a CNN has learned [116]. It has been employed
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to visualize neurons of models trained on natural images as well as on artistic
images (see Figure II.2.1). O↵ert and Bell [272] contend that they can be viewed
as technical metapictures [253] functioning as hypericons : indirect “illustrations,”
or “visualizations” in the literal sense of forcibly and subjectively summarizing
and making-visual the non-visual, which can serve as summary images “a the-
ory of knowledge” [253, p. 9] becoming crystallized in a machine learning model.
Through the use of such methods, the technical system becomes an integral part
of the interpretive process rather than an opaque tool.

This chapter employs the novel ARTstract dataset (see Chapter II.1) as a case
study to investigate three critical aspects of the e↵ectiveness of the DL paradigm
for the task of AC image classification:

• Deep Representation Analysis: We examine intraclass similarity within
deep representations of image clusters labeled with the same concept.

• Performance Evaluation: We present baseline model performances on
ARTstract to benchmark image classification based on ACs.

• Explainability Experiments: We explore traditional and non-traditional
paths for enhancing the interpretability of CNNs, inspired by [273]. To
better understand how CNNs assimilate and reflect cultural meanings, and
to discern the echoes reverberating within these visions, we introduce SD-
AM, a novel approach to explainability. This approach condenses visuals
into hypericon images through a fusion of feature visualization techniques
and Stable Di↵usion denoising.

Overall, this chapter critically addresses AC image classification’s challenges
within the DL paradigm. By embracing innovative methodologies and provid-
ing comprehensive analyses of explainability techniques, we make a substantial
contribution to the broader discourse surrounding automatic high-level visual un-
derstanding, its interpretability, and the ensuing implications for comprehending
culture within the digital era. Through our exploration, we illuminate the mul-
tifaceted trends, complexities, and opportunities that underlie the fusion of high-
level visual reasoning and computer vision.

The remainder of this chapter is organized as follows. In Section II.2.2, we
present the end-to-end deep vision paradigm that this chapter applies to the task
of AC image classification. In Section II.2.3, we review related work, including
computer vision work concerning image classification, explainability, and their
overlaps with cultural data. In Section II.2.4 we investigate intraclass similarity
within deep representations of image clusters tagged with the same concept, hy-
pothesizing lower similarity for AC clusters compared to concrete ones due to the
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Figure II.2.1: Examples of regularized feature visualizations (FV) suggesting what
specific neurons have learned. From left to right: FV for the banana class in an
Inception-based CNN trained on ILSVRC2012, adapted from [272]; FV for the ball
class in a GoogLeNet (Layer 5a), adapted from [274]; FV for portrait (center) and
FV got landscape (right) classes in an Inception-based CNN finetuned on an art
historical dataset to distinguish between portrait and landscape classes, adapted
from [271].

inherent flexibility of ACs. In Section II.2.5, we present AC-based image classifica-
tion baselines, including the experimental setup and the results. In Section II.2.6,
we discuss our explainability experiments, including the results from GradCAM++
feature visualizations and our novel SD-AM approach to hypericon creation. In
Section II.2.7, we provide a comprehensive discussion of the results, with a focus
on contributions, lessons, and future directions. We conclude in Section II.2.8.

II.2.2 Idea: End-to-end Deep Learning Vision

The objective of this section is to establish benchmarks on the novel ARTstract
image dataset using state-of-the-art DL models. Specifically, we focus on the
utilization of three pivotal architectures known for their excellence in image clas-
sification: Visual Geometry Group (VGG) CNN [331], Residual Neural Networks
(ResNet) [163], and Visual Transformers (ViT) [109]. Our primary goal is to assess
the state-of-the-art DL paradigm for image classification, which involves provid-
ing a dataset of images with ground truth labels to a deep neural network. The
network autonomously learns relevant features directly from the image data, trans-
forming IRAW into a deep feature representation IDL (see Figure II.2.2). In this
chapter, we utilize three readily available models that have been pre-trained on
the ImageNet dataset [211]. We fine-tune these networks to extract deep feature
vectors as representations of the input images:
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fV GG : IRAW ! R512 (II.2.1)

fResNet : IRAW ! R2049 (II.2.2)

fV iT : IRAW ! R768 (II.2.3)

We separately test performance using each of these feature vectors as input to a
classifier head:

ŷ = argmax(p(yi|IDL, ✓)) (II.2.4)

We evaluate performance by computing accuracy (A), precision (P), recall (R),
and F1, (see details in Subsection II.2.5.1).

In our e↵orts to interpret what the model has learned, we employ two ap-
proaches. First, we use the CAM method, which, given f

l

y
(x) as the output of the

l-th layer of a CNN that classifies the image x with class y, computes a visual ex-
planation map. Secondly, we employ AM, formulated as an optimization problem,
such that x̂ is an image that maximizes the neuron ay, responsible for classifying as
class y (more details about both approaches are available in Subsection II.2.6.1).
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II.2.3 Related Work

To contextualize our study, we examine the domains of computer vision (CV),
explainable AI (XAI), and their intersections with cultural data, to contribute
to our understanding of the opportunities and challenges regarding AC image
classification on cultural images from ARTstract.

II.2.3.1 Deep Computer Vision for Image Classification

Over the past decade, the field of CV has undergone a profound transformation
driven by the advent of DL, specifically powered by CNNs. DL is an impor-
tant branch developed based on machine learning. It makes full use of the hi-
erarchical characteristics of artificial neural networks to process information and
obtain high-level features by learning low-level features and adopting feature com-
bination methods. This approach enables the automatic learning of images and
extraction of deep-seated features for tasks such as image classification or regres-
sion. A compelling illustration of this paradigm shift from classical CV to the
DL paradigm can be seen in image classification, notably catalyzed by the break-
through of Krizhevsky, et al in 2012 [211]. The introduction of ILSVRC [303], a
large-scale image classification challenge on ImageNet [105], marked the introduc-
tion of ever-improving image classification models. DL techniques have harnessed
the capabilities of extensive data and powerful computing resources to tackle once-
considered insurmountable challenges, pushing the boundaries of what is achiev-
able [275]. Since then, DL has consistently outperformed traditional methods in
this domain [275].

CNNs represent one of the most widely-used methods in image classification
tasks and are the backbone of modern state-of-the-art methods [76]. A CNN is
composed of several convolutional layers (see Figure II.2.3a). A convolutional
layer learns how to filter an image by learning the filter’s kernel. By computing
the convolution with the learned kernel over the whole image, the network extracts
relevant features for the classification task. CNNs can be classified into three main
classes: classical CNNs, inception CNNs, and residual CNNs [76]. Classical CNNs,
such as VGG [331], make straightforward use of convolutional layers. Better per-
formances are achieved using deep network models (i.e. networks with a large
number of convolutional layers). The use of increasingly deep networks, however,
has been shown to increase performances only to a certain extent [76]. To over-
come this limitation inception-based methods, such as InceptionNetV3 [348], and
residual CNNs, such as ResNet [163], have been proposed.

Recently, following the success of the Transformer architecture [367, 227],
transformer-based classification models, such as ViT [398], have been introduced
with promising results. Transformers, originally designed for sequential data like
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natural language processing, have been adapted to process image patches inde-
pendently, enabling global context understanding (see Figure II.2.3b). ViT and
similar architectures have demonstrated competitive performance, leveraging self-
attention mechanisms to capture long-range dependencies in images. Overall,
transformers o↵er advantages such as the ability to model long-range dependen-
cies, adapt to di↵erent input sizes, and the potential for parallel processing, making
them suitable for image tasks. However, Vision Transformers also face challenges
such as computational complexity, model size, scalability to large datasets, in-
terpretability, robustness to adversarial attacks, and generalization performance
[246]. For a detailed comparison, please refer to Table II.2.1.

Table II.2.1: Comparison between CNNs and ViT in Image Classification

Feature CNNs ViT)

Architecture Hierarchical convolutional layers Self-attention mechanisms over im-
age patches

Flexibility Limited global context understand-
ing

Global context understanding via
self-attention

Performance Excellent for local feature extrac-
tion

Competitive performance

Computational Cost Lower number of parameters and
computational requirements

Higher number of parameters and
computational requirements

State-of-the-art Long-standing dominance in CV
tasks

Promising alternative for image
classification

Data Hunger Moderate Extensive data requirements

II.2.3.2 Computer Vision and Explainability

In this section, we succinctly describe two of the most commonly used techniques
for post-hoc explainability of CNN-based CV models [372, 175], CAM and AM.

Class Activation Mapping (CAM). An approach to the visual explana-
tion of image classification models is CAM [406], a method initially proposed to
investigate how CNN models trained on classification tasks can generalize on lo-
calization tasks. On the XAI landscape, CAM methods are used to highlight the
regions of an image that are important in the classification process of a model
[175]. Given the output of the last convolutional layer of a CNN that classifies an
image, the one that displays the higher spatial resolution when compared to other
layers [406], a visual explanation map can be computed by enhancing the response
of highly-activated neurons. Di↵erent enhancement methods have been proposed:
GradCAM [322] and GradCAM++ [74] use the layer’s gradient to compute coef-
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(a) Example of an architecture of a CNN ViT, based on [310].

(b) Example of the architecture of the ViT, based on [109].

Figure II.2.3: Comparison of CNN and ViT deep neural network architectures.

ficients; XGrad-CAM [126] uses of axioms to avoid the use of heuristic methods;
LIFT-CAM [189] proposes an analytical solution to the problem. CAM methods
[372, 175] represent one of the main methods used to obtain a visual explanation
of image classification models.

Activation Maximisation (AM). A di↵erent approach to the visual ex-
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planation of image classification models is the AM method [117, 372], where the
activation of the classification neurons is exploited to synthesize “prototypical”
images of a class. AM is formulated as an optimization problem, where an im-
age is obtained by directly maximizing the activation of one or more classification
neurons [265]. The optimization procedure can be expressed in terms of gradient
ascent when the gradient is accessible [117, 266, 265]. The resulting image is often
hard to interpret from a human point of view. Di↵erent regularisation techniques
have been proposed to address this issue, such as L↵ norm [330] to smooth pixel
intensities, Total Variation (TV) [236] to encourage smoothness of the image [265]
and gradient enhancing techniques [64]. A di↵erent approach to obtain more real-
istic images and human-understandable images is to synthesize the image using a
generator network, as done in DGN-AM1 [266] by using a Generative Adversarial
Network (GAN). This biases the image towards more realistic-looking images that
are easier to interpret from a human’s point of view. Recently, similar approaches
have been used to guide the generation process of Di↵usion Models 2 [107]. Such
methods have shown promising results in providing post-hoc explanations of clas-
sification models [182] but have not been applied to the AM process.

II.2.3.3 CV and AC Image Classification

In our systematic survey of works related to AC image classification (see Chap-
ter I.2), we identified a focus on socio-culturally rich images from social media,
advertisements, and political contexts, emphasizing the need for nuanced visual
data when dealing with ACs [354, 183, 191], and the domain of advertisements
stands out based on the prominence of works in this domain [174, 390, 392, 191].
Domain-specific datasets are created in many of the surveyed works, emphasizing
the importance of tailored data for AC image classification tasks [174, 354, 183].
Critically, CNN architectures feature prominently in most of the surveyed works,
indicating their central role in AC image classification [8, 174, 390, 354]. The sur-
veyed works consistently prioritize F1 scores over accuracy, reflecting the complex
nature of AC classification. However, even the highest-performing work, benefiting
from a large dataset and textual information, faces di�culties in achieving high
F1 scores [354].

II.2.3.4 Computer Vision and Cultural Data

While much of the focus in CV revolves around the analysis of natural, realistic
photographs, there is growing research in applying these techniques to art and cul-

1https://github.com/Evolving-AI-Lab/synthesizing. Access date: June 2023.
2https://github.com/openai/guided-diffusion. Access date: June 2023.

https://github.com/Evolving-AI-Lab/synthesizing
https://github.com/openai/guided-diffusion
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tural historical datasets [341, 298]). One of the central challenges in computational
cultural image analysis has been the automated classification of artworks based
on categories such as artist, style, or genre. Earlier studies tackled this problem
by extracting various handcrafted image features and employing di↵erent machine
learning algorithms to analyze and classify artworks based on these features [195,
323, 6]. The widespread adoption of CNNs then sparked interest among scholars
in their potential to advance humanities and art history research. CV techniques
have been applied to analyze extensive painting databases, uncovering patterns
and trends [218, 177], to analyze television series [17], and to understand visual
trends within digitized Dutch newspapers [382]. Previous work has provided com-
prehensive surveys of AI’s role in art analysis, particularly regarding digitized
artwork collections [71].

Cultural images present unique challenges due to their diverse styles and con-
tent. Unlike realistic photographs, art, cultural, and historical images often de-
viate from photorealism. Transfer learning techniques are frequently employed to
address these stylistic di↵erences, particularly in handling paintings or historical
photographs [410, 382]. Moreover, the objects of interest in cultural images may
di↵er significantly from those in naturalistic photos commonly used in computer
vision tasks. Consequently, new datasets and models tailored to the humanities
domain are being developed [37]. Research in this area spans a wide range of
topics, from detecting unconventional objects like “smelly” objects to identifying
zoological species, railway accidents, or musical instruments [409, 342, 333, 305].
Additionally, quantifying subjective aspects of perception, particularly in art im-
ages, poses significant challenges. A crucial obstacle lies in creating large-scale
datasets annotated with evaluation scores derived from experimental surveys. For
instance, Amirshahi et al. [13] introduced the JenAesthetics dataset, which labels
artwork images with subjective aesthetic evaluations. Numerous studies have ex-
plored computational aesthetics in art, focusing on analyzing statistical properties
of paintings [162, 196].

II.2.3.5 Explainability and Cultural Data

Due to the more reflective nature of humanities research, interpretability, explain-
ability, and trustworthiness are core concerns for many scholars that study cul-
ture [45]. In a way, computer science has borrowed concepts that contribute to
explainability from the humanities domain, such as provenance. There is now a
vibrant computational provenance community in computer science [106], but this
concept originates from (art-)history [260]. Lately, as the humanities domain has
a longstanding tradition of source criticism [293], which more recently was ex-
panded to tool criticism [202], there has been a fair amount of attention for biases
in datasets and algorithms [381, 272, 335].
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II.2.4 Deep Representation Analysis

In this section, we sought to assess the ability of readily available DL (DL) models
to encode and represent intricate features relevant to ACs within images. We
employed “intraclass similarity” as a metric to gauge the degree to which image
representations within the same target class shared common features. The central
question addressed in this section was as follows:

RQ 1.2.1: To what extent do conventional DL representations e↵ec-
tively capture intraclass similarity in images labeled with ACs, as op-
posed to images associated with concrete concepts?

Our working hypothesis proposed that the deep representations of images linked to
ACs would exhibit lower levels of intraclass similarity when compared to images
linked by concrete concepts. This hypothesis is based on the flexibility of ACs
and the consequential diversity of images that evoke them, making the capture of
intraclass similarity potentially more challenging.

II.2.4.1 Approach

We chose a VGG-16 CNN [331], pre-trained on ImageNet [105], as the reference
model due to its widely recognized architecture and established performance in
image classification tasks, Despite the availability of models with potentially su-
perior performance, VGG-16’s robustness and well-documented features make it a
suitable baseline for our study, so we employed it to generate feature vectors for
all images in the ARTstract dataset [243]. To quantify the degree of similarity
between images within the same AC class, we adopted the cosine similarity met-
ric, allowing us to calculate similarity scores between each image and every other
image within its respective class.

To provide context and validate our findings, we identified a benchmark dataset
with perceptual content resembling ARTstract but comprising concrete target
classes: CIFAR-10. CIFAR-10 is a well-known CV benchmark dataset contain-
ing 60,000 32x32 color images distributed across ten distinct classes, with each
class containing 6,000 images [210]. Despite the di↵erences in target classes, the
visual content of ARTstract images shares similarities with those in CIFAR-10 (see
Figure II.2.6). This qualitative comparison between the two datasets allowed us
to contextualize our results. To ascertain the significance of the observed di↵er-
ences in intraclass similarity between the ARTstract and CIFAR-10 datasets, we
employed a two-sample t-test [88]. The resulting p-values enabled us to determine
whether these distinctions in intraclass similarity were statistically significant, indi-
cating meaningful disparities rather than random chance variations. This method
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allowed us to establish the robustness of our findings and evaluate the e↵ectiveness
of DL representations for AC image classification.

II.2.4.2 Results

Intraclass Similarity ARTstract exhibits notably lower intraclass similarity
than CIFAR-10. On average, CIFAR-10 attains 0.644 while ARTstract achieves
0.344. Table II.2.2 compares the intraclass similarity between ARTstract and
CIFAR-10, including average similarity values. Figure II.2.7a shows intraclass sim-
ilarity values for ARTstract and CIFAR-10 classes. The two-sample t-test results
show that ARTstract exhibits statistically significantly lower intraclass similarity
than CIFAR-10, as evidenced by a basically negligible p-value (rounded to 0.00000)
(see Figure II.2.7b), which indicates statistical significance.

Table II.2.2: Intraclass Similarity Comparison between ARTstract and CIFAR-10

(a) ARTstract

Category Similarity

‘comfort’ 0.3762
‘danger’ 0.3304
‘death’ 0.3664
‘fitness’ 0.3491
‘freedom’ 0.3250
‘power’ 0.3513
‘safety’ 0.3088

Average 0.3440

(b) CIFAR-10

Category Similarity

‘airplane’ 0.6346
‘automobile’ 0.6834
‘bird’ 0.5973
‘cat’ 0.6136
‘deer’ 0.6674
‘dog’ 0.5819
‘frog’ 0.6431
‘horse’ 0.6361
‘ship’ 0.6767
‘truck’ 0.7105

Average 0.6440

This lower intraclass similarity in ARTstract suggests challenges in discerning
shared image characteristics of those tagged with the same AC due to class variance
and spatial resolution limitations. It indicates that the level of intraclass similarity
in image representations may be influenced by the abstractness or concreteness of
the class being considered. Concrete visual concepts tend to have higher intraclass
similarity, thanks to the capabilities of CNN-based models in capturing perceptual
semantics. Conversely, ACs, lacking concrete visual features, exhibit lower intra-
class similarity due to the model’s di�culty in capturing semantic nuances. These
findings imply that the di�culties in capturing semantic nuances within ACs may
lead to classification challenges, particularly in ARTstract.
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Figure II.2.4: Visual Representation of ARTstract: A selection of ten
random images from each of the seven classes in the dataset showcasing
the diversity of AC instances.

Figure II.2.5: Visual Representation of CIFAR-10: A collection of ten
random images from each of the ten classes in the dataset. Source:
https://www.cs.toronto.edu/˜kriz/cifar.html. Access
date: May 2023.

Figure II.2.6: Comparing Intra-Class Similarity: ARTstract vs. CIFAR-10. Even
though there is statistically significant higher intraclass similarity for CIFAR-10
classes compared to ARTstract, visually, this substantial di↵erence may not be
immediately straightforward.

https://www.cs.toronto.edu/~kriz/cifar.html
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(a) Intraclass similarity of VGG representations for images belonging to specific classes.
The analysis is performed for seven AC classes (in blue) from the ARTstract dataset
and ten concrete classes from the CIFAR-10 dataset (in orange).

(b) The extremely low p-value from the t-test indicates that the di↵erence in similarity
scores for abstract vs. concrete target classes is statistically significant.

Figure II.2.7: Statistical analysis reveals significant di↵erences in intraclass simi-
larity scores between deep image representations when applied to a dataset of ACs
(ARTstract) compared to concrete concepts (CIFAR-10) as target classes.
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II.2.5 Deep Performance Evaluation

Building upon the exploration of deep representations in the previous section, the
performance of state-of-the-art DL models, including CNNs and Vision Trans-
former (ViT), for AC image classification was assessed. The goal was to determine
how e↵ectively these models could adapt to this specialized task in comparison to
their performance in conventional image classification assignments. The central
question addressed in this section was as follows:

RQ 1.2.2: How well do state-of-the-art DL models perform on the task
of AC image classification?

we hypothesized that state-of-the-art DL models would achieve lower accuracy in
AC image classification when contrasted with their performance in standard image
classification tasks. This expectation arose from the recognition that ACs present
unique challenges, and models may need to discern more subtle visual cues than
those that might be shared by images tagged with the same concrete tags.

II.2.5.1 Approach

State-of-the-art DL models for image classification were adopted, specifically, two
CNNs, VGG-16 [331] and ResNet-50 [163], and a vision transformer (ViT) [109].
These networks had previously been pre-trained on the extensive ImageNet-21k
dataset, which endowed them with a strong foundation in feature extraction since
pre-training CNNs on large-scale data has been shown to result in more accurate
results [203]. The approach was centered on transfer learning and fine-tuning.
All three models had the classification head adjusted while keeping the remaining
layers immutable and were finetuned for 100 epochs. Additionally, for the two
CNNs, we also finetuned the ’whole model’, with all layers being unfrozen and
fine-tuned.

For evaluation metrics, we follow ILSVRC multi-class formulation [303]. For-
mally, we estimate the probability p(y | x̂,⇥) where y is among the cluster classes
(Y ) presented in Section II.1, x̂ the input image and ⇥ is the neural network used
to parametrize the probability distribution. Di↵erently than ILSVRC, where the
top-k predicted classes are evaluated, we compute accuracy (A), precision (P),
recall (R), and F1 defined as

A =
1

| Y |
X

y2Y

TPy + TNy

TPy + TNy + FPy + FNy

P =
1

| Y |
X

y2Y

TPy

TPy + FPy

R =
1

| Y |
X

y2Y

TPy

TPy + FNy

F1 =
1

| Y |
X

y2Y

Py ·Ry

Py +Ry
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where TPy, TNy are, respectively, the correct prediction of an image in and
not in a class and FPy, FNy are, respectively, the wrong prediction of an image
in and not in a class. We rely on di↵erent measures since there is a consistent
di↵erence between the number of classes on ImageNet (1000) and the classes on
ARTstract (7). Evaluating the top-k results (e.g. top-5 accuracy) would result in
over-optimistic results.

II.2.5.2 Experimental Setup

We train each model using an RTX3090 on an Intel i9 CPU with 8 cores and
equipped with 128 GB of RAM. We manually adjust and experiment with di↵erent
hyper-parameters, summarised in Table II.2.3, and train using the Adam optimizer
[201], on the whole (unbalanced) dataset split into train, validation, and test sets
using an 80:10:10 ratio.

Finetuned Model Epochs Batch Size Learning Rate

ResNet-50 100 32 0.001
VGG-16 100 32 0.001
ViT 100 32 0.001

Whole model ResNet-50 100 32 0.001
Whole model VGG-16 100 32 0.001

Table II.2.3: Hyperparameters used to train the classification baselines.

To further reduce overfitting, we employ standard data augmentation [329]
such as random horizontal flips, random color jitter, random rotation, and random
crop. For each image in the training set, we resize it to 224x224 pixels, apply a
random horizontal flip with a probability of 0.5, a random color jitter with a
probability of 0.3, a random rotation with a probability of 0.3, and a random crop
of size 20 with a probability of 0.3 and subtract ImageNet mean color. For the
images in the validation and testing dataset, we only resize to 224x224 pixels and
subtract ImageNet’s mean color. Given the described methodology, we can train
on the whole ARTstract dataset, minimizing the overfitting due to the skewed
distribution of the dataset.
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II.2.5.3 Results

In the context of AC image classification using the ARTstract dataset, perfor-
mances varied from 40% to 51% accuracy (refer to Table II.2.4 and Figure II.2.8
for an overview, and to Section V.1.5.3 in the Appendix, for class-level metrics on
VGG-16, ResNet-50, and ViT). The best-performing model, as measured by both
accuracy and F1 score, was ViT. Interestingly, for the CNNs, the models that only
had the classification head finetuned greatly outperformed the models that had all
layers finetuned (see Table II.2.5). This highlights the significance of minimizing
extensive fine-tuning of the entire model and the importance of preserving features
acquired during pre-training.

Model Accuracy Precision Recall F1
Head Only (VGG-16) 0.47 0.34 0.24 0.23
Head Only (ResNet-50) 0.48 0.32 0.25 0.24
ViT 0.51 0.43 0.29 0.30

Table II.2.4: Overall performance metrics for the top three best performing models.
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Figure II.2.8: F1 Scores for each of the ACs with ResNet-50, VGG, and ViT.

The comparison of F1 scores between state-of-the-art performance on ADVISE
vs. on ARTstract (see Table II.2.6) reveals a significant improvement in the latter.
While ADVISE models exhibit F1 scores ranging from 0.13 to 0.15, the ARTstract-
trained models consistently achieve higher F1 scores, with values ranging from 0.23
to 0.30. These results suggest that the task definition and use of the ARTstract
dataset provides a notable advantage in AC classification over the task defined
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Model
Head Only Whole Model

Accuracy Precision Recall F1 Accuracy Precision Recall F1
VGG-16 0.47 0.26 0.22 0.23 0.40 0.17 0.20 0.17
ResNet-50 0.48 0.33 0.23 0.24 0.43 0.30 0.21 0.18

Table II.2.5: CNN performance on the ARTstract dataset.

Model F1 Score
VGG-16 (ADVISE) 0.15
ResNet-50 (ADVISE) 0.13
SKG-Sym (ADVISE) 0.14
ASKG-Sym (ADVISE) 0.15
VGG-16 (ARTstract) 0.23
ResNet-50 (ARTstract) 0.24
ViT (ARTstract) 0.30

Table II.2.6: Comparison of F1 scores for state-of-the-art models (trained on AD-
VISE) and for models trained on ARTstract.

Model ARTstract CIFAR-10

ResNet-50 0.48 0.97 [77]
VGG-16 0.47 0.94 [21]
ViT 0.51 0.98 [77]

Table II.2.7: Comparison of model performance between ARTstract and CIFAR-
10 Datasets. The CIFAR-10 accuracies, obtained from the cited sources in the
table, showcase the models’ performance on a well-established benchmark.

and data used in the ADVISE experiments by ][191]. The increase in F1 scores
indicates that the ARTstract dataset may better capture the complexities and
nuances associated with ACs, allowing models to perform more e↵ectively in this
challenging task.

A striking point of comparison lies in the performance of the same models on
two vastly di↵erent datasets—CIFAR-10 and ARTstract (see Table II.2.7). These
models, known for their exceptional accuracy in conventional image classification
tasks, such as CIFAR-10, exhibit a substantial drop in accuracy when faced with
the challenge of AC (AC) image classification on ARTstract. While they achieve
remarkable accuracy levels on CIFAR-10, with values ranging from 0.94 to 0.98,
their performance on ARTstract is notably lower, with accuracy scores ranging
from 0.47 to 0.51. This stark contrast underscores the di�culty of the AC image
classification task and the unique challenges it presents.



98 II.2. End-to-End Deep Vision: Deep Learning AC Image Classification

II.2.6 Deep Explainability Experiments

We wanted to scrutinize the extent to which DL models operate as black boxes
when engaged in AC image classification tasks. Additionally, valuable insights
that could be gleaned through the application of explainability techniques were
unveiled.

RQ 1.2.3: To what extent do conventional DL models function as black
boxes in the context of AC image classification, and what valuable in-
sights can be derived from the application of explainability techniques?

We hypothesize that traditional explainability techniques would struggle to provide
human interpretable explanations for CNN model predictions in AC image clas-
sification, but that we might get some lessons from biasing feature visualizations
towards human vision by developing “hypericons” to visualize what classification
head neurons have learned.

II.2.6.1 Approach

Inspired by [271, 272], we conducted a series of experiments aimed at enhancing the
explainability of a single baseline CNN.3 Our exploration focused on three distinct
techniques: CAM, AM, and Stable-Di↵used Activation Maximization (SD-AM).

Class Activation Mapping

We are interested in investigating which parts of an image are mostly influencing
the classification of our fine-tuned models. We use the CAM method which, given
f
l

c
(x) the output of the l-th layer of a CNN that classifies the image x with the

class c, computes a visual explanation map as

CAM(f l

c
(x)) = ReLU(

NlX

i=0

↵k · f l

c
(x)k)

where Nl is the number of channels of the l-th layer, f l

c
(x)k) is the output of the

k-th channel of the l-th layer and ↵k is an hyper-parameter of the model. The
last convolutional layer is usually taken as l, since it has been shown to display a
higher spatial resolution when compared to other layers [406]. GradCAM++ [74]

3We chose to focus on CNNs instead of the ViT model due to the distinct nature of ViT
explanations and the specific applicability of our chosen methods to CNNs. Within the realm
of CNNs, we selected the VGG-16 model for these experiments. The VGG-16 model underwent
1000 epochs of fine-tuning. It is also worth noting that this model was initially trained with an
additional class, ‘excitement,’ derived from a prior version of the ARTstract dataset.
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uses the layer’s gradient to compute coe�cients. Since a precise localization is not
the primary focus of our research, but we are instead interested in highlighting
the approximate regions of interest for the model for a specific classification, we
manually experiment with di↵erent methods and decide to rely on GradCAM++
as implemented in pytorch-grad-cam4 [144]. We are interested in investigating
which parts of an image are mostly influencing the classification of our fine-tuned
models. Since a precise localization is not the primary focus of our research, but
we are instead interested in highlighting the approximate regions of interest for the
model for a specific classification. We generate saliency maps for images of interest
using our VGG-16 models and manually inspect the results (for example, Figure
II.2.11 to obtain valuable insights into the classification criteria of the model.

Activation Maximization

To investigate the perceptual topology of the model, we decided to generate AM
images for the neuron responsible for a specific class. AM can be formulated as an
optimization problem, with the objective function defined as

x̂ = argmax
x

ac(x) (II.2.5)

where x̂ is an image that maximises the neuron ac responsible for classifying as a
class c. To generate the AM images, we rely on OmniXAI’s5 [387] feature visual-
ization implementation; we experiment with combinations of di↵erent parameters,
as described in Table II.2.8.

Parameter Values

Iterations 300, 400, 500
Learning rate 0.1, 0.01, 0.01
Regularizer L1, L2, TV

Regularizer weight 0, �0.05,�0.5, -2.5
Fourier preconditioning yes, no

Map uncorrelated colors to normal colors yes, no

Table II.2.8: Activation Maximization parameters supported by OmniXAI [387]
library. The best parameters after manual inspections are represented in bold.

4https://github.com/jacobgil/pytorch-grad-cam. Access date: May 2023.
5https://github.com/salesforce/OmniXAI. Access date: May 2023.

https://github.com/jacobgil/pytorch-grad-cam
https://github.com/salesforce/OmniXAI
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Stable Di↵usion-Activation Maximization

Finally, inspired by the work of DGN-AM [266], where the authors obtain realistic-
looking images using a GAN generator, and given the recent success of di↵usion
models in the automatic image generation task [107, 299, 289], we experiment
on the same task by using Stable Di↵usion (SD)6 [299], a di↵usion-based image
generator model, to synthesize realistic images from the AM (FV) (this method
is hereto referred to as SD-AM). Informally, di↵usion-based models progressively
remove noise from an image using a neural network [166]. The denoising procedure
is generally guided by a textual prompt. We exploit this aspect by treating the
image produced by the AM method as a noisy image and gradually removing noise
from it using SD under two experimental settings (see Figure II.2.9):

• Denoise the AM image without providing any textual prompt (img-to-img);

• Denoise the AM image by also including the class label (e.g. comfort, danger)
as a textual prompt as well (txt-to-img).

Figure II.2.9: Creation of death hypericons via our SD-AM method under the two
experimental settings.

6https://github.com/CompVis/stable-diffusion. Access date: May 2023.

https://github.com/CompVis/stable-diffusion
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II.2.6.2 Results

Class Activation Mapping

Figure II.2.10: GradCAM++ for three di↵erent classes computed using the fine-
tuned VGG-16 model on Triumph of the Virtues over the Vices painting by Paolo
Fiammingo, circa 1592. Oil on canvas, dimensions 16.5 × 221 cm (6.4 × 87 in).
Image sourced from Wikimedia Commons, originally from Sotheby’s auction in
London on 6 July 2011.
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Figure II.2.11: Top: Liberty Leading the People, oil painting by Eugène Delacroix,
1830, dimensions 260 cm × 325 cm, Louvre, Paris; image sourced from Wikime-
dia Commons. Bottom: GradCAM++ computed for freedom on (1) the original
painting, and two (2-3) derivative paintings. The three heatmaps show similar
activation areas for the class of freedom.

We rely on GradCAM++ to experiment in identifying which parts of certain
images are valuable from the point of view of the fine-tuned classification models.
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The saliency maps for images of interest previously unseen by the model are done
by activating specific classes in our VGG-16 model. We present some results on
images previously unseen by the model in Fig. II.2.10 and Fig. II.2.11). The latter
figure presents the resulting heatmaps for freedom on Delacroix’s iconic painting
as well as on two derivative works inspired by it, which re-interpret Delacroix’s
within the context of Hong Kong protests.7

Activation Maximization

We applied the logic of [271] to create feature visualizations for optimizing the
activation for each of the classifier neurons for each of the 88 target classes for the
VGG-16 based model (Fig. II.2.12).

Figure II.2.12: Activation Maximizations (AM), also known as Feature Visualiza-
tions (FV) for each of the 8 target classes using the finetuned VGG-16 method.

7“Liberty Leading the People of Hong Kong” by Frederic Bussiere, group exhibi-
tion “The Art of Resistance”, Kong Art Space, Hong Kong, 2019, Digital collage,
printed on canvas. 90 x 90 cm https://www.behance.net/gallery/90838377/
Liberty-Leading-the-People-of-Hong-Kong-collage and “Our Vantage” by Har-
court Romanticist https://www.instagram.com/p/B2EQ1FPnDh1/. Access dates: May
2023.

8A reminder that the VGG-16 model used for these experiments was trained on an earlier
version of ARTstract with an additional class, excitement.

https://www.behance.net/gallery/90838377/Liberty-Leading-the-People-of-Hong-Kong-collage
https://www.behance.net/gallery/90838377/Liberty-Leading-the-People-of-Hong-Kong-collage
https://www.instagram.com/p/B2EQ1FPnDh1/
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(a) Hypericons for comfort, danger and death, resulting from our SD-
AM method. The figure shows two hypericons per concept: on the left,
the prompt-agnostic one (denoised without any explicit prompting for
the target class), and on the right, prompt-guided (denoised with the
target class label as input).
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(a) Hypericons for fitness, freedom, power and safety resulting from our
SD-AM method. The figure shows two hypericons per concept: on the
left, the prompt-agnostic one (denoised without any explicit prompting
for the target class), and on the right, prompt-guided (denoised with
the target class label as input).
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Stable Di↵usion-Activation Maximization

With the stable di↵usion-based image generator model, we synthesized realistic
images from the ones obtained using the AM method. Examples with denoising
detail from both experimental settings (with textual prompt and without textual
prompt) are hereby presented: for death and freedom (see Fig. II.2.9). The final
hypericons obtained for our 7 classes of interest are presented in Figure II.2.13a

II.2.7 Discussion

In this study, we critically examined the prevailing trend of automating high-level
visual reasoning through DL, using the ARTstract dataset as our case study, where
cultural images are associated with ACs. Our investigation encompassed a multi-
faceted approach, involving an analysis of deep representations through intraclass
similarity metrics, the training and evaluation of state-of-the-art DL image classi-
fication models, introduced as baselines, and the implementation of explainability
techniques to try to “open” the black box models. Our particular emphasis was on
unraveling the knowledge sought and encapsulated by CNNs. This section o↵ers
a discussion of the presented results and an in-depth exploration of the utilization
of explainability techniques, including the introduction of our novel approach, SD-
AM, which facilitates hypericon creation. Through these comprehensive e↵orts, we
aimed to illuminate the challenges and potentials inherent in socio-cultural visual
reasoning and emphasize the pivotal role of explainability in mitigating biases and
ensuring the fairness of AI systems.

II.2.7.1 Deep Representation

The results indicate that there are di↵erences in intraclass similarity between ART-
stract and CIFAR-10 classes, which are highly unlikely to occur by random chance
alone. The results shed light on the dependence of intraclass similarity in image
representations on the concreteness or abstractness of the target class. The CNN-
based model e↵ectively captures shared features among images within concrete
label target classes, resulting in higher intraclass similarity. Conversely, images
associated with the same ACs exhibit lower similarity, signifying fewer shared fea-
tures. The remarkably low p-value underscores the significance of these findings.
This suggests that the model’s spatial resolution struggles to capture semantic nu-
ances, leading the VGG-16 ConvNet to perceive all ARTstract images as similar,
regardless of their specific AC. These results underscore the inherent challenges of
representing ACs within traditional DL models. The lower average intraclass sim-
ilarity in ARTstract highlights the di�culties posed by class variance and spatial
resolution limitations when compared to concrete classes. Further exploration and
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analysis of these distinctions may yield valuable insights into DL models’ ability
to capture both abstract and concrete semantic information.

II.2.7.2 Deep Performance

The performance of models in ACimage classification on the ARTstract dataset
displayed a notable range, with accuracy values spanning from 40% to 51%. The
Vision Transformer (ViT) emerged as the top-performing model, achieving the
highest metrics in both accuracy and F1 score. This finding underscores the po-
tential of transformer-based architectures like ViT in the field of image classifica-
tion. The underlying technology of Vision Transformer (ViT) is discussed in [398],
and it has been shown to detect features comparable to CNNs [287]. However,
it is worth mentioning that training or fine-tuning such models, including ViT, is
problematic without a proper large-scale dataset [339].

When considering the performance of CNNs we found that models that under-
went fine-tuning on only the classification head significantly outperformed those
with all layers finetuned (see Table II.2.5). This result highlights the importance
of preserving pre-trained features and minimizing extensive fine-tuning, a practice
that can potentially enhance model performance in this specific task. This also
suggests that the use of pre-trained models, such as those from ImageNet, o↵ers a
promising foundation by leveraging their learned visual features. Training a model
for AC classification allows us to investigate to which extent low-level perceptual
features can be used on this task. This allows us to better understand which in-
sights, if any, from these methods can be used to more e↵ectively deal with the
task.

The comparison of F1 scores between models trained on the ARTstract dataset
and those from related works, such as ADVISE [191], unveils a significant perfor-
mance improvement in the former. Specifically, while the ADVISE models achieved
F1 scores ranging from 0.13 to 0.15, our ARTstract-trained models consistently ex-
hibited higher F1 scores, falling within the range of 0.23 to 0.30 (see Table II.2.6).
This outcome underscores the substantial advantages a↵orded by the task defini-
tion and use of the ARTstract dataset in the context of ACimage classification,
surpassing the task definition and data employed in the ADVISE experiments.
These findings illuminate the dataset’s e↵ectiveness in capturing the intricacies of
socio-cultural visual reasoning, positioning it as a valuable resource for advancing
the state of the art in this domain.

A significant point of comparison arises when contrasting the performance of
these models on the ARTstract dataset with their performance on the CIFAR-10
dataset (see Table II.2.7). While the models demonstrated exceptional accuracy in
traditional image classification on CIFAR-10, achieving values between 94% and
98%, their accuracy scores dropped significantly when confronted with the chal-
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lenge of AC image classification on ARTstract, ranging from 47% to 51%. This
striking disparity underscores the unique di�culty posed by AC image classifi-
cation and the distinctive challenges it presents compared to more conventional
image classification tasks. They also highlight the importance of dataset choice
and task definition in shaping model performance. Even though more complex
training procedures can be employed [192] (e.g. training only a subset of the total
number of convolutional layers), we argue that the intraclass variance displayed by
ARTstract hardly allows any significant improvement from a quantitative point of
view [42, 328].

Figure II.2.10 illustrates some of the challenges that deep models may encounter
in AC image classification. GRAD-CAM++ results show that the concept of
freedom is linked to a region containing a weapon, while comfort and safety are
associated with di↵erent areas. When an image contains regions associated with
di↵erent ACs, the model may struggle to determine which regions and ACs are
the most significant. In this example, the system may find it challenging to decide
whether the presence of weapons in the image should be su�cient for classifying
it as freedom, or if, conversely, the identification of regions relevant to comfort in
the top-right of the image may overshadow it.

Overall, the performance results of this study bring to the fore the wicked
nature of the problem of automatically detecting ACs within computer vision.
The proposed AC image classification baselines show relatively low performances
when compared to other CV tasks on art images, such as style, genre, or artist
classification [350, 70]. The results shown in Table II.2.4, however, are similar to
the results obtained by models that use a similar amount of images on a radically
di↵erent set of labels compared to ImageNet [264]. The complexity of detecting
ACs might hence stem from the relatively open definition of each AC, which does
not explicitly account for their polysemy and association to vastly varied visual
data (as seen in the example of danger in Figure II.1.2). The shallow representation
obtained using a CNN-based method is not able to generalize enough to capture
the ambiguities of such definitions.

II.2.7.3 Deep Explainability

The fact that even with low performances, high-level, subjective tasks like AC
image classification are increasingly automated underscores the pressing need for
interpretability. The inherent complexity, contextual dependencies, and subjec-
tive nature of ACs demand a level of transparency and explainability not only
for improving model performance but also for gaining insights into the underlying
reasons for model decisions. By uncovering the visual cues and features that con-
tribute to classification outcomes, interpretability facilitates informed refinement
and adaptation of algorithms.
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Insights from Traditional Explainability: CAM

We experimented with a CAM-based method as it is the most well-known ex-
plainability technique to uncover the decision-making mechanisms of CNN-based
models. These insights were pivotal in shedding light on the complex processes
underlying our models’ decisions. To explore the reasons behind our models’ clas-
sification of unseen images, we employed GradCAM++ to pinpoint valuable image
regions. Using the finetuned VGG-16 model, we activated specific classes for pre-
viously unencountered images. This approach provided valuable perspectives into
the model’s decision boundaries. Figure II.2.11 displays the results for the class
of freedom in Eugène Delacroix’s painting “Liberty Leading the People” and two
derivative works inspired by it. In this example, both the original work and the
two derivative works localize the freedom class in the same area (i.e. where the
flags and raised hands are located). We can hence discern how the model iden-
tifies specific visual cues that evoke the AC. For instance, the emphasis on flags
within the tested images suggests a connection between the concept of freedom
and symbols of nationhood or political expression. This shows that, indeed, the
model can identify perceptual components that are relevant to the image. Such
perceptual components, however, are to be considered as lower or mid-level image
features in the context of AC classification problem. This suggests that these types
of perceptual semantics (such as objects) can be intermediaries that help bridge
the gap between raw pixels and ACs.

