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Abstract

Joint sensing and communication (JSC) systems, i.e., systems that com-

bine radar and communication functionalities within the same architecture

by sharing hardware and physical layer resources, are gaining increasing in-

terest for future mobile systems. By enabling precise user localization and

non-collaborative objects detection, they can usher in a new era of mobile

networks with ubiquitous and pervasive sensing capabilities. In this disser-

tation, several signal-processing techniques for JSC systems are investigated

and a comprehensive analysis of the sensing performance of these systems is

presented by focusing on two main contributions.

First, an analysis of orthogonal frequency division multiplexing (OFDM)-

based JSC systems is performed by investigating the dominant factors that

a↵ect performance in the context of di↵erent radar settings (i.e., monos-

tatic, bistatic, and multistatic) when considering line-of-sight propagation

conditions. Several physical layer signal processing techniques are examined

for estimating target positions and velocities, with particular emphasis on

multiple-input multiple-output (MIMO) JSC systems. After analyzing the

sensing performance in the presence of single and multiple point-like tar-

gets when considering a monostatic fully digital MIMO OFDM-based JSC

system with multibeam capabilities, the analysis progresses to a bistatic con-

figuration where the transmitter (Tx) and receiver (Rx) are not co-located,

thus avoiding self-interference. Lastly, the analysis is extended to a MIMO

multistatic configuration with a single Tx and two Rxs with hybrid digital-

analog (HDA) architectures to exploit spatial diversity for improved target

detection. This analysis considers extended targets (ET) and explores both

near-field and far-field propagation conditions at millimeter wave (mmWave).

The need for an ET model is recognized because real objects such as cars are
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vi Abstract

more likely to appear as a collection of scattered points rather than a single

reflection. Numerical results show the benefits of considering a multistatic

setting to improve detection performance, and also of considering near-field

propagation conditions when using large antenna arrays (e.g., at mmWave

frequencies) to improve estimation performance when the target is close to

Tx or Rx.

In the second part of this thesis, a JSC system using orthogonal time

frequency space (OTFS) modulation is investigated. OTFS is a novel multi-

carrier modulation scheme that has shown promise for future mobile systems,

particularly in JSC applications. However, it is associated with high com-

putational complexity. For this reason, a novel low-complexity estimation

and detection approach based on Dirichlet kernel analysis is presented by

considering a monostatic JSC system. Through numerical simulations, it is

proved that the proposed approximation technique e↵ectively preserves the

sensing performance while concurrently reducing the computational e↵ort

enormously.

The main goal of this dissertation is to contribute to a deeper understand-

ing of OFDM- and OTFS-based JSC systems, along with their performance

in various radar environments, and to provide innovative solutions to address

key challenges.
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Chapter 1

Introduction

A key aspect of mobile radio networks, which received a significant boost in

recent years, is the possibility to perform and exploit accurate user localiza-

tion thanks to specific signaling capabilities o↵ered by the standards. Such

types of localization leverage user collaboration, who actively participate in

the localization process. However, the need to equip mobile networks with

sensing capabilities has recently emerged. Such ability consists in the detec-

tion and localization of non-collaborative objects, a feature typical of radar

systems [1–5]. Joint sensing and communication (JSC) is a novel paradigm

to fulfill the requirement of systems capable of performing both sensing and

communication operations through the sharing of the physical layer and the

hardware.

Despite the unquestionable benefits of JSC, the design of such a system

is non-trivial because the two functionalities are at odds with one another

and compete for spectral resources. On this issue, in the literature, we can

find three main approaches [6, 7]:

1. the usage of communication signals for target detection, i.e., what is

also called a communication-centric approach;

2. the usage of radar waveforms for communication purposes, i.e., what

is also called a radar-centric approach;

3. the design from scratch of a totally new waveform for the upcoming

6G systems [8].

5



6 Introduction

In this thesis, the first approach is considered, which consists of using for

sensing applications signals originally designed for communication purposes.

In particular, two di↵erent types of communication signals are taken into

account, which are orthogonal frequency-division multiplexing (OFDM) and

orthogonal time frequency space (OTFS). OFDM-based signals are widely

employed in radio communications such as Wi-Fi, 4G, and 5G systems, and

are considered a promising option for JSC systems, as highlighted in previous

research by Braun [9].

Di↵erently, OTFS is a novel bi-dimensional modulation technique that

has recently gained a lot of interest for future mobile systems. The increas-

ing interest in this new modulation is motivated by better communication

performance than OFDM in high-mobility scenarios, which is one of the

typical operating conditions required for future cellular networks [10]. Fur-

thermore, OTFS modulation appears to have comparable performance to

OFDM, regarding sensing tasks in JSC application, as shown in [11].

Moreover, in this dissertation, three di↵erent JSC system configurations,

i.e., monostatic, bistatic, and multistatic, are considered. As it will be ex-

plained later, di↵erent from a monostatic system where transmitter (Tx) and

receiver (Rx) are co-located, in a bi- or more generically multistatic system

the Tx and the Rx(s) are separated in the space. This allows to avoid the

problem of self-interference that usually a✏icts monostatic systems [12].

1.1 Basic Radar System

Let us consider a generic single-input single-output (SISO) radar system that

transmits a signal s(t). The received equivalent low-pass (ELP) echo signal

r(t) consists of a superposition of reflections of the original signal by objects

positioned in the way of s(t)’s wavefront, as well as of receiver noise. It can

be written as

r(t) =
L�1X

l=0

bls(t� ⌧l)e
j2⇡fD,lt + z(t) (1.1)

where L is the number of reflections, also referred to as scatterers, bl, ⌧l and

fD,l are the complex gain factor, the propagation delay and the Doppler shift
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associated to the l-th scatterer, respectively, while z(t) is the Gaussian noise.

When a monostatic setting is considered, i.e., Tx and Rx are co-located (as

depicted in Fig. 1.1), the propagation delay ⌧l = 2rl/c is referred to as the

round trip delay, with rl the distance between the radar system and the

scatterer l and c the speed of light. In particular, ⌧l is the time required for

the transmitted signal s(t) to reach the object and return to the radar system

where it is collected and processed to estimate the distance and velocity of

the object/scatterer by estimating ⌧l and fD,l. The relationship between the

Doppler shift and the radial velocity vl of scatterer l, is given by fD,l =

(2vlfc)/c, where fc is the carrier frequency.

Radar
System

Monostatic Setting

Figure 1.1: Schematic diagram of a monostatic radar system. The system acquires
signals backscattered by objects in the environment and produces a radar map as
an output by performing an estimation of target parameters (i.e., distance and
velocity).

Di↵erently, in a bistatic (multistatic) configuration, since the Tx and

Rx are not colocated, the propagation time ⌧l of the signal scattered by a

target l is related to the distance between the Tx and the target, RT,l, and

that between the target and the Rx, Rl,R, via the bistatic range Rbis,l =

RT,l + Rl,R = ⌧l · c [13]. Moreover, for bi- and multistatic configurations, an

additional phase term e
j'0 should be added for each path l in (1.1), where

'0 2 U[0,2⇡) is the phase o↵set between Tx and Rx that accounts for non-ideal
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synchronization (i.e., clock o↵set).

Starting from the received signal in (1.1), sensing parameter estimation

can be approached through di↵erent methods. In this dissertation, we adopt

a Maximum Likelihood (ML) approach as proposed in [14]. Details of the

estimation procedure are given in the following chapters.

1.2 OFDM-based JSC systems

As previously stated, OFDM-based signals, widely employed in radio commu-

nications such as Wi-Fi, 4G, and 5G new radio (NR) systems, are considered

a promising choice for JSC systems [9, 12, 15]. Notably, 5G NR waveforms

have garnered significant attention due to their extensive channel bandwidths

and adaptable subcarrier spacing, making them highly suitable for sensing

applications [12]. In addition, the flexibility in resource allocation, i.e., time

and frequency (see Fig. 1.2) of 5G NR systems could be exploited to easily

integrate sensing as a service.

In the context of 5G NR networks, new operating bands have been estab-

lished, encompassing millimeter wave (mmWave) frequencies, which o↵er the

advantage of accommodating exceptionally wide channel bandwidths of up

to 400 MHz. Literature on mmWave JSC demonstrates its feasibility and po-

tentials in indoor and vehicle networks [17–23]. In particular, in-depth signal

processing aspects of mmWave-based JSC with an emphasis on waveform

design are provided by [17]. As it will be clarified later in this disserta-

tion, having a wide bandwidth allows for improved resolution of the sensing

systems in terms of distance or range estimation. In addition, the shorter

wavelengths associated with mmWave bands allow the use of large antenna

arrays, further increasing the resolution of radar systems. In particular,

multiple-input multiple-output (MIMO) technology in JSC system can not

only facilitate high-capacity communication links through techniques such

as spatial multiplexing but also empower the sensing receiver to perform

direction of arrival (DoA) estimation, which is the more accurate the higher

the number of antennas in the array [24].

Another noteworthy characteristic of MIMO systems, which has garnered

considerable attention in recent investigations concerning JSC with OFDM
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Time

Frequency

Resource Element

Resource Grid

Resource Block

Figure 1.2: Example of representation of the time-frequency resources in a 5G NR
system. The notation used refers to the 5G NR standard [16]. �f is the subcarrier
spacing, while Ts is the total OFDM symbol duration considering cyclic prefix. A
resource block is composed of 12 subcarriers.

waveforms, is the capability to employ distinct, coexisting beams for com-

munication and sensing purposes, driven by the disparate requirements of

these two functionalities. For instance, in works such as those presented in

Zhang et al. [18] and Barneto et al. [25], multibeam frameworks, similar to

the one shown in Fig. 1.3, have been proposed. These frameworks involve the

design and optimization of beamforming techniques to concurrently support

a stable communication beam directed toward the user equipment (UE) and

a sensing beam for environmental scanning. In particular, Zhang et al. [18]

examine an OFDM-based mmWave system, wherein two nodes engage in

two-way point-to-point communication using time-division duplexing (TDD)

mode while simultaneously sensing the surroundings to ascertain the posi-

tions and velocities of nearby objects. Similarly, in the study by Barneto et

al. [25], a system is proposed wherein a 5G base station (BS) operates as a

dual-functional node, serving as both a radar and communication device at

mmWave frequencies, employing multiple beams.

The main idea is to split the power of the transmitted OFDM signal
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Figure 1.3: 5G NR-based sensor with multibeam capability for joint communica-
tion and sensing

between communication and sensing, namely, the total available power is

in part exploited to sense the environment and in part directed to the UE.

Therefore, the transmitting beamformer (BF), wT can be defined as

wT =
p
⇢wT,s +

p
1� ⇢wT,c (1.2)

where ⇢ 2 [0, 1] is the parameter used to control the fraction of power appor-

tioned to the two directions, while wT,s and wT,c are the communication and

the sensing BFs, respectively. The choice of the BFs depends on the desired

array response [26, 27].

This approach, characterized by the simultaneous presence of communi-

cation and sensing beams (i.e., multibeam system), is considered in part of

the analysis conducted within this dissertation, specifically in Chapters 2, 3,

and 4. Moreover, the possibility of performing a scan of the environment (in

a predefined area) by sequentially moving the beam reserved for sensing in

di↵erent spatial directions through wT,s is considered and explained in detail

in Chapter 2.
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RT
R
R

Tx Rx

�

v

L

N N

Bistatic plane

�

bistatic

bisector

Target

✓R
✓T

Figure 1.4: Illustration of a bistatic radar configuration. As it is explained in more
detail in Chapter 4, in a bistatic configuration it is possible to localize the target
on an ellipse starting from the estimation of the bistatic range, Rbis. To resolve
the uncertainty and estimate the position of the target, it is necessary to estimate
the angle ✓R using MIMO systems. Alternatively, it is possible to estimate the
position by moving from a bistatic to a multistatic configuration, e.g. with one Tx
and several Rxs, and fusing the information from di↵erent bistatic pairs.

1.2.1 Bi and multistatic JSC systems

It is important to notice that most of the recent research has shown the feasi-

bility of using OFDM-based waveforms for JSC systems, especially focusing

on the monostatic configuration, i.e., with Tx and Rx co-located [12,14,28].

For this type of configuration, a critical aspect is the self interference (SI)

(as it will be shown in Chapter 3), which requires the full-duplex capability

for which technology is not yet at a mature stage [12, 29]. SI is essentially

a strong signal received directly from the transmitting antenna that has the

potential to interfere with the weak signals reflected from objects.

In this regard, a possible solution to avoid this problem is to resort to

a bistatic or multistatic configuration, where the Tx and Rx(s) are not co-

located. Bi/multistatic radar setups are also interesting as they can extend

the sensing area with a Rx that can be simple and mobile [30]. For this rea-

son, in this thesis, the analysis initially explores a monostatic system based

on OFDM for JSC. Subsequently, the investigation moves to a bistatic con-

figuration and then to a multistatic one. A significant advantage of transi-

tioning from bistatic to multistatic is the ability to leverage spatial diversity.
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For example, improved detection performance can be achieved in a system

with one Tx and two Rxs by observing the same target from di↵erent angles,

especially when dealing with extended targets [31].

1.3 Joint Sensing and Communication in the

Near Field

As mentioned in Section 1.2, mmWave bands allow the use of large antenna

arrays and this can enable high-resolution radar functionality. Moreover,

another interesting aspect related to the use of very large arrays is that

for some users and radar targets very close to the Tx/Rx, the usual far-

field propagation assumption (i.e., plane wavefront) common in most array

processing literature when modeling the wireless channel (and used for the

majority of the analysis performed throughout this dissertation) is no longer

satisfied and a near-field channel model should be considered [32].

In contrast to the far-field channel model where the signal wavefront is

approximated to be a plane, the near-field channel is modeled to account for

a spherical wavefront. This creates a significant distinction between the two

scenarios.

In far-field processing, target DoA and distance estimation relies on the

array response and signal propagation delay, operating independently. Time

delay estimation resolution, in this case, is constrained by the system band-

width [9]. On the other hand, in the near-field regime, direct target localiza-

tion is achievable without the need to estimate time delay. Instead, the phase

of the signals scattered by the target and received by the antenna array ele-

ments is analyzed using the properties of spherical waves [33]. Consequently,

the design of algorithms for communication and sensing in the near-field de-

mands a specific approach. In the stat-of-the-art literature, some work can

be found related to user localization in near-field scenarios especially consid-

ering reconfigurable intelligent surfaces, e.g., [34,35]. Moreover, some recent

works have considered JSC systems operating in the near-field [36]. However,

it is now important to note that when considering a multistatic JSC system

operating at mmWave in a given urban scenario, a given UE or target may
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be in the far-field for one of Txs or Rxs and in the far-field for the others

at any given time. For this reason, it may be desirable to design a system

that can easily switch from one scenario to another, i.e., which considers

both near- and far-field. Moreover, as far as the near-field is concerned, it

should be noted that the traditional beamforming approaches, where it is

possible to illuminate a circular sector by steering the energy in a specific

direction, are no longer optimal and the need arises to switch to a beamfo-

cusing approach. This approach consists of focusing the energy on a specific

range-angle region in the space. This occurs because a spherical wavefront

allows for simultaneous control of both distance and angle, enabling illumi-

nation of a specific region [32]. Conversely, using traditional beamforming

in the near-field results in a mismatch in the array response, as shown in

Fig. 1.5.

In the following, the relationship (i.e., the boundary) between the near-

field and far-field regions is explained.

1.3.1 Near/far-field region relationship

The boundary between near-field and far-field can be determined by the

Fraunhofer distance (also called Rayleigh distance). For an antenna with

maximum aperture D at wavelength �, the Fraunhofer distance given by

D↵ = 2D
2

�
represents the minimum distance for guaranteeing the phase dif-

ference of received signals across the array elements of at most �/4 [32].

For a ULA with Na elements and �/2 inter-element spacing, this equates to

N
2

a
�/2. This is widely considered the limit under which wave propagation

under the planar assumption holds. The Fresnel distance Dfr given by 3

q
D4

8�

is the distance beyond which the reactive field components of the antenna

itself become negligible. The distance between D↵ and Dfr is known as the

radiative near-field Fresnel region, or the near-field region for brevity.

It is important to note that when dealing with multicarrier modulation

(e.g., OFDM or OTFS), the Fraunhofer distance is impacted by the wave-

length of each component. The overall far-field regime of the system with a

fixed array aperture can then be considered as the Fraunhofer distance of the

highest frequency sub-carrier, i.e. D↵ = 2D2
/min(�m). Figure 1.6 depicts
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Figure 1.5: Mismatch in the array response for a system operating with a carrier
frequency fc = 28GHz. The direction of departure (DoD) of the user’s signal
computed with respect to the center of the array is 0�, while d, which represents the
distance between a user and a uniform linear array (ULA) comprising 64 elements,
is varied between 0.5m, and 20m. The Tx employs a traditional beamforming
technique that steers the power toward the user’s direction. It can be seen that
when the user is very close to the antenna, using a traditional beam steering
approach results in a mismatch in the array response. This mismatch becomes
increasingly irrelevant as the user moves away from the array.

D↵ for a few mmWave carrier frequencies and bandwidths considering 100

OFDM subcarriers.

1.4 Joint Sensing and Communication with

OTFS

Despite the fact that, as already stated, OFDM is an established reality in the

field of mobile communications and seems to guarantee e↵ective performance

in JSC applications, the search for an even more performing and reliable

modulation that can totally or partially replace OFDM in future cellular
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Figure 1.6: Far-field distance as a function of OFDM subcarrier index.

systems is still ongoing [37].

One of the possible candidates is OTFS, a novel bi-dimensional modu-

lation technique that has recently gained a lot of interest for future mobile

systems [38–41]. The increasing interest in OTFS is motivated by the higher

spectral e�ciency due to the absence of the cyclic prefix (CP) and by its

robustness in high-mobility scenarios [38, 42]. Indeed, in channels with a

wide range of Doppler frequencies, such modulation displays exhibit very

high performance in terms of bit error rate (BER) [43–45]. Furthermore,

OTFS modulation has also been seen to be particularly suitable in JSC sce-

narios [40,42,46,47], showing comparable performance to OFDM, regarding

sensing range and velocity estimation, as shown in [48] and [11], but with

the possibility to detect targets at a larger distance (thus avoiding the limi-

tation imposed by the CP) and to estimate their radial velocity on a broader

interval [40, 47, 49, 50].

Unfortunately, OTFS modulation is particularly complex, making it chal-

lenging to implement e�ciently [51–53]. As it will be explained in Chapter 6,

this problem is even more exacerbated in JSC systems where sensing pa-

rameters must be estimated quickly to support real-time tracking. At the

forefront, various approaches in the literature aim to reduce and manage the

complexity of OTFS-based JSC systems.

In particular, in [11], authors propose an approximated maximum likeli-

hood (ML) algorithm to estimate the range and velocity of the target through

successive refinements by tightening the search step around the value esti-
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mated at the previous iteration. In [54], a mixed technique that couples

the frequency modulated continuous wave (FMCW) signal, su↵ering from

low data rate, with OTFS waveform, which su↵ers from high sensing com-

plexity, is proposed. The paper demonstrates that the joint OTFS-FMCW

waveform, obtained by exploiting the locality property of the FMCW in both

time-frequency and delay-Doppler domains, achieves high data rates for com-

munication while ensuring a low-complexity radar receiver. In [55], a low-

complexity Bayesian learning algorithm for target parameter estimation is

proposed for OTFS-based automotive radars, which leverages the structural

sparsity of the radar channel in the delay-Doppler domain. Furthermore,

the e�ciency is further improved by dimension pruning of the measurement

matrix in the OTFS radar signal model by incorporating prior knowledge of

the motion parameter limit of the targets. Finally, in [56], authors present

an e�cient OTFS implementation based on the discrete Zak transform. In

particular, the proposed formulation simplifies the derivation and analysis

of the input-output relation of the time-frequency dispersive channel in the

delay-Doppler domain.

1.5 Main Contributions

Most of the research e↵orts on JSC have so far been devoted to the design

of signal processing techniques aimed at extracting features from the envi-

ronment, such as the position and velocity of a target (for example, a car

or a human being) or at inferring the environment itself, such as the map-

ping or imaging of a room. However, only a few works have investigated

the performance of a JSC system, especially from the sensing perspective,

and provided results in terms of target parameters estimation accuracy with

current technology. For this reason, the first part of this dissertation, i.e.,

from Chapter 2 to Chapter 5, aims at addressing the analysis of JSC sys-

tems to understand the key aspects and their role in governing performance,

considering OFDM-based signals with di↵erent radar settings (i.e., monos-

tatic, bistatic, and multistatic). Several signal processing techniques applied

directly to the downlink physical layer are considered to estimate the posi-

tion (through DoA and distance estimation) and velocity of the targets. In
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particular, first, in Chapter 2 and Chapter 3, a fully digital MIMO monos-

tatic JSC system based on 5G NR with multibeam capabilities is considered,

both in the presence of single and multiple point-like targets. The analysis

is then extended to a bistatic MIMO JSC system in Chapter 4. As al-

ready mentioned, this configuration, with Tx and Rx that are not co-located

allows to avoid the problem of SI. An analysis of the coverage of the sens-

ing system is performed in addition to an analysis of the root mean square

error (RMSE) on target position and speed estimation. Subsequently, in

Chapter 5, a MIMO multistatic configuration with one Tx and two Rxs with

hybrid digital-analog (HDA) architectures is considered to exploit the spatial

diversity for improved detection.

Unlike the previous analysis, in Chapter 5, we consider extended targets

(ETs) and both near-field and far-field propagation conditions. The need to

introduce a model for ET is related to the awareness that an extended real

object (e.g., a car) is unlikely to produce a single reflection such that it can

be seen as a point by the radar system. On the contrary, it is likely to be

seen by the radar system as a series of scattered points. For this reason, a

possible solution for modeling an ET is given.

Another important aspect is related to the considered propagation con-

ditions. In fact, as explained in Section 1.3, the use of a very large antenna

array enabled by mmWave bands leads to the need to consider the possibility

that a target may be in the near-field of the antenna array, making far-field

assumptions invalid and thus also an approach based on steering power to

a specific angular sector no longer valid. For this reason, in Chapter 5, the

analysis of the performance of the considered multistatic JSC system is per-

formed by taking into account a general near/far-field channel model valid

for JSC applications. It is shown that when the target is detected to be in the

near-field of the Tx, a beamfocusing approach should be considered instead

of a beamforming one to properly illuminate the target, namely to increase

the signal-to-noise ratio (SNR) at the intended target location. This is also

very important when the target is a UE. In this case, the use of a beam-

focusing approach can lead to an increase in communication performance.

Moreover, if the target is detected to be in the near-field of one of the Rx,

performing ML estimation of the target parameters by considering a more
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accurate near/far-field channel model instead of a far-field-only one results

in significantly improved estimation performance.

For what concerns the second part of this thesis, a JSC system based

on OTFS modulation is considered. As mentioned in Section 1.4, OTFS

is a novel and promising multicarrier modulation scheme that is currently

one of the possible candidates for future mobile systems and it has shown

good performance for JSC systems. However, this modulation is particularly

expensive in terms of computational complexity, especially when used in

JSC systems. Despite some attempts to reduce complexity, current solutions

still seem ine↵ective, especially when fast estimation of target parameters

is a stringent requirement for real-time tracking in complex environments.

For this reason, this dissertation proposes a low-complexity implementation

of the ML algorithm for estimating the target’s distance and velocity pa-

rameters using OTFS signals. In particular, first, a monostatic SISO JSC

system is considered and its computational complexity in performing sensing

operations is analyzed. The system model and the ML estimation of the

target parameters (i.e., distance and radial velocity) are first introduced in

Chapter 6 (based on [11, 48]). Then, a novel low-complexity estimation and

detection approach is presented and described in detail in Chapter 7. This

approach is based on the approximation of the channel matrix, which con-

tains information about target parameters, by a Dirichlet kernel analysis.

The approximation criterion is designed for the channel matrix expression

given in [11].

1.6 Thesis Organization and Notation

The rest of the thesis is organized as follows.

Chapter 2: a monostatic MIMO JSC system based on 5G NR with multi-

beam capabilities is considered. In particular, the system model and the

signal processing techniques that we consider in our analysis are introduced,

by detailing the considered transmitted and received signals, specifically fo-

cusing on the multibeam design at the transmitter side. Then, the signal

processing techniques used to estimate distance, radial velocity, and DoA of
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targets are introduced. Finally, an algorithm is presented to remove phantom

targets that appear due to the considered sensing method, which is based on

beam scanning.

Chapter 3: an analysis of the sensing performance of the monostatic JSC

system introduced in Chapter 2 is performed through numerical simulations.

The analysis focuses first on the estimation performance in terms of RMSE

of distance, radial velocity, and DoA estimates in single point-like target

scenarios when the system operates at both sub-6GHz and mmWave fre-

quencies. Then, we evaluate the system performance when multiple targets

are present, using the optimal sub-pattern assignment (OSPA) metric. Fi-

nally, we provide an in-depth investigation of the dominant factors that a↵ect

performance, including the fraction of power reserved for sensing.

Chapter 4: the RMSE analysis performed in Chapter 3 is extended by con-

sidering a bistatic JSC system, i.e., where Tx and Rx are not co-located,

in a single point-like target scenario. In particular, the RMSE of DoA and

bistatic range estimation is first studied by comparing two setups operating

at sub-6GHz, and mmWave frequencies. Then, the RMSE of the position

estimation is studied through heatmaps computed in the monitored area.

