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Summary

Technology Computer-Aided Design (TCAD) is indicated by the In-

ternational Technology Roadmap for Semiconductors (ITRS) as one

of the enabling methodologies that can support advance of technology

progress at the remarkable pace of Moore’s Law, by reducing develop-

ment cycle times and costs in semiconductor industry. Several issues

classified by the ITRS as difficult TCAD challenges can be seen as

different implications of the same general trend, i.e. increasing prob-

lem dimensionality. In fact, technology scaling increasingly emphasizes

complexity and non-ideality of the electrical behavior of semiconductor

devices and boosts interest on alternatives to the conventional planar

MOSFET architecture. A three-dimensional representation is manda-

tory to properly describe such devices: as a result, 3D simulations be-

come a crucial need for everyday tasks. The outlined scenario highlights

the need for meshing tools able to represent complex 3D geometries in

an accurate yet efficient way, resolving all critical features of the de-

vice structure without unacceptable drawbacks in terms of grid size.

Automated gridding procedures are also desirable in process and de-

vice simulations to provide a suitable mesh adaptation to geometry or

solution changes while avoiding artifacts or spurious effects.

Predictive potentialities of TCAD also depend on its contribution to

assessment and minimization of the impact of process variations, which

get increasingly critical with device shrinking into the deca-nanometer

range. Phenomena such as line-edge roughness (LER) and random

dopant fluctuations (RD) broaden the device parameter distributions,

thus requiring statistical treatment. This results in computationally

challenging 4D problems, where the additional dimension is the size of

1
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the considered ensemble.

The aim of this thesis is to present multi-disciplinary approaches to

handle this increasing problem dimensionality in a numerical simula-

tion perspective. In particular, the topic of adaptive meshing is tackled

in a multiresolution framework which allows for an effective tracking of

physical phenomena within two- and three-dimensional domains during

quasi-stationary and transient simulations. The further dimensionality

increase due to variability in extremely scaled devices is considered with

reference to line-edge roughness and random dopant fluctuation issues.

Statistical approaches to predict the impact of variability at an afford-

able computational expense are proposed. Such techniques are then

applied to address feasibility of the FinFET architecture as an alterna-

tive to conventional CMOS technology for mainstream applications in

sub-45 nm nodes.

The thesis is organized in five parts.

• Part I is a brief introduction to the parallel evolution of technol-

ogy and TCAD simulations, where the role of computer-aided de-

sign and the increasing dimension of involved problems are high-

lighted.

• In Part II, some of the main challenges for TCAD to successfully

deal with such problems are described, after illustrating the most

common models used for semiconductor device simulation and the

increasing complexity needed to describe aggressively scaled tech-

nologies (Chapter 1). In particular, problem discretization issues

are discussed in Chapter 2, where important mesh requirements

for standard TCAD solvers are also described and conventional

error detection approaches for mesh adaptation are introduced.

The second considered TCAD challenge, i.e. variability estima-

tion, is analyzed in Chapter 3, describing causes as well as mod-

eling and characterization techniques available in literature for

LER and RD.

• Approaches proposed in this thesis for tackling the two outlined

TCAD issues are presented in Part III. The topic of adaptive
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meshing for semiconductor device simulation is addressed in Chap-

ter 4, presenting a new technique, based on mathematical tools

and algorithms from the fields of multiresolution analysis and sig-

nal processing. After providing the needed theoretical framework,

the proposed approach is first introduced within a 2D setting;

the extension to three-dimensional domains is then described,

highlighting issues and solutions connected to dimensionality in-

crease. A full integration of the developed C++ software into

conventional TCAD environments is provided. Chapter 5 de-

scribes the adopted approaches for variability estimation. Line-

edge roughness is modeled through a Monte Carlo technique: en-

sembles of microscopically different devices are generated by a

Matlab program according to a proper statistical description of

LER. Correlation analysis and other techniques to improve effi-

ciency/accuracy of mismatch evaluation are discussed.

• Part IV shows how the proposed approaches help TCAD yielding

accurate physical insight and useful predictive results when deal-

ing with multidimensional real-world applications. The Wavelet-

based meshing technique is successfully applied in Chapter 6

to automatically generate and dynamically adapt computational

grids for 2D and 3D devices including p-n diodes, MOSFET

drivers with complicated geometries and FinFETs. Combining

statistical simulations with experimental data, potentialities and

shortcomings of the latter architecture are analyzed in Chap-

ter 7. Different process options, such as resist-defined and spacer-

defined fin patterning as well as junction doping, are taken into

account to evaluate feasibility of FinFET technology for main-

stream applications (e.g. SRAM) in future generation integrated

circuits (ICs).

• Finally, conclusions and future perspectives of the work are pre-

sented in Part V.
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Riassunto della tesi

La progressiva contrazione delle dimensioni dei dispositivi a semicon-

duttore ne rende sempre più complesso e non-ideale il comportamento

elettrico, alimentando inoltre l’interesse verso architetture alternative

alla tecnologia MOSFET planare. Strumenti TCAD per la simulazio-

ne di dispositivi elettronici avanzati sono fondamentali per l’analisi e

lo sviluppo di nuove generazioni tecnologiche. D’altronde, la comples-

sità della struttura e del funzionamento di tali dispositivi determina un

progressivo aumento di dimensione dei problemi in esame, richiedendo

sempre più spesso una modellizzazione tridimensionale di applicazioni

del mondo reale. In particolare, il compromesso tra accuratezza e onere

computazionale delle simulazioni dipende fortemente dalla discretizza-

zione del dominio. Inoltre, la dimensione del problema è ulteriormen-

te aumentata dalle variazioni di processo, che diventano sempre più

critiche in dispositivi deca-nanometrici. Fenomeni come rugosità geo-

metriche (line-edge roughness, LER) e fluttuazioni casuali di drogaggio

impongono la rappresentazione del singolo dispositivo come un insieme

statistico di istanze microscopicamente differenti, dando luogo a difficili

problemi quadri-dimensionali, in cui l’ulteriore dimensione è data dalla

cardinalità dell’insieme considerato.

Questa tesi si propone di utilizzare strumenti multidisciplinari per

sviluppare approcci che permettano di gestire la crescente dimensiona-

lità dei problemi di simulazione numerica. In particolare, verranno inve-

stigati tecniche adattative per la generazione di griglie computazionali

e metodi statistici per la stima di variabilità in dispositivi avanzati.

Il primo argomento verrà affrontato proponendo un nuovo metodo

(Wavelet-based Adaptive Method, WAM) per il raffinamento adattati-

vo ed automatico della discretizzazione di domini 2D e 3D. Il software

implementato fa uso di tecniche multirisoluzione basate sulla trasfor-

mata Wavelet al fine di ottenere una stima di regolarità della soluzione.

Ciò permette di concentrare la risoluzione della griglia nelle regioni del

dispositivo dove si manifestano i fenomeni fisici rilevanti, seguendone

dinamicamente l’evoluzione al variare delle condizioni al contorno e ga-
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rantendo la qualità delle mesh prodotte. In particolare, le principali

caratteristiche di WAM possono essere riassunte come segue.

• Il software consente di sollevare l’operatore dal difficoltoso onere

di definire manualmente mesh adatte alla simulazione mediante

volumi finiti di situazioni applicative del mondo reale: l’input

richiesto è infatti una griglia uniforme e molto sparsa.

• Il carattere direzionale delle informazioni fornite dall’analisi Wa-

velet permette di raffinare in maniera anisotropica le porzioni di

dominio che richiedono una risoluzione elevata. Particolari ac-

corgimenti sono stati messi a punto per mantenere una buona

selettività dell’algoritmo anche nel caso tridimensionale, garan-

tendo cos̀ı una notevole efficienza in termini di dimensioni della

griglia.

• L’individuazione delle regioni sensibili sfrutta algoritmi di signal

processing particolarmente efficienti.

• L’adattamento dinamico consente di gestire efficacemente simu-

lazioni quasistazionarie e in regime transitorio, incluse situazio-

ni numericamente delicate come moltiplicazione a valanga dei

portatori e breakdown.

• Grazie alla natura semiregolare delle griglie generate da WAM,

è stato possibile definire una procedura di controllo della qualità

della mesh in grado di identificare e rimuovere automaticamente

configurazioni sfavorevoli per il solutore.

L’integrazione di WAM in un ambiente TCAD standard ne consen-

te l’utilizzo per la simulazione di strutture 2D e 3D. Le applicazioni

illustrate in questa tesi includono diodi, driver MOSFET con geome-

trie articolate e dispositivi FinFET. Questi esempi mostrano l’efficacia

e l’efficienza dell’algoritmo proposto rispetto a tecniche convenzionali

note in letteratura, sia in termini di costo computazionale e proprietà

di convergenza della simulazione, sia per l’accuratezza e l’assenza di

artefatti numerici nelle caratteristiche I-V prodotte.
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Il problema dell’ulteriore aumento di dimensionalità dovuto a varia-

zioni di processo è stato affrontato con riferimento a due fenomeni che

stanno acquisendo crescente importanza, quali il line-edge roughness

(LER) e le fluttuazioni casuali di drogaggio. Questa attività si inse-

risce nell’ambito di una collaborazione con il centro di ricerca IMEC

(BE), avviata durante un periodo di permanenza di sei mesi presso tale

struttura. In particolare, in questa tesi sono descritti alcuni approcci

statistici, che consentono di stimare la variabilità ad un costo com-

putazionale accettabile. Con l’ausilio di tali strumenti, viene studiato

l’impatto dei fenomeni citati su dispositivi FinFET, che costituiscono

una promettente alternativa all’architettura CMOS planare. L’impiego

di simulazioni TCAD 2D e 3D, in combinazione con dati sperimentali,

ha permesso di valutare le prestazioni di matching della tecnologia Fin-

FET, relativamente a singoli dispositivi e blocchi circuitali di base, co-

me memorie statiche (SRAM), confrontando diverse opzioni di processo

legate alla modalità di definizione della fin e ai profili di drogaggio.

In particolare, sono stati analizzati i contributi di mismatch dovuti

alle rugosità della fin, del gate superiore e di quelli laterali, valutando

la variabilità su insiemi statistici costituiti da numerose realizzazioni

microscopicamente differenti. Queste simulazioni evidenziano un for-

te impatto del line-edge roughness al nodo tecnologico LSTP-32 nm,

quando i dispositivi FinFET potrebbero cominciare ad essere impie-

gati su larga scala. Il contributo più critico risulta quello dovuto alle

rugosità della fin, definita mediante il processo di fabbricazione RDF

(resist-defined fin patterning) comunemente adottato, che non dà luogo

ad alcuna correlazione tra la forma dei due bordi. Si mostrerà, infatti,

come tali rugosità influenzino il comportamento elettrico del dispositi-

vo prevalentemente variando lo spessore medio della fin nella regione di

canale. Similmente, l’impatto delle rugosità dei gate, sebbene di entità

minore, è principalmente legato alla variazione della lunghezza media

dei rispettivi canali. Queste informazioni, risultanti da un’analisi di cor-

relazione tra variabilità geometrica ed elettrica, possono essere sfruttate

sia per ottenere stime di variabilità approssimate ad un costo computa-

zionale estremamente ridotto, sia per la definizione di modelli compatti
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utilizzabili ai livelli gerarchici superiori di simulazione TCAD. Diversi

modelli statistici sono disponibili in letteratura per la descrizione del

line-edge roughness; le simulazioni effettuate mostrano, però, come il

contributo più significativo al mismatch sia dovuto alle basse frequenze

spaziali della rugosità, ben rappresentate dal modello ad autocorrela-

zione gaussiana. Utilizzando per i parametri di questo modello i valori

tipicamente estratti da misure sperimentali, si prevede che il LER pos-

sa condizionare sensibilmente il funzionamento di celle SRAM al nodo

tecnologico esaminato. Le fluttuazioni casuali di drogaggio, simulate

mediante un approccio perturbativo, appaiono invece meno critiche in

corrispondenza dei range di concentrazioni normalmente impiegati per

la realizzazione di dispositivi FinFET.

Due possibilità sono state esplorate per minimizzare l’impatto del

fin-LER su tali dispositivi. La prima consiste nell’impiego di strutture

multi-fin: ciò ha un effetto benefico sul matching dei parametri elet-

trici, in accordo con la legge di Pelgrom. La seconda opzione consiste

nella definizione della fin mediante un processo di tipo spacer-defined :

oltre ad aumentare la densità di integrazione, tale tecnica dà luogo

ad una significativa correlazione tra i bordi della fin. Si prevede che

questo possa determinare una notevole riduzione della variabilità elet-

trica. I dati sperimentali riguardanti celle SRAM composte da FinFET

realizzati con tale tecnologia, però, rivelano, allo stato attuale, una

marcata instabilità del processo di fabbricazione, che dovrebbe dunque

essere perfezionato. I progettisti dovranno prestare, inoltre, particolare

attenzione all’ottimizzazione dei profili di drogaggio, poiché le simula-

zioni effettuate indicano un accentuarsi dei problemi di variabilità in

corrispondenza dell’aumento di concentrazione nelle estensioni e della

definizione di giunzioni il più possibile brusche.

Combinando strumenti statistici con simulazioni TCAD, il lavoro

svolto fornisce dunque indicazioni utili per lo sviluppo di applicazioni

basate sull’architettura FinFET nelle prossime generazioni tecnologi-

che.
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“Everything should be made
as simple as possible,

but not simpler.”

A. Einstein

Technology progress trends

Modern semiconductor technology has been developed after important

inventions and discoveries achieved between 1945 and 1970. Starting

from the fabrication of the first bipolar junction transistor in the late

1940s, the technology gradually improved until, in the 1960s, it reached

a sufficient level of maturity for the production of good quality gate ox-

ides. This allowed for the metal-oxide-semiconductor field effect tran-

sistor (MOSFET) to be introduced and soon inserted into monolithic

integrated circuits (ICs), thus giving birth to the CMOS technology era.

In 1965, just a few years after the fabrication of the firs IC, Gordon

Moore made his famous prediction that the number of transistors in an

integrated circuit would double every year [1]. Updated in 1975 with a

prospected density doubling rate of two years, the so-called “Moore’s

law” has been describing the evolution of the semiconductor industry

with extraordinary precision so far.

The reason for this exponential increase of chip complexity over

time mainly lies in the continuous shrinking of device geometry, known

as scaling. Since 1992, the Semiconductor Industry Association (SIA)

has been providing essential research and development guidelines on

the key needs for technology scaling to keep up with the exceptional

rate outlined by Moore’s law. Initially elaborated on a national basis,

such guidelines were periodically updated and gradually extended to in-

clude worldwide industry contributions, resulting in a document called

the “International Technology Roadmap for Semiconductors” (ITRS),

first published in 1998. The document contains a 15-year outlook on

the major trends of the semiconductor industry and provides clear re-

search targets as well as possible solutions to emerging requirements
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and issues, including forecasts on materials and software.

Role of TCAD

The progress of technology is so fast, that the underlying scientific un-

derstanding has frequently proved to be inadequate, leaving wide room

to empirical approaches. However, an accurate physical description is

essential at various stages of IC design and fabrication as well as to sup-

port innovation. In particular, computer simulations turn out to be the

only way to investigate physical phenomena which cannot be directly

studied through practical measurements. The synergistic combination

of modeling and simulation tools, known as technology computer-aided

design (TCAD), helps with the critical analysis and detailed under-

standing at various levels, including

• system and circuit design

• device engineering

• process development

• integration into manufacturing.

In fact, computer simulations allow investigating potentialities and

physical limitations of manufacturing processes as well as developing

behavioral models at the transistor and circuit level of ICs [2]. This

is essential to the development of new technology generations, charac-

terized by an increasing design complexity. Beside providing a deep

insight, especially for aggressively scaled devices, for which complex

physical phenomena and small dimensions severely limit the descriptive

capabilities of measurements, TCAD simulations exhibit a remarkable

predictive valence upon calibration to proper experimental data [3, 4].

The generation of predictive models plays a crucial role in reducing

development cycle times and costs in semiconductor industry. This

role is highlighted by the 2005 edition of the ITRS [5], where TCAD

is indicated as a crucial enabling methodology supporting technology

progress.
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However, several issues are presented in the ITRS as difficult TCAD

challenges, that can be read as different symptoms of the same general

trend, i.e. the increasing problem dimensionality. This comes as

a consequence of scaling and has a twofold implication.

On the one hand, more and more complex device modeling is needed

for computer simulations at the process and physical levels. This is due

to geometry shrinking, which enhances the importance of a number of

phenomena contributing to the device behavior; moreover, the intro-

duction of new materials and architectures increasingly complicates the

transistor structure. In addition, the difficult fabrication of very small

features sizes brings about significant parametric variations.

On the other hand, design complexity is constantly enhanced by

the increasing density of integration, which has led to a huge gap be-

tween physical simulation on the nanometer-scale and IC design on

a millimeter-scale featuring complexities up to 109 components. This

problem can only be tackled through a rigorous hierarchical approach

to TCAD (see Fig. 1), in which process and device simulations provide

informations for the development of compact models, suitable for cir-

cuit and system level analysis. These informations include in the first

place accurate SPICE-like parameters resulting from a realistic investi-

gation of the device electrical behavior. In the second place, variations

of SPICE-like parameters must be carefully estimated to achieve ac-

ceptable model predictivity, including process yield evaluation.

The outlined dimensionality increase is evident in the historical evo-

lution of TCAD, as described in the next Section.

Increasing problem dimensionality in TCAD

evolution

The first steps in computer simulations were drawn the late 1960s

and 1970s, when one-dimensional (1D) approaches were generally suf-

ficient to deal with bipolar technology and early MOSFET devices: 1D

charge transport phenomena were predominant in these large, usually

n-channel structures characterized by junction depths in the range of
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Figure 1: Hierarchical TCAD simulation flow.

fractions of micrometers and channel lengths of several micrometers.

Extrapolation of quasi-2D doping distributions from sets of 1D pro-

files helped with process design optimization, although sheet resistances

and minority carrier effects could not be predictively evaluated.

Starting from the 1980s, aggressive MOS scaling led to the very-

large and ultra-large scale integration (VLSI and ULSI) eras based on

CMOS technology. Fully-2D simulators soon became indispensable

to model increasing process complexity and coupled physical effects,

including local oxide isolation (LOCOS), dopant diffusion, subthreshold

conduction, parasitic phenomena such as latchup and punchthrough.

The ever-shrinking transistor size led in the 1990s to a growing

need for atomic-scale physics to correctly model the device behavior.

Short/narrow channel effects and, later on, quantum effects such as

gate leakage and carrier confinement required more and more sophis-

ticated transport models, often amounting to several numerically stiff

and highly non-linear coupled partial differential equations (PDEs).

In addition, physical phenomena, including multi-device interactions,
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Figure 2: Schematic representation of a FinFET device.

interconnect and substrate parasitics, reliability issues such as electro-

static discharge (ESD), started to become inherently three-dimensional

(3D).

The need for 3D simulation tools has become indispensable in the

last years, when approaching scaling limits of bulk CMOS technology

have boosted research on alternative, essentially three-dimensional ar-

chitectures, e.g. Multiple-Gate devices (MuGFETs) [6, 7]. One of such

devices is the FinFET schematically represented in Fig. 2. The silicon

fin is surrounded by two sidewall gates and optionally by a top one, thus

providing a better short-channel control. Charge transport is therefore

a real 3D phenomenon, composed of two current flows parallel to the

fin sidewalls and, optionally, an additional third one at the fin top.

The problem size in TCAD simulations is further increased by an-

other major drawback of geometry scaling, i.e. enhanced process fluctu-

ations. Although improved manufacturing tools have reduced absolute

variability, relative variability in component geometries is becoming

an increasing concern. Polysilicon/metal edge grains, photoresist edge
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roughness, gate oxide thickness and permittivity non-uniformities are

among the major sources of fluctuations. Moreover, charge transport in

nanoscale devices is influenced by random distribution of dopant atoms

in the channel. As a result, considerable fluctuations are seen in the

device behavior, broadening the electrical parameters distribution and

hence limiting IC performance. To take variability into account, each

single device has to be represented by an entire distribution of struc-

tures with random geometry and doping fluctuations. Not only a 3D

description of each device instance is mandatory in most applications,

but the full simulation space is transformed into a four-dimensional

(4D) one: the additional dimension is given by the size of the consid-

ered ensemble.

Motivations of this work

The dimensionality increase in TCAD problems and the enhanced com-

plexity of the involved physical models give rise to the fundamental

challenge of producing reasonably accurate and predictive results with

an acceptable computational effort. In this thesis, two topics are ad-

dressed, which have a key role in meeting such a challenge, namely

meshing and variability estimation.

The lowest hierarchy levels of TCAD include description of physical

characteristics and behavior of the single device. This implies solv-

ing coupled PDEs which describe the evolution of either geometry and

impurity distribution as a result of manufacturing process steps, or in-

ternal physical quantities in response to electrical boundary conditions

(BCs). Solutions to such problems can only be sought numerically;

thus, a proper discretization procedure is required. Mesh generation

is the discrete representation of the considered domain: this operation

has a crucial impact on convergence, accuracy and efficiency of the sim-

ulation. However, meshing “has become a major issue because device

architectures are now essentially three-dimensional” (ITRS 2005 [5]),

as also highlighted in the previous Section. Therefore, automatic grid

generation and adaptation are highly desirable, both for improving the



17

Chip−level analysis

Compact models

Characterize device/process

Simulate process variationsSimulate complex devices

Extract parameters

Handle 3D (meshing) Handle 4D (variability)

Extract parameter fluctuations

Figure 3: Handling 3D and 4D TCAD simulations enables circuit and
system level analysis.

trade-off between computational complexity and solution accuracy, and

for relieving TCAD users from a difficult and burdensome task. This

motivates the investigation of adaptive meshing techniques for semi-

conductor device simulation.

In addition to increasing complexity of the device structure and

behavior, dimension shrinking collides with the intrinsic discreteness of

charge and matter and with difficulties and tolerances in the fabrication

process. Random dopant fluctuations and line-edge roughness are two

sources of major concern for future technology nodes. Techniques for

evaluating variability at an affordable computational cost are sought,

which sets the stage for the second analyzed topic.

Approaches described in this thesis can boost feasibility of challeng-

ing TCAD simulations and help with characterizing new processes and

devices, such as FinFETs. As described in Fig. 3, this allows developing

suitable circuit mismatch models, which can be used in predictive sim-

ulations of circuit and system-level performance of new technologies.
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Problem setting -
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“That which is static and repetitive is boring.
That which is dynamic and random is confusing.

In between lies art.”

J. A. Locke

In this Part, the topic of semiconductor device simulation is introduced,

describing modeling and numerical aspects (Chapter 1). Issues related

to the discretization of the simulation domain are highlighted, which

result in stringent mesh requirements. Consequent difficulties in the

mesh generation task represent a challenging TCAD “roadblock” that

calls for automatic and adaptive techniques, as discussed in Chapter 2.

The main existing approaches in this context are reviewed, which sets

the stage for the Wavelet-based adaptive method described in Part III,

Chapter 4.

Moreover, the background of parameter variations is outlined in

Chapter 3, with particular reference to the impact on circuit mismatch.