Another aspect that emphasizes the usefulness of such a technique is its consis-
tent application on the same image, but to localize important regions for di↵erent
classes. Figure II.2.10 presents the results on three di↵erent classes in the painting
”Triumph of the Virtues over the Vices”. These experiments identify parts of the
image in which the model focuses for the image’s classification as a selected class.
For instance, comfort is localized near the figure sitting in a relaxed position on
a comfortable couch. In contrast, freedom is concentrated around the area of the
painting with angels, clouds, and a raised sword. These findings suggest biases in
the ARTstract dataset, potentially stemming from freedom-tagged images being
biased towards images depicting elements like raised swords or flying agents such
as birds or angels.

Overall, these results showcase the e↵ectiveness of CAM-based methods in iden-
tifying valuable regions in images for classification models, thereby highlighting po-
tential biases in the dataset and providing insights into how the model perceives
and processes images. However, the results also underscore that while CNNs are
aware of statistical correlations, these correlations may not always align with hu-
man perspectives. Despite providing valuable insights into classification processes
and the identification of ACs in images, the shallow representation achieved by the
model can yield false evidence. Furthermore, the lack of robustness, particularly
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against adversarial attacks, poses a significant concern for the interpretability of
classifiers [9]. In conclusion, these findings stress the need for further research to
enhance the accuracy and robustness of classification models when addressing ACs
in the realm of cultural images.

AM: Distributed Reality, Perceptual Bias, and Feature Visualization

We see the regularized feature visualizations for each of our eight AC targets
(shown in II.2.12) as examples of how distributed reality (in terms of manifes-
tations and perspectives) can get collapsed into one 2D image. When they are
learned and represented by a CNN, concepts are “dissolved”, or “entangled”, los-
ing their spatial coherence, and thus “it is no surprise that feature visualization
images will reflect di↵erent manifestations of, and perspectives on, an object, akin
to Cubist paintings” [273, pg. 1301]. We see ACs as a prime example of how visual
concepts get dissolved in ways that are practically unintelligible to humans. Ad-
ditionally, the fact that the images in the referenced figure are regularized means
that we already introduced a syntactic bias to guide the manifestations into a
textural landscape closer to what we visually comprehend. With this syntactic
optimization, most of the FVs in Figure II.2.12 are still relatively humanly incom-
prehensible (no noticeable objects or otherwise legible items are very visible). An
exception may be the case of the FV of fitness, in which certain edges seem to
resemble a human figure playing with some sort of ball (see Figure II.2.15).

Figure II.2.15: The feature visualization (FV) of the fitness class using VGG-16
finetuned for 1000 epochs (left) resembles a human figure playing with a sort of
ball (right).
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SD-AM: Denoising and the Big Trade-O↵

Because moving from the entangled state to a state of higher semantic inter-
pretability for humans requires introducing more constraints, in this work we de-
cided to combine the feature visualizations produced with the AM method with
Stable Di↵usion (SD-AM) (see Figure II.2.16). Despite some work on the genera-
tion of counter-factual explanations [182, 397], the investigation of di↵usion models
trained on large-scale data, such as Stable Di↵usion, as tools that allow a better
understanding of classification models is a novel approach. While past attempts,
such as combining AM with GAN models [266] have shown promising results, we
argue that the intrinsic dependency of GANs on a classification model (the discrim-
inator) can potentially bias the generation process toward results that are harder
to automatically classify for syntactic reasons (i.e. the color distribution) rather
than for semantic reasons. This is especially true for ACs, where the di↵erence
between classes, for instance danger and power, depends on the semantic content
of the image alongside the interpretation of the AC that the network inductively
learns. The use of di↵usion models overcomes this limitation by design. An image
is not generated to fool a discriminator, but rather to remove the noise that makes
an input image hard to interpret for humans. While the experiments on FV (Fig-
ure II.2.12) provide little insight into the perception of an AC by the model, the
denoised version of such images, especially those that are textual prompt guided,
(Figure II.2.13a and II.2.14a) let prototypical versions of an AC emerge.

However, it is important to note that the images produced are confined to the
latent space of the specific di↵usion model employed, similar to the one argued
regarding GANs [273]. These images do not reflect the perceptual topology of the
analyzed CNN, but they rather replace the elements that are hard to interpret
with what the model perceives as human-like, essentially filling the gap between
AM images and interpretable hypericons. As such, SD-AM is to be taken as an
explorative approach towards easier interpretation of AM images. Further research
is required to investigate whether this approach can be directly incorporated into
the extraction of saliency maps, to obtain human interpretable results while min-
imizing the influence of SD.

Perhaps the most critical contribution of the studies that inspired our work
[271, 272] is their discussion of the problem of perceptual bias in machine vision
systems, which can only be overcome by shifting toward di↵erent biases. As they
discuss, any constraint added to the optimization process for feature visualiza-
tions moves the images further away from showing the actual perceptual topology
of a CNN, unveiling the trade-o↵ between representational capacity and legibility
of feature visualization images. Their work highlights that feature visualization
is one way to achieve forced legibility but also presents a dilemma that the rep-
resentational capacity of feature visualization images is inversely proportional to
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their legibility. Feature visualizations that show “something” are further removed
from the actual perceptual topology of the machine vision system than feature
visualizations that show “nothing.”

Figure II.2.16: Starting with the regularized FV for the power class, the pro-
gression from left to right illustrates a gradual escalation in denoising strength,
resulting in images with enhanced human interpretability. This procedure was
performed twice, yielding distinct SD-AM “hypericons” for the power category
(blue borders), both originating from the same initial regularized FV. It is note-
worthy that the denoising process was executed independently of any textual
prompt, thereby ensuring that the process remained entirely oblivious to the cor-
relation between the FV earmarked for denoising and its status as representing
“power”.

While keeping in mind this trade-o↵, they also note that we can treat resulting
hypericons as valuable tools for visual interpretability. Hypericons, such as the
ones presented in Figure II.2.13a and discussed in the previous section can be used
in combination with the original datasets (in this case, ARTstract) to enable the
identification of interesting patterns, especially when treating them as [253, p. 49]
suggests:

The metapicture is a piece of moveable cultural apparatus, one which
may serve a marginal role as illustrative device or central role as a kind
of summary image, what I have called a ‘hypericon’ that encapsulates
an entire episteme, a theory of knowledge.



II.2.7 Discussion 113

As such, in addition to aiding the understanding of the perceptual topologies of
CV models, feature visualization images can be studied as concrete representations
of cultural knowledge defined by the lenses and tags fed into the CV systems. We
hope that our analyses in this case study can function as evidence that exactly
this “subjective” nature of feature visualization images is what can make “visual
explainability useful in computer vision for art” [271].

A crucial point is that the SD-AM can lead to relevant and semantically mean-
ingful hypericons even without any textual prompt, i.e., without being guided or
biased by the class corresponding to the input AM image. For example, in Fig-
ure II.2.16, we present results of applying promptless SD-AM to obtain hypericons
related to the power class. We denoised the extracted and regularized AM by grad-
ually increasing the intensity (weight). By increasing the intensity of the denoising
process, we can control the number of transformations applied by SD to obtain
an image that is perceived (by the model) as closer to its original training data.
Critically, as seen in Figure II.2.17, this process e↵ectively converges towards more
human-intelligible hypericons, which resemble real instances of artworks from the
corresponding class present in the original ARTstract dataset both visually and
semantically.

Figure II.2.17: Comparison of the synthetic SD-AM “hypericons” for the power
class (with blue borders) with manually selected with real instances from ART-
stract (with purple borders). These real images from ARTstract are tagged with
power, they were selected because of their visual and semantic similarity to the
hypericons.
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Hyperpop Hypericons

The proliferation of images in modern mass media has reached unprecedented lev-
els, with social media platforms alone hosting billions of images every day, resulting
in a visually abundant contemporary culture where individuals are bombarded with
heterogeneous visual data. This phenomenon characterizes the post-modern era,
where users are overwhelmed by an abundance of information that is not curated
[181], making it increasingly important to become “lookers” in addition to being
readers [334]. The rise of hyperpop and meme culture, favored by the newest gen-
eration of technology users searching for sense amidst the chaos, is symptomatic
of the current historical moment. As Vassar [366] suggests, hyperpop serves as an
attempt, “suited to the psyche of the six-hours-of-screen-time-a-day individual”,
to strive to find some semblance of meaning amidst the disarray, by compiling a
vast field of disparate meanings until they reach some semblance of accord.

Intriguingly, an uncanny resemblance between the SD-AM hypericons and hy-
perpop artworks surfaces, as illustrated in Figure II.2.18. Within this visual dia-
logue, a profound parallel emerges as both categories exude dissolved yet intricately
collapsed visuals. These striking visuals o↵er a blend of object fragments and hues,
all while boundaries remain indistinct. This parallel beckons us to explore the in-
tersections of aesthetics and cognition. Intriguing questions arise—does the act of
meaning collapse within the hypericons mirror the cognitive underpinnings of the
hyperpop aesthetic? Could it signify a convergence of overstimulated sensibilities,
reminiscent of the torrent of data processed by our models? Analogously, just
as our hypericons weave significance from intricate data, the hyperpop aesthetic
might mirror the cognitive fabric of contemporary generations, o↵ering a fresh lens
for interpreting the avalanche of visual content.

Explainability Lessons for DH

We can assume that detecting and correcting bias of CV systems in the context of
cultural data and Cultural Heritage (CH) will mostly happen in a post-hoc man-
ner, i.e., after a system has been deployed in real-world situations. This is because
many models based on similar patterns have already been used in real-world ap-
plications, especially in the digital humanities. We believe that the integration
of interpretability into CV-based systems in the cultural heritage (CH) field has
not received enough attention. This study stands as proof that digital human-
ities (DH) initiatives can act as valuable arenas for both probing the limits of
established CV explanation techniques and pioneering novel methodologies. DH
projects, with their interdisciplinary focus and emphasis on interpretation, o↵er
a unique opportunity to combine technical methods with hermeneutic work to
develop systems that are interpretable-by-design. We envision our work as one
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(a) Eight human-made artworks representing the recent “hyperpop” aesthetic, pulsating
with collapsed visuals and meanings, symptomatic of an era of information abundance
and visual saturation. Top row: artworks by Claire Barrow (2020-2023) [178]. Bottom
row: artworks by Mikey Joyce (2020-2023) [179].

(b) Eight SD-AM hypericons crafted for each of the 8 AC classes, emblematic of our
work, revealing a surprising resemblance to the aesthetic of hyperpop artworks.

Figure II.2.18: Visual convergence of (II.2.18a) hyperpop aesthetics and (II.2.18b)
SD-AM hypericons, a juxtaposition that invites contemplation on the parallels
between the rapid pace of modern media consumption and the massive data flow
into DL models.
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of many DH projects that can contribute to the broader development of more
transparent and understandable computer vision systems. With their diagnostic
capability, the tools developed in XAI are exciting both to the technical disciplines
for improving the systems they develop, and to fields such as Digital Humanities
with alternative paths for thinking about the kind of work they do (e.g. by inter-
rogating through explainable methods the way that a system has classified certain
cultural objects) [44].

II.2.7.4 Future Directions

To address the existing limitations and expand the scope of the study, several
avenues for future research are identified:

• Further Pre-training and Fine-tuning: Further pre-training or finetun-
ing models, initially trained on ImageNet, on other available art datasets to
achieve specialization in AC detection could be useful. Further fine-tuning
of the final convolutional layers on ARTstract can enhance classification per-
formance [192].

• Utilization of Knowledge Graphs (KGs): Hybrid methods using KGs
as background knowledge o↵er an opportunity to enhance classification ac-
curacy and robustness [238, 400]. Additionally, exploring KGs for better
explainability by incorporating semantic information into CV systems can
improve transparency and interpretability.

• Prominent Region Detection: Further experiments in detecting specific
regions where an AC can be prominently identified can enhance classifica-
tion accuracy. Systematically evaluating regions identified using CAM-based
methods and state-of-the-art techniques in semantic segmentation can pro-
vide deeper insights into image interpretation [265, 255]. Running unsuper-
vised attention mechanisms to locate crucial image areas can aid in bounding
box designation [175].

• Improving AC Classification Explainability: Conducting diverse anal-
yses such as color palette analysis, co-occurring object detection, and ex-
ploration of visual cues like texture and style can enhance classification ex-
plainability. Additionally, exploring pose detection and other visual cues can
further improve interpretability.

• Human Performance Benchmark: Assessing AC image classification
methods against human performance is crucial for gauging their real-world
utility. Designing task-based user studies to mimic AI model tasks can o↵er
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valuable insights. Diverse participant backgrounds should be included for a
comprehensive assessment.

• Explainability User Assessment: Evaluating the explainability of AI sys-
tems is vital for establishing trust and transparency. Future research should
conduct user studies to assess the clarity, comprehensibility, and usefulness of
various explainability methods, including feature visualizations, hypericons,
and di↵usion processes.

• Refining Task Definition and Metrics: Single-label multi-class classifi-
cation may not fully capture the complexity of associating multiple ACs with
a single image. Proposed refinements include exploring ranking-based tasks,
prioritizing reasonability over objectivity in evaluations, and developing eval-
uation metrics considering semantic relationships between AC classes.

II.2.8 Conclusions

In our pursuit to address the intricate challenge of automatically classifying im-
ages based on evoked ACs, we have experimented with DL models on the novel
ARTstract dataset, and used these as a lens through which we delve into the realm
of explainability. This work unravels the role of end-to-end vision models in com-
plex high-level visual tasks, establishing benchmark model performances for AC
image classification within the ARTstract context. Additionally, we combine tra-
ditional and novel explainability techniques to better understand model behavior
and predictions. With SD-AM, by harmonizing AM with di↵usion models, we
create synthetic “hypericons” that compellingly visualize the profound transfor-
mation of AC meanings as captured by deep networks into singular images. Our
study resonates with the burgeoning demand for interpretability in CV systems,
especially within the CH domain and the realm of socio-cultural-cognitive visual
understanding. We accentuate the significance of recognizing biases and forging
connections between the technical and humanistic dimensions, advocating for un-
conventional pathways to extend hermeneutics. In conclusion, this chapter calls
for the explicit integration of explainability into the fabric of CV-based systems
that attempt to address high-level visual challenges. This integration is vital to
ensure the dependability and credibility of these systems in the evolving landscape
of art, culture, and technology. It beckons us to challenge the binary boundaries
that prevail in CV, advocating for a more culturally situated, humanistic, and
multifaceted perspective.
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Minding the Gap with Cognitive
Intermediaries
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Chapter III.1

Automating Abstract Concepts’
Acquired Embodiment

Summary The results obtained in Chapter II.2 provided valuable insights into
the potential link between specific perceptual elements, such as depicted objects
like swords or flags, and the visual evocation of ACs like freedom. These findings
align closely with the concept from cognitive science referred to as acquired em-
bodiment [167] (as discussed in Chapter I.3, Section I.3.5). Acquired embodiment
serves as a mechanism for inferring sensory-perceptual attributes associated with
ACs, particularly those that may lack strong sensorimotor connections. ACs ac-
quire sensory-motor features based on their shared linguistic contexts with concrete
concepts. These findings collectively suggest the presence of visual data descrip-
tors, potentially anchored in specific depicted objects, which have the potential
to bridge the gap between raw pixel data and ACs. Building on this foundation,
our research in this chapter endeavors to translate the cognitive concept of ac-
quired embodiment into a computational method capable of identifying concrete
sensory features that visually ground ACs within images in a data-driven manner.
Our method focuses on representing ACs as multimodal frames by integrating
sensory perceptual and semantic data extracted from images and their metadata.
This exploration hinges on identifying patterns of co-occurrence involving domi-
nant colors, concrete objects, and depicted actions in images tagged with specific
ACs. We define a conceptual model and introduce a novel ontology for the for-
mal representation of ACs as multimodal frames that can integrate the extracted
information. To illustrate the viability of our approach, we conduct experiments
using the Tate Gallery’s collection as an empirical basis, demonstrating the proof
of concept. Furthermore, we discuss potential avenues for future research and
provide access to all associated software, data sources, and results.
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III.1.1 Introduction and Background

In this study, we embark on the challenge of providing a proof of concept that
translates the cognitive concept of acquired embodiment into a practical software
framework. Our primary objective is to automatically model ACs by leveraging
features extracted from art images that evoke these abstract notions. The choice of
art images as a case study of this endeavor is driven by the allure of ever-expanding
image collections, particularly the burgeoning art catalogues within the CH do-
main. These visual forms, encompassing paintings and photographs, illustrate,
and circulate, concepts through what Barthes called an image’s ‘connotation’ [32].
For example, seeing Artemisia Gentileschi’s Judith Beheading Holofernes (1620
ca.), a human observer can detect objects such as a sword, but a comprehensive
understanding of the painting would generally include an AC such as violence. In
this context, the visual archives of CH often employ controlled thesauri like the
Getty vocabularies and classification systems like Iconclass, replete with ready-
made ACs that can be associated as subject matters for visual materials. How-
ever, the computational interpretation of these culturally coded visual elements is
far from straightforward. Despite the remarkable progress in CV, the field falls
short in the domain of AC image classification (see results of Chapter II.2). The
predominant focus on image segmentation is ill-suited for abstract notions that
lack the distinctive physical features present in many concrete objects.

This chapter’s goal is to translate recent cognitive theories about concept rep-
resentation into a software architecture that can automatically model ACs based
on multimodal features. We hypothesize that a formal representation of ACs
as multimodal frames can be automatically produced with a pipeline combining
knowledge engineering, CV, and computational linguistics methods. In this work,
we introduce our approach to generating these representations through the extrac-
tion and integration of features from images to KGs. Our approach focuses on the
extraction, analysis, and integration of multimodal features (including depicted
concrete objects, depicted actions, and color features) from images tagged with
ACs. Taking the Tate Gallery collection as an empirical basis, we present a study
of the extraction and integration of multimodal data. The contributions of this
work can be summarised as follows:

• We define a conceptual model and present a novel, pattern-based ontology for
AC representation, which allows for semantic characterization of multimodal
features.

• We propose a novel approach for the extraction and integration of multimodal
features of images that evoke certain ACs.

• We implement the proposed method on a corpus of art images from a well-
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known catalogue of art images (the Tate Gallery collection).

• We discuss the results and provide all software, data sources, and results to
allow the reproducibility of our experiment.

The remainder of this work is organized as follows. In Section III.1.2 we de-
scribe the Tate Gallery Collection’s dataset, which was used as our experiments’
input source. In Section III.1.3, we explain our approach, and in Section III.1.4 its
experimental implementation. Section III.1.5 reports our experiments and results,
while Section III.1.6 focuses on the discussion of the results and their limitations.
We conclude with further directions in Section III.1.7

III.1.2 Input Source: The Tate Gallery

As an empirical basis for our study, we use the Tate Gallery’s collection metadata
of 70,000 artworks made available as a Github repository.1 The Tate is an insti-
tution that houses the United Kingdom’s national collection of British art, and
international modern and contemporary art. Most of the collection is from the
1800s, and a considerable part of it is from after 1960. In 2013, the institution
made its collection metadata available for about 70,000 artworks that it owns or
jointly owns with the National Galleries of Scotland, through a GitHub repository.
While the repository is no longer actively maintained, the Tate keeps it available
as a useful tool for researchers and developers, and looks positively on creative
remixing, visualization, and analysis of their collection metadata.2

The dataset contains complete records of most artists and artworks in the
collection. It also includes image and thumbnail URLs, but it does not directly
provide images, which still need to be accessed online. The dataset can be accessed
in two ways: either through CSV files containing information about the artists and
artworks, or in a series of thousands of text files containing all the records in JSON
format. The JSON data is much richer than the CSV, storing a list of subjects
associated with the record organized in a subject taxonomy.

It was precisely because of its subject taxonomy that we selected the Tate
Gallery Collection as the first dataset to test our approach; the rich taxonomy
includes both concrete concepts and ACs referring to non-physical objects (“vac-
uum cleaner,” “shoe”, “consumerism”, “horror”) as subject tags. As documented

1https://github.com/tategallery/collection. Access date: May 2021.
2See Eric Drass’ “Tate Explorer” at http://shardcore.org/tatedata/ and Florian

Kräutli’s “The Tate Collection on Github” at http://research.kraeutli.com/index.
php/2013/11/the-tate-collection-on-github/. Access dates: May 2021.

https://github.com/tategallery/collection
http://shardcore.org/tatedata/
http://research.kraeutli.com/index.php/2013/11/the-tate-collection-on-github/
http://research.kraeutli.com/index.php/2013/11/the-tate-collection-on-github/
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in an issue of their GitHub repository,3 the Tate’s subject taxonomy is a “bespoke
taxonomy”, originally developed alongside the digitization of Tate’s collection as
a means of enabling visitors to search artworks via subject. The design of the
hierarchical structure and initial tagging of the bulk of the collection was expert-
led, carried out by indexers with art history backgrounds and with the support of
Tate’s curatorial team, and in consultation with pre-existing systems such as Icon-
class and COLLAGE–the now unavailable public-access system for the Guildhall
Library and Art Gallery.

III.1.3 Approach

Our approach is based on the idea that an AC is a complex object whose definition
can be formalized as a description [245]. Specifically, we assume that an AC can
be described via a multimodal frame, whose meaning arises from an integration of
sensory-perceptual and linguistic features of content, such as images, that evoke
that AC. For example, the meaning of the AC death may be described via a
multimodal frame integrating properties of linguistically co-occurring terms (e.g.,
“co�n”, “gun”, “blood”) and sensory-perceptual properties of images depicting
scenes that evoke that AC (e.g., the color black as a sensory-perceptual feature of
a funeral scene, which evokes the AC “death”) [101]. We developed a framework
(summarized in Figure IV.1.2) to integrate multimodal features related to ACs
into a scalable ontology-based KG.

ACs Candidate List Creation Determining a starting list of candidate con-
cepts that can be reliably classified as referring to non-physical objects is necessary
to begin this research. In our approach, the initial list is based on the conceptual
taxonomy already in use by the Tate Collection to tag the content of visual art-
works, which explicitly includes categories such as “universal concepts” and “social
comment”.

AC Definition by Multimodal Frames Our approach is based on the idea
that an AC can be defined in a multimodal frame which describes and integrates
complex linguistic and sensory-perceptual features. To represent this model for-
mally, we designed the Multimodal Descriptions of Abstract Concepts (MUSCO)
ontology, based on the Descriptions and Situations (DnS) ontology [129], which
supports a first-order manipulation of theories and models. DnS was chosen as
a core design pattern because it allows for the modeling of non-physical objects,

3https://github.com/tategallery/collection/issues/27. Access date: May
2021.
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Figure III.1.1: The pipeline aims to populate a large-scale, ontology-based ACs
KG that describes ACs with multimodal frames.

such as ACs, whose intended meaning results from statements, i.e. they arise
in combination with other entities. Specifically, DnS axioms capture the notion
of situation as a unitarian entity out of a State of A↵airs (SoA), that is consti-
tuted by the entities and the relations among them, and a description as an entity
that partly represents a (possibly formalized) theory that can be conceived by
an agent. Influenced by the work in [361], in the MUSCO ontology we consider
that the image annotation process is a situation (i.e. a context reified in the class
ImageAnnotationSituation) that represents the state of a↵airs of all related,
annotated data: actual multimedia data as well as metadata, and that needs to
be described via an ImageAnnotationDescription (see Figure III.1.2).

We have engineered MUSCO’s architecture in a deliberately modular way, such
that an ImageAnnotationDescription can be modularized into subdescrip-
tions that capture complex structures to be annotated. At this stage, we have
identified three complex structures to be annotated in art images evoking certain
ACs: dominant colors, depicted physical objects, and depicted actions. As such, in
the MUSCO ontology we define the general ImageAnnotationDescription,
which is satisfied by the general ImageAnnotationSituation, and which is
composed by three more specific descriptions (DominantColorDescription,
raPORecognitionDescription, and ActionRecognitionDescription)
that define concepts and give meaning to data extracted in the context of each of
the complex structures (see Figure III.1.3). Finally, the MUSCO Ontology defines
the description class SCMultiModalFrame, which (a) defines a SocialConcept,
(b) is used by a ImageAnnotationSituation, and (c) can be evoked by
some ImageObject. The ontology also already allows for the conjunct expres-
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Figure III.1.2: The MUSCO Ontology is aligned to and reuses patterns from
DOLCE+DnS Ultralite (DUL) foundational ontology in order to represent and
give meaning to all data created during an image annotation process. All un-
prefixed classes belong to the namespace of the MUSCO ontology.

sion of data coming from linguistic and lexical resources through classes such as
WnSynsetFrame and ConceptualFrame. Even though the current version of
the MUSCO ontology is still under the process of revision and editing, in its cur-
rent state, it already includes the entities, resources, and relationships necessary
to integrate the experimental outputs presented in this work.

Abstract Concept Visual Dataset Creation For each AC, a corpus of (art)
images that have previously been explicitly tagged with that AC is created. This
corpus is produced by performing surveys of existing image catalogues which in-
clude that AC in their tagging scheme.

Sensory-Perceptual Data Collection Our approach is based on the idea that
sensory-perceptual features of ACs can be extracted from images that evoke those
ACs. For each AC, based on its corpus of images, we extract a set of features in-
cluding: labels for concrete objects, actions depicted, and dominant color palettes.
The specific technique for extracting concrete object labels from the images de-
pends on the previously provided information from that image. If the images have
already been tagged with labels of concrete objects, these are collected for further
analysis. If they have not, an object recognition task especially attuned to art
images is performed based on [90] to recognize physical objects in the image and
gather labels for such objects. A similar approach is taken for extracting labels for
depicted actions (e.g., “sitting”, “standing”) and/or relationships (e.g., “holding
hands”, “hugging”). If tags for actions or relationships have already been attached
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Figure III.1.3: The MUSCO Ontology’s reuse of the DnS pattern is modular: defin-
ing a general description for the image annotation situation, composed of simpler,
more specific descriptions which give meaning to specific annotation structures and
results. All classes in the figure belong to the namespace of the MUSCO ontology
defined in this work.

to the images in the corpus, these are used. If not, we perform relation and action
detection on the images following the most recent relation modeling techniques
after they have been trained specifically to process art images, following the ap-
proach by [190]. Finally, color analysis is performed on the images following the
method provided by the extcolors Python package.4 This technique groups colors
based on visual similarities using the CIE76 formula, and outputs both an im-
age (for visual representation) and a text result with the usage (in number and
percentage of pixels) of the top five dominant (most used) colors in that image.

III.1.4 Experimental Set-Up

III.1.4.1 Experiments

Input Data Preprocessing. To apply our method to the Tate Gallery Collec-
tion dataset, it was first necessary to reconstruct the hierarchy of Tate’s subject

4https://pypi.org/project/extcolors/. Access date: May 2021.

https://pypi.org/project/extcolors/
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Figure III.1.4: Example use of the MUSCO ontology to formalize multimodal
features extracted from one image (dominant color bright yellow, depiction of the
physical object oven, and depiction of the action baking), the image’s evocation of
the AC “consumerism”, and the concept’s description as a multimodal frame. All
arrows with white arrowheads stand for the relation rdf:type.

taxonomy in a way that allowed its eventual integration into an ACs KG using the
MUSCO ontology. For this task, we performed a survey of the taxonomy based
on metadata accessed in March of 2021, finding that (1) it has three hierarchical
levels, going from broadest to narrowest categories, and that (2) it includes hier-
archical relationships between 2409 subject tags. These 2409 subject tags were
the ones used to reconstruct and then formalize Tate’s tagging hierarchy. To in-
tegrate the taxonomy and its subjects into our KG, we extended the MUSCO
ontology by reusing concepts defined in the Simple Knowledge Organization Sys-
tem (SKOS) data model5 (see Figure III.1.5). With this extension, we were able to
represent hierarchical relations between subject tags, specifically with the property
skos:broader. We implemented a Python script to transform and serialize the
taxonomy from JSON to Turtle (.ttl) format6. All resources (MUSCO ontology,
.ttl file, Python functions) are available in the Github repository.7

Abstract Concepts Candidate List Creation. Visualizations of the Tate’s
subject taxonomy as graphs (also available in the GitHub repository) were per-

5https://www.w3.org/TR/skos-reference/#schemes. Access date: May 2021.
6https://github.com/tategallery/collection/tree/master/processed/

subjects. Access date: May 2021.
7https://github.com/delfimpandiani/musco. Access date: May 2021.

https://www.w3.org/TR/skos-reference/#schemes
https://github.com/tategallery/collection/tree/master/processed/subjects
https://github.com/tategallery/collection/tree/master/processed/subjects
https://github.com/delfimpandiani/musco
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Figure III.1.5: Addition to the MUSCO ontology model to formalize the use of
concept schemes coming from collections’ or other datasets’ taxonomies, such as
Tate’s subject taxonomy. All classes with no explicit namespace belong to the
namespace of the MUSCO ontology.

formed with the Graphviz8 package, in order to ease manual investigation of its
coverage and identification of areas where ACs may be more pervasive. Three ar-
eas of interest emerged: first, the level 0 category “emotions, concepts and ideas”
(specifically its level 1 children “universal concepts” and “emotions and human
qualities”); second, the level 1 category “social comment” (child of level 0 cate-
gory “society”), and third, the level 0 category “religion and belief” (see Figure
III.1.6). A total of 166 “narrow” [level 2] ACs were manually selected from these
categories (80 from “emotions, concepts, and ideas”, 67 from “society”, and 19
from “religion and belief”). These concepts’ parent [level 1] and grandparent [level
0] tags were excluded from subsequent analysis for two reasons. First, compared
to their narrow children tags (e.g., “fear”, “education”), many of the broader
tags actually refer to multiple ACs at once (e.g., “emotions, concepts and ideas”,
“education, science and learning”). Secondly, a manual investigation of the Tate
artworks’ metadata showed that artworks seem to be explicitly tagged with level
2 tags, and level 1 and level 0 tags are only included by being higher in the hier-
archy. That is, there seem to be no Tate artworks that are tagged only with the
broader level 1 or 0 tags. The complete list of ACs and their parents is available
in Appendix 1.

Concept-Artwork Matching. For each of the 166 ACs, the number of artworks
tagged with that AC was extracted and recorded. Additionally, data about each
artwork, including its bibliographic information (name, id, artist, date, etc.) was
stored.

Co-occurring Subject Tags. For each AC, an investigation of the metadata
of the artworks tagged with it was performed, collecting other subject tags used
to index the content of those artworks. In this way, for each AC, we created a

8https://pypi.org/project/graphviz/. Access date: May 2021.

https://pypi.org/project/graphviz/
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Figure III.1.6: Three main areas of interest for the identification of ACs within the
Tate subject taxonomy. Social concepts such as “destruction”, “peace”, “wealth”,
“courage” (surrounding “emotions, concepts and ideas”), “consumerism”, “free-
dom”, “slavery”, “nationalism”, “ecology” (surrounding “society”), “magic”, “en-
chantment”, “worship”, “blessing” (surrounding “religion and belief”), among oth-
ers, were identified in these areas.

dictionary holding all co-occurring subject tags and the frequency of co-occurrence.
This allowed for the collection of object and action tags without having to resort
to object or human-object interaction recognition techniques.

Co-occurring Physical Objects. Symbol grounding and acquired embodiment
is expected to occur with labels referring to physical referents. Therefore, we
wanted to identify all co-occurring tags that specifically refer to physical objects.
The Tate’s subject taxonomy allowed for a quick solution to this goal, as its hi-
erarchical organization includes the top [level 0] concept “objects”, which based
on a manual investigation seem to refer to physical objects. We extracted all tags
under this category. A manual inspection of the initial results showed that cer-
tain physical entities, such as “woman”, or “tree” were not being extracted from
artworks that clearly depicted these entities (and were tagged with them). From
this observation, we noted that additional labels referring to physical objects were
under the categories “people” and “nature”, so we also extracted all tags whose
parent tag was “children”, “adults”, or “nude”, as well as those tags whose par-
ent or grandparent tag was “nature”. While it was not possible to confirm that
absolutely all terms referring to physical objects were extracted, after a manual
inspection of the Tate’s subject taxonomy, it was concluded that a large majority
of them was indeed extracted. We then performed statistical analyses to obtain
the number and frequency of co-occurring physical objects for each AC, as well
as the top ten most frequent physical objects co-occurring with each AC. We also
calculated the averages and medians of these measures by taking into account all
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ACs and their co-occurring physical objects.

Co-occurring Physical Actions. A similar process to the one just described
for labels referring to physical objects was performed for what, within the Tate’s
subject taxonomy, are “action” labels. The identification of tags that refer to
actions was completed by identifying tags under the categories “actions:postures
and motions”, “actions:processes and functions”, or “actions:expressive”, and “an-
imals:actions”. We extracted all action tags co-occurring with each of the ACs,
and then performed statistical analyses as described in the previous section.

Dominant Color Visual Analyses. We then performed color analyses related
to two ACs selected as case studies: “consumerism” and “horror”. The hypothesis
supporting this choice was that they should show distinctive color profiles. For
each concept, the color analysis was performed with the extcolors Python pack-
age mentioned above, on 30 randomly selected images of artworks (specifically,
of paintings and prints) that had been explicitly tagged with the concept. For
each image, a color palette was created by extracting the RGB coordinates and
occurrence rates (in both number and percentage of pixels) of the five colors with
the highest occurrence rate in that image. The criterion for this choice was that
identifying the colors with the highest occurrence in an image is a proxy for iden-
tifying the most pervasive/visible colors in an image, which may be a relevant
feature humans use to judge whether images evoke certain concepts. To represent
this idea more intuitively, a further analysis was completed to generate images
of the proportional palettes, so as to represent the most common colors present
in each of the artworks more intuitively. This final task was completed with the
MulticolorEngine by TinEye,9 but we are developing code for the automation of
this procedure.

Data Integration. We automatically incorporate the extracted data, including
the co-occurrence patterns and visual features–into the ACs KG via the MUSCO
ontology.

III.1.5 Results

Based on the metadata accessed in March of 2021, the Tate’s subject taxonomy was
found to be divided into three levels: [level 0] top concepts, representing the most
general categories; [level 1] slightly narrower concepts, children of level 0 concepts;
and [level 2] narrowest concepts, children of level 1 concepts and grandchildren
of level 0 concepts. Out of the 2409 subject tags in the taxonomy, 16 are level 0
concepts, 142 are level 1 concepts, and 2251 are level 3 concepts. The 166 ACs

9https://labs.tineye.com/color/. Access date: May 2021.

https://labs.tineye.com/color/
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selected as initial candidates are all grandchildren of 3 out of the 16 top concepts,
and children of 15 out of the 142 middle categories available (see Table III.1.1).

Concept-Artwork Matching. The number of Tate artworks explicitly tagged
with each of the 166 chosen ACs ranged from 368 (“death”) to 1 (“paranoia”),
with an average of 48 matches and a median of 27 matches. The two case studies
were in the top 20% of ACs ranked on artwork matches (“consumerism” with 71
artworks, and “horror” with 146 artworks) (see Table III.1.2).

Co-occurring Physical Objects and Actions. The number of co-occurring
tags for each of the 166 chosen ACs ranged widely, from 1506 (“death”) to 7
(“paranoia”), with an average of 311 co-occurring subjects and a median of 262.
Further analyses were performed to identify physical objects and action tags from
the co-occurring subject tags for each AC. The number of co-occurring physical
object tags for each of the chosen ACs ranged from 288 (“death”) to 6 (“infinity”),
with an average of 69 co-occurring physical objects and a median of 55 physical
objects. Table III.1.3 shows the top ten most frequent co-occurring physical ob-
jects for four ACs. The number of co-occurring action tags for the 166 ACs was
decisively smaller, ranging from 38 (“death”) to 0 (“void”), with an average of 11
co-occurring actions and a median of 8 actions. Table III.1.4 shows the top ten
most frequent co-occurring actions for four ACs. The average frequencies of co-
occurrence for physical objects and for actions with each AC are also presented in
Table III.1.2. Finally, Figure III.1.7 includes more intuitive visual representations
for most co-occurring physical objects (top) and actions (bottom) for the two case
study ACs.

Level # Tags Concrete Tags # ACs Soc. Concept Tags
0 16 “objects”, “nature”, “people” 3 “society”
1 142 “weapons”, “trees”, “adults” 15 “social comment”
2 2251 “missile”, “oak”, “old man” 166 “consumerism”

Table III.1.1: Distribution of Tate subject tags based on its three hierarchical
levels, going from broadest (0) to narrowest (2). Each level includes concrete
concepts referring to physical objects and ACs referring to non-physical objects.

Dominant Color Visual Analyses. Figure III.1.8 presents visual representa-
tions (as proportional color palettes) of the color palette analyses performed on
30 randomly chosen images of paintings and prints for each of the two case study
ACs (“consumerism” and “horror”).
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AC # Matches # CO-O Freq Top CO-O # CO-A Freq Top CO-A
death 368 288 71.1 38 14.5
horror 146 138 33.5 30 6.0
consumerism 71 129 16.4 7 2.4
paranoia 1 15 1.7 5 1.2
Average 48 69 9.7 11 2.8
Median 27 55 5.3 8 1.6

Table III.1.2: Number of artwork matches, co-occurring physical objects (CO-
O), and co-occurring actions (CO-A), along with the average frequency of co-
occurrence for the top ten most frequently co-occurring physical objects (Freq Top
CO-O) and top ten actions (Freq Top CO-A) for four ACs: “death” (with the high-
est number of matches), “paranoia” (lowest number of matches), “consumerism”
and “horror” (case studies). Average and median values calculated from all 166
ACs are also provided.

Abstract Concept Top 10 Physical Objects
death ‘man’, ‘woman’, ‘religious and ceremonial’, ‘clothing’, ‘furnishings’,

‘male’, ‘weapons’, ‘female’, ‘fine arts and music’, ‘sea’
horror ‘man’, ‘clothing’, ‘woman’, ‘uniform’, ‘animal/human’, ‘reading, writing,

printed matter’, ‘male’, ‘fine arts and music’, ‘monster’, ‘medical’
consumerism ‘woman’, ‘reading, writing, printed matter’, ‘clothing’, ‘furnishings’,

‘food and drink’, ‘domestic’, ‘electrical appliances’, ‘kitchen’, ‘tools and
machinery’, ‘product packaging’

paranoia ‘man’, ‘clothing’, ‘woman’, ‘figure’, ‘male’, ‘furnishings’, ‘curtain’,
‘jacket’, ‘jumper’, ‘suit’

Table III.1.3: Top ten most frequent co-occurring physical objects with the AC
with the most matched artworks (“death”), for the AC with the least matched
artworks (“paranoia”), and for the two case studies (“consumerism” and “horror”).

Abstract Concept Top 10 Actions
death ‘standing’, ‘lying down’, ‘reclining’, ‘supporting’, ‘embracing’, ‘sitting’,

‘flying’, ‘kneeling’, ‘carrying’, ‘sleeping’
horror ‘standing’, ‘sitting’, ‘recoiling’, ‘watching’, ‘lying down’, ‘screaming’,

‘carrying’, ‘hand/hands raised’, ‘embracing’, ‘fleeing’
consumerism ‘smiling’, ‘sitting’, ‘crouching’, ‘standing’, ‘reclining’, ‘lying down’, ‘talk-

ing’
paranoia ‘sitting’, ‘crouching’, ‘reclining’, ‘standing’, ‘walking’

Table III.1.4: Top ten most frequent co-occurring actions with the AC with the
most matched artworks (“death”), for the AC with the least matched artworks
(“paranoia”), and for the two case studies (“consumerism” and “horror”).
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Figure III.1.7: Wordclouds for the top 50 co-occurring object (top) and action
(bottom) tags for all artworks tagged with “consumerism” (left) and with “horror”
(right). Larger words more frequently co-occurred with the AC of interest.

(a) Consumerism (b) Horror

Figure III.1.8: Proportional palettes of 30 paintings and print images tagged with
“consumerism” (left) and with “horror” (right).



III.1.6 Discussion 135

III.1.6 Discussion

In our reconstruction and examination of the Tate’s subject taxonomy, we found
that ACs referring to non-physical objects were concentrated in three major areas
of the taxonomy (“emotions, concepts, and ideas”, “society”, and “religion and
belief”). Gathered from the tagging taxonomy of a well-known collection of art
images, the initial list of ACs we present stands as empirical proof of the use of
ACs for tagging the content of visual material. With this work, we begin the
creation of a corpus of (art) images tagged with ACs, currently available in the
GitHub repository as a dictionary with ACs as keys, and lists of image URLs as
values.

Our experiments on the co-occurrence of physical objects and actions further
show that it is possible to develop computational techniques that mirror the idea
of symbol grounding and acquired embodiment, i.e., it is possible to identify per-
ceptual features of concrete objects and actions that co-occur with ACs, at least in
the context of art images. While there seems to be some regularity in the results,
the low frequencies of co-occurrence suggest that further research is needed to un-
derstand which of these objects and actions, if any, have a substantial e↵ect on the
evocation of an AC. A manual examination of the top ten most frequent concepts
co-occurring with ACs (some of them presented in Table III.1.3 and Table III.1.4)
suggest some regularity in the physical objects and actions that most frequently
co-occur with certain ACs in these art images. Most of these co-occurrences seem
to agree with intuition (i.e., “consumerism” co-occurring with “clothing”, “food
and drink”, and “product packaging”; “horror” co-occurring with “monster”, “re-
coiling” and “screaming”). The results of the color analyses, visible in the pro-
portional color palettes presented in Figure III.1.8, also strongly suggest a certain
degree of regularity in the color features of Tate art images that evoke certain
ACs. As with the top co-occurrence results, at first sight, the color palettes seem
to agree with intuition (i.e, “consumerism” shows a greater luminosity and variety
of bright colors, as in the aisles of a supermarket; “horror” shows dark and less
varied colors and tones, as in typical scenes from horror movies).