Finally, since a multibeam system is considered, as in Chapter 2, the sensing

coverage limits of the bistatic system are studied, by varying the fraction of

power devoted to sensing.

Chapter 5: the analysis presented in Chapter 3 and Chapter 4, in which

monostatic and bistatic settings and point-like targets are considered, is ex-

tended by studying the performance of a MIMO OFDM-based JSC multi-

static system in the presence of ETs and considering both near-field and

far-field propagation conditions. In particular, an ET model and a general

near/far field channel model are introduced. The considered multistatic sys-

tem is made of one Tx and two Rxs in order to exploit spatial diversity to

improve target detection. A beamfocusing approach is considered to improve

sensing performance when the target is in the near-field of the Tx. Some nu-

merical results in terms of RMSE and probability of detection are shown.

Chapter 6: the focus is shifted from OFDM modulation to OTFS, specif-

ically introducing the system model and methods for estimating target pa-

rameters in a monostatic OTFS-based JSC system. The discussion draws
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from the research presented in [38,39], and [11].

Chapter 7: we propose a low-complexity detector for a JSC OTFS-based

systems, based on e�cient computation of the channel matrix introduced in

Chapter 6. First, a priori localization of the elements of the channel matrix

containing most of the information helpful in estimating the sensing param-

eters is performed. Then, an approximation criterion of the channel matrix

based on the Dirichlet kernel is given. The proposed solution is validated

through numerical simulations.

The following notation is adopted: capital boldface letters for matrices,

lowercase bold letters for vectors, (·)⇤, (·)† and (·)T for conjugate, conjugate

transpose and transpose of a vector/matrix respectively, d·e, b·c for ceiling

and floor functions, respectively. |x| denotes the absolute value of x if x 2 R,
while |X | denotes the cardinality of a set |X |. Also, E{·}, var[·] for mean

value and variance operator respectively. Additionally, frac(x) = x � bxc

represents the fractional (or decimal) part of a non-negative real number x,

and
��·
��
p
is the p-norm operator; [n] = {1, . . . , n} and [0 : n] = {0, 1, . . . , n}

for a positive integer n; ⌦ denotes Kronecker product.

The dissertation is based on the research works in [57], [58], [59], [60], [61].



Chapter 2

Monostatic Joint Sensing and

Communication with 5G NR

This Chapter focuses on the description of the system and channel models

and the signal processing techniques that we consider for our analysis of a

monostatic MIMO JSC system based on 5G NR with multibeam capabilities.

In particular, first, in Section 2.1, the considered transmitted and received

signals are detailed, specifically focusing on the multibeam design at the

transmitter side. In fact, the considered system is a multibeam system with

a beam pointing to the UE while the other one periodically scans the environ-

ment by sequentially pointing towards predetermined directions. The scan

procedure is also introduced. Then, in Section 2.2, the signal processing tech-

niques used to estimate the distance, radial velocity, and DoA of targets are

introduced. Moreover, we propose an algorithm to remove phantom targets

that appear because of the sensing method, which relies on beam-scanning

impaired by beam sidelobes.

2.1 System Model

As depicted in Fig. 2.1, a multiple antennas OFDM system is considered.

The JSC system consists of a Tx antenna array with NT elements and of an

Rx antenna array with NR elements, used for communication and sensing,

respectively. For both Tx and Rx we assume a ULA with half-wavelength

21
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Figure 2.1: Block diagram of the 5G NR-based sensor with multibeam capability for joint
communication and sensing.

separation, i.e., d = �c/2 with �c = c/fc, c the speed of light, and fc the

carrier frequency. The communication system transmits a 5G NR waveform

with M OFDM symbols and K active subcarriers to a UE in the cell [62].1

The ELP representation of the signal transmitted by the nth antenna can be

written as

sn(t) =
M�1X

m=0

 
K�1X

k=0

x̃
(m)

n,k
e
j2⇡

k
T t

!
g(t�mTs) (2.1)

where x̃
(m)

n,k
is the modulation symbol, taken from a complex modulation al-

phabet, to be transmitted to the UE at the mth OFDM symbol and kth

subcarrier, mapped through digital precoding at the nth transmitting an-

tenna, g(t) is the employed pulse, �f = 1/T is the subcarrier spacing, and

Ts is the OFDM symbol duration including the CP.

2.1.1 Joint waveform

The vector x̃(m)

k
2 CNT⇥1 is defined as x̃(m)

k
= wTx

(m)

k
, where wT 2 CNT⇥1

is the precoder vector used to map each modulation symbol, x(m)

k
, to the

transmitting antennas. In particular, we consider a multibeam system where

1Without loss of generality, we consider one user; however, during the scan period
described in Section 2.1.3, the UE may change according to the multiple access rule es-
tablished for communication.
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the power of the OFDM signal to be transmitted is split between communi-

cation and sensing, namely, the total available power is in part exploited to

sense the environment and in part directed to the UE [25,28]. Therefore, the

transmitting BF vector wT can be written as [28]

wT =
p
⇢wT,s +

p
1� ⇢wT,c (2.2)

where ⇢ 2 [0, 1] is the parameter used to control the fraction of the total power

apportioned to the two directions, whilewT,c andwT,s are the communication

and the sensing BF vectors, respectively. The latter are defined as2 [62]

wT,c =

p
PTG

a

T

NT

ac

T
(✓T,c) (2.3)

wT,s =

p
PTG

a

T

NT

ac

T
(✓T,s) (2.4)

where Ga

T
is the transmit array gain along the beam steering direction (where

such a gain is maximum), PTG
a

T
is the e↵ective isotropic radiated power

(EIRP). Moreover, aT(✓T,c) 2 CNT⇥1 and aT(✓T,s) 2 CNT⇥1 are the steer-

ing vectors for communication and sensing, respectively, with ✓T,c and ✓T,s

the DoDs for communication and sensing, respectively. The spatial steering

vector for a ULA at a given DoA/DoD ✓l is [64, Chapter 9], [62, Chapter 5]

a(✓l) =
⇥
1, ej2⇡d sin(✓l)/�c , . . . , e

j2⇡(Na�1)d sin(✓l)/�c
⇤T

(2.5)

where Na is the number of array antenna elements. Since a half-wavelength

separation is considered, the expression (2.5) reduces to

a(✓l) = [1, ej⇡ sin(✓l), . . . , e
j⇡(Na�1) sin(✓l)]T . (2.6)

Looking at (2.2), it is evident the trade-o↵ between the performance of

the communication and sensing functions. To guarantee certain sensing ca-

2Without loss of generality, we perform a beam steering operation adopting a multi-
beam approach for both sensing and communication. Other methods exist in the litera-
ture for beamforming, e.g., based on optimization techniques, further improving perfor-
mance [20,63].



24 Monostatic Joint Sensing and Communication with 5G NR

pabilities, it is necessary to reserve a fraction of the total power available

for it, with a consequent reduction in communication coverage. To study

how the communication system coverage changes by varying the EIRP, some

metrics can be used according to the 3GPP Technical Report in [65]. In

particular, maximum coupling loss (MCL), maximum path loss (MPL) and

maximum isotropic loss (MIL) are the metrics used in 5G NR systems to

express the coverage of the communication system [65, 66]. These metrics

di↵er for some terms, but they share the main idea of maximum loss that

the communication system can tolerate and still be operational. In partic-

ular, di↵erently from MCL, MIL and MPL include also the antenna gains.

Moreover, the MIL metric takes into account parameters such as shadow fad-

ing and penetration margins. A detailed analysis of this metric is out of the

scope of this dissertation, but it is important to highlight that the fraction

of power ⇢ reserved for sensing results in a reduction of MPL and MIL by a

factor 10log
10
(⇢) dB.

2.1.2 Sensing received signal

The vector ỹ(m)

k
2 CNR⇥1 of the received modulation symbols at each antenna

after the fast Fourier transform (FFT) block in the OFDM receiver, is given

by

ỹ(m)

k
= H(m)

k
x̃(m)

k
+ ⌫̃(m)

k
+ ñk (2.7)

where H(m)

k
2 CNR⇥NT is the channel matrix for the mth OFDM symbol

and the kth subcarrier, ⌫̃(m)

k
2 CNR⇥1 is the vector whose elements represent

the SI due to imperfect Tx–Rx isolation at each receiving antenna, and ñk 2

CNR⇥1 is the additive white Gaussian noise (AWGN) vector whose entries are

independent, identically distributed (i.i.d.) random variables (r.v.s), having

circularly symmetric zero mean Gaussian distribution with variance �
2

N
.

Considering L point target reflections, the channel matrix can be written

as

H(m)

k
=

LX

l=1

↵le
j2⇡mTsfD,le

�j2⇡k�f⌧l

| {z }
,�l

aR(✓l)a
T

T
(✓l) (2.8)

where ⌧l, fD,l, and ✓l are the round-trip delay, the Doppler shift, and the
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DoA of the lth target, respectively. The term ↵l = |↵l| e
j�l is the complex

amplitude which includes phase shift and attenuation along the lth propaga-

tion path. The array response vector at the receiver for sensing is denoted in

(2.8) by aR(✓l). To simplify the presentation of the DoA estimation method,

(2.8) can be recast in the more compact form

H(m)

k
= AR(✓)⌃A

T

T
(✓) (2.9)

whereAR(✓) = [aR(✓1), . . . , aR(✓L)] 2 CNR⇥L andAT(✓) = [aT(✓1), . . . , aT(✓L)] 2

CNT⇥L are the steering matrices for the targets’ directions ✓ = [✓1, ✓2, . . . , ✓L],

and ⌃ = diag(�1, �2, . . . , �L) 2 CL⇥L is the diagonal matrix of the channel

coe�cients.

For what concerns the SI term, ⌫̃(m)

k
, in (2.7), each element n of this

vector can be considered as the signal scattered by a static target with an

almost null distance from the receiver, i.e., with fD,SI = 0 and ⌧SI = 0, thus it

can be written as ⌫̃(m)

n,k
= ↵SI,nx

(m)

k
, where ↵SI,n = |↵SI,n| e

j�SI,n is the complex

amplitude, which includes phase shift and attenuation of the SI contribution

at the nth receiving antenna element [12, 67]. As for the targets, all the

attenuation factors ↵SI,n are assumed to be the same for all the receiving

antennas. Therefore, the signal-to-self interference ratio (SSIR) for the eco

generated by the target l at each receiving antenna is given by

SSIR =
|↵l|

2

|↵SI|
2
. (2.10)

Starting from (2.7), by performing spatial combining through the receiv-

ing BF vector, wR = ac

R
(✓R,s), we have the received symbol y(m)

k
= wT

R
ỹ(m)

k
,

which, using (2.9), can be expressed as

y
(m)

k
= wT

R
AR(✓)⌃A

T

T
(✓)x̃(m)

k
+wT

R
⌫̃(m)

k
+wT

R
ñk. (2.11)

2.1.3 Beam-scanning

As mentioned above, the considered system is a multibeam JSC scheme, with

a beam pointing to the UE and a beam pointing sequentially to di↵erent

directions to sense the environment.
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Referring to Fig. 2.1, during a scan the DoD and the DoA for sensing are

the same. Specifically, we have

✓T,s = ✓R,s = ✓0 + i�✓s i = 0, . . . , Ndir � 1 (2.12)

where ✓0 is the starting scan direction,�✓s is the scan angle step, i is the index

used to update the direction, and Ndir is the number of directions explored

to perform a complete scan from �✓0 to ✓0. For each sensing direction, a

number of OFDM symbols Ms < M is acquired from the receiver system.

Therefore, since a 5G NR frame with M symbols lasts Tf = 10 ms, by fixing

Ndir it is possible to determine the number of frames and the time required

to complete a scan as:

Nf =

⇠
MsNdir

M

⇡
, Tscan = TfNf . (2.13)

The OFDM symbols collected in each direction are used to estimate range,

Doppler and DoA of the target.

2.1.4 Sensor-target-sensor path

In line-of-sight (LoS) propagation conditions the power received at a given

array element from the lth path, illuminated by the sensing beam, is propor-

tional to |↵l|
2 and given by [64]

PR,l = ⇢ ·
PTG

a

T
GRc

2
�RCS,l

(4⇡)3f 2
c
d
4

l

· �l (2.14)

where �RCS,l is the radar cross-section (RCS) of the point target l, dl is the

distance between the lth target and the BS, GR is the single element antenna

gain at Rx, and �l = |AF(✓T,s � ✓l)|2 2 [0, 1] where AF(✓) is the normalized

array factor at Tx that considers the non-perfect alignment between the

target DoA and the sensing direction [68]; when ✓l = ✓T,s then �l = 1.

The SNR at the single receiving antenna element related to the lth target is

defined as

SNRl =
PR,l

N0K�f
(2.15)
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where PR,l, the received power from the lth path, is given in (2.14), and N0

is the one-sided noise power spectral density (PSD) at each antenna element.

When convenient, by normalizing to unit-power the transmitted symbols, i.e.,

E{|x(m)

k
|
2
} = 1, and ignoring the path-loss (2.15) reduces to SNRl = 1/�2

N
.

2.2 Estimation of Target Parameters and De-

tection

This section introduces multiple signal classification (MUSIC) for DoA esti-

mation and periodogram-based frequency estimation for range and velocity

evaluation. The estimation methods are performed for each sensing beam

step in which Ms OFDM symbols are collected. To simplify the notation we

drop the scan index i.

2.2.1 Estimation of the number of targets and DoAs

DoA estimation is performed by MUSIC that requires knowledge of the noise

subspace, which in turn needs the number of targets to be known. Noise

subspace can be identified via the covariance matrix of the received vector

(2.7) R = E
�
ỹ(m)

k
ỹ(m)†

k

 
2 CNR⇥NR . In fact, since the noise is zero mean

and independent of the target echoes, it follows that the NR � L smallest

eigenvalues of R are all equal to the noise power �2

N
and the corresponding

eigenvectors identify the noise subspace.3 Since the covariance matrix is not

known a priori, the sample covariance matrix (SCM) can be used instead [29].

It is given by

bR =
1

KMs

Ms�1X

m=0

K�1X

k=0

ỹ(m)

k
ỹ(m)†

k
. (2.16)

The number of sources (target echoes in our scenario) can be estimated

by model order selection based on information theoretic criteria [69,70]. The

approach starts by performing eigenvalue decomposition of the SCM of the

observed vectors, bR = U⇤U†, where the columns of U 2 CNR⇥NR are the

3As required by MUSIC we consider L < NR, i.e, the number of targets is less than
the number of sensing array elements.
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eigenvectors and ⇤ = diag(�1, . . . ,�NR) is a diagonal matrix with eigenvalues

sorted in descending order, i.e., �1 � �2 � · · · � �NR . Using the minimum

description length (MDL) criterion, the estimated number of targets (con-

sidering that we are illuminating only targets within the sensing beam in the

ith direction) is

Lm = argmin
s2{0,...,NR�1}

{MDL(s)} (2.17)

with

MDL(s) = � ln

 Q
NR

i=s+1
�
1/(NR�s)

i

1

NR�s

P
NR

i=s+1
�i

!(NR�s)KMs

+
1

2
s(2NR � s) ln(KMs).

(2.18)

The MUSIC algorithm then starts from eU 2 CNR⇥(NR�Lm), the submatrix

containing the NR�Lm eigenvectors corresponding to the smallest eigenval-

ues, �Lm+1, . . . ,�NR , where such eigenvectors represent a good approximation

of the noise subspace. Next, the pseudo-spectrum function, whose peaks re-

veal the presence of incoming signals, can be obtained as [71]

fm(✓) =
1

��eU†a(✓)
��2
2

. (2.19)

The peak locations in fm(✓) are the DoA estimates b✓. However, as it will be
better explained in Section 3.2, in each sensing direction we search for a local

maximum of (2.19) in a limited angle range [✓min, ✓max], which depends on

the beamwidth of the array response. The DoA estimate in each direction is

thus given by
b✓ = argmax

✓2[✓min,✓max]

{fm(✓)}. (2.20)
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2.2.2 Detection and range-Doppler estimation

For the range-Doppler profile evaluation, we start from the received symbols

(2.11) from which, by expanding the matrix multiplications, we obtain

y
(m)

k
=

 
LX

l=1

�l⌥(✓T,s, ✓R,s, ✓l)

!
x
(m)

k
+ nk (2.21)

where nk = wT

R
ñk and ⌥(✓T,s, ✓R,s, ✓l) 2 C is a factor which accounts for the

gain due to the array response vector at Tx and Rx and the DoA of the target.

Since the range and velocity of targets are embedded in �l, first, a division is

performed to remove the unwanted data symbols [9], i.e., g(m)

k
= y

(m)

k
/x

(m)

k
,

which leads to

g
(m)

k
=

LX

l=1

↵le
j2⇡mTsfD,le

�j2⇡k�f⌧l⌥(✓T,s, ✓R,s, ✓l) + ⌫k (2.22)

where ⌫k = nk/x
(m)

k
. Note that (2.22) contains, for each target, two com-

plex sinusoids whose frequencies are related to fD,l and ⌧l, while ↵l and

⌥(✓T,s, ✓R,s, ✓l) are constant terms.

Starting from (2.22), a periodogram can be computed in order to estimate

range and speed of the target as [9, 12, 14]

P(q, p) =

�����

Kp�1X

k=0

✓Mp�1X

m=0

g
(m)

k
e
�j2⇡

mp
Mp

◆
e
j2⇡

kq
Kp

�����

2

(2.23)

with q = 0, . . . , Kp � 1 and p = 0, . . . ,Mp � 1, which consists of K FFTs of

length Mp and Ms inverse fast Fourier transforms (IFFTs) of length Kp. In

this analysis, Kp > K is calculated as the next power of two of K, whereas

Mp > Ms is the next power of two of Fp ·Ms, where Fp is the zero-padding

factor to improve speed estimation resolution.

The periodogram (2.23) represents the range-Doppler map from which the

first operation performed is target detection by a hypothesis test between H0,

where only the noise is present, and H1, which refers to the presence of the
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target, i.e.,

P(q, p)
H1

?
H0

⌘. (2.24)

The threshold ⌘ is chosen to ensure a predefined false alarm probability PFA.

When the sensing beamwidth is relatively small, only one target is likely to

be present in a given sensing direction, and if the test (2.24) rejects the null

hypothesis, it is easy to find the location of the peak in the periodogram

(bq, bp) = argmax
(q,p)

{P(q, p)} (2.25)

and evaluate the distance and radial velocity of the target as

br = bq c
2�fKp

, bv =
bp c

2fcTsMp

. (2.26)

The distance and velocity resolutions are intrinsic characteristics of the peri-

odogram and only depend on the 5G NR parameters, i.e., number of OFDM

symbols, number of active subcarriers, subcarrier spacing, and OFDM sym-

bol duration, and are given by [9, Chapter 3]

�r =
c

2�fKp

, �v =
c

2fcTsMp

. (2.27)

2.2.3 Pruning redundant target points

As explained above, the considered JSC system searches for a peak in the

pseudo-spectrum (2.19) and in the periodogram (2.23) for each sensing di-

rection for which the test (2.24) chooses the hypothesis H1. When a target is

detected in a particular direction, it might be detected also in some adjacent

directions when the periodogram P is above threshold because of the beam

sidelobes. These detected points are originated by the same target and are

characterized by inaccurate DoA estimates. As it will be better quantified

in Section 3.2, this e↵ect is due to the choice of searching the maximum of

MUSIC pseudo-spectrum in a limited range, as in (2.20), that reduces the

computational cost of searching but may yield multiple detection points per

target. To maintain the benefits of local search, we propose a method to thin
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Algorithm 1 Pruning redundant target points

Require: Z zi = [bri, bvi,P(bri, bvi), b✓i, fm(b✓i)]
1: Zsort  sort Z in decreasing order according to the 3rd column

2: zprun,1  zsort,1 . copy first row of Zsort in Zprun

3: k  1 . initialize row index of Zprun

4: for i = 2 : Nmax do

5: count 0

6: for j = 1 : k do

7: if brprun,j � ✏r  brsort,i  brprun,j + ✏r and

8: bvprun,j � ✏v  bvsort,i  bvprun,j + ✏v then

9: count count + 1

10: break

11: end if

12: end for

13: if count = 0 then

14: k  k + 1 . update row index of Zprun

15: zprun,k  zsort,i
16: end if

17: end for

18: bL k

Output: Zprun and its number of rows, bL

out redundant target points (hereafter also referred to as repeated targets)

that has proven e↵ective.

First, all the collected peaks and estimates are organized in a matrix Z,

whose rows are the vectors

zi =
h
bri, bvi,P(bri, bvi), b✓i, fm(b✓i)

i
i = 1, . . . , Nmax (2.28)

where Nmax  Ndir is the number of sensing directions in which the test (2.24)

rejects the null hypothesis. Subsequently, these rows are sorted in descending

order with respect to the values, P(bri, bvi), to form a new matrix Zsort. Finally,

a check on the elements of Zsort is performed to remove redundant target

points, i.e., those with very similar estimates of both distance and radial

velocity (within a given range of uncertainty). This results in a new matrix
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Zprun with a number of rows bL  Nmax.4 The sort operation ensures that only

range and speed pairs associated with the largest values of the periodogram

are kept between the repeated points. The whole procedure is detailed in

Algorithm 1. As it can be seen, the definition of redundant target point

is linked to the choice of two parameters, ✏r, and ✏v, that account for the

measurement uncertainty. In particular, in the algorithm a target indexed

with i is considered a repetition of an already detected target denoted with

j if its estimated range, bri, and velocity, bvi, meet the conditions, brj � ✏r 

bri  brj + ✏r, and bvj � ✏v  bvi  bvj + ✏v, respectively. The choice of the two

parameters ✏r and ✏v will be discussed in Section 3.2.

4Note that bL is the estimated number of targets in our approach. This value may di↵er
from Lm given by (2.17) because the number of targets detected by MUSIC is conditioned
on the considered sensing direction. After all, Tx beamforming performs spatial filtering,
illuminating predominantly targets within the beamwidth.



Chapter 3

System-Level Analysis of a

Monostatic JSC System

In this chapter, an analysis of the sensing performance of the monostatic JSC

system with multibeam capabilities introduced in Chapter 2 is performed

through numerical simulations. The considered system is used to estimate

the range, radial velocity, and DoA of multiple targets and can operate at

both sub-6GHz and mmWave frequencies.

In particular, we provide a detailed analysis of how the system perfor-

mance is a↵ected by the portion of the total radiated power used for sensing,

by analyzing the RMSE of position estimate (obtained by target localization

via range and DoA estimation) and the accuracy of radial velocity estimation

for the single-target scenario. Furthermore, we propose an algorithm to re-

move phantom targets that appear because of the sensing method introduced

in Chapter 2, which relies on beam-scanning impaired by beam sidelobes, and

we use the OSPA metric to study the performance of the considered system

for the multi-target scenario at mmWave frequencies.

3.1 Performance Evaluation in the Presence

of Multiple Targets

This section introduces the performance metric employed to address the con-

cept of miss-distance, or error, in a multi-target system. In particular, when

33



34 System-Level Analysis of a Monostatic JSC System

considering a multi-object system, a consistent metric should capture the

di↵erence between two sets of vectors (the truth and the estimated), not

only in terms of localization error but also in terms of cardinality error. For

this reason, in this analysis, the OSPA metric [72], [73] is used to study the

performance of the considered JSC system in a multi-target scenario.

The OSPA metric is a miss-distance indicator, which summarizes in a

unique measure the estimation accuracy in both the number and location of

the targets. More precisely, given the true positions of the L targets, P =

[p1, . . . ,pL], with pl = (xl, yl) = (rl cos ✓l, rl sin ✓l),1 and the bL estimates,
bP =

⇥
bp1, . . . , bpbL

⇤
, the distance between an arbitrary pair of the estimate and

the true position, cut o↵ at c̄ > 0, is defined as [72]

d
(c̄) (p, bp) = min {c̄, d (p, bp)} (3.1)

where d (p, bp) =
��p � bp

��
2
is the Euclidean distance between the estimate

and the true position, and c̄ is the cuto↵ parameter that determines how

the metric penalizes cardinality error with respect to the localization one.

Denoting by ⇧k the set of permutations on {1, 2, . . . , k} for any k 2 N, for
1  q  1 and c̄ > 0, the OSPA metric of order q and with cuto↵ c̄ is

defined as [72]

d̄
(c̄)

q

⇣
P, bP

⌘
=

 
1
bL

 
min
⇡2⇧bL

LX

l=1

�
d
(c̄)
�
pl, bp⇡(l)

��q
+ c̄

q(bL� L)

!!1/q (3.2)

if L  bL, and d̄
(c̄)

q

⇣
P, bP

⌘
= d̄

(c̄)

q

⇣
bP,P

⌘
if L > bL. Essentially, for L  bL, the

OSPA distance can be obtained by the following steps:

1. Find the L-elements subset of bP that has the shortest distance to P ,

corresponding to the optimal subset assignment;

2. If a point bpn 2
bP is not paired with any point in P, let dn = c̄;

otherwise, dn is the minimum value between c̄ and the distance between

1From now on, and without loss of generality, the monostatic sensor is considered at
the origin of a Cartesian coordinate system.
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the two points in a pair;

3. The OSPA distance is given by d̄
(c̄)

q

⇣
P, bP

⌘
=
⇣⇣P

L

l=1
d
q

n

⌘
/bL
⌘1/q

.

