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Abstract

Quantitative Susceptibility Mapping (QSM) is an advanced magnetic resonance technique that
can identify and quantify in vivo biomarkers of pathology, such as alteration in iron and myelin
concentration. Its quantitative nature allows for the comparison of magnetic susceptibility prop-
erties within and between different subject groups. Following the introduction of the acquisition
and processing pipeline, I will explore potential clinical and methodological applications of QSM
to neurodegeneration.

The first project focuses on the investigation of cortical regions in the development of amyotrophic
lateral sclerosis. By examining various histogram susceptibility properties, a distinct pattern of
increased iron content was revealed in patients with amyotrophic lateral sclerosis compared to
controls and other neurodegenerative disorders. Moreover, there was a notable correlation be-
tween susceptibility and upper motor neuron impairment, particularly in patients experiencing
rapid disease progression.
Similarly, in the second application, QSM was used to examine cortical and sub-cortical areas
in individuals with myotonic dystrophy type 1. This analysis identified the thalamus and the
brainstem as structures of interest from a susceptibility perspective, with relevant correlations
with clinical and laboratory data such as neurological evaluation and sleep records.
In the third project, a robust pipeline for assessing radiomic susceptibility-based features relia-
bility was implemented within a cohort of patients with multiple sclerosis and healthy controls.
This study provided non-invasive and reliable measurements that hold promise for future clinical
applications in disease characterization and phenotyping.
Lastly, a deep learning super-resolution model was applied to QSM images of healthy controls.
The employed model demonstrated excellent generalization abilities and outperformed traditional
up-sampling methods, without requiring a customized re-training.

In designing these studies, significant emphasis was placed on results reproducibility by imple-
menting automated pipelines and by using, as much as possible, open-source software and tool-
boxes. Interpretability was also a key consideration, as it is crucial to maintain a strong connection
between imaging data and pathophysiology when searching for biomarkers of pathology.
Across the three disorders investigated in this thesis, it was evident that QSM is capable of dis-
tinguishing between patient groups and healthy controls while establishing correlations between
imaging measurements and clinical data. These studies lay the foundation for future research, with
the ultimate goal of achieving earlier and less invasive diagnoses of neurodegenerative disorders
within the context of personalized medicine.
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Introduction

This thesis aims to explore quantitative susceptibility-based Magnetic Resonance (MR) images
within the context of personalized medicine and neurodegeneration. Specifically, I am going to de-
scribe an advanced MR technique, Quantitative Susceptibility Mapping (QSM), from its sequence
optimization to its clinical and methodological applications. I have carried out my research at the
Functional and Molecular Neuroimaging Laboratory, IRCCS Istituto delle Scienze Neurologiche
di Bologna (IT), with access to a clinical scanner for both clinical and research activity.
QSM is an MR method that produces an anatomical and voxel-wise map of magnetic suscepti-
bility χ within the brain. This advanced technique enables the in vivo identification of various
types of signal alterations, allowing for the quantification of calcification, blood-product-based
deposits, iron and myelin concentration changes, serving as important biomarkers for pathologies
like cerebrovascular conditions, neuroinflammatory processes, and neurodegenerative disorders.
Its inherent quantitative nature offers the unique ability to compare magnetic properties within
and between different groups of subjects. I will discuss and propose various applications, using
both traditional methods and those that more effectively exploit the quantitative aspects of QSM,
such as deep learning and radiomic techniques.

In Chapter 1, I am going to provide a theoretical overview of QSM, as a product of the study of
susceptibility-based techniques. Its importance in the context of personalized medicine and in the
study of neurodegenerative disorders, focus of this thesis, is going to be explained. I will delineate
the mathematical process that allows us to measure magnetic susceptibility distribution from MR
measurements, and describe the main sources of susceptibility in the human brain, with particular
attention to relevant biomarkers within the context of neurodegeneration. Then, I will illustrate
the acquisition setting implemented and optimized in our center, together with the stages to
perform QSM reconstruction, providing examples in different conditions and pathologies. In three
years, QSM has been incorporated into over 1700 MR scans, becoming a standard component of
the imaging protocol for both neurodegenerative and non-degenerative conditions. I have been
working on ensuring the quality of these images and on developing automated workflows, which I
will describe in the following chapters about applications carried out during my PhD.

The first application, discussed in Chapter 2, pertains to the utilization of QSM in the study of
Amyotrophic Lateral Sclerosis (ALS). ALS is a progressive idiopathic neurodegenerative disorder,
typically characterized by initial muscle weakness symptoms that gradually intensify over time.
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INTRODUCTION 7

A well-established hallmark in the development of ALS is the accumulation of iron in the motor
cortex, a phenomenon that can be readily detected and quantified through QSM. Previous research
has identified elevated susceptibility values in the precentral gyrus, which directly correlate with
iron concentration. Given that ALS patients experience a range of symptoms beyond motor
impairment, the proposed application of QSM seeks to explore whether iron accumulation is
observable in other cortical regions. This research aims to enhance our comprehension of the
disease, especially in relation to other motor neuron disorders.
To achieve this, a cohort of ALS patients was compared with healthy controls and individuals with
other neurodegenerative disorders. A comprehensive evaluation of the disease included the analysis
of various susceptibility and structural properties within the frontal, parietal, temporal lobes, and
cingulate cortex gyri. Neuroimaging data were combined with clinical assessments measuring the
functional status and progression of ALS, as well as the impairment of the upper motor neuron.
The diagnostic accuracy of quantitative findings was compared with qualitative neuroradiological
evaluation normally used in clinical practice. Iron accumulation in the development of ALS
occurs in motor and extra-motor cortical structures, with a direct link to the disease process and
progression.

In the third chapter (Ch. 3), I will delve into the examination of iron accumulation in cortical and
sub-cortical structures within the context of Myotonic Dystrophy type 1 (DM1), a dominantly
inherited disorder that affects both the musculoskeletal and central nervous systems. While struc-
tural, diffusion, spectroscopy, and functional MR measurements have revealed alterations in the
brains of individuals with DM1, there is a gap in our understanding of this disorder from a sus-
ceptibility perspective.
Similar to the previous application, χ measurements were derived from QSM images and integrated
with structural data, along with neurological assessments, pneumological and cardiological evalu-
ations, as well as sleep records from polysomnography. A group of DM1 patients was compared
to healthy controls matched for demographic characteristics. Multiple automated segmentation
tools were employed to pinpoint the regions of interest. QSM helps to identify the brainstem and
thalamus as target structures for progressive impairment in DM1 patients, showing correlations
with clinical and laboratory data. The use of QSM may contribute to shedding light on the on-
going debate regarding the origin of DM1 symptomatology, whether it is central or peripheral, as
discussed in the existing literature.

In the last chapter (Ch. 4), I will provide explanations of two innovative methods that I em-
ployed on QSM images, to improve their utility and facilitate data analysis.
The first method involves the implementation of a robust and accurately designed pipeline for
the extraction and evaluation of radiomic features from QSM images. This pipeline specifically
focuses on the normal appearing white matter and its tracts (arcuate fasciculus, cortico-spinal
tract, frontal aslant tract, inferior fronto-occipital fasciculus, optic radiation and uncinate fasci-
culus) and it is employed within a study conducted on a cohort of patients with multiple sclerosis
and healthy controls. Multiple sclerosis is an autoimmune demyelinating disease characterized by

7



INTRODUCTION 8

changes in iron and myelin content, detectable by QSM; when analyzed with radiomic techniques
that exploit its intrinsic quantitative nature, QSM may facilitate early diagnosis and timely as-
sessment of progression. The objective of this approach is to systematically extract and assess
radiomic features, offering valuable insights into the structural and textural characteristics of the
normal appearing white matter within the context of multiple sclerosis and beyond. This study
validated the processing pipeline for robustness analysis and established the reliability of QSM-
based radiomic features, providing a consistent number of descriptors that may be used for disease
characterization and phenotyping.
The second methodology discussed in this chapter regards the application of a super-resolution
model on susceptibility images. Super resolution includes a class of techniques aiming to enhance
image spatial resolution. They have been applied to biomedical images and, more specifically, to
MR brain ones; however, to date, QSM is quite unexplored in this kind of application, making
this work an innovative advancement in the field. The approach used was peculiar itself, since
the employed model (Enhanced Deep Super Resolution) was previously trained with natural im-
ages and then directly applied to brain MR images, without re-training or fine-tuning, to test
its inherent generalization ability over new data, not obvious in deep learning applications. The
pipeline I proposed was applied over multiple MR modalities, possibly offering new perspectives
and enhanced capabilities for the study of neurological and medical conditions. To date, only data
from healthy subjects were used, aiming to extend the validation over pathological tissues.

The final section at the end of the thesis will serve to summarize the results obtained in the
different applications, highlighting the advantages of the use of QSM in the study of neurodegen-
erative pathologies.

8



Chapter 1

Quantitative Susceptibility Mapping

The purpose of this thesis is to analyze quantitative susceptibility-enhanced brain images from
Magnetic Resonance (MR) measurements, namely Quantitative Susceptibility Mapping (QSM)
sequence, describing its implementation at IRCCS Istituto delle Scienze Neurologiche di Bologna,
Functional and Molecular Neuroimaging Unit (Bellaria Hospital), where I carried out my PhD
research, and its clinical and methodological applications. In this first chapter, I am going to
provide a theoretical overview of the technique, including important aspects from a mathemati-
cal and physiological profile, and explain the pipeline implementation in terms of processing and
acquisition.

More specifically, in Section 1.1 QSM is introduced as an innovative quantitative technique (1)

product of the study of susceptibility-based techniques, introduced in the 1980s to be investigated
in human subjects. I am going to illustrate its importance in the context of personalized medicine
and, specifically, in the study of neurodegenerative disorders (2) (Sec. 1.1.1), which I will focus on
in this work. The mathematical process (1) (3) which allows us to measure magnetic susceptibility
distribution from MR measurements is going to be explained (Sec. 1.1.2), followed by the descrip-
tion of the main sources of susceptibility in the human brain, with particular attention to relevant
biomarkers within the context of neurodegeneration, such as iron and myelin (Sec. 1.1.3).
In the second section, details of the sequence acquisition setting are given (4) (Sec. 1.2.1), together
with the stages to perform QSM reconstruction (Sec. 1.2.2,1.2.3); QSM images in different condi-
tions and pathologies are provided as examples, comparing the technique with other susceptibility-
based sequences (Sec. 1.2.4).
Issues and possible new developments are going to be highlighted, including technical limitations
and issues related to data availability (Sec. 1.3).

The first use of abbreviations includes their full expansion; for ease of reference, a glossary is
provided at the end of the chapter.

9



CHAPTER 1. QUANTITATIVE SUSCEPTIBILITY MAPPING 10

1.1 Background

Quantitative Susceptibility Mapping (QSM) (1) (3) is an advanced Magnetic Resonance (MR) tech-
nique measuring and mapping the magnetic susceptibility χ of structures within the body, par-
ticularly in the brain; it is often used to study and visualize conditions linked with the magnetic
properties of tissues, such as iron deposition, hemorrhages or calcifications. Exploiting advance-
ments in MR Imaging (MRI) technology and image processing techniques, it gained prominence in
the early 2010s, driven by the need for more accurate and quantitative measurements of magnetic
properties in the context of neuroimaging.
The development of QSM builds upon earlier work in MRI and χ imaging techniques; multiple
adult and pediatric neuropathologies demonstrate abnormal accumulation of blood products or
mineral deposition, which led scientists to study χ and its effects on MRI signals. Susceptibility-
Based Imaging (SBI) has been introduced in the clinical practice (5), usually using magnitude and
phase data from GRadient Echo (GRE) T∗

2-weighted (T∗
2w) sequences. Already in 1984, the ef-

fect of tissue susceptibility had been investigated in human subjects (6). Nowadays, Susceptibility
Weighted Imaging (SWI) (7) (8), whose processing is implemented on scanners of the main vendors,
is the most commonly used among those techniques: it has been recognize to be useful in the
diagnosis of a wide range of Central Nervous System (CNS) disorders of various etiology and it
is acquired together with conventional morphological MR T1- and T2- weighted (T1w and T2w)
images.

Although conventional SBI techniques (e.g. T∗
2w, R∗

2, SWI) provide valuable information, they
are less capable of quantifying the magnetic properties of tissues. In a recent work from Harada
and colleagues, 2022 (3), they summarize the advantages and drawbacks of imaging sequences in
the evaluation of χ; QSM offers several benefits. First, it provides quantitative measurements
of χ, yielding signal intensities directly related to tissue magnetic properties; this enables the
comparison of χ distributions intra- and inter- groups, performing longitudinal evaluations as
well. Additionally, QSM provides anatomical information: it improves tissue differentiation -
especially in some structures such as the basal ganglia, not clearly identifiable using T1w and
T2w images - and helps to distinguish between different types of lesions, hemorrhages, and tissue
structures with high sensitivity. An example of QSM reconstruction, together with T1w, T2w and
SWI images, is shown in Fig. 1.1.
Furthermore, QSM allows discrimination between dia- and para- magnetic substances, appearing
respectively hypo- and hyper- intense. The accumulation of both types of biomarkers leads to a
phase shift of the spins and in T∗

2w sequences this phenomenon leads to a signal drop; considering
that SWI does not actually measure susceptibility distribution χ(r) but returns a magnitude image
weighted on the phase signal (7) - which is mathematically linked to χ(r) (Sec. 1.1.2) - results of
both dia- and para- magnetic accumulation is hypo-intense in SWI maps. In Sec. 1.2.4, I am
going to continue the discussion by providing some examples.
Another advantage of using QSM with respect to other SBI sequences is the reduction of blooming
artifacts, commonly occurring in GRE images near the surface perpendicular to magnetic field (9).

10



CHAPTER 1. QUANTITATIVE SUSCEPTIBILITY MAPPING 11

Figure 1.1: Example of conventional morphological (T1w and T2w) and susceptibility-based (SWI and QSM) MR sequences (healthy
control, F/58 years old). Note that, since QSM is a quantitative technique, the color bar is given, while the other sequences return

signal intensity in arbitrary units. The exam was performed on a 3-T clinical scanner at Bellaria Hospital, Bologna, IT (Neuroimaging
Laboratory, IRCCS Istituto Neuroscienze Neurologiche di Bologna, IT). Acquisition parameters can be found in the Section 1.2.1

11



CHAPTER 1. QUANTITATIVE SUSCEPTIBILITY MAPPING 12

1.1.1 Precision medicine and neurodegeneration

In the early 1990s, the beginning of the human genome mapping project gave a fundamental boost
to what is called Personalized Medicine (PM), used for the first time in 1999 in a short article of
The Wall Street Journal (10). Also referred to as precision medicine, PM is a health-care approach
that tailors medical decisions, interventions and therapies to the individual characteristics of each
patient (11). PM strategies have been developed recently, aiming to consider human variability
and to identify the disease-associated variants through the study of the genotype and phenotype
of patients and their diseases. The use of genetic information is central in PM approach, to un-
derstand the individual genetic make-up and reveal mutations, variations and predispositions to
diseases. Although, the subject’s profile is evaluated adding other variables, such as environment
and lifestyle, to carry out a more comprehensive evaluation. By understanding an individual’s risk
factors, PM may help in disease prevention and early detection. For example, individuals with
a higher risk of certain cancers may undergo more frequent screening to detect the disease at an
early, more treatable stage. PM often involves the development and use of targeted therapies and
diagnostics, as treatments designed to specifically target the underlying causes of a disease, often
based on the patient’s genetic profile. They can be more effective than one-size-fits-all treatments.
While PM holds great promise for improving healthcare outcomes and minimizing adverse effects,
it also presents challenges related to privacy, data security, and ethical considerations. Addition-
ally, the availability and affordability of genetic testing and targeted therapies can vary widely,
making widespread implementation of personalized medicine a complex endeavor. Nonetheless, it
continues to be an area of active research and development in modern health services.

Biomedical imaging is a key component of PM (12); exploiting imaging information, coming from
in vivo and non-invasive examinations, can lead to more effective diagnosis, treatment, and man-
agement of diseases. As a quantitative technique, QSM has the potential to play a significant role
in PM, especially in the fields of neurology and oncology. Thanks to its sensitivity to the effects of
magnetization, some areas of application may be (3): a) brain tumor characterization, distinguish-
ing between types, providing information about their grade, and assessing treatment response; b)
evaluation of the extent and location of hemorrhages and micro-bleeds in patients with traumatic
brain injuries, crucial for tailoring treatment and monitoring recovery in a personalized manner; c)
identifying and characterizing hemorrhagic and ischemic strokes, providing information about the
extent of brain damage. In all of these applications, QSM provides quantitative data that can help
clinicians and researchers to tailor treatments to individual patients’ needs. It can guide treatment
decisions and monitor treatment responses, ultimately improving patient outcomes. However, it’s
important to note that QSM is still a relatively specialized technique and may not be available
at all healthcare institutions. Its adoption in personalized medicine may vary depending on the
specific clinical context and available resources.

Personalized treatment programs have been applied to neurodegeneration (2) (13), which is one of
the most explored QSM applications (14), that I will focus on for this thesis. Neurodegenerative

12



CHAPTER 1. QUANTITATIVE SUSCEPTIBILITY MAPPING 13

disorders affect millions of people worldwide and they are one of the most recurrent contributors
to morbidity and mortality in the elderly; it has been established that the combination of genes
and environment contributes to the risk of developing a neurodegenerative disease.
Dysfunctions of cerebral iron regulation contribute to the pathogenesis of various neurodegen-
erative disorders (15); QSM can help to quantify the amount of iron deposition in specific brain
structures and, considering that, it is a promising tool to characterize neurodegeneration, where
abnormal iron accumulation, associated with oxidative stress, is a hallmark. QSM can provide
insights into the basal ganglia’s iron content, which is implicated in Parkinson’s Disease (PD)
pathophysiology, particularly in the substantia nigra (16), monitoring iron levels in these structures
and helping to track disease progression and treatment response. Iron concentration in the basal
ganglia also occurs in the development of Huntington’s Disease (HD) (17), which can consequently
be studied using χ-based techniques such as QSM. Another example is Alzheimer’s Disease (AD):
while QSM is not as commonly used for AD - since other imaging techniques like positron emission
tomography scans and cerebrospinal fluid analysis are often more informative in AD research - it
can potentially provide information about iron accumulation in certain brain regions (18).
There are other biomarkers influencing χ distributions: paramagnetic transition metal ions, such
as copper, manganese and cobalt (1), or calcium, responding diamagnetically (19). Thus, over iron-
based disorders, QSM may help in studying other biomarkers, for example, calcium in Fahr’s
syndrome (3) or copper in Wilson’s Disease (20). QSM is particularly useful in studying demyeli-
nating diseases, such as Multiple Sclerosis (MS) (21) (22) (23), because myelin is diamagnetic and
reduction in myelin concentration directly impact measure of χ (24).
In the past three years, I have been focused on the applications of QSM to Amyotrophic Lateral
Sclerosis (ALS), Myotonic Dystrophy type 1 (DM1) and MS, which I am going to describe and
explain in Chapters 2, 3 and in Section 4.1.

1.1.2 From χ to MR measurements

The process of generating χ maps involves post-processing of MRI data, typically acquired with
3D GRE T∗

2w sequences (4). By measuring the phase information of the MRI signal and performing
mathematical reconstruction, QSM pipelines generate maps that represent the spatial distribution
of χ values in the imaged region. These maps can then be used by radiologists and researchers to
gain insights into the underlying tissue properties.

As I am going to explain shortly in this section, tissue susceptibility distribution χ(r) is related
to magnetic field inhomogeneities ∆B(r) generated by the induced matter magnetization when
an external magnetic field is applied. ∆B(r) is proportional to the phase data ϕ measured with
MR measurements. Signal S(TE) at echo time TE is equal to:

S(TE) ∝ e
− T E

T ∗
2 · eiϕ

(
ϕ = ϕ0 − γ

2π
∆B · TE

)
(1.1)

with ϕ0 offset related to the experimental setup and γ gyromagnetic ratio (for hydrogen, equal to
42.58 MHz

T
. ∆B(r) and ϕ(r) are the same up to a multiplicative factor.

13



CHAPTER 1. QUANTITATIVE SUSCEPTIBILITY MAPPING 14

Magnetic susceptibility χ refers to a material’s ability to become magnetized when placed in
an external magnetic field (25) and it depends on the atomic and molecular structure: availabil-
ity of unpaired electrons, distribution of electron cloud, competition between spin and induction,
micro-structure and so on. In MRI, an external and static magnetic field is applied, and, conse-
quently, χ differences in tissues create contrast in MRI images. In this context, I refer to static
magnetic susceptibility.

For isotropic, non-ferromagnetic materials, matter magnetization is described by the magnetiza-
tion vector or magnetic dipole moment per unit volume M⃗ , defined as (1):

M⃗ = dm⃗

dV
(1.2)

where dm⃗ is the elementary magnetic moment. The macroscopic magnetization M⃗ , the induction
vector B⃗ and the magnetic field H⃗ are related with each other:

M⃗ = χH⃗ (1.3)

B⃗ = µ0(H⃗ + M⃗) (1.4)

B⃗ = µ0(H⃗ + χH⃗) = µ0(1 + χ)H⃗ = µ0µrH⃗ (1.5)

where µ0 is the vacuum magnetic permeability (4π · 10−7 H
m

) and µr is the relative permeability,
representing the degree of the magnetization of the specific material. M⃗ and H⃗ have the same unit
of measure (A/m), which makes χ dimensionless. In isotropic and homogeneous materials, the
magnetic response is uniform, χ has an isotropic behavior and it can be modeled as a scalar quan-
tity; in the brain, that happens in the gray matter structures, such as the basal ganglia. In other
materials, such as the cerebral white matter, the magnetic response is not uniform, because of the
asymmetry of the molecules’ structures and it depends on the orientation of the field, leading to an
anisotropic behavior of χ which should be modeled as a tensor quantity (χ⃗ = χ⃗(H⃗)). Susceptibility
Tensor Imaging (STI) technique characterizes the anisotropic tissue magnetic susceptibility with
a second-order tensor model (26); detailing the math and application of this technique is beyond
the purpose of this thesis.

In medical images, each voxel represents a particle, and each particle magnetically reacts with
the external magnetic field and with the surrounding particles. Particles are modeled as dipoles;
assuming that B⃗0 is aligned along the z⃗ axis (B⃗0 = [0, 0, B0]) and consequently M⃗ is aligned along
the z⃗ axis (M⃗ = [0, 0, Mz]), fair to assume in MR measurements:

Mz(r) = χ(r)H0 = χ(r) B0

µ0µr

= χ(r) B0

µ0(1 + χ(r)) ∼ χ(r)B0

µ0
(1.6)

with χ << 1, reasonable considering susceptibility values in the human body - tipically ± 20% of
χwater = −9.05 · 10−6 (SI units) (1). The magnetic field generated by this distribution Mz(r) is:

∆Bz(r) = µ0

4π

∫ 1
|r − r′|3

×
(

3Mz(r′)(r − r′)
|r − r′|2

(r − r′) − Mz(r′)
)

d3r′ = µ0 · Mz(r)
⊗

D(r) (1.7)
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∆Bz(r)
B0

= χ(r)
⊗

D(r) (1.8)

resulting in a convolution between the susceptibility distribution and the expression of the unit
dipole field D(r), describing the sum of the dipolar fields generated by each element of the dis-
tribution Mz(r). In k-space, using the convolution theorem, the expression can be simplified as a
point-wise multiplication:

∆Bz(k)
B0

= χ(k) · D(k) (1.9)

The unit dipole field D(k) has singularities near the cone surface of the magic angle 54.7° relative to
the direction of the main magnetic field, which makes the susceptibility reconstruction an ill-posed
problem. Different techniques have been implemented to fix this issue, regularization strategies
helping the suppression of streaking and shadowing artifacts in χ reconstruction and optimization
approaches incorporating additional information. Some of them are: MEDI (Morphology Enabled
Dipole Inversion) (27), HEIDI (Homogeneity Enabled Incremental Dipole Inversion) (28), iterative
Least SQuaRe (iLSQR) (29), TGV (Total Generalized Variation) (30). An exhaustive overview of
those methods may be found in the work of Bilgic and colleagues (4). Additionally, multiple-
orientation methods (e.g. Calculation Of susceptibility through the Multiple Orientation Sampling
[COSMOS] (31)) have been introduced, very accurate but impracticable in clinical practice because
of the long scan time and patient discomfort (32). Deep learning approaches have been proposed
as a solution as well (33) (34) (35) (36).

1.1.3 χ sources: dia-, para- and ferro- magnetic materials

In almost all the materials, in the absence of an externally applied magnetic field H⃗ = B⃗ = 0,
and consequently there is no magnetization (M⃗ = 0). When an external magnetic field is applied
(H⃗ ̸= 0 and B⃗ ̸= 0), a macroscopic magnetization vector with non-zero intensity (M⃗ ̸= 0)
occurs, whose direction, sense and intensity are related to χ. In Fig. 1.2, the scale of magnetic
susceptibility values of some elements and compounds in the human body, ranging from -7.0 to
11.0 ppm (SI units) (37), is shown. According to χ, materials can be broadly categorized into
diamagnetic, paramagnetic and ferromagnetic; below, is a brief description of those phenomena.
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Figure 1.2: Spectrum of magnetic susceptibility values of some elements and compounds in the human body (37) (SI units). In the
upper diagram, the full range of observed magnetic susceptibility values is shown in logarithmic scale, extending from -1.0 ppm for
superconductors to values higher than 106 for ferromagnetic materials. In the bottom diagram, the susceptibility of elements and

compounds in the human body, raging from -7.0 to 11.0 ppm

Figure 1.3: Scheme of magnetization vector M⃗ and external magnetic field B⃗ in dia- (upper diagram) and para- (bottom diagram)
magnetic materials. Diamagnetic materials: in balance condition without an external magnetic field, the net magnetic moment is
equal to zero; when a field B⃗ is applied, a weak magnetization vector M⃗ is formed along the same direction of the field but in the

opposite sense. Paramagnetic materials: in the absence of an external magnetic field, the number of magnetic moments pointing up
n+ and the ones pointing down n− are approximately the same; when an external field is applied, the majority of the magnetic
moments start to align as the field. When the intensity of the field is strong, the number of the magnetic moments direct in the

opposite sense of the field tends to zero
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Diamagnetic materials

In diamagnetic materials (Fig. 1.3, upper diagram), a repulsive force is induced when a magnetic
field is externally applied; magnetization M⃗ induced by the external field has a small intensity and
is oppositely directed with respect to the field, because of the electron induction currents which
generate a magnetic field in the opposite sense with respect of the external one (Lenz’s Law).
Water is slightly diamagnetic (χwater = -9.035 ppm [SI units], average brain tissue susceptibility)
and, because of the great abundance of its molecules (∼ 70-80% of the total tissues (19)), body
tissues are mainly diamagnetic and have a weak response to the magnetic field. Examples of
diamagnetic biomarkers are oxy-hemoglobin, calcium and myelin.