Some limitations of this work should be noted, such as the fact that the images
used in the experiments were not distinguished by the type of artwork medium
(painting, print, drawing), which may a↵ect the type and frequency of features that
were extracted from the images. It is also important to note that the regularity
observed from the experimental results may be limited only to the Tate’s collection
and not generalizable to other art image catalogues or collections. That is, while
the Tate dataset provided us with a clean, annotated corpus in which ACs are
explicitly used as tags, as a curated dataset it encompasses a limited geographic,
historical, and cultural perspective. Additionally, the fact that it is expert-tagged
might result in a biased interpretation and classification of the artworks, which
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might di↵er from the interpretations of a larger, more diverse group of viewers.
Given ACs’ ambiguous meanings, further work is needed which takes into account
various possible interpretations of the same artwork by di↵erent observers.

Further directions for this work are multiple. The generated KG may be addi-
tionally populated with other methods, for example by automatically generating
descriptive paragraphs from the art images, and then performing knowledge ex-
traction on the natural language paragraphs, as well as by including additional
sensory data, such as sound or smell data, that may evoke certain ACs. We can
also improve our approach by refining the initial ACs list through alignment with
the latest cognitive science research, as well as through user-based studies. Addi-
tionally, disambiguating the terms, expanding the terminology by leveraging lexical
resources such as WordNet, VerbNet, and FrameNet, and studying the terms’ dis-
tributional linguistic features in a textual corpus are next steps that could lead
to substantial improvements. The visual analyses can be further refined by dis-
tinguishing artwork medium types, and by extracting contrast measures, common
shapes, repetition, and other visual patterns. A particularly interesting research
direction would be to include facial recognition analyses in our pipeline, which
may allow the identification of emotions expressed by depicted subjects.

III.1.7 Conclusions

Our approach models ACs as complex objects, which can be described with mul-
timodal frames that integrate multisensory information. To represent this model
formally, we designed the pattern-based ontology Multimodal Descriptions of Ab-
stract Concepts (MUSCO), which allows for the conjunct semantic characterization
of multimodal features. Our approach also proposes a pipeline for automatically
extracting and integrating features of images that evoke ACs. We show its poten-
tial by testing it on a corpora of art images from a well-known collection. Our
experimental results point towards some regularity in certain sensory features of
images tagged with specific ACs, and open space for further research to evaluate
the proposed approach focusing on datasets with di↵erent characteristics. More
than anything, our results serve as a proof of concept and open up new lines of
future research. The automatic population of a KG with the extracted data is
the natural next step of this work, potentially through mapping-based knowledge
extraction techniques. Our method is impulsed by the intuition that a KG con-
taining multimodal data for AC description can eventually serve as input to a
learning model to automatically detect ACs in images. Overall, the experiments
performed and results presented in this work serve as a proof of concept that
extracting, integrating, and coincidentally exploiting multimodal data related to
ACs is a promising direction for future research.



Chapter III.2

Perceptual Semantics: Shallower
Waters, Clearer Insights

Summary In this chapter, we delve into our perceptual semantics paradigm,
shifting away from conventional reliance on end-to-end deep visual features. In-
stead, we explore the use deep models within more concrete, ‘shallower’ strata of
the semantic pyramid, with the aim of obtaining more interpretable image rep-
resentations. Our approach entails a shift from the direct application of deep
learning to bridge raw pixels to ACs, instead favoring a feature engineering strat-
egy that harnesses the profound capabilities of DL models to capture the essence of
more tangible semantics. Building upon the insights gained from earlier chapters
(Chapters II.2 and III.1), we employ a suite of o↵-the-shelf deep learning detectors
to autonomously extract perceptual semantics inspired by cognitive processes, en-
suring that the DL black box remains grounded at more concrete levels. These
extracted semantics serve as features for image representation, denoted as IPS,
enabling us to strike a middle ground that enhances clarity and interpretability.
Subsequently, we explore the use of these cognitive-inspired image representations
to enhance performance and explainability in AC image classification. These more
interpretable image representations serve as input for traditional machine learning
models, as opposed to deep learning ones, to conduct image classification. Our
primary objective throughout this process remains constant - maximizing class
probabilities based on the transformed image representation and model parame-
ters. We achieve this using classical machine learning models, such as Näıve Bayes,
Random Forest, and others. The results obtained from this methodology demon-
strate that by prioritizing feature engineering and traditional machine learning
methods over DL, we not only maintain similar performance levels to Convolu-
tional Neural Networks (CNNs) but also significantly enhance the interpretability
of our system for AC image classification.

137
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III.2.1 Introduction

The ARTstract dataset, introduced in Chapter II.1, is a curated collection of
cultural images used as a resource to train models on the challenging goal of
classifying images based on abstract concepts (ACs). As such, it contains images
labeled with ACs such as comfort, danger, death, fitness, freedom, power, and
safety. The ARTstract image dataset aligns with the traditional deep learning
(DL) paradigm, employing solitary, decontextualized target labels. However, our
earlier research in Chapter I.2 emphasized the crucial role of explicit semantics
in human high-level understanding of visual content, in which the detection of
multiple layers of meaning plays a pivotal role in assigning abstract interpretations
[33]. This multi-faceted approach stands in contrast to the one-dimensional nature
of the ARTstract image dataset, where each image is assigned a single overarching
AC label, such as comfort. Consequently, the dataset lacks labels representing
more granular and concrete layers of semantics, including objects, actions, colors,
emotions, and other specific details (e.g., couch, sitting, brown, and so on) that
humans rely on to inform their decisions.

At the same time, Chapter III.1 has provided evidence of the potential of these
visual data descriptors to bridge the semantic gap between raw pixels and ACs.
While Chapter II.2 underscores the challenges faced by DL models in AC image
classification, particularly in providing explanations for their predictions, it also
highlights their proficiency in extracting concrete image features. This proficiency
is evident from significant performance di↵erences in image classification across
datasets like CIFAR and ARTstract (see Section II.2.5 of Chapter II.2). These
distinct strengths and challenges of the DL paradigm, combined with the potential
of cognitive-inspired perceptual semantics, raise a fundamental question:

Can cognitive-inspired perceptual features be e↵ectively leveraged and
employed to enhance image representations for improved performance
and explainability in the context of AC image classification?

Our hypothesis posits that perceptual semantic (PS) features inspired by the
idea of acquired embodiment can play a pivotal role in crafting interpretable im-
age representations that are compatible with statistical methods from classical
machine learning (ML). The core idea revolves around the engineering, extraction,
and integration of image features to improve the performance and interpretability
of AC image classification This approach emphasizes the strategic containment of
deep learning’s inherent black box, limiting its role to associating more concrete
perceptual semantics with images and making these associations explicitly avail-
able to the model and to the user. This strategic containment opens up possibilities
for the systematic identification of problematic data sources and o↵ers avenues for
addressing issues pertaining to bias and subjectivity in image annotation processes.
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This chapter accomplishes the following:

• Perceptual Semantics (PS) Extraction: It presents a framework for fully
automatic extraction of a wide range of perceptual semantics from ARTstract
images.

• Perceptual Semantics (PS) Image Representation: The relevance of
each extracted perceptual feature in predicting abstract concepts is quan-
tified using information theory, involving the calculation of feature entropy
conditioned on the evoked abstract concept. These findings are then visually
represented, both in a general context and concept-wise, through relevant
graphs.

• PS-Based AC Image Classification: To model the contextual dependen-
cies among these features, we employ a series of classical ML approaches to
learn the joint probabilities. These are then leveraged for AC image classifica-
tion, predicting the class of the held-out portion of the dataset. Performance
and explainability are explored and discussed.

In this chapter, we begin with Section III.2.2 in which we explain our idea of
using perceptual-semantics based image representations for more interpretable AC
image classification. Then, in Section III.2.3, we discuss multiple aspects of our ap-
proach: the selection process for concrete labels and methodology for automatically
extracting perceptual knowledge from over 14,000 ARTstract images (subsection
III.2.3.1), the analysis of ARTstract’s perceptual semantics, identifying common
and significant elements for each target AC cluster (subsection III.2.3.2), and our
novel approach to image representation and AC image classification, emphasizing
the use of perceptual semantics and explainable, classical machine learning models
(subsection III.2.3.3). In Section III.2.4, we discuss our results, which we discuss
in depth in Section III.2.5. We provide valuable insights into the advantages of our
method in terms of interpretability, while outlining potential directions for future
research.
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III.2.2 Idea: Perceptual Semantics (PS)

Part II highlighted the robustness of deep models in handling more concrete visual
tasks. Thus we focus on the extraction of cognitive-based concrete intermediary
features, referred to as perceptual semantics (PS), for the purpose of image rep-
resentation. To accomplish this, we introduce a function fPS designed to process
the raw image representation IRAW and transform it into a novel representation,
IPS, which takes the form of a vector within RN (see Figure III.2.1). Specifically,
fPS is constructed as a composite function consisting of M individual detectors:
fPS = [fPS1 , fPS1 , . . . , fPSM

, ] (see Figure III.2.2). Each of these detectors yields
NM labels. Subsequently, these perceptual semantic labels are aggregated to yield
the total dimensionality:

fPS1 : IRAW ! RN1 (III.2.1)

fPS2 : IRAW ! RN2 (III.2.2)
... (III.2.3)

fPSM
: IRAW ! RNM (III.2.4)

N = N1 +N2 + · · ·+NM (III.2.5)

The final output of the fPS function transforms the raw image (IRAW) into a
vector space with a dimensionality of RN :

fPS(IRAW) = IPS ✓ RN (III.2.6)

We can utilize this new IPS representation in our problem formulation and train
a classical ML predictor, such as Naive Bayes, to make inferences:

ŷ = argmax(p(yi|IPS, ✓)) (III.2.7)

The formulation of the problem in a classical ML way with this image represen-
tation is significantly more explainable because we can identify the top features,
which are specific perceptual semantics, denoted as PSfn

, that contribute to the
highest probability of a particular class.

p(yi|IPS, ✓) = p(yi|IPSf0 , ✓) + p(yi|IPSf1 , ✓) + · · ·+ p(yi|IPSfN , ✓) (III.2.8)

p(yi|IPS, ✓) =
NX

n=0

p(yi|IPSfn , ✓) (III.2.9)
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Figure III.2.2: Architecture followed to extract perceptual semantics from each
image in the ARTstract dataset using automatic annotators, primarily pre-trained
deep learning models.
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III.2.3 Approach

PS Unit Artificial Annotator Ann.
Type

Model
Backbone

Pretrained
on Dataset

Action
DunnBC22/vit-base-patch16-224-in21k
Human Activity Recognition

DL Visual
Transformer

har-dataset

Age
Tier

nateraw/vit-age-classifier DL Visual
Transformer

fair-face

Art
Style

oschamp/vit-artworkclassifier DL Visual
Transformer

artbench-10

Top
Colors

ColorThief Stat Color-Thief N/A

Emotion artemis image-emotion-classifier DL
ResNet
CNN

Artemis

Human
Presence

adhamelarabawy/
fashion human classifier

DL Visual
Transformer

deep-
fashion-v1

Image
Caption

Salesforce/blip-image-captioning-large DL Visual
Transformer

COCO-
dataset

Detected
Objects

facebook/detr-resnet-101 DL Detection
Transformer

COCO-
dataset

Table III.2.1: Perceptual Semantic (PS) units and the artificial annotators chosen
to detect them, along with information about their types, model backbones, and
pretraining datasets. DL: Deep Learning, Stat: Heuristics-based.

III.2.3.1 Perceptual Semantics Selection and Detection

Drawing from insights from our examination of high-level visual understanding
in CV (Chapter I.2) and the potential of acquired embodiment to mitigate the
semantic gap (Chapter III.1), we carefully selected specific perceptual semantics
to extract for each image in the ARTstract dataset. These included the most
likely depicted action, age tier, art style, top colors, evoked emotion, presence of
humans, depicted objects, and an automatically generated image caption (see Fig.
III.2.3). Actions portrayed in images can convey symbolic meaning and contribute
to the overall narrative or theme of the artwork, as abstract concepts, like actions,
rely on semantic similarity relations [92, 91]. Analyzing the age tier of depicted
characters or subjects can provide contextual insights into the historical or cultural
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setting of the artwork, while examining the art style can facilitate identifying
artistic movements, influences, and themes present in the artwork. Colors are
pivotal in conveying mood, atmosphere, and symbolism in art; thus, identifying
the dominant colors in an image can o↵er insights into the emotional tone, thematic
elements, and aesthetic preferences of the artist. The inclusion of evoked emotion
aligns with research suggesting the significant role emotions play in AC modeling
and perception [205, 370]. Similarly, considering age tier and the presence of
humans underscores the importance of contextual elements in art analysis, as
these factors can influence the narrative, mood, and societal themes depicted in the
artwork. The presence or absence of human figures can impact interpretation and
emotional resonance, serving as focal points or narrative elements signifying various
themes, relationships, or societal issues. Depicted objects can carry symbolic or
representational meaning, enriching the viewer’s understanding of the artwork’s
themes and messages.

To identify suitable models, we conducted a manual investigation, utilizing the
Hugging Face1 interface to identify the most downloaded and highly-rated o↵-the-
shelf detection models specifically trained or finetuned for one of these tasks. We
subsequently evaluated their outputs through a manual qualitative inspection, to
ensure that the identified semantics were coherent. When necessary, we explored
alternatives, again assessed their coherence, and incorporated more culturally or
artistically specific detectors, such as emotion detectors. Table III.2.1 provides an
overview of the chosen perceptual semantic features, the selected artificial anno-
tators, the architectural backbones of the models (if applicable), and the datasets
on which the artificial annotators were pre-trained (if applicable).

Importantly, while certain datasets that ARTstract was curated from did in-
clude some of these perceptual semantics (e.g., object and action tags in the Tate
Gallery dataset, or objects in ADVISE), we deliberately decided not to rely on
them. Instead, we followed the same process for all images within the ARTstract
dataset. This decision was motivated by our desire to ensure comparability across
all semantics and to explore the extent to which semantic data processing can be
automated solely from the visual content of ARTstract (raw pixels and tagged AC
clusters). We aimed to use detectors widely employed within the computer vision
community, as represented by the Hugging Face repository, to better mirror how
powerful and commonly adopted computer vision tools can interpret images at
di↵erent levels of concreteness, without relying extensively on background knowl-
edge. Consequently, this approach enables new test images or unseen pictures
to undergo the same automated process, without necessitating human-annotated
ground truths. More details about each detection can be found below, including
if and how each perceptual semantic label was assigned a ConceptNet node.

1https://huggingface.co/models. Access date: July 2023.

https://huggingface.co/models
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Action Detection For identifying actions depicted in images, a Visual Trans-
former model was employed.2 This model, fine-tuned for human activity recog-
nition, was pre-trained on the Human Activity Recognition (HAR) dataset, with
possible targets including calling, clapping, cycling, dancing, drinking, eating, fight-
ing, hugging, laughing, listening to music, running, sitting, sleeping, texting, and
using laptop. We retained the action with the highest probability and assigned each
to the ConceptNet concept with the same word (e.g., the running tag was assigned
the ConceptNet node conceptnet:running. The only exception was the tag
using laptop, which was assigned the ConceptNet node conceptnet:laptop.

Age Tier Detection To determine the age tier of individuals in the images,
a Visual Transformer model was employed.3 This model was fine-tuned for age
classification, using age tier categories ranging from 0-2 to 70+, as defined in the
age tier mapping. There are a total of 8 targets, each representing a di↵erent age
group. The model was pre-trained on the Fair Face dataset and was capable of
categorizing individuals into their respective age tiers. The age tier with the high-
est probability was retained for each image. We mapped each of the numerical age
tiers to specific ConceptNet nodes based on their age ranges. For example, age tier
‘0-2’ was assigned to the ConceptNet node conceptnet:toddlerhood, while
age tier ‘3-9’ was linked to conceptnet:childhood. This mapping continued
for all age tiers, associating each age group with the corresponding ConceptNet
representation, allowing us to enrich our age-related annotations with meaningful
semantic context.

Art Style Detection To identify the artistic styles depicted in images, we em-
ployed a Vision Transformer (ViT) model.4 This model was specifically fine-tuned
for art style classification and was capable of recognizing various artistic styles,
such as Art Nouveau, Baroque, Expressionism, Impressionism, Post-Impressionism,
Realism, Renaissance, Romanticism, Surrealism, and Ukiyo-e. The model was pre-
trained on the ArtBench-10 dataset [225] to provide accurate classifications. For
each image, we retained the art style with the highest probability. We retained the
action with the highest probability and assigned each to the ConceptNet concept
with the same word (e.g., the Post-Impressionism tag was assigned the ConceptNet
node conceptnet:post impressionism).

2https://huggingface.co/DunnBC22/vit-base-patch16-224-in21k_Human_
Activity_Recognition. Access date: July 2023.

3https://huggingface.co/nateraw/vit-age-classifier. Access date: July
2023.

4https://huggingface.co/oschamp/vit-artworkclassifier. Access date: July
2023.

https://huggingface.co/DunnBC22/vit-base-patch16-224-in21k_Human_Activity_Recognition
https://huggingface.co/DunnBC22/vit-base-patch16-224-in21k_Human_Activity_Recognition
https://huggingface.co/nateraw/vit-age-classifier
https://huggingface.co/oschamp/vit-artworkclassifier
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Figure III.2.3: Perceptual semantics extracted from each image in the ARTstract
dataset using automatic annotators, primarily pre-trained deep learning models.

Color Detection Dominant colors were extracted from images using the Col-
orThief library.5 Then, we converted the RGB values into standardized CSS3 web
color names using the Webcolors Python library.6 By measuring the Euclidean
distance in a three-dimensional color space, we found the closest CSS3 web color
match for each color. A closest color match was performed to find the most suit-
able ConceptNet concept for each color (e.g., the webcolor tag dark goldenrod was
assigned to ConceptNet node conceptnet:goldenrod. If the Euclidean dis-
tance was below the threshold (set to 50), the corresponding ConceptNet concept
was assigned; otherwise, it was labeled as Unknown. The final output included
up to five RGB values, web color names, and associated ConceptNet concepts for
each image.

5https://github.com/lokesh/color-thief. Access date: July 2023.
6https://webcolors.readthedocs.io/en/latest/. Access date: July 2023.

https://github.com/lokesh/color-thief
https://webcolors.readthedocs.io/en/latest/
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Emotion Detection For the task of detecting emotions conveyed in images, we
utilized a specialized image emotion classifier pre-trained on the Artemis dataset7.
The model classifies emotions into nine distinct categories, including amusement,
awe, contentment, excitement, anger, disgust, fear, sadness, and something else.
We matched these detected emotions with the ConceptNet concepts using the
same word (e.g., the amusement emotion tag was assigned to the ConceptNet node
conceptnet:amusement). To provide a comprehensive analysis of emotional
content in the artwork, we retained the emotion with the highest probability for
each image.

Human Presence Detection To determine the presence of humans in images,
we employed a fine-tuned logistic regression classifier based on the ’ViT-B/32’
variant of the CLIP (Contrastive Language-Image Pretraining) model.8 The model
was pre-trained for the fashion domain on the DeepFashion v1 dataset to classify
images as either True for the presence of humans or false for the absence of humans.
We matched true predictions with the ConceptNet node conceptnet:human
and False predictions with the ConceptNet node conceptnet:nonhuman. For
each image, we retained the presence classification with the highest probability.

Image Captioning For the task of image captioning, we employed we em-
ployed a pre-trained BLIP model.9 This model is based on the BLIP (Bootstrap-
ping Language-Image Pre-training for Unified Vision-Language Understanding and
Generation) framework, utilizing a ViT large backbone for vision-language under-
standing and generation. It was pre-trained on the COCO dataset, a benchmark
dataset for image captioning. The model generates descriptive captions for input
images.

Object Detection For object detection, we harnessed the power of the DETR
architecture using a pre-trained model.10 We kept objects detected with a confi-
dence threshold higher than 0.4. To enhance the semantic understanding of these
detected objects, we employed ConceptNet. Each object was meticulously matched
to ConceptNet concepts by its name, creating valuable connections between our
object detections and the wealth of knowledge encapsulated in ConceptNet.

7Provided by the authors of the Artemis dataset [2]
8https://huggingface.co/adhamelarabawy/fashion_human_classifier. Ac-

cess date: July 2023.
9https://huggingface.co/Salesforce/blip-image-captioning-largemodel.

Access date: July 2023.
10https://huggingface.co/Salesforce/facebook/detr-resnet-50. Access

date: July 2023.

https://huggingface.co/adhamelarabawy/fashion_human_classifier
https://huggingface.co/Salesforce/blip-image-captioning-large%20model
https://huggingface.co/Salesforce/facebook/detr-resnet-50
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III.2.3.2 Analysis of ARTstact’s Perceptual Semantics

Inspired by the acquired embodiment experiments conducted in Chapter III.1, we
performed co-occurrence analyses on the perceptual elements most frequently and
contextually relevant to each target AC cluster. This analytical approach allowed
us to identify common and significant elements, including objects, actions, colors,
emotions, and more, associated with each AC.

Our approach11 started with the collection of frequency data for images tagged
with each AC was collected for all possible labels within each semantic perceptual
category, such as objects, actions, emotions, art styles, and age tiers. We then as-
sessed the frequency of labels within each category for each AC cluster, aiming to
detect labels that were not only frequent (TF) but also distinctive across categories
(IDF). This process allowed us to identify elements that were particularly signifi-
cant for each AC. A similar approach was applied to analyze image captions. We
began by extracting and preprocessing the caption data, including lemmatization,
stop word removal, and word frequency calculation. Subsequently, we conducted
co-occurrence analyses to identify significant word pairs that frequently appeared
together in captions and were especially relevant to ACs. Additionally, for colors,
we wanted to once again identify colors that had the most significance, not just
the highest frequency. Therefore, we employed a two-fold strategy as before: asses
their TF to gauge their prevalence within their respective ACs, and leverage the
IDF to measure their distinctiveness across di↵erent categories. This combined
approach enabled us to identify color labels that not only exhibited commonality
within ACs but also set them apart from other categories.

III.2.3.3 PS-based AC Image Classification

Our methodological framework for AC image classification (Figure III.2.1) aligns
with Pattern 6a, known as ‘Intermediate Abstraction for Learning,’ as defined in
the modular design patterns for hybrid systems introduced by [38]. In essence,
when presented with a raw ARTstract image, we employ a feature engineering
approach to transform it into a vector of perceptual semantic labels. These repre-
sentations serve as the foundation for training classical machine learning models,
which are subsequently utilized for testing, performance assessment, and inter-
pretability evaluation.

11The complete documentation and steps of our approach, including the code to
execute it, is available in the project’s GitHub repository, at https://github.
com/delfimpandiani/ARTstract-KG/tree/main/ARTstract-KG_creation/
ARTstract_kg_construction/stats. Last access date: February 2024.

https://github.com/delfimpandiani/ARTstract-KG/tree/main/ARTstract-KG_creation/ARTstract_kg_construction/stats
https://github.com/delfimpandiani/ARTstract-KG/tree/main/ARTstract-KG_creation/ARTstract_kg_construction/stats
https://github.com/delfimpandiani/ARTstract-KG/tree/main/ARTstract-KG_creation/ARTstract_kg_construction/stats
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Perceptual Feature Relevance Analyses

We wanted to leverage the extracted perceptual semantics (PS) to represent im-
ages as feature-engineered vectors. To do this, we first selected the number of
transformation detectors to be M = 6, as we excluded human presence and image
captions since they did not function as detected labels in the same way as the
others (for instance, image captions consisted of complete sentences, and human
presence was a binary true or false value). We focused on the remaining six de-
tectors and decided how many target detections to keep track of. For example,
we retained one (the most probable) action, emotion, art style, and age tier, while
we kept four detected objects and four detected colors (refer to Table III.2.2 for
details). While the unequal dimensionality of perceptual semantic units may in-
troduce a bias towards colors and objects, we made this deliberate choice based
on their significance in image perception and analysis. Colors and objects often
serve as fundamental elements in conveying meaning, symbolism, and thematic
elements within artworks. Recognizing their importance, we prioritized these fea-
tures to ensure that our classification model captures essential visual cues that
align with human interpretation.

PS Unit Function Dimensionality

Action fPS1 RN1 , N1 = 1

Emotion fPS2 RN2 , N2 = 1

Detected Objects fPS3 RN3 , N3 = 4

Art Style fPS4 RN4 , N4 = 1

Top Colors fPS5 RN5 , N5 = 4

Age Tier fPS6 RN6 , N6 = 1

fPS = fPS1 + · · ·+ fPS6 RN , N = N1+N2+· · ·+NM = 12

Table III.2.2: Perceptual Semantic units with their respective functions and dimen-
sionality, which are used to transform raw images into feature-engineered vectors.

Because our approach emphasizes the significance of considering perceptual el-
ements within an image, we wanted to assess the relevance of these features when
predicting abstract concepts. To do so, we employ information theory principles.
Specifically, we calculate the entropy of a perceptual feature (Y ) under the condi-
tion of the AC (X) evoked by the image using the following equation:
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H(Y |X) = �
X

x2X ,y2Y

p(x, y) log
p(x, y)

p(x)
(III.2.10)

Conditional cross-entropy, denoted as H(Y |X), measures how much additional
information each perceptual feature contributes when predicting the abstract con-
cept cluster X. In essence, it gauges whether knowing certain features makes
the abstract concept more predictable. A higher H(Y |X) indicates that specific
features add more information, making the concept more predictable when those
features are known. Conversely, a lower value suggests that these features provide
less additional predictive information about the abstract concept cluster, making
it less predictable based on them. In addition to the general overview of feature
importance, we calculate the conditioned cross-entropy by AC cluster, delving
deeper into the concept-wise relevance of each feature.

Feature Engineered Image Representation

With this information, we created a new Perceptual Semantic (PS) image repre-
sentation denoted as IPS. This representation is obtained using the fPS function,
which transforms the raw image (IRAW) into a vector space with a dimensionality
of RN :

fPS(IRAW) = IPS ✓ RN
, N = 12 (III.2.11)

Initially, we preserved all original perceptual features, representing each im-
age as a 12-dimensional vector, with each dimension corresponding to a unique
feature, as illustrated in Figure III.2.10. This representation e↵ectively trans-
lated perceptual semantics into a tabular format, where each image constituted a
row, and each column represented each of the possible labels for each of the 12
features. However, when subjecting representation to classification tests (as dis-
cussed in the following section), we encountered significant challenges, leading to
suboptimal performance. In response, we leveraged the feature relevance results
(See Section III.2.4) to gain insights into the significance of individual features.
Subsequently, we made informed decisions to retain the most relevant perceptual
semantics categories, discarding the last two objects, the final color, and the age
feature. This refinement led to a more streamlined 8-dimensional vector, denoted
as IPS ✓ RN , with N reduced to 8 dimensions.

Classical ML Methods Training and Testing

This newly obtained representation IPS was integral to our problem formulation.
After transforming it into a tabular representation where each image constituted
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a row, and each column represented each of the possible labels for each of the
8 features, this representation enabled the training of classical machine learning
models for making inferences based on the following probability estimation:

ŷ = argmax(p(yi|IPS, ✓)) (III.2.12)

We harnessed this tabular representation to train a variety of classical machine
learning models, including Bernoulli Naive Bayes, Decision Tree Classifier, Ran-
dom Forest Classifier, HistGradientBoostingClassifier, and Linear Support Vector
Classification through the Scikit-learn Python library [279] and implemented a
Bayesian network with a manually defined structure to encapsulate the depen-
dence relationships.

Evaluation Metrics

We applied the same set of performance metrics, which includes accuracy, preci-
sion, recall, and macro F1 score, as in the experiments detailed in Chapter II.2. We
also retained the exact training and testing data splits used in the deep learning
experiments presented in Chapter II.2.

Explainability Approach

To enhance the interpretability of our best-performing model’s classifications, we
adopted an approach in line with modular design pattern 5, “Explainable Learn-
ing System through Rational Reconstruction”, again following the taxonomy by
[38]. This approach leverages the detected label and the model responsible for
the detection to derive instance-level explanations. Our specific focus was on the
best-performing model, the Naive Bayes classifier. Given our IPS image represen-
tation, the model becomes fully explainable: we can identify the features, denoted
as PSfn

contributing most significantly to the highest probability of a particular
class:

p(yi|IPS, ✓) = p(yi|IPSf0 , ✓) + p(yi|IPSf1 , ✓) + · · ·+ p(yi|IPSfN , ✓) (III.2.13)

p(yi|IPS, ✓) =
NX

n=0

p(yi|IPSfn , ✓) (III.2.14)
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III.2.4 Results

III.2.4.1 ARTstract’s Perceptual Semantics

The co-occurrence and relevance analyses and visualizations of ARTstract’s Per-
ceptual Semantics provide insights into elements that are not only frequent but
also especially prominent within the images tagged with a specific abstract con-
cept (AC). The results are visualized through wordclouds and color palettes created
from the most relevant web colors for each AC (examples are shown in Figures
III.2.6 and III.2.9, with additional examples available on our GitHub repository).
The findings reveal intuitive and meaningful patterns. For instance, the most rel-
evant actions for the AC comfort include ‘eating’ and ‘hugging,’ while ‘running’
and ‘sitting’ are prominent for freedom. The analysis of relevant objects in the
ARTstract dataset also exposes interesting biases. Images tagged as comfort are
associated with objects such as ‘potted plants,’ ‘vases,’ and ‘couches,’ suggest-
ing a prominence of images related to nature of home areas tagged with comfort,
whereas objects like ’bird’ and ’kite’ are more relevant to freedom, suggesting the
presence of a bias towards these objects in images tagged with it. Moreover, the
examination of relevant colors, achieved by mapping pixels to web color names
and identifying the most relevant ones through TF-IDF analysis, o↵ers intriguing
results. For example, the relevant colors for freedom closely resemble the United
States flag, aligning with the presence of the word ‘america’ within the cluster def-
inition. Overall, these findings serve as a valuable resource for diverse applications
across domains, suggesting that the extracted perceptual semantics may contain
su�cient information to classify images based solely on these visual features.

III.2.4.2 Perceptual Feature Relevance Analyses

The results of this cross-entropy analysis (Figure III.2.10) reveal that all perceptual
features carry information when conditioned on the cluster, but their importance
varies. Colors and the presence of first objects stand out as highly informative,
whereas the fourth object, emotion, and age features contribute less to the pre-
dictability of abstract concept clusters. This provides a comprehensive overview
of the relative importance of di↵erent feature categories in our analysis, allowing
for a bird’s eye view of their contributions as a whole.

In addition to the general overview of feature importance, we calculate the
conditioned cross-entropy by AC cluster (Figure III.2.11), delving deeper into the
concept-wise relevance of each feature. We find that emotion features consistently
play a significant role across most AC clusters, with a notable exception in the com-
fort cluster, likely due to the availability of a larger dataset, resulting in higher
variance. Safety and freedom clusters are observed to be less reliant on art style,
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Figure III.2.4: Comfort wordclouds.

Figure III.2.5: Comfort relevant colors.

Figure III.2.6: Perceptual semantics most relevant to the AC comfort, based on
co-occurrence data obtained from the complete ARTstract dataset. Top, clockwise
from top left: wordclouds for actions, art style, caption words, age tiers, detected
objects, and emotions. Bottom: most relevant colors for comfort.
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Figure III.2.7: Freedom wordclouds.

Figure III.2.8: Freedom relevant colors.

Figure III.2.9: Perceptual semantics most relevant to the AC freedom, based on
co-occurrence data obtained from the complete ARTstract dataset. Top, clockwise
from top left: wordclouds for actions, art style, caption words, age tiers, detected
objects, and emotions. Bottom: most relevant colors for freedom.
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Figure III.2.10: Conditioned Cross-Entropy

Figure III.2.11: Conditioned Cross-Entropy by Cluster
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indicating a reduced contribution from art style features for these specific clusters.
Age features exhibit uniform lower relevance across all clusters on average. We
note that objects 2, 3, or 4 show a similarly low relevance, which can be attributed
to their absence in some samples. This suggests that, while they may seem unim-
portant, their presence in certain cases could indeed be significant, emphasizing
the conditional nature of their relevance

Overall, this analysis provides quantitative evidence, consistent with the per-
ceptual semantics paradigm, revealing the contribution of perceptual features to
Abstract Concept (AC) predictability. It demonstrates that various feature cate-
gories play varying roles in AC prediction, emphasizing the conditional nature of
these dependencies across AC clusters.

III.2.4.3 Performance

Table III.2.3 provides a comprehensive comparison of the performance metrics for
various classical machine learning methods applied to the AC image classification
task. Each row corresponds to a specific method, and the columns show the
respective accuracy, macro F1, and weighted F1 scores, along with the support for
each method. Notably, the macro F1 score is particularly relevant as it accounts
for the harmonic mean of precision and recall across all AC clusters.

The results highlight that, among the studied methods, Naive Bayes stands out
with a macro F1 score of 0.24, demonstrating its ability to balance precision and
recall e↵ectively across di↵erent AC clusters. It achieved an accuracy of 0.44 and a
weighted F1 score of 0.40, showcasing its solid overall performance. These results
are further visualized in Figure III.2.12, which illustrates the macro F1 scores for
each abstract concept cluster using the di↵erent classical ML methods. Detailed
metrics for each class according to each of the classical ML methods can be found
in the Appendix, in Section V.1.5.3.
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Method
Scores

Support
Accuracy Macro F1 Weighted F1

Decision Tree 0.35 0.20 0.34 1492
Random Forest 0.44 0.20 0.38 1492
XGB 0.45 0.20 0.39 1492
SVM 0.45 0.20 0.38 1492
Bayesian Network 0.42 0.20 0.37 1492
Naive Bayes 0.44 0.24 0.40 1492

Table III.2.3: Comparison of performance metrics for various classical machine
learning methods used in abstract concept image classification, including accuracy,
macro F1 score, and weighted F1 score.

Figure III.2.12: Macro F1 scores for each of the classical ML methods on each of
the AC clusters.
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Comparison with DL performance

Table III.2.4 compares the performances of top three best-performing classical
machine learning (ML) methods and of the top three deep learning (DL) models.
The DL models, VGG-16, ResNet-50, and ViT exhibit better levels of accuracy,
and ViT outperforms all methods in all metrics. However, when we shift our
focus to the F1 score, a measure that gauges both precision and recall, the Naive
Bayes method not only performed on par with the two CNNs but in one case
outperformed it.

Method
Scores

Support
Accuracy Macro F1 ML/DL

XGB 0.45 0.20 ML 1492
SVM 0.45 0.20 ML 1492
Naive Bayes 0.44 0.24 ML 1492
VGG-16 0.47 0.23 DL 1492
ResNet-50 0.48 0.24 DL 1492
ViT 0.51 0.30 DL 1492

Table III.2.4: Comparative analysis of the best performing classical ML and DL
models. The top-performing model, measured by the F1 score (ViT), is highlighted
in both bold and italics. The second-best performing models (ResNet-50 and Naive
Bayes) are denoted in bold.

III.2.4.4 Explainability

Incorporating an explainability approach into our workflow, we focused on our
best-performing model, the Naive Bayes classifier, to provide transparent insights
into its classifications. By leveraging our IPS image representation, we identified
the perceptual semantic features PSfn

that most significantly contributed to the
model’s high probability for a specific class. This instance-level explanation ap-
proach facilitated a deeper understanding of the model’s reasoning. To exemplify,
we present a specific case in Figure III.2.14, where we present an exemplary test
image alongside the output of our explainability approach.

The ground truth label assigned to the image is danger. However, the model
classifies this image as death instead, exhibiting high confidence (Probability:
0.7899). This instance sheds light on the complexity of the classification task,
suggesting that it could be interpreted not merely as a single-label multiclass prob-
lem but rather as a multi-label multi-class one. This implies that the evaluation
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Figure III.2.13: Macro F1 scores for each of the classical ML methods as well as
the deep models. Naive-Bayes shows competitive performance.

and performance metrics should be extended to encompass lower-ranked concepts
as well. The accompanying explanation provides a breakdown of the perceptual
features contributing to this classification, elucidating the model’s reasoning. The
most relevant features include object detection for “person” (0.324), the action
“sleeping” (0.186), the emotion “fear” (0.091), and specific color detections like
“darkgray” (0.062) and “lightslategray” (0.050), among others.

III.2.5 Discussion

In this chapter, we have delved into the crucial role of perceptual features in image
classification based on ACs. We introduce a novel paradigm known as perceptual
semantics, which involves transforming raw image data into an understandable
vector representation. This representation captures tangible perceptual units, ef-
fectively bridging the gap between raw pixels and ACs in a more interpretable
manner compared to feature vectors extracted from deep learning models. Our
approach automatically extracts these semantic units, including action, age tier,
art style, top colors, emotion, human presence, image caption, and detected ob-
jects. Each unit is linked to a ConceptNet node, enriching the semantics associated
with images. Additionally, we conducted co-occurrence analyses of perceptual el-
ements within each target AC cluster, o↵ering valuable insights into the most
relevant perceptual features for each AC. To gauge the importance of these fea-
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Figure III.2.14: Instance-level explanation for a test image demonstrates the power
of our explainability method, providing a detailed breakdown of the perceptual
features influencing the model’s classification decisions. This example highlights
how our explainability approach unveils the inner workings of the model, promoting
transparency and providing valuable insights into the model’s reasoning for AC
classification.

tures, we employed information theory principles, using conditioned cross-entropy
calculations at both a general and concept-specific level within AC clusters, and
gained a holistic and contextual understanding of the significance of perceptual
features.

We then proposed a method for image classification using the extracted percep-
tual semantics (PS). This approach involves selecting six transformation detectors
and leveraging the extracted information to create a new Perceptual Semantic
(PS) image representation. Our methodology aligns with modular design pattern
6a from the taxonomy of hybrid systems by [38], emphasizing intermediate abstrac-
tion for learning. This method builds upon the insights obtained from previous
sections of the dissertation, making the problem more interpretable and facilitating
the identification of specific perceptual features contributing to class predictions.

III.2.5.1 Perceptual Feature Relevance

The cross-entropy analysis depicted in Figure III.2.10 shows that all perceptual
features carry information when conditioned on the cluster, but their significance
di↵ers. Notably, colors and the presence of initial objects emerge as highly infor-
mative, while the fourth object, emotion, and age features contribute less to the
predictability of abstract concept clusters. This o↵ers a comprehensive view of
the relative importance of distinct feature categories in our analysis. Additionally,
the conditioned cross-entropy by AC cluster (Figure III.2.11) delves into concept-
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specific feature relevance, o↵ering quantitative proof of how perceptual features
contribute to Abstract Concept (AC) predictability, emphasizing the conditional
nature of these dependencies across AC clusters.

III.2.5.2 Performance

The results highlight the impressive performance of the Naive Bayes classifier with
a macro F1 score of 0.24. What makes this accomplishment particularly notewor-
thy is that classical ML models, including Naive Bayes, were exclusively supplied
with only the 8 perceptual semantic labels for each image, without any additional
information such as deep features or pixel-level data. This underscores the sig-
nificant potential of interpretable ML techniques, as they exhibit a well-balanced
balance between precision and recall, even when working with minimal input data.
Notably, our comparative analysis in Table III.2.4 indicates that Naive Bayes per-
forms on par with or even outperforms deep learning models like VGG-16 and
ResNet-50. This finding challenges the conventional notion that deep learning
models are the solution for all image classification tasks, underlining the practi-
cality and e↵ectiveness of interpretable machine learning methods in this context.
Our explainability approach, as exemplified by Figure III.2.14, provides trans-
parent insights into the model’s decision-making process, enhancing the overall
interpretability and user trust in model outputs.

III.2.5.3 Interpretability

In our approach, we introduced explainability into our workflow, focusing on the
Naive Bayes classifier, our best-performing model. Leveraging our fully inter-
pretable image representation, we were able to pinpoint the most influential per-
ceptual semantic features contributing to the model’s classifications. We exemplify
this in a specific case, where the model confidently categorizes an image as death
instead of its actual class, danger. The accompanying explanation dissects the key
features behind this decision, including object detection, actions, emotions, and
colors. The example illustrates how our explainability approach dissects model
decisions and highlights the influence of particular perceptual features in the clas-
sification process. The identification of these relevant features provides valuable
insights into the model’s thought process when determining abstract concept labels
for test images. The significance of this approach becomes evident when compar-
ing it to deep learning models. While deep learning models might o↵er similar
classification performance, their decision-making process often remains a ‘black
box.’ In contrast, our approach unveils the concrete factors leading to specific pre-
dictions, thus enhancing transparency and enabling users to make more informed
and interpretable decisions based on model outputs.
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Some of the key findings and lessons that emerge from this work include:

Perceptual Semantics (PS) Automatic Extraction A key contribution of
this chapter is the delineation and automation of Perceptual Semantics (PS) ex-
traction from images, replicating human vision and high-level visual sensemak-
ing. This achievement stands out by eschewing human-labeled concrete data and
embracing a fully automated, consistently applied process to all images. This
approach not only bolsters scalability but also underscores the transformative po-
tential of automation in image analysis. By exclusively relying on state-of-the-art
detectors for extraction, our research streamlines the process, providing insights
into how contemporary machine vision systems perceive visual content. The broad
spectrum of perceptual semantics considered, spanning from emotions to art styles,
adds depth and nuance to image analysis. This work advances computer vision
by mirroring contemporary machine vision systems, opening vast possibilities for
applications in art, culture, advertising, and marketing.

Innovative Image Representation This work introduces a novel approach
to image representation, emphasizing the transformation of raw image data into
interpretable vector representations. This method opens up new possibilities in
image analysis and classification, which can allow for a more cognitive-aligned
understanding of image content beyond traditional methods. This approach has
significant potential applications across various domains, from art and culture to
cognitive science and machine learning.