Line-edge roughness (LER) and random dopant fluctuations (RD) are

presented as two major sources of short-range variability in aggressively

scaled technologies. Predicting the impact of such effects on device and

circuit matching performance is the second TCAD “roadblock” which

will be addressed in the thesis, starting from the statistical simulation

approach described in Part III, Chapter 5.
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Chapter 1

Semiconductor device models

The behavior of real semiconductor devices can be described by partial

differential equations which model electrostatic and charge transport

phenomena. The simplest PDE system is the drift-diffusion model

(DD), widely used in the simulation of conventional devices. How-

ever, aggressively scaled and non-conventional transistor structures are

poorly described by this model. For example, carrier transport in such

devices is strongly conditioned by thermal phenomena, especially in the

saturation regime. A more sophisticated physical description which in-

cludes similar effects accounting for energy transport of the carriers is

provided by the hydrodynamic model (HD). Both DD and HD are de-

rived from a classical representation of the device behavior, but carrier

confinement and tunneling phenomena in nanoscale structures can only

be accounted for by quantum mechanics.

The quick panoramic provided in this Chapter aims at introducing

those models that will be used in device simulations presented in this

thesis. The increasing complexity due to technology scaling will be

highlighted. An explanation of the adopted symbology in provided in

the List of Symbols.

1.1 Drift-diffusion model

In this model, the Poisson equation, which describes the behavior of the

electrostatic potential ψ, is directly coupled to the continuity equations

23
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for electrons and holes and to the expression of current densities ~Jn,
~Jp as the sum of a drift term, associated to the electric field, and a

diffusive one due to concentration gradients:

∇ · (ε∇ψ) = q(n− p− C) (1.1)

∇ · ~Jn − q
∂n

∂t
= q ·R(ψ, n, p) (1.2)

∇ · ~Jp + q
∂p

∂t
= −q ·R(ψ, n, p) (1.3)

~Jn = −q · (µn · n∇ψ −Dn∇n) (1.4)

~Jp = −q · (µp · p∇ψ + Dp∇p) (1.5)

The thermal diffusion coefficients in (1.4) and (1.5) are given by Ein-

stein’s relations:

Dn =
kBT

q
µn , Dp =

kBT

q
µp (1.6)

The system unknowns are ψ, n and p, even if different rearrangements

of the equations were presented (see [8] for a review on this topic).

In (1.2) and (1.3), the terms containing time derivatives vanish under

quasi-stationary conditions.

1.1.1 Generation/recombination and mobility mod-
els

These equations must be combined with suitable models for generation

and recombination phenomena as well as carrier mobility.

• Recombination

Contributions to R(ψ, n, p) due to carrier interaction with the

lattice are normally modeled through the Shockley-Read-Hall re-

combination rate:

RSRH =
n · p− n2

ieff

τp · (n + n1) + τn · (p + p1)
(1.7)

where n1 and p1 are approximately equal to the effective intrinsic

density if the defect energy level is close to the intrinsic level.

nieff is also influenced by band gap narrowing effects.
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• Avalanche generation

Strong electric fields in wide space charge regions give rise to im-

pact ionization phenomena, which can lead to device breakdown.

In such conditions, an avalanche generation rate

Gimp = αnnvn + αppvp (1.8)

contributes to the term R(ψ, n, p) in (1.2) and (1.3). Several

models are available for the ionization coefficients αn,p (see [9]);

one of the most commonly used is the Van Overstraeten - de Man

model.

• Mobility models

The main reason why such a simple scheme as the DD is still

widely applied in device simulation is because it can be flexibly

adapted to the considered problem through mobility calibration.

A large variety of models have been developed, which describe

mobility dependency on material properties and operating condi-

tions. Different mobility contributions can be combined according

to Mathiessen’s rule:
1

µ
=

∑

i

1

µi

(1.9)

Here, three models are reported, which have been used in device

simulations described in Part IV. The reader is referred to [9] for

a detailed explanation of model parameters.

– The Masetti model [10] accounts for doping dependence of

mobility, describing degradation effects due to impurity scat-

tering:

µmas = µmin1 · e−
Pc
Ni +

µconst − µmin2

1 +
(

Ni

Cr

)α − µ1

1 +
(

Cs

Ni

)β (1.10)

– the Lombardi model [11] describes surface contributions to

mobility as affected by acoustic phonon scattering (µac) and

surface roughness (µsr):

µac =
B

Ft

+
C ·

(
Ni

N0

)λ

F
1
3

t ·
(

T
T0

)k (1.11)
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µsr =




(
Ft

Fref

)A∗

δ
+

F 3
t

η




−1

(1.12)

where Ft is the transversal electric field. These contributions

are combined with the bulk mobility according to Math-

iessen’s rule.

– High field mobility degradation due to carrier velocity satu-

ration effects is introduced by the Canali model [12] :

µcan(F ) =
µlow

(
1 +

(
µlow·F

vsat

)β
) 1

β

(1.13)

where the exponent β and the saturation velocity vsat are

temperature-dependent

β = β0

(
T

T0

)βexp

(1.14)

vsat = vsat,0

(
T0

T

)vsat,exp

(1.15)

µlow is the low field mobility, influenced by previously de-

scribed contributions. The driving force F can be taken as

the component of the electric field parallel to the current

flow or the gradient of electron/hole quasi-Fermi potentials.

1.1.2 Boundary conditions

Boundary conditions are required to provide unicity to the solution of

the PDE system. In particular, Dirichlet BCs are applied at ohmic con-

tacts and homogeneous Neumann conditions at isolating boundaries.

• Dirichlet boundary conditions

The contact potential ψc for ideal ohmic contacts is calculated as:

ψc = ψd +
kBT

q
· asinh

(
C

2nieff

)
(1.16)

where ψd is the applied external potential. Dirichlet conditions for

electrons and holes are obtained by considering vanishing space
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charge and thermal equilibrium at ohmic contacts, which leads

to:

n =

√
C2 + 4 · n2

ieff + C

2
(1.17)

p =

√
C2 + 4 · n2

ieff − C

2
(1.18)

• Neumann boundary conditions

Homogeneous Neumann conditions for potential, electrons and

holes, respectively, are expressed as follows:

∂ψ

∂~n
= 0 (1.19)

~Jn · ~n = 0 (1.20)

~Jp · ~n = 0 (1.21)

Here, ~n denotes the unit vector normal to the considered domain

boundary.

• Interface boundary conditions

Application of Gauss’s law at interfaces between different mate-

rials leads to the following conditions:

ε1 · ∂ψ

∂~n

∣∣∣∣∣
1

− ε2 · ∂ψ

∂~n

∣∣∣∣∣
2

= Qint (1.22)

where the subscripts 1 and 2 refer to the two considered materials

and Qint accounts for possible interface charges.

1.2 Hydrodynamic model

The hydrodynamic model couples the basic semiconductor equations

(Poisson equation (1.1) and continuity equations (1.2), (1.3)) with the

following energy balance equations for electrons, holes and the lattice:

∂Wn

∂t
+∇ · ~Sn = ~Jn · ∇EC +

dWn

dt

∣∣∣∣∣
coll

(1.23)
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∂Wp

∂t
+∇ · ~Sp = ~Jp · ∇EV +

dWp

dt

∣∣∣∣∣
coll

(1.24)

∂WL

∂t
+∇ · ~SL =

dWL

dt

∣∣∣∣∣
coll

(1.25)

Energy fluxes are expressed as:

~Sn = −5rn

2

[
kBTn

q
~Jn + fhf

n

(
k2

B

q
nµnTn

)
∇Tn

]
(1.26)

~Sp = −5rp

2

[
−kBTp

q
~Jp + fhf

p

(
k2

B

q
pµpTp

)
∇Tp

]
(1.27)

~SL = −κL∇T (1.28)

while energy densities are given by:

Wn = n
(

3

2
kBTn

)
(1.29)

Wp = p
(

3

2
kBTp

)
(1.30)

WL = cLT (1.31)

In the hydrodynamic case, current densities are defined as a sum of

four contributions:

~Jn = qµn

[
n∇EC + kBTn∇n + f td

n kBn∇Tn −Wn∇(ln me)
]

(1.32)

~Jp = qµp

[
p∇EV − kBTp∇p− f td

p kBp∇Tp −Wp∇(ln mh)
]

(1.33)

The first term accounts for spatial variations of electrostatic potential,

electron affinity and the band gap. The three remaining terms take into

account the contributions due to the gradient of concentrations and

carrier temperature, and the spatial variation of the effective masses,

respectively. The values of model parameters and the expressions of

collision terms (subscript coll) in the above equations can be found

in [9].

The hydrodynamic model requires the solution of three additional

PDEs, i.e. (1.23) ÷ (1.25), with respect to the DD scheme; moreover,

more complicated expressions hold for current densities. However, this

model allows for a more accurate estimation of velocity overshoot and

impact ionization effects in deep submicron (DSM) devices.
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1.3 Modeling quantum effects

In aggressively scaled devices, the wave nature of electrons and holes

can no longer be neglected. The most rigorous approach to account for

quantum effects is to couple previously described device equations with

the Schrödinger equation. Assuming a single quantization direction z,

the additional 1D PDE to be solved reads:
[
− ∂

∂z

h̄2

2mz,ν(z)

∂

∂z
+ EC(z)

]
Ψj,ν(z) = Ej,νΨj,ν(z) (1.34)

where ν labels the considered band valley and mz,ν is the correspond-

ing (position-dependent) effective mass component in the quantization

direction. Ψj,ν and Ej,ν are the j-th eigenfunction and eigenenergy

in valley ν, respectively. From the solution of equation (1.34), carrier

density is computed as:

n(z) =
kBT (z)

πh̄2

∑

j,ν

|Ψj,ν(z)|2 mxy,ν(z)e
EF (z)−Ej,ν

kBT (z) (1.35)

mxy,ν being the mass component perpendicular to the quantization di-

rection. The conduction band profile EC(z) is directly linked to the

electrostatic potential ψ provided by the Poisson equation (1.1), so a

strong coupling exists between these PDEs. Moreover, a special pur-

pose domain discretization with proper alignment to the quantization

direction is required in the region where the Schrödinger equation is

solved. Therefore, this approach is extremely expensive from the com-

putational standpoint and prone to convergence problems.

An alternative solution for including quantization effects in a clas-

sical device model is to introduce an additional potential-like quantity

Λ in the classical density formula:

n = NCe
EF−EC−Λ

kBT (1.36)

(a similar expression can be adopted for holes). Several models for Λ

have been developed. The simplest one is the van Dort quantum cor-

rection model [13], which computes Λ as a function of the electric field
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En normal to the semiconductor-insulator interface, thus accounting

for quantization in MOSFET channels:

Λ =
13

9
kfit

2e−a2(~r)

1 + e−2a2(~r)

(
ε

4kBT

)1/3

· |En − Ecrit|2/3 (1.37)

(see [9] for model parameters). This model is much simpler and more

efficient than the Schrödinger-Poisson scheme; however, it is only suited

to MOSFET simulations and it does not give the correct density dis-

tribution in the channel, although terminal characteristics are well de-

scribed.

A good compromise between the two just described approaches is

provided by the density gradient approximation (DGA) [14, 15]. This

model can be applied to several device structures and gives a reason-

able description of both terminal characteristics and internal charge

distribution, even in the presence of 2D and 3D quantization effects. In

macroscopic terms, the DGA captures the non-locality of quantum me-

chanics to lowest-order by assuming the electron gas to be energetically

sensitive to both the carrier density and its gradient. In this approach,

Λ is computed for (1.36) by solving the following PDE:

Λ = − γh̄2

12m

[
∇2 log n +

1

2
(∇ log n)2

]
= −γh̄2

6m

∇2
√

n√
n

(1.38)

where γ is a fitting parameter. Modified mobility formulas are also

available to account for tunneling through semiconductor barriers.

For the sake of completeness, another approach is worth mention-

ing, which can be considered as a quantum correction. In this model,

proposed by Ferry [16, 17], treating electrons and holes as wave packets

with a certain space extension results in the definition of a non-local

effective potential that replaces the classical one. However, the ap-

proach was proven to be equivalent to the DGA formalism by using a

first-order expansion wherever the effective potential is a slowly varying

function of position.

The outlined hierarchy of device models reflects the increasing chal-

lenge posed to TCAD by technology scaling. The discretization of both

model equations and the analyzed domain is crucial for finding accurate

numerical solutions, as described in Chapter 2.



Chapter 2

First TCAD issue: problem
discretization

Two main approaches are commonly adopted for the discretization of

PDE systems, namely the finite element method (FEM) [18] and the

finite volume method (FVM) [8]. The first scheme is based on a vari-

ational formulation of the problem through the Gauss-Green law and

the use of suitable test functions. This approach is mainly implemented

in process simulators. Instead, the device equations described in Chap-

ter 1 are discretized through the FVM in nearly all state-of-the-art

solvers. One of the main advantages of this scheme is that it imposes

the local conservation of fluxes, thus correctly modeling charge con-

servation inside the device. Prior to the discretization, each PDE is

properly normalized for numerical stability [8].

2.1 Finite volume discretization

The FVM, or box integration method (BIM), integrates the PDEs over

a set of test volumes covering the simulation domain. Device simulators

normally require that these volumes coincide with the Voronoi regions

of the points [19] (see Fig. 2.1). First, the Gaussian theorem is applied,

resulting in equations with the form:

∇ · ~J + R = 0 (2.1)

31
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Figure 2.1: Voronoi tessellation of the domain. Ωi is the Voronoi cell
associated to mesh node Vi. lij is the length of the mesh edge connecting
nodes Vi and Vj, while dij is the length of the Voronoi cell side normal
to this edge (in 3D domains, this side is a facet whose area is Dij).

Each PDE is then discretized to a first-order approximation:

∑

j 6=i

κij · Jij + µ(Ωi) ·Ri = 0 (2.2)

In (2.2), κij and µ(Ωi) are geometry-related terms whose values are

given in Table 2.1 according to the domain dimensionality. Instead,

Table 2.2 provides the expression of physical parameters Jij and Ri as

resulting from the discretization of Poisson and continuity equations

(1.1)-(1.3). The Gummel iterative method [20] is typically adopted to

solve the discretized system.
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Dimension κij µ(Ωi)

1D 1/lij box length
2D dij/lij box area
3D Dij/lij box volume

Table 2.1: Values of geometry-related terms in eq. (2.2).

Equation Jij Ri

Poisson (1.1) ε(ui − uj) −ρi

Electron c. (1.2) µn [niB(ui − uj)− njB(uj − ui)] Ri −Gi + d
dt

ni

Hole c. (1.3) µp [pjB(uj − ui)− piB(ui − uj)] Ri −Gi + d
dt

pi

Table 2.2: Expressions of physical parameters in eq. (2.2). B = x/(ex−
1) is the Bernoulli function, while u and ρ are normalized potential and
charge density, respectively.

2.2 Domain discretization

The finite volume discretization of the device equations is based on a

subdivision of the simulation domain into a set of control volumes as-

sociated to discrete grid nodes. The choice of the mesh (grid points

and connectivity), and consequently the domain tessellation, has a cru-

cial impact on convergence, accuracy and efficiency of the simulation.

However, there is no general consensus about the definition of a “high

quality” mesh. Geometrical features must certainly be taken into ac-

count both to comply with the requirements imposed by the discrete

solution scheme and to improve convergence. Nevertheless, meshes can-

not be designed only based on criteria such as aspect- or volume-ratio

of the elements, as this may lead to excessively large mesh sizes or to

degraded resolution. Instead, the properties of the problem to be solved

need to be considered as well.

2.2.1 Mesh requirements

Some key features in the framework of mesh generation for TCAD

simulation can be summarized as follows.
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• Delaunay conformity

All major device simulators based on the finite volume method

require Delaunay-conform meshes [21]. This is because the Delau-

nay triangulation corresponds to the dual graph of the Voronoi

tessellation defining control volumes. For a given set S of grid

points in Rn, the Delaunay triangulation is constructed such that

no point of S lies inside the circum-sphere of any simplex (i.e.

triangle in 2D, tetrahedron in 3D). Each cell of the dual Voronoi

diagram is the region of all points that are closer to the associated

grid node than to any other point in S. 2D Delaunay triangu-

lations maximize the minimum angle of all mesh elements. Fur-

thermore, boundary conformity is typically required in 3D, i.e.

surface mesh elements should also be Delaunay.

• Geometrical quality

Several quality indicators have been proposed (see for example [21,

22]), most of them related to properties of the single element,

such as aspect-ratio measures, which estimate how close each cell

is to a regular triangle (in 2D) or tetrahedron (in 3D). These cri-

teria are particularly suited to finite element applications such

as process simulations: FEM-based solvers are influenced by the

shape of mesh elements, which determine the properties of the

resulting discretization matrix. Instead, clear quality criteria for

finite volume meshes are still lacking. However, it is well known

that obtuse elements can affect FVM convergence. An element

is obtuse when it does not contain the associated Voronoi center.

Since the method is based on the computation of fluxes, obtuse

elements are undesired because the flux between certain nodes is

discretized using the area of Voronoi cell faces which are far from

the mesh line connecting the two points. A 2D example is shown

in Fig. 2.2. Non-obtuse triangulations can be guaranteed in two

dimensions [23], while such a guarantee remains an open problem

in 3D. Delaunay property and boundary conformity are the only

clear requirements for 3D meshes.
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Figure 2.2: Example of adverse 2D Voronoi boxes due to obtuse angles.
Fluxes between nodes V1 an V3 are discretized using area A13, which is
far from the mesh line V1 − V3.

• Smoothness

In addition to the single element shape, global smoothness of the

mesh is also important because rapid volume changes between

adjacent cells can translate into large truncation errors.

• Structural alignment

Structural alignment of the grid is essential to accuracy of charge

transport computation [24]: since contact currents represent one

of the most important informations provided by the simulation,

mesh elements should be properly flux-aligned for a correct inte-

gration of the PDE system.

• Non-uniformity

Designing uniform meshes would be the simplest solution for do-

main discretization and it would comply with most of the previ-
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ously mentioned requirements. However, an optimal representa-

tion of the simulation domain must be sought both in terms of

solution accuracy and computational efficiency. Semiconductor

device structures generally include very thin layers; layer behav-

iors are also typical of the solutions produced by physical simula-

tions, due to the singularly perturbed character of the considered

PDEs [25]. Grid points should be placed in such a way as to re-

solve all geometric irregularities and small spatial features as well

as accurately approximate any physical quantity of interest, e.g.

potential and concentrations. A uniform approach would lead to

overwhelmingly large grid sizes. Therefore, suitable non-uniform

meshes are required.

• Anisotropy

The strong directional dependency of the problems under inves-

tigation calls for anisotropic mesh densities. Such a need has

become even more crucial nowadays since new device architec-

tures are essentially three-dimensional. This is in contrast with

typical criteria on geometrical quality, thus demanding a diffi-

cult trade-off between simulation stability, solution accuracy and

computational effort. Although undesired in FEM applications,

high aspect-ratio elements that are correctly flux-aligned have

been found to provide excellent results in FVM simulations, while

keeping the mesh size as small as possible.

• Unstructured meshes

Process simulations usually involve non-planar surfaces and in-

terfaces [26]. The resulting irregular geometries are often the

input structures for device simulations. Unstructured meshes are

needed to properly handle such situations.

• Adaptivity

TCAD simulations usually involve dynamically changing condi-

tions and hence evolving solutions, including moving geometries

and variation of internal quantities. Tackling this problem through

a static approach is highly unfavorable. In fact, the operator
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should be able to predict interesting evolutions and generate a

fixed mesh with the proper resolution in all domain regions where

important phenomena could take place during the simulation. Be-

side requiring extraordinary expertise, such a task would result

in large mesh sizes and hence high computational cost. The de-

sirable alternative is a dynamical approach, meaning adaptive

meshing of solution changes.

• Automation

It follows from the considerations reported above that a properly-

designed mesh requires a deep insight of:

– the peculiar geometrical features of the structure under in-

vestigation;

– the distribution of internal physical quantities of interest;

– the bounds on mesh quality for solver stability;

– the link between resolution in critical domain areas and sim-

ulation accuracy;

– the bounds on computational resources.

Such a complex set of conflicting requirements makes mesh gen-

eration an extremely challenging task, generally resulting in a

time-consuming trial-and-error loop accomplished by highly ex-

perienced users. Due to the increasing complexity of 3D de-

vice structures and physics involved, hand-generation of compu-

tational meshes is becoming totally impracticable. Therefore, it

is clear how automatic meshing tools represent a key need in a

modern TCAD environment. On the other hand, the outlined

scenario also provides some hints on the difficulties contrasting

the development of such tools.

2.3 Adaptive meshing

The finite element method is the most suitable technique to deal with

moving boundaries as typical of process simulations. Grid adaptation
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in the FEM arena is broadly studied in literature and quite well assessed

(see for example [27, 28]). The development of adaptive techniques for

device simulations through finite volumes has proven to be relatively

more challenging, mainly due to difficulties emerged in:

1. identifying the most suitable physical quantities to be surveyed;

2. preventing grid changes from producing numerical artifacts and

spurious solutions in terminal characteristics;

3. ensuring stability of the FVM.

2.3.1 Review of the most common approaches to
error detection

A glimpse at the state of the art concerning the first of the difficulties

mentioned above is provided in this Section. The quantities used to de-

tect domain regions to be refined can be roughly distinguished into two

groups: error indicators and error estimators. Error indicators inform

on the location of the discretization error. They are generally con-

nected to gradients, curvatures or regularity properties of the physical

solution. Usually, the magnitude of error indicators does not provide

a direct estimation of the magnitude of the solution error. Instead,

the magnitude of error estimators can be used to bind the global ac-

curacy of the solution, therefore providing a stopping criterion for the

refinement. It is worth to notice that in order to be useful for mesh

adaptation, error estimators should also be able to indicate the local-

ization of the error [29], thus blurring the distinction with the former

group.

Error indicators/estimators can be either a-priori or a-posteriori ;

due to the adaptivity requirement described above, just a-posteriori

approaches will be considered in this thesis. Here, by “a-posteriori”

it is meant that a preliminary solution must be computed first, which

is then analyzed to locate domain areas requiring high spatial reso-

lution. In contrast, “a-priori” approaches to mesh refinement would
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Explicit Implicit

Criteria for mesh re-
finement

Based on properties of
the solution, measuring
jumps of relevant quan-
tities

Based on the solution of
auxiliary problems

Error estimators LTE (2.5)-(2.6) esti-
mated through “analyt-
ical” formulas [8, 30, 31]

Richardson extrapolat-
ion error (2.3) [31]

ZZ (2.12) [32] Bank and Weiser for-
malism (2.4) [31]

L2 norm of flux density
error vector (2.9) [33]

Residual based (dis-
continuity of gradients
across element edges)
(2.11) [32]

Error indicators Residual local dissipa-
tion rate error (2.10)
[25]

Dissipation rate error
estimation (2.10) based
on local Dirichlet prob-
lems [25]

Local curvature of elec-
trostatic or quasi Fermi
potentials (2.7) [33]

Hessian matrix of ap-
proximation error (2.13)
[34]

Non-uniformity of cur-
rent density (2.8) [33]

Table 2.3: Criteria for mesh refinement adopted in semiconductor de-
vice simulation.

exploit informations that are available before any simulation is per-

formed. Such informations would then imply an a-priori (and hence

strictly problem-dependent) knowledge of some solution properties. A

further distinction can be made between explicit or implicit error lo-

calization techniques: the explicit ones do not require the solution of

additional problems as opposed to implicit localizations, which are con-

sequently more onerous. In Table 2.3 a classification of mesh refinement

criteria for device simulation is proposed, based on the above distinc-

tions.

