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Abstract

In the field of educational and psychological measurement, the shift from
paper-based to computerized tests has become a prominent trend in recent
years. Computerized tests allow for more complex and personalized test
administration procedures, like Computerized Adaptive Testing (CAT).

CAT, following the Item Response Theory (IRT) models, dynamically
generates tests based on test-taker responses, driven by complex statistical
algorithms. Even if CAT structures are complex, they are flexible and con-
venient, but concerns about test security should be addressed. Frequent
item administration can lead to item exposure and cheating, necessitating
preventive and diagnostic measures.

In this thesis a method called "CHeater identification using Interim Person
fit Statistic" (CHIPS) is developed, designed to identify and limit cheaters
in real-time during test administration. CHIPS utilizes response times (RTs)
to calculate an Interim Person fit Statistic (IPS), allowing for on-the-fly
intervention using a more secret item bank. Also, a slight modification is
proposed to overcome situations with constant speed, called Modified-CHIPS
(M-CHIPS).

A simulation study assesses CHIPS, highlighting its effectiveness in identi-
fying and controlling cheaters. However, it reveals limitations when cheaters
possess all correct answers. The M-CHIPS overcame this limitation. Fur-
thermore, the method has shown not to be influenced by the cheaters’ ability
distribution or the level of correlation between ability and speed of test-takers.



iv

Finally, the method has demonstrated flexibility for the choice of significance
level and the transition from fixed-length tests to variable-length ones.

The thesis discusses potential applications, including the suitability of
the method for multiple-choice tests, assumptions about RT distribution and
level of item pre-knowledge. Also limitations are discussed to explore future
developments such as different RT distributions, unusual honest respondent
behaviors, and field testing in real-world scenarios. In summary, CHIPS and
M-CHIPS offer real-time cheating detection in CAT, enhancing test security
and ability estimation while not penalizing test respondents.
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Chapter 1

Introduction

1.1 Overview

In recent years, computerized tests for educational and psychological mea-
surement, have been replacing paper-based ones, a trend set to continue, likely
making computer-based assessments the norm. Statistical models for these
tests, particularly Item Response Theory (IRT) dating back to the 1950s, offer
a strong foundation for assessing and comparing individual skills (Lazarsfeld,
1949, Lord, 1952, Rasch, 1960).

These models remain relevant despite complex developments in test
methodologies, such as Computerized Adaptive Testing (CAT; van der Lin-
den and Glas, 2010a). CATs dynamically generate the test based on the
test-taker’s responses, driven by a complex statistical algorithm.

CAT structures are intricate, with various components. Some method-
ologies aim to enhance CAT by incorporating additional data sources, like
response times (RT). Several models have been proposed to model RT distri-
butions (van der Linden, 2009, De Boeck and Jeon, 2019), useful not only
for improving CAT but also for detecting those who implement incorrect
behavior in order to answer correctly to items, namely cheaters.

Continuous testing, while flexible and convenient, raises security concerns.
Frequently administered items may become compromised, undermining test
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integrity. To counter this, researchers have developed preventive measures
like item exposure control methods (Sympson and Hetter, 1985). However,
even successful controls can’t fully prevent cheating, necessitating diagnostic
measures to identify anomalous behaviors. These involve detecting aberrant
response patterns or RTs across administered items (Marianti et al., 2014,
Fox and Marianti, 2017). While much literature covers methods for cheating
detection, the majority of the proposed one are only viable post-testing,
making interventions less effective and sometimes impractical.

1.2 Main contributions of the thesis

This work starts with a deep analysis of the main IRT models, RT distribu-
tions, and CAT. Then, it proceeds to the combined use of all these tools to
develop a method capable of identifying and limiting cheaters during the test
administration.

RTs are used to define a statistic capable of identifying a suspected cheater.
The peculiarity of this statistic is that it is calculated while the test is being
taken, allowing for real-time intervention. The proposed method is called
"CHeater identification using Interim Person fit Statistic" (CHIPS). It acts by
administering to suspected cheaters items taken from a different and more
secure item bank, which is less exposed. The items in this bank are changed
more frequently and share the psychometric characteristics with those in the
main bank.

CHIPS has been tested in a simulation study. It has been highlighted how
CHIPS effectively improves the estimates of the true abilities of cheaters
without influencing those of non-cheaters (honest respondents). However, it
seems to have a limitation when cheaters possess all the correct answers to the
test. This limitation is overcome following a slight modification of the method.
The modified method (M-CHIPS) has been tested, and through multiple
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simulations, some of its potentialities have been highlighted. These include
the possibility to be used for variable-length tests and to be flexible regarding
the choice of precision in correctly identifying cheaters at the expense of
exposing items from the more secure item bank. It is also independent from
the distribution of cheaters’ abilities and the correlation between ability and
response speed.

Finally, some limitations of the method and the analysis are discussed,
such as its applicability to multiple-choice tests only and the assumption of
a complete absence of item pre-knowledge in the more secure item bank.
The study lends itself to future developments to overcome these limitations,
ideally through application in a non-simulated context.





Chapter 2

Literature review

2.1 Item Response Theory (IRT)

Item Response Theory (IRT) is a theory aimed at studying and developing a
structure capable of measuring and comparing the level of ability of different
subjects through tests or questionnaires. It originated around 1950 as a result
of independent research conducted in parallel by the Australian sociologist
Paul Lazarsfeld (1949), the Danish mathematician George Rasch (1960), and
the American psychometrician Frederic M. Lord (1952). Due to the limited
power of computers at the time, it was only since the 1980s that this theory
has found increasingly concrete applications, thanks also to the work of two
psychometricians: the American Benjamin Drake Wright (1981) and the
Australian David Andrich (1978).

IRT was born in the field of psychometrics, which is the branch of psychol-
ogy that deals with techniques and theories for the objective measurement
of abilities, knowledge, attitudes, personality traits, and academic outcomes.
IRT is generally considered as the continuation and evolution of Classical
Test Theory (CTT) (Lord and Novick, 1968), also a psychometric theory of
the early 1900s based on the assumption that a person’s score (Xn) in a test is
nothing but the sum of a true score (Tn) and an error score (εn).



6 Literature review

Xn = Tn + εn, (2.1)

where (n ∈ 1, . . . ,N) refers to the nth subject.
The advancement brought by IRT, in the field of educational measurement,

was to hypothesize the existence of latent constructs, such as abilities, which
directly underlie and influence the probability of a correct or incorrect answer
to the questions of a test. In fact, educational measurement involves utilizing
educational assessments and analyzing data, such as scores derived from
these assessments, to make inferences about the abilities and proficiencies of
students. IRT models are indeed defined as latent trait models for continuous
latent traits (abilities) and categorical observed variables (item responses),
precisely because they assume the existence of traits that are not directly
observable and determine observable manifestations, such as answers to ques-
tions. In essence, IRT expresses the probability of responding correctly to
each item of the test, conditioned on a given level of ability (the latent trait).
Such models do not only estimate the level of ability of the examined subjects,
but also the item parameters, like the difficulty of the item, the discriminant
power of each item and sometimes also the probability of randomly respond-
ing correctly to a question (guessing), considering both the respondents and
the items. This is therefore the most significant innovation compared to CTT,
where the probability of correct response is modeled only from the total score
obtained in the test, resulting in sample-dependent estimates and making it
difficult to compare different tests.

In fact, one of the characteristic of the IRT models is the parameter

invariance. That means that the characteristics of test items, like difficulty
and discrimination, remain constant when the test is applied to different
groups or populations. There are two key types of invariance:
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• Scalar Invariance. The measurement properties of items are equivalent
across different groups, allowing for fair group comparisons.

• Strict Invariance. A more stringent requirement that includes scalar
invariance and demands that item response variability is also equal
across groups.

IRT is thus based on models for which the probability of correct response
is conditioned both on the characteristics of the items (difficulty, item discrim-

ination power, and guessing) and on the characteristics of the responding
subjects (abilities). We will discuss these characteristics, called parameters,
and their meaning more thoroughly shortly.

2.1.1 Types of IRT models

Several IRT models can be specified, and these models vary depending on
internal model specifications.

• The type of input data can be either dichotomous or polytomous.
Observed variables are usually the responses given to a questionnaire or
a test. If a subject is asked to indicate a preference on a scale, such as a
Likert scale, the input variables would be polytomous, as they could vary
within a range that allows for more than two responses. The polytomous
variable can then be ordinal (if the answers have an internal order) or
nominal (if the answers all have the same importance). In the case of
the Likert scale, the variable is of the ordinal type.

The second type of variable is the dichotomous. In this case there
are only two possible answers, generally coded with 0 and 1, which in
educational assessment usually represent incorrect and correct responses,
respectively. Sometimes, as for example in multiple choice tests, even if
there are more than two possible answers, it is possible to consider the
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response variable as dichotomous, indicating with 1 the correct answer
and with 0 all the wrong one.

In this thesis, only datasets containing dichotomous response variables
will be used, and models that work with such data will be shown and
discussed.

• The item response function (IRF).
The IRF is a mathematical function that expresses the probability of
correctly answering an item depending on item parameters and person
ability.
Depending on the chosen mathematical function, different models can
be defined. The two most common choices are the logistic model, that
is based on a logistic function, and the normal ogive model (or probit

model) that is based on the normal probability distribution (Hambleton
and Swaminathan, 1985).

• The number of latent traits.
If the test is assumed to measure only one latent trait (meaning that only
one type of ability is necessary to model the answering process correctly),
then the considered model is defined as unidimensional. However, if
there are multiple abilities required to model the answering process cor-
rectly, then the model is considered multidimensional (see, e.g. Johnson
et al., 2006, Reckase et al., 2009, Toland et al., 2017, Mair and Gruber,
2022).

• The number of estimated parameters. As previously mentioned, IRT
models rely on parameters of both the items and the responding subjects.
The number of parameters varies depending on the model selected.
As for the subjects, in the unidimensional case, there is only one type
of parameter, called incidental (or person parameter), and it refers to
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the ability, indicated by the Greek letter Theta (θ ). It has a general
form of θn with (n ∈ 1,2, . . . ,N), where n refers to the nth subject. The
most common assumption is that ability has a normal distribution with
mean zero. This means that those with a value of θn close to zero have
average ability, those with a high positive value are considered very
skilled in that particular area, and those with a high negative value have
ability well below average. This parameter has a positive (nonlinear)
relationship with the probability of responding correctly to a test item.
This means that the higher the value of θn, the higher the probability
that the subject will respond correctly to a test question. This nonlinear
relationship is explained by the IRF.
Parameters that refer to items, on the other hand, are defined as structural
and come in three types: item discrimination (a), item difficulty (b), and
the so-called item guessing parameter (c). As parameters that refer to
individual test items, items in the database are denoted by k ∈ 1, . . . ,K.

– ak: This parameter is called item discrimination and indicates how
much the item is able to distinguish between a subject with high
ability and one with low ability. Geometrically, it indicates the
slope of the curve associated with that item. In the common logistic
parametrization, an item with a value of this parameter equal to
1 moderately discriminates the ability to which it refers. A value
between 0 and 1 will indicate an item that can hardly distinguish
between those with high ability and those with low ability, while
a value greater than 1 will be associated with an item that easily
distinguishes between different levels of ability. This parameter is
free to vary between zero and infinity.

– bk: This parameter indicates the difficulty of the item. Geometrically,
it represents the location of an item with respect to the ability
scale. It corresponds to the ability level at which we would expect
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examinees to have a probability of 0.5 (assuming no guessing) of
answering the item correctly. Usually θ and b are on the same scale.
This means that when the mean value of θ is set to 0, b = 0 indicates
an item of average difficulty, higher values indicate more difficult
items, and values lower than zero indicate easier items. It has a
normal distribution.

– ck: This parameter indicates the guessing of the item, which is
the probability of answering the item correctly for subjects with
very low ability. It may take values from 0 to 1, where 0 indicates
a question that cannot be answered correctly by chance, and 1
corresponds to a question that can always be answered correctly by
chance. Geometrically, it corresponds to the lower asymptote of the
curve.

Depending on the number of item parameters and on the choice of the
IRF, different unidimensional IRT models are defined.

2.1.2 Unidimensional IRT

The first IRT models were unidimensional (Rasch, 1960, Lord, 1980). It is
assumed, therefore, that the results in a test are determined by a single ability.
This is justified by the hypothesis that, even if there could be multiple latent
traits, only one of these would be the dominant one that alone would suffice to
explain the given responses. For example, to correctly answer a math test item,
one can hypothesize that the only ability that would contribute to this purpose
would be the one related to math (without considering complementary abilities
such as geometric or text comprehension). Obviously, this is a limiting
assumption, but in the course of this study, only cases (real or simulated) in
which this assumption of unidimensionality is respected will be analyzed.
Another characteristic of IRT models is the so-called local independence
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assumption, meaning it is assumed that the probability that a subject has
to answer a single test item correctly, conditionally on their ability, is not
influenced by the other item responses. In different terms, the probability
of correctly answering the entire test correctly is equal to the product of the
probabilities of correctly answering each item. Therefore, given the n-th
subject’s K-dimensional answers vector:

−→
Yn = (Yn1, ... Ynk, ... YnK), (2.2)

it holds the equation:

P(
−→
Yn = 1 | θn) =

K

∏
k=1

P(Ynk = 1 | θn). (2.3)

As mentioned earlier, this probability depends on the mathematical formu-
lation of the IRF (logistic or normal ogive) and the number of item parameters
(1, 2, or 3). For simplicity, we will start from the three-parameter model for
both types of IRF, as the other two are specific cases of it.

For the 3-parameter logistic (3PL) (Birnbaum, 1968) model, the probability
of a correct answer is:

P(Ynk = 1 | θn) = ck +(1− ck)
exp[ak(θn −bk)]

1+ exp[ak(θn −bk)]
. (2.4)

From this more general model, we can derive the 2-parameter logistic
(2PL) model and the 1-parameter logistic (1PL or Rasch) model by setting
ck = 0 and then ak = 1.
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2PL model (Lord, 1952):

P(Ynk = 1 | θn) =
exp[ak(θn −bk)]

1+ exp[ak(θn −bk)]
. (2.5)

1PL model (Rasch, 1960):

P(Ynk = 1 | θn) =
exp[(θn −bk)]

1+ exp[(θn −bk)]
. (2.6)

Regarding the 3-parameter normal ogive (3PNO) (Lord, 1952, Lord and
Novick, 1968) model , the IRF is defined as follows

P(Ynk = 1 | θn) = ck +(1− ck)Φ[ak(θn −bk)], (2.7)

where Φ is the normal cumulative distribution function (CDF).
Similarly to logistic models, one can switch from the 3-parameter model

to the other two models (1PNOM and 2PNOM) in the same way.
2 PNO model (Lord, 1952, Lord and Novick, 1968):

P(Ynk = 1 | θn) = Φ[ak(θn −bk)], (2.8)

1PNO model (Lord, 1952, Lord and Novick, 1968):

P(Ynk = 1 | θn) = Φ(θn −bk). (2.9)

Finally, by defining the IRF, it becomes possible to identify the likelihood
function of a response pattern using unidimensional IRT models. This is
due to the local independence assumption, which allows the responses to
each item to be considered as independent and identically distributed random
variables. As a result, the likelihood function will be the product of the
univariate density functions.
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In the case of the 2PL model, the likelihood function will be equal to:

L(θn|
−→
Yn) =

K

∏
k=1

{
exp[ak(θn −bk)]

1+ exp[ak(θn −bk)]

}Ynk
{

1− exp[ak(θn −bk)]

1+ exp[ak(θn −bk)]

}1−Ynk

. (2.10)

While for the 2PNO model, it will be equal to:

L(θn|
−→
Yn) =

K

∏
k=1

{Φ[ak(θn −bk)]}Ynk {1−Φ[ak(θn −bk)]}1−Ynk , (2.11)

Defining the likelihood function in this way, allows for estimating the
ability using one of the most commonly used methods in the literature, namely
maximum likelihood (ML).

Other estimation methods consist of evaluating θ as random variable and
estimating it using the Bayesian approach.

In this thesis, the focus will be more on estimating the ability given the
item parameters, rather than estimating the values of these parameters. For
that reason, the ML estimation methods and the Bayesian estimation methods
for ability, will be described in the next sections of this chapter.

2.2 ML estimation methods

The ML estimator is the maximizer of the likelihood in Equations (2.10, 2.11)
over the range of possible θ values:

θ̂nMLE = argmax
θn

{
L(θ |−→Yn) : θn ∈ (−∞,∞)

}
. (2.12)

This is one of the earliest estimation methods used for IRT models, and
it continues to be widely used despite the increase in alternative methods.
In fact, it has the properties of being consistent and asymptotically efficient.
However, regarding its limitations, for the 3PL model, a unique maximum for
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the likelihood function does not always exist and for response patterns with
all items correct or all incorrect, no finite ML estimates exist.

Since the first derivative of the likelihood function (Equation 2.12) does
not have a closed-form solution, the value of θ̂nMLE is generally estimated
using nonlinear minimization methods, for example employing a Newton-
type algorithm (Schnabel et al., 1985, Dennis Jr and Schnabel, 1996). It is an
iterative procedure that aims to minimize a given function f (x). In this case,
the function to be minimized is the negative log-likelihood:

f (x) =− lnL(θn|
−→
Yn). (2.13)

The procedure begins with an initial guess for the solution, θn0. This
value can be chosen randomly or based on prior knowledge. After that,
at each iteration m = 0, . . . ,M the gradient vector f ′(θnm) and the Hessian
matrix f ′′(θnm) are computed with respect to the parameter θn evaluated at
the current estimate θnm. Then, the parameter estimate is updated using the
Newton-Raphson formula:

θnm+1 = θnm −
f ′(θnm)

f ′′(θnm)
. (2.14)

The process is repeated until the termination criterion is met, for example
reaching a maximum number of iterations (M) or achieving a desired level of
accuracy.

2.3 Bayesian estimation methods

Regarding alternative estimation methods to ML, among the most commonly
used in the field of IRT models are Bayesian methods. These estimation
methods are based on Bayes’ theorem. In these methods, θn is treated as a
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random variable, and the goal is to find its posterior distribution g(θn|
−→
Yn)

starting from a prior distribution g(θn) which is hypothesized based on known
characteristics of θ :

g(θn|
−→
Yn) =

L(θn|
−→
Yn)g(θn)∫

L(θn|
−→
Yn)g(θn)dθn

, (2.15)

where
∫

L(θn|
−→
Yn)g(θn)dθn is the marginal likelihood, representing the overall

probability of observing the data under the model. Just like the likelihood,
the posterior distribution in Equation (2.15) can be maximized to define the
estimator of θn. In this case, the estimator is called the Maximum A Posteriori
(MAP) estimator (Lord, 1986, Mislevy, 1986).

θ̂nMAP = argmax
θn

{
g(θn|

−→
Yn) : θn ∈ (−∞,∞)

}
. (2.16)

The small-sample properties of the MAP estimator depend on the like-
lihood and also on the shape of the prior distribution. In fact, for uniform
prior, the posterior distribution in Equation (2.15) becomes proportional to
the likelihood function over the support of the prior, and the maximizers in
Equation (2.12) and Equation (2.16) are equal. Hence, the MAP estimator
shares all the above properties of the ML estimator (i.e. being consistent
and asymptotically efficient, but for the 3PL model, a unique maximum for
the posterior distribution does not always exist and for response patterns
with all items correct or all incorrect, no finite estimates exist). Instead, for
nonuniform prior distributions, depending on the choice of prior distribution,
the posterior distribution may be multimodal. If so, unless precaution is taken,
MAP estimation may result in a local maximum.

Regarding the estimation procedure, as with ML estimators, since there
is no closed-form solution, the same nonlinear minimization method (Sec-
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tion 2.2) can be employed, as well as the Expectation-Maximization (EM)
methods (McLachlan and Krishnan, 2007). For this method as well, an initial
value θn0 is chosen. Subsequently, for each step m = 0, . . . ,M, there is first
an Expectation step (E-step), in which is computed the expected values of
individuals’ responses to each item based on the current estimates of θnm and
the item parameters IIIKKK = (ak,bk,ck). These expected values represent the
probability of a correct response for each item.

E[Ynk] = P(Ynk = 1|θnm, IIIKKK),

E[
−→
Yn ] = (E[Yn1], . . . ,E[YnK]) .

(2.17)

Depending on the IRT model selected, E[
−→
Yn ] is used to calculate the

corresponding expected complete-data log-likelihood:

Q(θn|θnm) = E
[
lnL(θnm|E[

−→
Yn ])

]
+ lng(θn). (2.18)

This phase is followed by a Maximization step (M-step), where the ex-
pected complete-data log-likelihood is maximized to find the new estimate of
θn.

θnm+1 = argmax
θn

{Q(θn|θnm)} . (2.19)

The E-step and the M-step are iteratively performed until the termination
criterion is met.

As an alternative to MAP, in Equation (2.16), the Expected A Posteriori
(EAP), in Equation (2.20), estimator is typically suggested (Bock and Mislevy,
1982). This estimation method is based on calculating the expected value of
the posterior distribution, obtained by integrating it with respect to θn.
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∫
θng(θn)dθn. (2.20)

In the case of a suitable prior distribution, the EAP estimator always ex-
ists, and it offers the advantage of straightforward computation. It doesn’t
necessitate iterative processes; typically, a single round of numerical integra-
tion is sufficient. This attribute was once significant but has diminished in
importance due to the increased capabilities of modern calculators.

2.4 Response time

In the earlier sections, some of the most commonly used IRT models were
described. These statistical models included IRFs (Equations, 2.4 - 2.9) that
establish a mathematical connection between a hidden trait and a student’s
measurable test response. However, it’s important to note that these models
do not comprehensively represent all the cognitive processes involved from
reading a question to choosing an answer.

These cognitive processes (De Boeck and Jeon, 2019) encompass the
behaviors that lead a student to choose what they consider to be the most
appropriate response from the potential answers. By "appropriate," we do
not mean merely correct. For example, one of the most common attitudes
when the answer is unknown is to select a random one. We have already
shown models that consider this situation (Equations, 2.4, 2.7); however,
these model fails to provide the motivations behind a student’s decision to
rely on a random answer rather than invest more time in finding the correct
one.

In summary, relying solely on the pattern of responses provided to define
a latent model does not guarantee a comprehensive analysis of the underlying
processes in the test-taker’s reasoning.
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Clearly, having more information about these processes would lead to an
improvement in the proposed models and, consequently, the estimation of
ability. Fortunately, technological advancements that have occurred since
the inception of IRT have allowed progress in this direction. Nowadays,
the increasingly widespread use of computerized tests enables obtaining
much more information beyond the mere response patterns. One of these
valuable and easily acquired pieces of information during a computerized test
is undoubtedly the response time (RT).