Interpretability vs. Complexity The choice of using classical machine learn-
ing, particularly Naive Bayes, raises important questions about interpretability
and complexity in image classification. By opting for an interpretable model over
deep learning approaches, the chapter highlights the trade-o↵s and implications
of this decision. It underscores the importance of interpretable AI models and
their role in improving trust and user adoption. Critically, our findings chal-
lenge the conventional notion that deep learning models are the sole solution for
image classification tasks, underlining the practicality and e↵ectiveness of inter-
pretable machine learning methods in this context. Our explainability approach,
as exemplified by Figure III.2.14, provides transparent insights into the model’s
decision-making process, enhancing the overall interpretability and user trust in
model outputs. This observation calls for a reevaluation of the conventional belief
in complex deep learning models as the default choice, emphasizing the practicality
and e↵ectiveness of interpretable machine learning methods in the field of abstract
concept image classification.
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Interdisciplinary Research This section represents a unique amalgamation
of computer vision, cognitive science, and cultural image analysis, yielding novel
insights that reshape our approach to achieving interpretability in computer vi-
sion. The interdisciplinary nature of this research has significant implications for
knowledge integration, emphasizing the importance of collaborative approaches in
advancing the field. This work demonstrates that when various disciplines con-
verge, it is possible to uncover new dimensions of understanding, ultimately leading
to more robust and e↵ective solutions for complex problems in computer vision
and image analysis.

III.2.5.4 Future Directions

While our research has uncovered essential lessons and avenues for exploration, it
also highlights promising directions for future research, including:

Situating the Perceptual Semantics (PS) The automation of extracting
perceptual semantics from images marks a significant achievement, o↵ering ad-
vantages such as e�ciency and scalability. However, it also presents challenges,
including potential biases in automated detection. To further our research, we
should delve into contextualizing the perceptual semantics using information about
the strength of annotations, the artificial annotator used, the model architecture,
dataset pretraining details, and other relevant contextual information. This av-
enue of research is particularly promising for bridging the cultural gap, especially
in light of the insights gained from Chapter IV.2.

Further Semantic Enrichment and Exploitation of Commonsense Knowl-
edge The assignment of perceptual semantic labels to ConceptNet nodes signifi-
cantly enriches the semantics associated with images, resulting in a deeper under-
standing of image content. However, our methods have yet to fully exploit this
semantic enrichment. The existence of this valuable semantic content serves as a
reminder that the extracted semantics can and should be further reasoned over,
drawing lessons from Chapter IV.1 to guide our exploration.

Comparability Across Datasets and Potential for Generalization Our
decision to apply a consistent process to all images within the ARTstract dataset
underscores the generalizable nature of the approach. We should explore the po-
tential for applying this approach to other image datasets and domains beyond
the context of art images or perhaps beyond the scope for AC image classification,
expanding the scope of our research.
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Exploring Visual Features for Image Classification The information the-
ory results highlight the significance of colors in image classification. This suggests
that incorporating specific color data directly from image pixels, in addition to the
PS, could lead to improved performance for classifiers. Consideration should be
given to experiments that combine PS with deep features from models like Vit and
VGG, which excel at capturing raw perceptual features such as colors, shapes, and
lines.

Co-occurrence Analysis and Abstract Concept Descriptions The results
from analyzing ARTstract’s perceptual semantics (e.g., Figures III.2.6 and III.2.9)
suggest that the data we have collected can be statistically analyzed for the fre-
quencies and relevance of specific features concerning specific AC clusters, enabling
the identification of common-sense descriptions of abstract concepts. Further re-
search is warranted on how to formally represent ACs based on these particularly
relevant features. These multimodal AC representations, combining textual and
color information, could find applications in various domains beyond AC image
classification, but also for image generation and psychological or cognitive research.

Balance Representation of Perceptual Features The unequal dimensional-
ity of perceptual semantic units likely introduces a bias towards colors and objects.
Future iterations of our methodology may explore strategies to address this bias
more e↵ectively, aiming for a more balanced representation of perceptual features
in image classification tasks.

Explainability User Assessment While the findings on explainability are
promising, integrating evaluations from experts in art history could provide in-
valuable insights. Future research should prioritize conducting user studies, par-
ticularly involving art history experts, to assess the clarity, comprehensibility, and
usefulness of the explainability method.

III.2.6 Conclusions

Through the delineation and automation of the perceptual semantics (PS) ex-
traction process, we open the door to replicating the cognitive aspects of human
high-level visual sensemaking. This approach not only ensures scalability but also
broadens our understanding of how machines interpret visual content, allowing for
statistical analyses to illuminate the relationship between ACs and perceptual ele-
ments. Critically, our findings challenge the conventional notion that deep learning
(DL) models are the sole solution for image classification tasks, underlining the
practicality and e↵ectiveness of keeping the DL paradigm close to the concrete
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levels and using more interpretable machine learning methods to build on top.
Our explainability approach, as exemplified by Figure III.2.14, provides trans-
parent insights into the model’s decision-making process, enhancing the overall
interpretability and user trust in model outputs. This paradigm reveals a nuanced
landscape where feature engineering and traditional machine learning approaches
can provide explainable decisions for higher-level tasks without significantly sac-
rificing accuracy. Overall, this interdisciplinary work bridges computer vision,
cognitive science, and cultural image analysis, unveiling new horizons in the pur-
suit of explainable AI. As we explore further directions, we recognize the need to
contextualize perceptual semantics, exploit semantic enrichment, and extend our
approach to various datasets and tasks. In doing so, we pave the way for the
integration of engineered perceptual semantics in image analysis, enhancing the
cognitive alignment between machines and humans, with far-reaching implications
for fields ranging from art and culture to AI and beyond.
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Chapter IV.1

Interpretable Bridging of Visual
Data and Linguistic Frames

Summary Chapters II.2 and III.1 o↵er compelling evidence regarding the role
of concrete elements, particularly depicted objects, in connecting raw pixel data
with ACs, emphasizing the potential of exploiting concrete semantics. Consider-
ing insights from cognitive science on the importance of distributional linguistic
and commonsense knowledge in AC representation (Chapter I.3), a further way
to exploit them emerges: using linguistic and common-sense reasoning to ascend
from concrete visual elements to abstract knowledge by identifying frames, pivotal
cognitive structures. Despite the significance of frame evocation for visual and
multimodal sense-making, a notable lack of data-driven tools to automate this
process exists. This chapter addresses the challenge by automating the reason-
ing process on the concrete semantics of visual data to unveil associations with
high-level linguistic frames. Through ontology-based knowledge engineering tech-
niques, we provide an explainable framework for identifying “framal visual mani-
festations.” The chapter conducts a deep ontological analysis of the Visual Genome
image dataset [233] and introduces the Visual Sense Ontology (VSO). To enrich
the dataset, we present a fully interpretable framal knowledge expansion pipeline
that extracts and links linguistic frames, including values and emotions, to images,
using multiple linguistic resources for disambiguation. Moreover, we introduce the
Visual Sense Knowledge Graph (VSKG), enhancing the accessibility and compre-
hensibility of Visual Genome’s multimodal data through SPARQL queries. VSKG
encompasses data on frame visual evocation, enabling advanced explicit reasoning,
analysis, and sensemaking. Our work advances the automation of frame evocation
and multimodal sense-making while maintaining interpretability and transparency.
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IV.1.1 Introduction and Background

In communication studies, sensemaking is a process of categorization and label-
ing to bring stability to an individual’s experiences, requiring the selection and
transformation of certain elements from everyday experiences into abstract social
categories when faced with something unfamiliar [170]. It has been argued that
verbal discourse alone is not an accurate representation of communication in con-
temporary society [39, 40] and, instead, human communication involves multiple
modes, including visual elements, working together to create meaning. As such,
multimodal sensemaking is a crucial aspect of human cognition, enabling us to
synthesize and give meaning to our experiences. This process involves integrat-
ing knowledge from di↵erent modes, including visual, linguistic, physiological, and
auditory, to perceive, reason, learn, and take action. As a result, automated mul-
timodal reasoning has emerged as a promising area of research in various fields,
including Cultural Heritage and Human-Computer Interaction.

In recent years, automatic multimodal analysis has gained popularity, but with
an almost exclusive focus on the use of DL techniques. [156] provides a compre-
hensive survey on deep multimodal representation learning, which aims to narrow
the heterogeneity gap among di↵erent modalities in the utilization of ubiquitous
multimodal data. Additionally, DL models such as CNNs have been used in CV for
a range of related tasks, including image classification, object detection, and lan-
guage modeling [212, 294, 347]. Within the field of CV, situational analysis aims to
automatically detect commonsense semantics, including actions, activities, roles,
and interactions between objects, in visual situations, scenes, and events. Within
situational analysis, explicit tasks include abstract reasoning, which deals with
global semantic tasks based on logic, such as work by [337], and Grounded Sit-
uation Recognition (GSR) [280], which involves producing structured semantic
summaries of images, including identifying the primary activity, entities involved
in the activity with their roles, and bounding-box groundings of entities. More
related work includes Human Activity Recognition (HAR) systems [36] and multi-
feature, multi-modal, and multi-source event recognition [5], which includes work
on recognizing specific social and cultural events.

The aforementioned DL models are often used for the task of linking lexical
knowledge to visual data. However, the problem of adopting black-box approaches
to sensemaking tasks is twofold: (i) their black-box nature limits the understand-
ing of their decisions and inner workings, such that it is not possible to completely
backtrack the determinant parameters, for example, of a classification task; and
(ii) a considerable portion of semantics e.g. the meaningful co-occurrence of several
elements co-participating in the same event, is flattened to a single parameter/la-
bel. A feasible alternative approach to DL architectures encompasses the use of
ontologies, knowledge base systems, and symbolic reasoning. Ontologies, as in-
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Figure IV.1.1: Framal visual instantiations automatically extracted with our
pipeline from a Visual Genome image. The pipeline detects linguistic frames from
the image’s region descriptions and connects them to their visual manifestations.
Original image from the Visual Genome dataset [208].

tended in computer science, are formal and explicit representations of knowledge
in a certain domain [153, 151]. The use of ontology-based knowledge and data can
enhance both the performance and the explainability of automatic reasoning over
data for decision-making tasks, as well as for knowledge retrieval.

Symbolic knowledge previously used to aid the performance and explainability
of visual learning tasks include the use of logic rule explanation methods [3], as
well as the incorporation of external knowledge via ontology-based KGs, leading
to the proliferation of multi-modal KGs (MMKGs) (survey by [407]). These in-
clude BabelNet KG, which integrates many sources and covers a wide range of
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languages [263], BabelPic [65] a hand-labeled image dataset explicitly targeting
non-concrete concepts, and the CommonSense Knowledge Graph (CSKG) pro-
posed by [176]. CSKG consolidates commonsense knowledge from seven di↵erent
sources and provides useful embeddings for downstream reasoning and pre-training
of language models. However, most of these ontologies are not described in depth
and are also not publicly available for SPARQL querying. As such, there is a
scarcity of frameworks that allow the direct querying of and reasoning over image
data, limiting their potential for multimodal knowledge enrichment.

We argue that the kinds of situational knowledge targeted by deep architec-
tures can be detected in an automatic, explainable, and more human-like fashion
via the explicit integration of visual data and linguistic frames. This is because
reasoning via linguistic descriptors, with features of encyclopedic knowledge repre-
senting cognitive phenomena, has been successfully performed by Frame Semantics
methodologies [359]. A frame is, in Fillmore’s broad definition [120], a cognitive
representation of typical features of a situation. Frames are structures that for-
malize the network of meaning in semantic roles participating in a certain situa-
tion. This network of semantic references to triggers of meaning is usually called
“activation” or “evocation” of some frame. As such, a di↵erent and potentially
more explainable approach to automatic multimodal sensemaking is the automatic
detection of frame evocation from visual data, which involves the integration of
various sources of knowledge, including lexical and commonsense resources. How-
ever, there is a scarcity of data-driven approaches and tools that integrate di↵erent
modes of frame-based knowledge for automatic multimodal sensemaking.

To address this scarcity, this work proposes a multimodal integration and rea-
soning pipeline that provides resources, algorithms, tools, and methods for au-
tomated multimodal inferences. Specifically, we focus on the explicit and formal
integration of two important resources, Visual Genome (VG) [208], a large anno-
tated image dataset, and Framester [131], a linked open data graph resource that
provides linguistic and factual knowledge.

The objective of this work was to develop a full pipeline that allows, for a VG
image of choice, the automatic modeling, implementation, and publication of a
semantic web KG (in RDF) containing multimodal data, including visual frame
evocations (see Fig. IV.1.1). Our approach prioritizes ontology-based knowledge
engineering, as ontologies o↵er a structured means of representing knowledge and
the connections between concepts. By utilizing ontologies, we can seamlessly inte-
grate data from diverse sources and facilitate reasoning about the information. As
such, this work introduces the Visual Sense Ontology (VSO) and the Visual Sense
Knowledge Graph (VSKG), a linked data KG that contains multimodal (factual,
linguistic, and visual) knowledge.

Our work provides a valuable contribution to the field of multimodal sensemak-



IV.1.2 Resources and Tools 173

ing, by presenting a data-driven approach to automatically performing frame-based
inferences based on multimodal data. By providing a comprehensive framework
for integrating and reasoning with multimodal knowledge, the resulting linked
data KG has the potential to support a wide range of applications, from enhanc-
ing human-computer interaction to advancing the state of the art in knowledge
representation, CV, and natural language understanding. The associated GitHub
repository1 and project website make our work accessible to researchers and prac-
titioners in this field.

IV.1.2 Resources and Tools

In this section, we briefly introduce the main resources and tools reused, in par-
ticular the Visual Genome dataset and the Framester ontological hub. The FRED
tool [132] to generate KGs from natural language is also described.

IV.1.2.1 Visual Genome

Visual Genome (VG) [208] is an annotated image dataset containing over 108K im-
ages where each image is annotated with an average of 35 objects, 26 attributes,
and 21 pairwise relationships between objects. Regarding relationships and at-
tributes as first-class citizens of the annotation space, in addition to the traditional
focus on objects, VG’s annotations represent the densest and largest dataset of im-
age descriptions, objects, attributes, relationships, and question-answer pairs. The
Visual Genome dataset is among the first to provide detailed labeling of object
interactions and attributes, providing a first step of grounding visual concepts to
language by canonicalizing the objects, attributes, relationships, noun phrases in
region descriptions, and question-answer pairs to WordNet synsets.

IV.1.2.2 Framester

The notion of “frame” refers to Fillmore’s Frame Semantics [119, 120]: frames are
schematic formalizations, in the form of N-ary relations, of commonsense knowl-
edge cognitive representations about entities and situations. The grounding as-
sumption is that the semantics of a certain entity cannot be understood without
considering a minimum context in which some meaning is situated. FrameNet
is the resource originally formalizing this knowledge, structuring each frame as
composed by some necessary frame elements, namely, semantic roles, and link-
ing lexical units (LU), namely, each piece of linguistic material commonly called

1https://github.com/delfimpandiani/visualsense. Access date: December
2023.

https://github.com/delfimpandiani/visualsense
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“word”, and sentences to frames in a schematic structure based on the common
scene they evoke. In FrameNet [270], a formal representation of Fillmore’s frame
semantics, frames are also explained as situation types. The Framester ontological
hub [131, 128] provides a formal semantics structuring of commonsense knowl-
edge in a curated linked data version from several, multimodal resources. The
Framester ontology includes (besides FrameNet) linguistic resources such as Word-
Net [250], VerbNet [316]; a cognitive layer including MetaNet[130] and ImageSche-
maNet [104]; and it is multilingual thanks to the alignment with BabelNet [262].
Furthermore, it includes factual knowledge bases (e.g. DBpedia [20], YAGO [343],
etc.), and ontology schemas (e.g. DOLCE-Zero [134]), with formal links between
them, resulting in a strongly connected RDF/OWL KG.

IV.1.2.3 ValueNet

The ontological module dedicated to formally representing moral and cultural val-
ues as semantic frames is ValueNet [103]. ValueNet formally represents three orders
of values, according to the main theories in the literature. The first order (i) is
composed of moral values, intended as universal, Kantian categories [193]. These
values transcend the human species and are attested in the animal domain too
[235]. They include values such as “Care”, “Liberty” and “Equality”. They are
mainly modeled from Graham and Haidt’s Moral Foundations Theory [148]. The
second order of includes (ii) cultural values, whose existence is confirmed by sev-
eral experiments [319, 320, 351], but their extensional semantics depend on socio-
cultural variables. The Basic Human Values theory by Shalom Schwartz [318, 145]
models these kinds of values, such as “Openness to change”, “Tradition”, and “Self
Enhancement”. The ValueNet ontology includes also a module (iii) generated by
those “values” gathered from non-o�cial, non-specific, web-scraped concepts clas-
sified in several online repositories as “values”. This bottom-up approach consists
of a “return to the text”: its aim is to include in the ontological representation
those entities that, albeit not included in well-established theoretical frameworks,
shape our daily behavior. These values are called “Folk values”, and some exam-
ples could be “Punctuality”, being punctual, “Intelligence”, showing intelligence,
and “Partnership”, teaming up for a certain goal. The ValueNet repository is en-
tirely available on the dedicated repository2 and it is queryable from the Framester
SPARQL endpoint.3

2The ValueNet GitHub repository is available here: https://github.com/
StenDoipanni/ValueNet. Access date: December 2023.

3The Framester endpoint can be found here: http://etna.istc.cnr.it/framester2/
sparql. Access date: December 2023.

https://github.com/StenDoipanni/ValueNet
https://github.com/StenDoipanni/ValueNet
http://etna.istc.cnr.it/framester2/sparql
http://etna.istc.cnr.it/framester2/sparql
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IV.1.2.4 EmoNet

The ontological module dedicated to formally representing emotions as semantic
frames is EmoNet. EmoNet in its current version includes the transposition of the
Ortony, Clore, and Collins (OCC) appraisal theory [277], and the Basic Emotions
(BE) theory by Ekman [114]. The emotions covered by this current version are
the six Ekman Basic Emotions: Fear, Sadness, Anger, Enjoyment, Disgust, and
Surprise. The EmoNet ontology is available online on its repository4 and it is
queryable from the Framester SPARQL endpoint.

IV.1.2.5 FRED

FRED5 [132] is a hybrid statistical and rule-based knowledge extraction tool, able
to generate RDF and OWL KGs taking as input directly text from natural lan-
guage. Being directly linked to the Framester ontology it can be considered as
a “situation analyzer”. Its graphs include (i) word sense disambiguation to the
WordNet resource, (ii) VerbNet verbs disambiguation, including the superimposi-
tion of VerbNet semantic roles attribution on the semantic arguments structure
of the sentence; (iii) frame detection from FrameNet; (iv) PropBank frame recog-
nition; (v) DBpedia entity linking. The usage of the FRED tool allows KG gen-
eration from natural language integrating the previously mentioned well-known
semantic web resources aligned in the Framester hub while keeping the seman-
tic dependencies structure of a sentence and a completely explainable knowledge
enrichment pipeline.

IV.1.3 Approach

This section is focused on the VSO and VSKG development. Sec. IV.1.3.1 is
focused on the original Visual Genome data model and the rationale for VG onto-
logical transposition; Sec. IV.1.3.2 describes the enrichment of VG with semantic
frames, values, and emotions; Sec. IV.1.3.2 is focused on populating the VSKG
with the VG enriched data; and finally Sec. IV.1.3.2 describes how the VSO has
been tested.

4The EmoNet GitHub repository is available here: https://github.com/
StenDoipanni/EmoNet. Access date: December 2023.

5FRED online demo is available at http://wit.istc.cnr.it/stlab-tools/fred/
demo/. Access date: December 2023.

https://github.com/StenDoipanni/EmoNet
https://github.com/StenDoipanni/EmoNet
http://wit.istc.cnr.it/stlab-tools/fred/demo/
http://wit.istc.cnr.it/stlab-tools/fred/demo/
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Figure IV.1.2: Starting from the data provided by the Visual Genome project
(beige), our pipeline allows for the automatic creation of a semantic web KG con-
taining visual, factual, and linguistic data. Top: Data modeling and ontology en-
gineering branch (pink shades). Bottom: Framal knowledge enhancement branch
(blue shades). The combination of the original data, the Visual Sense Ontology,
and the extracted framal data are used to create the Visual Sense Knowledge
Graph (purple).

IV.1.3.1 Data Modeling and Ontology Engineering Branch

In this section, we describe the ontological analysis of Visual Genome, as well as
the rationale and modeling practices applied for its ontological transposition.

Visual Genome Data Model Analysis

The Visual Genome dataset can be accessed in two ways: through their API
to directly access data from their server, or by downloading the entire dataset
and working with it locally. In our case, we chose to download the data and
parse it locally. Before designing our ontology, we manually explored the JSON
files to better understand the structure of the data. During this exploration,
we discovered issues such as the use of di↵erent keys for the same instances in
di↵erent JSON files. To address this, we sketched out the implicit data model
behind Visual Genome and proposed an intermediary data model to eliminate these
duplications, and to streamline the ontology design process. We also consulted
the provided documentation to gain a deeper understanding of the dataset’s seven
main components.

Visual Sense Ontology Engineering

eXtreme Design This project utilizes the eXtreme Design (XD) methodology
[282] to develop the Visual Sense ontology, drawing inspiration from test-driven
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practices in eXtreme Programming [35]. XD is based on the reuse of ontology
design patterns (ODP), which address recurring modeling issues and are available
in catalogs such as the Ontology Design Patterns Portal,6 the Workshop on On-
tology Design Patterns series,7 and the University of Manchester catalogue.8 In
addition, XD adopts a modular design approach, which involves breaking down
requirements into standalone, interchangeable modules. To collect requirements–
Competency Questions (CQs) and General Constraints (GCs)–the methodology
employs “stories,” a set of sentences that illustrate the type of facts that the on-
tology should encode. To increase manageability, XD suggests dividing complex
stories into smaller, more manageable ones that can be characterized by priority
level, title, and identifier to indicate any possible dependencies on other stories.

Visual Sense: Stories and Competency Questions The XD methodology
was applied to the Visual Genome dataset to comprehensively explore it and to
guide the design of VSO. This involved formulating a general story that guides the
exploration of the dataset, focusing on searching for images containing objects,
identifying object attributes, discovering object relationships, analyzing object
and relation regions, investigating conceptual frames, and exploring bounding box
data in relation to frame evocation. The story also aims to identify synsets related
to objects, regions, relations, and frames within the images. To support this
exploration, the story was broken down into sub-stories, each with corresponding
competency questions. In total, 26 competency questions were formulated that
correspond to one or more sub-stories. The competency questions were developed
using the XD methodology for ontology design, which involves identifying the
regions where objects and relations are involved, their respective bounding boxes,
and conceptual frames evoked by the images. The methodology also includes
searching for synsets related to objects, regions, and relations. We report the
sub-stories, their descriptions, and the corresponding competency questions (see
Table IV.1.1). The complete document containing the competency questions can
be accessed on the project Github.9

Besides the described stories and competency questions, the ontology and KG
can be used to answer more complex and interesting queries, such as: What is
the largest region (in terms of surface area) in an image, and what does it depict?

6http://ontologydesignpatterns.org/wiki/Main_Page. Access date: December
2023.

7http://ontologydesignpatterns.org/wiki/WOP:Main. Access date: December
2023.

8http://www.gong.manchester.ac.uk/odp/html/. Access date: December 2023.
9https://github.com/delfimpandiani/visualsense/blob/main/A-Data_

Modeling_Ontology_Engineering_Branch/2_eXtreme_Design/competency_
questions.md. Access date: December 2023.

http://ontologydesignpatterns.org/wiki/Main_Page
http://ontologydesignpatterns.org/wiki/WOP:Main
http://www.gong.manchester.ac.uk/odp/html/
https://github.com/delfimpandiani/visualsense/blob/main/A-Data_Modeling_Ontology_Engineering_Branch/2_eXtreme_Design/competency_questions.md
https://github.com/delfimpandiani/visualsense/blob/main/A-Data_Modeling_Ontology_Engineering_Branch/2_eXtreme_Design/competency_questions.md
https://github.com/delfimpandiani/visualsense/blob/main/A-Data_Modeling_Ontology_Engineering_Branch/2_eXtreme_Design/competency_questions.md
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Table IV.1.1: Substories and related Competency Questions (CQs) used as re-
quirements for the design of the Visual Sense Ontology (VSO).

Story Description Related CQ
Substory
#1

I want to search images that contain certain objects
and want to find out which attributes are associated
with them, alongside the images’ path URLs.

CQ1, CQ21,
CQ26

Substory
#2

I want to know if there are relations in an image and,
if this is the case, I want to identify the domain and
range of each of the relations.

CQ13, CQ14,
CQ15, CQ16

Substory
#3

I am interested in identifying the image regions in
which the objects and relations are involved, and
their respective bounding boxes.

CQ2, CQ3, CQ8,
CQ9, CQ10,
CQ12

Substory
#4

While searching for images that contain objects and
relations, I want to know more details about the
bounding boxes that cover these objects and rela-
tions, such as their location and size.

CQ3, CQ4,
CQ5, CQ6, CQ7,
CQ17, CQ18,
CQ19, CQ20

Substory
#5

I need to investigate if certain images evoke any con-
ceptual frames, and in which regions these frames are
involved in.

CQ22, CQ23

Substory
#6

I want to search for synsets that are related to ob-
jects, regions and relations in a certain image.

CQ11, CQ24,
CQ25

What are the coordinates of a depicted object in an image, and what percentage of
the image does it occupy? Are there relationships between two objects of the same
type in some image? Which images depict one human holding another human?

IV.1.3.2 Framal Knowledge Enhancement Branch

In this section, we describe the pipeline of knowledge enrichment from the Visual
Genome dataset by reusing the Framester [131] ontological hub and the FRED
tool.

Data Pre-processing

The original VG data required some pre-processing to be prepared for the frame
evocation steps.

Data Splitting Due to the substantial size of the Visual Genome JSON files, we
employed data pre-processing techniques as the first step, including parsing the
scenegraph.json and regiongraph.json files provided by VG into splits of 10,000
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image records each. The subsequent steps were designed to operate on each split
individually, to facilitate the cleaning and filtering process.

Activity filtering To populate a KG with meaningful frame-related information
from VG, we decided to focus on “action-oriented” images, where agents such
as humans or animals are engaged in some kind of activity, and we used verbal
relations as a proxy to identify actions. In VG, verbal relations are disambiguated
to WordNet synsets (e.g., the wearing lexical unit in “a child is wearing a T-shirt”
is disambiguated to wn:wear-verb-1, which in turn, in the Framester ontology,
evokes the fs:Clothing, fs:Dressing, fs:Wearing frames). Therefore, we
only considered images that are associated with at least one verbal relationship,
assuming that such images would evoke more diverse frames and thus better enrich
the KG. This decision is also reflected in the definition of ImageRegion class in
the ontology T-Box (see Section IV.1.2.1), which must contain a verbal relationship
between two objects in order to be included in the KG. To create a subset of action-
oriented images, we iterated through the relations data provided by VG, tagging
each relationship label with a part-of-speech (POS) tag, and selecting only those
relationships that were tagged as verbs. We pruned out prepositional relations
such as OF, ON, and WITH. We created a dictionary with image IDs as keys and
the number of verbal relations for each image as values.

Activity Richness Ranking

To identify images that most likely contain useful linguistic information for detect-
ing linguistic frames, we propose using an “activity richness ranking” approach.
This approach measures the frequency and variety of verbs used to describe the
actions taking place in an image. We used the ranking to determine the order in
which to introduce images to the Visual Sense Knowledge Base.

Ranking Images by verbal variance This first criterion to rank images was
based, in linguistic terms, on the number of verbal token occurrences per image.
We calculated the total number of occurrences of verbal (non-prepositional) rela-
tionships labeled for each image. To visually explore the distribution of the ranked
images, matplotlib10 was used to plot the distribution of images according to the
number of occurrences of verbal relations (Figure IV.1.5a).

Ranking images by verbal relation variance The second criterion was to
rank images by their number of unique verbal types, i.e. by the number of unique
verbal relationship types present in each image. Since conceptually we were more

10https://matplotlib.org/. Access date: December 2023.

https://matplotlib.org/
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interested in, for example, a scene with fewer occurrences of the same action but
more types of di↵erent actions, a script was developed to count the amount of
unique verbal relations per image. The results were plotted as well (Fig. IV.1.5b).
Next, we calculate the “variety score” for each image, which is a measure of the
diversity of verbs used in the image description. We do this by calculating the
Shannon entropy of the verb frequency distribution for each image.

Composite Ranking We decided to do a final, composite ranking by normaliz-
ing the scores for each image on both criteria dimensions, computing the rankings
for each dimension separately, and finally combining them into a single weighted
average ranking. The weight for each dimension is set to 0.5, indicating equal
importance.

Frame Knowledge Enrichment

From a single split, ranked by its activity richness, we operate a frame knowl-
edge enrichment module according to the following steps: (i) region description
retrieval, (ii) FRED KG generation from region description, and (iii) frame knowl-
edge enrichment. The first step (i) consists in individuating all the regions per
image in the considered split. Each region is described by a human annotator
with a plain sentence (e.g. in Fig. IV.1.1 “the man is wearing a white t-shirt”
or “the boy is on a skateboard”). Each of these sentences is then passed to the
FRED tool (ii) to automatically generate a KG out of the description in natural
language. Finally (iii), the FRED tool performs frame detection, and the FRED
graphs are also used to query the ValueNet and EmoNet ontological modules to
perform value and emotion detection. The final result consists of the enrichment of
each region with FrameNet frames, ValueNet values and EmoNet emotions. This
enrichment can be used to explore Visual Genome, exploiting the already existing
entity and relation disambiguation to WordNet synsets which, in Framester, are
aligned as frame evokers, improving, even more, the available querying material.

Visual Sense Knowledge Graph Creation

To populate the VSKG, we aligned the original VG data and extracted frame
data with the VSO. First, we extracted relevant fields such as emotions, values,
and frames from the TSV frame-related output of the knowledge enhancement
branch to create a dictionary of frames for each selected image. Next, we loaded
this data along with data from various VG sources. Initially, we attempted to
perform the mapping using PyRML.11 However, we found that an ad-hoc Python
script utilizing the RDFlib library [206] provided greater agility and understanding.

11https://github.com/anuzzolese/pyrml. Access date: December 2023.

https://github.com/anuzzolese/pyrml
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The final module imports various Python packages and defines functions for the
string representation of synset and frame URIs to fit the Framester Hub syntax.
Additionally, it defines a function that generates an image KG based on input
data using the RDFLib Python library. The graph creation process utilizes several
namespaces, including VisualSense (VS), the Common Procurement Vocabulary
(CPV), Framester (FSCHEMA and FS), Haidt Values (MFT), Schwartz Values
(BHV), Folk Values (FOLK), and Basic Emotions (BE). The scripts for this process
are available in the GitHub repository.12

Visual Sense Ontology Testing

The eXtreme Design methodology emphasizes unit testing of the ontology, which
involves Competency Question verification tests, Inference verification tests, and
Error provocation tests [49]. These tests respectively validate whether the ontology
can address the competency questions gathered during requirement collection, con-
firm that the inference mechanisms are established to ensure the proper execution
of the inference requirements, and examine how the ontology behaves when given
random or incorrect data. The competency question verification test consists of
the reformulation of the competency question from natural language to SPARQL
queries and running it against the ontology using a toy dataset which includes the
expected result of the query. Inference verification tests are used to understand
how the information needs to be produced, i.e. entered explicitly as assertions or
derived from other facts through inferencing. Lastly, error provocation is a stress
test of the ontology to verify how the ontology reacts when it is fed with erroneous
facts or boundary data.

The XD methodology provides a thorough and descriptive protocol for the
testing of ontologies. The competency questions collected for the development
of the Visual Sense ontology have been tested with the Competency question
verification test, while the requirements for the Inference Verification test and the
Error Provocation test are found in the list below. The execution of each of the
test cases is documented and its documentation includes the requirement that is
being tested, the category of the test, the description of the test, the test itself,
the input test data, the expected result, the actual result, the credentials of the
tester, the test execution date, the execution environment, result, and comment.
The protocol was followed partly manually and partly automatically with the help
of the XDTesting tool,13 an automation of the testing process based on the XD
protocol and it is integrated with GitHub. The test cases, the datasets, and their

12https://github.com/delfimpandiani/visualsense/tree/main/C-Visual_
Sense_Knowledge_Graph_Creation. Access date: December 2023.

13testing.extreme-design.info

https://github.com/delfimpandiani/visualsense/tree/main/C-Visual_Sense_Knowledge_Graph_Creation
https://github.com/delfimpandiani/visualsense/tree/main/C-Visual_Sense_Knowledge_Graph_Creation
testing.extreme-design.info
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documentation can be accessed in the GitHub repository.14

Inference verification test requirements include:

• Is ImageBox a subclass of Region? (In the ontology, ImageBox is a
subclass of SpaceRegion and SpaceRegion is a subclass of Region.)

• Is BoundingBox a subclass of Region? (In the ontology, BoundingBox is
a subclass of SpaceRegion and SpaceRegion is a subclass of Region.)

• If a class is the domain of the :depictsDepictedObject property, then
it is a DepictedRegion.

Error provocation test requirements include:

• ImageBox and ImageObject are disjointed.

• Object and Situation are disjointed.

• Object and Region are disjointed.

• Region and Situation are disjointed.

• DepictedObject and ObjectRelation are disjointed.

IV.1.4 Results

IV.1.4.1 Data Modeling and Ontology Engineering Branch

Visual Genome Data Model Analysis

Analysis of Visual Genome dataset shows details about its components and onto-
logical assumptions:

• Region descriptions are human-generated and localized in a region of an
image with a bounding box. They are allowed to have a high degree of overlap
with each other. Noun phrases in region descriptions are canonicalized to
WordNet synsets.

• Objects are delineated by bounding boxes and canonicalized to WordNet
synsets using a heuristic and 30 hand-crafted rules. The authors do not
provide any explicit definition of what counts as objects, but their require-
ment to be covered by a bounding box points towards its semantics being of
physical, depicted objects.

14https://github.com/delfimpandiani/visualsense/tree/main/D-Testing/
6_Ontology_Testing. Access date: December 2023.

https://github.com/delfimpandiani/visualsense/tree/main/D-Testing/6_Ontology_Testing
https://github.com/delfimpandiani/visualsense/tree/main/D-Testing/6_Ontology_Testing
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• Attributes predicate something about an Object, most commonly regard-
ing color (e.g., yellow), states/ continuous actions (e.g., standing), sizes (e.g.
tall), and materials (e.g. plastic). They are normalized based on morphol-
ogy and mapped to WordNet adjectives using 15 hand-crafted rules. The
most common attributes describing people are intransitive verbs describing
their states of motion. Certain sports (e.g. skiing, surfboarding) are over-
represented due to an image bias towards these sports in the original image
dataset.

• Relationships refer to connections between Objects, which are directed
from a “subject” to an “object” and include actions (e.g. jumping over), spa-
tial relations (e.g. is behind), descriptive verbs (e.g. wear), prepositions (e.g.
with), comparative relations (e.g. taller than), and prepositional phrases
(e.g. drive on). To canonicalize relationships, prepositions are ignored, and
WordNet synsets are selected based on their sentence frames matching the
context of the relationship. Root hypernyms of the verb-synset pairs are
also considered to reduce noise, and 20 hand-mapped rules are included to
correct for WordNet’s lower representation of concrete or spatial senses.

• Region graphs are directed graph representations of a region, while scene
graphs are the union of all region graphs for an image.

• Question and answer (QA) pairs include freeform and region-based
QAs, and noun phrases in region descriptions are canonicalized to Word-
Net synsets.

Visual Sense Ontology

VSO is an ontology that aims to formally represent Visual Genome’s annotation
components and their interrelationships, and to connect these components to the
Framester schema, so as to further ground visual data to language. The ontology
was developed following the XD ontology design methodology, reusing ontology
design patterns (ODPs) and aligning it to other ontologies (see the VSO T-Box
IV.1.3). Below, we provide explanations of its crucial classes and properties. The
Visual Sense ontology has been published at the following permanent IRI: https:
//w3id.org/visualsense.

VSO was aligned to DOLCE Ultra Lite (DUL)15 foundational ontology due
to the cognitive nature of VSO, as the task of representing and improving for-
mal knowledge in the visual sense-making process is particularly coherent with

15http://www.ontologydesignpatterns.org/ont/dul/DUL.owl. Access date: De-
cember 2023.

https://w3id.org/visualsense
https://w3id.org/visualsense
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
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Figure IV.1.4: In VSO, a :DepictedRegion is modeled as a subclass of the class
dul:Situation, in the sense that a depicted region provides a context and is the
setting for a variety of things (depicted objects, relationships between depicted
objects, evoked conceptual frames) that share the same informational space.

the human cognitive and socio-cultural aspects covered by DUL. What the Vi-
sual Genome model considers simply an “image”, is considered in VSO as some-
thing that semantically is spread into two di↵erent classes, reusing the Con-
tent ODP Information Realization. :ImageObject is modeled as a subclass
of dul:InformationObject, since the focus of expressiveness of this class is
on the meaning that is conveyed in and by the Image as an object of information
itself. This class of :ImageObject is furthermore axiomatized as having a real-
ization through a location in some :ImageBox. The class :ImageBox is in fact
a subclass of dul:SpaceRegion and it represents the physical extension of the
image, the spatial area occupied by the image measured in terms of pixels.

This conceptual duality is coherently kept with all the other classes in VSO:
a mereological relation exists between :ImageBox and any other subpart of the
image, with the possibility to query the ontology based on the spatial area of
interest. In particular, these physical subparts of an :ImageBox are the areas,
bound by coordinates, which are recognised in VG as areas of location for Regions
and Objects. They are modeled as instances of the class:BoundingBox, also
subclasses of dul:SpaceRegion, and which are explicitly dul:partOf some
:ImageRegion. They are also the dul:locationOf some :DepictedObject
or of some :DepictedRegion.

The :DepictedRegion class applies the Situation Content Ontology Design
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Pattern16, whose intent is to represent contexts or situations, and the things that
are contextualized. This pattern itself reifies the N-ary Relation Logical Ontology
Design Pattern, and it allows the contextualization of things that have something
in common, or are associated: a same place, time, view, causal link, systemic
dependence, etc. In the case of VSO, :DepictedRegion is modeled as a subclass
of the class dul:Situation in the sense that a depicted region provides a context
and is the setting for a variety of things (depicted objects, relationships between
depicted objects, evoked conceptual frames) that share a same informational space
(Fig. IV.1.4).

The other ontology reused in VSO is Framester schema, in particular the
fschema:Frame and fschema:ConceptualFrame classes are reused both for
the frames evoked by some :DepictedObject, located in some :BoundingBox,
and the frames recognised as evoked by the FRED tool. Additionally, we reuse
the fschema:WnSynsetFrame for the frames evoked by some specific Wordnet
Synset.

IV.1.4.2 Frame Knowledge Enhancement Branch

Activity Filtering and Ranking

In order to perform knowledge enrichment with frames, values, and emotions we
applied the splitting and filtering methodology, ending up with 10 splits each with
about 10k images. From here on the data shown refer to Split n. 2, spanning
from object 10.000 to 19.999 in the original scene graphs VG data file. After
applying the filter to retrieve only images with at least one verbal relation, the
subset resulted in a total of 9158 images, meaning that over 90% of the images
were labeled with at least one verbal relation. When we applied the first criterion
of the activity richness ranking, we found that the vast majority of VG images
lie in the span between 1 to 100 occurrences per image of verbal relations, with
some peculiar graph outliers, namely the two dots showing images with about 300
and 500 verbal relation occurrences each (see Figure IV.1.5a). The application
of the second criterion showed that the vast majority of images include only 1-
7 unique verbal relations types (see Fig. IV.1.5b). We identified that the most
common verbs were auxiliary verbs like “Have.v.1” and “Be.v.1”, while some other
most commonly used verbs are those used to describe people in images, such as
“Wear.v.1” or “Stand.v.1”.

16http://ontologydesignpatterns.org/wiki/Submissions:Situation. Access
date: December 2023.

http://ontologydesignpatterns.org/wiki/Submissions:Situation
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(a) Distribution of images in VG according to our first ranking criterion: the total
number of occurrences of verbal relationships per image. The distribution follows a long
tail distribution, with a big majority of images depicting little to no verbal relationships.

(b) The distribution of images in VG according to our second criterion: the number of
unique verbal relationship types per image. The vast majority of images include only
1-4 unique verbal relations types.

Figure IV.1.5: The distribution of images in VG according to our two ranking
criteria.
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Framal Knowledge Enrichment

We analyzed the top 76 images from the second split using our frame extraction
and value/emotion enrichment module, which yielded a total of 17,566 frame evo-
cations. Of these evocation occurrences, 163 were identified as emotions from the
EmoNet ontology. In terms of values, we found 1,410 occurrences of Folk values
(socio-behavioral attitudes), 438 occurrences of cultural values from Schwartz’s Ba-
sic Human Values, and 751 occurrences of moral values from Moral Foundations
Theory. The remaining 14,804 evocations were identified as FrameNet frames.

IV.1.4.3 Visual Sense Knowledge Graph and Evaluation

The Visual Sense KG

Our pipeline automatically populated the KG with 76 images, resulting in more
than 150,000 triples, which is available online following RDF standards.17 The
VSKG was generated using VG input about image metadata, image regions, and
image scene graphs. Additionally, frame evocation data resulting from our fra-
mal knowledge enrichment branch was introduced, via the VSO. The pipeline
automatically combined these three resources to represent images as informa-
tion objects (ImageObjects), and their information realizations are represented
as ImageBoxes. Conceptual frames are represented as Framester-based URIs
within the KG. VSKG instantiates all classes defined by the VSO, capturing rich
knowledge about the 76 images, including co-occurring depicted objects, depicted
relationships, attributes, pixel-based locations and dimensions, evoked WordNet
synsets, and Conceptual Frames evoked by specific regions.