Several criteria listed in Table 2.3 have been reviewed in [31], where



40 First TCAD issue: problem discretization

the Richardson extrapolation error

ef (xi, yi) = fh/2(xi, yi)− fh(xi, yi) (2.3)

calculated comparing the current solution fh with one computed on a

uniformly refined grid (fh/2), is indicated as one of the most accurate

implicit estimators, although extremely costly. A still accurate but

more efficient alternative is shown to be the implicit estimator based on

the formalism proposed by Bank and Weiser (BW): in this approach,

the error e =
∑

i αivi for each element τ is computed through a FEM

formulation with higher order basis functions vi. The formulation for

the 2D Poisson equation has the form:

a(e, vi)τ = (−ρ, vi)τ + 〈S, vi〉ΩB∩τ + γ〈J, vi〉Ωl∩τ (2.4)

where the first two terms are associated to the integration of the left

and right hand side of the Poisson equation, respectively, while the

remaining two integrals enforce Neumann boundary conditions on each

sub-problem. In particular, 〈S, vi〉ΩB∩τ is associated to surface charges

on the device boundary ΩB and γ〈J, vi〉Ωl∩τ accounts for jumps in the

electric flux along element edges which are internal to the problem

domain. Applying the BW estimator to continuity or energy balance

equations is more challenging.

Explicit error estimators are also considered in [31], such as the one

based on the computation of local truncation errors (LTEs) due

to discretization schemes. Local truncation errors are also used in [8].

In [30], LTEs associated to the drift-diffusion scheme are re-derived

more accurately, resulting in:

LTEψ =
Jn

8qµnE2
h2∂2ψ

∂x2
(2.5)

LTEn = (h2 − k2)
∂2Jnx

∂x2
+ (p2 − r2)

∂2Jny

∂y2

+(h3 + k3)
∂3Jnx

∂x3
+ (p3 + r3)

∂3Jny

∂y3
(2.6)

for equations (1.1) and (1.2), respectively. h, k, p and r are mesh

spacings as in Fig. 2.3. A drawback of LTEs is that they are strictly
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Figure 2.3: Reference mesh structure for the computation of LTEs (2.5),
(2.6).

dependent on the particular model used for the simulation.

In [33] other explicit error indicators are compared, based on mea-

suring the local curvature of electrostatic potential

β =
ψ′′√

1 + (ψ′)2

(dx)2

2
(2.7)

(or quasi Fermi potentials) or local variations in the current den-

sity

γr =
|J1 − J2|

max(|J1|, |J2|) (2.8)

where J1 and J2 are the current densities along two parallel edges of a

cell in a box grid discretization. The error estimator already proposed

in [28], based on the calculation of flux densities F (electric field

or current density) is also considered and found to be superior to the

previous two. This estimator is computed as

ηi =

√∫

τ
|F − F ∗|2dΩ (2.9)

where F ∗ is the expected “true” flux density, approximated by piecewise

linear interpolation on each element τ .
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In [25] the authors propose an adaptation scheme driven explicitly or

implicitly by the variations of a physical quantity known as dissipation

rate D of the system. This is a weighted sum of the device terminal

currents, derived for the drift-diffusion model:

D =
∫

Ω
µnn|∇φn|2dΩ +

∫

Ω
µpp|∇φp|2dΩ

+kBT
∫

Ω
R ln

(
n · p

nieff · pieff

)
dΩ (2.10)

In the implicit approach, the dissipation rate associated to the com-

puted solution at each element is compared to an estimation obtained

by solving Dirichlet problems on locally refined grids. The explicit al-

ternative consists in measuring jumps of D across element boundaries

and is seen to provide similar accuracy at a lower computational cost.

Two explicit error estimators are considered in [32]. The first one

is a residual based estimator, formerly proposed in [35]:

ηk = hk


 ∑

Ek,int

‖JE,n(uh)‖2
E +

∑

Ek

‖JE,t(uh)‖2
E


 (2.11)

It derives from the observation that a piecewise affine interpolation

of the solution function fulfills the Laplace equation in the interior

of mesh elements, while local errors arise from discontinuities of the

tangential (JE,t) and normal (JE,n) components of the function gradient

at element boundaries Ek. In (2.11), Ek,int are interior mesh edges and

hk is a characteristic length of the k-th element. The second considered

quantity is the Zienkiewicz-Zhu (ZZ) error estimator, which measures

the difference between the piecewise constant numerical solution and a

smoothed version obtained through a piecewise affine interpolation on

each element τk:

ZZk =
∑

i

U2
i +

∑

i 6=j

UiUj (2.12)

The proposed adaption strategies are validated for Laplace equations

only: applicability to more sophisticated problems is not discussed.

Finally, in [34] the adaptation is driven by the Hessian matrix

of an error eh computed hierarchically enriching the finite element
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approximation space Vih to which the solution uih of

a(uih, vh) = 〈f, vh〉 , ∀vh ∈ Vih ⊂ V (2.13)

belongs. Though applied to device simulations, this implicit approach

is only suitable for FEM solvers.

2.3.2 Refinement-Solver interaction

Once regions with a poor resolution have been identified through some

error indicator/estimator, two problems arise: (a) how to perform the

refinement and to re-mesh the domain, and (b) how to redistribute the

solution on the newly inserted nodes.

Since most of the detection approaches mentioned above are element-

based, the refinement is usually performed element-wise in such a way

as to equidistribute local errors over the domain. An efficient refine-

ment should follow the anisotropic features of the solution; however,

directional informations are generally not provided by the discussed

error estimators and indicators. To overcome this drawback, some au-

thors [29, 31, 36] introduce auxiliary sources of directional informa-

tions, although the computation of these new quantities implies addi-

tional overhead; moreover, the effectiveness of directing the refinement

through a quantity that may be poorly connected with the discretiza-

tion error is doubtful. The alternative is to refine each selected element

isotropically, with clear drawbacks in terms of mesh size. It is also worth

to notice that the equidistribution of local error estimators seems to be

inappropriate in semiconductor device problems [37, 38], because of

the layer behavior of the solution. In fact, layer regions will show high

discretization errors up to extremely small grid resolutions: trying to

reduce them by redistribution over the whole domain is likely to result

in highly redundant refinements. Domain re-meshing is also crucial: in

particular, it should conform to features described in Sec. 2.2.

As for problem (b), the solution can be redistributed either through

a naive linear interpolation (which is quite “dangerous” as interpolation

errors will be relevant in the most critical domain regions) or by means

of more onerous procedures, such as solution recomputation on the
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new nodes with local Dirichlet problems or homotopy techniques [25].

A rule of thumb for an effective combination of refinement and solution

recomputation is not to insert or move too many nodes (maximum 10%

new nodes [8]) at each adaptation step. This approach allows to sim-

plify the remeshing procedure as the Delaunization can be recomputed

only locally, and obviously reduces the number of interpolations.

Choices to cope with topics (a) and (b) above are particularly rele-

vant to stability of the FVM and to smoothness of the curves produced

by quasi-stationary or time-varying simulations because of the coupling

between the FV solver and the adaptation process.



Chapter 3

Second TCAD issue:
variability estimation

Designing a proper mesh according to the considerations illustrated in

Chapter 2 is instrumental to any TCAD simulation. Today, one of the

fundamental roles of computer-aided simulations is to bridge the gap

between process development and circuit design by estimating the ef-

fects of statistical variations on yield and electrical performance. These

statistical variations are inherent to the IC manufacturing process and

are usually classified into global and local components.

The first group includes all parameter fluctuations occurring be-

tween different dice (inter-die), be them placed on the same wafer or

on different wafers, belonging to the same lot or to different lots. Global

variations are caused by process gradients across the wafer/batch due to

equipment variations and spatial drifts, such as non-idealities in photo-

masks and optical lenses, or non-uniformities of the photoresist and

oxide thickness. This results in systematic parameter fluctuations for

identically designed groups of devices and hence compensation tech-

niques can be applied to minimize their impact on electrical perfor-

mance.

Variations affecting two components within the same chip (intra-

die) belong to the second group. Historically, local variability has been

small with respect to the global component; however, in modern tech-

nologies this is no longer the case because of geometry scaling [39].

45
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In fact, local fluctuations are related to the discrete nature of charge

and matter and hence gain importance as the involved distances are

becoming comparable to the device dimensions. Small feature sizes

and low supply voltages increase the impact of variations of transis-

tor currents (5-30%) and voltages (10-100mV ) on chip- or system-level

performance, causing yield loss and delayed time-to-market. Parame-

ter variations produced by local sources cannot be easily compensated

because they are totally random. This thesis is particularly concerned

with short-range variations because of their increasing importance, es-

pecially in the development of new technology generations.

3.1 Local variation sources: RD and LER

Among the sources of local variations, two phenomena have attracted

considerable interest in recent years because they are predicted to be-

come predominant for technology nodes of immediate interest: random

dopant fluctuations (RD) and line-edge roughness (LER). Fluctuations

in number and position of impurity atoms result from two contrasting

trends. On the one side, increasingly high doping concentrations are

required to achieve the target sub-threshold behavior in short channel

MOSFETs; on the other, the total number of atoms in MOSFET’s

channel is decreasing due to scaling. LER is the random deviation

of printed device feature edges from the ideal shape, mainly due to

granularity of the materials, especially polysilicon and photoresist, and

tolerance of optical equipments. TCAD tools are essential in predicting

the impact of these phenomena on device performance. The history of

TCAD investigation of RD and LER is a significative example of prob-

lem dimensionality increase.

The impact of random dopants on bulk MOSFETs with channel

lengths down to 100 nm was initially studied by means of 2D device sim-

ulations [40–42], by introducing statistical fluctuations of the number

of dopants in the volume associated with each discretization node. A

similar simplified approach was adopted in the first 3D studies [41, 43].

However, to carry out a more realistic analysis of the phenomenon, in-
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cluding random fluctuations in the number and spatial distribution of

impurities, ad-hoc “atomistic” simulators have been developed. The

first work presenting this kind of approach is [44], where a 3D discrete

doping region is defined and atoms are placed according to a rejection

technique that produces a Poisson distribution, mimicking the phys-

ical process of ion-implantation. Unfortunately, very small ensemble

sizes of only 24 devices are considered due to computational resources

limitations, which is not sufficient to provide quantitative statistical

predictions. A similar technique and similarly small ensembles appear

in [45], while extensive statistical analysis of 3D “atomistic” structures

is carried out in [46]. In order to simulate hundreds or thousands of

device instances, a simplified model is used for the current continu-

ity equation and the extraction of device parameters is performed at

low drain voltages. Together with model simplification, the use of spe-

cial solution techniques, such as multigrid, and hardware parallelism

are the main strategies to cope with the large problem dimensional-

ity, while adaptive meshing techniques discussed above cannot be used

in the “atomistic” framework because uniform grids are required. A

totally different approach is proposed in [47] and [48], where RD fluc-

tuations are treated as a noise source, whose impact on terminal cur-

rent and threshold voltage is evaluated through a small-signal analysis.

This method is very efficient since it does not involve the simulation

of statistical ensembles. Perturbation techniques have been applied to

ultra-small devices, revealing a reasonable accuracy when compared to

direct Monte Carlo evaluation approaches [49].

Line-edge roughness mainly affects planar bulk MOSFETs by vary-

ing the channel length across the device width. A deterministic ap-

proach was used in early 3D studies on the problem, approximating

the roughness with a single step in the gate edge [50, 51]. A 2D sta-

tistical treatment of LER was proposed in [52], based on an approxi-

mation of the three-dimensional device by means of several 2D slices

with different gate lengths. Lg values were generated through a Monte

Carlo program producing a Gaussian distribution. An analogous ap-

proach is adopted in [53–55] and [56], but in the latter work an actual
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spectral distribution from SEM images is used to generate gate length

values. A full-scale 3D study of LER using “atomistic” simulations is

presented in [57]. Here the roughness is generated based on a Fourier

synthesis technique: a power spectrum corresponding to a Gaussian or

exponential autocorrelation function is calculated, introducing random

phase variations; then, the corresponding height function is obtained

by inverse Fourier transform. Decananometer MOSFETs are simulated

using a drift-diffusion model with constant mobility: though rude for

such small devices, this approximation is necessary to reduce the com-

putational effort and is justified in the paper by the interest in relative

parameter variations.

Together with short-channel effects (SCEs) and oxide thickness re-

duction, the discussed local variation issues represent the main obsta-

cles in further scaling of bulk CMOS technology. Multi-gate architec-

tures such as the FinFET device described in the Introduction are a

promising alternative due to a stronger coupling to the channel, which

results in an improved SCE control both in the subthreshold and su-

perthreshold regimes. Moreover, the slight doping concentration in the

fins of such devices should alleviate the problem of RD fluctuations.

However, LER in FinFETs is much more challenging than in planar

devices, because the roughness affects several features, including top

and sidewall gates as well as the fin edges. In this case 2D approxima-

tions cannot provide any realistic evaluation of the whole variability,

which would require statistical ensembles of highly complex 3D device

structures due to the coupling between different spatial directions. An

example of 3D investigation of LER in double-gate MOSFETs is pro-

vided by [58], although only the gate roughness is considered. Oxide

and body thickness fluctuations are discussed in [59], but here a kind

of backward propagation of variance (BPV) [39] procedure is applied

to avoid a full Monte Carlo analysis.
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3.2 Statistical characterization

The impact of process variations on device and circuit performance

cannot be studied by deterministic approaches because the considered

fluctuations are essentially random. Statistics is therefore mandatory

for this analysis.

Two main approaches are commonly used, as mentioned in the re-

view presented in Sec. 3.1. The direct (Monte Carlo) method consists

in simulating many microscopically different devices and statistically

describing the variability of relevant electrical parameters. Usually,

the magnitude of parameter fluctuations is expressed in terms of stan-

dard deviations. Of course this technique is extremely burdensome

from a computational standpoint. The alternative, more efficient, ap-

proach is the propagation of variance [39], in which a relationship be-

tween standard deviations of physical (Ph) and electrical (El) param-

eters of device compact models is sought in terms of partial derivatives

∂Eli/∂Phj. Although extremely useful for its clear predictive poten-

tialities and low computational cost, this technique has the drawback

of being strictly model-dependent. Moreover, the desired relationships

may be particularly difficult to determine in cases of highly localized

physical variations (e.g. RD and LER) not exhibiting explicit connec-

tions to the electrical performance through the compact model.

Short-range variations represent a particularly critical issue for all

those circuits whose operation relies on perfectly matched transistor

pairs. This is the case of many analog applications, including differ-

ential pairs, current mirrors, comparators, reference sources, digital-to-

analog converters, but even digital blocks such as SRAM and DRAM

cells are becoming more and more sensitive to such a problem. For the

above reason, local fluctuations are generally characterized in terms of

stochastic mismatch, i.e. by studying time-independent random varia-

tions in physical quantities of two identically designed devices in terms

of difference parameters ∆P = P1 − P2 (P1 and P2 being the values of

parameter P for the two considered devices). Techniques to trade-off

accuracy and computational cost of variability and mismatch estima-
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tion will be presented in Part III, Chapter 5.



Part III

Proposed approaches -
Multidisciplinarity at the

aid of TCAD
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“Any intelligent fool can make things
bigger, more complex, and more violent.

It takes a touch of genius
- and a lot of courage -

to move in the opposite direction.”

E. F. Schumacher

Some techniques to deal with the two TCAD roadblocks outlined above

are proposed in this Part. In Chapter 4, an automatic approach to

adaptive meshing is presented, which relies on an estimation of solu-

tion regularity based on the Wavelet Transform (WT). This technique

is suitable for 2D and 3D domains and exploits efficient algorithms

from the field of signal processing. The quality of generated meshes

is controlled through a verification routine, which allows for a full in-

tegration of the developed refinement module into a standard TCAD

environment.

The topic of variability estimation is discussed in Chapter 5, describ-

ing statistical approaches to evaluate LER- and RD-induced variability

at a reasonable computational cost. In particular, mismatch estima-

tion through a limited number of simulations is considered and the

use correlations to further reduce the computational effort is discussed.

An advanced statistical model is also introduced, which could become

indispensable when dealing with parameter distributions related to ex-

tremely scaled devices. Moreover, a perturbation approach is described

as an alternative to “atomistic” simulation of random dopant fluctua-

tions.
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Chapter 4

Wavelet-based approach to
adaptive meshing

A new Wavelet-based Adaptive Method (WAM) able to auto-

matically generate meshes for semiconductor device simulation will be

presented in this Chapter. The main feature of this approach lies on

its ability to create a non-uniform grid starting from an initial coarse

and uniform one, and to dynamically adjust it based on the solution

behavior. The proposed strategy comes as a natural consequence of the

use of a multiresolution representation. The theoretical background of

this technique will now be outlined.

4.1 Wavelet analysis

One of the basic purposes of signal processing is to extract from an

input signal all the relevant informative content relative to the con-

sidered application. To this aim, transformations are often applied to

represent the signal in a new domain where such informations are more

evident. Whenever the spectral content of the signal is of interest,

the most widely used technique of this kind is the Fourier Transform.

Since the employed basis functions have perfect frequency localization

but infinite time duration, however, a Fourier expansion allows detect-

ing all spectral components of the considered signal, but it does not

provide any information on when they are present, i.e. time resolu-

55
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tion is lost. Therefore, applications for which such information is also

important require more sophisticated tools, able to decompose the ana-

lyzed waveform through basis functions characterized by both time and

frequency localization.

Among time-frequency operators, the Wavelet Transform has re-

cently found successful application in a variety of different disciplines.

The basic idea of this technique is to start from a prototype func-

tion that is well localized in both time and frequency (compatibly

with Heisenberg uncertainty principle): basis elements are obtained

as shifted and dilated/contracted versions of this function, thus origi-

nating a two-dimensional representation of the input signal. Moreover,

several choices are available for the prototype mother Wavelet, thus pro-

viding an extremely flexible tool. Time shift corresponds to scanning

the signal along its duration, while the dilation factor determines the

size of the waveform portion that is associated to each basis element,

and therefore the range of frequencies which can be detected by that

element. This is similar to analyzing the signal through a time window,

as in the Short-Time Fourier Transform, but here the window size is

not fixed, thus allowing for a variable time and frequency resolution.

Convolving the input waveform with each basis function corresponds

to calculating the details of the signal associated to a specific range

of frequencies in a certain time interval. If high-frequency details are

removed from the signal, what is left corresponds to the lowest part of

the original spectrum, therefore representing a low-pass approximation

of the given waveform. In addition to its powerful analysis capabilities,

the Wavelet Transform can thus be used as a synthesis tool for approx-

imating signals with different degrees of accuracy, depending on which

details are left or removed. This multiresolution representation can be

successfully exploited for compressing data. The following Subsections

provide a more formal mathematical description of the key concepts

outlined above.
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Figure 4.1: Examples of Wavelet functions ψ(x).

4.1.1 Continuous Wavelet Transform

The Continuous Wavelet Transform (CWT) was originally introduced

by Goupillaud, Grossman and Morlet [60]. For a function f ∈ L2(R),

it is defined as:

CWTa,b[f(x)] =
1√
a

∫ +∞

−∞
f(x)ψ∗

(
x− b

a

)
dx

≡ 〈f, ψa,b〉 , a ∈ R+, b ∈ R (4.1)

where a and b are usually called scale and translation parameters and

ψ(x) is a suitable Wavelet function1. The admissibility condition for

Wavelets implies that ψ(x) must have a band-pass like spectrum. Hence
∫ ∞

−∞
ψ(x)dx = 0

and therefore ψ must be oscillatory like a wave. Fig. 4.1 shows some

of the most commonly used Wavelet functions, while examples of basis

elements obtained by translation and dilation of the mother Wavelet

are displayed in Fig. 4.2.

1Note the overloading of the symbol ψ, also used to indicate the electrostatic
potential.
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Figure 4.2: Basis functions resulting from translation and dilation of
one of the mother Wavelets shown in Fig. 4.1.

4.1.2 Localization property

Both ψ and its Fourier transform Ψ are window functions, in space and

frequency respectively2, with centers x̃ψ, ω̃ψ and radii ∆x2
ψ, ∆ω2

ψ. It

can be shown [61] that the Wavelet transform provides a rectangular

space-frequency window of size:

[b + ax̃ψ − a∆xψ, b + ax̃ψ + a∆xψ]×
[
ω̃ψ

a
− ∆ωψ

a
,
ω̃ψ

a
+

∆ωψ

a

]

with constant area of 4∆xψ∆ωψ. Wavelets are chosen so that most of

the energy is restricted to a finite interval, i.e. either they are compactly

supported functions, or a fast decay is imposed away from their center of

mass (space localization, see Fig. 4.1). Instead, frequency localization

corresponds to the band-pass like spectrum of the Wavelet.

2Here the signal domain is assumed to be space (rather than time) because this is
the case in the applications discussed later on. Therefore, the transformed domain
is spatial frequency.
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The space-frequency resolution is limited by Heisenberg uncertainty

principle [62], which, in signal processing terms, states that it is impos-

sible to know both the exact frequency and the exact space position

where such frequency occurs within a signal. However, this resolu-

tion varies over the two-dimensional domain of the WT, which allows

analyzing high frequencies with a good space resolution but poor spec-

tral resolution, and viceversa. Actually, in Wavelet theory, space and

frequency correspond to the translation (b) and scale (a) parameters,

respectively. In general we can say that for a given feature of the ana-

lyzed waveform, located at position x = v, there is a cone of influence

in the scale-translation plane. This is constituted by the set of points

(a, b) such that v is included in the support of the scaled version of the

Wavelet function

ψa,b =
1√
a
ψ

(
x− b

a

)

If ψ has a compact support [−C,C], the cone of influence is defined by:

|b− v| ≤ Ca

An example is depicted on Fig. 4.3, where WT coefficients of an in-

put signal are represented in the scale-translation plane: the Wavelet

Transform gradually zooms-in to the singularity with a good localiza-

tion at small scales, i.e. local maxima of Wavelet coefficients at finer

scales allow to locate high-frequency features of the analyzed function.

4.1.3 Characterization property

Roughly speaking, the Wavelet Transform calculates a resemblance in-

dex between the analyzed waveform f(x) and the Wavelet located at

position b and scale a, that is, the coefficient produced by (4.1) rep-

resents how closely correlated the Wavelet is with a certain portion of

the function: the larger the coefficient, the stronger the resemblance.

In particular, as the Wavelet is an oscillating function, the transform

coefficient CWTa0,b0 [f(x)] measures local variations, at scale a0, of the

function f around point b0: for example, jumps of f or discontinuities in
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Figure 4.3: CWT of a sample signal. The pixel intensity represents the
modulus of Wavelet coefficients for a certain position b (abscissa value)
at a given scale a (ordinate). Strong gradients and singularities can be
localized following local maxima across the scale-translation plane. The
cone of influence of a sharp region occurring around x = v is located in
the space-scale plane where ψa,b intercepts v.

its low-order derivatives generate high Wavelet coefficients. More pre-

cisely, the described zooming property of the Wavelet Transform allows

to characterize the local regularity of signals: regularity at a particu-

lar location can be analyzed independently of the behavior elsewhere

because the support of ψa,b(x) becomes arbitrarily small at sufficiently

small scales.