Figure 1.4: Deoxygenated and oxygenated hemoglobin structure

• Oxy-hemoglobin
Oxyhemoglobin (HbO2,Fe3+)4 (Fig. 1.4) is the form of hemoglobin combined with oxygen.
Hemoglobin (Hb) is the predominant protein in the erythrocytes, containing four atoms
of iron; it is responsible for transporting oxygen from the lungs to the body’s tissues and
organs, as well as carrying carbon dioxide back to the lungs for exhalation. Hb binds
and releases oxygen depending on the oxygen concentration in its environment, and it is
referred to as deoxy-hemoglobin or oxy-hemoglobin respectively if it is detached or not from
molecular oxygen O2. The balance between oxyhemoglobin and deoxyhemoglobin is crucial
for efficient oxygen delivery and release, and it is influenced by various factors, including pH
and carbon dioxide levels. In its oxygenated form, Hb exhibits diamagnetic behavior, with
iron temporarily oxidized from Fe2+ to Fe3+.

• Calcium
Ca2+ ions are implied into various neuronal functions, such as neuronal signaling, partic-
ipating in neurotransmitter release, synaptic transmission, and the activation of various
enzymes and pathways involved in learning, memory, and other cognitive functions. When
calcium regulation is disrupted, it can contribute to neurodegenerative processes (38): changes
in calcium levels at synapses can modulate the strength of synaptic connections, affecting
information processing in the brain. Excessive calcium influx into neurons can lead to
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excitotoxicity, a process where over-stimulation of neurons by neurotransmitters like gluta-
mate results in cell damage or death; this process is implicated in several neurodegenerative
conditions, including AD and HD; disruption of calcium homeostasis can lead to neuronal
dysfunction, and degeneration and dysregulation of mitochondrial calcium levels can con-
tribute to oxidative stress and cell death. In many neurodegenerative disorders, including
AD, PD, HD and ALS, abnormalities in calcium handling have been observed, and QSM
may be used to detect these abnormalities since it is calcium-sensitive.

• Myelin
Myelin is a spiraling sheath wrapping around nerve fibers (axons) in the CNS (Fig. 1.5),
composed of 10% proteins, 40% water and 50% lipids; lipids give myelin its characteristic
white appearance, which is the reason why regions of the nervous system rich in myelinated
fibers are often referred to as white matter. The myelin sheath acts as an insulating layer
and plays a critical role in the efficient transmission of electrical impulses along nerve cells,
enhancing the speed and efficiency of electrical signal propagation (action potentials) along
the axons. Myelin sheaths are not continuous along the entire length of the axon. Instead,
they are periodically interrupted by small gaps called nodes of Ranvier. These nodes con-
tain a higher concentration of ion channels and allow for the rapid propagation of the action
potential.
Myelin is involved in neurological functions, and disruptions in myelin can lead to neuro-
logical disorders and diseases, including: MS, an autoimmune disease in which the immune
system mistakenly targets and damages the myelin in the CNS (Sec. 4.1); NeuroMyelitis
Optica Spectrum Disorder (NMOSD), inflammatory disorder of the central nervous system
characterized by severe, immune-mediated demyelination and axonal damage predominantly
targeting optic nerves and the spinal cord; Guillain-Barré Syndrome (GBS), a condition
where the immune system attacks the peripheral nerves and their myelin sheaths, causing
muscle weakness and sometimes paralysis; Charcot-Marie-Tooth Disease (CMT), a heredi-
tary disorder that affects the peripheral nervous system with progressive muscle weakness
and sensory abnormalities due to myelin and axon damage. As already pointed out, QSM
is a useful instrument to study myelin concentration in vivo, because of the proportionality
between histopathological and imaging measurements (24) (Fig. 1.6).
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Figure 1.5: The structure of peripheral nervous system myelin sheath (39). Schematic representation of a (i) myelinated axon, (ii)
myelin sheath, (iii) bilayer membrane, and (iv) major lipids classes. Myelin is formed by apposition of the external surfaces and

internal surfaces of the myelin bilayer that constitute the intraperiodic line (IPL) and the major dense line (MDL), respectively (ii,
iii). The myelin bilayer has an asymmetric lipid composition (iii, iv). Myelin proteins are also asymmetrically distributed with for

example PLP and P0 in the IPL and MBP and PMP2 at the MDL (iii). Cholesterol (Chl.), Galactosylceramide (Galc, cyan),
Plasmalogen (PE, yellow), Phosphatidylcholine (PC, dark blue), Sphingomyelin (SM, light blue) and other phospholipids (PL, red).

P0, PMP2 proteins and the enrichment of sphingomyelin in the myelin are specific to PNS myelin

Paramagnetic materials

Paramagnetic (Fig. 1.3, bottom diagram) materials respond positively when an external magnetic
field is applied. The magnetic moments µ⃗i of the single particles are directed randomly and have
a non-zero intensity value even if there is not an external field B⃗ applied. Considering only the
z⃗ direction, in a balanced situation (H⃗ = 0 → M⃗ = 0) n+ = n−, where n+ is the number of the
magnetic moments pointing up, n− the number of magnetic moments pointing down. This balance
is broken when an external field is applied (M⃗ ̸= 0). The imbalance n+ − n− is proportional to
µB

kBT
when |µ⃗||B⃗| << kbT - where µ⃗ is the total magnetic moment, kB the Boltzmann constant

(1.23 · 10−23JK−1) and T is the temperature. When B⃗ has a strong intensity (|µ⃗||B⃗| >> kbT ),
the relationship stops to be linear and n− tends to zero. All the single magnetic moments tend to
line up in the same direction of the field, so the external magnetic field is reinforced. Unpaired
electrons produce strong paramagnetic effects. Their spins tend to align themselves along the
direction of the field. In this way, they make it stronger in intensity. In paramagnetic materials,
χ assumes small and positive values; the relative permeability µr is slightly greater than 1. As
paramagnetic materials in the brain, I am going to focus on iron-storage substances, heme and
non-heme compounds.

• Iron-storage substances
Iron is a transition metal with the following electron configuration: [Ar]3d6s2; the four
unpaired electrons in the d-shell cause its magnetic response. In the human body there
are 3 to 5 g of iron, 2/3 in hemoglobin and 1/3 in non-heme compounds (ionic form).
Iron is involved in oxidative phosphorylation, DNA synthesis, transport of oxygen in the
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blood, myelin synthesis and neurotransmitter production (14). Iron pathogenesis is modified
in abnormal situations; oxidative damage leads to the production of ferroptosis and disease-
specific mechanisms: iron interacts with hallmark features of the disease (e.g. α-synuclein
proteins), leading to the increase of the aggregation of these proteins, incorporations of iron
in these compounds and then increase of oxidizing capacity and neuronal cell death.
An increase of χ values measured with QSM, directly proportional to iron concentration (24)

(Fig. 1.6) was observed in brain regions associated with specific pathology: motor cortex
in ALS, substantia nigra in PD, etc. In some disorders, the increase of susceptibility is also
correlated with disease duration or severity in clinical evaluation (14).

• Deoxy-hemoglobin
The majority of human iron is stored in hemoglobin; in Fig. 1.4, the structure that the
molecule assumes when the oxygen is released during metabolic consumption is shown
(Hb,Fe2+). Deoxy-Hb is strongly paramagnetic because it has four unpaired electrons
per heme; it may further oxidize in methemoglobin, which has five unpaired electrons per
heme. The observation of hemoglobin magnetic effects allows us to study blood-oxygen-level-
dependent signals and all disorders connected with the blood flow thanks to the oxygenation-
related susceptibility changes occurring in blood products. QSM has been proven to be useful
in investigating χ of intra-cerebral hemorrhages at various stages (40).

Ferromagnetic materials

Ferromagnetic materials react in a constructively when an external field is applied; they are char-
acterized by a net magnetic moment, also in the absence of an external field. When a field is
externally applied, their reaction is stronger than paramagnetic materials: their magnetization
persists thanks to a very favorable energy exchange between the material and the field. Ferro-
magnetic materials have magnetic moments very high in intensity, so the magnetic susceptibility
values are positive and very large.
There are no elements stored in known ferromagnetic structures in the human body, even if
there are ferromagnetic elements - for example, iron is a ferromagnetic element, but ferritin and
hemosiderin, which store iron, are not.
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Figure 1.6: Figures from (24), comparing susceptibility measurements with iron and myelin concentration from histopathological
measurements. Left panels: punched brain slice, corresponding QSM image, and myelin and iron stainings; (A) bottom cutting plane

of a 5 mm thick formalin-fixed punched axial brain slice of case ID3 containing BG; (B) corresponding axial susceptibility ma; (C)
corresponding myelin and (D) iron stainings. Right panel: histological intensities (upper diagram) and corresponding susceptibilities

derived from MRI (bottom diagram) of white matter, grey matter, thalamus and basal ganglia. Susceptibility values from QSM
positively correlate with quantitative ferrozine iron values in the basal ganglia, confirming paramagnetic effect of iron on

susceptibility, while they negatively correlate with myelin intensities within the white matter, showing a diamagnetic effect. Myelin
intensities were higher in the thalamus than in the basal ganglia: a significant relationship was nonetheless observed between

quantitative iron values and QSM, confirming the applicability of the latter in this brain region for iron quantification

Figure 1.7: From (40), χ values of intracerebral hematomas at various stages and corresponding blood products, demonstrating
positive χ at the hyperacute stage, followed by a significant increase at the acute stage from hyperacute, a significant decrease in the

late subacute stage from early subacute, and an eventual significant increase at the chronic stage
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1.2 Processing pipeline

An overview of QSM possible acquisition setting and processing options may be found in (4). At
Bellaria Hospital in Bologna (Functional and Molecular Neuroimaging Laboratory, IRCCS Istituto
delle Scienze Neurologiche di Bologna, IT), where I have carried out my PhD research, there is a
3-T clinical scanner (Magnetom Skyra; Siemens Healthineers, Erlangen, Germany) equipped with
a whole-body transmit and 64-channel Head/Neck receiver coil. QSM acquisition protocol and χ

reconstruction were optimized from November 2019 to February 2020; nowadays, this sequence
has been inserted in clinical routine, particularly in neurodegenerative protocols, reaching ∼ 1700
QSM examinations in September 2023. Together with patients, healthy volunteers have been
scanned for comparison.

1.2.1 MR protocol and software

Details for QSM acquisition in our research group are (TE = Time of Echo, TR = Time of
Repetition, SR = Super Resolution, FOV = Field Of View, FA = Flip Angle): 3D T∗

2w GRE,
axial, 5 TEs, TE1/∆TE = 9.42/9.42 ms, TR = 53 ms, SR = 0.5x0.5x1.5 mm3, FOV = 196x224x144
mm3, FA = 9°, scan time 8’ 45”; ADAPTIVE (41) is used as coil combination method, automatically
performed by the scanner. An example of raw data, magnitude and phase for each echo time, are
shown in Fig. 1.8.

Figure 1.8: Magnitude and phase maps from the 5TE-sequence implemented in Bellaria Hospital to reconstruct QSM (healthy
control, F/60 years old) (IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit)

Other MR sequences are acquired during the exams, supporting QSM processing with respect
to data analysis of various pathologies; for example, automated segmentation tools working on
conventional morphological T1w may be exploited and overlaid on QSM to study χ values. In
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Tab. 1.1, parameters of the sequences acquired with QSM and used in the clinical applications
are described. Details about their processing are going to be provided in the specific sections.

MPRAGE FLAIR HARDI DWI SWI
(3D T1w) (3D SPACE T2w) (2D EPI single-shot) (3D GRE T2*w)

Plane sagittal sagittal axial axial
TR (ms) 2300 5000 4300 28
TE (ms) 2.98 428 98 20

SR (mm3) 1x1x1 1x1x1 2x2x2 0.5x0.5x1.5
FOV (mm3) 176x256x256 176x256x256 220x220x176 196x224x144

FA (°) 9 120 90 15
Scan time 5’ 21” 5’ 55” ∼9’ 4’ 28”

Table 1.1: Acquisition parameters of T1w, T2w, DWI and SWI in Bellaria Hospital, IRCCS Istituto delle Scienze Neurologiche di
Bologna, Functional and Molecular Neuroimaging Unit, Bologna (IT), with a 3-T clinical scanner (Magnetom Skyra; Siemens

Healthineers, Erlangen, Germany) equipped with a whole-body transmit and 64-channel Head/Neck receiver coil (MPRAGE =
Magnetization Prepared RApid Gradient Echo, FLAIR = FLuid Attenuated Inversion Recovery, SPACE = Sampling Perfection with
Application optimised Contrast using different flip angle Evolution, HARDI = High Angular Resolution Diffusion Imaging, DWI =

Diffusion Weighted Imaging, EPI = Echo Planar Imaging, SR = Spatial Resolution, FOV = Field Of View, FA = Flip Angle)

For DWI measurements, the sequence has changed in early 2021 from single- (5 unweighted vol-
umes and 64 volumes b = 2000 s/mm2) to multi- (8 unweighted volumes, 12 volumes b = 300
s/mm2, 30 volumes b = 1000 s/mm2 and 64 volumes b = 2000 s/mm2) shell. Both sequences
are acquired with Anterior-Posterior (AP) phase encoding. An additional sequence with inverted
phase encoding (PA) (∼ 4’ scan time) was acquired to correct EPI distortions artifacts in the EPI
volumes: for single-shell measurements, 3 unweighted volumes were acquired, while for multi-shell
the sequence was re-acquired repeating each volume acquisition with weighting 0-1000 s/mm2. In
the projects described in this thesis (Sec. 4.1), the DWI sequence was used to only tractography
reconstructions, using volumes with b-value 2000 s/mm2 for both single- and multi- shell mea-
surements, without changing the pipeline. The volumes of the reconstructed tracts are consistent
between the two sequences.

Most of the software and tools used to implement project pipelines illustrated in the following
chapters are open source. Below there is a list of the ones used the most; specific functions used
in the studies will be presented in the corresponding chapter.

• FSL: Functional magnetic resonance imaging of the brain (FMRIB) Software Library (42)

(version 6.0.4) - comprehensive library analysis tools for MR brain imaging data

* BET: Brain Extraction Tool (43), for skull-stripping

* FLIRT: FSL’s Linear Image Registration Tool (44) (45), automated robust and accurate
tool for linear (affine) brain image registration, both intra- and inter- modalities

* FNIRT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT), performing registration
with non-linear method when linear transformations are not sufficient to achieve good
registration
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* FIRST (46), model-based segmentation tool; running on T1w images, it returns the
segmentation of deep brain gray matter nuclei

• ANTs: Advanced Normalization Tools (http://stnava.github.io/ANTs/) (version 2.3.5),
software package for normalizing data to a template

• MRtrix3 (47) (version 3.0.2), providing a set of tools for MR analysis

• FreeSurfer (48) (version 6.0.0) for the analysis and visualization of MR neuroimaging data
from cross-sectional and longitudinal studies

1.2.2 χ map reconstruction

Processing stages are shown in Fig. 1.9. Phase maps were processed by Laplacian unwrapping (49)

and Variable kernel Sophisticated Harmonic Artifact Reduction for Phase data (V-SHARP) as
background field removal (50). V-SHARP requires a brain mask, obtained skull-stripping TE1

magnitude map using BET (43). Multi-echo phase data were combined into a single-phase image
through a weighted sum over echoes of processed phase maps (51):

w(TEi) = TEie
− T Ei

T ∗
2∑N

j=1 TEje
−

T Ej
T ∗

2

(1.10)

with N is the number of echo times, equal to 5 in this pipeline. The iLSQR technique was used
as dipole inversion method (29). STI Suite (52) was used for the processing.

Figure 1.9: Phase and quantitative susceptibility maps from a 3D GRE 5-TEs T2*w acquisition (IRCCS Istituto delle Scienze
Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Ospedale Bellaria, Bologna): A) Raw phase data (1st TE);

B-C) phase map after laplacian unwrapping and V-SHARP background field removal (1st TE); D) total phase map as result of
multi-echo map combination through weighted sum; E) QSM, evaluated with iLSQR (healthy control, F/46 years old)

During the preliminary stages, different combinations of parameters and strategies have been
attempted on a few subjects (53), changing spatial resolution, number and values of echo times and
coil combination method. Those were the competitive configurations:

a. 2 TEs (TE1/∆TE/TR=9.42/9.42/27 ms) and spatial resolution 1x1x1 mm3, 0.8x0.8x1.5
mm3, 0.5x0.5x1.5 mm3, 0.5x0.5x1 mm3, A Simple Phase Image Reconstruction for multi-
Echo data (ASPIRE) (54) as coil combination method (scan time ∼ 3,4,5,7’)
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b. 5 TEs and spatial resolution 0.5x0.5x1.5 mm3 (TE1/∆TE/TR=9.42/9.42/53 ms, ∼9 mins),
using both ASPIRE, manually implemented, and the ADAPTIVE coil combination meth-
ods (41), automatically performed by the scanner

c. 8 TEs (TE1/∆TE/TR=5.6/5.6/51 ms) and spatial resolution 0.8x0.8x1.5 mm3 (scan time
∼7 halving the number of axial slices)

An overall qualitative evaluation of the reconstructed images was conducted, together with quanti-
tative evaluation of contrast of small structures, specifically of the Nigrosome-1 (N1), substructure
of the Substantia Nigra pars compacta (SNpc) enriched by dopaminergic neuron, which loss in
PD and Atypical Parkinsonian Syndromes (APS) (α-synucleinopathies) is related to iron accu-
mulation. N1 changes are detectable using QSM and are supportive MR markers for differential
diagnosis of these neurodegenerative disorders (55). However, its detection is not that easy and
requires at least the use of a high-strength magnetic field and high spatial resolution setting. In
Fig.1.10, examples of N1 detection in the different configurations.

Figure 1.10: Axial view with SN and N1 of QSM maps (53): A) 2TEs, spatial resolution 0.5x0.5x1.5 mm3, ASPIRE; B) 5TEs, spatial
resolution 0.5x0.5x1.5 mm3, ADAPTIVE; C) 8TEs, spatial resolution 0.8x0.8x1.5 mm3, ADAPTIVE (healthy control, F/46 years

old) (Neuroimaging Laboratory, IRCCS Istituto Neuroscienze Neurologiche di Bologna, IT)

The impact of N1 recognition becomes difficult as the number of echo times decreases; of course,
this is not the only factor to take into account. N1 and SN were manually segmented and the
Contrast-to-Noise Ratio (CNR) N1-SN in susceptibility χ maps was evaluated, with 0.5 as esti-
mated error:

CNRN1−SN = | < x >N1 − < x >SN |
σ2

SN

(1.11)

where < x > is the mean intensity value within N1 and SN and σ is the standard deviation. In Fig.
1.11, CNRN1−SN of the different configurations is shown. Maximizing the contrast of N1 in SN,
ADAPTIVE was selected as coil combination method, 5 echo times (TE1/∆TE/TR=9.42/9.42
ms) and 0.5x0.5x1 mm3 as spatial resolution.
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Figure 1.11: Scatter plot with CNRN1−SN in the different configurations tested to optimize QSM reconstruction, with 0.5 set as
error. In this graph, the number of echo times, spatial resolution and coil combination method are reported for each configuration;

TE1/∆TE/TR (ms) are = 9.42/9.42/27 for 2TE-configurations, 9.42/9.42/53 for 5TE-configurations and 5.6/5.6/51 for
8TE-configurations

1.2.3 Cerebrospinal fluid as reference tissue: atlas-based method

QSM enables the evaluation of χ(r) up to an additive factor χ0, called reference value (56) (57):

χ(r)∗ = χ(r) + χ0 (1.12)

χ0 changes from one acquisition to another, thus its evaluation is necessary to compare χ distri-
butions intra- and inter- subjects. The most common method is called zero-referencing (58): χ of a
specific area, presuming to have a null response to the magnetic field, is set equal to zero, and the
entire χ(r) is shifted by the same factor. Usually, the cerebrospinal fluid (CSF) is chosen, because
its susceptibility value is not affected by the subject’s age or pathological condition and there is
no orientation dependence. Normally, the average CSF signal over ventricles is considered.
However, since the size of the ventricles varies and CSF often appears non-uniform in QSM be-
cause of the presence of blood vessels and/or calcifications, the QSM signal inside ventricles is
not uniform. Instead of considering the entire ventricles, in our pipeline three small volumes were
selected following the work of Straub and colleagues, 2017 (atrium, anterior horns and central
part) (57). An original atlas-based method was implemented to automatically identify the three
volumes on each exam. MPRAGE maps of 60 subjects, mix of healthy controls and patients, were
non-linearly registered using FNIRT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT), af-
ter brain extraction with BET (43), to the space of a selected reference subject. The magnitude
of the first echo time of the GRE T∗

2w sequence was registered via affine transformation to the
corresponding MPRAGE using FLIRT (44) (45); this operation was combined with the deformation
matrix obtained from the non-linear transformation, to have all the 60 QSM-magnitude maps
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averaged in the same space. The resulting 60-subject atlas is shown in Fig. 1.12. The three small
CSF volumes were manually drawn on the atlas on both sides, selecting three adjacent slices for
each. The volumes were back-registered into the original QSM map for each subject and the mean
susceptibility value was extracted and considered as reference. Because of the artifacts in QSM
near air-bone interfaces (59), the weighted sum was considered instead of the arithmetic one, giving
less weight to the values that deviate the most from the average value. The method was tested
on 120 subjects, 60 used to build up the atlas and the other 60 news.
The extracted values were consistent with values from manual segmentation, considered as the
gold standard. In ∼9% of the cases the back registration failed, meaning that the back-registered
volumes fell out from the ventricles, thus manual segmentation was performed. The atlas-based
method implemented is promising to automatically and accurately extract susceptibility reference
values. The evaluated values were consistent with the gold standard within 1.5 σ, both in the 60
subjects used to build the atlas and the 60 subjects constituting the test sample. The measure-
ment uncertainty is significantly reduced using three small volumes instead of the whole lateral
ventricles: in 70% of cases, it results in less than half.

Figure 1.12: T1w and QSM-Magnitude 60-subject atlas built-up to automatically identify the anterior horns, atrium and body of the
lateral ventricles in each exam and extract the susceptibility reference value (IRCCS Istituto delle Scienze Neurologiche di Bologna,

Functional and Molecular Neuroimaging Unit, Bellaria Hospital)

1.2.4 Susceptibility-based imaging: QSM and SWI

In this section, I would like to provide a few examples of QSM compared to SWI. As aforemen-
tioned, there are quantitative and qualitative advantages in using QSM (3), including visual benefits
thanks to its ability to distinguish dia- and para- magnetic materials (Fig. 1.13). The presence
of dia- and para- magnetic substances leads to a de-phasing of the spins and dropping signal in
T∗

2w images: while SWI considers this information qualitatively, QSM measures the susceptibility
distribution from phase data.
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Figure 1.13: QSM and SWI of a patient with Lewy Body Dementia (M/79 years old, IRCCS Istituto delle Scienze Neurologiche di
Bologna, Functional and Molecular Neuroimaging Unit). Diamagnetic (red arrow) and paramagnetic (blue arrow) materials appear

different in QSM while they have the same intensity and contrast in SWI. Acquisition parameters are in Section 1.2.1 (Tab. 1.1)

In Fig. 1.14, an example of QSM and SWI reconstructions from the same 3D GRE T∗
2 sequence:

note that they can ideally be obtained using the same raw data and changing the post-processing.
In our center, as it commonly happens, two different sequences were optimized for the two methods
(Sec. 1.2.1, Tab. 1.1); examples shown in this section refer to those measurements.

Figure 1.14: From the left: Magnitude and phase (1st TE) raw data from QSM sequence, QSM reconstruction from the 5 TEs
combination and SWI obtained with the same measurements (HC F/60 years old, IRCCS Istituto delle Scienze Neurologiche di

Bologna, Functional and Molecular Neuroimaging Unit)
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Brain iron accumulation in deep brain nuclei has been described in APS, mainly in Multiple
System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) (60). In Fig. 1.15, an example
of a patient with MSA is shown, displaying basal ganglia appearance in both SWI and QSM: iron
deposition is detectable by the two sequences as hypo- and hyper- intense respectively. However,
with SWI susceptibility is not actually measured; quantitative SBI techniques have helped in the
identification of disease-related patterns.

Figure 1.15: MPRAGE, SWI and QSM in a patient with MSA-C (cerebellar type) (M/65 years old, IRCCS Istituto delle Scienze
Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit). Iron accumulation is detectable using susceptibility-based

techniques - as hypo- and hyper-intensity respectively in SWI and QSM - in putamen and globus pallidus. QSM provides quantitative
measurements, thus its color bar is shown, while MPRAGE and SWI are in arbitrary units. Details acquisition parameters are in

Section 1.2.1 (Tab. 1.1)

QSM has been used to detect paramagnetic rims of iron-loaded active microglia and macrophages
in patients with MS (61). They are also referred to as chronic active lesions and their negative
impact on the disease course has been suggested in literature (62), making their exploration crucial
to understand and characterize this disorder. In Fig. 1.16, an example is given: note that rim+
lesions may gain contrast in SWI image but without the rim. Together with the detection, with
QSM it is possible to quantify χ lesions and monitor their values longitudinally (63).

Figure 1.16: FLAIR, MPRAGE-Gd (gadolinium-enhanced), SWI and QSM in a patient with relapsing-remitting MS (F/33 years old,
IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit). QSM allows the detection

chronic active lesions (red arrow) reflecting an ongoing inflammatory process not Gd-enhanced - note that the lesion gains contrast in
SWI image but without the rim. Instead, enhanced-Gd lesions (blue arrow) are not detectable in QSM. QSM provides quantitative
measurements, thus its color bar is shown, while MPRAGE and SWI are in arbitrary units. Details acquisition parameters are in

Section 1.2.1 (Tab. 1.1)
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In Figs. 1.17 and 1.18, an example of brain calcification and Transient Ischemic Attack (TIA); as
it may be observed, in SWI calcium and hemorrhages products appear both hypo-intense while
in QSM respectively hypo- and hyper- intense.

Figure 1.17: MPRAGE, SWI and QSM in a patient with brain calcification (F/44 years old, IRCCS Istituto delle Scienze
Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit). Calcium accumulation is detectable in cortical and
subcortical regions both in SWI (hypo-intensity) and QSM (hypo-intensity); iron deposition is detectable in the basal ganglia
(putamen, globus pallidus, thalamus) both in SWI (hypo-intensity) and QSM (hyper-intensity). Note dia- and para- magnetic

contributions in the two sequences, both hypo-intense in SWI while hypo- and hyper- intense respectively in QSM. QSM provides
quantitative measurements, thus its color bar is shown, while MPRAGE and SWI are in arbitrary units. Details acquisition

parameters are in Section 1.2.1 (Tab. 1.1)
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Figure 1.18: MPRAGE, SWI and QSM in a patient with TIA (transient ischemic attack) (M/83 years old, IRCCS Istituto delle
Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit). QSM hyper-intensities are observed within the old
cortical hemorrhages. The hemoglobin contained in the blood has weakly diamagnetic behavior when it is in its oxygenated form,

while it assumes paramagnetic behavior in its de-oxygenated form (v. Section 1.1.3). In the early stages of a hemorrhage, the blood
hemoglobin is de-oxygenated and the iron ions (Fe2+) within it have a paramagnetic response to the magnetic field, which translates

into a hyper-intensity in QSM. In the subsequent stages, iron ions are transformed into methemoglobin and hemosiderin, the
paramagnetic response is accentuated and the hyperintensities become more marked. QSM provides quantitative measurements, thus
its color bar is shown, while MPRAGE and SWI are in arbitrary units. Details acquisition parameters are in Section 1.2.1 (Tab. 1.1)

1.3 Issues and new developments

Since its introduction, QSM has undergone further refinement, and various research groups and
medical institutions have contributed to its development and application. Of course, while it offers
advantages as MR sequence and has become an important tool in the field of neuroimaging, QSM
comes with its own challenges, such as the need for complex post-processing and potential limita-
tions in cases of complex tissue geometries. Below, some issues, requiring further developments,
are listed.

