

DOTTORATO DI RICERCA IN

DATA SCIENCE AND COMPUTATION

Ciclo 35

Settore Concorsuale: 09/E3 - ELETTRONICA

Settore Scientifico Disciplinare: ING-INF/01 - ELETTRONICA

ENERGY-EFFICIENT TIME SERIES ANALYSIS

WITH MACHINE LEARNING AND DEEP LEARNING

ON EMBEDDED COMPUTING PLATFORMS

Presentata da: Marcello Zanghieri

Coordinatore Dottorato Supervisore

Daniele Bonacorsi Luca Benini

 Co-supervisori

 Simone Benatti

 Francesco Conti

Esame finale anno 2024

ALMA MATER STUDIORUM - UNIVERSITY OF BOLOGNA

Energy-Efficient Time Series Analysis with

Machine Learning and Deep Learning on

Embedded Computing Platforms

by

Marcello Zanghieri

A thesis submitted for the degree of

Doctor of Philosophy

in the

School of Engineering and Architecture

Department of Electrical, Electronic, and Information Engineering (DEI)

May 2024

I dedicate this thesis to my family.

Acknowledgments

I wish to thank my supervisor, Prof. Luca Benini, for the opportunity to pursue my

PhD in his research group and for his constant guidance. I also thank my co-supervisors,

Prof. Simone Benatti and Prof. Francesco Conti, for their persevering supervision, their

teachings, and the motivation they gave me. I thank all three of them for the support

and independence they gave me. I also want to thank Dr. Francesco Beneventi for the

technical help at the beginning of my PhD and for his vast patience.

I thank Prof. Giacomo Indiveri for welcoming me to his NCS group at INI for a

visiting research period. I thank him and Dr. Elisa Donati for following my work.

I thank Dr. Elisabetta Farella and Prof. Melika Payvand for their willingness to

review this thesis.

I address special thanks to Panagiota (Iota) Dimopoulou for guiding us DSC PhD

students through the bureaucratic and formal stages of the programme in the first years.

I also thank our PhD coordinator, Prof. Daniele Bonacorsi, for the accurate and timely

directions at the end of the PhD.

Finally, I want to thank all my colleagues at the EEES Lab for creating this enjoyable

and inspiring environment.

Abstract

The present Ph.D. thesis presents techniques and solutions for energy-efficient time-

series analysis based on automated learning executed on resource-constrained, low-power

computing platforms, with an interest in both Deep Learning and traditional, non-deep

Machine Learning. This dissertation spans diverse domains, from algorithmic research

on the accuracy-efficiency tradeoff in processing different biosignals to applied research

inspired by industrial scenarios.

The unifying methodology that brings all the research questions addressed in this

thesis under the same perspective is the interest in time-series analysis as a task to be

performed in the presence of the resource constraints characteristic of low-power edge

computing devices. In particular, a special focus is devoted to single- and multi-core

embedded microcontrollers (MCUs).

This dissertation covers the three major types of automated learning tasks: binary

classification, multi-class (single-label) classification, and regression. Starting from bi-

nary classification, this work presents a proximity sensor for active safety in industrial

machinery, accurate and robust against acoustic noise, and a setup for epilepsy detec-

tion from intracranial electroencephalography. Both solutions are based on a Temporal

Convolutional Network (TCN) executed on an embedded MCU, showcasing the power

and versatility of the approach. Moving to multi-class (single-label) classification and re-

gression, the research effort was entirely devoted to the topic of hand modeling from the

surface electromyographic (sEMG) signal. Starting with off-device TCNs for the recog-

nition of discrete hand gestures, the classification setup is advanced by carrying out the

deployment on a multi-core MCU and by studying heuristics for unsupervised adapta-

tion to compensate for changes in arm posture. Then, regression was addressed for a

more fluid and versatile control of Human-Machine Interfaces (HMIs). After developing

an embedded TCN accurate in hand kinematics estimation, I addressed the modeling of

both hand kinematics and force with event-based features, which are computationally

cheaper and promising for future porting onto event-driven devices with reduced latency

and energy consumption. The contributions in sEMG-based hand modeling advance the

field of non-invasive intuitive wearable HMIs.

As a whole, this research work proves the success of the embedded approach to

time-series Machine Learning, achieving SoA accuracy and efficiency and thus proving

promising for impactful applications in the industrial, clinical, and consumer domains.

Contents

Acknowledgments iii

Abstract iv

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 Contributions & Thesis Structure . 2

1.1.1 Publication-related structure . 7

2 Background 9

2.1 Temporal Convolutional Networks . 9

2.2 Microcontrollers of Interest . 11

2.3 Embedding Deep Networks: Compression & Deployment 14

2.3.1 Quantization . 15

2.3.2 Frameworks and tools for embedded deep inference 17

2.4 sEMG-based Human-Machine Interfaces 20

2.4.1 The sEMG signal . 21

2.4.2 Classification of sEMG: hand gesture recognition 21

2.4.3 Regression on sEMG: hand kinematics and finger force 25

3 Binary Classification 27

3.1 An Extreme-Edge TCN-based Low-Latency Collision-Avoidance Safety
System for Industrial Machinery . 27

3.1.1 Overview . 27

3.1.2 Related Work . 30

3.1.2.1 Safety systems in industrial woodworking machinery . . . 30

3.1.2.2 Rationale of this work in relation to the established func-
tional safety standards 32

3.1.3 Materials & Methods . 33

3.1.3.1 Targeted woodworking machine 33

3.1.3.2 System architecture . 33

3.1.3.3 Data acquisition . 36

v

Contents vi

3.1.3.4 Incremental learning protocol 37

3.1.3.5 TCN structure, training, and deployment 38

3.1.3.6 Evaluation metrics . 40

3.1.4 Experimental Results . 42

3.1.4.1 Dataset . 42

3.1.4.2 Accuracy . 45

3.1.4.3 Performance and memory footprint 48

3.2 Low-Latency Detection of Epileptic Seizures from iEEG with Temporal
Convolutional Networks on a Low-Power Parallel MCU 50

3.2.1 Overview . 50

3.2.2 Materials & Methods . 52

3.2.2.1 Short-Term SWEC-ETHZ iEEG Database 52

3.2.2.2 TCN Framework . 52

3.2.2.3 Baseline and time-consistent setup 53

3.2.2.4 Details on the ML setup 54

Timing . 54

TCN training . 54

Postprocessing & delay-specificity curves 55

TCN quantization & deployment 55

3.2.2.5 Evaluation Metrics . 55

3.2.3 Experimental Results . 56

3.2.3.1 Delay-specificity Pareto frontier 56

3.2.3.2 Deployment on a parallel MCU 57

4 Classification: sEMG-based Hand Gesture Recognition 59

4.1 Temporal Variability Analysis in sEMG Hand Grasp Recognition using
Temporal Convolutional Networks . 59

4.1.1 Overview . 59

4.1.2 Materials & Methods . 60

4.1.2.1 The NinaPro Database 6 60

4.1.2.2 TCN model . 61

4.1.3 Experimental Results . 62

4.1.3.1 Classical ML accuracy . 63

4.1.3.2 TCN accuracy . 64

4.1.3.3 TCN distillation . 65

4.2 Robust Real-Time Embedded EMG Recognition Framework Using Tem-
poral Convolutional Networks on a Multicore IoT Processor 66

4.2.1 Overview . 66

4.2.2 Materials & Methods . 67

4.2.2.1 Acquisition & processing platform 67

4.2.2.2 TEMPONet TCN architecture 68

4.2.2.3 TEMPONet embedded deployment 70

4.2.3 Experimental Results . 72

4.2.3.1 Experimental setup . 72

4.2.3.2 Accuracy on NinaPro DB6 (steady) 74

4.2.3.3 Accuracy on the 20-Session Dataset (steady) 75

4.2.3.4 Embedded deployment performance 78

Contents vii

4.3 Online Unsupervised Arm Posture Adaptation for sEMG-based Gesture
Recognition on a Parallel Ultra-Low-Power Microcontroller 81

4.3.1 Overview . 81

4.3.2 Materials & Methods . 83

4.3.2.1 The UniBo-INAIL dataset 83

4.3.2.2 Online PCA adaptation 83

PCA as adaptation . 83

Oja’s learning rule . 84

Heuristics . 84

Parallelization . 85

4.3.2.3 Classifier . 85

4.3.2.4 Experimental protocol . 85

4.3.2.5 Accuracy metrics . 86

4.3.2.6 Deployment & profiling on a parallel ULP MCU 86

4.3.3 Experimental Results . 87

4.3.3.1 Classification accuracy 87

4.3.3.2 Profiling . 87

5 Regression: sEMG-based Estimation of Hand Kinematics and Force 90

5.1 sEMG-based Regression of Hand Kinematics with Temporal Convolu-
tional Networks on a Low-Power Edge Microcontroller 91

5.1.1 Overview . 91

5.1.2 Materials & Methods . 91

5.1.2.1 NinaPro Database 8 . 91

5.1.2.2 TEMPONet architecture for regression 92

5.1.2.3 Experimental setup details 93

Dataset split . 93

Preprocessing . 93

Machine learning setup . 94

Model output postprocessing 94

5.1.3 Experimental Results . 94

5.1.3.1 Evaluation metrics . 94

5.1.3.2 Models comparison . 95

5.2 Event-based Low-Power and Low-Latency Regression Method for Hand
Kinematics from Surface EMG . 98

5.2.1 Overview . 98

5.2.2 Materials & Methods . 99

5.2.2.1 Encoding surface EMG to events 99

5.2.2.2 Regression . 102

5.2.2.3 Profiling . 103

5.2.3 Experimental Results . 104

5.2.3.1 Evaluation metrics . 104

5.2.3.2 Regression accuracy . 104

5.2.3.3 Profiling . 105

5.3 Event-based Estimation of Hand Forces from High-Density Surface EMG
on a Parallel Ultra-Low-Power Microcontroller 108

5.3.1 Overview . 108

Contents viii

5.3.2 Materials & Methods . 109

5.3.2.1 HYSER dataset . 109

5.3.2.2 Event-based encoding . 111

5.3.2.3 Regression . 115

5.3.2.4 Deployment and profiling on a parallel ULP MCU 116

5.3.3 Experimental Results . 117

5.3.3.1 Time-domain behavior 117

5.3.3.2 Regression error . 119

5.3.3.3 Profiling . 121

6 Conclusion 123

Bibliography 125

List of Figures

1.1 Scheme of the contents of this thesis. Chapter 2 provides the background
of the three contribution chapters of the thesis, which constitute a progres-
sion as to the complexity of time-series ML/DL task: binary classification
(Chapter 3), multi-class (single-label) classification (Chapter 4: sEMG-
based gesture recognition), and regression (Chapter 5: sEMG-based esti-
mation of hand kinematics and forces). 7

2.1 Standard representation of a deep neural network block composed of
causal dilated convolutions. The filter size is K = 3 and the dilation
factors are d1,2,3,4 = 1, 2, 4, 8. Thanks to dilation, the receptive field cov-
ers a long time window of the input. Image source: [28]. 10

2.2 Block diagram of the STM32H7 MCU (sub-family STM32H743xI/G).
Image source: [31]. 12

2.3 Block diagram of the GWT GAP8 microcontroller. Image source: [35]. . . 14

2.4 An example of a DORy routine tiling a layer across L3, L2, and L1 mem-
ories. On the left, the I/O DMA copies weight tiles in case only Cy is
L3-tiled. Two buffers are used for L2w. Then, the Cluster DMA manages
L2-L1 communication using double-buffering, while the cores compute a
kernel on the current tile stored in one of the L1 buffers. Image source:
[42]. 20

3.1 The SCM Morbidelli X200 industrial woodworking machine used in this
work. Image source: SCM Group [143]. 34

3.2 Configuration of the 9 US sensors mounted on the machine. The sensors
are the grey metal round elements on the panels; the circular black pieces
are washers for fastening the panels. Compare with Figure 3.3. 34

3.3 Spatial organization of the proposed proximity sensing system. The 3 US
sensors on the moving cabinet over the worktop proved useful in prelim-
inary tests to better sense the space surrounding the working table and
obstacles at the far end of the working table. Compare with Figure 3.2. . 34

3.4 Schematic of the system architecture. Sensor fusion on data acquired
from 9 sensors is one of the key proposed improvements compared to the
SoA [135]. 35

3.5 Example of a US window with obstacles and without noise (collection 1,
run 10, window 1; all 9 channels, all samples except the last 48). It is
possible to see the initial US burst, the subsequent silence, and the echoes
received by the sensors facing obstacles. 43

ix

List of Figures x

3.6 Example of a US window without obstacles and with noise from the com-
pressed air jet (collection 8, run 50, window 1; all 9 channels, all samples
except the last 48). The sensors most affected by noise sense an amplitude
comparable to obstacles’ echoes in the absence of noise (Figure 3.5). . . . 43

3.7 Experimental distributions of the detection metrics obtained for Experi-
ment 0 (validation of setup and data) and Experiments 1-to-3 (incremen-
tal training on noisy data); for the details of the experimental protocol,
see 3.1.3.4. Notice the different y-scales in the two plots. The lower
(resp., upper) whisker is set at the lowest datum above Q1 − 1.5 IQR
(resp., Q3 + 1.5 IQR), with Q1 and Q3 the first and third quartiles re-
spectively, and IQR ≜ Q3−Q1 the interquartile range. The general trend
shows high accuracy in Experiment 0, the collapse in Experiment 2, and
the incremental recovery in Experiments 2 and 3. Moreover, the asym-
metric IQR ranges, whiskers, and outliers highlight high skewness; this
motivates the recourse to median ± Mean Absolute Deviation (MAD) for
more robust summaries compared to average ± standard deviation. . . . 47

3.8 The TCN used in this work, inspired by EEGNet [160], [161]. 53

3.9 Delay-specificity curves of HDC and TCN, obtained by applying a differ-
ent amount of postprocessing that inhibits positives. 56

4.1 sEMG signal of the first grasp of NinaPro DB6, preceded and followed
by the rest position. The beginning and the end of the grasp exhibit the
strong transients typical of the dataset. 61

4.2 TCN architecture. Three main blocks are used: the Dilated Convolutional
Block for temporal feature extraction, the Local Convolutional Block for
local feature extraction, and the FC Block for the final classification. . . . 62

4.3 Classification accuracy of the baseline SVM and the proposed TCN on the
different sessions of NinaPro DB6. The 5 multi-session training strate-
gies incrementally improve the generalization to never-seen sessions, with
better results for the TCN. 64

4.4 A) Hardware diagram of the proposed system: the sEMG sensors on the
forearm are connected to the AFE, which sends the data via SPI to the
GAP8 processing platform; a Bluetooth link allows the streaming of the
data and the classification to an external gateway. B) Detailed block
diagram of the GAP8 processor (2.2). 67

4.5 Structure and functioning of TEMPONet’s 2nd Convolutional Block: 2
dilated convolutions (d = 4), 1 strided convolution (s = 2), and average
pooling. The input of the block is the temporal sequence computed by
the 1st Convolutional Block. 69

4.6 Processing diagram of the proposed algorithm. In the TEMPONet TCN
architecture, the three blocks (each one composed of 2 convolutional and
one pooling layer) are used to extract temporal features, followed by two
fully connected layers that perform the final classification. 69

4.7 TEMPONet flow. Left: the DMA manages L2-L1 communication using
double-buffering. Right: the cluster executes PULP-NN on a tile stored
in one of the L1 buffers. 72

4.8 Average inter-session accuracy obtained on steady signals (removing tran-
sients, in full color) and on full signals (including transients, in light color)
for both datasets and both algorithms. 74

List of Figures xi

4.9 Hand gestures used during experimentation, including finger and wrist
contractions. 75

4.10 Left and Center: classification accuracy of RMS + RBF-SVM and TEM-
PONet, using the incremental training framework on NinaPro DB6. Right:
classification accuracy of RMS + RBF-SVM and TEMPONet, after train-
ing on sessions 1-to-5 of NinaPro DB6. All validations are done on steady
states + transient states. 76

4.11 Left and Center: classification accuracy of the baseline RMS + RBF-SVM
and TEMPONet, reached on the different sessions of NinaPro DB6 af-
ter transient removal, using the incremental multi-session training frame-
work. Adding training sessions improves accuracy in the never-seen ses-
sions, with better results for the TEMPONet TCN. Right: classification
accuracy of RMS + RBF-SVM and TEMPONet, after training on sessions
1-to-5 of NinaPro DB6. All validations are done on steady states. 76

4.12 Left and Center: classification accuracy of the baseline RMS + RBF-SVM
and TEMPONet, reached on the different sessions of the new 20-session
Dataset after transient removal, using the incremental multi-session train-
ing framework. Adding training sessions improves accuracy in the never-
seen sessions, with better results for the TEMPONet TCN. Right: clas-
sification accuracy of RMS + RBF-SVM and TEMPONet, after training
on sessions 1-to-10 of the 20-session Dataset. All validations are done on
steady states. 76

4.13 Comparison of the real-time inter-session classification of the RBF-SVM
and TEMPONet on the 20-session dataset. 77

4.14 The windowing scheme and inference time. The system fulfills the real-
time requirement for sEMG-driven hand HMIs, which is an upper limit
of 300 ms [103]. 80

4.15 Scheme of the GAP9 MCU and its 8-core cluster. 86

4.16 Profiling of the Oja-rule update step and normalization on the parallel
ULP microcontroller GAP9: speed-up as a function of the number of
sEMG channels. 88

4.17 Profiling of the Oja-rule update step and normalization on the parallel
ULP microcontroller GAP9: latency as a function of the number of sEMG
channels. 88

5.1 The TEMPONet TCN architecture, adapted for regression and further
optimized compared to its first proposed version [3]. 92

5.2 Deployment metrics of the novel optimized TEMPONet on GAP8 [34],
as a function of the number of channels of Convolutional Block III. 97

5.3 Example of the regression produced by the novel optimized TEMPONet:
test session of Subject 1, DoA angle 5; sEMG signal from sensor 1 shown
for reference. 97

5.4 Gains of the four 4-th order Butterworth filters of the used frequency
bands. They stop at 1 kHz since it is the Nyquist frequency of the NinaPro
DB8 dataset. 100

5.5 Tuning curve of the decay time τbestpost of the causal exponential kernel,
for the optimal settings data gain gdata = 3.0 · 105 and refractory time
trefr = 2 ms. 106

5.6 Global scheme of the work of the present section. 108

List of Figures xii

5.7 Force estimation results obtained for regression inference on HYSER’s
Subject 1, RANDOM dataset, Day 2 (the one not seen in training), all 5
trials, all 5 fingers. 118

5.8 Regression error results. Explored data gains shown as categorical to
allow horizontal x-displacement to de-overlap bars. 120

5.9 Speedup on 8 cores obtained for different numbers of executed LIF neu-
rons. The grey region is the unreachable speedup ≥ 8×. 122

5.10 Latency as a function of the number of executed LIF neurons, on 8 cores. 122

List of Tables

2.1 Comparison between SoA embedded platforms for EMG processing. . . . 24

3.1 Contribution of this work in terms of the advances compared to the SoA
represented by Conti et al. [135]. 31

3.2 Detailed structure of the proposed TCN, including the breakdown of all
layers’ memory footprint and computational load. All layers are sequen-
tial in a feed-forward fashion so that each layer’s output format is the
input format of the next one. As to sizes, the numbers of tensor elements
directly correspond to the memory occupancy in bytes, thanks to 8-bit
quantization. The field “# MAC” refers to the number of Multiply-and-
Accumulate (MAC) operations. 39

3.3 Dataset of ultrasound windows realized for setup validation and incremen-
tal learning. The dataset consists of collections; in turn, every collection
contains runs. Each run contains data acquired with the same obstacle-
sensors distance, and the air jet pressure (if present) and air jet distance.
Each collection contains runs corresponding to different obstacle-sensors
distances and air jet pressures, but the same air jet distance. 44

3.4 Detection metrics results for Experiments 0, 1, 2, and 3 (protocol detailed
in 3.1.3.4). Distributions are summarized as median ± Mean Absolute
Deviation (MAD). This chart complements Figure 3.7 by reporting quan-
titatively the high accuracy of Experiment 0, the collapse in Experiment
1, and the recovery in Experiments 2 and 3. 46

3.5 Results of the profiling of the proposed TCN’s deployment and execution. 49

3.6 Summary of the results of [154], indicating the HDC Ensemble as SoA
baseline on the Short-term SWEC-ETHZ iEEG Database, against other
deep models. 54

3.7 Deployment metrics of the proposed TCN compared against the SoA HDC
algorithm. Regarding operations, 1 MAC = 2 arithmetic operations. . . . 58

4.1 Memory footprint and best intra- and inter-session accuracy of the pro-
posed methods compared to the SVM baseline. 63

4.2 Memory footprint and best intra- and inter-session accuracy of the base-
line RMS + RBF-SVM, full-precision TEMPONet and 8-bit quantized
TEMPONet. 79

4.3 Inference latency and energy consumption of TEMPONet executed on
GAP8 in the most efficient voltage-frequency configuration, namely 1.0 V
and 170 MHz. 79

4.4 Results of the three protocols. Accuracy is reported as median ± MAD. . 87

xiii

List of Tables xiv

5.1 Regression quality of the explored models, compared to the SoA of the
NinaPro DB8. 97

5.2 Settings explored to tune the event-based encoding. 102

5.3 Best decay time τbestpost of the causal exponential kernel and regression error
obtained for each explored combination of data gain gdata and trefr (details
in 5.2.2.1). Best results in bold. 106

5.4 Profiling of the proposed event-based encoding and regression processing,
compared with the SoA TCN setup. 107

5.5 Outline of the present work as an extension of the previous contribution
(5.2) [25]. For a fair comparison, this work’s profiling shown here refers
to 64 Leaky Integrate-&-Fire neurons as 5.2 [25]; the complete profiling
results are exposed in 5.3.3.3. 110

5.6 Overview of the literature of force regression on the HYSER datasets. . . 112

Chapter 1

Introduction

Nowadays, the supervised analysis of time series data by means of Machine Learn-

ing (ML) and Deep Learning (DL) [1] involves a wide variety of application scenarios,

such as healthcare [2], biosignals processing [3]–[6], human activity recognition [7], [8]

acoustic recognition [9], cybersecurity, and structural health monitoring and predictive

maintenance in Industry 4.0 [10], [11]. On the one hand, time series classification has

the purpose of developing automated learning models to infer a categorical class label

starting from the input data [1]. On the other hand, time series regression [12], [13]

aims to estimate a numerical output rather than a categorical one. It is worth remarking

that regression is not a synonym of forecasting: time series forecasting is a subset of time

series regression, which is the more general task of modeling the relationship between

temporal data and one or more external variables, also in the present.