Singularities of f (i.e. discontinuities in the signal or its derivatives)

at a given point v can be characterized by the Lipschitz exponent, i.e.
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a positive real number α such that

∀x ∈ R, |f(x)− pv(x)| ≤ K|x− v|α (4.2)

for a certain K > 0. In the previous relationship, pv is the Tailor poly-

nomial expansion of f , with degree m = bαc. An important theorem

due to Hwang and Mallat relates this exponent to the decay of Wavelet

coefficients: it is proved [61] that the Lipschitz exponent α at v can

be computed as the maximum slope of log2 |CWTa,b[f(x)]| as a func-

tion of log2(a) along the maxima lines converging to v. According to

definition (4.2), large values of α characterize smooth functions: this

corresponds to steep slopes, i.e. a fast decay across scales of the asso-

ciated Wavelet coefficients. On the other hand, singularities or strong

local variations of the analyzed signal give rise to large and slowly de-

caying coefficients: the lower the function regularity, the smaller the

Lipschitz exponent and, therefore, the slower the coefficient decay at

successive resolution levels.

An example is provided by Fig. 4.4, where a sample function (Fig.

4.4(a)) is analyzed (Fig. 4.4(b)) and maxima lines associated to three

irregular features are plotted as specified by Hwang and Mallat’s theo-

rem (Fig. 4.4(c)). The signal is discontinuous at x = 400, resulting in

large and slowly decaying Wavelet coefficients. The two almost parallel

maxima lines in Fig. 4.4(c) are steeper than the other one because they

are both associated to a jump in the first-order derivative of the signal,

at x = 200 and x = 800, respectively. However, the strongest jump oc-

curs at the latter position, resulting in higher values of the coefficient

moduli. Thanks to the described property, the Wavelet analysis allows

locating and characterizing singularities of the analyzed signal with a

zooming procedure on the space-scale domain.

4.1.4 Wavelet series

Due to redundancy of the CWT, the scale and translation parameters

can be discretized without loss of information according to this rule [63]:

(a, b) = (aj
0 , k · b0 · aj

0) , j, k ∈ Z (4.3)
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Figure 4.4: (a) Sample signal. (b) Continuous Wavelet Transform. (c)
Logarithmic plot of Wavelet coefficient maxima around x = 200, 400,
800 as a function of the scale parameter.

where a0 and b0 are suitable constants3. In some cases it is possible to

produce a rigorous orthonormal decomposition: this is the case with

the choice [64] a0 = 2, b0 = 1, which gives rise to the following basis:

{ψjk(x)}j,k∈Z = { 2−j/2 · ψ(2−jx− k) }j,k∈Z (4.4)

The analyzed function f(x) ∈ L2(R) can therefore be expanded into a

Wavelet Series (WS):

f(x) =
∑

j∈Z

∑

k∈Z
dj,kψjk(x) (4.5)

where the WS coefficients (usually called details) are defined as:

dj,k =
∫

f(x)ψ∗j,k(x)dx (4.6)

The underlying dyadic relationship between basis elements origi-

nates a logarithmic subdivision of the scale domain: each function ψj,k

3Note that with choice (4.3) smaller scales, and therefore increasing resolution,
correspond to decreasing values of the index j whenever a0 > 1.
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contributes to the fluctuations of f at scale 2j in a neighborhood Ij,k of

size 2j · |Supp(ψ)|, around the point 2jk. In particular, if f ∈ CN(R)

and the Wavelet has N vanishing moments, that is:

∫ +∞

−∞
xkψ(x)dx = 0 for 0 ≤ k < N (4.7)

then the magnitude of Wavelet coefficients is linked to the N -th deriva-

tive of f as [65]:

|dj,k| ≤ C2jN max
x∈Ij,k

|f (N)(x)| (4.8)

Eq. (4.8) is exemplified by Fig. 4.5, which compares Daubechies2 WS

coefficients of a C2 function with the second-order derivative of the

signal itself. The shown coefficients, corresponding to non-overlapping

Ij,k supports, are seen to approximate the signal derivative f ′′ when

scaled through a factor which behaves as 22j (see Fig. 4.5(g)).

4.1.5 Multiresolution approximation

In the framework of Multiresolution Analysis (MRA) [64, 66], a function

f ∈ L2(R) can be represented with different degrees of accuracy by

means of projection onto a nested sequence of approximation spaces

{Vj}j∈Z, Vj ⊂ Vj−1. Starting from fj ∈ Vj at a given resolution level

j, a finer approximation at level j − 1 is obtained by adding to fj the

details belonging to Wj, the orthogonal complement of Vj in Vj−1:

Vj−1 = Vj ⊕Wj

This procedure can be iterated to obtain a multiscale decomposition,

in which f is expanded into the sum of its coarsest approximation f0

and additional details gj (j ≤ 0):

f = f0 +
∑

j≤0

gj = f0 +
∑

j≤0

∑

k∈Z
djkψjk (4.9)

as shown in Fig. 4.6. In (4.9), gj = fj−1− fj represents the fluctuation

of f between two successive resolution levels j and j−1 and can be ex-

pressed as a linear combination of Wj basis functions. For specific types

of multiresolution methods, the basis of band-pass detail spaces Wj is
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the Wavelet basis (4.4). Similarly, the basis of low-pass approximation

spaces Vj can be constructed with scaled and translated versions of a

unique prototype scaling function φ(x).

The approximation theory studies how to provide an accurate ap-

proximation of a certain function f with a reduced number of basis

vectors. For example, an approximation fM could be constructed using

M Wavelets (or scaling functions), which must be chosen in order to

minimize the error ‖f−fM‖ due to the discarded WS projections. The

best approximation is found by simply choosing the M largest Wavelet

coefficients (in absolute value) {cλ}λ∈ΛM
:

fM =
∑

λ∈ΛM

cλψλ
−−−−→
M→∞ f
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Figure 4.6: Multiscale decomposition of a sample signal f . Approx-
imation f0 is obtained after subtracting details gj at five resolution
levels.

The approximation properties of the basis can be evaluated through

the speed of convergence as more vectors are added. This is given by

the largest α for which:

‖f − fM‖ = O(M−α) (4.10)

The larger the speed of convergence α, the lower the number M of

Wavelet coefficients that are needed to capture the essential information

contained in f . In particular, (4.10) holds [61] for functions belonging

to Besov spaces [67] of smoothness α. This is the case of piecewise

smooth functions that model the behavior of many real-life signals.

For these classes of functions, the nonlinear Wavelet-based method

described above exhibits a faster convergence with respect to other

approaches such as linear Fourier-based methods or adaptive spline ap-

proximations [61]. Wavelets are therefore optimal bases for compress-
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ing, estimating and recovering functions in Besov spaces. In particular,

a high number of vanishing moments (4.7) ensures a sparse represen-

tation of piecewise smooth signals because the Wavelet coefficients will

be essentially zero wherever the analyzed signal is well approximated

by the first terms of its Taylor series.

4.1.6 Discrete Wavelet Transform

The multiresolution decomposition of a signal f ∈ L2(R) can be com-

puted through a fast algorithm in the discrete case, thanks to a recur-

sion relationship between approximation and details at different res-

olution levels. This relation in expressed by the following two-scale

equations [66]:

φ(x) =
√

2
∞∑

n=−∞
g̃[n]φ(2x− n) (4.11)

ψ(x) =
√

2
∞∑

n=−∞
h̃[n]φ(2x− n) (4.12)

(4.11) and (4.12) hold because φ(x) and ψ(x) belong to V0 and W0,

respectively, which are both subsets of V−1. It follows from these equa-

tions that the projections of f(x) ∈ V0 onto V1 and W1 can be computed

as:

f1[n] =
∑

k

g[2n− k]f0[k] (4.13)

d1[n] =
∑

l

h[2n− l]f0[l] (4.14)

where g[n] = g̃[−n] and h[n] = h̃[−n]. According to (4.13) and (4.14),

the approximation (f1) and detail (d1) projection coefficients are ob-

tained by filtering f with the low-pass and high-pass filters g and h,

respectively, and downsampling by 2. The decomposition can be con-

tinued by iterating this procedure on the approximation f1.

The computational structure outlined above can be implemented

through a bank of octave-band FIR filters, which leads to the Discrete

Wavelet Transform (DWT) [66], schematically depicted in Fig. 4.7.

The reconstruction algorithm which synthesized the original signal from
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Figure 4.7: Computational structure of the Discrete Wavelet Trans-
form. g[n] and h[n] are the low-pass and high-pass FIR filters used to
calculate approximation and details, respectively.

approximation and detail coefficients is simply the reverse of the decom-

position process. Basically, fj and dj are upsampled by two, passed

through the low-pass and high-pass synthesis filters and then added to-

gether. To reconstruct the original signal, this process must be iterated

on the same number of levels j as in the decomposition.

Obviously, efficiency of the DWT computation is determined by the

filter length. The following theorem ([61], p.243) relates the support

size of the Wavelet filter h to the supports of ψ and φ:

Theorem 1 The scaling function φ has a compact support if and only

if h has a compact support and their supports are equal. If the support

of h and φ is [N1, N2] then the support of ψ is [(N1 −N2 + 1)/2, (N2 −
N1 + 1)/2].

The DWT algorithm has been described in this Section assuming

that f ∈ V0, i.e. f = f0, which is generally not true. However, f0 can be

approximated through a natural sampling procedure if V0 corresponds

to a sufficiently fine resolution, because φ(x) is a low-pass filter with

an integral equal to 1. More generally, in numerical computations the

samples are often obtained through a low pass filtering of f(x) followed

by uniform sampling. If the original input f(x) is related to the discrete

sequence f [n] by means of a suitable interpolating function χ(x) as

f(x) =
∑
n

f [n]χ[x− n]
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then the relation between the continuous and discrete Wavelet coeffi-

cients is [68]:

CWT2j ,k2j [f(x)] = DWTj,k(fint[n]) (4.15)

where

fint[n] =
∑
m

f [m]Pf [n−m] (4.16)

Pf [n] =
∫

χ(x)φ(x− n)dx

However, in many cases the pre-filtering of equation (4.16) is avoidable

because almost ineffective. Such a strict link between the continuous

and the discrete transform allows for the properties of regularity char-

acterization described in the continuous case to be exploited when ana-

lyzing sequences, although in this case we are limited by the resolution

of measurements.

4.1.7 Multidimensional DWT

Application of the Wavelet decomposition can be extended to multidi-

mensional signals. A separable 2D transform is obtained by defining

two-dimensional Wavelets and scaling functions as tensor products of

one-dimensional components. By doing so, a 2D scaling function

φ(x, y) = φ(x)φ(y)

and three 2D Wavelets

ψHH(x, y) = ψ(x) · ψ(y)

ψGH(x, y) = φ(x) · ψ(y)

ψHG(x, y) = ψ(x) · φ(y)

are obtained, which allow to calculate a low-pass approximation of the

considered signal f(x, y) and three directional details corresponding to

high-frequency features in the horizontal, vertical and diagonal direc-

tion, respectively.

The discrete version of the so called “square Wavelet Transform” is

computed in two steps, as depicted on Fig. 4.8. First, a 1D DWT is
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Figure 4.8: 2D DWT decomposition: H, G are the high-pass and low-
pass filters, respectively. Starting from approximations at level j, they
produce approximation (A) and detail (D) coefficients at level j + 1.

performed on all rows of the original signal, yielding two matrices which

contain down-sampled low-pass and high-pass coefficients of each row,

respectively. Then, a similar decomposition is applied to all columns

of these two matrices, thus producing four types of coefficients:

• fj+1 are the approximation coefficients resulting from low-pass

filtering in both directions;

• coefficients dGH
j+1 result from a low-pass filtering (g) of the rows

followed by a high-pass filtering (h) of the obtained columns and

therefore represent vertical details;

• horizontal details dHG
j+1 are calculated by row-wise high-pass fil-

tering followed by column-wise low-pass filtering;

• coefficients dHH
j+1 resulting from a convolution with h[n] in both

directions highlight diagonal variations of the two-dimensional

signal.

A 2D multiresolution analysis can be obtained by iterating this pro-

cedure on the approximation fj+1 (see Fig. 4.9(a)-(b)). Alternatively,

it is possible to also include transformation of the details at each step

through a “rectangular two-dimensional transform”, as represented in
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transform - case b); otherwise, the signal may be decomposed with an
anisotropic basis (rectangular two-dimensional transform - case c)

Fig. 4.9(c). Basis functions for such a decomposition are tensor prod-

ucts of Wavelets at different scales:

ψj,k(x)ψi,l(y)

Such basis elements with variable aspect-ratios produce an anisotropic

representation of the analyzed signal. The transform scheme outlined

in this Section can be straightforwardly extended to three or more di-

mensions.

4.2 Wavelet properties applied to mesh

refinement

The amplitude of Wavelet coefficients is related to the local regularity of

the analyzed signal (Sec. 4.1.3). Therefore, a non-linear approximation

that keeps the largest Wavelet inner products (Sec. 4.1.5) is equivalent

to constructing an adaptive approximation grid, whose resolution is
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locally increased where the signal is irregular. If the signal has isolated

singularities, this non-linear approximation is much more convenient

than a linear scheme that maintains the same resolution over the whole

signal support, in terms of both accuracy of the representation and

computational cost.

This is the case when the considered signals are the numerical so-

lutions of PDE systems which describe the internal behavior of elec-

tronic devices, as explained in Part II. Wavelet properties described

above can be applied to the adaptive mesh refinement for device simu-

lation, producing grids that comply with the requirements pointed out

in Sec. 2.2.1.

• Localization properties (Sec. 4.1.2) can be exploited to identify

sensible domain regions, where mesh resolution must be increased

to capture singularities and layer behaviors of the solution. Since

such behaviors produce a cone of influence in the space-scale

plane, the grid resolution is increased gradually, thus ensuring

smoothness of the global mesh.

• The characterization property of Wavelet coefficients (Sec. 4.1.3)

allows for a regularity-estimation-based mesh refinement. This

is something different than error estimation techniques on which

most adaptation strategies reported in literature are based, be-

cause:

– calculation of an error often requires supplementary refer-

ence quantities, normally computed on auxiliary grids with

increased resolution, or solving additional problems; since

regularity is estimated on the solution itself, nothing similar

is needed in the Wavelet-based approach, which is therefore

explicit rather than implicit;

– error indicators are usually defined point-wise or element-

wise, while any Wavelet coefficient gives informations on a

specific domain region including a certain amount of nodes

and elements (the size of such region is determined by the
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extension of Wavelet support at the considered resolution

level);

– regularity estimation is not solver-sensitive, i.e. it can be

performed on the desired physical quantities independently

of the particular models used for the simulation.

Theorems on the decay of Wavelet coefficients also provide a stop-

ping criterion for the refinement. Moreover, the local regularity

characterization enabled by the compact support of basis func-

tions allows achieving different resolution levels in distinct domain

regions, i.e non-uniform, unstructured meshes can be created.

• The dyadic discretization of the space-scale plane introduced in

Sec. 4.1.4 suggests an analogous policy for grid refinement. The

semi-regular nature of resulting grids is favorable for mesh quality

control as well as flux-alignment whenever axis-aligned structures

are simulated.

• The non-linear approximation procedure based on selection of the

largest Wavelet coefficients (Sec. 4.1.5) can be exploited to con-

trol the number of inserted nodes, i.e. to trade-off accuracy and

mesh size. Furthermore, an automatic mesh adaptation to solu-

tion changes is obtained by monitoring large Wavelet coefficients.

• Complexity of the DWT computation described in Sec. 4.1.6 is

O(N) for a signal composed of N samples. Such an efficient

discrete algorithm allows for a negligible computational overhead

of regularity estimation for mesh refinement.

• Directional detail informations provided by the multidimensional

transform (Sec. 4.1.7) can be exploited to construct anisotropic

meshes suitable for 2D and 3D simulations. Anisotropy is in-

trinsic to the nature of multidimensional Wavelet coefficients, i.e.

no additional sources of directional informations need to be in-

troduced, in contrast to other approaches proposed in literature

(see Sec. 2.3.2). Complexity of the multidimensional DWT is still
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O(N), i.e. the computational cost has a linear dependence on the

number of mesh nodes even in 2D and 3D applications.

4.3 Review of Wavelet approaches to de-

vice simulation

In recent years, different Wavelet-based methods have been applied

to the solution of semiconductor device equations. Some of the most

interesting approaches are reviewed in this Section.

• A Wavelet Series expansion was exploited in [69] to obtain the so-

lution for an abrupt junction diode, by projecting the problem on

a Wavelet approximating space. However, just a one-dimensional

solution compared with the one obtained through a central dif-

ference method using the same grid points was presented.

• The Wavelet Transform was used in [70] as a multigrid regression

and projection operator, or as a preconditioning operator for the

solution of a coupled Schrödinger-Poisson system. However, this

method was adopted for electronic structure calculations (atom-

istic simulations) rather than for the solution of charge transport

problems.

• In [71] a MESFET was simulated, finding a time-dependent solu-

tion for carrier density, energy and momentum. Computational

cost reduction was achieved by compressing the data with the

Wavelet Sparse Point Representation (SPR) introduced by Holm-

ström [72]; this technique was also used in [73] to simulate a 2D

diode. The derivatives at collocation points were calculated from

an interpolated solution on a uniform grid at the finest consid-

ered resolution level. A drawback of this approach lies in the

additional overhead introduced by the interpolation. Moreover,

just grids with a very limited resolution are shown in both [71]

and [73].
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• In [74] a Wavelet Transform was applied to a partial solution, cal-

culated for a MESFET device on a uniform fine grid, and then the

resulting coefficients were used to select and remove redundant

points. Once again, the method is just suitable for time-varying

problems and requires a very large initial mesh size to capture

the layer features of the solution.

• Finally, in [75], spatial and temporal projectors were constructed

using a multigrid framework (as in [70]) coupled to a Wavelet-

based gridding procedure. This technique was used to solve a

quantum-corrected drift-diffusion model on a 1D structure, but

six scalar parameters (thresholds) had to be set for detecting

domain regions to be re-gridded, and further intelligence was

required to decide how the addition of new points should be

performed; moreover, no results on multi-dimensional structures

have been shown yet.

4.4 The WAM approach

A Wavelet-based Adaptive Method (WAM) for mesh refinement has

been developed based on the considerations reported in Sec. 4.2. The

basic idea is to use a hierarchy of fixed nested grids at different reso-

lutions, which offers the possibility of locally selecting the appropriate

discretization level. In this approach, a partial solution is calculated

on a uniform coarse grid, which is then iteratively and automatically

refined only in the regions where Wavelet coefficients associated to the

preliminary results are greater than a given threshold. For semiconduc-

tor applications, the multiresolution analysis is performed on significa-

tive internal quantities of the considered device (e.g. electrostatic or

quasi-Fermi potentials, carrier concentrations or current densities). At

each level of the analysis, these quantities are the result of a previous

simulation performed with a finite volume solver. WAM is therefore

inserted into a validation tool including the solver and a meshing en-

gine. An additional module has been implemented, which improves the

quality of the generated meshes. This validation tool is described in
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Figure 4.10: Validation tool block diagram for the proposed multireso-
lution analysis.

the next Section.

4.4.1 Solve-refinement cycle

Since the multiresolution analysis is structured over different levels, the

validation tool implements a solve-refine cycle through the four blocks

depicted on Fig. 4.10. Before entering the loop, an initialization phase

is required, in which a coarse, uniform mesh is generated according

to the device geometry and materials. Then the solve-refine cycle is

started, which goes on until the desired resolution is reached.

• The MESH module must be able to produce a Delaunay triangu-

lation/tetrahedralization of a domain described through a list of

nodes, faces and regions, or to build a new mesh from an old

one and a list of additional points to be inserted. These features

are included in the open-source programs Triangle [76] and Tet-

Gen [77], which have been chosen as meshing engines for 2D and

3D domains, respectively. A filter has been implemented for the

conversion of the resulting mesh to the specific format required

by the solver.

• The SOLVE block represents the chosen simulator. Since a bound-

ary conforming Delaunay mesh is produced by both Triangle and

TetGen, the proposed approach can be directly carried out within

a typical industrial TCAD environment. In our validation tool,

Sentaurus Device [9] has been used, but any other finite volume
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simulator could be employed4 since the WAM approach is solver-

independent (see Sec. 4.2).

• Simulation results are then filtered to extract relevant functions

on which the Wavelet analysis is performed by the WAM block.

The WAM algorithm is invoked at each resolution level after all

informations about mesh node coordinates and corresponding val-

ues of sensible functions have been stored in a grid object with

a hierarchical structure resembling the mesh topology. The han-

dle of such object is one of WAM inputs, together with the device

dimensionality, the current resolution level and spacing steps in

each direction, the number of analyzed variables and the thresh-

old values. The WAM module scans the loaded grid to compute

Wavelet coefficients. This allows to decide if and how the mesh

has to be refined; such information is given in terms of new node

coordinates. The whole set of additional nodes are inserted either

into the grid of the previous level or into the initial uniform grid.

The second option allows for grid coarsening when necessary (see

Sec. 4.5.5).

• New grid points produced by WAM are then meshed: the block

VERIFY OBT looks for undesired node patterns in the grid and

adds Steiner points in order to prevent badly-shaped elements.

After the correction procedure has been performed, the final mesh

is built by the MESH module and a new simulation can be started.

4.5 WAM algorithm description

4.5.1 Choice of the Wavelet functions

A suitable Wavelet function for the transformation can be chosen ac-

cording to several features, including the number of vanishing moments,

minimum support [64] and problem characteristics. In WAM, a func-

tion with N = 2 vanishing moments (4.7) has been selected: as a con-

4Of course in this case different input/output filters should be implemented to
integrate the solver into the validation tool.
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g[n] h[n]

(1 +
√

3)/4 (1−√3)/4

(3 +
√

3)/4 −(3−√3)/4

(3−√3)/4 (3 +
√

3)/4

(1−√3)/4 −(1 +
√

3)/4

Table 4.1: Filter bank coefficients g[n] and h[n] for the db2 scaling
function and Wavelet, respectively.

g[n] h[n]
1 −1
1 1

Table 4.2: Filter bank coefficients g[n] and h[n] for the Haar scaling
function and Wavelet, respectively.

sequence, the magnitude of Wavelet coefficients is particularly related

to the second-order derivative of the analyzed quantities according to

eq. (4.8). In turn, this provides informations on the behavior of local

truncation errors, expressed by (2.5)-(2.6) for the drift-diffusion model.

Filters for the discrete computation have been chosen among the

Daubechies N family, which is characterized by the shortest possible

support for a given number of vanishing moments, i.e. the filter length

is 2N . Our case N = 2 corresponds to the db2 low-pass (g[n]) and

high-pass (h[n]) filters, whose four taps are listed in Tab. 4.1. The

corresponding Daubechies2 Wavelet is depicted in Fig. 4.1(b).

An additional transformation step has been introduced in the 3D

extension of WAM (see Sec. 4.5.4). A more local basis function was

needed for this purpose: therefore, the Daubechies1 Wavelet, better

known as Haar [78, 79], has been chosen. The Haar waveform is de-

picted in Fig. 4.1(a) and the associated two-tap filters are described in

Tab. 4.2.
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Figure 4.11: The solution on the sparse grid is convolved with the
Wavelet filter h[0−3]; if the resulting coefficient is greater than thresh-
old η, a dyadic refinement is imposed.

4.5.2 1D WAM computation

The details of the proposed algorithm [essderc05, sse06] will now be

discussed, considering at first a simple one-dimensional case. As shown

in Fig. 4.11, each Wavelet coefficient is calculated by convolving the

analyzed function samples on four equidistant mesh points (the stencil

or support of the Wavelet computation) with the taps h[n] in Tab. 4.1.

