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Abstract

The main contribution of this thesis is the proposal of novel strategies for

the selection of parameters arising in variational models employed for the

solution of inverse problems with data corrupted by Poisson noise. In light

of the importance of using a significantly small dose of X-rays in Computed

Tomography (CT), and its need of using advanced techniques to reconstruct

the objects due to the high level of noise in the data, we will focus on param-

eter selection principles especially for low photon-counts, i.e. low dose Com-

puted Tomography. For completeness, since such strategies can be adopted

for various scenarios where the noise in the data typically follows a Poisson

distribution, we will show their performance for other applications such as

photography, astronomical and microscopy imaging.

More specifically, in the first part of the thesis we will focus on low dose

CT data corrupted only by Poisson noise by extending automatic selection

strategies designed for Gaussian noise and improving the few existing ones

for Poisson. The new approaches will show to outperform the state-of-the-art

competitors especially in the low-counting regime. Moreover, we will propose

to extend the best performing strategy to the hard task of multi-parameter

selection showing promising results.

Finally, in the last part of the thesis, we will introduce the problem of ma-

terial decomposition for hyperspectral CT, which data encodes information

of how different materials in the target attenuate X-rays in different ways

according to the specific energy. We will conduct a preliminary compara-

tive study to obtain accurate material decomposition starting from few noisy

projection data.
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Chapter 1

Preamble

1.1 Motivation

The invention of Computed Tomography (in short, CT) in the early 1970s,

by Allan Cormack and Godfrey Hounsfield, has led to a radical change in clin-

ical investigation techniques as well as in industrial applications and safety

routines. Its ability to visualize the internal structure of an object without

invasive procedures is the reason for its effectiveness. This is achieved by

irradiating the target with X-rays: once running through the object, they

are attenuated in a way that changes according to the encountered materials

and are then collected by a detector. Since a single direction is not enough to

determine the inside structure of the target (due to the superposition of the

structures along the irradiation lines), the procedure must be repeated from

different directions. Despite all the benefits that come from visualizing the

internal structure of the human body, and therefore to diagnose the disease,

Computed Tomography also has disadvantages to take into account. One of

the main problems is the high dose of X-rays to which the patient is exposed;

in fact, the probability of occurrence of malignant pathologies increases with

the dose. This is especially reflected in the case of young patients, who are

more sensitive to ionizing radiation, or when the therapy requires more ex-

aminations over time. Moreover, standard tomography requires cumbersome

3



4 1. Preamble

machinery and long acquisition-time to achieve high-quality data, both being

conditions that are not applicable in emergency scenarios. Finally, in some

medical application, e.g. mammography, the irradiation can be performed

only within a particular range of angles, thus producing data with different

degrees of informativeness depending on the area of the image.

The research work presented in this thesis, that is related to the project of

developing innovative numerical models and methods for CT reconstruction

for the realization of small CT equipments, founded by the Carisbo Founda-

tion, will focus on investigating the low dose CT scenarios and improving the

quality of the reconstructions. As introduced before, such conditions arise

in important clinical situations, such as emergency scanning where powerful

CT machines can not be employed due to their big dimensions and the long

acquisition times. This is especially the case where small and transportable

CT machines can make a difference; however, they can not have the same

characteristics (power, resolution, dimension, etc.) as the standard ones, re-

sulting with fewer and noisier data to work on. At the same time, low dose

CT is crucial especially for the care of young children or when dealing with

specific parts of the body which are more vulnerable to X-rays (e.g. ovaries,

thyroid or lymphoid tissues). In fact, the main danger of CT is the exposition

to ionizing radiation that can cause an increase in a person’s lifetime risk of

developing cancer and it is of particular concern in pediatric patients because

the cancer risk per unit dose of ionizing radiation is higher for younger pa-

tients than adults, and younger patients have a longer lifetime for the effects

of radiation exposure to manifest as cancer. With this in mind, since the

X-ray dose is directly proportional to the exposure time of each projection

and the number of used directions, a low dose CT scan can be performed by

decreasing the exposure time and/or the number of projections and/or the

intensity of the X-ray.

Besides the motivations regarding the medical field, low dose X-ray To-

mography is also used for industrial applications due to the limited scan time

available (e.g. security procedures) or to the specific characteristics of the
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machinery. Compared to standard CT, the data acquired with a low dose of

X-rays is typically characterized by a larger noise level. Due to the electro-

magnetic nature of X-rays, every photon-counting applications, as the case of

CT, is affected by Poisson noise which becomes more and more degrading as

the number of incoming photons decreases. Nonetheless standard CT recon-

struction algorithms tend to amplify noise in images and this behavior is par-

ticularly emphasized in the case of low dose CT where such algorithms are no

longer capable of achieving good quality results. In this scenario, variational

methods are typically employed to mitigate the effects of noise propagation:

such strategies combine a priori information on the object with the noise

statistics that connects the target to the data. Although variational meth-

ods can preserve the significant details in the target while removing noise and

artifacts, their performance strongly depends on the choice of one or more

parameters that, in most of the cases, are hand-tuned. In this perspective,

the main contribution of this work concerns the proposal of novel parameter

selection strategies in variational methods working for low dose CT problems

where data are corrupted by Poisson noise. Moreover, thanks to the collabo-

ration with the Technical University of Denmark, where I have been twice as

a visiting PhD student, the low-dose regime has been extended to the case of

hyperspectral CT data, that encodes information of how different materials

in the target attenuate X-ray beams with different energies.

1.2 Contribution

The main contribution of this thesis is the proposal of novel parameter

selection strategies for the solution of inverse problems with data corrupted

by Poisson noise. In light of the importance of using a significantly small dose

of X-rays in Computed Tomography, and its need of using advanced tech-

niques to reconstruct the objects due to the high level of noise in the data, we

will focus on parameter selection principles especially for low photon-counts,

i.e. Low Dose Computed Tomography. Although the CT reconstruction in
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low-dose, e.g. particularly noisy, scenarios is the real world problem that mo-

tivates the derivation of the strategies proposed in this thesis, we are going to

prove the validity of the designed approaches for different imaging problems

that are typically affected by Poisson noise: photography, astronomical and

microscopy imaging.

1.3 Organization

In Chapter 2 we introduce the CT inverse problem by describing the

mathematical formulation of the process and the noise that characterizes it.

Chapter 3 explains the physics behind the mathematical model of Computed

Tomography from the generation of X-rays to the statistical properties un-

derneath the CT model defined in 2. Moreover, in Chapter 4 the standard

CT reconstruction techniques are explained, along with their results in differ-

ent CT condition (i.e. different doses and angles of projections). In order to

overcome the poor-quality results of the above strategies for low dose CT, we

introduce variational methods and how to derive them. Finally we highlight

the importance of the choice of the parameters, which is crucial for a good

reconstruction and that will be the topic of the following chapters.

In Chapter 6 and 7 the state of the art strategy proposed by Bertero and co-

authors [25, 26, 27] are explained, together with its strengths and weaknesses.

Starting from the latter, we highlight the theoretical limits of the approach

and then propose a nearly exact version of it based on Monte Carlo simula-

tions and weighted least-square fitting. In addition, we extend the so-called

residual whiteness principle originally designed for additive white noise to

Poisson data and perform an extensive comparison between the three strate-

gies.

In Chapter 8 we first review the unmasked selection criteria (including the

two very recent ones proposed in 6 and 7) which consider all pixels in the

selection procedure. Then, based on an idea proposed by Carlavan and

Blanc-Feraud in [31] to effectively deal with dark backgrounds and/or low
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photon-counting regimes, we introduce and discuss the masked versions of

the considered unmasked selection principles formulated by simply discard-

ing the pixels measuring zero photons. However, we prove that discarding

the zero pixels yields a bias in the resulting principles that can be overcome

by introducing a novel positive Poisson distribution correctly modeling the

statistical properties of the undiscarded noisy data. Such distribution is at

the core of newly proposed masked unbiased counterparts of the discussed

strategies. We extensively and reliably test the three categories of principles

on different problems and noise levels. In Chapter 9 we extend the White-

ness principle to the case of multi-parameter selection and test the method

on CT reconstruction problems with two free parameters. Then, Chapter 10

describes the algorithm to solve the different variational models used until

then.

Finally, in the last part of the thesis we will focus on material decomposition

for Hyperspectral Computed Tomography. In Chapter 11 this new develop-

ing technique, that exploits the property of materials to attenuate X-rays in

different ways depending on the specific energy, is introduced, together with

the concept of material decomposition and standard reconstruction meth-

ods. We will show results both on real and synthetic data and discuss the

advantages and disadvantages of the different strategies.

1.4 Publications

The main part of the discussion in this thesis refers to published and

upcoming works. In particular, the first part of the thesis, from Chapter 6

to Chapter 10, is based on the following works:

• Bevilacqua, F.; Lanza, A.; Pragliola, M.; Sgallari, F.: Nearly Exact

Discrepancy Principle for Low-Count Poisson Image Restoration. J.

Imaging 2022, 8, 1.

• Bevilacqua, F.; Lanza, A.; Pragliola, M.; Sgallari, F.: Whiteness-based
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parameter selection for Poisson data in variational image processing.

Applied Mathematical Modelling, vol. 117, pp. 197-218, 2023

• Bevilacqua, F.; Lanza, A.; Pragliola, M.; Sgallari, F.: Masked unbi-

ased principles for parameter selection in variational image restoration

under Poisson noise. Inverse Problems, vol. 39(3), 034002, 2023.

On the other hand, in the second part of the thesis, Chapter 11 refers to the

work:

• Bevilacqua, F.; Dong, Y.; Jørgensen, J.S.: Regularized Material Decom-

position for K-edge Separation in Hyperspectral Computed Tomogra-

phy. Scale Space and Variational Methods in Computer Vision. SSVM

2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham.

(2023).



Chapter 2

The CT Inverse Problem

In this thesis we focus on image reconstruction for Computed Tomogra-

phy (CT), which, from a mathematical point of view, is the task of computing

the spatial structure of an object using its projections. These problems are

known as inverse problems where one aims to determine an unknown quan-

titative cause that produces the observed data through a given measurement

model. Before describing the CT inverse problem we introduce the class of

inverse problems in imaging, of which the CT is part, and the challenges that

characterize them. Then, the continuous and discrete formulation of the CT

acquisition process are explained, together with the degradation effects (i.e.

noise) that affects the data. In this work we consider reconstruction of 2D

objects with a particular, but commonly used geometry: the Fan Beam CT

(which will be explained later in the chapter). However, we highlight that

the descriptions and the new contributions outlined can be extended in a

straightforward manner to other geometries.

2.1 Inverse Problems in Imaging

Over the last few decades, the communication has developed more and

more through images. This is due to the advancement of new technologies

and to the way images can be used in different fields of application to display

9



10 2. The CT Inverse Problem

data that would be difficult to interpret in another way or that can not be

seen by the human eye. Typical examples are microscopic and astronomical

images, focused on collecting information about cellular and celestial struc-

ture, respectively. Furthermore, images obtained from radiation sources such

as those acquired in CT and Positron Emission Tomography (PET) appli-

cations, are indispensable for patient care in the medical field, but are also

used for security reasons in airports or to study the structure of archaeolog-

ical finds.

Image processing it is a discipline that allows us to develop strategies to inter-

pret, manipulate, transmit and improve the quality of the data. Depending

on the applications at hand, the space of the measurement data may not

coincide with the space to which the target images belong. In general, one

wants to determine an unknown quantitative cause that produces the ob-

served data through a given measurement model. Problems like these are

called inverse problems.

In mathematics, inverse problems arise when investigating an unknown

cause that produces the observed data (or effect) with a given cause-to-effect

forward model. Reconstructing the unknown source is not an easy task; it

involves decisions and risks mainly related to the loss of the well-posedness

of the problem. The mathematician Jacques Hadamard defined, in the early

20th century, a problem to be well-posed if:

• admits a solution;

• the solution is unique;

• the solution depends continuously on the data.

If a problem does not satisfy at least one of these properties is it said to be

ill-posed. Most of the challenging inverse problems fall in this category and

require ad hoc strategies to compensate the ill-posedness. Tipically, if the

existence is not guaranteed one can extend the set of feasible of solutions,

while the non-uniqueness can be overcome by imposing additional constraints
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to be fulfilled. Finally, when a small perturbation of the data produces a very

large change in the solution, advanced strategies need to be implemented to

control the error in the solution.

Before exploring the approaches to solve ill-posed inverse problems, topic that

will be discussed in the following chapters, we are giving a brief overview of

the most studied problems in image processing.

• Denoising: is the problem of removing the noise from images without

loosing information about local features. It is caused by the quantum

nature of electromagnetic radiation or the atmospheric distortion.

• Deblurring: is the problem of restoring images corrupted by blur. This

can be caused by the features of the tool used to capture the data, as

for microscopy, or by the relative motion between the object and the

camera.

• Inpainting: is the task of filling parts of the image missing because of

occlusions or other damages.

• Reconstruction: is the problem of retrieving an image from data that

does not belong to the image space. This is the case of PET (positron

emission tomography), MRI (magnetic resonance imaging) and CT

(computed tomography) where the data collects information of how

the object responds to some kind of input.

• Super-Resolution: is the task of enhancing the resolution of an image

from low-resolution to high.

• Image Decomposition: is the separation of semantic different compo-

nent of an image.

Mathematically, a continuous signal x̄ can be modeled as a function in the

function space X from Rr to Rn

x̄ ∈ X, x̄(z) : Ω ⊂ Rr → Rn,
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where Ω is a compact set of Rr and r, n ≥ 1. When both r = 1 and n = 1

x̄ represents a one-dimensional signal, while for r = 2, 3 we have a 2D signal

(image) or a 3D signal (volume). For n ≥ 2, x̄ represents a signal with

multiple channels; for example, if n = 3, x̄ is a color image with red-green-

blue (RGB) color channels. It is important to recall that this continuous

formalization of the signals provides a modelling of the inherently “analogic”

human acquisition process, and will be helpful to describe the forward model

of our inverse problems. However, the measured data, which are typically

digital, along with the necessity of solving the problem with a machine, will

require a discretization both of the forward model and the solution.

The degradation model can be expressed in the form:

b = T(x̄) = Noise(λ̄), λ̄ = g(A(x̄))) (2.1)

where b ∈ B, with B the function space from Rh to Rm, is the observed data,

T : X → B is a model of the measurement process which here is defined as

a combination of a deterministic linear mapping A acting on x̄, a generic

function g (which is non linear or the identity function) and a random noise

operator Noise. As already recalled, X may differ from B, as it happens in

some applications.

For example, in the denoising problem, bothA and g are the identity operator

g(A(x̄)) = x̄; while, for image deblurring, g is the identity function and A

takes the form of the space variant blur operator

A(x̄) =

∫
Ω

k(y, z)x̄(z)dz

where k(y, z) is the blur kernel. In case of inpainting g is the identity function

and A(x̄) = χC(x̄), with χC the characteristic function of the subset C of

the image domain Ω. For the image reconstruction problems both g and A

take different forms depending on the specific case. This latter case will be

described extensively in the next sessions as it will be the main focus of this

thesis. Moreover, this is a typical case where X differs from B.
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2.2 The CT inverse problem

Computed Tomography has evolved into an indispensable imaging method

both in clinical routines and industrial applications. It was the first non-

invasive method to acquire images of the inside the human body that were

not biased by superposition of distinct anatomical structures. This is done

by analyzing the projection of the internal information of the object from dif-

ferent angles. The fundamental difference between various medical imaging

modalities is the property of the material (i.e. tissue) that they image and

the source of energy used to extract this information. Magnetic Resonance

Imaging (MRI) excites and detects the change of direction of the rotational

axis of the protons present in the aqueous component of the tissues, while

Positron Emission Tomography (PET) tracks the positrons emitted by ra-

dioactive tracer injected in the patient that will collect into areas with higher

levels of metabolic or biochemical activity, which are often the area of the

disease.

On the other hand, X-ray Computed Tomography is based on the capabil-

ity of the tissues to attenuate X-rays. In CT the X-rays are attenuated at

varying extents when running through the object and the local absorption

is measured by a detector. Naturally, the “shadow” that is cast in only one

direction does not represent a sufficient information for the determination of

the spatial distribution of distinct structures inside the target. To this pur-

pose, it is necessary to irradiate the object from multiple directions. When

the different attenuation or absorption profiles are plotted over the angles of

rotation a sinusoidal arrangement is obtained, called the sinogram.

The X-ray is known to have a very high, material-dependent capability of

matter penetration. However, the number of photons, i.e., the radiation in-

tensity, decreases exponentially while crossing an object along the incident

direction. The reason for an exponential reduction in photon number is that

each photon is removed individually from the incident beam by an interac-

tion with the matter. The attenuation of the X-ray, with an initial radiation

intensity I0 > 0, that passes through the object along the segment L, Figure
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2.1, can be formalized by the Lambert-Beer’s law in the following form [2]

I = I0 exp

(
−
∫
L

x̄ (z1(ℓ), z2(ℓ))dℓ,

)
. (2.2)

Figure 2.1: An X-ray passing through the object along the segment L.

In the Fan Beam CT, the unknown target object is a 2D object, the

source emits a 2D conical X-rays beam, and the 1D (linear) detector mea-

sures the X-ray intensities at different locations after the attenuation process

has occurred. Then, the source and the detector rotate together around a

center of rotation (as near as possible to the center of the object), and the

procedure is repeated - see Figure 2.2(left).

In particular, for a given acquisition angle θ ∈ [0, 2π), the detector mea-

sures at its location ξ ∈ R the intensity of the X-ray after its passing through

the object along the line between the source and the detector location ξ; see

Figure 2.2(right).

In the continuous setting, denoting by x̄(z1(ℓ), z2(ℓ)) : R2 → R+ the X-ray

attenuation coefficients of the target object as a function of the space coor-

dinates, according to the Lambert-Beer’s law in (2.2), the measure obtained

by the Fan Beam CT acquisition process is as follows

I(θ, ξ) = I0 exp (−A(x̄)(θ, ξ)) , θ ∈ [0, 2 π), ξ ∈ R , (2.3)
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Figure 2.2: Fan Beam CT procedure. Left: the source emits a conical X-rays

beam, the 1D linear detector measures the intensities after the attenuation

process, and the procedure is repeated after rotating the source and the

detector. Right: for each acquisition angle, the measure captured by the

detector at a pixel is the intensity of the X-ray after passing through the

object along the line between the source and the detector pixel.

where A(x̄) = R(x̄), with R(x̄) indicating the 2D Radon transform of the

target function x̄, namely

R(x̄)(θ, ξ) =

∫
L(θ,ξ)

x̄ (z1(ℓ), z2(ℓ)) dℓ. (2.4)

The R(x̄) function defined above is commonly referred as the sinogram.

2.2.1 The discretized CT model

Although the above physical processes have been described in continuous

settings, a discretization stage has to be performed in order to make the ob-

jects of interest computer-readable. The continuous 2D object x is converted

into a discrete image which is a matrix whose elements are referred to as

pixels. The quality of the dicretization, also known as sampling, depends
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on how well the discrete grid of the matrix approximates the continuous ob-

ject x̄. In what follows, we introduce the notations used for the discretized

detector location ξ, the target image x̄ and the acquisition angle θ:

x̄ = (x̄1; . . . ; x̄j; . . . ; x̄n) is the vectorized (by rows) target image,

ξ = (ξ1; . . . ; ξi; . . . ; ξd) is the set of detector pixel locations,

θ = (θ1; . . . ; θl; . . . ; θs) is the set of considered acquisition angles.

We notice that, in this discrete setting, a single line integral as the one

in (2.3) is replaced by a scalar product. Hence, the discrete, finite set of

all considered line integrals (for the s projection angles and the d detector

pixels) is replaced by a matrix A ∈ Rm×n, with m = s d, which represents

the discrete Radon transform matrix, i.e. a discrete version of the Radon

transform operator R[x] in (2.3). Hence, according to the Lambert-Beer’s

law, the discrete projection data I ∈ Rm can be written as

I =


Iθ1

Iθ2

...

Iθs

 = I0 exp

−


Aθ1

Aθ2

...

Aθs

 x̄

 (2.5)

where Aθl ∈ Rd×n is the projection matrix for acquisition angle θl and I0 is

the X-ray emission intensity.

The product between the projection matrix A and the object x̄, which

theoretically represents the set of all X-ray line integrals, can be modeled in

different ways in the discretization. The elements of the matrix Aθl = (aθli,j)

can be interpreted as:

• (aθli,j) =

1 if x̄j is crossed by the i-th X-ray at the proj. θl

0 if x̄j is NOT crossed by the i-th X-ray at the proj. θl

• (aθli,j) = length of the segment of intersection between the pixel x̄j and

the i-th X-ray at the projection θl, Figure 2.3a.

• (aθli,j) = area of intersection between pixel x̄j and the triangle with base

on the i-th pixel at the projection θl, Figure 2.3b.
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(a) Line intersections

(b) Strip intersections

Figure 2.3: Discretization of the process at two projection angles θ1 and θ2.

(a) is done considering the line integrals between the source and the center

of the 6-th detector pixel. (b) considers the triangle with base on the 6-th

detector pixel and the vertex on the source.
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Figure 2.4: Computed Tomography.

(Left) The acquisition process: the source emits x-rays, which are attenuated

passing through the object, and the detector measures the amount of rays

that arrives. Then the source and the detector rotate together around the

rotation axis, so all the projections can be taken.

(Top Right) The sinograms (or projections) ȳ := Ax̄ = − ln I
I0
: where A is

the Radon transform matrix, which describe the effect of the line integrals.

Every row corresponds to an angle of projection.

(Bottom Right) The detected intensities I (number of photons that arrive to

the detector). Every row corresponds to an angle of projection.

The acquired intensities Iθ1 , . . . , Iθs can be rearranged so as to form a

matrix where every row refers to a projection angle, see Figure 2.4. One

refers to the sinusoidal data obtained after the re-arranging the original I as

a sinogram, in formulas

ȳ := Ax̄ = − ln
I

I0
.

We now give a closer look to the projection matrix A by considering a

mock object x̄ ∈ R16 (4× 4 image), and a detector with 15 pixels.

Figure 2.3a shows the supports of the line integrals (red lines) for the 6-th

pixel of the detector, and for two angles θ1 and θ2. In this way, the measured

intensity at the 6-th pixel of the detector, at angle θ1 can be written as:

Iθ16 = I0 exp
(
−
(
aθ16,1x̄1 + aθ16,2x̄2 + · · ·+ aθ16,16x̄16

))
= I0 exp

(
−⟨Aθ1

6 , x̄⟩
)
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with Aθ1
6 denoting the 6-th row of matrix Aθ1 and ⟨·, ·⟩ the scalar product.

We can note that, considering the line intersection (Figure 2.3a) at the

angle θ1, the 6-th X-ray intersects only the pixels x̄3, x̄4, x̄5, x̄6 and x̄7, so

aθ16,j ̸= 0 for j = 3, 4, 5, 6, 7 and aθ16,j = 0 for the others. While, at the angles

θ2 the 6-th X-ray intersects only the pixels x̄3, x̄4, x̄5, x̄6, x̄7 and x̄9, so a
θ2
6,j ̸= 0

for j = 3, 4, 5, 6, 7, 9 and aθ26,j = 0 for the others.

Summarizing, the first projection can be expressed as

Iθ1 =



Iθ11

Iθ12

Iθ13

Iθ14
...

Iθ115


= I0 exp


−



Aθ1
1

Aθ1
2

Aθ1
3

Aθ1
4

...
...

...

Aθ1
15


×



x̄1

x̄2

x̄3

x̄4
...

x̄16




.

Considering also the second projection angle, we have:

[
Iθ1

Iθ2

]
=



Iθ11
...

Iθ115

Iθ21
...

Iθ215


= I0 exp


−



Aθ1
1
...

Aθ1
15

Aθ2
1
...

Aθ2
15


×



x̄1

x̄2

x̄3

x̄4
...

x̄16





Considering all the s projection angles:
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
Iθ1

Iθ2

...

Iθs

 =



Iθ11
...

Iθ115

Iθ21
...

Iθ215
...
...

Iθs1
...

Iθs15



= I0exp



−



Aθ1
1
...

Aθ1
15

Aθ2
1
...

Aθ2
15
...
...

Aθs
1
...

Aθs
15



×



x̄1

x̄2

x̄3

x̄4
...

x̄16




This small example suggests that the projection matrix is in general very

sparse in the normal setup, because the X-rays (that arrives at a detector

pixel) intersect only a few pixel of the object.

Based on the above discussion, after denoting byA ∈ Rm×n withm = s d and

by g the function g : Rm×m where g(·) = I0 exp (− ·), the general degradation
model for the CT problem reads:

b = Noise( λ̄ ) where λ̄ := g(Ax̄), g(t) = I0 e
−t. (2.6)

More details on the random operator Noise will be given in Section 2.3.

Remark 2.2.1. Before going into the details of the noise degradation, it is

worth mentioning the discrete version of a general denoising and deblurring

problem that can be used to describe problems in the application fields of

astronomy and microscopy, where the blurring effect often derives from the

features of the tool used to capture the data, i.e telescope and microscope.

It takes the following form:

b = Noise( λ̄ ), λ̄ = A x̄,
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Figure 2.5: Left : Original image. Right : Image corrupted by blur.

where A ∈ Rm×n models the action of the blur on the unknown image and

g becomes the identity function. An example of the effect of the blurring

operator con be seen in Figure 2.5.

2.3 Noise modelling in CT

In this section we describe the noise that characterizes the data in Com-

puted Tomography, namely Poisson noise, Gaussian noise and the mixed

Poisson-Gaussian noise, [5]. First we introduce the related probability dis-

tributions; then, we will discuss the applicative scenarios in which they arise

and explain the reasons behind their presence/action. In this thesis we will

indicate with capital letters B andB the random variables and random fields,

while their realization will be denoted by lowercase letters b and b, respec-

tively. Moreover the letter p will stand for the probability density functions

(pdf) and P for the probability mass functions (pmf).

Definition 2.3.1 (Poisson random variable and independent random field).

A univariate discrete random variable B is said to be Poisson distributed with

parameter λ ∈ R++, where R++ indicates the set of positive real numbers,

denoted by B ∼ P(λ), if its probability mass function reads

PB(b | λ) =
λbe−λ

b !
, b ∈ N .



22 2. The CT Inverse Problem

The expected value and variance of random variable B are given by

E [B] = Var [B] = λ .

A (vectorized) random field B = {Bi} is said to be independent Poisson

distributed with parameter Λ = {λi} ∈ Rm
++, denoted by B ∼ P(Λ), if it

satisfies:

Bi ∼ P (λi) ∀ i = 1, . . . ,m , PB(b | Λ) =
m∏
i=1

PBi
(bi | λi) . (2.7)

Definition 2.3.2 (Gaussian random variable and independent random field).

A univariate continuous random variable (r.v.) B is said to be Gaussian

distributed with mean η ∈R and standard deviation σ ∈ R++ denoted by

B∼G(η, σ2), if its probability density function reads

pB(b | η, σ) =
1√
2πσ

exp

(
−(b− η)2

2σ2

)
, b ∈ R .

The expected value and variance of random variable B are given by

E [B] = η, Var [B] = σ2 .

A vectorized random field (r.f.) B = {Bi} is said to be independent Gaussian

distributed with mean η = {ηi} ∈ Rm and diagonal covariance matrix Σ =

diag(σi) ∈ Rm×m, denoted by B ∼ G(η,Σ), if it satisfies:

Bi ∼ G(ηi, σ
2
i )∀i = 1, . . . ,m, pB(b | η,Σ)=

m∏
i=1

pBi
(bi | ηi, σi) . (2.8)

In particular, a Gaussian random field B = {Bi} is said to be independent

identically distributed (i.i.d.) if the mean vector and the covariance matrix

have the following form:

η = η 1m, Σ = σ2 Im×m

with η ∈ R, σ ∈ R+, 1m denoting the unit vector of dimension m and Im×m

the identity matrix of dimension m×m. In this case, B ∼ G(η1m, σ
2Im×m)

and its probability density function reads

pB(b | η1m, σ
2Im×m) =

m∏
i=1

1√
2πσ

exp

(
−(bi − η)2

2σ2

)
.
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Definition 2.3.3 (Mixed Poisson-Gaussian random variable and indepen-

dent random field). A univariate continuous random variable B is said to

be Mixed Poisson-Gaussian distributed if it is the sum of two independent

random variables C and D, with C a Poisson distributed r.v. with parameter

λ∈R++ (C ∼P(λ)) and D a Gaussian distributed r.v. with mean η ∈R and

standard deviation σ ∈ R+ (D∼G(η, σ2)). B is denoted as

B∼MPG(λ, η, σ2)

and its probability density function reads [51]

pB(b | λ, η, σ) =
∑
bn∈N

PC(bn | λ) · pD((b− bn) | η, σ)

=
∑
bn∈N

(
λbne−λ

bn !

)
·
(

1√
2πσ

exp

(
−((b− bn)− η)2

2σ2

))
,

with b ∈ R. The expected value and variance of random variable B are given

by

E [B] = λ+ η, Var [B] = λ+ σ2 .

A vectorized random fieldB = {Bi} is said to be independent Mixed Poisson-

Gaussian distributed, denoted by B ∼ MPG(Λ,η,Σ), if it is the sum of an

independent Poisson distributed r.f. C = {Ci} with parameter Λ = {λi} ∈
Rm

++ (C ∼ P(Λ̄)) and an independent Gaussian distributed r.f. D with

mean η = {ηi} ∈ Rm and diagonal covariance matrix Σ = diag(σi) ∈ Rm×m

(D ∼ G, (η,Σ)) and satisfies

Bi ∼ MPG(λi, ηi, σ
2
i )∀i = 1, . . . ,m, pB(b | Λ,η,Σ) =

m∏
i=1

pBi
(bi | λi, ηi, σi) .

In particular, when D is a i.i.d. Gaussian random field with η = η 1m and

Σ = σ2 Im×m, the probability density functions of B reads

pB(b | Λ, η1m, σ
2Im×m) =

m∏
i=1

pBi
(bi | λi, η, σ)

=
m∏
i=1

(∑
bn∈N

(
λbne−λ

bn !

)
·
(

1√
2πσ

exp

(
−((bi − bn)− η)2

2σ2

)))
.
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Poisson noise is related to the inherent statistical nature of electromag-

netic waves and arises when data is acquired by photon counting, i.e. by

counting the number of photons emitted by a source arriving on the detec-

tor, [2, 1, 10]. This quantity portrays the average value of the number of

detected photons; in fact the effective measured number depends on the os-

cillations during the emission process and varies on the time interval when

the phenomenon is observed. It is present in many medical applications, such

as CT and Microscopy Imaging, but also in other application such as astro-

nomical imaging. The Poisson noise is a signal-dependent noise, where the

standard deviation depends on the underlying noiseless signal λ̄i. Therefore

the level of noise will be different at each pixel of the data. When the num-

ber of photons hitting the data domain (λ̄i) increases, the noise quantified by

the standard deviation
√
λ̄i increases with the square root of the intensity,

meaning that the signal increases more than the noise. Since in our applica-

tions we measure the number of photons, which arrive at different times, the

relative noise in the data can be reduced by increasing the acquisition time

or the dose of X-rays. Unfortunately this is not applicable in all the cases,

due to external or internal causes (specific situation or equipment limits) or

by the fact that exposing the patient to and higher dose of X-rays might be

more dangerous without returning any significant benefits.

It is worth mentioning that given X ∼ P(λ̄1) and Y ∼ P(λ̄2) two univariate

Poisson random variables, then the sum X +Y is a Poisson random variable

with mean and variance λ̄1 + λ̄2, in formula:

X + Y ∼ P(λ̄1 + λ̄2).

Gaussian noise affects digital images of various fields and arises both during

the acquisition (due to the poor illumination or high temperature) and the

transmission phases (inside the electronic circuit). For the CT case, elec-

tronic noise originates from the X-ray detection system, it is unrelated to the

number of photons detected and does not carry any diagnostic information.

In fact, the electronic noise can be observed in a CT projection even if a

black image (i.e. without the X-ray source) is acquired. The main source of
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electronic noise is the analog electronic of circuits in the detection system.

Once the analog signal is converted to a digital signal, it becomes relatively

immune to sources of electronic noise [2, 13].

According to the previously introduced formal definitions 2.3.1, 2.3.2 and

2.3.3, we can now formalize the probabilistic version of the data acquisition

process considered in this work. The random field B = {Bi}, of which the

measured data are a realization, is the following

B ∼ MPG (Λ̄, η1m, σ
2Im×m)

where Λ̄ = {λ̄i}, λ̄i = I0e
−(Ax̄)i for i = 1, . . . ,m. Since the mean η of

background signals can be estimated using blank measurements prior to each

scan, it is common to subtract it from the measured intensity b and assume

η = 0 in the model:

B ∼ MPG (Λ̄,0m, σ
2Im×m),

where 0m denotes the zero vector with dimension m.

2.3.1 Noise Approximations

Even with the assumption η = 0, the probability density function of B

is complicated and harder to consider when designing a solution algorithm.

For this reason, the above random field is often approximated by a shifted

Poisson or a Gaussian one.

Shifted Poisson

The Shifted Poisson approximation of the mixed Poisson-Gaussian r.f.

C+D = B ∼ MPG (Λ̄,0m, σ
2Im×m)

where C ∼ P(Λ̄), D ∼ G(0m, σ
2Im×m)

(2.9)

can be defined by replacing the Gaussian r.f. D with a Poisson one:

D ∼ G(η1m, σ
2Im×m) ≈ E ∼ P(σ21m).
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With this replacement, B is approximated the sum of two independent Pois-

son rr.ff., which is also an independent Poisson r.f.

B = C+D ≈ C+ E ∼ P(Λ̄+ σ21m).

This approximation is particularly convenient when the Poisson noise con-

tribution takes over, as it happens for low dose CT acquisitions.

Gaussian Approximation

In (2.9), if instead of approximating the Gaussian r.f. with a Poisson one,

we replace the Poisson r.f. C with a Gaussian r.f. H ∼ G(Λ̄, diag(Λ̄)); then

B is the sum of two independent Gaussian rr.ff., which is also a Gaussian

r.f.:

B = C+D ≈ H+D ∼ G(Λ̄, diag(Λ̄+ σ21m)).

Since this approximation depends on the Stirling approximation of the fac-

torial

n! ≈
√
2πn

(n
e

)n
, for n→ ∞,

it can be applied when the number of photons λ̄i is sufficiently large, namely

when using an high dose of X-rays.

Gaussian Approximation of the noise in the sinogram If instead

of the intensity b, for the CT forward model, we consider the absorption

y = − log( b
I0
) (sinogram), it turns out that it also can be approximated

by a Gaussian distribution when working with an high number of photons.

As said before, for higher doses the intensity random variable Bi can be

approximated as

Bi ≈ G(λ̄i, λ̄i + σ2) = λ̄i +
√
λ̄i + σ2 G(0, 1)
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where λ̄i = I0e
−(Ax̄)i . By taking the negative logarithm we obtain:

Yi = − log

(
Bi

I0

)
≈− log

(
e−(Ax̄)i +

√
I0e−(Ax̄)i + σ2

I0
G(0, 1)

)

≈− log

(
e−(Ax̄)i

(
1 +

1√
I0e−(Ax̄)i

G(0, 1)

))
=

=(Ax̄)i − log

(
1 +

1√
I0e−(Ax̄)i

G(0, 1)

)
=

≈ (Ax̄)i −
1√

I0e−(Ax̄)i
G(0, 1).

(2.10)

where from the first to the second row we approximate
√
I0e−(Ax̄)i + σ2 with√

I0e−(Ax̄)i (since the Gaussian approximation of Bi holds for high values

of I0, σ
2 is not comparable with I0e

−(Ax̄)) and the last row is obtained by

the first-order Taylor approximation log(1 + z) ≈ z (than can be used for

small values of z, i.e. large values of I0e
−(Ax̄)i). From (2.10) we derive that

the absorption coefficient yi can be approximated by a Gaussian distribution

with mean (Ax̄)i and standard deviation 1√
I0e−(Ax̄)i

.





Chapter 3

Behind the mathematical

model: the Physics of X-ray

Tomography

Wilhelm Conrad Röntgen was awarded with the first Nobel Prize for

physics in 1901 for the discovery of a new radiation capable of high levels

of penetration, which he names X-rays. Neverthless, the first commercial

CT scanners appeared in the early 1970s invented independently by Allan

Cormack and Godfrey Hounsfield [3, 4], both of them being recipient of the

Nobel Prize in Medicine in 1979. In this chapter, we will provide some

details on these two Nobel-Prize-worthy discoveries. First, we will focus on

the physics behind the generation of X-rays, the CT components, photon-

matter interaction and X-ray detection, [1, 2]. Then, we will briefly discuss

the statistical properties of CT, which somehow determine the noise model

considered in the inverse problem formulation, and the different CT setups

used from its invention, [2].

29
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3.1 The nature and generation of X-rays

X-ray radiation is of electromagnetic nature; it is part of the electro-

magnetic spectrum, which also includes radio waves, radar and microwaves,

infrared, visible and ultraviolet light and γ-rays. As every wave, an X-ray

is characterized by its frequency ν, i.e. the number of vibrations for each

second, ranging from 3 · 1016 and 3 · 1019 and it is measured in Hertz (Hz).

The wavelength of a wave is the distance between successive crests and it can

be computed as f = c
ν
, where c = 2.998 108 m/s is the velocity of light in vac-

uum. Hence, the wavelengths of X-rays belongs to the range [10nm, 10−3nm].