The OSPA distance can be interpreted as a qth order per-target error for

a multi-object scenario. The metric can be divided into two components,

one accounting for localization error and the other for cardinality error. In

particular, for q <1 these components are given by [72]

ē
(c̄)

q,loc
(P, bP) =

 
1
bL
min
⇡2⇧bL

LX

l=1

�
d
(c̄)
�
pl, bp⇡(l)

��q
!1/q

,

ē
(c̄)

q,card
(P, bP) =

 
c̄
q(bL� L)

bL

!1/q
(3.3)

if L  bL, and ē
(c̄)

q,loc
(P, bP) = ē

(c̄)

q,loc
(bP,P), ē(c̄)

q,card
(P, bP) = ē

(c̄)

q,card
(bP,P) if L > bL.

In the metric, the value of q determines the sensitivity of the d̄(c̄)q to outlier

estimates, while c̄ balances the cardinality error component with respect

to the localization one, as a part of the total error. As c̄ decreases, the

localization error becomes dominant compared with the cardinality error,

whereas larger values of c̄ emphasize the latter. The best choice for c̄ to

maintain a balance between the two components is any value significantly

larger than a typical localization error, but significantly smaller than the

maximum distance between objects.

3.2 System-Level Analysis

System-level analysis is carried out through numerical simulations to evalu-

ate the performance of the JSC scheme described in Chapter 2. For all the

simulations, 5G NR signals compliant with 3GPP Technical Specification

in [16] are considered. The main 5G NR parameters employed for the gener-

ation of the standardized signals are summarized in Table 3.1. In addition, a

quadrature phase shift keying (QPSK) modulation alphabet is used for the

generation of the OFDM signal. As shown in Fig. 2.1, the considered system

scans the environment in the range [�✓0, ✓0], with ✓0 = �60°, and a step
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Table 3.1: JSC system parameters

5G specification ! NR 100 NR 400

fc [GHz] 3.5 28
�f [kHz] 30 120
Active subcarriers K 3276 3168
OFDM symbols per frame M 280 1120
OFDM symbols per direction Ms 112 112
Number of antennas NT = NR 10 10 50 100
Array beamwidth �⇥ [°] 27 27 5.3 2.6

�✓s. The choice of Ndir, and so of �✓s, mainly depends on the beamwidth

�⇥ of the array response (here referred to �10 dB gain with respect to the

beam direction) reported in Table 3.1. As expected, when the number of

antennas decreases, �⇥ becomes larger, and a lower Ndir is necessary to

avoid blind zones. Once Ndir is chosen, the number of necessary 5G NR

frames, and consequently, the total time needed to complete a scan cycle,

are calculated from (2.13). For each selected direction, the periodogram is

obtained from K active subcarriers, which di↵er between 5G numerologies,

and a fixed number of OFDM symbols Ms = 112, with Fp = 10, required

to perform speed estimation. Furthermore, for what concerns the DoA esti-

mation algorithm, the MUSIC pseudo-spectrum (2.19) is computed only in

the range [✓R,s ��⇥/2, ✓R,s +�⇥/2], to reduce the processing time and the

position error.

The performance analysis is performed considering two di↵erent scenarios,

single target and multi target. For the former, the primary purpose of the

analysis is to derive the RMSE related to the estimation of the position and

velocity of the target. When deriving the RMSE as a function of the SNR, the

target is considered aligned with the sensing beam (i.e., � = 1) and the noise

variance is �2

N
= 1/SNR, as mentioned in Section 2.1.4. Whereas when the

RMSE is evaluated varying the distance of the target, the SNR is computed

using (2.15) and the following system parameters are considered: the target

has an RCS equal to �RCS = 1m2, the EIRP is set to PTG
a

T
= 43 dBm,

GR = 1, and the noise PSD is N0 = kBT0F where kB = 1.38 · 10�23 JK�1

is the Boltzmann constant, T0 = 290K is the reference temperature, and

F = 10 dB is the receiver noise figure.
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Figure 3.1: Sensing performance as a function of the SSIR for DoA, distance, and speed
estimates, when SNR = �20 dB.

The RMSE is defined as

RMSE(ẑ) =

sP
NMC�1

i=0
(ẑi � z)2

NMC

(3.4)

where z is the true value assumed by a generic parameter to be estimated, and

ẑ is its estimate, while NMC is the number of Monte Carlo (MC) iterations

for each SNR value, here set equal to 2000.

For the multi-object scenario, we consider L = 10 point targets, one

of which is the UE, and the same system parameters as the single-target

scenario. Two di↵erent values of the fraction of power devoted to sensing, ⇢ =

0.1 and ⇢ = 0.3, a carrier frequency equal to fc = 28GHz, and NT = NR = 50

antennas, are considered. In this set of results, the OSPA metric, presented in

Section 3.1, is the performance indicator to summarize the e↵ectiveness of the
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Figure 3.2: Sensing performance as a function of the SNR for distance, DoA, speed, and
position estimates, and detection probability. The dashed lines represent the results at
fc = 3.5GHz, whereas the continuous lines represent the results at fc = 28GHz. In
particular, (a), (b) and (c) show the RMSE results when the MIMO system consists of
NT = NR = 10 antennas at fc = 3.5GHz, and NT = NR = 50 antennas at fc = 28GHz,
whereas (d) and (e) depict the normalized localization error and the detection probability
for di↵erent number of antennas.

designed system. The OSPA metric is computed for q = 2, as recommended

by [72], and c̄ = 10m to guarantee a good balance between localization and

cardinality error. We will then provide the performance of the system in

the presence of an extended target and multipath. Finally, the benefits of

bayesian tracking in a vehicular scenario are demonstrated.

As it will be explained in the following, we will start investigating the

impact of SI on estimation performance, focusing on the RMSE of DoA, dis-

tance, and speed estimates by varying the SSIR introduced in Section 2.1.2.
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Figure 3.3: Target localization performance as a function of the sensor-target distance
varying the fraction of power ⇢ reserved for sensing. Note that the maximum range of
250m at 3.5GHz and 85m at 28GHz is within the maximum unambiguous range for the
respective numerology detailed in Table 3.1 [9].

3.2.1 RMSE and detection probability vs SNR and

SSIR

Let us start analyzing the SI issue. Fig. 3.1 shows the RMSE of DoA, range,

and radial velocity estimates obtained when only a single target is present

and SNR = �20 dB, by varying the SSIR for di↵erent 5G NR parameters

and number of antennas. As it can be noticed, the system performance

quickly degrades for low SSIR values, but when SSIR � 10 dB, the RMSE

of DoA, range, and radial velocity estimates, reaches a floor where thermal

noise is the only limiting factor. Therefore, if proper SI suppression can be

performed, either through beamforming optimization or through digital can-

cellation techniques [12, 29], the estimation error can be kept low.

From now on, an analysis of the RMSE by varying the SNR is now per-

formed considering SI negligible. In particular, the SNR is varied from �65

to �15 dB, while distance, speed, and DoA of the target are varied randomly,

from one iteration to another, with a uniform distribution from 20 to 85m,

�20 to 20m/s, and �60� to 60�, respectively. In Fig. 3.2, the results ob-

tained for the RMSE of distance, angle, speed, and position estimations are

shown. As the periodogram used to estimate speed and radial distance of

the target is computed on the symbols obtained after spatial combining, the
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whole estimation process is subject to a double processing gain, one resulting

from the periodogram calculation, equal to 10 log
10
(K ·Ms) dB [15], and the

other from the beamforming gain, equal to 10 log
10
(NR) dB. For this reason,

the MIMO system can estimate range and speed with high accuracy for SNR

significantly lower than those reached by the DoA estimation algorithm, as

it can be seen in Fig. 3.2a, Fig. 3.2b, and Fig. 3.2c. In fact, MUSIC is not

subject to any processing gain, and the RMSE of angle estimation starts to

increase at much higher SNR values, depending on the number of receiving

antennas, NR. In particular, for increasingly negative values of SNR, the

RMSE (in degree) vs SNR curves converge approximately to �⇥/2.8, be-

cause of the limited search interval, �⇥, over which the pseudo-spectrum

is computed. As previously stated, �⇥, and consequently the upper bound

value of the curves, strictly depends on the number of antennas, as it can be

noticed comparing the blue dashed line and continuous yellow line curves in

Fig. 3.2a, Fig. 3.2b and Fig. 3.2c.

From the estimated range, br, and DoA, b✓, the position estimate of the

target is bp = (bx, by) = (br cos b✓, br sin b✓). The normalized RMSE, shown in

Fig. 3.2d, is derived from the Euclidean distance between the estimated po-

sition, bp, and the true location of the target, p = (x, y) = (r cos ✓, r sin ✓),

divided by the true distance, r, as

Normalized RMSE =

vuut 1

NMC

NiX

j=1

��bpj � pj

��2
2

r
2

j

. (3.5)

The normalization in (3.5) eliminates the dependency of the position RMSE

on the distance generalizing the results. In fact, since the length of the chord

of a circumference is directly proportional to its radius, the DoA error causes

the position error to increase with distance. In Fig. 3.2d the position estimate

dependency on the DoA is emphasized for di↵erent numbers of antennas and

5G numerologies. As the SNR decreases, it is possible to notice the impact

of DoA, which causes a first drop in the performance, and the e↵ect of range

estimation error, which leads to a second performance drop at lower SNR.

Another important parameter in sensing is the detection probability PD

as a function of the SNR as shown in Fig. 3.2e. In these plots, the threshold
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Figure 3.4: Mean cardinality error (a) and mean OSPA localization error (b) varying the
number of sensing directions, Ndir, for a JSC system with fc = 28GHz, NT = NR = 50,
obtained with NMC = 500 Monte Carlo iterations. Dashed lines represent the result for
⇢ = 0.1, whereas the continuous lines represent the results for ⇢ = 0.3.

⌘ has been chosen to ensure a PFA = 1%. As expected, since detection is

performed on the range-Doppler map, the same map used for velocity and

range estimation, it is easy to notice that the range and velocity estimation

start degrading when detection probability degrades. Therefore, the main

factor limiting the radar performance is DoA estimation.

3.2.2 RMSE vs distance

Let us now analyze the trade-o↵ between communication and sensing varying

⇢ in (2.2). As it can be observed in Fig. 3.3a and 3.3b, the system works

well also for moderately low values of ⇢, e.g., ⇢ = 0.1. Notably, the position

RMSE is below 0.33m and 0.1m, at 3.5GHz and 28GHz, respectively, even

at tens of meters (in LoS condition). It is also important to highlight that

the RMSE values reached at 3.5GHz are much higher than that at 28GHz.

This mainly depends on the larger �⇥ resulting from NT = NR = 10, with

respect to the beamwidth with NT = NR = 50 antennas. Moreover, at

the considered ranges, the RMSE of the position mainly depends on DoA

estimation error, and when this error reaches the upper bound, the position

RMSE becomes proportional to the distance, r, as previously explained in

Section 3.2.1.
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Figure 3.5: Mean value, 20th and 80th percentile of the OSPA distance varying the number
of sensing directions for di↵erent values of ✏r, ✏v and ⇢, with fc = 28GHz and NT = NR =
50. The OSPA metric is computed for c̄ = 10m and q = 2. The considered values are:
✏r = �r and ✏v = 2�v with ⇢ = 0.1 (a) and ⇢ = 0.3 (c), ✏r = �r and ✏v = 3�v with
⇢ = 0.1 (b) and ⇢ = 0.3 (d).

3.2.3 Performance analysis of multi-target scenario

For the multi-object scenario analysis let us consider L = 10 point targets

(9 + 1 UE). Each target is associated with an SNR that depends on its

radial distance from the monostatic sensor, on its RCS, and on the alignment

between the target and the sensing direction, in accordance with (2.15).

Without loss of generality let us assume all the targets with the same RCS,

equal to �RCS = 1m2, as in Section 3.2.2. The number of MC iterations

for this group of results is set to NMC = 500. In each MC iteration targets

positions are randomly generated according to a uniform distribution within
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a sector with radial distance between 20 to 85m and angle from �60� to 60�.

The primary purpose of this analysis is to study the performance of the

considered JSC system when multiple targets are present, computing the

OSPA metric introduced in Section 3.1 for di↵erent choices of Ndir, ranging

from 30 to 60 sensing directions. In particular, one of the main objectives

is to study the influence of the uncertainty parameters, ✏r and ✏v, used in

the repeated targets pruning algorithm presented in Section 2.2.3, and of the

parameters ⇢, on the detection and localization capabilities of the system.

For what concerns ✏r and ✏v, a good choice consists of using a multiple

of distance and velocity resolutions, �r and �v, defined in (2.27). In fact,

due to the presence of AWGN, radial distance and velocity estimates of a

repeated target may fall in adjacent bins of the periodogram with respect to

those of the original target. In this sense, between range and velocity, it is

the latter that presents greater RMSE in the low SNR regime; this is due to

zero padding, which increases velocity resolution at the expense of sensitivity

to noise. The mean cardinality error is used to choose these parameters. This

metric is given by

D =
1

NMC

NMCX

i=1

|L� bL|. (3.6)

Importantly, this metric does not distinguish between miss-detection, false

alarm, and repeated target; however, it can be considered a good indicator

for analyzing the average performance of the considered algorithm. In fact,

fixing the system parameters, miss-detection and false alarm rates can be

regarded as approximately constant, so if D decreases, that should be caused

by a drop in the targets’ repetition rate. Fig. 3.4 shows the mean cardinality

error and the mean OSPA localization error computed varying the number of

sensing directions, Ndir, for di↵erent values of ✏r, ✏v and ⇢. As it can clearly

be noticed, by fixing ✏r and ✏v, the overall performance of the system (both

in localization and cardinality error) improves for increasing values of ⇢. For

what concerns the localization error, the results shown in Fig. 3.4b are in

agreement with those presented in Fig. 3.3b. As the position of the target is

varied between 20 and 85m, the system performance is worse for ⇢ = 0.1 than

⇢ = 0.3, as expected. In Fig. 3.4a it is possible to notice as for Ndir � 40 the

mean cardinality error becomes smaller choosing ✏v = 3�v, both for ⇢ = 0.3
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Figure 3.6: Considered scenario with 9 targets and 1 UE. The range-angle map in (a) has
been obtained with fc = 28GHz, NT = NR = 50 antennas, Ndir = 60 and ⇢ = 0.3. (b)
shows the point detected starting from the range-angle map in (a), before repeated targets
pruning. In (c) the result obtained after the removal of the repeated targets, performed
with ✏r = �r and ✏v = 3�v is shown.

and ⇢ = 0.1, and, in particular, for ⇢ = 0.3 the system on average misses

less than one target. As pointed out, a value of ✏r > �r does not change

appreciably the system performance; therefore, its value is kept fixed, letting

✏v vary. This latter term most a↵ects the repeated targets pruning algorithm

detection performance due to zero padding, as already observed.

In Fig. 3.5, the mean OSPA metric is computed varying Ndir for the same

values of ✏r, ✏v and ⇢ used above. In addition, the 20th and 80th percentile

are shown to better understand the range of values the OSPA metric can

assume for di↵erent positions of the targets. Also in this case, the best

performance are obtained for ⇢ = 0.3, ✏r = �r and ✏v = 3�v. In particular,

for this choice of parameters the mean value of d̄ is below 3m and the 20th

percentile is approximately equal to 1m for Ndir = 60. Note, however, that

such numerical results also consider the portion of the monitored area where

the DoA estimation is severely degraded (see Fig. 3.3); a proper sensing cell

sizing may avoid such region and lead to much better performance. As a

final system-level analysis, in Fig. 3.6 an example of multiple targets map

returned by the JSC sensor is shown. The parameters are ⇢ = 0.3, ✏r = �r
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and ✏v = 3�v. First, in Fig. 3.6a the range-angle map obtained by computing

the periodogram (2.23) in each sensing direction, is shown. Then, in Fig. 3.6b

we have the targets detected through the hypothesis test (2.24), and the

resulting range estimates (2.25)-(2.26) and angle estimates (2.20). As it can

be seen, multiple points per target are present. After the repeated targets

pruning algorithm introduced in Section 2.2.3 the resulting targets are shown

in Fig. 3.6c. As we can observe, in this particular case the algorithm is very

e↵ective in removing all redundant points while retaining all the useful points.

As expected, most of the repeated points are on the circumference with a

radius equal to the distance between the UE and the monostatic sensor; this

is to be attributed to a large fraction of power used for the communication

beam which illuminates the UE causing a strong received echo.

3.3 Remarks

In this chapter, we provided a system-level analysis for the multibeam JSC

system introduced in Chapter 2. We identified the main dominant factors

a↵ecting performance and compared two system setups operating at sub-

6GHz, and mmWave frequencies. The findings of the analysis conducted

have demonstrated that: i) DoA estimation is the primary source of error

when used to evaluate the target position; ii) even with a relatively small

fraction of power devoted to sensing, good localization performance at tens of

meters can be achieved in LoS even at mmWave: iii) in the sub-6GHz band

targets can be detected at higher distances but with lower accuracy mainly

because of the reduced number of antenna elements; iv) Tens of targets can

be detected and localized with sub-meter level accuracy when the power for

sensing is capable of ensuring reliable DoA estimation.
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Chapter 4

From Monostatic to Bistatic

Configuration

In this chapter, we extend the performance analysis conducted in Chapter 3,

which considered a single point-like target scenario and monostatic configu-

ration, to include a bistatic JSC system. As already mentioned in Chapter 1,

a bistatic radar setup can be seen as a concrete solution to avoid the SI prob-

lem that arises in a monostatic setting and requires full-duplex capabilities,

which are still considered a challenge. As in the previous chapter, we first

provide the sensing performance of a bistatic JSC MIMO system consisting

of a Tx and a Rx that estimates DoA and bistatic range, comparing two

setups operating at sub-6GHz and mmWave frequencies. We then analyze

the RMSE of position estimate in the monitored area through heatmaps and

show the impact of the blind zone on sensing. Lastly, since a multibeam sys-

tem is considered as in Chapter 2, the sensing coverage limits of the bistatic

system are studied, by varying the fraction of power devoted to sensing.

4.1 System Model

As depicted in Fig. 4.1, in this chapter, a bistatic configuration for the JSC

system is considered. In contrast with the monostatic setup studied in the

previous chapters, in which the Tx and the Rx are co-located, the bistatic

one employs two nodes at di↵erent known locations, ptx = (xT, yT), and

47
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Figure 4.1: Illustration of the considered bistatic system for JSC. The Tx presents multi-
beam capabilities to perform communication and sensing functionalities using the same
time-frequency resources and sharing the transmitted power.

prx = (xR, yR). In this way, it is possible to avoid the well-known self-

interference problem a↵ecting monostatic configurations [12].

Considering a bistatic sensing system based on downlink signals, the Tx

can be a BS. Still, the Rx can be either another BS, a UE-like device, or

a remote radio head (RRH) in a Cloud-RAN architecture. Alternatively,

the system can work with uplink signals as well. In this case, the signal

transmitted by a UE is collected by a BS, after being reflected from targets

[3, 7].

The proposed JSC system consists of a Tx with NT antenna elements

and of an Rx with NR antenna elements. Similarly to the system model con-

sidered in Chapter 2, the transmitted signal is used for both communication

and sensing, exploiting the multibeam capabilities of the system, with a sens-

ing beam that scans the environment while the communication beam points

towards the user. Without loss of generality, both the Tx and the Rx are

equipped with ULAs whose elements are equally spaced of half-wavelength,

i.e., d = �c/2 with �c = c/fc, where fc is the carrier frequency and c is the

speed of light. The communication system transmits a 5G NR downlink sig-

nal with M OFDM symbols and K active subcarriers to a UE in the cell [62].

The baseband OFDM signal, as for the monostatic case in Section 2.1, can

be written as (2.1).
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4.1.1 Bistatic range and Doppler shift

In a bistatic configuration, the propagation time ⌧ of the signal scattered by

the target is related to the distance between the Tx and the target, RT, and

that between the target and the Rx, RR, via the bistatic range [13]

Rbis = RT +RR = ⌧ · c. (4.1)

After estimating Rbis via ⌧ , the target can be located on an ellipse with a

major axis equal to Rbis and foci at Tx and Rx positions, as depicted in

Fig. 4.1. The Tx, Rx, and target form a triangle with base BL (the distance

between Tx and Rx) called the baseline; the angle � of the opposite vertex

is named the bistatic angle.

If the DoA ✓R of the reflected echo at the Rx can be estimated, it is

possible to determine the distance RR as [13]

RR =
R

2

bis
� BL

2

2(Rbis +BL sin (✓R � ⇡/2))
(4.2)

and then the target position, ptg = (xR �RR cos ✓R, yR +RR sin ✓R).

In addition to the target’s location, the bistatic velocity of the target can

be inferred from the bistatic Doppler shift. The latter is proportional to the

rate of change of Rbis. When Tx and Rx are stationary, and the target is

moving with velocity v, the Doppler shift can be obtained as [13]

fD =
1

�c

d

dt
[RT(t) +RR(t)] =

2v

�c

cos � cos (�/2) (4.3)

where � is the angle between the direction of the velocity and the bistatic

bisector, and v = |v|. While � can be easily determined by knowing BL,

RT, RR, and ✓R, the angle � is unknown so only the bistatic velocity, vbis =

|vbis| = v cos �, can be estimated by the system.

4.1.2 Maximum bistatic range and blind zone

To avoid inter-symbol interference (ISI) and guarantee unambiguous range

detection, the guard time tG of the OFDM needs to be larger than the prop-
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Figure 4.2: Block diagram of the bistatic 5G NR-based JSC system with multibeam
capability.

agation delay of the scattered signal. In a bistatic configuration, this leads

to a maximum detectable bistatic range

Rbis  tGc+BL (4.4)

which results in a maximum ellipse whose minor axis is

Amax =
p

(tGc+BL)2 � BL2. (4.5)

A critical issue deserving attention in bistatic setup is the blind zone, i.e.,

a region enclosing the baseline where target detection becomes problematic

[74]. A target su�ciently close to the baseline is hard to detect because of

the time resolution, which compromises the separation of the direct Tx-Rx

path from the Tx-target-Rx one. Given the resolution of the bistatic range

estimate, �r = c/(K�f), we define BL+�r as the minimum bistatic range

below which the Rx cannot resolve the reflected path from the direct one.

So, we must have

Rbis � BL+�r. (4.6)

The ellipse with major axis BL + �r is called the minimum ellipse, whose

minor axis is Amin =
p
(BL+�r)2 � BL2.

4.1.3 Transmitted and received signal

Now, let us detail the whole system behavior by looking at the block diagram

in Fig. 4.2. First, at the Tx, QPSK symbols x(m)

k
are mapped at each antenna
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through a digital precoder wT 2 CNT⇥1, to obtain the transmitted vector

x̃(m)

k
2 CNT⇥1, defined as x̃(m)

k
= wTx

(m)

k
. In particular, the idea is to split

the available transmitted power of the OFDM signal between communication

and sensing, using the BF vector in (2.2).

As it is shown in Fig. 4.2, in the considered JSC system, the sensing

direction ✓T,s is sequentially changed to illuminate the entire surrounding

environment, according to

✓T,s = ✓0 + i�✓s i = 0, . . . , Ndir � 1 (4.7)

where �✓s is the angle step and Ndir is the number of directions to scan the

aperture [�✓0, ✓0]. Given M OFDM symbols contained in a 5G NR frame,

Ms < M symbols are acquired by the Rx in each sensing direction. Hence,

the update of i depends on the symbol index m, and the number of frames

and time required to complete a scan becomeNf =
⌃
MsNdir

M

⌥
and Tscan = TfNf .

For each ✓T,s, the vector ỹ(m)

k
2 CNR⇥1 of the received symbols at each

antenna after OFDM demodulation, is given by

ỹ(m)

k
= H(m)

k
x̃(m)

k
+ ñk (4.8)

whereH(m)

k
2 CNR⇥NT is the channel matrix, and ñk ⇠ CN (0, �2

N
INR). When

L point targets are present in the monitored area, the channel matrix between

the transmitting and receiving antennas can be represented as

H(m)

k
=

LX

l=1

↵le
j2⇡mTsfD,le

�j2⇡k�f⌧l

| {z }
,�l

aR(✓r,l)a
T

T
(✓t,l) (4.9)

where ✓R = [✓r,1, ✓r,2, . . . , ✓r,L] are the DoAs, ✓T = [✓t,1, ✓t,2, . . . , ✓t,L] are

the DoDs of the targets, and ↵l = |↵l| e
j�l is the complex amplitude which

includes phase shift and attenuation along the lth propagation path.

On the receiving side shown in Fig. 4.2, starting from (4.8), spatial com-

bining is performed through the receiving BF vectorwR to obtain the received

symbol, y(m)

k
= wT

R
ỹ(m)

k
. In particular, target detection and localization are

performed in two steps: 1) the vector wR is initialized to have all elements

equal to one to search for targets in the area through DoA estimation, b✓r,l; 2)
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once DoAs are estimated, wR is updated to point the receiving beam in the

direction where the target l is likely to be present, i.e., wR = ac

R
(✓R,s), with

✓R,s = b✓r,l. Then, in each sensing direction, the Rx needs to perform channel

equalization and decision for detecting the transmitted symbols, x̂(m)

k
. As will

be explained in Section 4.2.2, to estimate bistatic range and Doppler shift, it

is necessary to know and remove the transmitted symbol x(m)

k
, through the

divider block.