χ artifacts near air-bone interfaces: Regions of the brain near air-bone interfaces, such as
the sinuses or skull, are susceptible to susceptibility artifacts. These artifacts can manifest as
streaking or distortions in the images, making it challenging to accurately interpret the data (59).
One of the techniques proposed to fix this issue is using ROMEO (Removal of Macroscopic Field
Effects by Oscillating Field Gradients) as unwrapping algorithm (64); it partially corrects for these
artifacts, but it does not entirely eliminate the problem.
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Sensitivity to motion: Phase measurements are highly sensitive to motion artifacts, consider-
ing that longer echo times are the ones containing more information about the transversal spin
de-phasing. Any motion during the acquisition can lead to errors in the phase measurements,
which consequently affect the accuracy of the susceptibility maps. This is particularly demanding
for patients with neurodegenerative disorders and movement dysregulation, considering that QSM
sequences usually last ∼ 8’. 3D EPI sequences have been proposed to reduce acquisition time and
motion artifacts (65), but they may not be widely adopted due to various trade-offs in image qual-
ity, acquisition time, and susceptibility to other artifacts. In fact, they are way faster than GRE
sequences and can achieve better spatial resolution, but they are more liable to χ artifacts near
air-tissue interfaces and regions with magnetic field inhomogeneities, which may lead to distortions
and artifacts, especially in areas near the sinuses or skull. Additionally, they tend to have lower
SNR than GRE sequences. Ongoing research is still striving to find an appropriate compromise.

Heterogeneity of χ sources: Contributions of dia- and para- magnetism can overlap in QSM
images, leading to issues in interpreting QSM signal: when an increase in χ is observed, it may
result from either an increase in paramagnetic materials or a decrease in diamagnetic materials
concentration. Consider, for instance, the thalamus, where both gray matter and white matter
coexist, and susceptibility values are linked to both iron and myelin concentration (24). Recently,
a new technique has been developed, called χ-separation (66), helping in distinguishing the contri-
bution of negative and positive χ values; it has been applied, for example, to explore MS lesions (67).

Standardized atlas and sharing data: Another noteworthy issue to highlight is that cer-
tain biomarkers of pathology, such as iron accumulation, are associated with both pathological
conditions and natural aging processes (68); MR techniques such QSM certainly helps in distin-
guishing those processes - I will further explore this topic talking about iron accumulation in the
motor cortex in ALS patients and healthy controls (Ch. 2). A more comprehensive characteriza-
tion of the patterns of susceptibility is often very helpful, and, as I will explore later, radiomics
can play a pivotal role in advancing this direction (Sec. 4.1).
However, it is necessary to establish a robust control group and to have a standardized atlas to
provide a reference standard and develop correction methods for susceptibility values. Correction
methods are nontrivial since different regions exhibit varying susceptibility changes with age and
require different fitting models (69) (70). Recruiting suitable healthy control subjects, particularly
elderly individuals, poses its own set of challenges, and, since QSM is a relatively new technique,
individual centers struggle to reach an adequate number of subjects to build correction models.
Thus, sharing data from both control subjects and patients is essential to facilitate collaborative
efforts aimed at refining harmonization techniques and developing more accurate fitting models (71).
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χ = magnetic susceptibility
AD = Alzheimer’s Disease
ALS = Amyotrophic Lateral Sclerosis
ANTs = Advanced Normalization Tools
APS = Atypical Parkinsonian Syndrome
ASPIRE = A Simple Phase Imaging Reconstruc-
tion for multi-Echo data
BET = Brain Extraction Tool
CMT = Charcot-Marie-Tooth Disease
CNR = Contrast-to-Noise Ratio
CNS = Central Nervous System
COSMOS = Calculation Of susceptibility through
the Multiple Orientation Sampling
CSF = CerebroSpinal Fluid
DM1 = Myotonic Dystrophy type 1
DWI = Diffusion Weighted Imaging
EPI = Echo Planar Imaging
FA = Flip Angle
FLAIR = FLuid Attenuated Inversion Recovery
FLIRT = FLS’s Linear Image Registration Tool
FOV = Field Of View
FSL = Functional magnetic resonance imaging of
the brain (FMRIB) Software Library
GBS = Guillain-Barré Syndrome
GRE = GRadient Echo
HARDI = High Angular Resolution Diffusion Imag-
ing
HD = Huntington’s Disease
HEIDI = Homogeneity Enabled Incremental Dipole
Inversion
iLSQR = iterative Least SQuaRe
MEDI = Morphology Enabled Dipole Inversion
MPRAGE = Magnetization Prepared RApid Gra-
dient Echo
MR = Magnetic Resonance
MRI = MR imaging
MS = Multiple Sclerosis
MSA = Multiple System Atrophy
N1 = Nigrosome-1
NMOSD = NeuroMyelitis Optica Spectrum
Disorder
PD = Parkinson’s Disease
PM = Personalized Medicine

PSP = Progressive Supranuclear Palsy
QSM = Quantitative Susceptibility Mapping
ROMEO = Removal of Macroscopic Field Effects
by Oscillating Field Gradients
SBI = Susceptibility-Based Imaging
SNpc = Substantia Nigra pars compacta
SPACE = Sampling Perfection with Application op-
timised Contrast using different flip angle Evolution
STI = Susceptibility Tensor Imaging
SWI = Susceptibility Weighted Imaging
T1w, T2w, T∗

2w = T1-, T2-, T∗
2- weighted

TE = Time of Echo
TGV = Total Generalized Variation
TIA = Transient Ischemic Attack
TR = Time of Repetition
V-SHARP = Variable kernel Sophisticated Harmonic
Artifact Reduction for Phase data
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Chapter 2

Amyotrophic Lateral Sclerosis

Amyotrophic Lateral Sclerosis (ALS) is a progressive idiopathic neurodegenerative disorder affect-
ing nerve cells in the brain and spinal cord; symptoms generally start with muscle weakness and
subsequently progress, becoming more severe over time (72). A well-established hallmark of ALS
development is the accumulation of iron in the motor cortex, a phenomenon easily detectable and
quantifiable using QSM (73). Previous studies have identified an increase of susceptibility values in
the precentral gyrus, which directly correlate with iron concentration (74). Considering that motor
impairment is not the only symptom experienced by ALS patients, the proposed QSM application
aims to investigate whether iron accumulation is observed in other cortical regions, to enhance
the understanding of the disease, particularly in comparison with other motor neuron disorders.
Background and aims of the study are further described in Sec. 2.1.

Materials and methods of this application are in Sec. 2.2. The study cohort consisted of 47
ALS patients, 26 patients with other neurodegenerative conditions, and 20 healthy controls. The
brain MR protocol included morphological T1w and T2w, and QSM. ALS Functional Rating Scale
(ALSFRS) and Penn Upper Motor Neuron (UMN) scores were available as clinical data.
First, qualitative evaluation was blindly performed by three neuroradiologists assessing radiologi-
cal signs of UMN impairment in a group mix of patients and controls. Then, quantitative analysis
was carried out, considering several χ properties (mean, median, 90th percentile, skewness, and
kurtosis) from QSM and structural properties (volume and cortical thickness) from T1w images.
Several gyri in the frontal, parietal, temporal lobes and in the cingulate cortex were automatically
segmented and analyzed. Extracted χ and structural metrics were compared among the groups
and correlated with clinical data.

Outcomes are shown and discussed in Sec. 2.3 and 2.4. First, quantitative parameters showed bet-
ter accuracy than qualitative image evaluation. Additionally, mean, median, 90th percentile, and
skewness of susceptibility in several gyri within the frontal lobe, the parietal lobe and the cingulate
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cortex were significantly higher in ALS patients compared to healthy controls. χ 90th percentile
emerged as the most reliable indicator for distinguishing ALS patients from healthy controls and
patients with other neurodegenerative diseases. Reductions in volume and cortical thickness in
the ALS group were consistent with findings from previous studies. Notably, susceptibility val-
ues positively correlated with the Penn UMN score in patients with rapid disease progression.
These findings suggest that iron accumulation during the development of ALS may affect multi-
ple cortical regions, offering valuable insights into the neuropathological changes of ALS (Sec. 2.5).

The first use of abbreviations includes their full expansion; for ease of reference, a glossary is
provided at the end of the chapter.
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2.1 Background and aims

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative condition that leads to
a gradual impairment of both Upper and Lower Motor Neuron (UMN and LMN), resulting in
the eventual loss of control over voluntary and involuntary movements (74). ASL exhibits an an-
nual incidence rate ranging from 1 to 2 cases per 100000 people per year, with some variations
across continents and higher incidence rates observed in Europe and North America than Africa
and Asia (75). On average, ALS occurrence is higher in men than women in sporadic cases and it
is approximately equal in familial cases (5-10% of ALS patients). When considering the overall
population-based lifetime risk, it stands at approximately 1 in 400 for women and 1 in 350 for men.
The peak age at which ALS typically manifests is around 58 to 63 years for sporadic cases and
47 to 52 years for familial cases. ALS is characterized by its relentless progression, with approx-
imately 50% of patients succumbing to the disease within 30 months of experiencing symptoms;
about 20% of patients manage to survive for a period ranging from 5 to 10 years following the
onset of symptoms.

The neurodegeneration in ALS arises from a multifaceted set of mechanisms that are intercon-
nected at the molecular and genetic levels (72) (75). The neurodegeneration associated with ALS
results from a complex interplay of factors, such as glutamate excitotoxicity, generation of free
radicals, presence of cytoplasmic protein aggregates, involvement of SOD1 enzymes, mitochondrial
dysfunction, and disruptions in axonal transport processes due to the accumulation of intracellu-
lar neurofilament aggregates that prove detrimental to neurons. Mutations in TARDBP and FUS
lead to the formation of intracellular aggregates in neurons. The activation of microglia results
in the release of proinflammatory cytokines, worsening the toxicity. Ultimately, the degeneration
of motor neurons is driven by the activation of calcium-dependent enzymatic pathways. Patho-
logical studies conducted ex vivo have revealed that the activation of microglia in the deep layer
of the primary motor cortex (M1) (76) is associated with iron accumulation in the same area (77),
suggesting that iron buildup could potentially serve as a neuropathological hallmark of the disease.

ALS manifests in different ways (78) (79): 1) limb-onset, exhibiting both UMN and LMN signs in the
limbs; 2) bulbar-onset, beginning with difficulties in speech and swallowing, with limb symptoms
appearing later in the disease progression; 3) primary lateral sclerosis, less common and primar-
ily involving UMNs; 4) progressive muscular atrophy, primarily affecting LMNs. Classical ALS
involves both UMN and LMN signs, affecting the brainstem and multiple regions of the spinal
cord; Pure UMN (PUMN) and Pure LMN (PLMN) patients show only UMN and LMN signs
respectively. Patients can initially present with bulbar-onset disease (∼ 25%), limb-onset disease
(∼ 70%), or other areas like the trunk or respiratory system (∼ 5%). Some atypical presentations
include weight loss, muscle cramps and twitching without weakness, emotional instability, and
cognitive dysfunction resembling frontal lobe impairment.
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There are issues in identifying ALS biomarkers of disease progression and therapeutic benefit;
thus formal diagnostic criteria for ALS and Motor Neuron Diseases (MND) in general have been
developed and modified several times; nowadays, the revised El Escorial criteria (80) are the most
used. Conventional MRI radiological findings can provide support for ALS diagnosing (81) (82) (Fig.
2.1): hyperintensity in the Cortico-Spinal Tracts (CST) is often detectable in T2w images, as well
as the “motor band sign”, which corresponds to hypo-intensity in SWI due to iron accumulation.
However, these features are not specific imaging characteristics (83). As an advanced MR tech-
nique, QSM (1) has helped in finding imaging biomarkers and understanding the mechanisms of
pathology. In contrast to SWI, QSM is a quantitative method that provides voxel-wise magnetic
susceptibility χ values, influenced by both diamagnetic (e.g. myelin) and paramagnetic (e.g. iron)
properties of the tissue. This enables the study of iron concentration and its spatial distribution
within in vivo high-resolution MRI. Additionally, QSM provides qualitative information since the
“motor band sign” appears as a hyper-intensity in QSM images in patients with ALS (Fig. 2.2),
assessable by a standard scale assigned looking into the intensity similarity to the post-central
gyrus (82).
QSM enables precise exploration of magnetic properties, facilitating intra- and inter-subject quan-
titative comparisons. Significant alterations have been observed in ALS patients compared to
healthy controls in the motor cortex. Measures of PrCG bulk susceptibility, such as mean and
median, indicate higher values in ALS patients than in healthy controls (14) (73) (82), suggesting an in-
crease in iron concentration. Skewness and kurtosis, which respectively measure the symmetry and
tail weight relative to a normal distribution, have been introduced in previous studies (84) (85) (86),
showing promise as potential biomarkers for characterizing diseases and subgroups. Furthermore,
atrophy of the PrCG is associated with alterations in susceptibility properties (87) (84).
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Figure 2.1: Examples of radiological signs in ALS patients: in the first row, SWI hypo-intensity in the precentral gyrus (“motor band
sign”); in the second row, T2w FLAIR hyper-intensity in the cortico-spinal tract (protocol details are in Sec. 1.2.1). Radiological

evaluation was performed using a 3-score ranking as suggested from previous studies (81): 0 = absent (first column, M/64 years old), 1
= present, mild (second column, M/68 years old), 2 = present, marked (third column, F/55 years old) (IRCCS Istituto delle Scienze

Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, IT)

The primary objective of this study (88) (89) is to employ QSM to identify more precise imaging
biomarkers capable of distinguishing ALS patients from both healthy controls (HC) and patients
with Other Neurodegenerative Disorders (OND). While ALS neuroimaging studies have predom-
inantly focused on motor-related signs, various MR sequences have revealed differences between
healthy controls and ALS patients in frontal and temporal cortical regions (90). To gain a deeper
understanding of the role of iron accumulation in ALS degeneration and to explore ways to charac-
terize the disease comprehensively, this study investigates susceptibility and structural properties
across multiple gyri throughout the entire cortex.
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Figure 2.2: T1w MPRAGE, SWI and QSM from F/55 years old ALS patient and F/53 years old healthy control (protocol and
processing details are in Sec. 1.2.1). Iron accumulation in left and right PrCG in ALS patient (red arrows) appears hypo-intense in

SWI and hyper-intense in QSM. In QSM images the gray-level scale is shown since it is a quantitative map; T1w MPRAGE and SWI
are in arbitrary units (IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, IT)

2.2 Materials and methods

2.2.1 Study sample and clinical evaluation

Between February 2020 and January 2022, 47 consecutive patients with a diagnosis of ALS (39
classic, 2 PUMN, 6 PLMN), according to the revised El Escorial criteria (80), were recruited by
Clinical Neurologica at IRCCS Istituto delle Scienze Neurologiche di Bologna. All participants
provided written informed consent for their involvement in the study. Brain MRI data from
healthy volunteers were retrospectively collected from the Neuroimaging Laboratory’s database at
IRCCS Istituto delle Scienze Neurologiche di Bologna, serving both clinical and research functions.
Additionally, a second group of 25 patients was included in the study, mostly subjects who could
potentially be misclassified as ALS patients, known as MND mimics and chameleons (91). De-
mographic characteristics of the participants are summarized in Tab. 2.1. OND patients were
categorized as shown in Tab. 2.2.
The entire ALS group consisted of 47 subjects; however, for comparative analysis with HC (20
subjects) and OND (25 subjects), a subgroup of 26 subjects (22 classic, 1 PUMN, 3 PLMN) was
considered. The complete ALS cohort was utilized for intra-group measurements.
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ALS (n=47) sub-ALS (n=26) OND (n =25) HC (n=20) p-values

F:M 18:29 13:13 12:13 13:07 .474

Age (y)
65.2 ± 12.1 59.5 ± 8.8 53.9 ± 9.2 56.5 ± 7.2

.123
(36-83) (40-69) (40-69) (41-65)

DD (mo)
16.8 ± 13.5 18.4 ± 12.1

na na na
(1-48) (1-46)

ALSFRS
38.7 ± 7.4 39.0 ± 7.4

na na na
(13.5-47.0) (13.5-47.0)

Penn UMN
11.7 ± 6.5 13.5 ± 6.6

na na na
(1.0-27.0) (1.0-27.0)

Table 2.1: Study demographic details; sex, age, diagnostic delay (DD), ALSFRS and Penn UMN scores are given. Where
appropriate, values are given as mean ± standard deviation, with ranges in parenthesis. p-values are from the comparison between

sub-ALS, other neurodegenerative disease (OND) and HC

F:M Age (y)

OND (n=25) 12:13 53.9 ± 9.2 (40-69)
HSP (n=11) 7:4 52.6 ± 8.9 (40-65)
PD (n=4) 2:2 54.4 ± 8.1 (47-67)

Parkinsonism (n=3) 1:2 57.6 ± 12.9 (43-69)
RBD (n=5) 1:4 54.5 ± 9.3 (43-64)

Hyperkinetic disorder (n=1) 1:0 40
Postural tremor (n=1) 0:1 65

Table 2.2: Age and sex of patients with other neurodegenerative diseases (OND), with details for the different pathologies (HSP =
Hereditary Spastic Paraplegia, PD = Parkinson’s Disease, RBD = REM Behavior Disorder)

The clinical evaluation included:

• ALSFRS (ALS Functional Rating Scale) score (92), clinical rating scale used to assess the
functional status and progression of ALS. This scale consists of a series of questions that
cover various aspects of a patient’s daily functioning, such as speech, swallowing, fine motor
skills, walking, and breathing. Each question is rated on a scale from 0 to 4, with higher
scores indicating better function; individual scores for each question are summed to calculate
the overall ALSFRS score, which can range from 0 (indicating complete loss of function in
all areas) to 48 (indicating normal function in all areas)

• Penn UMN score (93), reliable instrument to measure UMN signs. It is a 28-item scale ranging
from 0 to 32, divided into bulbar sub-score (e.g. jaw-jerk reflex and palmomental sign), upper
extremity sub-score (e.g. Hoffman’s sign and spasticity) and lower extremity sub-score (e.g.
increased patellar reflex and Babinski’s sign)

The rate of progression was calculated as RP = 48−ALF RS
DD

(94), where DD is the diagnostic delay.
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2.2.2 MR protocol: radiological and quantitative evaluation

MR protocol included MPRAGE, FLAIR, SWI and QSM sequences; details of acquisition and
processing, as the description of software and toolboxes used, are in Sec. 1.2.1. Images did not
present massive movement artifacts and were considered suitable for the analysis.
Conventional neuroradiological signs from FLAIR and SWI images were evaluated, following stan-
dard scores (81), in ALS patients and healthy controls from three neuroradiologists with 2, 5, and
15 years of experience. They were blinded to the subjects’ clinical condition. For FLAIR hyper-
intensity in CST and SWI hypo-intensity in PrCG scores were assigned as follows: 0 = absent, 1
= present, mild and 2 = present, marked. An example is shown in Fig. 2.1.
To extract quantitative measurements, MPRAGE images were automatically segmented using
FreeSurfer (48) and QSM images were linearly registered to their corresponding MPRAGE using
FLIRT (44) (45), to overlay the segmentation on susceptibility maps. The cortical parcellation pro-
cess from FreeSurfer identified a total of 35 cortical gyri; however, not all of these areas were
suitable for analysis in QSM images due to their overlap with areas prone to air-tissue and bone
artifacts commonly found in QSM images (59) (95). Therefore, 10 specific cortical gyri were selected
for this study: PrCG, Caudal Middle Frontal Gyrus (CMFG), Paracentral Gyrus (PCG), and Pars
Triangularis (PT) in the frontal lobe; PostCentral Gyrus (PoCG), Inferior Parietal Gyrus (IPG),
and SupraMarginal Gyrus (SMG) in the parietal lobe; Transverse Temporal Gyrus (TTG) in the
temporal lobe; and Posterior Cingulate Cortex (PCC) and Isthmus of the Cingulate Gyrus (ICG)
in the cingulate cortex. For each, various χ histogram metrics (mean, median, 90th percentile,
skewness, and kurtosis) as well as measurements of volume and cortical thickness were extracted.
Acquisition and processing workflow is illustrated in Fig. 2.3.

2.2.3 Statistical analysis

For the assessment of radiological signs, the intraclass correlation coefficient (ICC) (96) was cal-
culated to measure the agreement among the three radiological evaluations, ranging from 0 (=
complete disagreement) to 1 (= perfect agreement among raters). The clinical accuracy of FLAIR
and SWI was evaluated using the area under the Receiver Operating Characteristic (ROC) (AUC)
curve (97).
For the quantitative analysis, mean, median, 90th percentile (98), skewness and kurtosis (84) (85) were
considered as histogram χ properties, volume and cortical thickness as structural properties, for
each gyrus, averaging left and right sides. To account for individual variations in head size, volume
and cortical thickness were adjusted for Total Intracranial Volume (TIV) using proportional and
residual methods respectively (99). χ values of ALS and OND groups were age-corrected, assuming
linear growth based on data from healthy controls.
Volume-of-interest (VOI)-based analysis was conducted for each property. To investigate potential
correlations between χ and volume, Spearman’s test was employed, and no significant correlations
(p-values > .05) were found. Data were assessed for normality using the One-Sample Kolmogorov-
Smirnov test and were found to be non-normally distributed. Therefore, non-parametric Kruskal-
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Figure 2.3: Workflow of the MR protocol acquisition and processing. Acquisition and pre-processing steps are detailed in Sec. 1.2.1.
MR protocol included MPRAGE and QSM images, linearly registered to the corresponding MPRAGE. The automatic cortical

parcellation from FreeSurfer was overlaid to QSM images. Ten cortical gyri were considered for the analysis (G = Gyrus, PrCG =
PreCentral G, CMFG = Caudal Middle Frontal G, PCG = ParaCentral G, PT = Pars Triangularis, PoCG = PostCentral G, IPG =
Inferior Parietal G, SMG = SupraMarginal G; TTG = Transverse Temporal G, PCC = Posterior Cingulate Cortex, ICG = Isthmus

of the Cingulate Cortex)

Wallis was selected for comparison, followed by post-hoc multiple comparisons with Bonferroni
correction, considering p-values < .005 as statistically significant.
Furthermore, ROC curve analysis was performed to evaluate the clinical accuracy of the measures
under consideration. For correlation measurements, Spearman’s test was used and p-values < .05
were considered as indicative of statistical significance.
The analysis was conducted using Matlab (version 2020b).
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2.3 Results

2.3.1 Radiological evaluation

The degree of agreement among the three neuroradiologists was carefully evaluated, to ensure
the consistency and reliability of the evaluation made by each rater. An ICC value of 0.74 was
obtained for the evaluation of PrCG hypo-intensity in SWI images, indicating a relatively strong
agreement among the raters. For CST hyper-intensity in FLAIR images, the ICC value was 0.65,
demonstrating a moderately strong level of agreement.
For SWI measurements, the AUC was 0.547, with 35.3% of the findings false positives and 36.5%
false negatives; similarly, for FLAIR measurements, the AUC was 0.543, with 42.9% of the results
false positives, and 23.4% false negatives. These outcomes show that both SWI and FLAIR
have issues in distinguishing ALS patients from healthy controls: while the inter-rater agreement
was reasonably strong, the diagnostic accuracy of these imaging modalities, as indicated by the
AUC values and false positive/negative rates, suggests room for improvement and the need for
further investigation or the consideration of complementary diagnostic tools. This result confirms
the importance of utilizing quantitative information from QSM measurements for better disease
characterization.

2.3.2 χ and structural properties

Inter-group comparison

χ and structural characteristics were compared among three groups: sub-ALS, OND, and HC
(Tab. 2.1). Histograms of the different metrics (mean, median, 90th percentile, and skewness of χ,
volume and cortical thickness) in the 10 gyri are depicted in Fig. 2.4. The analysis revealed several
noteworthy differences in the assessed parameters between the HC and ALS groups, summarized
in Tab. 2.3. Specifically, the following differences in the median χ values (± mean absolute
deviation) (ppm) between the HC and ALS groups were observed:

• mean χ in the frontal lobe (precentral gyrus [HC: -0.023 ± 0.011; ALS: -0.007 ± 0.010; p

= .002], caudal middle frontal gyrus [HC: -0.022 ± 0.009; ALS: -0.012 ± 0.007; p = .001],
pars triangularis [HC: -0.015 ± 0.012; ALS: 0.005 ± 0.011; p = .001]), parietal lobe (inferior
parietal [HC: -0.012 ± 0.012; ALS: 0.002 ± 0.010; p = .004] and supramarginal gyri [HC:
-0.014 ± 0.011; ALS: 0.006 ± 0.010; p = .002]), cingulate cortex (isthmus [HC: -0.010 ±
0.013; ALS: 0.006 ± 0.009; p = .004]), higher in ALS group;

• median χ in the frontal lobe (precentral gyrus [HC: -0.022 ± 0.011; ALS: -0.007 ± 0.010;
p = .004], caudal middle frontal gyrus [HC: -0.021 ± 0.009; ALS: -0.010 ± 0.007; p =
.001], pars triangularis [HC: -0.014 ± 0.012; ALS: 0.005 ± 0.010; p = .001], parietal lobe
[supramarginal gyri (HC: -0.013 ± 0.011; ALS: 0.007 ± 0.010; p = .002]), cingulate cortex
(posterior-cingulate [HC: -0.037 ± 0.010; ALS: -0.014 ± 0.012; p = .003] and isthmus [HC:
-0.014 ± 0.014; ALS: 0.007 ± 0.009; p = .002]), higher in ALS group;
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• 90th percentile χ in the frontal lobe (precentral gyrus [HC: 0.003 ± 0.014; ALS: 0.024 ±
0.011; p = .004], caudal middle frontal [HC: 0.00002 ± 0.00001; ALS: 0.012 ± 0.008; p =
.001] and pars triangularis [HC: 0.005 ± 0.014; ALS: 0.027 ± 0.013; p = .002]), higher in
ALS group;

• skewness χ in the precentral gyrus (HC: -0.167 ± 0.120; ALS:-0.025 ± 0.149; p = .004).