From a quantum-mechanic viewpoint, electromagnetic radiation can be re-

garded as emissions of quanta (photons), which are the smallest discrete

amount of electromagnetic radiation. In this perspective, the X-ray radia-

tion is a flow of moving photons, which, in vacuum, have the same velocity

v. The energy E of each photon depends on the frequency, according to the

following relation:

E = h ν ,

with h = 6.626070 · 10−34 m2· kg/s beeing the Plank’s constant, and it is

expressed in electron Volt (eV): 1 eV is the energy that an electron will gain

if it is accelerated by an electrical potential of one Volt. So X-rays with

frequencies between 3 · 1016 and 3 · 1019 Hz correspond to energies between

124 eV and 1.24 · 106 eV.

Generation of X-rays

The X-ray radiation is generated by the deceleration of fast electrons

entering a solid metal anode. An X-ray source is in fact composed by a

cathode and a metal anode placed inside a vacuum tube. The cathode is

characterized by a filament circuit in which the current runs through when

the X-ray source is turned on, Figure 3.1. Therefore, the filament is heated by

the current and, by thermal excitation, emits electrons. Due to the electric

field between cathode and anode, these electrons are accelerated and hit the
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Figure 3.1: Typical X-ray Source.

anode with high speed transferring their kinetic energy to the anode. Once

the electrons collide with the anode, the X-ray radiation is emitted by two

types of interaction: Bremsstrahlung and characteristic radiation.

Bremsstrahlung

Bremsstrahlung is a german word that describes the fact that an high-

speed electron is decelerated when passing near the nucleus of an anode atom.

This happens because the positively charged nucleus deflect and slows down

the electrons causing a loss of kinetic energy that corresponds to the emission

of X-ray radiation (with energy the one that is lost the by the electron). The

energy of the emitted photons (and thus the amount of deceleration) depends

on the distance between the incoming electron and the nucleus of the atom:

the larger the distance, the smaller the deflection and the deceleration of

the electron; on the other hand, if it clashes with the nucleus, it decelerates

completely. In the first case a low energy photons is emitted (due to the small

loss of kinetic energy), while in the latter, a high-energy photon is released,

Figure 3.2 As a result, the maximum energy of the photons corresponds to
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Figure 3.2: X-ray spectrum of a 120 KeV X-ray tube. The continuous part

of the spectrum corresponds to the Bremsstrahlung, while the peaks to the

characteristic radiation.

the maximum kinetic energy of the electrons that hit the anode.

Characteristic radiation

In addition to the generation of X-rays due to the loss of kinetic energy, X-

ray photons can be emitted by characteristic radiation. This happens when

a high-speed electron collides with an inner-shell electron of the atom. In

this case, the electron of the atom is ejected and the empty spot in its energy

level is filled by an outer-shell electron that falls down to the lowest energy

position. The energy difference between the two shells leads to the release of

a photon (with energy corresponding to the difference in energy levels of the

shells), Figure 3.2. These photons have only specific discrete energy values

that depend on the anode atom, and are thus called characteristic radiation.
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3.2 Photon-matter interaction

When X-ray photons pass through a material they interact both with

electrons and nuclei of the material’s atoms, and can be either absorbed or

scattered. The most important interactions are the following: Photoelectric

effect, Compton scattering and Rayleigh scattering [12]. Here, we will not de-

tail the three interactions; however, generally speaking, the absorption-based

interactions cause the disappearance of the photon, while the scattering-

based interactions yield that the photon is deviated from its original path.

In all the cases, the detector element that would record the photon in ab-

sence of interaction will not detect the photon. All this yields to a reduction

in the number of detected photons, which is called attenuation and refers

to the decrease of the beam intensity. This phenomenon is described by the

Lambert-Beer Law of attenuation, which we introduced in 2.2 and that will

be derived in the following paragraph.

3.2.1 Lambert-Beer Law of attenuation

Consider an X-ray propagating along a line parametrized in terms of the

position ℓ and passing through an object with thickness ∆ℓ; physics principles

state that the change of radiation intensity after the beam has crossed the

object is proportional to the thickness of the object; in formula

I(ℓ+∆ℓ) = I(ℓ)− x̄(ℓ)I(ℓ)∆ℓ,

with x̄(ℓ) being the proportionality constant referred to as linear attenuation

coefficient. Manipulating the above equation, we get that the limit of the

quotient is

lim∆ℓ→0
I(ℓ+∆ℓ)− I(ℓ)

∆ℓ
=

dI

dℓ
= −x̄(ℓ)I(ℓ) . (3.1)

If the material is assumed to be homogeneous, i.e. the attenuation coefficient

is constant x̄(ℓ) = x̄, along the entire length of penetration, the equality in

(3.1) becomes an ordinary linear and homogeneous, first-order differential

equation with constant coefficients, Figure 3.3.
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Figure 3.3: Mathematical model of monochromatic X-ray attenuation. The

photons are running through an object of thickness ∆ℓ with a constant atten-

uation coefficient, x̄. Equal parts of the same absorbing medium attenuate

equal fractions of the radiation.

The solution is obtained by separation of variables:

dI

I(ℓ)
= −x̄ · dℓ. (3.2)

By integrating both sizes of (3.2)∫
dI

I(ℓ)
= −x̄

∫
dℓ

ln(I) = −x̄ ℓ+ C

Since the intensity is a positive quantity, after imposing an initial condition

I(0) = I0, the special solution of the differential equation (3.1) can be written

as

I(ℓ) = I0e
−x̄ ℓ , (3.3)

which is also known as Lambert-Beer’s law of attenuation.

3.2.2 The evolution of the Lambert-Beer Law

In the case of spatially varying attenuation, x̄(ℓ), the exponent in (3.3)

is replaced by the integral of the unknown coefficients along a linear path of



3.3 X-ray detection 35

length s:

I(s) = I0e
−

∫ s
0 x̄(ℓ)dℓ. (3.4)

This applies when considering a monochromatic X-ray source, i.e. a single

photon energy, and, as a result, the model can be rearranged as follows:

y(s) := − log

(
I(s)

I0

)
=

∫ s

0

x̄(ℓ)dℓ , (3.5)

with y indicating the absorption. In the case of multiple photon energies

(polychromatic source), the monochromatic model (3.4) can be modified so

as to account for the dependence of the attenuation on the energy:

I(s) =

∫ Emax

Emin

I0(E) e
−

∫ s
0 x̄(ℓ,E) dℓ dE. (3.6)

In practice, conventional CT detectors measure only one intensity value, ob-

tained by summing all the photons coming with different energy levels, as

in (3.6). For the polychromatic model the rearrangement into a line-integral

linear equation, as in 3.5, is no longer feasible, as it would produce a mod-

elling approximation.

In recent years, photon counting detectors have been released on the mar-

ket: they allow to distinguish the photons coming from different energies

and to monitor how data changes across the energy channels. However this

technology is fairly new; most of the current detectors can differentiate only

between few energy channels and the collected intensities in each channel are

obtained by integrating the photons over the energy channel interval. In this

thesis, we will first consider a monochromatic X-ray source and then discuss

the polychromatic scenario (spectral CT).

3.3 X-ray detection

X-ray quanta are measured by a detector, and the process can be divided

into two steps. The first is characterized by a scintillator that absorbs the

X-ray photons and converts them to visible light. Then, the visible light is
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Figure 3.4: Different kind of scintillators.

coupled to a charge-coupled device (CCD) that records the lights and finally

the digital signal is collected.

The scintillation layer can be made in different ways, each of them yielding

to different image quality. This is because light will scatter through the

scintillator when passing, with consequent diffusion on adjacent pixels of

the following layer. In this perspective, a thick scintillator will give a lower

resolution compared to a thin one. On the other hand, it will absorb more

of the incident radiation so it will lead to an higher Signal-to-Noise Ratio

(SNR). The two problems are solved using a structured scintillator: the X-

ray photons are guided in the right direction, allowing a thick scintillator

(high SNR) without diffusion (high resolution), Figure 3.4.

The CCD layer contains an grid of pixel sensors sensitive to light; when

a photon hits one of them, it is converted to into photoelectron (electric

charge). Finally the amount of the charge in each detector pixel is measured

and converted into binary form.

3.4 Statistical properties of CT

To better understand the degradation process it is important to explain

the statistical properties of the X-rays and the detector, [2].
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3.4.1 Statistical properties of the X-ray source

To derive the statistical photon model, we need to introduce the X-ray

quanta generation statistics inside the focus area on the X-ray tube anode.

As mentioned at the beginning of the chapter, the lattice atoms of the anode

material are bombarded with fast electrons that are accelerated during their

transit from the cathode to the anode. Let L electrons arrive at the active

focus volume in the time window [0;T ] and, let each of the L electrons have a

probability, r (with 0 ≤ r ≤ 1), of interacting in the same time interval with

one of the target atoms in such a way that an X-ray quantum emerges. It

is also assumed that each collision process between fast electrons and target

atoms in the lattice is not characterized by a statistical dependence on all

other collisions inside the focus volume. Then, the probability, P , that the

random variable, N , i.e., the number of emerging X-ray quanta, is assigned

exactly to the number n is

P(N = n) =

(
L

n

)
rn(1− r)L−n.

In other words, the number of X-ray quanta, N ∼ Bin(r), is a binomially

distributed random variable with n out of {0, . . . , L}. For a large number of

fast electrons, the probability that the random variable N is exactly assigned

to n, can be calculated via the Poisson distribution mass function defined in

P(N = n) = lim
L→∞

(
L

n

)
rn(1− r)L−n =

(λ)n

n!
e−λ.

The parameter λ of the Poisson distribution, i.e. the expectated value E[N ] =

L · r of the number of X-ray quanta, is a measure of the radiation intensity.

Thus, X-ray generation is a Poisson process.

3.4.2 Statistical properties of the detector

Reviewing the X-ray detector types explained before in terms of their

statistics, it becomes clear that the X-ray photon detections via the pho-

toelectric effect can also be seen as statistically independent processes. In
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statistics, such detectors are called Bernoulli detectors. Let s, with 0 ≤ s ≤ 1,

be the probability that entering X-ray quanta ionizes a xenon atom of the

detector. It has been derived in the previous section that X-ray quanta leav-

ing the X-ray tube are Poisson-distributed. Therefore, the detection process

must be modeled for a Bernoulli detector, which receives Poisson distributed

quanta. The probability that m quanta are detected, if n quanta enter the

detector, is given by the conditional probability

PDet(m|n) =


(
n
m

)
sm(1− s)n−m form = 0, 1, . . . , n

0 form ≥ n
(3.7)

Since the source is modeled by the Poisson distribution,

PSource(N = n) =
(λ)n

n!
e−λ ,

this term must be multiplied with (3.7). In this way, the probability of a

Bernoulli detection of m quanta of a Poisson source can be expressed as,

PSD(m) =
∞∑

n=m

PSource(n) · PDet(m|n) = e−λ (sλ)
m

m!

∞∑
n=0

((1− s)λ)n

n!
. (3.8)

The sum in the right term of (3.8) is the Taylor expansion of the exponential

function e(1−s)λ . Ultimately, one obtains

PSD(m) =
(sλ)m

m!
e−sλ. (3.9)

Equation (3.9) reveals that the number of Bernoulli-detected X-ray quanta

of a Poisson source is again a Poisson-distributed random variable. The final

result is merely scaled by the detection probability, s, i.e., the efficiency of

the detector. Equation (3.9) is extremely important because it explains why

X-ray quanta show Poisson statistics after traveling through an absorbing

object. Obviously, the attenuation processes inside the object are guided

by binomial statistics, since the mechanisms for absorption are the same as

those inside the detector. The statistical chain from generation of the quanta

inside the X-ray tube, via the attenuation inside the object of interest, to the

measurement by the X-ray detector, is called a cascaded Poisson process.
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Figure 3.5: Scan geometries: Parallel Beam, Fan Beam and Cone Beam.

3.5 The evolution of Computed Tomography

Computed Tomography has evolved into different scan geometries over

time. The first generation of CT involves an X-ray tube that emits a single

needle-like X-ray beam, which is selected from the X-ray cone by means of

an appropriate pinhole collimator. This geometry is referred to as pencil

beam. A single detector is situated on the opposite side of the measuring

field and the X-ray tube. The detector is moved synchronously along with

the X-ray tube. This displacement is linear and is repeated for different

projection angles; in this way a parallel beam set-up is obtained, Figure 3.5

left. This two configurations are time consuming, and not applicable in

medical applications, so the fan beam computed tomography appeared soon

after. Here the source emits a wide fan beam that are collected by a linear

array of detectors, Figure 3.5 center. This allows to measure simultaneously

the intensity values along the lines at the detector position, and to move

directly to the following acquisition angle, significantly increasing the speed

of the procedure. The Fan Beam CT can be generalized to the 3D case

by using a divergent cone-shaped source directed through the middle of the

volume of interest onto an area X-ray detector on the opposite side. This is

called Cone Beam Computed Tomography (CBCT), Figure 3.5 right. The

X-ray source and detector rotate around a rotation fulcrum fixed within the

center of the region of interest. During the rotation, multiple sequential

planar projection images of the field of view are acquired. In industrial
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applications, the CBCT is performed also by rotating the object between the

fixed source and detector plane.



Chapter 4

On and beyond standard

reconstruction methods

After detailing the CT acquisition process, both in continuous and dis-

crete settings, and the physical principles underlying such acquisition, in this

section we will focus on how to recover an image of the target object start-

ing from the measured data. Strategies designed so as to address this task

are referred to as CT image reconstruction methods. Those methods can

be divided into two categories: pre-log and post-log. The pre-log methods

directly reconstruct the CT image from the raw measurements b = Noise(λ̄)

with λ̄ = I0e
−Ax̄. On the other hand, in the post-log approaches, a log

transformation is first taken on the ratio between the raw measurements b

and the initial radiation intensity I0 to generate post-log sinogram data that

represents the line integrals of the Radon transform (see equations (2.3),

(2.4)):

− log

(
b

I0

)
:= y ≈ Ax̄.

Due to the linearity of the reformulated problem y = Ax̄, such strategies

are easier and more efficient to solve and were the first to be developed.

However, in most cases, the Poisson noise in the data b, and that affect the

noisy sinogram y, is either not considered or approximated, as explained in

2.3.1, resulting in poor results for low-dose CT problems. Pre-log strategies

41



42 4. On and beyond standard reconstruction methods

Figure 4.1: Left: three projections of a test image. Right: back-projection

of the three projections, [1].

take into account the original degradation modelin (2.6), which is non linear,

but require advanced algorithmic techniques to solve the problem. In this

chapter we will describe the existing techniques starting with the classical

and standard strategies to end with the most recent ones.

4.1 The Standard Back-Projection (BP)

Method

As recalled in Section 2.2, the sinogram y, i.e. the ouput measurement of

a CT scanner after the log transformation, is obtained by applying the Radon

transform to the target object x̄. As a result, historically the first attempt for

solving the CT reconstruction problem has focused on inverting the process,

namely obtaining the image from its shadows/projections: Back-Projection

(BP). In what follows, we are detailing the BP strategy for the simple case

of parallel beam tomography: the back-projection is obtained by spreading

each projection y(θ, ξ) = R(x̄)(θ, ξ) back onto the line of integration and then

summing over all the projection angles, Fig. 4.1. The process is formalized
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Figure 4.2: Back-projection using different number of projections angles

(from 1 to 180), [1].

as follows:

R∗[y](z1, z2) =

∫ 2π

0

y(θ, z1 cos θ + z2 sin(θ)) dθ. (4.1)

From formula (4.1) and Figure 4.1, one can note that the back-projection

does not truly represent the inverse of the Radon Transform, as by smearing

the projection y(θ, ξ) onto the line of integration its positive values are as-

signed to all the pixels of the image that belong to the projection line, even

the zero valued. In this way it is not possible to retrieve all the zero valued

pixels of the target image, since a lot of them are “in the shadow” of positive

values. Moreover the process of spreading along the line and then summing

leads to a blurring effect in the reconstruction, as shown in Fig. 4.2 where we

consider BP reconstructions corresponding to different and increasing num-

bers of projections. Finally, it is important to note that, when using a small

number of projections, the shape of the circle is not defined and the band

coming from the smearing process are visible. On the other hand, a larger

number of projections results into a more clear shape but with a blurring

effect.
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Figure 4.3: The Fourier reconstruction method, [1].

4.2 The Fourier-Based methods

The analytical formula for the inverse of the Radon transform can be

obtained by the Fourier Slice Theorem. The Fourier Slice Theorem states

that 1D Fourier transform of the data y(θ, ξ) = R(x̄)(θ, ξ) with respect to

the variable ξ at a fixed projection angles θ is equal to
√
2π times the 2D

Fourier transform of the original image restricted to the corresponding line

with direction vector (cos(θ), sin(θ)):

R̂(x̄)(θ, ξ) =
√
2π ̂̄x(ξ cos(θ), ξ sin(θ))

This result also yields a simple strategy for the CT reconstruction problem:

given the projections y(θ, ξ) = R(x̄)(θ, ξ), one can apply the 1D Fourier

transform for each angle of projections, the computed 1D transforms can be

re-arranged as a 2D signal by aligning them radially at angle θ. Finally,

the 2D inverse Fourier transform is performed on the re-arranged signal,

Fig. 4.3. Despite the theoretical guarantees of the Fourier reconstruction

method, it is not used for conventional CT scanning since the application

of the 2D Fourier transform requires change of coordinates, from polar to
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Cartesian, that is difficult to obtain. Moreover, small errors at this stage can

significantly damage the output reconstructions.

The Filtered Back-projection (FBP) method

The Filtered Back-Projection (FBP) Method is the most used for recon-

struction since, for simple CT problems, can achieve good results in a short

amount of time. FBP is also derived by the Fourier Slice Theorem, but

it circumvent the above problem of calculating the 2D Fourier Transform,

[1, 2]. As the name suggests, the FBP is performed by back-projecting the

data after the application of a filter: after applying the 1D Fourier transform

to each projection, a ramp filter is applied and the filtered projections are

obtained by means of the inverse 1D Fourier transform. Finally the result is

achieved by back-projecting the filtered projections, Fig. 4.4.

The Feldkamp Davis and Kress (FDK) Method

The extension of this method to the 3D case of Cone Beam CT is known

as Feldkamp Davis and Kress (FDK) method. It is articulated into three

steps: weightening the projections, filtering and back-projecting them. All

these procedures can be easily parallelized, thus making the FDK an ideal

candidate to use in practice. A schematic representation of FDK is shown in

Fig 4.5. However, these algorithms are used only for CT setups with many

projections (over all directions) and high X-ray doses. In the other cases, as

noisy data, limited angle or less projections, the results contain artifacts and

are not reliable to use for the application field.

4.3 The algebraic methods

As an alternative to FBP or FDK, iterative algebraic reconstruction al-

gorithms minimize the residual of the image, by iteratively comparing the

reconstruction with the measured data iteratively. These algorithms have
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Figure 4.4: Top Left: Back-projection. Top Right: Filtered Back-projection.

Bottom part: Reconstruction with increasing number of projection (1,3,21

and 500) with Back-projection (Center) and Filtered Back-projection (Bot-

tom), [1].
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Figure 4.5: Schematic representation of the FDK method, [2].

been shown to improve the quality of the output reconstructions, specially

when the data is noisy, acquired with a limited number of projections or with

a limited view. While the previous reconstruction methods were defined in

the continuous, for the algebraic methods we have to take into account the

discrete nature of the practical realization of CT from the very beginning,

i.e. by looking at the model in section2.2.1.

The ART Method

Arguably the most well known iterative algorithm for the CT image re-

construction problem is the algebraic reconstruction technique (ART), also

named as Kaczmarz method after its inventor Stefan Kaczmarz, [6]. The

ART method is an iterative method that solves the linear system y = Ax

in a direct way by means of a sequence of orthogonal projections [6, 1, 2].

Given an initial image x(0), ART computes a sequence of iterative solutions
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Figure 4.6: Schematic representation of the ART method.

{x(1), x(2), . . . , } that converges to the desired tomographic reconstruction.

More in details, let us consider a 2× 2 linear system of the forma11x1 + a12x2 = y1

a21x1 + a22x2 = y2
.

In this case, the candidate solution is a point in a 2-dimensional space;

the initial guess x(0) is projected onto the straight line defined by the first

equation of the linear system, so as to get x(1), which is then projected onto

the second line represented by the second equation, so as to give x(2). The

described procedure is replicated many times by first projecting on the first

and then on the second equation. The general update step reads:

x(k+1) = x(k) − aix
(k) − yi
aiaTi

aTi ,

where ai = (ai1, ai2) the i-th row of the coefficient matrix. Fig 4.6 gives a

visual representation of the method.
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The SIRT Method

The Simultaneous Iterative Reconstruction Technique (SIRT) approach

also aims to solve directly the linear system y = Ax. However, unlike ART,

it updates the current candidate solution by simultaneously using all the

system equations (instead of using one equation after the other). SIRT still

does the projections like in ART, but the update of x is the average of all x

vectors obtained when projecting onto each hyperplane:

x(k+1) = x(k) −D1A
TM1(Ax(k) − y) ,

whereD1 = diag

(
1

||cj ||1

)
∈ Rn×n, M1 = diag

(
1

||ri||1

)
∈ Rm×m are diagonal

matrices and the 1-norms ||cj||1 and ||ri||1 are the sum of the columns and

rows of A respectively. Both the algorithms have a convergence history

that initially improves the solution for better approximation of the target

image x̄, but in later iterations diverge from this letting the reconstruction

to be more influenced by the noise. Different techniques can be adopted as

stopping rule; most of them are based on the behavior of the residual vector

ρ(k) = y −Ax(k), [1, 11].

4.4 Comparative evaluation of the standard

methods

After describing the standard post-log CT reconstruction methods, here

we compare them in different scenarios by changing the number of projec-

tions, their range and the level of noise in the data (the X-ray dose). For

this experiment we consider the Shepp Logan phantom (500 × 500 pixels)

inside a Fan Beam acquisition process with 500 detector pixels; Figure 7.3

shows the phantom, the intensity data b and the post-log sinogram data y

for I0 = 2500. Before going into the details, it is important to mention that

all the reconstructed images are in the same range as the original phantom

except the one obtained with BP, which are scaled between their minimum
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Shepp Logan Phantom b

y

Figure 4.7: Shepp Logan phantom, the intensity data b and the post-log

sinogram data y for I0 = 2500 and 180 angles in the range [0, 2π].

and maximum. In fact, as we previously discussed, the BP reconstructions

have higher values in the pixels than the target due to the smearing process

(so if we visualize them in the same range of the phantom, we will look at a

white image).

In the first experiment, the algorithms BP, FBP, ART and SIRT are applied

to the noisy sinogram y by considering both different number of projection

and angle ranges, see Figure 4.8. We can note that, for a fixed range, the

quality of the reconstructions decreases with the number of projections as

the inside structure become less clear and the stripe artifacts coming from

the few projections arise. Moreover, by restricting the angle range, the re-

constructions are less accurate, especially in the portion of the image that

are less “irradiated”. In the second experiment, Figure 4.9, we compare the

four algorithms by changing the level of noise in the data, namely by reduc-

ing the X-ray dose I0, and considering 180 projection angles in the range

[0, 2π]. As one can note, the reconstructions become noisier as I0 decreases,

with SIRT returning the best results for all the considered cases. In fact,

for I0 = 2500 the internal structures are visible both with FBP, ART and

SIRT, but the SIRT image contain less noise and sharper details. When the

noise increases, the FBP results are almost only noise, while in the SIRT
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reconstruction we can distinguish the main features. Nevertheless, even the

SIRT outputs present some noise artifact and its results need to be improved,

[7, 8, 9].

As we mentioned before, the low-dose scenario that we want to investigate

arises when lowering the number of projections angles, when narrowing the

range or decreasing the X-ray dose. However, since the first two cases two

cases are often related to limitations of the equipment or the type of exam

(such as the mammography) and lead to specific artifacts, in this thesis we

will focus on the task of reducing the dose and work with more noisy data.

4.5 Variational Methods

In Chapter 2 inverse problems are introduced, together with the defini-

tion of well-posedness and the formulation of classical degradation models

2.1. For the case of Computed Tomography, the associated inverse problem

is typically ill-posed. In fact, in standard CT acquisition setups many pro-

jections are acquired making the problem over-determined (non existence of

the solution). In other cases, like limited angles or low dose CT where the

number of measurements is less than the number of the unknowns, the prob-

lem is under-determined (non-uniqueness of the solution). Finally, even in

case of as many measurements as the unknowns, noise in the observed data

can propagate to very large perturbations in the solution. In the previous

section we analyzed the behaviour of the standard reconstruction strategies

when working with noisy data and/or with limited number of projection an-

gles. Clearly, the simple Filtered Back-projection or the algebraic methods

that solve the linear system y = Ax are not enough for these problems and

more advanced strategies need to be considered.

Before going any further, we recall the inverse problems we aim to solve:

find x ∈ Rn such that b is a realization of the random

noise B ∼N(λ) with λ = g(Ax) + q
(4.2)
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range n. angles BP FBP ART SIRT

[0, 2π] 180

90

45

[0, π] 180

90

45

[0, π
2
] 180

90

45

Figure 4.8: Comparison of the standard CT reconstruction methods BP,

FBP, ART and SIRT applied on a Fan Beam geometry with different range

of angles and number of projections.
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I0 BP FBP ART SIRT

2500

1000

500

100

50

10

Figure 4.9: Comparison of the standard CT reconstruction methods BP,

FBP, ART and SIRT applied on a Fan Beam geometry with different doses

of X-rays, namely different values of I0. The acquisition setup considers 180

angles in the range [0, 2π].
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with b, q ∈ Rm and A ∈ Rm×n.

To overcome the intrinsic ill-posedeness of the above problem, one can rather

solve a well-posed problem that is as close as possible to the original one.

In this context, one of the most popular class of strategies is the one of

Variational Methods, where the well-posed problem to solve is minimizing a

cost function J : Rn → R+. In formula:

x̂(µ) ∈ arg min
x∈Rn

{J(x, µ) := R(x) + µF(x; g,A, b)} , (4.3)

where x̂ is an approximation of the solution of the original problem. The

functional F is typically called data fidelity term, as it measures the distance

between the noise-free degraded image g(Ax)+q and the noisy observation b

in a way that accounts for the noise statistics. On the other hand, we refer to

R as the regularization term, that encodes prior information or beliefs on the

target uncorrupted image x̄; for instance, it can penalize heavy oscillations,

force smoothness or incorporate the known sparsity patterns of the target.

The regularization parameter µ > 0 balances the contribution of the two

terms in the overall cost function and its choice is very important as, even

with the appropriate fidelity and regularization terms, an improper value

µ can lead to worthless reconstructions. For this reason, in (4.3) we made

explicit the dependence of the solution x̂ on the parameter µ.

4.5.1 Bayesian Formulation

A well-established way of defining variational models suitable for the sce-

nario at hand is to recast the problem into Bayesian probabilistic terms: it

portrays the data fidelity and regularization terms based on probability den-

sity/mass functions and it helps us to understand which functional R and F

to choose according to the noise model and the a priori information we have

on the solution, [14].

In the Bayesian perspective the unknown quantity x of the problem is mod-

eled as a random field; the discrete model takes the following probabilistic
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form:

B ∼ N(Λ) Λ = g(AX) + q ,

where N denotes a generic noise distribution that, for our purposes, will be

a Poisson, Gaussian and Mixed Poisson-Gaussian, and B and X are m− and

n− random fields whose realizations are the ones denoted in the deterministic

models b and x, respectively. In this framework we indicate with P(b|x)
the likelihood probability mass function that encodes the information on the

degradation process, while the prior assumptions on the random field X

are expressed into the prior pdf p(x). In this context one aims to find the

analytical expression of the posterior pdf conditional distribution p(x|b) that
is related to the likelihood and the prior via the Bayes’formula, [15]:

p(x|b) = P(b|x) p(x)
P(b)

∝ P(b|x) p(x).

4.5.2 Priors

The design of the prior involves the process of mathematically formalizing

the properties of the target image x̄ that one aims to recover. For example, if

the target image x̄ is piece-wise constant, we expect it to have few jumps only

between its flat parts with different grey levels. This leads to the assumption

that the vector with the entries

||(Dx)j||2 =
√

(Dhx)2j + (Dvx)2j ,

will be sparse, where Dh,Dv ∈ Rn×n are two linear operators representing

the finite difference discretizations of the first-order partial derivatives of the

image x in the horizontal and vertical direction.

Generally speaking, priors encode information about the distribution of the

grey levels inside the image (for the image restoration problem) or the atten-

uation levels of the object (for the CT reconstruction) and their transition

between different areas of the target. In this context, the unknown image

is modeled as a Markov Random Field (MRF), that is the extension of a

Markov Random process to more dimensions, [17]. With this framework,
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one requires that a characteristic of pixel xj of the image x depends only on

the behaviour of a set of its neighboring pixels xk, k ∈ Cj, where Cj is the

index set of the neighbors of xj. This property is expressed as:

P(Xj = xj|Xk = xk, k ̸= k) = P(Xj = xj|Xk = xk, k ∈ Cj).

The prior distribution of a MRF is the so-called Gibbs prior

p(x | θpr) =
1

Z
exp

(
−

n∑
j=1

VCj
(x; θpr)

)
where Z > 0 is a normalization constant, VCj

is the Gibbs potential function

defined on the circle of pixels centered at xj, and θpr denotes the parameters

used in the prior. Different choices of the function VCj
lead to priors that

enhance various properties of the image x. A typical choice that consider

the discrete gradient magnitude of the image is given by the Total Variation

Gibbs prior, [17]:

pTV(x) =
1

Z
exp

(
− α

n∑
j=1

||(Dx)j||2
)

where α is the prior parameter. Moreover, one can look at the second order

derivatives and define the TV2 prior that promotes piecewise-affine structure

inside the image:

pTV2(x) =
1

Z
exp

(
− α

n∑
j=1

||(∇2x)j||F
)

where (∇2x)j ∈ R2×2 indicates the discrete Hessian of image x at pixel j

and ∥ · ∥F denotes the Frobenius norm. As regards images with a dark

background and just a few of non zero pixels, such as astronomical images,

the prior that can be applied in this case is the L1 prior:

pL1(x) =
1

Z
exp

(
− α||x||1

)
.

In cases where a constraint on the image is known, the prior can be expressed

as product of a constraint x ∈ Ω and an “informative” prior (as one above).
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The constraint prior takes the following form:

pΩ(x) =

1 if x ∈ Ω

0 otherwise.

4.5.3 Likelihoods

The selection of the prior is a hard task since it is supposed information

on the pixels behavior; hence, the choice of the likelihood model is crucial

to mitigate the approximation introduced by the prior. It is important to

consider the physics that guides the acquisition process and the statistical

assumptions connected to it.

In what follows, we give the expression of the likelihood distributions for

the noise statistics typically modelling the degradation observed in CT data,

namely Gaussian, Poisson and Mixed Poisson-Gaussian, as explained in 2.3.

For the case of i.i.d Gaussian noise:

b = g(Ax) + e ,

where e ∈ Rm is the realization of a multivariate Gaussian random variable

with mean vector η 1m and covariance matrix Σ = σ2Im×m, the likelihood

pdf reads.

p(b|x) =p(b− g(Ax)) = p(e) =
n∏

i=1

p(ei)

=
m∏
i=1

1√
2πσ

exp

(
((b− g(Ax))i − η)2

2σ2

)

=
1√

2π
m
σm

n∏
i=1

exp

(
((b− g(Ax))i − η)2

2σ2

)
.

Recalling that the Poisson forward model can be written in component-wise

form as follows:

bi = Poiss(λi), λi = g(Ax)i + qi, i = 1, · · · ,m ,
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and that the noise realizations at different pixels are independent, the Like-

lihood for the Poisson noise reads:

P(b|x) = P(b|λ) =
m∏
i=1

P(bi|λi) =
m∏
i=1

λbii
e−λi

bi!
.

Considering a Mixed Poisson-Gaussian model, the acquired data can be writ-

ten as:

bi = Poiss(λi) + Gauss(η, σ2), λi = g(Ax)i + qi i = 1, . . . ,m ,

and after recalling that the realization are independent and for the Gaussian

contribution even i.i.d, the Likelihood for the Mixed Poisson-Gaussian model

reads:

p(b | x) =p(b | λ, η, σ) =
m∏
i=1

p(bi | λi, η, σ)

=
m∏
i=1

(∑
bn∈N

(
λbne−λ

bn !

)
·
(

1√
2πσ

exp

(
−((bi − bn)− η)2

2σ2

)))
.

4.5.4 The Maximum A Posteriori (MAP) approach

Since investigating a distribution is particularly expensive from the com-

putational point of view, one tends to select a single representative of the

distribution summarizing its information. There is therefore the need to find

a way to derive the single-point information x̂ from the posteriori distribu-

tion. One popular strategy is to use the mode of p(x|b) as a single-point

representative of the posterior distribution, meaning that we want to find

the image x̂ maximizing the posterior: Maximum A Posteriori (MAP),

x̂ ∈ argmax
x∈Rn

{p(x|b) ∝ P(b|x) p(x)}. (4.4)

We quickly recall that, the conditional mean approach selects the mean of

the distributions as its representative. However the mean is calculated ap-

proximating an integral in large-dimensional spaces.

After applying the negative logarithm to (4.4) we have:

x̂ ∈ arg min
x∈Rn

{− log(P(b|x))− log(p(x))}. (4.5)
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We remark that the main idea of Variational Methods, whose general form is

expressed in (4.3), is to obtain a good approximation x̂ of the solution x̄ of

the original problem. This can be obtained using the MAP approach, whose

form in (4.5) resembles the one in (4.3) where the cost function in (4.3) is a

sum of two terms, one encoding prior information on the image (p(x)), the

other modelling the noise statistics (P(b|x)).

4.6 The R-KL model

In this section we introduce one of the most commonly used variational

models for the CT, consisting of a regularizer R and a Poisson fidelity (that we

will refer to as KL): the R-KL model. Before deriving the R-KL variational

model we recall the general Poisson forward model

b = Poiss(λ̄), λ = g(Ax̄) + q (4.6)

where b ∈ Rm,x ∈ Rn and q ∈ Rm are vectorized forms of the observed

degraded image, the unknown uncorrupted image and the so-called (usually

known) background emission image. A ∈ Rm×n models a linear degrada-

tion operator, whereas the vectorial function g : Rm → Rm is the identity

function or a nonlinear function modelling the possible presence of (deter-

ministic) nonlinearities in the degradation process. A and g are dictated by

the specific application and are assumed to be know. For the specific subject

of this thesis, i.e. computed tomography, the function g can be restricted to

the simplified form g(a) = (g(a1), g(a2), · · · , g(am))T with g : R+ → R+ and

Poiss(λ̄) = (Poiss(λ̄1),Poiss(λ̄2), · · · ,Poiss(λ̄m))T , with Poiss(λ̄i) indicat-

ing the realization of a Poisson-distributed random variable with parameter

(mean) λ̄i.

Starting from the above forward model (4.6) and considering a generic Gibbs

prior pGibbs(x | θpr) together with the constraint x ∈ Ω := {x ∈ Rn,x ≥ 0},
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the posterior density takes the form

p(x|b) ∝P(b|x) p(x) = P(b|x) pGibbs(x | θpr) pΩ(x)

=

( m∏
i=1

λbii
e−λi

bi!

)
1

Z
exp

(
−

n∑
j=1

VCj
(x; θpr)

)
pΩ(x).

(4.7)

By taking the negative logarithm of the likelihood and prior we have:

− log P(b|x) =− log P(b|λ) = − log
m∏
i=1

P(bi|λi) = −
m∑
i=1

log P(bi|λi)

=
m∑
i=1

− log

(
λbii

e−λi

bi!

)
=

m∑
i=1

(
λi − bi log(λi) + log(bi!)

)
− log p(x) = − log (pGibbs(x | θpr) + pΩ(x))

=
n∑

j=1

VCj
(x; θpr) + ιΩ(x) + log(Z)

(4.8)

where ιΩ(x) denotes the indicator function of set Ω, which is equal to 0 if

x ∈ Ω and +∞ otherwise.

Finally, plugging (4.8) into (4.5), dropping out the constant term logZ and

expressing the parameters in terms of µ, we obtain the R-KL variational

model

x̂(µ) ∈ argmin
x∈Ω

{ J(x, µ) := R(x) + µKL(λ, b) }, λ = g(Ax) + q (R-KL)

where µ ∈ R++, R(x) is the regularizer that comes from the choice of the

prior and the term KL(λ, b) indicates the generalized Kullback-Leibler (KL)

divergence between λ = g(Ax) + q and the observation b, which reads

KL(λ, b) =
∑
i∈I

F (λi, bi) (4.9)

where

F (λi, bi) =

λi − bi log(λi) + log(bi!) if i ∈ I+

λi if i ∈ I0 := I \ I+
(4.10)
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with I, I+, I0 the sets of pixel indices defined by

I := {1, . . . ,m} , I+ := {i ∈ I | bi > 0} , I0 := I \ I+ = {i ∈ I | bi = 0} .
(4.11)

4.6.1 The TV-KL model

After deriving the general R-KL model, here we define the TV-KL model

by first plugging the Total Variation Gibbs prior into (4.7) and (4.8)

− log p(x) = − log

(
1

Z
exp

(
− α

n∑
j=1

||(Dx)j||2
)
+ pΩ(x)

)

=α
n∑

j=1

||(Dx)j||2 + ιΩ(x) + log(Z).

Then, by placing the results into (4.5), not considering the constant term

logZ and dividing the cost function by the positive scalar α, we obtain the

TV-KL variational model

x̂(µ) ∈ argmin
x∈Ω

{ J(x, µ) := TV(x) + µKL(λ, b) }, λ = g(Ax) + q

(TV-KL)

where µ = 1/α, the TV semi-norm [18] is defined by

TV(x) =
n∑

j=1

||(Dx)j||2. (TV)

4.6.2 Other regularization and fidelity terms

The TV-KL variational model will be extensively employed for the CT

reconstruction problem in the following sections. As previously discussed,

the TV term is particularly suitable when the target is a piecewise constant

object but it can fail in reconstructing more articulated objects due to its

downsides, such as loss of contrast, staircasing effects and its space-invariant

definition. For this reason, we now recall some of the regularization terms

R(x) that in the experimentations carried out in the rest of the thesis will



62 4. On and beyond standard reconstruction methods

be also coupled with the KL data fidelity term so as to form more flexible

variational models. The discussed regularizers can be all regarded as stem-

ming from the image priors introduced in 4.5.2.