In the years following the recent DL revolution, the Recurrent Neural Networks

(RNNs) [14] represented the State-of-the-Art category of models for time series anal-

ysis based on automated learning. More recently, Temporal Convolutional Networks

(TCNs) [15], [16] and attention-based Transformers [17] have outperformed RNNs. The

research presented in this dissertation focuses on TCNs, with the perspective of algorith-

mic deployment onto resource-constrained embedded devices, especially Microcontroller

Units (MCUs). Although Transformers are more recent, it is worth noting that the

recent disruptive AI applications based on Transformers are built on models such as the

Bidirectional Encoder Representations from Transformers (BERT) [18] and the Gen-

erative Pre-trained Transformer (GPT) [19] (especially GPT-3, GPT-3.5, and GPT-4),

which are constituted by up to billions of parameters. Thus, the breakthroughs in AI re-

lying on these large Transformers have yet to be ported to the edge or embedded domain,

where both Transformers and TCNs are worth the ongoing active research endeavors.

Introduction 2

TCNs are a category of Convolutional Neural Networks (CNNs) specialized for time

series thanks to 1-dimensional convolutions performed in the time dimension of the input.

TCNs combine an accuracy comparable to or better than RNNs with the addition of

computational advantages in terms of reduced memory requirements, higher arithmetic

intensity, and more data reuse [15], [16]. Hence, TCNs are promising for embedded

computing where inference is executed on Internet of Things (IoT) edge devices, in

contrast with the centralized cloud computing servers. Porting TCNs to the edge is

enabled by the engineering effort toward optimization to make them affordable for the

strict memory and energy budgets. This porting typically involves exploring the tradeoff

between accuracy and computational efficiency to improve the Pareto frontier and select

the desired working point.

This thesis addresses the aforementioned tradeoff by validating, deploying, and pro-

filing both TCNs and methods relying on event-based feature extraction, comparing the

performance of the two approaches as to accuracy and execution at the edge. In gen-

eral, developing efficient embedded ML/DL applications requires hardware-software

co-design, i.e., a vertical approach that encompasses several layers from the level of

processor design to the level of exploration, selection, and optimization of algorithms.

The work presented in this thesis focuses on the level of algorithm exploration and pro-

filing for specific applications, also involving the curation of novel task-specific datasets.

As to the lower engineering levels of embedded ML/DL, the work exploited existing

State-of-the-Art (SoA) frameworks and tools. Combining these two levels has yielded

SoA results in accuracy and efficiency in the targeted applications. These contributions

are exposed in detail in the next section.

1.1 Contributions & Thesis Structure

The contribution of the research presented in this thesis spans the three main cat-

egories of tasks for automated learning: binary classification, multi-class (single-label)

classification, and regression. This progression allowed to test the edge-oriented method-

ology for time-series ML/DL on tasks of increasing pattern complexity. All the research

problems addressed have in common the time-series nature of the data, as well as the

central role of microcontrollers as target platforms for the developed models.

• Binary classification

The contributions in binary classification involve two domains: the development

of ultrasound-based proximity sensor for active safety in industrial machinery and

the clinical topic of automatized data-driven epilepsy detection.

Introduction 3

– TCN-based low-latency collision-avoidance safety system for indus-

trial machinery. Modern manufacturing relies on complex machinery re-

quiring skills, attention, and precise safety certifications. Protecting operators

in the machine’s surroundings while at the same time reducing the impact on

the normal workflow is a major challenge. In particular, safety systems based

on proximity sensing of humans or obstacles require that the detection is accu-

rate, low-latency, and robust against variations in environmental conditions.

I present (3.1) a functional safety solution for collision avoidance relying on

Ultrasounds (US) and a TCN suitable for deployment directly at the edge on

a low-power MCU. The setup allowed to acquire a sensor-fusion dataset with

9 US sensors mounted on a real industrial woodworking machine. Applying

incremental training, the presented TCN achieved sensitivity 90.5%, speci-

ficity 95.2%, and AUROC 0.972 on data affected by the typical acoustic noise

of an industrial facility, an accuracy comparable with the SoA. Deployment on

an STM32H7 MCU yielded a memory footprint of 560 B (3× less than SoA),

with an extremely low latency of 5.0 ms and an energy consumption of 8.2 mJ

per inference (both > 2.3× less than SoA). The presented solution increases

its robustness against acoustic noise by leveraging new data, and it fits the

resource budget of real-time operation execution on resource-constrained em-

bedded devices. It is thus promising for generalization to different industrial

settings and for scale-up to wider monitored spaces.

– Low-latency epilepsy detection from iEEG with a TCN. Epilepsy is

a severe neurological disorder that affects about 1% of the world population,

and one-third of cases are drug-resistant. Apart from surgery, drug-resistant

patients can benefit from closed-loop brain stimulation, eliminating or miti-

gating the epileptic symptoms. For the closed-loop to be accurate and safe,

it is paramount to couple stimulation with a detection system able to recog-

nize seizure onset with high sensitivity and specificity and short latency while

meeting the strict computation and energy constraints of always-on real-time

monitoring platforms. I present (3.2) a novel setup for iEEG-based epilepsy

detection, exploiting a TCN optimized for deployability on low-power edge

devices for real-time monitoring. The approach is tested on the Short-Term

SWEC-ETHZ iEEG Database, containing a total of 100 epileptic seizures

from 16 patients (from 2 to 14 per patient) comparing it with the SoA ap-

proach, represented by Hyper-Dimensional Computing (HD). The TCN at-

tains a detection delay which is 10 s better than SoA, without a performance

drop in sensitivity and specificity. Contrary to previous literature, this setup

Introduction 4

enforces a time-consistent setup, where training seizures always precede test-

ing seizures chronologically. When deployed on a commercial low-power par-

allel MCU, each inference with the model has a latency of only 5.68 ms and

an energy cost of only 124.5µJ if executed on 1 core, and latency 1.46 ms

and an energy cost 51.2µJ if parallelized on 8 cores. This latency and this

energy consumption, lower than the current SoA, demonstrate the solution’s

suitability for real-time, long-term embedded epilepsy monitoring.

• Classification: sEMG-based hand gesture recognition

The contribution in multi-class (single-label) classification belongs entirely to the

topic of sEMG-based hand gesture recognition. In particular, I addressed the

sEMG inter-posture, inter-session, and inter-day variability by first developing a

non-deployed TCN accurate in inter-day scenarios; then, I developed a TCN that

is both accurate on inter-day scenarios (on a novel 20-session dataset) and fully

deployed onto a parallel ultra-low-power MCU; finally, I developed an unsuper-

vised heuristic for online adaptation to counter changes in arm posture. These

contributions successfully target the issue of sEMG inherent variability, which is

currently one of the main obstacles to the sEMG-based control of HMIs.

– Temporal variability analysis in sEMG hand grasp recognition with

a TCN. I present (4.1) a TCN-based approach that improves by 7.6% the

best results in the literature on the NinaPro DB6, a reference dataset for

temporal variability analysis of sEMG. Moreover, when targeting the much

more challenging inter-session accuracy objective, the method achieves an

accuracy drop of just 4.8% between intra- and inter-session validation. This

proves the suitability of the setup for a robust, reliable, long-term implemen-

tation. Furthermore, the network is distilled using deep network quantization

and pruning techniques, demonstrating that the approach can use down to

120× lower memory footprint than the initial network and 4× lower mem-

ory footprint than a baseline Support Vector Machine, with an inter-session

accuracy degradation of only 2.5%, proving that the solution is suitable for

embedded resource-constrained implementations.

– Robust real-time embedded sEMG recognition framework with a

TCNs. I present (4.2) a complete wearable-class embedded system for ro-

bust sEMG-based gesture recognition based on TCNs. Firstly, a novel TCN

topology (TEMPONet) is developed and tested on a benchmark dataset (Ni-

napro), achieving 49.6% average accuracy, 7.8% better than the current SoA.

Moreover, an energy-efficient embedded platform is designed based on GAP8,

Introduction 5

a novel 8-core IoT processor. Using this embedded platform, a second 20-

session dataset is collected to validate the system on a setup representative of

the final deployment. The recognition achieves 93.7% average accuracy with

the TCN, comparable with a SoA SVM approach (91.1%). Finally, the anal-

ysis profiled the performance of the network implemented on GAP8 by using

an 8-bit quantization strategy to fit the memory constraint of the processor.

This deployed application reaches a 4× lower memory footprint (460 kB) with

a performance degradation of only 3% accuracy. The execution profiled on

the GAP8 platform shows that the quantized network executes a single clas-

sification in 12.84 ms with a power envelope of 0.9 mJ, making it suitable for

a long-lifetime wearable deployment.

– Online unsupervised arm posture adaptation for sEMG-based ges-

ture recognition. I present (4.3) an unsupervised adaptation technique for

sEMG classification and apply it to arm posture variability. The approach

relies on aligning the Principal Components (PCs) of new data with the PCs

of the training set. No classifier retraining is required, and the PCs are esti-

mated online, consuming one sample at a time without storing any data. The

method is validated on the UniBo-INAIL dataset, showing that it recovers

37% to 51% of the inter-posture accuracy drop. The solution is deployed on

GAP9, a parallel ultra-low-power microcontroller, obtaining a latency within

3.57 ms and an energy consumption within 0.125 mJ per update step. These

values satisfy the constraints for real-time operation on embedded devices.

This solution is unsupervised and thus suitable for real-world incremental

learning conditions where ground truth is not available.

• Regression: sEMG-based estimation of hand kinematics and force

Also for automated-learning regression tasks, the contribution of this thesis is

entirely dedicated to sEMG-based control policies oriented to HMIs. This research

effort aims at a more natural, fluid, and intuitive control thanks to the estimation

of hand joint angles and simultaneous finger forces. Compared to the work sEMG

classification in the previous part, an additional advance resides in exploring event-

based features and regression pipelines that are computationally cheaper than

DNNs and more amenable to deployment on event-driven computing platforms,

which can yield reduced latency and energy consumption in future research work.

– sEMG-based regression of hand kinematics with TCNs. I present

(5.1) a regression framework based on TEMPONet (4.2), a SoA TCN for

sEMG decoding, which is further optimized for deployment. The approach

Introduction 6

is tested on the NinaPro DB8 dataset, targeting the estimation of 5 contin-

uous degrees of freedom for 12 subjects (10 able-bodied and 2 trans-radial

amputees) performing a set of 9 contralateral movements. The TCN achieves

a Mean Absolute Error (MAE) of 6.89◦, which is 0.15◦ better than the SoA.

The model reaches this accuracy with a memory footprint of only 70.9 kB,

thanks to int8 quantization. This is remarkable since high-accuracy SoA

neural networks for sEMG can reach sizes up to tens of MB if deployment-

oriented reductions like quantization or pruning are not applied. The model is

deployed on the GAP8 edge microcontroller, obtaining 4.76 ms execution la-

tency and an energy cost per inference of 0.243 mJ, showing that this solution

is suitable for implementation on resource-constrained devices for real-time

control.

– Event-based low-power and low-latency estimation of hand kine-

matics from sEMG. I present (5.2) the first event-based EMG encoding

applied to the regression of hand kinematics suitable for working in streaming

on a low-power microcontroller (STM32 F401, mounting ARM Cortex-M4).

The motivation for event-based encoding is to exploit upcoming neuromor-

phic hardware to benefit from reduced latency and power consumption. The

achieved MAE is 8.8 ± 2.3 degrees on 5 degrees of actuation on the public

dataset NinaPro DB8, comparable with the SoA DNNs. The method uses 9×
less memory and 13× less energy per inference, with 10× shorter latency per

inference than the SoA deep net, proving suitable for resource-constrained

embedded platforms.

– Event-based estimation of hand forces from High-Density sEMG. I

present (5.3) an event-based sEMG encoding for multi-finger force estimation

implemented on an MCU. This is the first work to target the HYSER High-

Density (HD)-sEMG dataset in multi-day conditions closest to a real scenario

without a fixed force pattern. The MAE of (8.4 ± 2.8)% of the Maximum

Voluntary Contraction (MVC) is on par with SoA works on easier settings

such as within-day, single-finger, or fixed-exercise. This solution for HYSER’s

hardest task is deployed on a parallel ultra-low power MCU, getting an energy

consumption below 6.5 uJ per sample, 2.8× to 11× more energy-efficient than

SoA single-core solutions, and a latency below 280 us per sample, shorter

than HYSER’s HD-sEMG sampling period, thus compatible with real-time

operation on embedded devices.

The contributions outlined above are declined in the following chapters as follows.

Chapter 2 provides the background of the topics of the presented research: TCNs,

Introduction 7

Chapter 3: Binary Classification

3.1 Proximity sensor for active safety
in industrial machinery

3.2 Epilepsy detection

Chapter 4: Classification of sEMG

4.1 Hand gesture recognition: non-
embedded TCN

4.2 Hand gesture recognition:
embedded TCN

4.3 Unsupervised online adaptation
to arm posture

Chapter 5: Regression on sEMG

5.1 Estimation of hand kinematics
with a TCN

5.2 Estimation of hand kinematics
with event-based features

5.3 Estimation of multi-finger forces
with event-based features

Background

2.1 Temporal Convolutional Networks

2.2 Microcontrollers

2.3 Quantization & Deployment

Background

2.4 Human-Machine Interfaces based
on sEMG and ML/DL

Figure 1.1: Scheme of the contents of this thesis. Chapter 2 provides the background
of the three contribution chapters of the thesis, which constitute a progression as to
the complexity of time-series ML/DL task: binary classification (Chapter 3), multi-
class (single-label) classification (Chapter 4: sEMG-based gesture recognition), and
regression (Chapter 5: sEMG-based estimation of hand kinematics and forces).

MCUs, quantization and deployment tools, and sEMG-based HMIs based on automated

learning. Chapter 3 exposes the research on binary classification, addressing the task

of embedded proximity sensing for industrial machinery safety and the task of epilepsy

detection. Chapter 4 exposes the contribution in the topic of classification, focused

on sEMG-based gesture recognition. Chapter 5 presents the research in the domain of

regression, which is devoted to sEMG-based estimation of hand kinematics and forces ex-

ploiting both TCNs and event-based handcrafted features. Finally, Chapter 6 draws the

conclusions of the presented research. Figure 1.1 schematizes the relationship between

the background topics and the individual research contributions.

1.1.1 Publication-related structure

The core of this thesis lies in the contribution chapters, namely Chapters 3, 4, and 5,

which are based on the works published during the years of the Ph.D. programme.

This dissertation systematizes and harmonizes the contributions of these articles. The

structure in relationship with publications is as follows:

• Chapter 3 – Binary Classification:

3.1: [20] M. Zanghieri, F. Indirli, A. Latella, G. M. Puglia, F. Tecce, F. Papariello, G. Urlini, L.

Benini, and F. Conti, “An extreme-edge TCN-based low-latency collision-avoidance safety

system for industrial machinery,” IEEE Access, pp. 1–1, 2024. doi: 10.1109/ACCESS.2024.

3357510

https://doi.org/10.1109/ACCESS.2024.3357510
https://doi.org/10.1109/ACCESS.2024.3357510

Introduction 8

3.2: [21] M. Zanghieri, A. Burrello, S. Benatti, K. Schindler, and L. Benini, “Low-latency detection of

epileptic seizures from iEEG with temporal convolutional networks on a low-power parallel

MCU,” in 2021 IEEE Sensors Applications Symposium (SAS), 2021, pp. 1–6. doi: 10.

1109/SAS51076.2021.9530181

• Chapter 4 – Classification: sEMG-based Hand Gesture Recognition:

4.1: [22] M. Zanghieri, S. Benatti, F. Conti, A. Burrello, and L. Benini, “Temporal variability analysis

in sEMG hand grasp recognition using temporal convolutional networks,” in 2020 2nd IEEE

International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2020,

pp. 228–232. doi: 10.1109/AICAS48895.2020.9073888

4.2: [3] M. Zanghieri, S. Benatti, A. Burrello, V. J. Kartsch Morinigo, F. Conti, and L. Benini,

“Robust real-time embedded EMG recognition framework using temporal convolutional

networks on a multicore IoT processor,” IEEE Transactions on Biomedical Circuits and

Systems, vol. 14, no. 2, pp. 244–256, 2020. doi: 10.1109/TBCAS.2019.2959160

4.3: [23] M. Zanghieri, M. Orlandi, E. Donati, E. Gruppioni, L. Benini, and S. Benatti, “Online

unsupervised arm posture adaptation for sEMG-based gesture recognition on a parallel

ultra-low-power microcontroller,” in 2023 IEEE Biomedical Circuits and Systems Confer-

ence (BioCAS), 2023, pp. 1–5. doi: 10.1109/BioCAS58349.2023.10388902

• Chapter 5 – Regression: sEMG-based Estimation of Hand Kinematics

and Force:

5.1: [24] M. Zanghieri, S. Benatti, A. Burrello, V. J. Kartsch Morinigo, R. Meattini, G. Palli, C.

Melchiorri, and L. Benini, “sEMG-based regression of hand kinematics with temporal con-

volutional networks on a low-power edge microcontroller,” in 2021 IEEE International

Conference on Omni-Layer Intelligent Systems (COINS), 2021, pp. 1–6. doi: 10.1109/

COINS51742.2021.9524188

5.2: [25] M. Zanghieri, S. Benatti, L. Benini, and E. Donati, “Event-based low-power and low-

latency regression method for hand kinematics from surface EMG,” in 2023 9th Interna-

tional Workshop on Advances in Sensors and Interfaces (IWASI), 2023, pp. 293–298. doi:

10.1109/IWASI58316.2023.10164372

5.3: [26] M. Zanghieri, P. M. Rapa, M. Orlandi, E. Donati, L. Benini, and S. Benatti, “Event-based

estimation of hand forces from high-density surface EMG on a parallel ultra-low-power

microcontroller,” IEEE Sensors Journal, pp. 1–1, 2024. doi: 10.1109/JSEN.2024.3359917

https://doi.org/10.1109/SAS51076.2021.9530181
https://doi.org/10.1109/SAS51076.2021.9530181
https://doi.org/10.1109/AICAS48895.2020.9073888
https://doi.org/10.1109/TBCAS.2019.2959160
https://doi.org/10.1109/BioCAS58349.2023.10388902
https://doi.org/10.1109/COINS51742.2021.9524188
https://doi.org/10.1109/COINS51742.2021.9524188
https://doi.org/10.1109/IWASI58316.2023.10164372
https://doi.org/10.1109/JSEN.2024.3359917

Chapter 2

Background

This chapter will introduce the general concepts that underlie the works presented

in this dissertation. In particular, it will first explain Temporal Convolutional Networks,

the category of models most used in this research work; then, it will illustrate the cate-

gories of microcontrollers of interest for the thesis. After that, this chapter will overview

the techniques and frameworks employed to adapt and deploy deep models onto embed-

ded platforms, focusing on quantization. Finally, the chapter will introduce the topic

of Human-Machine Interfaces based on surface electromyography and Machine/Deep

Learning, to which most of the present work is devoted.

2.1 Temporal Convolutional Networks

Temporal Convolutional Networks (TCNs) are a flavor of Convolutional Neural Net-

works (CNNs) based on 1-dimensional (1D) convolutions [15], [27]. Whereas classical

2-dimensional (2D) convolutions make ordinary 2D-CNN a natural choice for extracting

data from digital images, 1D convolutions make TCN a natural algorithm for processing

time-series data. TCNs have had successes in tasks of time-series analysis, achieving SoA

results regarding both statistical accuracy and execution energy-efficiency. In particular,

TCNs overperformed both ordinary non-deep machine learning models and deep Recur-

rent Neural Networks (RNNs), like Gated Recurrent Unit (GRU)-based models and Long

Short-Term Memory (LSTM) networks. As to RNNs, TCNs are typically more easily

trainable since they are less affected by the effect of vanishing or exploding gradients,

and they require less training memory compared to RNNs for long input series; as to in-

ference, TCNs have advantages in terms of data locality and arithmetic intensity, which

is the general feature that makes CNNs more latency- and energy-efficient compared to

RNNs.

Background 10

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1×1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt−1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)

ln (1 + µ)
,

3

Figure 2.1: Standard representation of a deep neural network block composed of causal
dilated convolutions. The filter size is K = 3 and the dilation factors are d1,2,3,4 =
1, 2, 4, 8. Thanks to dilation, the receptive field covers a long time window of the input.
Image source: [28].

The fundamental component of a TCN is the 1D convolutional layer. The other

classical layers, such as batch-normalization (BNs), non-linearities, pooling, and fully

connected ending blocks, are the same as ordinary 2D-CNNs. In general, TCNs’ 1D

convolutional layers can be characterized by the properties of causality and dilation,

which have a particular meaning for input and activations that have the nature of time

sequences. Causality ensures that no output yt of a convolution is computed using

input elements corresponding to a future time, thus enforcing the time-consistency of

the computation; so, the convolution’s outputs yt only depend on the finite set of input

samples in the past xt−K+1 . . . , xt, weighted by the temporal convolutional kernel of

length K. Dilation (also appliable for 2D convolutions) is the stratagem employed in

TCNs for widening the convolution receptive field while keeping constant the model size

and the amount of computation; a fixed interval d is inserted between the input samples

taken into account by the convolution kernel. Therefore, a general temporal convolution

operation characterized by both causality and dilation is expressed by the formula

ycoutt =

Cin−1∑
cin

K−1∑
k=0

W coutcin
k xcinst−dk (2.1)

for cout = 0, . . . , Cout − 1 and t = 0, . . . , T − 1; where x and y are the convolutions’

input and output, respectively, t is the index of the time sample, T is the sequence

length, W is the tensor of kernel parameters, cin and cin are the indices of the input and

output channels, respectively, Cin and Cin are the total numbers of input and output

channels, respectively, K is the temporal size of the filter, s is the stride (analogous to

2D convolutions), and d is the dilation. The receptive field of this convolutional layer

has an extension of F = (K − 1)d + 1. A typical network block based on causal dilated

convolutions is shown in Figure 2.1.