Notably, kurtosis did not display any significant alterations and is therefore not presented in
the figure. Volume and cortical thickness did not result significantly impaired, but a common
reduction trend was observed in cortical thickness for almost all the gyri.
ROC analysis was performed and returned AUC values were higher than 0.70 for all the parameters
that resulted significant from Kruskal-Wallis test, showing an acceptable diagnostic accuracy in
classifying HC/ALS status. In PrCG, ROC curves for χ properties (mean, median, 90th percentile
and skewness) were 0.758, 0.738, 0.775 and 0.733 respectively. Comparison analysis did not show
any significant difference between OND and HC or ALS groups.
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Figure 2.4: Median ± mean absolute deviation of χ (mean, median, 90th percentile) and structural (volume and cortical thickness)
properties within HC (blue), ALS (red) and OND (green) samples in the analyzed gyri. Significant differences between HC and ALS
groups (p-values < .005, Kruskal-Wallis test, post-hoc multi-comparison test with Bonferroni correction) were highlighted (*). The

analysis did not show any statistical differences between OND and HC or ALS groups (OND = Other Neurodegenerative Disease, G
= Gyrus, PrCG= PreCentral G, CMFG = Caudal Middle Frontal G, PCG = ParaCentral G, PT = Pars Triangularis, PoCG =

PostCentral G, IPG = Inferior Parietal G, SMG = SupraMarginal G, TTG = Transverse Temporal G, PCC = Posterior Cingulate
Cortex, ICG = Isthmus of the Cingulate Cortex)
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χ properties Structural properties
Mean Median 90° P Skewness Kurtosis Volume Thickness

FL

PrCG .002 * .004 * .004 * .004 * ns ns ns
CMFG .001 * .001 * .001 * ns ns ns ns
PCG ns ns ns ns ns ns ns
PT .001 * .001 * .002 * ns ns ns ns

PL
PoCG ns ns ns ns ns ns ns
IPG .004 * ns ns ns ns ns ns
SMG .002 * .002 * ns ns ns ns ns

TL TTG ns ns ns ns ns ns ns

CC
PCC ns .003 * ns ns ns ns ns
ICG .004 * .002 * ns ns ns ns ns

Table 2.3: Comparison analysis between ALS and HC in cortical gyri. p-values are from Kruskal-Wallis test (post-hoc
multi-comparison test with Bonferroni correction) from the comparison between ALS and HC. P-values < .005 were considered as

significant (*) (FL = Frontal Lobe, PL = Parietal Lobe, TL = Temporal Lobe, CC = Cingulate Cortex, G = Gyrus, PrCG =
PreCentral G, CMFG = Caudal Middle Frontal G, PCG = ParaCentral G, PT = Pars Triangularis, PoCG = PostCentral G, IPG =
Inferior Parietal G, SMG = SupraMarginal G, TTG = Transverse Temporal G, PCC = Posterior Cingulate Cortex, ICG = Isthmus

of the Cingulate Cortex)

Clinical correlation analysis

Potential correlations within the entire ALS sample (Tab. 2.1) were considered, aiming to identify
any connections between χ neuroimaging measurements and clinical scores.
A significant correlation emerged between RP and cortical thickness in the precentral gyrus, with
a correlation coefficient ρ of -0.302 and a corresponding p-value of .041, suggesting that as RP
increases the cortical thickness tends to decrease. This correlation provides valuable insights
into the relationship between this clinical measure and the structural characteristics of the brain.
Correlations between cortical thickness and RP in the other gyri show a negative but not significant
trend, indicating that the relationship between RP and cortical thickness may be specific to the
motor cortex.
Another aspect of this investigation aimed to establish a connection between iron accumulation
(assessed through mean, median, and 90th percentile χ) and UMN impairment, measured by the
Penn UMN score. Although positive correlations were observed between susceptibility properties
and the Penn UMN score, these correlations did not reach statistical significance. However,
these trends suggest that there may be some association between iron accumulation and UMN
dysfunction that warrants further exploration.

2.3.3 Progression rate: slow, intermediate and fast

One of the aims of the study was to gain insights into potential distinct behaviors related to the
speed at which ALS progresses. The ALS patient group was divided into three subgroups based
on the rate of disease progression: slow, intermediate, and fast progression; 25th (RP = 0.25) and
the 75th (RP = 1.30) were used as cut-off. Demographic and clinical characteristics of the three
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subgroups are summarized in Tab. 2.4. They are consistent with each other in terms of sex, age,
clinical phenotype and Penn UMN score; this consistency is crucial to ensure that the eventual
observed differences are primarily related to the progression rate rather than other demographic
or clinical factors.
The three subgroups are different in terms of disease delay and ALSFRS: patients in the fast
progression subgroup had a notably shorter disease duration compared to those in the other
subgroups - this finding aligns with expectations, as faster disease progression typically leads to a
shorter duration of illness - and the ALSFRS score was lower in patients with fast progression, as
anticipated, reflecting greater functional impairment, which is often associated with more rapid
disease progression.

Slow RP Int RP Fast RP
p-value(n=12) (n=23) (n=12)

(RP>0.25) (0.25<RP<1.30) (RP >1.30)

F:M 3:9 10:13 5:7 .544

Age (y)
68.2 ± 6.2 65.7 ± 11.9 65.3 ± 13.3

.945
(47-77) (36-82) (33-83)

Cl ph (class:pumn:plmn) 8:1:3 21:0:2 1:1:1 .357

DD (mo)
25.3 ± 13.4 17.0 ± 11.8 8.0 ± 3.4

.003
(4-46) (5-48) (1-13)

ALSFRS
44.3 ± 2.3 39.5 ± 4.6 31.0 ± 8.8

<.000
(41.0-47.0) (26.0-44.0) (13.5-44.0)

Penn UMN
11.1 ± 6.3 10.4 ± 6.1 15.0 ± 6.9

.161
(1.0-21.0) (1.0-21.0) (1.0-27.0)

Table 2.4: Demographic details of ALS sub-groups (slow, intermediate and fast progression rate). Where appropriate, values are
given as mean ± standard deviation, with ranges in parenthesis. p-values are from the comparison between slow, intermediate and

fast progression

χ and structural properties: inter-group comparison

The analysis of χ properties did not reveal any statistically significant differences or discernible
trends when comparing the three ALS subgroups. These results suggest that the susceptibility
measurements represented by χ properties did not exhibit any systematic variations related to the
different rates of disease progression among the subgroups.
Similarly, the analysis of structural properties did not yield any significant differences among the
subgroups, although it shows a clear trend in the context of atrophy progression: as RP increased,
there appeared to be a noticeable trend towards greater atrophy corresponding to thinner cortical
thickness, which can be observed in Fig. 2.5. This observation suggests that as the disease
progresses more rapidly, there may be a corresponding increase in the degree of brain atrophy.
While these trends did not reach statistical significance, they do hint at potential associations
between disease progression speed and structural changes in the brain.
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Figure 2.5: Volume and cortical thickness in ALS patients with slow (blue), intermediate (red) and fast (green) progression. Median
± MAD are shown in the analyzed gyri (G = Gyrus, PrCG = PreCentral G, CMFG = Caudal Middle Frontal G, PCG =

ParaCentral G, PT = Pars Triangularis, PoCG = PostCentral G, IPG = Inferior Parietal G, SMG = SupraMarginal G, TTG =
Transverse Temporal, PCG = Posterior Cingulate G, ICG = Isthmus of the Cingulate Cortex)

Clinical correlations analysis

Spearman’s test was employed independently on each of the three groups to explore potential
correlations between the Penn UMN score and susceptibility properties. The results revealed
noteworthy findings in the group characterized by a faster rate of disease progression: within this
subgroup, significant correlations were observed between iron accumulation (measured through
mean, median, and 90th percentile χ values) and the Penn UMN score. Findings are outlined
in detail in Tab. 2.5. These significant correlations suggest a relationship between the degree
of iron accumulation in the brain and the severity of UMN impairment, as measured by the
Penn UMN score. This connection is particularly prominent in individuals with a faster rate of
disease progression, highlighting the clinical relevance of iron accumulation in the context of ALS
progression.
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Mean Median 90th P

FL

PrCG ns (0.623, .041) * (0.607, .482) *
CMFG ns ns ns
PCG (0.728, .011) * (0.816, .002) * ns
PT (0.843, .001) * (0.780, .002) * ns

PL
PoCG (0.651, .030) * (0.606, .048) * ns
IPG ns ns ns
SMG (0.628, .039) * (0.628, .039) * ns

TL TTG ns ns ns

CC
PCC (0.628, .038) * (0.668, .025) * ns
ICG ns ns ns

Table 2.5: Correlations between susceptibility properties and Penn UMN score in ALS patients with fast disease progression.
Correlation coefficients ρ with corresponding p-values from Spearman’s test to find correlations between susceptibility properties

(mean, median and 90th percentile χ) and Penn UMN Score. P-values < .05 were considered significant. Positive correlations
between Penn UMN Score and those susceptibility properties (mean, median and 90th percentile) mean that iron accumulation

corresponds to more severe impairment. (G = Gyrus, PrCG = PreCentral G, CMFG = Caudal Middle Frontal G, PCG =
ParaCentral G, PT = Pars Triangularis, PoCG = PostCentral G, IPG = Inferior Parietal G, SMG = SupraMarginal G, TTG =

Transverse Temporal, PCC = Posterior Cingulate Cortex, ICG = Isthmus of the Cingulate Cortex, UMN = Upper Motor Neuron)

2.4 Discussion

ALS is a neurodegenerative disorder occurring with various clinical manifestations, making it chal-
lenging to gain a deep understanding of the disease and to identify reliable in vivo imaging markers
for effective categorization and prognosis prediction (78) (79). Qualitative observations in brain MRI
scans, such as hyper-intensity in the corticospinal tract in T2-weighted images and hypo-intensity
in the motor cortex in SWI, are more frequently observed in ALS patients compared to healthy
individuals (100) (81). However, these signs lack high specificity for ALS diagnosis (83). The intro-
duction of QSM has significantly advanced the ability to investigate the role of iron accumulation
in the motor cortex during the progression of ALS, paving the way for a deeper understanding of
the underlying pathology (101) (74).
In this study, a comprehensive exploration of various aspects of magnetic susceptibility distribu-
tions in both motor and extra-motor cortical regions was conducted. A group of ALS patients was
compared with both healthy controls and patients with other neurodegenerative disorders. Ad-
ditionally, structural characteristics, specifically volume and cortical thickness, were incorporated
into the analysis. Results are discussed below, highlighting the key points of the study.

Qualitative vs quantitative evaluation
First, radiological assessment of both the motor cortex and the corticospinal tract in a sample mix
of ALS patients and healthy controls was conducted blindly by three different neuroradiologists.
The inter-rater agreement among them demonstrated good reliability, as evidenced by ICC of 0.74
(SWI) and 0.65 (FLAIR). However, when it came to their diagnostic accuracy in distinguishing
ALS patients from controls, their performance was found to be lacking, with AUC values of 0.547
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and 0.543, respectively (83). QSM analysis was employed to examine the magnetic susceptibility of
the precentral gyrus: quantitative measurements provided more valuable insights. Notably, there
was a significant increase in both mean and median susceptibility observed in the ALS group when
compared to healthy controls (Fig. 2.4, Tab. 2.3). This increase in susceptibility is indicative of
higher iron concentrations in the motor cortex of ALS patients, as previously reported (81) (73). Fur-
thermore, the diagnostic accuracy of M1 susceptibility surpassed the one of the qualitative “motor
band sign” with AUC values of 0.758 and 0.738 for mean and median susceptibility, respectively,
underscoring the superiority of quantitative analysis in this context. Reduction in both volume
and cortical thickness in the precentral gyrus was observed, consistently with prior research (87).

M1 iron accumulation: multiple χ properties
It has been established that iron accumulation in ALS primarily affects the deep layers of the
motor cortex (76) (82) (102) and specific regions linked to impaired functions during the progression
of the disease (101). Additionally, iron accumulation is a natural part of the aging process (103),
occurring in both healthy individuals and ALS patients, which can lead to increased suscepti-
bility values. This complexity may result in misinterpretation when analyzing M1 mean/median
susceptibility, particularly in elderly cohorts. To address these complexities, it was appropriate
to focus on multiple properties of the susceptibility histogram (86) (84), specifically (Fig. 2.4, Tab.
2.3): the 90th percentile, holding information related to the right part of the histogram and so
to high-iron content regions – high percentiles have been studied to explore iron distribution in
the substantia nigra during the development of Parkinson’s Disease (PD) (98) (104) -, skewness and
kurtosis (84) (85) (86). According to previous studies, differences were observed in PrCG skewness,
higher in ALS patients than controls. The 90th percentile also showed a strongly significant dif-
ference and was the parameter with the highest diagnostic accuracy in our sample (AUC = 0.775).

ALS iron accumulation beyond the motor cortex
ALS was initially categorized as primarily affecting the neuromuscular domain. However, re-
cent advances in imaging and neuropathological assessments have revealed the complexity of ALS
pathophysiology beyond motor impairment (72). Given the association between increased suscepti-
bility and iron accumulation in the motor cortex, I investigated whether this phenomenon extended
to other cortical regions. The comparisons between ALS and control groups (Fig. 2.4, Tab. 2.3)
revealed increased susceptibility, measured in terms of mean and median, not only in the pri-
mary motor cortex but also in other cortical areas, including the caudal-middle frontal gyrus, pars
triangularis in the frontal lobe, inferior parietal gyrus, supramarginal gyrus in the parietal lobe,
and the posterior cingulate cortex. Analyzing multiple features from the susceptibility histogram
allowed us to pinpoint areas of greater involvement. The 90th percentile, in particular, highlighted
significant differences, predominantly in the frontal lobe, while susceptibility skewness exhibited
significant differences in the precentral gyrus. Following previous studies (87), a trend of reduction
was observed in cortical thickness in motor and extra-motor gyri.
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ALS vs other neurodegenerative disease
One of the objectives of this study was to explore susceptibility properties when comparing ALS
and patients with other neurodegenerative diseases, which remains challenging, particularly in
the early stages of the disease. Any significant difference was identified between ALS patients
and those with other neurodegenerative conditions (Fig. 2.4), suggesting that the process of iron
accumulation extends to multiple cortical areas in ALS development and may also be associated
with other pathological conditions. However, the comparison among the three groups (HC, ALS,
OND) showed significant differences between ALS and HC, but not between OND and HC; it’s
interesting to note that OND had lower susceptibility values in terms of mean, median, and 90th

percentile compared to ALS patients almost everywhere. Additionally, a consistent trend of corti-
cal thickness reduction occurs across all gyri, with controls exhibiting the highest thickness, ALS
patients having the lowest, and other patients falling in between.
Further investigation, perhaps focusing on advanced susceptibility features, could yield valuable
biomarkers for disease characterization.

χ measurements and clinical data
Quantitative measurements as susceptibility properties are feasible to be correlated with clinical
scores; considering heterogeneity in phenotypes and clinical conditions, previous studies have not
shown agreement in linking susceptibility and clinical data (74). Here, susceptibility measurements
did not show any significant relationship/trend with Penn UMN Score and rate of progression,
defined considering ALS-FRS score and the diagnostic delay (94). A significant negative correlation
resulted between the rate of progression and the cortical thickness in the motor cortex, which led
us to split the group into three sub-populations, with slow, intermediate and fast progression (Tab.
2.4), with ALS-FRS and Penn UMN Score worse with the increase of the progression.
Within the three groups, susceptibility and structural measurements were compared. Susceptibil-
ity properties did not highlight any significant difference or trend, suggesting that iron accumu-
lation is a process occurring regardless of the speed of the progression. Cortical thickness showed
an interesting trend of decreasing from slow to fast progression in the analyzed gyri (Fig. 2.5).
Zooming in on the three groups individually, there were significant correlations between mean,
median and 90th percentile and Penn UMN score in multiple cortical gyri, including the precentral
gyrus, only in ALS patients with fast progression rate (Tab. 2.5). The outcome suggests that,
with the rapid evolution of the disease, iron concentration grows as the rate of progression. This
result has to be strengthened by expanding the sample.
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2.5 Conclusions

This study delves into the potential role of iron accumulation, which can be detected in vivo
through QSM, as a potential hallmark of ALS, not only in the motor cortex but also in extra-
motor cortical regions. The research uncovers that, apart from the motor cortex, multiple cortical
gyri exhibit a significant increase in iron levels in ALS patients with respect to control subjects.
Furthermore, ALS patients display a pattern of increasing iron content and decreasing cortical
thickness when compared to individuals affected by other neurodegenerative disorders. These
findings contribute to the characterization of ALS as a disease. While increased cortical iron
concentration is a phenomenon that occurs in the majority of neurodegenerative conditions, this
study suggests that it may hold particular relevance to ALS.
A range of susceptibility-based descriptors - namely mean, median, 90th, skewness and kurtosis
- were used in the investigation, to capture nuances in iron distribution patterns. They revealed
significant variations, particularly in frontal brain regions.
By studying the clinical profiles of the participants, a noteworthy correlation between Penn UMN
scores and susceptibility values across multiple cortical gyri was established, specifically in patients
with rapid disease progression. This discovery underscores the potential of QSM as a valuable
tool in the identification of biomarkers for ALS, particularly in cases characterized by fast disease
progression.
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χ = magnetic susceptibility
ALS = Amyotrophic Lateral Sclerosis
ALSFRS = ALS Functional Rate Scale
AUC = Area Under the ROC Curve
CMFG = Caudal Middle Frontal
CST = Cortico-Spinal Tract
DD = Diagnostic Delay
FLAIR = FLuid Attenuate Inversion Recovery
HC = Healthy Control
HSP = Hereditary Spastic Paraplegia
ICC = Intra-class Correlation Coefficient
ICG = Isthmus of the Cingulate Gyrus
IPG = Inferior Parietal Gyrus
LMN = Lower Motor Neuron
M1 = primary motor cortex
MND = Motor Neuron Disease
MPRAGE = Magnetization Prepared RApid Gra-
dient Echo
MR = Magnetic Resonance
MRI = Magnetic Resonance Imaging
OND = Other Neurodegenerative Diseases
PCC = Posterior Cingulate Cortex
PCG = Paracentral Gyrus
PD = Parkinson’s Disease
PLMN = Pure Lower Motor Neuron
PoCG = PostCentral Gyrus
PrCG = PreCentral Gyrus
PT = Pars Triangularis
PUMN = Pure Upper Motor Neuron
RBD = REM sleep Behavior Disorder
ROC = Receiver Operating Characteristic
ROI = Region of Interest
RP = Rate of Progression
SMG = SupraMarginal Gyrus
SWI = Susceptibility Weighted Imaging
T1w, T2w, T∗

2w = T1-, T2-, T∗
2- weighted

TIV = Total Intracranial Volume
TTG = Transverse Temporal Gyrus
UMN = Upper Motor Neuron
VOI = Volume of Interest
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Chapter 3

Myotonic Dystrophy Type 1

Myotonic Dystrophy type 1 (DM1) is a dominantly inherited disorder, affecting the musculoskele-
tal and central nervous systems and causing a variety of symptoms including muscle weakness
and cognitive deficits. Structural, diffusion, spectroscopy and functional MR measurements have
shown alterations in DM1 brains (105); to date, only one study has examined susceptibility and
identified alterations in the thalamus (106). Here, I explored iron concentration distribution in
cortical and subcortical brain areas through QSM, linking imaging measurements with disability
scores, pneumological and cardiological evaluations and sleep records data from polysomnography.
Background and aims are described in Sec. 3.1.

Materials and methods are in Sec. 3.2. 34 DM1 participants and 35 age- and sex- matched
controls went under MRI examinations, including 3D morphological T1w and QSM sequences.
Cortical and subcortical structures were automatically segmented, χ distributions within the two
groups were compared and DM1 χ values were correlated with clinical and laboratory data.
Results are described in Sec. 3.3 and 3.4. Several cortical gyri showed a significant increase of χ

in the patient group, as a non-specific sign of neurodegeneration. Among subcortical structures,
χ of the thalamus (specifically, ventral and pulvinar nuclei) and brainstem (specifically, pons and
medulla) was significantly higher in DM1 group than HC, and negatively correlated with the onset
age, linking higher iron accumulation to earlier onset. Additionally, thalamic χ values significantly
correlated with disability scores and cardiological parameters; χ in both the thalamus and brain-
stem correlated with the number of central apneas. The outcomes show a progressive impairment
of thalamus and brainstem, core of autonomic functions, during the development of DM1 disease.
Different methods to assess the origins of DM1 symptomatology, if central or peripheral, have
recently been developed, and QSM may help in shedding light on this debate (Sec. 3.5).

The first use of abbreviations includes their full expansion; for ease of reference, a glossary is
provided at the end of the chapter.
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3.1 Background and aims

Myotonic Dystrophy type 1 (DM1) is one of the most frequent forms of muscular dystrophy in
adults with an estimated prevalence of 1/8000, described with clarity for the first time in 1909 by
Steinert and his colleagues - hence the name Steinert’s disease (107) (108). It is an autosomal domi-
nant disease, caused by the unstable expansion of trinucleotide cytosine-thymine-guanine (CTG)
repeats in the 3 untranslated region (UTR) of the myotonic dystrophy protein kinase (DMPK),
coding for a myosin kinase expressed in skeletal muscle, leading to an accumulation of mutant
RNA aggregates (109).

DM1 patients may be grouped with respect to the onset age (congenital, childhood/juvenile,
adult and late-onset/asymptomatic) (110) as well as the number of CTG repeats; in this work, I am
going to refer to the genetic classification (111). Healthy individuals have between 5 and 37 CTG
repeats, while 38-50 repeats are considered permutation alleles; with more than 50 CTG repeats,
patients are classified as follows, with CTG repeats predictive of clinical severity and onset age:
mild (E1 class), with 50-150 CTG-repeat; classic (E2 class), with 50-1000 CTG-repeats; congenital
(E3 class), with > 1000 CTG-repeats. The variability of genetic mutations, which may increase
or decrease in size as occurs in different tissues, causes a wide spectrum of possible muscular and
extra-muscular symptoms (112) (109):

• Muscular impairment: muscle weakness and atrophy, especially in distal regions of limbs,
and central and peripheral fatigue often occur (21). Myotonia is one of the main symptoms, as
suggested by the name of the disease, consisting in delayed relaxation of the skeletal muscles
after voluntary contraction

• Respiratory involvement: respiratory insufficiency and pulmonary complications are the
leading cause of death in patients with DM1 (113); many mechanisms are involved, such as
muscle weakness, chest mechanisms and abnormal central respiratory control (central hypo-
ventilation)

• Cardiovascular involvement: it can occur as dilated cardiomyopathy, heart failure, con-
duction and myocardial abnormalities (114). Both respiratory and cardiovascular symptoms
can be explained by muscular or Autonomic Nervous System (ANS) dysfunction (central or
peripheral)

• CNS involvement: additionally, Central Nervous System (CNS) dysfunctions are ob-
served (115). DM1 is the neuromuscular disease with the most prominent sleep disorders,
including excessive daytime sleepiness (EDS), sleep breathing disorders (nocturnal hypox-
emia, nocturnal hypoventilation, obstructive apnoeas and hypopnoeas, central apneas), pe-
riodic leg movements during sleep and rapid eye movement sleep dysregulations. Cognitive
impairment and psychiatric disorders occur (116) (117), as well as the involvement of neuropsy-
chological functioning regarding attention, executive functions, visuo-spatial and construc-
tive abilities.
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To improve the understanding of DM1 pathogenesis, particularly regarding CNS, MR brain imag-
ing techniques have been used to detect abnormalities in DM1 brains (105), confirming clinical,
molecular and histopathological brain alterations. Generalized brain atrophy was found, together
with gray matter (GM) volume reduction within the cortex (frontal, temporal, parietal and oc-
cipital cortex) (118) and deep structures (119); subcortical and periventricular white matter (WM)
hyperintensities increased in DM1 patients with respect to healthy controls (HC) (Fig. 3.1) (120)

and microstructural parameters from diffusion measurements show widespread alterations in nor-
mal appearing WM (121). Other techniques have been used, such as functional MRI (122) and MR
spectroscopy (123), supporting findings in alterations in DM1 brains.

Figure 3.1: White matter hyper-intensities (T2w 3D FLAIR) (DM1, E2 genetic class, M/57 years old) (IRCCS Istituto delle Scienze
Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Ospedale Bellaria, Bologna)

As in (106), the purpose of this work (124) is to explore the role of iron accumulation in DM1 develop-
ment using QSM, both cortical and subcortical structures, aiming to find more specific biomarkers
to characterize the disease and distinguish different genetic classes, helping the understanding of
DM1 pathogenesis. The analysis proposed is original, as analyzing multiple brain structures within
a sample homogeneous in terms of phenotype abundance and with a wide clinical characterization.

3.2 Materials and methods

3.2.1 Study sample and clinical evaluation

34 DM1 patients participated, recruited in a prospective study at the Neuromuscular Centre of
the UOC Neurological Clinic of the IRCCS Istituto delle Scienze Neurologiche di Bologna. MR
and clinical examinations were performed between May and November 2021; all patients signed
informed consent. The patient cohort included E1 and E2 genetic classes; originally, the sample
included other three patients (1 E1 and 2 E3) which were excluded because was not possible
to include QSM sequence in the MR protocol. Data were collected from the database of the
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Neuroimaging Laboratory (IRCCS Istituto delle Scienze Neurologiche di Bologna). 35 age- and
sex- healthy controls were included for comparisons; MR exams were performed between February
2020 and June 2022, using the same protocol. Demographic characteristics are shown in Tab. 3.1,
with details about E1 and E2 genetic classes in Tab. 3.2.

DM1 (n=34) HC (n=35) p-values

F:M 20:14 20:15 .888

Age (y)
46.8 ± 12.0 50.5 ± 17.4

.230
(20-71) (24-86)

Onset age (y)
30.0 ± 15.7 na

na
(4-68)

DD (y)
16.8 ± 9.7 na

na
(0.6 - 36.1)

Table 3.1: Main characteristics of DM1 patients and healthy controls. Where appropriate, values are given as mean ± standard
deviation, with ranges in parenthesis. p-values are from the comparison between the two groups, considered statistically significant

(*) at p < .05 (na = not available, DD = Diagnostic Delay)

DM1-E1 (n=14) DM1-E2 (n=20) p-values

F:M 7:7 13:7 .389

Age (y)
50.3 ± 10.0 44.3 ± 12.9

.230
(28-71) (22-67)

Onset age (y)
36.4 ± 14.8 25.6 ± 15.0

.044 *
(16-68) (4-55)

DD (y)
13.9 ± 9.2 18.8 ± 9.8

.152
(0.6 - 29.3) (6.3 - 36.1)

Table 3.2: Main characteristics of DM1 patients, divided into E1 (50-150 CTG repeats) and E2 (150-1000 CTG repeats) genetic
classes. Where appropriate, values are given as mean ± standard deviation, with ranges in parenthesis. p-values are from the

comparison between the two groups, considered statistically significant (*) at p < .05 (na = not available, DD = Diagnostic Delay)

Neurological, pneumological and cardiological evaluations, together with sleep recordings study,
were performed on the patient cohort together with MR scans, allowing the combination of imaging
and clinical data. More specifically (125):

• Neurological evaluation included the Muscular Impairment Rating Scale (MIRS) (126), the
Neuromuscular Impairment Function and Disability Scale (NIFDS) (127), divided into four
domains (neuropsychological, motor, myotonia and daily life activity), and the Epworth
Sleepiness Scale (ESS) to evaluate excessive daytime sleepiness

• Pneumological evaluation included Forced Vital Capacity (FVC), arterial blood gas analysis
with recording of arterial carbon dioxide partial pressure (PaCO2) and arterial oxygen partial
pressure (PaO2)

• Cardiological assessment included ECG, to evaluate conduction abnormalities (PR inter-
val, QRS duration) and systolic (left ventricular) dysfunction, as the reduction of Ejection
Fraction (EF)
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• Sleep breathing disorders were studied through polysomnography; the Oxygen Desaturation
Index (ODI), the Apnea Hypopnea Index (AHI) and the number of central apneas (NCA)
per hour of sleep were scored according to the AASM guidelines

In Tab. 3.3, indices of clinical data distribution are reported, distinguishing E1 and E2 classes.