The global effect of TV works well for images with the same level of details

inside, since it applies the same amount of regularization is each pixel re-

gardless its local properties or structure, but returns poor results in cases

with different textures across the image. Although the TV term is known

to be particularly effective for the restoration of piece-wise constant images;

it tends to promote edges producing the so-called staircasing effect on the

smooth parts of the image. As a way to overcome the classical drawbacks of

TV, one can employ the TV2 regularizer [19] defined by

R(x) = TV2(x) :=
n∑

j=1

∥(∇2x)j∥F , (TV2)

with (∇2x)j ∈ R2×2 indicating the discrete Hessian of image x at pixel j

and ∥ · ∥F denoting the Frobenius norm. The TV2 regularizer promotes

piecewise-affine structures in the image, however its ability to recover sharp

edges is less than TV.

A way to incorporate the benefits of the TV and of the TV2 regularizers while

mitigating their shortcomings is the popular Total Generalized Variation

(TGV) [21],in particular its second-order version which reads

R(x) = TGV2(x) := min
w∈R2n

{
α0

n∑
j=1

∥(∇x)j − wj∥2 + α1

m∑
j=1

∥(Ew)j∥F

}
,

(TGV2)

where w = (w1;w2) with w1, w2 ∈ Rn, wj := (w1,j;w2,j) ∈ R2 and (Ew)i ∈
R2×2 denotes the discrete symmetric Jacobian of vector field w at pixel j,

with α0, α1 being positive parameters.

Before going ahead with the discussion, here we define the TV2-KL and the

TGV-KL variational models that will be employed in the following chapters.

x̂(µ) ∈ argmin
x∈Ω

{ J(x, µ) := TV2(x) + µKL(λ, b) }, (TV2-KL)

x̂(µ) ∈ argmin
x∈Ω

{ J(x, µ) := TGV2(x) + µKL(λ, b) }, (TGV2-KL)
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where λ = g(Ax) + q.

Regarding the fidelity term, a common choice when the noise follows a Gaus-

sian distribution or when it can be approximated by it, is to consider a

Gaussian Likelihood or its space variant version:

F(x; g,A, b) = L2(x; g,A, b) :=
1

2
∥g(Ax) + q − b∥22 (L2)

F(x; g,A, b) = WL2(x; g,A, b) :=
1

2
∥g(Ax) + q − b∥2W (WL2)

where ∥·∥2W =
∑

iwi ·2i denotes the weighted norm. Due to their simple form

and easy solution, both are commonly used even for data corrupted by Pois-

son noise. In fact, as discussed in 2.3.1, for sufficiently large values of its

mean, the Poisson distribution can be approximated by a Gaussian. More-

over, for the CT problem, we derived a way to approximate the noise in the

sinogram y (post-log approach) with a Gaussian distribution.

4.7 The importance of the choice of the pa-

rameter

Despite the choice of suitable fidelity and regularization terms, the so-

lution of (4.3) strongly depends on the regularization parameter µ, whose

incorrect value selection can lead to meaningless reconstruction. As we can

see in (4.3) a small value of µ corresponds to a functional J(x, µ) where the

regularization term is more strongly penalized, so the solution x̂(µ) will be

more regularized according to the specific choice of R(x). On the other hand,

larger values of µ result in noisier reconstructions but with more details. In

other words, the parameter regulates the confidence that I have in the data.

If the observation is very good, the data can be trusted, so the parameter

µ is bigger. Otherwise, if the data is degradated, we need to balance the

fidelity in the data with the a priori information that I have on the data.

This behavior can be observed in Figure 4.10 where the solution x̂(µ) of the
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TV-KL model (TV-KL) for the image restoration problem b = Poiss(λ̄),

with λ̄ = I0 exp(−Ax̄) + q is shown for increasing values of the regular-

ization parameter µ (from left to right, top to boom). The synthetic data

are generated considering an initial intensity I0 = 100 and 180 angles in the

range [0, 2π]. As one can note by comparing the reconstruction in Figure

4.10 with the one in Figure 4.9 for the same I0, the result obtained with

the TV-KL model are characterized by more details and less noise than the

best of the standard methods (the one with SIRT). However, the quality of

the TV-KL reconstruction strongly depends on the choice of the parameter

µ, whose incorrect choice leads to worse results than those obtained with

standard methods.

Therefore, the selection of a suitable value for the regularization parameter

µ is of crucial importance for obtaining high-quality results. Very often, µ is

chosen empirically by brute-force optimization with respect to some visual

quality metrics. Such strategy implies an high computational cost and the

compromise of selecting the parameter only between the computed recon-

structions and from a visual perspective.

As a results, the following part of the thesis focuses on automatic selection

strategies for the choice of the regularization parameter in Variational Meth-

ods with Poisson noise data.
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µ = 0.001 µ = 0.01 µ = 0.05

µ = 0.1 µ = 0.3 µ = 0.4

µ = 0.6 µ = 1 µ = 15

Figure 4.10: Results of the TV-KL model (TV-KL) for the CT reconstrution

problem for increasing values of the regularization parameter µ (left to right,

top to bottom). The synthetic data are generated considering the forward

process b = Poiss(λ̄), with λ̄ = I0 exp(−Ax̄) + q, I0 = 100 and 180 angles

in the range [0, 2π].
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Chapter 5

State of The Art strategies

In this part of the thesis we focus on data corrupted only by Poisson

noise:

b = Poiss(λ̄), λ̄ = g(Ax̄) + q.

In these cases, a criterion for the selection of µ in variational models of the

form (R-KL) reported here

x̂(µ) ∈ argmin
x∈Ω

{ J(x, µ) := R(x) + µKL(λ, b) }, λ = g(Ax) + q,

can be formulated as follows

Select µ = µ∗ such that C(x̂(µ∗)) is satisfied ,

where x̂(µ) : R++ → Rn, is the image restoration function introduced in

(4.3) and C(·) is some selection criterion or principle.

Traditionally, the criteria proposed for the µ-selection under Poisson noise

corruption are extensions of strategies for the parameter selection in presence

of additive white Gaussian noise. With this idea, some attempts modify the

generalized cross validation function, originally proposed in [22], in order to

be applied to the case of Poisson noise [23, 24]. Bertero and co-authors pro-

posed an effective strategy that extends the Morozov Discrepancy Principle

to the case of Poisson noise, [25, 26, 27], while different methods rely on

transforming the noise statistics, as it happens in [32], where the authors

69
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consider a Gaussian approximation of the noise and then employ the popu-

lar Morozov discrepancy principle. The criteria can be thus divided into two

main classes according to their original derivation set-up:

1. Principles derived from imposing the value of some µ-dependent quan-

tity;

2. Principles derived from optimizing some µ-dependent quantity.

In this chapter we will review principles belonging to the first class, while a

new proposal will be discussed in Chapter 6. Then, Chapter 7 will introduce

a principle of the second class and in Chapter 8 we will explore an extension

of both.

5.1 The discrepancy Principle

As typical examples of first class strategies, we mention the discrepancy

principles (DP) whose general form reads

C(x̂(µ∗)) : D (µ∗; b) = ∆ ∈ R++ , (5.1)

with the so-called discrepancy function D (·; b) : R+ → R+ defined by

D (µ; b) := KL
(
λ̂(µ); b

)
=

m∑
i=1

(
Di (µ; bi) := F

(
λ̂i(µ); bi

))
, (5.2)

with function F defined in (4.10) and

λ̂(µ) = g (A x̂(µ)) + q . (5.3)

The equality in (5.1) is commonly referred to as the discrepancy equation

while ∆ is the so-called discrepancy value which changes when considering

different DP versions. The DP in (5.1)-(5.3) formalizes a quite simple idea:

choose the value µ∗ of the regularization parameter µ in the R-KL model

(R-KL) such that the value of the KL data fidelity term associated with the
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solution x̂(µ∗) is equal to a prescribed discrepancy value ∆. However, ap-

plying the DP in an effective manner in practice is not straightforward as

several issues concerning the computational efficiency and, more importantly,

the quality of the output solutions arise.

Regarding the computational efficiency, the solution function x̂(µ∗) of model

(R-KL) does not admit a closed-form expression (for the non smooth regular-

izers introduced in the previous chapter) and iterative solvers must be used

to compute the restored image x̂ associated with any µ. Hence, selecting µ∗

by solving the scalar discrepancy equation defined in (5.1)-(5.3) as an effi-

cient preliminary step and then computing the sought restored image x̂(µ∗)

by iteratively solving model (R-KL) only once is not feasible. This issue has

been successfully addressed in [31], where the authors propose to automat-

ically update µ along the iterations of the minimization algorithm used for

solving the TV-KL model so as to satisfy (at convergence) a specific version

of the general DP defined in (5.1)-(5.3).

As for the quality of the solution, even if an efficient algorithm is used for the

computation, the obtained restored image x̂(µ∗) may be of such low quality

that it is of no practical use if the discrepancy value ∆ in (5.1) is not suitably

chosen. So the main question that needs to be answered is the following:

how can we identify the best choice for the discrepancy value ∆?

In the theoretical hypothesis that the target image x̄ is known, so that λ̄ =

g(Ax̄) + q is also known, one would select µ∗ such that the value of the KL

fidelity term associated with the solution x̂(µ∗) is equal to the value of the

KL fidelity term associated with x̄. This clearly does not guarantee that

the obtained solution x̂(µ∗) coincides with the target image x̄. However, by

constraining x̂(µ) to belong to the level set of the KL fidelity term containing

x̄, this abstract strategy, which we refer to as the Theoretical DP (TDP),

represents an oracle for the general DP in (5.1)-(5.3). The TDP is thus

formulated as follows:
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Select µ = µ∗ ∈ R+ such that D (µ∗; b) = ∆(T ) ,

with ∆(T ) :=
m∑
i=1

(
δ(T )(λ̄i) := F

(
λ̄i ; bi

))
, λ̄= g (Ax̄) + q ,

(TDP)

with function F defined in (4.10). Clearly, the value ∆(T ) can not be com-

puted in practice as the original image x̄ is not available. Like in the case

of the Morozov discrepancy principle for Gaussian noise, one could replace

the scalar ∆(T ) with the expected value of the KL-fidelity term in (4.9) re-

garded as a function of the m-variate random variable B. We will refer to

this version of the DP as Exact (or Expected value) DP (EDP). In formula:

Select µ = µ∗ ∈ R+ such that D (µ∗; b) = ∆(E) (µ∗) ,

with ∆(E)(µ) :=
m∑
i=1

(
δ(E)(λ̂i(µ)) := EYi

[
F
(
λ̂i(µ);Bi

)])
,

and λ̂(µ) = g (Ax̂(µ)) + q ,

(EDP)

where EYi

[
F
(
λ̂i(µ);Bi

)]
denotes the expected value of F

(
λ̂i(µ);Bi

)
re-

garded as a function of the Poisson-distributed random variable Yi. Nonethe-

less, unlike the Gaussian noise case, the discrepancy value is not a constant

but is a function ∆(E)(µ) of the regularization parameter µ, and deriving its

analytic expression is a very hard task. A popular and widespread strategy,

originally proposed in [25] for denoising purposes and extended in [26] to the

image restoration task, replaces the exact expected value function ∆(E)(µ)

with a constant approximation coming from truncating its Taylor series ex-

pansion. We will refer to this version of the DP as Approximate DP (ADP).

It reads:

Select µ = µ∗ ∈ R+ such that D (µ∗; b) = ∆(A) ,

with ∆(A) :=
m∑
i=1

(
δ(A) :=

1

2

)
=
m

2
.

(ADP)
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This strategy is widely used for its simplicity in terms of applicability, and for

its good theoretical properties that guarantee the existence and uniqueness,

under specific conditions, of the value µ∗ satisfying the ADP discrepancy

equation. Despite its extensive use due to the good performance achieved

in the mid- and high-count regimes, the (ADP) is known to return poor

quality results in the low-count Poisson regimes [33], i.e. when the number

of photons hitting the image domain is small. In the next Chapter we will

address in details its weaknesses and why they arise. In fact, already in [26]

where the ADP was first extended to the image deblurring task, the authors

state (in Remark 3) that the choice of the constant value δ(A) = 1/2 in (ADP)

may not be “optimal” and suggest to replace it with 1/2 + ϵ, where ϵ is a

small positive or negative real number. Since its proposal in [25], the ADP

has been (and still is) widely used for variational image restoration (see, e.g.,

[34], [35]) and it can be regarded as the standard extension of the Morozov

DP for Gaussian noise to the Poisson noise case. Then, some literature exists

working on the ADP, e.g. by proposing, analyzing and testing its usage in

KL-constrained variational models [30] or by analyzing it theoretically [28].

However, to the best of the authors’ knowledge, the only attempt to improve

the ADP by giving a face to the ϵ adjustment to the approximate, constant

discrepancy value δ(A) = 1/2 is the one in [33]. The authors in [33] correctly

state that ϵ must not be a constant, but a function ϵ(λ) of the photon count

level. However, they propose to take ϵ(λ) as the sum of the second to tenth

terms of the same Taylor expansion used in [25]. As we will highlight later in

the thesis, such expansion converges only for λ approaching +∞, hence the

choice in [33] cannot aspire to improve the performance of ADP in low-count

regimes.

5.2 The Quadratic Discrepancy Principle

In the volume where the ADP has been originally proposed, a different

selection criterion also inspired by the Morozov DP has been published. In-
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stead of approximating the expected value of the KL fidelity term, in [32]

the authors propose to directly approximate (quadratically) the KL term in

such a way that the expected value of the approximate term admits a simple

closed-form expression. The approximation reads

KL(λ; b) :=
∑
i∈ I

F (λi; bi) ≈ KL(Q)(λ; b) :=
∑
i∈ I

F (Q) (λi; bi) ,

with the introduced function F (Q) (approximating the function F in (4.10))

defined by

F (Q)(λi; bi) =

(
bi − λi√

λi

)2

. (5.4)

The quadratically approximated version D(Q) of the exact discrepancy func-

tion D defined in (5.2) and used in the (ADP) thus reads

D(Q) (µ; b) := KL(Q)
(
λ̂(µ); b

)
=
∑
i∈ I

(
D

(Q)
i (µ; yi) := F (Q)

(
λ̂i(µ); bi

))
.

(5.5)

By regarding F (Q) in (5.4) as a function of the Poisson-distributed random

variable Yi with mean λi, it is immediate to prove that [38]

δ(Q) := E
[
F (Q)(λi;Bi)

]
= 1 .

Hence, the DP version proposed in [32], referred to as Quadratic DP (QDP),

reads

Select µ = µ∗ ∈ R++ such that D(Q) (µ∗; b) = ∆(Q) ,

with ∆(Q) :=
∑
i∈ I

(
δ(Q) = 1

)
= m.

(QDP)

5.3 Masked Principles

After noting that the (ADP) and (QDP) principles can yield sub-optimal

results in case of many zero-photon pixels, in [31] the authors proposed

masked versions of those principles based on simply discarding all pixels

measuring zero photons - i.e., pixels for which bi = 0. The masked versions
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of the exact discrepancy function D in (5.2) used in the (ADP) and of the

quadratically approximated discrepancy function D(Q) in (5.5) used in the

(QDP) - indicated by D+ and D
(Q)
+ , respectively - take clearly the following

forms

D+ (µ; b) :=
∑
i∈ I+

F
(
λ̂i(µ); bi

)
, D

(Q)
+ (µ; b) :=

∑
i∈ I+

F (Q)
(
λ̂i(µ); bi

)
,

where I+ is defined in (4.11) as I+ := {i = 1, . . . ,m | bi > 0} and the func-

tions F and F (Q) are defined in (4.10) and (5.4), respectively. Hence, based

on their unmasked versions in (ADP) and (QDP), the ADP and QDP masked

biased principles proposed in [31] - that we shortly refer to as ADP-M and

QDP-M, respectively - can be formulated as follows:

Select µ = µ∗ ∈ R++ such that D+ (µ∗; b) = ∆
(A)
+ ,

with ∆
(A)
+ :=

∑
i∈ I+

(
δ(A) =

1

2

)
=
m+

2
,

(ADP-M)

Select µ = µ∗ ∈ R++ such that D
(Q)
+ (µ∗; b) = ∆

(Q)
+ ,

with ∆
(Q)
+ :=

∑
i∈ I+

(
δ(Q) = 1

)
=m+,

(QDP-M)

where m+ indicates the cardinality of set I+, namely the number of non-zero

pixels. The above principles will be further discussed in Chapter 8.





Chapter 6

The Nearly Exact Discrepancy

Principle

In the previous chapter we introduced the general form of the discrepancy

principle for Poisson noise (5.1) and discussed the choice of the discrepancy

value ∆. In this chapter we will focus on the Approximate DP by extensively

analyzing its properties and limits. Then we will propose a new version of

the discrepancy principle and compare its performance with ADP, [39].

6.1 Limits of the Approximate Discrepancy

Principle

The discrepancy principle proposed by Zanella et al. in [25] for Poisson

image denoising and then extended to image restoration by Bertero et al.

in [26] relies on Lemma 1 in [25] (whose proof has been completed in [27]),

which we report below for completeness.

Lemma 6.1.1. Let Bλ be a Poisson random variable with expected value

λ ∈ R++ and consider the function of Bλ defined by

F (Bλ) = λ−Bλ lnλ+Bλ lnBλ−Bλ = Bλ ln

(
1 +

Bλ − λ

λ

)
+λ−Bλ . (6.1)

77
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Then, the following estimate of the expected value of F (Bλ) holds true for

large λ:

δ(E)(λ) = E[F (Bλ)] = δ(A) +O

(
1

λ

)
, δ(A) =

1

2
. (6.2)

Based on the estimate above, and implicitly assuming a sufficiently large λ

(i.e., a sufficiently high-count Poisson regime) such that the O(1/λ) term can

be neglected, the exact DP outlined in (EDP) is replaced in [25, 26] by the

approximation given in (ADP) and recalled below:

∆ = ∆(A) =
m∑
i=1

δ(A) =
m

2
. (6.3)

However, the ADP performs badly for low-count Poisson images. Our goal

here is to highlight that the reason for that lies precisely in the constant

approximation δ(E)(λ) ≈ δ(A) used in (ADP) and then propose a nearly exact

DP based on a much less approximate estimate δ(NE)(λ) of the expected

value function δ(E)(λ) .

To this purpose, first we carry out a preliminary Montecarlo simulation

aimed at highlighting the error associated with the approximation in (ADP).

In particular, we consider a discrete set of λ values λi ∈ [0, 8] and, for each

λi, we generate pseudo-randomly a large number (106) of realizations of the

Poisson random variable Bλi
. Then, we compute the associated values of the

function F (Bλi
) defined in (6.1) and, finally, for each λi, we obtain an esti-

mate δ̂(E)(λi) of δ(E)(λi) by calculating the sample mean of these function

values. The results of this simulation are shown in Figure 6.1. In particular,

in the left figure we report the computed estimates δ̂(E)(λi) whereas in the

right figure we report the percentage errors (with respect to the estimates)

associated with using the constant value δ(A) = 1/2 as in the (ADP). The

percentage error approaches +∞ for λ tending to zero, is in the order of

−10% for λ ∈ [1, 4] then, as expected, decreases (quite slowly) to zero for λ

tending to +∞. The error is thus quite large for small λ and this can explain

the bad performance of the (ADP) in the low-count Poisson regime.
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Figure 6.1: Comparison between the approximation δ(A) = 1/2 of δ(E)(λ) =

E[F (Bλ)] used in the (ADP) proposed in [25, 26] and the Montecarlo esti-

mates δ̂ (E)(λi) for some λi ∈ [0, 8] .

In order to obtain a more accurate approximation or even an exact an-

alytical expression for the expected value function δ(E)(λ) , we now retrace

in detail the proof of Lemma 6.1.1 given in [25] (and completed in [27]) and

check if the rough truncation carried out in [25, 27] can be avoided.

After noting that function ln(1 + φ) is C∞ on its domain (−1,+∞) and

considering its Taylor expansion around 0, the Taylor’s theorem with remain-

der in integral form allows one to write:

ln (1 + φ)=
N∑
i=1

(−1)i+1

i
φi + rN(φ) =

=φ− 1

2
φ2 +

1

3
φ3 − · · ·+ (−1)N+1

N
φN + rN(φ),

rN(φ)= (−1)N
∫ φ

0

(φ− t)N

(1 + t)N+1
dt , ∀φ ∈ (−1,+∞) . (6.4)

Replacing the expansion above with φ = (Bλ − λ)/λ into the expression of
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function F defined in (6.1), we get

F (Bλ) = Bλ

(
N∑
i=1

(−1)i+1

i

(
Bλ − λ

λ

)i

+ rN(φ)

)
+ λ−Bλ

= BλrN(φ) + (Bλ − λ+ λ)

(
N∑
i=1

(−1)i+1

i

(
Bλ − λ

λ

)i
)

+ λ−Bλ

= BλrN(φ) + (Bλ − λ)

(
N∑
i=1

(−1)i+1

i

(
Bλ − λ

λ

)i
)

+ λ

(
N∑
i=1

(−1)i+1

i

(
Bλ − λ

λ

)i
)

+ λ−Bλ

= BλrN(φ) +
N∑
i=1

(−1)i+1

i

(Bλ − λ)i+1

λi
+

N∑
i=2

(−1)i+1

i

(Bλ − λ)i

λi−1

= BλrN(φ) +
N∑
i=1

(−1)i+1

i

(Bλ − λ)i+1

λi
+

N−1∑
i=1

(−1)i

(i+ 1)

(Bλ − λ)i+1

λi

= BλrN(φ) +
N−1∑
i=1

(
(−1)i+1

i
+

(−1)i

(i+ 1)

)
(Bλ − λ)i+1

λi
+

(−1)N+1

N

(Bλ − λ)N+1

λN

= BλrN(φ) +
N−1∑
i=1

(−1)i+1

i (i+ 1)

(Bλ − λ)i+1

λi
+

(−1)N+1

N

(Bλ − λ)N+1

λN
. (6.5)

After noting that the only random quantity in (6.5) is Bλ, the expected value

reads

δ(E)(λ) = E [F (Bλ)] =
N−1∑
i=0

ω
(N)
i

ηi+2 [Bλ]

λi+1
+ RN(λ) , (6.6)

with coefficients ω
(N)
i ∈ Q , i = 0, . . . , N − 1, and remainder function RN :

R++ → R given by

ω
(N)
i =


(−1)i

(i+ 1) (i+ 2)
for i = 0, . . . , N − 2

(−1)i

i+ 1
for i = N − 1

, RN(λ) = E

[
Bλ rN

(
Yλ − λ

λ

)]
,

(6.7)

and where

ηi+2 [Bλ] = E
[
(Bλ − λ)i+2

]
, i = 0, 1, . . .
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denote the central moments of order i + 2 of the Poisson random variable

Bλ. It is well known (see [37], p.162) that these moments can be obtained

by the recursive formula

η1 [Bλ] = 0, η2 [Bλ] = λ, ηi+2 [Bλ] = λ

(
dηi+1 [Bλ]

dλ
+ (i+ 1) ηi [Bλ]

)
.

(6.8)

After noting that in (6.6) only moments ηi+2 [Bλ] with i ≥ 0 are present

and that they are all divided by λ , it is easy to verify that by applying (6.8)

one gets the following general algebraic polynomial expression

Pi(λ) :=
ηi+2 [Bλ]

λ
=

di∑
j=0

ϑ
(j)
i λj , i = 0, 1, . . . , (6.9)

where ϑ
(j)
i are all integer coefficients with ϑ

(0)
i = 1 for any i = 0, 1, . . . , and

where the degrees di of polynomials Pi(λ) are given by

di =

⌊
i

2

⌋
= 0, 0, 1, 1, 2, 2, . . . for i = 0, 1, 2, 3, 4, 5, . . . , (6.10)

where ⌊·⌋ denotes the floor function. The first 8 polynomials Pi(λ), i =

0, . . . , 7, read

P0(λ) = 1, P1(λ) = 1,

P2(λ) = 1 + 3λ, P3(λ) = 1 + 10λ,

P4(λ) = 1 + 25λ+ 15λ2, P5(λ) = 1 + 56λ+ 105λ2,

P6(λ) = 1 + 119λ+ 490λ2 + 105λ3, P7(λ) = 1 + 246λ+ 1918λ2 + 1260λ3 .

By replacing the expressions of Pi(λ) given in (6.9) into (6.6), one gets the

following general formula

δ(E)(λ) = E [F (Bλ)] =
N−1∑
i=0

(
Q

(N)
i (λ) :=

di∑
j=0

ψ
(N,j)
i

λi−j

)
+ RN(λ) (6.11)

where the coefficients ψ
(N,j)
i ∈ Q of the rational polynomials Q

(N)
i (λ) in

(6.11) read

ψ
(N,j)
i = ω

(N)
i ϑ

(j)
i , i = 0, 1, . . . , N − 1, j = 0, 1, . . . , di,
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with ω
(N)
i given in (6.7) and ϑ

(j)
i defined in (6.9).

After noting that from (6.10) it follows that di ≤ i for any i = 0, 1, . . .,

it is a matter of simple algebra to verify that (6.11) can be equivalently and

more compactly rewritten as

δ(E)(λ) = E [F (Bλ)] =
N−1∑
i=0

γ
(N)
i

λi
+ RN(λ) , (6.12)

with γ
(N)
i ∈ Q computable coefficients. In particular, for N = 1, . . . , 9, we

have

δ(E)(λ) = 1 +R1(λ)

=
1

2
− 1

2λ
+R2(λ)

=
1

2
+

5

6λ
+

1

3λ2
+R3(λ)

=
1

2
+

1

12λ
− 29

12λ2
− 1

4λ3
+R4(λ)

=
1

2
+

1

12λ
+

31

12λ2
+

99

20λ3
+

1

5λ4
+R5(λ)

=
1

2
+

1

12λ
+

3

12λ2
− 1003

60λ3
− 93

10λ4
− 1

6λ5
+R6(λ)

=
1

2
+

1

12λ
+

1

12λ2
+

797

60λ3
+

687

10λ4
+

713

42λ5
+

1

7λ6
+R7(λ)

=
1

2
+

1

12λ
+

1

12λ2
+

19

120λ3
− 3001

20λ4
− 39925

168λ5
− 1721

56λ6
− 1

8λ7
+R8(λ)

=
1

2
+

1

12λ
+

1

12λ2
+

19

120λ3
+

1899

20λ4
+

516833

504λ5
+

126829

168λ6
+

4007

72λ7

+
1

9λ8
+R9(λ) (6.13)

from which we note how, as the truncation order N increases, the coeffi-

cients γ
(N)
i stabilize at some values, that we denote by γ

(∞)
i . Unfortunately,

we are not able to obtain an explicit analytical expression for the sequence of

coefficients γ
(∞)
i (as we are not able to get explicit analytic expressions for

the coefficients ϑ
(j)
i defining the central moments of a Poisson random vari-

able). By means of the Matlab symbolic toolbox, we were able to compute

the first 34 coefficients γ
(∞)
i , i = 0, . . . , 33, shown (in logarithmic scale) in



6.1 Limits of the Approximate Discrepancy Principle 83

Figure 6.2(left). Determining the subsequent coefficients becomes unfeasible

due the huge computation time required. Hence, the following short discus-

sion must be regarded as conjectural as it relies on the assumption that the

behaviour of coefficients γ
(∞)
i , i = 34, 35, . . ., can be smoothly extrapolated

from the first 34 coefficients shown in Figure 6.2(left). These first 34 coeffi-

cients indicate that the coefficient sequence is positive and strictly increasing

for i ≥ 2. This implies that making the truncation order N tend to +∞,

the (infinite) weighted geometric series in (6.12) is divergent for λ ≤ 1. Even

without analyzing the case λ > 1, we can state that an analytical form for

function δ(E)(λ) in the low-count Poisson regime is very unlike to be obtain-

able as the sum of the series in (6.12). In fact, there will be very likely at

least one pixel such that λi ≤ 1.

We believe it is worth concluding this section by pointing out the theo-

retical reason for non-convergence of the series in (6.12). Function ln(1+φ)

is analytical at φ = 0, but its Maclaurin series converges (pointwise to the

function) only for φ ∈ (−1, 1]. Hence, as N tends to +∞, the Taylor series

expansion in (6.5) converges to the function F (Bλ) only for φ = (Bλ−λ)/λ ∈
(−1, 1] ⇐⇒ Bλ ∈ (0, 2λ]. But Bλ in (6.6) represents a Poisson random vari-

able with parameter λ. Hence, for N tending to +∞, the series in (6.6)

converges to the function δ(E)(λ) = E[F (Bλ)] only if the random variable

Bλ satisfies

P (0 < Bλ ≤ 2λ) = 1 ⇐⇒
⌊2λ⌋∑
i=1

PBλ
(i) = 1 . (6.14)

From Figure 6.2(right), where we plot the probability in (6.14) as a function

of λ, one can notice that condition (6.14) for convergence of the series in

(6.6) is fulfilled asymptotically for λ approaching +∞ but it is not satisfied

at all for small λ values.
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Figure 6.2: Visual representation of the first 34 terms of the sequence of coef-

ficients γ
(∞)
i , i = 0, 1, . . ., in (6.12) (left) and the behaviour of the probability

measure defined in (6.14) as a function of λ (right).

6.2 The New nearly exact discrepancy prin-

ciple

Since it is not possible to derive analytically the expression of function

δ(E)(λ) in (6.2), the goal in this section is to compute a nearly exact estimate

δ(NE)(λ) of function δ(E)(λ) based on a simple Montecarlo simulation ap-

proach analogous to that used in the previous section. Based on the expected

shape of function δ(E)(λ) - see Figure 6.1(left) - here we consider a set of

1385 unevenly distributed λ values λi ∈ [0, 250], namely

λi ∈ {0, 0.01, 0.02, . . . , 5.99, 6, 6.1, 6.2, . . . , 65.9, 66, 67, 68, . . . , 249, 250} .

This set comes from the union of three subsets of equally-spaced λ values,

namely from 0 to 6 with step 0.01, from 6 to 66 with step 0.1 and from 66

to 250 with step 1. For each λi, we generate pseudo-randomly a very large

number S = 5 × 107 of samples b
(j)
i , j = 1, . . . , S, of the Poisson random

variable Bλi
, then we compute the associated values f

(j)
i , j = 1, . . . , S, of the

function F (Bλi
) defined in (6.1) and, finally, we calculate the sample mean

δ̂(E)(λi) and variance vi of these function values. In formula,

b
(j)
i = Poiss (Bλi

) , j = 1, . . . , S =⇒ f
(j)
i = F

(
b
(j)
i

)
, j = 1, . . . , S

=⇒ δ̂(E)(λi) =
1

S

S∑
j=1

f
(j)
i , vi =

1

S − 1

S∑
j=1

(
f
(j)
i − δ̂(E)(λi)

)2
.(6.15)
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Notation for the sample means come from them representing estimates of

the sought theoretical means δ(E)(λi) = E[F (Bλi
)] , i = 1, . . . , 1385. The

obtained values
(
λi, δ̂

(E)(λi)
)

and (λi, vi) are shown (blue crosses) in the

first and second row of Figure 6.3, respectively. It is well known that δ̂(E)(λi)

and vi represent unbiased estimators of the mean and standard deviation of

the random variable F (Bλi
) and that, according to the central limit theorem,

for a very large number S of samples (which is definitely our case) the sample

mean δ̂(E)(λi) can be regarded as a realization of a Gaussian random variable

with mean the theoretical mean δ(E)(λi) of the random variable F (Bλi
) and

variance the sample variance vi divided by the number of samples S. In

formulas,

δ̂(E)(λi) = Gauss
(
δ(E)(λi) ,

vi
S

)
. (6.16)

We now want to fit a parametric model f(λ; c) , with c the parameter

vector, to the obtained Montecarlo-simulated data points
(
λi, δ̂

(E)(λi)
)
, i =

1, . . . , 1385. First, in accordance with the trend of these data - see the blue

crosses in the first row of Fig. 6.3 - and recalling the expected asymptotic

behaviour of function δ(E)(λ) for λ approaching +∞ - see the discussion in

Section 6.1, in particular the first two terms of the expansion in (6.13) - we

choose a model of the form

f(λ; c) =
1

2
+ ϵ(λ; c) , (6.17)

with function h exhibiting the following properties:

ϵ ∈ C0(R+), ϵ(0; c) = − 1

2
, ϵ(λ; c) ∼ 1

12λ
for λ→ +∞ .

Then, with the aim of achieving a good trade off between the model’s ability

to accurately fit data and the computational efficiency of its evaluation, we

choose the following rational form for function ϵ:

ϵ (λ; c) =
λ2 + c1λ+ c2

12λ3 + c3λ2 + c4λ− 2 c2
. (6.18)
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Figure 6.3: Results of Montecarlo simulation and weighted least squares

fitting for λ ∈ [0, 6] (first column), λ ∈ [6, 66] (second column) and λ ∈
[66, 250] (third column).
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Thanks to (6.16), fitting model f in (6.17) with ϵ as in (6.18) can be obtained

via a Maximum Likelihood (ML) estimation of the parameter vector c =

(c1, c2, c3, c4) ∈ R4. In fact, according to (6.16), the likelihood reads

L (c) =
S∏

i=1

p
(
δ̂(E)(λi) | c

)
=

S∏
i=1

1√
2π vi/S

exp

−1

2

(
δ̂(E)(λi)− f(λi; c)

)2
vi/S


=

1

(2π/S)
S
2

S∏
i=1

√
vi

exp

−S
2

S∑
i=1

(
δ̂(E)(λi)− f (λi; c)

)2
vi

 , (6.19)

and the ML estimate c(ML) of c can be computed as follows

c(ML) ∈ arg max
c∈R4

L (c) = arg min
c∈R4

{− lnL (c)} = arg min
c∈R4

S∑
i=1

wi (di − h (λi; c))
2 ,

(6.20)

where we dropped constants (with respect to the optimization variable c)

and defined

wi :=
1

vi
, di := δ̂(E)(λi)−

1

2
, i = 1, . . . , S .

Problem (6.20) is a nonlinear (in particular, rational) weighted least-squares

problem. The cost function is non-convex and local minimizers exist. We

compute an estimate ĉ of c(ML) by solving (6.20) via the iterative trust-

region algorithm 1000 times starting from 1000 different initial guesses c(0)

randomly sampled from a uniform distribution with support [−20, 20]4 and

then picking up the solution ĉ yielding the minimum cost function value.

The obtained parameter estimate is as follows

ĉ = (ĉ1, ĉ2, ĉ3, ĉ4) = (+2.5792,−1.5205,−5.6244,+17.9347) . (6.21)

We thus define the nearly-exact estimate δ(NE)(λ) of the theoretical expected

value function δ(E)(λ) = E[F (Bλ)] as the parametric function f defined in

(6.17), (6.18) with parameter vector c equal to ĉ given in (6.21). In formula,

δ(NE)(λ) := f(λ; ĉ) =
1

2
+ ϵ(λ; ĉ) =

1

2
+

λ2 + 2.5792λ− 1.5205

12λ3 − 5.6244λ2 + 17.9347λ+ 3.0410
.

(6.22)
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In the first row of Figure 6.3 we plot the constant approximate function

δ(A) and the obtained nearly-exact function δ(NE)(λ) , whereas in the third

and fourth row of Figure 6.3 we report the errors ê (A)(λi) and ê (NE)(λi) ,

respectively. They are defined by

ê (X)(λi) = 100 × δ(X)(λi)− δ̂ (E)(λi)

δ̂ (E)(λi)
i = 1, 2, . . . , 1385, X ∈ {A,NE} ,

and represent the percentage errors associated with using the approximations

δ(A) and δ(NE)(λ) with respect to the very accurate Montecarlo estimates

δ̂ (E)(λi) of the true underlying expected values δ(E)(λi) = E[F (Bλi
)]. One

can notice that |ê (NE)(λi)| is about 20 times smaller than |ê (A)(λi)| for

λ ∈ [0, 6] (first column of Figure 6.3) and about 10 times less for λ ∈ [6, 250]

(second and third column Figure 6.3). In particular, in the low-count Poisson

regime (which we can roughly associate with λ ∈ [0, 6]) the proposed nearly-

exact estimate of the theoretical expected value function δ(E)(λ) yields a

percentage error in the order of 0.5%, whereas the constant approximation

used in [25, 26] leads to a percentage error in the order of 10%. Such a large

error is the reason for the bad performance of the (ADP) in the low-count

regime. We thus propose the following nearly exact DP (NEDP):

Select µ = µ∗ ∈ R+ such that D (µ∗;y) = ∆(NE) (µ∗) ,

with ∆(NE)(µ) =
m∑
i=1

(
δ(NE)(λ̂i(µ))

)
=
m

2
+

m∑
i=1

ϵ(λ̂i(µ); ĉ),

λ̂(µ) = g (Ax̂(µ)) + q ,

(NEDP)

with function ϵ and parameter vector ĉ given in (6.18) and (6.21), respec-

tively.