In fact, processes inherently require time. Returning to the previous ex-
ample, there clearly is a difference between someone who takes a long time
to respond to a specific item and then provides an answer, that could also
be wrong, and someone who does the same but spends much less time. In
the former case, we are likely witnessing a failed attempt to rely on one’s
knowledge, whereas in the latter case, we probably have what is known as
rapid guessing. This is just one of the numerous cases in which RT demon-
strates its fundamental importance in clearly distinguishing the functioning
of a process.

Naturally, there are other methods to delve into the functioning of a mind
at work on a test in detail. For example, eye-tracking systems or the analysis
of the physical and mental conditions of students before and during the exam.
However, in this work, we will focus solely on RT, both because it is an
auxiliary source of information consistently present in computerized tests and
also because it is a known and frequently discussed and utilized investigative
system that is very easy to monitor.

2.4.1 Response time models

We have just introduced RT as an auxiliary source of information for IRT
models. It becomes crucial, for this purpose, to be able to model RT. The
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literature, in fact, since the early 1980s, has been exploring which models are
most appropriate for describing RT in a test.

Following the classification proposed by De Boeck and Jeon (2019), par-
tially inspired by the work of van der Linden (2009), response time models
can now be grouped into four categories.

1. Models in which RT is the sole dependent variable. These models can
be classified into three subgroups:

• Distribution Models for Response Times. These models hypothe-
size that, given a subject n = 1, ...,N, and given an item k = 1, ...,K,
the response time rtnk is a realization of a random variable RTnk,
which follows a known distribution with a variance that increases
with the mean, such as the gamma distribution (Maris, 1993), the
log-normal distribution (van der Linden, 2006), the ex-Gaussian
distribution (Matzke and Wagenmakers, 2009), the Weibull and
Gumbel distribution (Loeys et al., 2011), the inverse Gaussian dis-
tribution (Lo and Andrews, 2015), and the shifted Wald distribution
(Anders et al., 2016). Among these known distributions, one of the
most popular is the log-normal distribution proposed by van der
Linden (2006) to model RT data due to its easy implementation
and good fit to the data. Moreover, it serves as the foundation for
developing other models, which will be presented in the following
categories.

• Explanatory Response Models. These models assume that RT is the
sum of the times required for all the processes involved in selecting
the appropriate response. In fact, it is often assumed that multiple
processes contribute to the response selection and that each process
requires a different amount of time (Sternberg, 1977, 1985). The
sum of these times would be the observed response time. A possible
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example, as proposed by De Boeck and Jeon (2019), could be a
question of the association type, such as "Son is to aunt as daughter
is to?"

In this case, the processes involved would be:

– Encoding: The process required for encoding the terms used,
such as "son," "aunt," and "daughter."

– Inference: The process that involves comparing terms A and
B (i.e., "son" and "aunt") and leads to the identification of two
differences (gender and generation).

– Mapping: The process that involves comparing terms A and C
(i.e., "son" and "daughter") and leads to the identification of a
single difference (gender).

– Application: The process through which the relationship be-
tween terms A and B is applied to term C in order to find the
missing term D.

In this example, the RT would be the sum of the time required
for performing encoding (Xa), inference (Xb), mapping (Xc), and
application (Xd), plus the time needed for reading the question and
making a decision (the intercept). Finally, the statistical model is
defined by the presence of an error component (ε) that can have
different distributions depending on the underlying assumptions.

RT = intercept +aXa +bXb + cXc +dXd + ε, (2.21)

where a, b, c, d are the temporal parameters associated with each of
the four processes.

• Response Times as a Function of Response Accuracy. These models
reverse the basic assumption in the literature, namely that RT can
explain Response Accuracy (RA). In fact, in the IRT context, RA
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refers to the alignment between a person’s actual ability and their
responses to test items. RA can be quantified by comparing a
person’s actual responses to the predicted probabilities based on
their ability level. Higher RA indicates a more precise assessment of
a person’s skills or traits, while lower accuracy suggests a mismatch
between the test and the individual’s abilities. For this reason,
typically, RT is considered as a factor that can help explain RA. But,
in that case, the assumption is that it is instead RA that can explain
RT (Novikov et al., 2017).

2. Joint Models. These are models in which both RT and RA are dependent
variables. Depending on different characteristics, these models can be
divided into three subgroups:

• Hierarchical Models. These are models that share the same frame-
work, called the Bivariate Generalized Linear Item Response Theory
modeling (B-GLIRT) framework (Molenaar et al., 2015). These are
bivariate models because they assume the existence of one dimen-
sion for RA, interpreted as ability (θ ), and another dimension for
RT, interpreted as speed (ζ ). They are called hierarchical models
because the distributions of θ and ζ are evaluated at two levels: first,
the marginal distributions of the two latent traits are assumed, and
then they are jointly evaluated with a certain degree of correlation.
The item parameters are also linked to both RA and RT, and they
are correlated with each other. The distinguishing factor among the
different models is the choice of the marginal distribution for RT.
For the marginal distribution of RA, a 1-, 2-, or 3-parameter IRT
model (either logistic or normal ogive) is chosen depending on the
case. For the RT distribution, one of the aforementioned known
distributions is chosen. One of the early hierarchical models is van
der Linden’s (2007), which assumes that RT follows a log-normal
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distribution, just like the log-normal distribution model himself pro-
posed in 2006. It is also one of the first models to take into account
a negative correlation between θ and ζ , which can be explained by
the fact that if the respondent wants to prioritize accuracy in the test,
they tend to take more time and thus go slower (speed-accuracy

trade-off ). This model has then inspired models that assume vari-
able time during the test (Fox and Marianti, 2016), models with
a different distribution of RT, such as the shifted Weibull (Loeys
et al., 2011), and models that allow for accommodating most types
of distributions, such as the semi-parametric proportional hazards
model proposed by Wang et al. (2013) and Kang (2017).

• Diffusion Model. These are models explicitly proposed as an alter-
native to hierarchical models (van der Maas et al., (van der Maas
et al., 2011)). The underlying idea of these models is that there exists
a single type of primary process called information accumulation,
which occurs in response to a stimulus caused by the administration
of an item. This process of information accumulation is influenced
by three fundamental parameters, which are:

– The diffusion drift parameter, typically represented by its mean
v, indicates the propensity (in this case, the average propensity)
to choose what is considered to be the correct answer (the
possible answer, in these models, is referred to as the bound

and is denoted by the letter X). This parameter depends on the
information accumulated following the item administration and
somehow reflects the ability of the test-taker as utilized in a
classical IRT model (Equation 2.23).

– Boundary separation (a), indicating the response caution of
the subject, which may be influenced by instructions and re-
wards. If boundary separation is decreased, both RT and the



2.4 Response time 23

probability of terminating at the correct boundary (that is, at the
correct answer) are reduced. In this way, the inverse relation
between speed and accuracy is naturally accommodated in the
model. These parameters influence both the RA (Equations 2.22,
2.23) and the RT (Equation 2.24), as well as their relationship
(Equation 2.25). In fact, considering the simplified case of a
dichotomous response, the probability of choosing the correct
response, i.e., terminating at the upper boundary (X = 1), is
given by:

P+ = P(X = 1) =
exp(−2zv)−1
exp(−2av)−1

, (2.22)

and in the even more specific case where the process is unbiased

(i.e., z = a
2), this simplifies and becomes:

P+ = P(X = 1) =
exp(−av)−1

exp(−2av)−1
=

exp(av)
1+ exp(av)

, (2.23)

which closely resembles the IRFs of logit IRT models (Equa-
tions, 2.4 - 2.6).

– Non-Decision Time (Ter). Indeed, these models assume that RT
is the sum of a Decision Time (DT), which is the time required
for the information accumulation process, and a Non-Decision
Time (Ter) that may include stimulus perception and the time
needed to execute a motor response. Therefore, it is the DT that
is influenced by the aforementioned parameters (a and v), and
its expected value (in the dichotomous case) is equal to:

E(DT ) =
a
2v

1− exp(−av)
1+ exp(−av)

. (2.24)
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As for the joint distribution of RA and RT, the joint density
function is given by:

fX ,RT (x,rt) =
πσ2

a2 exp
(
(ax− z)v

σ2 − v2

2a2 (rt −Ter)

)
×

∞

∑
m=1

sin
(

πm(ax−2zx+ x)
a

)
× exp

(
−1

2
π2σ2m2

a2 (rt −Ter)

)
. (2.25)

In sum, it is a model primarily based on the concept of a process and
directly considers the speed-accuracy trade-off (through parameter
a). However, it has its limitations in being based on a one-process
assumption (i.e., the existence of information accumulation as the
only primary process), making it, ultimately, a kind of rotation of
the hierarchical models.

• Race Models: These models hypothesize a competition among
the so-called accumulators (Audley and Pike, 1965, Smith, 2000),
which represent the accumulation of evidence supporting one an-
swer over another. For each question, there are as many accumula-
tors as there are available responses. The idea behind these models
is that each accumulator requires a different amount of time to
reach its upper limit. When an accumulator reaches its upper limit
first, the answer associated with that specific accumulator is chosen.
According to the model proposed by Rouder et al. (2015), the ac-
tual RT for an item is determined by the sum of the time required
to reach the upper limit of the "winning" accumulator (finishing

time) plus a time component required for non-decision processes
such as stimulus encoding and response execution (shift parameter:
ψ). This specific model assumes that each accumulator depends
on the latent trait θ , unlike the model proposed by Ranger et al.
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(2015). In this latter case, the accumulators can be divided into an
information accumulator, which refers to the actual correct answer,
and misinformation accumulators, which refer to all incorrect re-
sponses. Thus, two latent traits are hypothesized: θ , which explains
the increase in information, and ω , which explains the increase in
misinformation. Similarly to diffusion models, each stimulus has
an upper limit, and once reached, the corresponding response is
selected. However, in this case, the total response time is a function
of the processing capacity k, which is the sum of θ and ω , without
the addition of any shift parameter. Like diffusion models, race
models also have the limitation of relying on a single process (in this
case, the "race" to which accumulator reaches its upper limit first)
and having a parametrization in two dimensions. The difference
from hierarchical models is primarily interpretive.

3. Local Dependency Models. These are models that, like joint models,
hypothesize both RT and RA as dependent variables, but they also
postulate a deeper connection between these two latent traits, where one
can explain the other and vice versa. They can be divided into two main
subgroups:

• Latent variable models with remaining dependencies: these are
models in which the dependency between the two latent traits is
explained by introducing a local dependency parameter (van der
Linden and Glas, 2010b, Bolsinova et al., 2017, De Boeck et al.,
2017).

• Class models: these are models in which the existence of multiple
response classes is hypothesized, specifically two classes corre-
sponding to two distinct ways of responding, namely the fast mode

and the slow mode. Each class has its specific model and thus a
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specific process to arrive at the response. These response classes
can be manifest (Partchev and De Boeck, 2012) or latent (Wang and
Xu, 2015, Molenaar et al., 2016, 2018). It is important to emphasize
that these classes refer to the type of response (not specific items
or individuals). In fact, there are also class models that refer to
individuals. In this case as well, we find two classes, namely the
rapid guessers and the regular problem solvers (Meyer, 2010, Jeon
and De Boeck, 2019).

The application of these models opens up new and interesting devel-
opments regarding the speed-accuracy trade-off (although speed is not
explicitly included in these models). In fact, it is confirmed that higher
RA values correspond to larger RTs (which in hierarchical models trans-
lated to slower speed), but this tends to be true especially for difficult
items (Bolsinova et al., 2017), while the opposite relationship holds for
easy items (Bolsinova et al., 2017, De Boeck et al., 2017), precisely be-
cause easier items, on average, require less time (Partchev and De Boeck,
2012, DiTrapani et al., 2016, Molenaar et al., 2016, 2018).

In summary, class models are especially advantageous when investigat-
ing two specific types of processes (fast and slow responses), but their
limitation lies in their inability to provide additional information about
other types of processes.

4. Response Times as Covariate Models. These are models in which RA
is the dependent variable and RT is one of its covariates. Even for this
case, the models can be divided into subgroups:

• Speed-Accuracy tradeoff (SAT) based models: These are models
that directly incorporate the SAT (van der Linden, 2007) within the
function explaining the probability of a correct response to an item.
The success rate becomes a (exponential) function of time (Roskam,
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1987, Verhelst et al., 1997). Additionally, according to the models
proposed by Lohman (1989) and Wang and Hanson (2005), the
growth rate of the function can be equated to the latent trait of speed
in hierarchical models.

• Generalized Linear Mixed Model (GLMM) based covariate models:
These are mixed models that assume that the SAT holds (or is more
prominent) depending on the different tasks required by the item.
Furthermore, several studies (Goldhammer et al., 2014, 2015, 2017,
Naumann and Goldhammer, 2017) have highlighted how the SAT
also depends on the respondent’s ability itself. In fact, the higher
the ability, the stronger the SAT.

Obviously, the classification presented here is not the only possible one, and
the models shown, albeit in a fairly general manner, are just some of the
theorized ones. However, they are still among the most discussed and used in
the literature.

In the following subsections, more specifically, the log-normal distribu-
tion model proposed by van der Linden (2006) and the hierarchical model
proposed by van der Linden (2007) will be presented. Additionally, a modifi-
cation of the latter model, proposed by Fox and Marianti (2016) and Fox et al.
(2021) will be introduced. The reason why these models will be explored is
that they will be used for analyses on real data reported later (Section 2.4.4)
and because they form the basis on which the new method for identifying
cheaters, proposed in Chapter 3, was developed.

2.4.2 Log-normal distribution model

As previously mentioned, this model is based on the idea that, given a subject
n = 1, ...,N and an item k = 1, ...,K, the response time rtnk is a realization of
a random variable RTnk, which follows a log-normal distribution. Therefore,
its probability density function is given by:
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f (rtnk,ζn,φk,λk) =
φk√

2πrtnk
exp
{
−1

2
[φk (lnrtnk − (λk −ζn))]

2
}
, (2.26)

where:

• λk is the time-intensity parameter of item k and represents the population-
average time (on a logarithmic scale) needed to complete that item. It
serves as an equivalent of item difficulty in IRT models and can be
positive or negative, with a mean of 0.

• ζn is the speed parameter of test-taker n, which represents the latent
trait underlying the response time (similar to how ability θ relates to the
response pattern). It reflects the constant working speed of the test-taker,
accounting for systematic differences in response times given λk. A
speed value of zero indicates a test-taker who, on average, works at the
same speed as the population average. For instance, for an item with a
time-intensity λk = 4.61, the average time for a test-taker with average
speed (ζn = 0) on that item is around 100 seconds on the regular time
scale (e4.61 ∼= 100). Conversely, a negative (positive) speed indicates a
test-taker who, on average, works slower (faster) than the population
average.

• φk is the time-discrimination parameter of item k, representing the item
sensitivity to different speed levels of test-takers. It serves as an analogue
to the item discrimination parameter in IRT models and is strictly greater
than zero. It is defined as the reciprocal of the standard deviation of the
normal distribution1:

φk =
1
σk

. (2.27)

1Since RTnk follows a log-normal distribution, its natural logarithm, denoted as lnRTnk, will have a normal
distribution with variance σ2

nk.
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Therefore, a higher value for φk indicates less variability in the log re-
sponse time discrimination of the item among individuals with different
levels of ζ .

From Equation (2.26), since it represents the probability density function of a
standard normal distribution, we can confirm that the standard deviation is
the reciprocal of the time-discrimination parameter and we can also identify
the mean,

µnk = λk −ζn, (2.28)

from which,

lnRTnk ∼ N

(
λk −ζn,

1
φ 2

k

)
. (2.29)

However, for any value of ε , the distribution in Equation (2.26) remains the
same under the transformations,

λk − ε,

ζk − ε.
(2.30)

Therefore, the model is not identified. To establish identifiability, the follow-
ing constraint is imposed on the parameter ζn:

N

∑
n=1

ζn = 0. (2.31)

This constraint also brings an advantage in terms of interpretation for both λk

and ζn. In fact, Equation (2.28) implies that:

∑
N
n=1 λk

N
− ∑

K
k=1 ζn

K
=

∑
N
n=1 ∑

K
k=1 µnk

NK
. (2.32)
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By imposing the constraint in Equation (2.31), it is reduced to:

∑
N
n=1 λk

N
=

∑
N
n=1 ∑

K
k=1 µnk

NK
. (2.33)

That is, the average item parameter λk is equal to the average expected log-
time over the persons and items. As a consequence, ζn is a deviation from
this average.

Finally, given the probability density function in Equation (2.26), it follows
that the logarithm of RT can be expressed using the following probabilistic
function:

lnRTnk = λk −ζn + εnk,

εnk ∼ N(0,σ2
εk
)

(2.34)

As mentioned, this model is the basis for another widely used model in the
literature, namely the hierarchical log-normal model (van der Linden, 2007).

2.4.3 Hierarchical distribution model

The underlying idea of this model, as previously mentioned, is that the RA
and RT are jointly and, with a certain degree of correlation, the dependent
variables. It has also been mentioned that it is called a hierarchical model
because it is specified at multiple levels.

At the first level, two distinct models are presented for the RA and RT. At
the second level, the prior distributions of the parameters of the first-level
models are defined, and the parameters of the two models are allowed to be
dependent. This improves the estimation of the parameters for both models
because the estimation of the RA model parameters utilizes the additional
information provided by RTs, and vice versa.
At the third level, hyperparameters are defined, which correspond to the
parameters of the prior distributions defined at the second level.
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Fig. 2.1 Hierarchical structure of the jointly distribution of RT and RA.

First-Level Models: For the RA, a classic IRT model is hypothesized. Like
in the case of van der Linden (2007), a 3PL model is chosen (Equation 2.4).
On the other hand, for the RT, one of the distribution models described in the
previous paragraph is selected. In the specific case examined in this study, it
is the log-normal model described by van der Linden (2006) (Equation 2.26).

Second-Level Models: At this level, the RA and RT are modeled jointly.
Multivariate distributions are chosen for both the item parameters ψψψk = (ak,
bk, ck, φk, λk) and the individual parameters ξξξ n = (θn, ζn).
Concerning the item parameters, a multivariate normal distribution with
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parameters µµµ I and ΣΣΣI is chosen as the prior distribution:(
ak,bk,ck,φk,λk

)⊤
∼ N(µµµ I,ΣΣΣI),

µµµ I =
(

µa,µb,µc,µφ ,µk

)⊤
,

ΣΣΣI =


σ2

a σa,b σa,c σa,φ σa,λ

σa,b σ2
b σb,c σb,φ σb,λ

σa,c σb,c σ2
c σc,φ σc,λ

σa,φ σb,φ σc,φ σ2
φ

σφ ,λ

σa,λ σb,λ σc,λ σφ ,λ σ2
λ

 ,

(2.35)

with density function:

f (ψψψk; µµµ I,ΣΣΣI) =
1√

(2π)5|ΣΣΣI|
exp
(
−1

2
(ψψψk −µµµ I)

⊤
ΣΣΣ
−1
I (ψψψk −µµµ I)

)
. (2.36)

For the two discrimination parameters ak and φk, the constraint of being
positive is imposed.

As for the individual parameters, a bivariate normal distribution with
parameters µµµP and ΣΣΣP is chosen as the prior distribution:(

θi

ζi

)
∼ N(µµµP,ΣΣΣP),

µµµP =

(
µθ

µζ

)
,

ΣΣΣP =

(
σ2

θ
σθ ,ζ

σθ ,ζ σ2
ζ

)
,

(2.37)

with density function:

f (ξξξ n; µµµP,ΣΣΣP) =
1√

(2π)2|ΣΣΣP|
exp
(
−1

2
(ξξξ n −µµµP)

⊤
ΣΣΣ
−1
P (ξξξ n −µµµP)

)
.

(2.38)
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Third -Level Models: In this third and final level, the hyperprior distribu-

tions for the two bivariate models described in the second level are defined.
A hyperprior distribution is a distribution that is used to model uncertainty or
variation in the parameters of the prior distribution. In hierarchical models, pa-
rameters themselves can be treated as random variables, and their distribution
is referred to as a hyperprior. Regarding the item parameters, van der Linden
(2007) suggests simplifying the model by separating the parameterization of
ck from the other item parameters. For this reason, we introduce a new vector
of item parameters that does not include ck:

ψψψ∗
k =

(
ak,bk,φk,λk

)⊤
∼ N4(µµµ

∗
I ,ΣΣΣ

∗
I ),

µµµ∗
I =

(
µa,µb,µφ ,µk

)⊤
,

ΣΣΣ
∗
I =


σ2

a σa,b σa,φ σa,λ

σa,b σ2
b σb,φ σb,λ

σa,φ σb,φ σ2
φ

σφ ,λ

σa,λ σb,λ σφ ,λ σ2
λ

 .

(2.39)

As hyperpriors for ψψψ∗
k , independent normal/inverse-Wishart prior distribu-

tions are chosen; that is:

µµµ∗
I |ΣΣΣ

∗
I ∼ MVN(µµµ I0,ΣΣΣI/κI0),

ΣΣΣ
∗
I ∼ Inverse-Wishart(ΣΣΣ−1

I0 ,νI0),
(2.40)

where νI0 ≥ 4 is a scalar degrees-of-freedom parameter, ΣΣΣ
−1
I0 is a 4 × 4

(positive definite symmetric) scale matrix for the hyperprior on ΣΣΣ
∗
I , and µµµ I0

and κI0 are the vector with the means of the posterior distribution and the
strength of prior information about these means, respectively.
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Instead, for the guessing parameter a Beta hyperprior distribution is as-
sumed,

ck ∼ Beta(γ,δ ), k = 1, . . . ,K. (2.41)

Regarding the person parameters, once again a normal/inverse-Wishart
hyperprior distribution is chosen:

µµµP|ΣΣΣP ∼ MVN(µµµP0,ΣΣΣP/κP0),

ΣΣΣP ∼ Inverse-Wishart(ΣΣΣ−1
P0 ,νP0),

(2.42)

where, the parameters for the hyperprior distributions of µµµP and ΣΣΣP are
defined analogously to those of µµµ∗

I and ΣΣΣ
∗
I , and with a minimum number of

degrees of freedom for the scale parameter νP0 set to 2.
For this choice of hyperprior distributions, the joint posterior distribution

of the parameters factors is:

f (ξ ,ψ,c,µP,µ
∗
I ,γ,ΣP,Σ

∗
I ,δ | y,rt) ∝ ∏

N
n=1 ∏

K
k=1 f (ynk;θn,ak,bk,ck)×

× f (rtnk;ζn,φk,λk) f (ξn; µP,ΣP) f (ψ∗
i ,ck; µ∗

I ,γ,Σ
∗
I ,δ )×

× f (µP,ΣP) f (µ∗
I ,Σ

∗
I ) f (ck).