DM1 E1 E2 p-val

MIRS ↑ (na) 3.15 ± 0.78 2.79 ± 0.89 3.40 ± 0.60 .022 *
NIFDS (NP) ↑ (na) 3.34 ± 2.70 2.91 ± 2.30 3.61 ± 2.95 .507
NIFDS (Mo) ↑ (na) 9.41 ± 4.01 6.82 ± 3.34 11.00 ± 3.60 .004 *
NIFDS (My) ↑ (na) 5.48 ± 2.71 3.91 ± 2.66 6.44 ± 2.31 .012 *
NIFDS (DL) ↑ (na) 2.10 ± 1.80 0.91 ± 0.94 2.83 ± 1.83 .003 **
NIFDS (tot) ↑ (na) 20.34 ± 8.80 14.55 ± 5.18 23.89 ± 8.75 .003 **

ESS ↑ (≥ 10) 8.25 ± 2.92 8.54 ± 2.93 8.05 ± 2.97 .651
FVC ↓ (≤ 80 %) 84.24 ± 17.80 90.29 ± 15.32 80.00 ± 18.53 .098

PaCO2 ↑ (≥ 45 mmHg) 45.45 ± 4.96 43.86 ± 4.54 46.76 ± 5.01 .122
PaO2 ↓ (≤ 80 mmHg) 85.98 ± 10.15 87.47 ± 10.63 84.92 ± 9.99 .516

PR ↑ (≥ 200 ms) 194.54 ± 34.37 190.50 ± 41.20 197.80 ± 28.90 .593
QRS ↑ (≥ 100 ms) 116.25 ± 25.15 118.58 ± 28.16 120.00 ± 22.91 .391

EF ↓ (≤ 50 %) 60.72 ± 6.39 58.57 ± 4.21 62.19 ± 7.27 .117
ODI ↑ (na %) 11.46 ± 11.10 8.58 ± 6.80 13.76 ± 13.41 .235

AHI ↑ (≥ 30 N/h) 11.36 ± 10.49 8.80 ± 6.43 13.40 ± 12.73 .266
NCA ↑ (≥ 5 N/h) 1.26 ± 1.69 1.01 ± 1.57 1.46 ± 1.81 .500

Table 3.3: Clinical data of DM1 patients (as a whole cohort, and divided into E1 and E2 genetic classes), divided into: neurological
(MIRS, NIFDS, ESS), pneumological (FVC, PaCO2, PaO2), cardiological (PR, QRS, EF) and sleep (ODI, AHI, NCA) evaluations.
Arrows in the first column refer to the direction of the severity of the corresponding scale; pathological cut-off has been indicated in
brackets, where it is not available na has been indicated. Values are given as mean ± standard deviation, significant (* p < .05) and
highly significant (** p < .01) differences between E1 and E2 classes are highlighted. Scores of MIRS, NIFDS and ESS are reported;
FVC is reported as % of the predicted value; AHI and NCA are reported as number of apnoeas, hypopnoeas and central apneas per
hour of sleep (MIRS = Muscular Impairment Rating Scale, NIFDS = Neuromuscular Impairment Function and Disability Scale, NP

= Neuropsychological, Mo = Motor, My = Myotonia, DL = Daily Life activity, ESS = Epworth Sleepiness Scale, FVC = Forced
Vital Capacity, PaCO2 = arterial carbon dioxide partial pressure, PaO2 = arterial oxygen partial pressure, EF = Ejection Fraction,

ODI = Oxygen Desaturation Index, AHI = Apnea Hypopnea Index, NCA = Number of Central Apneas)

3.2.2 MR measurements and VOIs segmentation

The MR protocol included MPRAGE and QSM sequences, processed as explained in Sec. 1.2.1.
Images did not show movement artifacts and were considered suitable for the analysis.
The workflow pipeline is illustrated in Fig. 3.2. QSM images were linearly registered to the
corresponding MPRAGE using FLIRT (44) (45). Automated segmentation tools were applied to
MPRAGE images and the resulting segmentation was overlaid to QSM. More details about soft-
ware and toolboxes used can be found in Sec. 1.2.1. As Volumes of interest (VOIs), the following
structures were selected:

• Ten cortical gyri from FreeSurfer (48) cortical parcellation: PreCentral Gyrus (PrCG), Caudal
Middle Frontal Gyrus (CMFG), ParaCentral Gyrus (PCG) and Pars Triangularis (PT) in the
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frontal lobe, PostCentral Gyrus (PoCG), Inferior Parietal Gyrus (IPG) and SupraMarginal
Gyrus (SMG) in the parietal lobe, Transverse Temporal Gyrus (TTG) in the temporal lobe
and Posterior Cingulate Cortex (PCC) and Isthmus of the Cingulate Gyrus (ICG) in the
cingulate cortex. Not all the 35 available gyri were considered because some of them overlap
artifacts in QSM due to air-tissue boundaries and cortical bones (59) (95).

• Caudate nuclei, accumbens, putamen, globus pallidus, thalamus, hippocampus and amyg-
dala from FIRST segmentation (46).

• Thalamic subnuclei from an atlas-based method implemented in Brun et al., 2022 (128). Using
30 7T- MP2RAGE images of controls, they built up an atlas in the Montreal Neurological
Institute’s 152 (MNI152) space and a template with 24 deep grey nuclei, 14 of which are
thalamic. As suggested, their template was registered to MPRAGE images using ANTs
(http://stnava.github.io/ANTs/) and nuclei were grouped into four main units (anterior,
medial, ventral and pulvinar). In Fig. 3.3, thalamic nuclei are shown overlaid to MPRAGE
and QSM of a representative subject.

• Brainstem and its substructures (midbrain, pons and medulla) from FreeSurfer (129); in Fig.
3.4, brainstem sub-segmentation is shown overlaid to MPRAGE and QSM of a representative
subject.

• Substantia Nigra (SN), Red Nuclei (RN) and Dentate Nuclei (DN) were identified on an
original implemented χ-enhanced atlas, built up in the MNI152 space. QSM images were
registered to the corresponding MPRAGE using ANTs and MPRAGE to the MNI152 space
using FNIRT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT). SN, RN and DN were
manually drawn on the atlas, and the ROIs were back-registered to the native space for each
subject. In Fig. 3.5, these structures are shown on a representative subject of the cohort.
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Figure 3.2: Workflow pipeline, including MR protocol and different segmentation methods used. Ten cortical gyri (precentral gyrus,
caudal middle frontal gyrus, paracentral gyrus and pars triangularis in frontal lobe, postcentral gyrus, inferior parietal gyrus and

supramarginal gyrus in parietal lobe, transverse temporal gyrus in temporal lobe and posterior cingulate cortex and isthmus of the
cingulate gyrus in cingulate cortex) were selected from FreeSurfer cortical parcellation; the brainstem and its substructures (midbrain,

pons and medulla) were selected from FreeSurfer segmentation; caudate, accumbens, putamen, globus pallidus, thalamus,
hippocampus and amygdala were selected from FIRST segmentation; subthalamic nuclei (anterior, medial, ventral and pulvinar) were

selected from a MP2RAGE-enhanced atlas developed in (128); Substantia Nigra (SN), Red (RN) and Dentate Nuclei (DN) were
selected from a susceptibility-enhanced atlas originally implemented. Images are from a representative healthy control (F/27 years

old) (IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit)
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Figure 3.3: Thalamic segmentation of anterior, medial, ventral and pulvinar nuclei overlaid on MPRAGE and QSM images of a
representative healthy control of the study cohort (F/27 years old) (IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional

and Molecular Neuroimaging Unit). Thalamic nuclei segmentation was performed using the template from (128)
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Figure 3.4: Brainstem segmentation of midbrain, pons and medulla from FreeSurfer, overlaid on MPRAGE and QSM images of a
representative healthy control of the study cohort (F/27 years old) (IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional

and Molecular Neuroimaging Unit)
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Figure 3.5: Substantia nigra (SN), red and dentate nuclei (RN and DN) from the QSM atlas-based method implemented, overlaid on
MPRAGE and QSM images of a representative healthy control of the study cohort (F/27 years old) (IRCCS Istituto delle Scienze

Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit)

3.2.3 Statistical analysis

ROI-based analysis was performed comparing the median χ and volume distributions between
HC and DM1 and between E1 and E2 genetic classes, averaging the left and the right side.
Median χ values were corrected by age assuming a linear increase in the control groups (103), and
volume was corrected by Total Intracranial Volume (TIV) using the proportional method (99).
From Spearman’s test, correlations between volume and χ values did not result. One-sample
Kolmogorov-Smirnov test was used to check the normality of the distributions; χ and volumes
were not normally distributed in any of the structures, thus the non-parametric Kruskal-Wallis
test was used (* p-values < .05 and ** p-values < .01). Correlations were evaluated between χ

values and clinical data using Spearman’s test (* p-values < .05 and ** p-values < .01).
The analysis was carried out using Python (version 3.7.6).
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3.3 Results

3.3.1 χ and volume: cortical and subcortical structures

Susceptibility and volume distributions were evaluated in the selected gyri, comparing HC and
DM1 groups; results are summarized in Tab. 3.4. Median χ is significantly higher in multiple
cortical gyri in DM1 group, in particular in PrCG (p = .016), CMF (p = .001), PT (p = .005),
PoCG (p = .044), IPG (p = .005), SMG (p = .002), TTG (p = .002) and ICG (p = .006),
together with significant atrophy in some of them (PrCG, p = .005; PCG, p = .010; PoCG, p

= .012; IPG, p = .003; SMG, p = .002; TTG, p = .001). Note that, despite the increase in
susceptibility corresponding to a decrease in volume, there are no significant correlations between
the two properties in any structures. The same analysis was performed to compare, within the
patient group, E1 and E2 classes. There were no significant differences between the two genetic
classes exploring those measurements.

Median χ Volume

PrCG * ↑ ** ↓
CMFG ** ↑ ns ↓
PCG ns ↑ * ↓
PT ** ↑ ns ↓

PoCG * ↑ * ↓
IPG ** ↑ ** ↓
SMG ** ↑ ** ↓
TTG ** ↑ ** ↓
PCC ns ↑ ns ↑
ICG ** ↑ ns ↑

Table 3.4: Susceptibility and volume distribution comparison between HC and DM1 groups (↑ = χ increase in DM1 group, ↓ = χ

decrease of in DM1 group) in cortical gyri. ROI-based analysis was performed (Kruskal-Wallis test, * p < .05, ** p < .01) (G =
Gyrus, PrCG = PreCentral G, CMFG = Caudal Middle Frontal G, PCG = ParaCentral G, PT = Pars Triangularis, PoCG =

PostCentral G, IPG = Inferior Parietal G, SMG = SupraMarginal G, TTG = Transverse Temporal G, PCC = Posterior Cingulate
Cortex, ICC = Isthmus of the Cingulate Gyrus)

χ distributions in subcortical structures between controls and DM1 were compared, at first con-
sidering the patients’ group as a whole cohort and then distinguishing the two genetic classes. The
first outcomes are shown in Tab. 3.5. Bar plots with χ distributions within the two groups are
shown in Fig. 3.6: there is a significant and highly significant increase of bulk χ respectively in
the thalamus (p = .020) (Fig. 3.7) and in the brainstem (p = .003) (Fig. 3.8), without detecting
significant volume changes.
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Median χ Volume

Cau ns ↑ ns ↑
Acc ns ↓ ns ↓
Put ns ↓ ns ↓
GP ns ↓ ns ↑
SN ns ↓ ns ↑
RN ns ↑ ns ↑
Th * ↑ ns ↑

Hipp ns ↑ ns ↑
Amy ns ↑ ns ↑
DN ns ↑ ns ↑

Brainstem ** ↑ ns ↑
Table 3.5: Susceptibility and volume distribution comparison between HC and DM1 groups (↑ = χ increase in DM1 group, ↓ = χ

decrease of in DM1 group) in the analyzed subcortical structures. ROI-based analysis was performed (Kruskal-Wallis test, * p < .05,
** p < .01) Cau = Caudate, Acc = Accumbens, Put = Putamen, GP = Globus Pallidus, SN = Substantia Nigra, RN = Red Nucleus,

Th = Thalamus, Hipp = Hippocampus, Amy = Amygdala, DN = Dentate Nucleus)

Figure 3.6: Bar plots of χ distributions of the analyzed subcortical structures. VOI-based analysis was performed (Kruskal-Wallis
test, * p < .05, ** p < .01) (Cau = Caudate, Acc = Accumbens, Put = Putamen, GP = Globus Pallidus, SN = Substantia Nigra, RN

= Red Nucleus, Th = Thalamus, Hipp = Hippocampus, Amy = Amygdala, DN = Dentate Nucleus)

No significant difference was found between E1 and E2 groups in χ and volume distributions.
An increase of χ (E2 > E1) occurred in the caudate, thalamus and amygdala; specifically in the
thalamus, susceptibility is higher in patients than healthy controls and in E2 than in E1 group
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(Fig. 3.7, panel b), which may indicate a marker of worsening of clinical conditions. Since the
thalamus and brainstem showed significant differences in DM1 patients, those structures were
better analyzed by studying their sub-units.

3.3.2 Thalamic nuclei and brainstem sub-units

Anterior, medial, ventral and pulvinar nuclei of the thalamus were analyzed (Figures 3.2 and 3.3).
Results about the comparisons HC vs DM1 and E1 vs E2 are reported in Tab. 3.6 (upper part)
and Fig. 3.7: there is a significant increase in susceptibility in the ventral and pulvinar nuclei,
leading, as mentioned in the previous section, to a significant difference considering the whole
thalamus. Regarding the comparison between the two genetic classes, there were no significant
differences.

HC vs DM1 E1 vs E2

Thalamus

Tot * ↑ ns ↑
Anterior ns ↑ ns ↑
Medial ns ↑ ns ↑
Ventral ** ↑ ns ↓

Pulvinar * ↑ ns ↑

Brainstem

Tot ** ↑ ns ↓
Midbrain ns ↑ ns ↓

Pons ** ↑ ns ↓
Medulla * ↑ ns ↑

Table 3.6: Comparison of χ distribution in sub-units in the thalamus and the brainstem. On the left side, HC and DM1 (↑ = χ

increase in DM1 group, ↓ = χ decrease of in DM1 group); on the right side, E1 and E2 (genetic classes of DM1) (↑ = χ increase in E2
class, ↓ = χ decrease in E2 class). VOI-based analysis was performed (Kruskal-Wallis test, * p < .05, ** p < .01) (ns = not

significant)
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Figure 3.7: Thalamic χ distributions in HC and DM1 (E1 and E2 classes). Distributions were evaluated by comparing the control
cohort with the entire DM1 group (panel a) and distinguishing E1 and E2 classes (panel b). On both panels, the first plot on the left
is the one regarding the entire structure, while on the right the plots of the thalamic nuclei (anterior, medial, ventral, pulvinar) are

shown. VOI-based analysis was performed (Kruskal-Wallis test, * p < .05, ** p < .01). On the right, representative images of
thalamic nuclei segmentation (HC, F/26 years old)

Midbrain, pons and medulla were individually analyzed as parts of the brainstem (Figures 3.2 and
3.4). In Tab. 3.6 (bottom part) and in Fig. 3.8, results are reported: pons, medulla and the entire
brainstem showed a significant increase in DM1, major in the pons; there is no trend of increases
looking into E1/E2 differentiation.
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Figure 3.8: χ distributions of the brainstem in HC and DM1 (E1 and E2 classes). Distributions were evaluated by comparing the
control cohort with the entire DM1 group (panel a) and distinguishing E1 and E2 classes (panel b). On both panels, the first plot on
the left is the one regarding the entire structure, while on the right the plots of its substructures (midbrain, pons and medulla) are

shown. VOI-based analysis was performed (Kruskal-Wallis test, * p < .05, ** p < .01). On the right, representative images of
brainstem segmentation (HC, F/26 years old)

3.3.3 χ correlations with clinical and laboratory data

Available data in the study included clinical evaluation. Since subcortical regions, particularly
the thalamus and brainstem, showed a higher specificity than cortical gyri, possible correlations
between χ values and clinical data in those structures, including the sub-segmentation of the
thalamus and the brainstem, were explored. In Tab. 3.7, significant correlations in the DM1 groups
are shown; within the text below, eventual significances within the genetic classes considered
individually are reported. In the table the direction of severity for each parameter is reported;
please consider χ values in those structures correlate with iron accumulation (24) (130), as a possible
biomarker of disease severity. The main findings were the following.

• χ values negatively correlated with the onset age in the thalamus – considering the sub-
segmentation, in medial and pulvinar nuclei – and the brainstem.

• Thalamus and amygdala are linked with disability scores. Thalamic χ in the pulvinar
positively correlated with three out of four domains of NIFDS (motor, myotonic and daily life
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activities); the correlation in the motor domain remained true in the E2 class individually.
Amygdala χ correlated with motor and daily life domain of NIFDS, as well as in the total
counts; as before, this resulted also in the individual E2 class, where, additionally, the
correlation between amygdala χ and the neuropsychological domain occurred.

• Pneumological data did not correlate with any structures considering the entire cohort of
patients; there was in the E2 class a positive correlation with the PaCO2 within the anterior
and medial thalamic nuclei and the medulla oblongata.

• Within the cardiological data, correlations occur between the PR interval length and brain
structures: thalamus, as a whole and in the medial, ventral and pulvinar nuclei; medulla
oblongata; amygdala and putamen. Thalamic, medial and pulvinar χ positively correlated
within E1 and E2 classes individually; amygdala χ correlated also in E2 class.

• There are correlations between χ values and the index of central apnea in the thalamic
medial nucleus, the brainstem, the hippocampus and the putamen

Thalamus Brainstem Others

Onset age ↓ (-) Th (*) (-) Br (*)
MIRS ↑

NIFDS (NP) ↑
NIFDS (Mo) ↑ (+) Th (*) (+) Amy (*)
NIFDS (My) ↑ (+) Th (**)
NIFDS (DL) ↑ (+) Th (*) (+) Amy (*)
NIFDS (tot) ↑ (+) Amy (*)

ESS ↑
FVC ↓

PaCO2 ↑
PaO2 ↓
PR ↑ (+) Th (**) (+) Br (*) (+) Amy (*) Put (**)

QRS ↑
EF ↓

ODI ↑
AHI ↑
NCA ↑ (+) Th (*) (+) Br (*) (+) Hipp (*) Put (*)

Table 3.7: Correlations between χ values and clinical data of DM1 patients; data are divided into: neurological (MIRS, NIFDS, ESS),
pneumological (FVC, PaCO2, PaO2), cardiological (PR, QRS, EF) and sleep (ODI, AHI, NCA) evaluations. Arrows in the first

column refer to the direction of the severity of the corresponding scale. Spearman’s test (* p < .05, ** p < .01) was used, evaluating
the following structures: thalamus, brainstem and the other subcortical structures (Th = Thalamus, Br = Brainstem, Cau = Caudate,
Acc = Accumbens, Put = Putamen, GP = Globus Pallidus, SN = Substantia Nigra, RN = Red Nucleus, Hipp = Hippocampus, Amy
= Amygdala, DN = Dentate Nucleus, MIRS = Muscular Impairment Rating Scale, NIFDS = Neuromuscular Impairment Function
and Disability Scale, NP = Neuropsychological, Mo = Motor, My = Myotonia, DL = Daily Life activity, ESS = Epworth Sleepiness
Scale, FVC = Forced Vital Capacity, PaCO2 = arterial carbon dioxide partial pressure, PaO2 = arterial oxygen partial pressure, EF

= Ejection Fraction, ODI = Oxygen Desaturation Index, AHI = Apnea Hypopnea Index, NCA = Number of Central Apneas)
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3.4 Discussion

DM1 is a hereditary multisystem disorder that affects both the musculoskeletal system and the
CNS. Previous research has utilized MR brain imaging techniques to identify anomalies in the
brains of individuals with DM1 (105). Building on this prior work, the current study aims to in-
vestigate χ distributions in several brain structures. To provide context, it’s important to note
that there is only one previous study, conducted by Ates and colleagues in 2019 (106), that ex-
amined susceptibility-based brain images in DM1 patients. In this research, their findings were
confirmed and expanded, including additional brain structures in the analysis and integrating
imaging biomarkers with a comprehensive neurological assessment. This investigation focused on
gray matter structures, including both cortical and subcortical regions, to explore potential corre-
lations between neurological observations and the data derived from susceptibility-based imaging.
The primary objective was to gain a deeper understanding of the pathological progression of DM1,
specifically distinguishing between central and peripheral origins of DM1 symptoms. Furthermore,
we aimed to identify specific biomarkers for the disease since neurodegenerative conditions often
exhibit quantitative and qualitative indicators that are sensitive but lack specificity. Below, I am
going to delve into the results of the study, emphasizing the key findings.

χ in cortical gyri
Prior research has underscored disparities in the cortex when comparing individuals with DM1 to
healthy controls (105), specifically widespread cortical atrophy involving reductions in both cortical
volume and thickness in regions of the frontal, temporal, parietal, and occipital cortex has been
revealed. Hence, the first part of the analysis has been about magnetic susceptibility within corti-
cal gyri. Notably, outcomes indicated a significant increase in susceptibility among DM1 patients
when compared to healthy controls (Tab. 3.4). This increase was observed in regions such as the
precentral gyrus, caudal middle frontal gyrus and pars triangularis within the frontal lobe, as well
as the post-central, inferior parietal and supramarginal gyri within the parietal lobe. Similar in-
creases in susceptibility were noted in the transverse-temporal region of the temporal lobe and the
mid-posterior cingulate cortex. These observations aligned with the alterations revealed through
structural analysis.
It is important to note that an increase in susceptibility in cortical gyri is typically associated with
the accumulation of iron and is commonly linked to a more severe clinical condition in various
neurodegenerative disorders, such as amyotrophic lateral sclerosis (15) (Ch. 2). It is plausible to
hypothesize that a similar association might hold for DM1. The affected gyri are closely related
to essential functions, including motor and language skills within the frontal lobe, sensory percep-
tion within the parietal lobe, auditory function in the temporal lobe, and memory and awareness
in the posterior cingulate cortex. These functions may be compromised in DM1 patients, who
often exhibit myotonia and muscle weakness (21), cognitive difficulties in both written and spoken
languages (131), and a lack of awareness regarding the burden and progression of the disease (116).
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χ in subcortical structures
Cortical iron accumulation is indeed present in DM1 patients, and it may be associated with
some of the clinical symptoms they experience. However, this process is a common character-
istic of many neurodegenerative conditions and it is not specific to DM1. Because of that, the
analysis was extended to include sub-cortical regions, namely: caudate, accumbens, putamen,
globus pallidus, substantia nigra, red nuclei, thalamus, hippocampus, amygdala, dentate nuclei
and brainstem. Among those, both the thalamus and the brainstem displayed a significant in-
crease in susceptibility in DM1 patients when compared to healthy controls (Tab. 3.5 and Fig.
3.6). Alterations in susceptibility measurements in the thalamus have also been noted in previous
research (106), where they were identified as part of the pathophysiological changes seen in DM1
patients. In both the thalamus and brainstem, as it happens for cortical gray matter, a positive
correlation between susceptibility values and iron concentration has been identified by combining
imaging and histopathological measurements (24) (130). Below, I am going to focus on the analysis
of these two structures, considering their sub-units.

χ in thalamic nuclei
The thalamus plays a pivotal role as a central structure in the transmission of information from the
body to the brain. Given its strategic position and its extensive connections within the CNS, al-
terations in the thalamus can potentially lead to a wide range of functional impairments, spanning
from motor deficits to disturbances in consciousness. A more in-depth investigation into thalamic
nuclei can provide valuable insights into which specific aspects are most affected, consequently
offering a deeper understanding of the corresponding clinical spectrum. In this study, I focused
on four distinct thalamic nuclei (Fig. 3.3): anterior, ventral, medial and pulvinar. The analysis
revealed an increase of χ in the entire thalamus and the ventral and pulvinar nuclei independently
(Tab. 3.6 and Fig. 3.7). The ventral thalamic nuclei are responsible for relaying information to the
somatosensory and motor cortex, playing a vital role in transmitting data related to movement,
tremors and the sensory system. On the other hand, the pulvinar nuclei project to the visual
cortex, carrying crucial information related to visual skills. Note that the three corresponding
cortical areas (motor, sensory, and visual) displayed χ alterations in the examined cohort of pa-
tients.
Moreover, a comparative analysis of thalamic χ, both considering the thalamus as a whole struc-
ture and breaking it down into individual nuclei, was conducted across the E1 and E2 classes
within the DM1 patient group. No statistically significant difference was found; however, a no-
ticeable trend of increased thalamic susceptibility was observed, progressing from healthy controls
to E1 and E2 classes. This trend - remaining consistent when considering the anterior, medial, and
pulvinar nuclei individually - led to infer that the increase in thalamic susceptibility is associated
with the worsening of clinical conditions (Fig. 3.7).
Furthermore, this research revealed significant correlations between thalamic susceptibility and
clinical data (Tab. 3.7). Notably, a significant negative correlation was observed between suscep-
tibility values and the age of disease onset. This negative correlation suggests that an earlier onset
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is linked to a higher concentration of iron in the entire thalamus and specifically in the medial
and pulvinar nuclei. Additionally, thalamic pulvinar susceptibility exhibited a significant positive
correlation with DM1 disability scores, especially with motor function, myotonia, and activities
of daily living as assessed by the NIFDS. These correlations remained significant within the E2
class, but not in the E1 class. Moreover, thalamic susceptibility (both as a whole and in the
medial, ventral, and pulvinar nuclei) was strongly correlated with the PR internal length within
the DM1 group, and this correlation held for both E1 and E2 classes. Finally, a significant cor-
relation was observed between the number of central apneas and the susceptibility of the medial
thalamic nuclei, which are also involved in the regulation of sensory information related to respi-
ration (132). This outcome suggests that CNS alterations may correspond to breathing dysfunction
during sleep. Importantly, it’s worth noting that no such correlations were found, whether within
the thalamus or other structures, with the other two apnea indices, ODI and AHI, which consider
both central and non-central episodes.