It is worth remarking that causality and dilation are possible TCN features, but

Background 11

they are by no means a mandatory prescription for effectively processing time series. As

to causality, in the embedded TCN applications developed in this research, the input

time window is always fully available at inference time, and inference is executed as soon

as the window data are fully acquired so that considering a symmetrical neighborhood

of a sample does not imply any leakage of data from the future. Regarding dilation,

the emphasis on it derives from the successful heuristics in originary temporal deep

models, such as the WaveNet architecure [28], which proved to benefit from a modular

structure where the i-th convolutional layer of each model had dilation factor di = 2i;

for instance, in WaveNet this function was applied using blocks of 9 layers, thus with a

dilation up to d9 = 29 = 512. In contrast, in the embedded applications of this thesis,

the goal is to pursue accuracy with models that are as lightweight as possible; this proved

feasible with a number of convolutional layers of the order of 10, for which a specific

periodic pattern for dilation did not prove beneficial. So, in the works presented here,

both causality and dilations are treated as possible model properties and are selected

when beneficial for accuracy. Moreover, some works on TCNs emphasize the presence

of residual connections [15] in a strong relationship with ResNet [29]. However, residual

connections only sometimes prove beneficial in practice; in particular, they are not used

in the work presented in this thesis.

2.2 Microcontrollers of Interest

Embedded computing platforms are becoming increasingly pervasive due to their

suitability for many computing tasks related to everyday life applications, such as the

domains of the Internet of Things (IoT) and wearable devices. The focus of this disser-

tation is on Microcontroller Units (MCUs). In particular, the research and engineering

interest common to all the presented works is in pursuing ML and DL solutions that

keep into account the requirements for deployment and execution on MCUs. This sec-

tion will illustrate the main MCU of interest for this thesis: the STM32H7 and the

PULP-based GAP8 and GAP9. It is also worth noting that they mount processors

that belong to two different families of Instruction Set Architectures (ISAs): ARM and

RISC-V, respectively.

STM32H7 The STM32H7 microcontroller by STMicroelectronics mounts one ARM

Cortex-M7 core [30]. It is designed to maximize the computational capability for general-

purpose computing in a tight power envelope. Its block diagram is reported in Figure 2.2.

The STM32H7 MCU features two caches to improve performance at the cost of increased

energy consumption; its cache system consists of a data cache and an instruction cache,

Background 12

Description STM32H742xI/G STM32H743xI/G

24/357 DS12110 Rev 10

Figure 2. STM32H743xI/G block diagram

MSv41922V15

TT-FDCAN1

FDCAN2

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

AXI/AHB12 (240MHz)

4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF

A
P

B
1

3
0

M
H

z

TX, RX

SCL, SDA, SMBAL as AF

A
P

B
1

 1
20

 M
H

z
(m

ax
)

MDMA

PK[7:0]

4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR, BKIN as

AF

RX, TX, SCK, CTS, RTS as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

TX, RX

RX, TX as AF

RX, TX as AF

RX, TX, SCK
CTS, RTS as AF

RX, TX, SCK, CTS,
RTS as AF

1 channel as AF

smcard

irDA

1 channel as AF

2 channels as AF

4 channels

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

RX, TX as AF

FIFOLCD-TFT

FIFO
CHROM-ART

(DMA2D)

SD, SCK, FS, MCLK, D/CK[4:1] as
AF FI

FO

LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,

LCD_VSYNC, LCD_DE, LCD_CLK

CLK, CS,D[7:0]

64
-b

it
A

X
I B

U
S

-M
AT

R
IX

CEC as AF

IN[1:4] as AF

MDC, MDIO

AXIMAXIM

Arm CPU
Cortex-M7
480 MHz

AHBP

AHBS

TRACECK
TRACED[3:0]

JTRST, JTDI,
JTCK/SWCLK

JTDO/SWD, JTDO
JTAG/SW

ETM

I-Cache
16KB

D-Cache
16KB

I-TCM
64KB

D-TCM
64KB

16 Streams
FIFO

SDMMC1
SDMMC_D[7:0],SDMMC_D[7:3,1]Dir

SDMMC_D0dir, SDMMC_D2dir
CMD, CMDdir, CK, Ckin,

CKio as AF

FIFO

DMA1

FIFOs
8 Stream

DMA2

FIFOs

ETHER
MAC

FIFO

SDMMC2

FIFO

OTG_HS

FIFO

OTG_FS

FIFO

SRAM1
128 KB

8 Stream

FMC_signals

DMA/ DMA/ DMA/

PHY PHY

MII / RMII
MDIO
as AF

DP, DM, STP,
NXT,ULPI:CK
, D[7:0], DIR,

ID, VBUS

A
H

B
1

(2
40

M
H

z)

ADC1

DAC_OUT1, DAC_OUT2 as AF

16b

AXI/AHB34 (240MHz)

JPEGWWDG

A
H

B
2

(2
40

M
H

z)

AHB2 (240MHz)

PA..J[15:0]

HSYNC, VSYNC, PIXCLK, D[13:0]

SAI3

MOSI, MISO, SCK, NSS as AF

MOSI, MISO, SCK, NSS as AF

smcard
irDA 32-bit AHB BUS-MATRIX

A
H

B
4

(2
40

M
H

z)

BDMA

DMA
Mux2

Up to 20 analog inputs
common to ADC1 & 2

HSEM

A
H

B
4

(2
40

M
H

z)

A
H

B
3

A
H

B
4

A
H

B
4

A
H

B
4

AHB4

A
H

B
4

VDDA, VSSA
NRESET
WKUP[6:1]

@VDD

RCC
Reset &
control

OSC32_IN
OSC32_OUT

VBAT = 1.8 to 3.6 V

AWU

VDD12 BBgen + POWER MNGT

LS
LS

OSC_IN
OSC_OUT

RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN

VDDMMC33 = 1.8 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP

@VDD

@VDD33

@VSW

P
W

R
C

TR
L

A
H

B
4

(2
40

M
H

z)

SUPPLY SUPERVISION

Int

POR
reset

@VDD

WDG_LS_D1

LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF

OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF

HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],

HRTIM1_FLT[5:1]_in, SYSFLT
DFSDM1_CKOUT,

DFSDM1_DATAIN[0:7],
DFSDM1_CKIN[0:7]

2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF

1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF

1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF

SDMMC_
D[7:0],

CMD, CK as AF

Up to 17 analog inputs
common to ADC1 and 2

SD, SCK, FS, MCLK,
D[3;1], CK[2:1] as AF

SCL, SDA, SMBAL as AF

COMPx_INP, COMPx_INM,
COMPx_OUT as AF

LPTIM5_OUT as AF

D-TCM
64KB

AHB/APB

Quad-SPI

Up to 1 MB
FLASH

Up to 1 MB
FLASH

512 KB AXI
SRAM

FMC

Delay block

DCMI
AHB/APB

HRTIM1

DFSDM1

SD, SCK, FS, MCLK, CK[2:1] as AF FI
FOSAI2

SD, SCK, FS, MCLK, D[3:1],
CK[2:1] as AF FI

FOSAI1

SPI5

TIM17

TIM16

TIM15

SPI4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF SPI1/I2S1

USART6

RX, TX, SCK, CTS, RTS as AF irDA USART1

TIM1/PWM 16b

TIM8/PWM 16b

A
P

B
2

12
0

M
H

z
(m

ax
)

ADC3

GPIO PORTA.. J

GPIO PORTK

SAI4

COMP1&2

LPTIM5

LPTIM4_OUT as AF LPTIM4

LPTIM3_OUT as AF LPTIM3

I2C4
MOSI, MISO, SCK, NSS /

SDO, SDI, CK, WS, MCK, as AF SPI6/I2S6

RX, TX, CK, CTS, RTS as AF LPUART1

LPTIM2

VREF

SYSCFG

EXTI WKUP

CRC

DAP

RNG

DMA
Mux1

To APB1-2
peripherals

SRAM2
128 KB

SRAM3
32 KB

ADC2
AHB/APB

TIM6 16b

TIM7 16b

SWPMI

TIM232b

TIM316b

TIM416b

TIM532b

TIM1216b

TIM1316b

TIM1416b

USART2

smcard

irDA
USART3

UART4

UART5

UART7

RX, TX as AFUART8

SPI2/I2S2
MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AFSPI3/I2S3

D
igital filter

MDIOs

FIFO

10
 K

B
 S

R
A

M

RAM
I/F

USBCR

SPDIFRX1

HDMI-CEC

DAC

LPTIM1

OPAMP1&2

AHB/APB

XTAL 32 kHz

RTC
Backup registers

XTAL OSC
4- 48 MHz

HS RC

LS RC

PLL1+PLL2+PLL3

POR/PDR/BOR

PVD

smcard

Voltage
regulator

3.3 to 1.2V

LSI
HSI

CSI
HSI48

LPTIM2_IN1, LPTIM2_IN2 and
LPTIM2_OUT

AHB1 (240MHz)

DP, DM, ID,
VBUS

64 KB SRAM 4 KB BKP
RAM

A
H

B
4

32-bit AHB BUS-MATRIX

A
P

B
4

 1
00

 M
H

z
(m

ax
)

A
P

B
4

 1
00

 M
H

z
(m

ax
)

A
P

B
4

 1
20

 M
H

z
(m

ax
)IWDG

Temperature
sensor

Figure 2.2: Block diagram of the STM32H7 MCU (sub-family STM32H743xI/G).
Image source: [31].

Background 13

thus reducing the time to both fetch instructions and load data to the register file. The

ARM Cortex-M7 processor allows frequency up to 480 MHz at a power consumption of

234 mW. This MCU has several peripherals, including a Serial Peripheral Interface (SPI)

and Inter-Integrated Circuit (I2C), as well as Analog-to-Digital Converters (ADCs) for

sensor data acquisition.

PULP: GWT GAP8 and GAP9 In contrast to the ARM ISA, the RISC-V ISA

is open-source, allowing for several public specialized extensions (e.g., Digital Signal

Processing – DSP). This freedom has allowed the development of a new architectural

approach on top of the RISC-V ISA toward the design of general-purpose MCUs fea-

turing specialized components for the acceleration of tasks such as deep learning; this

advance has involved specialized accelerators (co-processors) and hierarchical memories

designed to exploit the data regularity. A major example of these approaches is the

Parallel Ultra-Low Power (PULP) computing, which exploits near-threshold computing

targeting a high energy-efficiency and exploits parallelism to improve the performance

degradation at low-voltage [32]. The PULP paradigm is based on optimizing the RISC-V

ISA for DSP and DNNs, heterogeneous parallel acceleration (i.e., architecturally differ-

ent compute units dedicated to unrelated tasks), and explicitly managed memory man-

agement. The extensions to the ISA include Single Instruction Multiple Data (SIMD)

Multiply-and-Accumulate (MAC) operations, which are the core of DNN computation,

as well as load/store instructions with post-increment, which include index updates in

the memory operations. Currently, most implementations of the PULP paradigm are

based on a SoA single-core MCU, termed the Fabric Controller, with a standard set of

peripherals that offload the computation-intensive tasks to a programmable parallel ac-

celerator, termed the Cluster, that features additional cores and has its own voltage and

frequency domain. GreenWaves Technologies (GWT) GAP8 [33], [34], whose block dia-

gram is reported in Figure 2.3, is a commercial PULP-based MCU featuring 9 extended

RISC-V cores (one I/O plus an 8-core cluster) and is one of the most advanced MCUs

specialized for DNNs. GAP8’s8 cluster has 8 four-stage in-order single-issue pipeline

RI5CY cores [36] implementing the RISC-V RV32IMCXpulpV2 ISA. The XpulpV2 is a

domain-specific extension for efficient DSP with hardware loops, post-modified access

load/store, and SIMD instructions down to 8-bit vector operands. All cluster’s cores

share the first level of the memory hierarchy, a 64 kB multi-banked L1 Tightly-Coupled

Data Memory (TCDM) accessible through a high-bandwidth, single-cycle-latency loga-

rithmic interconnect [36]. A cluster DMA [37] manages the data transfers between the

L1 TCDM memory and a second-level L2 512 kB-memory, also managed as a scratchpad,

available in the SoC domain, with a bandwidth up to 2 GB/s and a latency of 80 ns at

the maximum frequency. An autonomous I/O sub-system termed the I/O DMA [38]

Background 14Background 28

PMU

DC/DC

RTC

HYPER
UART

SPI
I2S
I2C

GPIO
JTAG

I/O
 D

M
A

L2 Memory
512 kB

4 GB/s @ 250MHz

Instr Cache

I/O RISC-V

I/O L1

ROM

DBG CLK

CL DMA

HWCE

HW Sync

DBG

Shared Multi-Bank L1 Memory - 64 kB
16 GB/s @ 250 MHz

Logarithmic Interconnect

RI
SC

-V

RI
SC

-V

RI
SC

-V

RI
SC

-V

RI
SC

-V

RI
SC

-V

RI
SC

-V

RI
SC

-V

Shared Instruction Cache

L3 Memory

8 MB RAM
64 MB Flash
250 MB/s DDR

I/O DOMAIN CLUSTER DOMAIN

O�-Chip

Figure 2.5: GWT GAP-8 MCU block diagram.

2.3.2.2 GAP8

GWT GAP-8 [27] (depicted in Figure 2.5) is a commercial PULP system with 9

extended RISC-V cores (one I/O + an eight-core cluster), which represents one of the

most advanced embodiments of the DNN-dedicated MCU trends. The GAP-8 ’cluster’

comprises eight 4-stage in-order single-issue pipeline RI5CY [56] cores, implementing the

RISC-V RV32IMCXpulpV2 Instruction Set Architecture (ISA). XpulpV2 is a domain-

specific extension meant for efficient digital signal processing, with hardware loops, post-

modified access LD/ST, and SIMD instructions down to 8-bit vector operands.

The cores of the cluster share the first level of memory, a 64 kB multi-banked L1

memory Tightly-Coupled Data Memory (TCDM), accessible from the cluster’s cores

through a high-bandwidth, single-cycle-latency logarithmic interconnect. The L1 fea-

tures a 2× banking factor and a word-level interleaving scheme to reduce the probabil-

ity of contention [57]. To manage data transfers between the L1 TCDM memory and

a second-level 512 kB of memory (managed as a scratchpad as well) available in the

SoC domain, the cluster DMA [58] can manage data transfers between L1 and L2 with a

bandwidth up to 2 GB/s and a latency of 80 ns at the maximum frequency. On the other

hand, to interface the L2 memory with the external world, and in particular, with the

Cypress Semiconductor’s HyperRAM/HyperFash module [59] available on the GAPuino

board, GAP-8 can use an autonomous I/O sub-system called I/O DMA [60]. Through

the HyperBus interface, the external L3 HyperRAM and/or HyperFlash memory can

be connected to the system, enabling a further 64 MB of storage for read-only data on

Flash and 8-16 MB for volatile data on DRAM, with a bandwidth up to 200 MB/s.

Figure 2.3: Block diagram of the GWT GAP8 microcontroller. Image source: [35].

interfaces the L2 memory with the external world and the Cypress Semiconductor’s L3

HyperRAM/HyperFash memory module featured by the GAPuino board. Via the Hy-

perBus interface, the external L3 can be connected to the system, offering an additional

64 MB storage for read-only data on Flash and 8–16 MB for volatile data on DRAM with

a bandwidth up to 200 MB/s. GWT GAP9 [34] is the more recent iteration of GWT

GAP8, with analogous architectural principles and architecture. GAP9 represents the

SoA of low-power processors since it ranked first in latency and energy consumption on

the benchmarks MLPerf Tiny v1.0 [39].

2.3 Embedding Deep Networks: Compression & Deploy-

ment

In recent years, Deep Learning has become the major solution to a vast set of

computational tasks. Deep models are widely and increasingly integrated into the dig-

ital domain of industrial, consumer, and healthcare applications and products. The

pervasiveness and proliferation of Internet of Things (IoT) devices, now moving to-

ward ubiquitous cognitive computing, push the application-oriented Machine Learning

to port inference to edge devices to enable real-time data processing and reduce the

communication and computing load on cloud networks. However, edge platforms are

strictly resource-constrained regarding memory budget and power consumption; at the

same time, real-time processing of time-series data poses additional crucial constraints

related to computation latency. Some advanced edge computing platforms are equipped

with specialized hardware accelerators, which require hardware-specific programming

efforts to be exploited efficiently. These developments and challenges have given birth

to the field of Tiny Machine Learning (TinyML), the novel domain whose purpose is to

enable the porting of models onto edge devices characterized by strict requirements in

Background 15

terms of memory and power envelope, such as embedded microcontrollers. At the algo-

rithmic and software level of TinyML research and engineering, the set of compression

techniques is crucial to reducing the resource requirements of training and inference.

The methods used in the works of this thesis to reduce the amount of memory and

computation are addressed to deep models’ inference.

2.3.1 Quantization

In the research work reported in this dissertation, the most relevant network com-

pression technique is quantization. Other effective methods to reduce a model’s com-

putational burden and memory footprint are pruning and vector compression. Prun-

ing [40] techniques detect and remove the neurons or connections (i.e., parameters) that

are redundant, i.e., do not significantly affect the network’s output and are thus not

relevant for accuracy. For instance, this is the case for weights and activations that are

0. Pruning can be applied at training time (static pruning) or at runtime (dynamic

pruning) on either neurons or parameters. Vector compression techniques address

the model’s constants, reducing their size by clustering and sharing the weights and

the biases exploiting algorithms such as K-means or hash functions. An in-depth re-

view of deep network compression techniques is out of the scope of this thesis, and the

present exposition will focus on quantization. Quantization belongs to the category of

approximate computing since it approximates models’ floating-point values (mathemat-

ically, real numbers) to integer values with a lower bit-width, thus allowing reduced-

precision computation [40]–[42]. Typically, deep networks are trained using the float32

or float16 format for parameters and activations. However, smaller-bit-width represen-

tations can significantly optimize memory utilization and inference performance with a

negligible loss in accuracy. In general, experimenters and model developers can configure

different numerical precision for activations and parameters of each network layer, thus

implementing mixed-precision models to reach the desired trade-off between model size

and computation on one side and inference accuracy on the other. Quantization is more

effective when applied at training time (Quantization-Aware Training - QAT); however,

a popular alternative is represented by Post-Training Quantization (PTQ) methods.

In the works reported in this thesis, the considered quantization is always linear and

uniform across layers. This means that all elements ti of tensors t (namely: weights

W, inputs x, hidden activations a, and outputs y)) having dynamic range [αt, βt) are

mapped to tensors of N -bit integers t̂ via the bijective correspondence

ti = αt + εtt̂i, with t̂i ∈ Z (2.2)

Background 16

where

εt ≜
βt − αt

2N − 1
(2.3)

and the scalar εt is termed the quantum since it is the smallest possible difference between

values in the quantized tensor. In general, a model’s layer is composed of a sequence

of three operators: a linear operation, an optional BN, and a non-linear activation

function; the latter is transformed in a Quantization/Activation, in the sense that in

typical procedure it is in charge of quantizing the pre-activation resulting from the linear

operators [41]–[43]. With no loss of generality, we can assume αx = αa = αy = 0 for all

the inputs of linear operations and outputs of Quantization/Activations operators, but

not for weights. If the original activation function is a Rectified Linear Unit (ReLU), the

activations automatically satisfy the assumptions; otherwise, simple transformations can

enforce the assumption. All operators can be mapped in the integer domain exploiting

Equation 2.2. For linear layers:

φ =
∑
n

Wmnxn −→ φ̂ =
∑
n

Ŵmnx̂n; (2.4)

whereas for BNs:

φ′ = κ · φ + λ −→ φ̂′ = κ̂φ̂ + λ̂. (2.5)

Furthermore, for inference, the BN parameters can be merged-pair-wise:

κ ≜
γ

σ
, λ ≜ β − µ

γ

σ
. (2.6)

The dot-product operation in Equation 2.4 induces a shrinking of the quantum, in the

sense that the quantum of the representation of φ̂ is

εφ = εWεx ≪ εW, εx (2.7)

since, typically, εW, εx ≪ 1. Thus, higher precision is required to represent the integer

output of the linear operator φ̂ (e.g., 32 bits), compared to its inputs and weights, before

re-quantizing it upon finishing the accumulation. An analogous effect happens in the

BN layers for the output φ̂′. Finally, the final Quantization/Activation operator applies

the non-linearity and collapses the accumulator to a smaller bit-width:

ŷ = mφ̂′ >> d, with m ≜

⌊
εφ̂′

εy
2d
⌋

(2.8)

where >> denotes the right-shift operation. The integer d is selected during the quanti-

zation procedure in such a way that εφ̂/εy can be represented with sufficient accuracy.

A technique analogous to Equation 2.8 is also employed when a network has multiple

branches, each with its own quantum ε, that reconverge into a single tensor, typically

Background 17

by a summation; so, the branches are requantized, i.e., brought to the same common

quantum.

In the works presented in this dissertation, the deep models are quantized to a

precision of 8 bit, thus producing and deploying int8 weights and uint8 activations;

32-bit values are used for the accumulators and the BN parameters φ̂, φ̂′, κ̂, and λ̂, as

well for the quantities m and d governing the quantization and requantization procedure.

2.3.2 Frameworks and tools for embedded deep inference

This subsection provides an overview of the most relevant deep learning framework

for the deployment and inference of deep networks on edge computational platforms.

Nowadays, these tools are essential to enable SoA deep learning applications in both

research and industry. The key feature common to the major frameworks for deep net-

works deployment is that they support and partially automatize some of the compression

techniques described in Subsection 2.3.1, which are required for tailoring deep neural

networks to edge computing platforms [44].

TFLite TensorFlow Lite (TFLite) [45] is a lightweight tool for inference on edge

devices, based on the popular framework TensorFlow [46]–[48]. TFLite enables post-

training quantization, also supporting the half-precision float (float16) and int8 data

types. In addition, TFLite is compatible with the quantization-aware training and

pruning performed with the tools provided in TensorFlow or Keras [49]: the networks

produced with these frameworks (situated upstream in the typical model deployment

pipeline) can be imported and handles in TensorFlow Lite Micro [50], a runtime frame-

work designed to execute deep inference on microcontrollers.

ONNX Open Neural Network Exchange (ONNX) [51], [52] is an open standard for

formats of Artificial Intelligence models. In a stricter sense, ONNX is an open-source,

machine-independent format for deep models. Its purpose is interoperability, i.e., sim-

plifying the exchange of models across different frameworks and tools, also considering

the target hardware, including mobile and edge devices. ONNX supports quantization

to the int8 format, both at training time and runtime (i.e., inference time) for con-

volutional, fully-connected, and activation layers. This support allows the execution of

models in a framework different from the one used for training, enabling more flexible

combinations between SoA frameworks when implementing a deep learning pipeline or

product.