6.3 Numerical Results

In this section, we evaluate the performance of the proposed NEDP

in (NEDP) for the automatic selection of the regularization parameter µ
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in CT reconstruction and image restoration variational models of the TV-

KL form in (TV-KL). Our approach is compared with the TDP and the

ADP in (TDP) and (ADP), respectively. For each criterion, we are solving

the TV-KL model for a fine grid of regularization parameters µ using the

ADMM-based scheme described in section 10.1. The µ-values selected by

the TDP, the ADP and the NEDP applied a posteriori will be denoted by

µ(T ), µ(A), µ(NE), respectively. For a quantitative evaluation, the accuracy of

the reconstructed images x̂(µ) with respect to the original image x̄ is mea-

sured by means of two scalar metrics, the Structural Similarity Index (SSIM)

[36] and the Signal-to-Noise-Ratio (SNR) defined by

SNR(x̂, x̄) = 10 log10
||x̄− E[x̄]||22
||x̄− x̂||22

, (6.23)

where E[x̄] denotes the mean intensity of the original image x̄. For the image

restoration case we will consider the Improved-Signal-to-Noise Ratio (ISNR),

defined by

ISNR (x̂, x̄) = 10 log10
∥x̄− b∥22
∥x̄− x̂∥22

. (6.24)

For all tests, the iterations of the ADMM-based scheme in 10.1 are stopped

as soon as

δ(k)x =
∥x(k) − x(k−1)∥2

∥x(k−1)∥2
< 10−5 , k ∈ N \ {0} , (6.25)

and the ADMM penalty parameter γ ∈ R++ is manually set to achieve fast

convergence.

6.3.1 CT Reconstruction

For the CT reconstruction problem we consider the test images Shepp

Logan (500×500, pixel size = 0.2mm) and brain (238×253, pixel size=0.4mm),

with pixel values between 0 and 1, shown Figures 6.4. The acquisition pro-

cess of the fan beam CT setup, i.e. the projection operator A, is built using

the ASTRA Toolbox [40] with the following parameters: 180 equally spaced

angles of projections (from 0 to 2π), a detector with 500 pixels (detector
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Shepp Logan brain cameraman cells

(500x500) (253x238) (256x256) (236x236)

Figure 6.4: Gray scale test images considered for the numerical experiments.

pixel size = 1/3mm), distance between the source and the center of rotation

equal to 300mm, distance between the center of rotation and the detector

array set equal to 200mm. Then we compute I0e
−Ax̄ with I0 being a scalar

factor representing the maximum emitted photon counts, i.e., the maximum

number of photons that can reach each detector pixel if the X-rays are not

attenuated. In particular, we consider seven different values of I0

I0 ∈ {3, 5, 10, 20, 50, 100, 1000},

each of which refers to a different level of noise. In the CT tests, we con-

sider the background emission q = 0 so that the solution of (10.20) can be

expressed in closed-form in terms of the Lambert function. We thus obtain

the observation b = Poiss(λ̄) by sampling from a m-variate independent

Poisson random process with mean vector λ̄.

The black solid curves plotted in Figures 6.5(a), 6.5(c) represent the function

D(µ; b) as defined in (5.2) for the image Shepp Logan with I0 = 5 (first rows)

and I0 = 10 (second row). They have been computed by solving the TV-KL

model in (TV-KL) for a fine grid of different µ-values, and then calculating

D(µ; b) for each µ. The horizontal dashed cyan and green lines represent the

constant discrepancy values ∆(T ) and ∆(A) used in (TDP) and (ADP), re-

spectively, while the dashed magenta curve represents the discrepancy value

function ∆(NE)(µ) defined in (NEDP). We remark that ∆(NE)(µ) has been

obtained in the same way as D(µ; b), i.e. by computing the expression in
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(NEDP) for each µ of the selected fine grid. One can clearly observe that

the intersection points between the curve ∆(NE)(µ) and the function D(µ; b)

and between the line representing ∆(T ) and D(µ; b) are very close, and both

at a significant distance from the intersection point detected by ∆(A).

In Figures 6.5(b), 6.5(d), we show the SNR and SSIM values achieved

for different µ-values with I0 = 5 and I0 = 10. The vertical cyan, green

and magenta lines correspond to the µ-values detected by the intersection

of D(µ; b) and ∆(T ), ∆(A), ∆(NE)(µ), respectively. As a reflection of the

behaviour of the discrepancy function and of the three curves, the SNR/SSIM

corresponding to µ(T ) and µ(NE) are very close between each other. We also

highlight that, when considering the more severe blur case, the ADP selects

a larger µ-value which returns lower SNR and SSIM values.

As a further analysis, in the bottom of Figure 6.5 we report the output µ-

values, the SNR and the SSIM values for the 7 I0-values considered obtained

by the ADP (first column) and the NEDP (second column). To facilitate

the comparison, we also report in blue/red the increments/decrements of the

SNR and SSIM achieved by our method with respect to the approximate cri-

terion. Notice that the NEDP outperforms the ADP both in terms of SNR

and SSIM for the low-count acquisitions. However, when I0 increases, the

two methods behave very similarly, with the SNR and SSIM values obtained

by the ADP being slightly larger than those obtained by the NEDP. In accor-

dance with this analysis, the output µ(A) and µ(NE) are significantly different

in low-count regimes, similar in mid-count regimes and particularly close in

high-count regimes. Notice that this behaviour can be easily explained in

light of the analysis carried out in Section 6.1, where we have shown that the

approximation provided by ∆(A) gets more and more accurate as the number

of pixels with large values increases.

For a visual comparison, in Figure 6.6 we show the collected data (left

column), the restorations via ADP (middle column) and via NEDP (right

column) for different photon count regimes, ranging from very low to very

high. As already observed from the SNR and SSIM values reported at the
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(a) (b)

(c) (d)

ADP NEDP Difference

I0 µ(A) SNR SSIM µ(NE) SNR SSIM SNR SSIM

3 5.028 3.285 0.510 0.727 1.835 0.756 -1.450 +0.246

5 5.555 2.899 0.455 0.684 3.569 0.793 +0.670 +0.338

10 3.351 4.449 0.515 0.773 6.403 0.853 +1.954 +0.338

20 1.522 8.976 0.755 0.530 8.550 0.889 -0.426 +0.134

50 0.564 11.626 0.974 0.352 10.717 0.992 -0.909 +0.018

100 0.322 13.141 0.994 0.261 12.698 0.945 -0.443 -0.049

1000 0.091 17.837 0.997 0.091 17.837 0.997 0.000 0.000

Figure 6.5: Test image Shepp Logan. Top: discrepancy curve (left) and

SNR/SSIM values achieved for different µ-values with I0 = 5 and I0 = 10

(first and second column respectively). Bottom: output µ-values and

SNR/SSIM values obtained by the ADP and the NEDP for the different

photon counts I0.
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bottom of Figure 6.5, we notice that for low-count acquisitions the µ-value

selected by the ADP does not allow for a proper regularization, so that NEDP

clearly outperforms the competitor. However, starting from I0 = 20 the two

approaches return similar output images.

For the second test image brain, we report in Figure 6.7 the behaviour of

the discrepancy function D(µ; b) and of the SNR/SSIM curves obtained by

applying the TDP, the ADP and the NEDP, for I0 = 5 and I0 = 10. Also in

this case the NEDP and the TDP behave similarly and they almost achieve

the maximum of the SSIM curves, while being more distant to the maximum

of SNR. In contrast, µ(A) appears to be overestimated with respect to the

optimal µ - that can be intended as the one maximizing either the SNR or

the SSIM, but is closer to the SNR maximum.

From the table reported at the bottom of Figure 6.7, we observe that the

proposed µ-selection criterion does not outperforms ADP in terms of SNR,

while its SSIM values are higher than ADP up to I0 = 20. The restored

images in Figures 6.8 reflect the values recorded in the table as for I0 ≤ 20

ADP returns noisier reconstructions (higher values of the selected µ(A)) than

NEDP, while their behavior is similar in the high count regime.

6.3.2 Image Restoration

For the Image restoration problem we consider the two test images cameraman

and cells, each with pixel values between 0 and 1, shown in Figure 6.4.

The acquisition process has been simulated as follows. First, the original

image is multiplied by a factor κ ∈ R++ representing the maximum emitted

photon count, i.e. the maximum expected value of number of photons emit-

ted by the scene and hitting the image domain. Clearly, the lower κ, the

lower the SNR of the observed noisy image and the more difficult the im-

age restoration problem. For each image, several values κ ranging from 3 to

1000 have been considered. Then, the resulting images have been corrupted

by space-invariant Gaussian blur, with blur kernel generated by the Mat-

lab routine fspecial, which is characterized by two parameters, namely the
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b ADP NEDP

I0 = 3

I0 = 5

I0 = 10

I0 = 20

I0 = 50

I0 = 100

I0 = 1000

Figure 6.6: Test image Shepp Logan. Left column: observed data b with

different I0-values ranging from 3 to 1000. Middle column: CT reconstruction

by ADP. Right column: CT reconstruction by NEDP.
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(a) (b)

(c) (d)

ADP NEDP Difference

I0 µ(A) SNR SSIM µ(NE) SNR SSIM SNR SSIM

3 1.563 2.663 0.449 0.787 0.644 0.449 -2.019 0.000

5 2.657 3.308 0.323 0.428 0.468 0.432 -2.840 +0.109

10 2.428 3.432 0.311 0.542 3.340 0.523 -0.092 +0.212

20 1.302 6.154 0.466 0.383 4.714 0.556 -1.440 +0.090

50 0.516 8.162 0.622 0.320 7.636 0.612 -0.526 -0.010

100 0.300 8.970 0.672 0.257 8.580 0.666 -0.390 -0.006

1000 0.098 12.901 0.790 0.098 12.901 0.790 0.000 0.000

Figure 6.7: Test image brain. Top: discrepancy curve (left) and SNR/SSIM

values achieved for different µ-values with I0 = 5 and I0 = 10 (first and sec-

ond column respectively). Bottom: output µ-values and SNR/SSIM values

obtained by the ADP and the NEDP for the different photon counts I0.
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b ADP NEDP

I0 = 3

I0 = 5

I0 = 10

I0 = 20

I0 = 50

I0 = 100

I0 = 1000

Figure 6.8: Test image brain. Left column: observed data b with different

I0-values ranging from 3 to 1000. Middle column: CT reconstruction by

ADP. Right column: CT reconstruction by NEDP.
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band parameter, representing the side length (in pixels) of the square sup-

port of the kernel, and sigma, that is the standard deviation (in pixels) of the

isotropic bivariate Gaussian distribution defining the kernel in the continuous

setting. We considered two different blur levels characterized by the parame-

ters band=5, sigma=1 and band=13, sigma=3. The blurred noiseless image

λ̄ = Ax̄ + q is then generated by adding to the blurred image a constant

emission background q of value 2× 10−3. The observed image b = Poiss(λ̄)

is finally obtained by pseudo-randomly generating an m-variate independent

Poisson realization with mean vector λ̄. In Figure 6.9, for the test image

camerman, we report the curve of the discrepancy function D(µ; b) obtained

a posteriori as well as the curves of the ISNR and of the SSIM for κ = 5 both

with the less severe (first row) and more severe (second row) blur level. As

for the CT reconstruction case, also in this case the ADP selects a µ-value

which is far from the optimal one, either if measured in terms of ISNR or

SSIM. On the other hand, µ(T ) and µ(NE) are very close and almost reach the

maximum of the two curves. We also highlight that, when considering the

more severe blur case, the ADP selects a very large µ-value which returns

very low ISNR and SSIM values - see the thumbnail image in the right corner

of Figure 6.9(d).

Notice that the NEDP outperforms the ADP both in terms of ISNR

and SSIM for the low-count acquisitions. However, when the κ increases,

the two methods behave very similarly, with the ISNR and SSIM values

obtained by the ADP being slightly larger than those obtained by the NEDP.

In accordance with this analysis, the output µ(A) and µ(NE) are significantly

different in low-count regimes, similar in mid-count regimes and particularly

close in high-count regimes.

From the restorations shown in Figures 6.10 and 6.11 one can notice that

for low-count acquisitions the µ-value selected by the ADP does not allow for

a proper regularization, so that NEDP clearly outperforms the competitor.

However, starting from κ = 20 the two approaches return similar output

images.
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(a) (b)

(c) (d)

ADP NEDP Difference

κ µ(A) ISNR SSIM µ(NE) ISNR SSIM ISNR SSIM

b
a
n
d
=

5
,
s
i
g
m
a
=

1

3 6.1613 10.1928 0.1654 1.3228 13.4871 0.3720 +3.2942 +0.2065

5 5.8076 11.0567 0.2247 1.5100 11.7258 0.2949 +0.6690 +0.0701

10 6.5414 9.9561 0.2504 3.3778 10.0664 0.2540 +0.1103 +0.0035

20 6.7853 8.1429 0.2634 5.0019 7.9470 0.2482 -0.1959 -0.0152

50 10.2516 5.5940 0.2982 9.5042 5.5270 0.2932 -0.0670 -0.0050

100 15.3829 4.0231 0.3335 14.9409 3.9963 0.3316 -0.0267 -0.0019

1000 70.4637 2.6296 0.4509 70.3529 2.6280 0.4508 -0.0015 -0.0001

b
a
n
d
=

1
3
,
s
i
g
m
a
=

3 3 291.2252 -5.3677 0.0156 2.2867 12.5234 0.3214 +17.8914 +0.3058

5 270.6214 -4.0339 0.0241 2.4535 10.6776 0.2393 +14.7115 +0.2152

10 117.0970 2.8109 0.0888 4.2731 8.5199 0.1657 +5.7090 +0.0769

20 25.0534 6.4344 0.1554 6.7164 6.4093 0.1444 -0.0250 -0.0109

50 21.0590 4.2611 0.1686 14.4928 4.1632 0.1607 -0.0978 -0.0078

100 29.4505 3.0947 0.1868 25.1986 3.0469 0.1835 -0.0477 -0.0033

1000 136.0108 1.9261 0.2378 134.6466 1.9233 0.2375 -0.0028 -0.0002

Figure 6.9: Test image cameraman. Top: discrepancy curve divided by 104

(left) and ISNR/SSIM values achieved for different µ-values with κ = 5 and

Gaussian blur with parameters band=5, sigma=1 (first row) and band=13,

sigma=3 (second row). Bottom: output µ-values and ISNR/SSIM values

obtained by the ADP-ADMM and the NEDP-ADMM for the two blur levels

considered and different photon counts κ.
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b ADP NEDP

κ = 3

κ = 5

κ = 10

κ = 20

κ = 50

κ = 100

κ = 1000

Figure 6.10: Test image cameraman. Left column: observed data b corrupted

by Gaussian blur with parameters band=5, sigma=1 and Poisson noise with

different κ-values ranging from 3 to 1000. Middle column: restorations by

ADP. Right column: restorations by NEDP.
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b ADP NEDP

κ = 3

κ = 5

κ = 10

κ = 20

κ = 50

κ = 100

κ = 1000

Figure 6.11: Test image cameraman. Left column: observed data y corrupted

by Gaussian blur with parameters band=13, sigma=3 and Poisson noise with

different κ-values ranging from 3 to 1000. Middle column: restorations by

ADP. Right column: restorations by NEDP.
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For the second test image cells, we show in Figures 6.12 the behaviour

of the discrepancy function D(µ; b) as well as of the ISNR and SSIM values

in the a posteriori framework for the two blur levels and κ = 3. Note

that, for both blur levels, the NEDP achieves higher ISNR and SSIM values

when compared to the ADP. From the values reported in the bottom part of

Figure 6.12, we notice that the NEDP outperforms the ADP in every photon-

count regime. Clearly, the closer µ(A) and µ(NE), the smaller the difference

in terms of ISNR and SSIM.

The restorations computed by the ADP and the NEDP are shown in Fig-

ure 6.13 for the smaller blur level and in Figure 6.14 for the larger one. The

obtained results confirm the values reported in the bottom of Figure 6.12.

Moreover, also from a visual viewpoint, the difference between the two per-

formances increases when going from high to low-count regimes.

Updating of the regularization parameters during the iterations

In the previous experiments we set a fine grid of µ-values and computed

the solution x̂(µ) corresponding to each µ. Then, among the recorded solu-

tions, we selected the one such that the TDP, the ADP or the NEDP was

satisfied. However, this algorithmic scheme, to which we refer as a posteriori

optimization procedure, that - as it is well-established - can be circumvented

for the TDP, ADP. In fact, in [31, 29], the authors propose to update the

regularization parameter according to the ADP along the iterations of the

popular Alternating Direction Method of Multipliers (ADMM). Here, we de-

tail the steps of such algorithm and show how, and under which conditions,

it can be extended for the case of NEDP. Finally, we remark that the case

of the TDP is only addressed for explanatory purposes and it can not be

performed in practice as x̄ is not available.

By rewriting the u2 subproblem in (10.17) and making explicit the depen-

dence of the solution u
(k+1)
2 on the parameter τ = µ

γ
for the image restoration
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(a) (b)

(c) (d)

ADP NEDP Difference

κ µ(A) ISNR SSIM µ(NE) ISNR SSIM ISNR SSIM

b
a
n
d
=

5
,
s
i
g
m
a
=

1

3 0.3042 8.0428 0.2002 1.1719 10.1281 0.2952 +2.0852 +0.0949

5 1.1283 8.0419 0.2799 1.8656 8.7165 0.3295 +0.6745 +0.0496

10 1.7170 5.9522 0.3167 2.6968 6.5660 0.3643 +0.6137 +0.0475

20 2.4343 3.8227 0.3698 3.6823 4.4218 0.4155 +0.5991 +0.0457

50 5.0053 2.0792 0.4655 7.0349 2.4818 0.4991 +0.4026 +0.0335

100 8.4224 1.0624 0.5383 10.9451 1.3581 0.5629 +0.2957 +0.0246

1000 45.5340 0.6410 0.7221 52.7334 0.7729 0.7310 +0.1319 +0.0089

b
a
n
d
=

1
3
,
s
i
g
m
a
=
3

3 0.3251 7.9171 0.16940 1.8841 9.4912 0.2228 +1.5740 +0.0534

5 3.6943 8.1023 0.2420 3.9060 8.1195 0.2436 +0.0171 +0.0015

10 3.5550 5.7064 0.2282 5.2098 5.8821 0.2425 +0.1756 +0.0143

20 2.9412 3.5252 0.2285 5.6999 3.9632 0.2586 +0.4380 +0.0301

50 6.1442 1.9499 0.2654 14.4495 2.3613 0.2980 +0.4114 +0.0325

100 10.0409 1.2177 0.2862 18.6804 1.52056 0.3094 +0.3028 +0.0231

1000 64.4743 1.0410 0.3871 98.0256 1.1868 0.4019 +0.1458 +0.0148

Figure 6.12: Test image cells. Top: discrepancy curve divided by 104

(left) and ISNR/SSIM values achieved for different µ-values with κ = 3 and

Gaussian blur with parameters band=5, sigma=1 (first row) and band=13,

sigma=3 (second row). Bottom: output µ-values and ISNR/SSIM values

obtained by the ADP-ADMM and the NEDP-ADMM for the two blur levels

considered and different photon counts κ.
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b ADP NEDP

κ = 3

κ = 5

κ = 10

κ = 20

κ = 50

κ = 100

κ = 1000

Figure 6.13: Test image cells. Left column: observed data y corrupted

by Gaussian blur with parameters band=5, sigma=1 and Poisson noise with

different κ-values ranging from 3 to 1000. Middle column: restorations by

ADP. Right column: restorations by NEDP.
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b ADP NEDP

κ = 3

κ = 5

κ = 10

κ = 20

κ = 50

κ = 100

κ = 1000

Figure 6.14: Test image cells. Left column: observed data y corrupted by

Gaussian blur with parameters band=13, sigma=3 and Poisson noise with

different κ-values ranging from 3 to 1000. Middle column: restorations by

ADP. Right column: restorations by NEDP.
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problem, we have that:

u
(k+1)
2 (τ)∈ argmin

u2 ∈Rm

{
τ KL(Au2 + q; b) +

1

2
∥u2 − s

(k)
2 ∥22

}
(6.26)

where

s
(k)
2 = Au

(k+1)
2 +

1

γ
ρ
(k)
2 ∈ Rm. (6.27)

Note that, by defining τ = µ
γ
, τ plays the role of the regularization parameter

µ in the DP applied to this subproblem. The problem in (6.26) can be solved

component by component in the following way

u
(k+1)
i (τ) =

1

2

[
−(τ + qi − si) +

√
(τ + qi − si)2 + 4 (si qi + τ(bi − qi))

]
(6.28)

where, for simplicity of notation, we set ui := u2,i ∈ R and si = s
(k)
2,i ∈ R. We

now want to apply one among the DP versions - namely, (TDP), (ADP) and

the proposed (NEDP) for selecting a value of the free parameter τ in (6.28).

In particular, we select τ = τ (k+1) such that τ (k+1) satisfies the discrepancy

equation which, in accordance with the general definition given in (5.2), takes

here the form

G(τ ; b) := D(τ ; b)−∆ = 0 (6.29)

where the discrepancy function reads

D(τ ; b) =
m∑
i=1

Di (τ ; bi) =
m∑
i=1

F
(
λ
(k+1)
i (τ); bi

)
, (6.30)

where the function F is defined in (4.10) and the vector

λ(k+1)(τ) = u
(k+1)
2 (τ) + q (6.31)

with components λ
(k+1)
i (τ) refers to the mean vector of the Poisson noise. The

discrepancy value ∆, according to the definitions given in (TDP), (ADP) and

(NEDP), takes one of the following values/forms:

∆ =



∆(T ) =
m∑
i=1

F ((Ax̄+ q)i ; bi) for (TDP) ,

∆(A) =
m

2
for (ADP) ,

∆(NE)(τ) =
m

2
+

m∑
i=1

ϵ
(
λ
(k+1)
i (τ) ; ĉ

)
for (NEDP) ,

(6.32)
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with rational polynomial function ϵ defined in (6.18) and parameter vector

ĉ given in (6.21). We notice that ∆(T ) and ∆(A) are two positive scalars

that can be computed once for all and does not change their value during

the ADMM iterations, whereas ∆(NE)(τ) is a function of τ which almost

certainly changes its shape along the ADMM iterations (due to function

u
(k+1)
i (τ) in (6.28) changing its shape when vector s

(k)
2 changes).

Summing up, the complete procedure for the DP-based update of the

parameter τ and, then, of the variable u2 reads as follows:

s
(k)
2 = Au

(k+1)
2 +

1

γ
ρ
(k)
2 , (6.33)

τ (k+1) = root of the discrepancy equation in (6.29)− (6.32) ,(6.34)

u
(k+1)
i

(
τ (k+1)

)
computed by (6.28) , for i = 1, . . . ,m . (6.35)

For what concerns the ADP, in [31] the authors have proven that along the

ADMM iterations, the function D(τ ; b) is convex and decreasing so that the

existence and the uniqueness of the solution of the discrepancy equation in

(6.29) with ∆ = ∆(A) is guaranteed. The same result can be immediately

extended to the case of the TDP. When considering the NEDP, the functional

form of ∆(NE)(τ) is such that the above result can not be straightforwardly

applied. However, the following proposition on the existence of a solution for

the discrepancy equation (6.29) with ∆ = ∆(NE) holds true. It is important

to note that the following proposition can be applied only for the image

restoration problem.

Proposition 6.3.1. Consider the discrepancy equation in (6.29)-(6.32) with

∆ = ∆(NE)(τ) and with vector s
(k)
2 and function λ

(k+1)
i (τ) defined as in (6.27)

and (6.31), respectively, and let

t(k) := max
{
s
(k)
2 , 0

}
. (6.36)

Then, the discrepancy equation admits a solution if the following condition

is fulfilled:

∃ i : bi ̸= 0 ∧ T
(
t(k), b

)
:=

m∑
i=1

T
(
t
(k)
i , bi

)
≥ m

2
, (6.37)
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where function T : R+× N → R is defined by

T (t, b) = F (t; b)− ϵ (t ; ĉ) , (6.38)

with function F , function ϵ and parameter vector ĉ given in (4.10), (6.18)

and (6.21), respectively.

Proof. Since functions F in (4.10), ϵ in (6.18) and λ
(k+1)
i in (6.31) are all

continuous, then the function G defined in (6.29)-(6.32) with ∆ = ∆(NE)(τ)

is continuous in the variable τ on its entire domain τ ∈ R+, for any b ∈ Nm

and any s
(k)
2 ∈ Rm.

Then, it is easy to prove that function λ
(k+1)
i (γ) in (6.31) satisfies

λ
(k+1)
i (0) = max

{
s
(k)
i , 0

}
= t

(k)
i , lim

τ→+∞
λ
(k+1)
i (τ) = bi , (6.39)

with vector t(k) defined in (6.36). It thus follows from (6.39) and from

definition of functions D in (6.30) and ∆(NE) in (6.32) that

G(0; b) = D(0; b)−∆(NE)(0)

=
m∑
i=1

F
(
λ
(k+1)
i (0); bi

)
− m

2
−

m∑
i=1

ϵ
(
λ
(k+1)
i (0) ; ĉ

)
=

m∑
i=1

(
F
(
t
(k)
i ; bi

)
− ϵ
(
t
(k)
i ; ĉ

))
− m

2
= T

(
t(k), b

)
− m

2
,(6.40)

and that

lim
τ→+∞

G(τ ; b) = lim
τ→+∞

(
D(τ ; b)−∆(NE)(τ)

)
= lim

τ→+∞

(
m∑
i=1

F
(
λ
(k+1)
i (τ); bi

)
− m

2
−

m∑
i=1

ϵ
(
λ
(k+1)
i (τ) ; ĉ

))

=
m∑
i=1

F (bi ; bi)−
m∑
i=1

(
1

2
+ ϵ (yi ; ĉ)

)
(6.41)

= −
m∑
i=1

f (bi ; ĉ) < 0 if ∃ i : bi ̸= 0 , (6.42)

where function T in (6.40) is defined in (6.37), cancelling the first summation

in (6.41) comes from F (b; b) = 0 for any b ∈ R+ (see the definition of function
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F in (4.10), where b ln b = 0 for b = 0) and (6.42) comes from the definition

of function f in (6.22).

From (6.42) and continuity of function G(τ ; b), we can conclude that

for any b ̸= 0 the discrepancy equation G(τ ; b) = 0 admits a solution if

G(0; b) ≥ 0. It thus follows from (6.40) that the sufficient condition in

(6.36)-(6.38) holds true.

This proposition can not be directly extended to the CT reconstruction

problem due to the different form of the function u2(τ) in (10.21). There-

fore, the tests with the iterative scheme were performed only for the image

restoration problem.

In the previous experiments we evaluated the performance of the pro-

posed NEDP in (NEDP) for the automatic selection of the regularization

parameter µ in image restoration variational models of the TV-KL form in

(TV-KL) and compared it with the TDP and the ADP in (TDP) and (ADP),

respectively. Here we discuss their application during the iterations by de-

noting with NEDP-ADMM, TDP-ADMM and ADP-ADMM the respective

solution algorithms with the regularization parameter update along the it-

erations for NEDP, TDP and ADP, while the selected µ values with the

iterated versions are indicated with µ̂(NE), µ̂(A) and µ̂(T ). As stated before,

the µ-selection problem along the ADMM iterations always admits a unique

solution under the adoption of the ADP and TDP. For what concerns the

NEDP-ADMM, at the generic iteration k of Algorithm, the regularization pa-

rameter µ is updated provided that the condition stated in Proposition 6.3.1

is satisfied. If this is not the case, the parameter update is not performed

and µ(k) = µ(k−1). We are interested in verifying that the proposed NEDP-

ADMM scheme succeeds in automatically selecting such optimal µ in a robust

and efficient way: the blue and red markers in Figures 6.9(b), 6.9(d) repre-

sent the final ISNR and SSIM values, respectively, of the image restored via

NEDP-ADMM. Clearly, the markers are plotted in correspondence of µ̂(NE),

that is - we recall - the output µ-value of the iterative scheme NEDP-ADMM;

one can clearly observe that µ̂(NE) ends up to be very close to the optimal
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µ(NE) detected a posteriori by the NEDP. For the second test image cells,

the blue and red markers in 6.12(b) and 6.12(d), indicating the output ISNR

and SSIM, respectively, of the iterated version of our approach, are very close

to the ones achieved by applying the NEDP a posteriori, suggesting that also

µ̂(NE) and µ(NE) are very close.

6.3.3 Discussion

In this chapter we proposed an automatic selection strategy for the regu-

larization parameter of variational image reconstruction models under Pois-

son noise corruption based on a nearly-exact version of the approximate

discrepancy principle originally proposed in [25]. Our approach relies on

Montecarlo simulations, which have been designed with the purpose of pro-

viding meaningful insights on the limitations of the original approximate

strategy, especially in the low-count Poisson regime. The proposed version

of the discrepancy principle has then been derived by means of a weighted

least-square fitting and embedded along the iterations of an efficient ADMM-

based optimization scheme. Our approach has been extensively tested both

for the CT reconstruction and image restoration problem and for different

photon-count values, ranging from very low to high values. When compared

to the original approximate selection criterion, the proposed strategy has

been shown to improve the quality of the output restorations in low-count

regimes and in mid-count/high-count regimes on images characterized by few

large pixel values.





Chapter 7

Poisson Whiteness Principle

(PWP)

In the previous chapters we introduced the topic of automatic selection

principles and proposed the Nearly Exact DP to overcome the limitation of

the Approximate DP. Despite its very good experimental performances, the

NEDP is characterized by theoretical limitations which are mostly related to

the lack of guarantees on the uniqueness of the solution for the discrepancy

equation; such limitations are also combined with the empirical evidence of

multiple solutions in very extreme scenarios where the number of zero-pixels

in the acquired data is relevant.

In this chapter we will focus on the second class strategies, whose general

formulation takes the following form:

C(x̂(µ∗)) : µ∗ ∈ argmin
µ∈R++

V(µ) ,

where V : R++ → R represents some demerit function to be minimized for

selecting µ. For Poisson data, this class of strategies has not been explored

as much as the former. A few decades ago, some attempts have been made

in order to adapt the popular Generalized Cross Validation (GCV) approach

[22] to non-Gaussian data [23, 24]; nonetheless, these strategies, which ul-

timately rely on a weighted approximation of the KL fidelity term and on

111
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a slight reformulation of the classical GCV score, have not been diffusively

employed for imaging problems.

Among the parameter selection strategies that have been developed in the

context of additive white noise corruption, the class of minimization-based

principles exploiting the noise whiteness property is one of the best perform-

ing [42, 43, 44, 45, 46, 47]. More specifically, one selects µ by minimizing

the normalized correlation between the residual image components, that is

by guaranteeing that the residual image resembles as much as possible the

underlying additive noise in terms of whiteness. The whiteness-based ap-

proaches have been proven to outperform the Morozov discrepancy principle

in different imaging tasks, such as, e.g., denoising/restoration [44] and super-

resolution [45, 46] and, very importantly, do not need to know (or estimate)

the noise standard deviation. Nonetheless, despite the encouraging results

on Gaussian data, so far the whiteness principle has not been extended to

Poisson noise corruption. Then we will introduce the well known whiteness

approach for additive noise then move to its extension in the case of Poisson

noise.

7.1 The Whiteness Principles for

Additive Noise

In order to describe the Whiteness Principle for additive noise here we

recall its definition considering an Additive White Gaussian Noise (AWGN)

with the following forward model:

b = Ax̄+ e, e a realization of E ∼ N(0m, σIm) (7.1)

where x, b, e ∈ Rm, m = m1 ·m2, are column major forms of the uncorrupted,

corrupted and noise images, respectively, all made up of m1 ×m2 pixels, the

matrix A ∈ Rm×m represents the discrete linear space-invariant blur op-

erator, Im×m ∈ Rm×m denotes the identity matrix and E is an m-variate

Gaussian-distributed random vector with zero mean and scalar covariance
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matrix, with σ indicating the noise standard deviation.

In the following we introduce/use notations for random fields which are dif-

ferent from the ones used previously in sect 2.3. In fact, there we considered

vectorized random fields, while here we prefer to consider un-vectorized ran-

dom fields. To shorten notations in the definitions, we preliminarily define

the following two sets of integer index pairs

I := {(i, j) ∈ Z2 : (i, j) ∈ [1,m1]× [1,m2] } ,
L := {(l,m) ∈ Z2 : (l,m) ∈ [−(m1 − 1), (m1 − 1)]× [−(m2 − 1), (m2 − 1)] } .

Definition 7.1.1 (weak stationary random field). A m1 ×m2 random field

Z = {Zi,j}, (i, j) ∈ I, is said to be weak stationary if

• E [Zi,j] = µZ ∈ R , Var [Zi,j] = σ2
Z ∈ R++, ∀ (i, j) ∈ I ;

• Corr [Zi1,j1 , Zi1+l,j1+m] = Corr [Zi2,j2 , Zi2+l,j2+m] ,

∀ (i1, j1) ∈ I , ∀ (i2, j2) ∈ I , ∀ (l,m) ∈ L : (i2 + l, j2 +m) ∈ I .

Definition 7.1.2 (ensemble normalized auto-correlation). The ensemble nor-

malized auto-correlation of a m1 × m2 weak stationary random field Z =

{Zi,j}, (i, j) ∈ I, is a (2m1 − 1) × (2m2 − 1) matrix A [Z] = {al,m [Z]},
(l,m) ∈ L, defined by

al,m [Z] =
Corr [Zi,j, Zi+l,j+m]

σ2
Z

, (l,m) ∈ L , (i, j) ∈ I : (i+ l, j +m) ∈ I .

Definition 7.1.3 (white random field). A m1×m2 random field Z = {Zi,j},
(i, j) ∈ I, is said to be white if

• it is weak stationary with µZ = 0 ;

• it is uncorrelated, that is its ensemble normalized autocorrelation

A [Z] = {al,m [Z]} , (l,m) ∈ L, satisfies:

al,m [Z] =

{
0 ∀ (l,m) ∈ L \ {(0, 0)} ,
1 if (l,m) = (0, 0) .
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Definition 7.1.4 (sample normalized auto-correlation). The sample normal-

ized auto-correlation of a m1 ×m2 non-zero matrix Z = {zi,j}, (i, j) ∈ I, is a

(2m1 − 1)× (2m2 − 1) matrix S (Z) = {sl,m (Z)}, (l,m) ∈ L, defined by

sl,m (Z) =
1

∥Z∥22

∑
(i,j)∈ I

zi,j zi+l,j+m . (7.2)

It follows from Definition 7.1.4 that, given a non-zero matrix Z = {zi,j},
(i, j) ∈ I, one can measure the global amount of normalized auto-correlation

between the entries of Z, that is how far is Z from being the realization of a

white random field, via the following non-negative and scale-invariant scalar

measure of whiteness (or, better, of non-whiteness) ([43, 44, 46]):

W(Z) := ∥S (Z)∥22 =
∑

(l,m)∈L

(sl,m (Z))2 , (7.3)

with scalars sl,m (Z) defined in (7.2).

As proved in [44], when periodic boundary conditions are assumed for

the m1 ×m2 matrix Z, the (2m1 − 1)× (2m2 − 1) sample normalized auto-

correlation matrix S (Z) defined in (7.2) presents some symmetries and the

whiteness measure W(Z) in (7.3) can be computed very efficiently (with

O(m logm) computational complexity, m = m1m2) based on the preliminary

calculation of the 2D discrete Fourier transform of Z (implemented by 2D

fast Fourier transform). For completeness, in Proposition 7.1.1 below we

recall the result reported in [44].

Proposition 7.1.1. Let Z = {zi,j} ∈ Rm1×m2 be a non-zero matrix and let

Z̃ = {z̃i,j} ∈ Cm1×m2 be its 2D discrete Fourier transform. Then, assuming

periodic boundary conditions for Z, the function W in (7.3) can be written

as:

W(Z) =

∑
(i,j)∈ I

|z̃i,j|4 ∑
(i,j)∈ I

|z̃i,j|2
2 . (7.4)
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Clearly, the nearer the restored image x̂(µ) is to the target uncorrupted

image, the closer the associated residual image r̂(µ) = A x̂(µ) − b is to the

white noise realization e in 7.1 and, hence, the whiter is the residual image

according to the scalar measure in 7.3. This motivates the residual whiteness

principle (RWP) for automatically selecting the regularization parameter µ

of variational models, which reads:

Select µ∗ ∈ arg min
µ∈R+

W(µ) := W(r̂(µ)), r̂(µ) = A x̂(µ)− b. (RWP)

What we discussed here for AWGN applies to the broad class of additive

white Generalized Gaussian noise, which includes AW Laplacian noise and

AW Uniform noise, [47].

7.2 The Poisson Whiteness Principle

In order to introduce the theory underlying the extention of the Whiteness

Principle for Poisson noise, it is useful to rewrite the vectorized image forma-

tion model (4.6) in its equivalent matrix form. Denoting by B,Λ ∈ Rm1×m2

and Q,X ∈ Rn1×n2 the matrix forms of vectors b,λ ∈ Rm and q,x ∈ Rn,

respectively, it reads

B = POISS
(
Λ
)
, Λ = G

(
A
(
X
))

+Q , (7.5)

where, with a little abuse of notation, A : Rn1×n2 → Rm1×m2 indicates

here the linear operator encoded by matrix A ∈ Rm×n in the vectorized

model (4.6), and where POISS
(
Λ
)
=
{
Poiss

(
λi,j
)}

and G
(
A
(
X
))

={
g
((

A
(
X
))

i,j

)}
, i.e. the matrix forms of vectors Poiss

(
λ
)
and g(Ax̄) in

(4.6).

Before going into the details, first in Definition 7.2.1 we recall the formal

definition of Poisson random variable and Poisson independent random field,

then in Definition 7.2.2 we introduce their standard(ized) versions, whose

main properties are finally highlighted in Proposition 7.2.1.
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Definition 7.2.1 (Poisson random variable and independent random field).

A discrete random variable B is said to be Poisson distributed with parameter

λ ∈ R++, denoted by B ∼ P(λ), if its probability mass function reads

PB(b | λ) =
λbe−λ

b !
, b ∈ N .

The expected value and variance of random variable B are given by

E [B] = Var [B] = λ .