4.1.4 Received power and Cassini ovals

In the bistatic radar configuration, the power reflected by a point target l

with a RCS equal to �RCS,l, illuminated by the Tx sensing beam and collected

at the Rx antenna element in free-space propagation conditions, is given by

P
bis

R,l
=

⇢PTGTGRc
2
�RCS,l

(4⇡)3f 2
c
(RT,lRR,l)2

(4.10)

where GR is the receiving antenna gain of the single antenna element, while

RT,l and RR,l are, respectively, the Tx-target and Rx-target distances for the

lth target.

As it can be seen in (4.10), the received power scattered by the target

is inversely proportional to (RTRR)2. The locus of points such that the

product of their distances RTRR from two foci is a constant is named Cassini

oval [13, 74].

Starting from (4.10), the SNR at the single receiving antenna element

related to the lth target can be defined as

SNRl =
P

bis

R,l

N0K�f
(4.11)

whereN0 is the one-sided noise PSD at each antenna element. By normalizing

to one the mean power of the transmitted symbols, i.e., E{|x(m)

k
|
2
} = 1, (4.11)

reduces to SNRl = 1/�2

N
. Iso-SNR contours are thus Cassini ovals.



4.2 Estimation of Target Parameters and Detection 53

4.2 Estimation of Target Parameters and De-

tection

This section introduces the techniques used for estimating DoA, bistatic

range, and bistatic velocity. In particular, for the DoA three di↵erent meth-

ods have been compared, i.e., MUSIC, root-MUSIC, and estimation of signal

parameters via rotational invariance techniques (ESPRIT), while for bistatic

range and velocity estimation, a periodogram-based frequency estimation

approach has been used, as in Section 2.2.

4.2.1 Estimation of the number of targets and DoAs

DoAs estimation requires, at first, the evaluation of the number of targets or

sources. For the initial estimate, the sample covariance matrix of the received

symbols vector (4.8) is computed in each Tx sensing direction, as follows

bR =
1

KMa

Ma�1X

m=0

K�1X

k=0

ỹ(m)

k
ỹ(m)†

k
= U⇤U† (4.12)

where Ma ⇢ Ms is the number of OFDM symbols employed in each sensing

direction to estimate the DoAs, the columns of U 2 CNR⇥NR are the eigen-

vectors of bR and ⇤ = diag(�1, . . . ,�NR) is a diagonal matrix with eigenvalues

sorted in descending order.

Starting from ⇤, the number of sources bL can be estimated by model or-

der selection based on information-theoretic criteria (see e.g., (2.18)). Then,

since the noise is zero mean and independent of the target echoes, the eigen-

vectors corresponding to the NR �
bL smallest eigenvalues of bR identify the

noise subspace, whereas the first bL eigenvalues determine the signal subspace.

Starting from the noise subspace, the vector of DoAs, b✓R, is estimated, either

through MUSIC or root-MUSIC algorithms, or, from the signal subspace,

with the ESPRIT algorithm [71,75, 76].
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4.2.2 Range-Doppler estimation and localization

After a DoA, b✓r,l, has been chosen, the bistatic range and velocity of the

target l are extrapolated through range-Doppler evaluation as in Section 2.2.

Starting from the received symbols y(m)

k
, a division is performed to remove the

unwanted data symbols, i.e., g(m)

k
= y

(m)

k
/x

(m)

k
.1 Next, as g(m)

k
contains two

complex sinusoids for each target, embedded in �l of (4.9), whose frequencies

are related to fD,l and ⌧l, a periodogram can be computed, as [12, 14]

P(q, p) =

�����

Kp�1X

k=0

✓Mp�1X

m=0

g
(m)

k
e
�j2⇡

mp
Mp

◆
e
j2⇡

kq
Kp

�����

2

(4.13)

with q = 0, . . . , Kp � 1 and p = 0, . . . ,Mp � 1. In this work, Kp > K

and Mp > (Ms � Ma) are calculated as the next power of two of K and

Fp · (Ms �Ma), respectively, where Fp is the zero-padding factor to improve

speed estimation resolution. The periodogram (4.13) represents the range-

Doppler map from which, after performing target detection by a hypothesis

test as in Section 2.2, bistatic range and velocity of the target l can be

extracted. In particular, at first, the location of the peak in the periodogram

needs to be found, as (bq, bp) = argmax
(q,p)

{P(q, p)}. Then, the bistatic range

can be evaluated as
bRbis,l =

q̂ c

�fKp

. (4.14)

Once bRbis,l and b✓r,l have been estimated, it is possible to estimate the distance

between the Rx and the target, bRR,l, according to (4.2). Then, position and

bistatic velocity of the target l are determined as stated in Section 4.1.1. In

particular, the module of the bistatic velocity is given by

bvbis =
bpc

2fcTsMp cos (�/2)
. (4.15)

1Note that, in this analysis, the symbols x(m)
k are considered known at the Rx; this

may happen, e.g., because of correct demodulation or because the sequence of symbols
emitted during sensing is predefined. Moreover, perfect synchronization between Tx and
Rx is assumed.
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Table 4.1: JSC system parameters

5G specification ! NR 100 NR 400

fc [GHz] 3.5 28
�f [kHz] 30 120
Active subcarriers K 3276 3168
OFDM symbols per frame M 280 1120
Number of antennas NT 10 50
Number of antennas NR 10 10 50

4.3 System Level Analysis

Numerical simulations are performed to evaluate the performance of the pre-

sented bistatic JSC system. In particular, since the main purpose here is to

study the system behavior in terms of RMSE of position, angle and bistatic

range estimation, a single target scenario is considered, i.e., L = 1, with the

sensing beam at Tx aligned with the target, i.e., ✓T,s = ✓t,1. The parameter

✓0 is set to 60° to have a total angular aperture of 120° at both Tx and Rx.

Table 4.1 shows the 5G NR parameters employed for the simulations. For

each sensing direction at the Tx, K active subcarriers and Ms = 112 OFDM

symbols are considered. A QPSK modulation alphabet is considered for each

subcarrier.

As already stated in Section 4.1.3, at the Rx, the initially performed

operation is DoA estimation with the first Ma = 30 OFDM symbols ac-

quired. Then, the receiving BF vector, wR, is updated accordingly and the

periodogram is performed with the remaining Ms �Ma = 82 OFDM sym-

bols, with Fp = 10. For DoA estimation with MUSIC, the pseudo-spectrum

function is computed only in the range [�✓0, ✓0], to reduce the processing

burden.

Two types of simulations are performed: 1) RMSE of DoA and Rbis es-

timate as a function of the SNR. In this case, the received symbols are

normalized to unit power and the noise variance is defined as �2

N
= 1/SNR,

as mentioned in Section 4.1.4; 2) system coverage analysis performed com-

puting the RMSE of the position estimate, with the SNR as a function of

target position itself and of the portion of transmitted power reserved to
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sensing, according to (4.11). In this case, the following system parameters

are considered: the EIRP is set to PTGT = 43 dBm; GR = 1 and the noise

PSD is N0 = kBT0F ; the target RCS is �RCS = 1m2.

4.3.1 RMSE vs SNR

In this set of simulations, the position of the target is varied randomly, from

one realization to another, within a diamond-shaped area identified by ✓0, as

illustrated in Fig. 4.1. As expected, inside the blind zone, target detection

is problematic, and the error is a↵ected primarily by the bistatic geometry

configuration. For this reason, targets are not generated inside the minimum

ellipse, as this zone is not considered a system operation zone. In each

realization, the target velocity is varied randomly, with a uniform distribution

from �20 to 20m/s.

Fig. 4.3 shows the RMSE as a function of the SNR for DoA and bistatic

range estimate. In the former, MUSIC, root-MUSIC, and ESPRIT algorithm

are compared. Since the target parameters estimate strongly depends on the

beamforming direction at the Rx, i.e., ✓R,s, to separately study the two errors,

the curve in Fig. 4.3b is obtained using the true value of the target DoA as

✓R,s to update the receiving BF vector. As it can be noticed, RMSE of the

DoA estimate increases for higher values of the SNR than those for which the

estimate of Rbis degrades. This behavior can be explained considering that

Rbis estimation process is subject to a double processing gain, one resulting

from the periodogram calculation, equal to 10 log
10
(K ·(Ms�Ma)) dB [9], and

the other from the beamforming gain, equal to 10 log
10
(NR) dB. In contrast,

the DoA estimation is not subject to any processing gain, and the RMSE of

angle estimation starts to increase at much higher SNR values, depending on

the number of receiving antennas NR.

Moreover, root-MUSIC and ESPRIT strictly depend on the number of

estimated targets, as well as the noise and signal subspace, respectively.

At lower SNR, when the number of targets estimation becomes di�cult,

the DoA estimate process fails, and targets can be missed. This defines

a lower bound, SNRmin, for angle estimation and position estimation, as

a consequence. MUSIC is still able to detect targets for lower SNR as it
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depends solely on the noise subspace, but angle RMSE increases rapidly.

4.3.2 Coverage analysis

For the sensing coverage area analysis, the considered diamond-shaped region

of space is divided into pixels of 1m2 area, and the error on the position

estimate in each pixel is calculated. Also in this case, the speed of the target

is varied randomly with uniform distribution from �20 to 20m/s. A direct

visualization of the behavior of the position RMSE in each point inside the

considered area is represented through heatmaps, shown in Fig. 4.4, evaluated

for two di↵erent values of BL with a fraction of power for sensing given by

⇢ = 0.1. In particular, a 5G NR signal with �f = 120 kHz, fc = 28GHz, and

a number of antennas NT = NR = 50 are used. For DoA estimation root-

MUSIC is applied. In the scenario of Fig. 4.4a, Tx and Rx are located at

(-30,0) and (30,0), respectively, with BL = 60m. In this case, Amin = 9.8m

and Amax = 228m. Likewise, in Fig. 4.4b a baseline BL = 80m is considered,

with Tx and Rx located at (-40,0) and (40,0), having Amin = 11.3m and

Amax = 243m. These results highlight how the fraction of covered area

increases as the baseline decreases for fixed sensing power. However, the

blind zone area does not decrease proportionally to the overall area when

decreasing BL, and thus, for shorter baselines, the fraction of the covered

area diminishes. This behavior is better emphasized in Fig. 4.4c, where the

percentage of covered areas as a function of the baseline BL, for di↵erent

values of ⇢, is shown.

More precisely, the percentage of coverage area is calculated as the fol-

lowing. Recalling Fig. 4.3a, the coverage area is calculated through the

maximum Cassini oval, associated with the minimum SNR, SNRmin, for

which the system can estimate the DoA with good accuracy. For exam-

ple, for the parameters specified above and root-MUSIC estimation perfor-

mance, SNRmin = �26.1 dB at fc = 28GHz, whereas SNRmin = �22.1 dB at

fc = 3.5GHz. The blind zone region is not considered in the sensing system

covered area since in that zone, target detection becomes problematic with

very large position RMSE, as shown in Fig. 4.4a and Fig. 4.4b. Therefore,

the coverage area is the area of the diamond-shaped region inside the Cassini
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oval, corresponding to SNRmin, minus the area of the blind zone; such area is

then normalized to the diamond-shape area to provide a measure of coverage

e↵ectiveness of the sensing system.

4.4 Remarks

In this chapter, the analysis presented in the previous chapters related to a

monostatic JSC system based on 5G NR has been extended by considering

a bistatic setup. An analysis of the sensing performance when such a system

is used to estimate the position of a target via bistatic range and DoA has

been performed. Analyzing the RMSE, we found that good accuracy can

be achieved in LoS, both at mmWave and sub-6GHz frequencies, and that:

i) DoA estimation is the primary source of degradation of the system local-

ization performance; ii) a fraction of coverage area greater or equal to 70%

can be reached for a baseline L  80m, even at mmWave when ⇢ is equal

to 0.3; iii) the blind zone may have a major impact on detection coverage,

especially for narrow bandwidth numerologies.
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Figure 4.3: Sensing performance of the JSC system as a function of the SNR for DoA and
bistatic range estimates, comparing a di↵erent number of antennas and 5G numerologies.
In (a) the RMSE of the DoA estimate for di↵erent estimation techniques, is shown; (b)
shows the RMSE of the bistatic range estimate.
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Figure 4.4: Sensing coverage of the JSC bistatic system operating at fc = 28GHz with
NT = NR = 50 and fc = 3.5GHz with NT = NR = 10. In particular, (a) and (b)
show the heatmaps representing the system coverage in terms of the position RMSE when
fc = 28GHz and ⇢ = 0.1, with the SNR as a function of the target position itself and
of the portion of the transmit power reserved for sensing. The black lines bordering the
red areas represent the Cassini Oval at SNR = �26.1 dB. (c) shows the fraction of area
covered for di↵erent values of the power reserved for sensing, varying the baseline L.



Chapter 5

Multistatic Joint Sensing and

Communication System in the

Near/Far-Field

This chapter aims at extending the analysis presented in Chapter 3 and Chap-

ter 4, in which we considered monostatic and bistatic settings, respectively,

and point-like targets, by studying the performance of a MIMO OFDM-based

JSC multistatic system in the presence of ETs, which here represent UEs

(e.g., cars, motorcycles, etc.), and considering both near-field and far-field

propagation conditions at mmWave frequencies. In particular, the analysis

presented in this chapter di↵ers from the previous ones in several aspects, as

listed hereafter.

• ETs, modeled according to a binomial distribution (BND), are consid-

ered.

• A multistatic JSC system is considered, which consists of one Tx and

two Rxs and is capable of exploiting spatial diversity (as introduced

in section 1.2.1), i.e., viewing the target from di↵erent perspectives,

to obtain an accurate estimate of the ETs in the system’s coverage

area. Additionally, di↵erently from the previous chapters, the setup

considered in this chapter is based on HDA beamforming architectures

which have been shown to be energy and cost-e�cient. In fact, for

61
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very large antenna arrays the implementation of fully digital architec-

tures becomes extremely challenging due to the enormous data rate

of the A/D conversion at each antenna element. In order to alleviate

this problem, HDA architectures are commonly considered for massive

MIMO communications [77].

• A general channel model is provided, which is valid for both near and

far-field propagation conditions since it accounts for amplitude and

phase variations at di↵erent antenna elements in the near-field and

converges to the well-known LoS propagation model (like the one in

(2.8)) in the far-field.

• Since a near/far-field channel model is considered, beamfocusing is per-

formed instead of beamforming when the target/user is identified in the

near-field of the Tx. This approach significantly improves localization

and communication performance compared to traditional beamform-

ing.

• Given that one of the main advantages of multistatic radar setups is

to increase system robustness in terms of target detection, numerical

examples show that by fusing the information from the two Rxs, it is

possible to significantly increase target detection performance.

5.1 System Model

In this chapter, a multistatic JSC configuration is considered. In particular,

as shown in Fig. 5.1, the system consists of a Tx and two Rxs units to

form two bistatic Tx-Rx pairs and can operate in both near and far-field.

The Tx and the Rxs can be connected by a fronthaul link to a central unit

that coordinates sensing operations performed by di↵erent bistatic pairs,

e.g., by performing synchronization between Tx and Rx in each pair and

data fusion to improve target detection (as shown in section 5.4). In fact, as

already mentioned, by using multiple Rxs it is possible to see the targets from

di↵erent perspectives, thus providing a diversity gain, especially in the case
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Figure 5.1: Schematic illustration of the considered JSC multistatic system to be
used in an urban-type scenario. The trajectories shown in the figure model various
locations and movement patterns that may occur with respect to the near and far-
fields of the antenna arrays. We assume that the deployment has been planned
so that the near-fields of the Tx/Rx pairs do not coincide. Each Tx/Rx pair is a
bistatic pair whose geometric relationship is shown in Fig. 4.1. Dfr and D↵ have
been defined in Section 1.3.

of ETs where di↵erent observation perspectives of targets result in di↵erent

measurements [78].

Similar to the system model considered in the previous analysis, at Tx we

assume to illuminate one scanning direction at a time using a beamformer

w 2 CNT⇥1, where NT is the number of transmit antennas, and scan the

environment from one direction to another using a time division technique.

In each direction, we consider that the Tx transmits a frame consisting of M

OFDM symbols, for a duration equal to MTs, and with a bandwidth of B =

K�f , where K is the total number of subcarriers, in order to perform the

sensing task, i.e., to illuminate targets. Unlike the beam steering approach

considered in the previous chapters, where the idea was to steer the power in

the desired directions, here the Tx beamformers are designed to ensure that
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each of them covers a relatively large circular sector in space (centered in the

considered sensing direction) with constant gain while maintaining very low

gain elsewhere, with no overlap between di↵erent sectors. This is a possible

solution to the side lobes problem discussed in Chapter 3. The considered

design approach follows that presented in [79], and details are beyond the

scope of this dissertation.

As already mentioned, the considered system can operate in both near

and far-field. For this reason, at the Tx we consider not only the design

of the beamformers, but also the design of the beamfocusing vectors. In

fact, as it will be shown later, using a beamforming approach when the

target is estimated to be in the near-field of the Tx leads to a degradation

of the sensing performance due to the mismatch in the array response (see

Section 1.3). The design of the beamfocusing vector considered in this work is

explained in detail in [61] and some more details will be given in Section 5.3.

The main idea is that instead of illuminating a specific circular sector as

in beamforming, each vector is designed to focus the transmitted energy in

a specific region centered at the coordinates (�, r) (which does not overlap

with others), so that an extended area is illuminated with relatively constant

gain.

However, di↵erently from the previous analysis, at the Rxs an HDA ar-

chitecture is considered [77]. In particular, at each instant time, the Rxs scan

the portion of space illuminated by the respective Tx beamformer. Conse-

quently, parameter estimation is carried out specifically within this circular

sector. This process continues sequentially until the entire desired moni-

tored region has been covered. Since the here considered HDA architecture

does not allow conventional MIMO radar processing, multiple samples of the

space are required for angle estimation. To address this, a codebook con-

taining a set of NR discrete Fourier transform (DFT) orthogonal beams as

UDFT := (u1, ...,uNR) 2 CNR⇥NR selected from the Fourier basis (2 CNR⇥NR),

where NR is the number of antenna array elements at each Rx. Subsequently,

N
rf

R
beams out of the NR are selected at Rx units, ensuring coverage of a de-

sired region of interest in the beam space (i.e., covering the illuminated region

by the Tx) resulting in the formation of the reduction matrix U 2 CNR⇥N
rf
R .

It is worth noting that the HDA system model considered in this chapter
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can easily be converted to the fully digital system considered previously. In

this case, N rf

R
= NR radio frequency (RF) chains are used to demodulate and

sample all the antennas of the radar Rx, allowing fully digital processing.

5.1.1 Extended target model

It is a common practice to represent an ET as a set of fixed point-scatterers.

As an alternative approach, it is possible to produce a measurement model

(likelihood) in terms of the spatial density of measurements in the intended

sensing area. Specifically, motivated by finite element discretization tech-

niques commonly used for RCS characterization [80], in this analysis, the

target is modeled as a set of grid elements P within a designated rectangular

region A ⇢ R2 with an area of |A|, as shown in Fig. 5.2. At each instant the

radar measurement is made, the ET representing a UE (e.g., vehicle, motor-

cycle, etc.) is composed of a random number P  |P| of scatterers. Given

that each grid point inside A can be active with probability q, the number of

active points P follows a BND, with probability q and number of trials |P|,

i.e., P ⇠ B(q, |P|). Then, the probability of having p active points at each

instant is given by the probability mass function1:

Pr(P = p) =

✓
|P|

p

◆
q
p(1� q)|P|�p

.

Then, P points (elements) are drawn i.i.d. from P such that P ✓ P .

In the considered channel model, each individual scattering point (repre-

sented by an element) is characterized only by its LoS path since mmWave

channels are characterized by large isotropic attenuation, so multipath com-

ponents are typically much weaker than the LoS and disappear below the

noise floor after reflection, especially for the scattering channel seen by the

radar receiver [81,82]. In the following analysis, we assume that the reflection

points observed by each Rx unit are generated by a separate BND process

at each instant of time.

1Interesting to note that, considering a finite but very large number of elements on
the grid, i.e. |P| ! 1, each of which is independent active or non-active, the binomial
distribution can also be very well approximated by a Poisson distribution, with intensity
� = q|P|.



66
Multistatic Joint Sensing and Communication System in the

Near/Far-Field

Tg

TgTl

Tw

ET as observed by Rx2

Cross-range

R
an

ge

Tg

TgTl

Tw

ET of area = |A|
as observed by Rx1

Cross-range
R

an
ge

Figure 5.2: Schematic of the ET model, composed of scattering point clusters
determined through a BND. Note that each Rx observes a di↵erent scattering
profile of the ET at each measurement instance.

5.1.2 Near/far-field channel model

As already mentioned, the considered multistatic JSC system based on OFDM

can operate in both near and far-field. In particular, the urban scenario

shown in Fig. 5.1 allows the simultaneous presence of far-field and neaf-field

conditions in the direct and reflected channels. The di↵erence between these

two regimes in terms of sensing parameters estimation has already been ex-

plained in Section 1.3. The purpose of this section is to provide a general

formulation of the channel model that is valid for both conditions [33]. The

channel model is derived considering the presence of L ETs in the moni-

tored area, each of which is modeled according to a BND as described in

Section 5.1.1.

For simplicity, we start the channel derivation by considering a single

scatterer p (taken from a generic ET l) located at pp = ri,p[cos�i,p, sin�i,p]T

and a transmit ULA i having NT elements located at pin = [0, nd]T , with n =

�
NT�1

2
, . . . ,

NT�1

2
, the antenna index, and d the spacing between the elements,

here set to half the wavelength. We denote with ri,p and �i,p respectively the

reference distance and the reference DoD between Tx i and the scatterer

p, calculated with respect to the center of the array 2. Considering LoS

2Note that, without loss of generality, in Chapter 2 and Chapter 4 the first antenna
element of the array has been considered as a reference point.
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propagation conditions, the equivalent low-pass complex channel coe�cient

for the channel between the single antenna element in and the scatterer p at

the k-th subcarrier fk = fc + k�f , with k = �K/2, . . . , K/2� 1, and m-th

OFDM symbol can be written as

hin,p[k,m] =
p

⇠in,pe
�j(2⇡(

rin,p
c fk�mTsfD,i,p)+'0) (5.1)

where fD,i,p is the Doppler shift, rin,p = kpp � pink2 is the distance between

the in-th antenna of the Tx i and the scatterer p, c is the speed of light,

'0 2 U[0,2⇡) is the phase o↵set between Tx and Rx. Furthermore, ⇠in,l is the

gain factor of the channel between the antenna in and the scatterer p, which

can be written, considering LoS propagation conditions, as follows

⇠in,p =
�i,p

4⇡r2
in,p

(5.2)

with �i,p the RCS of the scatterer p, illuminated by the Tx i.

By performing simple algebraic manipulations on (5.1), the channel vec-

tor hi,p[k,m] 2 C1⇥NT associated with subcarrier k and scatterer p at time

instant m, can be obtained as

hi,p[k,m] = ↵i,pe
j2⇡(mTsfD,i,p�k�f⌧i,p)a†(�i,p, ri,p) (5.3)

where ↵i,p =
p

⇠i,pe
�j(2⇡fc⌧i,p+'0) is the reference channel coe�cient associated

to scatterer p and computed with respect to the center of the antenna array;

⌧i,p = ri,p/c is the reference propagation delay and ⇠i,p the reference channel

gain, while a(�i,p, ri,p) 2 CNT⇥1, is the array response vector, given by

a(�i,p, ri,p) =

0

BBBBB@

ri,p

r0,p
exp(�j 2⇡fc

c
(r0,p � ri,p))

ri,p

r1,p
exp(�j 2⇡fc

c
(r1,p � ri,p))

...
ri,p

rNT�1,p
exp(�j 2⇡fc

c
(rNT�1,p � ri,p))

1

CCCCCA
. (5.4)

The relationship between the reference distance ri,p and the distance of the

inth antenna element from the scatterer p can be obtained from a second
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order Taylor expansion, as follows [33]

rin,p � ri,p ⇡
(nd cos�i,p)2

2ri,p
� nd sin�i,p. (5.5)

By replacing (5.5) in (5.4) and considering |nd| ⌧ ri,p 8n, and ri,p/rin,p ⇡ 1

as reasonable assumptions in the far-field, when d = c/(2fc) we get the same

array response vector as in (2.6). Therefore, (5.4) can be rewritten as

a(�i,p) = [e�j
NT�1

2 ⇡ sin�i,p , . . . , e
j
NT�1

2 ⇡ sin�i,p ]T . (5.6)

Similarly, the vector hp,j[k,m] 2 CNR⇥1 representing the channel between a

given scatterer p and a Rx unit j (consisting of NR antenna elements) related

to the k-th subcarrier and time instant m is given by

hp,j[k,m] = �p,je
j2⇡(mTsfD,p,j�k�f⌧p,j)b(✓p,j, �p,j) (5.7)

where ⌧p,j = �p,j/c is the reference propagation delay, with �p,j the dis-

tance between the scatterer p and the center of the antenna array j, �p,j =p
⇣p,je

�j2⇡fc⌧p,j is the reference channel coe�cient, while b(✓p,j, �p,j) 2 CNR⇥1

is the array response vector computed as in (5.4), with ✓p,j the reference DoA.