Background 18

Apache TVM Apache Tensor Virtual Machine (Apache TVM) [53], [54] is an open

compiler stack dedicated to the end-to-end compilation of deep models developed in

TensorFlow (2.3.2), ONNX (2.3.2), Keras, or MXNet. The compilation is oriented to

several backend frameworks and hardware target platforms. Apache TVM supports

block sparsity as well as model quantization down to sub-byte precision (e.g., 1−bit

or 4−bit). Furthermore, the microTVM [55] extension offers a C runtime that allows

targeting resource-constrained bare-metal devices.

STM32 CubeAI STM32 CubeAI [56] is a software extension for the code generation

tool STM32 CubeMX [57]. It provides a GUI that allows users to program STM32

microcontrollers to execute inference of deep models. STM32 CubeAI is compatible

with TFlite (2.3.2) and ONNX (2.3.2) networks and can apply post-training compression.

The code generated by the tool exposes APIs to implement multiple models in the same

codebase and to accelerate inference execution exploiting ARM CMSIS [58] kernels.

An exhaustive review of the current compression and deployment frameworks is out-

side of the scope of the present thesis. Here, it suffices to mention that, in addition

to the most popular SoA frameworks illustrated above, some novel specialized tools are

available to implement more advanced compression techniques or quantization in a finer-

grained fashion, such as QKeras [59], Larq [60], and Brevitas [61]. For the scope of this

thesis, it is more relevant to illustrate the quantization and deployment tools developed

at the Energy-Efficient Embedded Systems Laboratory of University of Bologna and

the Integrated Systems Laboratory of ETH Zürich within the Parallel Ultra-Low Power

(PULP) Platform project [62], [63], that were extensively used in the work, namely

NeMO, QuantLib and DORy.

NeMO NEural Minimizer for pytOrch (NeMO) [43], [64] is an open-source Python

library for quantizing neural networks implemented in PyTorch [65], [66]. NeMO is ori-

ented at the deployment onto highly memory-constrained, ultra-low power computation

devices, with a particular focus on PULP-based microcontrollers [63]. NeMO implements

the quantization technique of PArameterized Clipping acTivation (PACT) [67] as well as

other methods, and it allows the configuration of the quantization bit-width of activation,

weights and BN parameters, as well as BN folding. NeMO’s quantization can be mixed-

precision, and the tool also offers a semi-automatized precision relaxation. NeMO’s

pipeline of model transformation toward quantization works on three levels of the net-

work’s representation, torch.nn.Module [68] and torch.autograd.Function [69]. The

Background 19

sequence of transformations starts from the original floating-point model, termed full-

precision (FP) stage, applying a first quantization and calibration that yields the Fake-

Quantized (FQ) stage, where the model is still trainable; then, the quantization is frozen

yielding the Quantized Deployable (QD) stage, which has discretized floating-point values;

finally, proper integerization yields the Integerized Deployable (ID) stage model. The ID

model is the final quantized format to be exported to lower-level deployment tools: this

model stage is bit-accurate, i.e., contains the actual values to be deployed, and NeMO

implements export to ONNX 2.3.2 format. The illustrated pipeline allows NeMO users

to perform both Post-Training Quantization (PTQ) and Quantization-Aware Training

(QAT). The pipeline

FP→ FQ→ calibration→ QD→ ID (2.9)

(possibly including BN folding) is a Post-Training Quantization (PTQ). However, it

is worth noting that the FQ-stage model is not frozen and still allows fine-tuning via

backward gradients.

QuantLib Quantization Library (QuantLib) [70] is an open-source quantization li-

brary that works with the same purpose as NeMO (2.3.2) and analogous internal me-

chanics; however, QuantLib is more recent and currently more actively maintained than

NeMO. QuantLib is also a component of Quantization Laboratory (QuantLab) [71],

[72], along with organizing software to manage larger-scale machine learning, e.g., by

enabling multi-GPU acceleration of net training with torch.nn.DataParallel exploit-

ing Horovod[73]. Superseding NeMO (2.3.2), QuantLib/QuantLab are currently the

go-to quantization tools within the PULP Platform project, with applications in image

recognition [74], epilepsy detection [75], [76], and neuromorphic obstacle avoidance by

uncrewed aerial vehicles [77]. In the works reported in this thesis, QuantLib was used

alone without recourse to QuantLab.

DORy Deployment ORiented to memorY (DORy) [41], [42], [78] is an automated tool

for deploying deep models onto resource-limited embedded platforms, typically with a

memory budget ≤ 1 MB of on-chip SRAM. DORy addresses the memory constraints

dealing with tiling as a Constraint Programming (CP) problem, with the strategy of

maximizing the L1 memory usage under the topological constraints of each model layer.

The tool generates C code to orchestrate off- and on-chip transfers and computation

phases; Figure 2.4 displays an example of layer tiling. As input, DORy can receive mod-

els in the ONNX format (2.3.2) produced in NeMO (2.3.2) or QuantLib (2.3.2). DORy

specializes in feed-forward neural networks with single-wire residual connections. The

tool can implement layers using mixed-precision of 2, 4, 8 bits. DORy is compatible with

the GWT Virtual System-on-Chip (GVSoC) [79], the simulator of RISC-V processors

Background 20
7

copy
in

computecopy
in

copy
out

compute

input tensor x

output tensor y

weight tensor w

L1 buffer I

L1 buffer II

L1x buffer I

L1w buffer I

L1 memory

L2 memory

Cluster

copy
in

computecopy
in

compute

t0 t1 t2 t3 … tn

PIPELINE

t0

t1

t2

x tile0

W tile0

Cx

wx

hx

C1
y

wy

hy

C1
y

Cx

Co
re

 0
Co

re
 1

Co
re

 2
Co

re
 3

Co
re

 4
Co

re
 5

Co
re

 6
Co

re
 7

iIND = 0,
hIND = 0,
wIND = 0

iIND = 0,
hIND = 0,
wIND = 1

iIND = 0,
oIND = 0

oIND = 0,
hIND = 0,
wIND = 0

oIND = 0,
hIND = 0,
wIND = 1

copy
in

Cluster DMA

L3 memory

I/O DMACx

Cy

Stage 0

Stage 1

L2x

L2w,curr

L2w,next

L2y,i

L2 memory buffer

L1y buffer I

copy
out

copy
out

L1y buffer II

L1x buffer II

L1w buffer II

Fig. 3. DORY L3-L2-L1 layer routine example. On the left, the I/O DMA copies weights tile in case only Cy is L3-tiled. Two different buffers are used
for L2w. Then, the Cluster DMA manages L2-L1 communication using double-buffering, while the cores compute a kernel on the current tile stored
in one of the L1 buffers.

more effort due to the typically small sizes of L1 memories.
Compared to high-end computation engines, with much
larger memories, a suboptimal sizing of the tensors for the
L1 small MCUs memory can be even more detrimental in
terms of performance, as exposed in Section 6.1. DORY
abstracts this as a Constraint Programming (CP) problem,
and exploits the CP solver from the open-source OR-Tools
developed by Google AI 12 to meet hardware and geomet-
rical constraint (e.g., Ct

y for output and weights must be
the same), while maximizing an objective function. The base
objective function of the solver is to maximize L1 memory
utilization:

max(L1x + L1y + L1w) , (6)

manipulating the tile dimensions (e.g., Ct
x and Ct

y). The
hardware constraint is related to the max L1 buffer dimen-
sions:

L1x + L1y + L1w + L1backend <
L1

2
.

with L1backend, the overhead of the backend kernel, such as
the im2col memory occupation of PULP-NN backend [14]
or any other support buffer (e.g., the intermediate full-
precision accumulators for CHW based convolutions). Topo-
logical and geometrical constraints are due to the relation-
ships between each tensor’s characteristic dimensions and
other parameters of a layer; for example,

hty =
(
htx − (Kh − 1) + 2 · p

)
embodies the relationship between the height dimension in
the output and the input tiles, with p representing padding.

4.2.2 Target-specific Heuristics & Constraints
To maximize performance, the objective function of Eq. 6 can
be augmented with a series of heuristics targeting a specific
backend. The heuristics are combined with the objective
function of Eq. 6 by means of a set of tweakable parameters:

max
(
α(L1x + L1y + L1w) +

∑
i

βiHi

)
. (7)

Here, we list four heuristics related to PULP-NN, the back-
end library exploited by DORY in our GAP-8 case study.
- HIDE_IM2COL: the PULP-NN im2col buffer is reused

for each output pixel; therefore, maximizing the number

12. https://developers.google.com/optimization/

of output channels optimizes the reuse of input pixels,
reducing the overhead to create the im2col:

Hi2c = Ct
y

- PAR_BALANCE13: PULP-NN divides workload among
cores following primarily the h dimension (i.e., a chunk
of rows per core). Therefore, making this a multiple the
number of cores (8) maximizes balance:

Hpar = (hty − 1)mod 8

- MATMUL_W and MATMUL_CH: the innermost loop of PULP-
NN is a 4x2 matrix multiplication on 4 output channels
and 2 pixels in w direction. Maximizing adherence of a
tile to this scheme optimizes performance:

Hmm w = (wt
y − 1)mod 2 ; Hmm ch = (Ct

y − 1)mod 4

Section 6.1 discusses the effectiveness of the PULP-NN
heuristics in delivering a good quality-of-results. Addition-
ally, Section 6.1 describes the impact of applying these
heuristics both to the main tiling problem and to the sizing
of the layer borders tile.

We impose an additional constraint to always perform a
full computation along the channel direction:

Ct
x = Cx

We choose not to tile the Cx dimension to avoid the memory
overhead of long-term storage (and therefore, transfer to L2
and L3) of 32-bit partially accumulated values produced
by the backend. For the same reason, we do not tile the
spatial dimension of filters, i.e., Kh and Kw. While these
constraints restrict the solution space, we observe that the
purged solutions are sub-optimal.

4.2.3 DORY SW-cache Generator
The SW-cache Generator is charged of automatically gener-
ating C code orchestrating the execution of a whole layer
given the tiling solution found by the Tiling Solver. It
instantiates asynchronous data transfers and calls to the
backend kernels, without any manual effort. DORY uses
a triple-buffering approach for the communication between
L3-L2 and L2-L1 memories: specifically, double-buffering is
applied simultaneously between L3-L2 and L2-L1 (Figure 3),
and all data transfers are pipelined and asynchronous. With

13. The PAR_BALANCE constraint is changed to Hpar = (hty × wt
y −

1)mod 16 for “patological” output activations with hy < 8.

Figure 2.4: An example of a DORy routine tiling a layer across L3, L2, and L1
memories. On the left, the I/O DMA copies weight tiles in case only Cy is L3-tiled.
Two buffers are used for L2w. Then, the Cluster DMA manages L2-L1 communication
using double-buffering, while the cores compute a kernel on the current tile stored in
one of the L1 buffers. Image source: [42].

available for PULP-based platforms such as GreenWaves Technologies’ GAP8 [33], [34]

and GAP9.

2.4 sEMG-based Human-Machine Interfaces

Decoding hand gestures is an established method for developing advanced Human-

Machine Interfaces (HMIs), which leads to a wide range of application scenarios, such as

industrial robot control, gaming interfaces, prosthetic control, or augmented reality [80]–

[84]. In the HMI field, movement modeling relies on processing information coming from

video cameras [85] or muscular activity [86]. Camera-based techniques rely on image

processing algorithms that recognize users’ hands in a scene and recognize different

gestures using computer vision. Although this approach can decode several different

gestures reliably, it suffers from line-of-sight issues and scene illumination variability and

requires pre-installed environmental cameras. On the other hand, approaches based on

muscular signal analysis are inspired by the prosthetics domain, where electromyographic

signals are used to control artificial hands [87], [88]. Commercial prosthetic controllers

are simple and highly reliable. However, they provide a non-natural interface, unsuitable

for intuitive gesture interface design because of the high level of concentration required

by the user and the long learning curve.

New ML/DL approaches have been extensively explored to enable the design of nat-

ural gesture interfaces. They aim to map muscular contraction patterns onto a set of

intended gestures [89], using supervised learning methods such as Support Vector Ma-

chines (SVMs), Random Forests (RFs), Linear Dscriminant Analysis (LDA) or artificial

Background 21

neural networks (ANNs) [90]–[92]. This section will expose the background concerning

the surface electromyographic signal, the ML/DL approaches to hand gesture recogni-

tion, and the recent progress in ML/DL applied to sEMG regression to estimate hand

kinematics and multi-finger forces.

2.4.1 The sEMG signal

The electromyographic (EMG) signal [93]–[95] is the bioelectric potential originating

from the current generated by the ionic flow through the membrane of the muscular

fibers, and it is, therefore, a major index of the muscular activity. This potential is

generated by the electrical stimulus starting from the central nervous system and passing

through the motor neurons (motoneurons) that innervate the muscular tissue. Typically,

the EMG signal has amplitude ranging from 10µV to 10 mV, and bandwidth ∼ 2 kHz.

Moreover, the sEMG is a very challenging signal as it is affected by several noise sources,

such as motion artifacts, floating ground noise, crosstalk, and power line interference [96].

EMG data can be acquired either with invasive or non-invasive methods. In the part

of this thesis dedicated to the topic of sEMG ML/DL, I focus my research on surface

electromyography (sEMG), the non-invasive technique that senses the EMG activity via

electrodes positioned on the skin’s surface. In the sEMG setup, the action potentials

(APs) can be detected using an instrumentation amplifier with the positive and negative

terminals connected to two metal plates positioned on the skin surface; the sEMG signal

results from the superposition of all the detected APs underlying the amplifier [92]. In

the field of HMIs, building gesture recognition upon the analysis of sEMG signals is one

of the most promising approaches since non-invasiveness is an essential requirement for

many application scenarios.

2.4.2 Classification of sEMG: hand gesture recognition

In recent years, several sEMG-based hand recognition approaches have been pre-

sented in academia and commercial applications. All of them share a typical structure,

based on i) an analog front end for bio-potential acquisition, ii) a data preprocessing

and feature extraction/selection step, and iii) a final classification back-end. Moreover,

they usually all rely on ML algorithms such as SVMs, RFs, LDA, or ANNs [90]–[92],

[97]–[102].

For instance, in [103], [104], the authors presented a 4 hand gesture classification with

accuracy above 90%, using an ANN with 5 time-domain features (Mean Absolute Value

(MAV), Mean Absolute Value Slope (MAVS), number of Slope Sign Changes (SSC),

Background 22

number of zero crossings (ZC), and Waveform Length (WL)). Castellini et al. [105]

illustrated a three grasp recognition, achieving 97.1% classification accuracy using the

Root Mean Square (RMS) as features extraction for an SVM. On a more general scenario

(up to 50 different hand gestures), remarkable results were obtained by Atzori et al. [91]

on the Non-Invasive Adaptive hand Prosthetics Databases 1, 2, and 3 (NinaPro DB1,

DB2, and DB3), employing a mixture of time- and frequency-domain features. As a

downside, all these works are limited to a single-session setup. This setup fails to tackle

the issue of the inter-session accuracy drop observed when classifying gestures from a

never-seen session after training on just one session.

As a result, the crucial challenge in sEMG-based gesture recognition has shifted

from absolute classification accuracy to managing the variability of the signal, which is

affected by several factors such as anatomical variability, posture, fatigue, perspiration,

changes in the skin-to-electrode interface, user adaptation, and electrode repositioning

over multi-day usage [90], [92], [106], [107]. These factors strongly hamper generaliza-

tion, thus limiting the long-term use and the realization of robust real-time recognition

systems. For instance, Benatti et al. [108] and [107] collected sEMG data from several

subjects in multi-day campaigns to analyze the performance degradation of conventional

ML algorithms when donning and doffing the sensory setup. In these experiments, the

inter-session accuracy drop after training on a single session was up to 30%. The pro-

posed solutions mostly rely on extending the training datasets, modifying the acquisition

setup (e.g., increasing the electrode count), and extracting a broader set of features to

improve algorithm convergence. These solutions lower the average accuracy drop, de-

creasing the average error rate to 12% [90]. However, this performance drop and the

lack of generalization are still hampering the deployment of these solutions in reliable,

commercially available systems.

A new state-of-the-art strategy to robustify recognition against temporal variability

is multi-session training. This strategy has been made possible by the release of multi-

session sEMG datasets such as the Non-Invasive Adaptive hand Prosthetics Database

6 (NinaPro DB6, 10 sessions, 8 classes) [107] and the University of Bologna - INAIL

(UniBo-INAIL) database (8 days × 4 arm postures, 6 gestures) [92]. On the NinaPro

DB6, Palermo et al. [107] reached an inter-session accuracy of 25.4% by feeding Wave

Length to a Random Forest. Cene et al. [109] successfully employed Extreme Learning

Machines (ELMs) to raise this inter-session accuracy to 41.8%. It is worth noticing

that the reason why the accuracy reached on the NinaPro DB6 is much lower than

the one reached on other datasets with a similar number of classes and sensors is that

the hand movements of NinaPro DB6 are all grasp gestures, thus much less diverse

and discernable than the gestures in ordinary datasets. On the Unibo-INAIL dataset,

Background 23

Milosevic et al. [92] showed that multi-posture and multi-day training improve inter-

session generalization. A Radial Basis Function kernel SVM (RBF-SVM) applied on

4-channel single samples of the RMS signal yielded an intra-session recognition accuracy

higher than 90%, with an inter-session accuracy drop up to 20% (a value similar to

[107], [109]). The aforementioned approaches showed the major limitation of classical

ML: it strongly relies on domain-specific knowledge and hand-crafted features, limiting

the capability to generalize over time.

To cope with this issue, DL represents a valid approach since it incorporates feature

learning into model training and can reach a better generalization on the data. DL-

based solutions have also been prompted by increased data availability (public sEMG

benchmark databases) and significant improvements in computing hardware [110]. Table

2.1 shows that DL methods outperform traditional ML approaches when classifying data

from different sessions. This conclusion is also reinforced in the survey conducted by

Phinyomark et al. [106]. The first end-to-end DL architecture was proposed by Park

and Lee [111], who applied a CNN + RMS on NinaPro DB1, outperforming an SVM in

classification accuracy across subjects. From our variability point of view, it is interesting

to note that this early work already addresses inter-subject variability, showing that a

CNN benefits more than an SVM from an adaptation phase introduced before classifying

data from unseen subjects. Atzori et al. [115] also proposed a CNN-based approach to

recognize the 52 hand gestures from the NinaPro DB1, DB2, and DB3 (taking 150 ms-

windows of RMS, acting on time×channels), reaching classification accuracy comparable

to classical methods such as RF.

Regarding the issue of variability, a strategy typical of DL is Adaptive Batch-

Normalization (AdaBN) [116], a domain adaptation consisting in re-training the BN

layers [117] of deep models without fine-tuning the entire network. AdaBN is parameter-

free, free of additional components, and computationally simpler than generalized fine-

tuning. These qualities make AdaBN interesting for real-time setup, in which it has

already shown some success. For instance, Du et al. [114] employed a CNN + instan-

taneous High-Density (HD) sEMG images, attaining 63.3% accuracy on the 8 classes of

their CapgMyo database.

Recently, TCN approaches have started appearing in recent research, gaining trac-

tion for sEMG-based gesture recognition. Tsinganos et al. [112] achieved 89.8% classi-

fication accuracy on the 53 classes of NinaPro DB1 with an RMS-fed TCN. This result

is 4.8% better than SoA [118] and surpasses by 19.3% the previous results from the

same authors obtained with conventional 2D-CNNs [99]. This TCN was evaluated us-

ing a receptive field (i.e., input sequence lengths) of 300 ms up to 2.5 s. Although the

NinaPro DB1 dataset is not multi-session [91] and so does not involve the temporal

Background 24

T
a
b
le

2
.1
:

C
om

p
a
ri

so
n

b
et

w
ee

n
S

o
A

em
b

ed
d

ed
p

la
tf

o
rm

s
fo

r
E

M
G

p
ro

ce
ss

in
g
.

W
O
R
K

D
a
ta

se
t

S
u
b
js

S
e
ss
io
n
s

C
la
ss
e
s

C
h
a
n
n
e
ls

W
in

d
o
w

F
e
a
tu

r
e
s

A
lg
o
r
it
h
m

A
c
c
u
r
a
c
y

(%
)

in
tr
a
/
in
te

r
R
e
a
l-
ti
m

e
?

/
E
m
b
e
d
d
e
d
?

H
u
d
g
in
s
[1
0
3
]

p
ri
v
a
te

1
8

1
4

1
2
0
0
m
s

M
A
V
,
Z
C
,

S
S
C
,
W

L
sh

a
ll
o
w

A
N
N

8
8
.9

/
N
.A

.
n
o
/
n
o

P
a
rk

[1
1
1
]

N
in
a
P
ro

D
B
1

2
7

1
6

1
8

2
0
0
0
m
s

R
M
S
ti
m
e×

ch
.

C
N
N

N
.A

./
∼
9
4

2
3

n
o
/
n
o

T
si
n
g
a
n
o
s
[9
9
]

N
in
a
P
ro

D
B
1

2
7

1
5
3

8
2
0
0
m
s

R
M
S
ti
m
e×

ch
.

C
N
N

7
0
.5

/
N
.A

.
n
o
/
n
o

T
si
n
g
a
n
o
s
[1
1
2
]

N
in
a
P
ro

D
B
1

2
7

1
5
3

8
3
0
0
m
s,

1
2
0
0
m
s

R
M
S

T
C
N

8
9
.8

/
N
.A

.
n
o
/
n
o

B
et
th

a
u
se
r
[1
1
3
]

p
ri
v
a
te

9
1

2
7

8
1
6
7
5
m
s

2
0
0
m
s-
M
A
V

T
C
N

6
9
.5

/
N
.A

.
n
o
/
n
o

H
u
[9
8
]

N
in
a
P
ro

D
B
1

2
7

1
5
3

8
2
0
0
m
s

R
M
S

C
N
N

+
L
S
T
M

8
7
.0

/
N
.A

.
y
e
s
/
n
o

K
a
u
fm

a
n
n
[9
0
]

p
ri
v
a
te

1
1
2
1

1
0

8
1
5
0
m
s

M
A
V
,
Z
C
,

S
S
C
,
W

L
S
V
M

N
.A

.
/
8
7
.7

n
o
/
n
o

M
il
o
se
v
ic

[9
2
]

U
n
ib
o
-I
N
A
IL

7
8

6
4

1
sa
m
p
le

R
M
S

S
V
M

∼
9
0

4
/
∼
7
0

4
n
o
/
n
o

D
u
[1
1
4
]

C
a
p
g
M
y
o

8
2

8
1
2
8

1
sa
m
p
le

in
st
.
H
D
-s
E
M
G

im
a
g
es

C
N
N

9
8
.6

/
6
3
.3

3
y
e
s
/
n
o

P
a
le
rm

o
[1
0
7
]

N
in
a
P
ro

D
B
6

1
0

1
0

8
1
4

2
0
0
m
s

W
L

R
F

5
2
.4

/
2
5
.4

n
o
/
n
o

C
en

e
[1
0
9
]

N
in
a
P
ro

D
B
6

1
0

1
0

8
1
4

2
0
0
m
s

M
A
V
,
V
A
R
,
R
M
S

E
L
M

6
9
.8

/
4
1
.8

n
o
/
n
o

Z
a
n
g
h
ie
ri

(4
.2
)
[3
]

N
in
a
P
ro

D
B
6

1
0

1
0

8
1
4

1
5
0
m
s

ra
w

sE
M
G

T
C
N

5
4
.5

5
/
4
9
.6

y
e
s
/

y
e
s

2
0
-s
es
si
o
n

3
2
0

9
8

1
5
0
m
s

ra
w

sE
M
G

T
C
N

9
7
.1

/
9
3
.7

y
e
s
/

y
e
s

1
R
es
tr
ic
te
d
to

6
fu
n
ct
io
n
a
l
m
o
v
em

en
ts
,
w
it
h
o
u
t
re
st

cl
a
ss
.