(2.43)

Lastly, to establish identifiability, the following constraints are imposed:

µθ = 0, σ
2
θ = 1,

N

∑
n=1

ζn = 0. (2.44)

The first two constraints are usual in IRT parameter estimation. The third
constraint is the same used in the log-normal distribution model for RT and
gives the model the same advantages previously described (Section 2.4.2).

As previously mentioned, this hierarchical model was subsequently modi-
fied by Fox and Marianti (2016). The substantial modification was made to the
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first level of the hierarchical model, specifically concerning the distribution
of RTs. A new time-discrimination parameter, denoted as φ∗

k , was introduced.
Unlike its previous representation as the reciprocal of standard deviation
(Equation 2.27), φ∗

k now represents the slope of the speed. This parameter
also models the covariances between RTs, which is expected to enhance the
model flexibility (Fox and Marianti, 2016). Therefore, the logarithm of RT
can be expressed using the following probabilistic formula:

lnRTnk = λk −φ∗
k ζn + εnk,

εnk ∼ N(0,δ 2
εk
).

(2.45)

Moreover, the error component in Equation (2.45) can capture fluctuations
in RTs resulting from the random actions of a test-taker. When individuals
vary in their pace of responding, insert brief pauses during the test, or alter
their time management, the RTs might exhibit more systematic variability than
can be attributed to the underlying average performance. The error component
specific to each item can account for these distinctions and prevents any bias
in the parameter estimator.

Regarding the other two levels of the hierarchical model, the specifica-
tions have remained unchanged compared to the model by van der Linden
(2007) described earlier. However, unlike that model, the identification avoids
restricting σ2

θ
= 1. For that reason, the variance of the latent factors is iden-

tified by restricting the product of discriminations and time discriminations
to one, ∏

K
k=1 ak and ∏

K
k=1 φk, respectively. Additionally, a different approach

is suggested for determining the mean of the latent factors. This involves
either setting the sum of the difficulty and time-intensity parameters to zero,

∑
K
k=1 bk = 0 and ∑

K
k=1 λk = 0 respectively, or fixing the mean of the ability

parameter to zero, µθ = 0, and the mean of the speed parameter to zero,
µζ = 0.
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Finally, with regard to the model estimation methods, these are the same
for both the model by van der Linden (2007) and the modified model by Fox
and Marianti (2016). These are Markov Chain Monte Carlo (MCMC) meth-
ods. These methods are a class of statistical techniques used to approximate
complex probability distributions, especially when direct sampling is difficult
or infeasible. MCMC methods are widely applied in Bayesian statistics. The
fundamental idea behind MCMC is to construct a Markov chain that explores
the target distribution of interest, eventually producing samples that closely
resemble draws from that distribution. The Markov chain is a sequence of ran-
dom states where each state depends only on the previous one. It is designed
to have a stationary distribution, and in MCMC, this stationary distribution
represents the desired probability distribution for sampling.

Within this class of methods, the Gibbs sampling (Geman and Geman,
1984) is commonly used for the hierarchical models. It is a specific MCMC
algorithm, particularly useful for multivariate problems. It is used for sam-
pling from the conditional distributions of each variable one at a time, given
the current values of all the other variables. First of all, initial values for all
the variables in the model are chosen. Then, for each variable in the model,
it is sampled a new value from its conditional distribution given the current
values of all other variables. This step is done iteratively for each variable
in the model. The conditional distribution for each variable is derived from
the joint probability distribution of all variables in the model, with all other
variables held fixed. This process is repeated for a chosen large number of
iterations. After that, the convergence of the Markov chain is assessed by
examining the samples obtained after a burn-in period (early iterations where
the chain may not be in equilibrium). The samples obtained after convergence
are drawn from the joint distribution of all variables in the model.
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Regarding the estimation of the parameters of the hierarchical model, the
main steps of the procedure used by (Fox and Marianti, 2016) are summarized
below (for a scenario without the ck guessing parameter).

First, to simplify the sampling process, two auxiliary variables are defined
using a technique called data augmentation. This technique involves introduc-
ing a latent (or auxiliary) variable Z, connected to the observed data through
a one-to-many relationship. The variable Z is generally constructed in such a
way that:

P(y|θ) =
∫

f (z)=y
p(z|θ)dz. (2.46)

In this way, it is equivalent to performing inference on the parameter θ

when using the model for the observed data p(y|θ) or the augmented data
model p(z|θ). This technique is advantageous when it is easier to sample
from p(z|θ ,y) and p(θ |z) than to sample from p(y|θ). In the case of the
hierarchical model under examination, the auxiliary variable z for the given
responses ynk is defined as follows:

znk = akθn −bk + enk,

enk ∼ N(0,1).
(2.47)

In this way:

Ynk =

1 if Znk > 0

0 if Znk ≤ 0
(2.48)

Using the auxiliary variable in Equation (2.47), the conditional distribution
becomes a normal distribution, making it straightforward to sample from:

Znk|Ynk,θi,ΨΨΨ
∗
k ∼ N(akθn −bk,1). (2.49)
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After the definition of the auxilary variable in Equation (2.47), the initial
parameter values are determined by separately estimating the model for
responses and the model for RT. Subsequently, the algorithm follows the
following steps for each iteration m = 1, . . . ,M:

• Step 1: Sample the augmented data from p(znk|ak,bk,θn), given the
previous values of the item parameters and ability.

• Step 2: Sample the item parameter values from:

p(ΨΨΨ∗
k|zzz∗k,ξξξ ,µµµ

∗
I ,ΣΣΣ

∗
I ), (2.50)

where:

zzz∗k = (HHHθ ⊕−HHHζ )ΨΨΨ
∗
k + ek,

ek ∼ N(0, I2N),

HHHθ = (θ ,−1N),

HHHζ = (−ζ ,1N).

(2.51)

• Step 3: Sample the person parameter values from:

p(ξξξ n|zzz∗n,ΨΨΨ
∗,µµµP,ΣΣΣP), (2.52)

where:

zzz∗n = (aaa⊕−φφφ)ξξξ n + en,

en ∼ N(0, I2K).
(2.53)

• Step 4: Sample the hyperparameter values from:

p(µµµ∗
I |ΣΣΣ∗

I ,µµµ I0,ΨΨΨ
∗,VVV I0), (2.54)
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and from:

p(σθ ,ζ |θθθ ,ζζζ , σ̃2
ζ
, σ̄θ ,ζ ,σ

2
ρ),

σ̃2
ζ
= σ2

ζ
− (σθ ,ζ )

2.
(2.55)

These 4 steps are iteratively repeated until the completion of the M-th
iteration.

In the following subsection, a study on real data is presented, highlighting
the capabilities and operation of this joint estimation approach.

2.4.4 Example with RT real data

To show the features and the potential of the hierarchical model described
above, a study was conducted using real data from Italian students, which
included both their responses and the respective RTs to a standardized school
test. The hierarchical model used for this purpose followed the approach
of Fox and Marianti (2016), and it was entirely implemented within an R

package LNIRT by Fox et al. (2021). The data used for this joint analysis was
provided by the Italian National Institute for the Evaluation of the Education
and Training System (INVALSI).

In Italy, INVALSI every year administers standardized tests via Computer
Based Testing (CBT) to students attending grades 8, 10, and 13. In this study,
the 2018 mathematics data for grade 10 were used to jointly estimate the
ability and speed of students.

The tests are administered to the whole student population, around 500,000
students. INVALSI also builds a random sample of around 41,000 units. The
sampling procedure is a two-stage with Italian geographical region and school
track stratification at the first stage. The units of the first stage are the
schools and the units of the second stage are the classes. In this study were
analyzed the results of the sample after a cleaning procedure from missing
and implausible values with respect to RTs (N = 35,970). INVALSI imposes
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a time limit of 90 minutes on grade 10 tests, which is considered enough for
students to read and answer all the questions.

Since the INVALSI tests were generated from a Rasch item bank, and the
LNIRT package use the normal ogive models, the difficulty parameters were
reparameterized for the logit model (multiplying the values obtained from the
estimates by the conversion variable equal to 1.7).

The main results for item parameters are summarized in Table 2.1, which
shows mean, minimum, and maximum of the EAP estimates.

Item Difficulty
(Rasch Model)

Time
Intensity

Time
Discrimination

Mean -0.070 4.229 1.175
Minimum -2.574 3.114 0.011
Maximum 2.726 5.151 2.288

Table 2.1 Item parameters. Hierarchical model. LNIRT.

For person parameters, the estimates of ability and speed are given in Table
2.2.

Person Ability Person Speed
Mean 0.000 0.000
Minimum -2.311 0.611
Maximum 1.946 2.283

Table 2.2 Person parameters. Hierarchical model. LNIRT.

The ability follows a normal distribution, while the speed distribution curve
is slightly skewed. From the residual analysis, it turns out that the residuals of
the response times violate the assumption of log-normal distribution for most
items. Following several analyses, it was possible to note that this violation is
due to the large number of test-takers (35,970).

The correlation matrices for item parameters are given in Table 2.3. The
analysis of these results shows that there is, on average, a positive relationship
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between the difficulty of the items and their intensity and discriminating
power, in terms of time. This means that the most difficult (easy) items are
also the ones that discriminate better (worse) and require more (less) time
to perform. The negative correlation between time-discrimination and time-
intensity, on the other hand, indicates that on average the items that require
more (less) time are the ones that discriminate worse (better), but with a very
low and not significant magnitude.

Item Difficulty Time Intensity Time Discrimination
Item Difficulty 1.000 0.370 (0.000) 0.234 (0.004)
Time Intensity 0.370 (0.000) 1.000 - 0.014 (0.436)

Time Discrimination 0.234 (0.004) - 0.014 (0.436) 1.000
Table 2.3 Item correlation matrix. Value (p-value). Hierarchical model. LNIRT.

Table 2.4 shows the correlation matrix for person parameters. It provides
important information about the correlation between the speed and ability of
the test-takers (-0.574), which is negative and significant (p-value < 0.001).
So, test-takers with a higher (lower) ability tends to be slower (faster).

Person Ability Person Speed
Person Ability 1.000 -0.574 (0.000)
Person Speed -0.574 (0.000) 1.000

Table 2.4 Person correlation matrix. Value (p-value). Hierarchical model. LNIRT.

This result goes to consolidate the speed-accuracy trade-off hypothesis
(van der Linden, 2007), for which those who are prepared want to engage and
show their skills, even during a test that does not directly affect their school
average, while those who are less prepared tend to be less interested and more
hasty.

In conclusion, RTs can indeed be effectively utilized to implement the
ability estimation process and study its relationships with speed. Additionally,
the analysis of item parameters helps in better understanding the intrinsic
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characteristics of the questions. This information can be used to develop tests
(both linear and adaptive) that are more effective and can better meet all the
constraints that can be imposed, such as those related to the test completion
time.

While this section has focused on RT and its applications to IRT models,
the next one will cover, in its essential points, another key topic for this study,
namely CAT.

2.5 Computerized Adaptive Testing (CAT)

For a long time, educational testing primarily centered around paper-and-
pencil exams and performance assessments. Starting in the late 1980s, with
the widespread adoption of personal computers in education, these testing
formats expanded to become suitable for computer-based delivery. The
utilization of computer-based testing (CBT) offers several advantages. It
enables on-demand testing, allowing examinees to take tests whenever and
wherever they are ready. Moreover, modern PCs’ computational power and
multimedia capabilities can be harnessed to create innovative question formats
and more realistic testing environments. Additionally, computers can enhance
the statistical accuracy of test scores through Computerized Adaptive Testing
(CAT) (Wainer et al., 2000, van der Linden and Glas, 2010a). In CAT, instead
of administering the same fixed test to every examinee, the test is tailored
on the examinee’s ability estimate, updating the estimate after each new
answer and selecting subsequent questions to optimize the measurement
precision. The concept of adaptive item selection has historical roots, dating
back to practices like the Binet and Simon (1905) intelligence test and oral
examinations, where questions were tailored to an examinee’s perceived
knowledge level.
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The development of IRT (Section 2.1) in the mid-20th century provided a
solid psychometric foundation for adaptive testing. The initial research into
implementing adaptive testing focused on finding approximate estimation
methods and alternative adaptive formats suitable for traditional paper-and-
pencil testing, owing to the limitations of early computers. As computer
technology advanced, adaptive testing became feasible for large-scale, high-
stakes testing programs. The transition from paper-and-pencil to CBT gained
momentum with the diffusion of the first personal computers and subsequently
expanded into various fields, including psychology, marketing, and health-
outcome research.

The shift to computerized testing administration offered several benefits,
such as flexible test scheduling for examinees, more comfortable test-taking
environments, faster electronic data processing and score reporting, and a
broader range of question types and content.

The greater advantages of CAT over linear tests can be better understood
by considering how the latter are typically constructed. Generally, newly
crafted items are evaluated for difficulty and placed in pretest sections by
test experts. Items that pass statistical scrutiny during the pretest phase
(or calibration phase) become eligible for the final test form assembly. A
preliminary test form is created using automated algorithms for test assembly,
which is then reviewed and potentially adjusted by test experts. This form is
then pre-equated before operational administration to a sample of examinees.
Subsequently, number-right scores are transformed onto a common scale by
psychometricians employing IRT scaling and true-score equating. The time
between operational administrations and score reporting may also take several
weeks.

In contrast, within a CAT environment, item selection and ability estima-
tion happen in real-time. Consequently, computer algorithms must take on
the roles of both test experts and psychometricians. Since the test adapts
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to the examinee, the task of item selection and ability estimation becomes
significantly more challenging, requiring robust procedures for solving this
complex measurement problem with minimal or no human intervention.

Another subtle distinction between linear and CAT formats is that, as men-
tioned earlier with the linear example, item selection and ability estimation in
linear tests usually occur separately, albeit sometimes utilizing similar meth-
ods such as IRT. In CAT, however, item selection and ability estimation occur
in tandem. The efficiency of ability estimation is closely tied to the selection
of appropriate items for an individual, creating a circular relationship between
item appropriateness and interim ability estimates.

The structure of CAT is, in essence, quite complex. To summarize it for
descriptive purposes, it can be said to consist of various phases (Wainer et al.,
2000, van der Linden and Glas, 2010a):

• Ability initialization.

• Selection of initial items.

• Estimation of the first ability.

• Estimation of interim abilities.

• Selection of the next item.

• Estimation of the final ability.

As previously mentioned, the item selection process and the interim ability
estimation process are directly linked to each other, and this cycle continues
until the process reaches a so-called stopping rule (van der Linden and Glas,
2010a).
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Fig. 2.2 Flow chart of a CAT process.

To delve into more detail, the single steps are examined more specifically
below.

• Ability initialization. In order to start the adaptive process, the com-
puter algorithm that manages the CAT needs to know the examinee’s
presumed ability. This is primarily to kickstart the subsequent ability
estimation processes, which, as mentioned in Sections (2.2, 2.3), typi-
cally employs iterative methods that require the selection of an initial
ability. There are some common choices for θ0n. In cases where there
is no prior information about the specific examinee, θ0n is set to 0 or
randomly chosen (random initialization). However, if there is available
information about the individual ability (for example, if one or more
tests have been previously taken), that information can be used to choose
the initial value for the ability.

• Selection of initial items. Similarly, the selection of initial items is
crucial in starting the automated process. These are the items that will be
administered before the first ability estimate is made. They are essential
for collecting as much information as possible to kickstart the estimation
process. For this reason, there must be more than one initial item, but
they also should not be too many, as this could make the test overly
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long and negate the actual advantage of CATs, which is to adapt to the
respondent’s true ability. Typically, 3-5 items are used for this purpose.
There are various possibilities for selecting these initial items. One
approach is to assume θ0n as the true ability of the examinee and choose
the items accordingly. However, this approach tends to be problematic
when the same value is chosen for all θ0n, for example θ0n = 0 for each
n = 1, . . . ,N, as it risks giving the same initial items to all examinees.
The alternative and commonly used approach is to select them randomly.

• Estimation of the first ability. This involves estimating the first ability
following the administration of the initial items.

As mentioned previously in Section 2.2, the ML estimation method
does not yield finite estimates for response patterns where all items
are answered correctly or incorrectly. This limitation poses challenges
for ability estimation, particularly at the beginning of a test when such
response patterns are more likely to occur. Several approaches have
been proposed to address this issue.

First, one suggestion is to temporarily fix the ability estimate at a small
value for incorrect responses or a large value for correct responses
until finite estimates can be obtained. Second, in some cases, ability
estimation is delayed until the examinee has answered a larger set of
items. Third, this problem has prompted the use of Bayesian methods
like EAP estimator. Fourth, when relevant empirical information about
examinees, such as scores on earlier related tests, is available, initial
ability estimates can be derived from this supplementary data.

However, none of these solutions is entirely flawless. The first two
approaches involve arbitrary choices regarding ability values or the
selection of items. The third approach requires choosing a prior distri-
bution, which, in the absence of response data, heavily influences the
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choice of the first item (Section 2.3). If the prior distribution is far from
the true ability of the examinee, it can be counterproductive and may lead
to a longer initial string of correct or incorrect responses than necessary.
Regarding the fourth solution, while there are no technical obstacles to
using empirical priors, their selection should be done with caution. For
instance, relying on general background variables can introduce bias
and should be avoided.

Fortunately, the challenge of inferring an initial ability estimate is pri-
marily an issue for short tests, such as 10-item tests within a battery.
For longer tests, typically consisting of more than 20 to 30 items, the
ability estimator usually has sufficient opportunities to recover from a
suboptimal initial estimate.

In any case, regardless of the chosen estimation method, this initial
estimated ability serves to initiate the item selection process, which will
be specifically discussed in the next section. The key point is that once
this first ability is estimated, the adaptive algorithm will select the first
item outside of the initial items, and the answer to that item will be used
to update the ability estimate. From this point forward, the new ability
estimates will be referred to as interim ability estimates.

• Estimation of interim abilities θmn. This is the estimation of ability that
gets updated after each answer to a new item. It is the heart of the
iterative process because it is from the value of this estimate that the
next item will be selected.

As with the estimation of the initial ability, both ML estimation methods
(especially if a certain number of answers have already been collected,
to avoid the convergence issues mentioned earlier) and Bayesian esti-
mation methods can be used. Furthermore, the chosen method does
not necessarily have to be the same as that used for the initial ability
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estimate, nor does it have to coincide with the one chosen for the final
ability estimate. This, combined with the fact that the item selection
process also changes depending on the chosen method (Section 2.5.1),
makes CAT highly versatile and modifiable in one or more of its parts,
depending on the needs.

This iterative process of interim ability estimation and item selection
continues for a number of iterations m = 1, . . . ,M, until the selected
stopping rule is reached.

• Stopping rule. This is the rule chosen to terminate the iterative process
of item selection and interim ability estimation. In this case too, there
are various options, but usually, two are the most commonly used.

The first option is to stop the process once a fixed M number of items
have been administered. In this case, the test is generally referred as
fixed length test.

The other procedure is to stop the test when the estimation of interim
ability stabilizes, meaning when the standard deviation of the estimated
ability falls below a predetermined value known as the target value. In
this case, the test is called variable length test.

A common practice is to consider both procedures and end the test when
the first one is met. Sometimes, for variable length tests, a minimum test
length value is also chosen to ensure that there is a minimum amount of
data available for a plausible estimate of the final ability.

• Estimation of the final ability θn. While final ability estimates should
ideally possess optimal statistical properties, their primary purpose shifts
away from guiding item selection. Instead, they serve to offer the exami-
nee a meaningful summary of their performance in the form of the best
possible score. To achieve this, final estimates are sometimes converted
into an equated number-correct score on a reference test, which is es-



2.5 Computerized Adaptive Testing (CAT) 49

sentially a released linear version of the test being administered. Two
common methods for performing this conversion are the test characteris-
tic function (Lord, 1980) and the equipercentile transformation (Segall,
1997). The former becomes known once the test items are calibrated,
while the latter requires estimation through a separate empirical study.
To simplify the scoring process for examinees and avoid the need to
explain complex ML scoring methods, Stocking (1996) suggested a
modification to the likelihood equation, ensuring that its solution forms
a monotonic relationship with the number-correct score. However, the
need for score adjustments can be entirely eliminated by implementing
appropriate constraints on item selection during the test, automatically
equating the number-correct scores on an adaptive test to those on a
reference test (van der Linden and Glas, 2010a).

Determining the best method for ability estimation is intricately con-
nected to various other aspects of CAT. Firstly, the choice of the criterion
used for item selection plays a critical role. Additionally, factors like the
composition of the item pool, whether the estimation procedure incor-
porates collateral information about the examinees, and the presence of
content constraints on item selection can all impact ability estimates.

For simplicity in this study, which is focused on dichotomized multiple-
choice items (correct answer = 1 and wrong answer = 0), the value of the
final ability θn will always be left unchanged. Therefore, no conversion
will be applied to make it a score, since this is not the focus of the study.

Just as was previously done in Sections (2.2, 2.3) regarding the main IRT
estimation models, next Section 2.5.1 will present some of the main Item
Selection Criteria (ISC) prevalent in the literature. Again, in this case, RT can
be used as an auxiliary source of information that enhances the methodologies.
Therefore, after an initial analysis of the main ISC, a series of methods that
also use informations about RT will be proposed.
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It’s worth noting here that while RT can be used in CAT both in the phases
of estimating the different abilities (first ability, interim ability, and final
ability) and in item selection processes, it tends to be mostly used in the
latter case. This is because, as seen in Section 2.4.3, joint estimation methods
tend to be complex and time-consuming (using MCMC techniques) and are,
therefore, hardly applicable during a CAT. This point will also be discussed
in Chapter 3.

2.5.1 Item Selection Criterion

The term Item Selection Criterion (ISC) refers to the method used to choose
the next item to administer in a CAT. There are many such criteria, but all of
them are based on the principle of exploiting the information that is collected
during the test in order to choose the best item to administer (Wainer et al.,
2000, van der Linden and Glas, 2010a). Some of the ISC examined in this
work make use also of the information about the RT for each item. These are
methods that go to modify some of the more classic ones, for this reason it is
necessary to first make a brief presentation of such criteria (only the one that
can be modified) and then move on to see in more detail those employing RTs.