A random field B = {Bi,j} is said to be independent Poisson distributed

with parameter Λ = {λi,j}, denoted by B ∼ P(Λ), if it satisfies:

Bi,j ∼ P (λi,j) ∀ (i, j) ∈ I , PB(B | Λ) =
∏

(i,j)∈I

PBi,j
(bi,j | λi,j) . (7.6)

Definition 7.2.2 (standard Poisson random variable and independent ran-

dom field). Let B ∼ P(λ). We call the discrete random variable Z defined

by

Z = Sλ(B) :=
B − E [B]√

Var [B]
=

B − λ√
λ

=
1√
λ
B −

√
λ , (7.7)

as standard Poisson distributed with parameter λ, denoted by Z ∼ P̃(λ).

Let B ∼ P(Λ). We call the random field defined by

Z = {Zi,j} with Zi,j = Sλi,j
(Bi,j) ∀ (i, j) ∈ I , (7.8)

as independent standard Poisson distributed with parameter Λ, denoted by

Z ∼ P̃(Λ).

Proposition 7.2.1. Let Z ∼ P̃(λ) and let Sλ be the standardization function

defined in (9.6). Then, the probability mass function, expected value and

variance of random variable Z are given by:

PZ (z|λ) = λS
−1
λ (z) e−λ(
S−1
λ (z)

)
!
, z ∈ {Sλ(0), Sλ(1), . . .} , S−1

λ (z)=
√
λ z + λ,(7.9)

E [Z ] = 0 , Var [Z ] = 1 . (7.10)

Hence, any independent standard Poisson random field Z ∼ P̃(Λ) is white.
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Proof. The scalar affine standardization function Sλ : N → {Sλ(0), Sλ(1), . . .}
in (9.6) is bijective (as λ ∈ R++), hence it admits the inverse S−1

λ defined in

(7.9). The expression of PZ in (7.9) thus comes from specifying the general

form of the probability mass function of a discrete random variable defined

by a bijective function of another discrete random variable. The fact that Z

has zero-mean and unit-variance - as stated in (7.10) - comes immediately

from the definition of Sλ in (9.6).

It thus follows from the definition of a standard Poisson independent

random field Z = {Zi,j} given in (9.7) and from statement (7.10) that:

Zi,j ∼ P̃ (λi,j) =⇒

{
E [Zi,j] = µZ = 0

Var [Zi,j] = σ2
Z = 1

, ∀ (i, j) . (7.11)

Moreover, it clearly comes from independence of a non-standard Poisson

random field B - formalized in (9.5) - and from the entry-wise definition of

random field standardization in (9.7) that independence also holds true for

a standard Poisson random field Z; in formula:

PZ(Z | Λ) =
∏
(i,j)

PZi,j
(zi,j | λi,j) .

Since independence implies uncorrelation and based on (7.11), we have

Corr [Zi1,j1 , Zi2,j2 ] =

{
0 for (i1, j1) ̸= (i2, j2) ,

Var [Zi1,j1 ] = σ2
Z = 1 for (i1, j1) = (i2, j2) .

(7.12)

It follows from (7.11), (7.12) and from Definition 7.1.1 that Z is a weak

stationary random field. Then, it comes from (7.12) and from Definition 7.1.2

that the ensemble normalized auto-correlation A [Z] = {al,m [Z]} satisfies

al,m [Z] =

{
0 for (l,m) ̸= (0, 0) ,

1 for (l,m) = (0, 0) .

Hence, based on Definition 7.1.3, we can conclude that any standard Poisson

independent random field Z is white.
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In light of Definition 7.2.1, the image formation model (7.5) can be written

in probabilistic terms as follows:

B realization of B ∼ P
(
Λ
)
, (7.13)

with matrix Λ defined in (7.5).

Then, based on Definition 7.2.2, after introducing the matrix

Z = {zi,j} with zi,j = Sλi,j
(bi,j) =

bi,j − λi,j√
λi,j

, (7.14)

the probabilistic model (7.13) can be equivalently written in standardized

form as

Z realization of Z ∼ P̃
(
Λ
)
.

That is, matrix Z in (7.14) withΛ in (7.5) is the realization of an independent

standard Poisson random field Z which, according to Proposition 7.2.1, is

white.

We note that, unlike the observed realization B in (7.13), the realization

Z in (7.14) is not available as it depends on Λ which, in its turn, depends

on the unknown uncorrupted image X. However, the whiteness property of

Z can be exploited for stating a new principle for automatically selecting

the value of the regularization parameter µ in the class of R-KL variational

models.

Denoting by X̂(µ) = {x̂i,j(µ)} the matrix form of the solution of a R-KL

model - e.g., of the TV-KL model in (TV-KL) - we introduce the µ-dependent

matrices Λ̂(µ), Ẑ(µ) ∈ Rm1×m2 given by

Λ̂(µ) =
{
λ̂i,j(µ)

}
= G

(
A
(
X̂(µ)

))
+Q, (7.15)

Ẑ(µ) = {ẑi,j(µ)} with ẑi,j(µ) = S λ̂i,j(µ)
(bi,j) =

bi,j − λ̂i,j(µ)√
λ̂i,j(µ)

,(7.16)

The ideal goal of any criterion for choosing µ in the class of R-KL models is

to select the value µ∗ yielding the closest solution image X̂(µ∗) to the target

uncorrupted image X, according to some distance metric. The conjecture
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behind our proposal is that the closer the solution X̂(µ) is to the target X,

the closer the matrix Ẑ(µ) defined in (7.15)-(7.16) will be to Z in (7.14), so

the more Ẑ(µ) will resemble the realization of a white random field. Hence,

the proposed criterion, that we refer to as the Poisson Whiteness Principle

(PWP), consists in choosing the value of µ leading to the less auto-correlated

matrix Ẑ(µ). Based on the scalar normalized auto-correlation measure in-

troduced in (7.3), the PWP reads:

Select µ = µ∗ ∈ argmin
µ∈R++

{
W (µ) := W

(
Ẑ(µ)

)}
,

with matrix Ẑ(µ) defined in (7.15)-(7.16) and function W in (7.3).

(PWP)

7.3 Numerical Results

In this section, we evaluate the performance of the proposed (PWP) for

the selection of the regularization parameter µ in the (TV-KL) model em-

ployed for the solution of the IR and CTIR imaging problems. For a quan-

titative evaluation, the accuracy of the reconstructed images x̂(µ) with re-

spect to the original image x̄ is measured by means of two scalar metrics,

the Structural Similarity Index (SSIM) [36] and the Signal-to-Noise-Ratio

(SNR) defined in (6.23). The proposed PWP approach is compared with

the state-of-the-art ADP and NEDP proposed in Chapter 6. The considered

parameter selection rules are all applied a posteriori. The (TV-KL) model is

solved by the ADMM approach outlined in section 10.1 for a very fine grid

of different µ-values and for each reconstructed image x̂(µ) we compute both

the value of the discrepancy function D (µ; b) defined in (5.2) and involved

in the (ADP) and (NEDP) and the value of the whiteness function W (µ)

defined and used in (PWP). In particular, we calculate W (µ) efficiently

based on the Fourier-domain formula in (7.4). Then, we select the µ-values

according to the (ADP) and (NEDP), denoted by µ(A) and µ(NE), as the

ones corresponding to the intersection of D(µ;y) with ∆(A) and ∆(NE)(µ),

respectively. The µ-value selected by the (PWP) is the one minimizing the
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function W (µ) and is denoted by µ(W ). For each µ-value in the considered

grid, we also compute the SNR and SSIM of the associated reconstructed

image x̂(µ). Moreover, to evaluate in absolute terms the performance of the

three compared selection criteria, we also compute the values µ(SNR) and

µ(SSIM) of the regularization parameter which yield the reconstructed im-

ages exhibiting the highest SNR and the highest SSIM values, respectively.

The two reconstructed images x̂(µ(SNR)), x̂(µ(SSIM)) and the associated SNR

and SSIM quality metrics are then regarded as the best theoretical results

achievable by the compared selection strategies. In all the performed tests,

the iterations of the ADMM approach outlined in section 10.1 and used for

the solution of the TV-KL model are stopped (in both the standard form for

IR and semi-linearized form for CTIR) as soon as

δ(k)x :=
∥x(k) − x(k−1)∥2

∥x(k−1)∥2
< 10−6 , k ∈ N \ {0} ,

while the ADMM penalty parameter γ is set manually so as to fasten the

convergence of the alternating scheme. More specifically, we made some prior

numerical tests and found that a suitable value in the IR case is γ = 5, while

for the CTIR we set γ = 10.

7.3.1 CT image reconstruction

For the CT reconstruction problem we consider the test images Shepp

Logan (500×500, pixel size = 0.2mm) and brain (238×253, pixel size=0.4mm),

with pixel values between 0 and 1, shown Figures 7.1a, 7.1b, respectively. The

acquisition process of the fan beam CT setup, i.e. the projection operator

A, is built using the ASTRA Toolbox [40] with the following parameters:

180 equally spaced angles of projections (from 0 to 2π), a detector with 500

pixels (detector pixel size = 1/3mm), distance between the source and the

center of rotation = 300mm, distance between the center of rotation and the

detector array = 200mm. The data are generated with the same procedure

explained in 6.3.1 with

I0 ∈ {1.5, 5, 10, 20, 50, 100, 1000}.
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(a) (b) (c) (d)

Figure 7.1: From left to right: original Shepp Logan (500 × 500), brain

(238 × 253), satellite (256 × 256) and cells (236 × 236), test images

considered for the numerical experiments.

In Figure 7.2c,d we show the whiteness functionW (µ), as defined in PWP,

for the first image Shepp Logan with I0 = 1.5 (left) and I0 = 1000 (right).

The vertical dashed red lines correspond to the minimum of the function

W (µ), i.e. to the value µ(W ) selected by the proposed (PWP). The black

curves in Figure 7.2a,b represent the discrepancy function D(µ; b) as defined

in (5.2), while the green and magenta dashed lines represent the discrepancy

values ∆(A) and ∆(NE)(µ) as defined in ADP and NEDP, respectively. In Fig-

ure 7.2e,f, we show the SNR (in blue) and SSIM (in orange) values achieved

for the limiting values of I0, i.e. I0 = 1.5 (left) and I0 = 1000 (right). The

red, green and magenta vertical lines correspond to the µ values chosen with

the newly proposed method and the two considered versions of the DP. In

the case of I0 = 1.5 the SNR/SSIM values achieved by ADP and NEDP are

significanlty far from the optimal ones. On the other hand, PWP one is very

close to the maximum of both the SNR and the SSIM. For I0 = 1000, the

NEDP and the ADP select the same µ, which allows to achieve a larger SSIM

with respect to the one obatined by PWP, while our method still outperforms

the other in terms of SNR.

In Table 7.1, we report, for different counting regimes I0, the selected

µ-values and the SNR/SSIM metrics for the three considered strategies as

well as for the cases of maximum SNR and SSIM. For each I0, the highest

values of SNR and SSIM achieved among the three compared methods, i.e.



122 7. Poisson Whiteness Principle (PWP)

the closest to the maximum achievable, are reported in bold.

From Table 7.1, we observe that the PWP outperforms the ADP and the

NEDP in terms of SNR for each I0 value, while the NEDP returns slightly

better results in terms of SSIM for high-count acquisitions. We highlight that

for mid- and high-doses, the quality metrics of the reconstructions by PWP

are particularly close to the highest achievable. For a visual comparison,

in Figure 7.3, we show the observed sinograms, the output reconstructions

obtained by employing ADP, NEDP and PWP, and the one corresponding

to the maximum SNR and SSIM for I0 = 1.5 (top panels) and I0 = 1000

(bottom panels). The reconstruction results shown in Figure 7.3 reflect the

behavior of the plots. More specifically, for I0 = 1.5 the ADP reconstruction

appears to be over-regularized; NEDP allows to reconstruct only the central

ellipsis, which appear to be merged; finally, in the PWP reconstruction the

two ellipsis are more visible and the white edge of the phantom is sharper. In

the case of I0 = 1000, the three reconstructions are similar, with the PWP

being more capable of separating the three fine details highlighted in the

super-imposed close-up.

For the second test image, brain, we show in Figure 7.4 the behaviour

of the discrepancy function D(µ, b), of the whiteness function W (µ), as well

as of the SNR and SSIM values for I0 = 1.5 and I0 = 1000. From Table 7.2,

we note that the PWP achieves higher SNR and SSIM values compared to

the ADP and NEDP for lower values of I0. However, we observe that when

considering higher values of I0, the ADP reconstruction can outperform PWP

for some of the considered doses. Moreover, notice that for some doses in the

high-dose regime - e.g., I0 = 50, 1000 - the PWP returns quality measures

almost coinciding with the maximum SNR and SSIM achieved.

The reconstruction computed by ADP, NEDP and PWP are shown in

Figure 7.5: we can see a higher level of details in the PWP reconstruction,

both in the the low-dose and high-dose case. For I0 = 1.5, only PWP is able

to recover the upper part of the skull bone, while for I0 = 1000 the difference

mainly concerns the level of details present in the reconstruction, as shown
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(a) (b)

(c) (d)

(e) (f)

Figure 7.2: Test image Shepp Logan. From top to bottom: discrepancy

curves, whiteness curves and achieved SNR/SSIM for I0 = 1.5 (left) and

I0 = 1000 (right).
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I0 1.5 5 10 20 50 100 1000

ADP

µ(A) 0.122 5.555 3.351 1.522 0.564 0.322 0.091

SNR -5.838 2.899 4.449 8.976 11.626 13.141 17.837

SSIM 0.443 0.455 0.515 0.755 0.974 0.944 0.977

NEDP

µ(NE) 0.426 0.684 0.733 0.530 0.352 0.261 0.091

SNR -2.329 3.569 6.403 8.550 10.717 12.698 17.837

SSIM 0.643 0.793 0.853 0.889 0.992 0.945 0.977

PWP

µ(W ) 2.865 1.363 1.024 0.861 0.564 0.442 0.138

SNR 3.785 5.997 7.441 9.786 11.626 13.436 18.401

SSIM 0.756 0.816 0.856 0.883 0.974 0.935 0.975

SNRmax

µ(SNR) 3.470 2.042 1.461 1.001 0.654 0.443 0.186

SNR 4.008 6.667 7.953 9.888 11.682 13.436 18.534

SSIM 0.717 0.782 0.825 0.868 0.902 0.936 0.969

SSIMmax

µ(SSIM) 2.256 1.364 0.879 0.641 0.382 0.262 0.091

SNR 3.202 5.997 7.009 9.165 10.945 12.698 17.838

SSIM 0.769 0.817 0.858 0.892 0.919 0.946 0.978

Table 7.1: Test image Shepp Logan. Output µ-values and SNR/SSIM met-

rics for the CT reconstruction by ADP, NEDP, PWP and for the output CT

reconstructions corresponding to the maximum SNR and SSIM achieved, for

different I0.
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b ADP NEDP

I 0
=

1.
5

PWP SNRmax SSIMmax

b ADP NEDP

I 0
=

10
00

PWP SNRmax SSIMmax

Figure 7.3: Test image Shepp Logan. Observed image b, CT reconstructions

using the ADP, NEDP and PWP, and reconstructions corresponding to the

maximum SNR and SSIM for I0 = 1.5 (top panels) and I0 = 1000 (bottom

panels).
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(a) (b)

(c) (d)

(e) (f)

Figure 7.4: Test image brain. From top to bottom: discrepancy curves,

whiteness curves and achieved SNR/SSIM for I0 = 1.5 (left) and I0 = 1000

(right).
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I0 1.5 5 10 20 50 100 1000

ADP

µ(A) 0.060 2.657 2.428 1.302 0.516 0.300 0.098

SNR -7.251 3.308 3.432 6.154 8.162 8.970 12.901

SSIM 0.254 0.323 0.311 0.466 0.622 0.672 0.790

NEDP

µ(NE) 0.706 0.428 0.542 0.383 0.320 0.257 0.098

SNR -1.200 0.468 3.340 4.714 7.636 8.580 12.901

SSIM 0.382 0.432 0.523 0.556 0.612 0.666 0.790

PWP

µ(W ) 1.853 2.200 0.771 0.420 0.589 0.286 0.166

SNR 0.278 3.866 4.472 5.040 8.310 8.854 13.728

SSIM 0.429 0.381 0.534 0.562 0.614 0.670 0.811

SNRmax

µ(SNR) 3.000 1.686 1.286 0.935 0.639 0.471 0.196

SNR 2.327 4.138 5.308 6.801 8.333 9.549 13.776

SSIM 0.374 0.444 0.499 0.547 0.606 0.663 0.810

SSIMmax

µ(SSIM) 1.798 1.057 0.829 0.641 0.467 0.343 0.177

SNR 1.262 3.383 4.668 6.272 7.984 9.247 13.761

SSIM 0.438 0.490 0.534 0.574 0.624 0.674 0.811

Table 7.2: Test image brain. Output µ-values and SNR/SSIM metrics for

the CT reconstruction by ADP, NEDP, PWP and for the output reconstruc-

tions corresponding to the maximum SNR and SSIM achieved, for different

I0.
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in the close-ups.

7.3.2 Image restoration

We start testing our proposal on the image restoration task, and consider

two test images, namely satellite (256× 256 pixels) and cells (236× 236

pixels), with pixel values between 0 and 1, shown in Figures 7.1a, 7.1b. We

simulate the acquisition process in the same way as in 6.3.2 with

κ ∈ {1.5, 5, 10, 20, 50, 100, 1000}.

and space-invariant Gaussian blur with band = 5 and sigma = 1.

In analogy to the CT reconstruction case, in Figure 7.6 we report for

the test image satellite the curve of the discrepancy function D(µ, b), as

well as the whiteness curve W (µ) and the curves of the SNR and SSIM for

different µ values with κ = 5, 10. Note that, in the low-counting regime, the

PWP achieves higher values of SNR and SSIM if compared to the ADP and

NEDP.

From table 7.3 we observe that the PWP outperforms the ADP and

NEDP in terms of SNR and SSIM for the low/middle counts acquisitions

(up to κ = 50); in such scenarios, the obtained metrics are also particularly

close to the highest SNR and SSIM achieved. For the higher counts NEDP

and PWP return similar quality measures, with NEDP being slightly better.

The restoration results shown in Figure 7.7 reflect the behavior of the plots.

In both cases, the NEDP and the PWP return similar results, with the latter

being more capable of preserving the original contrast in the image. On the

other hand, the output images obtained by selecting µ according to ADP are

strongly over-regularized.

For the last test image, cells, we report in Figure 7.8 the behavior of

the discrepancy function D(µ, b), of the whiteness function W (µ) and of

the SNR/SSIM curves obtained by applying the NEDP, the ADP and the

PWP, for κ = 5 (left) and κ = 10 (right). The PWP returns larger quality

measures, as it is the closest to the maximum SNR/SSIM achievable.
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b ADP NEDP

PWP SNR∗ SSIM∗

b ADP NEDP

PWP SNR∗ SSIM∗

Figure 7.5: Test image brain. Observed image y, CT reconstructions using

the ADP, NEDP and PWP, and reconstruction corresponding to the max-

imum SNR and SSIM for I0 = 1.5 (top panels) and I0 = 1000 (bottom

panels).
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(a) (b)

(c) (d)

(e) (f)

Figure 7.6: Test image satellite. From top to bottom: discrepancy curves,

whiteness curves and achieved SNR/SSIM for κ = 5 (left) and κ = 10 (right).
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κ 1.5 5 10 20 50 100 1000

ADP

µ(A) 2×10−5 0.065 0.068 0.188 0.380 0.760 8.260

SNR -0.001 3.408 3.508 6.580 8.688 10.574 14.747

SSIM 0.009 0.625 0.619 0.708 0.724 0.742 0.805

NEDP

µ(NE) 0.841 1.205 2.348 3.848 6.800 11.380 60.760

SNR 10.270 11.286 12.384 13.179 14.206 15.017 17.540

SSIM 0.786 0.779 0.787 0.792 0.805 0.823 0.862

PWP

µ(W ) 1.201 2.045 3.068 4.388 7.460 11.080 45.220

SNR 10.618 11.944 12.719 13.328 14.313 14.983 17.225

SSIM 0.787 0.785 0.791 0.794 0.808 0.822 0.857

SNRmax

µ(SNR) 1.561 3.845 5.948 10.841 20.563 35.562 251.685

SNR 10.699 12.363 13.132 13.872 14.978 15.870 18.367

SSIM 0.786 0.788 0.796 0.805 0.822 0.851 0.863

SSIMmax

µ(SSIM) 1.141 3.065 6.887 12.325 19.675 33.315 129.476

SNR 10.589 12.302 13.105 13.851 14.977 15.860 18.130

SSIM 0.787 0.789 0.797 0.806 0.823 0.852 0.866

Table 7.3: Test image satellite. Output µ-values and SNR/SSIM metrics

for the restoration by ADP, NEDP, PWP and for the output restorations

corresponding to the maximum SNR and SSIM achieved, for different κ.
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b ADP NEDP

κ
=

5

PWP SNRmax SSIMmax

b ADP NEDP

κ
=

10

PWP SNRmax SSIMmax

Figure 7.7: Test image satellite. Observed image b, restorations using

the ADP, NEDP and PWP, and restorations corresponding to the maximum

SNR and SSIM for κ = 5 (top panels) and κ = 10 (bottom panels).
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(a) (b)

(c) (d)

(e) (f)

Figure 7.8: Test image cells. From top to bottom: discrepancy curves,

whiteness curves and achieved SNR/SSIM for κ = 5 (left) and κ = 10 (right).
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From Table 7.4, we note that the proposed µ-selection criterion returns

restored images outperforming the ones obtained via the NEDP and ADP

both in terms of SNR and SSIM, for every κ ≥ 5. For κ = 1.5 the SNR

and SSIM values of the PWP restoration are slightly lower, but very similar,

to the one obtained with NEDP, while in all the other cases the difference

between the PWP and the NEDP is more marked. In general, the percentage

difference between the quality metrics achieved by the PWP and the ones

corresponding to the maximum SNR and SSIM values appear to be very

small, especially in low-counting regimes.

The restored images in Figure 7.9 reflect the values recorded in the tables:

the output of the PWP preserve more details and the original contrast if

compared to NEDP, while the ADP restoration seems to be less subject to

over-regularization if compared to the results obtained on the test image

satellite. This can be ascribed to the number of zeros in the image, being

significantly smaller in cells.

7.3.3 Discussion

In this chapter we introduced a novel parameter selection strategy that

relies on the extension of the whiteness principle designed for additive white

noise to a suitably standardized version of the Poisson-corrupted observa-

tion. The derived Poisson whiteness principle has been extensively tested on

image restoration and CT reconstruction problems. The Poisson whiteness

principle has been compared experimentally with both the popular approxi-

mate discrepancy principle [25] and our nearly exact version of it illustrated

in Chapter 6. The newly introduced approach has been shown to outper-

form the competitors especially in the low-counting regime for both the CT

reconstruction and the image restoration problem.
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b ADP NEDP
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PWP SNRmax SSIMmax

Figure 7.9: Test image cells. Observed image b, restorations using the

ADP, NEDP and PWP, and restorations corresponding to the maximum

SNR and SSIM for κ = 5 (top panels) and κ = 10 (bottom panels).
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κ 1.5 5 10 20 50 100 1000

ADP

µ(A) 7×10−5 1.040 1.400 2.280 4.500 7.920 45.000

SNR 0.004 5.176 5.737 6.626 7.830 8.735 11.075

SSIM 0.077 0.276 0.299 0.363 0.452 0.532 0.717

NEDP

µ(NE) 0.875 1.580 2.060 3.600 6.600 10.680 52.140

SNR 4.625 5.794 6.347 7.316 8.337 9.071 11.207

SSIM 0.313 0.315 0.342 0.417 0.493 0.560 0.730

PWP

µ(W ) 0.850 1.760 2.720 4.200 7.440 12.000 54.660

SNR 4.601 5.924 6.695 7.503 8.470 9.186 11.248

SSIM 0.311 0.326 0.372 0.433 0.505 0.571 0.733

SNRmax

µ(SNR) 1.193 2.840 4.285 7.784 15.332 24.675 179.852

SNR 4.685 6.212 6.973 7.826 8.904 9.590 11.841

SSIM 0.332 0.365 0.408 0.479 0.556 0.617 0.767

SSIMmax

µ(SSIM) 1.732 4.463 6.857 10.562 22.678 33.119 182.857

SNR 4.064 5.766 6.700 7.659 8.751 9.531 11.840

SSIM 0.340 0.380 0.426 0.487 0.563 0.623 0.768

Table 7.4: Test image cells. Output µ-values and SNR/SSIM metrics for

the restoration by ADP, NEDP, PWP and for the output restorations corre-

sponding to the maximum SNR and SSIM achieved, for different κ.



Chapter 8

Masked Unbiased Principles

In the two previous chapters we introduced and discussed the state-of-

the-art discrepancy principle and two new ones (NEDP and PWP) for the

automatic selection of the regularization parameter µ in the class of so-called

TV-KL variational model in (TV-KL) In this chapter we will briefly review

the most popular and effective existing unmasked principles (including the

two very recent ones proposed in [39] and [41]), which fully exploit the in-

formation in the data without discarding any pixel. Then, inspired by the

idea originally proposed in [31] to deal with low photon-counting scenar-

ios, we introduce and discuss the masked biased versions of the previously

reviewed unmasked principles, some of them already proposed in [31] and

other new. These approaches come from simply discarding the zero-pixels

in the acquired image when applying the principles while, at the same time,

keeping the (Poisson) distribution of undiscarded data unchanged. Finally,

we propose a whole new class of masked unbiased selection criteria based on

the introduction of a novel positive Poisson distribution which suitably mod-

els the data statistics after discarding the zero-photon pixels. A theoretical

analysis of the biases eliminated by using the new unbiased principles is also

carried out. All this principles can be applied for the class of the so-called

R−KL variational models

x̂(µ) ∈ argmin
x∈Rn

+

{R(x) + µKL(λ; b)} , λ = g(Ax) + q , (R-KL)

137
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with R being a general closed, proper and convex regularization term such

as, e.g. (TV), (TV2) and (TGV2).

8.1 The “unmasked” principles

The principles introduced in the previous chapters exhibit a common

property: that is they exploit all the information encoded in the observed

data b without discarding any pixels. For this reason, we will refer to them as

unmasked principles. Let us briefly recall the notation and the four principles

already discussed. To this aim, first we introduce the µ-dependent object

λ̂(µ) := g(A x̂(µ)) + q ∈ Rm,

which represents, for each selected µ value, an estimate of the unknown true

noise-free target λ = g(Ax) + q obtained by solving the (R-KL) variational

model. We also introduce the true and estimated standardized images

z :=
b− λ√

λ
∈ Rm, ẑ(µ) :=

b− λ̂(µ)√
λ̂(µ)

∈ Rm. (8.1)

where all operations in the above definitions have to be intended component-

wise. In 7.2.1 we proved that the original matrix (or image) form of vector

z above is the realization of a 2D white (i.e., uncorrelated) random field. In

particular, each entry zi of z is the realization of a scalar random variable

with zero mean and unitary variance.

The approximate discrepancy principle (ADP)

Select µ = µ∗ ∈ R++ such that D (µ∗; b) = ∆(A) ,

with ∆(A) :=
∑
i∈ I

(
δ(A) :=

1

2

)
=
m

2
,

(ADP)

where D(µ, b) is defined in (5.2).
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The quadratic discrepancy principle (QDP)

Select µ = µ∗ ∈ R++ such that D(Q) (µ∗; b) = ∆(Q) ,

with ∆(Q) :=
∑
i∈ I

(
δ(Q) = 1

)
= m,

(QDP)

where D(Q)(µ, b) is defined in (5.5).

The nearly exact discrepancy principle (NEDP)

Select µ = µ∗ ∈ R++ such that D (µ∗; b) = ∆(NE) (µ∗) ,

with ∆(NE)(µ) =
∑
i∈ I

(
δ(NE)(λ̂i(µ))

)
=
m

2
+
∑
i∈ I

ϵ(λ̂i(µ)) ,
(NEDP)

whereD(µ, b) and ∆(NE)(µ) are defined in (5.2) and in (NEDP), respectively.

The whiteness principle (WP)

Select µ = µ∗ ∈ argmin
µ∈R++

{W (µ) := W (ẑ(µ)) } , (PWP)

with matrix ẑ(µ) defined in (8.1) and function W in (7.3).

8.2 The “masked biased” principles

After noting that the (ADP) and (QDP) principles can yield sub-optimal

results in case of many zero-photon pixels, in [31] the authors proposed

masked versions of those principles based on simply discarding all pixels

measuring zero photons - i.e., pixels for which bi = 0. We refer to these

masked principles as biased since they do not consider that by carrying out

a selection of pixels based on the value of the noise realization should require

to change the statistics of the selected pixels, as it will be illustrated in the

following section.
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The masked versions of the exact discrepancy function D in (5.2) used in

the (ADP) and of the quadratically approximated discrepancy function D(Q)

in (5.5) used in the (QDP) - indicated by D+ and D
(Q)
+ , respectively - take

clearly the following forms

D+ (µ; b) :=
∑
i∈ I+

F
(
λ̂i(µ); bi

)
, D

(Q)
+ (µ; b) :=

∑
i∈ I+

F (Q)
(
λ̂i(µ); bi

)
,

with functions F and F (Q) defined in (4.10) and (5.4), respectively. Hence,

based on their unmasked versions in (ADP) and (QDP), the ADP and QDP

masked biased principles proposed in [31] - that we shortly refer to as ADP-

MB and QDP-MB, respectively - can be formulated as follows:

Select µ = µ∗ ∈ R++ such that D+ (µ∗; b) = ∆
(A)
+ ,

with ∆
(A)
+ :=

∑
i∈ I+

(
δ(A) =

1

2

)
=
m+

2
,

(ADP-MB)

Select µ = µ∗ ∈ R++ such that D
(Q)
+ (µ∗; b) = ∆

(Q)
+ ,

with ∆
(Q)
+ :=

∑
i∈ I+

(
δ(Q) = 1

)
=m+,

(QDP-MB)

where m+ indicates the cardinality of set I+, namely the number of non-zero

pixels.

Also the (NEDP) principle, which was proposed after [31], admits a

masked biased version (NEDP-MB), which clearly reads:

Select µ = µ∗ ∈ R+ such that D+ (µ∗; b) = ∆
(NE)
+ (µ) ,

with ∆
(NE)
+ (µ) :=

∑
i∈ I+

(
δ(NE)(λ̂i(µ))

)
=
m+

2
+
∑
i∈ I+

ϵ(λ̂i(µ)) .

(NEDP-MB)

Finally, by introducing the masked versions of standardized image in (8.1),

namely

ẑ+(µ) = (ẑ+,1(µ), . . . , ẑ+,m(µ))
T with ẑ+,i(µ) =

{
ẑi(µ) if i ∈ I+

0 otherwise
,

(8.2)
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the masked biased version of the WP (WP-MB) can be formulated as follows

Select µ = µ∗ ∈ argmin
µ∈R++

{W+(µ) := W (ẑ+(µ)) }, (WP-MB)

with function W(z) defined as in (PWP).

8.3 The “masked unbiased” principles

As mentioned before, the masked biased principles are biased because

they discard the zero pixels but do not change the statistics of the new

data (without the zero pixels). There is therefore a bias, as we will show

in the next section how the distribution changes. In the next subsection

we introduce and analyze a novel scalar discrete distribution, called positive

Poisson distribution, which correctly models the statistics of non-zero pixels

considered in the masked selection principles. Based on such distribution,

we then introduce the novel masked unbiased principles.

8.3.1 The new random variable: the Positive Poisson

In the following Definition 8.3.1 we recall the Poisson distribution and in-

troduce the positive Poisson distribution, then in Proposition 8.3.1 we outline

some important properties of positive Poisson-distributed random variables.

Definition 8.3.1 (Poisson and positive Poisson random variables). A dis-

crete random variable B is said to be Poisson-distributed with parameter

λ ∈ R++, denoted by B ∼ P(λ), if its probability mass function reads

PB(b) =
λb exp(−λ)

b !
, b ∈ N .

The expected value, variance and second-order raw moment of B are given

by

E[B] = Var[B] = λ , E[B2] = λ (λ+ 1) . (8.3)

The discrete random variable B+ defined by

B+ := B if B > 0 (8.4)



142 8. Masked Unbiased Principles

is said to be positive Poisson-distributed with parameter λ and denoted by

B+ ∼ P+(λ).

Proposition 8.3.1. Let B ∼ P(λ) and B+ ∼ P+(λ), with λ ∈ R++, and let

T, V : R++ → R be the functions defined by

T (λ) =
1

1− exp(−λ)
, V (λ) =

1− (1 + λ) exp(−λ)
(1− exp(−λ))2

. (8.5)

Then, the probability mass function, expected value, second-order raw mo-

ment and variance of the positive Poisson-distributed random variable B+

read

PB+(y) = T (λ) PB(b) =
1

exp(λ)− 1

λb

b !
, b ∈ N+ , (8.6)

E[B+] = T (λ) E[B] =
λ

1− exp(−λ)
, (8.7)

E[B2
+] = T (λ) E[B2] =

λ (1 + λ)

1− exp(−λ)
, (8.8)

Var[B+] = V (λ)Var[B] =
λ

(1− exp(−λ))2

(
1− 1 + λ

exp(λ)

)
(8.9)

where N+ indicates the set of positive natural numbers. For any λ ∈ R++,

PB+ , E[B+], E[B
2
+] and Var[B+] in (8.6)-(8.9) satisfy

PB+(b) > PB(b) ∀ b ∈ N+, E[B+] > E[B],

E[B2
+] > E[B2], Var[B+] < Var[B]. (8.10)

Moreover, for λ tending to 0 and λ tending to +∞, we have

lim
λ→0

PB+(b) =

{
1 for b = 1,

0 for b > 1
, lim

λ→+∞
PB+(b) = PB(b) ∀ b ∈ N+,(8.11)

lim
λ→0

E[B+] = 1 , lim
λ→+∞

E[B+] = E[B] , (8.12)

lim
λ→0

E[B2
+] = 1 , lim

λ→+∞
E[B2

+] = E[B2] , (8.13)

lim
λ→0

Var[B+] = 0 , lim
λ→+∞

Var[B+] = Var[B] . (8.14)

Proof. It easily follows from definition (8.4) that, for any λ ∈ R++, the

probability mass function PB+(b) of B+ ∼ P+(λ) is a (positively) scaled
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version of the probability mass function PB(b) of B ∼ P(λ) for b ∈ N+. In

formula,

∀λ ∈ R++, ∃α(λ) ∈ R++ : PB+(b) = α(λ) PB(b) ∀ b ∈ N+ . (8.15)

By imposing that the probability mass function PB+ sums to one, it is easy to

prove that α(λ) in (8.15) coincides with function T (λ) in (8.5), thus demon-

strating (8.6):

∞∑
b=1

PB+(b) = 1 ⇐⇒ α(λ)
∞∑
b=1

PB(b) = 1 ⇐⇒

⇐⇒α(λ) =
1

∞∑
z=0

PB(b)− PB(0)

⇐⇒ α(λ) =
1

1− exp(−λ)
= T (λ) .

Then, it easily follows from (8.6) that the m-th order raw moments of B+

are given by

E[Bm
+ ] =

∞∑
b=1

bm PB+(y) = T (λ)
∞∑
b=1

bm PB(b)

= T (λ)
∞∑
b=0

bm PB(b) = T (λ)E[Bm],

for any m ∈ N. By specifying the above formula for m = 1 and m = 2, one

gets (8.7) and (8.8), respectively. It follows from (8.7)-(8.8) that

Var[Z] = E
[
(B+ − E[B+])

2] = E
[
B2

+

]
− (E[B+])

2

= T (λ)E
[
B2
]
− (T (λ) E[B])2 = T (λ)

(
λ (1 + λ)− T (λ)λ2

)
= T (λ) (1 + λ− λT (λ)) λ = V (λ)Var[B] , (8.16)

where the last equality in (8.16) comes from the definition of functions T and

V in (8.5) and from recalling that Var[B] = λ.

Then, the inequalities in (8.10) and the four asymptotic properties (for

λ → +∞) in (8.11)-(8.14) come from (8.6)-(8.9) and the following easily
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Figure 8.1: Plots of functions T (λ), V (λ) defined in (8.5) (left) and com-

parison between the expected values (centre) and the variances (right) of

B ∼ P(λ) and B+ ∼ P+(λ) given in (8.3) and in (8.7),(8.9), respectively, for

varying λ. The magenta dots represent the sample means m[B+] (centre)

and the sample variances v[B+] (right) of very large numbers of realizations

of the random variable B+, for 50 different values of the parameter λ, namely

λ ∈ {0.1, 0.2, . . . , 4.9, 5}.

provable - see the plots in Figure 8.1 - properties of functions T and V defined

in (8.5):

T (λ) > 1 ∀λ ∈ R++ , V (λ) < 1 ∀λ ∈ R++ ,

lim
λ→+∞

T (λ) = lim
λ→+∞

V (λ) = 1 .

Finally, the four asymptotic properties (for λ → 0) in (8.11)-(8.14) comes

directly from taking the limits as λ approaches 0 of the four functions defined

in (8.6)-(8.9).

In Figure 8.1 we give a graphical representation of some of the quantities

introduced in Proposition 8.3.1. In particular, the sample means m[B+]

and sample variances v[B+] (indicated by magenta dots and obtained by

a simple Montecarlo simulation) provide an experimental validation of the

theoretically derived formulas for the expected value E[B+] in (8.7) and the

variance Var[B+] in (8.9).

It is now clear that the Poisson and the positive Poisson random variables

are characterized by significantly different statistical properties, especially for
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small values of the parameter λ. In this perspective, Proposition 8.3.1 already

warns on the approximations that the masked formulations of the principles

given in Section 8.2 bring along. An analysis of the introduced biases will be

carried out in Section 8.3.6.

In the next subsections, we are going to show how the newly introduced

positive Poisson distribution can be adopted so as to formulate masked un-

biased versions of the original principles reviewed here.