2
In
te
r-
su

b
je
ct
.

3
W

it
h
d
o
m
a
in

a
d
a
p
ta
ti
o
n
.

4
P
re
ci
se

v
a
lu
es

d
ep

en
d
in
g
o
n
se
ss
io
n
a
n
d
tr
a
in
in
g
st
ra
te
g
y.

5
O
u
r
lo
w
er
-t
h
a
n
-S
o
A

in
tr
a
-s
es
si
o
n
a
cc
u
ra
cy

is
d
u
e
to

th
e
fa
ct

th
a
t
[1
0
9
]
(1
)
re
li
es

o
n
si
n
g
le
-s
es
si
o
n
tr
a
in
in
g
,
p
ro
n
e
to

o
v
er
fi
t
to

th
e
se
ss
io
n
s;

a
n
d
(2
)
u
se
s
a
v
er
y
a
g
g
re
ss
iv
e
si
g
n
a
l
fi
lt
er
in
g

o
v
er

2
0
0
m
s
ti
m
e
w
in
d
o
w
s,

jo
in
tl
y
w
it
h
o
u
tl
ie
r
re
m
o
v
a
l
em

b
ed

d
ed

in
th

e
a
lg
o
ri
th

m
,
so

a
s
to

sm
o
o
th

th
e
tr
a
n
si
en

ts
o
r
ev

en
d
is
ca

rd
th

em
fr
o
m

th
e
a
cc
u
ra
cy
.

Background 25

variability, [112] is a valuable demonstration that TCNs can yield good accuracy on this

task. Betthauser et al. [113] proved that TCNs outperform Long Short-Term Memory

(LSTM) networks in the sEMG-based gesture recognition task, reaching 69.5% accuracy

on 27 classes. Also, the TCN used in this work has a very wide receptive field: the 1.7 s

input windows were generated by computing the MAV from 200 ms-long sequences.

Overall, these works proposing TCNs for sEMG-based gesture recognition share the

limitation of using very long (i.e., ≥ 300 ms) signal windows. In particular, in [112],

the dilated convolution is used to hugely enlarge the receptive field at constant network

size instead of exploiting dilation to work with smaller networks at a constant receptive

field. This limitation implies two (related) issues: i) the comparison is altered with the

other works that comply with the consensus of using time windows < 300 ms [103]; ii)

the proposed TCNs are evaluated under conditions which are not feasible for a usable

real-time implementation. In contrast, in the sEMG recognition research presented in

this dissertation, I focus on real-time classification and target full compliance with the

upper limit of 300 ms. For example, TEMPONet, the most important TCN presente in

this thesis, uses 150 ms signal windows as input and needs < 15 ms for inference when

deployed on an embedded platform.

2.4.3 Regression on sEMG: hand kinematics and finger force

As explained in Subsection 2.4.2, conventional ML algorithms, such as LDA, SVM,

and ANN, achieve above 90% classification accuracy [92], [119] on sEMG-based hand

gesture recognition, even though they are outperformed by DL models, which can lever-

age larger datasets, exploit feature learning, and handle time-windowing of the sEMG

signal with no need for preliminary feature extraction [3], [22]. Although the use of the

sEMG signal allows the conventional ML/DL approaches to control both gestures and

grasps with a relative naturalness, the aforementioned systems are restricted to limited

sets of predefined static positions (e.g., closed hand, pinch grasp, pointing index, etc.),

which do not allow an entirely natural and versatile control. As a result, targeting hand

kinematics and force with sEMG-based regression is a promising research direction, and

several DL approaches could tackle regression problems.

However, most of the DL methods that are accurate for regression are computation-

ally intensive and require a high memory footprint due to large model sizes [98], [112],

[113], hampering deployability on edge devices with real-time execution constraints.

Therefore, a DL reliable framework for energy-efficient platforms requires a careful mul-

timodal hardware-software co-design. In particular, after finding a high-accuracy deep

model, it is necessary to minimize its size (e.g., via quantization [67]), then determine

Background 26

the latency and power consumption of the model inference when it runs on the tar-

geted embedded device. It is noteworthy that most convolutional networks proposed for

sEMG reach SoA accuracy only at the cost of model size up to tens of MB [98], lack-

ing deployment-oriented optimizations, such as stride and dilation, quantization [67], or

pruning, which can cut down the model size by more than 10× with only a marginal

loss in accuracy [22].

The sEMG regression task has been addressed in several inspiring works, distin-

guished by their target variable: kinematic (joint angle, joint velocity) or dynamic (finger

force). The position of the joint angles represents the best indicator for hand kinematics,

and it is therefore the most used parameter in hand gesture regression. For instance,

in [120], the regression is targeted toward the joint angles of a dataglove, reaching a

median R2 of 0.63 using a Wiener filter. However, this work does not test other algo-

rithms to improve the regression score since it is more focused on the control quality

as perceived by users. In [121], an LSTM deep network is applied on the same dataset,

yielding a Mean Absolute Error (MAE) of 7.04◦. The limitation of this work is that it

does not explore purely convolutional networks, which are more amenable to paralleliza-

tion and, hence, more suitable for embedded control. Alternative approaches to hand

kinematics focus on the velocity of hand joint movements. For instance, velocity was

targeted in [122], adopting a hybrid classification-regression setup that thresholds speed

into 3 levels, thus still limiting the prediction to discrete classes. A completely orthog-

onal approach for sEMG regression focuses on hand dynamics instead of kinematics.

The work [123] targeted a multiple-Degrees-of-Freedom (multi-DoF) force estimation

However, force estimation is a more restricted application since it is limited to grasp

movements.

A major shortcoming of all the aforementioned works is that none of them ad-

dresses the problem of deployment onto embedded control devices. In particular, they

do not discuss how their models cope with resource-constrained platforms nor explore

techniques such as model search, quantization, and pruning.

In this thesis, I present research addressing the challenge of sEMG-based regression

to decode hand kinematics and force. In particular, the work exploits a TCN to estimate

hand joint angles and explores event-based feature extraction to estimate both hand joint

angles and multi-finger forces. Both these use cases of time-series modeling are profiled

and shown to be effective for low-latency operation on resource-constrained devices.

Chapter 3

Binary Classification

This chapter presents the novel contributions of this thesis that belong to the cat-

egory of binary classification. These works are a proximity sensor for active safety in

industrial machinery (3.1), which is accurate and robust against acoustic noise, and a

setup for epilepsy detection from iEEG signals (3.2). The two contributions belong to

two different domains: the first work is a task of applied research oriented to an indus-

trial problem, whereas the second work is related to the clinical field. The methodology

that connects these two works is the algorithmic research oriented to TCN deployed on

embedded MCUs. The first two contributions in binary classification presented in this

chapter demonstrate the power and versatility of the approach. In Chapters 4 and 5, the

edge-oriented approach to time-series ML and DL will be applied to the progressively

complex tasks of multi-class classification and multi-target regression, respectively.

3.1 An Extreme-Edge TCN-based Low-Latency Collision-

Avoidance Safety System for Industrial Machinery

3.1.1 Overview

Nowadays, several industrial sectors employ autonomous moving machinery that can

constitute a source of hazard and must therefore be operated by workers with specific

training and skills, with well-defined safety practices and working conditions. A major

concern is safeguarding operators’ health. Solutions to do so with a reduced impact

on the workflow of the machinery aiming at achieving high productivity and safety are

currently an active field of research & development.

Binary Classification 28

Industrial machines can be equipped with sensors that enable them to continuously

monitor their surroundings in an automated way. This enables safeguards that halt

operations and drive the machinery to a safe state if people or dangerous obstacles are

detected. The technical challenge in this scenario is to make the detection robust against

variations in environmental conditions across multiple deployment sites (i.e., in “space”)

and across several operational conditions of the same site (i.e., in “time”). Safety systems

operating in an automated way belong to the domain of functional safety [124], where

protection is framed and implemented as an active, input-output system. The safety

function is the action generated in response to the processed input. Functional safety

does not include passive systems (e.g., thermal insulation or fire-resistant doors) but

involves electronics, software, and actuators.

Recently, methods based on ML, and specifically DL, have been gaining adoption in

domains such as machine vision and data analytics [125]. DNNs can now be regarded as

a mature methodology in data analysis. Hence, DNNs are also promising for information

processing tasks of active systems for functional safety since they can integrate multiple

data streams and extract information from them. As to execution, ML/DL algorithms

can be run in the cloud or at the edge, i.e., locally on a platform closely connected to

the devices acquiring data [126], [127]. More specifically, recent advances in the field

of Tiny ML (2.3) [128]–[130] are enabling the porting of real-time ML inference onto

embedded computing platforms with strict constraints in terms of memory or power

envelope, such as MCUs [131], sometimes equipped with accelerators for ML/DL. For

safety-critical systems, processing the data near the sensors can enhance reliability and

ultra-low latency and increase the trust in ML-based solutions in industries such as

manufacturing, mobility, and robotics [132], [133].

Safety solutions relying on ML/DL make it necessary to elaborate and advance the

international standards that regulate functional safety. The major challenge is that the

current versions of international standards do not cover novel, most recently introduced

technologies and paradigms. This is an issue since innovative methods or algorithms can

not be certified by definition. Hence, innovative solutions, even if proven effective for

operators’ safety and production efficiency, undergo a large delay before inclusion into a

new version of a standard; in turn, inclusion happens when a solution is mature and able

to induce industrial interest in its inclusion. For this reason, the adoption of ML/DL-

based solutions in Electro-Sensitive Protective Equipment (ESPE) systems [134] has not

been addressed yet by any industrial safety standard. The stance of the project’s team in

this regard is that interest from the industry must be fostered by showcasing innovative

prototypes able to demonstrate the power of ML/DL for functional safety: this is the

direction of the research presented in this work.

Binary Classification 29

This section targets the specific domain of industrial woodworking machinery. It

proposes a functional safety prototype for collision avoidance based on ultrasound (US)

sensing and processing based on a TCN (2.1), a DNN specialized for time series. The

system is able to detect persons or obstacles in the field of view of the US sensors,

which are mounted on the woodworking machine in such a way as to probe the space

of operation of the machine’s moving parts. A detection triggers a stop of machine

movement in real time. In detail, the contribution is multiple:

• This section implements a system based on 9 US sensors, an FPGA, and an MCU,

mounted onto an industrial woodworking machine.

• The setup is used to collect a dataset for the detection task (i.e., clear space vs.

human or obstacle), representative also of the acoustic noise conditions typical of

an industrial facility, which are challenging since they impact the US signals; this

curated dataset contains a total of 5085 US signal windows organized in 170 runs

of the system in different obstacle and noise conditions.

• A TCN trained and tested for the purpose achieved sensitivity 96.7%, specificity

99.1%, and AUROC 0.993 in the absence of acoustic noise.

• In the presence of noise, exploiting an incremental learning technique proved that

the proposed setup and model are able to leverage increasing amounts of data,

attaining sensitivity 90.5%, specificity 95.2%, and AUROC 0.972.

• Deployment of the proposed TCN on the STM32H743ZI MCU yielded a profiling

which outperforms the SoA TCN model for the task [135]: memory footprint of

560 B (3× smaller than SoA), with a latency of 5.0 ms and energy consumption of

8.2 mJ per inference (both 2.3× less than SoA).

The proposed solution improves detection robustness against acoustic interference char-

acteristic of a manufacturing environment, working with a resource budget fit for real-

time execution on resource-constrained edge computing platforms. Table 3.1 reports a

scheme of the advances of this work compared to the SoA represented by Conti et al. [135].

The proposed paradigm is generalizable to different sectors; in particular, the limited

hardware requirements allow the scale-up of the approach, enabling adoption in sce-

narios with more sensors and, thus, wider monitored space in terms of the number of

machines and extent of the probed areas.

Binary Classification 30

For reproducibility and advance in the research & development community, I also

released open-source the code developed for this research.1 As a research group, we also

released the curated dataset realized in this work.2

3.1.2 Related Work

3.1.2.1 Safety systems in industrial woodworking machinery

Industrial woodworking machines typically have a static base and a moving cabinet

that slides horizontally at speed up to 1 m/s and operates over a working surface of the

order of 4 m × 1.5 m [136]. Overall, these machines have a length of 5 – 10 m, a width

around 5 m, and a height of 1 – 3 m [137], [138]. The moving cabinet can hit operators

or objects, causing severe injuries or damage. In general, existing machine models rely

on both active and non-active safety systems [136]–[140]. Non-active safety includes

simple elements such as enclosures of the working units by fences, lateral curtain guards,

transparent hatches, or perspex windows, based on the desired tradeoff of protection vs.

accessibility and visibility. LEDs signal the machine status in real-time with a simple

color code. This work focuses on more advanced active safety systems.

Active safety is based on real-time anti-collision systems required to operate while

machines work at medium or maximum speed in a premise shared with workers per-

forming regular work in the surroundings. Since detecting hazardous situations forces

the machine to a safe-state mode, which can be unlocked only manually, erroneous au-

tomatic detection can cause a slowdown in the workflow. Active safety systems include:

soft bumpers that stop the machine in case of accidental contact with persons or ob-

jects; pressure-sensitive floor mats; photocell barriers that detect the approach of persons

or objects, automatically reduce the speed of the machine, and restore the maximum

speed when the obstacle leaves the area; laser scanners that only enable the machine to

start after the operator has left the area; automatic verification of the locking systems’

positioning.

The proposed setup exploits US signals, processed for detecting objects or people

within the space of operation of the machine. Compared to existing solutions, the

proposed setup has several advantages. First, the proposed solution is a proximity

sensor designed to trigger the stop of the machine before a collision, in contrast to

bumpers. As to established collision avoidance systems, the existing laser scanners only

probe a horizontal plane (at a height < 1 m above the floor) [137], whereas the proposed

ultrasound sensors probe a 3D field of view. Compared to all alternative setups, including

1https://github.com/MarcelloZanghieri2/edge_tcn_collision_avoidance
2https://github.com/MarcelloZanghieri2/collision_avoidance_ultrasound_dataset

https://github.com/MarcelloZanghieri2/edge_tcn_collision_avoidance
https://github.com/MarcelloZanghieri2/collision_avoidance_ultrasound_dataset

Binary Classification 31

T
a
b
le

3
.1
:

C
on

tr
ib

u
ti

on
of

th
is

w
or

k
in

te
rm

s
o
f

th
e

a
d

va
n

ce
s

co
m

p
a
re

d
to

th
e

S
o
A

re
p

re
se

n
te

d
b
y

C
o
n
ti

et
a
l.

[1
3
5
].

W
O
R
K

#
o
f
U
S

se
n
so

rs
R
e
a
li
z
e
d

d
a
ta

se
t

M
e
th

o
d

fo
r

a
c
c
u
ra

c
y
o
n

n
o
is
y
d
a
ta

E
m
b
e
d
d
e
d

sy
st
e
m

R
e
p
ro

d
u
c
ib
il
it
y

n
o
v
e
l?

si
z
e

d
e
p
lo
y
e
d

@
e
d
g
e
?

re
a
l-
ti
m
e
?

p
u
b
li
sh

e
d

d
a
ta

se
t?

p
u
b
li
sh

e
d

c
o
d
e
?

C
o
n
ti

e
t
a
l.

[1
3
5
]

1
✓

22
7

d
a
ta

a
u

g
m

en
ta

ti
o
n

u
p

to
1
0
0
0×

✓
✓

✗
✗

T
h
is

w
o
rk

9
✓

50
85

(2
2.

4×
)

in
cr

em
en

ta
l

le
a
rn

in
g

(a
u

g
m

en
ta

ti
o
n

ju
st

6
4×

)

✓
0.

3
2×

p
a
ra

m
et

er
m

em
o
ry

<
0
.4

3
×

en
er

g
y

✓
<

0.
4
3
×

la
te

n
cy

✓
✓

Binary Classification 32

photocell barriers, the proposed solution can improve its detection accuracy during its

lifetime since the proposed DNN benefits from incremental learning from data acquired

in new conditions.

It is worth remarking that the technical documentation uses the term collision avoid-

ance also for potential collisions between machinery’s equipment or between tools and

material, handled during the virtual prototyping of the piece and the simulation and

scheduling of numerical control positioning [136], [138], [139]; this kind of internal col-

lision is not related to the topic of this work. It is also worth stressing that this work

does not deal with inner systems for safety or maintenance such as air conditioning of

electrical components or automatic lubrication.

A relevant earlier work tackling US-and-DL-based functional safety for woodworking

machinery is by Conti et al. [135], who employ TEMPONet, a TCN previously applied to

embedded biosignal processing in real-time [3], [24]. The TEMPONet TCN architecture

is the subject of Sections 4.2 and 5.1. The previous work by Conti et al. [135] stemmed

from the same project as the present contribution but only has the nature of a technical

report documenting an incomplete stage of the research. Although a direct accuracy

comparison is not viable since [135] relies on a different 1-channel dataset, it is possible

to highlight several advancements (also reported in Table 3.1): (i) the proposed system

mounts 9 ultrasound sensors, whereas the previous work mounted just 1; (ii) this work

releases the dataset open-source; (iii) this work employs a smaller DNN, reducing the

hardware resources and latency budget for execution; (iv) this work tackles a noisy

environment by implementing an incremental training protocol instead of brute-force

data augmentation.

3.1.2.2 Rationale of this work in relation to the established functional safety

standards

All safety equipment applied on industrial machines must get certified according

to standards, such as the ones by the International Electrotechnical Commission (IEC)

(covering electrical, electronic, and related technologies), that define the Safety Integrity

Level to be met. Machinery-halting safety systems such as [135] and the one presented in

this work fall under the regulations concerning non-contact Electro-Sensitive Protective

Equipment (ESPE) sensors (e.g., photodiodes). More in detail, IEC 61508 [124] regards

any electrical/electronic/programmable electronic (E/E/PE) for functional safety sys-

tems, such as sensors, control logic, or actuators, and also microprocessors; EN IEC

61496 [134] focuses on the requirements of design, building, and verification of systems

based on non-contact ESPEs to detect persons in a safety system, focusing on indoor

Binary Classification 33

environments; EN IEC 62046 [141] addresses ESPEs for human detection for safety,

focusing on industrial environments with machinery.

Novel ML/DL-based research & development prototypes such as the one presented

in this work are not covered by current standards, nor can they receive certification in

the short term. This limitation means that, as of today, developing finalized products

based on the presented proof-of-concept is not possible. The purpose of this work is to

push research and technical expertise ahead of current standards and certifications. The

motivation in undertaking the present research is to showcase how promising data-driven

safety systems are, intending to incentivize both technical exploration and regulatory

interest. This line of research, in addition to improving the SoA (3.1.2.1) as to hardware-

software figures of merit, will stimulate the attention from the industry for this class of

approaches and methods, prompting a push for the inclusion of ML/DL-based functional

safety into the future versions of the standards.

3.1.3 Materials & Methods

3.1.3.1 Targeted woodworking machine

The specific industrial woodworking machine used in this work is an SCM Morbidelli

X200 [142], depicted in Figure 3.1. This machine features two panels with a 3 × 2 and

a 1× 3 array of US sensors, as shown in Figure 3.2. Figure 3.3 schematizes the spatial

configuration of the proposed proximity sensing system. This setup was used to collect

data on the machine and test the accuracy and performance of the proposed solution.

This setup is easily generalizable to machines and environments in different industrial

sectors.

3.1.3.2 System architecture

The hardware architecture of the proposed system is shown in Figure 3.4 and relies

on transducers that emit US pulses and sense the echo if a pulse hits an obstacle; if a

detection happens, the system outputs a stop signal to the machine control. The main

elements of the system are (i) the US sensors and their drivers, (ii) a Lattice FPGA for

low-latency data collection, and (iii) a Nucleo-144 board mounting an STM32H743ZI

MCU. This system performs both data collection and obstacle detection.

The data are acquired by a 2 × 3 plus 1 × 3 configuration of 9 Multicomp Pro

MCUSD14A58S9RS-30C ultrasonic ceramic transducers.3 Using 9 sensors instead of

3https://octopart.com/mcusd14a58s9rs-30c-multicomp-30988352

https://octopart.com/mcusd14a58s9rs-30c-multicomp-30988352

Binary Classification 34

Figure 3.1: The SCM Morbidelli X200 industrial woodworking machine used in this
work. Image source: SCM Group [143].

Figure 3.2: Configuration of the 9 US sensors mounted on the machine. The sensors
are the grey metal round elements on the panels; the circular black pieces are washers
for fastening the panels. Compare with Figure 3.3.

worktop (cross-section)

= ultrasound sensor
potential obstacle

e.g. person or object

Figure 3.3: Spatial organization of the proposed proximity sensing system. The 3 US
sensors on the moving cabinet over the worktop proved useful in preliminary tests to
better sense the space surrounding the working table and obstacles at the far end of
the working table. Compare with Figure 3.2.

Binary Classification 35

industrial machine’s

control logic: halt upon

reception of a detection

low-power

Lattice ECP5

FPGA

Nucleo-144 board:

STM32H743ZI microcontroller

(ARM Cortex-M7 processor)

GPIO

USART

GPIO

SPI

ultrasound sensor PGA460 driver

ultrasound sensor PGA460 driver

ultrasound sensor PGA460 driver

ultrasound sensor PGA460 driver

ultrasound sensor PGA460 driver

ultrasound sensor PGA460 driver

ultrasound sensor PGA460 driver

ultrasound sensor PGA460 driver

ultrasound sensor PGA460 driver

Figure 3.4: Schematic of the system architecture. Sensor fusion on data acquired
from 9 sensors is one of the key proposed improvements compared to the SoA [135].

just 1 is one of the key advances compared to [135]. Each transducer works both as an

emitter and as a sensor for sound waves with a frequency between 30 kHz and 50 kHz;

the sensing consists in emitting US pulses and receiving the echo reflected by obstacles.