Considering LoS propagation conditions and isotropic antenna elements with

e↵ective area A = c
2
/(4⇡f 2

c
), the gain factor ⇣p,j can be written as

⇣p,j =
c
2

(4⇡ fc �p,j)2
. (5.8)

Let us now consider ET l. Each of the Tx-Rx bistatic pairs with index

(i, j) can collect echoes from a random set P (l)

i,j
✓ P of these points 3. Consid-

ering (5.3) and (5.7), the generalized near/far-field NR ⇥NT bistatic MIMO

channel between Tx i and Rx j, considering the presence of the ET l, at k-th

3In the following, for the sake of brevity, we denote by P = |P (l)
i,j | the random number

of scatterers related to the target l and seen by the bistatic pair (i, j).
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subcarrier and m-th time instant can be written similar to (4.9), as follows

Hi,j[k,m] =
PX

p=1

"pe
j2⇡(mTsfD,p�k�f⌧p)b(✓p,j, �p,j)a

†(�i,p, ri,p) (5.9)

where "p = ↵i,p�p,j and ⌧p = ⌧i,p + ⌧p,j are the bistatic complex channel

factor and bistatic propagation delay, respectively, associated with the p-th

scatterer of the target, while fD,p = fD,i,p+fD,p,j is the bistatic Doppler shift,

defined in (4.3).

5.1.3 Input-output relationship

Similar to (2.1), the OFDM frame transmitted from Tx i to target l is here

defined as

si,l(t) = wl

K�1X

k=0

M�1X

m=0

xi,l[k,m]gk,m(t) (5.10)

where wl 2 CNT⇥1 is a (unit-norm) transmit beamforming (in the far-field)

or beamfocusing (in the near-field) vector to point toward l, and xi,l[k,m] is

a generic complex modulation symbol of the K ⇥M OFDM resource grid

used at the Tx i to estimate range, angle, and velocity parameters of the

target l, while gk,m(t) is the pulse.

The noise-free NR-dimensional continuous-time signal transmitted by i-th

Tx, scattered by the ET l, and received from the j-th Rx is given by

ri,j(t) =
PX

p=1

"pe
j2⇡fD,ptb(✓p,j, �p,j)a

†(�i,p, ri,p)si,l(t� ⌧p)

=
PX

p=1

"pe
j2⇡fD,ptb(✓p,j, �p,j)a

†(�i,p, ri,p)⇥

⇥wl

K�1X

k=0

M�1X

m=0

xi,l[k,m]gk,m(t� ⌧p). (5.11)

In the following analysis, we place an assumption that multiple (extended)

targets are su�ciently separated in space, i.e., |a†(�i,l, ri,l)wl0(�̂i,l0 , r̂i,l0)| ⇡ 0
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for l
0
6= l, where �̂i,l0 is the pointing direction (DoD) for a Tx beamformer

wl0 associated with the l
0-th (extended) target.

As already mentioned, at the Rx an HDA architecture is considered, thus

the received signal ri,j(t) is processed by a reduction matrix before sampling.

In particular, we focus the radar Rx on a single target l for M OFDM sym-

bols and estimate di↵erent targets sequentially in time. To achieve this, a

reduction matrix U 2 CNR⇥N
(rf)
R is chosen to cover a particular area in the

current sensing direction/region (determined by the current Tx beamformer).

Then, after the OFDM demodulator, considering negligible inter-carrier in-

terference (ICI) and ISI and including noise, a received time-frequency grid

of complex elements y[k,m] is obtained at each RF chain. Thus, consider-

ing the channel model in (5.9), the N
rf

R
⇥ 1 vector of the received complex

modulation symbols is given by

y[k,m] = U†Hi,j[k,m]wlxi,l[k,m]

=
PX

p=1

"pU
†b(✓p,j, �p,j)a

†(�i,p, ri,p)wl⇥

⇥ xi,l[k,m]ej2⇡(mTsfD,p�k�f⌧p) + ñ[k,m]. (5.12)

where ñ ⇠ CN (0, �2

ñ
I
N

rf
R
) is the complex Gaussian noise.

By stacking the K ⇥M OFDM symbol grid into a KM ⇥ 1 vector x, the

received signal y 2 CN
rf
RKM⇥1 can then be written as

y =
PX

p=1

"pG(fD,p, ri,p, �p,j, ✓p,j,�i,p)x+ ñ. (5.13)

where G(·) is the e↵ective channel matrix of dimension N
rf

R
KM ⇥KM , that

is defined for a single scatterer p as follows

G(fD,p, ri,p, �p,j, ✓p,j,�i,p)
4

= T⌦
⇣
U†b(✓p,j, �p,j)a

†(�i,p, ri,p)wl

⌘
(5.14)
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where T(⌧, fD) 2 CMK⇥MK is defined as

T(⌧, fD) = diag
⇣
[1, . . . , ej2⇡mTsfD , . . . , e

j2⇡(M�1)TsfD ]T

⌦ [1, . . . , e�j2⇡k�f⌧
, . . . , e

�j2⇡(K�1)�f⌧ ]T
⌘
. (5.15)

For the derivation of the ML target parameter estimation in Section 5.2, we

consider a single Tx and Rx pair and drop their respective indices, (.)i,j, to

avoid excessive notation clutter. Needless to say, the same formulation holds

for other pairs. Moreover, we assume NT = NR = Na and N
rf

R
= Nrf .

5.2 Parameter Estimation and Detection

Considering the scenario shown in Fig. 5.1, where a target can be in the near

or far-field of the Tx or one of the Rxs, the target parameter estimation can be

performed in two di↵erent ways. In particular, as explained in Section 5.1.2,

when the target is in the near-field of the Rx, the array response in (5.7) is a

function of both angle and distance (as in (5.4)), so it is possible to estimate

the position of the target directly. Conversely, in the far-field, the array

response is only a function of angle, i.e, b(✓, �) ! b(✓), and an estimate of

the range � can be obtained from the estimate of the propagation delay ⌧ and

the DoA ✓, according to (4.1) and (4.2). In addition, if the target is in the

near-field of the Tx, using a beamforming approach to illuminate the target

will result in a loss of gain as shown in Fig. 1.5. In this case, a beamfocusing

approach can be used to focus the energy in this area and improve the SNR

associated with the target, thus improving the estimation accuracy.

Since we assume that we do not know a priori whether a target is in the

far or near-field of Tx or one of the Rx, a two-stage ML parameter estimation

framework is introduced. In the first stage, we consider scanning the envi-

ronment in time-division and illuminating each target through beamforming,

and a coarse parameter estimation is performed based on bistatic far-field as-

sumptions at the Rx units. Then, based on the estimates obtained from the

first stage, if the target is determined to be in the near-field region of either

the Tx or Rx units, a second estimation stage is performed. As mentioned
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before, depending on the target being located in the near-field of the Tx

or Rx, the second stage will di↵er. More details are given in the following

sections.

Important to note that when the near-field cases occur in the initial stage,

the model mismatch between the near-field and far-field array response vec-

tors presented in Section 5.1.2 leads to poorly localized estimates. However,

these approximate and inaccurate estimates are used to define a region of

interest (RoI) for further processing based on the more correct near-field

model.

Stage 1: Far-field beamforming and bistatic estimation

In the first stage, we assume no knowledge of the target position. The appro-

priate far-field beamformer is selected at the Tx, and based on the assumption

that the ET is located in the far-field of both the Tx and the Rx units, the

array responses at the Tx and the Rx units in (5.14), which are only func-

tions of angular parameters (i.e., a(�, r) ! a(�) and b(✓, �) ! b(✓)) are

considered for parameter estimation. As such, the e↵ective channel matrix

G(fD,p, rp, �p, ✓p,�p) in (5.14) takes the form

Ğ(fD,p, ⌧p, ✓p)
4

= T⌦
⇣
U†b(✓p)a

†(�p)w(�̂p)
⌘
. (5.16)

It is worth noting that from the perspective of the bistatic Rx, the channel

response from Tx to the target is a constant that can be absorbed in the

channel gain coe�cient, i.e.,

gp
4

= a†(�p)w(�̂p) , hp

4

= gp"p

and therefore, Ğ is not a function of the DoD, �. Then, the received signal

in (5.13) can be recast as

y =
PX

p=1

hpĞ(fD,p, ⌧p, ✓p)x+ ñ. (5.17)

From (5.17), the vector of parameters to be estimated is defined as

✓ = {hp, fD,p, ⌧p, ✓p}
P�1

p=0
. (5.18)
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For an ET with P scattering points, the ML estimate of the set ✓ involves

solving the following equation (5.19) in a search space �FF

4

= CP
⇥ R3P

✓ML = argmin
{hp,fD,p,⌧p,✓p}

P�1
p=0 2�

�����y �
PX

p=1

hpĞ(fD,p, ⌧p, ✓p)x

�����

2

2

. (5.19)

The solution of (5.19) requires knowledge of the number of scattering points

P , which can be formulated as a model order estimation problem (see e.g.,

Section 2.2.1). Since the micro-scatterers of ETs are often indistinguish-

able due to the system resolution, the estimation of the model order is an

unattainable task due to the problem being intrinsically ill-posed [83]. In ad-

dition, the parameter space of the brute force ML solution in (5.19) requires

prohibitively large computations.

For this reason, a possible solution, in this case, is to resort to an approx-

imate method that evaluates a hypothesis test on a set of (fD, ⌧, ✓) tuples

belonging to a grid⇥. By maximizing the log-likelihood function with respect

to the amplitude h, the log-likelihood ratio (LLR) takes the form [61]

`(fD, ⌧, ✓) =

��b†(✓)⇠(fD, ⌧)
��2

b†(✓)Ūb(✓)
(5.20)

where the following definitions are used

Ū = kxk2
2
UU†

⇠(fD, ⌧) =
⇥
xTT(fD, ⌧)Y

†U†
⇤T

Y =
h
y[0, 0], . . . ,y[M � 1, K � 1]

i
. (5.21)

Then, the LLR test is given by

`(fD, ⌧, ✓)
H1

?
H0

Tr , (fD, ⌧, ✓) 2 ⇥ (5.22)

where, for this analysis, the threshold Tr is chosen at each grid point by

using the ordered statistic constant false alarm rate (OS-CFAR) approach

described in [84]. By defining a suitably refined search grid on ⇥FF

4

= R3P ,
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and evaluating (5.20) for every tuple (fD, ⌧, ✓) 2 ⇥FF and performing the

estimation and detection (thresholding) step according to (5.22), the esti-

mates (f̂D, ⌧̂ , ✓̂) of the scattering points can be obtained. To convert these

values to the angle and range of the target in the global coordinates, bistatic

conversion principles presented in Section 4.1.1 can be used.

Stage 2: Estimation in the Rx near-field

If the target is determined to be in the near-field of an Rx array, the sec-

ond stage performs another ML estimation of the target parameters with

the correct near-field model, resulting in significantly improved estimation

performance. The correct ML estimator for this scenario is derived below.

In this case, the received signal in (5.13) is considered and the vector of

parameters to be estimated is defined as

✓ = {"p, fD,p, rp, �p, ✓p,�p}
P�1

p=0
. (5.23)

Similar to the previous far-field case, maximizing the log-likelihood function

over the amplitude "p, the LLR test takes on the form [61]

`(fD, r, �, ✓,�) =

��w†ab†⇠(fD, r, �)
��2

w†ab†Ūba†w

H1

?
H0

Tr (5.24)

with (fD, r, �, ✓,�) 2 ⇥NF

4

= R5.

This means the ML metric in (5.24) needs to be evaluated on a fine-

grained grid defined over ⇥ to meet high accuracy localization requirements.

It is clear that evaluating a 5-D search grid is computationally heavy. There-

fore, an appropriately refined Cartesian grid can be defined over the RoI

indicated by the coarse estimates from the first step.

Stage 2: Estimation in the Tx near-field

If the presence of targets in the near-field of the Tx is detected, the scheme

switches from beamforming to a beamfocusing approach at the Tx, thus

increasing the SNR at the intended target location, and so the estimation

performance. Considering the possibility that the detected target may be a

communication user, the ability to properly illuminate it can also lead to a
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significant increase in communication performance (i.e., spectral e�ciency).

To obtain the beamfocusing weights, a beamfocusing codebook at Tx is uti-

lized where the codewords are designed to maintain an (almost) constant

gain within an extended spatial region. Note that in this case, the Rxs can

use the far-field model due to the deployment topology, as shown in Fig. 5.1).

5.3 Design of the Beamfocusing Weights

As explained in the previous section, if the target is determined to be in

the near-field of the Tx, a beamfocusing approach should be considered to

improve the SNR. Recently, several works have dealt with near-field beam-

focusing schemes, especially in the reconfigurable reflecting surfaces domain,

due to the large array sizes used therein [85, 86]. While a few works have

investigated the use of beamfocusing weights obtained by conjugating the

near-field array response (same as the beam steering approach in beamform-

ing), others have resorted to optimization-based methods to obtain suitable

weights [32, 36]. The most significant drawback of those methods is that a

very accurate estimate of the intended user coordinates (equivalently range

and angle) is required. Even when ignoring the cost of obtaining such esti-

mates, these techniques pose another significant challenge since the goal is

to focus beams on the UE’s antenna. In the very likely scenario of physically

ETs (e.g., motorbikes, bicycles, cars, etc.) the UE antenna can be located

anywhere on the object and the estimated reflection points do not necessarily

correspond to the reflections from the antenna.

Approaches related to near-field codebook-based techniques have also

been employed but they present some drawbacks. For example, the approach

proposed in [86] presents spectral leakages in unwanted locations which beats

the purpose of user-interference reduction via beamfocusing. From the sens-

ing perspective, this leads to reflection from unintended objects that may be

located in the undesired illuminated areas.
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5.3.1 Problem formulation

Considering the issues mentioned above, a possible solution can be to consider

a codebook-based scheme inspired by flat-top beamforming techniques that

provide an (almost) constant gain over an extended circular sector. For

this reason, the beamfocusing approach considered in this analysis aims to

synthesize beamfocusing weights for array operation in near-field such that

an extended area is illuminated with a relatively constant gain.

Let us start by defining a setG = G✓Gr of discrete tuple points (�̃i, r̃j), i 2

[G✓], j 2 [Gr]. Let A be a matrix that contains array response vectors com-

puted for each tuple pair (�̃i, r̃j), as per (5.4), such that A = [a(�̃1, r̃1), . . . ,

a(�̃G✓
, r̃Gr)] 2 CNa⇥G.

The optimization problem under consideration can be expressed as a mag-

nitude least-squares problem shown in equation (5.25). This problem falls

under the category of problems discussed in [87, 88], and can be formulated

as follows

min
w

k |A†w|� b̄k2
2

s.t. w†AA†w = 1 (5.25)

where w 2 CNa⇥1 is the beamfocusing vector to be designed and b̄ 2 RG

+

is the desired radiation pattern. This is fixed to have a constant level in a

pre-determined angle-range zone (i.e., spot) in the near-field of the array, and

such that the values corresponding to the rejection directions (sidelobes) are

below a certain threshold with respect to the maximum (center beam). The

constraint in (5.25) imposes unit transmit power.

The above problem in (5.25) is not convex, and therefore by performing

a semidefinite relaxation, acceptable solutions can be obtained. Due to the

typically large number of columns in A 2 CNa⇥G, the above program is

memory and computationally expensive, so it is possible to resort to an

iterative method. Further details on the solution to this problem are beyond

the scope of this dissertation. For a full understanding, the reader is referred

to [61].
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Table 5.1: Simulation parameters

System Parameters Target Parameters

PT = 26 [dBm] M = 6 Tl = 1.5 [m]

B = 128 [MHz] K = 100 Tw = 1 [m]

F = 3 [dB] fc = 28.0 [GHz] Tg = 0.1 [m]

N0 = 2 · 10�21 [W/Hz] Na = 64 q ⇡ 0.01

Pfa = 10�3
Nrf = 8 �rcs = 1 [m2]

5.4 Simulation Results
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Figure 5.3: Probability of detection for an ET along trajectory I in Fig. 5.1. The
x-axis indicates the radial distance from the Tx.

In this section, some numerical results for the considered multistatic set-

ting are given. The results are based on the scenario and topology in Fig. 5.1,

where we consider di↵erent trajectories, enumerated from I to III, to simulate

the di↵erent conditions that may be encountered in a real-world deployment.

Unless otherwise stated, at each location along the trajectories, we consider

an instance of the ET generated according to the BND in Section 5.1.1 and

with the dimensions provided in Tab. 5.1.

Multistatic spatial diversity gain (Trajectory I)

This analysis aims to demonstrate the e↵ectiveness of multistatic configura-
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Figure 5.4: The figure shows an example of estimating the position of the target’s
scatterers when the ET is in the near-field of RX1. (Trajectory II of Fig. 5.1).

tions in improving target detection. More specifically, it is well known that

under di↵erent aspect angles, under which targets are observed by the Rx

units in multistatic configurations, targets can exhibit very di↵erent reflec-

tion characteristics [89]. To this end, having multiple Rxs increases detection

robustness. Given that an important distinction of radar systems utilizing

multiple radars is to incorporate some level of data fusion between the mea-

surement of individual sensors, the following experiments are performed to

prove this. Fig. 5.3 depicts the average detection probability of the consid-

ered ET at each Rx, simulated 200 times for each Rx at the given points

along Trajectory I in Fig. 5.1, where the detection is performed locally at

each Rx using the OS-CFAR thresholding technique. A detection is declared

if the main peak passes the threshold and the estimated position resulting

from the peak value satisfies
p

(x̂p � xp)2 + (ŷp � yp)2 < 1 [m].

Since, as already mentioned, at each realization the target scatterers are

generated according to the BND introduced in Section 5.1.1, in some in-

stances a Rx may observe very few or even zero scattering points from the
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ET with non-zero probability. The fused curve shows the average detection

probability if, at each step, either one of the Rxs has detected the target (i.e.,

OR operation). This fusion can be performed at a central node.
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Figure 5.5: Beamfocusing vs beamforming spectral e�ciency with an ET along
trajectory III in Fig. 5.1. The target locations are indexed 1 � 5. The filled area
shows the gain within a mismatched antenna distance re = 1 [m] on the extended
object.
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Figure 5.6: Comparison of RMSE of the target position using a near-field beam-
focusing vector and a far-field beamforming vector.

Estimation of targets in the Rx near-field (Trajectory II)

Trajectory II in Fig. 5.1 considers an ET that is moving in the near-field of

Rx1. Performing a first estimation through the far-field mismatched model

(evaluating (5.20)) a coarse estimation of the ET scatterer is obtained as

shown in Fig. 5.4. Then by defining an RoI based on these estimates, (5.24)

is evaluated on a fine-grained grid defined over the RoI, comprsing a 6 ⇥ 6

[m2] square with 0.05 [m] pixels. Fig. 5.4a corresponds to the closer target
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location on the trajectory, where it can be observed that it is possible to

individually resolve many of the point scatterers with high accuracy (much

superior to the bandwidth imposed range resolution). Fig. 5.4b depicts the

same procedure, however, since the target is now further from Rx1, the in-

dividual scattering points can not be resolved. Nonetheless, the estimated

location is highly accurate. Note that the estimates obtained by Rx2 for

both positions correspond to the far-field model and since the target lies in

its far-field, the estimates are accurate within the system limits (i.e., range

and angular resolution).

Spectral e�ciency and estimation performance enhancement with

beamfocusing (Trajectory III)

By considering a LoS channel with free-space path loss PL = (4⇡r/�)2, the

matching gain GM and achievable spectral e�ciency (SE) are respectively

given by

GM = |a†(r0,�0)wX(r̂, �̂)| (5.26a)

SE = log
2

 
1 +

PtxG
2

M

N0W

✓
�

4⇡r0

◆2
!

(5.26b)

with (r0,�0) being the true location of the target. wX 2 {wN,wF} is the

Tx beamforming (beamfocusing) vector where wF(�̂) is a codeword chosen

from a discrete Fourier codebook 2 CNa⇥Na , as the codeword with the closest

angular distance of the mainlobe peak with respect to the estimated DoD �̂.

Conversely, wN(r̂, �̂) is a codeword from the custom-designed codebook of

beamfocusing vectors, as explained in Section 5.3.

Fig. 5.5 shows the achievable SE for the ET along Trajectory III. The

plot is obtained by calculating the SE at a hypothetical user antenna that

is mounted on the ET. Since the custom beamfocusing vectors are designed

to cover an extended area with a constant gain, if the antenna position devi-

ates from the expected location, the Fourier codeword performs significantly

worse than beamfocusing words. To demonstrate more explicitly the pa-

rameter estimation performance with beamfocusing and beamforming, we

consider a single point scatterer at each of the locations along trajectory III

(in Fig. 5.1) and perform parameter estimation (at Rx) using beamforming
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and beamfocusing transmission. The results in Fig. 5.6 show an improved

parameter estimation performance which can be attributed to the increase

in SNR at the target location due to the use of beamfocusing.

5.5 Remarks

In this chapter, a JSC OFDM system in a multistatic configuration has

been considered. Unlike the systems considered in the previous chapters, the

framework proposed here is based on a HDA architecture and can perform

beamforming or beamfocusing and ML parameter estimation based on both

near-field and far-field assumptions. Moreover, ETs has been considered.

Through numerical simulations, it has been shown that if after a coarse esti-

mation with far-field assumptions the target turns out to be in the near field

of the Rx arrays, a high-dimensional ML parameter estimation based on the

exact signal model (i.e., the exact array response model) can be subsequently

performed in a defined RoI to improve the estimation accuracy. In addition,

if the target is determined to be in the near-field of the Tx, beam focusing

can be performed to illuminate the target, and the Rxs can re-estimate the

target parameters with improved accuracy due to an increased SNR.
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Chapter 6

Monostatic Joint Sensing and

Communication with OTFS

Unlike the previous chapters, this chapter aims to shift the analysis from

OFDM modulation to OTFS. In particular, the system model and tech-

niques for estimating the target parameters are presented by considering a

monostatic JSC OTFS-based system. The discussion is based on [38, 39]

and [11]. After introducing the system model in Section 6.1, the ML estima-

tor and the Cramér-Rao lower bound (CRLB) are given in Section 6.2.

6.1 System Model

6.1.1 Physical model

The following analysis considers a monostatic JSC OTFS-based. In par-

ticular, we consider a scenario like the one shown in Fig. 6.1, where a BS

equipped with a monostatic JSC transceiver, with full-duplex capabilities, is

jointly used to communicate with UEs and simultaneously sense the environ-

ment by collecting signals backscattered from targets, by sharing resources.

As for the systems presented in the previous chapters, by collecting these

signals, the monostatic JSC system can estimate the distance and radial

velocity of nearby targets.

Similar to OFDM, OTFS is a multicarrier modulation scheme that oper-

83
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Figure 6.1: Signal-processing chain of the considered JSC OTFS-based system.

ates at a given carrier frequency fc, with a bandwidth B = M�f , where M

is the number of subcarriers and �f = 1/T is the subcarrier spacing, with

T the symbol time. Like OFDM, the relation between �f and T is chosen

to avoid ICI. However, unlike OFDM, in OTFS systems, it is possible to

avoid the use of a cyclic prefix (needed to prevent ISI) by properly choosing

the modulating and demodulating pulses, as will be explained in the next

subsection [38].

Now, considering a generic scenario with P point-like targets each mov-

ing with a relative radial velocity vp at a distance rp from the monos-

tatic transceiver, and considering LoS propagation conditions between the

transceiver and the targets, the time-varying channel impulse response of

the radar system can be written as

h(t, ⌧) =
P�1X

p=0

hp�(⌧ � ⌧p)e
j2⇡fD,pt (6.1)

where hp is the complex channel gain, fD,p = 2vpfc

c
the Doppler shift and

⌧p = 2rp

c
the round-trip delay of the signal backscattered by the target p,

with c the speed of light.

The time-continuous signal s(t) to be transmitted on the channel, can be
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written as

s(t) =
N�1X

n=0

M�1X

m=0

X[n,m]gtx(t� nT )ej2⇡m�f(t�nT ) (6.2)

where gtx is the pulse shape, while X[n,m] 2 C represents a generic mod-

ulation symbol, taken from a complex modulation alphabet, and defined in

the time-frequency domain symbol grid at the output of the pre-processing

block of OTFS modulator, as shown in Fig. 6.1. Symbols are arranged in

the N ⇥ M grid ⇤, where N is the number of time slots. The so-called

pre-processing operation simply consists of a symplectic finite Fourier trans-

form (SFFT) that maps the symbols x[k, l], generated by the transmitter in

the delay-Doppler domain and belonging to the grid ⇤? of M⇥N dimension,

to the time-frequency domain symbols X[n,m], as

X[n,m] =
M�1X

k=0

N�1X

l=0

x[k, l]e�j2⇡(
mk
M �

nl
N ) (6.3)

with n, l = 0, ..., N � 1 and m, k = 0, ...,M � 1.

Starting from (6.1) and (6.2), and neglecting the noise introduced by the

communication channel for a while, the continuous-time received signal r(t)

is given by

r(t) =

Z
h(t, ⌧)s(t� ⌧)d⌧ =

P�1X

p=0

hps(t� ⌧p)e
j2⇡fD,pt. (6.4)

The received signal r(t) is first given as an input to a matched filter, which

performs cross-correlation between r(t) and a demodulating pulse grx, and

then discretizes the output signal in both the time and frequency domains.