8.3.2 Masked unbiased approximate discrepancy prin-

ciple (ADP-M)

As previously outlined, the approximate discrepancy value δ(A) = 1/2

used in the ADP relies on truncating at the first order the Taylor expansion

of E [F (λ;B)], with B a Poisson-distributed random variable with mean λ.

It can be proved that, in the masked unbiased case (where B is replaced by

B+), the expected value E [F (λ;B+)] admits a Taylor expansion which also

coincides with 1/2 when truncated at the first order.

Hence, masked biased and masked unbiased versions of the ADP coincide;

in what follows, they will be indistinctly referred to as ADP-M.

8.3.3 Masked unbiased quadratic discrepancy princi-

ple (QDP-MU)

In light of statements (8.7) and (8.9) in Proposition 8.3.1, we introduce

the function

F (QU)(λi; bi) =

(
bi − λi T (λi)√

λi V (λi)

)2

, bi ∈ N \ {0} .

Relying on the properties of the novel positive Poisson distribution, it is easy

to observe that

δ(QU) := E
[
F (QU)(λi;B+,i)

]
= 1.
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After introducing the unbiased version of the masked quadratically approxi-

mated discrepancy functionD
(Q)
+ defined in (5.2) and used in the (QDP-MB),

namely

D
(QU)
+ (µ; b) :=

∑
i∈ I+

F (QU)
(
λ̂i(µ); bi

)
,

we get the following formulation for the masked unbiased QDP, referred to

as QDP-MU,

Select µ = µ∗ ∈ R++ such that D
(QU)
+ (µ∗; b) = ∆

(QU)
+ ,

with ∆
(QU)
+ :=

∑
i∈ I+

(
δ(QU) = 1

)
=m+.

(QDP-MU)

8.3.4 Masked unbiased nearly exact discrepancy prin-

ciple (NEDP-MU)

The masked unbiased version of NEDP (NEDP-MU) is obtained - analo-

gously to the unmasked NEDP illustrated in [39] - by applying the weighted

least squares fitting method to approximate the behavior of the sample means

of large numbers of realizations of random quantity F (λi;B+,i), with F de-

fined in (4.10). We thus get:

Select µ = µ∗ ∈ R++ such that D+ (µ∗; b) =
m+

2
+
∑
i∈I+

ϵ(U)(λ̂i(µ)) ,

(NEDP-MU)

with

ϵ(U)(λ) =
λ3 + 30.7436λ2 − 2.2968λ+ 1.0827

12λ4 + 90.1921λ3 − 1.8872λ2 + 6.1778λ
. (8.17)

8.3.5 Masked unbiased whiteness principle (WP-MU)

We start noticing that the standardized image ẑ+(µ) in (8.2), which comes

from a blind masking of the original ẑ(µ) can not be considered a realization

of a white random process. Therefore, we introduce the novel standardized
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image

ẑ (U)(µ) =
b− λ̂ T (λ̂(µ))√
λ̂(µ)V (λ̂(µ))

∈ Rn ,

where T (λ) := (T (λ1), . . . , T (λm))
T and V (λ) := (V (λ1), . . . , V (λm))

T ,

with functions T and V defined in (8.5). The masked vector ẑ
(U)
+ ∈ Rn

corresponding to the new standardization reads

ẑ
(U)
+ (µ) =

(
ẑ
(U)
+,1 (µ), . . . , ẑ

(U)
+,m(µ)

)T
with ẑ

(U)
+,i (µ) =

{
ẑ
(U)
i (µ) if i ∈ I+

0 otherwise
,

One can clearly observe that, in light of the results summarized in Proposition

8.3.1, ẑ
(U)
+ is a realization of a white random process, thus suggesting the

following formulation for the masked unbiased version of the WP (WP-MU)

Select µ = µ∗ ∈ argmin
µ∈R++

{
W

(U)
+ (µ) := W

(
ẑ

(U)
+ (µ)

)}
, (WP-MU)

with function W(z) defined as in (PWP).

8.3.6 Analysis of bias

In light of the introduced unbiased masked principles, in this section we

carry out some analysis of the pixel-wise biases of the masked biased prin-

ciples illustrated in Section 8.2. To this purpose, first we give the following

result.

Proposition 8.3.2. Let B ∼ P(λ) and B+ ∼ P+(λ), with λ ∈ R++, and

let Z
(B)
+ and Z

(U)
+ be the biased and unbiased standardized positive Poisson

random variables defined by

Z
(B)
+ =

B+ − E [B]√
Var [B]

, Z
(U)
+ =

B+ − E [B+]√
Var [B+]

.

Then, it holds true that

E
[
Z

(B)
+

]
=

√
λ (T (λ)− 1) , E

[(
Z

(B)
+

)2]
= T (λ)− λ (T (λ)− 1) , (8.18)

Var
[
Z

(B)
+

]
= T (λ) (1− λ (T (λ)− 1)) , (8.19)

E
[
Z

(U)
+

]
= 0 , E

[(
Z

(U)
+

)2]
= Var

[
Z

(U)
+

]
= 1 .(8.20)
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Proof. First, the fact that Z
(U)
+ has zero mean and unitary second-order raw

moment and variance comes in a straightforward manner from its definition.

Then, for what concern Z
(B)
+ , after recalling that E[B] = Var[B] = λ, it

holds true that

E
[
Z

(B)
+

]
= E

[
B+ − E[B]√

Var[B]

]
= E

[
B+ − λ√

λ

]
=

1√
λ
E [B+ − λ]

=
1√
λ
(E [B+]− λ) =

√
λ (T (λ)− 1) , (8.21)

where the last equality in (8.21) comes from replacing the expression of E[B+]

given in (8.7). Then, by recalling also the expression of E
[
B2

+

]
in (8.8), we

have that

E

[(
Z

(B)
+

)2]
= E

[
(B+ − E[B])2

Var[B]

]
= E

[
(B+ − λ)2

λ

]
=

1

λ
E
[
B2

+ − 2λB+ + λ2
]

=
1

λ

(
E
[
B2

+

]
− 2λE[B+] + λ2

)
=

1

λ

(
T (λ)

(
λ+ λ2

)
− 2λ2T (λ) + λ2

)
=

1

λ

(
λT (λ)− λ2T (λ) + λ2

)
= λ+ T (λ)− λT (λ)

= T (λ)− λ (T (λ)− 1) . (8.22)

Finally, based on (8.21) and (8.22), the variance in (8.19) can be computed

as follows

Var
[
Z

(B)
+

]
= E

[(
Z

(B)
+

)2]
−
(
E
[
Z

(B)
+

])2
= T (λ)− λ (T (λ)− 1)− λ (T (λ)− 1)2

= T (λ)− λT (λ) + λ− λT 2(λ) + 2λT (λ)− λ

= T (λ) + λT (λ)− λT 2(λ) = T (λ) (1 + λ− λT (λ))

= T (λ) (1− λ (T (λ)− 1)) . (8.23)

In what follows, we compare the masked biased and masked unbiased

versions of the QDP, NEDP and WP in terms of some pixel-based bias func-
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tions. We recall that for the ADP the bias has to be considered constantly

zero as the masked biased and the masked unbiased versions coincide.

As the definition of the QDP, in its unmasked, masked biased and masked

unbiased version, is related to the behavior of the sample variance of the

noise realization vector approximated by the residual image, we introduce

the following bias function βQDP : R++ → R to measure the inaccuracy

introduced by the QDP-MB at each pixel

βQDP(λ) = E

[(
Z

(B)
+

)2]
− E

[(
Z

(U)
+

)2]
= T (λ)− λ (T (λ)− 1)− 1 . (8.24)

In the case of NEDP, the bias can be measured in terms of the difference

between the building functions used to approximate the behavior of the exact

expected value arising in (EDP). We thus introduce the pixel-based bias

function βNEDP : R++ → R which is defined as

βNEDP(λ) = ϵ(λ)− ϵU(λ) (8.25)

with ϵ(λ), ϵU(λ) given in (6.22), (8.17), respectively.

Finally, for what concerns the WP, we point out that measuring the bias

in terms of the auto-correlation of the normalized random variables Z
(B)
+ , Z

(U)
+

- that would be the most natural choice in this scenario - is unfeasible; hence

we rather measure how far is Z
(B)
+ from being a zero-mean random variable

with constant (unitary) standard deviation. In other words, we introduce

the two pixel-based bias functions βWP,η, βWP,σ : R++ → R defined as

βWP,η(λ) = E
[
Z

(B)
+

]
− E

[
Z

(U)
+

]
=

√
λ (T (λ)− 1) ,

βWP,σ(λ) =

√
Var

(
Z

(B)
+

)
−
√

Var
(
Z

(U)
+

)
=
√
T (λ) (1− λ (T (λ)− 1))− 1 .

(8.26)

In Figure 8.2, we show the behavior of the pixel-based bias functions in (8.24),

(8.25), (8.26) for three different ranges of λ, namely (0, 0.1], (0.1, 5], (5, 200].

Notice that the bias is particularly relevant for very small values of λ, while

it tends to 0 as λ increases. Such behavior reflects the theoretical results

given in Proposition 8.3.2, whence we have that the statistical properties of

Z
(B)
+ , Z

(U)
+ coincide as λ→ +∞.



150 8. Masked Unbiased Principles

Figure 8.2: From top to bottom: plot of the pixel-based bias functions model-

ing the approximation introduced by the masked biased version of the QDP,

NEDP and WP on different λ intervals in the range (0, 200].

8.4 Numerical Results

In this section, we perform a reliable quantitative experimental compar-

ison among the performance of the eleven different parameter selection cri-

teria outlined in Section 8.1 (unmasked), Section 8.2 (masked biased) and

Section 8.3 (masked unbiased), namely the four unmasked principles (ADP),

(QDP), (NEDP), (PWP) proposed in [25], [32], [39], [41], respectively, the
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two masked biased criteria (ADP-MB), (QDP-MB) presented in [31], the two

newly proposed masked biased principles (NEDP-MB), (WP-MB) and the

three novel masked unbiased criteria (QDP-MU), (NEDP-MU), (WP-MU).

In order to make the results of the comparison as solid as possible, we act

in three directions. First, we consider the the two inverse problems of CT

reconstruction and image restoration with two test images Shepp Logan and

brain and three test images satellite, stem and cells respectively, Figures

8.3 and 8.4. Each of them is characterized by different properties so that spe-

cific regularizers should be selected for the their processing; more specifically,

we test the eleven selection criteria for the TV-KL CT reconstruction and the

three (TV-KL, TV2-KL and TGV2-KL image restoration models. Second,

for each test image/model we simulate different photon-counting scenarios,

ranging from very low- to high-counting ones. Third, for each image/model

and each photon-counting level, we consider a number of different (indepen-

dent) Poisson noise realizations and collect statistics (minimums, maximums

and averages) of the quantitative accuracy results achieved by the principles.

In particular, we measure the quality of the restored images x̂(µ) (with re-

spect to the target uncorrupted image x̄) obtained by applying the different

criteria by means of two accuracy metrics, the SSIM and the SNR defined in

(6.23) For the case of image restoration, instead of the SNR we will consider

the Improved-Signal-to-Noise-Ratio ISNR defined in (6.24). All tests have

been performed in Matlab R2022b, on a Windows 10 Platform. The code is

available at https://github.com/MonicaPragliola/MU-principles.

Analysis. Unilike the previous chapters, here, to avoid heavy notations

we will denote with κ both the photon-level factor of the image restoration

problem and the I0 initial intensity value of the CT case.

For each test image and each of the nine photon-level factors κ in (8.29), the

ten generated degraded data images bκ(j) (each corresponding to a differ-

ent realization of the Poisson noise for the selected image and κ value) are

processed as follows. For each bκ(j), we compute the solution of the R-KL
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CT Reconstruction

Figure 8.3: From left to right: original Shepp Logan (256× 256 pixels) and

brain (253×238 pixels) test images considered in the numerical experiments

fro the CT reconstruction.

Image Restoration

Figure 8.4: From left to right: original satellite (256 × 256 pixels), stem

(453×592 pixels) and cells (236×236 pixels) test images considered in the

numerical experiments for image restoration.
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variational model for a very fine grid of different µ-values and then, based on

the obtained µ-dependent restorations, we apply the eleven different criteria

to get the selected regularization parameter values

µ̂κ
C(j), C ∈ C := {ADP,QDP,NEDP,WP,ADP-M,QDP-MB,NEDP-MB,

WP-MB,QDP-MU,NEDP-MU,WP-MU},

and the corresponding restored images x̂
(
µ̂κ

C(j)
)
. We then compute and

record the associated SNR and SSIM values denoted by ικC(j) and σκ
C(j),

respectively, as well as the optimal (i.e., maximum) SNR and SSIM values

achieved on the fine grid of µ-values considered, denoted by ικOPT(j) and

σκ
OPT(j), respectively. We recall that, for the image restoration, we evaluate

the results in terms of the ISNR instead of the SNR. However, to avoid

excessive notation, we do not introduce a different symbol for the ISNR

values for image restoration and instead consider ικC(j) both for SNR and

ISNR, depending on the application.

After processing the ten degraded observations bκ(j), we thus get the

following sets of quantitavive results:

IκC := {ικC(1), . . . , ικC(10)}, Sκ
C := {σκ

C(1), . . . , σ
κ
C(10)}, C ∈ C,

IκOPT := {ικOPT(1), . . . , ι
κ
OPT(10)}, Sκ

OPT := {σκ
OPT(1), . . . , σ

κ
OPT(10)}.

Then, for each ικC(j) ∈ IκC and each σκ
C(j) ∈ Sκ

C we compute the percent-

age difference with respect to the corresponding optimal values ικOPT(j) and

σκ
OPT(j), respectively,

ϵIκC(j) := 100× ικOPT(j)− ικC(j)

ικOPT(j)
, ϵSκ

C
(j) := 100× σκ

OPT(j)− σκ
C(j)

σκ
OPT(j)

.

The behavior of each selection criterion for a given photon-counting level is

thus synthesized by the expected values (or, better, sample means) of the

SNR/ISNR and SSIM percentage errors achieved for the ten different noise

realizations,

ηIκC :=
1

10

10∑
j=1

ϵIκC(j) , ηSκ
C
:=

1

10

10∑
j=1

ϵSκ
C
(j) . (8.27)
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Moreover, to monitor the variability of the performance of each criterion with

respect to different noise realizations, we also compute

ϵIκC = max
j
ϵIκC(j) , ϵSκ

C
= max

j
ϵSκ

C
(j) , ϵIκC = min

j
ϵIκC(j) , ϵSκ

C
= min

j
ϵSκ

C
(j) .

(8.28)

Numerical method. For all the experiments, CT reconstruction and im-

age restoration are performed by means of the R-KL variational model -

in particular, TV-KL model for Shepp-Logan, brain and satellite, TV2-

KL for stem and TGV2-KL for cells - solved numerically by the iterative

ADMM schemes outlined in Section 10.1. In all the tests, the ADMM iter-

ations are stopped as soon as the relative change between two subsequent

x-iterates satisfies

δ(k)x < 10−6 ,

where δ
(k)
x is defined in (6.25), while the ADMM penalty parameter γ is set

manually so as to fasten the convergence of the alternating scheme. More

specifically, the numerical tests indicated the range γ ∈ [1, 10] as a good

choice.

8.4.1 CT Reconstruction

Data Generation For the CT reconstruction problem we consider the test

images Shepp Logan (250× 250, pixel size = 0.4mm) and brain (238× 253,

pixel size=0.4mm), with pixel values between 0 and 1, shown Figures 8.3.

The acquisition process of the fan beam CT setup, i.e. the projection opera-

tor A, is built using the ASTRA Toolbox [40] with the following parameters:

180 equally spaced angles of projections (from 0 to 2π), a detector with

500 pixels (detector pixel size = 1/3mm), distance between the source and

the center of rotation = 300mm, distance between the center of rotation

and the detector array = 200mm. The data are generated with the same

procedure explained in 6.3.1. In order to analyze the strategies for many
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photon-counting levels, we consider the following noise-free intensity data

λ̄k = κe−Ax̄, κ = I0 ∈ {1, 3, 5, 10, 20, 50, 100, 500, 1000} .

Finally, for each noise-free image λ̄k, ten different noisy observations

bκ(j), j = 1, . . . , 10 ,

are generated by sampling as many independent realizations from an m-

variate Poisson random process with mean λ̄κ, using the Matlab routine

poissrnd.

Test image Shepp Logan: parameter selection in the (TV-KL) model

We start analyzing the behavior of the expected and limiting values de-

fined in (8.27), (8.28), respectively, within the four classes of ADP-, QDP-,

NEDP- and WP-based criteria. In Figure 8.5 for each class we plot the

sample means ηIκC corresponding to the different counting regimes κ = I0

expressed in log10-scale, and we show the confidence intervals determined by

the limiting values ϵIκC , ϵIκC .

For what concerns the ADP-based strategies, we recall that the MB and

MU versions of the principle coincide. Notice that the masked criterion

achieves slightly better results as the red band has no picks in the low count

regime.

In the case of QDP-based approaches, one can immediately observe that

the percentage differences achieved by the masked biased principle are par-

ticularly large for κ ≤ 10. In those regimes, the MB version returns betters

results than the unmasked one by staying below the 30% (in mean). On

the other hand, we highlight that the MU principle presents a very robust

behavior along the whole range of counting factors, as the corresponding

percentage differences are always below the 30%.

When analyzing the NEDP-based approaches, one can notice that the

MB method returns the poorer results in the low counting regimes while it

mimics the unmasked and MU version in the mid- and high-counting regimes.
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(a) (b)

(c) (d)

Figure 8.5: Test image Shepp Logan. Expected values and confidence inter-

vals for the SNR values achieved in different counting regimes.

On the other hand, the unmasked principle achieves the larger SNR values

for all the considered regimes except κ = 1.

Finally, for the WP-based principles we notice that the MB criterion

performs poorly in the low- and mid- counting regimes, while the green band

stays below the 10% for κ ≥ 50. One can also observe that the unmasked

and the masked unbiased principles present a better behavior with respect

to the considered κ-values, with the unmasked staying around 10% (mean)

for all the values.

Figure 8.6 shows, for each class of methods, the sample means ηSκ
C
and the
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(a) (b)

(c) (d)

Figure 8.6: Test image Shepp Logan. Expected values and confidence inter-

vals for the SSIM values achieved in different counting regimes.

confidence intervals related to the computed ϵSκ
C
, ϵSκ

C
, i.e. the performances of

the considered principles in terms of the SSIM. One can easily notice that the

SSIM bands present the same behavior of the SNR curves shown in Figure

8.5, so that similar conclusions on the performances of the unmasked, MB

and MU criteria can be drawn.

To analyze the results from a different point of view, in Figures 8.7a,

8.7b, 8.7c we show the sample means ηIκC of the unmasked, masked biased

and masked unbiased principles, respectively, in the range [0%, 25%], so as to

visualize the best performances. In the unmasked category, WP is the only



158 8. Masked Unbiased Principles

principle staying below the 10% for all κ = I0, with NEDP obtaining better

results than the remaining for the low- and mid- counting regimes. Among

the MB principles, all the strategies stay in the interval of interest only in

correspondence of the high-counting regimes. Finally, in the MU class, the

QDP-MU and WP-MU methods are in the visible range for almost every

κ(I0), with WP-MU bringing the best results for all κ.

Figures 8.7d, 8.7e, 8.7f show the sample means ηSκ
C
of the unmasked, MB

and MU principles, respectively, in the range up to [0%, 5%]. The three plots

confirm the considerations done for the SNR about the best method within

each group.

(a) (b) (c)

(d) (e) (f)

Figure 8.7: Test image Shepp Logan. Zoom of the expected values ηIκC (top

row), and ηSκ
C
(bottom row) for the SNR and SSIM values achieved in differ-

ent counting regimes.



8.4 Numerical Results 159

Test image brain: parameter selection in the (TV-KL) model

For the second example of CT reconstruction we consider the test image

brain in Figure 8.3. In Figure 8.8 we plot the sample means ηIκC and the

confidence intervals corresponding to the different counting regimes I0 for

the four classes of ADP-, QDP-, NEDP-, and WP-based criteria. For the

ADP-based approaches, one can notice that the masked criterion reaches

worse results than the unmasked one, which stays below the 60% for almost

every counting regime. For what concerns the QDP-based strategies, we can

immediately notice that, as for the previous image, the biased masked version

returns poor results for lower counting regimes. On the other hand, both

the unmasked and the unbiased masked achieve good and similar results,

as they return percentage differences that are always below 50% for all the

intensities I0. In the case of the NEDP-based approaches one can notice

a similar behavior to the QDP-based strategies, where the unmasked and

unbiased masked achieve analogue results staying below the 50% for all I0

and the biased masked strategy works poorly for κ ≤ 50. Finally, for the WP-

based principles, the unmasked one returns the better results for all cases,

staying below the 30%. On the other hand, the masked biased and unbiased

achieve the same results as the unmasked for the high count regimes, with the

masked unbiased following the unmasked for the mid to low photon counts

but returning poor reconstructions in the lowest intensity cases.

The same observations can be done by analyzing the SSIM results plotted

in Figure 8.9.

In Figure 8.10 we show the expected values ηIκC (top row) and ηSκ
C
(bottom

row), in the range [0%, 25%] and [0%, 5%] respectively, divided by the type of

principle: unmasked, biased masked and unbiased masked. Looking at both

the SNR and SSIM graphs we can note that, in the unmasked category, the

best result is achieved by the WP in all the range of I0. Among the biased

masked strategies, the WP-MB seems the best as it reaches higher SNR than

the others for the lower and higher values of I0. Finally, for the unbiased

masked principles, the WP-MU obtains the best result in terms of SNR for
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(a) (b)

(c) (d)

Figure 8.8: Test image brain. Expected values and confidence intervals for

the SNR values achieved in different counting regimes.

all the regimes.

8.4.2 Image Restoration

Data Generation For each of the three test images, in order to simulate

different photon-counting scenarios, first we (affinely) scale the image in the

range [0, 1] and denote by x̄norm the obtained normalized image. Then, nine

uncorrupted images x̄κ for nine different photon-counting levels are simulated
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(a) (b)

(c) (d)

Figure 8.9: Test image brain. Expected values and confidence intervals for

the SSIM values achieved in different counting regimes.

by multiplying x̄norm by as many photon-level factors κ ∈ R++, in particular:

x̄κ = κ x̄norm, κ ∈ {1, 3, 5, 10, 20, 50, 100, 500, 1000} . (8.29)

The photon-scaled images x̄κ are then corrupted by space-invariant Gaussian

blur, with blur kernel generated by the Matlab routine fspecial, which is

characterized by two parameters: the band parameter, representing the side

length (in pixels) of the square support of the kernel, and sigma, that is the

standard deviation (in pixels) of the isotropic bivariate Gaussian distribution

defining the kernel in the continuous setting. In all our tests, we set band =
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(a) (b) (c)

(d) (e) (f)

Figure 8.10: Test image brain. Zoom of the expected values ηIκC (top row),

and ηSκ
C
(bottom row) for the SNR and SSIM values achieved in different

counting regimes.

5, sigma = 1. Then, a constant background emission image b is added to the

blurred images, so as to get the nine noise-free degraded images λ̄κ = Ax̄(k)+

q. Finally, for each noise-free image λ̄κ, ten different noisy observations

bκ(j), j = 1, . . . , 10 ,

are generated by sampling as many independent realizations from an n-

variate Poisson random process with mean λ̄κ, using the Matlab routine

poissrnd.

We remark that the factor κ in (8.29) represents the maximum number

of photons that, on average, can hit any pixel of the image domain if no blur

degradation (A = I) and a null emission background (q = 0) are considered.

In fact, in this case the noise-free image λ̄κ - which, we notice, contains the

mean values of the Poisson noise distributions at all pixels - is given by λ̄κ =

Ax̄κ + q = x̄κ, hence max{λ̄κ} = max{x̄κ} = κ. In general, for any given
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κ = 1 : κ = 5 : κ = 20 : κ = 1000 :

SNR = -2.09 SNR = 4.55 SNR = 9.52 SNR = 14.67

Figure 8.11: Test image satellite corrupted by blur and, from left to

right, by decreasing levels of Poisson noise yielded by increasing values of

the photon-level factor κ in (8.29). In the right-most graph, SNR value of

the noisy observation bκ as a function of factor κ.

blur corruption and emission background, the factor κ is positively related to

the photon-range of the experiment and, recalling that for a scalar Poisson

random variable with parameter λ̄κ = κλ̄ the ratio between its mean (true

signal) and its standard deviation (noise level) is equal to λ̄κ/
√
λ̄κ =

√
κ
√
λ̄,

also to the signal-to-noise ratio of the observed degraded image bκ to restore.

To highlight clearly the effect of κ on the noise-level in the observation bκ

and, hence, on the difficulty of the restoration process, in Figure 8.11 we show

the test image satellite corrupted by Gaussian blur and by a realization

of Poisson noise for four different values of κ as well as, on the right, the

graph of the SNR value of the observation bκ as a function of the factor

κ. This graph justifies the non-uniform grid of κ-values considered in (8.29)

(the grid is finer for small κ-values where the SNR changes more rapidly) as

well as the maximum value k = 1000 considered (the SNR curve stabilizes,

hence taking κ > 1000 does not change significantly the results of the criteria

comparison).

Test image satellite: parameter selection in the (TV-KL) model

We consider the restoration of the test image satellite. In this first

example, we set q ≡ 2×10−3 and, in light of the dominant piece-wise constant
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features present in the image, we employ the TV regularization term in (TV)

.

We start analyzing the behavior of the expected and limiting values de-

fined in (8.27), (8.28), respectively, within the four classes of ADP-, QDP-,

NEDP- and WP-based criteria. In Figure 8.12 for each class we plot the sam-

ple means ηIκC corresponding to the different counting regimes κ expressed in

log10-scale, and we show the confidence intervals determined by the limiting

values ϵIκC , ϵIκC .

(a) (b)

(c) (d)

Figure 8.12: Test image satellite. Expected values and confidence intervals

for the ISNR values achieved in different counting regimes.

For what concerns the ADP-based strategies, we recall that the MB and
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(a) (b)

(c) (d)

Figure 8.13: Test image satellite. Expected values and confidence intervals

for the SSIM values achieved in different counting regimes.

MU versions of the principle coincide. Notice that the masked criterion

achieves significantly better results as the red band stays below the 30%

regardless of the counting regime, while the unmasked method stays above

the 80%

In the case of QDP-based approaches, one can immediately observe that

the percentage differences achieved by the unmasked principle are particu-

larly large for every κ. In the lower counting regimes, i.e., κ ≤ 5, the MB

version returns very poor results, while its performance improves and stays

below the 20% for κ ≥ 20. On the other hand, we highlight that the MU
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principle presents a very robust behavior along the whole range of counting

factors, as the corresponding percentage differences are always below the 30%

and approach 0 for the smaller κs.

When analyzing the NEDP-based approaches, one can notice that the

MB method returns the poorer results in the low counting regimes while,

in expectation, it outperforms the unmasked version in the mid- and high-

counting regimes. On the other hand, the MU principle achieves the larger

INSR values for all the considered regimes.

Finally, for the WP-based principles we notice that the MB criterion

performs poorly in the low- and mid- counting regimes, while the green band

stays below the 30% for κ ≥ 50. One can also observe that the unmasked

and the masked unbiased principles present a robust behavior with respect

to the considered κ-values, with the unmasked approaching 0 for κ ≤ 3 and

the masked unbiased outperforming the competitors for κ > 3.

Figure 8.13 shows, for each class of methods, the sample means ηSκ
C
and

the confidence intervals related to the computed ϵSκ
C
, ϵSκ

C
, i.e. the perfor-

mances of the considered principles in terms of the SSIM. One can easily

notice that the SSIM bands present the same behavior of the ISNR curves

shown in Figure 8.12, so that similar conclusions on the performances of the

unmasked, MB and MU criteria can be drawn.

To analyze the results from a different point of view, in Figures 8.14a,

8.14b, 8.14c we show the sample means ηIκC of the unmasked, masked biased

and masked unbiased principles, respectively, in the range [0%, 25%], so as to

visualize the best performances. In the unmasked category, NEDP and WP

are the only principles staying below the 25% for κ ≥ 20, with WP obtaining

better results than the others for the low- and mid- counting regimes. Among

the MB principles, QDP-MB and WP-MB stay in the interval of interest only

in correspondence of the high-counting regimes, while ADP-M and NEDP-

MB stay between 10% and 25% for each κ. Finally, in the MU class, all

methods are in the visible range, with WP-MU being the best for κ > 3,

followed by QDP-MU which reaches the highest ISNR for κ ≤ 3.
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Figures 8.14d, 8.14e, 8.14f show the sample means ηSκ
C
of the unmasked,

MB and MU principles, respectively, in the range up to [0%, 5%]. The three

plots confirm the considerations done for the ISNR about the best method

within each group.

(a) (b) (c)

(d) (e) (f)

Figure 8.14: Test image satellite. Zoom of the expected values ηIκC (top

row), and ηSκ
C
(bottom row) for the ISNR and SSIM values achieved in dif-

ferent counting regimes.

Test image stem: parameter selection in the (TV2-KL) model

For the second example, we consider the restoration of the test image

stem, with constant background emission q = 2 × 10−3, this time using the

TV2 regularization term defined in (TV2) due to the target image resembling

a piece-wise linear function more than a piece-wise constant one.

In Figure 8.15 we plot the sample means ηIκC and the confidence intervals

corresponding to the different counting regimes κ for the four classes of ADP-,

QDP-, NEDP-, and WP-based criteria. For the ADP-based approaches, one
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can notice that the masked criterion reaches worse results than the unmasked

one, which stays below the 40% for every counting regime. For what concerns

the QDP-based strategies, we can immediately notice that, as for the previous

image, the biased masked version returns poor results for lower counting

regimes, but it improves for κ ≥ 50. On the other hand, both the unmasked

and the unbiased masked achieve good and similar results, as they return

percentage differences that are always below 20% for all factors κ. In the case

of the NEDP-based approaches one can notice a similar behavior to the QDP-

based strategies, where the unmasked and unbiased masked achieve analogue

results (except a little more variability across the different realization for

the unmasked one) staying below the 20% for all κ and the biased masked

strategy works poorly for κ ≤ 50. Finally, for the WP-based principles, all

of them return percentage differences less than 25%, with the biased masked

working better for the mid- and high- count range, but worst for κ ≤ 5. On

the other hand, the unbiased masked reaches good results in the low- and

mid- count range, with the exception of κ = 1 where the sample mean and the

variability across the noise realization are higher than the one obtained with

the unmasked strategy. The same observations can be done by analyzing the

SSIM results plotted in Figure 8.16.

In Figure 8.17 we show the expected values ηIκC (top row) and ηSκ
C
(bottom

row), in the range [0%, 25%] and [0%, 5%] respectively, divided by the type of

principle: unmasked, biased masked and unbiased masked. Looking at both

the ISNR and SSIM graphs we can note that, in the unmasked category, the

best result is achieved by the WP in all the range of κ. Among the biased

masked strategies, the WP-MB seems the best as it achieves the highest value

of ISNR for κ = 10, 20, but the behavior for κ ≤ 5 is poorer when compared

to the other plots (but is the best in its category). Finally, for the unbiased

masked principles, the QDP-MU obtains the best result in terms of ISNR

for the low-count regime (even among all the methods), while the WP-MU

works well for the mid- and high- range.
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(a) (b)

(c) (d)

Figure 8.15: Test image stem. Expected values and confidence intervals for

the ISNR values achieved in different counting regimes.

Test image cells: parameter selection in the (TGV2-KL model

In this third example, we consider the restoration of the test image cells

by employing the TGV2 regularization term to effectively deal with the com-

posite nature of the specimen. For the TGV2, we set α0 = 0.8, α1 = 0.3 so as

to maximize the ISNR for the highest counting regime considered here, i.e.

κ = 1000. Moreover, we set a constant background emission q = 10−1.

In Figure 8.18 we show the ISNR bands achieved by the ADP-, QDP-,

NEDP- and WP-based principles. As for the test image stem, the ADP-M

strategy performs poorly in the lowest counting regimes, while it outper-
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(a) (b)

(c) (d)

Figure 8.16: Test image stem. Expected values and confidence intervals for

the SSIM values achieved in different counting regimes.

forms the unmasked version for κ ≥ 20. On the other hand, the remaining

three classes of methods present the same behavior: the MB versions of the

principles achieve very low ISNR values in low- and mid-counting regimes,

whereas the unmasked and MU principles present a very robust behavior

with the latter achieving the best results.

Similar considerations can be drawn by looking at the SSIM bands re-

ported in Figure 8.19.

Finally, in Figure 8.20 we show a close-up on the expected values ηIκC , ηSκ
C

in the range [0%, 25%] dividing the principles into unmasked, MB and MU.
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(a) (b) (c)

(d) (e) (f)

Figure 8.17: Test image stem. Zoom of the expected values ηIκC (top row),

and ηSκ
C
(bottom row) for the ISNR and SSIM values achieved in different

counting regimes.

It is easy to conclude that the MU versions of the QDP, NEDP and WP

return the best results both in terms of robustness and of quality measures

achieved.

8.4.3 Discussion

The detailed analysis carried out so far allows to conclude that neglecting

the zero-pixels in the acquired images, for the image restoration problem, as

proposed in [31] can lead to particularly robust and successful parameter

selection strategies provided that the proposed positive Poisson distribution

is employed to model the modified data. Generally speaking, in terms of

quality measures the QDP-MU achieves the best results for κ ≤ 3, while

the WP-MU returns higher quality restorations when κ > 3. Moreover,

in accordance with the theoretical results given in Proposition 8.3.1, in the



172 8. Masked Unbiased Principles

(a) (b)

(c) (d)

Figure 8.18: Test image cells. Expected values and confidence intervals for

the ISNR values achieved in different counting regimes.

higher counting regimes the performed criteria show similar behaviors.

We highlight that the improvements yielded by employing the proposed

MU principles with respect to their unmasked versions are particularly rel-

evant in the first example of image restoration, that is for the test image

satellite. To highlight a possible reason behind this phenomenon, in Ta-

ble 8.1 we report the average percentages of zero-pixels in the acquired images

for the counting regimes considered. Such values are clearly influenced by the

gray-level statistics of the underlying test images as well as by the selected

background emissions. It is immediate to observe that for the test image
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(a) (b)

(c) (d)

Figure 8.19: Test image cells. Expected values and confidence intervals for

the SSIM values achieved in different counting regimes.

satellite the number of zero pixels is very large for all the κ-values. As a

consequence, masking the data in this scenario is particularly effective.

This reflection is also linked to the fact that, for the CT reconstruction prob-

lem, the number of zero pixels in the data is smaller than for the image

restoration of images with black background. This is because, in CT acquisi-

tions, the background of of the noiseless intensities I0e
−Ax̄ is equal to I0 (as

it indicates in which pixels the original X-ray is not attenuated) instead of

zero (as for the image satellite in the image restoration problem); see the

data b in Figures 6.6 and 6.8. Therefore, zero pixels in CT acquisitions are
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(a) (b) (c)

(d) (e) (f)

Figure 8.20: Test image cells. Zoom of the expected values ηIκC (top row),

and ηSκ
C
(bottom row) for the ISNR and SSIM values achieved in different

counting regimes.

detected only for low values of I0 and their presence depends on the Pois-

son noise degradation as well as the possibility that is some pixels all the

photons are attenuated. For this reason, the improvements brought by the

MU principles are not as visible as for the image restoration case and as a

result the WP principle can be declared the best performing one for the CT

reconstruction problem.
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κ 1 3 5 10 20 50 100 500 1000

Shepp Logan 54% 23% 14% 5% 0.9% 0.01% 0% 0% 0%

brain 59% 31% 22% 12% 5% 0.7% 0.1% 0% 0%

satellite 90% 83% 80% 78% 76% 75% 74% 73 % 72%

stem 86% 66% 51% 28% 10% 1% 0.1% 0% 0%

cells 72% 49% 36% 22% 15% 11% 9% 6% 5%

Table 8.1: Average percentages of zero-pixels in the observed data for the

different counting regimes considered in the tests.





Chapter 9

The Multi-parameter

Whiteness Principle

Until now we have always considered forward models with only one source

of noise (the Poisson noise given by the statistical nature of electromagnetic

waves) and R-KL models with one parameter to be determined. In the fol-

lowing we will introduce a more complex forward model that mimics better

the CT acquisition process by considering the data as the sum of the realiza-

tions of two different noise processes. To solve the above, we will consider the

variational model proposed in [48] and extend the Whiteness Principle to the

case of selecting two parameters at the same time. Similar variational models

for mixed noise have been proposed in [49, 50, 51, 52] for the image restora-

tion problem, however they do not exploit the automatic selection strategies

for the free parameters. In general, the solution of variational methods with

two free parameters (e.g. TGV2) is obtained by a bilevel optimization ap-

proach that is typically designed starting from a number of reference images,

[56]. The discussion below and the related experiments are performed as a

proof of concept for the multi-parameter Whiteness Principle, which will be

addressed extensively in future works.

177
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9.1 A more complex CT model

As discussed in 2.3, in clinical X-ray CT scanners the noise in the data

comes from several causes, the most important of which is the statistical

nature of electromagnetic waves modeled as a Poisson distribution in the

model considered up to now. The second most important cause is the elec-

tronic noise, which is due to the conversion of the detected X-ray photons

into an electrical signal and can be modeled as a Gaussian random variable

with mean η and variance σ2. Since the mean η of background signals can

be estimated using blank measurements prior to each scan, it is common to

subtract it from the measured intensity and assume η = 0 in the model. In

this way, the random field B describing the CT acquisition can be defined as

B ∼ MPG (Λ̄,0m, σ
2Im×m). (9.1)

with Λ̄ = I0e
−Ax̄ and σ ∈ R++. In this way, the data b are a realization of

the Mixed Poisson-Gaussian r.f. B and can be written elementwise as

bi = νi + τi (9.2)

where νi is a realization of the Poisson r.v. with mean λ̄i = g([Ax̄]i) =

I0e
−[Ax̄]i (νi = Poiss(λ̄i)) and τi is a realization of the Gaussian r.v. with

mean 0 and standard deviation σ (τi = Gauss(0, σ2)), for i = 1, . . . ,m.