If a coefficient is greater than the given threshold η, three new nodes are

inserted in the mesh by imposing a dyadic refinement of the support,

i.e. new points are added midway between the old ones. Repeating

this procedure for all available supports, the computational grid used

in the next iteration is obtained. Moreover, through the described

strategy four new supports at a finer resolution level are generated for

each refined stencil, which allows for a smaller-scale analysis at the next

iteration. Therefore, a dyadic semi-regular mesh is dynamically created
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by this multiresolution approach.

4.5.3 Algorithm for 2D domains

An extension of the proposed approach to multidimensional domains

can be obtained by means of tensorial product techniques. A two-

dimensional implementation of WAM algorithm is possible through the

2D DWT described in Sec. 4.1.7. Such transform leads to a decomposi-

tion of the approximation at level j into four components, namely the

approximation at level j + 1 and details in the horizontal, vertical and

diagonal direction (see Figure 4.8). If the order of the corresponding

filter is equal to N , the 2D DWT coefficient is calculated convolving

N2 numerical values, i.e. 42 = 16 points in the db2 case, as depicted

in the left part of Fig. 4.12. WAM analysis only requires horizontal

and vertical details: if both are greater than the threshold, a uniform

refinement is imposed (Fig. 4.12(A)), otherwise the analyzed region

can be refined anisotropically, as illustrated in Fig. 4.12(B) and (C).

The new rectangular supports produced by this approach allow to it-

erate the analysis at finer scales, although different resolution levels

in different directions are associated to stencils generated by the non-

uniform refinement: this leads to a rectangular two-dimensional trans-

form, as described in Sec. 4.1.7. This strategy results in anisotropic

grids, which is a very important feature for multidimensional device

simulation, though not included in several standard adaptation meth-

ods.

Figure 4.13 shows an example of the vertices produced by the au-

tomatic 2D refinement applied to a MOSFET structure. Two main

features are to be noted: (i) the proposed refinement strategy correctly

captures the most sensible regions such as the channel and the drain

junction, and (ii) the dyadic structure of the grid is clearly visible.

4.5.4 Extension to 3D domains

The procedure described above can be straightforwardly applied in

three-dimensions as schematically represented in Fig 4.14: Wavelet di-
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B

A

C

Figure 4.12: Uniform (A) or anisotropic (B, C) refinement of a 2D db2

support.

rectional details are calculated convolving 43 equi-spaced numerical val-

ues associated to a 3D Daubechies2 support. A dyadic refinement can

be performed in each direction corresponding to a high Wavelet coeffi-

cient, in analogy with the approach described in the previous Section.

However, since supports partially overlap and lower-level ones often

cover large domain areas, such a simple refinement strategy suffers from

redundancy problems. While this inconvenient is well tolerable in the

2D case, it can lead to excessively large grid sizes in 3D applications.
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Figure 4.13: Anisotropic refinement of a prototype MOSFET device.
Grid density is progressively increased under the gate and in the drain
junction region.

In order to deal with three-dimensional domains, more sophisticated

strategies [sispad06, tcad07] have been introduced with the following

goals:

• decoupling the effects of a singularity on different directions while

detecting the zones where an anisotropic refinement is desired;

• allowing for partial refinement of each support in case of highly

localized singularities (two-step refinement).

Decoupled anisotropic refinement

In case of anisotropic refinement, new grid points can be used for higher

level coefficient calculation in two ways: while a straightforward exten-

sion of the method proposed in the 2D case [sse06] consists in defining
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Figure 4.14: 3D Wavelet coefficients calculation. LPF and HPF are
the averaging and high pass 4-taps Daubechies filters [64], respectively.
Directional details DX, DY and DZ can be calculated by alternated ap-
plication of these filters in different directions.

prismatic supports with different node spacing in the different direc-

tions, an alternative approach based on the creation of new supports

with reduced dimensionality has been adopted for 3D domains. The

two possibilities are compared in Fig. 4.15(b) with reference to a bidi-

rectional refinement of a 3D stencil. More generally, the new strategy

leads to generation of 1D, 2D or 3D supports (see Fig. 4.16) according

to the number of directions in which the resolution must be increased.

The main advantage of this approach is that multidimensional sup-

ports have the same resolution level in all directions. This avoids

Wavelet directional detail information to be corrupted by averaging

operations performed at different resolution scales in other directions,

which is a possible drawback of the rectangular transform described
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dimensionality

16 prismatic supports64 cubic supports
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Figure 4.15: (a) 3D uniform dyadic refinement. (b) Anisotropic refine-
ment: while the strategy in [sse06] introduces new prismatic stencils,
the alternative approach [tcad07] adds smaller 2-dimensional supports.

Figure 4.16: Examples of 3D, 2D and 1D db2 supports introduced by
the decoupled anisotropic refinement.

in Sec. 4.1.7. Moreover, the effect of local singularities in the solution

is prevented from propagating the refinement to regions larger than

necessary, thus relieving redundancy issues. Computational cost of the
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Figure 4.17: Details of two-step Wavelet refinement. The Wavelet co-
efficient is calculated convolving 43 samples of the computational grid.
A further step based on the Haar Transform is added to the algorithm
to keep the number of inserted nodes as small as possible.

Wavelet analysis is also reduced in the case of 2D and 1D coefficient

calculations.

Two-step refinement

The 3D Wavelet analysis has been implemented as a two-step algo-

rithm which allows to refine each Daubechies2 Wavelet support only

partially, according to additional informations provided by the Haar

Transform (see Sec. 4.5.1). The procedure is schematically represented

in Fig. 4.17. Since the db2 support is made of 4 grid samples in each

direction, while the Haar support only includes two samples, a 3D db2

stencil can be split into 33 Haar supports: together with the db2 direc-
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Figure 4.18: Haar analysis of a 3D db2 support in the x direction: the
stencil is split into three portions S1, S2, S3 and the average Haar
coefficient is calculated for each of them. Ratios between the resulting
values discriminate if S1 or S3 can be excluded from the refinement.

tional coefficient, the associated Haar coefficients are also computed for

each analyzed function. If at least one of the db2 coefficients is greater

than the corresponding threshold η, the considered direction is refined.

Haar coefficients are used to decide whether the refinement has to be

performed on the whole support or some portions can be excluded.

In other words, the basic idea is to use Daubechies2 Wavelets, char-

acterized by moderately large stencils, to detect sensible regions and

directions, and more local Haar Wavelets to further locate singularities

inside db2 supports.

Fig. 4.18 shows the case of a 3D stencil analyzed in the x direction:

in this example, the support can be split into three slices S1, S2 and S3

orthogonal to the x axis, each one including 9 Haar supports. For each

slice, the x-directional average Haar coefficient is computed, resulting

in three values hcoe1, hcoe2 and hcoe3. If the condition

(hcoe1 > M · hcoe2) AND (hcoe1 > M · hcoe3), M > 1

is satisfied for all analyzed functions, then slice S3 is not refined; oth-

erwise, S1 is excluded from the refinement if

(hcoe3 > M · hcoe1) AND (hcoe3 > M · hcoe2), M > 1
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By adopting this strategy, no exclusion is allowed if the central slice ex-

hibits large Haar coefficients. Such stringent criteria have been chosen

to guarantee a smooth grading of the mesh outside the regions where

singularities occur. Fig. 4.17 shows an example in which a bidirectional

refinement is imposed excluding the upper and left parts of the stencil.

The two-step strategy combined with the anisotropic adaptation allows

for flexible refinements.

4.5.5 Dynamic mesh adaptation

One of the most powerful features of WAM is that it can be directly

applied during a quasistationary simulation sweep: in such a case, a

fully dynamical grid adaptation to the solution changes is produced

by bias variations. When the desired accuracy has been reached at the

first bias point, the simulation proceeds to the next one, as illustrated in

Fig. 4.23, Sec. 4.7.2: new vertices can be added where they are needed,

but it is also possible to coarsen the grid in regions which are losing

influence on the solution, by dropping out the points inserted in the

previous iterations. This is achieved by combining the two following

expedients:

1. Wavelet supports are stored in a file, which is updated at each

iteration with the new stencils produced by the refinement;

2. new nodes calculated by WAM are added to the initial uniform

grid.

Thanks to the first expedient, Wavelet supports corresponding to dif-

ferent resolution levels can be analyzed at each step: this allows un-

derstanding when previously inserted points have become unnecessary.

Such points can be removed through the second expedient. Suppose

a Wavelet coefficient was greater than the threshold in the previous

step, thus inducing a refinement of the corresponding stencil, but a

small coefficient is associated to the same support in the current itera-

tion (for example due to a solution change produced by updated bias

conditions): the support is not refined now, i.e. nodes of the current
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grid that are associated to a refinement of the considered stencil will

not be included in the list of additional points produced by WAM.

Since these points are added to the initial grid, the effect is a removal

of the unnecessary nodes. Note that this would not be possible if only

highest-resolution supports were considered at each iteration. The com-

putational overhead introduced by the described multi-level analysis is

negligible because of the fast DWT algorithm and efficient encoding of

stored support informations.

Moreover, after the resolution has been increased up to some fi-

nal level levMax by multiple iterations at the first bias step, only one

refinement cycle with the same resolution limit levMax is performed

at each successive bias point, usually followed by a solution recompu-

tation on the adapted mesh. Such an approach keeps the final scale

level constant through the whole simulation, thus fixing the degree of

accuracy. This is beneficial to smoothness of resulting I-V curves, as

shown by the results reported in Chapter 6. Finally, it is worth to

notice that the described strategy can be straightforwardly applied to

transient simulations as well.

4.6 Mesh quality check procedure

To provide the possibility of integrating the adaptive method into the

framework of conventional TCAD tools, some requirements have to be

fulfilled, as described in Sec. 2.2.1. Despite obvious intrinsic limitations

in terms of geometrical flexibility, the semi-regular nature of Wavelet-

based grids exhibits some advantages in this context. First of all, it

guarantees mesh alignment to current flux whenever axis-aligned struc-

tures are simulated, as pointed out in Sec. 4.2. Moreover, in 2D domains

the number of grid patterns generating undesired obtuse elements (i.e.

obtuse triangles) is small, and for each one a stable correction strategy

has been defined [prime06], based on either edge swapping or the inser-

tion of Steiner points. On 3D domains, an extension of the correction

algorithm has been implemented [tcad07], which eliminates all obtuse

element faces parallel to coordinate planes.
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4.6.1 2D obtuse correction algorithm

The 2D verification routine identifies and corrects a finite set of grid

patterns that are responsible for all obtuse angles inside the mesh. The

correction is performed by the VERIFY OBT module just after new points

have been added by the WAM block (see Fig. 4.10) and consists of the

following steps:

1. Delaunay triangulation of the convex hull defined for each subdo-

main.

2. Check for triangle patterns that are not valid and add Steiner

points.

3. Repeat steps 1. and 2. up to the complete removal of obtuse

angles.

Wrong patterns can be subdivided into two categories, instanced

by Fig. 4.19(a) and (b), respectively. Pattern (a) consists of a missed

node at specific mesh line intersections (we named this configuration

a hole): for similar situations, a correction is performed even when

the point locations do not create any obtuse angle, because such a

pattern could affect simulation convergence and accuracy. Each hole

can be eliminated by simply adding the point marked by a square in

Fig. 4.19(a1).

All patterns (b) in Fig. 4.19 and (c) in Fig. 4.20 include an obtuse

triangle. These configurations can be modified in two different ways

according to node positions. If two triangle vertices have the same

x or y coordinate, then a rectangle is built around the largest non-

axis-aligned edge of the triangle and one of the rectangle vertices is

added, in particular the first one that does not exist in the mesh yet.

The technique is depicted on Fig. 4.19(b1), where the added point

is represented by a square. If the wrong triangle has no axis-aligned

edges, then two segments are considered, as shown in Fig. 4.20(c1). The

vertical segment (V 3V 4) is built by using the abscissa of the obtuse

angle vertex (P3) and the ordinates of the other two triangle vertices

(P1, P2), while for the horizontal one (V 1V 2) the y of P3 and x’s
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Figure 4.19: Possible undesired patterns after triangulation of the re-
fined grid. In particular (a) is simply a hole in the mesh (not necessarily
including angles greater than 90 degrees), while (b) is an obtuse trian-
gle. (a1) and (b1) show the correction procedure for these patterns.

P2
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P3 V2
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(c) (c1)

Figure 4.20: Obtuse triangle with no axis-aligned edges (c), and corre-
sponding correction strategy (c1).



90 Wavelet-based approach to adaptive meshing

of the other nodes are taken. Between these two segments, the one

that intersects the triangle edge opposite to the obtuse angle is selected

and one of its end points is added to the mesh, (in Fig. 4.20(c1), the

one nearest to P3). This technique either directly eliminates the wrong

pattern or transforms it into another one belonging to one of the former

cases, that will be removed in the next iteration.

Termination of the algorithm after a limited number of iterations

has been observed in all considered test cases, with a limited increase

in the grid size. Fig. 4.21 shows an example of mesh correction during

a MOSFET device simulation.

4.6.2 Correction procedure in three dimensions

As explained in Sec. 2.2.1, mesh quality is a challenging issue in 3D ap-

plications and non-obtuse tetrahedralizations are still an open problem.

In VERIFY OBT, the choice is to apply the procedure described above

to any mesh element face parallel to coordinate planes. Inputs to the

block are informations about the original mesh, the list of new nodes

produced by WAM and, optionally, a box enclosing the region in which

the correction has to be performed. The algorithm is very similar to

its 2D counterpart:

1. Delaunay tetrahedralization of the domain, performed by calling

TetGen as a library function;

2. identify the set of triangles to be checked through a loop on mesh

elements that selects all faces parallel to each of the coordinate

planes xy, xz and yz;

3. check for triangle patterns that are not valid and add correction

points;

4. loop on steps 1. to 3. up to the complete removal of undesired

configurations.

Obtuse faces are corrected exactly as illustrated in Figs. 4.19 and 4.20.
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Figure 4.21: Mesh changes produced by the obtuse triangle correction.
The inset shows identification and correction of one of the wrong pat-
terns. The dashed blue segments are mesh edges before the correction,
Steiner points are marked with squares and solid green lines represent
the mesh after the verification step.

This approach has proven to be beneficial to mesh quality. A sig-

nificative example is provided by Figs. 4.22(a) and (b), which show

identification and correction of some undesired node patterns within a

power MOSFET driver. Poor quality mesh configurations marked in

the left part of the figure affect element faces parallel/orthogonal to the

device channel and cause inaccurate discretization of internal quantities

(doping concentration in the shown example). Beside relieving these

inconveniences, the proposed correction algorithm also improves global

mesh smoothness, as will be shown in Chapter 6.
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Figure 4.22: Examples of undesired mesh patterns (a) and quality im-
provement through the 3D quality check procedure (b) during mesh
refinement of a MOSFET driver.

4.7 Implementation details

A few relevant details concerning software implementation of the 3D

WAM algorithm and validation tool structure are described in this Sec-

tion.

4.7.1 WAM internals

The WAM module is implemented in C++. It is able to refine a domain

region enclosed by a given box, on which a virtual tensor grid is defined,

with a minimum spacing in each direction as determined by the current

resolution level and tensorial subdivision of the first-level grid.

Internal grid representation

Only points belonging to the virtual tensor grid mentioned above (i.e.
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dyadic points) are retained by WAM when loading the actual mesh to

be refined at each step. In this phase, a grid object is progressively

created, that implements a linked multiple list: the grid is described

through a list of x locations, each one linked to a list of y locations, each

of which further linked to a list of z locations. Accepted grid nodes are

stored in the leaves of this structure. However, since topology is defined

in terms of previous and next element for each list location, memory

occupancy is only determined by actual grid points and the structure

is dynamically expanded as new nodes are loaded. Moreover, dyadic

cartesian coordinates (x, y, z) are converted into even (i, j, k) indices,

i.e. a virtually doubled grid is considered, in which only even positions

are occupied, while odd locations will be filled by new nodes during the

refinement phase. Optionally, a second grid object is created, contain-

ing the initial coarse mesh, which allows for grid coarsening in addition

to refinement.

Wavelet support description

Informations associated to each node include (i, j, k) position, corre-

sponding values of the analyzed quantities and a list of supports for

which this node is a “head”. In fact, each Wavelet support is identified

through its support head, i.e. one of its corners: specifically, the node of

the stencil with smallest (i, j, k) indices. Informations on the supports

are given in terms of resolution levels in each direction (including zeros

for lower-dimensional stencils), that are stored in a byte-wise format,

so that memory occupancy for the description of each support is only

one int. At the first analysis level, a loop on grid points is performed

to identify all available 3D supports. The list of grid nodes and asso-

ciated stencils, including the new ones produced by the refinement, is

saved at the end of WAM task. At each successive iteration this list is

re-loaded and updated.

Refinement loop

The refinement algorithm is implemented through a loop on mesh

nodes. Wavelet directional details are calculated on db2 supports as-
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sociated to each node and compared with the threshold. Supports on

which large coefficients have been detected are refined according to fur-

ther information provided by the Haar Transform. The refinement is

described in terms of new db2 supports, whose head nodes are added

to a temporary grid object. At the end of the loop, the input grid is

filled with all additional nodes corresponding to the new supports.

Computational cost

Due to the use of expandable lists for grid representation and com-

pressed support description, memory occupancy required by WAM is

about 160 bytes per node. The efficient (O(N)) DWT computation

and simple node insertion mechanism allow for negligible refinement

time (typically ranging from some milliseconds to a few seconds) with

respect to the simulation time.

4.7.2 Validation cycle and user interface

A C++ system integration software has been developed, which con-

nects the four blocks of the validation tool in Fig. 4.10, implementing

the automatic solve-refinement cycle and providing a simple user inter-

facing. The program is supported by a set of auxiliary filters, written

in C++ or Python language, which provide file format conversion be-

tween the different tool blocks and flow control. In particular, these

filters include:

• generation of an initial tensor grid, given a boundary domain

description, bounding box (or multiple boxes for separate analysis

of different domain regions) and number of mesh lines in each

direction;

• mutual conversion of the mesh description between the formats

required by the MESH and SOLVE modules;

• extraction of analyzed physical quantities as well as terminal

quantities from simulation results;

• bias condition update during sweep simulations.
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Figure 4.23: Block diagram of the system integration software. The
first two blocks are the only steps requiring user interaction. Light-
blue modules represent the filters that control the solve-refine cycle
and allow interfacing of the heterogeneous blocks MESH, SOLVE, WAM and
VERIFY OBT.

A more detailed block diagram, including these filters, is depicted in

Fig. 4.23. An additional interpolation step is usually required in sweep

simulations to provide a reasonable initial guess when moving between

two successive bias points. Interpolation capabilities of Tecplot [80]

have been used for this purpose.

The described filters have been implemented assuming TetGen and

Sentaurus Device as the MESH and SOLVE modules, respectively. As a

result, the developed software provides a full integration of the vali-

dation tool into the Synopsys TCAD environment, i.e. most of the

tasks, that are required to start the simulation flow, can be performed

by the user exactly in the same way and with the same tools as in

the mentioned environment. These tasks, which are represented by the

Pre-sim. stage block in Fig. 4.23, include:

• device structure and doping definition,
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• simulation flow description.

The basic difference is that the user does not need to define a proper

mesh for the device anymore, thus avoiding one of the most critical

and onerous steps. Instead, the operator must provide the following

informations.

• Structure name and number of desired refinement cycles.

• Device bounding box, or multiple boxes in case different refine-

ment regions are desired. Optionally, the refinement can be en-

abled only for a specified material in each box. Non-refinement

boxes can also be defined, where a fixed tensor grid will be gen-

erated.

• Initial tensorial subdivision of each box.

• Device quantities to be surveyed by the Wavelet analysis and

corresponding thresholds in each direction. Thresholds are given

in relative terms, i.e. as a fraction of the maximum value assumed

by the analyzed quantity.

• An optional flag which disables the mesh quality check procedure.

These informations are interactively required by the program during

the initialization phase (INIT info in Fig. 4.23); alternatively, they

can be specified in an input file. During quasistationary and transient

simulations, the marching step is automatically adjusted according to

the convergence trend.

The modular structure of the described code allows for interchange-

able solvers and meshing engines: to substitute these modules one has

to write different implementations of the filters described above, while

WAM, VERIFY OBT and the structure of the system integration software

remain unchanged.



Chapter 5

Statistical approaches to
variability estimation

The Wavelet-base Adaptive Method described in Chapter 4 is an ex-

ample of the increasing multidisciplinarity which is a general trend in

the evolution of scientific research. WAM borrows a variety of con-

cepts from different scientific fields, including multiresolution analysis,

signal processing, numerical analysis and computer science, and con-

veys them to the development of an auxiliary tool for TCAD to deal

with complex 2D and 3D simulation problems. However, the dimen-

sion of real-world TCAD problems is further increased by enhanced

non-idealities in the manufacturing process of ultra-small devices, re-

sulting in non-deterministic effects. Accounting for process variations is

fundamental in the design of integrated circuits: again, knowledge from

different disciplines, especially statistics in this case, must be exploited

for this purpose. In this Chapter, approaches to estimate the impact

of parameter variations due to line-edge roughness and random dopant

fluctuations will be presented, with particular emphasis on strategies

to deal with the high computational cost of the involved simulations.

The proposed techniques will be applied to study variability issues for

FinFET technology in Part IV, Chapter 7.

97
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5.1 Monte Carlo approach for LER im-

pact evaluation

The most accurate statistical approach to include process variations in

TCAD simulations is the Monte Carlo method, as explained in Sec. 3.2.

This involves evaluating the impact of short-range fluctuations on de-

vice electrical performance through the following general steps:

1. statistical characterization of the considered source of variations;

2. generation of ensembles of device structures preserving the sta-

tistical features determined at the previous step;

3. device simulation and extraction of representative electrical pa-

rameters for variability estimation;

4. statistical characterization of parameter distributions extracted

from simulation results.

In particular, application of this approach to evaluate the impact of

LER on FinFET performance will be considered in this thesis.

5.1.1 Statistical models for LER

Step 1 in the above list involves physical insight on the causes of an-

alyzed variations and often relies on measurements, whose reliability

depends on accuracy of metrological tools and difficulties in measuring

the physical phenomena. To characterize LER, recurring statistical fea-

tures of the roughness in the considered technology must be determined.

This is typically done by extracting and analyzing line-edge waveforms

from micrographs obtained with a scanning electron microscope (SEM)

or atomic force microscope (AFM), though the first method is preferred

because it is faster, easier and does not damage the wafer. LER is of-

ten described through a two-parameter model obtained from the power

spectrum of detected edges. The involved parameters are rms ampli-

tude ∆ and correlation length Λ: the first one represents the standard
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deviation of line-edge fluctuations from a best straight fit, while the sec-

ond one is the largest distance beyond which two points along the edge

can be considered as statistically independent. The two most common

models of this kind assume a Gaussian or exponential autocorrelation

function, resulting in the following power spectra, respectively [57]:

SG(k) =
√

π∆2Λe−(k2Λ2/4) (5.1)

SE(k) =
2∆2Λ

1 + k2Λ2
(5.2)

where

k = i
2π

Ndx
, i = 0, 1, .., N/2 (5.3)

and dx is the discrete spacing between the N edge point samples. Spec-

tral densities associated to these models are shown in Fig. 5.1.

With values for ∆ and Λ as extracted from measurement data, equa-

tions (5.1) and (5.2) can be exploited to generate random rough se-

quences with the aim of modeling LER effects in TCAD simulations.

As explained in [57], this involves introducing random element phases

and creating a symmetric power spectrum array with respect to N/2,

in order to obtain a real-valued LER sequence after inverse Fourier

transform. Sequences resulting from the Gaussian model are smoother

than those associated to the exponential one, whose spectrum includes

a wider range of spatial frequencies (see Fig. 5.1).