The grx pulse is chosen in relationship with gtx, such that their inner product

is bi-orthogonal with respect to translations by integer multiples of time T

and frequency �f [38]. This allows to avoid the use of the CP to prevent

ISI.

As a result, first, the cross-ambiguity function Agrx,r, defined in the time-
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frequency domain, is obtained, as

Y (t, f) = Agrx,r(⌧, fD)|⌧=t,fD=f

=

Z
r(t0)g⇤

rx
(t0 � t)e�j2⇡f(t�t

0
)
dt

0
. (6.5)

Then, after a few mathematical manipulations, by sampling (6.5) at times

t = nT and frequencies f = m�f), a N ⇥ M symbol grid in the time-

frequency domain is obtained at the output of the matched filter, whose

generic (n,m) element is given by

Y [n,m] = Y (t, f)|t=nT,f=m�f

=
N�1X

n0=0

M�1X

m0=0

X[n0
,m

0]Hn,m[n
0
,m

0] (6.6)

where, letting h
0

p
, hpe

j2⇡fD,p⌧p , Hn,m[n0
,m

0] is defined as

Hn,m[n
0
,m

0]

,
P�1X

p=0

h
0

p
e
j2⇡n

0
TfD,pe

�j2⇡m�f⌧p

⇥ Agrx,gtx ((n� n
0)T � ⌧p, (m�m

0)�f � fD,p) . (6.7)

Lastly, the demodulated symbols, back in the delay-Doppler domain, are

obtained after the post-processing block by performing the inverse symplectic

finite Fourier transform (ISFFT) on the symbols in (6.6), as

y[k, l] =
1

NM

N�1X

n=0

M�1X

m=0

Y [n,m]ej2⇡(
mk
M �

nl
N )

=
M�1X

k0=0

N�1X

l0=0

x[k0
, l

0]gl,l0 [k, k
0] (6.8)

where gl,l0 [k, k0] represents the ISI coe�cient relative to the delay-Doppler
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pair [k0
, l

0] seen by sample [k, l], whose expression is given by

gl,l0 [k, k
0] =

P�1X

p=0

h
0

p
 p

l,l0 [k, k
0]. (6.9)

where the matrix  p
2 CNM⇥NM , is the channel matrix in the delay-Doppler

domain with respect to the p-th backscattered signal, also referred to as cross-

talk matrix [11]. Its expression is given in Section 6.1.2.

6.1.2 Cross-talk matrix

The cross-talk matrix in (6.9) is the channel matrix in the delay-Doppler

domain and can be considered as a block matrix consisting of N ⇥ N sub-

matrices, denoted by indexes [l, l0], each of dimension M ⇥M . Di↵erently,

the elements of each submatrix are denoted with indexes [k, k0]. The single

element of  p can be written as follows

 p

l,l0 [k, k
0] =

1

NM

X

n,n0,m,m0

e
j2⇡(n

0
TfD,p�m�f⌧p�

nl�n0l0
N +

mk�m0k0
M )

⇥ (6.10)

⇥ Agrx,gtx((n� n
0)T � ⌧p, (m�m

0)�f + fD,p).

Given the complexity of the expression of the cross-talk matrix, to sim-

plify its calculation, the integral appearing in the representation of the cross-

ambiguity function can be approximated with a discrete summation, as

Agrx,gtx(⌧, fD) =

Z
T

0

gtx(t)g
⇤

rx
(t� ⌧)e�j2⇡fDt

dt

⇡
T

M

M�1X

i=0

gtx(i
T

M
)g⇤

rx
(i
T

M
� ⌧)e�j2⇡fDi

T
M . (6.11)

Furthermore, for analytical convenience, it can be assumed that each sub-

carrier within the band B of the OTFS system is spaced precisely by �f ,

which is verified for a large number of subcarriers M , which is a typical case.

Additionally, we assume that the bandwidth expansion caused by Doppler

is minimal in relation to B in order to keep the received signal bandwidth

roughly equal to B, i.e., f (ICI)

D,max
< �f . We further hypothesize that gtx(t)
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and grx(t) are two rectangular pulses of duration T , thus limiting, as already

stated, the maximum delay ⌧
(ISI)

max < T measurable by the JSC system. Due

to these assumptions, the summation in equation (6.11), which approximates

the cross-ambiguity function, can be further simplified in the following way

Agrx,gtx(⌧, fD) ⇡
1

M

M�1�k⌧X

i=0

e
�j2⇡fDi

T
M (6.12)

where k⌧ ,
⌃
⌧/(T/M)

⌥
.

Therefore, under these considerations, the cross-ambiguity function is

nonzero only at the index points n0 = n and n
0 = n � 1, which allows to

approximate the cross-talk matrix  p as follows [11]

 p

l,l0 [k, k
0] ⇡

1

NM

1� e
j2⇡(l

0
�l+fD,pNT )

1� e
j2⇡

(l0�l+fD,pNT )

N

1� e
j2⇡(k

0
�k+⌧pM�f)

1� e
j2⇡

(k0�k+⌧pM�f)
M

⇥ (6.13)

⇥ e
j2⇡fD,p

k0
M�f

8
<

:
1 if k

0 = 0, ..., (M � 1� k⌧p) k
0

ICI

e
�j2⇡(

l0
N +fD,pT )

if k
0 = (M � k⌧p), ..., (M � 1) k

0

ISI
.

6.1.3 OTFS-JSC input-output relation

A more compact input-output relation directly in the delay-Doppler domain

can be derived by starting from (6.8), (6.9) and (6.13), and performing a

vectorization operation on the transmitted symbol grid of elements x[k, l]

and on the received symbol grid of elements y[k, l]. This results in two

NM ⇥ 1 vectors, which are x and y, respectively. Thus, the input-output

relation can be rewritten as follows

y =

✓P�1X

p=0

h
0

p
 p

◆
x+w (6.14)

where w 2 CNM⇥1 represents the AWGN vector with mean 0NM and covari-

ance ⌃ = �
2

w
INM . Throughout this analysis, without loss of generality, a

simplified single point-like target scenario is considered, i.e. P = 1, so the

index p is dropped from now on. Furthermore, the elements of x are normal-

ized to unit power, such that E
���x[k, l]

��2 = 1, and the channel path-loss is
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ignored, i.e., h = 1. Therefore, the SNR related to the sensing part is defined

as SNRrad = 1/�2

w
.

In this setting, (6.14) can be rewritten as

y = h
0 x+w (6.15)

where, by assuming h = 1, the coe�cient h
0, previously defined in Sec-

tion 6.1.1 can be rewritten as h0 = e
j2⇡fD⌧ .

6.2 Sensing Parameters Estimation with OTFS

and CRLB Calculation

6.2.1 Target detection and maximum likelihood esti-

mator

Considering the received signal in (6.15), and defining s = h
0 (⌧, fD)x the

NM⇥1 vector of mean values of y, the ML estimator for the set of unknown

parameters ✓ = (|h0
|,\h0

, ⌧, fD), for the considered single-target scenario,

is given by

✓̂ = arg max
✓2R4

l(y|✓,x) (6.16)

where l(y|✓,x) = �ln
⇣
⇡
NMdet(⌃)

⌘
�

1

�2
w
ky� sk2 is the log-likelihood func-

tion to be maximized.

Assuming ⌧ and fD as known, the estimator ĥ0 of the channel gain h
0 =

|h
0
|e

j\h0
is given by

ĥ0 =
x† (⌧, fD)†y

x† (⌧, fD)† (⌧, fD)x
. (6.17)

Next, by substituting (6.17) into the log-likelihood function and by neglecting

the term that does not depend on parameters in ✓, we obtain

l(y|✓,x) = �

✓
|y|2 �

|x† (⌧, fD)†y|2

x† (⌧, fD)† (⌧, fD)x

◆
(6.18)
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Therefore, by introducing the function

`(⌧, fD) =
|x† (⌧, fD)†y|2

x† (⌧, fD)† (⌧, fD)x
(6.19)

the estimate (⌧̂ , f̂D) of ⌧, fD, which is directly related to the estimation of the

sensing parameters (r, v), previously shown in Section 6.1, can be obtained

as

(⌧̂ , f̂D) = arg max
(⌧,fD)2�

`(⌧, fD) (6.20)

where � is a discretized search space defined as set of delay-Doppler value

pairs taken from given delay intervals [⌧min, ⌧max] and Doppler frequency in-

tervals [fD,min, fD,max], with steps of �⌧ = 1/(M 0�f) and �fD = 1/(N 0
T ),

respectively, with M
0
� M and N

0
� N , as follows1

� = {(⌧, fD) | ⌧ = ⌧min : �⌧ : ⌧max,

fD = fD,min : �fD : fD,max} (6.21)

To perform the estimation of parameters related only to actual targets, a

binary hypothesis test with threshold ⌘ is performed on (6.19) to distinguish

noise from the useful signal, as follows

`(⌧, fD)
H0

7
H1

⌘ (6.22)

where ⌘ is the detection threshold, H0 and H1 are the hypotheses of the

considered binary test, corresponding to the absence of a target (i.e., only

noise) and the presence of a target, respectively.

The target parameters estimation (range and velocity) is performed ac-

cording to (6.20) each time the binary test in (6.22) selects H1, i.e., a target

is present. Specifically, when `(⌧̂ , f̂D) is greater than ⌘, the pair (⌧̂ , f̂D) cor-

responds to the estimated parameters for the detected target.

The detection threshold ⌘ can be chosen to fix the false-alarm rate (FAR)

in the considered search space � of size |�|. It is easy to prove that if there

1Starting from �⌧ and �fD the range and velocity resolutions of the system can be
computed as �r = c�⌧/2 and �v = c�fD/(2fc), respectively.
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is only noise at the receiver, i.e., y = w, the random amplitude assumed

by `(⌧, fD) for each (⌧, fD) 2 � is exponentially distributed with mean value

equal to �
2

w
. Thus, it follows that the threshold can be computed as

⌘ = ��2

w
lnPFA,point (6.23)

where PFA,point is the probability of having a false alarm, i.e., the probability

that `(⌧, fD) > ⌘ under H0, related to each point (⌧, fD) 2 �. The relation

between PFA,point and the total FAR to be guaranteed in the whole search

space � is given by

PFA,point = FAR/|�|. (6.24)

Looking at (6.20) it is worth noting that the channel matrix  defined in

(6.13) must be recomputed several times to obtain the estimate of the sens-

ing parameters ⌧ and fD. Also, a large number of numerical operations is

required to compute this matrix. For this reason, approaches to reduce the

computational complexity of the estimator are very highly desirable. Having

said that, in Chapter 7, an analysis of the computational complexity of the

sensing system is performed and a low-complexity detector for OTFS-based

sensing is proposed.

6.2.2 Cramér–Rao lower bound

In the following, the derivation of the CRLB on the estimation of the sensing

parameters ⌧ and fD, considering the received signal in (6.15), is presented.

As known, the CRLB on the estimation of each parameter ⌧ , fD, |h0
| and

\h0 contained in the vector ✓ is given by

var[✓̂i] � J
�1

ii
(6.25)

where ✓̂i is the estimate of ✓i 2 ✓, representing the i-th generic parameter

contained in ✓ and J
�1

ii
represents the generic i-th element on the main

diagonal of the inverse Fisher matrix.

Thus, the problem of determining the CRLB of the four parameters in

✓ is reduced to computing the Fisher matrix, which in this specific case is
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4⇥ 4, and its inversion.

The elements of the Fisher matrix can be defined as follows

Jij = E[H✓iH✓j ] = �E[H✓i,✓j ] (6.26)

where the generic H✓i =
d

d✓i
l(y|✓,x), with l(y|✓,x) the log-likelihood function

already introduced in the Section 6.2.1.

The elements of the Fisher matrix for such a likelihood function are given

by [90]

Jij =
2

�2
w

NM�1X

n=0


@µn

@✓i

@µn

@✓j
+

@vn

@✓i

dvn

@✓j

�
(6.27)

where µn = Re{sn} and vn = Im{sn}, by assuming sn the n-th element of

the mean value vector s, defined in Section 6.2.1. Now, by considering the

following relation

Re

(✓
@sn

@✓i

◆⇤✓
@sn

@✓j

◆)
=

@µn

@✓i

@µn

@✓j
+

@vn

@✓i

@vn

@✓j
(6.28)

(6.27) can be rewritten as

Jij =
2

�2
w

Re

(
NM�1X

n=0

✓
@sn

@✓i

◆⇤✓
@sn

@✓j

◆)
(6.29)

where sn can be written as an element of a M ⇥ N matrix of indexes k, l,

defined as

s[k, l] = |h
0
|e

j\h0
M�1X

k0=0

N�1X

l0=0

 l,l0 [k, k
0]x[k0

, l
0] (6.30)

with k, k
0 = 0, ...,M � 1 and l, l

0 = 0, ..., N � 1.

Hence, in order to calculate the Fisher matrix, the partial derivatives of

s[k, l] with respect to the four parameters in ✓, must be evaluated. For the

sake of clarity, the partial derivatives are listed below

@s[k, l]

@⌧
= h

0

M�1X

k0=0

N�1X

l0=0

@ l,l0 [k, k0]

@⌧
x[k0

, l
0] (6.31)
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@s[k, l]

@fD
= h

0

M�1X

k0=0

N�1X

l0=0

@ l,l0 [k, k0]

@fD
x[k0

, l
0] (6.32)

@s[k, l]

@|h0|
= e

j\h0
M�1X

k0=0

N�1X

l0=0

 l,l0 [k, k
0]x[k0

, l
0] (6.33)

@s[k, l]

@\h0
= jh

0

M�1X

k0=0

N�1X

l0=0

 l,l0 [k, k
0]x[k0

, l
0]. (6.34)

As can be seen by looking at (6.31), (6.32), the problem of CRLB computa-

tion lastly turns into the derivation and calculation of the partial derivatives

of the cross-talk matrix with respect to the parameters ⌧ and fD, whose

expressions are given in (6.35) and (6.36), according to [11].

@ l,l0 [k, k0]

@⌧
= (6.35)

=
j2⇡�f

NM
e
j2⇡fD

�
k0

M�f

�X

n,m

me
j2⇡(l

0
�l+fDNT )

n
N e

�j2⇡(k
0
�k+⌧M�f)

m
M

⇥

8
<

:
1 if k

0 = 0, ..., (M � 1� k⌧ ) = k
0

ICI

e
�j2⇡

⇣
l0
N +fDT

⌘

if k
0 = (M � k⌧ ), ..., (M � 1) = k

0

ISI
.

@ l,l0 [k, k0]

@fD
=

j2⇡

NM
e
j2⇡fD

�
k0

M�f

�X

m

e
�j2⇡(k

0
�k+⌧M�f)

m
M

⇥

8
<

:
g1(l, l0, k0) if k

0 = 0, ..., (M � 1� k⌧ ) = k
0

ICI

g2(l, l0, k0) if k
0 = (M � k⌧ ), ..., (M � 1) = k

0

ISI
.

(6.36)
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with

g1(l, l
0
, k

0) =
X

n

e
j2⇡(l

0
�l+fDNT )

n
N
� k

0

M�f

�
+
X

n

nTe
j2⇡(l

0
�l+fDNT )

n
N

g2(l, l
0
, k

0) = e
�j2⇡(

l0
N +fDT )

hX

n

e
j2⇡(l

0
�l+fDNT )

n
N
� k

0

M�f
� T

�
+

+
X

n

nTe
j2⇡(l

0
�l+fDNT )

n
N

i
.



Chapter 7

A Low-Complexity Detector for

OTFS-based Sensing

In order to address the problem of the high complexity of OTFS-based JSC

systems introduced in Chapter 6, this chapter proposes a solution for a

low-complexity detector for JSC OTFS-based systems. In particular, we

first propose an e�cient calculation method of the channel matrix proposed

in [11], containing the information on the detection parameters, through its

decomposition into four elementary, low-dimensional matrices linked with

the absolute value of the Dirichlet kernel. Then, a priori localization of the

elements of the elementary matrices containing most of the information help-

ful in estimating the sensing parameters is performed. Starting from that,

an approximation criterion for the elementary matrices, which consists of

neglecting in the computation those elements not significant for parameter

estimation, leveraging properties of the Dirichlet kernel is given. The pro-

posed solution is validated through numerical simulations in order to show

that it allows significantly reducing the computational complexity of the ML

estimator without seriously a↵ecting its performance, measured in terms of

RMSE of range and velocity estimation and probability of detection.

95
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Figure 7.1: Cross-talk matrix schematic representation.

7.1 Cross-Talk Matrix Considerations

The cross-talk matrix  2 CNM⇥NM is the channel matrix in the delay-

Doppler domain, containing the information about the sensing parameters.

It can be defined as a block matrix since it is composed of N⇥N sub-matrices

(denoted by indexes [l, l0]), each of dimension M ⇥M , whose elements are

indexed by the pair of indexes [k, k0], as conceptually shown in Fig. 7.1.

As it can be seen from (6.13), a large number of numerical operations is

required to compute  . Moreover, according to (6.20), this matrix must be

re-computed several times to obtain the estimate of the sensing parameters ⌧

and fD. For this reason, approaches to reduce the computational complexity

of the estimator are very much desirable.

As a starting point for pursuing this objective, the following four matrices

are defined

Y1 ,
1

NM

1� e
j2⇡(l

0
�l+fDNT )

1� e
j2⇡

(l0�l+fDNT )
N

(7.1)

Y2 ,
1

NM

e
�j2⇡(

l0
N +fDT )

� e
j2⇡(l

0
(1�

1
N )�l+fDT (N�1))

1� e
j2⇡

(l0�l+fDNT )
N

(7.2)
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X1 ,
e
j2⇡fD

k01
M�f � e

j2⇡(k
0
1(1+

fD
M�f )�k+⌧M�f)

1� e
j2⇡

k01�k+⌧M�f

M

(7.3)

X2 ,
e
j2⇡fD

k02
M�f � e

j2⇡(k
0
2(1+

fD
M�f )�k+⌧M�f)

1� e
j2⇡

k02�k+⌧M�f

M

(7.4)

where Y1, Y2 are N⇥N matrices, while X1, X2 have dimension M⇥(M�k⌧ )

and M ⇥ k⌧ , respectively. The two vectors l = [0, . . . , N � 1]T and l0 =

[0, . . . , N � 1] represent the row and column indexes, respectively, of Y1 and

Y2. Moreover, k = [0, . . . ,M � 1]T is the row indexes vector of Xi, with

i = 1, 2, while k0

1
= [0, . . . ,M � 1 � k⌧ ] and k0

2
= [0, . . . , k⌧ � 1] are the

column indexes vector of X1 and X2, respectively.

From these matrices, it is now possible to calculate the cross-talk matrix

through the Kronecker products between Yi and Xi matrices with the same

indexes and then sum together the resulting matrices thus obtained, as fol-

lows

 1 = Y1 ⌦ [X1,0M⇥k⌧ ]

 2 = Y2 ⌦ [0M⇥(M�k⌧ ),X2]

 =  1 + 2. (7.5)

To find a method for reducing the computational complexity, first, some

considerations about the absolute value of Y1, Y2, X1, X2 must be made.

Starting from (7.1), (7.2), (7.3) and (7.4), it is easy to prove that the absolute

value is the same for each of these matrices, and it coincides with the absolute

value function of the Dirichlet kernel 1. This function, periodic of 2⇡ in

the [�⇡, ⇡] interval, can be conveniently normalized to have periodicity in

[�1/2, 1/2], as

DR(x) =
RX

r=�R

e
j2⇡rx =

sin((2R + 1)⇡x)

sin(⇡x)
(7.6)

With some algebraic manipulations, it can be proved that the absolute value

1Note that, in this analysis, we refer to the absolute value of a matrix as an element-wise
modulus operation.
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of Y1 and Y2 can be expressed as the absolute value of DR(x) apart from

a normalization factor 1/(NM), when R = (N � 1)/2, and by defining x =

xl,l0 , x
0

l,l0/N , with x
0

l,l0 = l
0
� l + (fDNT ), 8l 2 l, 8l0 2 l0. Similarly, the

same expression of the absolute value can be obtained for X1 and X2 by

assuming R = (M � 1)/2 and defining x = xk,k
0
i
, x

0

k,k
0
i
/M , with x

0

k,k
0
i
=

k
0

i
� k + (⌧M�f), 8k 2 k, 8k0

i
2 k0

i
, for i = 1, 2. More precisely, the

aforementioned relationships are

���DN�1
2
(xl,l0)

��� =

����
1� e

�j2⇡Nxl,l0

1� e
�j2⇡xl,l0

����

=

������
1� e

j2⇡x
0
l,l0

1� e
j2⇡

x0
l,l0
N

������
= |Yi[l, l

0]| (7.7)

���DM�1
2

(xk,k
0
i
)
��� =

�����
1� e

�j2⇡Mxk,k0i

1� e
�j2⇡xk,k0i

�����

=

������
1� e

j2⇡x
0
k,k0i

1� e
j2⇡

x0
k,k0i
M

������
= |Xi[k, k

0

i
]| (7.8)

for i = 1, 2.

As it can be seen in Fig. 7.2 and 7.3, the absolute value functions in

(7.7) and (7.8) are periodic of N and M in the intervals [�N/2, N/2] or

[�M/2,M/2], respectively.

In light of all the previous considerations, the elements of |Y1|, |Y2|, |X1|,

and |X2| are nothing more than samples of the absolute value of the Dirichlet

kernel. In particular, each of these samples falls on predictable points since,

by definition, the variable x
0 can only take value in a specific finite discrete

set depending on the related matrix indexes.

The absolute value of the Dirichlet kernel can be seen as a periodic func-

tion consisting of a main lobe and secondary lobes of lower peak value and

decreasing as one moves away from the so-called main lobe. In particular,

considering the first period that can be defined in the interval [�N/2, N/2]

or [�M/2,M/2], depending on the matrix considered, the main lobe turns
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6

Figure 7.2: Graphical representation of the elements of matrices |Yi[l, l0]|, with
i = 1, 2, seen as samples of the associated function |Yi|, considering x0Y,1+

,
frac(fDNT ) and x0Y,1�

, frac(fDNT ) � 1. The case with N = 6 and x0Y,1+
< 0.5

is depicted.

out to be centered in the half of the period, i.e. in zero. In contrast, the

secondary lobes present peaks for x0

l,l0 or x
0

k,k
0
i
non-integer multiple values of

1/2, except for 1/2 and, as mentioned above, these peaks gradually decrease

until x0

l,l0 = ±N/2 or x0

k,k
0
i
= ±M/2. Since the function is periodic, the values

grow again after that point until ±N or ±M , respectively.

Moreover, due to the geometric property of the considered absolute value

function and the fact that the indexes are integers, two samples fall into the

main lobe centered at zero, namely in x
0

l,l0 = x
0

Y,1+
, frac(fDNT ) and in

x
0

l,l0 = x
0

Y,1�
, frac(fDNT ) � 1, for the |Yi| matrices, or in x

0

k,k
0
i
= x

0

X,1+ ,
frac(⌧M�f) and in x

0

k,k
0
i
= x

0

X,1� , frac(⌧M�f) � 1, for the |Xi| matrices,

with i = 1, 2. Contrariwise, in each secondary lobe only a single sample falls

at multiple integers of x0

Y,1+
or x0

X,1+ in the positive x
0 axis and of x0

Y,1�
or

x
0

X,1� in the negative one, respectively. Thus, it is worth noting that the

elements of the four matrices can be seen as periodic samples of the function

taken asymmetrically with respect to the y-axis.

Two special cases can be identified: one for x0

Y,1+
= 0 or x0

X,1+ = 0 and

the other one for x0

Y,1+
= 0.5 or x0

X,1+ = 0.5. The former determines a dis-

continuity in the Dirichlet kernel absolute value function at the considered

x
0 value, so that only one sample, obtained by applying de l’Hôpital ’s theo-
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Figure 7.3: Graphical representation of the elements of the matrices |X1[k, k01]|
(a) and |X2[k, k02]| (b), seen as samples of the associated functions |X1| and |X2|,
respectively, considering x0X,1+ , frac(⌧M�f) and x0X,1� , frac(⌧M�f)� 1. The
case with M = 6 and x0X,1+ > 0.5 is depicted. In red are represented the samples
removed from |X1| (red unfilled circle) and added in |X2| (red filled circle) when
switching from the case with k⌧ = 1 to the one with k⌧ = 3.

rem, falls on the main lobe, precisely on its peak, while no samples fall on

the secondary ones since they are located in the notches (or zeros) of the

function. Di↵erently, the latter produces a symmetrical situation in which

the two samples on the main lobe assume the same value, while those on the

secondary lobes are located at the corresponding peaks of the function.
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7.2 Cross-Talk Matrix Approximation

In this section, the analysis performed for the approximation of the cross-talk

matrix in (6.13) is presented.

By analyzing this matrix, it is possible to observe that it is nothing more

than a quasi-band matrix since it has only a few elements clustered in bands

that have a value in modulus that is not negligible. Moreover, as it will be

shown in Section 7.5, the elements with higher modulus seem to contain most

of the information about sensing parameters. Having said that, one way to

reduce the computational complexity might be to set the matrix elements

with modulus values below a chosen threshold to zero and then treat this

matrix as a sparse matrix. However, given the high dimensionality of the

cross-talk matrix and the resulting large number of entries, this approxima-

tion strategy would be ine�cient from an implementation point of view, since

it would require first computing the entire matrix and then setting some of

its elements to zero.