χ in brainstem sub-units
Another significant target for differentiation between DM1 and healthy controls is the brainstem,
which holds a central role in the processing of information within the CNS and serves as a crucial
intermediary for signals traveling from the body to the brain. It is involved in regulating many
vital functions, including breathing, heart rate, blood pressure, and sleep. The brainstem is tra-
versed by numerous white matter tracts, such as the corticospinal and corticobulbar tracts. Any
alterations or damage to the brainstem can impact an individual’s clinical condition in diverse
ways, contingent upon the location of the affected areas. In the analysis, the three primary divi-
sions (midbrain, pons, medulla) of the brainstem were considered (Fig. 3.4). Findings revealed
that the most significant differences between individuals with DM1 and healthy controls were
predominantly observed in the pons (Tab. 3.6 and Fig. 3.8). The pons contains various nuclei
responsible for functions like sleep and respiration. Additionally, differences were noted in the
medulla, which comprises the lower half of the brainstem responsible for managing information
related to cardiac and respiratory function.
This observation is particularly interesting in light of the associations found between brainstem
χ values and cardiological and respiratory evaluations (Tab. 3.7). For instance, susceptibility in
the medulla positively correlated with the PR internal length, and susceptibility of the brainstem
as a whole structure correlated with the number of central apneas. Sleep disorders are a common
feature in the development of DM1, and previous research in the literature has indicated that
these anomalies originate in the CNS (133), corroborating our study’s findings. A recent study by
Nepozitek et al. in 2023 (134) also linked magnetic susceptibility in the brainstem to sleep anoma-
lies in a cohort of patients with REM sleep Behavior Disorder. Furthermore, χ in the brainstem
displayed a negative correlation with the age of disease onset. An earlier onset was associated
with a greater accumulation of iron in the brainstem when considered as a unified structure. No
significant correlations were observed when examining the individual sub-structures within the
brainstem (midbrain, pons, and medulla) or when considering the individual genetic classes.
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Additional considerations and limitations
It is worth noting that other deep gray matter structures seem to be involved in the development of
DM1. First, susceptibility in the amygdala exhibited correlations with motor and daily life items
in the NIFDS within the DM1 group and the E2 class individually. Additionally, it correlated
with the PR internal length within the entire DM1 group and the E2 class. Second, putaminal
susceptibility was linked with the PR internal length and the number of central apneas. Last,
susceptibility within the hippocampus correlated with the number of central apneas; this structure
has been already associated with sleep breathing disorders (125).
There are a few limiting factors to consider: our sample did not include DM1 patients belonging
to E3 class; even if the number of patients is consistent considering previous studies, analysis on
a larger sample would be useful to confirm the outcomes; it would be interesting to analyze cor-
relations between susceptibility values and neurological, cardiological and respiratory evaluations
in the group of controls as well.

3.5 Conclusion

In conclusion, this study helps in better characterization of DM1 as a neurodegenerative disorder,
focusing in particular on the role of iron accumulation during the development of the disease. The
thalamus and brainstem appeared to be the target structures in QSM analysis: they show a sig-
nificant increase in susceptibility and correlations with clinical and laboratory data. Specifically,
it is interesting the correlation with the number of central apneas in both structures, in addition
to the putamen and the hippocampus, already linked with sleep breathing disorder. The thalamus
is also involved with motor, myotonia and daily life items of the NIFDS, disability scale imple-
mented for DM1 patients, and, together with the brainstem, amygdala and putamen, it shows
significant correlations with PR interval length, associating indeed conduction abnormalities with
iron accumulation. Additionally, thalamus and brainstem χ negatively correlates with the onset
age, associating iron accumulation with earlier disease onset. Last, the amygdala is also involved
in a few items of NIFDS, namely motor, daily life and total score.
These results certainly bring us one step closer to understanding the mechanisms that govern
the pathology, and they deserve further investigation. Some differences have been observed be-
tween the two genetic classes analyzed, both in the comparisons of distributions and in the trends
of clinical data, even though a clear clustering of the two groups using susceptibility data was
not identified. Further analyses, with a larger sample or the incorporation of additional features
extracted from QSM images, could assist in distinguishing the two genetic classes more precisely.
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χ = magnetic susceptibility
AHI = Apnea Hypopnea Index
ANS = Autonomic Nervous System
CMFG = Caudal Middle Frontal
CNS = Central Nervous System
CTG = Cytosine-Thymine-Guanine
DD = Diagnostic Delay
DM1 = Myotonic Dystrophy type 1
DMPK = Myotonic Dystrophy Protein Kinase
DN = Dentate Nuclei
EDS = Excessive Daytime Sleepiness
EF = Ejection Fraction
ESS = Epworth Sleepiness Scale
FCV = Forced Vital Capacity
GM = Gray matter
HC = Healthy Controls
ICG = Isthmus of the Cingulate Gyrus
IPG = Inferior Parietal Gyrus
MIRS = Muscular Impairment Rating Scale
MNI152 = Montreal Neurological Institute’s 152
MPRAGE = Magnetization-Prepared Rapid Acqui-
sition Gradient Echo
MR = Magnetic Resonance
MRI = Magnetic Resonance Imaging
NCA = Number of Central Apneas
NIFDS = Neuromuscular Impairment Function and
Disability Scale
ODI = Oxygen Desaturation Index
PaCO2 = arterial carbon dioxide partial pressure
PaO2 = arterial oxygen partial pressure
PCC = Posterior Cingulate Cortex
PCG = Paracentral Gyrus
PoCG = PostCentral Gyrus
PrCG = PreCentral Gyrus
PT = Pars Triangularis
RN = Red Nuclei
ROI = Region of Interest
SMG = SupraMarginal Gyrus
SN = Substantia Nigra
TIV = Total Intracranial Volume

TTG = Transverse Temporal Gyrus
UTR = UnTranslated Region
VOI = Volume of Interest
WM = White Matter
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Chapter 4

Innovative Methods to QSM images

In this chapter, I am going to elaborate on two innovative approaches I applied to QSM images,
aiming to enhance the use and analysis of those data.
The first method involves the implementation of a robust and accurately designed pipeline for
the extraction and evaluation of radiomic features from QSM images. This pipeline specifically
focuses on the normal appearing white matter and it is employed within a study conducted on a
cohort of patients with multiple sclerosis and healthy controls. The objective of this approach is to
systematically extract and assess radiomic features, offering valuable insights into the structural
and textural characteristics of the normal appearing white matter within the context of multiple
sclerosis and beyond. Section 4.1 refers to this study, whose results have been published in a
research paper (23).
The second methodology discussed regards the application of a super-resolution model aiming to
enhance the spatial resolution of susceptibility images. To date, QSM is quite unexplored in this
kind of application, and this work represents an innovative advancement in the field. The approach
used was peculiar, since a model already trained with natural images was directly applied to brain
MR images, without re-training or fine-tuning. The model was validated on morphological T1w
and T2w images of a large sample from the Cam-CAN database at first (135), and then applied
to QSM images from Neuroimaging Laboratory of IRCCS Istituto delle Scienze Neurologiche di
Bologna, possibly offering new perspectives and enhancing capabilities for the study of neurolog-
ical and medical conditions. Results are shown in Section 4.2.
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4.1 QSM radiomic features in Multiple Sclerosis

Multiple Sclerosis (MS) is an autoimmune demyelinating disease characterized by changes in iron
and myelin content, biomarkers detectable using QSM (1) (24). When analyzed with radiomic tech-
niques that exploit its intrinsic quantitative nature, QSM may furnish biomarkers to facilitate
early diagnosis and timely assessment of progression.
In this work, the robustness of QSM radiomic features was explored by varying the number of grey
levels and echo times, in a sample of healthy controls and patients with MS. Normal appearing
white matter was analyzed in total and within six clinically relevant tracts, namely: arcuate fasci-
culus, cortico-spinal tract, frontal aslant tract, inferior fronto-occipital fasciculus, optic radiation
and uncinate fasciculus. The background and aims are described in Sec. 4.1.1 and 4.1.2, the
pipeline implementation and database in Sec. 4.1.3.
Results and discussion are in Sec. 4.1.4 and 4.1.5. After optimizing the number of gray levels
(n = 64), at least 65% of features were robust for each volume of interest, with no difference (p
> .05) between the left and right hemispheres. Different outcomes in feature robustness among
the analyzed regions depend on their characteristics, such as volume and variance of susceptibility
values.
This study (23) validated the processing pipeline for robustness analysis and established the relia-
bility of QSM-based radiomic features against gray levels and echo times (Sec. 4.1.6), providing
important insights for future radiomic studies using QSM in clinical applications, which I am
going to pursue in future work.

The first use of abbreviations includes their full expansion; for ease of reference, a glossary is
provided at the end of the section.

4.1.1 Radiomics and biomarkers

Radiomics has been defined as the conversion of digital images into mineable high-dimensional
data (136). Traditionally, images are intended for visual interpretation, but there is more beyond
signal intensity and contrast: focusing on a specific Volume of Interest (VOI) in a 3D image, it is
possible to analyze descriptors of the shape, intensity histogram and texture. Over the past two
decades, radiomic applications to medical imaging have emerged as quantitative tools for person-
alized medicine (137) (138), using non-invasive instruments to assess aspects of anatomy, physiology
and pathology and to accurately define diseases’ diagnosis, prognosis and suitable treatments.
Quantitative measurements, such as quantitative MRIs (qMRIs), are particularly suited to this
type of analysis since they go beyond conventional MRI measurements and carry information
about tissue microstructure and pathophysiological properties, complementing - and possibly, in
the future, taking over - traditional histology examinations (139), providing benefit to patients care.

Multiple measurements or radiomic features can be extracted from images, quantifying their
characteristics in an automated high-throughput manner (140) and returning a potentially mas-
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sive source of biomarkers of pathology. It is important to distinguish image measurements from
biomarkers, accurately defined: in 1998, the National Institutes of Health Biomarkers Definition
defined a biomarker as “a characteristic that is objectively measured and evaluated as an indicator
of normal biological processes, pathogenic processes or pharmacological responses to a therapeutic
intervention” (141). Indeed, they are objective and quantifiable descriptors of biological processes,
able to consistently predict clinical outcomes and endpoints: interpretability and reproducibility
are two crucial aspects. First, current hardware, software and computing developments allow us
to manipulate images, and data in general, in infinite ways, which may be intriguing on one side
but chaotic and confusing on the other. In medical applications, it is important to keep a clinical
perspective driving the research (142); validity and relevance of a biomarker, as its utility in clinical
practice and ability to provide useful information, need to be confirmed (143). Second, whenever
an informative or relevant feature is identified, outcomes generalizability and replicability need to
be guaranteed; as we are referring to descriptors representing physiological processes, they should
be the same independently from the acquisition system or processing workflow. Stages from the
scanner to the feature extraction are several and complex, and multiple parameters may influence
the reliability of the results. Thus, to preserve the outcomes from one system to another, robust-
ness analysis is crucial in radiomic applications (144) (140).

Radiomics has been used to explore different medical image modalities, such as computed tomog-
raphy (145) (146) (147) or photoacoustic imaging (148). In brain MRI applications, it has been adopted
in a few studies mainly to characterize brain tumors, using anatomical T1w and T2w images as
support (149) (150), and it has been shown that images contain information associated with treat-
ment response, tumor grade and clinical outcomes (151). However, radiomics is still a new method
in susceptibility-based imaging and neurodegeneration applications. This work aims to analyze
susceptibility-based features from QSM in a cohort of patients with MS.

4.1.2 Multiple sclerosis: background and aims

MS is an acquired autoimmune disorder characterized by demyelination in the Central Nervous
System (CNS), affecting both the brain and the spinal cord. This condition presents a wide ar-
ray of symptoms, including fatigue, sensory loss in the limbs, tingling sensations (paraesthesias),
cognitive decline, and visual disturbances (152). MS is a global health concern, impacting over 2
million individuals worldwide (153) (152); the disease typically emerges between the ages of 15 and
60, with a higher prevalence in women (accounting for three-quarters of MS cases). The course
of MS can span decades, leading to a life expectancy that is 5 to 10 years shorter than that of
healthy individuals. The triggers for MS can be both environmental and genetic (153): factors such
as geographic latitude, obesity, gender, early exposure to infections, smoking, and air pollution
can contribute to the development of the condition. Genetic predisposition also plays a role, with
approximately a 20% familial recurrence rate. There are over 200 genetic variants associated with
an increased risk of MS, with the most significant one being the HLA DRB*1501 haplotype.
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In the progression of MS, CNS exhibits focal lymphocyte infiltration, leading to damage to myelin
and axons. In the initial stages, inflammation is transient, and the CNS can undergo remyelination
following demyelination. However, over time, pathological changes driven by microglial activation
result in chronic neurodegeneration, contributing to the progression of disability (153). MS lesions
can manifest in both White and Gray Matter (WM and GM), with cortical lesions typically be-
ing less inflammatory and displaying lower blood-brain barrier permeability. Depending on the
location and timing of lesion appearance, clinical symptoms can vary, affecting systems such as
motor, sensory, visual, and autonomic functions. Lesions are categorized into types, including
periventricular WM, juxtacortical WM, corpus callosum, infratentorial brain (pons and cerebel-
lum), optic nerve, and spinal cord (154) (155).
The precise pathogenesis of MS remains an object of ongoing investigation, with several key ques-
tions that still need to be answered. Firstly, it is unclear whether the primary cause of the disease
is intrinsic or extrinsic to CNS. Secondly, the role of neurodegeneration in MS remains enigmatic.
In the course of MS, both inflammatory and neurodegenerative processes occur concurrently,
but there is no consensus on whether they are independent of each other or if one precedes the
other (153). While MS was initially classified as a demyelinating disease, there is now growing sup-
port for the theory that acute and chronic axonal loss plays a central role in neurodegeneration.
The progression of the disease is not only dependent on the occurrence of new lesions but also on
the accumulation of axonal degeneration. In fact, individuals with MS often exhibit a significantly
reduced parenchymal fraction in both the brain and spinal cord (152).

Currently, the diagnosis of MS is based on the McDonald diagnostic criteria, that combine clinical,
imaging, and laboratory biomarkers (154). Conventional MRI has been a cornerstone in the McDon-
ald diagnostic criteria and in monitoring disease activity; however, conventional techniques often
demonstrate established lesions lacking insights into the pathophysiological mechanisms leading
to the demyelination (156): focal or confluent alteration in WM, detectable with MRI, can be found
in more than 95% of patients with MS, but lesion presence is not a necessary condition to diag-
nose the disease, since non-specific WM lesions often occur in > 50yo healthy people. The recent
development of different innovative qMRI techniques, capable of in vivo quantification of imaging
biomarkers, is promising to explore brain microstructure (157) and metabolism (158) to unravel the
pathophysiology of MS potentially revealing pre-clinical inflammatory demyelination providing
new therapeutic windows. QSM, as a quantitative MR sequence, may help us explore both le-
sions and unlesioned parenchyma. Main findings achieved up to this point may be summarized
as follows: a) chronic active or smoldering lesions, signs of an ongoing inflammatory process, are
detected with QSM and show increased susceptibility at the edges because of iron-laden microglia
and macrophages (61); b) susceptibility values increase, meaning that iron concentration increases,
in the basal ganglia and decrease in the thalamus, where they have been associated with higher
disability (159); c) differences have been highlighted in the Normal Appearing WM (NAWM) (21) (22),
analyzing the non-lesioned parenchyma in patients with MS and healthy controls; in WM, changes
in susceptibility are related to ongoing demyelination processes (160).
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This work (161) (162) focuses on the NAWM (21) (22), analyzing the non-lesioned parenchyma in pa-
tients with MS and healthy controls. In literature, differences have already been highlighted in
this tissue, even in the absence of lesions, associated with the presence of activated microglia as a
sign of inflammation (163) (164). Studying NAWM may help in the early diagnosis of the disease, the
characterization of different clinical phenotypes of MS, and the distinction from other demyeli-
nating diseases. Here, QSM-based radiomic features were extracted from NAWM and clinically
relevant WM tracts in healthy controls and patients with MS, and a robustness analysis was
performed to suggest potential features for use in classification, characterization, and prognosis.
The reliability of susceptibility features was assessed against the number of gray levels (GLs) and
echo times (TEs); all details of the implemented pipeline are described in the following sections.
The dataset generated and analysed during the study (23) is available in the Zenodo repository
(https://zenodo.org/record/8271881)

4.1.3 Materials and methods

Study sample and MR examinations

The analyzed sample included 121 MS patients (F:M 71:50, 48.7 ± 12.6 year old [23-75]) and
30 Healthy Controls (HCs) (F:M 17:13, 53.4 ± 17.9 year old [24-86]), totaling of 151 exams
acquired at the IRCCS Istituto delle Scienze Neurologiche di Bologna (Bellaria Hospital) (IT)
between February 2020 and September 2022. The sample included various MS clinical pheno-
types (relapsing-remitting, primary and secondary progressive) to prevent any phenotype-biased
results. Throughout the study, there was no substantial modification to the acquisition and pro-
cessing software or the data analysis pipeline, ensuring uniformity and comprehensiveness of the
sample. The sample size aligns with previous studies that have investigated susceptibility-based
radiomic features (165) (104) (166). The MR protocol included: MPRAGE, FLAIR, DWI and QSM.
QSM acquisition and processing details are illustrated in Chapter 1 (Section 1.2.1). FLAIR, DWI,
and QSM images were linearly registered with FLIRT (44) (45) to the corresponding MPRAGE im-
ages. All the images did not present significant movement artifacts and were considered suitable
for the analysis.

Pre-processing pipeline and ROI segmentation

WM tissue was segmented using the MRtrix tool 5ttgen, based on FreeSurfer segmentation (48).
WM lesions were automatically segmented by the Lesion Prediction Algorithm (167) as implemented
in the open-source Lesion Segmentation Tool (LST www.statistical-modelling.de/lst.html);
FLAIR images were used as input data (168) (169). The toolbox provided an estimate for the lesion
probability map, used to obtain a binary map of lesions: for each exam, the inverse of this map
was multiplied by the WM mask to identify the NAWM.

Diffusion and tractography processing pipeline was previously implemented as described in (170) (171) (172).
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DWI images were skull-stripped using BET (43) and denoised using dwidenoise, function of MR-
trix3 (47), with a principal component analysis approach. Susceptibility-related distortion was
estimated using topup function of FSL, and correction for susceptibility, eddy currents effects,
and signal dropout was performed (eddy_openmp (173) function of FSL).
For WM tract reconstructions, diffusivity was modeled along the spatial eigenvector, employing
the tensor model, a high-order fiber modeling technique and a probabilistic streamline approach for
evaluating crossing fibers. Diffusion images were used to estimate fiber orientation distributions by
the single tissue, single shell spherical deconvolution algorithm ‘csd’ implemented by the dwi2fod
function from MRtrix3 (174). Six WM tracts were defined: arcuate fasciculus (AF), cortico-spinal
tract (CST), frontal aslant tract (FAT), inferior fronto-occipital fasciculus (IFOF), optic radiation
(OR), uncinate fasciculus (UF). For each tract, seed and inclusion regions of interest for streamline
generation and selection were defined on the Montreal Neurological Institute’s 152 (MNI152) stan-
dard brain. Non-linear registration between DWI and MNI spaces was performed using FNIRT.
Streamlines were generated using the iFOD1 method tckgen from MRtrix3 (47), using criteria such
as entering inclusion regions, FOD amplitude, and deviation angle. Tracts were individually re-
constructed for the two hemispheres and then combined into a single tract, converted into a NIfTI
image with voxel intensity representing the streamline count. To obtain a relative fiber count
estimate image, a threshold was applied (referring to the maximum value, 10% for AF and 2% for
the others). As NAWM, tract VOIs were analyzed excluding the lesions.

Details of software used are in Chapter 1 (Section 1.2.1). The pipeline was entirely automated
and it is illustrated in Figure 4.1.
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Figure 4.1: Scheme of the workflow (23): 1) MPRAGE, FLAIR, DWI and QSM acquisition (M/25y, HC); 2) WM and lesions
segmentation from FLAIR (M/51y, MS) and WM tracts reconstruction from DWI (M/25y, HC); 3) image perturbation, changing the

number of Gray Levels (GLs) and of Echo Times (TEs) (please note changes in artifacts (red boxes) and contrast (blue boxes)
moving from 5TEs to 1TEs) 4) VOIs overlap on QSM images and feature extraction; 5) Robustness analysis (ICC evaluation); note
that ICC values for 3D shape features are equal to 1 for all the ROIs and all the measurements, as the shape of the regions was not
change during the work and they depend only for it. For this reason, this class of features is not considered for the next steps of the

work (AF = Arcuate Fasciculus, CST = Cortico-Spinal Tract, FAT = Frontal Aslant Tract, IFOF = Inferior Fronto-Occipital
Fasciculus, OR = Optic Radiation, UF = Uncinate Fasciculus)
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Radiomic features extraction

Because the study data were collected using a consistent acquisition protocol, clinical scanner, and
processing pipeline, all within a single center, the sample exhibited a high degree of homogeneity,
and the need for histogram normalization (151) was deemed unnecessary.
PyRadiomics (version 3.0.1) (175), running on Python (version 3.7.6), was used to extract features
from 3D VOIs overlapped to QSM images; the features extracted were 107, divided into the
following categories:

• First-order features (FO, # 18): descriptors of the histogram intensity through com-
monly used metrics, such as mean, median, 10th and 90th percentile, skewness, kurtosis, and
so on; they are independent of the number of GLs

• Shape 3D (S3D, # 14): descriptors of the 3D size and shape of the ROI (e.g. volume,
surface, minimum and maximum axes); they are independent of the number of GLs and
their intensity distributions

• Gray Level Co-occurrence Matrix (GLCM, # 24): they describe the second-order
joint probability function of an image region constrained by the mask.

• Gray Level Run Length Matrix (GLRLM, # 16): they quantify GL runs (number of
consecutive pixels that have the same grey level value)

• Gray Level Size Zone Matrix (GLZM, # 16): they quantify GL zones in an image
(number of the connected voxels that share the same grey level intensity)

• Neighboring Gray Tone Difference Matrix (NGTDM, # 5): they quantify the
difference between a GL value and the average grey value of its neighbors

• Gray Level Dependence Matrix (GLDM, # 14): they quantify GL dependencies
(number of connected voxels within a distance that are dependent on the central voxel)

Categories 3 to 7 are referred to as texture, and they give information about the spatial distribution
of intensity levels in the image; a complete list of features can be found in PyRadiomics documen-
tation (https://pyradiomics.readthedocs.io/en/latest/features.html) and in (23).

Robustness of radiomic features

The reliability of radiomic features was assessed by evaluating: a) different numbers of GLs in
the images, which affects texture features, and b) different numbers of echo times considered to
reproduce the susceptibility maps. The number and values of TE change a lot from pipeline
to pipeline and their setting affects contrast and intensities in the resulting map. Normally, a
compromise needs to be found between high (major contrast, both in well-reconstructed tissue
and in artifacts areas) and low (more details) values and the number of echoes, which increases
as the signal-to-noise ratio and the acquisition time.
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Seven different re-binning (2n , n ∈ [3, 4, . . . , 9] = 8, 16, 32, 64, 128, 256, 512 GLs) and four
different QSM reconstructions were considered, using 5 (TEi, i ∈ [1,2,3,4,5]), 3 (TEi, i ∈ [1,3,5]),
2 (TEi, i ∈ [1,5]) and 1 (TE5) echo times (TEs = 9.42, 18.84, 28.26, 37.68 and 47.10 ms). To
evaluate robustness, the Intraclass Correlation Coefficient ICC (96) was measured: its higher value
is equal to 1 when there is perfect repeatability, while decreasing values from 1 to 0 show a decrease
in resemblance. Features considered with good reliability were the ones corresponding to ICC >
0.85, set as threshold. Measurements were evaluated considering the left and right hemispheres
together at first and then individually; eventual differences between the two sides were assessed
using the two-sample t-test, considering significant p − values < .05.
First, the optimal number of GLs was estimated and then changes in ICC between the different
susceptibility maps were evaluated. Shape 3D features are independent of the intensity values;
ICC values are equal to 1 in all the measurements (Fig. 4.1), thus this class of features was not
considered further in this study.

4.1.4 Results

The optimal number of GLs in QSM images was evaluated as the one returning the highest number
of robust features. For each binning, from 8 to 512, ICC values between the 4 QSM reconstructions
were measured in all the VOIs (NAWM Tracts: AF, CST, FAT, IFOF, OR, UF, and NAWM; 7
VOIs · 107 features = 749 features in total). Different threshold levels were explored at this stage,
from 0.85 to 0.90; results are in Tab. 4.1. At all threshold levels tested, the maximum number of
robust features was obtained using 64 GLs. The same analysis was repeated extracting features
by side (2 sides · 7 VOIs · 107 features = 1498) and considering patients and control groups
independently. The results confirmed 64 GLs as the optimal binning.

N° GLs
ICC threshold

0.90 0.89 0.88 0.87 0.86 0.85

8 461 489 517 543 556 568
16 525 570 605 624 636 648
32 545 574 603 624 640 659
64 555 589 613 626 652 667

128 533 584 607 622 635 654
256 531 568 592 612 623 640
512 540 576 593 608 621 631

Table 4.1: Number of robust features vs number of gray levels used to quantize the images (23). Features were evaluated for all the
VOIs (6 NAWM tracts and NAWM), leading to a total number of 749 (= 7 VOIs · 107 features). A feature was considered robust

when the ICC over the 4 QSM reconstructions was higher than a set threshold, from 0.85 to 0.90

Robustness analysis

In Fig. 4.2, robust features in NAWM Tracts and NAWM are shown divided into different cate-
gories. In NAWM, ∼65% of features were robust; tracts generally work better in terms of robust
features, between 75% and 100%. There are differences in the different tracts: AF, FAT, and OR
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(∼ 95 to 100% robust features) showed better results than CST, IFOF and UF (∼ 75 to 90%).
Thus, further analysis was carried out to explain those differences, and it is illustrated in the
subsequent subsection. To highlight eventual differences between the left and right hemispheres,
the analysis was carried out by dividing the left and right sides for each ROI. The left hemisphere
showed slightly better results; however, differences between the two sides can be considered neg-
ligible (p > .05). The same results were obtained for the entire NAWM (p > .05).