In 2.3.1 we discussed different ways to approximate the mixed Poisson-

Gaussian r.f. in (9.1); the Gaussian one replaces B with the independent

Gaussian r.f. M =Mi:

B approximated by M ∼ G(Λ̄, diag(Λ̄+ σ21m)).

Since the probability density function reads

pB(Λ̄,0m, σ
2Im×m)≈ pM(B | Λ̄, diag(Λ̄+ σ21m))

=
m∏
i=1

pMi
(bi | λ̄i,

√
λ̄i + σ2)

with pMi
(bi | λ̄i,

√
λ̄i + σ2) =

1√
2π(λ̄i + σ2)

e
(bi−λ̄i)

2

2(λ̄i+σ2)
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its negative log likelihood takes the following form:

− log p(b | x) = − log p(b | λ,
√
λi + σ2) = − log

m∑
i=1

p(bi|λi,
√
λi + σ2)

=
1

2

m∑
i=1

(
1

λi + σ2
(bi − λi)

2 + log(λi + σ2)

)
where in the last equality the constant terms not depending on x are omitted.

Considering a generic regularizer R(x) the variational model to solve, to

which we will refer with the term (R-MixedNoise), is the following

x̂(µ, σ)∈ argmin
x∈Ω

{
µR(x) +

1

2

∥∥∥∥ I0e
−Ax − b√

I0e−Ax + σ2

∥∥∥∥2
2

+
1

2

m∑
j=1

(log(I0e
−Ax + σ2))i

}
,

(R-MixedNoise)

where the solution depends on two free parameters: the regularization pa-

rameter µ and the standard deviation of the electronic noise σ. In particular

we write explicitly the TV-MixedNoise model:

x̂(µ, σ)∈ argmin
x∈Ω

{
µTV(x) +

1

2

∥∥∥∥ I0e
−Ax − b√

I0e−Ax + σ2

∥∥∥∥2
2

+
1

2

m∑
j=1

(log(I0e
−Ax + σ2))i

}
.

(TV-MixedNoise)

9.2 The Multi-parameter Whiteness Princi-

ple

The WP expressed in (PWP) can be easily generalized to the case of

multiple parameters for a general acquisition model. Let p = (p1, p2, . . . , pr)

be the vector of free parameters in a variational model. Then, the Multi-

parameter Whiteness Principle (MWP) can be introduced as the following:

Select p = p∗ ∈ argmin
p

{
W (p) := W

(
Ẑ(p)

)}
, (MWP)

where

W(Z) := ||S(Z)||22 =
∑

(l,m)∈L

(sl,m(Z))
2, (9.3)
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with the sample normalized autocorrelation matrix S(Z) = (sl,m(Z)) defined

as

sl,m(Z) =
1

||Z||22

∑
(i,j)∈I

zi,jzi+l,j+m

and with Ẑ a suitable matrix-valued standardization function mapping from

Rn to Rm1×m2 where m1 ×m2 is the dimension of the data.

9.2.1 The MWP for Mixed Poisson-Gaussian noise in

CT reconstruction

In order to discuss the MWP for Mixed Poisson-Gaussian noise, it is

useful to rewrite the vectorized data formation model (9.2) in its equivalent

matrix form. Denoting by B,Λ ∈ Rm1×m2 and X ∈ Rn1×n2 the matrix forms

of vectors b,λ ∈ Rm and x ∈ Rn, respectively, it reads

B = POISS
(
Λ
)
+GAUSS(0m1×m2 , σ1m1×m2) , Λ = G

(
A
(
X
))
, (9.4)

where, with a little abuse of notation, A : Rn1×n2 → Rm1×m2 indicates here

the linear operator encoded by matrix A ∈ Rm×n in the vectorized model

(9.2), and wherePOISS
(
Λ
)
=
{
Poiss

(
λi,j
)}

,G
(
A
(
X
))

=
{
g
((

A
(
X
))

i,j

)}
and GAUSS (0m1×m2 , σ1m1×m2 ) = {Gauss ( 0, σ)} with σ ∈ R++, i.e. the

matrix forms of vectors ν, g(Ax̄) and τ in (9.2).

Before applying the Multi-parameter Whiteness principle to the case of Mixed

Poisson-Gaussian noise in CT reconstruction, and in particular to the two free

parameters of the variational model (R-MixedNoise), we propose again the

definition of independent Mixed Poisson-Gaussian random field (presented in

2.3.3 in its vectorized form) and introduce the definition of standard Mixed

Poisson-Gaussian random variable and independent random field which will

be the basis for defining the Ẑ standardization function in (MWP).

Definition 9.2.1 (independent Mixed Poisson-Gaussian random field). A

random field B = {Bi,j} is said to be independent Mixed Poisson-Gaussian

distributed with parameters Λ = {λi,j}, H = {ηi,j} and Σ = {σi,j}, denoted
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by B ∼ P(Λ,H,Σ), if it satisfies:

Bi,j ∼ MPG
(
λi,j, ηi,j, σ

2
i,j

)
∀ (i, j) ∈ I ,

pB(B | Λ,H,Σ) =
∏

(i,j)∈I

pBi,j
(bi,j | λi,j, ηi,j, σi,j) . (9.5)

Definition 9.2.2 (standard Mixed Poisson-Gaussian random variable and

independent random field). Let B ∼ MPG(λ, η, σ2). We call the discrete

random variable Z defined by

Z = Sλ,η,σ(B) :=
B − E [B]√

Var [B]
=

B − (λ+ η)√
λ+ σ2

, (9.6)

as standard Mixed Poisson-Gaussian distributed with parameters λ, η and

σ2, denoted by Z ∼ M̃PG(λ, η, σ2). Let B ∼ MPG(Λ,η,Σ) an independent

Mixed Poisson Gaussian r.f.; we call the random field defined by

Z = {Zi,j} with Zi,j = Sλi,j ,ηi,j ,σi,j
(Bi,j) ∀ (i, j) ∈ I, (9.7)

as independent standard Mixed Poisson-Gaussian distributed with parame-

ters Λ, η and Σ, denoted by Z ∼ M̃PG(Λ,η,Σ).

In light of Definition 9.2.1, the image formation model (9.4) can be written

in probabilistic terms as follows:

B realization of B ∼ MPG
(
Λ,0m1×m2 , σ1m1×mn

)
,

with matrix Λ defined in (9.4). Then, based on Definition 9.2.2, after intro-

ducing the matrix

Z = {zi,j} with zi,j = Sλi,j
(bi,j) =

bi,j − λi,j√
λi,j + σ2

, (9.8)

the probabilistic model (7.13) can be equivalently written in standardized

form as

Z realization of Z ∼ M̃PG
(
Λ,0m1×m2 , σ1m1×mn

)
.
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Denoting by X̂(µ, σ) = {x̂i,j(µ, σ)} the matrix form of the solution of

a R-Mixed Poisson-Gaussian model - e.g., of the TV-MixedNoise model in

(TV-MixedNoise) - we introduce the µ, σ-dependent matrices Λ̂(µ, σ), Ẑ(µ, σ) ∈
Rm1×m2 given by

Λ̂(µ, σ) =
{
λ̂i,j(µ)

}
= I0 e

−A(X̂(µ)), (9.9)

Ẑ(µ, σ) = {ẑi,j(µ, σ)} (9.10)

with ẑi,j(µ, σ) = S λ̂i,j(µ,σ)
(bi,j) =

bi,j − λ̂i,j(µ, σ)√
λ̂i,j(µ, σ) + σ2

. (9.11)

The ideal goal of any criterion for choosing (µ, σ) in the class of R-Mixednoise

models is to select the values (µ∗, σ∗) yielding the closest solution image

X̂(µ∗, σ∗) to the target uncorrupted image X, according to some distance

metric. The conjecture behind our proposal is that the closer the solution

X̂(µ, σ) is to the target X, the closer the matrix Ẑ(µ, σ) defined in (9.9)-

(9.11) will be to Z in (9.8), so the more Ẑ(µ) will resemble the realization of

a white random field. Hence, the proposed criterion, that we refer to as the

Multi-paramater Poisson Gaussian Whiteness Principle (MPGWP), consists

in choosing the values of µ and σ leading to the less auto-correlated matrix

Ẑ(µ, σ). Based on the scalar normalized auto-correlation measure introduced

in (9.3), the MPGWP reads:

Select (µ, σ) = (µ∗, σ∗) ∈ argmin
µ,σ∈R++

{
W (µ, σ) := W

(
Ẑ(µ, σ)

)}
,

with matrix Ẑ(µ, σ) defined in (9.9)-(9.11) and function W in (9.3).

(MPGWP)

9.3 Numerical Results

In this section, we show some preliminary results obtained on the per-

formance of the proposed (MPGWP) for the selection of the regularization

parameter µ and the standard deviation σ in the (TV-MixedNoise) model

employed for the solution of CTimaging problems. For a quantitative eval-

uation, the accuracy of the reconstructed images x̂(µ∗, σ∗) with respect to
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the original image x̄ is measured by means of two scalar metrics: the SSIM

and the SNR. The (TV-MixedNoise) model is solved by the ADMM ap-

proach outlined in Section 10.2 for a very fine grid of different µ and σ

values and for each reconstructed image x̂(µ, σ) we compute the value of the

whiteness function W (µ, σ) defined in (MPGWP), In particular, we calcu-

late W (µ, σ) efficiently based on the Fourier-domain formula in (7.4). The

(µ, σ) couple selected by the (MPGWP) is the one minimizing the function

W (µ, sigma) and will be denoted with (µ(W ), σ(W )). Their associated recon-

structed images will be indicated with x̂(µ(W ), σ(W )). For each (µ, σ)-couple

in the considered grid, we also compute the SNR and SSIM of the associated

reconstructed image x̂(µ, σ). Moreover, to evaluate in absolute terms the

performance of the three compared selection criteria, we also compute the

values (µ(SNR), σ(SNR)) and (µ(SSIM), σ(SSIM)) which yield the reconstructed

images exhibiting the highest SNR and the highest SSIM values, respectively.

The two reconstructed images x̂(µ(SNR)), x̂(µ(SSIM)) and the associated SNR

and SSIM quality metrics are then regarded as the best theoretical results

achievable by the compared selection strategies. In all the performed tests,

the iterations of the ADMM approach used for the solution of the TV-KL

model are stopped as soon as δ
(k)
x < 10−6, where δ

(k)
x is defined in (6.25),

while the ADMM penalty parameter γ is set manually so as to fasten the

convergence of the alternating scheme.

Data Generation For this experiment we consider the test images shepp

logan (200×200, pixel size = 0.4mm), with pixel values between 0 and 1. The

acquisition process of the fan beam CT setup, i.e. the projection operator

A, is built using the ASTRA Toolbox [40] with the following parameters:

180 equally spaced angles of projections (from 0 to 2π), a detector with 200

pixels (detector pixel size = 1/5mm), distance between the source and the

center of rotation = 300mm, distance between the center of rotation and the

detector array = 200mm. Then, according to (9.2), we take the exponential

of −Ax̄ and multiply it by a factor I0 ∈ N+. We thus compute the noise-free
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data λ̄ = I0e
−Ax̄, while ν = Poiss(λ̄) and τ = Gauss(0m, diag(σ1m)) are

obtained by sampling from a m-variate independent Poisson random process

with mean vector λ̄ and a m-variate i.i.d Gaussian random process with

mean 0 and standard deviation σ, respectively, with m = 200 · 180. Finally,
the observation b are obtained by summing ν and τ . We performed the

experiments by considering two cases in the mid-high count regimes:

• Case 1: I0 = 500 and σ = 10,

• Case 2: I0 = 2500 and σ = 20.

Results Figure 9.1 shows the reconstructed images according to the Multi-

parameter Whiteness Principle, the best SNR and the best SSIM, together

with the observed data for the case of I0 = 500 and σ = 10. We can note

that the image selected by the whiteness principle is very similar to the other

two by presenting all the same inside structures and being also slightly less

noisy. Moreover, the same Figure displays the SNR, SSIM and Whiteness

function over the 2D grid of (µ, σ) values; the red dot corresponds to the

selected (µ(W ), σ(W )) couple (minimizing the Whiteness function), while the

green diamonds indicated the maximum of the SNR and SSIM functions.

By looking at the both the reconstructions and the plotted functions we can

note that the Whiteness criteria selects (µ, σ) values that are very different

from (µ(SNR), σ(SNR)) and (µ(SSIM), σ(SSIM)); however the red dot is close to

the ridge of the SNR and SSIM curves, achieving values that are close to the

maximum. Table 9.1 diplays the selected µ and σ with the three criteria,

together with their associated SNR and SSIM values.

For the second case (I0 = 2500 and σ = 20), the reconstructed images

and the SNR, SSIM and Whiteness functions are shown in Figure; while its

numerical values are stored in the second part of table 9.1. By looking at

the curves, one can note that the red dot (selected values according to the

whiteness criteria) is close to both the maximum of the SNR and SSIM, with

this proximity showing in the reconstructed images that look very similar.
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data target image

SNR Best SNR

SSIM Best SSIM

Whiteness MPGWP

Figure 9.1: Case 1 (I0 = 500, σ = 10). (Left column) Observed data, SNR,

SSIM and Whiteness values values over the 2D grid. (Right column) Target

image, reconstructed images with the TV-MixedNoise model referring to the

parameters pair (µ, σ) chosen according to the best SNR, best SSIM and the

Multi-parameter Whiteness Principle.
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TV-MixedNoise

I0 σ Best SNR Best SSIM MPGWP

500 10

SNR 12.1172 12.0498 11.8297

SSIM 0.9969 0.9970 0.9969

σ∗ 28.586 26.448 11.483

µ∗ 33.846 42.692 107.564

2500 20

SNR 17.0792 17.0174 16.5733

SSIM 0.9991 0.9991 0.9990

σ∗ 88.462 81.538 83.846

µ∗ 37.692 49.487 61.282

Table 9.1: SNR, SSIM, µ∗ and σ∗ values of the reconstructed images with

the TV-MixedNoise model referring to the parameters pair (µ, σ) chosen

according to the best SNR, best SSIM and the Multi-parameter Whiteness

Principle.

As for the first case, the x̂(µ(W ), σ(W )) is less noisier than the two best SNR

and SSIM while keeping all the significant structures.

9.3.1 Derivative free minimization of the Whiteness

function

In the previous experiments we calculated the minimum of the Whiteness

function by setting a fine grid of (µ, σ) values, computing the solution x̂(µ, σ)

corresponding to each parameter couple and then by evaluating the White-

ness function on the solutions. This simple algorithmic scheme allowed us to

validate the MWP for the mixed Poisson-Gaussian noise in CT reconstruc-

tion; however, as one can easily imagine, the optimization procedure turned

out to be particularly costly. For this reason, here we propose to apply a zero

order optimization scheme to minimize the Whiteness function; notice that

this class of strategies is particularly useful in our case since it needs only

function evaluations and no derivation of the considered function, [57]. In
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data target image

SNR Best SNR

SSIM Best SSIM

Whiteness MPGWP

Figure 9.2: Case 1 (I0 = 2500, σ = 20). (Left column) Observed data, SNR,

SSIM and Whiteness values values over the 2D grid. (Right column) Target

image, reconstructed images with the TV-MixedNoise model referring to the

parameters pair (µ, σ) chosen according to the best SNR, best SSIM and the

Multi-parameter Whiteness Principle.
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particular, we applied the derivative free algorithm proposed in [58] that in-

vestigates the local behaviour of the objective function on the feasible set by

sampling it along the coordinate directions. Whenever a suitable descent fea-

sible coordinate direction is detected a new point is produced by performing

a derivative free linesearch along this direction, so as to exploit the descent

property of the search direction as much as possible. The information pro-

gressively obtained during the iterates of the algorithm can be used to build

an approximation model of the objective function. The minimum of such a

model is accepted if it produces an improvement of the objective function

value. The algorithm is applied for the first application case (I0 = 500 and

σ = 10) with initial point (µ(0), σ(0)) = (35, 18). Figure 9.3 shows the se-

lected couples (µ(k), σ(k)) during the iterations over the contour lines of the

Whiteness function, also the red dot represents the parameter couple selected

by the a posteriori approach described before. As one can note, the pair of

parameters obtained with the iterative algorithms converges to the a pos-

teriori one in few iterations, reaching the values of µ̂(MWP ) = 108.242 and

σ̂(MWP ) = 11.750.
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Figure 9.3: Derivative free minimization procedure [58] applied to the White-

ness function for the Case 1 (I0 = 500 and σ = 10).





Chapter 10

Numerical Solution of

Variational Models by ADMM

In this chapter we will address the numerical solution of the variational

models considered in the previous experiments. First we will focus on the

R-KL model (R-KL) considered for the CT reconstruction and image restora-

tion problem when the sole Poisson noise arises in the degradation process;

more specifically, we will consider R = TV, TV2 and TVG2. We will then

discuss the resolution for the model with mixed Poisson-Gaussian noise in

(TV-MixedNoise). Notice that the single regularization parameter µ in the

former case, and the two parameters µ, σ in the latter will be considered as

fixed throughout the discussion.

10.1 Numerical solution for the R-KL model

Before going into the details of solving the different R-KL models, we

briefly recall their expressions, for the case of R = TV, TV2 and TVG2.

First, we recall the definitions of the (R-KL) variational model and of the

191
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(TV), (TV2) and (TGV2) regularizers, and by introducing the three matrices

D1 =

(
Dh

Dv

)
∈ R2n×n, D2 =


Dhh

Dvv

Dhv

Dvh

∈ R4n×n, DS =


Dh 0

0 Dv

1
2
Dv

1
2
Dh

1
2
Dv

1
2
Dh

∈ R4n×2n,

with Dh,Dv,Dhh,Dvv,Dhv,Dvh ∈ Rn×n finite difference matrices discretiz-

ing the first-order partial derivatives of image x in the horizontal and ver-

tical direction and the second-order partial derivatives of image x in the

horizontal, vertical, mixed horizontal-vertical and mixed vertical-horizontal

directions (with Dvh = Dhv), respectively, the three models of interest can

be equivalently written as

x̂(µ) ∈ argmin
x∈Rn

{
ιRn

+
(x) + µKL (g(Ax) + q; b) +

∑
i∈ I

∥(D1x)i∥2

}
,

(TV-KL)

x̂(µ) ∈ argmin
x∈Rn

{
ιRn

+
(x) + µKL (g(Ax) + q; b) +

∑
i∈ I

∥(D2x)i∥2

}
,

(TV2-KL){
x̂(µ), ŵ(µ)

}
∈ argmin

x∈Rn,
w ∈R2n

{
ιRn

+
(x) + µKL (g(Ax) + q; b)

+ α0

∑
i∈ I

∥(D1x)i −wi∥2 + α1

∑
i∈ I

∥(DSw)i∥2

}
,

(TGV2-KL)

where ιRn
+
(x) denotes the indicator function of the non-negative orthant Rn

+

and where, with a little abuse of notation, we indicate by

(D1x)i := ((Dhx)i ; (Dvx)i) ∈ R2

(D2x)i := ((Dhhx)i ; (Dvvx)i ; (Dhvx)i ; (Dvhx)i) ∈ R4
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the discrete gradient and vectorized Hessian of image x at pixel i, respec-

tively. Moreover, we denote by

(DSw)i :=

(
(Dhw1)i ; (Dvw2)i ;

(Dvw1)i
2

+
(Dhw2)i

2
;
(Dvw1)i

2
+

(Dhw2)i
2

)
∈R4

the vectorized discrete symmetric Jacobian of vector field w = (w1;w2) at

pixel i. Then, by introducing for the (TV-KL), (TV2-KL) and (TGV2-KL)

models the auxiliary variable u defined in the three cases, respectively, by

u =


u1

u2

u3

 =


x

Ax

D1x

 , u =


u1

u2

u3

 =


x

Ax

D2x

 ,

u =


u1

u2

u3

u4

 =


x

Ax

D1x−w

DSw

 ,

and setting t = x for TV-KL and TV2-KL, t = (x;w) for TGV2-KL, it is

easy to verify that all the three models can be equivalently reformulated as

the following standard two-blocks (additively) separable minimization prob-

lem with linear constraints:{
t̂(µ), û(µ)

}
∈ argmin

t,u
{C1(t) + C2(u;µ) } subject to: M1t+M2u = 0.

(10.1)

The explicit expressions of functions C1, C2 and matrices M1, M2 for the

TV-KL model is

C1(t) = 0, C2(u;µ) = ιR+(u1) + µKL(g(u2)+ q; b) +
∑
i∈ I

∥u3,i∥2 ,

M1=


I

A

D1

 ∈ R(m+3n)×n, M2=− I ∈ R(m+3n)×(m+3n);
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while for the TV2-KL model we have

C1(t) = 0, C2(u;µ) =ιR+(u1) + µKL(g(u2)+ q; b) +
∑
i∈ I

∥u3,i∥2 ,

M1=


I

A

D2

 ∈ R(m+5n)×n, M2=− I ∈ R(m+5n)×(m+5n).

Finally, in the case of the TGV2-KL model they read

C1(t) = 0, C2(u;µ) =ιR+(u1) + µKL(g(u2)+ q; b) +

+ α0

∑
i∈ I

∥u3,i∥2++ α1

∑
i∈ I

∥u4,i∥2 ,

M1=


I 0

A 0

D1 −I

0 DS

 ∈ R(m+5n)×2n, M2=− I ∈ R(m+5n)×(m+5n).

The Lagrangian function L and augmented Lagrangian function Lγ as-

sociated with problem (10.1) read

L(t,u,ρ;µ) = C1(t) + C2(u;µ) + ρT (M1t+M2u) , (10.2)

Lγ(t,u,ρ;µ) = L(t,u,ρ;µ) +
γ

2
∥M1t+M2u∥22 , (10.3)

where ρ is the vector of Lagrange multipliers associated to the system of

linear constraints in (10.1) and γ ∈ R++ is a penalty parameter. Solving

problem (10.1) amounts to seek the saddle point(s) {t̂(µ), û(µ), ρ̂(µ)} of the

augmented Lagrangian Lγ in (10.3) which, according to the standard two-

blocks ADMM [53], can be computed as the limit point of the following
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iterative procedure:

t(k+1) = argmin
t

Lγ

(
t,u(k),ρ(k);µ

)
= argmin

t

{
C1(t) +

γ

2

∥∥∥∥M1t+M2u
(k) +

1

γ
ρ(k)

∥∥∥∥2
2

}
, (10.4)

u(k+1) = argmin
u

Lγ

(
t(k+1),u,ρ(k);µ

)
= argmin

u

{
C2(u) +

γ

2

∥∥∥∥M2u+M1t
(k+1) +

1

γ
ρ(k)

∥∥∥∥2
2

}
,(10.5)

ρ(k+1) = ρ(k) + γ
(
M1t

(k+1) +M2u
(k+1)

)
. (10.6)

In the following subsections we detail how to solve the t-subproblem in (10.4)

and the u-subproblem in (10.5) when tackling CT and image restoration

imaging problems, together with the different choices of regularizer.

10.1.1 The t-subproblem

Recalling the definition of the augmented Lagrangian function L in (10.3),

after dropping the constant terms the t-update problem in (10.4) reads

t(k+1) ∈ argmin
t∈Rn

{
⟨ρ(k),M1t− u(k)⟩+ γ

2
∥M1t− u(k)∥22

}
=argmin

t∈Rn

{
Q(k)(t) :=

1

2
∥M1t − v(k)∥22

}
, v(k) = u(k) − 1

γ
ρ(k).(10.7)

Since the cost function Q(k) in (10.7) is quadratic and convex, it admits global

minimizers which are the solutions of the linear system of normal equations:

MT
1M1 t

(k+1) = MT
1 v

(k) ⇐⇒ t(k+1) =
(
MT

1M1

)−1
MT

1 v
(k) . (10.8)

that is, t(k+1) is obtained by solving a linear system with coefficient matrix

MT
1M1.

For the image restoration problem, i.e. g(·) = · and A beeing the blur ma-

trix, the matrix is symmetric and positive definite - hence, non-singular - in

all the three choices of R and, by assuming periodic boundary conditions for

all the involved finite difference matrices, the linear system can be solved very



196 10. Numerical Solution of Variational Models by ADMM

efficiently based on the 2D discrete Fourier transform, implemented by 2D

fast Fourier transform (see, e.g., [41], [54], [55]). We note that t(k+1) = x(k+1)

for TV-KL and TV2-KL, t(k+1) = (x(k+1);w(k+1)) for TGV2-KL.

When addressing the CT problem, the structure of matrix A - which, we

recall, in this case is a Radon matrix - does not allow for a Fourier diagonal-

ization of matrix MT
1M1, thus yielding a significative computational burden

related to the solution of linear system (10.8). A popular strategy for avoid-

ing such difficulty is the linearized ADMM. It relies on computing t(k+1) as

the global minimizer of a surrogate function Q̂(k) of Q(k) in (10.7), namely

t(k+1) = argmin
t∈Rn

Q̂(k)(t) , (10.9)

where Q̂(k) is a quadratic function of the following form

Q̂(k)(x) = Q(k)(t(k)) + ⟨∇Q(k)(t(k)), t− t(k)⟩

+
η

2
∥t− t(k)∥22, η ≥ ∥M1∥22 . (10.10)

It can be easily proved that any function Q̂(k) in (10.10) is a quadratic tangent

majorant of the original function Q(k) in (10.7) at point t(k), that is it satisfies

Q̂(k)(t(k)) = Q(k)(t(k)), ∇Q̂(k)(t(k)) = ∇Q(k)(t(k)),

Q̂(k)(t) ≥ Q(k)(t) ∀ t ∈ Rn .

It follows from (10.9)-(10.10) that the new iterate t(k+1) computed by the

linearized ADMM is given by

t(k+1) =argmin
t∈Rn

{
⟨∇Q(k)(t(k)), t⟩+ η

2
∥t− t(k)∥22

}
(10.11)

= t(k) − 1

η
∇Q(k)(t(k)) (10.12)

= t(k) − 1

η
MT

1

(
M1t

(k) − v(k)
)
, η ≥ ∥M1∥22 , (10.13)

where in (10.11) we dropped the constant terms, in (10.12) we set t(k+1) equal

to the unique stationary point of the strongly convex cost function in (10.11)

and, finally, in (10.13) we substituted the explicit expression of the gradient

of the original cost function Q(k) defined in (10.7).
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10.1.2 The u-subproblem

For what regards the u-update in (10.5), it is easy to verify that it takes

the form

u(k+1) = argmin
u

{
m∑
j=1

Uj (uj)

}
⇐⇒ u

(k+1)
j = argmin

uj

Uj (uj) , j = 1, . . . ,m,

with m = 3 for TV-KL and TV2-KL models, m = 4 for TGV2-KL. This

means that (10.5) is equivalent to 3 or 4 independent minimization subprob-

lems each giving the updated value of one of the solution subvectors uj.

Here we explain how to derive the formulation and solve the independent

subproblems for the TV-KL model; the same procedure can be followed for

other models, for which we will describe only the resolution of sub-problems.

TV-KL model

Recalling definition (10.3), the u-subproblem in (10.5) reads

u(k+1) ∈ argmin
u∈Rm+3n

{
C2(u) + ⟨ρ(k),M1t

(k+1) − u⟩+ γ

2
∥M1t

(k+1) − u∥22
}

= argmin
u∈Rm+3n

{
C2(u) +

γ

2
∥u− s(k)∥22

}
, s(k)=M1u

(k+1) +
1

γ
ρ(k).(10.14)

Then, by recalling the definition of function C2 for the TV-KL model and

introducing the vectors ρ
(k)
1 ∈ R2n, ρ

(k)
2 ∈ Rm and ρ

(k)
3 ∈ Rn such that

ρ(k) =
(
ρ
(k)
1 ;ρ

(k)
2 ;ρ

(k)
3

)
and the vectors

s
(k)
1 = u

(k+1)
1 +

1

γ
ρ
(k)
1 ∈ Rn, s

(k)
2 = Au

(k+1)
2 +

1

γ
ρ
(k)
2 ∈ Rm,

s
(k)
3 = D1u

(k+1)
3 +

1

γ
ρ
(k)
3 ∈ R2n

such that s(k) =
(
s
(k)
1 ; s

(k)
2 ; s

(k)
3

)
, problem (10.14) can be equivalently written

as

u(k+1) ∈ argmin
u∈Rm+3n

{U1 (u1) + U2 (u2) + U3 (u3) } , with:
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U1 (u1) = ιRn
+
(u1) +

γ

2
∥u1 − s

(k)
1 ∥22 ,

U2 (u2) = µKL (g(u2) + q; b) +
γ

2
∥u2 − s

(k)
2 ∥22 ,

U3 (u3) =
n∑

i=1

∥u3,i∥2 +
γ

2
∥u3 − s

(k)
3 ∥22 .

(10.15)

Therefore, the updates of variables u1, u2 and u3 can be addressed separately.

Update of u1. It comes from (10.15) that the u1-update problem reads

u
(k+1)
1 ∈ argmin

u1 ∈Rn
+

∥u1 − s
(k)
1 ∥22 ,

that is u
(k+1)
1 is given by the unique Euclidean projection of vector s

(k)
1 onto

the non-negative orthant Rn
+, which admits the following component-wise

closed-form expression:

u
(k+1)
1,i = max

{
s
(k)
1,i , 0

}
, i = 1, . . . , n . (10.16)

Update of u2. It follows from (10.15) that, after introducing the scalar

τ = µ/γ, the updated vector u
(k+1)
2 is given by

u
(k+1)
2 ∈ argmin

u2 ∈Rm

{
τ KL(g(u2) + q; b) +

1

2
∥u2 − s

(k)
2 ∥22

}
=argmin

u2 ∈Rm

{
m∑
i=1

[
τ g(ui)− τ bi ln (g(ui) + qi) +

1

2
(ui − si)

2

]}
,(10.17)

where in (10.17) we substituted the explicit expression of the KL divergence

term reported in (4.9), we dropped the constants and, for simplicity of no-

tation, we set ui := u2,i ∈ R and si = s
(k)
2,i ∈ R. Hence, similarly to the u1

update problem in (10.22), the m-dimensional minimization problem (10.17)

is equivalent to the m following 1-dimensional problems

u
(k+1)
i = argmin

ui ∈R

{
τ g(ui)− τ bi ln (g(ui) + qi) +

1

2
(ui − si)

2

}
, (10.18)

i = 1, . . . ,m.

In the IR scenario, i.e. when g(ui) = ui, the cost function in (10.18) is

infinitely many times differentiable, strictly convex and coercive in its domain
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ui ∈ (−qi,+∞). Hence, the solution u
(k+1)
i of (10.18) exists, is unique and

coincides with the unique stationary point of the cost function, given by

u
(k+1)
i =

1

2

[
−(τ + qi − si) +

√
(τ + qi − si)2 + 4 (si qi + τ(bi − qi))

]
.

For the CTIR problem, i.e. when g(ui) = I0e
−ui , problem (10.18) reads

u
(k+1)
i = argmin

ui ∈R

{
τ I0 e

−ui − τ bi ln
(
I0 e

−ui+ qi
)
+

1

2
(ui − si)

2

}
. (10.19)

The cost function in (10.19) is infinitely many times differentiable and co-

ercive in its domain ui ∈ R, hence it admits global minimizers. However,

in the general case of a nonzero background, i.e. when qi ∈ R++, problem

(10.19) does not admit a closed-form solution and can only be addressed by

employing iterative solvers.

On the other hand, when qi = 0 the cost function is also strictly con-

vex, hence u
(k+1)
i in (10.19) is given by the unique solution of the first-order

optimatily condition

−τ I0 e−ui + τ bi + ui − si = 0 .

The above nonlinear equation can be manipulated so as to give

wi e
wi = τ I0 e

τ bi−si , with wi = ui + τ bi − si . (10.20)

Equations of the form in (10.20) admit solutions that can be expressed in

closed-form in terms of the so-called Lambert W function [59]. In particular,

when the right-hand side is non-negative - which is our case as τ I0e
τ bi−si ∈

R++ - then the equation admits a unique solution given by

wi = W
(
τ I0 e

τ bi−si
)
.

It follows that problem (10.19) admits the unique solution

u
(k+1)
i = −(τ bi − si) +W

(
τ I0 e

τ bi−si
)
. (10.21)

Update of u3. It comes from (10.15) that the update of u3 reads

u
(k+1)
3 = argmin

u3∈R2n

{
n∑

i=1

[
∥u3,i∥2 +

γ

2

(
u3,i − s

(k)
3,i

)2]}
. (10.22)
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Hence, problem (10.22) is separable into n independent 2-dimensional

problems

u
(k+1)
3,i = argmin

u3,i ∈R2n

{
∥u3,i∥2 +

γ

2

(
u3,i − s

(k)
3,i

)2}
, i = 1, . . . , n , (10.23)

which represent the proximal map of the Euclidean norm function ∥ · ∥2 in R2

calculated at points s
(k)
3,i , i = 1, . . . , n. Such a proximal map admits a well-

known explicit expression which leads to the following closed-form solution

of problem (10.23):

u
(k+1)
3,i = max

{∥∥∥s(k)3,i

∥∥∥
2
− 1

γ
, 0

}
s
(k)
3,i∥∥∥s(k)3,i

∥∥∥
2

, i = 1, . . . , n .

where 0 · 0 / 0 = 0 is assumed.

TV2-KL and TGV2-KL models

Following the above path, we introduce a partition of the vector of La-

grange multipliers ρ(k) into m subvectors ρ
(k)
j having the same size of the

corresponding solution subvectors uj. Hence, for TV2-KL we define ρ(k) =(
ρ
(k)
1 ;ρ

(k)
2 ;ρ

(k)
3

)
, whereas for TGV2-KL we set ρ(k) =

(
ρ
(k)
1 ;ρ

(k)
2 ;ρ

(k)
3 ;ρ

(k)
4

)
.

By defining

s
(k)
1 = x(k+1) +

1

γ
ρ
(k)
1 ∈ Rn, s

(k)
2 = Ax(k+1) +

1

γ
ρ
(k)
2 ∈ Rm,

s
(k)
3 =

{
D2x

(k+1)+ 1
γ
ρ
(k)
3 ∈ R4n for TV2-KL model ,

D1x
(k+1)+ 1

γ
ρ
(k)
3 −w(k+1) ∈ R2n for TGV2-KL model ,

the three subproblems for variables u1,u2 and u3 admit the same pixel-wise

close-form solutions as the TV-KL model.

Finally, for the TGV2-KL model, the fourth subproblem for variable u4 ∈ R4n

can also be solved in pixel-wise closed-form based on the ℓ2-norm proximal

map; in formula,

u
(k+1)
4,i = max

1− 1

γ
∥∥∥s(k)4,i

∥∥∥
2

, 0

 s
(k)
4,i , s

(k)
4 = DSw

(k+1) +
1

γ
ρ(k),
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for i = 1, . . . , n, with u
(k+1)
4,i , s

(k)
4,i ∈ R4.

10.2 Numerical solution for the mixed noise

model

We now discuss the solution of the general model (TV-MixedNoise) aris-

ing in presence of mixed Poisson-Gaussian noise:

x̂(µ) ∈ argmin
x∈Rn

{
ιRn

+
(x) + µ

∑
i∈ I

∥(D1x)i∥2

+
1

2

∥∥∥∥ I0e
−Ax − b√

I0e−Ax + σ2

∥∥∥∥2
2

+
1

2

m∑
j=1

(log(I0e
−Ax + σ2))i

}
.

Considering the auxiliary variable u defined as

u =


u1

u2

u3

 =


x

Ax

D1x

 ,

the above model can be reformulated as a standard two-blocks separable

minimization problem with linear constraints:

{x̂(µ), û(µ)} ∈ argmin
x,u

{C1(x) + C2(u;µ) } subject to: M1x+M2u = 0.

(10.24)

with functions

C1(x) = 0 (10.25)

C2(u;µ, σ) = ιRn
+
(u1) + µ

∑
i∈ I

||u3,i||2

+
1

2

∥∥∥∥ I0e
−u2 − b√

I0e−u2 + σ2

∥∥∥∥2
2

+
1

2

m∑
j=1

(log(I0e
−u2 + σ2))i (10.26)

and matrices

M1=


I

A

D1

 ∈ R(m+3n)×n, M2=− I ∈ R(m+3n)×(m+3n).
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Notice that, according to the above definitions, the Lagrangian function L

and augmented Lagrangian function Lγ associated with problem (10.24) take

the same form of the ones introduced in (10.3) with x replacing t. It follows

that the problem can be solved by the ADMM procedure as the limit point

of the iterative procedure

x(k+1) = argmin
x

{
C1(x) +

γ

2

∥∥∥∥M1x+M2u
(k) +

1

γ
ρ(k)

∥∥∥∥2
2

}
,(10.27)

u(k+1) = argmin
u

{
C2(u) +

γ

2

∥∥∥∥M2u+M1x
(k+1) +

1

γ
ρ(k)

∥∥∥∥2
2

}
,(10.28)

ρ(k+1) = ρ(k) + γ
(
M1x

(k+1) +M2u
(k+1)

)
. (10.29)

where ρ(k) is the vector of Lagrange multipliers ρ(k) = (ρ
(k)
1 ;ρ

(k)
2 ;ρ

(k)
3 ) with

ρ
(k)
2 ∈ R2n, ρ

(k)
2 ∈ Rm and ρ

(k)
3 ∈ Rn.