Each sensor is operated by a Texas Instruments PGA460, which integrates a low-noise

amplifier, a programmable time-varying gain stage, a 12-bit ADC, and a DSP.4 The

configured ADC resolution was set to 8 bits, producing uint8 data, which is a convenient

format for a DNN quantized to 8 bits; the sampling frequency was set to 100kHz, and

the sampling duration was set to 20.48ms-windows.

The low-power Lattice ECP5 LFE5U-85F FPGA5 collects the data from all 9 sensors.

It communicates with the sensors via USART, and configures the resolution, sampling

rate, and sampling duration at start-up. Then, the FPGA transmits the package of 2048

samples × 9 channels 8-bit to the MCU via SPI. The motivation for using an FPGA

for data aggregation is that the STM32H743ZI MCU does not have enough external

interfaces; the FPGA allows to receive data from all 9 US sensors and convey them to

the MCU through a single interface (i.e., the SPI).

The task of the MCU is to receive the data from the FPGA, run the DNN, and

command the machinery to stop upon detection. The MCU is an STM32H743ZI6 (2.2),

mounted on a STM32 Nucleo-144 board.7 This MCU mounts an ARM Cortex-M7

processor [30] with double-precision FPU operating at 480 MHz, 2 MB of Flash memory,

1 MB of SRAM (with 192 kB of tightly coupled scratchpad memory for real-time tasks),

4 DMA controllers, and peripherals such as UART/USART, SPI, Ethernet, and GPIO

lines. Upon reception of the 2048 samples × 9 channels data, the MCU executes the

DNN inference. If the outcome is positive, the MCU raises a GPIO connected to the

controller of the industrial machine, which halts the machine.

All the listed hardware elements are commercial components. The motivation for

this choice is that the purpose of this work is not to profile specific hardware elements

4https://www.ti.com/product/PGA460
5https://www.latticesemi.com/Products/FPGAandCPLD/ECP5
6https://www.st.com/en/microcontrollers-microprocessors/stm32h743zi.html
7https://www.st.com/en/evaluation-tools/nucleo-h743zi.html

https://www.ti.com/product/PGA460
https://www.latticesemi.com/Products/FPGAandCPLD/ECP5
https://www.st.com/en/microcontrollers-microprocessors/stm32h743zi.html
https://www.st.com/en/evaluation-tools/nucleo-h743zi.html

Binary Classification 36

but to test whether the task is viable with commonly available hardware. In particular,

there is no need for high-precision ultrasound sensors since accurate acoustic waveforms

are irrelevant for a binary detection task in the presence of acoustic noise. In general,

different component choices are not expected to alter the prototype’s performance in

terms of latency and accuracy. Profiling or designing dedicated components is out of

the scope of this work. Different component choices to adapt the system to specific use

cases do not limit the conclusions of the methodology proposed in this work.

In a more optimized iteration of the system, the FPGA+MCU assembly can be

avoided by either (i) deploying the TCN model onto the FPGA, removing the MCU, or

(ii) replacing the FPGA with one or more commercial off-the-shelf ICs (or by an FPGA

chosen to be as small and inexpensive as possible) performing the data aggregation,

keeping the net on an MCU. The latter option has the advantage of programmability

for specific use cases with environmental conditions so diverse and challenging to require

to adapt more than the net’s parameters, e.g., the net’s structure or additional process-

ing stages. However, this kind of optimization is out of the scope of this work since

the FPGA+MCU assembly has enough performance to make the realized prototype an

effective proof-of-concept at this applied research stage (as exposed in the results in

Subsection 3.1.4).

3.1.3.3 Data acquisition

The dataset acquisition followed three criteria: (i) framing the ML application as a

detection task, i.e., a binary classification task presence-vs-absence of an obstacle; (ii)

create environmental conditions analogous to the ones of the industrial facilities where

the target woodworking machine typically operates; (iii) collect enough data to allow

for a good DNN’s recognition accuracy even on data pertaining to diverse conditions.

Time windows of US signals were collected with and without obstacles creating a US

response echo; the different used obstacles were people, dummies, and wood panels, also

in a joint fashion. In addition to the two classes presence-vs-absence of an obstacle, two

varying conditions produced more diverse data representative of real variable working

situations:

• obstacle-sensor distance, varied from 0.5 m to 2.0 m;

• application of a compressed-air jet, recreating the environmental noise of the ma-

chinery’s room, varying the pressure level from 0.0 bar (i.e., no noise) to 3.0 bar

and the jet-sensor distance from 0.5 m to 1.5 m, both in presence and in absence

of an obstacle.

Binary Classification 37

First, 5 collections of data were acquired without noise, then 3 collections with noise.

In noisy acquisitions, the compressed-air jet was always on, and the pressure value was

constant while running each acquisition. Subsection 3.1.4.1 reports the detailed structure

of the signals and of the whole dataset.

3.1.3.4 Incremental learning protocol

Incremental learning on the dataset involved experiments with incremental splits of

the noisy data, i.e., collections 6-to-8. In particular, collections 6, 7, and 8 were merged

and randomly split into three blocks of equal size with stratification (i.e., the same

proportion of collections in each block). These blocks are denoted as the noisy data’s

first third, second third, and last third. The incremental experiments use the following

splits:

• Experiment 0: training on collections 1∪3∪5 and validation on collections 2∪4;

this experiment involves no noisy data and is a control on the acquisition system

and the quality of the data;

• Experiment 1: training on noiseless data, and validation on the last 1
3 of noisy

data; this experiment measures how well a model can generalize to noisy data after

only seeing noiseless data in training;

• Experiment 2: training on noiseless data plus the first third of noisy data, and

validation on the last third of noisy data;

• Experiment 3: training on noiseless data plus the first and second thirds of noisy

data, and validation on the last third of noisy data.

Experiments 1, 2, and 3 show the model progressively larger amounts of noisy data

at training time; this allows assessing how much the proposed setup can benefit from

incremental learning on newly-acquired data to improve detection. The validation set

is the same across Experiments 1 to 3 for a fair comparison of the results. This diverse

dataset and its incremental protocol are a key advance compared to [135], where the

incremental learning scenario is simulated by mere aggressive augmentation up to 1000×
of a single collection of 227 single-channel signal windows (i.e., 22× fewer examples than

the 5085 acquired in this work).

It is important to remark that incremental training is not meant to be run in real-

time: real-time is only required for inference, which is part of the online pipeline of

acquisition-transmission-processing. When the operators desire new data to improve

the detection under specific challenging conditions, the system can collect new data and

Binary Classification 38

store them to a server (e.g., via the MCU’s Ethernet), which retrains the net by including

the new data and sends the updated model parameters back to the MCU. This process

is not meant to be real-time because the new acquisition and the retraining typically

need human supervision and iterations. Typically, the bottleneck is not transmission

or latency but resides in (i) data acquisition, which requires materially preserving or

reproducing the conditions of interest, and (ii) the search for the training settings able to

fit both the old and the new data. This process occurs at the time scale of human manual

experimentation, not at the time scale of the online acquisition-transmission-execution

pipeline.

3.1.3.5 TCN structure, training, and deployment

Temporal Convolutional Networks (TCNs) are a category of Convolutional Neural

Networks (CNNs) specialized for time series. TCNs are based on 1D convolutions along

the time dimension, and they outperform Recurrent Neural Networks on image segmen-

tation, object detection, and biosignal processing [15], [21], [24], [27]. TCNs have also

proven amenable to hardware-friendly parallelization strategies that reduce inference la-

tency and energy consumption [16]. More details on TCNs are provided in Section 2.1.

The proposed TCN has 6 convolutional layers followed by 3 linear layers, and Ta-

ble 3.2 reports the net’s complete structure. The input x is a 2048 samples × 9 channels

uint8 US signal window produced as per 3.1.3.2 and 3.1.3.3. The 6 linear layers have

4, 4, 2, 2, 1, and 1 output channels, all with kernel size k = 3, full padding (i.e., zero-

padding with length p = 1), and stride s = 2. The 3 linear layers have size 32-to-8,

8-to-8, and 8-to-1; the final scalar represents the input’s score ŷsoft = TCN(x) ∈ [0, 1],

which is the soft (i.e., not yet binarized) assignment for the binary classification. All

layers have BN and ReLU activation except the last linear layer, which flows into a

sigmoid. After training, BN folding is applied to merge each BN with its previous layer,

slightly reducing the number of parameters and operations.

This TCN has just 560 parameters and requires just 151 · 103 MAC operations; The

activation memory footprint is the maximum consecutive activation maps, i.e., input

and output of a single layer; this is reached in the first convolutional layer with 22.5 ·103

activations (9×2048 input plus 4×1024 output. With 8-bit quantization (explained in the

next paragraphs), the parameters and activations memory footprints amount to 560 B

and 22.0 KiB, respectively. This size makes the net very hardware-friendly for resource-

constrained embedded platforms for computation and memory requirements. Moreover,

Binary Classification 39

T
a
b
le

3
.2
:

D
et

ai
le

d
st

ru
ct

u
re

of
th

e
p

ro
p

os
ed

T
C

N
,

in
cl

u
d

in
g

th
e

b
re

a
k
d

ow
n

o
f

a
ll

la
ye

rs
’

m
em

o
ry

fo
o
tp

ri
n
t

a
n

d
co

m
p

u
ta

ti
o
n

a
l

lo
a
d

.
A

ll
la

ye
rs

ar
e

se
q
u

en
ti

al
in

a
fe

ed
-f

or
w

ar
d

fa
sh

io
n

so
th

at
ea

ch
la

ye
r’

s
o
u

tp
u

t
fo

rm
a
t

is
th

e
in

p
u

t
fo

rm
a
t

o
f

th
e

n
ex

t
o
n

e.
A

s
to

si
ze

s,
th

e
n
u

m
b

er
s

o
f

te
n

so
r

el
em

en
ts

d
ir

ec
tl

y
co

rr
es

p
on

d
to

th
e

m
em

or
y

o
cc

u
p

a
n

cy
in

b
y
te

s,
th

a
n

k
s

to
8
-b

it
q
u

a
n
ti

za
ti

o
n

.
T

h
e

fi
el

d
“
#

M
A

C
”

re
fe

rs
to

th
e

n
u

m
b

er
o
f

M
u

lt
ip

ly
-a

n
d

-A
cc

u
m

u
la

te
(M

A
C

)
op

er
at

io
n

s.

L
A
Y
E
R

S
iz
e

#
M

A
C

in
p
u
t

p
a
ra

m
e
te
rs

(w
e
ig
h
ts

+
b
ia
se
s)

o
u
tp

u
t

1
c
o
n
v
o
lu
ti
o
n
a
l

ke
rn

el
k

=
3

p
ad

d
in

g
p

=
1

st
ri

d
e
s

=
2

9
×

20
48

11
2

4
×

10
24

11
46

88
(7

6.
1

%
)

2
4
×

10
24

52
4
×

51
2

26
62

4
(1

7.
7

%
)

3
4
×

51
2

26
2
×

25
6

66
56

(
4.

4
%

)
4

2
×

25
6

14
2
×

12
8

17
92

(
1.

2
%

)
5

1
×

12
8

7
1
×

64
44

8
(

0.
30

%
)

6
1
×

64
4

1
×

32
12

8
(

0.
08

%
)

(fl
a
tt
e
n
in
g
)

1
×

32
0

32
0

7
fu
ll
y
c
o
n
n
e
c
te
d

32
26

4
8

26
4

(
0.

18
%

)
8

8
72

8
72

(
0.

05
%

)
9

8
9

1
9

(
0.

01
%

)

C
O
M

B
IN

E
D

T
ot

al
p

ar
am

et
er

s:
56

0
M

ax
co

n
se

cu
ti

v
e

m
ap

s:
22

.5
·1

03
(l

ay
er

1)
T

ot
al

M
A

C
:

15
1
·1

03

Binary Classification 40

it directly processes the raw signals without any handcrafted feature extraction or pre-

processing, thanks to automatized feature learning at training time: this avoids time-

consuming feature engineering and computation latency before inference.

Training consisted in 2 epochs in float32, followed by Post-Training Quantization

(PTQ) to 8 bit and 16 epochs of Quantization-Aware Training (QAT) (2.3.1). Quan-

tization to 8-bit reduces the parameters memory requirement to 560 B and the activa-

tions memory requirement to 22.0 KiB, which are both 1
4 of their float32 counterparts.

Both stages of training used balanced binary cross-entropy loss, Adam optimizer, initial

learning rate 10−4, and minibatch size 64. Both PTQ and QAT used the technique

of PArameterized Clipping acTivation (PACT) [67]. Both trainings exploited the aug-

mentation of the training set by a factor 64×, which consisted in producing 64 altered

versions from each original US window by applying two transformations:

• a scaling by a factor from a uniform random distribution on [0.95, 1.05), followed

by casting back to uint8;

• a temporal shift by a random amount from a uniform distribution on {−25, . . . ,+25}
samples.

This augmentation scheme is similar to [135]; still, the advances of this work allow to

achieve accurate detection with 15× milder augmentation (i.e., 64× instead of 1000×),

thanks to the inherent richness of the novel dataset (3.1.3.3). In this setup, the sources

of randomness are augmentation, net initialization, and stochastic minibatching. So,

each of the Experiments 0, 1, 2, and 3 involved 64 repetitions to get statistics about the

detection metrics.

The TCN was implemented using Python 3.8, PyTorch 1.9.0 [65], [66], and the

open-source quantization library QuantLib (2.3.2). The TCN quantized to 8 bit was

exported in ONNX format (2.3.2) and deployed onto the STM32H743ZI MCU using the

environment STM32CubeIDE 1.12.0 for code generation and exploiting X-CUBE-AI

8.0.0 (2.3.2), the software extension for configuring DNN inference execution on STM32

MCUs using ARM CMSIS kernels [58]. The stages in STM32CubeIDE or X-CUBE-AI

did not include any further quantization or compression.

3.1.3.6 Evaluation metrics

This work targets both classification metrics, which measure the correctness of the

TCN’s detection, and deployment metrics, which quantify the computation and resource

budget required by the TCN on the STM32H743ZI MCU.

Binary Classification 41

The addressed classification metrics are the ones typical of detection (i.e., binary

classification) on unbalanced data:

• sensitivity (synonym of True Positive Rate (TPR) or recall): the fraction of actual

positives correctly detected:

sensitivity =
TP

TP + FN
; (3.1)

• specificity (synonym of True Negative Rate (TNR)): the fraction of actual negatives

correctly classified:

specificity =
TN

TN + FP
; (3.2)

• balanced accuracy (synonym of macro-average accuracy): the average of sensitivity

and specificity.

• Area Under the Receiver Operating Curve (AUROC).

All these metrics are independent of the class imbalance in the data, as opposed to

näıve unbalanced accuracy. The pair sensitivity-specificity provides a more complete

characterization than the pair precision-recall often used for binary classification since

the latter pair does not consider the number of True Negatives; in contrast, the for-

mer pair considers all four possible outcomes. As to AUROC, it is independent of the

threshold Θ used to determine the estimated hard labels ŷhard ∈ {0, 1} from the TCN(·)
model’s output soft labels ŷsoft ∈ [0; 1] for each input x:

ŷhard =

1 if ŷsoft = TCN(x) > Θ

0 otherwise.
(3.3)

Thus, the AUROC is methodologically interesting because it allows assessing the detec-

tion correctness independently from the specific sensitivity-specificity tradeoffs fixed in

different application use cases. Since sensitivity and specificity depend on the choice of

the discrimination threshold, the reported results refer to the threshold values tuned to

maximize the balanced accuracy to report an example of tradeoff.

The addressed deployment metrics profile the workload of the real-time on-edge

computation: memory footprint of the model; latency per inference; power consumption

of inference, measured in working conditions fclock = 480 MHz and Vdd = 3.3 V, via a

USB power meter averaging over 30 s while executing inferences in loop; and energy per

inference, determined as power×latency.

Binary Classification 42

3.1.4 Experimental Results

3.1.4.1 Dataset

Figure 3.5 and Figure 3.6 show the typical behaviour of the acquired signals. All

windows begin with the final segment of the US burst, which saturates the ADC’s uint8

dynamic range and carries no information about the class. However, this segment is a

valuable control for diagnostics since it always presents the same timing across different

recordings. The initial saturation in each sensor’s data only comes from the final segment

of the US burst of that sensor. This check consisted in the following experiment. The

procedure to check whether the burst from sensor i affected sensor j ̸= i involved

running obstacle-less, noise-less runs starting sensor i’s acquisition 10 ms after sensor j’s

acquisition. This means that sensor i’s burst emission happens between time 0 ms and

time 10 ms of sensor j’s acquisition (which is 20.48 ms in total, as per 3.1.3.2). So, if

cross-sensor interference is present, it is visible in the first half window of sensor j’s

data. Looping i and j ̸= i over all 9 sensors showed no cross-sensor interference for any

(i, j) pair. This means that the adopted sensor placement causes no interference across

sensors in the burst emission stage.

Later in the window, after the initial saturation due to the final segment of the

emitted US burst, the echo carries the information of interest. As shown in Figure 3.6,

the noise resulting from a compressed air jet strongly affects the pattern of the echo

signal envelopes. This makes it hard to devise handcrafted features that intuitively

discriminate obstacle echoes from intensity due to noise, making classification hard,

especially concerning specificity and the occurrence of false positives. This confirms the

motivation for the recourse to DNNs (particularly TCNs) capable of automatic feature-

learning at training time to obtain a data-driven feature extraction based solely on

optimizing detection accuracy.

The realized dataset has the structure reported in Table 3.3. The whole dataset

consists of 8 collections, and each collection is composed of 10 to 30 runs, for a total of

170 runs. The choice of the terms collections and runs is to avoid ambiguous naming

such as acquisitions, samples, or sessions. Each collection corresponds to a value of

the distance of the compressed-air jet, when applied; globally, the dataset contains 5

collections without noise and 3 collections with pressure noise. Within each collection,

the different runs correspond to a choice of the obstacle-sensor distance and the jet’s

pressure and orientation (if applied). Between runs, the whole system was turned off

and on. So, runs are homogeneous subsets of the dataset since they contain 2048-

sample windows acquired in identical conditions of all settings, namely obstacle-sensor

distance, compressed air jet pressure, and compressed air jet distance. Each collection

Binary Classification 43

0

50

100

150

200

250

Ul
tra

so
un

d
sig

na
l

(8
-b

it
AD

C
co

un
ts

)

channel 1 channel 2 channel 3

0

50

100

150

200

250

Ul
tra

so
un

d
sig

na
l

(8
-b

it
AD

C
co

un
ts

)

channel 4 channel 5 channel 6

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (ms)

0

50

100

150

200

250

Ul
tra

so
un

d
sig

na
l

(8
-b

it
AD

C
co

un
ts

)

channel 7

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (ms)

channel 8

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (ms)

channel 9

Figure 3.5: Example of a US window with obstacles and without noise (collection
1, run 10, window 1; all 9 channels, all samples except the last 48). It is possible to
see the initial US burst, the subsequent silence, and the echoes received by the sensors
facing obstacles.

0

50

100

150

200

250

Ul
tra

so
un

d
sig

na
l

(8
-b

it
AD

C
co

un
ts

)

channel 1 channel 2 channel 3

0

50

100

150

200

250

Ul
tra

so
un

d
sig

na
l

(8
-b

it
AD

C
co

un
ts

)

channel 4 channel 5 channel 6

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (ms)

0

50

100

150

200

250

Ul
tra

so
un

d
sig

na
l

(8
-b

it
AD

C
co

un
ts

)

channel 7

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (ms)

channel 8

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (ms)

channel 9

Figure 3.6: Example of a US window without obstacles and with noise from the
compressed air jet (collection 8, run 50, window 1; all 9 channels, all samples except
the last 48). The sensors most affected by noise sense an amplitude comparable to
obstacles’ echoes in the absence of noise (Figure 3.5).

consists of runs acquired with the same compressed air jet distance (if present), hence

containing 2048-sample windows that are diverse due to varying obstacle-sensor distance

and compressed air jet pressure (if present).

Binary Classification 44

T
a
b
le

3
.3
:

D
at

as
et

of
u

lt
ra

so
u

n
d

w
in

d
ow

s
re

al
iz

ed
fo

r
se

tu
p

va
li

d
a
ti

o
n

a
n

d
in

cr
em

en
ta

l
le

a
rn

in
g
.

T
h

e
d

a
ta

se
t

co
n

si
st

s
o
f
co
ll
ec
ti
o
n
s;

in
tu

rn
,

ev
er

y
co

ll
ec

ti
on

co
n
ta

in
s
ru
n
s.

E
ac

h
ru

n
co

n
ta

in
s

d
at

a
ac

q
u

ir
ed

w
it

h
th

e
sa

m
e

o
b

st
a
cl

e-
se

n
so

rs
d

is
ta

n
ce

,
a
n

d
th

e
a
ir

je
t

p
re

ss
u

re
(i

f
p

re
se

n
t)

a
n

d
a
ir

je
t

d
is

ta
n

ce
.

E
ac

h
co

ll
ec

ti
on

co
n
ta

in
s

ru
n

s
co

rr
es

p
on

d
in

g
to

d
iff

er
en

t
o
b

st
a
cl

e-
se

n
so

rs
d

is
ta

n
ce

s
a
n

d
a
ir

je
t

p
re

ss
u

re
s,

b
u

t
th

e
sa

m
e

a
ir

je
t

d
is

ta
n

ce
.

C
O
L
L
E
C
-

T
IO

N
E
n
v
ir
o
n
m
e
n
t

c
o
n
d
it
io
n
s

N
u
m
b
e
r

o
f
ru

n
s

W
in
d
o
w
s

p
e
r
ru

n
T
o
ta

l
w
in
d
o
w
s

in
c
o
ll
e
c
ti
o
n

N
e
g
a
ti
v
e
c
la
ss

P
o
si
ti
v
e
c
la
ss

C
la
ss
-i
m
b
a
la
n
c
e
o
f

w
in
d
o
w
s
(n

e
g
−

p
o
s)

ru
n
s

w
in
d
o
w
s

ru
n
s

w
in
d
o
w
s

1

n
o

n
oi

se

10
3
0

(1
5

in
ru

n
9
)

2
8
5

2
4
5

8
2
4
0

1
5
.8

%
−

8
4
.2

%

2
16

3
0

4
8
0

3
9
0

1
3

3
9
0

1
8
.8

%
−

8
1
.3

%
3

30
3
0

9
0
0

1
0

3
0
0

2
0

6
0
0

3
3
.3

%
−

6
6
.7

%
4

20
3
0

6
0
0

2
0

6
0
0

0
0

1
0
0
.0

%
−

0.
0
%

5
24

3
0

7
2
0

2
4

7
2
0

0
0

1
0
0
.0

%
−

0.
0
%

6
co

m
p

re
ss

ed
-a

ir
je

t
n

oi
se

at
1.