5.1.2 Generation of the statistical ensemble

In general, device generation (Step 2 in Sec. 5.1) is the result of either

process simulation or direct structure definition by the operator. Two

important choices are required at this stage, regarding the dimensional-

ity of the simulation domain (1D/2D/3D) and the size of the statistical

ensembles. These two choices determine the final problem dimension

and influence, respectively, accuracy in modeling the physical effect and

confidence on statistical results.

The application described in this thesis does not involve process

simulations because of their high computational cost. Instead, a Mat-

lab program able to automatically generate a geometrical description of
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Figure 5.1: Spectral densities corresponding to the Gaussian and ex-
ponential autocorrelation functions (∆ = 1.5 nm, Λ = 20 nm) typi-
cally used to model LER statistics. The Gaussian model only accounts
for low spatial frequency components, while the exponential includes a
wider spectrum. A zoomed view of low-frequency spectral components
is provided in the inset.

FinFET instances has been implemented. Rough features of individual

devices in an ensemble are obtained in this approach by splitting long

LER sequences produced through the Fourier synthesis technique de-

scribed in Sec. 5.1.1. LER components from the fin, top- and sidewall-

gates have been decoupled in order to compare the impact of individual

contributions. As shown in Fig. 5.2, this also allows for a reduction of

the domain dimensionality in the first two cases, since an approximate

evaluation of fin- and top-gate LER can be carried out through 2D sim-

ulations, whereas fully-3D device structures are mandatory to account
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Figure 5.2: 3D FinFET instance (a) and generated structures with
fin-LER (b), top-gate LER (d) and sidewall-gate LER (c).

for roughness of the sidewall-gates. However, symmetry of the struc-

ture can be exploited to reduce the computational cost in this case, by

simulating only half the domain, as shown in Fig. 5.2(c). This assumes

equal shapes for the two sidewall gates, but simulation results can also

be exploited to predict variability for the full structure in the opposite

situation of totally uncorrelated rough features on the two sides. Dop-

ing profiles have been defined following the gate shape in each device

instance. Adaptive meshing techniques proposed in Chapter 4 could be

exploited to further reduce the computational effort of 3D simulations

by optimizing the mesh size. However, variability estimation could be

affected by numerical noise arising from differences in the meshes of

individual instances. Therefore, a fixed mesh definition has been pre-

ferred to alleviate this inconvenience, assigning the same resolution to

corresponding regions (e.g. channels, source/drain, extensions) of all

FinFET instances.

Finally, the ensemble size has been chosen both based on theoretical

considerations reported in Sec. 5.1.3 and experimentally monitoring the

dependence of statistical results on the number of simulated instances,

as described in Part IV, Chapter 6.
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5.1.3 Choice of representative parameters

Step 3 in Sec. 5.1 involves selecting a minimum set of electrical param-

eters able to characterize the overall device performance over a wide

range of operating conditions. For MOSFETs, focus is generally on

evaluating the mismatch in drain current of nominally identical devices.

To this aim, the most useful parameters are threshold voltage VT and

current factor β [81]; additional parameters can be used to describe

the body effect, subthreshold (IOFF ) and moderate inversion behavior.

VT mismatch accounts for fluctuations in several charge quantities, in-

cluding fixed oxide charges, the depletion charge density (depending on

dopant atoms’ distribution) and threshold adjust implant dose. Vari-

ations in device dimensions and channel mobility are reflected in the

current factor mismatch. Both VT and β also depend on the gate ox-

ide capacitance per unit area and are therefore correlated to each other.

These parameters have been used to evaluate the impact of LER on Fin-

FET electrical performance. The maximum transconductance (gm,max)

method has been used for the extraction of linear threshold voltage and

current factor as β = gm,max/Vds,lin (where Vds,lin = 50 mV); then, sat-

uration threshold voltage VT,sat has been calculated through a constant

current method. On- and off-state currents (ION , IOFF ) have been ex-

tracted in the saturation regime (Vds = 1V) at Vgs = 1V and Vgs = 0V,

respectively.

In addition to DC performance, impact of local fluctuations on the

device transient behavior is often significant. This can be evaluated by

taking into account the Power-Delay Product. The PDP of a single de-

vice, be it a bulk MOSFET or a FinFET, can be calculated through its

equivalent input capacitance Cin, which in turn is estimated by mim-

icking the device with the equivalent circuit of Fig. 5.3, thus computing

the charge flowing through the gate [82]:

Q = CrefVmax ⇒ Cin =
Q

VddW
⇒ PDP = CinV

2
dd (5.4)

In fact, when the gate voltage Vg is raised from 0 V to Vdd, a reference

capacitance Cref is charged up to a voltage Vmax through current I = Ig
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Figure 5.3: Simulated circuit for the estimation of MOSFET/FinFET
PDP through relations (5.4), assuming Cref = 1 fF.

provided by the unity gain current-controlled-current-source. Mixed-

mode simulations yield Vmax and hence the PDP through (5.4).

Further parameters can be used to characterize the performance

of basic circuit blocks. For example, SRAM is considered as a highly

process- and mismatch-sensitive building-block in CMOS circuits, as

well as a useful test vehicle for advanced technologies and device ar-

chitectures [83]. Static-Noise-Margin (SNM), extracted from butterfly

curves as shown in Fig. 5.4, provides a measure of stability and func-

tionality of SRAM cells. Moreover, ∆SNM also defined in Fig. 5.4

is especially suitable for characterizing short-range variations occurring

within a single cell. In majority of the reported work, SNM refers to the

read operation of six-transistor (6T) SRAM bit-cells [83–85]. However,

LER-induced fluctuations in FinFET-based SRAMs have been studied

here by considering the stand-by mode of cell operation: this approach

makes SNM analysis independent of cell-sizing, i.e. all the four tran-

sistors highlighted in Fig. 5.5 are kept minimum sized. Moreover, for

SRAM bit-cell mixed-mode simulations, computational time and com-

plexity are considerably reduced with four transistors instead of six.

The choice of models for device simulation also contributes to de-

termining the overall problem size. In FinFETs, significant quantum

confinement of the carriers is expected because of the small fin width.

The density gradient approach described in Sec. 1.3 has been used to ac-

count for this phenomenon. This approximation was shown to provide
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Figure 5.5: Schematic of a 6T SRAM cell. The highlighted zone corre-
sponds to the relevant circuit in stand-by mode.
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reasonable accuracy when compared to a more rigorous Schrödinger-

Poisson self-consistent solution [59]. Many analog applications rely on

matching pairs operating in the saturation regime: therefore, mismatch

estimation should be particularly accurate at high drain bias conditions.

However, in nanoscale devices the saturation regime is not properly

described by the drift-diffusion model. To improve accuracy, simula-

tions have been performed with the hydrodynamic model introduced in

Sec. 1.2. Mobility degradation due to normal electric field, high-field

velocity saturation and carrier tunneling through the potential barrier

at the source have also been considered. The gate work function has

been calibrated for threshold voltage adjustment.

5.1.4 Statistical analysis of simulation results

The simulation and extraction phases produce distributions of key elec-

trical parameters, whose statistical behavior must be properly modeled

in order to get a meaningful variability estimation at Step 4 of the

approach described in Sec. 5.1. It is reasonable to assume that each

considered parameter P follows a Normal distribution and to express

variability in terms of the average value 〈P 〉 and standard deviation σP .

Accuracy of these estimates depends on the sample size N according

to the following relationships [46]:

σ〈〉 = σasy
P /

√
N , σσ = σasy

P /
√

2N (5.5)

where σ〈〉 and σσ are the standard deviations of 〈P 〉 and σP , respec-

tively, and σasy
P is the “true”, asymptotic value of σP . This means that

as many as 200 samples are needed, for instance, to bound the un-

certainty σσ within 5% of σasy
P . However, some strategies described in

Sec. 5.2 can be exploited at this stage to improve efficiency, accuracy

or informative content of the variability estimation approach.

Finally, it is worth highlighting that informations from Step 4 can

be used at higher levels of the simulation hierarchy to evaluate the

impact of local fluctuations on the overall IC performance.
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5.2 Techniques to improve the efficiency-

accuracy trade-off

Direct statistical estimation of variability involves a further dimension

increase represented by the ensemble size. This is often extremely ex-

pensive from a computational standpoint and hence techniques are

needed, which can provide as accurate as possible statistical results

from a limited number of simulations. Reported in this Section are

some observations that can help tackling the outlined problem.

5.2.1 Mismatch Evaluation

As stated above, the impact of local variations on device performance is

usually estimated in terms of mismatch between two nominally identical

devices. Typical quantities of interest are the mismatch in threshold

voltage and current factor, the latter often normalized to its average

value to measure relative variations:

∆VT = VT1 − VT2 ,
∆β

〈β〉 = 2
β1 − β2

β1 + β2

(5.6)

where 1 and 2 are the indices of the two considered devices. To evaluate

statistics σ[∆VT ] and σ[∆β/〈β〉], two distributions of devices should be

simulated, each one generated according to the statistical features of the

considered source of mismatch. Following (5.5), this implies doubling

the number of simulations to achieve the same amount of confidence

on variability estimation for the difference parameter. However, if the

two distributions are independent from each other, they will be char-

acterized by the same statistical average µ[·] and standard deviation

σ[·], which allows to estimate mismatch by simulating one distribution

only [ted07, nova]:

σ[∆VT ] '
√

2σ[VT ] , σ

[
∆β

〈β〉

]
'
√

2σ[β]

µ[β]
(5.7)

When characterizing stochastic mismatch, it is important to take

into account area dependence. Intuitively, local fluctuations must be-

come larger as the involved area decreases, since they are related to
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discreteness of charge and matter. The most widely used model to

quantitatively describe this area dependence is the one proposed by

Pelgrom et al. [86], although several corrections have been proposed

for deep submicron (DSM) technologies (see for example [87]). In this

model, the following relationship describes the mismatch in parameter

P between two identically drawn devices with nominal dimensions W ,

L and whose centers’ distance on the wafer is d:

σ2[∆P ] =
A2

P

WL
+ S2

P d (5.8)

where AP and SP are the fitting parameters for the area- and distance-

dependent terms, respectively. Usually, statistical simulations do not

allow accounting for the second term in (5.8), which models long-range

and often systematic variations. Instead, mismatch for a certain tech-

nology is characterized by estimating AP through linear regression of

σ[∆P ] vs. 1/
√

WL data extracted from simulations of several device

geometries (which implies a big computational effort). However, since

the linear regression must be forced to intercept the origin for physi-

cal reasons (stochastic mismatch of two paired transistors converges to

zero as they become infinitely large), a reasonable estimation of AP can

be provided by two additional points only, i.e. simulating two device

geometries should be sufficient.

5.2.2 The Half-Normal Statistics

As scaling proceeds, the absolute value of device geometric and electri-

cal parameters tends to become smaller and smaller, while local varia-

tions are enhanced. Since certain parameters must be strictly positive

for physical reasons, the corresponding distributions are expected to

exhibit asymmetries between the left and right tail, because the first

one is bounded by zero. In other words, deviations from the Gaussian

behavior are expected, resulting in “deformed bell-shaped” histograms

with different decays at the two sides of the peak value, which now

corresponds to the statistical mode rather than the average.

In such cases, a more appropriate fit than the Normal one can be

provided by Half-Normal statistics [ted07, nova]. In this approach, µ is
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calculated as the mode and two separate Gaussian fits are provided for

the left and right parts of the distribution, ensuring a smooth joint at

µ. The left and right Half-Normals are characterized by two different

standard deviation values σL and σR. These can be combined to re-

map the asymmetric Half-Normal fitting into an equivalent Normal

distribution with standard deviation:

σ =

√
σLσR +

(
1− 2

π

)
(σL − σR)2 (5.9)

The described approach allows for a more accurate modeling of

asymmetric distributions, ending up with an equivalent estimation of

mismatch in terms of the conventional standard deviation parameter.

As an example, the Half-Normal fitting has been applied to a distri-

bution of current factor values resulting from the simulation of 85 3D

structures of the kind shown in Fig. 5.2(b), used to investigate the

impact of sidewall-gate LER on FinFET matching. Although the zero-

bound is not yet a severe limitation for the considered technology, asym-

metries in the distribution are observed, which are correctly captured

by the Half-Normal model, as shown in Fig. 5.6. This approach could

become indispensable for analyzing future technologies.

5.2.3 Exploiting Correlations

Finally, correlations are another fundamental topic in statistical analy-

sis. Local variations affect the device structure (e.g. geometry, doping,

etc.). In turn, this determines fluctuations of the electrical performance:

therefore it is reasonable to expect correlations between structural (x)

and electrical (p) parameters. For example, x could be the average

size of a printed device feature subject to line-edge roughness, or the

number/position of some dopant atoms in the channel, while p could

be the corresponding threshold voltage or current factor. Investigation

of such correlations can lead to three main achievements:

1. a better physical insight of how variations affect the device be-

havior;
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Figure 5.6: Histogram of current factor distribution for 85 3D FinFET
structures affected by sidewall-gate LER (see Fig. 5.2(b)). The Half-
Normal fitting is also shown; peak position µ as well as left and right
standard deviations (σL, σR) are indicated.

2. inclusion of variation effects into compact models, thus allowing

to evaluate their impact at higher complexity levels of IC design

and to increase the predictive power of TCAD;

3. reduce computational cost of further statistical simulations.

Only the latter point will be considered here since the focus of this

Section is on general methodologies to improve the efficiency-accuracy

trade-off. The other advantages of correlation analysis are strictly

application-dependent and will be discussed while illustrating simu-

lation results in Part IV, Chapter 7.

Suppose a linear correlation is observed between some structural

parameter x and a certain electrical parameter p for a given ensemble,

as shown in Fig. 5.7. This suggests a simple way to achieve a faster

estimation of variability from very few simulation data [tnano, nova].

The general approach consists of three steps:

a) statistical analysis of structural distribution x;
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Figure 5.7: Example of linear correlation between structural and elec-
trical parameters in a statistical ensemble of microscopically different
devices.

b) select a small number of significative instances for device simula-

tion;

c) use data from previous steps to estimate statistics of electrical

parameter p.

If device instances do not result from process simulation but are

generated by direct structure definition, this procedure can be usually

automatized and hence the generation phase is very quick. In this

case a large number of samples can be created and a simple Normal

fit can be used to describe the structural distribution. Corresponding

standard deviation σ[x] as well as extremes (“corners”) xm = min(x)

and xM = max(x) are calculated at step a), as depicted in Fig. 5.8.

Simulation of “corner” devices at step b) provides electrical parameters

pL and pR and electrical variability (step c)) can be approximately

estimated as:

σ[p] '
∣∣∣∣
pR − pL

xM − xm

∣∣∣∣ σ[x] (5.10)
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Figure 5.8: Normal fitting of structural distribution x.

This approach is extremely simple and efficient: although the whole

ensemble of devices is needed to calculate σ[x], only two samples have

to be simulated.

However, eq. (5.10) provides quite a rough estimation in cases when

the actual distribution of electrical parameter p exhibits strong outliers,

i.e. simulation data strongly deviating from the linear trend. Estima-

tion through (5.10) is affected by these outliers when they are located

at the distribution tails. Accuracy can be improved by taking as “cor-

ners” the devices next to the extremes when convenient, as illustrated

in Fig. 5.9. Naming these samples as 2, N − 1 and the extremes as

1, N , the problem is how to select the suitable couple of instances a-

priori, i.e. without simulating the full ensemble. A simple algorithm

has been developed to automatically perform the best choice for a given

test case:

• the four candidate “corner” devices 1, 2, N −1, N are simulated;

• two estimates σ1[p] and σ2[p] are calculated through (5.10), using



112 Statistical approaches to variability estimation

4 6 8 10 12 14 16 18

300

350

400

450

500

x

p
full ensemble
corners Method 1
corners Method 2

Method 1: estimation error = 33.8%
Method 2: estimation error = 8.1%

Figure 5.9: Variability estimation of p exploiting correlation to x. Er-
rors in σ values estimated through samples 1, N (“Method 1”) and
2, N − 1 (“Method 2”) w.r.t. the value extracted from the full ensem-
ble are also reported.

samples 1, N (“Method 1”) and 2, N − 1 (“Method 2”), respec-

tively;

• the best estimation σopt is selected as the maximum or minimum

between the two computed values according to a threshold T .

If σ1[p] and σ2[p] are “not too different” from each other (i.e. rela-

tive difference less than T ), then the actual distribution should not be

affected by strong outliers. In this case, the maximum between the

two standard deviation values is chosen as it provides a worst-case es-

timate. On the other hand, a large relative difference between the two

results is a symptom of outliers, which will probably affect the largest

σ. Therefore, the minimum between σ1[p] and σ2[p] is retained in this

case. The threshold sets an upper bound to the tolerable difference

in the estimations provided by “Method 1” and “Method 2” for dis-

tributions without significant outliers. Once σ[p] has been calculated,
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mismatch can be estimated through relations (5.7).

Exploiting correlations is very convenient from the computational

standpoint since it allows estimating variability from only 4 simulations

instead of N , with an efficiency improvement of two orders of magni-

tude for N = O(102). On the other hand, this method involves some

inevitable loss of accuracy due to the accumulation of several approx-

imation errors, so the choice between the proposed algorithm and the

full statistical approach depends on the acceptable trade-off between

accuracy and computational cost.

5.3 Noise analysis for RD investigation

The most accurate technique to evaluate the impact of random dopant

fluctuations is again the direct Monte Carlo approach. This involves

simulating several device instances with different dopant distributions:

the number and position of impurity atoms in each structure should be

determined based on accurate statistical models of the ion-implantation

process, as mentioned in Sec. 3.1. The classical doping description in

terms of continuous profiles is therefore substituted by a more sophisti-

cated representation accounting for charge discreteness. However, simu-

lation of such devices cannot be tackled with standard solvers. Instead,

ad hoc “atomistic” simulators are required for this purpose [44–46].

Due to unavailability of such tools, an alternative technique has

been adopted here, based on noise analysis [9, 47, 48]. In this ap-

proach, fluctuations of contact voltages are computed as a response

to a small perturbation of the doping concentration. The impedance

field method [48] is applied for this purpose, using Green’s functions

to calculate the circuit response. This involves a linearization of device

equations under the assumptions of small enough doping fluctuations

and statistical independence of discrete dopant atoms. The noise analy-

sis is performed in the frequency domain and the simulator [9] computes

noise voltage spectral densities at selected circuit nodes, assuming the

current flowing through them to be fixed. However, since RD is actu-

ally a static phenomenon, these outputs correspond to variances and
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correlation coefficients.

5.3.1 Variability estimation technique

To evaluate RD-induced variability in FinFETs, the following linearized

system is considered:
{

Vd = V
(0)
d + vd

Vg = V (0)
g + vg

,

{
Id = I

(0)
d + id

Ig = I(0)
g + ig

(5.11)

In (5.11), the superscript (0) indicates the fixed operating point, d

and g are the drain and gate nodes, and the small voltage and current

signals (vx, ix) are the sum of perturbations (δvx, δix) induced by dopant

fluctuations and corresponding circuit responses (v(s)
x , i(s)x ) which allow

satisfying boundary conditions:
{

vx = δvx + v(s)
x

ix = δix + i(s)x

, x = {d, g} (5.12)

Under the assumption of linearity, the admittance matrix formalism

can be used for these responses:
(

i
(s)
d

i(s)g

)
=

(
Ydd Ydg

Ygd Ygg

) (
v

(s)
d

v(s)
g

)
(5.13)

Gate voltage fluctuations are evaluated by prescribing a fixed voltage

and current at the drain port (vd = 0, id = 0). Moreover, half the

RD-induced fluctuations must be prescribed in order to get a unique

solution: the choice is to set all current fluctuations to zero (δid = 0).

This yields: 



v
(s)
d = −δvd

v(s)
g = Ydd

Ydg
δvd

(5.14)

Statistics is then applied, with the assumption of zero-mean fluctuations

of the doping concentration, i.e. 〈C〉 = 0, which also implies 〈vx〉 = 0

in the linearized regime. Therefore, the standard deviation of the gate

voltage is σ[Vg] =
√
〈v2

g〉. Exploiting (5.12) and (5.14), this results in:

σ[Vg] =

√√√√Sgg
V + 2

Ydd

Ydg

Sgd
V +

Y 2
dd

Y 2
dg

Sdd
V (5.15)
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Eq. (5.15) allows computing random-dopant-induced gate voltage fluc-

tuations directly in terms of variances and correlation coefficients pro-

vided by the solver:

Sxx
V = 〈(δvx)

2〉 , Sxy
V = 〈δvxδvy〉 (5.16)

By assuming drain as the only port instead, Id fluctuations can be

computed by simply converting the noise voltage spectrum provided

by the solver into a noise current spectrum through the admittance

matrix:

σ[Id] =
√

YddSdd
V Y ∗

dd (5.17)

Equations (5.15) and (5.17) [snw07, tnano] will be used to compute

fluctuations of FinFET threshold voltage and on-current, respectively,

including models that describe the impact of RD on mobility [9].

Although not as rigorous as an atomistic approach, the impedance

field method was shown to provide meaningful results: in literature,

this method was tested down to 100 nm gate lengths [48], but simi-

lar perturbation approaches were applied to calculate VT fluctuations

of ultra-small devices featuring 50 nm [88, 89] and down to 25 nm

channel lengths [49]. Validation versus Monte Carlo simulations was

performed in these papers. Remarkable advantages of the adopted tech-

nique are computational efficiency and applicability to the same mesh

and device models used for other simulations. Therefore, it allows for a

direct comparison of random dopant fluctuations and line-edge rough-

ness contributions to FinFET variability, as will be shown in Part IV,

Chapter 7.
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“It is the mark of an educated mind
to rest satisfied with the degree of precision

which the nature of the subject admits
and not to seek exactness

where only an approximation is possible.”

Aristotle

Adaptive meshing approaches as well as variability estimation tech-

niques help with tackling multidimensional TCAD problems which model

complex real-world applications. An accurate yet efficient discrete rep-

resentation of the internal device behavior is essential to achieving the

desired physical insight in TCAD simulations. This allows analyzing

and improving current technology as well as designing new device gen-

erations and alternative architectures. A statistical approach to TCAD

is especially needed when predictive simulations of ultra-small devices

subject to significant process variations are performed.

Representative applications of the techniques described in Part III

will now be illustrated. In Chapter 6, the Wavelet-based Adaptive

Method for mesh refinement will be tested on a set of device structures

including challenging geometries, in order to evaluate effectiveness and

performance of the proposed approach. Variability estimation tech-

niques will be applied in Chapter 7 to assess feasibility of FinFET as

an alternative device architecture for technology nodes of immediate

interest.
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Chapter 6

Accurate physical insight
through adaptive meshing

A set of significative 2D and 3D device geometries has been chosen

to validate the WAM algorithm described in Chapter. 4. The test set

includes both simple structures used to monitor the behavior of the

proposed approach and complicated geometries that challenge its ca-

pabilities and effectiveness when dealing with more realistic situations.

In all cases, drift-diffusion simulations have been performed including

SRH recombination, Masetti, Canali and Lombardi models for mobility

as well as avalanche generation when appropriate (see Sec. 1.1). Im-

pact of the mesh quality check, threshold choice and other numerical

aspects have been studied. To evaluate the accuracy of WAM-based

simulation results, reference meshes have been manually constructed,

imposing very small grid spacings in all potentially relevant domain

regions for the considered applications.