One possible solution to address this problem is not to directly approxi-

mate the cross-talk matrix but to approximate the four matrices |Y1|, |Y2|,

|X1| and |X2| introduced in Section 7.1, which have a reduced dimensionality.

In particular, it is possible to select a threshold on each of these matrices,

setting it according to the element that falls on one of the lobes of the corre-

sponding Dirichlet kernel absolute value function, within one of its periods,

as shown in Fig. 7.2 and 7.3. These lobes are identified by means of the vari-

able Nlobe, with Nlobe 2 [1, dN/2e] for Yi functions, and Nlobe 2 [1, dM/2e]

for Xi functions, with i = 1, 2.

In particular, Nlobe = 1 denotes the main lobe, while values of Nlobe

greater than one are used to identify the secondary lobes that are progres-

sively further away from the main lobe, either in the positive or negative x
0

axis, within a generic period of the considered function. The above approach

is motivated by the fact that between the samples on the main lobe and those

on one of the secondary lobes, there is a large di↵erence in amplitude, increas-

ing as we move away from the main lobe. For this reason, it can be observed

that the more the threshold is set to the sample that falls in a secondary

lobe far away from the main lobe within the function period, the lower the
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threshold value becomes, and thus the smaller the number of elements of the

matrix that are neglected in the approximation, and vice-versa.

Going into more detail, it can be observed that the absolute value matrices

|Yi| and |Xi|, with i = 1, 2, have a well-defined band structure consisting of

circularly shifted diagonals. Each of these diagonals is composed of equal

elements, whose values are specific samples of the corresponding absolute

value function, as stated in Section 7.1. The values associated with di↵erent

diagonals become progressively smaller as one moves away from the main

diagonal, which corresponds to the main lobe of the related absolute value

function. Furthermore, each diagonal is circularly shifted by a certain factor

that depends on the sensing parameters, as will be explained later. Thus,

it turns out to be possible to approximate such matrices by band matrices

with fewer non-zero diagonals.

One way to perform this approximation technique is to use appropriate

matrices that act as masks, having ones where the matrix value must be cal-

culated and zeros otherwise. In particular, these mask matrices are obtained

from an identity matrix, by adding to it and then properly circularly shifting

a number of super- and sub-diagonals equal to bNdiag/2c, where Ndiag is the

number of non-zero diagonals in the mask matrices, given by

Ndiag = 2Nlobe � 1, withNlobe 2 Z+
. (7.9)

The equality in (7.9) is justified if we consider setting the threshold in

correspondence of the element of the four matrices |Y1|, |Y2|, |X1| and |X2|,

associated with the chosen value of Nlobe. Actually, due to the asymmetry

of the problem, for a given value of Nlobe, there are always two associated

elements with di↵erent values, as can be seen in Fig. 7.2 and 7.3. However,

the equality in (7.9) is still verified if one of the two that is greater in modulus

is considered.

As already mentioned, the mask matrices actually turn out to be shifted

in a manner dependent on the value of delay ⌧ and Doppler shift fD. In

particular, the masks related to |Y1| and |Y2| turn out to be circularly shifted

to the left by lfD , dfDNT e positions, while those associated with |X1| and

|X2| are obtained starting from M ⇥M mask matrices, by circularly shifting
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them leftward and downward, respectively, of k⌧ � 1 positions.

Nevertheless, a particular case must be considered. In fact, as previously

stated in Section 7.1, for values of ⌧ and fD such that frac(⌧M�f) = 0 and

frac(fDNT ) = 0, respectively, the elements of the absolute value matrices

are samples that fall, one on the peak of the main lobe and the rest on the

notches of the associated function. All the elements that fall on the notches

can be neglected while the one on the peak of the main lobe can be evaluated

through de l’Hôpital ’s theorem due to a discontinuous condition, as stated in

Section 7.1. In such a scenario, the matrices can be approximated as diagonal

matrices, each with the corresponding sample at the peak of the main lobe

as its value. Again, the resulting mask matrices are shifted by an amount

related to delay and Doppler, but this time not circularly and horizontally,

but downward by a number of positions equal to k⌧ and lfD , respectively,

depending on whether we consider the |Xi| or |Yi| matrices.

7.3 Low-Complexity ML Implementation

To determine the pair (⌧̂ , f̂D) that maximizes (6.20), which represents the

parameters estimate, it is essential to compute the expression in (6.20) for

multiple (⌧, fD) pair. This evaluation is performed within specified search

ranges for both delay and Doppler, using a predetermined step size, as ex-

plained in Section 6.2.1. However, this operation can be computationally ex-

pensive, especially when dealing with large delay-Doppler evaluation ranges.

To address this, a low-complexity algorithm for implementing the ML esti-

mator, presented in Section 6.2.1, is provided. This method is based on the

approximated ML sensing parameter estimation scheme described in [11].

The goal is to dynamically change the search interval for the values of ⌧

and fD by starting with a wide discretization step and gradually narrowing

it to the values of the sensing parameters estimated in the previous step.

This is achieved while maintaining a fixed number of ⌧ and fD values evalu-

ated within the new search interval. Consequently, the algorithm maintains

low complexity while repeatedly and dynamically achieving a high resolution

in the search.

Specifically, in this approach, the ML estimator no longer explores all
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possible combinations of delay and Doppler points within a given wide range

of values. Instead, it proceeds iteratively by tightening the search range

around the point (⌧ ,fD) estimated in the previous iteration, i.e. (⌧̂ ,f̂D), until

it converges to a value that remains approximately constant, with minor

fluctuations, for a user-defined number of cycles. This flexible approach

enables an e↵ective balance between algorithmic complexity and resolution,

o↵ering improved e�ciency in parameter estimation.

The considered low-complexity algorithm is structured as follows, where

n
it denotes the index associated with the current iteration of the algorithm, Tr

represents the threshold value used to determine when the change in the esti-

mate of either sensing parameter between two consecutive iterations becomes

negligible, and N
it,max is the maximum number of consecutive iterations in

which the change in the estimated values remains below the specified thresh-

old:

Initialization: nit = 0:

• fixing ĥ
0
n
it
=0 = 0

• we take K equispaced points (where K can take di↵erent values in the

case of delay or Doppler) with step 1/(M�f) and 1/(NT ) in the search

intervals related to delay and Doppler, respectively, as chosen by the

user, i.e.
⇥
⌧
n
it
=0

min
,⌧n

it
=0

max

⇤
and

⇥
f
n
it
=0

D,min
,fn

it
=0

D,max

⇤
. In this way, the following

vectors of K elements are to be formed, respectively

1. ⌧ n
it
=0 =

�
⌧
0

1
, ..., ⌧

0

K

 

with ⌧
0

1
= ⌧

0

min
and ⌧

0

K
= ⌧

0

max

2. fn
it
=0

D
=
�
f
0

D,1
, ..., f

0

D,K

 

with f
0

D,1
= f

0

D,min
and f

0

D,K
= f

0

D,max

For n
it = 1, ..., N it,max or���⌧̂nit
� ⌧̂

n
it
�1
�� and

��f̂n
it

D
� f̂

n
it
�1

D

��� < Tr, do:

• Delay and Doppler estimation update:

⇣
⌧̂
n
it
, f̂

n
it

D

⌘
= argmax

(⌧,fD)2

�
⌧nit

,fnit
D

�

��x† †(⌧, fD)y
��2

x† †(⌧, fD) (⌧, fD)x
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• Channel complex gain estimate update:

ĥ
0
n
it
=

x† †
�
⌧̂
n
it
, f̂

n
it

D

�
y

x† †
�
⌧̂n

it
, f̂

nit

D

�
 
�
⌧̂n

it
, f̂

nit

D

�
x

• Updating and narrowing of the search intervals :

Assuming that î and ĵ represent the indexes associated with the ele-

ments of the vectors ⌧ n
it
and fn

it

D
, respectively, corresponding to the

estimated values at step n
it for delay ⌧̂ and Doppler f̂D, then it arises

– ⌧
n
it
+1

min
= ⌧

n
it

î�1
and ⌧

n
it
+1

max
= ⌧

n
it

î+1

– f
n
it
+1

D,min
= f

n
it

Dĵ�1
and f

n
it
+1

D,max
= f

n
it

Dĵ+1

If î or ĵ are equal to 1 or K, then we have

– case î = 1 or ĵ = 1, then:

⌧
n
it
+1

min
= ⌧

n
it

î
and ⌧

n
it
+1

max
= ⌧

n
it

î+2

f
n
it
+1

D,min
= f

n
it

D,ĵ
and f

n
it
+1

D,max
= f

n
it

D,ĵ+2

– case î = K or ĵ = K, then:

⌧
n
it
+1

min
= ⌧

n
it

î�2
and ⌧

n
it
+1

max
= ⌧

n
it

î

f
n
it
+1

D,min
= f

n
it

D,ĵ�2
and f

n
it
+1

D,max
= f

n
it

D,ĵ

Finally, in the subsequent iteration of the algorithm, denoted as
�
n
it +

1
�
, a new set of K equispaced values is selected within the updated

delay and Doppler search intervals
⇥
⌧
n
it
+1

min
, ⌧n

it
+1

max

⇤
and

⇥
f
n
it
+1

D,min
, fn

it
+1

D,max

⇤
.

This set of values comprises the following elements

– ⌧ n
it
+1 =

�
⌧
n
it
+1

1
, ..., ⌧

n
it
+1

K

 
,

with ⌧
n
it
+1

1
= ⌧

n
it
+1

min
and ⌧

n
it
+1

K
= ⌧

n
it
+1

max

– fn
it
+1

D
=
�
f
n
it
+1

D1
, ..., f

n
it
+1

DK

 
,

with f
n
it
+1

D1
= f

n
it
+1

D,min
and f

n
it
+1

DK
= f

n
it
+1

D,max
.

An example of the behavior of the considered low-complexity implemen-

tation of the ML estimator is shown through the range-velocity heatmaps in

Fig. 7.4. In particular, three iterations of the algorithm are shown. The first

one is related to the initialization where a course estimation is performed by
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considering huge ranges of distance and velocity. Then, as explained earlier,

the estimation is improved with each iteration by narrowing the search range

around the previously estimated value with increasing resolution.

7.4 Computational Complexity Definition

The definition of computational complexity used in this dissertation is pre-

sented in this section.

First, the concept of elementary operation is introduced. Then, the compu-

tational complexity is estimated based on the estimation of the number of

elementary operations required.

For the considered problem, i.e. the estimation of range and velocity of

targets by using the ML algorithm in (6.20), the most expensive operation

in terms of computational resources is by far the calculation of the cross-talk

matrix  .

Therefore, a good estimate of the computational complexity of the system

can be obtained as the number of elementary operations needed to compute

this matrix. In particular, the complexity estimate is given first for the case

without any approximation, hereinafter referred to as the full case, and then

for the approximated case. This allows having a metric for comparing the

two scenarios, as will be shown in Section 7.5.

In this analysis, the real sum is considered as an elementary operation.

Moreover, according to [91], the real multiplication can be seen as corre-

sponding to q times a real sum in terms of computational e↵ort, where q

is the equivalence factor between real sum and multiplication. Therefore,

since a complex multiplication corresponds to 4 real multiplications and 2

real sums, it follows that it can be considered as a number 2(2q + 1) of real

sums. Di↵erently, the complex sum corresponds to only 2 real sums.

Without loss of generality, we assume that both the sum between two

zero elements, i.e. 0+0, and the product between zero and a generic element

z 2 C di↵erent from zero, i.e. 0 ⇥ z, generate a negligible computational

cost and are therefore almost negligible for the complexity estimation. For

this reason, they are only taken into account by a parameter ✏ whose value

depends mainly on the hardware (HW) under consideration and is defined
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(a) (b)

(c)

Figure 7.4: Range-velocity heatmaps obtained by varying search intervals and steps
for three iterations of the algorithm. (a) first iteration: distance and velocity reso-
lution equal to 15m and 79.6m/s, respectively. (b) second iteration: distance and
velocity resolution equal to 1.3m and 13.3m/s, respectively. (c) third iteration:
distance and velocity resolution equal to 0.12m and 2.2m/s, respectively.
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as follows ⇢
0 + 0

0⇥ z
= ✏(HW) operations ⇡ 0 operations. (7.10)

The calculation of the cross-talk matrix  in the full case involves a

total computational cost C , defined as the number of real sums needed to

calculate the cross-talk matrix, given by

C = C 1 + C 2 + C 1+ 2 (7.11)

where C 1 = 2N2
M(M � k⌧ )(2q + 1) and C 2 = 2N2

Mk⌧ (2q + 1) are the

computational costs to compute  1 and  2, respectively, while C 1+ 2 =

2(NM)2 is the computational cost to calculate the element-wise sum matrix

between  1 and  2. Therefore, the computational cost C is given by

C = 4(NM)2(q + 1). (7.12)

Di↵erently, the computational cost C ap for the calculation of the approx-

imate cross-talk  ap is much lower and it depends on the variable Ndiag, and

thus on Nlobe, introduced in (7.9). In particular, the overall computational

cost in the approximated case can be expressed as

C ap(Nlobe,HW) = C 1,ap(Nlobe) + C 2,ap(Nlobe)

+ C 1,ap+ 2,ap(Nlobe)

+ C✏(HW) (7.13)

where C 1,ap = 2N(2Nlobe � 1)2(M � k⌧ )(2q + 1), C 2,ap = 2Nk⌧ (2Nlobe �

1)2(2q+1) and C 1,ap+ 2,ap = 2NM(2Nlobe�1)2 are the computational costs

in the approximate case, while C✏ represents the negligible computational cost

associated with the aforementioned zero operations. Starting from (7.13) and

replacing the expressions for the computational cost given above, the total

computational cost in the approximate case can be obtained as

C ap(Nlobe,HW) = 4NM(2Nlobe � 1)2(q + 1)

+ C✏(HW). (7.14)
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Finally, in order to analyze the gain obtained in terms of reduction of the

number of operations between the approximate case and the full case, a gain

factor Gcomp(Nlobe,HW) is introduced. In particular, this can be seen as a

decimation factor on operations due to the proposed approximation criterion

and is defined as

Gcomp(Nlobe,HW) =
C 

C ap(Nlobe,HW)

=
NM

(2Nlobe � 1)2 + C✏(HW)
. (7.15)

7.5 Validation of the Proposed Approxima-

tion Technique

Numerical simulations are performed to evaluate the e↵ectiveness of the

method proposed in Section 7.2 for the approximation of the cross-talk ma-

trix  . The analysis is carried out considering system parameters according

to the automotive standard IEEE 802.11p, as summarized in Table 7.1. In

addition, a 16-QAM constellation with symbols normalized to unitary mean

power, and a scenario as the one described in Section 6.1 are considered.

Two di↵erent analysis are conducted: 1) a study of the system compu-

tational complexity by means of the metrics introduced in Section 7.4; 2)

an analysis of the impact of the approximation technique introduced in Sec-

tion 7.2 on the sensing performance. The latter is done by means of RMSE

and detection probability curves, comparing the estimation and detection

performance of the system for di↵erent levels of approximation (i.e., di↵er-

ent values of the variable Nlobe) and also without any approximation.

7.5.1 Computation complexity analysis

The computational complexity analysis of the ML algorithm in (6.20), which

is utilized for estimating the sensing parameters ⌧ (or r) and fD (or v), is

conducted by employing the metrics presented in Section 7.4.

This analysis consists of comparing the full case with the approximate case

and considering a single computation of the cross-talk matrix. Specifically,
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Table 7.1: Simulation Parameters

IEEE 802.11p [92] Target / Radar Parameters

fc [GHz] 5.89 Target dist. r [m] 20

B [MHz] 10 Target vel. v [m/s] 22.22

Active subcarriers M 64 r
0

min
[m] 0

OTFS symbols per frame N 50 r
0

max
[m] 350

�f = B/M [kHz] 156.25 v
0

min
[m/s] �500

T = 1/�f [µs] 6.4 v
0

max
[m/s] 500

the focus is on highlighting the decrease in the number of operations needed

to calculate the cross-talk matrix as the level of approximation increases.

Figure 7.5: Gain factor Gcomp as a function of the variable Nlobe.

For this purpose, in Fig. 7.5 the decrease of the gain factor Gcomp as the

variable Nlobe increases is shown. As expected, it can be seen that increasing

the value of Nlobe, corresponding to a larger number of elements included in

the matrix approximation, leads to decreasing benefits in terms of reducing
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Figure 7.6: C and C ap (left y-axis) and the associate average time curves (right
y-axis) vs Nlobe, by assuming N = 50, M = 64, and q = 2.

the total number of elementary operations compared to the scenario without

any approximation. Notably, for Nlobe values greater than approximately

min(dN/2e, dM/2e), that is 25 in the considered case, the resulting gain

approaches a value of 1, indicating that there is no discernible benefit in

adopting the approximation, as expected from what has been explained in

Section 7.2.

Fig. 7.6 shows on the left y-axis the curves of the computational costs

C and C ap as functions of the variable Nlobe. These curves are compared,

on the right y-axis, with the corresponding curves of the cross-talk matrix

computation mean times, obtained by simulating the system in MATLAB.

It can be noticed that the full case exhibits a convergence of the cost

and average time curves at di↵erent scales, while in the approximate case,

a noticeable o↵set between these curves is observed. This discrepancy is

a result of omitting the term C✏, as defined in equation (7.13), from the

computation of the number of operations required for constructing the cross-

talk matrix. Furthermore, it can be observed the gain on computational

complexity as Nlobe varies. In particular, it can be seen that for extremely
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low values of Nlobe, where the system works rather well (e.g., for Nlobe > 1,

as it will be shown in Section 7.5.2), the computational complexity gain

is notably high. For example, a di↵erence of 3 orders of magnitude in the

number of operations and 2 orders of magnitude in the average times between

the full case and the approximate case is present when Nlobe = 2.

7.5.2 Estimation root-mean-square error analysis

An analysis of the performance of sensing parameters estimation is carried

out in order to highlight the impact of the proposed cross-talk matrix ap-

proximation on it. This analysis is done by means of RMSE curves related

to the estimation of range and velocity, as a function of SNR, obtained for

several values of the variable Nlobe, as shown in Fig. 7.7. As can be observed,

these curves are also compared with the performance of the full case scenario

and with the square root of the CRLBs derived in Section 6.2.2.

As mentioned in Section 6.1.3, the radar SNR is defined as

SNRrad =
E
���x[k, l]

��2 

Pn

=
1

�2
w

(7.16)

The RMSE is defined as in (3.4), with NMC = 1000.

Upon analyzing Fig. 7.7a and 7.7b, which show the RMSE in the estimation

of range and velocity respectively, it can be observed that the JSC OTFS-

based system in the full case exhibits good estimation performance up to

SNR = �17 dB, with the RMSE being in close proximity to the theoretical

bound, for both range and velocity.

For what concerns the performance related to the proposed approxima-

tion technique, it can be noticed that for high SNR, as the value of the

variable Nlobe increases, and thus the number of considered elements of the

cross-talk matrix, the RMSE curves tend to coincide with those related to

the full case. Moreover, even for relatively low values of the variable Nlobe,

such as Nlobe = 2, the RMSE curves in the approximate case almost match

those of the non-approximate case, showing only a marginal degradation

with a di↵erence of about 1 cm in range and less than 1 m/s in velocity in

the high-SNR regime. Additionally, it is worth noting that for Nlobe � 5,
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the performance becomes nearly identical to that of the full case. Based on

the obtained results, it can be concluded that the information concerning

the sensing parameters within the cross-talk matrix is predominantly con-

centrated in a few elements, specifically those with larger magnitudes. As a

result, the proposed approximation criterion in this study is both justified

and e↵ective in reducing the complexity of an JSC OTFS-based system with-

out significantly compromising the accuracy of sensing parameter estimation

when compared to the full case.

Consequently, the choice of an appropriate value forNlobe should be deter-

mined by the specific application’s requirements, taking into consideration

the desired level of estimation accuracy and system complexity. This in-

volves finding a suitable trade-o↵ between lower complexity, which improves

with lower Nlobe, and higher estimation accuracy, which improves with higher

Nlobe.

In addition to the RMSE analysis above, the impact of the proposed ap-

proximation method on the system performance in terms of detection proba-

bility is studied and the obtained results are shown in Fig. 7.8. These curves

are obtained by using the hypothesis test in (6.22) and setting ⌘ in order to

guarantee FAR = 10�2 on the considered search space �. In particular, with

reference to the ML estimator implementation introduced in Section 7.3, the

detection is performed on the first search space �0, whose [⌧ 0
min

, ⌧
0

max
], and

[f 0

D,min
, f

0

D,max
] intervals are related to the corresponding range and veloc-

ity values in Table 7.1. It is important to note that when Nlobe � 2, the

considered approximation technique has no discernible e↵ect on the system

performance in terms of detection probability with respect to the full case.

This analysis further confirms the e↵ectiveness of the proposed method. The

case with Nlobe = 1 was neglected because the RMSE analysis showed that

the estimator does not work properly in this case.

7.6 Remarks

In this chapter, a novel approach has been introduced to significantly reduce

the computational complexity (related to sensing operations) of the OTFS-

based JSC system, by focusing on the computation of the channel matrix.
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The proposed method is based on the definition of four low-dimensional ma-

trices used to compute the channel matrix through straightforward algebraic

manipulations. An analysis found on the Dirichlet kernel absolute value func-

tion has been performed to identify a-priori the most informative elements

in each of these derived matrices.

Based on this, an analytical criterion, independent of the system param-

eters, has been proposed to approximate those matrices. Through numer-

ical simulations it has been shown that using this criterion, a high degree

of approximation can be achieved, resulting in e�cient and low-complexity

computation of the channel matrix. In particular, the computational e↵ort

is reduced by up to 3 orders of magnitude considering a single computation

of the matrix, without significantly compromising the sensing performance.

This advance holds great promise for improving the practical implementa-

tion of the OTFS-based JSC system, making it more accessible to resource-

constrained devices and real-time sensing and tracking applications.



(a) Range estimation RMSE

(b) Velocity estimation RMSE

Figure 7.7: RMSE related to range estimation r̂ (a) and velocity estimation v̂ (b)
for Nlobe = 1, 2, 3, 5, 8 and for the full case, as a function of the SNR.



Figure 7.8: Probability of detection as a function of the SNR, computed forNlobe =
2, 3, 5, 8 and for the full case. The curves are obtained by fixing FAR = 10�2 on
the search space �0

.



Conclusion

Joint sensing and communication (JSC) is a groundbreaking system-level

approach to future mobile networks based on the idea of integrating radar

and communication functionality into a single architecture by the sharing

of physical layer and hardware resources. Given the pervasiveness of mobile

systems, this can open the door to ubiquitous and pervasive sensing while

improving the energy and spectral e�ciency of future wireless networks.

The scope of this dissertation was to explore a variety of signal processing

techniques used to estimate the position (via range and DoA estimation) and

velocity of passive objects in JSC systems and to perform a comprehensive

analysis of their accuracy. The analysis focused on two main areas, providing

insights and innovative solutions for OFDM and OTFS based JSC systems.

In the first part of the thesis, OFDM-based JSC systems were inves-

tigated, with a focus on the key factors influencing sensing performance in

di↵erent radar configurations. Monostatic, bistatic, and multistatic scenarios

were considered, with particular emphasis on the potential of MIMO tech-

nology. This has been shown to enable the use of the same time-frequency

resources for both communication and sensing through spatial multiplexing

and the detection of multiple passive objects by scanning the environment.

For both the monostatic and bistatic system analysis, a fully digital multi-

beam system has been considered where the Tx uses a fraction of the total

transmitted power to perform the scan. A strength of the monostatic config-

uration is that the Tx and Rx can be easily synchronized in space and time

because they are co-located in the same BS. This provides a huge advan-

tage, e.g., in terms of process gain associated with beamforming. However,

it has been shown that this configuration su↵ers from the problem of SI and

requires full-duplex capabilities. In the presence of good synchronization be-
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tween Tx and Rx, bistatic JSC systems can be considered a good alternative

to monostatic systems. The sensing accuracy and coverage of a bistatic JSC

system have been investigated by varying the fraction of power reserved for

sensing and the distance between Tx and Rx. Moreover, it has been shown

that the use of DoA estimation methods at the Rx to align the Tx and Rx

beams to ensure that they e↵ectively illuminate the target is the primary

factor responsible for reducing the system localization accuracy.

Finally, a MIMO multistatic setup characterized by a single Tx and two

Rxs with HDA architectures has been considered, to exploit spatial diversity

to improve target detection capabilities. Recognizing the extended nature

of real-world objects such as vehicles, we incorporated ET models into our

analysis. In addition, we introduced a general near/far-field channel model.

The numerical results obtained have underscored the e↵ectiveness of multi-

static configurations for improved detection and highlighted the benefits of

considering near-field propagation conditions when deploying large antenna

arrays at mmWave frequencies, especially when objects are in close proximity

to the Tx or Rx.

The second part of the thesis dealt with JSC systems based on OTFS

modulation, a promising technology for future mobile networks. However,

the inherent complexity of this modulation requires innovative solutions to

mitigate the computational burden. To address this challenge, a novel low-

complexity estimation and detection approach based on Dirichlet kernel anal-

ysis has been presented, focusing our analysis on a monostatic JSC system.

Numerical simulations have shown that the proposed approximation tech-

nique not only preserves the detection and estimation performance, but also

drastically reduces the computational overhead.