Classic ISC:

• Maximum information criterion (MIC). As stated in the introduction, the
ISC uses the estimate of θn calculated in the previous steps to determine
which item to administer. When the ML is chosen as estimation method,
under smoothness conditions on the IRF, θ̂MLEn is asymptotically dis-
tributed as N(θ ∗

n , I
−1(θ ∗

n )) where θ ∗
n is the true value of the latent ability,

while I(θ ∗
n ) is the Fisher information related to θ ∗

n . Therefore, the in-
verse of I(θ ∗

n ) is the asymptotic variance of θ̂MLEn. So, the larger is the
Fisher information, the smaller is the asymptotic variance of θ̂MLEn.
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The function I(θn) is the expected value of the second derivative of
lnL(θn), with inverted sign.

I(θn) =−E
[

∂ 2 lnL(θn)

∂θ 2
n

]
. (2.56)

In addition, this expected value is equivalent to the sum of the individual
Item Information Functions (IIF), indicated with Ik(θn), that indicates
how much information can be derived from each single item, with
reference to a generic θn.

I(θn) = ∑
K
k=1 Ik(θn),

Ik(θn) =
[P(Ynk=1 |θn)]

2

P(Ynk=1 |θn)(1−P(Ynk=1 |θn))
.

(2.57)

The MIC involves choosing, at each selection step m = 1, . . . ,M, the
item that maximizes I(θn).

km+1 = argmax
l
{Il(θ̂mn) : l ∈ Rm}, (2.58)

where:

– m = 1, . . . ,M indicates the number of items that have already been
administered.

– Rm is the set of all items that have not yet been administered.

– l indicates the generic element of the set Rm.

– θ̂mn is the generic estimator of θn at step m. As this is a generic for-
mulation, θ̂mn may refer to any estimation method, not necessarily
ML.

– Il(θ̂mn) indicates the information provided by item l at the ability
estimate at step m.

Generally, the larger Il(θ̂mn) is, the smaller is the asymptotic variance
of θ̂mn. Specifically, when using an ML estimation method, θ̂MLEn will
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have the smallest possible asymptotic variance. For this reason, when
θ̂MLEn is chosen as the estimator for interim abilities, it is common to
select the MIC. However, there are no methodological constraints, and
it is also quite popular to use the EAP in combination with the MIC
(van der Linden and Glas, 2010a).

Despite its advantages, this criterion is not free from critical issues, in
particular because Fisher’s information is a measure of local information,
the further away θ̂mn is from the real value of θn, the lower the effective-
ness of this criterion. For this reason, it tends to be less efficient with
low-length tests, because the estimator has more difficulty in stabilizing
the estimate. Furthermore, this criterion always tends to choose the most
discriminating items. For this reason some items are much more exposed
than others and MIC don’t have features for satisfying test constraints.

For these reasons, and especially for the latter, another ISC that is usu-
ally proposed is the a-stratified with b-blocking item selection method
(Chang et al., 2001).

• The a-stratified with b-blocking item selection method (ASB). The a-
stratified (AST) with b-blocking item selection method (ASB) tries to
solve the problem of information-based item selection methods that, no
matter how large the item pool size is, only a small fraction of the items
tend to be used. In Chang and Ying (1999) and Chang et al. (2001), has
been shown that ASB can help balance the item exposure distribution,
and hence yields the better test security while maintaining acceptable
estimation efficiency. This method makes possible to select the most
discriminating items, namely those with a higher a-parameter, in the
most advanced stages of the test, due to the fact that high discrimination
parameters are more useful in later stages of an exam than in the early
stages, when there is considerable uncertainty about the ability parameter
θn. In order to do that, the ASB performs the following steps:
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– Arrange items in ascending order of difficulty and then divide the
item bank into W equal-length blocks. So the first block contains
the easiest items and the W -th block contains the most difficult ones.

– For each w = 1, . . . ,W , arrange items in ascending order of dis-
crimination and then divide the block into J equal-length strata. In
this way, for each of the W blocks, the first stratum contains the
less discriminating items, and the J-th stratum contains the most
discriminating ones. Thus, an item selected form the w-th block
and his jw-th stratum is easier but as discriminating than an item
selected from the (w+1)-th block and his jw+1-th stratum.

– Now, for each j = 1, . . . ,J, recombine the jw-th stratum items across
the W blocks into a single stratum. In this way, now each stratum
contains items with very similar a parameters but with different b

parameters, sorted in ascending order.

– Divide the test into J stages.

– In the j-th stage, the items considered are only those belonging to
the j-th stratum and they are chosen based on the closeness of b

values to the current estimate of θmn:

km+1 = argmax
l

{
1

|θ̂mn −bl|
: l ∈ Rm j

}
, (2.59)

where Rm j contains the remaining items in the j-th stratum that have
not been administered.

This method is able to balance the item exposure distribution, and hence
yields the better test security while maintaining acceptable estimation
efficiency. However requires, on average, much larger item banks with
items that have very similar distributions of a-parameters per difficulty
class.
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• Shadow test approach (STA) for item selection. It’s not really an ISC, but
rather an approach that is used to resolve the critical issues of the selected
ISC (van der Linden and Reese, 1998), that is how test specifications like
content restrictions have to be taken into account during item selection.
STA is very often used together with information-based item selection
methods, because it is able to counterbalance the lack of control on the
exposure of the items that these ISC presented, and also allows to deal
with test specifications, like content specifications. A shadow test is a
test that is generated by a test-assembly algorithm similar to those used
for the linear pen-and-paper tests, but that is not disclosed, but rather
remains latent. It is generated every time the algorithm has to choose
the next item to be administered and, for CATs of fixed length M, are
generated M shadow tests of length M. These tests are generated in order
to respect all constraints and to contain the items already administered.
For this reason, the first shadow test is equivalent to a linear pen-and-
paper test just assembled, while the last shadow test is the actual adaptive
test and always meets all constraints (van der Linden and Glas, 2010a).

The procedure follows these steps:

– Step 1: Initialize the ability estimator. That means that the initial
ability θ0n is chosen following the initial choice rule.

– Step 2: A shadow test of length M is assembled by the test-assembly
algorithm following all the established constraints, and by ensuring
that all items already administered are present.

– Step 3: Among the unused items in the shadow test is administered
the item that best satisfies the chosen ISC. For instance, in the
case of opting for information-based item selection methods, the
administered item would be the one with the highest information
content among the unused items in the shadow test.
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– Step 4: After the test-taker has provided his answer to the admin-
istered item, the interim ability estimate is updated following the
chosen estimation method.

– Step 5: The test-assembly algorithm is updated to include, in the
next shadow test, the administered item.

– Step 6: All unused items in the shadow test are returned to the pool.

– Step 7: Steps 2-6 are repeated until M items have been administered.

It is important to note that, because each of the shadow tests meets all
the constraints, it means that also the actual adaptive test meets them all.
For that reason, with this approach it is easily possible to take advantage
of the information deriving from the RT, since it is enough to add to the
test a constraint (van der Linden and Veldkamp, 2004).

ISC with RT:

• Maximum information per time unit criterion (MIT) (Fan et al., 2012).
This is an improvement of the MIC, which in addition to maximizing the
Fisher’s information at the current ability estimate, also takes advantage
of the auxiliary information provided by the RT. This is an improvement
because often it happens that a highly informative item can be quite
time-consuming, so it has less practical value compared to an equally
or somewhat less informative item that requires less time to complete.
Specifically, instead of maximizing raw item information Il(θ̂mn), the
next item is chosen based on:

km+1 = argmax
l

{
Il(θ̂mn)

E[RTnl|ζ̂nMLEm
]

: l ∈ Rm

}
, (2.60)

where:

– RTnl is the average time required to complete the item l by test-taker
n.
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– ζ̂nMLEm
is the maximum likelihood estimator of the speed parameter

ζn at the current step m for test-taker n,

ζ̂nMLEm
= maxk L(ζn) = maxk ∏

m
k=1

φk

rtnk
√

2π
e−

1
2 [φk(lnrtnk−(λk−ζn))]

2
=

=
∑k∈Rm[φ

2
k (λk−lnrtnk)]

∑k∈Rm φ 2
k

.

(2.61)

– E[RTnl|ζ̂nMLEm
] is the expected time that a test-taker n takes to com-

plete item l, given their current MLE of working speed in Equation
(2.61). Under the log-normal model for RT in Equation (2.26),
treating φk and λk as known parameters, it can be computed as:

E[RTnl|ζ̂nMLEm
] =

∫
∞

−∞

φl√
2π

e
−1

2

[
φl

(
lnrtnl−(λl−ζ̂nMLEm

)
)]2

drtnl =

= e

(
λk−ζ̂nMLEm

+ 1
2φ2

k

)
.

(2.62)

Following Fan et al. (2012), MIT has the same advantages as MIC in
terms of capacity to control variance, particularly when θ̂mn and ζ̂nMLEm

are close to the true θn and ζn, respectively. Compared to the MIC, it
saves substantial testing time, with only a small loss of measurement
precision. But this criterion also has some disadvantages, like it tends
to be less efficient with small-length tests, but above all is not able to
balance item exposure rates well. Furthermore, it requires fitting an RT
model to explain the data. For this reason, a model miss-fitting could
lead to an incorrect estimation of the parameters φk, λk and ζn, which
affect the correct process of information maximization. In order to solve
the first problem, improvements for ASB and STA were proposed in
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the literature and are discussed later in this section. For the second
disadvantage, Cheng et al. (2017) proposed a simplified version of MIT.

• A simplified version of the maximum information per time unit criterion
(MIT-S). As already mentioned, good model fit is a prerequisite to using
MIT criterion, and when using real data, this could lead to serious errors
in identifying the best items to administer. In fact, Equation (2.62) is
based on the log-normal model for response time proposed by van der
Linden (2006) (Equation 2.26 ), but there are many other models for RT,
as widely reported in Section 2.4.1. In addition, it has been found that
the shapes of empirical response time distributions for items within a test
and of similar types of tests can vary (Klein Entink et al., 2009, Ranger
and Kuhn, 2012) and no single model may universally fit well all items
in an item bank (Patton, 2015). For this reason Cheng et al. (2017) have
tried to simplify the MIT criterion so as not to require fitting a response
time model to the individual-level response time data, and they call
this criterion MIT semplified (MIT-S). In order to do so, they modified
Equation (2.60) by completely removing the information regarding ζn, a
choice motivated by the fact that such an individualized measure does
not make any difference in rank-ordering the items for item selection.
In fact, they note that, in Equation (2.61), the speed estimate does not
truly depend on the specific items l considered, this is because, even
with a different set of items, if the test taker responds according to their
real speed, then the estimate should remain almost the same. What they
did is then replace the denominator in Equation (2.60) with a factor that
does not include the speed estimate and that is independent form the
model chosen for RT:

km+1 = argmax
l

{
Il(θ̂mn)

lnRTnl
: l ∈ Rm

}
, (2.63)
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where lnRTnl is the average of the log-transformed RT to item l.

As an average, although this factor has as its subscript the reference
to the single test-taker n, in reality it is a measure that does not vary
between the test-takers, but that depends only on the item l (Cheng et al.,
2017). Moreover, it is effectively independent of the model chosen for
the response times, even if it has different properties depending on the
real RT distribution. For example, if van der Linden (2006) model holds,
then this measure would be able to enclose inside itself the information
about ζn. In fact, from Equation (2.26) follows that,

E(lnRTnl |φk,λk,ζn) = λk −ζn, (2.64)

and

E(λk −ζn) = λk −µζ , (2.65)

where µζ is the mean working speed of the considered population.

For that reason, lnRTnl is the MLE of the mean of the log-normal
distribution over the entire population, and it serves as an estimator of
the difference between the time-intensity parameter of an item and the
group-level speed.

Cheng et al. (2017), doing a comparison study on real data, found
that MIT-S saves substantial testing time, with only a small loss of
measurement precision, and it seems to perform better in saving time
than MIT for Rasch models. Then, MIT-S is less demanding in terms
of data, pre-processing and computational resources, since real time
updating of the working speed estimate is not needed. From a theoretical
point of view, it is a more robust criterion to model misfit compared to
MIT (however, the Authors did not explore this aspect in the comparison
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study). However, Since MIT-S is a simplification that does not in any
way solve the problem of exposure control, it is still not able to balance
item exposure rates well, particularly for Rasch models, because it
always favors highly time-saving items since all the items share the
same a discrimination parameter (a = 1). The next criteria presented
will focus on how best balance the item exposure rate, by exploiting the
information from RTs.

• a-Stratified with b-blocking and time weighting criterion (ASB-TW).
The first of these criteria is an improvement of the ASB criterion (Fan
et al., 2012) that introduce a simple adjustment for time to the fifth
step of the ASB algorithm presented previously (maintaining the others
unchanged). They modified Equation (2.59) considering as denominator
not only the difference in absolute value between θn and b, but also the
expected value E[RTnl|ζ̂nMLEm

] defined in Equation (2.62),

km+1 = argmax
l

{
1

|θ̂mn −bl||E[RTnl|ζ̂nMLEm
]|

: l ∈ Rm j

}
. (2.66)

Fan et al. (2012) conducted a simulation study that showed how, also in
this case, using the information from RTs has led to saving substantial
testing time, with only a small loss of measurement precision. The
process of creating several strata allows ASB-TW criterion to have a
much higher exposure rate control of the items compared to maximum-
information criteria (MIC, MIT, MIT-S), similar to what happens with
the ASB criterion.

However, The introduction of E[RTnl|ζ̂nMLEm
] , as weighting factor, lead

to a problem of correct item selection when we have a model misfit iden-
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tification, and the need to real time update the working speed estimate,
as already discussed for MIT.

• Constraints with respect to response times. The simplest way to use the
information about RTs needed to answer the already submitted items,
is to put that information into a constraint for total test time (van der
Linden, 2008, Veldkamp, 2016),

ttot ≥ ∑
k∈Am

rtnk + ∑
l∈Rm

E[RTnl|ζ̂nMLEm
]xl, (2.67)

where:

– ttot is the total time that test-takers have before the test ends.

– xl is the decision variable, denoting if an item will be in the test
(xl = 1) or not (xl = 0).

– Am is the set of all items that have already been administered.

In other terms, the sum of the times rtnk spent on answering the previous
items and the expected times E[RTnl|ζ̂nMLEm

] on the remaining items,
has to be lower than the total amount of time ttot available for the test.
For that reason, if an item has an expected response time greater that
(ttot−∑k∈Am rtnk) will not be taken into account by the selected criterion.

Since it is a constraint and not an ISC, it can be combined with the
different criteria showed so far, and can also be used with item selection
approaches, such as STA.

Regarding its advantages, the more accurate E[RTnl|ζ̂nMLEm
] is, the more

sure is that the test-taker is able to finish the test. Furthermore, Since this
is a constraint, it may be bundled with other constraints to compensate
any lack that the selected ISC has, such as those relating to the control
of the items exposure rate.
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However, as already pointed out for MIT and ASB-TW, having to esti-
mate the expected value E[RTnl|ζ̂nMLEm

], a model miss-fitting could lead
to a problem of correct item selection, particularly on the early stages of
CAT, when hardly any information about ζn is available. As a result of
that, the test-taker might need more time than expected and might run
into time trouble toward the end of the test.

In order to overcome this limit, Veldkamp (2016) proposed the introduc-
tion of an ISC called Robust CAT. First, however, it is worth mentioning
another ISC, also proposed by Veldkamp (2016), which integrates the
constraint about the maximum RT in Equation (2.67), directly within
the objective function of the ISC.

• Penalized violations of maximum response time criterion. This criterion
is based on the assumption that it may be acceptable to allow a small
percentage of test-takers to exceed the maximum RT. This is because,
although it can bring great advantages to make sure that all the examined
are able to complete the whole test, it is also true that a constraint such
as that on Equation (2.67) could strongly limit the choice of some items,
especially in the more advanced phases of the test, going to eliminate,
for some test-takers, those items that, if effectively answered, would be
able to supply more information about the true value of θn. In order
to do this, Veldkamp (2016) proposes a strategy that is based on the
goal programming or penalty strategy for dealing with test specifications
(Veldkamp, 1999). In this type of strategy, what is called goal or target

is fixed and then a certain weight or penalty, P, is established, which
is applied during the item selection process to all those items that do
not respect the predetermined goal. This approach ensures that items
failing to meet the objective are not automatically eliminated; however,
their selection becomes considerably more challenging. In this criterion,
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the goal is not to surpass the maximum response time, as defined in
Equation (2.67), and and the objective function of the ISC is defined as:

km+1 = argmaxl ∑l∈Rm[Il(θ̂mn)xl −P∗maxl{(∑k∈Am rtnk+

+∑l∈Rm E[RTnl|ζ̂nMLEm
]xl)− rttot,0}].

(2.68)

Note that if the goal in Equation (2.67) is respected, then the second
member of the sum will be zero and the objective function becomes that
of a classic information maximization criterion. If instead the goal is
violated, that is ttot <∑k∈Am rtnk+∑l∈Rm E[RTnl|ζ̂nMLEm

]xl, then the value
of the information provided by that specific item l, will be penalized
the more ∑k∈Am rtnk +∑l∈Rm E[RTnl|ζ̂nMLEm

]xl is greater than ttot and the
more P has been chosen high. Note also that, the higher P is chosen,
the closer this method is to the constraints with respect to the response
times method, that was previously illustrated. So, in that case, the
items violating Equation (2.67) are never selected for any test-taker.
Conversely, a P too small, tending to zero, would reduce Equation (2.68)
to that of a MIC (Equation 2.58 ), losing completely the contribution
that the information about RTs can give to the ISC. For these reasons, it
is important to carefully choose the value to be attributed to the weight
P. In general, it can be advised to determine the most appropriate value
of P empirically, in a simulation study.

Finally, as also pointed out by Veldkamp (2016), this ISC can also be
applied within the STA, so that, during the construction of each shadow
test, each item within them was first weighed.

In addition to the advantages already mentioned for the other criteria of
information maximization, this criterion is also able to manage those
items that would require a higher RT than others, but without automati-
cally eliminating them from the selection.
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However, like all the other criteria already mentioned that make use
of the expected value E[RTnl|ζ̂nMLEm

], this method is very vulnerable to
model-misfitting, and is also important to select with great care the value
of P, to avoid undermining the benefits that this criterion brings with it,
thus making it very important to carry out preliminary analyses, such as
a simulation study.

• Robust CAT criterion. The latest method analyzed is what Veldkamp
(2016) defines as Robust CAT criterion. This is a criterion that tries to
solve the problem about the uncertainty that there may be in the estimate
of the expected value E[RTnl|ζ̂nMLEm

], especially in the early stages of
the test, when hardly any information about speed is available. It is
called robust because it takes the uncertainty into account, by selecting
the items based on a conservative estimate of the parameters involved.
This method is based on the assumption, argued by Bertsimas and Sim
(2003), that uncertainty is normally distributed, and for this reason has a
large impact only on the final solution for a limited number Γ of items.
Starting from this assumption, Veldkamp (2013) has developed a pseudo-
algorithm that allows the application of the Bertsimas and Sim (2003)
within the ISC, but that does not consider the information deriving from
the RTs, and subsequently modified its own pseudo-algorithm so that it
could also consider such information (Veldkamp, 2016).

After establishing a value for Γ= 1, . . . ,M, the modified pseudo-algorithm
follows the following steps to decide which (m+1)-th item to adminis-
ter:

– Rank the item such that I1(θ̂mn)≥ I2(θ̂mn)≥ . . .≥ IM(θ̂mn).

– Calculate the difference dk = E[RTnk|ζ̂nMLEm
]−E[RTnk|ζ̂ robust

nMLEm
], for

every k = 1, . . . ,K, where E[RTnk|ζ̂ robust
nMLEm

] is a robust estimation
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of the expected RT calculated taking into account also an error
component due to uncertainty.

– For w = 1, . . . ,(M−m)+1, find the item that solves.

Gw = max
l

∑
l∈Rm

Il(θ̂mn)xl. (2.69)

– At this point, among the (M−m)+1 items that have the largest Gw,
the (m+1)-th item administered will be the one that maximizes Gw

respecting the following constraint:

ttot ≥ ∑k∈Am rtnk +∑l∈Rm E[RTnl | ζ̂MLEmn]xl+

+
[
∑

w
k=1(dk −d∗

w)xk +min(M− (m+1),Γ)d∗
w
]
,

(2.70)

km+1 = argmax
w

{Gw : w = 1, . . . ,(M−m)+1} (2.71)

where d∗
w = mink≤w{dk}.

To summarize, the RT constraint in Equation (2.67) is corrected for
uncertainty in Γ of the items by adding the term ∑

w
k=1(dk − d∗

w)xk +

min(M− (m+1),Γ)d∗
w. In this way the risk of a test-taker having too

little time to complete the test is reduced, at the cost that a series of w

integer programming problems has to be solved in the item selection
step instead of just one.

In conclusion, it is worth noting that, exactly as shown in the works of the
various authors already mentioned, among all these methods reported here
there is not one that is objectively better than the others, but it is true that some
of these might be more recommendable to others, depending on the need.
For example, in the case of real data that do not fully reflect the log-normal
distribution of response times, can be used the MIT-S criterion because of its
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property of robustness against the model-misfitting, otherwise can be used
constraints with respect to response times when we want to be more confident
that the subjects can finish the test entirely in time. Furthermore, regardless
of the choice of ISC, this section has shown how RT can be effectively used
to define valid item selection methods.

More generally, the main components of a CAT have been presented in
this Section, emphasizing how this type of CBT can be complex, yet, at
the same time, they are capable of adapting to the requirements depending
on how they are configured. In this regard, a comparative study between
CATs with different configurations is presented below to better understand
their differences. This study was conducted using real data, specifically the
same data from INVALSI used in the previous Section 2.4.4. Although this
Section and, more broadly, this Chapter have extensively discussed RT and
its potential implementation in CATs, the example study to be presented will
not use this auxiliary source of information. Instead, it will be in Chapter 3
that RT and CAT will be combined to address a persistent issue in testing,
both computerized and pen-and-paper, that of cheaters.

2.5.2 CATs comparison with real data

The aim of this analysis is to compare CATs with different configuration
via a simulation study using the 2018 mathematics INVALSI data for grade
10, already used for the application in Section 2.4.4. For this grade, 12
parallel test forms were created by INVALSI from a Rasch item bank through
Automated Test Assembly (ATA) methods. These forms are fixed, with 35
items each, linear and follow specific content constraints. In the first step of
this analysis, a fixed-length CAT and a variable-length CAT are compared.
Subsequently, the performance of the CAT is evaluated by applying the same
constraints used by INVALSI to generate their linear forms, and to do that
the STA was used. The main objective of the simulation is to explore how the
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different configuration will diverge in terms of accuracy of the estimates and
efficiency, using as performance indexes the BIAS and the MSE of the ability
and the correlation between the true and the estimated ability. Furthermore,
alterations in the test length have been investigated.