6.1 2D simulations

Several simulations have been performed to validate the 2D refinement

algorithm presented in Sec. 4.5.3 [essderc05, sse06]. Reported here are

results related to a power diode and to a 0.18µm n-channel MOS tran-

sistor, represented in Figs. 6.1(a) and (b), respectively. The geometry

and doping of these devices are described in Table 6.1. In all test cases,

121
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(a) (b)

Figure 6.1: Simulated 2D diode (a) and MOSFET (b).

p-n junction MOSFET

Sim. area = 100µm×100µm Sim. area = 1µm×1µm
Lg = 0.18µm
tox = 4nm

ND,peak = 5× 1019cm−3 ND,peak = 5× 1018cm−3

NA,peak = 5× 1019cm−3 NA = 3× 1015cm−3

Table 6.1: Simulated 2D diode and MOSFET: device description.

“blind” input grids, i.e. coarse uniform grids of about 50 points, are

provided by the user and up to 7 refinement cycles are performed to ob-

tain the final grids. Wavelet analysis is performed on the electrostatic

potential ψ and carrier concentrations n, p.

Fig. 6.2 shows the simulated IV characteristics of the power diode

in both forward and reverse bias. A doping profile with curved junction

has been chosen to evaluate the anisotropic capabilities of the refine-

ment algorithm. WAM data in Fig. 6.2 have been obtained through a

dynamical mesh adaptation at each bias step according to the scheme

in Fig. 4.23 , Sec. 4.7.2, resulting in grid sizes of 1, 000 to 2, 300 points

from forward to reverse bias. Simulation results show a good accuracy

of the adaptive scheme when compared to a reference fixed mesh with
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Figure 6.2: Comparison of I-V curves for the simulated 2D silicon p-
n diode with curved junction. The WAM refinement provides a good
match with reference characteristics when combined with the obtuse
triangle correction: this step is essential to ensure accuracy and even
to achieve convergence in the reverse bias.

10, 000 vertices, while providing a considerable saving in the number of

points and preserving the characteristics smoothness within the whole

interval of considered anode voltages Va. It is worth noticing that the

obtuse triangle correction described in Sec. 4.6.1 is essential to simula-

tion accuracy. A poor match with reference results is observed in the

forward bias when the VERIFY OBT module is disabled (see Fig. 6.2);

in the reverse bias, even convergence is definitely compromised in such

case. Two of the meshes generated by the automatic algorithm at differ-

ent bias steps of the breakdown simulation are reported in Figs. 6.3(a)

and (b). Different refinement levels are clearly visible within the do-

main. Resolution is especially increased in space charge regions, i.e.

where interesting phenomena occur. Spatial variations of these regions

due to bias changes are correctly tracked, as can be seen by comparing
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(a) Va = −5V

(b) Va = −200V

Figure 6.3: WAM meshes for a 2D p-n junction breakdown simulation.

the considered meshes.

The Wavelet-based refinement strategy has been also successfully
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Figure 6.4: nMOSFET Id(Vds) characteristics (Vgs = 0.7V , Vgs =
1.3V ). “ref. a” and “ref b” are the results obtained with two refer-
ence fixed meshes (5,000 and 10,000 points, respectively), while WAM
data have been produced by the dynamical mesh adaptation (about
1,600 to 1,900 nodes).

tested on MOSFET structures, both in case of transcharacteristic and

output characteristic simulations. An example is provided by the Id(Vds)

curves shown in Fig. 6.4 for an n-channel device. Even in this case the

automatic grid adaptation provides a reasonable accuracy when com-

pared to reference static meshes, while strongly reducing the grid size

(about 1,600 to 1,900 nodes vs. 5,000 and 10,000 points for “ref. a” and

“ref b”, respectively). Finally, Figs. 6.5(a) and (b) report two differ-

ent meshes generated with WAM during one of the sweep simulations

described above, in the linear and avalanche regime, respectively. It is

important to notice:

• how the adaptive strategy accurately meshes the regions which

have stringent requirements for impact ionization current calcu-

lation,



126 Accurate physical insight through adaptive meshing

0 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

source gate drain

(a) Vds = 0.7V , 1689 grid points

0 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

source gate drain

(b) Vds = 3.4V , 1875 grid points

Figure 6.5: nMOSFET Id(Vds) simulation with Vgs = 1.3V .
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• the total absence of obtuse triangles,

• the smooth grading of mesh elements.

These examples highlight the efficiency of the Wavelet-based algo-

rithm in terms of both grid size (about 20% lower than data reported

in [30] for MOSFET avalanche simulation) and time saving, particularly

with respect to a non-automated simulation flow, in which a skilled user

has to define a fixed grid with a considerably larger number of nodes in

order to ensure accuracy throughout sweep simulations. This is even

more relevant in three dimensions, as shown in the next Section.

6.2 3D simulations

Three-dimensional test devices including diodes, power nMOS drivers

with different geometries and a FinFET structure have been simulated

using the modified 3D WAM algorithm described in Sec. 4.5.4 [sispad06,

tcad07]. Sample meshes produced by this algorithm for the considered

structures are reported in Fig. 6.6.

The p-n diode in Fig. 6.6(a) provides a simple but useful test case

to highlight the 3D anisotropic capabilities of WAM, evaluating effec-

tiveness of strategy improvements described in Sec. 4.5.4. To this aim,

Fig. 6.7 shows details of the meshes produced by (a) an isotropic refine-

ment of Wavelet supports, (b) the naive 3D extension of the algorithm

presented in Sec. 4.5.3, and (c) the modified 3D approach, using the

same threshold on Wavelet coefficients. The isotropic refinement is

clearly impractical, especially for 3D domains, while both anisotropic

strategies correctly follow the junction shape, increasing the resolution

in the required directions, with smooth transitions along the profile cor-

ners. However, the improved algorithm ensures better selectivity prop-

erties, accurately capturing domain regions where the relevant physical

phenomena take place and allowing for a considerable saving in the

number of mesh points.

Fig. 6.8 shows impact of the three refinement strategies on mesh size

for devices (a), (b) and (d) in Fig. 6.6 as a function of the Wavelet anal-
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Figure 6.6: 3D WAM anisotropic refinement of four different devices:
(a) a 3D p-n diode, (b) and (c) power nMOS drivers, and (d) a FinFET
device.

ysis level. Infeasibility of the isotropic approach is confirmed by these

graphs, which also show an average reduction in the number of grid

points by about 40% with the improved strategy, while no significant

loss of accuracy in contact current was observed.

Figs. 6.6(b) and (c) show the meshes for two different n-channel

MOSFET drivers; these device structures were selected to test the re-

finer behavior when dealing with complex geometries and several-tens-

of-microns-large domains. Such figures illustrate the good selectivity

and quality features of WAM meshes, which are also evident from the

magnified view of Fig. 6.9.

Even in the 3D case, WAM allows for a dynamical grid adaptation

at each bias step during sweep simulations, including both refinement

and coarsening. As illustrated in Fig. 6.10, WAM-based calculated val-

ues show a good match with those obtained by using a reference fixed

mesh, while the computational cost of adaptive simulations is signifi-

cantly reduced by the smaller grid size. As in the 2D case, no numerical

artifacts are seen in the I-V curves, i.e. smoothness is ensured. Exam-
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Figure 6.7: Mesh refinement of the p-n junction shown in Fig. 6.6(a)
through (a) an isotropic approach, (b) the naive 3D extension of the
WAM technique described in Sec. 4.5.3, and (c) the modified 3D WAM
approach presented in Sec. 4.5.4. The same value of threshold η on
Wavelet coefficients has been used in all three cases.
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Figure 6.9: Magnified view of mesh details for the MOSFET driver in
Fig. 6.6(b). Here, electron current density resulting from a simulation
step at V gs = 1.3V , V ds = 1.78V is displayed.
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ples of dynamical mesh adaptation are shown in Fig. 6.11.

Finally, some 3D simulation results related to the FinFET device in

Fig. 6.6(d) are discussed. The device geometry is as follows: fin length

LFIN = 70 nm, fin height HFIN = 40 nm, fin width WFIN = 20 nm,

gate length LG = 35 nm, oxide thickness TOX = 2 nm. The doping

profiles are assumed to be abrupt. No process variations are consid-

ered here despite the small device size: the impact of non-idealities on

similar architectures will be analyzed in Chapter 7. Due to the device

symmetry along the current-flow direction, only the halved structure

was simulated. The test example starts with an initial coarse grid of

about 2, 400 points. Due to domain complexity, here three refinement

boxes, corresponding to the fin, source and drain regions, are defined
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Figure 6.11: Meshes produced by WAM during the sweep simulation
reported in Fig. 6.10: (a) V a = −7.375V , (b) V a = 0.1V .

at the INIT info step of the simulation flow (see Fig. 4.23). After

the initialization phase, the solve-refinement loop goes on without any

further control from the operator. In the considered test case, up to

6 refinement cycles have been performed, resulting in meshes similar

to those of Fig. 6.12 and Fig. 6.13: as expected, most grid points are

located where relevant physical quantities undergo sharp variations, i.e.

in the channel regions. In particular, the refinement strategy correctly

captures the anisotropic nature of the device, imposing a finer spac-

ing in the direction perpendicular to the channel. The accuracy of

WAM-generated meshes in comparison with reference discretizations is

further confirmed by the Id-V gs curve reported in Fig. 6.14.

6.3 Mesh quality

The quality check module plays an essential role in simulation results

presented so far. Complete absence of obtuse angles and smooth grad-

ing of element sizes are clear benefits produced by the VERIFY OBT

module in all 2D meshes reported in Sec. 6.1. Nicely shaped and

well graded elements are also qualitatively visible in 3D meshes (see
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Sec. 6.2). In addition, improvement of the mesh smoothness due to the

3D correction algorithm has been quantitatively evaluated in terms of

volume ratio of adjacent elements and vertex connectivity (number of

elements with a given common vertex). The maximum value of these

figures of merit is significantly reduced by the correction procedure, as

illustrated in Fig. 6.15. In turn, mesh quality improvement is largely

beneficial to convergence and accuracy of the solver: masking of the

verification routine was seen to cause large errors in contact current

and even convergence failure at critical bias conditions in both 2D (see

Fig. 6.2) and 3D simulations.

Moreover, in complicated geometries such as the FinFET in Fig.

6.6(d), correction of the badly-shaped elements also provides coherence

between the refined silicon domain and surrounding oxide and nitride

regions, ensuring global quality of the mesh: again, this has a relevant

impact on solver convergence.
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6.4 Numerical considerations

The effectiveness of WAM approach is influenced by the choice of the

threshold η which discriminates relevant Wavelet coefficients. The im-

pact of such a choice can be evaluated by comparing WAM-based results

with a reference solution through a suitable relative error, defined on a

considered quantity Q (e.g. drain current or electric field) as

er =
‖Qη −Qref‖2

‖Qref‖2

where Qref and Qη are the quantities computed on the reference grid

and on the adaptive grid obtained with threshold η, respectively. As an

example, Fig. 6.16 shows the relative error er on drain current Id, cal-

culated at various refinement levels, versus the number of grid points,

for different thresholds but fixed bias conditions. The error was calcu-

lated with respect to the solution obtained with an extremely refined

reference mesh for the 2D MOSFET considered in Sec. 6.1. The higher
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tively. Threshold values are given in relative terms (see Sec. 4.7.2).

the threshold, the smaller the mesh size, and therefore the lower the

computational cost. However, very high thresholds lead to an unbear-

able accuracy degradation. Similar results have been obtained in the

3D case, as shown in Fig. 6.17(a) for the p-n diode discussed in Sec. 6.2.

Again, a good choice allows for a great saving in the number of nodes,

while providing the same degree of accuracy, as clearly visible from

Fig. 6.17(b). The same trend is observed at all the successive levels of

the Wavelet analysis, thus allowing to perform the threshold selection

at the first level, when the mesh size is still very small. Fig. 6.17(b) also

provides an estimate of decrease in the discretization error as an effect

of the regularity-estimation-based resolution increase. As far as the

dependence on bias conditions is concerned, it has been verified that

keeping the threshold value tied to the applied voltage allows control-

ling the accuracy-efficiency trade-off throughout the simulation sweep.

Moreover, a gradual evolution of the mesh is produced by the dy-
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and accuracy (b) for a 3D p-n diode simulation (η1 < η2 < η3). An
extremely refined reference mesh was used to compute errors.

namical adaptation strategy in combination with the mesh quality con-

trol, i.e. no strong changes in node number/location are seen between

the computational grids associated to two consecutive bias steps. The

maximum resolution is also fixed throughout the simulation, as ex-

plained in Sec. 4.5.5. The combination of these features leads to the

following advantages.

a) Solution recomputation on the adapted grid is not a very chal-

lenging issue.

b) Simulations exhibit good convergence trends: extensive numer-

ical tests suggest that convergence is generally reached without

the need to implement onerous tasks (such as the nonlinear node

block Jacobi iteration or homotopy techniques [9]), even for nu-

merically challenging problems such as breakdown or snap-back

simulations.

c) Smooth and physically meaningful I-V curves are obtained, as

shown in the previous Sections, whereas a common drawback
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of several adaptive strategies is the presence of numerical arti-

facts such as abrupt variations between successive bias points

(see Sec. 2.3).

Finally, due to the fast algorithms which calculate the discrete trans-

form and the limited memory occupancy required by the refinement

routine (see Sec. 4.7.1), the use of Wavelet coefficients for grid adapta-

tion is computationally favorable: in all performed tests, the amount

of time consumed by the WAM module (see Fig. 4.23) was at least two

orders of magnitude lower than simulation time. The Wavelet-based

Adaptive Method is therefore an effective technique to deal with the in-

creasing complexity and dimensionality of TCAD problems: it exhibits

a remarkable efficiency when compared to other automatic adaptation

strategies proposed in literature [25, 34, 90] and it relieves the user from

a difficult and time-consuming task.



Chapter 7

Impact of variability on
future technology
generations

The fundamental importance of TCAD in the development of new tech-

nology generations is related to its predictive capabilities. These are

essential to evaluate effectiveness of innovative materials and process

options and performance of new device structures. However, feasibility

of these innovations is increasingly opposed by enhanced process varia-

tions, which must be properly accounted for. Statistical approaches to

handle variability at a reasonable computational cost in TCAD simu-

lations have been discussed in Chapter. 5. These techniques will now

be applied to evaluate potentialities, matching performance and scal-

ability of a promising alternative to bulk CMOS technology, i.e. the

FinFET architecture illustrated in the Introduction. Line-edge rough-

ness and random dopant fluctuation issues will be investigated for this

device, taking into account the impact of several process options, such

as fin patterning and doping profiles [iedm06, ted07, snw07, tnano].

FinFET-based SRAM circuits will also be studied to assess variability

requirements for mainstream applications of the considered technology.

Simulations illustrated in this Chapter have been performed with a hy-

drodynamic model including density-gradient approximation for quan-

tum confinement, as explained in Sec. 5.1.3, where the extraction proce-

dure for representative electrical parameters is also described. Mobility

139
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Wfin Lgate tox

25 nm 60 nm 1.5 nm
19 nm 45 nm 1.5 nm
17 nm 40 nm 1.5 nm
12 nm 30 nm 1.5 nm

Table 7.1: Simulated device geometries (Wfin ' 0.42× Lgate)

degradation due to normal electric field, high-field velocity saturation

and carrier tunneling through the potential barrier at the source have

also been considered.

7.1 Impact of LER on FinFET scaling in

RDF and SDF technologies

Four different FinFET geometries have been considered to study how

line-edge roughness affects scalability of this architecture. Dimensions

of the simulated n-channel devices are reported in Table 7.1. These

FinFETs are ideal except for the random fin-/gate-LER; in particular,

ideal box-shaped doping profiles have been used. Simulations have been

performed on lightly doped fins (1015 cm−3) by adjusting the threshold

voltage with a gate work function of 4.62 eV.

In FinFET flows, Si fins are commonly patterned using conven-

tional resist-based processes: this results in random uncorrelated rough-

ness on the fin sidewalls. However, an alternative to resist-defined fin

(RDF) patterning has been proposed [91], which is based on the use of

dummy spacers and achieves higher fin density as compared to RDF.

From the LER standpoint, this patterning process results in an ideally

in-phase correlation between the edges of spacer-defined fins (SDF).

Fig. 7.1 [iedm06] shows top-down SEM images of resist- and spacer-

defined fins.

In this study, LER has been generated through a Gaussian auto-

correlation function with rms amplitude ∆ = 1.5 nm and correlation

length Λ = 20 nm (see Secs. 5.1.1 and 5.1.2). Values for the statisti-
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Figure 7.1: SEM image of a Si-fin with (a) uncorrelated and (b) corre-
lated LERs, corresponding to resist- and spacer-defined fin patterning,
respectively (IMEC data).

Figure 7.2: Line-width roughness (LWR) measurements for resist- and
spacer-defined fins (IMEC data).

cal parameters have been chosen based on experimental measurements

reported in Fig. 7.2 [iedm06]1.

Impact of LER contributions from the fin and top-gate of devices

in Table 7.1 has been estimated by simulating each component sepa-

rately. A 2D approximation was judged to be sufficient for the purpose

of this Section. RDF and SDF technologies have been compared by

assuming an ideal in-phase correlation for the latter case, whereas the

1Correlation lengths suggested by these measurements are higher than 20 nm.
However, extraction of such parameter is a difficult task: the chosen value is within
the typical range of 10-50 nm reported in literature [52].
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Figure 7.3: Instances of simulated FinFETs affected by fin-LER with-
out (a) and with (b) phase correlation and by gate-LER (c). Nominal
device dimensions are Wfin = 25 nm, Lgate = 60 nm.

fin edges are completely uncorrelated when resist patterning is consid-

ered: Figs. 7.3(a) and (b) show instances of the simulated devices in

these two cases, respectively. Instead of fin-LER, an uncorrelated ran-

dom gate-LER is applied to the device structure shown in Fig. 7.3(c).

A statistical analysis of threshold voltage and current factor mismatch

has been performed, using eq. (5.7), on ensembles of 200 devices to

assess relative importance of the three cases considered in Fig. 7.3.

Normal and Half-Normal statistics (see Sec. 5.2.2) have been compared

and found to provide similar results. Therefore, a simple Normal fit has

been applied to all distributions analyzed in this Chapter. Results of

the considered case study are plotted in Fig. 7.4. The mismatch intro-

duced by fin-LER with in-phase correlation is found to be much lower

with respect to other contributions, which indicates SDF patterning as

a promising technique to alleviate LER issues in FinFETs. When RDF

technology is considered instead, the impact of fin-LER on matching

performance is as significant as that of top-gate-LER. The overall mis-

match due to line-edge roughness tends to increase rapidly at and below
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45 nm gate length, especially for the current factor in Fig. 7.4, unless

SDF technology is used to alleviate the problem. Intrinsic Transistor

Performance (ITP) data resulting from the same simulations are plot-

ted in Fig. 7.5: RDF-LER is seen to cause spread mainly in off-current,

while top-gate-LER affects on-current more.

The FinFET matching performance discussed so far included only

low spatial frequency components of LER through the Gaussian au-

tocorrelation function, as explained in Sec. 5.1.1. Results obtained

through this model are compared with those provided by the expo-

nential autocorrelation LER model in Fig. 7.6. In addition to low fre-

quency, exponential LER sequences include high frequency components

too. However, while using this model for gate-LER, junction profile

smoothening due to dopant diffusion must be considered. It can be seen

from Fig. 7.6 that the two models mostly provide very similar results,
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with the only exception of the current factor mismatch when fin-LER is

considered. However, in practice, surface smoothening processes using

H2 anneal in FinFET flows generally tend to suppress high frequency

components of the fin-LER [92]. The absence of a visible degradation

in the case of the exponential model in Fig. 7.6 indicates that the main

contribution to mismatch comes from low frequency roughness. This

fact can be explained in the following way: high frequency roughness

components correspond to many peaks and valleys within the single de-

vice, resulting in a larger statistical ensemble of LER noise and hence

in smaller deviations from the average electrical parameters with re-

spect to low frequency LER, as also reported in [56] for planar bulk

technology. The Gaussian model therefore provides sufficient accuracy

for investigating the impact of LER on FinFET matching performance

and will be used for all further simulations.

7.2 Impact of LER on LSTP-32 nm Fin-

FET technology

As the influence of line-edge roughness has been predicted to become

particularly severe for resist-defined fin devices with gate lengths smaller

than 45 nm, a more accurate analysis has been performed on an ag-

gressively scaled FinFET geometry. In order to conform to ITRS-ITP

specifications for the LSTP-32 nm node, these devices are designed

with nominal parameters as shown in Table 7.2 [5, 93], where Nch and

Nhdd are the channel and source/drain doping concentrations, while

Next,n and Next,p represent the extension concentrations for n- and p-

type devices, respectively. These doping parameters correspond to more

realistic profiles with respect to those simulated in Sec. 7.1. In particu-

lare, lower peak concentrations and less abrupt junctions are considered

here, resulting in increased S/D resistances. Previously used and new

S/D profiles are shown in Fig. 7.7 for n-channel devices.
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Geometry Doping Electrical parameters

Lgate = 30 nm Nch = 1× 1015cm−3 ION = 750 µA/µm
Wfin = 10 nm Nhdd = 1× 1020cm−3 IOFF = 10 pA/µm
Hfin = 50 nm Next,n = 5× 1018cm−3 VT,sat = 0.36 V
tox = 1.2 nm Next,p = 2× 1019cm−3 SSlope = 69 mV/dec.

Table 7.2: LSTP-32 nm FinFET specifications
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Figure 7.7: Doping profiles of the simulated n-type device (solid lines)
compared with those considered in Sec.7.1 (dashed lines).

7.2.1 Mismatch contributions from the fin-, top-
and sidewall-gate-LER

Impact of the fin- and top-gate-LER have been estimated separately in

Sec. 7.1. However, by considering these contributions to mismatch as

uncorrelated, the total net mismatch can also be estimated to a first

order. To demonstrate this assertion, ensembles of 200 n-type Fin-

FETs described in Table 7.2 have been simulated in presence of (i)

fin-LER only (see Fig. 5.2(b)), (ii) top-gate-LER only (see Fig. 5.2(d))

and (iii) both the top-gate- and fin-LER. In Table 7.3, mismatch param-

eters obtained in the latter case are compared with those calculated by
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Parameter σf σg σf+g

√
σ2

f + σ2
g

∆VT,sat (mV) 28.70 8.15 28.71 29.83
∆β/ 〈β〉 (%) 11.25 4.00 12.06 11.94

Table 7.3: Statistical dependencies of LER contributions to mismatch
(σf : rough fin, σg: rough top-gate, σf+g: combined fin- and top-gate-
LER)

combining the standard deviations of individual contributions (i) and

(ii): resulting values of the net mismatch are in good agreement. This

confirms that treating different LER components as independent con-

tributions to the net stochastic mismatch provides a reasonably good

approximation, while substantially reducing the simulation complexity.

In addition to fin- and top-gate-LER, the impact of sidewall-gate

roughness has also been investigated for LSTP-32 nm FinFETs. A

fully-3D device representation was needed to account for this effect, as

explained in Sec. 5.1.2, involving simulation of many structures like the

one depicted in Fig. 5.2(c). The combination of three spatial dimen-

sions and an additional dimension provided by the statistical ensemble

size thus resulted in a real four-dimensional problem, as discussed in

the Introduction to this thesis. Due to the large computational effort,

ensemble size was reduced to 100 devices. However, this was sufficient

to achieve a clear trend, as shown in Figs. 7.8(a) and (c). In these

figures, results of the sidewall-gate-LER simulations are compared to

fin- and top-gate-LER data discussed above: individual contributions

to mismatch in saturation threshold voltage and normalized current

factor are plotted as a function of the number of simulated samples.