Testing and Evaluation

For the testing of the Visual Sense ontology, we have created 34 test cases, out of
which 26 are Competency Question verification tests, 3 are Inference Verification
test, and 5 are Error Provocation tests. Each of the test cases was executed and
their results were documented. From the 26 Competency Question Verification
tests, 25 passed successfully, from 3 Inference Verification tests, 2 passed success-
fully, and from 5 Error Provocation tests, 0 passed successfully. The result of only
one Competency Question Verification test was not successful, and it was caused by
a syntax error. The Inference Verification test that resulted in failure is caused be-
cause the requirement cannot be inferred by the ontology. Lastly, the Error Provo-
cation tests were not passed because the ontology did not include disjoint axioms

17https://github.com/delfimpandiani/visualsense/blob/main/C-Visual_
Sense_Knowledge_Graph_Creation/4_KG_Generation/output_KG/visualsense.
ttl. Access date: December 2023.

https://github.com/delfimpandiani/visualsense/blob/main/C-Visual_Sense_Knowledge_Graph_Creation/4_KG_Generation/output_KG/visualsense.ttl
https://github.com/delfimpandiani/visualsense/blob/main/C-Visual_Sense_Knowledge_Graph_Creation/4_KG_Generation/output_KG/visualsense.ttl
https://github.com/delfimpandiani/visualsense/blob/main/C-Visual_Sense_Knowledge_Graph_Creation/4_KG_Generation/output_KG/visualsense.ttl
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between the concepts ImageBox and ImageObject, Object and Situation,
Object and Region, Region and Situation, and DepictedObject and
ObjectRelation. The test results (especially the failures) bring to attention
requirements that need to be developed into the ontology. In particular, the ab-
sence of the disjointness axioms is consistent with the formal representation of
social objects, and is resolved through the import of the DOLCE foundational
ontology, and the reuse of the ontology design pattern Descriptions and Situations
(DnS).

IV.1.5 Discussion

The primary objectives of this study were to: (i) enhance the Framester resource
by expanding its coverage in a multimodal direction through the integration of the
VG annotated dataset; (ii) make the VG dataset directly and explicitly queryable
by transposing its data model into RDF linked open data format; and (iii) en-
rich the visual data with knowledge from several layers (including moral/cultural
values, emotions, and other conceptual frames) to align it with the factual and
linguistic knowledge already present in the Framester Hub. This alignment is
essential to address state-of-the-art problems, such as commonsense knowledge
and multimodal extraction tasks, which can benefit significantly from the Visual
Sense Ontology and the link between frame evocation triggers and situational oc-
currences IV.1.6. Thus, this work makes a valuable contribution to the field of
knowledge representation and semantic web technology. The ensuing paragraphs
delineate the primary achievements of this project.

Activity-Focused VG Preprocessing Pipeline A full preprocessing pipeline
of Visual Genome data is available on the Visual Sense GitHub repository that al-
lows for preprocessing for action- or frame-focused tasks. It includes data trimming
into more tractable splits, as well as data filtering.

Image Activity Ranking The methodology described in Sec. IV.1.3.2 to pro-
cess images according to the “richness of depicted activity” measured by the pres-
ence, amount, and variance of verbal relations is a useful method to establish an
activity richness ranking, and can be useful to select the most interesting images
for detecting semantic frames. In fact, by measuring both the frequency and va-
riety of verbs used in image descriptions, we create a composite ranking that is
more informative than either dimension alone.

Visual Sense Ontology The Visual Sense ontology is a significant achievement
in knowledge representation and semantic web technology. This ontology is the
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product of a reverse engineering process that extracted the conceptual model un-
derlying the Visual Genome dataset. It was designed to align with the DOLCE
Ultralight foundational ontology and is integrated into the Framester schema using
best practices in ontology modeling. These practices include reusing ontology de-
sign patterns, aligning entities, axiomatizing classes, and conceptually grounding
with the DnS pattern. Moreover, our approach extends beyond previous e↵orts
by conceptualizing images as information objects and information realizations in
relation to linguistic frames. This perspective allows for a more comprehensive,
accurate, and accessible way of integrating and analyzing multimodal data. By
adopting this approach, VSO provides a robust framework for tackling complex
challenges, such as multimodal extraction tasks and commonsense knowledge.

Framal Knowledge Enrichment This study presents a comprehensive pipeline
for frame evocation from visual data descriptors, which is capable of tackling the
problem of corrupted or incomplete data through the reuse of the FRED tool and
WordNet lexical unit disambiguation. The pipeline takes as input the region and
scene data provided by Visual Genome and generates a complete list of frames
evoked and the number of evocations per image. Importantly, the framal knowl-
edge enrichment module is able to detect the evocation of not only FrameNet
frames, but also ValueNet values and EmoNet emotions.

Visual Sense Knowledge Graph Population In addition to the ontological
structure, this study o↵ers a pipeline for populating the ontology with data from
both the original VG files and frame evocation. This pipeline is capable of gen-
erating a queryable KG for any image in the original VG dataset. Overall, this
pipeline enables the systematic and e�cient population of the ontology with data,
The resulting image KGs provide a rich resource for researchers and practitioners
to analyze multimodal data and extract valuable insights.

IV.1.5.1 VSKG and its Potential Uses

SPARQL Querying Visual Genome This work o↵ers a significant contribu-
tion by enabling direct and explicit querying of the VG dataset. Through transpos-
ing VG’s data and model into RDF-linked open data format, a resource is created
that enables complex queries, particularly SPARQL queries, to retrieve knowledge
about various aspects of visual content, including entities and their attributes, re-
gions in images, verbal relationships among entities, entity-to-entity relations, the
presence of a specific WordNet synset, frame evocation, and the presence of certain
emotions or moral/cultural values. Additionally, using the Framester structure,
it is possible to query for images that contain hypernyms of a specific entity (ac-
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Figure IV.1.6: The VSKG is a versatile multimodal resource that o↵ers multiple
benefits. Not only does it store multimodal information pertaining to VG images,
but it also enables direct and explicit queries on relationships within and between
images and their contents. As a result, it facilitates sophisticated frame analysis of
images, as well as exploration of patterns of frame compositionality. Furthermore,
the VSKG’s inclusion of both linguistic frame information and precise evocation
coordinates allows for literal visualization of linguistic frame visual manifestations.

cording to WordNet hyperonymy relation), WordNet synsets evoking a specific
frame, and entities with certain fschema:SemanticType such as, for example,
generic containers like boxes and bottles. Queries can also be done to learn about
the positionality of objects, for example, extracting data and statistics of the av-
erage distance between objects in specific relationships (e.g., measuring overlap or
calculating the distance between the center of the bounding boxes of the object
and subject). To demonstrate the querying capabilities, several SPARQL queries
are available on the Visualsense GitHub repository.

Frame Detection Analysis Critically, the frame evocation is performed to be
localized in specific regions of an image. Those same regions, in VSKG are con-
nected to depicted objects and relationships these may be in. As such, VSKG
provides an opportunity for deep exploration of visual content and framal analy-
sis, enabling researchers to retrieve images based on complex relationships between
frames. For example, one can retrieve all images featuring a region evoking the
fs:Animals frame, where an object relationship evokes the be:Enjoyment
emotion, and a region evoking the fs:People frame to retrieve images of some-
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Figure IV.1.7: Four examples of framal visual manifestations on images from the
VG dataset, with visible bounding boxes of depicted regions labeled with evoked
frames, emotions, and values. Clockwise: the first image shows how frames that re-
fer to concrete entities (fs:Clothing) can co-activate with more abstract frames such
as (fs:Temperature) in the same image region. The second image provides visual in-
stantiations of general frames like fs:CommerceScenario and folk:BodyMovement.
The third image shows visual instantiations of frames like fs:Electricity around the
electric guitar, and folk:PerceptionActive in the area of spectators paying atten-
tion to the performers. The last image demonstrates a visual instantiation of the
value of folk:Partnership, among others.

one playing with a pet or animal. Moreover, the N-ary relation structure of frames
enables automatic retrieval of semantic roles that participate in certain events by
reusing VerbNet roles such as Agent and Patient/Undergoer. These roles are ex-
pressed through the VG Subject and Object annotations of a relation, respectively.
Complex SPARQL queries are available in the Visual Sense Ontology repository
and can be executed at the Framester SPARQL endpoint.

Framal Visual Manifestations The frame evocation pipeline we propose is
an explainable process that leverages entities from open linked data and connects
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Figure IV.1.8: Four examples of very di↵erent folk:Partnership evocation. The
visual instantiation of this frame shows how high-level semantics can be conveyed
as commonsense knowledge through the same concept. In clockwise order: the
first image shows young men coordinating in a motor activity while playing. The
second image shows an o�cial doubles tennis match. The third image shows two
people chatting in the sand, with a more emotional and empathy-tinged nuance of
partnership. The fourth shows a band performing on stage in front of an audience.

visual material to well-known semantic web resources. This pipeline not only
enriches visual material with frame evocation but also enables the opposite flow
of information: the retrieval of visual instantiations of semantic frames. For in-
stance, the Visual Sense Ontology allows for the retrieval of all images evoking
the fs:Food frame. The first image in Figure IV.1.7 demonstrates how frames
that refer to more concrete entities, such as fs:Clothing, can be co-activated
with frames like fs:Temperature in the same image region. Moreover, Fig.
IV.1.8 shows how visual instantiations of values such as folk:Partnership
can be explored to see how the same concept can be manifest in various types of
situations.
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IV.1.5.2 Future Work and Research Directions

There is a need for further improvements to enhance the smoothness of each
pipeline’s part. Despite the concreteness of the results, the ideal pipeline should
generate both frame evocation and KG from the input of image ID alone after
data polishing. However, due to the vastness of data and the requirement to iter-
ate through each split of the original files, this passage still requires manual input
to the specific previously extracted file from which to generate both frame evoca-
tion and KG. In light of this, some goals for the next iteration of this project are
further expansion of VSO and VSKG, as well as the execution of further align-
ments and inferences. Further directions for the expansion of VSO and VSKG
include:

• Action Relevance Refinement: A further step could focus on what VG
refers to as “attributes”. While most attributes in VG refer to physical
qualities of material objects, such as color or texture, some attributes refer
to “states” (e.g., “skiing”, “sitting”). Modeling these attributes in a more
sophisticated way could lead to more semantically complex KGs, allowing
for more complex queries to be performed. The work could also benefit from
more sophisticated activity richness ranking, by also taking into account
state-of-the-art metrics of visual interestingness [85].

• Prepositional Knowledge Integration: VSO and VSKG do not currently
include a vast part of the Visual Genome original dataset, specifically all the
prepositional relations. Integrating prepositional knowledge would allow for
the modeling of not only the framality layer of images but also the image-
schematic layer of visual knowledge.

• Integration of Question-Answer Pairs: VSKG does not currently in-
corporate data related to Visual Genome’s QA pairs, which are also disam-
biguated with synsets. These could be extracted and used to further refine
or improve frame evocation.

• Compositionality of Frame Evocation: Further inference could be made
on the compositionality of frame evocation, particularly in complex scenarios
that represent abstract concepts like “violence” and “social disorder,” or
feelings like “love” and “shame.”

• Relevance of Frame Activation: Further inferences can be performed
about the relevance of some frame activation depending on the dimension of
its region’s box in comparison to the total surface of the image it belongs to.

• Further Frame Roles Localization: Considering a frame evocation within
a specific DepictedRegion that contains an ObjectRelation, we also
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have information about the Subject and Object of this relation from the Vi-
sual Genome dataset. A further direction is to align the Subject and Object
with the framesterrole:Agent and framesterrole:Undergoer roles,
respectively. This would enable defining the fschema:TropeType for both
Subject and Object synsets, categorizing them as TropeRoles associated
with the evoked frame.

• Sophisticated Querying: More sophisticated SPARQL queries could lead
to further discoveries in the dataset. The existing competency questions
tested are simple and straightforward regarding the built ontology, but there
is immense potential for discovering knowledge with more complex compe-
tency questions.

IV.1.6 Conclusions

Guided by the overarching research question of whether visual data descriptors
can e↵ectively bridge the gap between raw pixel data and ACs, this chapter ex-
plored the feasibility of automatically reasoning over the concrete semantics of
visual data to establish the evocation of high-level frames. The hypothesis that
interpretable connections between images and high-level conceptual frames can be
achieved through leveraging background commonsense knowledge and ontology-
based automatic reasoning on concrete descriptors was a�rmed. This chapter
marks substantial progress in automating multimodal sensemaking by linking lin-
guistic frames to their corresponding visual manifestations using ontology-based
knowledge engineering techniques. The work has successfully integrated the ex-
tensively annotated dataset, Visual Genome, [233] within the Framester hub [131],
extending the already comprehensive Framester resource coverage into the multi-
modal domain. Through the development of VSO, a pipeline for region-specific
frame, emotion, and value evocation, and the construction of the VSKG, the
project has e↵ectively mapped data from its original source to create a queryable
KG. This work signifies a significant advancement in the automation of frame
evocation and multimodal sensemaking, with the potential for application across
various fields.





Chapter IV.2

Situated Ground Truths:
Bias-Aware AI with SituAnnotate

Summary One of the primary challenges in AC image classification is the sub-
jectivity and cultural variability in image interpretation. Our research in Chapters
II.2, III.1, and IV.1 has shown that concrete visual elements in images can e↵ec-
tively function as cognitive intermediaries to help bridge the semantic gap between
raw pixel data and abstract concepts. However, these approaches rely on the ini-
tial assignment of labels to images, which can be a source of subjective bias itself.
This process mirrors the current AI landscape, where annotations in the form of
words or labels are pivotal for training AI systems. Notably, these annotations of-
ten lack essential contextual information, which can introduce biases. To address
this challenge, we propose SituAnnotate, a novel ontology designed for “situated
grounding,” anchoring ground truth data in their contextual and culturally-bound
origins. SituAnnotate provides a structured and context-aware data annotation ap-
proach, addressing potential bias issues with isolated annotations. It encompasses
situational context, including annotator details, timing, location, remuneration
schemes, annotation roles, and more, ensuring semantic richness. Aligned with the
foundational Dolce Ultralight ontology, it o↵ers a robust and consistent knowledge
representation framework. Our approach produces structured, machine-readable
knowledge that reduces subjectivity and cultural bias in AI systems by consider-
ing contextual annotation factors. As a tool for creating, querying, and comparing
label-based datasets, SituAnnotate enables AI systems to undergo training with
explicit consideration of context and cultural bias. This enhances system inter-
pretability and adaptability, enabling AI models to align with diverse cultural
contexts and viewpoints.

197
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IV.2.1 Introduction and Background

In J. L. Borges’ famous essay The Analytical Language of John Wilkins [51], an-
imals are classified into unconventional and seemingly bizarre categories.1 The
story showcases the arbitrary and culturally-specific nature of categorization, a
philosophical questioning into the complexities and subjectivity inherent in the
act of classification. This theme finds a modern parallel in the rapid growth of
artificial intelligence (AI) and data-driven applications, where classifying data is
essential for training our machines [283, 34, 313].

Labeled data, which underpins modern AI systems, is the result of vast pro-
cesses of data annotation, where meaning is assigned most commonly through
linguistic labels to data points. Given that data produced and annotated by hu-
mans possesses unique value, with the underlying belief that the “human touch” is
indispensable to ensure accuracy and quality, the annotation process often depends
on microlabor of human platform workers [360]. Data annotation is deceptively
complex, revealing a paradox where seemingly objective AI systems grapple with
subjective annotations, resulting in inherent bias. This stems from the context-
dependent nature of annotation, which challenges the notion of universal objec-
tivity. In the digital age, AI systems, portrayed as objective, are constructed
using data steeped in the subjectivity they aim to overcome. This intricate inter-
play between classification, subjectivity, AI data labeling, and bias emphasizes the
complexities of modern AI development.

Data labeling processes are frequently shaped by human judgments, cultural
viewpoints, and personal biases. It’s important to clarify that the biases discussed
in this work should not be conflated with the “bias” term in machine learning
models, which, mathematically speaking is an intercept or o↵set from an origin.
Rather, we are focusing on cultural bias in the sense defined by [353]:

the tendency to interpret and judge phenomena in terms of the distinc-
tive values, beliefs, and other characteristics of the society or commu-
nity to which one belongs.

This chapter delves into the technical aspects of accounting for cultural bias in
the process of assigning semantic labels to data, with a case study of how this bias
permeates the moment of labeling pixel areas of images within training datasets.
This particular phase of human-led or human-evaluated annotation is critical, as

1Borges’ story presents a fictitious taxonomy of animals, supposedly taken from an ancient
encyclopedia, which divides all animals into “ (a) those that belong to the emperor, (b) embalmed
ones, (c) those that are trained, (d) suckling pigs, (e) mermaids, (f) fabulous ones, (g) stray dogs,
(h) those that are included in this classification, (i) those that tremble as if they were mad, (j)
innumerable ones, (k) those drawn with a very fine camel hair’s brush, (l) others, (m) those that
have just broken a flower vase, (n) those that resemble flies from a distance.”
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the labels generated here become integral parts of input data for widely utilized
models across various domains. Consequently, the “data itself” can harbor hu-
man biases, including stereotypes, prejudice, and racism. In this sense, this work
primarily concerns itself with the intersection of cultural and measurement bias,
with measurement bias denoting faulty, low-quality, or unreliable data collection
measures, which can have many causes such as insu�cient label options (e.g. bi-
nary gender [315]) or from subjective views from labelers. These biases can lead to
skewed interpretations and annotations, subsequently a↵ecting the decisions made
by AI systems. A compelling example of this phenomenon can be observed in
the realm of computer vision, where popular datasets like ImageNet [105] play a
pivotal role by providing ground truths or “factual” meanings to extensive image
collections. Paradoxically, these datasets inadvertently reinforce contested political
categories and cultural prejudices. For instance, an image of an indigenous person
in traditional attire might be labeled as “half-naked,” perpetuating a culturally
biased perception as objective truth. Classification frameworks hold authority in
determining the significance of features, potentially amplifying specific worldviews
while marginalizing others. Consequently, the ramifications extend beyond mere
representation, encompassing the ability to mold societal perspectives and fortify
preexisting biases.

The sway of these data biases is not limited to equity or fairness; it can sig-
nificantly shape the very performance of AI systems reliant on them (e.g., [99,
384]). Over the past decade, the issue of data bias has taken center stage [269,
95], with endeavors to “unbias” models and/or the data that they learn from have
become a cornerstone in the pursuit of equitable AI systems [75]. However, any
e↵ort to encapsulate the intricate realities of the world inherently carries with it
biases and perspectives rooted in context. In this sense, rather than the pursuit of
defining and cultivating “unbiased” datasets—an increasingly improbable feat—a
paradigm shift is emerging, which uses biased datasets with the awareness of this
phenomenon, and tries to identify how bias a↵ects results, embracing the nuanced,
situated nature of annotations [10, 301, 383]. It is in this context that we propose
the SituAnnotate ontology, a knowledge representation, and capture tool poised
to navigate the landscape of annotation situations for labeling data used to train
AI systems.

IV.2.1.1 SituAnnotate to Enhance Cultural Bias-Aware AI

While considerable e↵ort has been invested in establishing standards for capturing
metadata pertaining to data and model production and reuse (e.g., data sheets
[136] and model cards [252]), there is a lack of technical tools that allow both
humans and machines to reason over such contextual information, a gap that
persists especially at the level of singular annotations. this work advocates for
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the explicit encoding of situational metadata alongside annotated data, to allow
reasoning. This encoding should be designed to be both machine-readable and
comprehensible/retrievable by human users.

this work introduces SituAnnotate, an ontology-based module designed to for-
mally represent the culturally-bound processes involved in annotating data. It
builds upon the Description and Situations ontology design pattern [129] to ac-
count for two key aspects: 1) the explicit tracking of culturally coded annotation
situations, detailing how meaning is associated with data, and 2) the ability to
reason over and compare annotations and their contexts. SituAnnotate, o↵ers a
structured and context-aware approach to annotating situational context, encom-
passing annotator type, temporal and spatial information, remuneration schemes,
annotation roles, and more. SituAnnotate’s core objective is to capture the con-
textual backdrop surrounding annotations while providing machine-readable repre-
sentations of the circumstances in which data gains significance through linguistic
labels. It builds upon the Dolce Ultralight ontology, ensuring robustness and con-
sistency in knowledge representation, thereby facilitating the selection of specific
data subsets based on annotation context criteria.

IV.2.1.2 Structure of the Chapter

This work is structured as follows: In Section IV.2.1.2, a review of related works
is presented, covering AI data labeling practices, biases, and existing approaches
to mitigate them. Section IV.2.2 introduces the SituAnnotate ontology, first de-
scribing the user requirement scenarios that guided the design of the ontology,
and then defining fundamental concepts and design principles, and describing the
core Classes. Section IV.2.3 discusses the case study of image annotations within
computer vision pipelines. The evaluation protocol, including competency ques-
tions and results, are discussed in Section IV.2.4 The implications, contributions,
and an example of module specialization of SituAnnotate are discussed in Section
IV.2.5. Ultimately, Section IV.2.6 provides a concluding segment summarizing the
key findings and the impact of SituAnnotate. The ontology is available online2

and documented in its GitHub repository.3 The latter also contains the SPARQL
queries and tests used for the evaluation of the ontology.

2https://w3id.org/situannotate. Access date: December 2023.
3https://github.com/delfimpandiani/situAnnotate/. Access date: December

2023.

https://w3id.org/situannotate
https://github.com/delfimpandiani/situAnnotate/
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Related Work

IV.2.1.3 Annotated Data Hunger

The significance of data in the realm of machine learning cannot be overstated. As
[307] succinctly puts it, “ML is data-hungry. Deep learning is data-ravenous.” To
e↵ectively train supervised models, datasets with meticulously annotated labels are
imperative, as they furnish the necessary supervised information to guide model
training and estimate functions or conditional distributions over target variables
from input data. Nevertheless, the process of manually labeling data can be labor-
intensive and time-consuming. In response to this challenge, there are alternatives
such as pseudo-labeling and label propagation, as discussed by [375], which o↵er
the possibility of automatically annotating extensive unlabelled datasets based on
a limited set of accurate annotations. This process then makes available ground
truths an indispensable foundation for reliable model performance assessment and
validation.

IV.2.1.4 The Human Touch in Annotated Data

Data annotation, as highlighted by [360], predominantly relies on human involve-
ment, recognizing the unique value attributed to data produced and annotated
by humans. This underscores the crucial role of the “human touch” in ensuring
the accuracy and quality of annotated data. Geiger et al.’s work [137, 138] o↵ers
a comprehensive review of the landscape of human labeling of training data in
machine learning, delving into best practices in this field. They argue that much
of this labeling work aligns with structured content analysis, a methodology sup-
posed to be “systematic and replicable” [296, p. 19] and historically employed in
the humanities and social sciences to transform qualitative or unstructured data
into categorical or quantitative data. This structured content analysis entails the
work of “coders” or “labelers” who individually assign labels or annotations to
items in the dataset according to “coding schemes”, after which inter-rater relia-
bility is assessed. Historically undertaken by students, crowdwork platforms like
Amazon Mechanical Turk have become most common for data labeling tasks, with
new platforms emerging to support micro-level labeling and annotation, including,
for example, citizen science initiatives where volunteers collaborate to label data
across various domains (e.g., [73]).

IV.2.1.5 The Garbage In, Garbage Out Principle

In the realm of machine learning, the axiom “garbage in, garbage out” [24] rever-
berates as a familiar cliche, emphasizing that the quality of data used in a process
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directly influences the quality of the outcomes. Garbage data extends to include
not only inaccuracies but also decontextualized or biased information that lacks
relevant connections or meaning. Data quality concerns are often overlooked in ML
research and education [138], but it is essential for those applying ML in real-world
domains to grasp the implications of low-quality or biased training data. The idea
that automated systems are not inherently neutral and instead reflect the prior-
ities, preferences, and prejudices of those who have the power to mold artificial
intelligence is an increasingly public topic of discussion, especially given that many
datasets are systematically biased along various axes, including race and gender,
which impacts the accuracy of those ML model. For example, [61] investigates
the false assumption of machine neutrality, and the coded gaze–the algorithmic
‘way of seeing’ which classifies content through researcher- and machine-labeled
categories–which “reflects both our aspirations and our limitations” [62, p. 44].
Another example is how the geographical sampling of Flickr images as well as the
use of English as the primary language for dataset construction and taxonomy def-
inition result in inherent cultural bias within the datasets [373], with work being
done to design new annotation procedures that enable fairness analysis [317]. As
such, evaluating supervised models solely with a held-out subset of the training
data can obscure systematic flaws, especially in cases where the model is used for
contentious decisions like those in finance, hiring, welfare, and criminal justice.

IV.2.1.6 Identifying and Documenting Bias in Data

AI research often relies on biased perspectives in ground truth datasets, poten-
tially causing issues when lacking proper context. New frameworks aim to clarify
the assumed knowledge within datasets and deployed AI systems to combat this
problem.

De-biasing ML

There are e↵orts to “de-bias” ML (surveys by [248, 125]), including via developing
domain-independent fairness metrics to test and modify trained models or predic-
tions. For example, [142] addresses the issue of social biases in AI algorithms by
proposing D-BIAS. D-BIAS is a visual interactive tool that employs a human-in-
the-loop AI approach to audit and mitigate social biases from tabular datasets.
D-BIAS uses graphical causal models to represent relationships among features in
the dataset and inject domain knowledge. Users can detect bias against specific
groups, such as females or black females, and refine causal models to mitigate bias
while minimizing data distortion. Other approaches have been through dataset
preprocessing [66] or database repair [312].
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Documenting (Meta)Data

Other e↵orts have designed standards for capturing metadata pertaining to data
and model production and reuse. [252] propose the use of “model cards” to accom-
pany trained machine learning models, which are concise documents that provide
benchmarked evaluations of models under various conditions. These cards also dis-
close the intended use cases, evaluation procedures, and relevant information about
the model. [136] introduce the concept of “datasheets for datasets” drawing an
analogy to datasheets for electronic components. They propose that every dataset
should be accompanied by a datasheet that documents its motivation, composition,
collection process, recommended uses, and more. This approach facilitates better
communication between dataset creators and consumers, prioritizing transparency
in data collection. Other approaches include “data statements” [41], “nutrition la-
bels” [169], a “bill of materials” [28], “data labels” [43] and “supplier declarations
of conformity” [16]. Additionally, [184] argue for the importance of a new spe-
cialization within machine learning focused on methodologies for data collection
and annotation. They draw parallels with archival practices, where scholars have
developed frameworks and procedures to address challenges like consent, power,
inclusivity, transparency, ethics, and privacy. By incorporating these approaches
from archival sciences, they encourage the machine learning community to be more
systematic and cognizant of data collection, particularly in sociocultural contexts.

Investigating Annotator Bias

Moreover, e↵orts to enhance transparency and accountability in the ML com-
munity have focused on detecting and addressing annotator bias. [384] identify
annotation bias by analyzing similarities in annotator behavior. To achieve this,
they construct a graph based on annotations from di↵erent annotators, apply a
community detection algorithm to group annotators, and train classifiers for each
group to compare their performances. This approach enables the identification
of annotator bias within a dataset, ultimately contributing to the development of
fairer and more reliable hate speech classification models. Within the context of
hate speech detection systems, [10] delves into the issue of annotator bias with a
specific focus on demographic characteristics. They construct a graph based on
annotations from various annotators and utilize community detection algorithms
to group annotators based on demographics. They then proceed to train classifiers
for each demographic group and conduct performance comparisons. This rigor-
ous approach enables them to shed light on how demographic features like first
language, age, and education significantly correlate with performance disparities.
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IV.2.1.7 Ontologies for Digital Hermeneutics

Ontologies formally represent data semantics in a machine-readable format, en-
abling explicit semantics and facilitating queries based on concepts and relation-
ships [27]. Previous research has applied ontology-driven approaches in fields like
image understanding and computer vision, especially in addressing the challenge of
image interpretation. A recent work focuses on modeling interpretation and mean-
ing for art pieces, presenting a data model for describing iconology and iconog-
raphy. Additionally, the Historical Context Ontology (HiCO) aims to outline
relevant issues related to the workflow for stating and formalizing authoritative
assertions about context information for cultural heritage artifacts [96]. Also, the
VIR (Visual Representation) ontology, constructed as an extension of CIDOC-
CRM, sustains the recording of statements about the di↵erent structural units
and relationships of a visual representation, di↵erentiating between object and in-
terpretative act [68]. These developments illustrate the versatility of ontologies in
addressing various interpretation challenges in di↵erent domains.

IV.2.2 The SituAnnotate Approach

IV.2.2.1 Situating (Ground) Truths

this work contends that a crucial step towards the goal of responsible and ethical
AI [87] involves the deliberate grounding of assumed objective truths within their
respective situated contexts. This view aligns with the growing need for technical
solutions to challenge the conventional notion of an unequivocal truth in human
annotation [19], to adopt a power-aware approach to data design and production
[249], and to reveal how AI, ML, and data practices inadvertently perpetuate
colonial power dynamics and value systems [48, 256].

We philosophically adhere to the idea of “situated grounding” in training data,
echoing the concept of “situatedness” exemplified by Donna Haraway in 1988.
Haraway challenges the traditional detached view of vision, characterized as a
“conquering gaze from nowhere”:

This is the gaze that mythically inscribes all the marked bodies, that
makes the unmarked category claim the power to see and not be seen,
to represent while escaping representation. [158, p. 581]

We are inspired by Haraway’s alternative paradigm of “situated knowledges,”
advocating for a perspective rooted in complex, contradictory, structured bodily
experiences, rather than from an assumed objective standpoint [158, p. 589].
Embracing this paradigm involves recognizing the multifaceted nature of localized
knowledge.
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IV.2.2.2 Scenarios

Our ontology, SituAnnotate, aligns with Donna Haraway’s ‘situated knowledges’
paradigm, emphasizing context-dependent perspectives over detached objectivity.
To ensure its e↵ectiveness, we devised 11 user requirement scenarios, serving as
practical examples of the intricate challenges SituAnnotate addresses. These sce-
narios highlight that ground truths are context-dependent, nuanced entities. In
this section, we present these scenarios as practical use cases, showcasing how
SituAnnotate provides valuable insights and supports various annotation-related
tasks.

Scenario 1: Geographic Distribution of Annotation Situations
I want to understand the geographic distribution of annotation situations in Situ-
Annotate. Specifically, I want to know which countries have been the location of
annotation situations, how many annotation situations were located in each coun-
try, and which country has the highest number of annotation situations.
Rationale: This scenario aims to shed light on the geographic scope of annotation
situations captured by SituAnnotate. Understanding where annotation activities
are concentrated can provide insights into regional preferences, data availability,
and potential biases in the annotation process.

Scenario 2: Temporal Filtering of Annotation Situations
I want to research the temporal aspects of annotation situations. Specifically, I
want to select a specific period of time and identify which annotation situations a
particular image has been involved in during that time. This allows me to track the
history of annotations for the image and observe how they may evolve over time.
Rationale: This scenario tests SituAnnotate’s ability to track temporal infor-
mation, enabling precise filtering based on annotation dates. This feature also
facilitates the comparison of annotations before and after significant cultural mo-
ments, such as the COVID-19 pandemic, o↵ering insights into how labels for the
same image may evolve over time in response to societal changes.

Scenario 3: Remuneration Schemes in Annotation Situations
For a certain dataset, I want to know which remuneration schemes have been used
in annotation situations meant to create annotations for it.
Rationale: This scenario explores the various compensation models employed in
annotation situations that have led to annotations for a specific dataset. Identify-
ing remuneration schemes informs us about the motivations and incentives driving
annotators, which can impact the quality and consistency of annotations.

Scenario 4: Annotated Entity Types in Annotation Situations
I want to gain insights into the types of entities that have been annotated within
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the SituAnnotate ontology. Specifically, I want to know the categories of entities,
such as images or documents, that have undergone annotation and are represented
in the SituAnnotate KG.
Rationale: This query illuminates the entities whose annotations have been in-
tegrated into the SituAnnotate ontology. It o↵ers insight into the categories of
entities, such as images and documents, that have undergone annotation and
are represented within the SituAnnotate KG. This comprehension is crucial for
domain-specific applications as it unveils the breadth of concepts encompassed by
the ontology.

Scenario 5: Identifying Annotations based on Lexical Entry
I want to identify all entities that have been annotated using a specific lexical entry,
such as “surfboard.” Additionally, I want to know the roles that these annotations
serve.
Rationale: This question exemplifies how the ontology can be leveraged for the
identification of all entities, or entities of a specific type (e.g., images), that have
been annotated with the same lexical entry (e.g. “surfboard”) and the corre-
sponding annotation roles (e.g., detected object). This query is instrumental in
gaining insights into the usage and impact of specific lexical entries across various
annotations.

Scenario 6: Identifying Contextual Information for Annotations
For a specific situation in which a lexical entry was used to annotate an entity,
I want to know the contextual factors associated with the annotation situation,
including the country, date, annotated dataset, remuneration scheme, detection
threshold, and details about the annotator.
Rationale: This question aims to provide comprehensive context for a particular
annotation scenario, encompassing geographical and temporal aspects, the dataset
under annotation, remuneration specifics, detection thresholds, and annotator at-
tributes. It o↵ers a powerful tool for understanding how a ground truth is situated
within its originating context.

Scenario 7: Filtering Annotations by Reliability and Roles
I want to filter annotations based on their reliability and roles. Specifically, I
want to identify entities with annotations classified under specific annotation roles,
such as detected objects or detected emotions, with annotation strengths exceeding
certain thresholds. Additionally, I want to know the labels assigned to these entities.
Rationale: This question delves into annotations categorized by specific roles
(e.g., detect object, detected emotion, detected action) and their associated anno-
tation strengths. It allows for the filtering of entities based on the reliability or
strength of annotations and provides insight into the specific labels.



IV.2.2 The SituAnnotate Approach 207

Scenario 8: Identifying Concepts Typing Annotations about Entities

I want to know the concepts that type annotations for a specific entity. Specifically,
I want to know the concepts associated with annotations for the entity, along with
their annotation strengths and annotation roles.

Rationale: This scenario focuses on the concepts linked to a particular entity via
annotations. It not only provides a list of concepts associated with an entity via
situated annotations but also essential details about the nature of these assign-
ments, such as their roles and the strength of these associations. This nuanced
view enhances our understanding of the annotations’ semantics and reliability.

Scenario 9: Tracking Annotators Responsible for Annotation Labels

I want to identify the annotators responsible for specific labels associated with a
particular image. Specifically, I want to attribute annotations to individual anno-
tators, enabling an assessment of their contributions to the annotation process.

Rationale: This scenario delves into the identification of the annotators account-
able for specific labels associated with a particular image. This level of detail
enables the attribution of annotations to individual annotators, facilitating an
assessment of their contributions.

Scenario 10: Artificial Annotators and Shared Model Architectures

I want to explore artificial annotators with shared model architectures within Situ-
Annotate. Specifically, I want to know what types of annotations about an entity
were created by artificial annotators with a specific model architecture. Addition-
ally, for each of these annotators, I want to determine the dataset they were pre-
trained on, if applicable.

Rationale: This question explores artificial annotators that employ a shared ar-
chitectural backbone for creating annotations of various types. Identifying shared
model architectures sheds light on the integration of automated annotation tools
within annotation pipelines. Additionally, it provides insights into the prevalence
of specific model architectures and their pretraining on various datasets, contribut-
ing to a broader understanding of automated annotation methods.

Scenario 11: Identifying Image Caption Annotations and Annotators

I want to focus on image caption annotations and the annotators responsible for
them. Specifically, I want to identify the caption annotations for a specific image
and determine who the annotators are for each caption annotation.

Rationale: This query focuses on revealing caption annotations and their respec-
tive annotators for a given image. It is vital for examining the generation and
attribution of textual descriptions, shedding light on the creators of these annota-
tions and their role in conveying information about the image.
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IV.2.2.3 SituAnnotate’s Core Concepts

As such, the core goal of the SituAnnotate ontology is to situate annotations by
connecting them not only to the entity they describe but also to the general situa-
tion and to the annotator involved in it. While established ontologies like PROV-
O4 and OpenAnnotation5 provide robust frameworks for representing provenance
and annotations, but they do not specifically address the need to treat the anno-
tation situation as a first-class citizen. Recognizing this gap in existing ontologies,
particularly in their ability to facilitate separate queries of entities that are an-
notation situations distinct from the annotations themselves, SituAnnotate was
purposefully designed to fill this gap by introducing three core classes: Annota-
tion, AnnotationSituation, and Annotator (see Figure IV.2.1). This design choice
enables SituAnnotate to o↵er a structured and context-aware representation of
annotation situations and their associated entities.

Figure IV.2.1: SituAnnotate at a glance: Core concepts connecting annotations,
annotation situations, and annotators.

Figure IV.2.2: A detailed view of the SituAnnotate Ontology’s core building block,
the AnnotationSituation class.

4https://www.w3.org/TR/prov-o/. Access date: January 2024.
5https://openannotation.io. Access date: January 2024.

https://www.w3.org/TR/prov-o/
https://openannotation.io
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Figure IV.2.3: Deep Dive into the Annotation class: annotation instances connect
annotated entities to lexical entries by fulfilling a specific AnnotationRole in a
certain AnnotationSituation.

Figure IV.2.4: Deep Dive into the Annotator class: SituAnnotate allows the formal
representation of di↵erent types of annotators and relevant characteristics that may
influence their annotation choices.

IV.2.2.4 Annotation Situations and States of A↵airs

The first central Class of the SituAnnotate ontology is the AnnotationSituation
class, depicted in detail in Figure IV.2.2. This class functions as the cornerstone
of the ontology, a subclass of the DUL Situation class to maintain alignment with
DUL’s situational modeling. In essence, the AnnotationSituation encapsulates the
comprehensive state of a↵airs in which an annotation may occur: at a precise
moment in time, at a specific Place, potentially involving a specific Annotator, a
RemunerationScheme by which she is paid for her labor, a Dataset to which the
AnnotatedEntity belongs, and more. Furthermore, each AnnotationSituation must
adhere to an AnnotationDescription. Additionally, this class can incorporate other
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pertinent details unique to the situation. By serving as a representation of the
contextual environment in which annotations transpire, the AnnotationSituation
class interconnects all pertinent data, whether contextual or otherwise, associated
with the annotation process.

IV.2.2.5 Annotations and Annotation Roles

The second core class is Annotation. Instances of this class represent the units
responsible for attaching specific meanings, conveyed by lexical units, to an anno-
tated entity in the context of a particular AnnotationSituation (see Figure IV.2.3).
Annotations are classified by their AnnotationRole, a subclass of Role. These roles
are defined within AnnotationDescriptions, adding semantic richness to the on-
tology, thus enhancing its expressiveness and precision. This approach allows for
the representation of diverse annotation types and their roles within the anno-
tation process. Notably, SituAnnotate introduces a distinctive feature where an
Annotation is a first-order instance capable of establishing relationships with other
instances, extending beyond mere textual labels (e.g., “woman,” “happiness,” or
“cemetery”). Instances of the Annotation class are not only linked to their cor-
responding lexical entries but also to the AnnotatedEntity they describe (e.g.,
an image), the specific annotation role they fulfill (e.g., “detected object,” “de-
tected emotion,” or “detected scene”), the concept typing the lexical entry (e.g.,
conceptnet:woman), and, importantly, the AnnotationSituation within which the
annotation originated. This interconnection enables explicit queries to determine
the context in which a specific entity was associated with a particular lexical label.

IV.2.2.6 Annotators

The third key class in SituAnnotate is Annotator. In this ontology, an Annotator
can take one of two forms: an ArtificialAnnotator, representing automated pro-
grams utilizing a specificModelArchitecture pre-trained on a designated Dataset, or
a HumanAnnotator. The HumanAnnotator category is further subdivided into two
subclasses: IndividualHumanAnnotator and HumanAnnotatorCommunity. This
di↵erentiation was introduced to handle situations where gathering specific de-
mographic information about individual annotators might be challenging due to
privacy considerations. In these cases, data is anonymized by combining and
presenting averages. The ontology can accommodate demographic data, such as
PoliticalA�liation, ReligiousA�liation, IndigenousA�liation, and country of up-
bringing. Annotator communities, created by amalgamating data from annotator
sets for privacy protection, can also be associated with a�liations using the “pre-
dominant” version of a�liation relationships. In essence, this formalization allows
for the comprehensive representation of various annotators employed to attribute
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meaning to an entity using a lexical label. This flexibility enhances the ontology’s
capacity to capture the diverse sources and methods used in assigning meaning
to entities, including computer vision models, individual annotators, or annota-
tor communities (e.g., the collective annotation provided by the ImageNet dataset
annotators).

IV.2.2.7 Aligning with the Dolce Ultra Light Ontology

To ensure the robustness and consistency of the SituAnnotate ontology, it draws
inspiration from and aligns with the Dolce Ultra Light (DUL) ontology. By ad-
hering to the principles and design choices of DUL, SituAnnotate benefits from a
well-established framework that enhances the ontological modeling of situations,
entities, and their relationships. This alignment also promotes interoperability
with other ontologies, enabling broader use and integration with existing semantic
resources.

IV.2.3 Case Study: Image Annotation Situations

To harness the full potential of our ontology and later assess these scenarios, we
expanded our work into a case study focusing on image annotations. These annota-
tions are pivotal in computer vision, a field that stands to benefit significantly from
SituAnnotate and our contributions. Computer vision heavily relies on assigning
meaning through labels to images, making it particularly susceptible to biases,
including human, algorithmic, and interpretational biases [214]. Thus, computer
vision serves as an ideal case study, highlighting its heavy reliance on labels and
its pronounced vulnerability to concealed biases.