The item bank contains 143 mathematics items, calibrated according to
the Rasch model.

Fig. 2.3 Item difficulty parameter distribution (K=143). CATs comparison with real data.
INVALSI data.

These items also have content characteristics (item type, domain, dimen-

sion) and INVALSI has used all this information to assemble, in an automated
way, 12 tests of 35 items each, as homogeneous as possible.

The simulation was then carried out in this way:

• θn abilities were randomly simulated for a different number of respon-
dents (N=100, N=500 and N=1000), from a standard normal distribution.

• Through the use of the R package catIrt (Nydick, 2014), the simulated
θn were used to simulate answers to two different types of CAT. The
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first was a fixed length CAT, with a number of items equal to that of
the 12 linear forms (n = 35), while the second was a variable length
CAT, which continued to administer items until the θ̂n variance was less
than 0.16 (with a minimum test length of 24 items). In both cases, the
first 5 items administered were randomly selected and the initial ability
estimate was assumed to be 0 for each test-taker. In addition, the interim
ability estimate was calculated using the MLE θ̂nMLEm

and the items to
be administered after the fifth were chosen following the MIC criterion
(Equation 2.58). At the end of the simulated tests, the final abilities of
each test-taker were calculated, also in this case using the MLE.

• Later, using the same simulated θn but a different R package called
ShadowCAT (Kroeze, 2017) were simulated answers to a variable length
CAT that met the same content constraints used by INVALSI to generate
the 12 linear tests. In order to implement all these constraints at the
same time, the STA was used, integrated into the ShadowCAT package.
In order to be able to make the comparison, the simulation setup were
the same of the variable test length.

• Having both, the estimated and the real value of the abilities, for each
model and for each population number (100, 500 and 1000), the BIAS
and the MSE of the ability and the correlation between the real and
the estimated ability have been calculated. Those indexes were used as
performance indicators.The average test length was also calculated. In
addition, other indicators, such as the minimum, maximum and average
exposure rate for each item (i.e, the percentage that indicates in how
many tests that item has been selected) have also been calculated. These
simulations were repeated 100 times (with 100 different seeds) and then
means of the indexes obtained were made. As results obtained, these
means were reported.
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The results of this simulation analysis are summarised in Table 2.5. In
general, it is possible to say that an increase in population does not involve
an impactful change in the values of the indexes, for all the methods. This is
because ability estimates are performed individually for each test-taker, so
since they are not a joint estimate, but marginal, the responses of the rest of
the population do not affect the ability estimation of the individual respondent.
Clearly, an increase in population still has a stabilizing effect on the average.

TYPE
OF TEST

N = 100 N = 500 N = 1000
BIAS MSE COR. LENGTH BIAS MSE COR. LENGTH BIAS MSE COR. LENGTH

CAT FL 0.002 0.142 0.935 35.000 0.000 0.145 0.934 35.000 0.000 0.147 0.934 35.000
CAT VL 0.007 0.158 0.927 29.068 0.000 0.156 0.929 29.172 0.000 0.158 0.928 29.211
CAT C 0.022 0.239 0.903 28.582 0.011 0.214 0.904 28.575 0.009 0.207 0.906 28.579

CAT FL = CAT fixed-length; CAT VL = CAT variable-length; CAT C = CAT with constraints.
Table 2.5 Performance indexes of 3 different types of CAT. INVALSI data.

As is well known in the literature, it is possible to note that there is a
trade-off between the BIAS and the MSE. For this reason, to make easier to
compare the performance of the models, the value of the correlation between
the true and the estimated ability has also been reported. In summary, it is
possible to see that the variable-length CAT model, as could be expected, has
slightly lower performance, but on average saves 6 items per test. The CAT
model with constraints is the one that has the worst performance in estimation
accuracy, but it is at the same time the one that has the smallest length tests
and that always ensures that each test respects the content constraints.

In fact, unrestricted CATs are not independently able to maintain all
content constraints. To understand how effectively it can influence the per-
formance to be able to maintain all the constraints at the same time, was
also carried out a simulation (N=100) in which only one constraint at a time
is considered. As can be seen from the Table 2.6, relaxing the constraints
involves an effective improvement in both performance and length.
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TYPE
OF TEST

BIAS MSE CORRELATION LENGTH

CAT 1 constraint 0.0178 0.207 0.917 28.428
CAT all constraint 0.022 0.239 0.903 28,582

Table 2.6 Comparison between CAT with 1 constraint and CAT with all constraints (N=100) .
INVALSI data.

Further simulations were then carried out, and the most interesting results
are those concerning the variable-length CAT but with a lower maximum
allowable variance (0.11 instead of 0.16) (Table 2.7). In fact, decreasing
the maximum variance allowed, the variable-length CAT improves its per-
formance, going to slightly exceed those of the fixed-lenght CAT, but at the
expense of the test length, which increases by an average of 7 items.

TYPE
OF TEST

BIAS MSE CORRELATION LENGTH

CAT FL 0.002 0.142 0.935 35.000
CAT VL 0.005 0.106 0.949 42.630

Table 2.7 Comparison between CAT fixed-length and CAT variable-length (max variance
0.11; N = 100) . INVALSI data.

This is in line with expectations, as a decrease in the target value forces
the CAT to continue administering items to further reduce the variance of the
estimates, thereby increasing their precision.

The last analysis carried out concerns the monitoring of the item exposure
rate. The results found show that the exposure rate distributions do not
differ much between the different methods (Table 2.8), however these are
not optimal distributions, since some items have an exposure rate greater
than 45%. A possible development, not performed in this analysis, might be
to analyze the performances of a CAT that also considers the control of the
exposure rate distribution (Sympson and Hetter, 1985).
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TYPE
OF TEST

MEAN MIN MAX

CAT FL 24% 11% 40%
CAT VL 24% 8% 42%
CAT C 24% 11% 47%

Table 2.8 Exposure rate indexes (N=100). CATs comparison with real data. INVALSI data.

To summarize, it can be said that CAT tends to be adaptable to the test
giver’s needs. The choice of a fixed-length approach is optimal when there
is the need to ensure that all test-takers are administered the same number
of items, while variable-length CAT allows for improving estimation perfor-
mance, albeit at the risk of having some tests longer than others. Furthermore,
CAT has also been able to manage all the content constraints in real-time,
demonstrating adaptability in this regard as well, with modulable performance
depending on the quantity and type of constraints.

In the next Chapter the RT and the CAT will be used together to address
the issue of test-takers who cheat during computerized test.



Chapter 3

Using RT to identify cheaters in CAT

3.1 Cheaters in CAT

Test cheating is a widespread issue in various settings, spanning from ele-
mentary school assessment programs to higher education and professional
certification programs that grant specialized licenses or credentials in specific
fields. Obtaining precise statistics on the extent of cheating is challenging,
but it appears that cheating remains a significant problem. For example, a
review of studies involving American college students conducted by Whitley
(1998) found that, on average, 43% of college students reported cheating
on exams. But cheating is a widespread and ongoing issue worldwide. For
example, during the COVID-19 pandemic, as reported by a systematic review
conducted by Newton and Essex (2023), there was a significant rise in the
number of tests conducted online through computers, leading to an increase
in cheating cases (from 29.9% pre COVID to 54.7% during COVID) because
"there was an opportunity to do so".

Estimating the prevalence of cheating on licensure and certification ex-
ams is more complex, but given the high stakes involved in these tests, it
is reasonable to assume that similar or even higher cheating rates may be
observed. According to Wollack and Fremer (2013), "With tests now acting as
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gatekeepers to numerous professions, the temptation to cheat is at an all-time

high".
There are likely multiple valuable interpretations of the concept of cheat-

ing. In the context of examinations, Cizek (2012) has provided a definition
of cheating as "Any action undertaken before, during, or after a test or

assignment that aims to gain an unfair advantage or produce inaccurate

results".
Firstly, cheating may occur at nearly any stage of the test development,

administration, and grading process. Test-takers might try to inappropriately
access test content even before the actual exam, such as by participating in
unauthorized test preparation courses or sharing secure test material with
others. They may also attempt to obtain test items through electronic hacking,
theft of paper test booklets, or similar means. Test candidates could arrange
for someone else, ostensibly more capable, to take the test on their behalf,
leading to fraudulent results. Test-takers may also seek to gain information
from other participants, engage in copying or collusion, introduce forbidden
materials into the testing session, or gather information during scheduled
breaks or other moments throughout the test. Some times are even the teachers
that try to cheat, improving answers or marking incorrect answers as correct
ones. As these examples illustrate, there are numerous opportunities for
cheating.

Secondly, cheating is deliberate; it is done with the intention of achieving
a test score that doesn’t accurately reflect the test-taker’s true knowledge or
ability.

In fact, the essence of educational tests is to gather as much information as
possible, in the form of answers to questions and queries. This information
can then be used to estimate a summary value, such as a score, of the real level
of ability of the test-takers. Without delving too deeply into the specifics of
how such tests are devised and constructed, and returning to the premises of
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Chapter 2 of focusing solely on models (IRT) and tests that capture one ability
at a time, what these test have in common is the goal of intercepting the real
test-taker’s ability as effectively as possible. However, whenever cheating
occurs, in any of its form, the resulting test scores are unlikely to provide
an accurate measurement of the test-taker’s true level of knowledge, skill,
or ability. In essence, beyond the moral and ethical implications, concern
about cheating can be seen as a psychometric issue related to the validity or
interpretive accuracy of test scores.

What has been said so far is applicable to any type of educational test, be
it pen-and-paper or computerized. To be more specific, even oral tests are
not exempt from cheating practices, but the focus of all this work has always
been on written tests. In particular, great attention has been paid to CAT, and
indeed, the topic of cheating and methods to deal with it will be analyzed in
more detail for this type of computerized test.

In fact, the implementation of CAT programs brought forth new challenges.
High-stakes testing programs faced item security issues, as test-takers had a
great ability to memorize and share test items. Indeed, there are a number of
websites known as brain-dump sites that gather all stolen test items and can be
accessed by malicious users. For example, in 2002, there was a massive use
of information from these sites in China, Taiwan, and South Korea to cheat
on the Graduate Record Exam (GRE). The spread was so extensive that the
authorities had to stop the CAT administration and return to pen-and-paper
testsCizek and Wollack (2016)

Furthermore, the great need to calibrate items to create efficient item banks
always carries the risk of overexposing those items that will later be used to
construct actual tests.

But CAT has also brought solutions to deal with cheating. Given its
adaptive nature, various practices such as copying from nearby test-takers
or getting information from them are much more challenging to implement,
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because each test-taker is likely to have a different test. For this reason, this
thesis focuses on a specific type of cheating, where test-takers gain advanced
knowledge of correct answers, referred to as pre-knowledge, and use it to
answer test questions accurately, regardless of their actual ability. Such
items are termed compromised items. Item compromise occurs when an item
performance changes over time due to its content being distributed beyond its
valid usage boundaries (Zara and Pearson, 2006). So, item compromise and
the use of pre-knowledge are closely linked, and often analyzing one means
analyzing the other.

Another reason why this work focuses only on this specific type of cheating
is that the type of test under consideration is multiple-choice tests. The items
that make up this type of test are among the easiest to memorize and perhaps
also among the easiest to share. Therefore, in multiple-choice CATs it is
expected that the use of item pre-knowledge is a prevalent form of cheating.

The urgent need to detect cheating, has resulted in the development and
implementation of quantitative methods for detecting pre-knowledge cheat-
ings. In Section 3.2, the main methods used in the literature will be briefly
described.

3.2 Solutions in the literature

Following the work of Cizek and Wollack (2016), the methods to identify
cheaters in the case of item pre-knowledge can be organized into four cate-
gories:

• Methods to identify cheaters at the individual level.

• Methods to identify items that may have been compromised.

• Methods to identify both cheaters and items that may have been com-
promised.
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• Methods to identify groups of cheaters.

As already mentioned in the Introduction and as will be discussed in the
Section 3.3, this work aims to analyze and find a solution to the problem
of cheaters during the test administration. For this reason, the last three
categories will not be explored in depth, as they encompass methods that,
by their very nature, propose post-test interventions, which use information
collected at different time points (for the identification of compromised items)
and aggregated information (for the identification of groups of cheaters) that
are not available while the test is still ongoing.

In summary, the second category includes methods that seek to under-
stand if a group of items has been compromised by looking for significant
differences over time in the number of test-takers who correctly answer those
items. An increase in this number could indicate potential item compromise.
These methods include the Simpson-Hatter (SH) method for controlling item
exposure (Sympson and Hetter, 1985), the Moving Averages method (Han,
2003) and the Log Odds Ratio Statistic method (Obregon, 2013). In the
third category, there are methods to detect groups of test-takers whose an-
swers exhibit unusual similarity. Some of these methods are the Detection
of Collusion Using Kullback-Leibler Divergence (Belov, 2012, 2013, 2016),
the Detection of Collusion Using Cluster Analysis (Wollack and Maynes,
2016), and the Detection of Collusion Using Factor Analysis (Zhang et al.,
2011). In the last category, the methods aim to simultaneously identify both
compromised items and cheaters. Some of these methods include the FLOR
Log Odds Ratio Index (McLeod, 2006) and the joint using of Differential
Person Functioning and Differential Item Functioning (O’Leary and Smith,
2016).

As for the first category, regarding the methods to identify cheaters with
pre-knowledge, some of the methods proposed in the literature are:
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• The Deterministic Gated Item Response Theory Model (DGM) (Shu
et al., 2013). This is a method used when possible compromised items
have already been identified. After checking the level of exposure of
the items, they are labeled as secure (Ik = 0) or compromised (Ik = 1).
The idea behind this method is that the probability of a correct response
to an item k depends not only on the true ability θn of a test-taker and
the psychometric parameters of the item (ψψψk = (ak, bk, ck)) but also on
whether the item is compromised (IK = 1) and the cheating ability of the
test-taker θnC (which is estimated based on the test-taker’s performance
on the items specified as compromised), as follows

P(Ynk = 1|θn,θnC,ΨΨΨk,Tn, Ik) =

= P(Ynk = 1|θn,ΨΨΨk)
1−Tn ×

× [(1− Ik)P(Ynk = 1|θn,ΨΨΨk)+ IkP(Ynk = 1|θnC,ΨΨΨk)]
Tn,

(3.1)

where P(Ynk = 1|θnC,ΨΨΨk) is the probability of answering correctly to
a compromised item using the cheating ability θnC (this probability
depends on the chosen IRT model) and Tn = 1 when θn < θnC .

In Equation (3.1), if an item is considered secure (Ik = 0), both test-
takers with pre-knowledge (Tn = 1) and those without pre-knowledge
(Tn = 0) provide answers based on their true abilities θn. However, when
an item is compromised (Ik = 1), the responses of test-takers who did
not have pre-knowledge of the item (Tn = 0) are still determined by their
true abilities, while the answers of test-takers who had pre-knowledge
of the item (Tn = 1) are based on their cheating abilities θnC .

Using MCMC estimation, the model assigns each test-taker to one of
two latent classes in each iteration. One class is for those who perform
better on the items specified as compromised by the user (Tn = 1), and
the other is for test-takers who perform equally well or better on the
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items specified as secure (Tn = 0). Over all iterations following the
burn-in phase of the MCMC run, the proportion of posterior samples in
which test-taker n is assigned to the pre-knowledge class is denoted as
T ∗

n . Test-takers with T ∗
n values exceeding a user-defined threshold (e.g.,

0.95) are classified as individuals with pre-knowledge, while those with
T ∗

n values below the threshold are categorized as test-takers without pre-
knowledge. By adjusting the user-specified threshold (e.g., ranging from
0.95 to 0.99), the model allows for a trade-off between false positives
and false negatives.

Clearly, this method requires knowing if and which items have been
compromised, and its effectiveness relies on the accuracy of this infor-
mation. As highlighted by Cizek and Wollack (2016), this exposes the
method to classification and estimation errors. Furthermore, as pointed
out by Eckerly et al. (2015) and Shu et al. (2013), even when there is no
mis-specification of the set of compromised items, the method is subject
to two sources of bias in estimating the difficulty bk of the compromised
items.

The first source of bias arises from the fact that the DGM, in estimating
the difficulty of compromised items, removes all answers provided by
those flagged as cheaters. This results in an upward bias in the items
difficulty estimates, leading to an increase in the estimates of both the
true abilities θn and the cheating abilities θnC .

The second source of bias is due to the fact that the true ability θn is
always considered to be different from the one used for responding, as
there is the possibility that the response was aided by the cheating ability
θnC (scale drift). This results in a down bias in the estimates of the
item difficulty. The magnitude of the bias depends on the percentage of
test-takers with pre-knowledge.
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• Scale Purified Deterministic Gated Item Response Theory Model (scale
purified DGM). To overcome the limitation of the DGM, Eckerly et al.
(2015) proposed a modification of the DGM, to purify the person and
item parameter estimates. This modification involves an iterative scale
purification procedure, which includes the following steps:

– Step 1: Estimate item difficulty parameters using the Rasch model
for all response data.

– Step 2: Instead of estimating item difficulty parameters in the DGM,
fix them to the parameter estimates obtained in Step 1, and then run
the DGM.

– Step 3: Remove the response data of the flagged test-takers and
re-estimate item difficulty parameters using the Rasch model.

– Step 4: Run the DGM again with the response data of all test-takers,
using the purified item difficulty estimates from Step 3.

By fixing the item difficulties of each iteration and subsequently re-
estimating them, the scale purification procedure eliminates item dif-
ficulty estimation bias caused by the omission of response data from
honest examinees and minimizes bias due to scale drift. Eckerly et al.
(2015) conducted simulations to compare the scale-purified DGM to the
original DGM. They found that false positive rates (rates of cheaters
incorrectly classified) significantly decreased and true detection rates
(rates of cheaters and non cheaters correctly classified) increased when
using the scale-purified DGM, especially in cases with a high base rate
of test-takers benefiting from item pre-knowledge.

• Person Fit Statistic for response patterns. Marianti et al. (2014) and Fox
and Marianti (2017), following the work of Levine and Rubin (1979)
and Drasgow et al. (1985), starting from the log-likelihood of a response
pattern, have defined an index called Person Fit Statistic for response



3.2 Solutions in the literature 79

pattern, ly
n, which, as the name suggests, is a statistic that pertains to each

test-taker and can be used to determine whether the test-taker’s response
pattern aligns with the general response behaviour. In concept, it is not
very different from the Tn statistic in DGM, but it only uses information
related to the response pattern.

The person fit statistic is defined as

ly
n =− lnL(θn|

−→
Yn) =

=−∑
K
k=1 [Ynk ln [P(Ynk)]+(1−Ynk) ln(1−P(Ynk))] ,

(3.2)

where

P(Ynk) = P(Ynk = 1 |θn,ΨΨΨk). (3.3)

In Equation (3.2), the person-fit statistic ly
n is used to assess the fit

of an individual test-taker’s answers to a set of items. This statistic is
constructed based on the sum of logarithms of the probabilities of correct
responses for each item. When a test-taker with low ability θn begins
to answer difficult items correctly, because they have low probability to
do that, the sum of logarithms of these low probabilities will be a small
negative value. However, when this value is inverted, it becomes a very
large positive value of the person-fit statistic.

The same goes for those who have a very high θn and start to make
mistakes even on very simple items.

In light of this behaviour, it is appropriate to define a limit value known
as the extreme value, denoted by the letter C. This value is set such that
any person-fit statistic greater than C corresponds to an aberrant pattern,
indicating a significant misfit between the test-taker’s answers and the
expected answers based on their estimated ability.
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To find this extreme value C, it is advisable to standardize the person-fit
statistic. By standardizing the statistic, it can be compared to a standard
normal distribution, allowing for the definition of the limit value C based
on defined significance level α .

The standardized statistic is

ly
sn
=

ly
n −E(ly

n)√
Var(ly

n)
, (3.4)

where:

E(ly
n) =−∑

K
k=1[P(Ynk = 1 |θn,ΨΨΨk) ln [P(Ynk = 1 |θn,ΨΨΨk)]+

+(1−P(Ynk = 1 |θn,ΨΨΨk)) ln(1−P(Ynk = 1 |θn,ΨΨΨk))],
(3.5)

and

Var(ly
n) = ∑

K
k=1[P(Ynk = 1 |θn,ΨΨΨk)(1−P(Ynk = 1 |θn,aΨΨΨk)) ×

×
(

ln
(

P(Ynk=1 |θn,ΨΨΨk)
1−P(Ynk=1 |θn,ΨΨΨk)

))2
].

(3.6)

Given a specific significance level α , the corresponding threshold value
C of the normal distribution is calculated. If ly

sn in Equation (3.4) is
greater than C, then the test-taker is classified in the group of individuals
with pre-knowledge, otherwise is classified in the group of test-takers
who have no pre-knowledge. This classification is expressed by a di-
chotomous variable Fy

n , which takes the value of 1 in the first case and 0
in the second.
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Fy
n =

1 if P
(
ly
sn(θn,ΨΨΨ)>C

)
0 if P

(
ly
sn(θn,ΨΨΨ)≤C

) (3.7)

Using MCMC estimation, the method creates the dichotomous variable
Fy

n for each test-taker n = 1, . . . ,N at each iteration. Then, as the DGM,
over all iterations following the burn-in phase of the MCMC run, the
proportion of posterior samples in which test-taker n is assigned to the
pre-knowledge class is denoted as Fy∗

n . Test-takers with Fy∗
n values ex-

ceeding a user-defined threshold (e.g., 0.95) are classified as individuals
with pre-knowledge, while those with Fy∗

n values below the threshold
are categorized as test-takers without pre-knowledge. Also in this case,
by adjusting the user-specified threshold (e.g., ranging from 0.95 to
0.99), the model allows for a trade-off between false positives and false
negatives.

As previously mentioned and as explicitly expressed in Equations (3.2,
3.4), ly

n and ly
sn are defined using only the information from the response

pattern. This may be seen by some as a limitation of the method, because
it fails to leverage potential auxiliary information that can be obtained
during the test or that was available previously (for example, the DGM
uses information regarding possible compromised items). A resolution to
this limitation is proposed by Marianti et al. (2014) and Fox and Marianti
(2017), who suggest both a method to identify potential cheaters using
only the information from RTs and a method that combines both response
pattern and RT information.