Figure 4.2: Robust features in NAWM and NAWM tracts (23). Features were extracted setting 64 as binning, and ICC was evaluated
between the 4 QSM reconstructions, setting 0.85 as threshold. First row: line plot with number of robust features, total (a1) and

considering the different feature categories (a2); second row: spider graph with the percentage of the number of robust features, total
(b1) and considering the different feature categories (b2) (AF = Arcuate Fasciculus, CST = Cortico-Spinal Tract, FAT = Frontal

Aslant Tract, IFOF = Inferior Fronto-Occipital Fasciculus, OR = Optic Radiation, UF = Uncinate Fasciculus, FO = First-Order, GL
= Gray Level, GLCM = GL Co-occurrence Matrix, GLRLM = GL Run Length Matrix, GLZM = GL Zone Matrix, NGTDM =

Neighboring Gray Tone Difference Matrix, GLDM = GL Dependence Matrix)
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Different NAWM VOIs were analyzed in this study, considering individually left and right hemi-
spheres. Below, a list of features reliable in all the considered regions is given:

• FO (50%, 9/18): 10th and 90th percentile, energy and total energy, mean, median and root
mean squared, skewness and kurtosis

• GLCM (∼80%, 19/24): cluster shade, contrast, correlation, difference average, difference
entropy, difference variance, inverse difference, inverse difference moment, inverse different
moment normalized, inverse difference normalized, information measure of correlation 1 and
2, inverse variance, joint average, joint energy, joint entropy, maximal correlation coefficient,
maximum probability and sum average

• GLRLM (∼65%, 10/16): GL non uniformity, long run emphasis, long run high GL em-
phasis, run entropy, run length non uniformity, run length non uniformity normalized, run
percentage, run variance, short run emphasis, short run high GL emphasis

• GLSZM (25%, 4/16): GL non uniformity, size zone non uniformity, zone entropy and zone
percentage

• NGDTM (80%, 4/5): busyness, coarseness, contrast, strength

• GLDM (∼65%, 9/14): dependence entropy, dependence non-uniformity, dependence non
uniformity normalized, dependence variance, GL non uniformity, large dependence emphasis,
large dependence high GL emphasis

First-order statistics analysis

Volume may play a significant role in robustness, indeed, NAWM, which has the largest volume,
showed less robust features. Fig. 4.3 shows the volume distribution of the NAWM tracts: CST and
IFOF, which showed fewer robust features compared to other tracts (e.g. AF and FAT), showed
greater volumes, suggesting that the assumption that volume may be influencing the number of
robust features is maintained. Volumes of the structures of interest were corrected by using the
proportional adjustment method (99). UF also showed a lower number of robust features, but as
opposed to CST and IFOF, its volume distribution was comparable with those of AF, FAT, and
OR. Hence, I focused on the first-order features to further investigate the lower robustness of the
UF.
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Figure 4.3: Box plots of volume (corrected by the total brain volume, proportional method), interquartile range (= 75th percentile –
25th percentile), MAD (Mean Absolute Deviation), variance, entropy and uniformity (first-order statistics features) distributions in
the NAWM tracts (5TE-QSM) among the analyzed sample (23). CST and IFOF are the more extended tracts (red circle); UF is the

one more inhomogeneous in terms of range, MAD, and variance (blue circles); CST is the tract with lower entropy and higher
uniformity (green circles), thus showing more uniformity in terms of texture despite its wide extension (AF = Arcuate Fasciculus,

CST = Cortico-Spinal Tract, FAT = Frontal Aslant Tract, IFOF = Inferior Fronto-Occipital Fasciculus, OR = Optic Radiation, UF
= Uncinate Fasciculus)

ICC values for first-order features in the NAWM VOIs are reported in Tab. 4.2. Review of
individual values confirmed that, as mentioned in the previous section, AF, FAT, and OR showed
higher robustness, while CST, IFOF, and UF, were more variable, similar to the overall NAWM.
Most of the less-robust features in those VOIs (75th P – 25th P, Mean Absolute Deviation, Range,
Robust Mean Absolute Deviation, and Variance) are related to the degree of spread of the intensity
histogram, which is generally higher in UF distributions (Fig. 4.3, ‘75° - 25° P’, ‘Mean Absolute
Deviation’ and ‘Variance’ panels). Hence, a QSM-contrasted atlas was built in the MNI152 space
using QSM images of healthy controls to explore spatial relationships that could influence intensity
values. In Fig. 4.4, the variance of the susceptibility values among the sample is shown voxel-by-
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voxel; the regions with more variability were areas prone to streak artifacts, i.e., closer to air-tissue
boundaries or cortical bone, and the basal ganglia. Fig. 4.4 also shows individual variance maps
for each tract: CST, IFOF, and UF include areas with higher variance.

First-Order Features AF CST FAT IFOF OR UF NAWM

10th P 0.962 0.946 0.948 0.919 0.942 0.909 0.947
90th P 0.985 0.982 0.984 0.988 0.986 0.986 0.982
Energy 0.936 0.935 0.940 0.915 0.922 0.906 0.892
Entropy 0.976 0.908 0.968 0.928 0.952 0.888 0.839

75th P – 25th P 0.906 0.830 0.899 0.810 0.883 0.815 0.834
Kurtosis 0.986 0.907 0.874 0.956 0.982 0.921 0.881

Maximum 0.944 0.916 0.962 0.903 0.914 0.852 0.729
MAD 0.893 0.842 0.887 0.783 0.870 0.791 0.811
Mean 0.979 0.973 0.973 0.969 0.974 0.961 0.983

Median (50th P) 0.979 0.972 0.972 0.970 0.973 0.960 0.982
Minimum 0.906 0.832 0.909 0.855 0.863 0.814 0.802

Range 0.893 0.833 0.914 0.833 0.853 0.780 0.717
Robust MAD 0.902 0.828 0.896 0.805 0.880 0.811 0.830

RMS 0.964 0.947 0.953 0.930 0.942 0.925 0.903
Skewness 0.988 0.943 0.978 0.943 0.981 0.958 0.956

Total Energy 0.936 0.935 0.940 0.915 0.922 0.906 0.892
Uniformity 0.979 0.919 0.969 0.936 0.956 0.893 0.845

Variance 0.872 0.848 0.860 0.724 0.843 0.741 0.732
Table 4.2: ICC values (n° GLs = 64) for the First-Order features in the analyzed NAWM tracts and overall VOIs (23). Considering

0.85 as the threshold, the robust features are highlighted in bold, the others in italic (P = Percentile, MAD = Mean Absolute
Deviation, RMS = Root Mean Squared, AF = Arcuate Fasciculus, CST = Cortico-Spinal Tract, FAT = Frontal Aslant Tract, IFOF

= Fronto-Occipital Fasciculus, OR = Optic Radiation, UF = Uncinate Fasciculus)

Texture analysis

Among the first-order features, distributions of uniformity, which measures the homogeneity of
the intensity values, and entropy, which measures the randomness in the image values, showed
lower and higher median values in CST than other tracts (Fig. 4.3). Details in the intensity values
distributions are better described by the texture features, among which several measurements refer
to fine or coarse texture in the images. Many of those agree on the fact that CST, one of the
wider white matter tracts analyzed, is the one reporting the less fine texture in GLCM, GLRLM,
GLSZM, NGTDM and GLDM categories, followed by IFOF and OR. In Tab. 4.3, a list of features
supporting this observation.
GLRLM, GLSZM and GLDM describe the distribution of the pixel measuring similar properties
of different matrices, evaluating respectively length runs, size zones and dependences. There are
correspondences between the three classes with respect to the texture homogeneity of CST: long
run emphasis, long area emphasis and large dependence emphasis all show higher values for CST,
run and zone percentage both show higher values for CST; GL variance, measuring the variance in
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Figure 4.4: QSM atlas was obtained non-linearly registering 30 healthy control exams to the MNI152 space and a pixel-wise variance
of the susceptibility measurements map was evaluated (23) - a) susceptibility variance map in the 3D MNI 152 in the white matter
tracts; b) QSM atlas; c) susceptibility variance map overlaid to QSM atlas; d) susceptibility variance map reported individually for
each WM tract, overlaid to QSM atlas, with the most representative projection for each of them (sagittal for AF, IFOF, and UF;

coronal for CST and FAT; axial for OR). Red arrows in a) and c) point to the hyperintensities artifacts areas in QSM reconstructions
(AF = Arcuate Fasciculus, CST = Cortico-Spinal Tract, FAT = Frontal Aslant Tract, IFOF = Inferior Fronto-Occipital Fasciculus,

OR = Optic Radiation, UF = Uncinate Fasciculus)

GL intensity respectively for the runs, the sizes and the dependences, is lower in CST distributions
for the three categories. CST is wide and so the variance in terms of intensity values is high. GL
Non-Uniformity, which measures the similarity in intensity values, is higher for CST and IFOF for
the three categories of GLRLM, GLSZM and GLDM. Other tracts, such as AF and FAT, which
are more reliable in terms of number of robust features, return measurements corresponding to a
more fine texture: for example, Contrast in GLCM is higher in AF and FAT; Difference Entropy
in GLCM, lower in CST, is higher in AF and FAT; Complexity in NGDTM, lower in CST and
IFOF, is higher in FAT.
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Texture category Feature Trend

GLCM

Difference Entropy ↓ CST
Maximal Correlation Coefficient ↓ CST

Joint Entropy ↓ CST
Joint Energy ↑ CST

GLRLM

Short Run Emphasis ↓ CST
Long Run Emphasis (*) ↑ CST

Run Percentage (**) ↑ CST
Gray Level Variance (***) ↓ CST

Run Entropy ↓ CST, OR
Run Length Non-Uniformity Normalised (****) ↓ CST

GLSZM

Long Area Emphasis (*) ↑ CST
Zone Percentage (**) ↑ CST

Gray Level Variance (***) ↓ CST, IFOF, OR
Zone Entropy ↓ CST, OR

NGTDM Complexity ↓ CST, IFOF

GLDM

Small Dependence Emphasis ↓ CST
Large Dependence Emphasis (*) ↑ CST

Dependence Non-Uniformity Normalised (****) ↓ CST
Gray Level Variance (***) ↓ CST

Table 4.3: Second-order features measuring fineness, coarseness and texture homogeneity (23); their trend shows that the CST is the
one reporting less fine texture and more homogeneity in terms of texture, despite its wider histogram distribution (CST =

Cortico-Spinal Tract, GL = Gray Levels, GLCM = GL Co-occorrence Matrix, GLRLM = GL Run Length Matrix, GLSZM = GL
Size Zone Matrix, NGDTM = Neighboring Gray Difference Tone Matrix, GLDM = GL Dependance Matrix). * were signed for

corresponding features in different categories.

4.1.5 Discussion

This study has illustrated the reliability of radiomic features derived from QSM images when
evaluated within NAWM of both patients with MS and controls, both overall and within selected
tracts. Nevertheless, some variability was noted among different structures. In the investigation, a
few factors were identified as potentially influencing this robustness, to aid in the future selection
of anatomical volumes of interest. Furthermore, we pinpointed a subset of these robust radiomic
features that merit further exploration as potential tools for clinical decision-making support.
The analysis incorporated a mixed sample of patients and healthy controls; thus the reliability
of radiomic features was evaluated regardless of subjects’ clinical condition. Future work will
help find differences between controls and patients and different clinical phenotypes. Results are
discussed below, highlighting the key aspects of the study.

Intensity normalization
Conventional MR images exhibit arbitrary, non-calibrated grey intensity values, normally neces-
sitating image normalization before conducting feature extraction. Various methods have been
proposed for this purpose, and the chosen normalization method can directly impact the pre-
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dictability of features extracted from the normalized images (176). QSM is an intrinsically quan-
titative sequence, and, in this study, all examinations were conducted using the same scanner
and processed with a standardized pipeline. In this way, an extremely homogeneous dataset was
generated, eliminating the need for intensity histogram normalization (151).

Optimal number of gray levels in QSM
The intensity values within QSM images directly represent the magnetic susceptibility of a specific
voxel. The manipulation of visualization parameters influences how these images are perceived,
primarily due to the limited capacity of the human eye to perceive gray levels. However, these
adjustments do not alter the quantitative values representing the magnetic susceptibility of the
examined structures. Consequently, the first stage of the analysis was to examine how different
numbers of GLs (bin number) affect the robustness of radiomic features while keeping the bin
size constant. This method aligns with the recommendations of the Image Biomarker Standard-
isation Initiative (140), particularly when working with quantitative data, as it preserves a direct
connection with the original intensity values. The number of robust features reaches its peak
at 64 GLs (Tab. 4.1), that was selected as the optimal quantization level for QSM and used
for subsequent assessments of robustness. Interestingly, a recent study exploring the robustness
of radiomic features in computed tomography images of the liver and muscles, which also falls
under the category of quantitative imaging modalities, arrived at similar conclusions. It identi-
fied the optimal range of GLs to be between 32 and 64 (147), underscoring the need for a sufficient
number of GLs to account for variations among neighboring pixels and produce meaningful results.

QSM robust features in NAWM
After fixing the number of gray levels in QSM reconstructions, it was evaluated that at least 55
descriptors for each volume of interest are robust and potentially informative for future clinical
study (Fig. 4.2); a full list is given in the previous section. Features were evaluated first by
considering together the left and right hemispheres: 65% of radiomic features were robust within
the entire NAWM with no fewer than 50% in each class. Texture classes showed higher robustness
(NGTDM 80%, GLCM 79.2%, GLDM 71.4%, GLRLM 62.5%, GLSZM 56.3%), compared to first-
order statistics (50%). Analysis of WM tracts showed that more than 75% of features were robust
within all the analyzed NAWM tracts. Texture classes GLCM (99.3%) and GLRLM (96.9%)
showed a higher percentage of robust features compared to GLDM (91.7%), NGTM (90.0%), FO
(83.3%) and GLSZM (81.3%).
It is noteworthy to consider that the ISMRM Electro-Magnetic Tissue Properties Study Group is
working on a consensus paper about QSM acquisition and processing (4), but still, the number and
values of TEs change from one acquisition system to another. This study revealed a significant
level of agreement among the results obtained from susceptibility maps reconstructed using dif-
ferent echo times, even when considering maps generated with a single TE of 47.1 ms. However,
while this observation might imply that conducting radiomics with a limited number of TE values
would be adequate, such an approach would entail a loss of valuable QSM-derived information,
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potentially offering distinct insights. For example, shorter echo times enhance the visualization
of fine details, proving particularly beneficial in identifying and visualizing small demyelinating
lesions in patients with multiple sclerosis. Additionally, a combination of short and long echo
times serves to balance image contrast and minimize image degradation due to streak artifacts.
Furthermore, using multiple TE values enhances the signal-to-noise ratio for various tissues and
structures in the brain (177). Therefore, the utilization of multiple TE values not only contributes
to the stability of radiomic analysis but also aids in the conventional evaluation of the resulting
radiological images.

Radiomics and QSM: brief overview
There is a limited number of investigations of the application of radiomics to QSM. For instance,
Xiao et al. in 2019 (165) developed a machine learning algorithm capable of distinguishing pa-
tients with Parkinson’s disease (PD) from healthy controls by using radiomic features extracted
from the substantia nigra. More recently, Kang et al. in 2022 (166) compared radiomic features
extracted from the substantia nigra, the head of the caudate nucleus, and the putamen in pa-
tients with PD and controls, confirming that features derived from the substantia nigra were more
effective in diagnosing PD. Both studies concentrated on small but clinically relevant regions of
interest and did not formally evaluate the reproducibility or repeatability of their findings. Zhang
et al. in 2022 (104) employed a deep convolutional neural network that integrated lesion-level ra-
diomic and convolutional image features for the automated identification of chronic active MS
lesions (QSMRim-Net), defined by the presence of a peripheral rim of iron-laden activated mi-
croglia/macrophages. QSMRim-Net demonstrated promising results in detecting these lesions,
although the training and validation dataset was relatively limited, and rim-positive lesions were
relatively scarce. Similarly, Yan et al. in 2021 (178) constructed a machine learning model that com-
bined radiomic features extracted from deep grey matter regions and demographic characteristics
to differentiate between patients with MS and those with neuromyelitis optica spectrum disorder
(NMOSD) with a high degree of accuracy. However, the model solely relied on image information
from deep grey matter structures not typically associated with NMOSD, which raised concerns
about the possibility of overestimating its ability to distinguish between the two disorders (179).
Additionally, the choice of using deep grey matter regions may have been influenced by the limited
presence of lesions with rim-like paramagnetic phase changes in NMOSD patients (180).
Despite the limitations of these studies, there is a growing potential for applying sophisticated
analytical approaches to QSM data in the context of neurodegenerative and neuroinflammatory
disorders. The robustness assessment outlined in this study could significantly enhance future
investigations. For example, since both NMOSD and MS affect the corticospinal tract, this study
identified a set of reliable features that could be employed for assessing changes. This could pave
the way for computer-assisted differentiation between these two disorders. Furthermore, even
though this study did not assess microstructural information, the capability to evaluate measure-
ments from DWI sequence is integrated into the pipeline, enabling the incorporation in the future
of susceptibility and diffusion measurements.
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Radiomic features influenced by volume
Prior research has highlighted the significant impact of the volume on radiomic features (181) (182);
specifically, first-order features are influenced by larger volumes due to the increased number of
voxels contained within the VOI (183). Consequently, given that NAWM constituted the largest
VOI in our analysis, a higher degree of variability in terms of robustness was expected, which
was indeed confirmed with the analysis. A recent study investigating the reproducibility of QSM-
derived radiomic features when examining intramural hematomas and atherosclerotic calcifications
of intracranial vertebral arteries also observed a dependence on volume for certain features. In
this study, the smaller volume of the VOIs jeopardized the robustness of these features (184).
This information assumes particular significance when comparing the NAWM between patients
with MS and healthy controls. Brain volume loss, which occurs at an accelerated rate in pa-
tients with MS, can result in different sizes of NAWM between the two groups. This discrepancy
introduces a potential confounding factor due to the volume difference in the NAWM. Ideally,
dissimilarly sized VOIs should not be compared when the chosen metrics are sensitive to volume
effects. If, for some specific reason, metrics sensitive to volume effects cannot be avoided, as is the
case in this context, a normalization to account for volume dependency must be integrated into
the pipeline when VOIs have varying sizes (147) (181) (185).
Despite their sensitivity to volume effects, tract-based analysis within the analyzed cohort indi-
cated that most first-order statistic descriptors (including the 10th and 90th percentiles, mean,
median, skewness, and kurtosis) exhibited robustness in all the examined tracts, even during
side-based sub-analysis. Additionally, these first-order statistic descriptors outperformed texture
descriptors. These statistic descriptors are associated with tissue bulk susceptibility and are di-
rectly proportional to the concentration of biomarkers. Notably, susceptibility values correlate
positively and negatively with the concentration of iron and myelin, both of which are altered in
various neurological disorders, including MS, as indicated by (24). This robustness of first-order
statistic descriptors aligns with recent studies that have shown high reproducibility of susceptibil-
ity values across different sites (186) (187), highlighting the suitability of this technique for conducting
multicenter, cross-vendor, quantitative analyses of brain iron and myelin.

Radiomic features influenced by χ variance
Upon examining the statistical characteristics of individual tracts, our analysis divided the NAWM
tracts into two distinct clusters: AF, FAT and OR exhibited a higher degree of robustness, with
100%, 96.8%, and 95.7% of robust features, respectively; in contrast, CST, IFOF and UF demon-
strated less robustness, with 84.9%, 91.4%, and 77.4% of robust features, respectively. As discussed
earlier, the volume of the VOIs has a noticeable influence on radiomics features. Indeed, an ex-
amination of the volume distribution among these tracts (Fig. 4.3) affirmed that CST and IFOF
had the largest volume among the assessed white matter tracts. However, this volume-dependence
doesn’t elucidate the performance of UF, which had a volume that was not greater than that of
AF or FAT.

92



CHAPTER 4. INNOVATIVE METHODS TO QSM IMAGES 93

Compelling evidence from a susceptibility variance map generated using QSM images of healthy
volunteers (Fig. 4.4) indicated that voxels along the CST, IFOF, and UF exhibited greater vari-
ability, implying that radiomic features in these areas would be less reliable. Furthermore, the
variance map demonstrated that regions with higher variability were situated adjacent to areas
prone to streak artifacts (59) (95). These artifacts were typically found near air-tissue boundaries,
cortical bone, or close to high-susceptibility sources, such as the basal ganglia, which is known
to accumulate susceptibility-inducing compounds with age (188) (70). While reconstructed tracts
should not overlap with these artifact-prone areas, the stability of features based on gray level
intensity may be affected by their proximity. In particular, the susceptibility variance of both
IFOF and UF peaked in the anterior cranial fossa, which is particularly susceptible to streaking
artifacts. The UF may be more adversely affected due to its smaller volume, resulting in a higher
overall proportion of unreliable pixels.

CST: microstructural properties and χ features
Of distinct interest in the clinical context of MS, texture features within the cortico-spinal tract
unveiled the inherent microstructural characteristics of the tract itself (Tab. 4.3). Notably, com-
pared to other tracts (Fig. 4.3), the CST exhibited lower entropy, indicating a reduced level of
randomness in susceptibility values. Additionally, the distribution of uniformity within the CST
was higher than that in other tracts, implying a greater level of homogeneity.
A plausible explanation for these findings lies in the fact that white matter fibers in the CST ex-
hibit a cranio-caudal orientation, whereas other tracts consist of a mixture of fibers with varying
directions. Consequently, it is possible to infer that the uniform orientation within the CST leads
to the uniformity observed in its texture features. Motor symptoms are highly prevalent in pa-
tients with MS and significantly impact their quality of life and independence. The robustness of
radiomics features in the CST holds promise for the development of a radiomic signature specific
to the CST. Such a signature could potentially be employed for prospective monitoring, enabling
the early detection of changes in the pyramidal tract before the onset of symptoms and before
these changes become evident through morphological imaging.

Limitations
This study is subject to a few limitations to be considered. Firstly, despite the overall large sample
size, the patient subgroup significantly outnumbered the control group due to the hybrid clinical
and research focus of our institution. To address this imbalance, a sub-group analysis within the
patient and control groups was conducted, which confirmed that the independent results were
consistent with the overall pooled analysis. This information may provide valuable guidance for
determining sample sizes in future studies, particularly those focused on disease characterization,
as achieving an equal number of patients and controls may be challenging.
Secondly, the sample studied in this study is from a single site, with all scans performed on the
same clinical scanner. While this approach enhanced data homogeneity, it raises the possibility
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that the radiomic features identified as robust in this study may be specific to datasets acquired
using similar scanners and in similar settings. Assessing the robustness of a more heterogeneous
dataset would offer a more comprehensive evaluation, decoupling the results from the specific
acquisition and post-processing techniques. Nonetheless, now that robust radiomic features have
been identified within this particular setting, the proposed pipeline can be employed in similar
studies to verify the reproducibility of the outcomes across different hardware manufacturers and
settings.
Lastly, an automated tool for lesion segmentation was used to maintain consistent accuracy and
minimize potential bias throughout the analysis, avoiding the inherent variability that arises from
manual segmentation (189). This approach assured that the segmentation did not impact our re-
sults; however, it is important to note that automatic lesion segmentation tools may have limited
accuracy, particularly when it comes to identifying small lesions (those smaller than 5mm), po-
tentially leading to their inclusion within what was labeled as normal-appearing tissue.

4.1.6 Conclusions

In conclusion, to the best of my knowledge, this study represents the first attempt to assess the
robustness of QSM-derived radiomic features in normal appearing white matter. Image pertur-
bations - against the number of grey levels in the image and adjusting the number of echo times
used to reconstruct quantitative maps - were conducted. Findings reveal that over 65% of the
features demonstrated robustness across the entire NAWM. Moreover, the white matter tracts ex-
hibited a higher level of robustness, with over 75% of features proving to be robust in all the white
matter tracts. Differences among these tracts are likely attributed to the volume of the examined
structure and the distribution of susceptibility variability, which can be influenced by neighboring
anatomical features. This research sets the stage for future investigations that can leverage the
set of robust features identified here to non-invasively characterize patients with multiple sclerosis,
rapidly detect therapy responses, and monitor the progression of the disease.
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AF = Arcuate Fasciculus
BET = Brain Extraction Tool
CNS = Central Nervous System
CST = Cortico-Spinal Tract
DWI = Diffusion Weighted Imaging
FAT = Frontal Aslant Tract
FLAIR = FLuid Attenuate Inversion Recovery
FLIRT = FSL’s Linear Image Registration Tool
FO = First-order
FSL = FMRIB Software Library
GL = Gray Levels
GLCM = Gray Level Co-occurrence Matrix
GLDM = Gray Level Dependence Matrix
GLRLM = Gray Level Run Length Matrix
GLZM = Gray Level Size Zone Matrix
GM = Gray Matter
HC = Healthy Controls
ICC = Intraclass Correlation Coefficient
IFOF = Inferior Fronto-Occipital Fasciculus
LPA = Lesion Prediction Algorithm
LST = Lesion Segmentation Tool
MAD = Mean Absolute Deviation
MNI = Montreal Neurological Institute
MPRAGE = Magnetization Prepared RApid Gra-
dient Echo
MR = Magnetic Resonance
MRI = MR Imaging
MS = Multiple Sclerosis
NAWM = Normal Appearing White Matter
NGTDM = Neighbouring Gray Tone Difference
Matrix
NMOSD = NeuroMyelitis Optica Spectrum
Disorder
OR = Optic Radiation
qMRI = quantitative MRI
QSM = Quantitative Susceptibility Mapping
RMS = Root Mean Squared
S3D = Shape 3D
T1w, T2w, T∗

2w = T1-, T2-, T∗
2- weighted

TE = Time of Echo
UF = Uncinate Fasciculus
VOI = Volume of Interest
WM = White Matter
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4.2 QSM and Deep Learning: Super Resolution

Super resolution includes a class of techniques aiming to enhance image spatial resolution; they
have been applied in the biomedical imaging area, including MR brain T1w and T2w images (190).
In this study, the performance of a super-resolution deep learning algorithm was evaluated on
QSM, which has not been previously explored using this type of application.
28 healthy controls were selected; the MR protocol provided MPRAGE (T1w), FLAIR (T2w) and
QSM. Enhanced-Deep-Super-Resolution (EDSR) was used as a deep learning model (191), trained
with general-purpose images and directly applied on MR sequences, avoiding re-training or fine-
tuning stages. EDSR outcomes were compared to traditional bicubic interpolation, using pSNR
and SSIM as criteria: EDSR better reproduced the original images for all the sequences, under
qualitative and quantitative evaluation.
EDSR was trained with general-purpose figures and still allows better reconstructions with respect
to bicubic interpolation for MPRAGE, FLAIR and QSM. In the latter reconstructions, some
issues in accurately reproducing high-intensity pixels were observed; thus, arrangements may be
recommended before applying EDSR to those images, such as a tailored fine-tuning of the model.

4.2.1 SR with biomedical images: background and aims

Super Resolution (SR) algorithms aim to enhance the spatial resolution of low-resolution (LR) im-
ages, improving the detection of fine details and complex structures found in their high-resolution
(HR) counterparts (192). The process of up-sampling is an ill-posed problem by definition, as it in-
volves increasing the amount of information from poor data while accounting for various potential
sources of noise impacting LR images. These sources of noise can originate from hardware factors,
such as acquisition sensors and acquisition time, as well as software factors like compression ar-
tifacts and stochastic noise (193). Consequently, there are potentially infinite solutions linking LR
and HR images, and the effectiveness of up-sampling algorithms should be assessed based on their
capacity to preserve the original information or enhance the initial degradation.

Various types of SR models have emerged over the years. Deep Learning (DL) SR methods
were first introduced by Dong and colleagues in 2014 (194), as they initiated the use of Convolu-
tional Neural Networks (CNNs), a category of artificial neural networks well-suited for numerous
visual image-related tasks. Subsequently, Residual Neural Networks (ResNet) have been pro-
posed (195) (196) to improve the performance. ResNet refers to a category of models incorporating
residual connections into the structure of CNNs, enabling the retention of information from var-
ious residual structural blocks and mitigating issues related to performance degradation. Kim
and colleagues in 2016 (197) were the first which integrated residual learning techniques into SR
tasks, which have now become widely adopted for image restoration purposes. In this study, the
Enhanced-Deep-Super-Resolution (EDSR) model, built upon these techniques, has been employed.
Details about the model are given in the next section. Deep SR neural networks have been a sig-
nificant development in the fields of computer vision and image processing; they have found utility
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in various real-world areas, including medical imaging (198) (190) (199) (200). In this context, the ap-
plication of the EDSR model to biomedical images, particularly MR brain data, has been explored.