0
−

1.
5

m
20

3
0

6
0
0

0
0

2
0

6
0
0

0
.0

%
−

1
0
0
.0

%
7

25
3
0

7
5
0

2
5

7
5
0

0
0

1
0
0
.0

%
−

0.
0
%

8
co

m
p

re
ss

ed
-a

ir
je

t
n

oi
se

at
0.

5
m

25
3
0

7
5
0

2
5

7
5
0

0
0

1
0
0
.0

%
−

0.
0
%

A
ll

17
0

5
0
8
5

1
0
9

3
2
5
5

6
6

1
8
3
0

6
4.

0
%
−

3
6
.0

%

Binary Classification 45

3.1.4.2 Accuracy

Figure 3.7 and Table 3.4 report the detection results of the four experiments con-

ducted as per 3.1.3.4. Statistics are computed over the 64 repetitions of each experiment,

performed to account for the fluctuations introduced by the sources of randomness in

the process, namely data augmentation, initialization of the net’s parameters, and mini-

batching for stochastic gradient descent, as explained in 3.1.3.5. Figure 3.7 shows that

the experimental distributions obtained for the detection metrics are highly skewed, as

can be seen from the asymmetric IQR ranges, whiskers, and outliers; therefore, median

± Mean Absolute Deviation (MAD) is a convenient choice for summarizing each exper-

iment in a way that is more robust and less sensitive to skewness compared to average

± standard deviation. The MAD is defined as

MAD ≜ mediani (|ai − ã|) (3.4)

where ai’s are the accuracy values of a single repetition, and ã is the experiment’s median.

It is worth remarking that, due to the non-linearity of the median, the median balanced

accuracy is not the average of median sensitivity and median specificity, in general.

The next paragraphs expose the results of Experiments 0, 1, 2, and 3 (structured as

per 3.1.3.4), discussing each experiment individually.

Experiment 0 Experiment 0 is based on noiseless data for both training and vali-

dation (details in 3.1.3.4). Therefore, this experiment is a check for the setup and the

produced data. The outcome of this experiment is positive since all detection metrics

(namely sensitivity, specificity, balanced accuracy, and AUROC – explained in 3.1.3.6)

have a median > 97%. For instance, these results show a key successful sanity-check in

that the working surface (Figure 3.1, Figure 3.2, and Figure 3.3) is correctly discrim-

inated from the added obstacles, despite being itself a physical object in the sensors’

field of view.

Experiment 1 Experiment 1 consists in training on noiseless data and validation

on noisy data (details in 3.1.3.4). This experiment yields a balanced accuracy and an

AUROC collapsed to values compatible with the chance level, which is 1
2 for both these

detection metrics. This collapse shows that recognition of noisy data is impossible if the

model has never seen data affected by the compressed air jet pressure at training time;

this confirms the motivation of the chosen protocol for data collection and incremental

learning.

Binary Classification 46

Table 3.4: Detection metrics results for Experiments 0, 1, 2, and 3 (protocol de-
tailed in 3.1.3.4). Distributions are summarized as median ± Mean Absolute Deviation
(MAD). This chart complements Figure 3.7 by reporting quantitatively the high accu-
racy of Experiment 0, the collapse in Experiment 1, and the recovery in Experiments
2 and 3.

Detection metric (median ± MAD)

sensitivity specificity
balanced
accuracy

AUROC

Experiment 0 0.967± 0.018 0.991± 0.006 0.980± 0.007 0.993± 0.002

Experiment 1 0 ± 0 1 ± 0 0.5 ± 0 0.493± 0.016
Experiment 2 0.850± 0.055 0.964± 0.028 0.889± 0.028 0.936± 0.031
Experiment 3 0.905± 0.030 0.952± 0.028 0.917± 0.024 0.972± 0.013

Experiment 2 Experiment 2 adds 1
3 of the noisy data to the training set (details

in 3.1.3.4). The results of this first step of incremental learning on noisy data show

that the detection in the presence of noise strongly surpasses the chance level, yielding

a sensitivity of 85.0 ± 5.5)% and all other metrics > 88%. This experiment crucially

proves that the data contain a pattern also in the presence of noise and that this pattern

is strong enough to allow for an accurate data-driven detection.

Experiment 3 Experiment 3 adds a further 1
3 of the noisy data to the training set

(details in 3.1.3.4). In this experiment, all the detection metrics except specificity further

increase compared to Experiment 2. Specificity stays constant since it only decreases by

1.2%, and the new value is consistent with Experiment 2 within the variability MAD =

2.8%. This experiment proves that the proposed system and DL setup are able to

leverage increasing amounts of data to improve its accuracy on the challenging real

working conditions of the industrial facility’s environment.

Discussing detection metrics with an end-to-end view requires explaining what hap-

pens if the proposed system fails to detect an obstacle. In this case, a collision can

happen between the obstacle and a machine’s soft bumper; this kind of collision is not

dangerous since bumpers are part of the active safety system that stops the machine in

case of contact (as explained in 3.1.2.1). In general, it is possible to create even more

redundancy by combining the proposed systems with any of the existing SoA active

safeguards illustrated in 3.1.2.1, such as pressure-sensitive floor mats, photocell barriers,

or laser scanners.

Binary Classification 47

Ex
pe

ri
m

en
t

0

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Detection metric (dimensionless)

se
ns

iti
vi

ty
sp

ec
ifi

cit
y

ba
la

nc
ed

 a
cc

ur
ac

y
AU

RO
C

Ex
pe

ri
m

en
t

1
Ex

pe
ri

m
en

t
2

Ex
pe

ri
m

en
t

3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Detection metric (dimensionless)

se
ns

iti
vi

ty
sp

ec
ifi

cit
y

ba
la

nc
ed

 a
cc

ur
ac

y
AU

RO
C

F
ig
u
re

3
.7
:

E
x
p

er
im

en
ta

l
d

is
tr

ib
u

ti
on

s
of

th
e

d
et

ec
ti

o
n

m
et

ri
cs

o
b

ta
in

ed
fo

r
E

x
p

er
im

en
t

0
(v

a
li

d
a
ti

o
n

o
f

se
tu

p
a
n

d
d

a
ta

)
a
n

d
E

x
p

er
im

en
ts

1
-t

o
-3

(i
n

cr
em

en
ta

l
tr

ai
n

in
g

on
n

oi
sy

d
at

a)
;

fo
r

th
e

d
et

ai
ls

o
f

th
e

ex
p

er
im

en
ta

l
p

ro
to

co
l,

se
e

3
.1

.3
.4

.
N

o
ti

ce
th

e
d

iff
er

en
t

y
-s

ca
le

s
in

th
e

tw
o

p
lo

ts
.

T
h

e
lo

w
er

(r
es

p
.,

u
p

p
er

)
w

h
is

ke
r

is
se

t
at

th
e

lo
w

es
t

d
at

u
m

a
b

ov
e
Q

1
−

1.
5

IQ
R

(r
es

p
.,
Q

3
+

1.
5

IQ
R

),
w

it
h
Q

1
a
n

d
Q

3
th

e
fi

rs
t

a
n

d
th

ir
d

q
u

a
rt

il
es

re
sp

ec
ti

ve
ly

,
an

d
IQ

R
≜

Q
3
−

Q
1

th
e

in
te

rq
u

ar
ti

le
ra

n
g
e.

T
h

e
g
en

er
a
l

tr
en

d
sh

ow
s

h
ig

h
a
cc

u
ra

cy
in

E
x
p

er
im

en
t

0
,

th
e

co
ll

a
p

se
in

E
x
p

er
im

en
t

2
,

an
d

th
e

in
cr

em
en

ta
l

re
co

ve
ry

in
E

x
p

er
im

en
ts

2
an

d
3
.

M
o
re

ov
er

,
th

e
a
sy

m
m

et
ri

c
IQ

R
ra

n
g
es

,
w

h
is

ke
rs

,
a
n

d
o
u

tl
ie

rs
h

ig
h

li
g
h
t

h
ig

h
sk

ew
n

es
s;

th
is

m
ot

iv
at

es
th

e
re

co
u

rs
e

to
m

ed
ia

n
±

M
ea

n
A

b
so

lu
te

D
ev

ia
ti

o
n

(M
A

D
)

fo
r

m
o
re

ro
b

u
st

su
m

m
a
ri

es
co

m
p

a
re

d
to

av
er

a
g
e
±

st
a
n

d
a
rd

d
ev

ia
ti

o
n

.

Binary Classification 48

3.1.4.3 Performance and memory footprint

Table 3.5 reports the results of the TCN profiling, compared with [135]. For a fair

comparison, since [135] dealt with just 1 input channel, that net is also extended to

support 9 input channels as the new data. Memory footprints refer to TCN quantized

to 8 bit. Memory footprints of activations are determined as the maximum sum of two

consecutive feature maps since batch normalizations and ReLUs can be computed in

place; for all models, the maximum-size pair is the input-output of the first convolutional

layer, which occupies (CinTin + Chid 1Thid 1) bytes, where Tin = Thid 1 = 2048 samples,

Cin is 1 channel for [135] and 9 channels for extended-[135] and the proposed new net;

and Chid 1 is 2 channels for [135] and extended-[135], and 4 channels for the proposed

new net.

The energy consumption per inference was determined based on the power draw

measured experimentally, which is (1.63 ± 0.01)W, which is in the same range as the

previous work [135]. Overall, the results show that the proposed new TCN improves all

the deployment metrics, except the RAM used for activations, which is the same as the

reference model, i.e., 22.0 KiB (2.1% of the total 1 MiB available on the STM32H743ZI

MCU). The advantage of the new compact model lies in the latency and energy con-

sumption per inference reduced by > 2.27× compared to [135].

It is essential to note that a latency of ∆tinfer = 5.0 ms/inference does not imply a

rate of 1/∆tinfer = 200 inferences/s. In general, the entrance of operators or objects into

the space spanned by the moving parts of the machine (corresponding to the field of view

of the sensors) can be detected using an inference rate much lower than 200 inferences/s.

For specific applications, the inference rate choice is based on the use case’s requirements.

Moreover, a higher inference rate gives some degrees of freedom for postprocessing oper-

ations such as majority voting or averaging of the scores to make accuracy more robust.

In situations that do not require a high inference rate, using an MCU with lower per-

formance is possible, continuing to satisfy the real-time requirements.

It is worth discussing the latency results in more detail. The speed vcabinet of the

machine’s moving parts is of the order of 1 m/s (as explained in 3.1.2.1), and the speed

vobs of potential obstacles, i.e., people and objects in the surroundings, is typically

lower. Assuming the worst case, i.e., the machine’s moving cabinet and an obstacle

moving towards each other from a distance d, the maximum allowed stopping time Tmax

is

Tmax =
d

vcabinet + vobs
. (3.5)

A conservative estimate of Tmax, which corresponds to a conservative upper bound on

latency, can be obtained assuming vcabinet = 1 m/s, vobs = 1 m/s, and d = 0.5 m, which

Binary Classification 49

T
a
b
le

3
.5
:

R
es

u
lt

s
of

th
e

p
ro

fi
li

n
g

o
f

th
e

p
ro

p
o
se

d
T

C
N

’s
d

ep
lo

y
m

en
t

a
n

d
ex

ec
u

ti
o
n

.

M
O
D
E
L

M
e
m
o
ry

O
p
e
ra

ti
o
n
s
(k

M
A
C
)

L
a
te
n
c
y
(m

s)
E
n
e
rg

y
p
e
r

in
fe
re

n
c
e
(m

J
)

w
e
ig
h
ts

(B
)

a
c
ti
v
a
ti
o
n
s
(K

iB
)

C
o
n
ti

e
t
a
l.

[1
3
5
]

or
ig

in
a
l:

1
in

p
u

t
ch

an
n

el
10

44
6.

0
22

7
11
.4

18
.6

ex
p

a
n

d
ed

to
9

in
p

u
t

ch
an

n
el

s
17

92
22
.0

63
0

>
11
.4

>
18
.6

T
h
is

w
o
rk

56
0

(0
.3

2×
)

22
.0

(s
am

e)
15

1
(0
.2

4×
)

5
.0

(<
0
.4

4×
)

8
.2
±

0.
2

(<
0
.4

4×
)

Binary Classification 50

is the shortest distance used in the dataset (3.1.3.3). These values yield

Tmax =
0.5 m

1.0 m/s + 1.0 m/s
= 0.25 s. (3.6)

This underestimate of the maximum allowed latency is 12× the acquisition time of the

signal, i.e., 20.48 ms (3.1.3.2), and 50× the computation latency of the TCN inference,

i.e., 5.0 ms. The US sensors can detect obstacles at a maximum distance of 2 m to

2.5 m, so more time is generally available. Even in the worst case, the proposed system’s

latency for data acquisition and processing is one order of magnitude shorter than the

available time: the proposed solution has a latency sufficiently short for the task, with

a significant margin for future scenarios with faster-moving cabinets and obstacles.

3.2 Low-Latency Detection of Epileptic Seizures from iEEG

with Temporal Convolutional Networks on a Low-Power

Parallel MCU

3.2.1 Overview

Although the primary treatment for epilepsy is pharmacological, approximately one-

third of patients are affected by drug-resistant forms of epilepsy [144]. These cases can

either require surgical treatment [145] or benefit from closed-loop brain stimulation [146].

The latter can eliminate or mitigate the seizure symptoms and relies on coupling a

neuromodulator with a real-time detection system that recognizes the onset of seizures

based on the analysis of the brain signals. Closed-loop neuromodulators are implantable

devices that read intracranial Electro-Encephalographic (iEEG) signals and stimulate

the brain tissue, and implantability imposes very strict computational resources and

energy budget.

Currently, the iEEG signal allows the best spatial resolution and provides the highest

signal-to-noise ratio compared to other neural recording techniques [147]. With this

biosignal, many attempts have been made to develop frameworks to detect seizures.

Recently, several works have proposed methods based on Machine Learning [148]–[150]

and Deep Learning [151], [152] to successfully detect the ictal (i.e., during a seizure)

and the inter-ictal (i.e., between seizures) states from the iEEG signal. High sensitivity

and specificity, and short delay (i.e., the time between the onset and the recognition of a

seizure) are fundamental parameters for evaluating the quality of an epilepsy detection

system. Above all, specificity is critical because studies have shown that false positives

Binary Classification 51

can generate high levels of anxiety and stress in patients [146]. Hence, they must be

minimized.

For the automated learning approach, an invaluable source of brain activity data is

the iEEG recorded in Epilepsy Monitoring Units (EMU), where it is possible to perform

pre-surgical long-term observations. Typically, EMU patients are monitored for only

1 to 3 weeks to minimize the discomfort and the risk of adverse effects (e.g., infection

and inflammation deriving from the iEEG electrodes implanted through the skull) [153].

The collected data are essential for preliminary monitoring to plan personalized surgical

treatment, but they are also used as a base for training algorithms for real-time seizure

recognition [154]. Given the highly patient-specific nature of seizure dynamics, seizure

detection frameworks require tuning to each patient [155]. This patient-dependent ap-

proach poses significant challenges because of the highly imbalanced nature of the data,

where inter-ictal states are much longer than ictal states (class-imbalance problem).

A major challenge in real-time seizure detection is to design computationally efficient

frameworks that can provide reliable recognition while at the same time meeting the

strict computation, memory, and power constraints of embedded platforms working in

real time. In this section, I address the problem of iEEG-based detection of epileptic

seizures in real-time, targeting the Short-Term SWEC-ETHZ iEEG Database [154]. I

present a solution based on a TCN designed for low-power edge monitoring platforms.

I present the following contributions:

• I present a novel TCN network with 1D dilated convolutional layers, enabling a

more efficient pattern extraction from input time windows; this yields a compact

model requiring just 2.52 kB of memory footprint and 164 kMAC of computation,

working entirely at int8 bitwidth; the obtained detection delay is up to 10 s shorter

than the SoA setup based on Hyper-Dimensional Computing (HDC); at the same

time, the model satisfies the same sensitivity and specificity constraints as the SoA;

furthermore, the setup is time-consistent: training seizures always precede testing

ones temporally, a constraint which would be present in the clinical practice, but

that is unfortunately not taken into account in the SoA work [154].

• I deploy the model on the low-power edge microcontroller GAP8 [33], [34], at-

taining a computation latency of just 5.68 ms and an energy cost of just 124.5µJ

when executed on 1 core, and latency 1.46 ms and an energy cost 51.2µJ when

distributed on 8 cores. These values are better than the HDC SoA [154] and are

a perfect fit for long-term monitoring by an embedded SoC working in real time.

Binary Classification 52

3.2.2 Materials & Methods

3.2.2.1 Short-Term SWEC-ETHZ iEEG Database

Intracranial Electroencephalography (iEEG) is an invasive technique to acquire brain

signals via electrodes implanted surgically directly onto the surface (strip-, grid elec-

trodes) or even into the brain (depth electrodes) [156]. Compared to extracranial EEG,

the iEEG provides better spatial and temporal resolution (mm-scale and ms-scale, re-

spectively [157]), higher bandwidth, less noise, and fewer artifacts, though with the

drawback of requiring surgery with a higher risk of infection [158]. The dataset ad-

dressed in this work is the Short-Term SWEC-ETHZ iEEG Database [154], a publicly

available8 iEEG dataset containing epileptic seizure recordings from 16 patients of the

epilepsy surgery program of the Inselspital Bern, for a total of 100 seizures. The number

of seizures varies from 2 to 14 across patients.

The iEEG signals were acquired by either implanted strip, grid, and depth elec-

trodes or by a mixed configuration of these electrode types. Electrode numbers (varying

from 36 to 100 across subjects) and implantation schemes were established based on

clinical needs. An extracranial electrode localized between the Fz and Cz positions

(10-20 system) was used as reference. The sampling rate was either 512 Hz or 1024 Hz,

depending on whether each patient had more or less than 64 electrodes implanted. Prior

to further analyses, the signals recorded with less than 64 electrodes were downsampled

to 512 Hz. All signals were re-referenced against the median of all electrodes free of

permanent artifacts (e.g., 50 Hz PLI), as judged by visual inspection [159]. The signals

were digitalised to 16 bit and band-passed with a 4th-order Butterworth filter with band

0.5 Hz–150 Hz. For seizure onset marking, which constitutes the dataset’s ground truth,

the iEEG traces were visually inspected by an experienced board-certified epileptolo-

gist [154]. Electrodes permanently corrupted by artifacts were excluded by the same

procedure. The dataset’s ictal segments range from 10 s to 1002 s. In addition, each

recording includes 180 s of the inter-ictal state preceding the seizure and 180 s of the

post-ictal state.

3.2.2.2 TCN Framework

This contribution addresses epileptic seizure detection by treating the iEEG signal as

a time series, applying a TCN based on the SoA model EEGNet [160], a CNN specialized

for EEG. EEGNet has proven powerful on several tasks ranging from the classification

of steady-state visual evoked potentials [161] to motion imagery recognition [162]. On

8http://ieeg-swez.ethz.ch

http://ieeg-swez.ethz.ch

Binary Classification 53

Convolution Batch-Normalization Fully ConnectedReLU

1s @ 512Hz

Average poolB
N

P
L

×2

multi-chnl raw iEEG

𝑝seizure 𝑡
=
1

1 + 𝑒−𝑧

B
N

B
N

P
L

w/ dropout

B
N

w/ dropout

𝑧

Stacked Convolutional
Blocks II and III

Convolutional
Block I

Dense layer I
Dense
layer II

Figure 3.8: The TCN used in this work, inspired by EEGNet [160], [161].

top of these results, the EEGNet topology is exploited as a base to design a TCN that

matches the memory and computation constraints of low-power edge microcontrollers.

In particular, the block structure is preserved while applying a reduction of parameter

number.

The EEGNet-inspired TCN is shown in Figure 3.8. It has 3 Convolutional Blocks

each composed of 4 filters with BN [117]:

• Convolutional Block I has a unit kernel, i.e., k = 1, since it is in charge of the

spatial filtering in the EEG sense: it mixes the input iEEG electrodes (spatially

distributed) into new network channels, with a time-independent linear combina-

tion;

• Convolutional Blocks II and III extract the temporal information performing di-

lated causal convolutions with kII = kIII = 3, and dilation dII = 2 and dIII = 4.

Finally, two stacked 32-unit dense layers compute the probability of the input window

belonging to the ictal state, which is returned by a sigmoid activation. Overall, this

TCN has 2520 parameters and executes 164 kMAC.

3.2.2.3 Baseline and time-consistent setup

Inspiring works have addressed the Short-Term SWEC-ETHZ iEEG Database with

automated learning [154], using models both from classical ML (RF, SVM, MLP, and

HDC) and from DL (2D-CNN and LSTM). The current SoA algorithm on the tar-

geted dataset is an HDC Ensemble applied on 3 signal features, namely Local Binary

Pattern, Line Length, and Amplitude, which provides a seizure detection with a speci-

ficity of 97.3 % and a detection delay of 8.81 s while missing only 3.6 % of the dataset’s

seizures [154]. In particular, Table 3.6 details how the HDC Ensemble stands out as

the SoA baseline by attaining better specificity and detection delay compared to deep

models such as 2D-CNN and LSTM, at a comparable miss rate.

Binary Classification 54

Table 3.6: Summary of the results of [154], indicating the HDC Ensemble as SoA
baseline on the Short-term SWEC-ETHZ iEEG Database, against other deep models.

Model
Missed
seizures

Specificity
Detection

delay

HDC Ensemble 3.6% 0.973 8.81s
STFT + 2D-CNN 2.3% 0.836 17.9s

raw iEEG + LSTM 4.7% 0.948 14.7s

A limitation of all the works above on the Short-Term SWEC-ETHZ iEEG dataset

is that training and test seizures are not temporally consistent: training seizures do not

always precede testing ones. This is because the focus of all the cited approaches is de-

termining the minimum number of training seizures required to have a good recognition

on unseen seizures (few-shot learning), regardless of chronological order. In contrast,

this work is interested in time consistency in this work. Hence, this contribution per-

formed the training on the first half of each patient’s seizures and the test on the second

half. Note that in clinical practice, the training would indeed be performed on EEG

traces and seizures that happened in the past, with the goal of detecting future ones.