• Person-Fit Statistic for RTs (Marianti et al., 2014, Fox and Marianti,
2017). The idea behind the development of this statistic is the same
as behind the development of the ly

sn statistic. In this case as well, the
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method starts with a log-likelihood function to eventually arrive at a
standardized statistic with a known distribution. However, in this case,
the method works with the log-likelihood of RTs. The distribution
underlying RTs is the one defined by Fox and Marianti (2016) and
reported in Section (2.4.3) of this work, for which the probability formula
is provided in Equation (2.45) and with a density function equal to:

f (rtnk,ζn,φ
∗
k ,λk,σ

2
k ) =

1√
2πσ2

k lnrtnk

exp
[
− 1

2σ2
k

φ
∗
k (lnrtnk − (λk −ζn))

2
]
. (3.8)

The non-standardized statistic is defined as minus two times the log-
likelihood of RTs:

−2lnL(ζn|
−→
RTn) = ∑

K
k=1

[(
lnRTnk−µnk

σk

)2
+ ln(2πσ2

k )

]
=

= ∑
K
k=1
[
Z2

nk + ln(2πσ2
k )
]
,

(3.9)

where Znk is standard normally distributed, since it represents the stan-
dardized error of the normally distributed logarithm of RTs. For that
reason, the sum of the squares of these standardized errors is, by defi-
nition, distributed as a χ2

K , with K degrees of freedom, where K is the
number of items. So, the likelihood-based person-fit statistic for RTs, lt

n,
is defined as:

lt
n =

K

∑
k=1

Z2
nk =

K

∑
k=1

(
lnRTnk −µnk

σk

)2

, (3.10)

where
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µnk = λk −φ
∗
k ζn. (3.11)

As for ly
n, an unusually large statistic values indicate a misfit. In fact,

a test-taker that having a larger (smaller) RT than the average for their
speed (µnk), will have a large and positive (negative) (lnRTnk − µnk).
Once raised to the square, it will give a positive much larger value than
those who had a RT close to the average for their speed. This time, unlike
what happened with response patterns, it is not necessary to standardize
lt
n, because it is already chi-squared distributed. Therefore, it is possible

to know the extreme value C associated with a certain significance level
α , directly from the χ2

K distribution. Also in this case, if lt
n in Equation

(3.10) is greater than C, then the test-taker is classified in the group
of individuals with pre-knowledge, otherwise is classified in the group
of test-takers who did not have pre-knowledge. This classification is
expressed by a dichotomous variable F t

n , which takes the value of 1 in
the first case and 0 in the second, as follows

F t
n =

1 if P
(
lt
n(ζn,λλλ ,φφφ

∗,σσσ222)>C
)

0 if P
(
lt
n(ζn,λλλ ,φφφ

∗,σσσ222)≤C
) . (3.12)

Finally, as DGM and the person fit statistic for response patterns, using
MCMC estimation, a dichotomous variable F t

n is created for each test-
taker n = 1, . . . ,N. For each MCMC iteration after the burn-in phase,
the proportion of posterior samples in which test-taker n is assigned to
the pre-knowledge class is denoted as F t∗

n , and is used as an estimate of
the posterior probability of aberrant RT pattern.
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This statistic can be used either independently or jointly with the previous
statistic to identify cheaters by utilizing information from both response
patterns and RTs.

• Person fit statistic for joint response patterns and RTs. First, the two
statistics, ly

sn and lt
n , are calculated separately following the formulas

in Equation (3.4) and Equation (3.10), respectively. Then, two separate
dichotomous variables, Fy

n and F t
n , are defined. Only at this point a new

dichotomous variable, F(y, t)
n , is defined, which will have a value of 1

when both FY
n and F t

n are equal to 1, and 0 otherwise as follows

F(y, t)
n =

1 if P
(
ly
sn(θn,ΨΨΨ)>C, lt

n(ζn,λλλ ,φφφ
∗,σσσ222)>C

)
0 if 1−P

(
ly
sn(θn,ΨΨΨ)>C, lt

n(ζn,λλλ ,φφφ
∗,σσσ222)>C

) .
(3.13)

In other words, a test-taker will be classified in the group of individuals
with pre-knowledge, only if they are classified in this group by both
statistics. In all other cases, they will be classified in the group of
test-takers who did not have pre-knowledge.

Finally, also in this case, the status of F(y, t)
n can be computed at each

MCMC iteration. The average over MCMC iterations is used as an esti-
mate of the posterior probability of jointly aberrant pattern for answers
and RT.

In summary, all the methods shown for identifying test-takers with pre-
knowledge share a common approach. They aim to identify specific be-
haviours of test-takers and summarize them in a statistic that quantifies,
through a numerical value, how much this behaviour deviates from the ex-
pected. However, another common element among these approaches is their
reliance on information that is only available at the end of the test (such as
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ability or speed estimates). Therefore, as they have been presented, these
methodologies cannot be entirely used to address the problem of cheating
while the adaptive test is still ongoing.

The next Section (3.3), starts facing this limitation and present a proposal
to overcome it.

3.3 New proposal

In this section, a method is presented for the identification of test takers who,
during a CAT, are presumed to have pre-knowledge of some or all the items
in the item database.

The peculiarity of this method is that it aims at identifying such cheaters
while the test is still ongoing, so immediate intervention is possible. The idea
is to be able to neutralize the harmful effect that cheating causes, which is, as
mentioned in Section (3.1), to compromise the validity of the test scores of
those individuals. For this reason, the method proposed here is divided into
two main parts.

The first step concerns the identification of a statistic capable of identifying
cheaters with pre-knowledge directly during the test, using the partial infor-
mation that the adaptive algorithm is collecting and analyzing it in real-time.

The second step involves developing a method that can fully use this
statistic to rebalance the test for those suspected of cheating, without affecting
those who are not engaged in misconduct.

The aim of the method is to detect aberrant behaviours of the test-takers,
so it tends to focus more on test-takers’ behaviours, rather than on identifying
compromised items.

In relation to the first objective, the idea is to start with a statistic already
present in the literature and find a way to use it by leveraging the partial
information that the algorithm is collecting in real time. The new statistic
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should be calculable in real-time during the test administration, and it should
be updated as the test-taker give their answers to the new administered items.

Among the methods proposed in the literature, since the aim is to make
the most of the potential that the CAT can offer, the focus was placed on the
person fit statistic for the RTs (Marianti et al., 2014, Fox and Marianti, 2017),
described in Section (3.2) and reiterated here (Equation 3.14). Since what is
about to be proposed is an experimental method, the decision was made to
use only the information related to the RTs. This means not adopting the joint
approach with the response patterns (Section 3.2).

Therefore, the person fit statistic to be used in cheating detection is

lt
n =

K

∑
k=1

(
lnRTnk −µnk

σk

)2

∼ χ
2
K, (3.14)

where

µnk = λk −φ
∗
k ζn. (3.15)

As already mentioned, the statistic lt
n is defined as a sum of differences that

includes all the test items K. These differences are calculated with respect to
the estimate of the response speed, that is derived at the end of the test using
the Gibbs sampling algorithm (Fox et al., 2021). However, implementing this
methodology during the test is challenging due to its time-consuming nature,
thereby compromising one of the primary advantages of CAT, which relies
on the nearly instantaneous selection of the next item.

The proposal of real-time computable statistics provides for the replace-
ment of µnk and σk with parameters that can be calculated at each step m

of the test administration (where each step m consists of both the phase of
interim ability estimation and that of item selection). Under the hypothesis
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of log-normal distribution of RTs, such parameters could be the expected

response time (Fan et al., 2012, Veldkamp, 2016) and the reciprocal time-

discrimination (van der Linden, 2006), respectively:

E[RTnk|ζ̂nMLEm
] = exp

(
λk − ζ̂MLEmn +

1
2φ 2

k

)
,

σk =
1
φk
,

(3.16)

where ζ̂MLEmn is the maximum-likelihood estimator for the person speed (Fan
et al., 2012),

ζ̂nMLEm
= max

k
L(ζn) =

∑k∈Rm[φ
2
k (λk − lnrtnk)]

∑k∈Rm[φ
2
k ]

. (3.17)

As can be seen from Equation (3.17), the value of ζ̂nMLEm
can be calcu-

lated at each step m using the known parameters of the items and the RTs.
This means that the adaptive algorithm can easily compute the maximum-
likelihood estimator in real-time during the test. Once the value of ζ̂MLEmn

is calculated, obtaining the expected value E[RTnk|ζ̂nMLEm
] is straightforward

(Equation 3.16).
Therefore, by replacing µnk and σk with E[RTnk|ζ̂nMLEm

] and 1
φk

, respec-
tively, a new statistic was defined that was called the interim person fit statistic

(IPS):

lt
nm

=
m

∑
k=1

(
lnRTnk − lnE[RTnk|ζ̂nMLEm

]
1
φk

)2

∼ χ
2
m. (3.18)

The statistic in Equation (3.18) follows a χ2 distribution with m degrees
of freedom, where m indicates the current iterative step, as it represents the
standardized error of normally distributed logarithms of RT. The validity of
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this property has been tested and confirmed in Chapter (4), through Q-Q plot
analysis and the Kolmogorov-Smirnov test.

Thanks to this property, if a significance level α is chosen, the threshold
value Cm can be easily found from the χ2

m distribution. If the threshold Cm is
exceeded, the test taker is identified as a cheater. This is because the rejection
region of the null hypothesis is reached, where the null hypothesis is that
RT follows a log-normal distribution. Henceforth, individuals with an IPS
lower than Cm, falling within the non-rejection region of the null hypothesis,
will be referred to as honest respondent, while the remaining individuals, as
previously mentioned, will be classified as cheaters.

From now on, all those test-takers who have not (or are presumed not
to have) used item pre-knowledge will be referred to as honest respondents,
while those who have used item pre-knowledge will generally be called
cheaters.

Once the statistic to be used during the test is defined, a method has
also been developed to leverage lt

nm
to interrupt the malicious behaviour of

cheaters. At this point, it is important to emphasize that the underlying idea is
not to penalize the cheaters for exploiting pre-knowledge (especially because
they might have been misclassified as such), but rather to seek a method that
can simultaneously restore both the validity of the test, which cheating had
undermined, and its fairness. So, following the idea of Veldkamp (2016), after
a test taker has been flagged as a cheater, the item selection algorithm, through
the Shadow Test Approach (STA) (Section 2.5.1), will start to administer
the next items from a more secure item database, in order to reduce the
probability that the cheater has pre-knowledge on those items. In fact, the
more secure item database is an item bank that has a very low exposure rate
and will be more frequently updated.

The use of STA allows for the introduction of constraints for the Item
Selection Criterion (ISC) at each step m. In this case, the constraint pertains
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to the choice of the database from which all subsequent items that will
compose the shadow test m are selected. If lt

nm
is lower than Cm, then the

subsequent items will be selected from the main database, just as in the
absence of constraints. However, when lt

nm
is greater than Cm, indicating that

the respondent is flagged as a cheater, then all subsequent items that will
compose the shadow test m will be selected from the more secure database. It
is important to note that since the statistic can be calculated and updated at
each step m, the shadow test m+1 may differ from the previous one because
of the respondent’s answers and the updated lt

nm+1
. In fact, if at step m, lt

nm

did not have enough strength to reject the null hypothesis, it is possible that
at step m+ 1, the situation has changed, lt

nm+1
is higher than Cm+1 and the

subject has been flagged as a cheater.
The proposed procedure is then been called CHeater identification using

Interim Person fit Statistics (CHIPS).
However, a priori consideration that can be made about the CHIPS is

that the proposed lt
nm

statistic, being entirely dependent on the RTs, may
react differently depending on the amount of pre-knowledge that cheaters
have regarding the items in the main database. Indeed, having the same
properties as the lt

n statistic, it might be susceptible to fluctuations in RTs.
This would make it vulnerable to cases where cheaters consistently respond
quickly to all questions, which could happen when they have pre-knowledge
of all the items in the main database. For this reason, a modified version
was considered, the modified CHIPS (M-CHIPS), which, before starting to
calculate lt

nm
, administers some items from the more secret database to all

those who have a very high estimate of speed according to ζ̂nMLEm
.

Regarding the more secure database, there are several considerations to
be done. Firstly, the secure database should be constructed in such a way
that it closely mimics the psychometric characteristics of the items in the
main database items. This ensures that the distribution of item characteristics
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in the secure database is as similar as possible to that of the main database,
maintaining the integrity and fairness of the test. By analyzing the problem of
cheaters in multiple-choice tests, in some cases, this objective can be achieved
simply by changing some item content and the response options. Furthermore,
it is crucial to keep the secure database regularly updated to incorporate new
items and ensure the diversity and relevance of the questions. This helps
maintain the security of the test and reduces the chances for cheaters to obtain
pre-information about specific items.

All of this has a dual advantage. The first is to improve the estimation of
the cheater’s real ability. In fact, when the cheater is faced with a question
for which they have no pre-knowledge, they will answer based on their own
real ability, ensuring that the estimation of ability is no longer distorted
due to pre-knowledge. The second result is that if an honest respondent is
mistakenly classified as a cheater, they will not be penalized in any way, as
the questions they will get, will be similar to those that would have been
administered to them normally. However, it is still not desirable to have many
honest respondents wrongly classified as cheaters, as this would result in
overexposure of the secure database items, making it more susceptible to
information leakage.

In order to assess the performance of the CHIPS and M-CHIPS procedures,
a simulation study was conducted in the Chapter 4.



Chapter 4

Simulation study

In this Chapter, the CHIPS and M-CHIPS will be tested in a simulation
study, whose main characteristics are described in Section 4.1, and the results
obtained will be presented and discussed in Section 4.2.

Firstly, an introductory investigation aiming to identify the most critical
features to be replicated in the simulation was done. The goal was to simu-
late a scenario that could best reflect real-life testing situations where some
individuals engage in cheating behaviors.

Subsequently, this scenario was used for a preliminary analysis comparing
a CAT using the CHIPS approach to a CAT with the traditional IRT approach.
The comparison was based on various performance indices, such as the BIAS
and the Root Mean Square Error (RMSE) of the ability estimator, and graphs
(scatter plots). Additionally, the statistical test within the CHIPS method was
assessed by analyzing errors (Type I and Type II errors) and evaluating the
power of the test. The same analyses were also repeated for the M-CHIPS.

Based on the results of this preliminary analysis, several research questions
were formulated. To address the questions, one or more characteristics of the
preliminary scenario were modified.

Following that, secondary questions were explored using simulation anal-
yses to do in-depth analysis.
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Finally, the obtained results were discussed holistically to assess the en-
tire analysis, while also understanding its limitations and potential future
developments.

4.1 Simulation setup

First and foremost, the simulation setup that could best mirror the real-life
situation was sought. To achieve this, various essential points were analyzed
to construct the preliminary simulation. Indeed, these points constitute both
the general structure of the CAT (Chapter 2.5) and the ones required for the
implementation of the CHIPS and M-CHIPS.

• The population size. It was decided to use a population size of N = 100.
The reason behind this choice is that the estimates of abilities for the
simulated subjects are independent of each other, so there is no need
to simulate a large number of students. Additionally, 100 subjects are
more than sufficient to cover the most plausible values for both abilities
and speeds. Moreover, having a moderately sized population allows for
faster computation of the simulation, especially because replications are
needed.

• Interim and final ability estimation methods. To estimate the interim
abilities, the MAP method was employed. For the estimation of the
final ability, the MLE method was used. Both methods were utilized to
compare the classical CAT and the CAT with the CHIPS approach.

• Starting items. For each test taker, the first 5 starting items were
randomly selected.

• Item selection rule. The MIC was chosen as item selection rule.

• Stopping rule. Each test is terminated once it reaches the maximum
length of K = 35 items.
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• Main and secret database. The main database consists of 170 items
taken from the Credential Form database (available in the R package
LNIRT; Fox et al. (2021)), whose psychometric characteristics (ak, bk,
φk and λk) have been estimated using the R package LNIRT. The more
secure database is mirrored to the main one, therefore it contains items
with the same psychometric characteristics.

• Ability and speed distribution. For each student θn and ζn were
simulated from a bivariate normal distribution (van der Linden, 2007,
Fox and Marianti, 2016, Fox et al., 2021) with mean equal to zero
and negative correlation (-0.5), to adhere to the speed-accuracy trade-
off (van der Linden, 2006). The correlation value was obtained from
the joint analysis of the INVALSI data, as discussed in Section 2.4.4.
This approach ensures that the estimates closely resemble those of real
students.

• Ability and speed distribution of cheaters. Out of the 100 students,
20 were simulated as cheaters (NC = 20). Their abilities and speeds
were generated from the same distribution as the honest respondents
(NH = 80). However, a cheater is assumed to always respond correctly
to items on which they have pre-knowledge, regardless of their true
ability and the item difficulty. Moreover, cheaters respond faster than
average to items on which they have pre-knowledge.

• Simulated answers. For each item k = 1, · · · ,K and for each test taker
n = 1, · · · ,N, the answer is simulated based on the 2PL model (Equation
2.5). However, if the test taker n is a cheater with pre-knowledge on
item k, the answer will always be correct (Ynk = 1).

• Item pre-knowledge. The number of items in the main database on
which the cheaters have pre-knowledge depends on the scenario and can
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be 50%, 75% or 100% of the total. It is also assumed that cheaters have
no item pre-knowledge for the more secure database.

• Simulated RT. For each item k = 1, · · · ,K, and for each test taker
n = 1, · · · ,N the RT is simulated based on the equation

lnRTnk = λk −φ
∗
k ζn + εnk, εnk ∼ N(0,σ2

εk
). (4.1)

In this way, even the randomness in response times is taken into account.

• Cheater’s RT-divider. To simulate the speed at which cheaters respond
to items they have pre-knowledge about, a two-step process was adopted.
Firstly, the normal RT they would take based on their speed was esti-
mated. Then, this RT was divided by a predetermined value known as
the RT-divider. For instance, if a cheater with a speed of ζn should take
100 seconds to answer to a given item k under normal circumstances
(Equation 4.1), if they have pre-knowledge on that item, and with an
RT-divider set to 4, they would instead take 25 seconds to answer. This
approach maintains the randomness of response time (since is retained
the random component in Equation (4.1) while preserving its connection
to the individual’s speed. For the choice of RT-dividers, there are no
explicit references in the literature. Therefore, in order to choose values
that can best represent a plausible situation, a graphical comparison
was performed between the estimated speed distributions of 100 honest
respondents and 100 cheaters. This comparison was conducted for 9
different values of the RT-divider (ranging from 2 to 10). Each graph in
Figure 4.1 displays the density curve of the estimated speed (Equation
3.16) for both honest respondents (yellow) and cheaters (blue). Since
the modifications to the RT-divider do not affect honest respondents in
any way, the only curve that changes is that of the cheaters. In general,
as we are assuming a scenario in which cheaters behave differently
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from honest respondents, we are looking for a setup that allows for a
substantial but plausible difference.

Fig. 4.1 Expected speed comparison for honest respondents and cheaters.

For RT-divider values of 2 and 3, the two curves show little difference
and have a high level of overlap. However, starting from an RT-divider
value of 4, the overlap between the two curves reduces, and only the
last percentiles of the honest respondents’ curve lie below the cheaters’
curve. Additionally, the mean of cheaters’ RT is approximately 1, which
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is a plausible value for individuals responding very quickly to items. As
the RT-divider increases, the two curves diverge further, with decreasing
overlap, and the mean RT of cheaters increases, eventually reaching the
limit value of 2 for an RT-divider of 8. Based on these observations, it
was decided to use an RT-divider of 4, as it is the first value to show
plausible overlap and mean value.

• Significance level. A significance level α = 0.05 was chosen for the
CHIPS test.

• The number of simulation replications. To minimize the influence of
random errors on the obtained results, each simulation was replicated
100 times. The results presented in the following section are the averages
of the outcomes from these 100 repetitions.

The simulations were performed on R studio (R Core Team, 2013) using the
packages: LNIRT (Fox et al., 2021), ShadowCAT (Kroeze, 2017) and catIrt

(Nydick, 2014). These packages were combined and appropriately modified
to implement the CHIPS.

4.2 Results

Regarding the results of the preliminary analysis, the first step was to verify
whether, even within a simulated scenario, the lt

nm
statistic is distributed as a

χ2
m. Only for this verification, the population dimensionality was increased to

1000 units and, to reflect the hypothesized distribution pattern, the simulated
percentage of cheaters was reduced to 5%. The statistic was evaluated for
m = 35 items and a pre-knowledge percentage of 75%.
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Fig. 4.2 Simulated lt
nm

density distribution compared with the χ2
35 density distribution.

Figure 4.2 displays a distribution trend of the simulated data (solid blue
line) closely adhering to that of a χ2

35 (dashed red line). Only at the extreme
right tail, a deviation can be observed. This discrepancy is attributed to the fact
that this area encompasses most of the cheaters’ statistics, which are correctly
identified as such, being located to the right of the threshold C (dashed green
vertical line). In fact, from Figure 4.3, representing the distribution of the
statistic in the two groups of cheaters and honest respondents, it is evident
that honest respondents consistently follow a χ2

35 distribution (solid orange
line), while the cheaters, as desired, follow a normal distribution (solid blue
line) with a mean greater than C.
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Fig. 4.3 lt
nm

density distribution comparison for honest respondents and cheaters.

Those results are also supported by both, a Q-Q plot of the honest re-
spondents’ statistic and the χ2

35 distribution (Figure 4.4), and the one-sample
(N = 100) Kolmogorov-Smirnov test that does not reject the null hypothe-
sis that the honest respondents’ statistic belong to a χ2

35 distribution, with a
statistic D = 0.101 and a p-value = 0.27.
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Fig. 4.4 Q-Q plot of honest respondents’ lt
nm

and χ2
35 distribution.

Once verified that lt
nm

follows its theoretical distribution, the results of the
preliminary study can be analyzed.

Table 4.1 presents BIAS and RMSE of the ability estimator for both classic
IRT and CHIPS methods for each level of pre-knowledge.

As can be observed, with an increase in pre-knowledge, both the IRT and
CHIPS methods exhibit an increase in both BIAS and RMSE. Furthermore,
for any level of pre-knowledge, both indices are lower for the CHIPS method
compared to the IRT based method, indicating superior performance in ac-
curately estimating the test takers’ true abilities in the former. However, if
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the absolute values of both indices are considered, while CHIPS provides
acceptable values for the first two pre-knowledge levels, when pre-knowledge
reaches 100%, notably higher values are observed, albeit lower than those
of the IRT based method. Moreover, across all levels of pre-knowledge, the
CHIPS method outperforms the IRT-based method, demonstrating enhanced
accuracy in estimating the true abilities of test-takers. Nonetheless, at 100%
pre-knowledge, notably high values for BIAS and RMSE are observed, albeit
still lower than those of the IRT-based method. So, from the analysis of
these initial results, it appears that the CHIPS performs very well for the first
two levels of pre-knowledge, but doesn’t greatly improve the performance
compared to the IRT-based method when pre-knowledge (P-K) reaches 100%.