IV.2.3.1 Motivation

In the realm of computer vision, image annotation labels are of paramount im-
portance, serving as the linchpin for understanding, retrieving, and managing the
burgeoning volumes of images [230, 311, 378]. These labels, often structured and
endowed with semantic meaning through label- and graph-based resources, bridge
the chasm between raw image content and its comprehension. Particularly in com-
plex image scenes, the semantic annotation of objects within them empowers au-
tomatic understanding and interpretation [309]. Increasingly, linguistic resources
and graphs like WordNet [250], ConceptNet [228] and Framester [131] are used
to assign and organize labels that give meaning to the raw content of images, for
example in the form of scene graphs (e.g., Visual Genome [208]) or taxonomies
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(e.g., the Tate collection6). These amplify the semantic richness of image features,
bolstering image labeling and retrieval systems [304, 314, 352].graph-based models

Critically, the structured representations arising from these annotations also
double as invaluable ground truths for the training of computer vision systems,
contributing substantially to their precision and e�cacy. However, it’s imperative
to acknowledge that the meanings attributed to images do not exist in a cul-
tural vacuum. Images communicate concepts through a fusion of raw features like
lines, colors, shapes, and sizes, alongside culturally coded elements, an aspect that
Roland Barthes termed ’connotation’ [33]. These coded elements guide human
decision-making regarding object identification, labeling, feature ascription, and
relationship establishment. In essence, the extraction and portrayal of semantic
elements from visual content constitute a code system intricately intertwined with
cultural context. This is because visuality, di↵erent from the purely biological
process of vision, is flexible and encompasses “the way that we encounter, look
at, and interpret images based on the social, cultural, technological, and economic
conditions of their viewing” [146, p. 32]. That is, visuality is a cultural practice
with a history marked by di↵erent habits or ways of seeing, as well as di↵erent
types of spectators [124]. This cultural context remains embedded within com-
puter vision pipelines, persisting even in ostensibly straightforward processes like
object detection. The ’distant viewing’ framework, as introduced by [17], empha-
sizes the indispensability of a culturally and socially constructed code system to
render the semantics of visual content explicit. Labeling and classification sys-
tems, though seemingly objective, can inadvertently mirror the values of specific
groups or cultures, thereby centralizing power within the process. Despite these
intricacies, there lingers a prevailing faith in the objectivity of image labels found
in benchmark datasets, often underestimating the cultural and subjective nature
of image annotation [146].

IV.2.3.2 The Image Annotation Situation Specialization

We’ve specialized SituAnnotate to create the Image Annotation Situations (IAS)
module, depicted in Figure IV.2.5, with the explicit purpose of tracing the origins of
image meanings within culturally coded annotation contexts and facilitating their
comparison. This approach is rooted in the notion that an image’s semantic labels
depend on the specific annotation situation under which it is interpreted. In the
IAS module, image annotation is recognized as a contextual situation, similarly to
[361], represented by the class ImageAnnotationSituation. This context en-
capsulates all entities relevant to the annotation process, including the image, an-

6https://github.com/tategallery/collection/issues/27. Access date: De-
cember 2023.

https://github.com/tategallery/collection/issues/27
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notator, annotation time, location, remuneration details, dataset creation purpose,
and more. By applying the Situation pattern, the ImageAnnotationSituation
class provides a structured framework for contextualizing these entities, allowing
for shared features such as location, time, view, causality, and systemic dependen-
cies to be captured.

Figure IV.2.5: Specialization of the SituAnnotate pattern specifically for Image
Annotation Situations (IAS), crucial in the field of Computer Vision (CV). Further
modular specializations can be applied to capture details specific to certain types
of annotation situations, such as object detection.

The IAS module emphasizes the need to describe an annotation situation
through an ImageAnnotationDescription. This description defines the roles
and concepts that participate in the state of a↵airs. The IAS module not only in-
corporates cultural contextual information regarding image annotation situations
but also facilitates comparison between di↵erent annotation situations associated
with the same image object. This enables users to query and analyze the con-
texts in which potentially contradictory interpretations of the same image were
produced.

Furthermore, SituAnnotate’s IAS module already includes classes to support
various types of annotations and annotation situations, such as art style annota-
tions, color annotations, object annotations, action annotations, emotion anno-
tations, caption detection, and more. Furthermore, the ontology accommodates
detailed annotations, including the assignment of labels to specific regions within
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an image using the property :hasCoordinate. This feature enables the repre-
sentation of bounding box annotations for pixels within an image.

Additionally, SituAnnotate o↵ers di↵erent image annotation descriptions for
the mentioned annotation types (e.g., emotion, color, object, action, caption).
These descriptions provide a structured framework for incorporating new annota-
tions into the KG as long as they adhere to the specified description criteria. This
flexibility ensures that the ontology remains adaptable and capable of accommo-
dating diverse image annotation data.

IV.2.4 Evaluation

The evaluation protocol consists of several steps aimed at assessing the perfor-
mance and capabilities of the SituAnnotate system. These steps include the for-
mulation of specialized competency questions, the creation of a toy dataset, the
translation of the CQ questions into SPARQL queries, and the execution of these
queries over the toy dataset.

IV.2.4.1 Competency Questions (CQs) SPARQL Queries

In the context of the user requirement scenarios, we formulated a set of specialized
Competency Questions (CQs). These CQs were designed to reflect the real-world
information needs arising from the specific case study and scenarios presented
earlier. These questions serve as a valuable tool for assessing the capabilities and
performance of the SituAnnotate system in addressing practical use cases. Below,
we present the list of CQs derived from our case study and scenarios:

1. CQ1: Which countries have been the location of annotation situations, how
many annotation situations were located in each country, and which country
has been the location for the highest number of annotation situations?

2. CQ2: Between the years 2020 and 2024, in which annotation situations has
the image with ID “ARTstract 14978” been involved?

3. CQ3: What remuneration schemes have been used in annotation situations
involving the “ARTstract” dataset?

4. CQ4: What types of entities have been annotated?

5. CQ5: Which images have been annotated using the lexical entry “surfboard,”
and what role did these annotations serve?
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6. CQ6: For the specific situation in which “surfboard” was used to annotate
the image with ID “ARTstract 14978,” what contextual factors were associ-
ated with the annotation situation?

7. CQ7: Which images have annotations classified under the role of “detected
emotion” with an annotation strength exceeding 0.85, and what labels have
been assigned to them?

8. CQ8: What concepts type annotations about the image with ID “ART-
stract 14978”?

9. CQ9: For each lexical entry (label) that the image with ID “ARTstract 14978”
was annotated with, who was the Annotator that assigned that label?

10. CQ10: What types of annotations about the image with ID “ARTstract 14978”
were all done by artificial annotators with the “visual transformer” model
architecture?

11. CQ11: What are the caption annotations for the image with ID “ART-
stract 14978,” and who are the annotators responsible for each caption an-
notation?

IV.2.4.2 Toy Dataset Creation

To evaluate the capabilities and performance of the SituAnnotate system, we
crafted a toy dataset in the form of a KG. This dataset emulates real-world sce-
narios involving multiple annotation situations for a single image, o↵ering a com-
prehensive testbed for our system. The toy dataset encompasses a diverse array
of annotation types, such as object detection, actions, emotions, art styles, colors,
and more, all meticulously generated by distinct artificial annotators. To formalize
the dataset, we employed the SituAnnotate ontology, ensuring the preservation of
extensive information pertaining to each annotation situation. This encompassed
details like geographical location, temporal specifics, annotated datasets, remu-
neration structures, detection criteria, and detailed annotator profiles. This rich
contextual data not only enhances the semantic content of the dataset but also
enables structured representation for diverse analytical purposes.

Image Data KG An RDF file,7 it provides comprehensive data for a set of an-
notations related to a specific image (:ARTstract 14978 ). Each annotation within
the dataset is associated with the annotation situation in which it took place.

7https://github.com/delfimpandiani/situAnnotate/blob/main/tests/
toy_dataset/images_kg.ttl. Access date: December 2023.

https://github.com/delfimpandiani/situAnnotate/blob/main/tests/toy_dataset/images_kg.ttl
https://github.com/delfimpandiani/situAnnotate/blob/main/tests/toy_dataset/images_kg.ttl
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These annotations span various dimensions, including actions, age groups, artistic
styles, colors, emotions, human presence, image captions, and objects, all linked
to relevant ConceptNet concepts. Moreover, each annotation is enriched with an
annotation strength value, reflecting its confidence.

Annotation Situations KG This RDF file8 contains detailed representations
of the annotation situations, including details about geographical locations, dates,
annotators, and more. Notably, this KG incorporates further information about
the artificial annotators used for generating annotations. These annotators are
associated with specific model architectures and datasets.

IV.2.4.3 Translation into and Execution of SPARQL Queries

These CQs were subsequently translated into SPARQL queries, creating a for-
mal means to retrieve specific information from the toy dataset. To evaluate
the performance and e↵ectiveness of the SituAnnotate system, we executed these
SPARQL queries over the toy dataset. For executing the SPARQL queries, we
used Ontotext GraphDB,9 a highly e�cient and robust graph database with RDF
and SPARQL support. We ran GraphDB in a Docker container, as provided on
Github.10 This platform facilitated the execution of SPARQL queries and retrieval
of structured data in accordance with the SituAnnotate ontology. More details are
available in Section V.1.5.3 of the Appendix, which summarizes the Competency
Questions (CQs) along with their corresponding SPARQL queries and whether
they were successfully executed (“Pass” status) in evaluating the SituAnnotate
system’s performance.

Results

All 11 competency question verification tests were successfully passed, with the
expected outcomes matching the actual results. Comprehensive details regarding
the results can be accessed in our SituAnnotate GitHub repository11 and in Sec-
tion V.1.5.3 in the Appendix. The repository provides in-depth insights into the
query outcomes, presenting the retrieved information relevant to each specialized

8https://github.com/delfimpandiani/situAnnotate/blob/main/tests/
toy_dataset/situations_kg.ttl. Access date: December 2023.

9https://graphdb.ontotext.com/documentation/10.0/index.html. Access
date: December 2023.

10https://github.com/Ontotext-AD/graphdb-docker. Access date: December
2023.

11https://github.com/delfimpandiani/situAnnotate/blob/main/tests/
competency_question_verification/Results.md. Access date: December 2023.

https://github.com/delfimpandiani/situAnnotate/blob/main/tests/toy_dataset/situations_kg.ttl
https://github.com/delfimpandiani/situAnnotate/blob/main/tests/toy_dataset/situations_kg.ttl
https://graphdb.ontotext.com/documentation/10.0/index.html
https://github.com/Ontotext-AD/graphdb-docker
https://github.com/delfimpandiani/situAnnotate/blob/main/tests/competency_question_verification/Results.md
https://github.com/delfimpandiani/situAnnotate/blob/main/tests/competency_question_verification/Results.md
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competency question. We invite readers to visit our online repository for thorough
access to our evaluation process and results, facilitating further analysis as needed.

IV.2.4.4 Human-Readable Explanations

Figure IV.2.6: Illustration of an exemplary usage of the ImageAnnotationSitua-
tion specialization, depicting the formal representation of the contextual situation
in which the label “impressionism” was assigned to a specific image. Users can
employ a single SPARQL query and a small Python script to obtain fully human-
understandable statements situating the ground truth label assigned to an entity,
as demonstrated in this case with an image.

In addition to assessing the system’s performance against the CQs, we aimed
to harness the ontology’s potential for retrieving situational knowledge regarding
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specific ground truths and presenting it in a readily understandable human lan-
guage. To achieve this objective, we crafted a specialized SPARQL query capable
of retrieving comprehensive contextual information for a given entity and label of
interest. Subsequently, we developed a Python script to automatically translate
the SPARQL query output into a human-readable narrative that elucidates the
context surrounding the annotation. This endeavor underscores our commitment
to facilitating seamless comprehension and transparency in annotation contexts.
The Python script for executing and translating the SPARQL query into natural
language is available online.12

IV.2.4.5 Results

To demonstrate the practical application of SituAnnotate’s capabilities, we se-
lected an image from the toy dataset along with a random label. We executed the
aforementioned SPARQL query and a Python script, which translated the query
output into a human-readable explanation of the context of the annotation. Figure
IV.2.6 provides an example of such an explanation for an image labeled as “im-
pressionism.” The figure showcases how the SituAnnotate ontology clarifies and
enriches image annotations. It details the context of the “impressionism” label
assignment, including information about the annotator, model architecture, and
dataset used for training. This practical demonstration highlights the ontology’s
ability to provide insightful and human-understandable explanations of annota-
tions, making it a valuable tool for situating annotations within their context.

IV.2.5 Discussion

The positive evaluation results highlight the robustness and power of SituAnno-
tate in formally representing information. These results indicate that SituAnno-
tate excels in several key aspects, providing significant advantages over traditional
annotation methods.

Contextual Precision SituAnnotate provides a highly nuanced and context-
aware representation of annotations. By connecting annotations not only to the
described entity but also to the broader situational context and the annotator
involved, it enables a richer understanding of the circumstances in which annota-
tions are made. This contextual precision is often lacking in traditional annotation
approaches that focus solely on labels or strings.

12github.com/delfimpandiani/situAnnotate/tests/. Access date: December
2023.

github.com/delfimpandiani/situAnnotate/tests/
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Semantic Enrichment and Expressiveness Unlike traditional annotation
methods that often involve fixed annotation tasks and roles, SituAnnotate o↵ers
the flexibility of associating the same entity with multiple labels through vari-
ous “AnnotationRoles.” This semantic depth significantly enhances the ontology’s
expressiveness and precision. Annotators can provide richer and more detailed
information about the same entity, enabling a more comprehensive understanding
of the annotated data. This flexibility is particularly valuable when dealing with
complex or multifaceted annotations. SituAnnotate can even formally represent
cases in which the same entity, e.g. an image, is associated with the same label,
e.g. “happiness,” through various annotations fulfilling di↵erent AnnotationRoles,
such as detected emotion or detected abstract concept. This semantic depth sig-
nificantly enhances the ontology’s expressiveness and precision

Flexibility in Annotator Representation SituAnnotate is adaptable to var-
ious annotator types, including both artificial and human annotators. This adapt-
ability addresses privacy concerns by allowing the aggregation of demographic data
when needed. In today’s diverse annotation landscape, which includes computer
vision models, individual human annotators, and annotator communities, SituAn-
notate ensures that all these entities can be formally represented. This reflects the
multifaceted nature of modern annotation processes and supports inclusive and
diverse annotation practices.

Automated Reasoning and Data-Driven Decision-Making SituAnnotate’s
structured representation of annotation situations facilitates automated reasoning
through SPARQL queries and semantic technologies. Machines can infer rela-
tionships, make connections, and retrieve information e�ciently, streamlining the
annotation understanding process. This automation not only saves time but also
supports data-driven decision-making. Users can leverage SituAnnotate to ex-
tract valuable insights and patterns from annotated data, enabling evidence-based
decisions and enhancing the utility of labeled datasets. Moreover, SituAnnotate
enables reasoning over various aspects of annotated data. For example, it allows
for reasoning over whether images tagged by models with certain architectures
display the co-occurrence of certain objects, or whether certain macro-categories
(e.g., animals) are present. This can be achieved through reasoning over the con-
nected resources, like WordNet, o↵ering a deeper understanding of the annotated
content and potentially revealing hidden relationships within the data.

Enhanced and User-Friendly Human Understanding SituAnnotate, de-
spite its machine-readable foundation, o↵ers a user-friendly ontological framework
that remains accessible to researchers, domain experts, and annotators alike. This
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approach ensures that the ontology isn’t confined to machines but serves as a
valuable resource for human understanding. Moreover, the integration of SPARQL
queries and Python scripts empowers users to e↵ortlessly access and interpret situ-
ational knowledge tied to specific annotations. This user-friendly feature enhances
transparency and facilitates comprehension, making SituAnnotate a versatile re-
source catering to both machine-driven AI technologies and human expertise. This
symbiotic relationship fosters a deeper synergy between AI capabilities and human
insights, emphasizing the ontology’s significance in bridging the gap between tech-
nology and human cognition.

Comparing Annotation Situations for Enhanced Understanding Situ-
Annotate’s ability to represent multiple labels and annotation situations related to
the same annotated object provides users with a powerful tool for enhanced under-
standing. Through SPARQL queries, users can retrieve all AnnotationSituations
for an object, enabling detailed comparisons of potentially conflicting interpreta-
tions. This feature enhances the understanding of diverse annotation contexts and
their implications, supporting better decision-making and data analysis.

Mitigating Bias and Enhancing Ethical AI SituAnnotate serves as a ro-
bust tool in the battle against bias through its context-aware data annotation
capabilities. Annotators can furnish essential details about data sources, anno-
tator demographics, and the rationale behind labeling decisions. This wealth of
contextual information empowers AI developers to scrutinize and rectify any la-
tent biases when examining annotated data. By doing so, SituAnnotate champions
transparency and fairness throughout the data annotation process. It contributes
significantly to the ethical dimensions of AI development and deployment. As eth-
ical considerations in AI data labeling take center stage, SituAnnotate stands as
a pivotal asset, providing a context-aware framework for the meticulous recording
and management of annotations.

IV.2.5.1 Limitations

Despite its promising capabilities, SituAnnotate does have some limitations and
challenges:

1. Knowledge Representation Overhead: While SituAnnotate o↵ers en-
hanced contextual knowledge representation, this also introduces an over-
head in terms of ontology creation, maintenance, and population. It may
require substantial time and e↵ort to initially set up and continuously up-
date.
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2. Capturing Human Subjectivity and Cultural Nuances: One notable
challenge lies in the complexity of capturing the full scope of contextual fac-
tors that a↵ect human subjectivity and the diverse cultural nuances that can
influence annotations. While SituAnnotate o↵ers a structured framework, it
does not fully capture the richness of human interpretation.

3. Scalability Concerns: SituAnnotate’s scalability may be a concern when
applied to massive datasets, where managing a vast number of annotation
situations and annotators can become unwieldy. Optimizing the ontology
for large-scale applications is an ongoing challenge. This is also because
the use of SPARQL queries and scripts to retrieve human-understandable
explanations can be resource-intensive.

4. Privacy Mechanisms: SituAnnotate’s ability to address privacy concerns
may require further refinement to provide more robust mechanisms for data
anonymization and aggregation. Ensuring the privacy and confidentiality of
sensitive data is crucial.

These limitations should be considered when implementing SituAnnotate in
real-world scenarios, and ongoing research and development e↵orts may help mit-
igate some of these challenges.

IV.2.5.2 Further Directions

As SituAnnotate continues to evolve, there are several avenues for further research
and development:

• Usability Improvements: Prioritize creating user-friendly tools and in-
terfaces that simplify the process of integrating SituAnnotate into annota-
tion workflows. Consider developing user-friendly graphical user interfaces
(GUIs) for creating and querying annotations, enhancing accessibility for a
broader user base.

• Scalability: Investigate methods to enhance SituAnnotate’s scalability, par-
ticularly when dealing with large datasets. This may involve optimizing
SPARQL queries or exploring distributed computing solutions to handle in-
creasing volumes of data e�ciently.

• Enhanced Automation: Continue to advance automation tools for gen-
erating human-readable explanations from the ontology. Explore Natural
Language Processing (NLP) techniques to produce more coherent and con-
cise explanations, reducing the need for manual intervention.
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• Interoperability: Ensure that SituAnnotate remains compatible with other
ontologies and standards in the data annotation and semantic web domain.
Seamless integration with existing systems is essential for broader adoption.

• Community Involvement: Foster collaboration and engagement within
the research community to refine and expand SituAnnotate. An active user
and developer community can drive further innovation and adoption. Addi-
tionally, seek collaboration with the global research community to address
cultural biases and diversify the ontology’s applicability.

• Ethical Considerations: Delve into the ethical implications of SituAn-
notate’s real-world applications, particularly concerning privacy, bias, and
transparency. Develop comprehensive guidelines and best practices for ethi-
cal annotation processes, promoting responsible AI development.

• Scenarios and Use Cases: Continue to develop and document a diverse set
of real-world scenarios and use cases where SituAnnotate has demonstrated
its practical value. Providing concrete examples can help potential users
grasp its applicability better.

• Integration with AI Systems: Explore seamless integration possibili-
ties of SituAnnotate with AI systems, particularly in domains like computer
vision, natural language processing, and KGs. Incorporating advanced tech-
niques for handling multi-modal data, including text, images, and videos,
can broaden its applicability.

• AI Ethics and Fairness: Investigate how SituAnnotate can be integrated
with emerging AI ethics and fairness frameworks. Contributing to more re-
sponsible and equitable AI development aligns with the growing importance
of ethical considerations in the field.

IV.2.6 Conclusions

In conclusion, the SituAnnotate ontology provides a robust and context-aware
framework for situating ground truths, i.e., representing annotations within the
contextual situations from which they arise. Aligned with the Dolce Ultra Light
ontology, it ensures consistency and interoperability, while its expressive relation-
ships and semantic depth enhance annotation context understanding. Researchers
and practitioners can use SituAnnotate to model, analyze, and interpret anno-
tations in a structured and standardized way, making it a valuable contribution
to data annotation and knowledge representation. SituAnnotate overcomes tra-
ditional annotation method limitations, benefiting both human annotators and
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automated processes with a structured, machine-readable format that remains
human-readable. Its SPARQL query support enables e�cient data retrieval and
analysis, bridging the gap between structured data and human comprehension,
enhancing annotation e�ciency and accuracy, and promoting transparency and
ethical considerations in data annotation—a crucial step for responsible AI devel-
opment. Ultimately, SituAnnotate’s contextual annotations enhance AI decision-
making, aiding models in adapting to real-world scenarios and advancing ethical
AI implementation.





Chapter IV.3

Stitching the Gaps with Situated
Perceptual Knowledge

Summary This chapter presents a novel approach to AC image classification,
leveraging situated perceptual knowledge through the ARTstract Knowledge Graph
and Knowledge Graph Embeddings (KGE). Our aims are two-fold: establish a
reasoning-enabling knowledge graph to deepen our grasp of AC evocation in ART-
stract, and employ this knowledge to enhance AC image classification performance
and explainability. This chapter outlines the development of the AKG, which
integrates perceptual semantics and SituAnnotated metadata, linking images to
perceptual concepts while acknowledging subjective bias. Additionally, we en-
hance the AKG with high-level linguistic frames extracted from image captions.
We delve into the transformation of the AKG into KGE for the purpose of con-
ducting AC image classification experiments. These experiments encompass both
KGE-only and hybrid approaches, aiming to examine di↵erent fusion strategies
for combining KGE with Vision Transformers (ViT). Some of these approaches
involve the utilization of relative representations [261] to integrate the two embed-
ding types while preserving invariance in the face of latent space transformations.
Our interpretability results reveal that ViT excels in low-level visual attributes
like colors and textures, while KGE demonstrates proficiency in capturing more
abstract and semantic scene elements, highlighting the contrasting capabilities of
these two embedding methods in deciphering high-level semantic elements. Criti-
cally, our hybrid methods outperform existing state-of-the-art techniques, with the
synergy between the situated perceptual knowledge of the KGE embeddings and
the sensory-perceptual understanding acquired by ViT leading to superior perfor-
mance compared to deep and classical machine learning approaches. These results
collectively underscore the potential of neuro-symbolic methods in providing ro-
bust image representation for intricate visual comprehension tasks.

225
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IV.3.1 Introduction and Background

In the rapidly evolving field of CV, the enduring challenge is to equip machines
with human-like cognitive capabilities, surpassing data-driven pattern recognition
to bridge the gap between bottom-up signal processing and top-down knowledge
retrieval and reasoning [3]. This goal is rooted in the understanding that “humans
are not mere appearance-based classifiers; we acquire knowledge from experience
and language” [239]. While explicit knowledge has historically been recognized as
a way to improve automatic image understanding, modern data-driven techniques
aim to acquire the majority of this knowledge from the training data itself.

Nonetheless, situations arise where annotated data is scarce or simply not
enough, leading to the demand of methods to incorporate both spatial and se-
mantic reasoning for advancing the next generation of vision systems [78]. A key
potential solution is found in the convergence of symbolic, knowledge-driven AI
that prioritizes knowledge representation and sub-symbolic, data-driven AI rooted
in machine learning. The synergy between these paradigms holds the potential
to yield more intelligent, hybrid systems [38]. Consequently, the development
within CV of methods for leveraging textual background knowledge [4] and in-
tegrating reasoning has gained substantial attention. These e↵orts often involve
KGs: structured databases that represent entities and their relationships in di-
rected, edge-labeled graphs, often adhering to an ontological schema and semantic
web standards like Linked Data1 [357].

In the context of replicating human-like vision for complex tasks such as AC im-
age classification, it is essential to mimic human perceptual knowledge when relying
on visual information. This involves recognizing perceptual semantics, including
objects and colors (as discussed in Chapter III.2). Additionally, comprehend-
ing symbolic representations within images depends on grasping common-sense
associations [191]: an individual can recognize that a “cat” falls into the more
abstract category of “animal,” or that a “car” is associated with the frame of
“transportation.” Our results in Chapter IV.1, showed that we can automatically
establish these connections with high-level linguistic frames by reifying percep-
tual semantic descriptors. Furthermore, individuals possess embodied knowledge
that influences contextual meaning attribution. Chapter IV.2 illustrated encod-
ing this bias-awareness into a machine-readable format, combining semantics with
contextual factors called ‘annotation situations.’ For example, di↵erent artificial
detectors introduce biases akin to an ‘embodiment’ shaped by architecture and pre-
training. Annotating their architecture and pretraining data can equate machine
vision’s embodiment with human vision, enabling direct parallels. This contextual
knowledge enhances the alignment with human vision and cognition.

1https://www.w3.org/wiki/LinkedData. Access date: December 2023.

https://www.w3.org/wiki/LinkedData
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Based on these insights, this chapter integrates knowledge from Chapters II.2,
III.2, IV.1, and IV.2 into our situated perceptual knowledge paradigm. We build
the ARTstract-KG, a resource enabling automatic reasoning, situating, and linking
of ARTstract images with perceptual semantics, commonsense knowledge, and
ACs in a KG, leveraging the SituAnnotate ontology introduced in Chapter IV.2.
By embedding the KG into a vector space, we create image vectors informed
by the situated knowledge graph data. These representations are subsequently
employed in the AC image classification task, for which we investigate hybrid
methods to bridge the gap between the end-to-end deep vision approaches and the
situated perceptual knowledge paradigm. In summary, this chapter accomplishes
the following:

• Introduction of ARTstract-KG: We introduce the AKG as a resource
that combines perceptual semantics from ARTstract images with cultural
and commonsense symbolic knowledge.

• KG Embedding Representations: We create image representations by
embedding ARTstract-KG into a vector space. These representations in-
corporate situated knowledge graph information and are utilized in the AC
image classification task.

• Hybrid Fusion: We present hybrid methods aimed at bridging the gap
between the end-to-end deep vision paradigm and the situated perceptual
knowledge paradigm. Our exploration includes the fusion of both absolute
and relative representations [261].

• Interpretability Experiments: To comprehend the inner workings of our
embedding models, we probe relevant similarities with training instances and
qualitatively analyze them to grasp the models’ abilities to capture symbolic
and embodied aspects of image content.

In Section IV.3.2, we introduce our idea of situating and formalizing extracted
perceptual semantics of images into a KG and using derived embeddings from it
for enhancing AC image classification. In Section IV.3.3, we delve into the con-
struction of the ARTstract-KG (AKG) via the use of the SituAnnotate ontology
to seamlessly integrate extracted perceptual semantics into a knowledge-driven
resource (see Subsection IV.3.3.1. That section also describes the process of em-
bedding the AKG (see Subsection IV.3.3.2), the utilization of these embeddings for
classification purposes (see Subsection IV.3.3.3), and our interpretability experi-
ments (see Subsection IV.3.3.5). Section IV.3.4 presents the resulting ARTstract-
KG, as well as the performance and explanability results for all the tested AC image
classification methods. In Section IV.3.5, we analyze and discuss the achievements
of this chapter.
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IV.3.1.1 Background: Knowledge-Based Reasoning in CV

Background knowledge can be integrated into computer vision pipelines in var-
ious ways: preprocessing knowledge to augment input, incorporating knowledge
as embeddings, post-processing through explicit reasoning mechanisms, and using
knowledge graphs to influence neural network architectures [4]. Knowledge and
reasoning have been used in computer vision for decades now. Markov Logic Net-
works (MLN) [295], which uses weighted First Order Logical formulas to encode an
undirected grounded probabilistic graphical model, used by [408] to reason about
object a↵ordances (ex., fruit is edible or basketball is rollable and round). Prob-
abilistic Soft Logic also uses a set of weighted First Order Logical rules, used to
declare a Markov Random Field, and has been used by [231] to detect collective
activities such as crossing, queuing, waiting, and dancing in videos. Description
Logics [23] models relationships between entities in a particular domain, and has
been used to reason and check consistency on object-level and scene-level classifi-
cation systems, such as in [97].

Many e↵orts in the utilization of knowledge bases for image classification have
concentrated on the fusion of graphs to integrate image-level specifics with gen-
eral knowledge. KGs capture comprehensive world knowledge, while scene graphs
capture the semantic content within an image. In essence, numerous studies have
sought to merge visual datasets, like Visual Genome [209], with extensive knowl-
edge bases that o↵er both commonsense information pertaining to visual concepts
and non-visual concepts. For example, ConceptNet [161] is a semi-curated multi-
lingual Knowledge Graph that encodes commonsense knowledge about the world
and was built primarily to assist systems that attempt to understand natural lan-
guage text. The nodes of the graph are concepts–words or short phrases written in
natural language. Edges are labeled with meaningful relations, such as <reptile,
isA, animal>, and each edge has an associated confidence score. ConceptNet is
semi-curated, so it has large coverage but less noise than other resources. It has
been exploited in computer vision, including by [216], who use the commonsense
knowledge encoded in ConceptNet to enhance a language model and apply this
knowledge to two recognition scenarios (action recognition and object prediction).

ConceptNet has also been exploited by the work most related to ours: the
authors in [191] propose a neural network framework named SKG-Sym (scene and
knowledge graph symbolic image detection), an approach that integrates general
knowledge and the visual components of scene graphs in the learning process.
They use graph convolutional networks over each graph to assign weights to visual
components and knowledge concepts. They also employ a scene graph detector to
integrate. For each image, they create a knowledge graph that extracts general
knowledge of each detected object, keeping ConceptNet edges such as relatedTo,
isA, partof, madeof, atlocation, etc [191].
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With the introduction of the Gated Graph Neural Network (GGNN) [224],
specifically designed for graph-structured data, and utilizing message passing with
gating mechanisms to update node representations based on information from
neighboring nodes, novel approaches for integrating graph knowledge into visual
reasoning have emerged. Marino et al. [239] introduce the Graph Search Neural
Network (GSNN) as an e�cient means to incorporate extensive knowledge graphs
into a vision classification pipeline. Their network learns a propagation model that
can reason about various types of relationships and concepts, generating node out-
puts used for image classification. Notably, this approach addresses computational
challenges associated with GGNNs for large graphs, enabling e�cient training for
image tasks that leverage extensive knowledge graphs. An additional key feature is
its capability to provide explanations for classifications by tracing the propagation
of information within the graph. The authors in [156] introduced a Graph Neural
Network (GNN) for image understanding, which surpasses traditional feature and
decision fusion approaches by recognizing the potential for features to interact and
exchange information. Their model was applied to two image understanding tasks,
specifically group-level emotion recognition (GER) and event recognition, both of
which demand semantic sophistication and the interaction of multiple deep models
for the synthesis of various cues. Notably, this approach achieved state-of-the-art
performance in these image understanding tasks.

Figure IV.3.1: We create graph representations for images by analyzing their per-
ceptual details, annotations, and high-level linguistic frames. Each image is rep-
resented as a node in the ARTstract-KG.
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IV.3.2 Idea: Situated Perceptual Knowledge (SPK)

Our overarching goal is to enhance the process of AC image classification by in-
corporating situated perceptual knowledge. This relies on two main components
of this chapter: the creation of the AKG to represent it, and then its embedding
to create a novel vector image representation used for the downstream task of AC
image classification.

IV.3.2.1 ARTstract KG Creation and Embedding

This method involves the transformation fKG of an image’s perceptual semantics
representation, (IPS) to a Graph representation incorporation situational metadata
and commonsense knowledge. The AKG is created via the SituAnnotate frame-
work, allowing images to be represented as nodes of the AKG, denoted IKG. Then,
we embed the KG, resulting in image representations that are KGE, denoted IKGE.

fKG : IPS ! IKG ✓ G (IV.3.1)

fKGE : IKG ! IKGE ✓ R128 (IV.3.2)

IV.3.2.2 AC Image Classification Using the KG Embed-
dings

A crucial point in this chapter is to show how these KGE image representations
(IKGE) can be used in multiple ways for the task of AC image classification. This
chapter addresses two overarching paradigms: the Situated Perceptual Knowledge
approach (SPK), which only relies on the KGE representation, and the Hybrid
paradigm which exploits both the (IKGE) representation and the deep features IDL

from Chapter II.2.

1. KGE-Only Image Classification

We employ the ARTStract-KG derived image representations (IKGE) in a classi-
fication model referred to as the “KGE-Only” method (see Figure IV.3.2). This
approach exclusively utilizes KGE embeddings for images to train a Multi-Layer
Perceptron (MLP) classification model:

ŷ = argmax(p(yi|IKGE, ✓)) (IV.3.3)
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2. Hybrid Approach with KGE and ViT

In our e↵orts to merge the strengths of the paradigms we have investigated so far,
we explore two hybrid approaches that involve combining IKGE representations
with IDL features into a new, hybrid image representation IH (see Figure IV.3.3).

Simple Concatenation The first approach involves a straightforward concate-
nation of the two embeddings to represent an image.

fH : [IKGE ✓ R128; IDL ✓ R768] ! IH ✓ R896 (IV.3.4)

Relative Representations Our approach involves transforming the two vector
image representations, IKGE and IDL, into their relative versions, IR-KGE and IR-DL

and exploring hybrid methods to combine the relative embeddings into a hybrid
image representation IH.

fR�KGE : IKGE ✓ R128 ! IR�KGE ✓ R|A| (IV.3.5)

fR�DL : IDL ✓ R768 ! IR�DL ✓ R|A| (IV.3.6)

We adopt relative representations [261] to represent each training sample with
respect to a set of anchors. A subset A of the training data X is selected as
anchor samples, each training sample is represented with respect to the embedded
anchors e

a(j) = E(a(j)) with a
(j) 2 A via a generic similarity function sim : Rd ⇥

Rd ! R. This yields a scalar score r between two absolute representations r =
sim(e

x(i) , ex(j)). Thus, the relative representation of x(i) 2 X is defined as:

rx(i) = (sim(ex(i) , ea(1)), sim(ex(i) , ea(2)), . . . , sim(ex(i) , ea(|A|))) (IV.3.7)

These include the concatenation || of the relative embeddings, and element-wise
operations � on the relative embeddings:

fH :
⇥
IR�DL ✓ R|A|; IR�KGE ✓ R|A|⇤ ! IH ✓ R(|A|⇤2) (IV.3.8)

fH : IRR�DL ✓ R|A| � IRR�KGE ✓ R|A| ! IH ✓ R|A| (IV.3.9)

Regardless of the hybrid method chosen to combine IKGE representations with
IDL, the resulting IH is employed for classification training and evaluation.
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IV.3.3 Approach

IV.3.3.1 ARTstract-KG Construction

In this section, we outline our methodology for constructing the AKG (see Fig-
ure IV.3.1), which aims to capture the intricate relationships between perceptual
semantics, images, and their contextual annotations. Drawing insights from Chap-
ters III.2 and informed by the findings in Chapter IV.2, we identified that not only
the specific perceptual semantic labels (e.g., top colors, actions, objects, etc.) but
also the annotation situations in which these labels were assigned to individual
images held substantial knowledge value. Additionally, we enrich the KG with
commonsense linguistic frames following the results of Chapter IV.1.

Ontology Reuse We harness the SituAnnotate ontology, previously introduced
in Chapter IV.2. This ontology already has a module specifically tailored for image
annotation situations, as detailed in the chapter. In line with this specialized
module, we opted to embed each chosen label within its respective annotation
context. We accessed the ontology directly via its permanent IRI2. We also reuse
the Framester [131] schema to refer to ConceptNet and WordNet IRIs.

Reification of Annotation Situations and PS Annotations To formally
represent the contexts in which perceptual semantic labels were assigned to the
14K+ ARTstract images, we reified them as instances of various subclasses of
ImageAnnotationSituation. In practical terms, this involved transforming
each entry row in Table III.2.1 (as introduced in Chapter III.2) into an instance
of AnnotationSituation. The resulting triples encapsulate intricate details
about these annotation situations, encompassing factors such as geographical lo-
cations, timestamps, annotators, specific model architectures, datasets, and more.
To provide a tangible example, the following illustrates the triples associated with
a single AnnotationSituation:

:ARTstract_as_2023_06_26 a :ArtStyleAnnotationSituation ;
:involvesAnnotatedEntity :ARTstract_14978 ;
:atPlace :Italy ;
:hasDetectionThreshold "top_one" ;
:involvesAnnotator :oschamp_vit-artworkclassifier ;
:involvesDataset :ARTstract ;
:onDate "2023-06-26"ˆˆxsd:date ;
:satisfies :as_detection_desc .

2https://w3id.org/situannotate

https://w3id.org/situannotate
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:as_detection_desc a ns1:ImageAnnotationDescription ;
rdfs:comment "Art style detections are annotation

situations in which annotations play the role
of detected_art_style, assigned by an Annotator
according to a certain detection threshold or
heuristic"ˆˆxsd:string ;

:defines :detected_art_style .

:oschamp_vit-artworkclassifier a :ArtificialAnnotator ;
:hasModelArchitecture :visual_transformer ;
:pretrainedOnDataset :artbench-10 .

To reify the perceptual semantic labels assigned to ARTstract images, we formally
represented them as instances of the Annotation class. Triples were constructed to con-
nect each annotation to the corresponding AnnotationSituation from which it origi-
nated, the associated Image, the employed LexicalEntry, the assigned AnnotationStrength,
the classification AnnotationRole, and the ConceptNet concept that provided its typ-
ification. To exemplify, consider the following set of triples explicitly encoded for a single
annotation:

:14978_ARTstract_as_2023_06_26 a :ArtStyleAnnotation ;
:aboutAnnotatedEntity :ARTstract_14978 ;
:annotationWithLexicalEntry :le_Impressionism ;
:hasAnnotationStrength 0.6149182915687561 ;
:isAnnotationInvolvedInSituation :ARTstract_as_2023_06_26 ;
:isClassifiedBy :detected_art_style ;
:typedByConcept conceptnet:impressionism .

Enrichment with Linguistic Frames To further enhance the AKG, we incor-
porate high-level linguistic frames extracted from image captions. For each caption,
we follow the same extraction procedure as introduced in Chapter IV.1. Using FRED
[131], we retrieve WordNet synsets for words in the caption. These synsets are then
employed as triggers to collect frames. Both the WordNet synsets and frames are in-
tegrated into the knowledge graph (see Figure IV.3.10). This addition contributes to a
more comprehensive and expressive representation.

Knowledge Graph Construction The KG was constructed using a Python script3

that mapped perceptual semantics from a JSON file to the SituAnnotate ontology. RD-
Flib, a Python library for handling RDF data, was employed. Key steps included:

3https://github.com/delfimpandiani/ARTstract-KG/tree/main/
ARTstract-KG_creation/ARTstract_kg_construction. Access date: December
2023.

https://github.com/delfimpandiani/ARTstract-KG/tree/main/ARTstract-KG_creation/ARTstract_kg_construction
https://github.com/delfimpandiani/ARTstract-KG/tree/main/ARTstract-KG_creation/ARTstract_kg_construction
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• Creation of triples for Annotation Situations based on information from the situ-
ations JSON file.

• Iteratively processing the Perceptual Semantics JSON data to extract details about
image annotations, their contexts, strengths, etc.

• Mapping and iterative cleaning for Conceptnet matching.

• Triple definition for relationships between images, annotation situations, annota-
tions, lexical entries, annotation strengths, and ConceptNet concepts.

• Serialization of the RDF graph into Turtle format.

IV.3.3.2 Learning ARTstract-KG Embeddings

Preprocess the KG to TSV Format In the initial phase of KG preparation
for training, we transformed the original Turtle (RDF) format KG into a TSV format
compatible with the torchkge library. This conversion involved parsing the data into a
TSV file, including source entities, relationships, and target entities, using the Pandas
library.

Data Leakage Prevention To ensure that the KG remained free from any infor-
mation that could leak the target AC clusters, we systematically removed any rows
including AC cluster names in the subjects or objects. This led to removals of some
triples with relations: :annotationWithLexicalEntry, :typedByConcept, and
:annotationWithEvocationCluster. Our filtering process was all-encompassing,
extending across the entire dataset, spanning all images, and covering each data split,
including the train, validation, and test sets. The outcome was a KG that maintained
its separation from the target AC clusters, thereby upholding the integrity of the AC
cluster ground truth.

Knowledge Graph Embedding To transform the KG in TSV format into KGE,
we employed the TransE model, opting for the default hyperparameters to establish a
fundamental baseline. This included a fixed random seed of 42, an embedding dimension
of 128, and a batch size of 8192 ⇤ 4. During training, we employed the MarginLoss
criterion with a margin value of 1 for guidance. Negative samples were generated using
a Bernoulli negative sampler with 100 negatives per sample. We trained for 1000 epochs.

IV.3.3.3 AC Image Classification

We conducted several experiments utilizing the KG embeddings (see Table IV.3.1), re-
lying on both original (“absolute”) embeddings, and their relative representations [261]
(see Figure IV.3.4). Each experiment employed a distinct input embedding to represent
the image, but all methods employed a common MLP architecture for the classifica-
tion head. This architecture consists of two sequential linear layers with a Rectified
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Linear Unit (ReLU) activation function and a dropout layer (dropout rate of 0.3) for
regularization. The primary variations among these models are in the input vectors
used for training, transformation dimensions in the first linear layer, and specific oper-
ations applied to entity embeddings. In all architectures, the second linear layer maps
the feature representation to the number of output classes. During training, the Cross-
Entropy Loss function is employed to compute the error between predicted class scores
and actual ground truth labels. A fixed learning rate (lr = 0.001) is used, and each ar-
chitecture is trained for 50 epochs. The e�ciency of data processing is enhanced through
multi-threading with 16 workers.

Table IV.3.1: Summary of used embeddings and their dimensionality. ||: concate-
nation; �: element-wise (Hadamard) product.

Embedding Type Dimensionality
Absolute KGE 128
Absolute ViT 768
Relative KGE 700
Relative ViT 700

Absolute KGE || Absolute ViT 896
Relative KGE || Relative ViT 1400
Relative KGE || Absolute ViT 1468
Relative KGE � Relative ViT 700

Absolute Embeddings

Absolute KGE This model exclusively utilizes the original (called “absolute” KGE
learned with TransE (see Figure IV.3.2. The embeddings have a dimensionality of 128,
in the MLP they are transformed by the first linear layer into a 64-dimensional space.