The x - subproblem

Recalling the definition of the augmented Lagrangian function Lγ in

(10.3) and the definition of C1(x), C2(u) in (10.25)(10.26), the x-update

problem in (10.27) reads:

x(k+1) ∈ argmin
x∈Rn

{
⟨ρ(k),M1x− u(k)⟩+ γ

2
∥M1x− u(k)∥22

}
= argmin

x∈Rn

{
Q(k)(x) :=

1

2
∥M1x − v(k)∥22

}
, (10.30)

where v(k) = x(k) − 1
γ
ρ(k). In analogy with the discussion done for the

solution of the t subproblem in 10.1.1 in the case of the matrix A beeing the

Radon transform, the new iterate x(k+1) can be computed by the linearized

ADMM given by

x(k+1) = x(k) − 1

η
MT

1

(
M1x

(k) − v(k)
)
, η ≥ ∥M1∥22
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The u - subproblem

As in 10.1.2, the u subproblem can be split into 3 independent minimiza-

tion subsubproblems each updating a subvector ui of u. By introducing

s
(k)
1 = u

(k+1)
1 +

1

γ
ρ
(k)
1 ∈ Rn, s

(k)
2 = Au

(k+1)
2 +

1

γ
ρ
(k)
2 ∈ Rm,

s
(k)
3 = D1u

(k+1)
3 +

1

γ
ρ
(k)
3 ∈ R2n,

the three subsubproblems read

u
(k+1)
1 ∈ argmin

u1

{
ιRn

+
(u1)+

γ

2
∥u1 − s

(k)
1 ∥22

}
,

u
(k+1)
2 ∈ argmin

u2

{
1

2

∥∥∥∥ I0e
−u2 − b√

I0e−u2 + σ2

∥∥∥∥2
2

+
1

2

m∑
j=1

(log(I0e
−u2 + σ2))i+

γ

2
∥u2 − s

(k)
2 ∥22

}
,

u
(k+1)
3 ∈ argmin

u3

{
n∑

i=1

∥u3,i∥2 +
γ

2
∥u3 − s

(k)
3 ∥22

}
.

The update of u1 (in the same way as (10.16)) is obtained by projecting the

vector s
(k)
1 onto the non-negative orthant Rn

+ and can be written component-

wise as

u
(k+1)
1,i = max

{
s
(k)
1,i , 0

}
, i = 1, . . . , n .

Since the function to minimize for the u2 subproblem is smooth, differen-

tiable, nonconvex and separable, one needs a first order optimality condition

on the function to be minimized so that one ends up to solve a non-linear one-

dimensional equation. Such problem can be addressed by multiple methods

such as, e.g., the Newton’s algorithm. Finally, the update of u3 is performed

by solving n independent 2-dimensional problems which amounts to compute

the proximal operator of the Euclidean norm function in s3; such problem

admits a closed-form solution expressed as

u
(k+1)
3,i = max

{∥∥∥s(k)3,i

∥∥∥
2
− 1

γ
, 0

}
s
(k)
3,i∥∥∥s(k)3,i

∥∥∥
2

, i = 1, . . . , n .
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Chapter 11

Material Decomposition in

Spectral Tomography

In Chapter 3 we introduced the generation of X-rays, together with the

detection process and the Lambert-Beer Law of attenuation. In particular,

we remark that when CT scans involve an X-rays spectrum (as in Figure 3.2)

that includes multiple energies and whose continuous formulation is expressed

in (3.6) and recalled below:

I(s) =

∫ Emax

Emin

I0(E) e
−

∫ s
0 x̄(ℓ,E) dℓ dE.

where s denotes the length of the linear path followed by the X-ray. Spec-

tral Computed Tomography is an increasingly used technique which allows

to analyze how different materials attenuate X-rays based on the consid-

ered energy. In fact, while in conventional CT the detector pixels sum all

the incoming photons from all the energy spectrum, spectral CT features a

photon-counting detector that records the energy of individual photons. This

means that, for each projection angle and detector pixel the data is no longer

a single scalar, as for standard CT, but it is an energy-dependent quantity,

Figure 11.1. Most of the time, in spectral tomography one considers a “very

low” energy dependence that means that the energy channels are few, rang-

ing from the 2 of dual energy CT to 5, and refer to wide spectrum bands.

207
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Figure 11.1: Scheme of Spectral Tomography

On the other hand, the special case of spectral CT which addresses the case

of many energy channels (e.g. more than 5) and a fine energy resolution (ca

1 KeV), is referred as Hyperspectral Computed Tomography. Figure 11.2

shows the differences between the different types of CT by means of the data

energy levels: for standard CT the detected polychromatic beam is integrated

over the whole spectrum, while for the Dual Energy the multilayer detector

divides the data in two parts. Finally, for spectral and hyperspectral CT,

the photon counting detectors count the number of incoming photons and

separate them into different photon bins based on their energy level, with

wide and fine energy grid respectively.

In the following sections we will explain how to manage the energy de-

pendent data and what information we can derive from them.

11.1 The attenuation coefficients and the en-

ergies

In Figure 11.3 we show some of the energy dependent sinograms (after

the log transformation) of a real and a synthetic hyperspectral Fan Beam CT

dataset. By looking at the images we can note that sinogram data changes

with the energy variation in two ways: noise and highlighted features. We

recall - see Section 2.3 - that the noise level depends on the number of pho-
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Standard CT Dual Energy CT

Spectral CT Hyperspectral CT

Figure 11.2: Top Left: in Standard CT the detected polychromatic beam

is integrated over the whole spectrum. Top Right: in dual energy CT (top

right), data is acquired dividing the spectra in two using a multilayer detec-

tor. Bottom Left: in spectral CT the detectors count the number of incoming

attenuated photons individually and separate them into different photon bins

based on their energy levels (wide spectrum bands). Bottom Right: In Hy-

perspectral CT, photon counting detectors separate the incoming photons

into a fine grid of energy channels.
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25 KeV 29 KeV 32 KeV 35 KeV 40 KeV 45 KeV

61 KeV 63 KeV 67 KeV 71 KeV 73 KeV 77 KeV

Figure 11.3: Energy dependent sinogram data of a real (top panels) and a

synthetic (bottom panels) Hyperspectral Fan Beam CT dataset, with energy

levels increasing from left to right.

tons that reach the detector, and, as shown in Figure 11.2, such number is

different in every energy bin; hence the resulted data can be affected by dif-

ferent noise levels across the energies. Moreover, given that in spectral CT

the photons are classified by the detector based on their energy levels and

summed together within each energy band, the energy dependent data are

noisier compared to the one acquired by a standard CT (or by a spectral CT

with wider bands) with the same initial intensity. The other feature that

distinguishes the data across the energies, and that it makes their analysis

particularly interesting, is the energy dependence of the attenuation coeffi-

cients of the materials. In fact, different materials not only have distinct

attenuation coefficients, but they also depend on the energy level of the in-

coming photons, Figure 11.4. This is reflected on the sinograms, whose shape

changes with the energy and the attenuation curve of the materials.

In particular, by looking at Figure 11.4 we can note that the mass attenua-

tion curves have different behaviors: some of them are smooth, while other
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Figure 11.4: Mass attenuation curves for different materials, [64, 63].

present one or more edges, referred to as K-edges, [64]. The K-edge is a

sudden increase in X-ray absorption occurring when the energy of the X-

rays is just above the binding energy (namely the smallest amount of energy

required to remove a particle from a system of particles) of the innermost

electron shell of the atoms interacting with the photons.

In this way, the hyperspectral CT technique allows to distinguish materials

that have similar attenuation coefficient for an energy range, but different in

another, or to highlight the presence of a specific material by looking around

its K-edge. Therefore, by exploiting the energy dependence of the data and

the attenuation coefficients, spectral CT is often used not only to simply re-

construct the attenuation coefficients, but also to decompose the object into

its constitutive materials, [61, 62].

11.2 Spectral Tomography and its model

After describing the main aspects of spectral CT, here we define its for-

ward model by introducing the concept of concentration maps, which will be

the target of the material decomposition problem, [60].

With the term concentration map for a material Mm we refer to vectorized

image x̄m ∈ [0, 1]n whose pixel values denote the percentage of material Mm

inside the pixels of the object and where n indicates the number of pixels of

the object. For an object composed by Nmat materials M1,M2, . . . ,MNmat ,
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the values of x̄m,j indicate the percentage of materialMm in the pixel j of the

object. Since we suppose that more materials can be present in each pixel

of the object, as the case of a chemical mixture, the following constraint can

be considered:
Nmat∑
m=1

x̄m,j ≤ 1 ∀ j = 0, . . . , n.

Depending on the specific application, different constraints can be applied on

the concentration maps; this is the case of [65] where the authors impose that

a pixel can be composed by only one material and employ this assumption

into the decomposition process.

After defining the concentration maps, the attenuation coefficient of the tar-

get can be calculated considering the materials present at each pixels, their

percentage of presence, and the specific attenuation curves (which is energy

dependent). With this in mind, the attenuation coefficient h̄ej of the object

at the pixel j and for the energy index e can be written as

h̄ej =
Nmat∑
m=1

µemx̄mj, e ∈ {1, . . . , Ne}, j ∈ {1, . . . , n}

where Ne is the number of energy channels and µem denotes the mass-

attenuation coefficient of the material m at the energy index e. Recalling

that the attenuation profiles {µem} are known, the final aim of material

decomposition is to find the concentration maps for all the materials, i.e.,

{x̄mj}.
Based on the Beer’s Law (3.4), the X-ray intensity collected by the de-

tector after the attenuation process is described by:

Iθlie = I0e exp

(
−

n∑
j=1

aθlij h̄ej

)
= I0e exp

(
−

n∑
j=1

aθlij

(
Nmat∑
m=1

µemx̄mj

))
,

(11.1)

where, similar to the standard CT model in 2.5, Iθlie denotes the expected

photon count at the detector pixel i for the energy level e at projection

angle θl, I0ie is the incoming source intensity, i.e. the number of photons

for the energy index e that are expected to be detected at pixel i of the
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detector if there was no attenuating object, and aθlij represents the projection

coefficient for the detector pixel i and the object pixel j at projection angle

θl. Considering s projection angles in which acquisitions must be made, the

corresponding matrix formulation is

I = I0 e
−AH̄

T

= I0 e
−A(MX̄)T = I0 e

−AX̄
T
MT

where I = (Iθ1 ; . . . ; Iθs) ∈ Rs×d×Ne
+ with Iθl = (Iθlie ) ∈ Rd×Ne

+ , I0 = (I0ie) ∈
RNe

+ , M = (µem) ∈ Rs×Nmat
+ , H̄ = (h̄em) ∈ RNe×n

+ , X̄ = (x̄mj) ∈ RNmat×n
+ ,

A = (Aθ1 ; . . . ;Aθs) ∈ Rs×d×n
+ with Aθl = (aθlij) ∈ Rd×n

+ , d is the number

of the detector pixels and the product between I0 and e−AH̄
T

is considered

point-wise.

As explained in 2.3, the collected data is affected by noise, whose behaviour

can be described by an independent Poisson random field in the following

way:

B = {Bθl
ie} ∼ P

(
Λ̄
)
, Λ̄ = I

with i = 1, . . . , d, e = 1, . . . , Ne and l = 1, . . . , s. In this case, the measured

data B = (Bθ1 , . . . ,Bθs) ∈ Rs×d×Ne
+ is a realization of the random field B,

with Bθl = (bθlie) ∈ Nd×Ne and bθlie ∈ N a realization of the random variable

Bθl
ie ∼ P(λ̄θlie), λ̄

θl
ie = Iθlie .

11.3 Reconstruction and Material Decompo-

sition Methods

The energy dependent data can be exploited both to reconstruct the en-

ergy dependent attenuation coefficients of the object, namely H̄ = (h̄e,m), as

well as to decompose the object into its constitutive materials, i.e. obtaining

the concentration maps x̄1, . . . , x̄Nmat . While the first task can be addressed

considering each individual energy independently and then unifying the re-

constructions, the latter problem has to be tackled by processing the energy

dependent data all together. In fact, the behavior of materials in presence of
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the variation of energy is the feature that allows us to identify, quantify and

differentiate them inside the reconstructed object.

As mentioned before, the reconstruction methods aim to recover the energy

dependent attenuation coefficients H̄ = (h̄em), that is solving the following

inverse problem:

findH ∈ RNe×n
+ such thatB is a realization

of P applied toΛ = I = I0e
−AHT

.

This problem can be seen as the extension of the standard CT inverse prob-

lem ((4.2) with g(·) = I0e
−A·) to the energy dependent case. The simplest

strategies consider individually each energy and apply a CT reconstruction

algorithm to solve the Ne inverse problems, while, the more advanced ones

employ a variational approach that reconstruct directly the all energy de-

pendent attenuation coefficients. Those variational methods aim to solve the

following problem:

Ĥ(µ) ∈ arg min
H∈RNe×n

+

{J(H, µ) := R(H) + µF(H; I0,A,B)}.

However, most of the time the regularizer R(H) is chosen to enhance the

spacial features of the object (such as TV on the spatial dimentions) without

considering the energy dimension. In recent year some studies incorporated

the energy dimension into the regularizer, by proposing a spatiospectral TV

and a combination of a Total Variation with a Total Generalized Variation

(TGV) along the spatial and spectral dimensions respectively, [75, 73].

The material decomposition methods, aimed at reconstructing the material-

specific images, namely the concentration maps x1, . . . ,xNmat , from the en-

ergy dependent data can be divided into two main categories: two-stage and

one-stage methods.

11.3.1 Two-stage

In the two-stage methods the task of decomposing the materials and

reconstructing the related images are separeted and can be applied one before
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the other or vice versa. The image-based methods first reconstruct the energy

images and then perform material decomposition from reconstructed images,

e.g the works in [68, 69]. Their functioning can be formalized as follows:

• find H ∈ RNe×n
+ such that B is a realization of the r.f. B ∼ P(Λ) with

Λ = I = I0e
−AHT

• perform the material decomposition, i.e. find the concentration maps

X ∈ RNmat×n, by solving the linear system MX = H.

The main advantage of these methods is that standard reconstruction strate-

gies (such as FBP or SIRT applied on the sinograms Y = − log
(

B
I0

)
) can

be employed energy-wise in the first step to obtain the energy dependent

attenuation coefficients H. However, as discussed before, the noise in the

data of spectral CT is higher compared to standard CT; as a results such

algorithms amplify the noise in data and cause artifact in the reconstruction

that will be reflected in the subsequent material decomposition step. These

downsides can be avoided by considering advanced methods (such as varia-

tional methods) to solve the first step, nonetheless the computational cost

increases considerably and it is more convenient to use other strategies, e.g.

the one stage approaches.

On the other hand, projection-based methods first decompose the multi-

energy projections to each material, then perform image reconstruction in-

dependently. [66, 67]. In other words, they solve the two following problems:

• get the material decomposition of the data by finding Z ∈ Rs×d×Nmat

such thatB is a realization of the r.f. B ∼ P(Λ) withΛ = I = I0e
−ZMT

• perform the reconstruction by finding X such that Z = AXT .

However, even the projection-base methods are susceptible to noise, due to

instability of the decomposition step.

Before going ahead with the discussion, here we define the R-L2 variational

model that can be employed to solve the material decomposition step of the
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image-base methods:

X̂(µ) ∈ argmin
X∈Ω

{J(X, µ) := R(X) + µL2(X;M,H)} (R-L2)

where H is the output of the first step, namely the energy images, R(X) is

the regularization term applied on the concentration maps and

L2(X;M,H) := ||H−MX||22. (11.2)

For the regularizer, one can relate to the discussion ahead for the one-stage

methods, since the regularizer will be applied on the concentration maps.

11.3.2 One-stage

The one-stage methods formulate the material decomposition and the re-

construction tasks as a single problem and solve it jointly, [72, 70, 71]. In

this case, the reconstruction/decomposition can be obtained with a varia-

tional method by solving an optimization problem in the form

X̂(µ) ∈ argmin
X∈Ω

{J(X, µ) := R(X) + µF(X; I0,M,A,B)} (11.3)

where the regularization term R(X) imposes properties on the concentration

maps and the fidelity term F(X; I0,M,A,B) contains information on the

noise distribution and the complete forward model, hence, it depends on the

decomposition matrix Mand on the CT projection matrix A, thus allowing

for a unification of the two stages. Moreover, we require that all elements in

X are bounded in [0, 1]: X ∈ Ω := [0, 1]Nmat×n. In principle one could also

enforce that within each pixel these should sum to 1 but we do not explore

such scenario in this thesis.

As discussed in previous chapters, under the action of Poisson noise, the

data-fidelity term becomes the generalized Kullback-Leibler (KL) divergence,

defined in (4.9), between Λ = I0 e
−AXTMT

and B. More precisely, the noise

should be modelled as mixed Poisson-Gaussian, but the algorithmic descrip-

tions given in Chapter 10 both for the mixed noise, as well as for Poisson

one, would be too expensive in this context.
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Nonetheless, to mitigate the computational cost, in this last chapter we

will consider a quadratic approximation for Poisson data according to which

the KL term can be turned into a weighted least square, see (WL2), [1].

Quadratic approximation for Poisson data Explicitly writing the KL

between Λ = I0 e
−A (MX)T and B, and considering only the terms depending

on X, we have that

KL(Λ,B) =
∑

i=1,...d
e=1,...,Ne
l=1,...,s

((
I0e

−A(MX)T
)θl
ie
− bθlie log

(
I0e

−A(MX)T
)l
ie

)
(11.4)

=
∑

i=1,...d
e=1,...,Ne
l=1,...,s

(I0e−A(MX)T
)θl
ie
− bθlie log I0ie︸ ︷︷ ︸

constant

+bθlie
(
A(MX)T

)θl
ie



∝
∑

i=1,...d
e=1,...,Ne
l=1,...,s

((
e−A(MX)T

)θl
ie
+
bθlie
I0ie

(
A(MX)T

)θl
ie
;

)

notice that, since we are interested in minimizing KL, the constant term in

the second equality can be neglected. Recalling that the noisy sinograms are

defined as Y = (yθlie) ∈ Rs×d×Ne with yθlie = − log

(
b
θl
ie

I0ie

)
, by replacing

b
θl
ie

I0ie

with e−y
θl
ie in (11.4) the KL function reads

KL(I0 e
−A (MX)T ,B) =

∑
i=1,...d

e=1,...,Ne
l=1,...,s

Dl
ie

((
A(MX)T

)θl
ie

)

with Dl
ie(τ) = e−τ + e−y

θl
ie · τ.

Using a second-order Taylor expansion of Dl
ie at yθlie and ignoring terms in-

dependent of X we arrive at a quadratic approximation of Dl
ie(τ) and the

corresponding WL2 likelihood:

F(X; I0,A,M,B) = WL2(X; I0,A,M,B) := ||Y −A(MX)T ||2W (11.5)
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where W = eY = B
I0

and ∥Φ∥2W =
∑

i,e,l w
θl
ie (ζ

ϕl
ie )

2. In our numerical exper-

iments, we compare the reconstruction results by using WL2 with the ones

achieved by employing the most common L2 data-fidelity term, i.e.,

F(X; I0,A,M,B) = L2(X; I0,A,M,B) := ||Y −A(MX)T ||22. (11.6)

The choice of the regularization term, R(X), depends on the prior informa-

tion on X. Several regularization techniques have been applied to hyperspec-

tral CT. For example, regularization by denoising [79], total variation (TV)

[72, 80, 70], Non Local Total Variation (NLTV) [71], and the point-wise

separation regularizer for dual energy CT [65]. We will introduce different

regularization to different materials depending on their properties and con-

sider the sum of them, each with a specific regularization parameter. In

particular, we will consider L1 regularization for materials that are present

with spikes and total variation (TV) regularization for the piece-wise con-

stant materials. The TV and L1 regularization term on the material m, i.e,

xm = (xm1, · · · , xmn)
T ∈ Rn, are defined respectively as

TVm(X) = TV(xm) =
n∑

j=1

∥(Dxm)j∥2, (11.7)

L1m(X) = L1(xm) = ∥xm∥1.

11.4 Numerical results

In this work, we focus on material decomposition for distinguishing mate-

rials that have high atomic number with similar attenuation coefficients and

K-edges in the considered energy range. Further, we consider the case with a

small number of projections in order to keep the scan time reasonable. Pho-

ton counting detectors, especially with high energy resolution, are slow and

have limits on flux they can handle. Therefore, a small number of projections

ensure that the scan time is acceptable. Here we perform some preliminary

comparative studies with simulated data to establish which method is more
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promising so as to set the stage for further study. Specifically, we aim to

address three questions.

(1) Is it worthwhile employing the more involved one-stage method or is

the simpler two-stage method sufficient?

(2) How to model the noise, i.e. which data-fidelity term to employ?

(3) Which regularizer to use for sparse materials: TV or L1?

Each experiment tries to address one of the questions.

11.4.1 Experimental setup

In this section we explain the setup for the material decomposition ex-

periments for hyperspectral CT that will be carried out. With the focus on

materials with high atomic number and similar attenuation coefficients, we

consider an object X̄ with five different materials: Ytterbium (Yb), Lutetium

(Lu), Tantalum (Ta), Osmium (Os) and water (H2O). In particular, we

choose the first four materials due to their attenuation profiles, which are

all approximately in the same range and characterized by a jump (K-edge)

2, 4, and 6 keV apart from each other, see Figure 11.5 (Left). We allow to

more than one material to be present at each pixel of the object. For this

reason, we constructed phantoms in which some materials are present both

alone and mixed with others. Furthermore, we assume that all materials are

surrounded by water. Figure 11.6 shows two phantoms, formed by different

concentration maps of the materials Yb, Lu, Ta, Os and H2O respectively.

Note that in phantom 2 the third material is present in very small quantities.

The phantoms in Figure 11.6 as well as all reconstructions in the following

sections are shown in the range [0, 1]. Also, we will refer to Yb, Lu, Ta, Os

and H2O as material 1,2,3,4 and 5 respectively.

We focus here on an X-ray energy range surrounding the K-edges i.e.

from 60 keV to 80 keV. In reality, during the CT acquisition, all the energies

in the considered spectrum contribute to the process; but the spectral CT
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Figure 11.5: Left. Attenuation profiles of the five materials obtained by mul-

tiplying the mass attenuation coefficients with the density of each material.

Right. Normalized source spectrum. The spectrum is shown only in the con-

sidered energies, but it is normalized over all the energy range (from 1 to 121

KeV). The x-axes represent the energy level in eV.

detector is only able to distinguish photons with a limited energy resolution,

for example 1 keV. In order to mimic this process, and especially to avoid

the inverse crime, we simulate data on a finer grid of energies, followed by

binning (summing) data into 1 keV energy bins. Specifically, we considered a

fine energy grid between 59550 and 80450 eV with a width of 0.1 keV. Figure

11.5 (Right) shows the normalized source spectrum for the fine grid of con-

sidered energies. After applying the Beer’s Law and the noise (as in (11.1))

the photons are binned into 21 energy bins centered around 60, 61, . . . , 79

and 80 KeV.

The data was generated considering a phantom with t = 2562 pixels (pixel

size 4.68752 µm2) and a fan-beam setup with 45 projections in the range

[0, 2π], 256 detector pixels (pixel size 7.8125 µm), a distance of 0.5 cm be-

tween the source and the detector and 0.3 cm between the source and the

center of rotation. The experiments are carried out with few projections

(only 45) and a short exposure time, thus leading to noisy data with reduced

information content. From the data shown in Figure 11.7, one can easily note

how the different materials and K-edges, together with the noise levels based

on the spectrum, lead to differently looking sinograms over the energy bins.
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Phantom 1

Phantom 2

Figure 11.6: From left to right, concentration maps of materials Yb, Lu, Ta,

Os and H2O for phantom 1 (top) and phantom 2 (bottom).

Bin 2: 61 KeV Bin 4: 63 KeV Bin 8: 67 KeV

Bin 11: 71 KeV Bin 14: 73 KeV Bin 18: 77 KeV

Figure 11.7: Sinogram data for some energy bins. Each row of the sinogram

corresponds to a projection.
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Reconstruction quality is addressed qualitatively by visual inspection and

quantitatively by PSNR (in dB) on each material [76]. All the experiments

are performed using the Core Imaging Library (CIL) [74, 75], an open-source

Python framework for tomographic imaging that allows us to generate the

data and reconstruct it using both standard techiques such as filtered back-

projection (FBP) and advanced ones that incorporate some regularizations.

To solve the minimization problem in (11.3) we use the primal dual hybrid

gradient (PDHG) [82] algorithm which is available in CIL. In addiction, the

SpekPy toolkit [77] is used to calculate and manipulate the X-ray tube spec-

tra, while the XrayDB library [78] provides the attenuation profiles of the

materials in Figure 11.5.

11.4.2 One-stage vs two-stage method

PSNR (in dB)

Material 1 2 3 4 5

Two-Stage 21.79 26.26 17.48 16.27 2.50

One-Stage 22.33 26.78 22.70 20.10 2.11

Table 11.1: PSNR values of the reconstructions (on each material) with two-

stage method (FBP in the first step and L2 + TV in the second) and the

one-stage method (directly L2 + TV).

In section 11.3 we outlined the differences between two-stage and one-

stage methods. In this test we use phantom 1 given in Figure 11.5 to compare

in experimental terms the performance of these two types of the methods. For

the two-stage method, we apply FBP on each energy data first and then solve

the material decomposition problem (R-L2) by using the L2 data-fidelity term

(11.2) together with the TV regularization on each material (11.7). For the

one-stage method, we obtain the reconstruction by solving the minimization

problem (11.3) with fidelity L2 (11.6) and the sum of TV (11.7) regularizer
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Phantom 1

Two-Stage: FBP −→ L2 + TV

One-Stage: L2 + TV

Figure 11.8: Reconstruction with two-stage method (using FBP in the first

step and L2 + TV in the second) and the one-stage method.
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applied on each material. In Figure 11.8 we show the reconstruction results

from both methods, while Table 11.1 lists the PSNR results. One can see

that the second step of the two-stage method is not able to compensate the

lack of information present in the energy images obtained with FBP, as we

can notice by looking at the circles that are assigned to material 1 instead of

material 4.

11.4.3 L2 vs WL2

In this experiment we compare the results obtained with the one-stage

methods by using L2 defined in (11.6) and WL2 given in (11.5) as data-fidelity

terms. L2 is the most commonly used data-fidelity term, and it potentially

assumes that the noise model is additive Gaussian. WL2 is an approximation

of the data-fidelity term coming from Poisson noise model. In Figure 11.9 we

show the phantom and the reconstructions from both L2 and WL2 together

with the TV regularization on each material, while Table 11.2 contains the

PSNR values of the decomposed materials in all the cases. The test is done for

two levels of noise and the different data are obtained by halving the incoming

source spectrum I0. The regularization parameters are chosen manually to

give the highest PSNR. It is obvious that WL2 gives better reconstructions

than L2. In particular, for the lower noise case, the reconstruction from WL2

is almost the same as the ground truth and its PSNR values are more than 4

dB higher than from L2 (except for material 5). For the higher noise case, L2

cannot recognize material 3 and 4 and considers that most of the circles are

made by material 1. But WL2, whose PSNR values are significantly higher,

detects correctly most of them except that it has a bit difficulty to distinguish

material 1 and 4. This might happens because the two materials have similar

attenuation coefficients for energies between 62 and 74 KeV. Furthermore, as

we can see in Figure 11.5, this energy interval corresponds to higher values

of the energy spectrum which makes the data obtained from this energy

range more powerful than the others. Regarding material 5, with its small

attenuation profile if compared to the other materials, neither method is able
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Phantom 1

LOWER NOISE

L2 + TV

WL2 + TV

HIGHER NOISE

L2 + TV

WL2 + TV

Figure 11.9: Reconstruction from one-stage methods with L2 and WL2 data-

fidelity term and TV regularization for two different noise levels.

to recognize it, thus expressing the need of further developments.

11.4.4 Regularization

In previous experiments, TV is used for all materials, since we suppose

that the materials are distributed in a piece-wise constant way across the

object. In reality, the materials may be located in different manners. For

example, in Phantom 2 the third material is present as spikes. In this experi-

ment, we consider a regularizer on each material depending on its properties:

TV on material 1,2,4 and 5 and L1 on material 3, and we compare its results
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PSNR (in dB)

Material 1 2 3 4 5

LOWER L2 + TV 22.33 26.78 22.70 20.10 2.11

NOISE WL2 + TV 28.99 30.03 29.40 27.22 2.32

HIGHER L2 + TV 21.2039 22.7809 19.6872 19.2476 3.5111

NOISE WL2 + TV 25.9380 27.0200 24.9557 23.7285 2.6190

Table 11.2: PSNR values of the reconstructions obtained with the TV reg-

ularization on each material and two data-fidelity terms: WL2 and L2. The

table reports the results for two noise levels.

PSNR (in dB)

Material 1 2 3 4 5

WL2 + TV 26.32 27.20 34.85 23.90 2.56

WL2 + TV + L1 26.40 26.48 29.68 23.87 2.23

Table 11.3: PSNR values of the reconstructions for Phantom 2 with WL2

and different regularizers on the materials: TV on each material (WL2 +

TV) and TV on material 1, 2, 4 and 5 and L1 on material 3 (WL2 + TV +

L1).

with the one using TV on all materials. Both the TV and L1 parameters are

set manually to give the highest PSNR; the one choosen for L1 is three or-

ders of magnitude smaller than for TV. Figure 11.10 shows the visual results,

while Table 11.3 list the PSNR value for each material. We can see that the

reconstructions are similar for material 1,2,4 and 5, while, for material 3,

the images present some differences. This is also reflected by PSNR that are

similar with the exception of the third material. To better highlight these dif-

ferences, in Figure 11.11 one can observe the line plots of one crucial row and

one column of material 3 for the WL2+TV and WL2+TV+L1 reconstruc-

tions together with the groundtruth. The results obtained with WL2+TV
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Phantom 2

WL2 + TV

WL2 + TV + L1

Figure 11.10: Reconstruction with one-stage methods with Weighted L2 fi-

delity term and different regularizers on the materials: in the first case TV

on each material and in the second case TV on material 1,2, and 5 and L1

on material 3.

does not contain noise, but the values on the small dots are equal or less

than 0.5 while they should be around 1. On the other hand, WL2+TV+L1

reconstruct the dots with the right values so they are more visible compared

to the TV case, but some small spikes appear in the images, making it nois-

ier. These results perfectly reflect the behavior of the two regularizers: TV

leads to smoother images with shorter jumps and higher values of PSNR,

while the L1 feature of sparsifying the object lowers the PSNR results but

identifies correctly the values of the small dots.

11.4.5 Test on Real Data

In this last experiment we apply the one-stage WL2-TV method on a real

dataset. This dataset was presented in [81] and regards a mouse hindlimb

whose blood vessels were perfused by a Barium solution and its soft tissue

stained by a Iodine solution. Since the soft tissue is stained by the Iodine

solution which has higher attenuation coefficient and by reconstructing the
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Figure 11.11: Line plots of some crucial rows and columns of the reconstruc-

tions using WL2+TV+L1 and WL2+TV.

Iodine concentration map we automatically know the position of the soft

tissue, in this experiment we consider only three materials: Iodine, Barium

and Calcium (the bones).

The data are acquired using a cone-beam source, with sample rotation stage

and detector oriented in a parallel configuration along the same imaging

plane, 180 angles between 0and 2π and 80× 80 detector resolution (pixels).

The key difference is that here the authors replaced the standard energy-

integrating detector with an energy-sensitive, hyperspectral imaging detector

capable of distinguishing the photon energies from 0 to 120 KeV. Figure

11.12 shows the 3D volume explaining the position of the three materials

and a virtual cross-section obtain with an higher resolution acquisition. In

addition, Figure 11.13 display the attenuation curves of the materials, while

its energy dependent data can be seen in Figure 11.3.

In order to be able to process the data, we consider only the energies

between 25 and 45 KeV, which are informative for the Iodine and Barium
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Figure 11.12: Top: 3D volume explaining the position of iodine-,barium- and

calcium-containing regions (left, middle, right respectively). Bottom: virtual

cross-section from a high spatial resolution scan of the mouse hindlimb, show-

ing the equivalent image slice of the target.
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Figure 11.13: Attenuation curves of Iodine (I), Barium (Ba), Soft tissu and

Calcium (Ca).

both presenting a K-edge in the selected range. Moreover, we restrict the

data even in the spatial dimension by considering the central horizontal slice

of each projection. With this set up, it is important to note that the blood

vessels shown in Figure 11.12 (top center) will be visible as small dots (and

no longer as lines), representing the horizontal section of each vessel.

Finally, by solving the one-stage WL2-TV method ad optimizing the regu-

larization parameter we obtain the material decomposition in Figure 11.14.

From the reconstructed concentration maps we can note that all the three

materials are recognized and located inside the object. However, traces of

the tissue are present in the Calcium maps as well as in the Barium one.
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Iodine (soft tissue) Barium (blood vessels) Calcium (bone)

Figure 11.14: Material decomposition results of the real mouse hindlimb

phantom obtain with the one-stage method WL2-TV.





Conclusions

In this work we focused on low dose CT acquisition scenarios where the

standard reconstruction techniques can not be employed because of their

poor results due to the high level of Poisson noise in the data. In this cases,

variational methods have proven to drastically improve the quality of the

reconstruction. However, their performance crucially depend on the values

of the free parameters in the model, which are often chosen empirically. De-

spite the existence of many parameter selection strategies proposed for the

case of a single parameter under additive Gaussian noise, few of them can

be extended to the case of Poisson noise that characterizes the X-ray CT

procedures.

In Chapter 6 we proposed an automatic selection strategy for the regular-

ization parameter of variational image reconstruction models under Poisson

noise corruption based on a nearly-exact version of the approximate discrep-

ancy principle originally proposed in [25]. Our approach relies on Monte-

carlo simulations, which have been designed with the purpose of providing

meaningful insights on the limitations of the original approximate strategy,

especially in the low-count Poisson regime. The proposed version of the dis-

crepancy principle has then been derived by means of a weighted least-square

fitting and embedded along the iterations of an efficient ADMM-based op-

timization scheme. Our approach has been extensively tested on different

images (both for CT reconstruction and image restoration) and for different

photon-count values, ranging from very low to high values. When compared

to the original approximate selection criterion, the proposed strategy has

233
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been shown to drastically improve the quality of the output restorations in

low-count regimes and in mid-count/high-count regimes on images charac-

terized by few large pixel values.

In Chapter 7 we introduced a novel parameter selection strategy that relies

on the extension of the whiteness principle designed for additive white noise

to a suitably standardized version of the Poisson-corrupted observation. The

derived Poisson whiteness principle has been extensively tested on image

restoration and CT reconstruction problems. The Poisson whiteness princi-

ple has been compared experimentally with both the popular approximate

discrepancy principle [25] and our nearly exact version of it illustrated in

Chapter 6. The newly introduced approach has been shown to outperform

the competitors especially in the low-counting regime.

In Chapter 8 we discussed the idea of masking the observed data, as origi-

nally proposed in [31] to effectively deal with low-count regimes. Nonetheless,

we proved that discarding the zero pixels in the data without modifying its

distribution accordingly introduces a bias in the resulting principles. Hence,

after defining the novel positive Poisson distribution, we proposed the masked

unbiased versions of the original criteria. The unmasked, masked biased and

masked unbiased strategies have been extensively tested on different images,

with different regularization terms and for a wide range of counting regimes.

The new class of masked unbiased principles have been proven to outperform,

on average, the corresponding unmasked and masked biased counterparts for

the image restoration case, while the whiteness principle can be elected the

best performing one for CT reconstructions.

Motivated by the performance of the whiteness principle for Poisson noise, in

Chapter 9 we extended it principle to the case of multi-parameter selection

and tested it, as a proof of concept, for CT data corrupted by both Poisson

and Gaussian noise for which a variational model including two free param-

eters has been adopted. The few experiments show more than encouraging

results, both for the quality of the reconstructions and the possibility of solv-

ing the problem in a relative shorter time.
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Finally, in Chapter 11 we introduced the problem of material decomposition

for hyperspectral CT and conducted a preliminary study for the material

decomposition of materials with high atomic number with K-edges close to

each other in the considered energy range, as well as a test on real data. From

the comparison between the two-stage and one-stage methods, we choose the

latter and performed more tests to analyse the different data-fidelity and

regularization terms. The weighted least squares data fidelity increases con-

siderably the quality of the reconstruction, while the choice of the regularizer

depends on the property of the single material. These preliminary findings

are promising, as they leads towards the possibility of performing accelerated

energy-resolved imaging with better separation of materials. They set the

stage for our continued research, as our future work includes further devel-

opment of dedicated regularizers to separate materials reliably especially for

small features, including an investigation of why materials 1 and 4 blend and

how to resolve the issue.

The methods developed in this thesis are clearly related to the choice of work-

ing in a model-based, variational framework. It would be interesting to study

their combination with machine learning-based strategies in order to develop

hybrid techniques. In fact, despite their excellent results, deep learning ap-

proaches strongly depend on the quality and quantity of the training data

and are still characterized by a lack of rigorous mathematical theory that, on

the other hand, supports model-based approaches such as variational meth-

ods, [85]. This is particularly important for Computed Tomography, where

the target reconstructions, used for the training data set, are not available

and can only be approximately computed by reconstructing high dose acqui-

sitions, [84, 86], or synthetically generated. Therefore, hybrid strategies that

combine model-based and data-driven approaches showed to be the best tech-

niques; they bring the best of both worlds and compensate for each other’s

disadvantages, [83]. Moreover, the literature on estimating the free model pa-

rameters based on learning approaches when noise is of Poisson type is lean.

Anyway, selecting the parameters based on the statistics of the corrupting
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noise - as we did in this thesis - appears to us more solid than learning them

from some training sets which implicitly corresponds to assume some specific

prior for the target image. With this idea, we are interested and curious

to pair our results with learning strategies and to explore different ways of

doing it.
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