BIAS RMSE
P-K IRT CHIPS IRT CHIPS
50% 0.196 0.066 0.288 0.100
75% 0.398 0.115 0.968 0.185

100% 1.212 1.112 7.238 6.554
Table 4.1 BIAS and RMSE of ability for IRT and CHIPS. Preliminary analysis.

The same results are graphically presented using scatter plots depicting
the estimated against the true values of θn (Figure 4.5).
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Fig. 4.5 Scatter plot of real and estimated abilities. Preliminary analysis.

As evident, some point tend to deviate from the bisecting line as pre-
knowledge increases, aligning with the earlier discussion. Nevertheless, it is
also noticeable that a notable portion of points remains relatively clustered
near the bisecting line, regardless of the method used or the level of pre-
knowledge, with only a minor fraction scattering.

To gain a clearer understanding, honest respondents were examined sepa-
rately from cheaters, using both methods, and by evaluating BIAS (Table 4.2)
and RMSE (Table 4.3).

HONEST
RESPONDENTS

CHEATERS

P-K IRT CHIPS IRT CHIPS
50% 0.030 0.030 0.861 0.207
75% 0.030 0.030 1.869 0.452
100% 0.030 0.030 5.939 5.44

Table 4.2 BIAS of ability for cheaters and honest respondents. Preliminary analysis.
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HONEST
RESPONDENTS

CHEATERS

P-K IRT CHIPS IRT CHIPS
50% 0.088 0.088 1.088 0.149
75% 0.088 0.088 4.488 0.575
100% 0.088 0.088 35.838 32.421

Table 4.3 RMSE of ability for cheaters and honest respondents. Preliminary analysis.

In this case as well, both measures highlight the same results. Specifically,
when considering only the cheaters, CHIPS performs better than IRT, but
both BIAS and RMSE will increase with growing pre-knowledge. On the
other hand, when considering only the honest respondents, these indices not
only remain consistent across different levels but are also identical for both
methods. Clearly, the fact that the indices do not increase is due to the fact
that pre-knowledge has no influence on honest respondents. It affects only
the cheaters, as the results confirm.
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Fig. 4.6 Scatter plot of real and estimated abilities. Honest respondents and cheaters. Prelimi-
nary analysis.

Conversely, the equality in both BIAS and RMSE between the two meth-
ods demonstrates how CHIPS is able to improve the ability estimation for
cheaters while it does not affect the one for honest respondents. Additionally,
by examining the absolute values, it is evident that the values for honest
respondents are very low for both indices, while those for cheaters are higher
and increase with higher pre-knowledge. This implies that, although the
percentage of cheaters is lower compared to honest respondents (NC = 20,
NH = 80), it is the variations in the indices for cheaters that significantly im-
pact the overall indices. In fact, concerning only the cheaters, the conclusions
mirror those drawn in Table 4.1.

To better assess the impact of using CHIPS on cheaters’ ability estimation
performance, Table 4.4 displays the percentage reduction in both BIAS and
RMSE, using CHIPS instead of IRT:



104 Simulation study

∆BIASC = 100
BIASCHIPSC−BIASIRTC

BIASIRTC
,

∆RMSEC = 100
RMSECHIPSC−RMSEIRTC

RMSEIRTC
.

(4.2)

P-K ∆∆∆BBBIIIAAASSSCCC ∆∆∆RRRMMMSSSEEECCC

50% -76% -86%
75% -76% -87%

100% -8% -10%
Table 4.4 Percentage variation of cheaters’ BIAS and RMSE using CHIPS instead of IRT.
Preliminary analysis.

Once again, for the first two levels of pre-knowledge, the results are quite
promising, displaying an high reductions for both indices. However, the
reduction sharply decreases for a 100% pre-knowledge.

Furthermore, the results of the test analysis seem to lead to the same
conclusions. In fact, CHIPS can also be interpreted as a hypothesis test,
with the null hypothesis (H0) stating that lnRTnk ∼ N

(
λk −φkζn, σ2

k
)
, a test

statistic lt
nm

with a known distribution (χ2
m), and a critical value C. Moreover,

not rejecting H0 is equivalent to identifying the subject as an honest respon-
dent, while rejecting H0 is equivalent to identifying the subject as a cheater.
From this perspective, the Type I error rate is simply the proportion of times
an honest respondent is incorrectly classified as a cheater, making the true
negative rate (1 − Type I error rate) represents the proportion of times an
honest respondent is correctly classified. Consequently, the Type II error rate
represents the proportion of times a cheater is incorrectly classified as an
honest respondent, making (1 − Type II) error rate, i.e., the power of the test,
the proportion of times a cheater is correctly classified.
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Before delving into the results analysis, it is worth noting the Type I
and Type II error rates in this context. Misclassifying a cheater (Type II
error) means not modifying the test for that test taker, with the high risk
of overestimating their actual ability. On the other hand, misclassifying an
honest respondent (Type I error) means slightly exposing the more secure
database, without penalizing that test-taker in any way, as the questions
maintain the same psychometric properties. Therefore, it is preferable to keep
the Type II error rate lower, thereby increasing the power of the test, as long
as excessively high values of Type I error rate are not reached.

Tables 4.5, 4.6, 4.7 present test outcomes, for the three levels of pre-
knowledge.

P-K = 50%
Decision about HHH000

Fail to reject Reject
HHH000

is
True 0.957 0.043
False 0.043 0.957

Table 4.5 Decision table. Pre-knowledge 50%. Preliminary analysis.

P-K = 75%
Decision about HHH000

Fail to reject Reject
HHH000

is
True 0.957 0.043
False 0.040 0.960

Table 4.6 Decision table. Pre-knowledge 75%. Preliminary analysis.

P-K = 100%
Decision about HHH000

Fail to reject Reject
HHH000

is
True 0.957 0.043
False 0.894 0.107

Table 4.7 Decision table. Pre-knowledge 100%. Preliminary analysis.

Once again, the results are consistent with what has been discussed so far.
In fact, the Type I error rate is very low and very close (even slightly lower)
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to the significance level α , as indicated in the simulation setup. Such a low
value of Type I error rate explains why CHIPS is capable of not negatively
influencing the estimation of honest respondents’ abilities. In further support
of this, it can be observed that the Type I error rate (and also the true negative
rate) remains unchanged with greater pre-knowledge, just like the BIAS and
RMSE for honest respondents. The Type II error rate remains relatively
stable, but only for the first two pre-knowledge levels. In fact, it increases
substantially (0.894) for 100% pre-knowledge, mirroring the behavior of
BIAS and RMSE for cheaters. Therefore, understandably, as the Type II error
rate increases, the BIAS and RMSE for cheaters also increase, since CHIPS
fails to correctly identify the majority of cheaters.

Regarding the reasons for the increase in the Type II error rate, they can be
traced back to the formulation of the interim person fit statistic (IPS) (Equation
3.18). In fact, lt

nm
, much like lt

n, is highly dependent on the divergence between
the expected and actual RT, rather than on the absolute value of the estimated
speed. Even individuals with an extreme estimated speed, if they do not
change their speed during the test, will have a value of the statistic which does
not lead to the rejection of H0. Therefore, in the case of 100% pre-knowledge,
cheaters will consistently respond with an extreme speed, never encountering
a question for which they do not know the answer. The 10% of correctly
classified cheaters are attributed to the random component εnk, as specified in
Equation (2.34).

To overcome this limitation, CHIPS has been slightly modified. Indeed,
the algorithm has been adjusted to administer items from the more secure
database to those who have a high interim speed estimate during the initial
stages of the test. Specifically, after the algorithm administers the first 5
random items, the IPS is not calculated with m = 5, as was done for the initial
analysis, but only the MLE of speed (Equation 3.17) is computed. At this
point, for those with a value for ζ̂MLEmn greater than a certain value U , the
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subsequent 4 items (items 6-9) are selected from the more secret database.
Only after the ninth items is answered, the Modified-CHIPS (M-CHIPS)
returns to work as CHIPS. In this way, cheaters who will face a question of
which they do not know in advance the answer will tend to slow down and
the IPS will be able to better identify them.

Clearly, choosing a value of U that is too large would risk not identifying
many cheaters. Conversely, selecting a value that is too small would risk
administering secret items to many honest respondents, potentially overexpos-
ing the more secret database. To strike a balance, assuming no information
about the actual speed distributions of test takers is available, a value of
U = 0.693 was chosen. This value corresponds to the speed of those who
answer questions in half the average time needed. In fact, exp(0.694) = 2.
Hence, it represents a very high but plausible speed that only a few honest
respondents should possess. Nevertheless, it is still lower than the speed
exhibited by a cheater responding to questions they have pre-knowledge of.

To verify the effectiveness of this modification, a second simulation was
conducted using the same setup as the previous one.

Table 4.8 illustrates how the M-CHIPS not only outperforms the IRT but
also effectively overcomes the CHIPS limitation for 100% pre-knowledge.

BIAS RMSE
P-K IRT CHIPS M-CHIPS IRT CHIPS M-CHIPS
50% 0.196 0.066 0.064 0.288 0.100 0.097
75% 0.398 0.115 0.074 0.968 0.185 0.109
100% 1.212 1.112 0.155 7.238 6.554 0.463

Table 4.8 BIAS and RMSE of ability for IRT, CHIPS and M-CHIPS. Preliminary analysis.

As highlighted in Tables 4.9, 4.10 and in Figure 4.7, the improvement is
primarily due to the reduction in BIAS and RMSE for cheaters. In fact, the
M-CHIPS manages to enhance the estimation of cheaters’ abilities compared
to CHIPS, without negatively impacting honest respondents’ estimation. The
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BIAS and RMSE values for the latter remain nearly identical to those of the
IRT and CHIPS methods, across all three pre-knowledge levels.

HONEST
RESPONDENTS

CHEATERS

P-K IRT CHIPS M-CHIPS IRT CHIPS M-CHIPS
50% 0.030 0.030 0.031 0.861 0.207 0.197
75% 0.030 0.030 0.031 1.869 0.452 0.249

100% 0.030 0.030 0.031 5.939 5.44 0.653
Table 4.9 BIAS of ability for cheaters and honest respondents. IRT, CHIPS and M-CHIPS.
Preliminary analysis.

HONEST
RESPONDENTS

CHEATERS

P-K IRT CHIPS M-CHIPS IRT CHIPS M-CHIPS
50% 0.088 0.088 0.087 1.088 0.149 0.135
75% 0.088 0.088 0.087 4.488 0.575 0.195
100% 0.088 0.088 0.087 35.838 32.421 1.964

Table 4.10 RMSE of ability for cheaters and honest respondents. IRT, CHIPS and M-CHIPS.
Preliminary analysis.

P-K ∆∆∆BBBIIIAAASSSCCC ∆∆∆RRRMMMSSSEEECCC

50% 77% 88%
75% 87% 96%

100% 89% 95%
Table 4.11 Percentage variation of cheaters’ BIAS and RMSE using M-CHIPS instead of
IRT. Preliminary analysis.

Moreover, by comparing Table 4.11 with Table 4.4, it can be observed that
both the ∆BIASC and ∆RMSEC of the M-CHIPS method are not only slightly
higher than those of CHIPS for the first two pre-knowledge levels but also
exhibit a considerable difference when the last level is reached.
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Fig. 4.7 Scatter plot of real and estimated abilities. M-CHIPS.

Finally, upon closer examination of Figure 4.7, it becomes evident that
for 100% pre-knowledge, the points on the plot corresponding to cheaters
(red points), though slightly distant from the bisector of the first quadrant
(gray dashed line), seem to be aligned, except for two outliers. These outliers
correspond to cheaters who were not identified as such by the M-CHIPS.
By analyzing the BIAS and RMSE for cheaters when they are correctly or
incorrectly classified, for 100% pre-knowledge, it is revealed that the BIAS
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and RMSE for correctly classified cheaters are lower (BIAS = 0.331, RMSE
= 0.361) that ones displayed in Tables 4.9, 4.10. In fact, they are strongly
influenced by those for the incorrectly identified cheaters (BIAS = 2.266,
RMSE = 8.109), even though these instances are only few.

The results are confirmed by the test analysis. Indeed, Tables 4.12, 4.13,
4.14 not only show that the Type I error rate has consistently remained below
0.05 but also demonstrate that, for 100% pre-knowledge, the test power has
considerably increased compared to CHIPS, rising from 0.107 (Table 4.7) to
0.885 (Table 4.14).

P-K = 50%
Decision about HHH000

Fail to reject Reject
HHH000

is
True 0.957 0.043
False 0.039 0.961

Table 4.12 Decision table. M-CHIPS. Pre-knowledge 50%. Preliminary analysis.

P-K = 75%
Decision about HHH000

Fail to reject Reject
HHH000

is
True 0.957 0.043
False 0.030 0.970

Table 4.13 Decision table. M-CHIPS. Pre-knowledge 75%. Preliminary analysis.

P-K = 100%
Decision about HHH000

Fail to reject Reject
HHH000

is
True 0.957 0.043
False 0.115 0.885

Table 4.14 Decision table. M-CHIPS. Pre-knowledge 100%. Preliminary analysis.

Therefore, M-CHIPS, compared to CHIPS, manages to enhance the identi-
fication of cheaters, especially for high pre-knowledge levels, without deteri-
orating the identification of honest respondents.
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Given the achieved results, the subsequent analyses were conducted using
M-CHIPS instead of CHIPS. Furthermore, these results were utilized to
design the subsequent simulations. Indeed, the analysis of these findings
brought forth several research questions, to which answers were sought
through new simulations. The subsequent simulations were based on the
same framework outlined in Section 4.1, but one condition was manipulated
each time. The main questions are:

• What happens if α is increased or decreased?

• What happens if the correlation between θn and ζn is positive rather than
negative?

• What happens if different parameters for the ability distribution are
assumed between cheaters and honest respondents?

• What happens if, instead of fixed-length tests, variable-length tests are
used?

What happens if ααα is increased or decreased? Regarding this first
research question, the only changed setup variable was the significance level
α , which was set at 0.1 and 0.01.

HONEST
RESPONDENTS

CHEATERS

P-K ααα = 0.01 ααα = 0.05 ααα = 0.1 ααα = 0.01 ααα = 0.05 ααα = 0.1
50% 0.031 0.031 0.030 0.248 0.197 0.175
75% 0.031 0.031 0.030 0.352 0.249 0.209

100% 0.031 0.031 0.030 1.000 0.653 0.508
Table 4.15 BIAS of ability for cheaters and honest respondents. M-CHIPS.
α = (0.01, 0.05, 0.1).
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HONEST
RESPONDENTS

CHEATERS

P-K ααα = 0.01 ααα = 0.05 ααα = 0.1 ααα = 0.01 ααα = 0.05 ααα = 0.1
50% 0.088 0.087 0.087 0.171 0.135 0.125
75% 0.088 0.087 0.087 0.308 0.195 0.153

100% 0.088 0.087 0.087 2.681 1.964 1.500
Table 4.16 RMSE of ability for cheaters and honest respondents. M-CHIPS.
α = (0.01, 0.05, 0.1).

Tables 4.15, 4.16 confirm what is easily hypothesized, but they also provide
a result that might not be as expected. They show not only how an increase
in the Type I error rate, regardless of the pre-knowledge level, leads to an
increase in both BIAS and RMSE for cheaters, but also how this increase
has almost no effect on the indices of honest respondents. The first result
was anticipated, as an increase in the significance level α should facilitate the
identification of cheaters, resulting in improved estimates of their abilities. On
the other hand, an increase in α should also lead to more honest respondents
being incorrectly classified as cheaters, which might potentially worsen the
estimates. However, this does not seem to be the case. To obtain a more
comprehensive and precise view, the results of the test analysis are also
examined.

P-K = 50%
ααα = 0.01 ααα = 0.05 ααα = 0.1

Decision about HHH000 Decision about HHH000 Decision about HHH000

Fail to reject Reject Fail to reject Reject Fail to reject Reject
HHH000

is
True 0.993 0.007 0.957 0.043 0.914 0.086
False 0.063 0.937 0.039 0.961 0.032 0.968

Table 4.17 Decision table. Pre-knowledge 50%. M-CHIPS. α = (0.01, 0.05, 0.1).
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P-K = 75%
ααα = 0.01 ααα = 0.05 ααα = 0.1

Decision about HHH000 Decision about HHH000 Decision about HHH000

Fail to reject Reject Fail to reject Reject Fail to reject Reject
HHH000

is
True 0.993 0.007 0.957 0.043 0.914 0.086
False 0.047 0.953 0.030 0.970 0.021 0.979

Table 4.18 Decision table. Pre-knowledge 75%. M-CHIPS. α = (0.01, 0.05, 0.1).

P-K = 100%
ααα = 0.01 ααα = 0.05 ααα = 0.1

Decision about HHH000 Decision about HHH000 Decision about HHH000

Fail to reject Reject Fail to reject Reject Fail to reject Reject
HHH000

is
True 0.993 0.007 0.957 0.043 0.914 0.086
False 0.234 0.766 0.115 0.885 0.073 0.927

Table 4.19 Decision table. Pre-knowledge 100%. M-CHIPS. α = (0.01, 0.05, 0.1).

Tables 4.17, 4.18, 4.19 show that for any level of pre-knowledge, as the
significance level α increases, not only the Type I error rate does increase,
but its value tends to align with the chosen value of α . Thus, indeed, as α

increases, a higher percentage of honest respondents are incorrectly classified
as cheaters. However, as seen in Tables 4.15, 4.16, this increase in Type I
error rate does not lead to a worsening in the estimates of honest respondents’
abilities. This confirms the earlier anticipation about the difference between
the two error types. Specifically, an increase in the Type I error rate doesn’t
negatively impact honest respondents. Instead, it results in the overexposure
of the database itself. On the other hand, concerning the Type II error rate,
an increase in α leads to a decrease in the Type II error rate and therefore an
increase in the power of the test. In line with what was observed in Tables
4.15, 4.16, having more cheaters correctly classified, positively impacts their
ability estimates. Furthermore, this reduction in the Type II error rate is
noticeable for all three levels of pre-knowledge, albeit being modest for the
first two levels, and becoming more prominent when pre-knowledge reaches
100%. Similarly, a decrease in α appears to lead to a reduction in Type I error
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rate, resulting in a reduced exposure of the more secure database. However,
this reduction does not translate into a relevant improvement in the ability
to estimate the performance of honest respondents. Conversely, the Type
II error rate increases, resulting in a decrease in the ability to estimate the
performance of cheaters.

In summary, in response to the question "what happens if α is increased or

decreased?", it can be stated that the Type I error rate tends to align with the
chosen value of α . This variation leads to a different overexposure of items
within the more secret database, but it does not affect the quality of estimates
for honest respondents. Conversely, an increase in α leads to a decrease
in the Type II error rate, which positively affects the quality of estimates
for cheaters, especially when the pre-knowledge level is 100%. For this
reason, when choosing the value of α to use, two factors should be primarily
evaluated: how important it is not to overexpose the items in the more secret
database, and how much pre-knowledge is assumed among the cheaters for
the items in the main database. If items from the more secret database are
easily replaceable and high pre-knowledge among cheaters is presumed, then
a higher α (0.1) might be preferred. Conversely, if maintaining minimal
exposure of the more secret database is a priority and the main database is
assumed to be less compromised, a smaller α (0.01) would be a better choice.

What happens if the correlation between θn and ζn is positive rather
than negative? Regarding this next research question, α was set equal to
0.05 as in the baseline setup and the changed condition was the correlation
between θn and ζn, that from -0.5 to 0.5.

Before delving into the analysis of the results, it is important to note that
this change in correlation led to the simulation of a population with different
abilities and speeds. Therefore, it is essential to keep in mind that the values
of the indices do not refer to the same population, even though the two
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populations share many distributional characteristics despite the correlation
between the two latent traits.

HONEST
RESPONDENTS

CHEATERS

P-K
NEGATIVE

CORRELATION
POSITIVE

CORRELATION
NEGATIVE

CORRELATION
POSITIVE

CORRELATION
50% 0.031 0.031 0.197 0.209
75% 0.031 0.031 0.249 0.261

100% 0.031 0.031 0.653 0.706
Table 4.20 BIAS of ability for cheaters and honest respondents. M-CHIPS.
Positive and negative correlation.

HONEST
RESPONDENTS

CHEATERS

P-K
NEGATIVE

CORRELATION
POSITIVE

CORRELATION
NEGATIVE

CORRELATION
POSITIVE

CORRELATION
50% 0.087 0.085 0.135 0.135
75% 0.087 0.085 0.195 0.190

100% 0.087 0.085 1.964 2.641
Table 4.21 RMSE of ability for cheaters and honest respondents. M-CHIPS. Positive and
negative correlation.

The results from Tables 4.20, 4.21 suggest that the differences in estimation
accuracy, due to the change in the correlation between latent traits, are quite
minimal. There seems to be a slight improvement in the indices for honest
respondents for a positive correlation, and a slight improvement for cheaters
for a negative correlation. The only measure that appears to show high
differences between the two cases is the RMSE for a pre-knowledge of 100%.
However, the difference between the two BIAS values is not as pronounced,
so this difference could be attributed to the fact that two different populations
were simulated.
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The test analysis results from Tables 4.22, 4.23, 4.24 also show very similar
values for both the Type I error rate and the Type II error rate, regardless
of the type of correlation, and this holds true across different levels of pre-
knowledge.

One plausible explanation for these findings is that the IPS primarily
utilizes information related to response time and does not consider whether
the response is correct or not. Therefore, the change in correlation might not
have a significant impact on the cheating detection process and subsequently
on the estimation process. As a future development, modifying the IPS to
incorporate the type of response given, and then evaluating if the sign of the
correlation affects the method performance significantly, could be a potential
avenue to explore.

P-K = 50%

NEGATIVE
CORRELATION

POSITIVE
CORRELATION

Decision about HHH000 Decision about HHH000

Fail to reject Reject Fail to reject Reject
HHH000

is
True 0.957 0.043 0.963 0.037
False 0.039 0.961 0.060 0.94

Table 4.22 Decision table. Pre-knowledge 50%. M-CHIPS. Positive and negative correlation.