Absolute ViT This model exclusively utilizes the ViT embeddings with a dimen-
sionality of 768, just like in Chapter II.2.

Relative Representation Embeddings

We adopt the method of relative representations, introduced by Moschella et al. (2022)
[261] to represent each embedding in the training distribution with respect to a set of
embedded anchor vectors (see Figure IV.3.4, bottom). A subset A of the training data X
is selected as anchor samples, and each training sample is represented with respect to the
embedded anchors e

a(j) = E(a(j)) with a(j) 2 A. The relationship between the anchors
and other samples is captured using a generic similarity function sim : Rd ⇥ Rd ! R,
yielding a scalar score r between two absolute representations r = sim(e

x(i) , ex(j)) (for
more details, see Subsection IV.3.2.2).
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Relative KGE and Relative ViT These models exclusively utilize the relative
versions of the KG embeddings (rel-KGE) or of the ViT embeddings (Rel-ViT), each of
which has a dimensionality of 700.

Hybrid Representation Embeddings

Figure IV.3.4: Approach to fuse deep learning vectors with knowledge graph em-
beddings. Top: simple concatenation method of absolute embeddings. Bottom:
relative representations [261] are first calculated with respect to a set of anchors,
and then they are fused.

Absolute KGE || Absolute ViT This model concatenates the absolute KGE
(abs-KGE) of original dimension of 128, and the absolute ViT (Abs-ViT) of original
dimension of 768. This leads to a hybrid vector of dimension 896. The first linear layer
transforms entity embeddings into a 512-dimensional space.

Relative KGE || Relative ViT This model concatenates the relative KGE (rel-
KGE) of dimension 700, and the relative ViT (Rel-ViT) of dimension 700. This leads to
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a hybrid vector of dimension 1400. The first linear layer transforms entity embeddings
into a 512-dimensional space.

Relative KGE || Absolute ViT This model concatenates the relative KGE (rel-
KGE) of dimension 700, and the absolute ViT (Abs-ViT) of dimension 768. This leads
to a hybrid vector of dimension 1468. The first linear layer transforms entity embeddings
into a 512-dimensional space.

Relative KGE � Relative ViT In this model, we combine the relative KGE (rel-
KGE) and relative ViT (Rel-ViT) vectors using element-wise multiplication (Hadamard
product as in (A � B)ij = (A � B)ij = (A)ij(B)ij). This operation helps us highlight
the degree of similarity between each image and 700 selected anchors, considering both
spatial (ViT) and semantic (KGE) information. The result is a hybrid 700-dimensional
vector. The first linear layer transforms the embeddings into a 512-dimensional space.

IV.3.3.4 Evaluation Metrics

We employ identical performance metrics and maintain consistent training and testing
data splits as used in Chapters II.2 and III.2.

IV.3.3.5 Interpretability Approach

Our aim was to understand how di↵erent embedding methods represent test images and
discover relevant similarities with training instances.

Absolute Embeddings: Top Similar Image Analysis For both absolute KGE
and absolute ViT embeddings, we utilize the embeddings of a test image and the training
images to identify the top 5 most similar embeddings.

Relative Embeddings: Top Similar Anchors Analysis With relative repre-
sentations for both KGE and ViT, we identify the top k similar anchors to a test image.
This analysis involves three steps:

• Top similar anchors based on Relative KGE embeddings (rel-KGE): We
find the top k anchors that are most similar to the test image based on the relative
KGE embeddings.

• Top similar anchors based on Relative ViT embeddings (Rel-ViT): We
identify the top k anchors with the highest similarity to the test image using the
relative ViT embeddings.

• Top similar anchors based on Hybrid embeddings (Hadamard Product):
We extract the top k similar anchors based on the composite representations cre-
ated through the Hadamard product.
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SPARQL Query the AKG To delve deeper into the knowledge learned by the
model, we conduct a SPARQL query for each of the top images on the ARTstract-KG
to uncover shared triples or common nodes. These shared triples may reveal that a
significant portion of the top k most similar anchors share attributes such as certain
objects, colors, etc. This process empowers us to unveil and interpret the insights the
model has gained regarding the image’s content and the shared characteristics among
similar images.

PREFIX : <https://w3id.org/situannotate#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?s ?p ?o (COUNT(?img) AS ?sharedBy)
WHERE {

VALUES ?img {
:Image_ID_1
:Image_ID_2
:Image_ID_3
:Image_ID_4
:Image_ID_5 }

{
?img ?p ?o .

}
}
GROUP BY ?s ?p ?o
ORDER BY DESC(?sharedBy) ?s ?p ?o

IV.3.4 Results

IV.3.4.1 The ARTstact-KG

The ARTstact-KG represents a resource that systematically captures and formalizes in-
tricate relationships within the ARTstract dataset. Comprising over 1.9 million triples,
it encompasses data from more than 14,000 unique images and o↵ers a profound under-
standing of perceptual semantics. The heart of the ARTstact-KG lies in the reification
of annotation situations and perceptual semantic labels. Annotation situations capture
details like geographical locations, timestamps, annotators, model architectures, and
datasets. Similarly, perceptual semantic labels assigned to ARTstract images are rei-
fied as instances of the Annotation class, forming a complex network of connections,
linking each annotation to its corresponding annotation situation, the associated image,
the lexical entry used, the assigned annotation strength, the annotation role, and the
ConceptNet concept that typifies it. FigureIV.3.9 provides an example of the wealth of
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information within the ARTstact-KG, as visualized through a single annotation seen via
the Protégé tool.4 As shown in Figure IV.3.10, ARTstact-KG is further enriched with
high-level linguistic frames extracted from image captions. These frames are extracted
using FRED and WordNet synsets as triggers, o↵ering a comprehensive linguistic con-
text for each image. This enrichment enhances the knowledge graph’s expressiveness and
provides a deeper understanding of the linguistic context associated with each image.

IV.3.4.2 AC Image Classification Performances

Input Embedding Type D Macro F1

KGE-only
Absolute 128 0.22
Relative 128 0.27

ViT-Only
Absolute 768 0.30
Relative 700 0.28

KGE || ViT
Absolute KGE || Absolute ViT 896 0.31
Relative KGE || Relative ViT 1400 0.33
Relative KGE || Absolute ViT 1468 0.32

Relative KGE � Relative ViT 700 0.29

Table IV.3.2: Macro F1 scores using each of the embeddings as inputs, trained for
50 epochs. D: Dimensionality; ||: concatenation; �: Hadamard product.

In our study, we explored the utilization of ARTstract KG embeddings for the task
of AC image classification. The results of our experiments provide valuable insights into
the e↵ectiveness of di↵erent approaches. We present the results of our experiments in
Table IV.3.2, also visualized in Figure IV.3.5.

Absolute versus Relative Embeddings Our results show that the absolute
(original) KGE embeddings (Abs-KGE) achieved a Macro F1 score of 0.22, while their
relative KGE counterparts (Rel-KGE) outperformed the absolute ones with a Macro
F1 score of 0.27. This suggests that the relative representation approach significantly
enhances Knowledge Graph Embeddings’ performance in AC image classification. For
deep feature embeddings (ViT), the absolute version (Abs-ViT) scored 0.3 in Macro F1,
while the relative counterparts (Rel-ViT) scored slightly lower at 0.28. These results in-
dicate that applying the relative representation approach may lead to subtle performance
degradation in ViT embeddings. Our findings highlight performance disparities between
absolute and relative embeddings, depending on the original embedding method.

Hybrid Embeddings We explored the e↵ectiveness of hybrid approaches combining
ARTstract KG embeddings with ViT deep feature vectors for AC image classification.

4https://protege.stanford.edu/. Access date: December 2023.

https://protege.stanford.edu/
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Figure IV.3.5: Performance (Macro F1) for di↵erent input embeddings

Table IV.3.2 showcases the accuracy achieved by di↵erent hybrid methods, with the
highest F1 score (0.33) attained through the concatenation of the relative embeddings
(both relative KGE and relative ViT) underscoring their synergistic e↵ect on classifica-
tion accuracy. The combination of relative KGE and absolute ViT embeddings achieved
the second-highest F1 score (0.32), while the concatenation of the absolute embeddings
(both absolute KGE and absolute ViT) achieved the third-best score, 0.31. These three
methods outperformed the use of only one of the embeddings, the best of which had
been absolute ViT with an F1 score of 0.30. Additionally, the Hadamard product of
relative embeddings obtained an F1 score of 0.29, surpassing KGE-only methods, and
achieving comparable performance to absolute ViT.

Comparison with State of the Art

In Table IV.3.3, we provide a comparative analysis of our models, which combine ART-
stract KG embeddings (KGE) with ViT deep feature vectors for AC image classification.
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Method
Scores Paradigm

Macro F1

XGB 0.20 PS
SVM 0.20 PS
Absolute KGE 0.22 SPK
VGG-16 0.23 DL
Naive Bayes 0.24 PS
ResNet-50 0.24 DL
Relative KGE 0.27 SPK
Relative ViT 0.28 DL
Relative KGE � Relative ViT 0.29 Hybrid
Absolute ViT 0.30 DL
Absolute KGE || Absolute ViT 0.31 Hybrid
Relative KGE || Absolute ViT 0.32 Hybrid
Relative KGE || Relative ViT 0.33 Hybrid

Table IV.3.3: Comparative analysis of the KGE-based models along with the best
performing classical ML and DL models. The top-performing model is highlighted
in both bold and italics. The second-best performing models are denoted in bold.

We benchmark these models against end-to-end vision deep models (Chapter II.2) and
the top-performing classical machine learning (ML) models from our perceptual seman-

tics paradigm (Chapter III.2). Among the classical ML models, XGBoost (XGB) and
Support Vector Machines (SVM) had achieved macro F1 scores of 0.20, while the Naive
Bayes model reached a score of 0.24. For the DL models, ResNet-50 and VGG-16
attained macro F1 scores of 0.24 and 0.23, respectively. In this contest, our KGE-only
based models exhibited significant potential, considering their lack of access to pixel-level
features. The Absolute KGE model achieved an F1 score of 0.22, while the Relative KGE
model demonstrated an even more remarkable score of 0.27, outperforming all CNN and
ML methods.

The hybrid approaches we tested delivered the highest performance (Figure IV.3.11),
surpassing all other methods encountered in this research and in the state of the art.
With the Relative KGE || Relative ViT approach, the concatenation of the two relative
embeddings yielded an outstanding F1 score of 0.33, which is the highest score in this
task to our knowledge. The combination of Relative KGE and Absolute ViT embeddings
achieved the second-highest performance in this work, with an F1 score of 0.32. The
concatenation of Absolute KGE and Absolute ViT embeddings attained an F1 score of
0.31. Our last hybrid method, the Hadamard product of the two relative embeddings,
performed slightly worse than the Absolute ViT (0.29 versus 0.30) but is comparable
and more interpretable. These outcomes suggest that combining KGE-based perceptual
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knowledge with ViT embeddings holds promise for enhancing the accuracy of AC image
classification, highlighting the complementarity of these embedding types.

IV.3.4.3 Interpretability Results

Absolute ViT vs Absolute KGE: Training Images Similarity

In this section, we delve into the comparative analysis of two resulting embeddings from
processing images via the Absolute ViT and Absolute KGE paradigms.

Perceptual Disparities Our results demonstrate notable disparities when utilizing
the two absolute embeddings to retrieve the top 5 most similar training images for a test
image. To illustrate the divergent behavior of these models, we present the outcomes
of three test images in Figure IV.3.6. For the top test image, Image 14817, Absolute
ViT’s top similar images prominently feature the United States flag, with 3 out of 5
being flag images and 4 out of 5 being tagged with the ground truth freedom. This
observation indicates that ViT places significant emphasis on the United States flag’s
presence, possibly revealing a bias in its training data. The appearance of stars against
the blue background is notably salient in ViT’s assessment. In contrast, the most similar
images generated by Absolute KGE embeddings are labeled with the comfort ground
truth and demonstrate a stronger visual and semantic connection with the lower portion
of the test image, encompassing elements like grass, fields, trees, and greens. These
findings suggest that the two embeddings, in specific instances, capture distinct types of
information. In certain cases, not only do the two embeddings capture di↵erent aspects
of an image, but one also outperforms the other in terms of semantics. For instance, in
the case of the bottom test image shown in Figure IV.3.6, Absolute KGE demonstrates
superior semantic performance. It successfully associates the Statue of Liberty with
anchors that not only align with the correct ground truth but also prominently feature
the Statue of Liberty. In contrast, Absolute ViT fails to find matching anchors related to
the ground truth, resulting in less semantically coherent results. Conversely, for the third
test images in Figure IV.3.6, we observe a scenario where Absolute ViT surpasses KGE in
terms of semantics. For example, in this case, ViT e↵ectively highlights the significance
of the combination of a horse and wheels, implying the presence of a powered vehicle,
while KGE appears to primarily focus on the horse.

High-Level Semantic Proficiency In addition to the observed disparities between
Absolute ViT and Absolute KGE, our investigation reveals that even when both indi-
vidual absolute embeddings make correct predictions, they demonstrate distinct under-
standings of images. Specifically, it appears that KGE excels in identifying higher-level
semantics. To illustrate this phenomenon, we present results for two images tagged with
the ground truth comfort, as depicted in Figure IV.3.7. For the test image on top, Abso-
lute ViT excels in encoding what could be termed the images’ “aesthetics,” emphasizing
elements such as colors and artistic composition. Absolute KGE, instead, stands out
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Figure IV.3.6: Absolute ViT vs. Absolute KGE embeddings capture di↵erent as-
pects of ARTstract images. Top: Absolute ViT captures aspects that resemble the
United States flag while KGE captures more landscape-related features, Middle:
Absolute KGE demonstrates superior semantic performance than ViT by encod-
ing similarities with perceptually diverse visions of the Statue of Liberty; Bottom:
Absolute ViT encodes similarities between images that make more semantic sense
for the power ground truth.
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by recognizing the explicit semantics within the image, representing a woman comfort-
ably reading. KGE achieves this by matching all the top 5 similar images to images of
women reading (See Figure IV.3.7, bottom row), while ViT fails to match the test image
with any training images exhibiting the same semantics of the depicted scene. Similar
observations apply to the test image at the bottom of Figure IV.3.7. Both Absolute
ViT and Absolute KGE accurately labeled the test image. Still, KGE demonstrates a
superior ability to understand the connection between comfort and the act of sitting on
a couch. This example underscores the distinction between the two models: while both
get the prediction right, Absolute KGE’s most similar images are more semantically re-
lated, featuring women depicted doing specific actions, which is not the case with ViT’s
most similar images. Even though both models correctly predict the ground truth, KGE
leverages perceptual semantics, likely detecting the presence of a couch as a key element
in establishing similarity. In the Discussion Section (Section IV.3.5), we present other
intriguing examples highlighting KGE’s apparent superiority in capturing higher-level
semantics compared to ViT, which tends to focus more on compositional and low-level
features.

Relative Embeddings: Training Anchors Similarity

We implemented our interpretability approach for relative representation embeddings
using prototype anchors. To discern the top 5 anchors to which each test instance
bears the greatest similarity, we considered three di↵erent embeddings: relative KGE,
relative ViT, and the hybrid relative (derived from the Hadamard product of relative ViT
and relative KGE). Some exemplary results are presented in Figure IV.3.8. Within each
subfigure, rows of images showcase the top 5 images with the most “embodied” similarity,
as determined by relative ViT embeddings (top row), the top 5 images with the most
“symbolic” similarity, as determined by relative KGE embeddings (middle rows), and
the top 5 images with the most “embodied-symbolic” similarity, as determined by the
Hadamard product of the two relative embeddings. Additionally, accompanying each
row are frequently shared ARTstract-KG nodes for the set of images. These nodes were
extracted through a SPARQL query on the knowledge graph, revealing shared attributes
and characteristics contributing to the perceived similarity between images. Our goal
in all instances is to extract meaningful insights from the models by analyzing common
triples in the knowledge graph. This process aids us in comprehending the underlying
factors that contribute to image similarity as learned by the models.

In Figure IV.3.8, we present results demonstrating the e↵ectiveness of the hybrid
approach, which combines both relative representations. For instance, in the top image
of the figure with the fitness ground truth, both relative ViT and relative KGE embed-
dings independently exhibit high similarity to fitness-tagged anchors, with some overlap.
Notably, the hybrid vector for the test image yields the top 5 anchors, all tagged with
fitness, showing that the hybrid embedding excels in recognizing spatially-semantically
similar anchors. In a similar context, the bottom example with the danger ground
truth follows a comparable trend. Both relative ViT and relative KGE embeddings
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Figure IV.3.7: Contrasting semantic proficiency of Absolute KGE vs. Absolute
ViT. The top image illustrates ViT’s focus on colors and textures (aesthetics),
whereas KGE excels in recognizing explicit semantics, particularly women sitting
on couches. In the bottom image, KGE e↵ectively encodes the semantics of reading
a book in the test artwork.
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independently identify the importance of water and boats among similar anchors but
may also include some incorrect ground truth anchors. In contrast, the hybrid version
consistently identifies all of the top 5 anchors with the correct ground truth, suggesting
complementarity between these two relative representations.

IV.3.5 Discussion

IV.3.5.1 The ARTstract-KG

The ARTstract KG is a robust and context-aware structured knowledge repository of
metadata annotations encompassing more than 14,000 cultural images. These annota-
tions cover a spectrum of perceptual semantic aspects, painting a comprehensive picture
of the images. They include details about the source dataset, the context in which
they evoke concepts, automatically detected art styles, depicted objects, actions, dom-
inant colors, the presence of human subjects, age tiers, emotions, and image captions.
Moreover, the AKG provides insight into the specifics of when, where, and how these
perceptual semantic annotations were made, as well as the annotation strength associ-
ated with each annotation. This contextual richness e↵ectively makes these annotations
situated ground truths. One of the noteworthy aspects of the AKG is the reification
of perceptual semantics. This reification allows for connections to be established with
commonsense knowledge sources like ConceptNet, enabling interpretable reasoning over
perceptual semantic data. This facilitates the extraction of high-level linguistic frames,
contributing to the linguistic understanding of the images. In this way, the AKG con-
tains the formalization of both human- and machine-readable representations of images,
advancing our capacity to query and question machine vision’s automatic comprehension
of visual content. Furthermore, the AKG serves as a repository for the annotations of
ACs, further enhancing its value in the context of AC image classification. This knowl-
edge graph serves as a valuable resource for comprehending contextual information in
visual sensemaking, establishing a solid foundation for further research and analysis.

IV.3.5.2 AC Image Classification Performances

Absolute versus Relative Embeddings

In our study, we tested the relative representation method introduced by Moschella et
al. (2022) [261], wherein each instance is encoded in relation to selected anchor points.
For this purpose, we selected 100 anchors for each of the 7 target classes, ultimately
representing images in relation to these 700 anchors. Consequently, this representation
may be perceived as a more ’semantic’ representation, as each embedding becomes se-
mantically biased towards a balanced representation of how each instance relates to the
seven target clusters.

The results of our study indicate that while the initial performance of the KGE
approach was lower than that of Vision Transformer (ViT), the incorporation of the
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(a) Interpretability results for a test image with ground truth fitness. The hybrid em-
bedding leverages complementary information from both relative embeddings to encode
the highest similarity of the test image with all training anchors tagged as fitness.

(b) Interpretability results for a test image with ground truth danger. The hybrid
embedding exhibits similarities with anchors exclusively tagged as danger, with some
similarities predominantly originating from the relative ViT and others from the relative
KGE embeddings.

Figure IV.3.8: Two representative examples of our interpretability approach with
relative representations. We identify the top anchors to which each test instance
bears the most similarity. In each subfigure, rows of images show the top 5
“sensory-perceptually” (most similar Rel-ViT embeddings), “symbolically” (most
similar rel-KGE embeddings), and hybridally similar images (most similar Rel-
ViT � rel-KGE hybrid embeddings (Hadamard product embedding). Alongside
each row, we display frequently shared ARTstract-KG nodes, obtained through a
SPARQL query on the KG.
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Figure IV.3.9: Protégé snapshot of ARTstract KG triples about an annotation.

relative representation approach significantly improved KGE’s classification capabilities.
Absolute KGE initially achieved a Macro F1 score of 0.22, which was outperformed by
Absolute ViT at 0.30. However, with the introduction of the relative representation
method, Relative KGE closed the performance gap, achieving a Macro F1 score of 0.27,
which was now competitive with ViT. These findings suggest that the relative representa-
tion method significantly enhances the performance of KGE-based models by providing
more meaningful cluster-level semantic information. The superior performance of Rel-
KGE can be interpreted as an indication that this method introduces a more ’semantic’
representation, consequently elevating the semantic resolution. Therefore, these findings
underscore the potential of the relative representation method to empower KGE-based
image classification, making it a valuable alternative to ViT. It suggests that the en-
hanced semantic representation introduced by the relative approach provides KGE with
a substantial boost in its classification performance.

Conversely, in the context of ViT embeddings, the results revealed a di↵erent trend.
Absolute ViT (Abs-ViT) embeddings achieved a higher Macro F1 score compared to
Relative ViT (Rel-ViT) embeddings. This implies that ViT, designed to handle pixel-
level information, may not benefit from the semantic bias introduced by the relative
representation approach. The lower performance of Rel-ViT implies a potential loss
of fine-grained local di↵erences and similarities between images, which are critical for
capturing spatial resolution. This suggests that relative representations may not be
suitable for pixel-level models like ViT, potentially leading to performance issues.
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Figure IV.3.10: Subset of the A-Box of ARTstract-KG, showing the types of com-
monsense linguistic knowledge connected to a single image instance. Most anno-
tations are typed by ConceptNet concepts, while the image captions are typed by
WordNet concepts as well as by linguistic frames.
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Hybrid Approaches

In our investigation, we experimented with combining KGE and ViT embeddings to
assess whether their joint usage could enhance performance compared to using either type
in isolation as input for the MLP classifier. As seen in Figure IV.3.5, the top F1 score of
0.33 was achieved through the concatenation of relative embeddings. This finding signifies
the e↵ectiveness of combining relative KGE and relative ViT embeddings in bolstering
classification accuracy. Relative embeddings provide valuable perspectives on image
relationships and shared attributes, thus contributing substantially to the model’s overall
accuracy. In comparison, the F1 score for combined absolute embeddings aligns closely
with the performance of the absolute ViT by itself, scoring 0.31 and 0.30, respectively.
This implies that pairing two relative embeddings yields more substantial performance
improvements than uniting two absolute embeddings, highlighting the complementary
nature of relative embeddings. The second-highest F1 score, at 0.32, was achieved by
the hybrid approach concatenating the best-performing individual embeddings (relative
KGE and absolute ViT). This result highlights the complementarity of the relative KGE
and absolute ViT embeddings, emphasizing the significant impact of their combination
on the model’s overall performance.

Our results also draw attention to the Hybrid Approach utilizing the Hadamard
product, which achieved an F1 score of 0.29. While surpassing the KGE-only-based
approaches, it slightly lags behind the performance of absolute ViT. Nonetheless, it out-
performs both relative KGE and relative ViT embeddings. We specifically opted for the
Hadamard product (A �B) because it emphasizes the degree of similarity between each
image embedding and the 700 selected anchors, taking into account spatial (ViT) and se-
mantic (KGE) information. This operation accentuates anchors that exhibit the highest
similarity to a given image when assessed from both spatial and semantic perspectives.
Conversely, features with low scores in one of the vectors will lead to lower values in
the resulting hybrid vector. This approach proves valuable in identifying anchor images
that share pronounced similarities with a given anchor but only in one of the two em-
bedding spaces. This ability to unveil unique characteristics captured by each modality
underscores the Hadamard product’s e↵ectiveness in pinpointing common features and
characteristics, facilitating the identification of anchors that hold particular significance
and dual-mode similarity to the image of interest.

Comparison with State of the Art

The comparison with classical ML and DL models rea�rms the e�cacy of our hybrid
approaches, which outperform all the other methods (see Figure IV.3.11), providing
evidence that the integration of ARTstract KG embeddings with ViT deep feature vec-
tors unlocks substantial improvements in image classification accuracy. While classical
models handling the unsituated perceptual semantics have demonstrated performance
comparable to CNN methods in Chapter III.2, it is the synergy between the situated per-
ceptual knowledge encoded in the relative KGE embeddings with the sensory-perceptual
understanding captured by the ViT embeddings that leads to the highest F1 score of 0.33.
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These findings collectively underscore the significant impact of our hybrid approaches,
with the Relative KGE || Relative ViT model emerging as the top-performing and most
promising method, e↵ectively enhancing the precision of AC image classification.

CNN PS KGE ViT H
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Figure IV.3.11: Our hybrid approaches have the highest known performance for
the task of AC image classification. Best Macro F1 Scores for di↵erent input
embeddings. PS: Naive-Bayes; CNN: ResNet-50; KGE: Relative TransE KGE;
ViT: Absolute ViT; H: Concatenation of Relative KGE and Relative ViT.

IV.3.5.3 Interpretability

These interpretability experiments aid us in comprehending the inner workings of our
models and can guide further improvements in image classification and retrieval tasks.
They highlight the models’ ability to capture both symbolic and embodied aspects of
image content, contributing to a more holistic understanding of image similarity.

Similar Images: Absolute Embeddings Comparison

Perceptual Disparities: ViT and KGE Comparative Analysis Our results
underscore the presence of significant disparities between the behaviors of Absolute ViT
and Absolute KGE when processing and interpreting images. In particular, these dis-
parities may hint at biases inherent in the training data and architectural di↵erences
between the models. For example, the observation that Absolute ViT places substan-
tial emphasis on the United States flag in one test image (see Figure IV.3.6) could be
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indicative of a bias in its training data. This bias may have resulted from an overrepre-
sentation of United Statesian content and flag-related images or certain visual patterns
in the training dataset, leading ViT to exhibit this behavior. It is essential to be aware of
such biases, as they can impact the model’s generalizability and performance on diverse
tasks. On the other hand, Absolute KGE’s performance, especially being biased towards
similar images with comfort as ground truth, may be attributed to its reliance on only
ARTstract for training, which is strongly unbalanced and thus biased towards the com-
fort cluster. Furthermore, we observe instances where Absolute KGE and Absolute ViT
excel di↵erently in semantics, illustrating the nuanced capabilities of each model. These
di↵erences might stem from their unique architectures and training objectives. Under-
standing these variations in interpretability and performance is crucial when choosing
between the two embeddings for specific applications.

Semantic Proficiency: KGE’s Edge Our results raise intriguing questions about
the interpretability and semantic understanding of images by Absolute ViT and Abso-
lute KGE. The disparities observed in how these models handle images, even when both
achieve accurate predictions, suggest the presence of underlying biases and architectural
di↵erences. In the case of the top image of Figure IV.3.7, where Absolute ViT empha-
sizes aesthetics and KGE identifies explicit semantics, it becomes apparent that ViT
may exhibit a bias towards certain visual patterns and color schemes. These biases may
be reflective of the data distribution in its training dataset and the way it has learned
to interpret comfort-related images. Conversely, KGE’s ability to focus on explicit se-
mantic elements suggests that it may be more adept at capturing high-level concepts in
images. The bottom test image highlights how both models can make accurate predic-
tions, yet KGE excels in understanding the nuanced relationship between comfort and
sitting on a couch. This suggests that KGE may incorporate higher-level semantics in
its representations, potentially through object detection or pattern recognition.

We identified other cases showcasing the KGE method’s superiority at capturing
higher-level semantics than ViT. In Figure IV.3.12, the test image portrays two indi-
viduals in an intimate setting. ViT-based similar images primarily focus on pixel-level
resemblances related to dark colors and textures. In contrast, KGE demonstrates a
superior understanding of the scene, emphasizing the presence of multiple individuals
engaged in intimate interactions. While most ViT-similar images depict single individ-
uals, the majority of KGE-generated similar images depict scenes involving two or more
people in intimate settings. This showcases a scenario where KGE excels in capturing
high-level semantics, which ViT may overlook because of its emphasis on compositional
and low-level features. While ViT may excel in recognizing detailed visual features, KGE
appears to have an edge when it comes to interpreting scenes, especially those involving
complex interactions and higher-level semantics. The ability of KGE to understand the
presence of multiple individuals in an intimate setting suggests its potential for tasks
that require interpreting social interactions, relationships, or other complex high-level
visual cues.

In Figure IV.3.13, we present another compelling example that highlights the KG
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Figure IV.3.12: ViT focuses on colors and textures, while KGE excels in under-
standing complex scenes, emphasizing multiple individuals in intimate interactions.

methods’ superior ability to capture perceptual semantics. The test image portrays a
bed with a comforter. This case illustrates the challenges faced by ViT, which seems to
get confused with sensory details like colors and lines, rendering it unable to abstract
the underlying semantic content. In contrast, KGE exhibits a strong capacity to connect
the visual content to the broader semantics of a bed, as evidenced by the most similar
images it generates. This case exemplifies the contrast between ViT and KGE in terms
of their perceptual understanding and semantic abstraction. ViT’s focus on sensory
features, such as colors and lines, limits its ability to identify the broader semantic
context, often leading to confusion in the task. In this specific case, ViT may struggle to
di↵erentiate the test image from other visually similar patterns or textures. Conversely,
KGE’s proficiency in connecting the image to the concept of a bed indicates its capability
to grasp high-level semantics, even when presented with visually complex images.

Figure IV.3.14 presents a particularly intriguing case where the KG-based methods
demonstrate their capacity to capture high-level semantic concepts e↵ectively. The test
image in question is categorized under the ground truth label “death” likely due to its
depiction of a convoy of vehicles resembling ambulances, akin to those dispatched to war
zones. In this instance, the images retrieved as most similar by ViT are predominantly
tagged with comfort. This discrepancy likely arises from ViT’s focus on color composi-
tion, warm tones, and textural elements present in both the test image and the retrieved
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Figure IV.3.13: ViT struggles with sensory details, while KGE e↵ectively connects
the image to the broader concept of a bed.

images. The majority of the top images retrieved by ViT are set in outdoor scenes
featuring open spaces, buildings, and natural landscapes. While these elements may be
visually related to the test image, they are largely irrelevant to the ground truth. In
contrast, the top three most similar images based on the KGE embeddings, although not
closely related in terms of concrete visual elements, all share the correct ground truth of
death, primarily evoking it through the presence of crosses and crucifixion imagery. This
indicates that the KGE model has successfully linked images featuring crosses with the
concept of death, a connection that takes precedence over the presence of open spaces
and natural settings associated with comfort images (the ViT misclassifications).

Overall, when compared with relative-ViT, relative KGE representations select an-
chors more closely aligned with the semantic content of the target image. This profi-
ciency of relative KGE embeddings is particularly noteworthy, considering the context
in which the ARTstract-KG was constructed. This context involved automated (non-
human evaluated) perceptual semantics detection, without manual semantic coherence
checks, introducing inherent noise compounded by the complexities of cultural art im-
ages, which often lack discrete objects and other detected categories. Despite these
challenges, our qualitative analysis of relative KG embeddings highlights the capacity of
KGE embeddings to implicitly encode essential high-level semantics, a pivotal element
in our study.

As such, despite our initial observation of ViT’s superior F1 performance, which
suggested a more “grounded” representation of ACs within its latent space, our inter-
pretability experiments reveal a discrepancy. ViT’s ability to capture semantic content
at a level as high as the KGE representation, which makes sense to humans, falls short.
We believe that this discrepancy is primarily a consequence of the prototype selection
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Figure IV.3.14: ViT misclassifies as comfort, but KGE successfully associates im-
ages with crosses to the concept of death.

process, where images are represented based on their similarity to these prototypes. Es-
sentially, ViT’s latent space heavily relies on the noise accumulated from its extensive
training dataset. However, when we transform this deep representation into a relative
form, we introduce a strong prior assumption, expecting images that evoke the same AC
to exhibit semantic similarity. This transformation does not perfectly align with ViT’s
latent space; instead, it confines the representation to specific regions within that space.
This constraint potentially limits ViT’s ability to express semantic relationships, as it
can no longer rely solely on pixel-wise perceptual features but must e↵ectively position
images within its latent space. As a result, the images obtained in this process may seem
perplexing because the model’s internal representation significantly di↵ers from human
perception. It primarily depends on subtle pixel di↵erences, which, while e↵ective for
simple cognitive tasks, fall short in generalizing to the human internal understanding of
the world.

Relative Embeddings: Training Anchors Similarity

Nevertheless, even with the inclusion of relational Vision Transformer embeddings, cer-
tain relevant anchor images continue to be retrieved. This demonstrates that relying
solely on pixel-wise characteristics is valuable, yet insu�cient. Through a Hadamard
multiplication of KGE and ViT embeddings, we quantify the extent of agreement be-
tween ViT and KGE regarding an image’s similarity to prototypes. As a result, KGE’s
semantics are maintained, but the images are re-ranked based on perceptual features
detected by ViT. The results in Figure IV.3.8 underscore the promise of the hybrid
approach, which leverages both relative representations. Notably, it excels in identify-
ing semantically similar anchors, as illustrated in the cases of fitness and danger. This
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superior performance in recognizing relevant similarities can be attributed to the com-
plementary nature of relative ViT and relative KGE embeddings. When combined, they
capture information that is sometimes missed when using them individually. These find-
ings suggest that the hybrid approach o↵ers significant benefits, particularly in situations
where accuracy and semantic understanding are essential. By combining relative repre-
sentations, it’s possible to mitigate limitations present in either ViT or KGE embeddings,
resulting in more robust and e↵ective image classification. The hybrid approach shows
promise for a wide range of applications where understanding the underlying factors
contributing to image similarity is of paramount importance.

IV.3.5.4 Limitations and Further Directions

This section outlines several promising future directions that can significantly expand
the horizons of research and enhance the e↵ectiveness of our approach:

Better Anchors Our choice of anchors, involving the simple sampling of 100 images
from each cluster, overlooks the complexity of image distribution. Implicitly assuming
that all images within a cluster are identically and independently distributed (iid) is not
reflective of reality, as our experiments on intraclass variance based on deep features in
ARTstract have shown (see Chapter II.2). Instead, AC clusters contain a diverse range
of samples, and the similarity between two images belonging to di↵erent clusters is likely
higher than the similarity between images belonging to the same clusters. Although we
sample a significant number of images (100) for each cluster to mitigate this issue, future
work should focus on developing a more robust prototype selection strategy.

Pre-clustering for Semantic Anchors Introducing a pre-clustering step based
on deep features, such as the Visual Transformer (ViT) features, is an intriguing concept.
This step could involve identifying semantic clusters within each AC image, potentially
based on visual features extracted by ViT. By pre-defining a set of semantically diverse
clusters for each AC, one may be able to identify better anchors for relative repre-
sentations. For instance, clusters associated with the danger category might include
diverse clusters of images, some related to the ocean, others to war scenes, others to
sharp objects, and more. This pre-clustering can enhance the granularity of semantic
understanding and potentially improve classification accuracy.

Exploring Graph Neural Networks (GNNs) One promising direction for fur-
ther research involves transitioning from traditional KG embeddings to Graph Neural
Networks (GNNs) [239, 191]. This transition presents an opportunity to assess whether
GNNs can outperform KG embeddings in the context of AC image classification. Fur-
thermore, a fascinating aspect of this approach is the exploration of information flow
within the GSNN. Understanding how information propagates through the network, in-
cluding the involvement of specific nodes and edges, can provide valuable insights. One
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approach to achieve this is by investigating the sensitivity of the GSNN’s output to hid-
den states and activations, which can be accomplished by computing partial derivatives
concerning the category of interest. However, while GNNs excel at capturing intricate re-
lationships in graph structures, their advantage over KG embeddings depends on factors
such as dataset characteristics and embedding techniques. Empirical validation through
comparative studies is essential to determine the most e↵ective approach for AC image
classification.

Creating Scene Graphs To enhance the representation of perceptual semantics,
another avenue for exploration is the construction of a scene graph [233, 152] for each im-
age. Scene graphs o↵er the potential to capture intricate relationships between objects,
actions, and attributes. This approach aligns with research in the field, and may uncover
previously unnoticed relationships, adding a layer of complexity to the understanding of
perceptual semantics in images.

Leveraging Multimodal Knowledge Fusion An intriguing avenue is to explore
the fusion of perceptual knowledge with other modalities, such as textual information
or audio data if available. This multimodal fusion can lead to a more comprehensive
understanding of the content within images and open doors to various cross-modal tasks,
including image captioning, audio-visual recognition, and more.

Knowledge-Driven Analysis of Misclassifications and Bias By harnessing
the explicit knowledge graph, we can systematically collect and analyze misclassifica-
tions, leveraging SPARQL queries to identify patterns of errors (e.g., many images mis-
classified as danger when they should be categorized as freedom depict a certain object,
like guns. The fact that we have an explicit KG enables this line of work, allowing us
to explore and understand the root causes of misclassifications. In this way, we can
scrutinize how biases may propagate through the KG and a↵ect classification outcomes.
Understanding these dynamics within the KG is essential for developing strategies to
mitigate bias and ensure fairness in AC image classification.

Applying Self-supervised Learning Techniques Self-supervised learning ap-
proaches, where the model learns from unlabeled data, can be a promising direction for
further refining either anchors of the KG embeddings.
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IV.3.6 Conclusions

This chapter introduced the AKG, a versatile and context-aware knowledge repository
capturing the perceptual semantic attributes of over 14,000 cultural images tagged with
ACs. The AKG reifies perceptual semantics and explicitly encodes when, where, and
how these annotations were made, along with annotation strength, e↵ectively rendering
these annotations situated ground truths. It also establishes connections with common-
sense knowledge sources like ConceptNet, enabling interpretable reasoning over percep-
tual semantic data. The AKG thus serves as a foundational resource for contextual
understanding in visual sense-making, laying the groundwork for further research and
analysis.

Furthermore, we have showcased the potential of Knowledge Graph Embeddings in
enhancing AC image classification accuracy and their complementarity when combined
with Vision Transformer embeddings. We exploited the AKG for the task of AC image
classification through the use of KGE–both in their absolute and relative representations.
Our results revealed the significant potential of the relative representation method to
boost the performance of KGE-based models. In addition, our experiments explored
hybrid approaches that combined KGE and ViT embeddings to assess their joint util-
ity for AC image classification. These hybrid embeddings demonstrated their ability
to enhance classification accuracy significantly, emphasizing their complementarity in
capturing image relationships and shared attributes. Our results surpassed the state of
the art in AC image classification.

Additionally, our interpretability experiments have provided valuable insights into
the models’ behaviors, underlining their unique strengths and weaknesses. While ViT
excelled at capturing detailed visual features, KGE demonstrated a superior capacity
for interpreting scenes, high-level semantics, and complex interactions in images. This
discrepancy could be attributed to the prototype selection process and the inherent
noise within ViT’s latent space. The relative representation approach introduced a prior
assumption, confining the representation to specific regions within the latent space.
This constraint could limit ViT’s ability to express semantic relationships and result
in perplexing images that di↵er significantly from human perception. These findings
raise critical questions about the interpretability and semantic understanding of images
depending on the models learning their representations.

Our findings, while promising, also reveal the challenges and nuances in interpreting
and understanding perceptual semantics within images. We have identified several av-
enues for future research, including the exploration of better anchor selection strategies,
the integration of Graph Neural Networks (GNNs), the construction of scene graphs,
and the utilization of multimodal knowledge fusion. We also emphasized the importance
of knowledge-driven analysis of misclassifications and bias, as well as the potential of
self-supervised learning techniques to further refine image representations.
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Chapter V.1

Towards Hybrid Cognitive AI

V.1.1 Summary of Research Objectives

This dissertation tackled the challenging task of bridging the semantic and cultural
gaps between raw pixel data and high-level visual semantics, with a focus on AC image
classification. Its goal was to improve the performance and interpretability of current
state-of-the-art approaches. The central hypotheses explored the potential of cognitive-
inspired, automatically detectable semantic intermediaries as proxies for AC evocation,
highlighting the role of semantic technologies in developing e�cient and interpretable
hybrid intelligent systems.

To support this research, we introduced the ARTstract image dataset (Chapter
II.1). This dataset comprises 14,000 cultural images, including artworks, historical pho-
tographs, and advertisements, carefully curated from four image datasets [2, 338, 390],
and providing a unique resource for investigating the intersection of visual data and
ACs. Apart from using it as the foundation for our experiments, ARTstract serves as a
solid starting point for further research in areas such as CV, digital art history, and cog-
nitive science, enabling experimentation with interpretable CV methods and hopefully
inspiring the development of more culturally sensitive and diverse datasets for high-level
visual semantics.

We established our technical research within the domain of multi-class image clas-
sification. Given the ARTstract dataset comprising images X = [I1, I2, . . . , Im], each
paired with corresponding ground truth labels Y = [y1, y2, . . . , ym], with each label be-
ing selected from a set of K potential AC classes. Our research task was to ascertain the
optimal image representation, Ii, and model parameters, ✓, that enable us to predict the
label ŷi in a way that it closely aligns with the true label yi. We expressed this objective
using the following equation:

ŷi = argmax(p(yi|Ii, ✓))
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Our research tackled this challenge by exploring how various machine-readable im-
age representations would influence the performance and interpretability of an AC image
classification system. We aimed to uncover insights into the most informative and inter-
pretable aspects of image data by applying transformation functions to the original raw
pixel representation, IRAW. Our investigation revolved around four distinct paradigms,
each with unique attributes (see Table V.1.1).

Insights from the Background Research

To lay the foundations for the proposed methods, in Chapter I.2, we systematically ex-
plored the landscape of high-level visual understanding, focusing on identifying work
that explicitly or implicitly dealt with the task of AC image classification. Through a
multidisciplinary approach, we defined and characterized “high-level semantics” by iden-
tifying the semantic units assigned to this tier. We then classified these semantic units
across four knowledge clusters: commonsense, emotional, aesthetic, and interpretative
semantics. This approach allowed us to then survey and identify past CV work for asso-
ciating these high-level semantic units with images. Our survey identified a substantial
body of work and categorized the identified CV tasks into five analogous clusters: sit-
uational analysis, visual sentiment analysis, aesthetic analysis, social signal processing,
and visual rhetorical analysis.