In Figs. 7.8(b) and (d), results extracted from the full ensembles are

compared, showing a similar impact of top- (“G top”) and sidewall-

gate-LER (“G sw”). Assuming these contributions as uncorrelated, in

analogy with results reported in Table 7.3, the total impact of gate-LER

can be estimated to a worst-case as:

G tot =
√

G top2 + 2G sw2 (7.1)

However, the fin-LER (“F” in Figs. 7.8(b) and (d)) is seen to be the
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full ensembles ((b), (d)). “F”, “G top” and “G sw” are contributions
to LER from the fin, top-gate and a single sidewall-gate, respectively;
“G tot” is the total contribution to gate-LER estimated through (7.1)
assuming statistical independence of individual components.

most critical issue for both VT - and β-mismatch, for identical values of

the roughness model parameters.

Choice ∆=1.5 nm, Λ=20 nm is within typically measured ranges for

the fin- and top-gate-LER. In order to allow for a direct comparison,

the same values have been utilized for the sidewall-gate-LER too, but

metrological characterization of the sidewall-gate-roughness is still an

issue, i.e. no accurate estimations of rms amplitude and correlation

length are available yet. Extraction of such parameters (see Sec. 5.1.1)

has been attempted on a limited number of available SEM cross sections

like the one in Fig. 7.9 [tnano]. This preliminary investigation yielded

rms amplitudes slightly lower than 1 nm. Therefore, results in Fig. 7.8

should provide a worst-case estimation of the impact of sidewall-gate-

LER on mismatch.
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Figure 7.9: SEM cross-section of a multiple-fin FinFET (IMEC data).
One of the sidewall gates is highlighted and results of the edge detection
are shown in the inset.

7.2.2 Influence of doping profiles and number of
fins

According to the above results, the net mismatch of FinFETs described

in Table 7.2 is dominated by the contribution from fin-LER. Instead,

a similar importance of the fin- and top-gate-roughness was observed

in simulations reported in Sec. 7.1. This is due to the difference in

doping profiles, i.e. the impact of line-edge roughness is sensibly de-

pendent on FinFET doping. In particular, extension doping is a critical

process step as low-energy, high-dose implants are desired at high tilt

angles, while avoiding dopant penetration underneath the gate and in-

curring short channel effects [94]. Advanced techniques as Solid-Phase

Epitaxial Regrowth (SPER) are being explored to achieve abrupt junc-

tions [95] and improve device performance [96]. Although a compre-

hensive investigation of this topic would require sophisticated process

simulation, LER dependence on extension profiles has been estimated

by varying extension levels and decay rates. To this aim, several n-type

profiles have been considered, with extension concentrations Next rang-
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Figure 7.10: Impact of doping profiles on LER-induced mismatch: ex-
tension concentrations Next ranging from 5×1018 to 1×1020 cm−3 have
been considered.

ing from 5 × 1018 to 1 × 1020 cm−3, as shown in Fig. 7.10. Simulation

results in Fig. 7.11(a) indicate that the impact of LER on threshold

voltage mismatch is enhanced with higher extension levels. As for the

current factor mismatch, impact of the fin roughness tends to decrease

as Next is increased, whereas the gate-LER contribution rises rapidly,

as shown in Fig. 7.11(c). This can be explained as follows. The more

ideal, box-shaped As extension profiles with increased concentration

may be required to boost saturation drain current through reduction

in S/D resistance [96] (see Fig. 7.12). Such reduction is believed to be

responsible for the diminishing impact of the fin-LER in Fig. 7.11(c).

However, this causes saturation current to be more sensitive to the

effective channel resistance. In turn, such parameter is particularly

sensitive to the gate-LER due to changes in the metallurgical channel

length: hence, importance of this roughness component increases in

Fig. 7.11(c). Overall impact of the FinFET performance (ION) opti-

mization on its matching performance can be visualized in Fig. 7.13,

where the relative importance of gate-LER is seen to increase with

increasing extension concentration. In particular, percentage contribu-
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Figure 7.11: Comparison between contributions to mismatch from the
fin an top-gate roughness. (a), (c): impact of different extension con-
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Figure 7.12: Parasitic resistance model of a FinFET. Gate-LER gives
rise to gate line-width-roughness, i.e. fluctuations in physical gate
length and hence changes in channel resistance (Rch). Increasing
extension profile concentration and slope (junction engineering - see
Fig. 7.10) reduces S/D resistances (RS, RD), thus enhancing the rela-
tive importance of Rch.

tion of the top-gate roughness to the current factor mismatch is more

than doubled with the “idealized” profile (Next = 1× 1020 cm−3) with

respect to the “realistic” profile (Next = 5× 1018 cm−3).

The impact of profile decay rate has also been studied for the sake
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of completeness. VT - and β-mismatch are plotted as a function of the

extension slope xtsl in Figs. 7.11(b) and (d). It can be seen from these

figures that steeper junctions correspond to slightly higher mismatch,

but comparison with Figs. 7.11(a) and (c) show that the impact of

xtsl is less critical than that of the extension concentration. Overall,

these simulations show that doping profile engineering might lead to

enhanced current factor mismatch in FinFETs: such devices could be

unusable without a substantial reduction in gate-LER.

Simulations discussed so far refer to n-channel, single-fin devices. In

Figs. 7.14(a) and (c), n- and p-type FinFETs are compared and seen to

have similar sensitivity to line-edge roughness. The fin-LER is clearly

more critical than the top-gate-LER for both device types. However,

in order to keep planar bulk-competitive drain current per unit layout

area, FinFETs are essentially designed with multiple fins [97]. Since

these narrow fins determine both the sub- and super-threshold behavior,

FinFET matching performance is likely to be influenced by scaling the

number of fins. This is confirmed by Figs. 7.14(b) and (d), where the

mismatch is seen to decrease as the number of fins is increased. Since
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each fin contributes to the total device width, trends in these figures are

in accordance with Pelgrom’s model of mismatch being proportional to

the inverse square root of area [86] (see Sec. 5.2.1). The behavior of

n- and p-channel FinFETs is similar even in this case, which allows to

conclude that neither device type is more robust than the other to LER

issues.

7.2.3 Correlation study

In Sec. 5.2.3, the importance of analyzing correlations between struc-

tural and electrical fluctuations has been highlighted. Therefore, a

correlation study is presented here, which helps understanding how

line-edge roughness affects FinFET performance and can be exploited

to improve efficiency of first-order variability estimation with respect

to the full Monte Carlo approach adopted so far. The study consists

in checking the relationship between the average width of rough device

features and resulting electrical parameters for each simulated FinFET

instance. Two situations have been considered as for fin-LER simula-
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Figure 7.15: Averaging operation for correlation analysis. (a): fin width
averaged over the whole fin length. (b): fin width averaged over the
channel region. (c): sidewall-gate length averaged over the fin height.

tions, in which the fin width has been averaged over the whole fin length

(〈Wfin〉tot) and over the channel region only (〈Wfin〉ch), as illustrated

in Fig. 7.15(a) and (b), respectively. In the case of sidewall-gate-LER,

the average sidewall gate length 〈Lgate,sw〉 has been calculated over the

fin height (see Fig. 7.15(c)).

Parameter distributions resulting from simulations of fin- and side-

wall-gate-LER discussed in Sec. 7.2.1 (see Fig. 7.8) are plotted in Fig.

7.16 as a function of the respective average feature width. The strong

correlation in Fig. 7.16(b) clearly indicates that line-edge roughness

mainly impacts the device threshold by changing the average fin width

in the channel region. Since the correlation is weak for both VT and β

when the total average fin width is considered instead (see Fig. 7.16(a)

and (d)), it is argued that the roughness of extension regions does not

severely impact FinFET matching performance. A weak correlation is

also seen in Fig. 7.16(e): this suggests the current factor being sensitive
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to the particular shape of the roughness, which probably affects mobil-

ity of the different device instances. As for the sidewall-gate roughness,

Figs. 7.16(c) and (f) show that the device performance is mainly de-

termined by the resulting average gate length. However, slopes of the

corresponding linear fits are smaller than those in Figs. 7.16(b) and

(e). This indicates that the device parameters are more sensitive to

changes in the average fin width in the channel than to changes in the

average gate length, which agrees with the results of mismatch estima-

tion shown in Fig. 7.8.

Similar correlation trends have been observed for all simulation cases

described in Secs. 7.2.1 and 7.2.2, including multi-fin devices, n- and p-

type channels and different extension profiles. This allows applying the

procedure proposed in Sec. 5.2.3 to get a faster estimation of variability

for those parameters exhibiting strong correlation properties. Accuracy

of such approach has been tested on more than 30 statistical ensem-
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bles. For each of them, Fig. 7.17 plots the relative error in variability

estimation through a small number of selected samples with respect to

statistics extracted from the full ensembles. The meaning of “Method

1” and “Method 2” in this figure has been clarified in Sec. 5.2.3: here

it is shown that the selection algorithm proposed in that Section auto-

matically chooses the most accurate estimate in 85% of considered test

cases. Moreover, relative errors are generally within 10%. Larger errors

correspond to particularly unfavorable situations, such as high rough-

ness rms amplitude or correlation length (see Fig. 7.19 in Sec. 7.3).

To better visualize the effectiveness of the proposed approach, data of

Fig. 7.14(b) are compared to correlation-based estimations in Fig. 7.18.

Although more sophisticated techniques might be investigated, vari-

ability estimation through this simple algorithm provides a reasonable

accuracy, while allowing for two orders of magnitude improvement in

computational efficiency. Assuming correlation properties shown in

Fig. 7.16 to be generally valid, the proposed method could be exploited

instead of Monte Carlo techniques in future LER investigation of dif-

ferent process options and technology generations.
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n-channel (a) and p-channel (b) devices.

7.3 LER requirements for circuit applica-

tions of FinFET: simulations and mea-

surements

In order to address LER requirements for future FinFET technology

nodes, the impact of LER on n-type devices in Table 7.2 is analyzed

as a function of its rms amplitude (∆) and correlation length (Λ) in

Fig. 7.19. Only contribution from the fin-roughness is considered in

simulations reported in this Section as it was shown to be the most rel-

evant component. It can be seen from Figs. 7.19(a) and (c) that the mis-

match varies linearly with the rms amplitude of LER. This linear trend

is observed for both RDF and SDF technologies. However, slopes of the

fitted lines differ and more than 90% reduction in mismatch can be seen

for spacer-defined fin patterning at identical rms amplitudes. Standard

deviation values corresponding to the maximum allowed VT -mismatch

(approximately 58% of target VT [5]) are also shown in Figs. 7.19(a)

and (b). Considering these values, it can be inferred that the mismatch

resulting from current LER parameters (∆ = 1.5 nm, Λ = 20 nm) is

critical.

In addition to DC performance, the impact of LER on the transient
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behavior of FinFETs has also been considered, taking into account the

Power-Delay Product, as described in Sec. 5.1.3. Mixed-mode simula-

tions of equivalent circuits like the one in Fig. 5.3 have been performed,

where the device is a LSTP-32 nm FinFET affected by uncorrelated fin

roughness. Resulting 6σ relative intervals of mismatch in Power Delay

Product are shown in Fig. 7.20. It can be seen that in presence of

fin-LER, the maximum tolerance to circuit performance variability [5]

is exceeded by single fin devices and designing FinFETs with higher

number of fins may be useful.

In order to evaluate the impact of fin-LER on LSTP-32 nm com-

patible SRAMs, mixed-mode DC simulations have been performed on

ensembles of four-transistor circuits, as show in Fig. 5.5 (see Sec. 5.1.3).

Standard deviations of SNM and ∆SNM distributions resulting from

butterfly curves are plotted as a function of the ensemble size in Fig. 7.21,

for FinFETs with different numbers of fins. The statistical trend is seen
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to be well-stabilized with 100 simulations. The different statistical be-

havior of SNM and ∆SNM with respect to the number of fins is proba-

bly due to the fact that the latter parameter results from the difference

of two correlated random variables. It can be seen from Fig. 7.21 that

designing FinFETs with higher number of fins is beneficial for SRAM

stability. However, in the case of RDF technology, this choice contrasts

with strict area constraints in SRAM design. On the other hand, fin

doubling due to spacer-defined patterning provides an opportunity to

reduce the intra-bit-cell mismatch, as predicted by these simulations,

without increasing the bit-cell layout area [98].

Spacer-defined fin patterning has the potential to increase the num-

ber of fins by 2n, where n is the number of times the spacer patterning

is performed. However, as the fin pitch gets smaller, patterning is-

sues related to profiles and mechanical stability of the narrow fins arise

and have been reported recently [99]. Since all of the etch and im-

plantation steps utilized for the device fabrication are qualified only
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at the relaxed fin pitch (RDF-like), subsequent processes in the SDF

patterned devices are currently affected in an untraceable manner. To

regain the process control in SDF technology, critical steps should be

qualified for the target fin pitch. This can be verified from butterfly

curves measured on fabricated SRAM cells, as shown in Fig. 7.22, where

RDF SRAMs are seen to have lower variability than the SDF coun-

terparts [iedm06]. Statistical parameters are extracted from butterfly

curves for the three cases in Fig. 7.22. Resulting standard deviations

in SNM and ∆SNM are shown in Figs. 7.23(a) and (b), respectively.

As for measured cells, it can be seen from this figure that the addi-

tional fluctuations in SDF SRAMs mainly come from short-range pro-

cess variations affecting intra-bit-cell mismatch, i.e. σ[∆SNM], whereas

long-range variability represented by σ[SNM] is almost identical for the

two technologies. Simulation results in Fig. 7.23 show the predicted im-

pact of fin-LER at the LSTP-32 nm node, in an ideal case where this

is the only contribution to variability (i.e. real fluctuations including

all sources will certainly be larger than these predictions). It can be
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seen from Fig. 7.23(b) that at this node the LER-induced component

of short-range variations alone will become approximately as large as

the total amount of intra-cell mismatch measured in present-days RDF

technology. Thus, in order for future technology nodes to meet vari-

ability criteria when other sources of fluctuations are present besides

LER, an improved spacer-defined fin-patterning process needs to be de-

veloped to contain the contribution of fin-LER to FinFET mismatch.

7.4 Impact of RD fluctuations on FinFET

matching

In addition to line-edge roughness, random dopant fluctuations are an-

other major sources of concern for future technology nodes. To provide
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Figure 7.23: SNM (a) and ∆SNM (b) standard deviations extracted
from simulated and measured butterfly curves shown in Fig. 7.22.

a first-order estimation of the impact of this issue at the LSTP-32 nm

node, two-dimensional simulations of n-channel FinFETs have been

performed, including noise analysis, as described in Sec. 5.3. Nominal

doping concentrations in the channel, source/drain pads and exten-

sion regions have been varied over several orders of magnitude and

the impact of RD fluctuations on percentage variation of saturation

threshold voltage and on-current has been computed within considered

ranges. Results of this analysis are shown in Fig. 7.24, where contribu-

tions from the fin-LER are also reported: impact of the two sources of

fluctuations can be directly compared because the same models have

been used in the simulations. It is evident from Figs. 7.24(b) and (c)

that RD-induced fluctuations of the device threshold are almost insen-

sitive to the nominal concentration in the source/drain and extension

regions, within typical ranges. Moreover, the impact of line-edge rough-

ness is much more critical. The same considerations hold for doping

concentrations up to 1018 cm−3 in the device channel, as illustrated in

Fig. 7.24(a). Convergence issues arise for higher values of Nch, when

the threshold is expected to become more sensitive to RD fluctuations.

However, such high doping levels can be avoided in FinFETs with suit-
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able metal gates. As for on-current variability, no severe impact of

dopant fluctuations is seen in Figs. 7.24(d) and (e), while the RD con-

tribution increases rapidly for concentrations higher than 1019 cm−3 in

the extension regions (Fig. 7.24(f)), although LER is still predominant.

In Sec. 7.2.2, roughness issues were shown to also become more

severe with increasing extension doping: the impact of both LER and

RD on FinFET matching should be carefully taken into account while

engineering the S/D junctions. This is expected to become particularly

true for FinFETs fabricated through improved manufacturing processes

featuring spacer-defined fin patterning, which has potential to lower

the impact of fin-LER on FinFET matching. Therefore, gate roughness

and random dopant fluctuations are expected to be the major sources of

parameter variations in FinFETs resulting from a mature SDF process.
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“The important thing
is not to stop questioning.”

A. Einstein

An effective support from Technology Computer Aided Design is more

and more vital to the evolution of semiconductor industry. The technol-

ogy scaling trend leads to increasing complexity of integrated circuits.

Moreover, new materials and architectures are being introduced in de-

vice fabrication. As a consequence, fully-3D modeling approaches and

an advanced, often non-classical, physical description are needed to

represent the complicated structure and behavior of aggressively scaled

devices. The highlighted issues are worsened as dimension shrinking

collides with the intrinsic discreteness of charge and matter and with

difficulties and tolerances in the fabrication process. Consequently,

non-deterministic deviations of real devices from the ideal design be-

come more and more critical. While indispensable to achieve a man-

ufacturable technology, accounting for variability implies representing

each device through a distribution of microscopically different instances.

From the TCAD point of view, the outlined scaling trend is reflected in

the increasing dimensionality of the problems which model real-world

applications. In this thesis, some approaches have been proposed to

address the outlined issues.

Adaptive mesh refinement

First, the meshing stage has been considered because of its crucial role

in the device and process simulation flow. Adaptive meshing techniques

have been indicated as the main road toward the optimal representation

of the simulated domain, both in terms of computational efficiency and

solution accuracy. Moreover, automatic adaptation is highly desirable

to simplify user-interaction with TCAD tools, which typically requires

exceptional expertise.

Potentialities of the multiresolution analysis in this context have
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been investigated, leading to the development of a Wavelet-based Adap-

tive Method (WAM) for mesh refinement in two- and three-dimensional

settings. In this approach, the adaptation procedure is driven by an

estimation of solution regularity through the Wavelet Transform, re-

sulting in the following features:

• the possibility of relieving the user from the problem of generating

suitable meshes for standard finite-volume solvers to deal with

real world tasks;

• the anisotropic refinement of regions which have stringent mesh-

ing requirements with a smooth grading of element size;

• the good convergence properties of the scheme, which starts with

a uniform coarse mesh;

• the possibility of dynamically adapting the mesh at each bias step

in sweep simulations;

• the use of fast and numerically efficient algorithms from signal

processing for detecting sensible regions.

Good selectivity properties of the algorithm have been obtained even

in 3D applications through a two-step Wavelet analysis combined with

an effective anisotropy handling. Moreover, the semiregular nature of

WAM grids allowed for the implementation of a quality check proce-

dure able to remove undesired mesh patterns affecting simulation con-

vergence and accuracy.

The refiner has been fully integrated into a standard TCAD envi-

ronment through a modular system integration software. The result-

ing validation tool has been tested on several 2D and 3D structures,

including p-n diodes, nMOS power drivers and FinFETs. Such tests

demonstrate the effectiveness of Wavelets as a means to guide the auto-

matic refinement of discretization grids for the simulation of electronic

devices, preserving the geometrical and physical features of the problem

to be solved.
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Extension of the proposed approach to the refinement of completely

arbitrary geometries is being investigating by combining the Wavelet

analysis with a compatible error indicator for irregular domain portions

that cannot be covered by Wavelet supports.

LER and RD fluctuations in FinFETs

Besides accurately modeling the device operation, understanding the

impact of process variations is essential to evaluate effectiveness of in-

novative materials and process options as well as performance of new

device architectures through predictive computer simulations. In par-

ticular, FinFETs may replace conventional CMOS devices in the fu-

ture technology generations due to their intrinsically better scalability.

Therefore, techniques to deal with variability estimation in these de-

vices have been explored, with particular emphasis on two sources of

major concern for future technology nodes, i.e. random dopant fluctu-

ations and line-edge roughness.

The inherently three-dimensional carrier transport in FinFETs ma-

kes them sensitive to roughness of several printed features. Contribu-

tions to LER from the fin, top- and sidewall-gates have been decoupled

and compared by means of 2D and 3D TCAD simulations performed

on large statistical ensembles. The mismatch induced by low spatial

frequency components of the roughness is shown to become significant

below 45 nm gate length geometries. Moreover, results of an in-depth

analysis of FinFETs conforming to ITRS LSTP-32 nm specifications

indicate random uncorrelated roughness of the fin edges, typically in-

troduced by a resist-defined patterning process, as the main contribu-

tion to mismatch in threshold voltage and current factor of nominally

identical devices. Top- and sidewall-gate-LER are predicted to have a

similar impact, but the total contribution to mismatch from the gate

roughness is found to be approximately 50% lower than the fin-related

component for both n- and p-channel devices.

Deeper insight on the way line-edge roughness affects FinFET per-

formance is provided by a correlation study. Results show that the



170

gate-LER mainly impacts the device matching by changing the average

gate length. As for the fin-LER, threshold voltage is strongly correlated

to the average fin width in the channel region, while the particular shape

of the roughness is relevant to the current factor. Correlations can be

fruitfully exploited to reduce computational cost of variability estima-

tion by orders of magnitude: inaccuracy of this approach is found to

be within 10%.

Simulations reveal that with the current LER parameters, i.e. rms

amplitude = 1.5 nm and correlation length = 20 nm, both the DC and

transient matching performance of FinFET devices and SRAM cells

are in the critical zone. Instead, random dopant fluctuations, simu-

lated through a noise analysis approach, are predicted to be negligible

with respect to the LER contribution over wide ranges of doping con-

centrations in the channel and source/drain regions.

To minimize the impact of fin-LER on FinFET matching, two possi-

bilities have been explored, namely the use of higher number of fins and

an in-phase correlation between LERs on the fin sides. It is found that

a doubling in the number of fins can reduce the impact of LER on VT

and β matching by 30% and 15%, respectively. Furthermore, spacer-

defined fin patterning has been shown as a potential solution to realize

in-phase correlated fin-LERs, thus reducing both VT and β mismatch

by 90% with respect to RDF technology for identical LER parameters.

However, measured SRAM performance is seen to be significantly af-

fected by process instabilities for SDF technology. Therefore, to meet

sub-45 nm variability specifications, more stable spacer-defined pattern-

ing processes are desired. These processes should pay special attention

to doping profile design since the importance of both gate-LER and RD

contributions to mismatch is expected to increase as S/D profiles are

designed with high extension concentrations and box-shaped junctions

to improve current drivability.



171

Overcoming TCAD roadblocks

The physics-based approach adopted in this thesis could be further

exploited to extract typical values and fluctuations of parameters suit-

able for compact models (e.g. BSIM4 [100], MM11 [101], ACM [102],

EKV3 [103]). This would allow for predictive simulations of circuit and

system-level performance of new technologies, thus bridging the gap

between process development and circuit design, which is indicated by

the ITRS as a difficult TCAD issue. Moreover, several concepts and

algorithms presented in this work are borrowed from a wide range of

different scientific areas, including multiresolution analysis, signal pro-

cessing and statistics. The synergistic interaction of various research

fields is shown to result in effective multidisciplinary approaches to

overcome many modeling and simulation requirements highlighted by

the ITRS as critical roadblocks to the assessment of future technology

nodes.
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