As JSC continues to grow in importance for the next generation of mobile

systems, this research aimed to further advance and demonstrate its potential

to usher in an era of mobile networks with unprecedented sensing capabilities.

It is hoped that future research on JSC systems will gain valuable insights

from the analysis and ideas presented in this thesis, particularly at the system

model and signal processing levels.



List of Figures

1.1 Schematic diagram of a monostatic radar system. The system

acquires signals backscattered by objects in the environment

and produces a radar map as an output by performing an

estimation of target parameters (i.e., distance and velocity). . 7

1.2 Example of representation of the time-frequency resources in

a 5G NR system. The notation used refers to the 5G NR stan-

dard [16]. �f is the subcarrier spacing, while Ts is the total

OFDM symbol duration considering cyclic prefix. A resource

block is composed of 12 subcarriers. . . . . . . . . . . . . . . . 9

1.3 5G NR-based sensor with multibeam capability for joint com-

munication and sensing . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Illustration of a bistatic radar configuration. As it is explained

in more detail in Chapter 4, in a bistatic configuration it is

possible to localize the target on an ellipse starting from the

estimation of the bistatic range, Rbis. To resolve the uncer-

tainty and estimate the position of the target, it is necessary to

estimate the angle ✓R using MIMO systems. Alternatively, it

is possible to estimate the position by moving from a bistatic

to a multistatic configuration, e.g. with one Tx and several

Rxs, and fusing the information from di↵erent bistatic pairs. . 11

119



120 List of Figures

1.5 Mismatch in the array response for a system operating with a

carrier frequency fc = 28GHz. The DoD of the user’s signal

computed with respect to the center of the array is 0�, while d,

which represents the distance between a user and a ULA com-

prising 64 elements, is varied between 0.5m, and 20m. The

Tx employs a traditional beamforming technique that steers

the power toward the user’s direction. It can be seen that

when the user is very close to the antenna, using a traditional

beam steering approach results in a mismatch in the array re-

sponse. This mismatch becomes increasingly irrelevant as the

user moves away from the array. . . . . . . . . . . . . . . . . . 14

1.6 Far-field distance as a function of OFDM subcarrier index. . . 15

2.1 Block diagram of the 5G NR-based sensor with multibeam

capability for joint communication and sensing. . . . . . . . . 22

3.1 Sensing performance as a function of the SSIR for DoA, dis-

tance, and speed estimates, when SNR = �20 dB. . . . . . . . 37

3.2 Sensing performance as a function of the SNR for distance,

DoA, speed, and position estimates, and detection probabil-

ity. The dashed lines represent the results at fc = 3.5GHz,

whereas the continuous lines represent the results at fc =

28GHz. In particular, (a), (b) and (c) show the RMSE results

when the MIMO system consists of NT = NR = 10 antennas

at fc = 3.5GHz, and NT = NR = 50 antennas at fc = 28GHz,

whereas (d) and (e) depict the normalized localization error

and the detection probability for di↵erent number of antennas. 38

3.3 Target localization performance as a function of the sensor-

target distance varying the fraction of power ⇢ reserved for

sensing. Note that the maximum range of 250m at 3.5GHz

and 85m at 28GHz is within the maximum unambiguous

range for the respective numerology detailed in Table 3.1 [9]. . 39



List of Figures 121

3.4 Mean cardinality error (a) and mean OSPA localization error

(b) varying the number of sensing directions, Ndir, for a JSC

system with fc = 28GHz, NT = NR = 50, obtained with

NMC = 500 Monte Carlo iterations. Dashed lines represent

the result for ⇢ = 0.1, whereas the continuous lines represent

the results for ⇢ = 0.3. . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Mean value, 20th and 80th percentile of the OSPA distance

varying the number of sensing directions for di↵erent values of

✏r, ✏v and ⇢, with fc = 28GHz and NT = NR = 50. The OSPA

metric is computed for c̄ = 10m and q = 2. The considered

values are: ✏r = �r and ✏v = 2�v with ⇢ = 0.1 (a) and ⇢ = 0.3

(c), ✏r = �r and ✏v = 3�v with ⇢ = 0.1 (b) and ⇢ = 0.3 (d). . 42

3.6 Considered scenario with 9 targets and 1 UE. The range-

angle map in (a) has been obtained with fc = 28GHz, NT =

NR = 50 antennas, Ndir = 60 and ⇢ = 0.3. (b) shows the

point detected starting from the range-angle map in (a), before

repeated targets pruning. In (c) the result obtained after the

removal of the repeated targets, performed with ✏r = �r and

✏v = 3�v is shown. . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Illustration of the considered bistatic system for JSC. The

Tx presents multibeam capabilities to perform communication

and sensing functionalities using the same time-frequency re-

sources and sharing the transmitted power. . . . . . . . . . . . 48

4.2 Block diagram of the bistatic 5G NR-based JSC system with

multibeam capability. . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Sensing performance of the JSC system as a function of the

SNR for DoA and bistatic range estimates, comparing a dif-

ferent number of antennas and 5G numerologies. In (a) the

RMSE of the DoA estimate for di↵erent estimation techniques,

is shown; (b) shows the RMSE of the bistatic range estimate. . 59



122 List of Figures

4.4 Sensing coverage of the JSC bistatic system operating at fc =

28GHz with NT = NR = 50 and fc = 3.5GHz with NT =

NR = 10. In particular, (a) and (b) show the heatmaps rep-

resenting the system coverage in terms of the position RMSE

when fc = 28GHz and ⇢ = 0.1, with the SNR as a function

of the target position itself and of the portion of the trans-

mit power reserved for sensing. The black lines bordering the

red areas represent the Cassini Oval at SNR = �26.1 dB. (c)

shows the fraction of area covered for di↵erent values of the

power reserved for sensing, varying the baseline L. . . . . . . . 60

5.1 Schematic illustration of the considered JSC multistatic sys-

tem to be used in an urban-type scenario. The trajectories

shown in the figure model various locations and movement

patterns that may occur with respect to the near and far-

fields of the antenna arrays. We assume that the deployment

has been planned so that the near-fields of the Tx/Rx pairs

do not coincide. Each Tx/Rx pair is a bistatic pair whose

geometric relationship is shown in Fig. 4.1. Dfr and D↵ have

been defined in Section 1.3. . . . . . . . . . . . . . . . . . . . 63

5.2 Schematic of the ET model, composed of scattering point clus-

ters determined through a BND. Note that each Rx observes

a di↵erent scattering profile of the ET at each measurement

instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Probability of detection for an ET along trajectory I in Fig. 5.1.

The x-axis indicates the radial distance from the Tx. . . . . . 77

5.4 The figure shows an example of estimating the position of the tar-

get’s scatterers when the ET is in the near-field of RX1. (Trajectory

II of Fig. 5.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Beamfocusing vs beamforming spectral e�ciency with an ET

along trajectory III in Fig. 5.1. The target locations are in-

dexed 1 � 5. The filled area shows the gain within a mis-

matched antenna distance re = 1 [m] on the extended object. . 79



List of Figures 123

5.6 Comparison of RMSE of the target position using a near-field

beamfocusing vector and a far-field beamforming vector. . . . 79

6.1 Signal-processing chain of the considered JSC OTFS-based

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 Cross-talk matrix schematic representation. . . . . . . . . . . 96

7.2 Graphical representation of the elements of matrices |Yi[l, l0]|,

with i = 1, 2, seen as samples of the associated function |Yi|,

considering x
0

Y,1+
, frac(fDNT ) and x

0

Y,1�
, frac(fDNT )� 1.

The case with N = 6 and x
0

Y,1+
< 0.5 is depicted. . . . . . . . 99

7.3 Graphical representation of the elements of the matrices |X1[k, k0

1
]|

(a) and |X2[k, k0

2
]| (b), seen as samples of the associated func-

tions |X1| and |X2|, respectively, considering x0

X,1+ , frac(⌧M�f)

and x
0

X,1� , frac(⌧M�f) � 1. The case with M = 6 and

x
0

X,1+ > 0.5 is depicted. In red are represented the samples

removed from |X1| (red unfilled circle) and added in |X2| (red

filled circle) when switching from the case with k⌧ = 1 to the

one with k⌧ = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.4 Range-velocity heatmaps obtained by varying search intervals

and steps for three iterations of the algorithm. (a) first it-

eration: distance and velocity resolution equal to 15m and

79.6m/s, respectively. (b) second iteration: distance and ve-

locity resolution equal to 1.3m and 13.3m/s, respectively.

(c) third iteration: distance and velocity resolution equal to

0.12m and 2.2m/s, respectively. . . . . . . . . . . . . . . . . . 107

7.5 Gain factor Gcomp as a function of the variable Nlobe. . . . . . 110

7.6 C and C ap (left y-axis) and the associate average time curves

(right y-axis) vs Nlobe, by assuming N = 50, M = 64, and q = 2.111

7.7 RMSE related to range estimation r̂ (a) and velocity estima-

tion v̂ (b) for Nlobe = 1, 2, 3, 5, 8 and for the full case, as a

function of the SNR. . . . . . . . . . . . . . . . . . . . . . . . 115

7.8 Probability of detection as a function of the SNR, computed

for Nlobe = 2, 3, 5, 8 and for the full case. The curves are

obtained by fixing FAR = 10�2 on the search space �0 . . . . . 116





Bibliography

[1] Z. Feng, Z. Fang, Z. Wei, X. Chen, Z. Quan, and D. Ji, “Joint radar and

communication: A survey,” China Commun., vol. 17, no. 1, pp. 1–27,

2020.

[2] C. De Lima, D. Belot, R. Berkvens, A. Bourdoux, D. Dardari, M. Guil-

laud, M. Isomursu, E.-S. Lohan, Y. Miao, A. N. Barreto, M. R. K. Aziz,

J. Saloranta, T. Sanguanpuak, H. Sarieddeen, G. Seco-Granados, J. Su-

utala, T. Svensson, M. Valkama, B. Van Liempd, and H. Wymeersch,

“Convergent communication, sensing and localization in 6G systems: An

overview of technologies, opportunities and challenges,” IEEE Access,

vol. 9, pp. 26902–26925, 2021.

[3] J. A. Zhang, M. L. Rahman, K. Wu, X. Huang, Y. J. Guo, S. Chen,

and J. Yuan, “Enabling joint communication and radar sensing in mo-

bile networks—a survey,” IEEE Commun. Surveys Tuts., vol. 24, no. 1,

pp. 306–345, 2022.

[4] Z. Wei, H. Qu, Y. Wang, X. Yuan, H. Wu, Y. Du, K. Han, N. Zhang,

and Z. Feng, “Integrated sensing and communication signals toward 5g-a

and 6g: A survey,” IEEE Internet Things J., vol. 10, no. 13, pp. 11068–

11092, 2023.

[5] M. L. Rahman, J. A. Zhang, X. Huang, Y. Guo, and R. Jr, “Framework

for a perceptive mobile network using joint communication and radar

sensing,” IEEE Trans. Aerosp. Electron. Syst., Sep. 2019.

[6] J. A. Zhang, F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zheng,

and A. Petropulu, “An overview of signal processing techniques for joint

125



126 Bibliography

communication and radar sensing,” IEEE J. Sel. Topics Signal Process.,

vol. 15, pp. 1295–1315, Nov. 2021.

[7] F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi,

“Integrated sensing and communications: Toward dual-functional wire-

less networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40,

no. 6, pp. 1728–1767, 2022.

[8] S. Dwivedi, M. Zoli, A. N. Barreto, P. Sen, and G. Fettweis, “Secure

joint communications and sensing using chirp modulation,” in Proc.

2020 2nd 6G Wireless Summit (6G SUMMIT), (Levi, Finland), pp. 1–

5, Mar. 2020.

[9] M. Braun, OFDM radar algorithms in mobile communication networks.

PhD thesis, Karlsruhe Institute of Technology, 2014.

[10] R. Hadani, S. Rakib, S. Kons, M. Tsatsanis, A. Monk, C. Ibars,

J. Delfeld, Y. Hebron, A. J. Goldsmith, A. F. Molisch, and A. R.

Calderbank, “Orthogonal time frequency space modulation,” CoRR,

vol. abs/1808.00519, 2018.

[11] L. Gaudio, M. Kobayashi, G. Caire, and G. Colavolpe, “On the e↵ective-

ness of OTFS for joint radar parameter estimation and communication,”

IEEE Trans. Commun., vol. 19, no. 9, pp. 5951–5965, 2020.

[12] C. B. Barneto, T. Riihonen, M. Turunen, L. Anttila, M. Fleischer,

K. Stadius, J. Ryynänen, and M. Valkama, “Full-duplex OFDM radar

with LTE and 5G NR waveforms: challenges, solutions, and measure-

ments,” IEEE Trans. Microw. Theory Techn., vol. 67, pp. 4042–4054,

Oct. 2019.

[13] N. J. Willis, Bistatic radar. SciTech Publishing, 2 ed., 2005.

[14] M. Braun, C. Sturm, and F. K. Jondral, “Maximum likelihood speed

and distance estimation for OFDM radar,” in Proc. IEEE Radar Conf.,

(Arlington, VA, USA), pp. 256–261, May 2010.



Bibliography 127

[15] C. Sturm and W. Wiesbeck, “Waveform design and signal processing

aspects for fusion of wireless communications and radar sensing,” Proc.

IEEE, vol. 99, pp. 1236–1259, July 2011.

[16] 3GPP TS 38.211, 5G; NR; Physical channels and modulation, 7 2020.

version 16.2.0 Release 16.

[17] K. V. Mishra, M. Bhavani Shankar, V. Koivunen, B. Ottersten, and

S. A. Vorobyov, “Toward millimeter-wave joint radar communications:

A signal processing perspective,” IEEE Signal Process. Mag., vol. 36,

no. 5, pp. 100–114, 2019.

[18] J. A. Zhang, X. Huang, Y. J. Guo, J. Yuan, and R. W. Heath, “Multi-

beam for joint communication and radar sensing using steerable analog

antenna arrays,” IEEE Trans. Veh. Technol., vol. 68, pp. 671–685, Jan.

2019.

[19] J. A. Zhang, A. Cantoni, X. Huang, Y. J. Guo, and R. W. Heath, “Joint

communications and sensing using two steerable analog antenna arrays,”

in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring),

(Sydney, NSW, Australia), pp. 1–5, June 2017.

[20] Y. Luo, J. A. Zhang, X. Huang, W. Ni, and J. Pan, “Optimization and

quantization of multibeam beamforming vector for joint communication

and radio sensing,” IEEE Trans. Commun., vol. 67, no. 9, pp. 6468–

6482, 2019.

[21] M. Alloulah and H. Huang, “Future millimeter-wave indoor systems:

A blueprint for joint communication and sensing,” Computer, vol. 52,

no. 7, pp. 16–24, 2019.

[22] F. Liu and C. Masouros, “Hybrid beamforming with sub-arrayed mimo

radar: Enabling joint sensing and communication at mmwave band,”

in ICASSP 2019 - 2019 IEEE Int. Conf. Acoust. Speech Signal Process.

(ICASSP), (Brighton, UK), pp. 7770–7774, May 2019.



128 Bibliography

[23] P. Kumari, S. A. Vorobyov, and R. W. Heath, “Adaptive virtual wave-

form design for millimeter-wave joint communication–radar,” IEEE

Trans. Signal Process., vol. 68, pp. 715–730, 2020.

[24] Y. L. Sit, C. Sturm, J. Baier, and T. Zwick, “Direction of arrival esti-

mation using the MUSIC algorithm for a MIMO OFDM radar,” in 2012

IEEE radar conference, pp. 0226–0229, IEEE, 2012.

[25] C. B. Barneto, S. D. Liyanaarachchi, T. Riihonen, L. Anttila, and

M. Valkama, “Multibeam design for joint communication and sensing in

5G New Radio networks,” in Proc. IEEE Int. Conf. on Comm. (ICC),

(online), pp. 1–6, June 2020.

[26] S. Noh, M. D. Zoltowski, and D. J. Love, “Multi-resolution codebook

and adaptive beamforming sequence design for millimeter wave beam

alignment,” IEEE Trans. Wireless Commun., vol. 16, pp. 5689–5701,

Sept. 2017.

[27] R. K. Patra and C. K. Nayak, “A comparison between di↵erent adaptive

beamforming techniques,” in Proc. 2019 International Conference on

Range Technology, (Balasore, India), Feb. 2019.

[28] J. A. Zhang, X. Huang, Y. J. Guo, J. Yuan, and R. W. Heath, “Multi-

beam for joint communication and radar sensing using steerable analog

antenna arrays,” IEEE Trans. Veh. Technol., vol. 68, pp. 671–685, Jan.

2019.

[29] S. D. Liyanaarachchi, C. Baquero B., T. Riihonen, M. Heino, and

M. Valkama, “Joint multi-user communication and MIMO radar

through full-duplex hybrid beamforming,” in Proc. IEEE Int. Symp.

on Joint Comm. & Sensing (JCS), (online), pp. 1–5, Feb. 2021.

[30] O. Kanhere, S. Goyal, M. Beluri, and T. S. Rappaport, “Target local-

ization using bistatic and multistatic radar with 5G NR waveform,” in

Proc. IEEE Veh. Tech. Conf. (VTC2021), (online), pp. 1–7, Apr. 2021.



Bibliography 129

[31] E. Fishler, A. Haimovich, R. Blum, R. Cimini, D. Chizhik, and R. Valen-

zuela, “Performance of mimo radar systems: Advantages of angular di-

versity,” in Conference Record of the Thirty-Eighth Asilomar Conference

on Signals, Systems and Computers, 2004., vol. 1, (Pacific Grove, CA,

USA), pp. 305–309, IEEE, Nov. 2004.

[32] H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, and Y. C. Eldar, “6G

wireless communications: From far-field beam steering to near-field

beam focusing,” IEEE Commun. Mag., vol. 61, no. 4, pp. 72–77, 2023.

[33] Y. Liu, Z. Wang, J. Xu, C. Ouyang, X. Mu, and R. Schober, “Near-

field communications: A tutorial review,” IEEE Open Journal of the

Communications Society, vol. 4, pp. 1999 – 2049, Aug. 2023.

[34] D. Dardari, N. Decarli, A. Guerra, and F. Guidi, “Los/nlos near-field

localization with a large reconfigurable intelligent surface,” IEEE Trans-

actions on Wireless Communications, vol. 21, pp. 4282–4294, June 2022.

[35] O. Rinchi, A. Elzanaty, and M.-S. Alouini, “Compressive near-field lo-

calization for multipath ris-aided environments,” IEEE Communications

Letters, vol. 26, pp. 1268–1272, June 2022.

[36] Z. Wang, X. Mu, and Y. Liu, “Near-field integrated sensing and com-

munications,” IEEE Commun. Lett., vol. 27, pp. 2048–2052, Aug. 2023.

[37] Z. Wei, H. Qu, Y. Wang, X. Yuan, H. Wu, Y. Du, K. Han, N. Zhang,

and Z. Feng, “Integrated sensing and communication signals towards

5G-A and 6G: A survey,” IEEE Internet Things J., pp. 1–1, 2023.

[38] R. Hadani, S. Rakib, S. Kons, M. Tsatsanis, A. Monk, C. Ibars,

J. Delfeld, Y. Hebron, A. J. Goldsmith, A. F. Molisch, and A. R.

Calderbank, “Orthogonal time frequency space modulation,” CoRR,

vol. abs/1808.00519, 2018.

[39] R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F.

Molisch, and R. Calderbank, “Orthogonal time frequency space modu-

lation,” in 2017 IEEE Wireless Communications and Networking Con-

ference (WCNC), pp. 1–6, 2017.



130 Bibliography

[40] Z. Wei, W. Yuan, S. Li, J. Yuan, G. Bharatula, R. Hadani, and

L. Hanzo, “Orthogonal time-frequency space modulation: A promising

next-generation waveform,” IEEE Wireless Commun., vol. 28, no. 4,

pp. 136–144, 2021.

[41] S. K. Mohammed, “Derivation of OTFS modulation from first princi-

ples,” IEEE Trans. Veh. Technol., vol. 70, no. 8, pp. 7619–7636, 2021.

[42] B. Wang, N. Li, Z. Jiang, J. Zhu, X. She, and P. Chen, “On performance

evaluation of OTFS and OFDM modulations for sensing,” in 2022 14th

International Conference on Wireless Communications and Signal Pro-

cessing (WCSP), pp. 427–431, 2022.

[43] P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “E↵ective diversity

of OTFS modulation,” IEEE Wireless Commun. Lett., vol. 9, no. 2,

pp. 249–253, 2020.

[44] Y. Wu and Z. Zhang, “Co-existence analysis of OTFS and OFDM wave-

forms for multi-mobility scenarios,” in 2022 IEEE 95th Vehicular Tech-

nology Conference: (VTC2022-Spring), pp. 1–5, 2022.

[45] H. Zhang, X. Huang, and J. A. Zhang, “Comparison of OTFS diversity

performance over slow and fast fading channels,” in 2019 IEEE/CIC In-

ternational Conference on Communications in China (ICCC), pp. 828–

833, 2019.

[46] S. K. Mohammed, R. Hadani, A. Chockalingam, and R. Calderbank,

“OTFS—Amathematical foundation for communication and radar sens-

ing in the delay-doppler domain,” IEEE BITS the Information Theory

Magazine, vol. 2, no. 2, pp. 36–55, 2022.

[47] W. Yuan, Z. Wei, S. Li, R. Schober, and G. Caire, “Orthogonal time

frequency space modulation-part iii: ISAC and potential applications,”

IEEE Commun. Lett., vol. 27, no. 1, pp. 14–18, 2023.

[48] L. Gaudio, M. Kobayashi, B. Bissinger, and G. Caire, “Performance

analysis of joint radar and communication using OFDM and OTFS,”



Bibliography 131

in 2019 IEEE International Conference on Communications Workshops

(ICC Workshops), (Shanghai, China), pp. 1–6, May 2019.

[49] P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Orthogonal time

frequency space (OTFS) modulation based radar system,” in 2019 IEEE

Radar Conference (RadarConf), pp. 1–6, 2019.

[50] M. F. Keskin, H. Wymeersch, and A. Alvarado, “Radar sensing with

OTFS: Embracing ISI and ICI to surpass the ambiguity barrier,” in

2021 IEEE International Conference on Communications Workshops

(ICC Workshops), pp. 1–6, 2021.

[51] T. Thaj and E. Viterbo, “Low complexity iterative rake decision feed-

back equalizer for zero-padded OTFS systems,” IEEE Trans. Veh. Tech-

nol., vol. 69, no. 12, pp. 15606–15622, 2020.

[52] T. Thaj, E. Viterbo, and Y. Hong, “Orthogonal time sequency mul-

tiplexing modulation: Analysis and low-complexity receiver design,”

IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 7842–7855, 2021.

[53] T. Thaj, E. Viterbo, and Y. Hong, “General I/O relations and low-

complexity universal MRC detection for all OTFS variants,” IEEE Ac-

cess, vol. 10, pp. 96026–96037, 2022.

[54] S. E. Zegrar, S. Rafique, and H. Arslan, “OTFS-FMCWwaveform design

for low complexity joint sensing and communication,” in 2022 IEEE 33rd

Annual International Symposium on Personal, Indoor and Mobile Radio

Communications (PIMRC), pp. 988–993, 2022.

[55] C. Liu, S. Liu, Z. Mao, Y. Huang, and H. Wang, “Low-complexity

parameter learning for OTFS modulation based automotive radar,”

in ICASSP 2021 - 2021 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 8208–8212, 2021.

[56] F. Lampel, A. Avarado, and F. M. Willems, “On OTFS using the dis-

crete Zak transform,” in 2022 IEEE International Conference on Com-

munications Workshops (ICC Workshops), pp. 729–734, 2022.



132 Bibliography

[57] L. Pucci, E. Paolini, and A. Giorgetti, “System-level analysis of joint

sensing and communication based on 5G New Radio,” IEEE J. Sel.

Areas Commun., vol. 40, pp. 2043–2055, July 2022.

[58] L. Pucci, E. Matricardi, E. Paolini, W. Xu, and A. Giorgetti, “Perfor-

mance analysis of joint sensing and communication based on 5G New

Radio,” in IEEE Work. on Adv. in Netw. Loc. and Nav. (ANLN), Globe-

com 2021, (Madrid, Spain), Dec. 2021.

[59] L. Pucci, E. Matricardi, E. Paolini, W. Xu, and A. Giorgetti, “Perfor-

mance analysis of a bistatic joint sensing and communication system,”

in Proc. IEEE Int. Conf. Commun. Works., (Seoul, Korea), pp. 73–78,

July 2022.

[60] T. Bacchielli, L. Pucci, E. Paolini, and A. Giorgetti, “Performance anal-

ysis of a low complexity integrated sensing and communication system,”

in Proc. IEEE Veh. Tech. Conf. Fall Workshops, (Hong-Kong), Oct.

2023.

[61] S. K. Dehkordi, L. Pucci, P. Jung, A. Giorgetti, E. Paolini, and G. Caire,

“Multi-static parameter estimation in the near/far field beam space for

integrated sensing and communication applications,” 2023.

[62] H. Asplund, D. Astely, P. von Butovitsch, T. Chapman, M. Frenne,

F. Ghasemzadeh, M. Hagström, B. Hogan, G. Jöngren, J. Karlsson,
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