Our findings revealed that the field of CV is increasingly shifting its focus towards the
automatic detection of sociocultural and subjective elements within images, including
emotions, personality traits, and visual rhetorics. Furthermore, the survey showcased
a strong reliance on Convolutional Neural Networks (CNN) and an expansion of tasks
from natural photographs to cultural images, highlighting the significance of tailored
datasets and data augmentation. Most significantly, the survey underscored the daunting
challenge of achieving high F1 scores in AC image classification, even with substantial
datasets, prompting a reevaluation of the data accumulation paradigm. The integration
of symbolic knowledge and the recognition of mid-level features, such as objects and
actions, emerged as pivotal strategies to enhance performance in this intricate task.

Furthermore, Chapter I.3 set the stage by providing a succinct foundation on the
cognitive science perspective on ACs and their representation within the human brain.
We highlighted the coexistence of distributional and embodied information in grounding
ACs and examined key cognitive aspects, including acquired embodiment, relationality,
and emotionality. This foundational knowledge served as a critical underpinning for the
practical applications discussed in the subsequent chapters of AC image classification.
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Paradigm Approach Image Representation Task Formulation

End-to-end

Deep Vision

(DL)

Pre-trained

DL Models

+

Finetuning
fDL : IRAW ! IDL ✓ R768

ŷ = argmax(p(yi|IDL, ✓))

Perceptual

Semantics

(PS)

Label Extraction

+

Feature Engineering

+

Classical ML

fPS : IRAW ! IPS ✓ RN

ŷ = argmax(p(yi|IPS, ✓))

Situated

Knowledge

of Perceptual

Semantics

(SKPS)

Perceptual Semantics

+

Annotation Situations

+

Commonsense Frames

+

KG Embeddings

fKG : IPS ! IKG ✓ G
fKGE : IKG ! IKGE ✓ R128

ŷ = argmax(p(yi|IKGE, ✓))

Concatenation of

Absolute Embeddings

fH :[IDL; IKGE ]! IH ✓ R896

Hybrid:

End-to-end

Vision

+

Situated

Perceptual

Knowledge

Concatenation of

Relative Embeddings

fH :[IR�DL; IR�KGE ]! IH ✓ R1400 ŷ = argmax(p(yi|IH, ✓))

Hadamard Product of

Relative Embeddings

fH : IR�DL � IR�KGE ! IH ✓ R700

Table V.1.1: Comparative overview of the four paradigms investigated in this
dissertation. Each paradigm o↵ers a unique approach to transforming image rep-
resentations for use in the AC image classification task. The explored paradigms
include end-to-end deep vision, perceptual semantics with classical machine learn-
ing, situated knowledge of perceptual semantics with KG embeddings, and a hybrid
approach.
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V.1.2 Addressing our Research Questions

This dissertation research was structured around three goals, each accompanied by one
of the three central research questions (RQs) (see introductory Section I.1.4) guiding
this work. In this section, we discuss how we answered those RQs.

1. Deep Learning for Abstract Concept Image Classification: In-
vestigating the e↵ectiveness of state-of-the-art DL models in handling ACs
in image data through an end-to-end approach.

RQ1. To what extent can the end-to-end DL paradigm, connecting raw

pixel values directly to unsituated AC labels, address the task of AC image

classification in terms of both performance and explainability?

We explored this research question in Chapter II.2, conducting a critical assessment
of the end-to-end DL paradigm’s performance, representation, and interpretability. Our
findings reveal that this paradigm presents significant challenges when applied to AC im-
age classification. Specifically, we utilized state-of-the-art pretrained DL models (VGG-
16, ResNet-50, and ViT) to transform raw pixel-based images (IRAW) into deep feature
vectors (IDL) with dimensions determined by the reused model. This process involved
fine-tuning the pre-trained DL models to enable direct image classification using these
deep features. In our analysis of VGG-16 image feature vectors (Section II.2.4), we
identified significant di↵erences in intraclass similarity between ARTstract and CIFAR-
10 classes, suggesting a correlation between target class abstractness and the model’s
ability to capture shared features. Concrete classes demonstrated high intraclass simi-
larity, signifying e↵ective feature extraction by the CNN-based model. Conversely, AC
classes showed lower similarity, highlighting the challenge of AC-relevant feature ex-
traction from images with DL models in an end-to-end approach. In the finetuning
and performance evaluation of deep models (Section II.2.5), we found that DL models
excelled in standard image classification, but struggled with ACs. The notable con-
trast in accuracy between CIFAR-10 (concrete classes) and ARTstract (abstract classes)
underlines the di�culties of dealing with ACs in visual content and the limitations of
conventional DL models. These results emphasize the complexity of AC classification,
characterized by open definitions, polysemy, and diverse associations with visual data.
However, our ARTstract-trained models achieved higher F1 scores than those trained
on other datasets, highlighting the potential of the ARTstract dataset in advancing AC
image classification. Finally, in Section II.2.6, we explored various methods to interpret
the knowledge acquired by the fine-tuned models. Conventional explainability techniques
like Grad-CAM had limitations in revealing the intricate relationship between visual data
and ACs due to their reliance on concrete evidence. The challenges posed by high intr-
aclass dissimilarity in visual representations of ACs impacted both model performance
and the clarity of traditional feature visualizations. Our innovative neuron visualiza-
tion denoising approach, SD-AM, proved partly e↵ective in generating human-readable
“hypericons” that capture features DL model associated with target ACs. Interestingly,
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we observed a visual convergence observed between modern hyperpop aesthetics and
SD-AM hypericons. This prompts contemplation about the relationship between con-
temporary media consumption and the data processing capabilities of DL models, as
shown in Figure II.2.18. In conclusion, this chapter made a substantial contribution to
our comprehension of the strengths and weaknesses of the end-to-end DL paradigm in
the context of AC image classification.

2. Minding the Gap with Cognitive Intermediaries:
Exploring the potential of visual data descriptors to bridge the gap between
raw pixels and ACs via perceptual semantics.

RQ2. Is it possible to automatically identify intermediary semantic features

to bridge the semantic gap between raw pixels and ACs? How might the

utilization of these features impact the performance and interpretability of

AC image classification?

This research question was addressed in Part III, which introduced the perceptual

semantics (PS) paradigm to bridge the semantic gap between raw pixels and ACs in
the context of image classification. The PS paradigm aimed to close this gap by au-
tomatically extracting concrete labels (such as objects, actions, emotions, colors, and
more) from images, and using these semantic labels as explicit semantic intermediaries.
Unlike end-to-end DL approaches, the PS paradigm follows a feature engineering strat-
egy, converting raw images (IRAW) into perceptual semantic representations (IPS) that
explicitly correspond to the presence of concrete perceptual semantics. As a result, the
IPS representation is characterized by a more interpretable, symbolic foundation.

Specifically, in Chapter III.1, we presented empirical evidence that showcases the
potential of computational techniques to capture symbol grounding and acquired embod-

iment. This evidence was derived from a case study using visual artworks from the Tate
Gallery. The study identified commonsense perceptual features that frequently co-occur
with ACs. Notably, associations were found between AC tags, like consumerism, and
tag descriptors such as “clothing,” “food and drink,” and “product packaging.” Addi-
tionally, our color analyses provided insights into the chromatic attributes of AC visual
evocation within the Tate collection.

Chapter III.2 extended the acquired embodiment software architecture, with a focus
on improving the interpretability of image representations. This chapter explored the
use of DL models at more concrete layers of the semantic pyramid. Perceptual semantics
were autonomously extracted for all ARTstract images, leading to more interpretable
image representations. We then harnessed these image representations to train inter-
pretable classical Machine Learning (ML) techniques, including Naive Bayes, to perform
AC image classification. The results demonstrated the e↵ectiveness of this approach,
which maintained performance levels similar to convolutional neural networks (CNNs)
while significantly enhancing interpretability. This exploration challenged the prevailing
reliance on end-to-end DL for abstract and subjective tasks, highlighting the potential
of keeping these methods at shallower levels of the semantic pyramid. Overall, our re-
sults underscored the e↵ectiveness of feature engineering and traditional ML techniques,
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emphasizing their significance in socio-cultural cognitive tasks where interpretability is
essential.

3. Reifying and Reasoning with Knowledge Graphs:
Analyzing the potential of semantic technologies in representing the com-
monsense and cultural dimensions of perceptual semantics to enhance AC
image classification.

RQ3. How can the fusion of perceptual semantics with symbolic knowl-

edge through ontology-based frameworks enhance the performance and inter-

pretability of AC image classification?

In Part IV we provided an answer to this research question by introducing the sit-

uated perceptual knowledge (SPK) paradigm. This paradigm extended the principles of
the PS paradigm, aiming to bridge the semantic gap, tackle commonsense reasoning, and
address the cultural gap. It utilized ontology-based KGs to reify semantic relationships,
facilitating reasoning and integration with common sense knowledge. The transforma-
tion of perceptual semantic representations of images (IPS) into structured KG format
(IKG) was a core aspect. This KG was further embedded into a vector space to create
a vector representation (IKGE) used for AC image classification. The paradigm’s foun-
dation rests on two critical contributions: a process for reasoning over linguistic visual
descriptors through the incorporation of commonsense knowledge (Chapter IV.1) and
the introduction of the SituAnnotate ontology-based framework for semantically situat-
ing this knowledge (Chapter IV.2). Chapter IV.3 elaborated on the application of these
contributions within the context of the ARTstract dataset for AC image classification,
providing insights and solutions to the research question.

Specifically, Chapter IV.1 explored the connections between perceptual semantics
descriptors and linguistic frames with an emphasis on interpretability. Our findings con-
firmed that the use of concrete textual label descriptors can establish meaningful links
between image perceptual semantics and higher-level concepts while maintaining in-
terpretability through commonsense reasoning. This approach, incorporating ontology-
based knowledge engineering techniques and commonsense knowledge, not only enhanced
visual material descriptions but also simplified the retrieval of visual instances of seman-
tic frames, promoting two-way information exchange. This research signifies a notable
advancement, demonstrating the potential of such methodologies to bridge the gap be-
tween specific image labels and high-level frames.

Subsequently, Chapter IV.2 explored the presence of subjective and cultural bi-
ases solidified in the extraction of PS, and introduced methods to address these bi-
ases. Our results highlighted the challenges in achieving objectivity in data annotations
and the impact of cultural perspectives on image labeling, including in gold standard
CV datasets like Visual Genome [233]. We introduced SituAnnotate as an alterna-
tive to traditional annotation methods, to improve annotation precision and contextual
depth. Its adaptable architecture accommodates various annotator types while ensur-
ing contextual grounding and aligning with modern annotation practices. Furthermore,
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our results showed that automated reasoning through SPARQL queries streamlined an-
notation comprehension, o↵ering nuanced insights into annotation contexts. By con-
textualizing annotations, SituAnnotate e↵ectively mitigates bias and promotes ethical
AI development, meeting the demand for transparent, responsible, and bias-aware AI
systems. Our practical demonstration underlined SituAnnotate’s value in providing in-
sightful and human-understandable explanations for annotations, enhancing contextual
understanding, and improving the quality of AI development practices.

Finally, in Chapter IV.3, we explored how grounding perceptual features in their
subjective, cultural, and commonsense contexts can enhance AC image classification per-
formance and interpretability. We achieved this by creating the ARTstract Knowledge
Graph (AKG), an expansion of the ARTstract image dataset. We integrated perceptual
semantic features with situational metadata and high-level linguistic frames, creating
multifaceted image representations within the KG. This representation provided a nu-
anced understanding of images by considering the origins, strengths, and interconnec-
tions of descriptors. We employed the TransE embedding method to obtain Knowledge
Graph Embeddings (KGE) for image representation, and conducted multiple experi-
ments for AC image classification using KGEs exclusively. Our findings demonstrated
that the KGE approach, while not reaching the Vision Transformer (ViT)’s level of per-
formance, experienced significant performance improvement when incorporating relative
representations [261]. This superior performance indicates that this method introduces
a more ‘semantic’ representation, thereby boosting semantic resolution. In a broader
context, these findings emphasize the potential of the relative representation method to
enhance KGE-based image classification, o↵ering a valuable alternative to ViT.

Furthermore, through our hybrid approaches that combine deep embodied features
with symbolic representations, we investigated multiple fusion strategies. Some of these
strategies incorporated relative representations to establish e↵ective connections between
KGE and ViT, all while ensuring invariance to latent isometries and rescalings. Our
interpretability analyses shed light on the distinct capabilities of ViT and KGE in com-
prehending high-level semantic concepts. ViT primarily focused on lower-level visual
features such as colors and textures, whereas in some cases KGE excelled at capturing
more abstract and high-level scene aspects (e.g., Figure IV.3.7). Importantly, our hybrid
methods lead to improvements in AC image classification performance, surpassing all
available state-of-the-art methods. This chapter demonstrated multiple ways in which
ontology-based frameworks can enhance image classification in terms of both perfor-
mance and interpretability, significantly contributing to our response to RQ3. These
findings also underscored the potential of neuro-symbolic methods, including KGs and
their embeddings, for robust image representation in complex visual understanding tasks,
confirming their value in CV and AI research.

V.1.3 Key Research Contributions

In this section, we provide a concise synthesis of our key research contributions:
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V.1.3.1 End-to-end DL Vision

• Introduction of ARTstract image dataset, only dataset we know to explicitly fo-
cus on AC tags, containing +14K cultural images, including advertisements and
artworks, and o↵ering the potential for enhancing AC image classification perfor-
mance and future work.

• Benchmark performances on ARTstract using state-of-the-art DL models.

• Identification of the strengths and challenges posed by the end-to-end DL paradigm

for AC image classification.

• Introduction of innovative interpretability techniques like SD-AM hypericons for
gaining insights into the cultural meanings learned by DL models.

V.1.3.2 Minding the Gap with Cognitive Intermediaries

• Empirical evidence of the feasibility of translating the cognitive theory of ACs’
acquired embodiment into a computer vision-based software approach.

• Introduction of the perceptual semantics paradigm, which uses DL at more con-
crete layers of the semantic pyramid, extracting intermediary semantic features to
bridge the semantic gap between raw pixels and ACs.

• Evidence of the e↵ectiveness of combining feature engineering and classical ML
techniques to improve interpretability while maintaining performance levels com-
parable to CNNs.

• Challenge to the prevailing reliance on end-to-end DL for abstract and subjective
CV tasks, highlighting the potential of alternative approaches.

V.1.3.3 Reifying and Reasoning with KGs

• Introduction of an interpretable commonsense reasoning approach to automati-
cally connect visual data with high-level linguistic frames.

• Introduction of the SituAnnotate ontology-based framework, enhancing annota-
tion precision and depth, and addressing subjective and cultural biases in data
labeling for improved fairness and accuracy.

• Introduction of the ARTstract Knowledge Graph, expanding the ARTstract im-
age dataset by situating perceptual semantics annotations for bias awareness and
enhancing symbolic-embodied knowledge.

• Introduction of the situated perceptual knowledge (SPK) paradigm, which extends
the PS paradigm by reifying semantic relationships and using ontology-based KGs
to enhance AC image classification.
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• Introduction of an AC image classification method outperforming all state-of-the-
art methods and even surpassing the top end-to-end DL model (ViT).

• Quantitative and qualitative evidence supporting the value of neuro-symbolic
methods, including KGs and their embeddings, for robust image representation
in high-level visual sensemaking tasks, with implications for performance and in-
terpretability.

V.1.4 Open Questions and Future Directions

The research in this thesis highlights the nuanced balance between simplifying complexity
for manageability and enriching complexity for deeper comprehension in high-level visual
understanding and AC image classification. A central theme throughout the disserta-
tion is navigating this balance using intermediaries to bridge the semantic gap between
raw pixel data and ACs. While these intermediaries aid in explainability and reasoning,
it is essential to acknowledge the potential drawbacks of early complexity reduction.
For instance, simplifying complexity through intermediaries, such as identifying domi-
nant colors or other low-level features, may oversimplify the nuanced information within
visual data. This oversimplification could lead to overlooking crucial subtleties and vari-
ations necessary for accurate interpretation. While reductionist approaches enable more
manageable analysis, it’s imperative to exercise caution to prevent limiting outcomes to
specific conclusions. To address this challenge, potential strategies include integrating
hierarchical structures to iteratively refine interpretations and devising mechanisms to
adjust abstraction levels dynamically based on contextual cues.

As we conclude this work, it is essential to identify promising directions for future
research and development in these areas. The following points outline potential avenues
for further exploration:

V.1.4.1 User Study for AC Image Classification

We have primarily evaluated the performance of our AC image classification methods
using quantitative measures such as accuracy and F1 scores. While quantitative metrics
provide valuable insights into the performance of AI models, it is equally important to
assess their real-world utility. A task-based user study could be designed to simulate
scenarios where humans are required to classify images based on ACs, similar to the
tasks that our AI models perform. This user study should involve participants from
various backgrounds, including those unfamiliar with the domain. Key objectives of
such a study would include:

• Assessing how well humans perform on AC image classification tasks, providing a
benchmark against which AI model performance can be compared.

• Evaluating the consistency and subjectivity of human judgments when identifying
ACs in images, shedding light on the inherent challenges of these tasks.
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• Exploring areas where AI models outperform or underperform humans and vice
versa, contributing to a more nuanced understanding of their respective strengths
and limitations.

• Gathering qualitative feedback from users about their experiences, di�culties, and
insights while performing AC image classification, which can inform the develop-
ment of more cognitive-inspired AI systems.

V.1.4.2 User Evaluation for Explainability

Understanding how well users can comprehend the rationale behind an AI model’s deci-
sions is vital for building trust and transparency in AI systems. Future research should
consider conducting user studies to assess the explainability of our and other methods.
This can involve presenting users with AI-generated explanations for specific image clas-
sifications and gathering their feedback on the clarity, comprehensibility, and utility of
these explanations. Users’ perceptions of which methods are most e↵ective in helping
them understand how an AI model reached its conclusions can guide improvements in
explainability techniques. Incorporating user feedback and preferences can lead to the
development of more user-centric AI systems and further enhance their utility in real-
world applications.

V.1.4.3 Dataset Expansion and Diversity

While ARTstract serves as a pioneering dataset for AC image classification, further
expansion and diversity can enhance its potential. Future work could focus on enriching
the dataset with a more extensive range of cultural images, including those from non-
Western perspectives, to capture a broader spectrum of ACs. This increased diversity
could better represent the cultural richness and subjectivity inherent in high-level visual
understanding. To achieve this, the following steps can be considered:

• Obtain human annotations of ACs to assess how ARTstract’s annotations compare
to those provided by annotators from di↵erent cultural backgrounds. Incorporat-
ing human-checked tags and tracking them using SituAnnotate would significantly
enhance ARTstract’s reliability and power as a resource.

• Expand the cluster definitions within ARTstract, encompassing a wider array of
words, languages, and cultural nuances. This expansion would make ARTstract
more comprehensive and inclusive, improving its utility in AC image classification
across diverse cultural contexts.

V.1.4.4 Refining Task Definitions and Evaluation Metrics

Refining the task definition and evaluation metrics for AC image classification is a critical
avenue for future research. The conventional multi-class classification approach may not
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be the most suitable, given that many ACs can be associated with a single image. To
better align the task with human vision and cognition, alternative task definitions and
evaluation metrics should be explored. Here are some proposed directions:

• Adopting a ranking-based task rather than traditional classification, which can
provide a more nuanced perspective on the relative relevance of di↵erent ACs to
an image. We could follow an approach similar to [187], which proposes a relative
scale for ambiguous labels and compares images as a ranking task.

• Adopting a multi-label multi-class classification paradigm instead of the single-
label multi-class paradigm that has been adopted in this thesis. This shift ac-
knowledges that an image may be associated with multiple ACs simultaneously,
allowing for a more comprehensive understanding of the content’s nuances and
complexities.

• Prioritizing reasonability over objectivity for evaluation, as proposed by [2]: This
method seeks reasonable associations instead of ground truths, asking evaluators
to rate the reasonableness of annotations, embracing subjectivity and finding com-
mon ground.

• Developing evaluation metrics that take into account the semantic relationships
between di↵erent AC classes: For instance, if an image is initially labeled as
death but is mistakenly classified as danger, the evaluation metric may assign a
distinct score compared to when it is misclassified as comfort. Evaluation metrics
could explicitly address these nuances, potentially using multi-label learning with
varying label importance and predicting AC probability distribution, as suggested
in the context of visual sentiment analysis for emotions [405].

V.1.4.5 Expansion to Natural Images

A logical next step is to broaden the scope of our methods to encompass natural images,
incorporating a wider array of images and datasets. This extension will facilitate the
evaluation of AC image classification techniques in a broader context, one not confined
to cultural or artistic images. By exploring natural images, we can gauge how well our
methods generalize to everyday visual content, thus achieving a more comprehensive
understanding of their e↵ectiveness across various domains. Furthermore, directing at-
tention to natural images may unveil distinct challenges and opportunities unique to this
context, contributing to the enrichment of the research landscape.

V.1.4.6 Ethical Implications, Bias, and Fairness

To investigate the ethical implications of AC image classification systems, it is essential
to better understand their potential for misuse in surveillance, governance, propaganda,
and other contexts. Research in this direction can shed light on the risks associated
with these systems and guide the development of ethical guidelines and safeguards.
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Future research should focus on developing robust methods for detecting, mitigating,
and ensuring transparency in both cultural and subjective biases. This encompasses
strategies for creating and maintaining fair and ethical datasets, annotation processes,
and AI systems. Emphasizing bias-aware AI development will be vital in tackling the
challenges posed by the cultural and subjective interpretations of visual content.

V.1.4.7 LLMs

While LLMs (Large Language Models) have primarily been associated with natural
language understanding and generation, there is an emerging potential to leverage these
models for high-level visual understanding tasks, such as AC image classification. Future
research in this area should explore the integration of LLMs with existing DL and CV
techniques to enhance the performance and interpretability of AC image classification.
Additionally, investigating how LLMs can assist in refining semantic representations and
improving the alignment between textual descriptions and visual content in the context
of ACs could be a promising direction. In Section V.1.5.3 of the Appendix, we present
some initial results and further discussion.

V.1.5 (Taming) Wicked Problems

The challenges encountered in this dissertation highlight the intricate, queer, and dy-
namic nature of high-level visual understanding and ACs. As we conclude this work,
we advocate for an approach that not only acknowledges but embraces the intricate and
multifaceted characteristics of ACs in an era of algorithmic curation. We propose using
the concept of ‘wicked problems’ [297] as a lens to better comprehend and address these
complexities, emphasizing that embracing this complexity is paramount for the ethical
development of AI.

V.1.5.1 Embracing the Queer Complexity of ACs

The results of this dissertation highlight the “inherently queer” and transgressive nature
of these concepts [247] and their ability to transcend the limitations of binary confine-
ment. In this context, the term “queer” encompasses a discourse that challenges con-
ventional binary cultural paradigms and suggests a more fluid understanding [7]. This
queerness implies a recognition of the incompleteness of definitions and invites novel
perspectives, as elaborated by Butler [63, p. 228],

If the term “queer” is to be a site of collective contestation, the point of
departure for a set of historical reflections and futural imaginings, it will
have to remain that which is, in the present, never fully owned, but always
and only redeployed, twisted, queered from a prior usage and in the direction
of urgent and expanding political purposes, and perhaps also yielded in favor
of terms that do that political work more e↵ectively.
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Importantly, the queerness of ACs arises from their resistance to fixed, simplistic,
or normative definitions, a resistance that poses both significant technical and ethical
challenges due to their elusive, subjective, and context-dependent nature. However,
understanding the challenges posed by the inherently queer nature of ACs allows us
to approach their automatic labeling and detection with a broader awareness. This
awareness aligns with Butler’s assertion that the term “queer” remains in a state of
constant transformation, evolving in response to ever-expanding political contexts [63].
The idea of perpetual redeployment and twisting applies aptly to the dynamic landscape
of ACs, where their interpretation and application continue to evolve, shaped by diverse
perspectives and emerging contexts.

V.1.5.2 Leveraging Wicked Problem Solving

The concept of ongoing transformation aligns with ’wicked problems’ [297], a frame-
work rooted in social policy planning that acknowledges the multifaceted and evolving
nature of complex ’wicked’ challenges compared to ’tame’ ones. Tame problems have
well-defined boundaries and a limited number of factors, leading to unequivocal right-or-
wrong solutions. Wicked problems, on the other hand, exist within open systems encom-
passing multidimensional, multicultural, and robust cultural dimensions, making them
socially intricate and open-ended. Unlike tame problems with clear solvability, wicked
problems lack a definitive test, resulting in assessments on a continuum of better or
worse outcomes. Addressing wicked problems necessitates platforms for a shared under-
standing of complexity, a paradigm integrating various contexts, and analyses of power
dynamics. An iterative, experimental approach is essential, recognizing the evolutionary
nature of problems and solutions. Thus, in contrast to tame problems with clear-cut
solutions, wicked problems like automatic AC image classification require a paradigm
shift toward collaborative thinking and diverse perspective integration to tackle their
complexity.

I propose that computer science and CV can gain valuable insights by adopting a
wicked problem perspective in the realm of high-level visual sensemaking. This approach
involves recognizing and embracing specific attributes:

• Openness: Automatic high-level visual understanding tasks, like image classifica-
tion based on ACs, occur within open systems that transcend spatial and temporal
constraints. For instance, interpreting an AC like freedom in images involves un-
derstanding it across di↵erent cultures and historical contexts, requiring sensitivity
to diverse meanings.

• Multidimensionality: Image classification involving ACs requires understanding
images from various angles—cultural, social, and human values. Consider the
previously discussed Tank Man image from Tiananmen Square. The multiple,
even antonymic interpretations illustrate the multi-layered nature of the evocation
of ACs from visual data.
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• Evolving nature: The problem-solving process in automatic high-level visual
understanding has to evolve as concepts and contexts change. For example, as
societal perceptions of gender evolve, the way images depicting gender-related
concepts are classified must also adapt to reflect current understandings.

• Complexity: Complexity in automatic high-level visual understanding arises
from the interplay of social and cultural factors shaping image interpretations.
Beyond visual cues, understanding cultural nuances, historical contexts, and so-
cietal dynamics is vital. For instance, consider a courtroom image; to some, it
might symbolize justice, but for others, it could represent systemic biases.

• Subjectivity: Automatic high-level visual understanding tasks inherently involve
subjectivity. For instance, interpreting whether an image evokes success depends
on individual perspectives, influenced by cultural norms, personal values, and
societal expectations, making consensus challenging.

• Power dynamics: The issue of power dynamics in automatic high-level visual
understanding is evident when classifying images depicting ACs like authority or
purity. Di↵erent stakeholders may interpret the image di↵erently based on their
positions and backgrounds, highlighting the need to address power imbalances in
labeling processes.

Embracing a set of such fundamental values demands not only technical advance-
ments but also the integration of interdisciplinary methodologies.

V.1.5.3 Concluding Thoughts

As we embark on the era of algorithmic curation, it becomes increasingly apparent that
the intricate interplay of visual data and cultural connotations cannot be solely governed
by technical performance metrics. The quest for machine intelligence to interpret and
categorize ACs needs a convergence of technical innovation with an awareness of social
contexts. This dissertation explored and probed the nuanced dynamics intrinsic to ACs
within the landscape of CV, emphasizing the challenges resulting from the semantic and
cultural gaps. Yet, it is within these gaps that the true richness of meaning is found,
reflecting the dynamic and diverse nature of human perception and cognition. I finish
by spotlighting the limitations inherent to binary thinking, proposing to address these
intricate issues through the lens of ’wicked problems,’ rich with complexity and multidi-
mensionality. By embracing a vantage point that encompasses a situated understanding
of ACs, we forge a path toward responsible labeling and training over visual media.
The insights gleaned from this work emphasize the vital role of interdisciplinary col-
laboration, fostering a culture of critical inquiry, and cultivating a queer perspective in
reshaping the horizons of CV and its profound societal impact. The synthesis of contem-
porary cognitive neuroscience, ethical sensibilities, and technical innovation propels us
to usher in an era of AI development that harmonizes technical prowess with a profound
awareness of the human and societal dimensions it touches upon.
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Appendix

Class-level AC Image Classification Performances

This section provides detailed tabular summary of the classification performance metrics
for various models across the target AC clusters. All the methods have been tested
with the same dataset splits and with the same evaluation metrics. We first share
a set of tables that display classification metrics for deep learning models (VGG-16,
ResNet-50, and ViT), then the classification performance of machine learning models
(Decision Tree, Random Forest, XGB, SVM, Bayesian Network, Naive Bayes) and then
performance metrics for SPK, including for hybrid methods that combine Knowledge
Graph Embeddings (KGE) and Vision Transformers (ViT) embeddings.
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(a) VGG-16

Precision Recall F1-score Support

comfort 0.54 0.86 0.66 603
danger 0.42 0.08 0.14 170
death 0.39 0.42 0.40 257
fitness 0.33 0.01 0.02 102
freedom 0.14 0.02 0.03 51
power 0.30 0.24 0.26 276
safety 0.25 0.03 0.05 33
accuracy 0.47 1492
macro avg 0.34 0.24 0.23 1492
weighted avg 0.42 0.47 0.41 1492

(b) ResNet-50

Precision Recall F1-score Support

comfort 0.54 0.83 0.66 603
danger 0.29 0.11 0.16 170
death 0.42 0.49 0.45 257
fitness 0.43 0.03 0.06 102
freedom 0.00 0.00 0.00 51
power 0.39 0.26 0.31 276
safety 0.14 0.03 0.05 33
accuracy 0.48 1492
macro avg 0.32 0.25 0.24 1492
weighted avg 0.43 0.48 0.42 1492

(c) ViT

Precision Recall F1-score Support

Comfort 0.58 0.84 0.68 603
Danger 0.47 0.22 0.30 170
Death 0.43 0.47 0.45 257
Fitness 0.57 0.04 0.07 102
Freedom 0.25 0.06 0.10 51
Power 0.36 0.29 0.32 276
Safety 0.36 0.12 0.18 33
Accuracy 0.51 1492
Macro Avg 0.43 0.29 0.30 1492
Weighted Avg 0.48 0.51 0.46 1492

Table V.1.2: Classification metrics for di↵erent DL models on ARTstract dataset
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(a) Decision Tree

Precision Recall F1-score Support

comfort 0.53 0.57 0.55 605
danger 0.10 0.08 0.09 130
death 0.27 0.33 0.30 258
fitness 0.12 0.08 0.10 112
freedom 0.12 0.10 0.11 52
power 0.22 0.21 0.22 299
safety 0.06 0.06 0.06 36

Accuracy 0.35 1492
Macro avg 0.20 0.20 0.20 1492
Weighted avg 0.33 0.35 0.34 1492

(b) Random Forest

Precision Recall F1-score Support

comfort 0.52 0.82 0.64 605
danger 0.23 0.02 0.04 130
death 0.34 0.37 0.35 258
fitness 0.17 0.03 0.05 112
freedom 0.00 0.00 0.00 52
power 0.28 0.21 0.24 299
safety 0.33 0.03 0.05 36

Accuracy 0.44 1492
Macro avg 0.27 0.21 0.20 1492
Weighted avg 0.37 0.44 0.38 1492

(c) XGB

Precision Recall F1-score Support

comfort 0.53 0.80 0.63 605
danger 0.33 0.05 0.09 130
death 0.37 0.41 0.39 258
fitness 0.50 0.02 0.03 112
freedom 0.00 0.00 0.00 52
power 0.27 0.23 0.25 299
safety 0.00 0.00 0.00 36

Accuracy 0.45 1492
Macro avg 0.29 0.22 0.20 1492
Weighted avg 0.40 0.45 0.39 1492

Table V.1.3: Performance metrics for Decision Tree, Random Forest, and XGB.
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(a) SVM

Precision Recall F1-score Support

comfort 0.53 0.81 0.64 605
danger 0.23 0.02 0.04 130
death 0.36 0.42 0.39 258
fitness 0.12 0.01 0.02 112
freedom 0.25 0.02 0.04 52
power 0.28 0.21 0.24 299
safety 0.33 0.03 0.05 36

Accuracy 0.45 1492
Macro avg 0.30 0.22 0.20 1492
Weighted avg 0.38 0.45 0.38 1492

(b) Bayesian Network

Precision Recall F1-score Support

comfort 0.52 0.75 0.62 605
power 0.12 0.05 0.07 130
safety 0.34 0.36 0.35 258
danger 0.22 0.09 0.13 112
fitness 0.00 0.00 0.00 52
freedom 0.27 0.19 0.22 299
death 0.00 0.00 0.00 36

Accuracy 0.42 1492
Macro avg 0.21 0.21 0.20 1492
Weighted avg 0.35 0.42 0.37 1492

(c) Naive Bayes

Precision Recall F1-score Support

comfort 0.57 0.72 0.64 605
danger 0.31 0.08 0.13 130
death 0.33 0.46 0.38 258
fitness 0.17 0.04 0.06 112
freedom 0.09 0.08 0.08 52
power 0.33 0.27 0.30 299
safety 0.09 0.06 0.07 36

Accuracy 0.44 1492
Macro avg 0.27 0.24 0.24 1492
Weighted avg 0.40 0.44 0.40 1492

Table V.1.4: Performance metrics for SVM, Bayesian Network, and Naive Bayes.
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(a) KGE only (TransE trained for 1000 epochs)

Precision Recall F1-score Support

0 0.54 0.83 0.66 603
1 0.34 0.20 0.25 170
2 0.33 0.40 0.36 257
3 0.33 0.01 0.02 102
4 0.00 0.00 0.00 51
5 0.29 0.17 0.21 276
6 0.33 0.03 0.06 33

Accuracy 0.46 1492
Macro avg 0.31 0.23 0.22 1492
Weighted avg 0.40 0.46 0.40 1492

(b) Relative Representation of KGE (rel-KGE)

Precision Recall F1-score Support

0 0.57 0.83 0.67 603
1 0.44 0.22 0.30 170
2 0.40 0.41 0.40 257
3 0.27 0.03 0.05 102
4 0.25 0.04 0.07 51
5 0.30 0.25 0.27 276
6 0.22 0.06 0.10 33

Accuracy 0.48 1492
Macro avg 0.35 0.26 0.27 1492
Weighted avg 0.43 0.48 0.43 1492

(c) Relative Representation of ViT (relVit)

Precision Recall F1-score Support

0 0.57 0.84 0.68 603
1 0.35 0.21 0.26 170
2 0.43 0.49 0.46 257
3 0.44 0.04 0.07 102
4 0.28 0.20 0.23 51
5 0.39 0.21 0.28 276
6 0.00 0.00 0.00 33

Accuracy 0.50 1492
Macro avg 0.35 0.28 0.28 1492
Weighted avg 0.46 0.50 0.45 1492

Table V.1.5: Performance metrics for KGE, relKGE and relViT.
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(a) Concatenation of absViT and absKGE (absViT || absKGE)

Precision Recall F1-score Support

0 0.61 0.75 0.67 603
1 0.42 0.21 0.28 170
2 0.42 0.42 0.42 257
3 0.21 0.10 0.13 102
4 0.22 0.16 0.18 51
5 0.33 0.36 0.35 276
6 0.19 0.09 0.12 33

Accuracy 0.48 1492
Macro avg 0.34 0.30 0.31 1492
Weighted avg 0.45 0.48 0.46 1492

(b) Concatenation of relViT and relKGE (relViT || relKGE)

Precision Recall F1-score Support

0 0.60 0.79 0.69 603
1 0.37 0.20 0.26 170
2 0.41 0.46 0.43 257
3 0.28 0.12 0.17 102
4 0.23 0.12 0.16 51
5 0.41 0.36 0.38 276
6 0.28 0.15 0.20 33

Accuracy 0.50 1492
Macro avg 0.37 0.31 0.33 1492
Weighted avg 0.47 0.50 0.47 1492

(c) Hadamard Product of relViT and relKGE (relViT � relKGE)

Precision Recall F1-score Support

0 0.59 0.76 0.67 603
1 0.28 0.19 0.23 170
2 0.41 0.46 0.43 257
3 0.35 0.08 0.13 102
4 0.19 0.10 0.13 51
5 0.34 0.31 0.32 276
6 0.25 0.09 0.13 33

Accuracy 0.48 1492
Macro avg 0.34 0.28 0.29 1492
Weighted avg 0.44 0.48 0.45 1492

Table V.1.6: Performance metrics for hybrid methods combining KGE and ViT
embeddings.
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SPARQL Results for SituAnnotate Evaluation

To assess the SituAnnotate ontology’s ability to answer key competency questions (CQs),
a set of SPARQL queries was developed to showcase the ontology’s proficiency in ad-
dressing these questions. This pairing between CQs and SPARQL queries was essential
in evaluating how SituAnnotate can enable users to extract pertinent insights and con-
textually relevant data from annotation records. The section provides a Table (below)
with the pairings and the test results. It exemplifies the ontology’s role in facilitat-
ing context-aware explanations and insights, further underlining its significance in the
domain of annotation data management and retrieval.
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Initial Experiments with LLMs

Large Language Models (LLMs) have traditionally been associated with natural lan-
guage understanding and generation. However, there is emerging potential to leverage
these models for high-level visual understanding tasks, such as AC image classification.
This experiment explores the use of LLMs with our results to test performance and
interpretability of AC image classification.

V.1.5.4 Approach

In these initial experiments, we aimed to utilize LLMs for AC image classification, re-
lying on the image captions generated in Chapter III.2. Specifically, we employed the
BLIP Instruct model from HuggingFace1, using Vicuna-7b as the language model. The
InstructBLIP model was introduced in [94], and we applied it with the following prompt:

PROMPT: What abstract concept among [’comfort’, ’danger’, ’death’, ’fit-

ness’, ’freedom’, ’power’, ’safety’] does this image depict?

V.1.5.5 Results

The results, as shown in the Table below, indicate that the model struggled to follow the
instructions for multi-class classification. Instead, it created numerous di↵erent classes,
leading to metrics of zero accuracy for each class. The output classes included variations
of the expected classes, making evaluation challenging.

V.1.5.6 Discussion

The use of the 7B parameter model may not be su�cient to generalize to new tasks,
and few-shot prompting was not employed. It appears that models with higher capaci-
ties, such as 30-50B, may be necessary for better generalization when using in-context
prompting. Additionally, the model quantization to 4 bits might have slightly impacted
accuracy, but experimental evidence suggests that the loss during the inference task is
not significant. The current approach to multimodal tasks, while e↵ective for concrete
and perceptually-bound concepts, may not be suitable for high-level semantic under-
standing. To tackle tasks requiring advanced reasoning, LLMs are limited because they
lack the ability to reason e↵ectively.

1https://huggingface.co/Salesforce/instructblip-vicuna-7b. Access date:
October 2023.

https://huggingface.co/Salesforce/instructblip-vicuna-7b


Class Precision Recall F1-Score Support
”comfort” 0.00 0.00 0.00 0
”danger” 0.00 0.00 0.00 0
”danger” 0.00 0.00 0.00 0
”death” 0.00 0.00 0.00 0
15th century the image depicts an 80-foot long ship with a 0.00 0.00 0.00 0
16th century depiction of a man in fur hats 0.00 0.00 0.00 0
17 0.00 0.00 0.00 0
1762 painting the abstract concept depicted in the 1548 engra 0.00 0.00 0.00 0
1860s sailor bartending 0.00 0.00 0.00 0
18th birthday 0.00 0.00 0.00 0
1903 ship wreck 0.00 0.00 0.00 0
1920s-30 0.00 0.00 0.00 0
1950s comic book cover 0.00 0.00 0.00 0
1984 0.00 0.00 0.00 0
19th century dance 0.00 0.00 0.00 0
1: ’freedom’ 0.00 0.00 0.00 0
1st or second born child 0.00 0.00 0.00 0
2 0.00 0.00 0.00 0
mountain which among ['comfort', 'danger'] 0.00 0.00 0.00 0
mountain climbing 0.00 0.00 0.00 0
mountains 0.00 0.00 0.00 0
nutrition 0.00 0.00 0.00 0
power 0.22 0.23 0.23 276
protection 0.00 0.00 0.00 0
racy 0.00 0.00 0.00 0
risk 0.00 0.00 0.00 0
safety 0.00 0.00 0.00 33
sexual 0.00 0.00 0.00 0
sexual freedom 0.00 0.00 0.00 0
sexuality 0.00 0.00 0.00 0
ship 0.00 0.00 0.00 0
space 0.00 0.00 0.00 0
strength 0.00 0.00 0.00 0
survive 0.00 0.00 0.00 0
the ”finger” 0.00 0.00 0.00 0

danger 0.00 0.00 0.00 0
danger 0.00 0.00 0.00 0

freedom 0.00 0.00 0.00 0
freedom 0.00 0.00 0.00 0



Class Precision Recall F1-Score Support
the power of freedom 0.00 0.00 0.00 0
the power of love over danger, death and comfort 0.00 0.00 0.00 0
the power of sea 0.00 0.00 0.00 0
the presence 0.00 0.00 0.00 0
the word ”power” depicts this image among its five words 0.00 0.00 0.00 0
the word safety 0.00 0.00 0.00 0
transportation 0.00 0.00 0.00 0
water 0.00 0.00 0.00 0
© 0.00 0.00 0.00 0
€power 0.00 0.00 0.00 0

0.00 0.00 0.00 0
0.00 0.00 0.00 0

danger 0.00 0.00 0.00 0
power 0.00 0.00 0.00 0
danger 0.00 0.00 0.00 0
power 0.00 0.00 0.00 0
danger 0.00 0.00 0.00 0

0.00 0.00 0.00 0
(a warrior) 0.00 0.00 0.00 0

0.00 0.00 0.00 0
water 0.00 0.00 0.00 0
(make life happen) 0.00 0.00 0.00 0
passion 0.00 0.00 0.00 0
freedom 0.00 0.00 0.00 0

power 0.00 0.00 0.00 0
comfort 0.00 0.00 0.00 0

Accuracy 0.12 1492
Macro Avg 0.00 0.00 0.00 1492
Weighted Avg 0.09 0.12 0.10 1492
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