The use of SR algorithms in clinical practice has already been implemented in some medical
centers. Their employ guarantees several advantages, primarily by offering a trade-off between
the duration of the scan time and and accuracy of the image processing. High-resolution image
acquisition demands lengthy scan times, impacting both the cost of the examination and patient
comfort. Prolonged scan duration can lead to patient motion artifacts in the resulting medical
images, thereby compromising lesion detection, disease diagnosis, and the extraction of radiomic
features. Furthermore, in the MRI context, this extended acquisition time can result in a reduced
Signal-to-Noise Ratio (SNR) and high Specific Absorption Rate (SAR) (190). Consequently, post-
processing spatial resolution enhancement stands as a viable strategy to unlock the full potential
of medical imaging (199) (200). They have been used to move from low-field MR images - poor in
resolution but acquired with less expensive technology and faster in terms of acquisition - to high-
resolution ones, obtaining interesting findings (201).
However, the application of DL SR models to biomedical images, as DL models designed for other
specific tasks, is not straightforward. It requires the development of purpose-built architectures
tailored to the unique characteristics of the data type at hand. Moreover, the limited availability
of data can pose a challenge, often requiring the application of data augmentation techniques (202),
to reduce the risk of under-fitting. Finally, DL algorithms are not universally applicable, meaning
they cannot guarantee generalization to data that differs from the training dataset. As a result,
re-training stage or even re-initiating the training process is frequently necessary when dealing
with novel data.

In this work (203) (204), the 2D Enhanced-Deep-Super-Resolution model, with 2x as an up-sampling
factor, was applied to MR brain images, specifically MPRAGE, FLAIR and QSM. The model
was used to evaluate 2D multi-slice super-resolved images, and 3D MRI reconstructions obtained
from them; details of the pipeline are illustrated in the following sections. EDSR application on
new data was performed avoiding re-training stages, to test its inherent generalization ability.
The goal was to confirm whether it was possible to reconstruct a kind of data never seen by the
model during the training, and, in case of a positive outcome, to verify if the results achieved were
superior to those of the traditional bicubic up-sampling method. Additionally, an analysis of the
explain-ability of the model was proposed, describing the EDSR functioning with respect to the
image pixel intensity.

4.2.2 EDSR-2x Model

EDSR is a deep 2D CNN based on residual learning techniques, winner of the example-based
single-image SR NTIRE Challenge 2017 (205) (191) (206). The SNU Computer Vision Laboratory,
from Seoul National University, promoted the model during the contest. EDSR was trained with
end-to-end deep learning techniques, achieving the best reconstruction performance. Nowadays is
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one of the CNNs with the best outcomes (198) (207) also processing biomedical images.
The single-scale architecture of EDSR was optimized starting from SRResNet (208), itself derived
from the original ResNet architecture: batch normalization layers, which are usually inserted to
reduce the risk of overfitting and to guarantee fast convergence, were removed, resulting in an
improvement of model time convergence, flexibility and performance. In more detail, the input
data are LR N × M images, which are first processed in a 3x3 convolutional layer extracting
256 LR feature maps. Those are used as input for the central part of the model, containing 33
residual learning blocks. Each of them is composed of two 3x3 convolutional layers and a skip
connection to keep together information from one residual block to the following one. There is
then an up-sampling layer which returns 256 2N × 2M maps and a final convolutional layer with
a high-resolution map 2N × 2M as output. Pixel loss λL1 was used as loss function. A scheme
of the model is proposed in Fig. 4.5. For each 2D image EDSR works separately for the 3 RGB
channels; images used in this work are grayscale figures, thus the average result over the 3 channels
was considered.
The model was trained with the DIV2K dataset (https://data.vision.ee.ethz.ch/cvl/DIV2K/),
which consists of 1000 DIVerse 2K RGB general-purpose images collected from dozens of sites,
with a large diversity of contents (people, handmade objects, environments, flora and fauna, and
so on). For the challenge, high-resolution and corresponding low-resolution images for 2,3 and 4
down-sampling factors were provided, for the training (800 images), test (100 images) and valida-
tion (100 images) stages.
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Figure 4.5: Scheme of EDSR architecture: input data are LR N × M images, initially processed in a 3x3 convolutional layer
extracting 256 LR feature maps. The central part of the model contains 33 residual learning blocks, each of them composed of two
3x3 convolutional layers and a skip connection. There is then an up-sampling layer which returns 256 2N × 2M maps and a final

convolutional layer with a high-resolution map 2N × 2M as output

4.2.3 Methods and materials

Study sample and MR measurements

Data from 28 healthy controls (F:M 17:11, 48.1 ± 17.9 years old [24-86]) were selected from the
database of Neuroimaging Laboratory (Functional and Molecular Neuroimaging Unit, IRCCS Is-
tituto delle Scienze Neurologiche di Bologna, Bellaria Hospital).
The MR protocol included MPRAGE, FLAIR and QSM as sequences; acquisition and processing
details are given in Chapter 1 (Sec. 1.2.1). QSM images, originally acquired with 0.5x0.5x1.5 mm3

spatial resolution, were linearly registered to the corresponding MPRAGE using FLIRT (44) (45)

from FSL (42), as FLAIR images, gaining 1mm-isotropic spatial resolution.
The pipeline proposed for this study was at first validated by our group (135) over a 70-subject
dataset from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) (209) (210). The repos-
itory, based on a large-scale collaborative research project at the University of Cambridge, contains
multi-modal data, including structural and functional (resting and task-based) MR images, magne-
toencephalography data and several cognitive tests of nearly 700 healthy subjects, 100 per decade
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from 18 to 88 years old. From there, T1w and T2w brain MR images of 70 healthy subjects (10
per decade from 18 to 85 years old) were considered (F:M 40:30, 53.3 ± 20.0 years old [18-85]).

Image Processing Pipeline

LR images generation: To generate LR maps, from 1x1 mm2 to 2x2 mm2, 2D slices extracted from
the original images underwent a convolution process using a 3×3 kernel Gaussian filter with a unit
standard deviation. Subsequently, these slices were down-sampled by a factor of 2 using bicubic
(BC) interpolation. This degradation procedure results in MR images that closely resemble those
generated by actual LR MR image acquisition (199). This pipeline is commonly employed in SR
studies to establish LR-HR image pairs for model validation. In an ideal scenario, the same sub-
ject, perfectly motionless, would undergo both LR and HR scans within the same field of view.
However, this is impractical, and it would necessitate registration operations, which are prefer-
ably avoided given the need to assess interpolation methods. Additionally, doubling the number
of measurements would require twice the resources in terms of scan time.

Up-sampling methods: The EDSR model and the BC interpolation were used to up-sample LR
images, moving from 2x2 mm2 to 1x1 mm2 spatial resolution. Pipeline was designed to establish
a gold-standard reference (HR images) and a benchmark (BC up-sampling, a commonly used
up-sampling technique) to evaluate EDSR reconstructions.
After the down-sampling, the images exhibited more pronounced ringing or Gibbs artifacts. Ini-
tially, a Gibbs artifact removal tool (211) was experimented with LR images before applying the two
up-sampling methods, but it did not yield any noticeable impact on the results. Consequently,
this step was excluded from the pipeline.
As the EDSR model processes 2D images, data obtained from sagittal, axial, and coronal orthogo-
nal planes were analyzed individually. This analysis resulted in the creation of a volume composed
of 2D super-resolved slices for each direction, referred to as 2D multi-slice reconstructions. The
3D reconstructions were then generated by averaging the 2D multi-slice reconstructions from all
three planes. This pipeline’s workflow is shown in Figure 4.6, and it was applied to MPRAGE,
FLAIR, and QSM images. An illustrative example of EDSR and BC reconstructions can be found
in Figure 4.7.

The pipeline was implemented using Python (version 3.7.6) and included the following libraries:
OpenCV (212) (version 4.5.2), NumPy (213) (version 1.20.2) and NiBabel (version 3.2.1).
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Figure 4.6: Pipeline applied to original images to perform 3D reconstructions (135). Sagittal, axial and coronal planes were processed
separately, and distinct 2D multi-slice images were achieved and then averaged to obtain the final map. The process for 2D multi-slice

reconstruction is illustrated at the bottom of the panel, taking axial direction as an example: 2D images were processed with a
Gaussian filter, down-sampled with BC interpolation and then up-sampled using EDSR and BC interpolation.
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Image quality assessment and statistical analysis

Human perception plays of course an important role in the assessment of image quality and the sim-
ilarity of images to a reference standard. To model and quantify perceived quality is challenging,
and several measures have been proposed (214). In this work, the quality of EDSR and BC images
was quantified as the pixel-level fidelity to the ground truth using standard metrics. Considering
N the number of pixels, G the gold-standard image (original HR), and I the up-sampled image
(EDSR or BC), we measured peak Signal-to-Noise Ratio (pSNR) (191) and Structural SIMilarity
Index (SSIM) (215), defined as:

pSNR = 10 · log10
MAXG

2

MSE
(4.1)

SSIM = l · c · s = = 2µGµI + c1

µ2
G + µ2

I + c1
· 2σGσI + c2

σ2
G + σ2

I + c2
·

σGI + c2
2

σG + σI + c2
2

(4.2)

where µG is the average of G, µI is the average of I, σ2
G is the variance of G, σ2

I is the variance of
I, σGI is the covariance of G and I, c1 = (k1L)2, c2 = (k2L)2, L is the dynamic range of the pixel-
values and k1 = 0.01 and k2 = 0.03 by default; l is for luminance, c for contrast and s for structure.

Standard image quality metrics, such as pSNR and root mean square error (RMSE) (205) refer
to the absolute error between the obtained image and reference one. However, differences in in-
tensity values are not enough to analyze and quantify the perceptual distortion experienced by
human vision. Perception-based metrics, such as SSIM, have been introduced to provide a more
comprehensive analysis. SSIM considers image quality degradation as perceived changes in struc-
tural information. It is a full reference metric based on visible structures in the image, extracting
3 features - luminance, contrast and structure - and performing the measure based on those.

Images with high pSNR and high SSIM indicate high quality of reconstruction. Those metrics
were evaluated with Python (version 3.7.6) (libraries: Scikit-image (216) [version 0.16.2], SciPy (217)

[version 1.5.3], NumPy (213) [version 1.20.2]) for EDSR and BC reconstructed images of each sub-
ject and each sequence, using the original HR images as ground-truth, over a region from which
the scalp had been excluded using BET (43) from FSL (42). For 3D reconstructions, similarity
parameters were directly evaluated over the three-dimensional matrices. The non-parametric
Kruskal-Wallis test was selected for comparison between the two up-sampling methods, consider-
ing p − values < .05 as significant.

4.2.4 Results

On qualitative assessment, EDSR better reproduced the original images for MPRAGE, FLAIR
and QSM sequences (Fig. 4.7). Quantitative analysis confirmed this evaluation.
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Figure 4.7: Example of MPRAGE, FLAIR and QSM images of a representative subject (healthy control, M/24 years old) (IRCCS
Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit), comparing the original ones with

EDSR and BC reconstructions. From the images, it can be observed that EDSR better reconstructs the original than BC
interpolation, restoring high spatial-frequency structures in more detail

In Tab. 4.4 and Fig. 4.8, the results showed significant outperformance of EDSR in MPRAGE
and FLAIR. As aforementioned, the superior performance of EDSR with 1mm-isotropic T1w and
T2w images using this pipeline has already been confirmed (135).

MPRAGE FLAIR
pSNR ↑ SSIM ↑ pSNR ↑ SSIM ↑

EDSR 34.5 ± 2.8 * 0.985 ± 0.003 * 30.5 ± 2.7 * 0.989 ± 0.003 *
BC 28.8 ± 2.4 0.965 ± 0.006 28.5 ± 2.6 0.977 ± 0.004

Table 4.4: Median ± mean absolute deviation of pSNR and SSIM distributions within the sample in MPRAGE and FLAIR images.
The outperforming method between EDSR and BC is highlighted (*) when there was significant difference (p − values from

Kruskal-Wallis test < .05)

103



CHAPTER 4. INNOVATIVE METHODS TO QSM IMAGES 104

Figure 4.8: Median ± mean absolute deviation of pSNR and SSIM in MPRAGE, FLAIR and QSM images up-sampled with EDSR
and BC methods, over the 28-subject dataset. Higher values of pSNR and SSIM indicate higher quality of reconstruction. Values

from the 3D reconstructed images are reported. The outperforming up-sampling method between EDSR and BC is highlighted (*)
when there was a significant difference (p − values < .05 from Kruskal-Wallis test)

Additionally, EDSR achieved better results in QSM images (Fig. 4.8 and Tab. 4.5, left side),
evaluating pSNR and SSIM with respect to the original gold-standard. SSIM is a full reference
metric and a reliable indicator of image quality degradation, and it was significantly higher in
EDSR reconstructions. Thus, the model showed an excellent ability of generalization over new
kinds of data and different MR sequences including QSM. However, there are differences in QSM
images with respect to the other MR measurements looking into the pSNR metric, which is based
on the absolute difference between pixel level intensity and did not show a significant difference in
EDSR reconstructions compared to BC ones. Those differences are probably due to the appearance
of high-intensity areas in QSM maps (Fig. 4.9). QSM maps were upper-threshold considering the
95th percentile of each image as cut-off, reducing the extension of hyper-intense areas, and the
comparison analysis was carried out again: with this adjustment, QSM reconstructions from EDSR
resulted significantly better for both pSNR and SSIM (Tab. 4.5, right side).

QSM QSM-95th

pSNR ↑ SSIM ↑ pSNR ↑ SSIM ↑

EDSR 41.7 ± 3.6 * 0.993 ± 0.001 * 25.4 ± 1.0 * 0.990 ± 0.002 *
BC 41.2 ± 3.5 0.990 ± 0.001 24.1 ± 1.2 0.986 ± 0.003

Table 4.5: Median ± mean absolute deviation of pSNR and SSIM distributions among the 28-subject sample in QSM images, before
(left side) and after (right side) the 95th upper-thresholding. The outperforming method between EDSR and BC is highlighted (*)

when there was significant difference (p − values from Kruskal-Wallis test < .05)
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Figure 4.9: QSM (healthy control, F/57 years old) (IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular
Neuroimaging Unit) - panel a) air-tissue artifacts appearing in QSM reconstructions (red arrows); panel b) examples of iron-storages
structures, which appear with high-intensity pixels in susceptibility maps (blue arrows): blood vessels and deep gray matter nuclei,

such as globus pallidus, substantia nigra and red nucleus

4.3 Discussion

SR techniques improve the trade-off between diagnostic accuracy and limited total scan time,
supporting faster screening and follow-up exams; low-resolution images can be acquired rapidly
and then have their spatial resolution enhanced at the post-processing stage. The 2D CNN EDSR
model was introduced in 2017 (206) and it is still one of the state-of-the-art SR DL algorithms: in
a recent review of single-image SR methods (207), EDSR was among the top five best performing
out of a total of 19 models. It has recently been used in biomedical applications (218), and it was
adopted for the current study. The model, pre-trained on natural images, was directly tested on
MR scans (MPRAGE, FLAIR, QSM), aiming to confirm its generalization ability. Results were
compared with BC up-sampling. In previous work, the same pipeline was validated over a larger
sample of T1w and T2w images, from Cam-CAN dataset (135), more frequently used in this kind of
applications. In Fig. 4.7, an example of EDSR and BC MPRAGE, FLAIR and QSM up-sampled
images is shown: a qualitative assessment highlights that the model better reproduces the original
HR images in the analyzed sequences, restoring high spatial-frequency structures in more detail.
To quantify aspects of reconstructions relevant to human perception, a robust analysis was carried
out. Results are discussed below, highlighting the key points of the study.

EDSR over MR brain images: MPRAGE, FLAIR and QSM
Among MR modalities, T1w and T2w are the ones usually explored in SR applications (190). EDSR,
as 2D CNN model, was exploited to reproduce 3D images, combining reconstructions from the
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three principal orthogonal planes (Fig. 4.6); since the MR images analyzed are 3D data, an
overall assessment of the entire volume is preferred. The analysis (Tab. 4.4, Fig. 4.8) show that
EDSR outperforms BC interpolation, with a significant difference in favor of EDSR model for both
MPRAGE and FLAIR images. EDSR shows the superior performance of BC in QSM images as
well, significant looking into SSIM metric (Tab. 4.5, Fig. 4.8).
It is well established that DL algorithms, including EDSR, work better than traditional BC up-
sampling over data from the training dataset (194). In this work, the aim was to test the response
of EDSR to data with characteristics unlike those of the training set: the network weights, derived
in the NTIRE Challenge 2017 from a training with a variety of photographic images, were left
untouched and the model was directly applied to MR brain images. The poor generalizability
over different data is an issue in SR model applications: commonly train and test data are of the
same thematic type, whichever is the model used. For example, Zhang et al. in 2021 (198), used
3T structural T1w images divided into train and test datasets; Sui et al. in 2021 (190) trained their
model using 3T T1w and T2w images from an online dataset and tested it on T2w images acquired
on their 3T scanner. Surprisingly from this analysis, EDSR performed excellent reconstructions
of MR brain images, superior to the BC standard method, leading to the consideration that a
re-training stage was not necessary, although the kind of data used for the training was very differ-
ent. The high quality of EDSR reconstructions achieved in this work is not trivial, considering the
transition from general-purpose images to brain MR scans. The capacity to generalize over new
data is probably due to the large number of model parameters: referring to the review of 2021 (207),
EDSR was the model with the highest number of parameters among those analyzed, more than
one-third higher than the second-ranked model. This fact does not affect the computational cost,
which remains low. Furthermore, EDSR is a 2D CNN, which positively influences computational
effort and memory allocation. Such models can be used to reconstruct three-dimensional data,
including brain images from MR exams: Zhang et al. in 2021 (198) obtained 3D reconstructions
from two multi-slice super-resolution images, achieving better results than three-dimensional super
resolution technology. We decided to use an analogous method as a viable alternative to 3D CNNs.

EDSR over QSM images: influence of high-intensity pixels
As mentioned before, EDSR shows superior performance of bicubic interpolation in QSM images,
with differences with respect to MPRAGE and FLAIR sequences though: only SSIM shows signif-
icant differences between EDSR and BC as a metric parameter, while pSNR does not. The latter
parameter is based on the intensity of the pixels, thus we hypothesized that the high-intensity
pixels in susceptibility images - due to iron-storage substances and air-tissue artifacts (59) (Fig. 4.9)
- may influence the outcomes. Consequently, the QSM maps were upper-threshold considering
the 95th percentile of each image as cut-off, reducing the extension of hyper-intense areas, and
the comparison analysis was carried out again: with this adjustment, QSM reconstructions from
EDSR resulted significant better for both pSNR and SSIM (Tab. 4.5).
In the previous work, we pursued a similar line of reasoning (135). It had indeed become appar-
ent that there were differences between T1w and T2w images, where white matter, gray matter,
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and cerebrospinal fluid appeared with varying contrasts; in particular, in T2w images, the cere-
brospinal fluid appeared very bright. Thus, to attempt to explain EDSR functioning, we initially
assessed the model’s performance on each of the three tissues individually. Then, we reversed the
histogram of the original images, retracing the entire down-sampling and up-sampling pipeline.
The outcomes confirmed the hypothesis. EDSR performance is likely to vary in images with large
hyper-intense areas, and this may be related to the fact that in natural images like landscapes and
animals, used to train the model, bright and shiny elements, such as light reflected in a mirror,
are less common than the darker ones, such as shadows of objects and people. Moreover, images
including larger glares or shadow components are commonly excluded by training datasets like
the DIV2K, since they are interpreted as undesired components in a picture.

Limitations and future work
Further analysis needs to be performed for the optimal usage of EDSR. First, data used in this
work are high-quality MR images of healthy subjects, without sizeable movement artifacts, and
their spatial resolution was improved from 2×2 to 1×1 mm2. At a millimeter-centimeter scale,
image intensity in these images is dominated by the presence of myelinated axons (white matter)
neuronal and glial cell bodies (gray matter), and CSF. Within a 1-mm isotropic voxel, one tissue
type typically predominates, and this pattern recurs in neighboring pixels over a centimeter scale,
producing patches of fairly uniform pixel intensity, separated by fairly sharp boundaries. It is
possible to speculate that these image characteristics are close to those found in the photographs
of natural scenes used to train the EDSR. Additionally, changes in signal intensity or morphology
due to neurological diseases variably introduce additional tissue types at the voxel scale. Thus, the
achievement of good performance with different scales and with pathological tissue is not obvious
and will have to be tested.
Second, EDSR was tested over LR images generated from HR ones, which is a standard procedure
in SR studies to have a pixel-wise reference map to compare the model reconstructions, avoiding
registration operations. Nevertheless, since they are simulated LR images, the superior perfor-
mance of the model needs to be confirmed on LR images from real MR acquisitions.
Third, we observed that EDSR performance is negatively affected by the presence of high-intensity
pixels, which may be informative in QSM images since they are, in some structures, index of iron
accumulation; as pointed out in previous chapters, that may be hallmark of pathology in neurode-
generative processes. Fine-tuning of the model may be necessary to properly exploit the pipeline
over susceptibility images.

4.4 Conclusion

The application of the EDSR-2x on MR biomedical images in this work leads to promising results:
without needing tailored re-training, the model shows its ability to generalize from general-purpose
images to different MR sequences of healthy subjects, achieving better performance than tradi-
tional up-sampling methods. Although the model works with two-dimensional data, the outper-
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formance holds when three-dimensional reconstructions are considered. The data analyzed in this
study include images from different MR sequences (MPRAGE, FLAIR, QSM) of subjects with
different characteristics in terms of age and sex. The application of this model on MR brain images
was satisfactorily validated. It is noteworthy that images analyzed in this work were previously
unseen by the model and we can reasonably expect similar outcomes on images from the same
sequences, which would appear with similar intensities and contrasts, acquired with different scan-
ners. In QSM reconstructions, we observed some issues in accurately reproducing high-intensity
pixels, some of them corresponding to the presence of iron in the underlying tissues; fine-tuning
training may be needed to analyze those images.
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BET = Brain Extraction Tool
BC = BiCubic
Cam-CAN = Cambridge Centre for Aging and Neu-
roscience
CNN = Convolutional Neural Network
DIV2K = DIVerse 2K DL = deep Learning
EDSR = Enhanced Deep Super Resolution
FOV = Field Of View
FLAIR = FLuid Attenuate Inversion Recovery
FLIRT = FSL’s Linear Image Registration Tool
FSL = FMRIB Software Library
HR = High Resolution
LR = Low resolution
MPRAGE = Magnetization Prepared RApid Gra-
dient Echo
MR = Magnetic Resonance
MRI = MR Imaging
pSNR = peak Signal-to-Noise Ratio
QSM = Quantitative Susceptibility Mapping
ResNet = Residual Neural Network
RMSE = Root Mean Squared Error
SAR = Specific Absorption Rate
SNR = Signal-to-Noise Ratio
SR = Super Resolution
SSIM = Structural SIMmilarity Index
T1w, T2w, T∗

2w = T1-, T2-, T∗
2- weighted
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Conclusion

In this thesis, I explored QSM as an advanced MR technique, able to detect and quantify iron
and myelin concentration as possible biomarkers of neurodegeneration. Its inherent quantitative
nature offers the unique ability to compare magnetic properties within and between different
groups of subjects. After the theoretical overview and the acquisition and post-processing pipeline
description, optimized during my first year of PhD and described in the first chapter of the thesis, I
illustrated different applications as possible approaches to QSM employment, including traditional
as well as innovative techniques.

The first application I proposed is about the examination of cortical iron accumulation in patients
with ALS using QSM, which is iron-sensitive and, consequently, allows to measure in vivo iron
concentration in gray matter tissue. Various descriptors were used for the investigation, both
susceptibility-related metrics and structural measurements, which revealed distinctive patterns
of rising iron content of ALS patients with respect to healthy controls and patients with other
neurodegenerative disorders, in the motor cortex and extra-motor cortical regions. Additionally,
the analysis of the clinical profiles of the participants showed a significant correlation between
susceptibility measurements and upper motor neuron impairment, especially in patients with rapid
disease progression, highlighting the promising potential of QSM as a valuable tool for identifying
biomarkers for ALS.

In the second application I introduced the utilization of QSM for examining the cortical and
subcortical structures in a group of DM1 patients, divided into two genetic classes E1 and E2,
comparing median susceptibility and volume distributions to healthy controls. Since gray matter
structures are analyzed, QSM measurements revealed the presence of iron concentration as before.
The results contributed to a more comprehensive characterization of DM1 patients, pinpointing
the thalamus and brainstem as key structures of interest from a susceptibility perspective: these
areas exhibited a significant increase in iron concentration compared to the control group and
displayed correlations with clinical data, including neurological, cardiological, and pneumological
evaluations, along with sleep records from polysomnography, and the onset age. These findings
certainly advance our understanding of the mechanisms underlying this pathology and of the
origins, central vs peripheral, of DM1 symptomology.
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The third application focused on MS; QSM was used to explore the normal appearing white matter,
in which myelin is the substance influencing susceptibility values the most, diamagnetically. For
the first time, a processing pipeline to assess the robustness of QSM-derived radiomic features in
white matter tracts was implemented. Multiple MR sequences were used to build up the workflow,
including morphological images for tissue and lesion segmentation and diffusion measurements for
tractography reconstruction. This study sets the stage for upcoming research, which can use
the array of reliable features to non-invasively profile individuals with multiple sclerosis, promptly
assess treatment outcomes, and track the evolution of the condition. Different outcomes in feature
reliability among the analyzed regions were explained with respect to their characteristics.

Last, a deep learning super resolution model was applied to QSM images in a cohort of healthy
controls. The approach was peculiar, since the adopted neural network was previously trained
with general-purpose images and then directly applied to different MR techniques, achieving better
performance than traditional up-sampling methods without needing a tailored re-training. The
excellent generalization ability of the model over these new data suggests that similar outcomes
could be achieved on images from different scanners. The analyzed sequences are certainly different
in terms of intensities and contrasts; the examination by tissue type highlights variations in
model performance linked to gray-level values, revealing a relative lack of out-performance in
reconstructing highly intense regions.

In designing the studies, special attention has been given to the implementation of automated
pipelines using as much as possible open-source software and toolboxes, to promote outcomes
reproducibility and sharing of processing and analysis techniques within the scientific community.
Additionally, it is important to emphasize that the interpretability of the results derived from
QSM data is crucial within the context of neurodegeneration, as the other neuroimaging appli-
cations. Susceptibility maps are 3D numerical matrices that reflect the properties of underlying
tissues. In the search for biomarkers of pathology, it is essential to understand the meaning of
these measurements to maintain a strong connection between numerical data and the studied
pathophysiology. This consideration applies to traditional analyses, exploring the average inten-
sity of QSM maps, as well as to more innovative approaches like radiomics and deep learning,
which involve less intuitive measurements.
Since its introduction, QSM has become an important tool to study neurodegenerative processes.
In the three pathologies studied in this thesis, it was observed that QSM is capable of distinguish-
ing patient groups from healthy controls and correlating imaging measurements with clinical data.
In some instances, a connection between structural features (e.g. the orientation of white matter
fibers in the cortico-spinal tract) and QSM measurements has even been identified. These studies
pave the way for future research, aiming to achieve progressively more early and less invasive
diagnoses of neurodegenerative disorders in the context of personalized medicine.
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