P-K = 75%

NEGATIVE
CORRELATION

POSITIVE
CORRELATION

Decision about HHH000 Decision about HHH000

Fail to reject Reject Fail to reject Reject
HHH000

is
True 0.957 0.043 0.963 0.037
False 0.030 0.970 0.035 0.965

Table 4.23 Decision table. Pre-knowledge 75%. M-CHIPS. Positive and negative correlation.
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P-K = 100%

NEGATIVE
CORRELATION

POSITIVE
CORRELATION

Decision about HHH000 Decision about HHH000

Fail to reject Reject Fail to reject Reject
HHH000

is
True 0.957 0.043 0.963 0.037
False 0.115 0.885 0.108 0.892

Table 4.24 Decision table. Pre-knowledge 100%. M-CHIPS. Positive and negative
correlation.

In summary, the answer to the question "what happens if the correlation be-

tween θn and ζn is positive rather than negative?" could be that the M-CHIPS
performs similarly, without undergoing significant changes. This reinforces
the notion that the IPS primary reliance on response time information might
mitigate the impact of correlation changes on the cheating detection process.

What happens if different parameters for the ability distribution are
assumed between cheaters and honest respondents? For the honest respon-
dents, the characteristics of the distribution remained unchanged, while those
of the cheaters were generated from a bivariate normal distribution where
the only difference was a mean ability of -1 instead of 0. This modification
aimed to create a realistic scenario where cheaters may be less skilled than
honest respondents and resort to cheating to compensate for this deficit.

Since the distribution of abilities for honest respondents was the same
of the baseline setup, Table 4.25 displays the BIAS and RMSE values for
cheaters only, with average abilities of 0 and -1, respectively. This setup
allows for a direct comparison of the estimation performance under these
different conditions.
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BBBIIIAAASSSCCC RRRMMMSSSEEECCC

P-K µµµθC
=== 000 µµµθC

===−−−111 µµµθC
=== 000 µµµθC

===−−−111
50% 0.197 0.217 0.135 0.102
75% 0.249 0.291 0.195 0.172

100% 0.653 0.650 1.964 1.800
Table 4.25 BIAS and RMSE of ability for cheaters. M-CHIPS. µθC = -1; µθC = 0.

Similarly to the scenario with positive correlation, the change in setup
does not appear to have had a significant impact of the method performance.
In fact, the BIAS is slightly higher for µθC =−1 compared to µθC = 0 for the
first two levels of pre-knowledge. However, this is offset by a lower RMSE.
For a pre-knowledge level of 100%, both BIAS and RMSE are slightly lower
for µθC = −1. This suggests that even when the abilities of cheaters are
drawn from a distribution with a lower mean, the M-CHIPS method is able to
provide reasonably accurate estimates of their abilities.

Once again, the results presented are supported by the test analysis (Table
4.26), which mirrors the previous results with very similar Type II error rate
values for all three levels of pre-knowledge. Of course, the Type I error rate
remains the same since the population of honest respondents has remained
unchanged.

P-K = 50%
µµµθC

=== 000 µµµθC
===−−−111

Decision about HHH000 Decision about HHH000

Fail to reject Reject Fail to reject Reject
HHH000

is
True 0.957 0.043 0.957 0.043
False 0.039 0.961 0.043 0.957

Table 4.26 Decision table. Pre-knowledge 50%. M-CHIPS. µθC = -1; µθC = 0.
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P-K = 75%
µµµθC

=== 000 µµµθC
===−−−111

Decision about HHH000 Decision about HHH000

Fail to reject Reject Fail to reject Reject
HHH000

is
True 0.957 0.043 0.957 0.043
False 0.030 0.970 0.030 0.970

Table 4.27 Decision table. Pre-knowledge 75%. M-CHIPS. µθC = -1; µθC = 0.

P-K = 100%
µµµθC

=== 000 µµµθC
===−−−111

Decision about HHH000 Decision about HHH000

Fail to reject Reject Fail to reject Reject
HHH000

is
True 0.957 0.043 0.957 0.043
False 0.0115 0.885 0.100 0.900

Table 4.28 Decision table. Pre-knowledge 100%. M-CHIPS. µθC = -1; µθC = 0.

Certainly, before moving on to the final conclusions regarding this research
question, it is worth noting that changing the mean ability of cheaters has a
direct impact on their speed. This is because the assumption of negative cor-
relation between the two implies that cheaters, in this case, are characterized
by low abilities but high speeds. This opens up a secondary question:

What happens when µθC is decreased in the case where the correlation
between latent factors is positive instead of negative? In this case as well,
Table 4.29 presents the BIAS and RMSE for cheaters only, as no modifica-
tions were made to the distribution of honest respondents. Furthermore, the
comparison is directly proposed against the preliminary setup.
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BBBIIIAAASSSCCC RRRMMMSSSEEECCC

P-K
µµµθC

=== 000
Negative

Correlation

µµµθC
===−−−111

Positive
Correlation

µµµθC
=== 000

Negative
Correlation

µµµθC
===−−−111

Positive
Correlation

50% 0.197 0.219 0.135 0.107
75% 0.249 0.31 0.195 0.231
100% 0.653 1.021 1.964 5.369

Table 4.29 BIAS and RMSE of ability for cheaters. Positive and negative
correlation. M-CHIPS. µθC = -1; µθC = 0.

Table 4.29 shows that, for the first two levels of pre-knowledge, the M-
CHIPS performs almost similarly in both proposed scenarios, with a slightly
worse performance in the case of positive correlation and less able cheaters.
However, when pre-knowledge increases to 100%, the worsening is more
evident. To better understand the reasons behind this result, the BIAS and
RMSE for correctly and incorrectly classified cheaters were reviewed. Tables
4.30, 4.31 demonstrate that, even for the second setup, the worsening of both
indices is largely attributed to the incorrectly classified cheaters. In fact, for
the correctly classified cheaters, the values of both BIAS and RMSE in the
two setups are quite similar to each other.

µµµθC
=== 000

Negative Correlation
µµµθC

===−−−111
Positive Correlation

CORRECT
CLASSIFIED

CHEATER

INCORRECT
CLASSIFIED

CHEATER

CORRECT
CLASSIFIED

CHEATER

INCORRECT
CLASSIFIED

CHEATER
P-K 100% 0.331 2.266 0.374 3.288

Table 4.30 BIAS of ability for correct and incorrect classified cheaters.
Pre-knowledge 100%. M-CHIPS.
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µµµθC
=== 000

Negative Correlation
µµµθC

===−−−111
Positive Correlation

CORRECT
CLASSIFIED

CHEATER

INCORRECT
CLASSIFIED

CHEATER

CORRECT
CLASSIFIED

CHEATER

INCORRECT
CLASSIFIED

CHEATER
P-K 100% 0.361 8.109 0.386 17.61

Table 4.31 RMSE of ability for correct and incorrect classified cheaters.
Pre-knowledge 100%. M-CHIPS.

Finally, the test analysis also supports these findings. From Tables 4.32,
4.33, 4.34, it’s apparent that, for the first two levels of pre-knowledge, the two
scenarios share a very similar value of Type II error rate, while the difference
becomes more significant for a pre-knowledge of 100%.

P-K = 50%

µµµθC
=== 000

Negative Correlation
µµµθC

===−−−111
Positive Correlation

Decision about HHH000 Decision about HHH000

Fail to reject Reject Fail to reject Reject
HHH000

is
True 0.957 0.043 0.963 0.037
False 0.039 0.961 0.050 0.95

Table 4.32 Decision table. Pre-knowledge 50%. Positive and negative correlation. M-CHIPS.
µθC = -1; µθC = 0.

P-K = 75%

µµµθC
=== 000

Negative Correlation
µµµθC

===−−−111
Positive Correlation

Decision about HHH000 Decision about HHH000

Fail to reject Reject Fail to reject Reject
HHH000

is
True 0.957 0.043 0.963 0.037
False 0.030 0.970 0.027 0.973

Table 4.33 Decision table. Pre-knowledge 75%. M-CHIPS. Positive and negative correlation.
µθC = -1; µθC = 0.
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P-K = 100%

µµµθC
=== 000

Negative Correlation
µµµθC

===−−−111
Positive Correlation

Decision about HHH000 Decision about HHH000

Fail to reject Reject Fail to reject Reject
HHH000

is
True 0.957 0.043 0.963 0.037
False 0.115 0.885 0.133 0.867

Table 4.34 Decision table. Pre-knowledge 100%. M-CHIPS. Positive and negative correlation.
µθC = -1; µθC = 0.

A plausible explanation for these findings could be that, when there is a
positive correlation between latent factors, cheaters with lower abilities exhibit
lower speeds. For moderate to high levels of pre-knowledge (50%, 75%),
the M-CHIPS seems to perform exceptionally well, accurately identifying
cheaters almost 100% of the time. However, for pre-knowledge values of
100%, the slow speed of the cheaters keep the M-CHIPS from efficiently
identifying them. This is somewhat corroborated by Table 4.28, where it
can be observed that, conversely, when the average speed of cheaters is high
(attributed to lower ability but in the case of negative correlation), the Type
II error rate is 3% lower. Moreover, as the cheaters possess average lower
abilities, when the M-CHIPS fails to correctly identify a cheater, both the
BIAS and RMSE tend to be higher, as the disparity between the actual and
estimated values becomes greater.

In conclusion, addressing the main question "What happens if different

parameters for the ability distribution are assumed between cheaters and

honest respondents?" reveals that the M-CHIPS performs nearly the same
for moderately high pre-knowledge levels and even performs better when
pre-knowledge is at 100%. This is due to the M-CHIPS being more effective
at identifying cheaters when their response speeds are high. Consequently, if
the correlation between latent factors becomes positive, a worsening in the
capability to accurately classify cheaters is observed. This impact, however,



4.2 Results 123

is primarily seen in the ability estimates of cheaters who have not been
accurately classified.

What happens if, instead of fixed-length tests, variable-length tests
are used? To address this question, the stopping rule was modified so that
the test no longer terminated at a fixed length, but instead stopped when the
variance of the test taker’s estimate fell below a certain target value. Three
different target values were chosen (after some preliminary analysis): 0.15,
0.10, and 0.05. Furthermore, to mirror a realistic scenario, both a minimum
value of 25 and a maximum value of 45 were set for the test length.

HONEST
RESPONDENTS

CHEATERS

P-K
T.V.

=
0.15

T.V.
=

0.10

T.V.
=

0.05

T.V.
=

0.15

T.V.
=

0.10

T.V.
=

0.05
50% 0.024 0.008 0.015 0.240 0.212 0.176
75% 0.024 0.008 0.015 0.292 0.270 0.215

100% 0.024 0.008 0.015 0.684 0.656 0.596
Table 4.35 BIAS of ability for cheaters and honest respondents. M-CHIPS. Target value =
(0.15, 0.10, 0.05).

HONEST
RESPONDENTS

CHEATERS

P-K
T.V.

=
0.15

T.V.
=

0.10

T.V.
=

0.05

T.V.
=

0.15

T.V.
=

0.10

T.V.
=

0.05
50% 0.100 0.090 0.080 0.161 0.142 0.1112
75% 0.100 0.090 0.080 0.226 0.196 0.150

100% 0.100 0.090 0.080 1.894 1.858 1.786
Table 4.36 RMSE of ability for cheaters and honest respondents. M-CHIPS. Target value =
(0.15, 0.10, 0.05).
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From the analysis of Tables 4.35, 4.36, it can be observed that, regardless
of the level of pre-knowledge, a decrease in the target value leads to a slight
improvement in estimation performance. This holds true for both honest
respondents and cheaters. This result is quite promising because it aligns with
what typically happens in variable-length CAT. Therefore, M-CHIPS seems
to work well in scenarios like these. Furthermore, to corroborate this, it is
noticeable that these results tend to be very close to those of M-CHIPS at a
fixed length, as shown in Tables 4.9, 4.10, especially for cheaters.

Regarding the observed test length for the three target values, Table 4.37
presents the average test length for honest respondents and cheaters.

HONEST
RESPONDENTS

CHEATERS

P-K
T.V.

=
0.15

T.V.
=

0.10

T.V.
=

0.05

T.V.
=

0.15

T.V.
=

0.10

T.V.
=

0.05
50% 25.541 28.13 38.317 25.895 28.079 37.605
75% 25.541 28.13 38.317 26.119 28.547 38.402

100% 25.541 28.13 38.317 27.664 30.586 39.594
Table 4.37 Average test length for cheaters and honest respondents. M-CHIPS. Target value
= (0.15, 0.10, 0.05).

Firstly, it can be observed that a decrease in the target value corresponds to
an increase in the average test length, both for cheaters and honest respondents.
This results aligns with what typically happens in CAT. Furthermore, the test
length tends to increase with an increase in pre-knowledge (obviously only for
cheaters). This results in the average test length for cheaters being lower than
that of honest respondents for a pre-knowledge of 50%, while the opposite
is true for a pre-knowledge of 100%, regardless of the target value. This
outcome seems to be consistent with what has been discussed so far regarding
the M-CHIPS. In fact, pre-knowledge can also be seen as the probability that
a cheater is being administered a question to which they already know the
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answer. When this is set at 50% (so a probability of 0.5), it means that, on
average, half of the items selected from the main database are answered by
the cheater with their real ability. Therefore, those responses effectively guide
the estimation towards the true ability value. Conversely, a pre-knowledge
value of 100% means that, without a doubt, the main database questions are
not answered with the true ability, which worsens the estimation, especially
if the cheater has a low ability. As confirmed by Table 4.37, this means that,
on average, longer tests are needed.

Lastly, the test analysis has also been conducted.

P-K = 50%
Target value = 0.15 Target value = 0.10 Target value = 0.05
Decision about HHH000 Decision about HHH000 Decision about HHH000

Fail to reject Reject Fail to reject Reject Fail to reject Reject
HHH000

is
True 0.970 0.030 0.970 0.030 0.954 0.046
False 0.065 0.935 0.060 0.940 0.053 0.947

Table 4.38 Decision table. Pre-knowledge 50%. M-CHIPS. Target value = (0.15, 0.10, 0.05)

P-K = 75%
Target value = 0.15 Target value = 0.10 Target value = 0.05
Decision about HHH000 Decision about HHH000 Decision about HHH000

Fail to reject Reject Fail to reject Reject Fail to reject Reject
HHH000

is
True 0.970 0.030 0.970 0.030 0.954 0.046
False 0.041 0.959 0.035 0.965 0.031 0.969

Table 4.39 Decision table. Pre-knowledge 75%. M-CHIPS. Target value = (0.15, 0.10, 0.05)

P-K = 100%
Target value = 0.15 Target value = 0.10 Target value = 0.05
Decision about HHH000 Decision about HHH000 Decision about HHH000

Fail to reject Reject Fail to reject Reject Fail to reject Reject
HHH000

is
True 0.970 0.030 0.970 0.030 0.954 0.046
False 0.116 0.884 0.099 0.901 0.094 0.906

Table 4.40 Decision table. Pre-knowledge 100%. M-CHIPS. Target value = (0.15, 0.10, 0.05)
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From the analysis of Tables 4.38, 4.39, 4.40, it is possible to observe how,
in this case as well, the test analysis aligns and confirms what was observed
in the performance analysis. Indeed, concerning the honest respondents, the
Type I error rate maintains almost identical values for all three proposed
target values (and, of course, for all three levels of pre-knowledge). Also,
regarding the cheaters, the Type II error rate seems to maintain similar values
for all three target values, albeit showing a slight tendency to decrease as
they get smaller. This appears to hold for all three levels of pre-knowledge,
and as seen in the fixed-length case, an increase in pre-knowledge leads to a
corresponding increase in the Type II error rate, particularly when it is set at
100%.

In summary, to the question "what happens if, instead of fixed-length tests,

variable-length tests are used?" it can be answered that the M-CHIPS appears
to maintain the same good performance it exhibits in the case of fixed-length
tests. Indeed, the shadow test approach (STA), which allows applying the
same constraints at each item selection phase, regardless of the overall test
length, enables the use of the M-CHIPS method seamlessly. Furthermore, it
preserves the properties where an increase in the target value corresponds to
improved estimation performance (though not very pronounced in this case),
alongside an increase in the average test length. Therefore, much like in a
standard CAT, the choice of the target value should be weighed against the
requirements of the test administrator (a shorter test or a more precise one).



Chapter 5

Conclusions

5.1 Concluding remarks

This thesis explores the interrelation of Computerized Adaptive Testing (CAT),
Response Time (RT), and their potential in addressing cheating issues. The
study begins with an extensive literature review covering Item Response
Theory (IRT), RT, CAT, and cheating. It aims to integrate these topics through
the proposal and examination of an innovative method for identifying and
controlling cheating during CAT.

In Chapter 2, the thesis is divided into three main parts. The first part
(Section 2.1 - 2.3) introduces IRT models and their estimation methods,
serving as the foundation for the study. The second part (Section 2.4) delves
into RT, discussing its significance in educational testing and presenting
various RT distributions. The focus then shifts to specific models by van der
Linden (2006) and Fox and Marianti (2016), motivated by their influence on
the novel method proposed in this study. An application of RT models to real
data from the Italian National Institute for the Evaluation of the Education and
Training System (INVALSI) demonstrates how RT information can enhance
ability estimation. The third part (Section 2.5) introduces CAT, providing an
overview of its context and delving into its intricate structure. The discussion
focuses on Item Selection Criteria (ISC) and highlights the integration of RT
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information to enhance the phase of item selection. The chapter concludes
with an original study comparing different CAT configurations, emphasizing
CATs adaptability in handling content restrictions and adjusting test lengths.

Chapter 3 addresses cheating in educational tests, focusing on CAT. The
first part (Sections 3.1, 3.2) reviews existing literature on cheating, both in
general educational tests and specifically in CAT. The examination then nar-
rows down to cheating involving pre-knowledge of item answers. Various
methods for identifying cheaters with pre-knowledge, also incorporating RT
information, are discussed. The second part (Section 3.3) proposes a new
method for identifying cheaters during CAT, named CHeater identification us-
ing Interim Person fit Statistic (CHIPS). This method leverages response time
to define the Interim Person fit Statistic (IPS), which helps determine whether
a test-taker is a cheater. The method involves administering subsequent items
from a more secure item database to suspected cheaters, improving estimates
of their actual abilities. A modification of CHIPS, called M-CHIPS, is pre-
sented in the same section. M-CHIPS includes an additional step in which
faster test-takers are administered items from the more secure database before
the algorithm calculates the IPS.

In Chapter 4, CHIPS and M-CHIPS undergo a simulation study designed to
mimic a real-world CAT scenario with varying levels of item pre-knowledge
(Section 4.1). CHIPS is effective in identifying cheaters, but limitations arise
at 100% pre-knowledge. M-CHIPS performs better, especially for 100%
item pre-knowledge, without overexposing the more secure database. The
simulation study is modified to answer specific research questions, revealing
the flexibility of the proposed methods to various factors, including the test
length, the significance value, the correlation between speed and ability, and
the ability level of cheaters.

Despite these positive results, the method is not without limitations, which
are more related to general considerations rather than to specific evidence
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found in the simulation. Specifically, the method is conceived for binary items
and when the assumption of log normality for the RTs is fulfilled. Moreover,
the simulations were based on specific assumptions, such as cheaters having
no pre-knowledge of items in the more secure database and no knowledge
of how the identification method works. It is possible that someone might
intentionally slow down to try to deceive the method.

As a final note, the proposed method is intended to integrate other existing
solutions for cheater identification and treatment. The method itself is very
easy to collect during a computer based environment and, as shown by the
simulation results, it tends to provide good results. Clearly, this method is
based on probabilistic reasoning, so the decision to rely solely on it should be
considered carefully, especially depending on the type of test for which it is
being used. For example, if it is a high-stakes test that typically involves more
checks for cheating, then using CHIPS or M-CHIPS as a filtering method for
an additional layer of security before employing more secure methods could
be an option. Conversely, for a low-stakes test that may not involve any action
against suspected cheaters, this method could be a good option. As seen from
the simulation results, CHIPS importantly reduces uncertainties in estimating
the true abilities of cheaters without affecting those of honest respondents. In
these cases, the greatest risk is a potential overexposure of items in the more
secure database and a reduced method effectiveness, without worsening the
situation compared to not using the method.

5.2 Future developments

Regarding future developments, they are mostly linked to the aforementioned
limitations. In the context of the simulation, it would be interesting to explore
what happens to CHIPS and M-CHIPS when the RTs of test-takers do not
follow a log-normal distribution but one of the other distributions mentioned
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in Chapter 2. In essence, an increase in classification error rate is expected,
with a corresponding deterioration in estimation performance. However, the
extent of this deterioration, as well as whether it affects only cheaters or
also honest respondents, cannot be hypothesized a priori. Moreover, it is
interesting to understand if there are substantial differences depending on the
models used and even if it is possible to modify the statistic to make it more
general and adaptable to different RT models.

Additionally, investigating scenarios where cheaters have some level of
pre-knowledge about items in the more secure database or intentionally slow
down to deceive the method, could provide valuable insights. Regarding
the first aspect, it is plausible to assume that this significantly worsens the
performance of CHIPS and M-CHIPS because these methodologies rely on
administering items to cheaters on which they have no pre-knowledge, thus
making them respond based on their actual abilities. Possible solutions could
involve having multiple secret databases with different levels of security. As
for the aspect of deliberately slowing down to try to deceive the method,
although initially this might pose another significant problem, a more detailed
analysis could show otherwise. In fact, as seen in the simulation study, both
methods have the ability to react to deviations in observed response time from
the hypothesized time. This implies that in order to successfully trick the
method, a cheater must initially estimate their speed, understand the time-
intensity and time-discrimination of each item they are responding to, and
attempt to provide a credible response time based on their estimated speed.

Furthermore, the simulations proposed did not make assumptions about
unusual behaviors of honest respondents, such as fast-guessing behaviors.
which is expected to be much more common in low-stakes tests than in high-
stakes ones, given the majority of test-takers who want to exert as little effort
as possible and finish the test quickly. In essence, this is expected to result
more in an increase in the Type I error rate, and therefore, an overexposure
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of the more secret database, rather than a real decrease in the estimation
performance of the abilities of honest respondents. Nonetheless, it would
remain a serious issue to which attempt to find a solution. Therefore, a future
development could be oriented towards addressing this, perhaps by modifying
the method to leverage both RT and response pattern information.

Beyond the simulation, other developments could involve the implementa-
tion of methods capable of generating the more secure items directly during
the test, starting from items in the main database (item cloning). This would
drastically decrease the likelihood that cheaters have pre-knowledge of those
items and reduce the burden of constantly updating the more secure database.

Lastly, a crucial future development would involve applying the method to
datasets with recognized cases of cheating and also field testing the method
in real-world scenarios.
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