Though epileptic seizures of an individual patient are generally considered to be very

similar, in a recent landmark study, Schroeder et al. have reported that they found

significant variability in seizure evolutions, with more similar seizures occurring closer

together in time [163]. Furthermore, others have observed that seizure patterns and

severity may change under conditions such as pre-surgical evaluation when anti-epileptic

drugs are often rapidly tapered to provoke seizures and thus shorten the time needed

to obtain enough information for a decision about the feasibility of surgically removing

the epileptogenic brain regions [164]. To perform a fair comparison, this work applies

the time-consistent training setup to both the SoA HDC approach and the proposed

EEGNet-inspired TCN.

3.2.2.4 Details on the ML setup

Timing Both the HDC Ensemble and the TCN are fed with 1 s-windows of the mul-

tichannel iEEG signal at 512 Hz. The HDC performs feature extractions as described

in 3.2.2.3, whereas the TCN directly executes convolutions on the raw signal. For train-

ing, windows are taken with a slide of 0.5 s for HDC and 32 ms for the TCN; at inference

time, the slide is 0.5 s for both algorithms, thus delivering 2 inferences/s.

TCN training The TCN (implemented in PyTorch 1.6 [65], [66]) was trained with

binary cross-entropy loss, AdaM optimizer, initial learning rate 0.001, and minibatch

size 64, for 15 epochs in float32 plus 1 epoch in int8 (quantization details in 3.2.2.4).

Binary Classification 55

Postprocessing & delay-specificity curves Postprocessing was applied to both the

HDC’s and TCN’s outputs using a n-sample checker, as per [154]: after each inference, a

window of n model outputs (0.5 s apart, as detailed in 3.2.2.4) in the past is considered,

and a positive label is returned only if all n are positive. By using different values of n

(starting from n = 1, i.e., no postprocessing), the experiments explored different trade-

offs between specificity and detection delay (which will be defined in 3.2.2.5). A smaller

n means a shorter window, hence a milder attenuation of positives, thus prioritizing

high sensitivity and short detection delay over specificity. Conversely, a larger n takes a

longer window, leading to a stronger attenuation of positives, yielding higher specificity

at the cost of lower sensitivity and longer detection delay. In this way, the experiments

characterized the HDC and TCN in terms of specificity-delay curves.

TCN quantization & deployment After training the TCN in float32 format

for 15 epochs, the pipeline included 8-bit PTQ and 1 further epoch of QAT to recover

accuracy (2.3.1). The quantization method applied was the PArameterized Clipping

acTivation (PACT) [67], as implemented in the open-source library NeMO (2.3.2) [43],

[64]), developed to minimize CNN network memory footprint and latency to enable

implementation on resource-constrained ultra-low-power platforms. In particular, quan-

tizing the 2520-parameter model from float32 to int8 cuts its memory footprint by 4×,

from 10.08 kB to 2.52 kB. The int8-TCN was deployed on the PULP microcontroller

GAP8 (2.2) [33], [34], to measure the inference latency and the energy cost per infer-

ence. This deployment was done by exploiting the open-source tool DORY (Deployment

ORiented to memorY) (2.3.2) [41], [42], using an extension to the backend to enable the

support of dilated convolutional layers.

3.2.2.5 Evaluation Metrics

The detection of epileptic seizures was evaluated using three metrics, following the

standard of the previous works on the dataset [154]:

• sensitivity : the fraction of detected seizures for each patient; seizures are detected

when the classifier returns at least 1 True Positive inference, i.e., at least 1 positive

inference over the ictal segment (t > 180.0 s in all recordings); note that this

sensitivity is defined per-patient as a count over seizures, not over single inferences

within a single seizure;

• specificity, defined as the fraction of True Negative inferences over the inter-ictal

segment (t < 180.0 s in all recordings);

Binary Classification 56

0.96 0.97 0.98 0.99 1.00
Specificity

0

5

10

15

20

25

30

35

De
la

y
(s

)
1

2

3

4

56

1
2

3
4

5

14
15

19

HDC, sensitivity 1.000
HDC, sensitivity 0.937
TCN, sensitivity 1.000
TCN, sensitivity 0.991
TCN, sensitivity 0.970
TCN, sensitivity 0.960
post-processing
window length

Figure 3.9: Delay-specificity curves of HDC and TCN, obtained by applying a different
amount of postprocessing that inhibits positives.

• detection delay, measured as the time distance between the ground-truth seizure

onset (at instant t0 = 180.0 s in all recordings) and the first True Positive inference;

following the definition in the baseline work [154], undetected seizures are discarded

from the calculation of the average delay; doing so is fair as long as sensitivity is

high, i.e., very few of the 100 seizures included in the dataset are missed.

Note that the detection delay is distinct from the computation latency to execute the

model inference; the latter proves negligible compared to the former, as explained in the

results in 3.2.3.2.

3.2.3 Experimental Results

3.2.3.1 Delay-specificity Pareto frontier

The recognition results of the TCN and the baseline HDC Ensemble are shown in

Figure 3.9. The plot displays the specificity-delay curve obtained for each model by

varying n for the n-sample checker, i.e., the length of the postprocessing window, as

explained in 3.2.2.4. With no postprocessing (i.e., n = 1), all the positive outputs

are retained, leading to the configuration that most favors a short detection delay over

Binary Classification 57

higher specificity. Increasing the number of samples used for postprocessing removes a

higher fraction of positives, shifting the tradeoff toward higher specificity at the cost of

an increased detection delay. Since the average detection delay is well-defined only at

high sensitivity, i.e., when few seizures are missed (as discussed in 3.2.2.5), the curve

points are considered valid only for sensitivity > 0.93, and the upper-right end of the

curves is stopped at this threshold.

Remarkably, the TCN is able to provide a shorter detection delay when specificity is

in the interval [0.975, 0.995]. Thus, the proposed TCN constitutes the Pareto frontier in

this region. Furthermore, if the sensitivity requirement is raised above 0.95, the Pareto

frontier is entirely represented by the TCN only. This is because the high-specificity

points of the HDC curve have sensitivity 0.937, whereas the high-specificity points of the

TCN curve always have sensitivity ≥ 0.96. The TCN’s sensitivity-specificity tradeoff

is thus more robust because working points with sensitivity below the set threshold

(application-dependent) are not valid, leaving only TCN points on the Pareto frontier.

Even if the HDC can maximize specificity, reaching higher values compared to the TCN,

the HDC’s maximum-specificity points have lower sensitivity and higher delay.

In general, the sensitivity threshold is dictated by the desiderata of each particular

scenario and is application-dependent, just like the preferred delay-specificity tradeoff

point chosen on the Pareto curve for a specific use case. The detection results show that,

depending on the desired sensitivity requirement, the TCN improves the Pareto frontier

compared to the current SoA approach.

3.2.3.2 Deployment on a parallel MCU

Finally, the 8-bit TCN is deployed onto the multi-core MCU GAP8 (2.2) [33], [34],

specialized for deep learning applications at the edge. Table 3.7 reports the deployment

figures of merit, compared with the SoA HDC Ensemble. The model requires just 2.52 kB

of model parameters storage and 164 kMAC = 328 k arithmetic operations, as detailed

in 3.2.2.2 and 3.2.2.4. These values are 7.1× and 100× lower than the requirements of

the HDC Ensemble SoA, respectively. The experimental values of computation latency

and energy consumption were measured running the model on GAP8 at Vdd = 2.8 V and

fclk = 100 MHz. Averages and standard deviations were taken over 20 repetitions of the

model execution. The energy cost E was determined experimentally by measuring the

consumed current i(t) and integrating it over the model execution time:

E = Vdd

∫ T

0
i(t)dt (3.7)

Binary Classification 58

Table 3.7: Deployment metrics of the proposed TCN compared against the SoA HDC
algorithm. Regarding operations, 1 MAC = 2 arithmetic operations.

Model:
HDC

Ensemble [154]
EEGNet-inspired
TCN (this work)

Memory 17.8 kB 2.52 kB (0.14×)
Arithm. op. 32.8 M 328 k (0.01×)

Platform: Quentin
GAP8

1-core 8-core
Vdd 0.52 V 2.8 V
fclk 187 MHz 100 MHz

Cycles (k) 33100
568.1± 0.6
(0.017×)

146.4± 0.2
(0.005×)

Latency (ms) 177.0
5.681± 0.006

(0.032×)
1.464± 0.002

(0.009×)

Energy (µJ) 287.9
124.52± 0.27

(0.43×)
51.19± 0.13

(0.18×)

where [0, T] is the time interval required for the execution, which was identified exper-

imentally. These measurements yielded relative uncertainties of the order of 10−3; this

variability across repetitions is due to unpredictable cache effects of the GAP8 processor.

This amount of variability is negligible for end-to-end use. Using 1 core, each inference

requires, on average, just 5.68 ms of computation latency and 124.5µJ of energy cost.

Both these values are better than the SoA. Moreover, parallelizing the inference on all the

8 cores of GAP8 shortens the latency to 1.46 ms and decreases the energy consumption

to 51.2µJ. It is to remark that this 5.68 ms computation latency is negligible compared

to the detection delay, which is of the order of seconds, as shown in Figure 3.9.

The obtained memory footprint, latency, and energy consumption prove that the

solution successfully meets the requirements for implementation on resource-constrained

devices.

Chapter 4

Classification: sEMG-based Hand

Gesture Recognition

This chapter presents the three contributions of this thesis that belong to the task of

multi-class, single-label classification. The first work (4.1) presents off-device TCNs for

recognizing discrete hand gestures from the sEMG signal; these models prove accurate

in cross-day scenarios. The second work (4.2) advances the cross-day sEMG recognition

setup by presenting the TEMPONet TCN, which is fully deployed and profiled on a low-

power parallel MCU. The third work (4.3) presents a heuristic based on online PCA for

unsupervised adaptation to compensate for changes in arm posture. These contributions

on embedded time-series ML/DL for multi-class classification are entirely devoted to

the hand modeling from the sEMG; Chapter 5, which will address the finer task of

multi-target regression, belongs entirely to the same field. The common purpose of

these research contributions is the progress in non-invasive sEMG-driven intuitive HMIs,

which must fulfill the resource constraints of embedded platforms to be implemented as

wearable devices, as exposed in depth in Section 2.4.

4.1 Temporal Variability Analysis in sEMG Hand Grasp

Recognition using Temporal Convolutional Networks

4.1.1 Overview

In this section, I address the challenge of the inter-session generalization of sEMG-

based grasp recognition using TCNs. Exploiting the very challenging Non-Invasive

Adaptive hand Prosthetics Database 6 (NinaPro DB6) [107], specifically utilized to

investigate the algorithm adaptation over multiple sessions, this contribution tested

Classification: sEMG-based Hand Gesture Recognition 60

several multi-session training set compositions to minimize the accuracy loss over non-

training data. Moreover, this work evaluates the TCN-based approach against other

well-established ML methods to explore the performance drop over multi-day testing

sessions. Finally, these experiments evaluate the network quantization to allow the net-

work deployment on platforms with a reduced memory budget (i.e., < 512 kB). This

contribution brings a twofold result:

• This work demonstrates that this approach can yield an inter-session classification

accuracy of 49.4% on the NinaPro Database 6, improving by 7.6% the results

achieved in literature and outperforming by 4.4% the results yielded by an RBF-

SVM based on RMS feature, a widely used baseline for gesture recognition. This

solution reaches a 4.8% accuracy drop on unseen data after 5 training sessions,

demonstrating the feasibility of a reliable and robust controller.

• This work verifies that the implemented network can be distilled using data quan-

tization and pruning, which allow deployment on resource-constrained real-time

platforms, a fundamental requirement in next-generation design for wearable HMI.

The presented model can fit a 512 kB memory, yet achieves 1.9% higher inter-

session accuracy than the SVM, exhibiting 4× lower memory footprint than the

SVM and 120× lower memory footprint compared to the complete network.

4.1.2 Materials & Methods

4.1.2.1 The NinaPro Database 6

The Non-Invasive Adaptive hand Prosthetics Database 6 (NinaPro DB6) [107] is a

public sEMG dataset exploring the robustness of sEMG-based hand gesture recognition

over time. A more in-depth exposition of the sEMG signal and sEMG-driven HMIs

is provided in Section 2.4 The dataset comprises 10 able-bodied subjects (3 females, 7

males, average age of 27± 6 years). For each subject, data were recorded in 10 sessions

(5 days, twice a day: morning and afternoon), each entailing 12 repetitions of 7 grasps.

The grasps were chosen from the rehabilitation and robotics fields, selecting movements

typical of the Activities of Daily Living. Each repetition lasts approximately 6 s, followed

by 2 s of rest. The sEMG signals were acquired with 14 Delsys Trigno sEMG Wireless

electrodes on the higher half of the forearm, sampling at 2 kHz. Figure 4.1 shows the

sEMG trace of a grasping gesture, indicating the rest, transient, and steady grasp stages.

It is noteworthy that, before and after the steady contraction, the gesture execution

exhibits strong transient stages, characterized by signal amplitudes and RMS up to 5×
greater than the steady signal.

Classification: sEMG-based Hand Gesture Recognition 61

0 1 2 3 4 5 6 7 8 9 10
time [s]

R
M

S
[m

V]
Am

pl
itu

de
 [m

V]

3
2

1

0

-1

-2

-3

4.2
3.5

2.8

2.1

1.4

0.7

0

Grasp (1)

rest rest

Channel 1
Channel 2

Channel 14

Figure 4.1: sEMG signal of the first grasp of NinaPro DB6, preceded and followed by
the rest position. The beginning and the end of the grasp exhibit the strong transients
typical of the dataset.

Remarkably, the NinaPro DB6 has been under-exploited in literature [107], [109], as

it is made very challenging by the similar nature of the grasps, and by the aforemen-

tioned strong transient states caused by the impulsive movements. Results obtained by

Palermo et al. [107], applying Random Forest (RF) on Waveform Length (WL), showed

high inter-session (morning-to-afternoon) accuracy loss: training on morning data (for

each day, for each subject) yields a 52.4% average accuracy on morning data, but a 25.4%

average accuracy when validating on afternoon data. These results were improved by

Cene et al. [109], who used Extreme Learning Machines (ELM), achieving 69.8% accu-

racy on the morning sessions used for training, and 41.8% accuracy in the afternoon.

This work represents SoA on the NinaPro DB6 before the present contribution. The

main limitation of the SoA is that the temporal variability is not properly addressed

since the setup is limited to single-session training. The present contribution improves

the SoA with a new setup, including multi-session training.

4.1.2.2 TCN model

This contribution treats the sEMG signal as a time series, employing a small TCN to

classify fixed-size sEMG time windows. This approach significantly differs from previous

Classification: sEMG-based Hand Gesture Recognition 62

/4

3x1

64
B
N

64
×2

/1

1x1

64
B
N

64
×2

B
N

51
2

×2
512

B
N

12
8

128 8

292×1×64 284×1×64 1×512

/D

N×1

Ch
B
N

Ch ChConvolution
/D: dilation
N×1: filter

Batch
Normalization

Fully
ConnectedReLU Dropout

Dilated
Conv. Block

Locally
Conv. Block

FC Block

300×1×14

150ms@2kHz × 14ch

Figure 4.2: TCN architecture. Three main blocks are used: the Dilated Convolutional
Block for temporal feature extraction, the Local Convolutional Block for local feature
extraction, and the FC Block for the final classification.

works in sEMG-based gesture recognition, which are framed as single-sample classifica-

tion [92] or image classification [98]. TCNs are introduced and explained in Section 2.1.

Figure 4.2 displays the architecture of the proposed TCN:

1. the Dilated Convolutional Block is composed of 2 convolutional layers with 3×1×64

filters, and dilation d = 4, to exploit the temporal sequence extracting information

on the time-relationship of the samples;

2. the Local Convolutional Block is composed of 2 convolutional layers with 1×1×64

filters, to capture the cross-information of the different channels;

3. finally, the Fully Connected (FC) Block is made of 3 FC layers, with dropout

(pdropout = 0.5) to help regularization [165], which flatten the input information

to assign a label to the input sequence.

All layers have ReLU non-linearity as activation function and are equipped with BN to

counter the internal covariate shift [117].

4.1.3 Experimental Results

Temporal variability and generalization to new sessions are addressed by developing

a multi-session setup used to compare a set of conventional ML algorithms, namely LDA,

RF, and Radial Basis Function-kernel Support Vector Machine (RBF-SVM), against DL

models, namely the proposed TCN and its distilled versions. An incremental training

protocol is adopted to analyze the ability to generalize to never-seen sessions, where

1 to a maximum of 5 sessions are used for training, and the remaining 5 for testing.

In this sequential scenario, training sessions always precede testing sessions, preserving

temporal coherence. An internal 2-fold cross-validation is employed; this 2-fold split is

stratified, i.e., each fold contains an equal number of grasp repetitions from each training

session. The 2-fold cross-validation is also necessary to evaluate the TCN algorithm on

the same sessions used for training (i.e., without the temporal variability). Hence, the

setup uses alternately one fold of the training sessions to train the model and the other

Classification: sEMG-based Hand Gesture Recognition 63

Table 4.1: Memory footprint and best intra- and inter-session accuracy of the proposed
methods compared to the SVM baseline.

Intra-/inter-session Memory
accuracy footprint

State of the Art [109]
ELM 69.8%1/ 41.8%1 n.a.

Classical ML
LDA 47.5% / 38.3% negligible
RF 46.3% / 43.4% negligible
RBF-SVM 51.4% / 45.0% 1.3 MB
RBF-SVM on steady 69.2% / 60.4% 1.3 MB

Proposed DL methods
Full TCN 54.2% / 49.4% 38.8 MB (30×)
Full TCN on steady 71.3% / 65.0% 38.8 MB (30×)
Full TCN q. and prun. 53.0% / 49.3% 2.0 MB (1.5×)
Strided TCN 52.0% / 48.7% 6.0 MB (4.6×)
Strided TCN q. and prun. 49.5% / 46.9% 0.33 MB (0.25×)

1With transient removal by outlier rejection (4.1.3.2).

to test it. The proposed method is evaluated on two criteria: (1) the intra-session

validation accuracy, calculated as the average accuracy on the fold not used for training

(alternately), and (2) the inter-session validation accuracy, computed as the average

accuracy on sessions 6-to-10, never included in the training.

4.1.3.1 Classical ML accuracy

First, multi-session training is applied on three well-established ML approaches:

LDA, RF, and RBF-SVM, implemented with Python 3.5 and Scikit-learn 0.20.0 [166]

using the modules discriminant analysis, ensemble, and svm, respectively. All are

fed the Root Mean Square (RMS) of the 14-channel sEMG signal, computed on 60 ms

time windows. This approach was chosen as a baseline as it is a widely used setup. For all

three classifiers, adding training sessions gradually improves the recognition of the last 5

never-seen sessions, with the 5-session training yielding the best accuracy, as reported in

Table 4.1. This behavior is due to the regularizing effect of multi-session training: show-

ing the classifier more heterogeneous data improves generalization. In particular, the

RBF-SVM (trained with C = 1 and gamma = 'scale') yields the best results, shown

in the left panel of Figure 4.3. With 5-session training, the SVM achieves an average

intra-session validation accuracy of (51.4±0.6)% and an average inter-session validation

accuracy of (45.0±0.8)%, thus with a 6.4% accuracy drop on never-seen sessions. Sweep-

ing from 1-session to 5-session training increases the intra-session validation accuracy

by 1.1% and the inter-session validation accuracy by 8.2%, and reduces the inter-session

Classification: sEMG-based Hand Gesture Recognition 64

time [session] time [session]

RMS + RBF-SVM Temporal Convolutional Network

Ac
cu

ra
cy

[%
]

Ac
cu

ra
cy

[%
]

intra-sess. val.
inter-sess. val.

tr. sess. 1-to-1
tr. sess. 1-to-2

tr. sess. 1-to-5

intra-sess. val.
inter-sess. val.

tr. sess. 1-to-1
tr. sess. 1-to-2

tr. sess. 1-to-5

Figure 4.3: Classification accuracy of the baseline SVM and the proposed TCN on the
different sessions of NinaPro DB6. The 5 multi-session training strategies incrementally
improve the generalization to never-seen sessions, with better results for the TCN.

accuracy drop by 7.1%. This inter-session validation accuracy outperforms by 3.2% the

SoA represented by [109] mentioned in 4.1.2.

4.1.3.2 TCN accuracy

The TCN-based approach is implemented using Python 3.5 and PyTorch 1.1 [65],

[66]. The TCN is fed with 150 ms sliding (15 ms) time windows of the raw 14-channel

sEMG signal, in sharp contrast with the classical ML methods. The TCN is trained with

cross-entropy as a loss function and stochastic gradient descent for 20 epochs (minibatch

size 64) with initial learning rate 0.001, divided by 10 after epochs 9 and 19. L2-

regularization is applied with PyTorch weight decay = 1e-4, corresponding to λL2 =

5 · 10−5. Even though the training is done off-line, the proposed setup fully allows for

online inference since the TCN neither relies on feature extraction nor the removal of

sEMG transients (as instead popular in both inter-subject [167] and inter-session [90],

[168], [169] studies, including the SoA on NinaPro DB6 [109]. The recognition accuracies

obtained by adding training sessions are shown in the right panel of Figure 4.3, which

provides a detailed comparison between the RBF-SVM and the TCN.

Multi-session training gradually increases the performance on the last 5 never-seen

sessions, minimizing the inter-session accuracy drop, with the best results for the 5-

session training strategy. This means that including more sessions enables the TCN to

leverage more heterogeneous samples to learn a more robust representation. This be-

havior is the same as for the classical ML algorithms but with higher accuracy. Passing

from 1-session to 5-session training improves the intra-session validation accuracy by

1.8% and the inter-session validation accuracy by 11.1%, and reduces the inter-session

Classification: sEMG-based Hand Gesture Recognition 65

accuracy drop by 9.3%. The 5-session training achieves an average intra-session valida-

tion accuracy of (54.2± 0.6)% (2.8% higher than the SVM) and an average inter-session

validation accuracy of (49.4 ± 0.9)% (4.4% higher than the SVM). The inter-session

validation accuracy is better-than-SoA by 7.6% [109].

The lower-than-SoA intra-session accuracy is due to the fact that [109] (1) uses

single-session training with feature extraction, prone to overfitting to the single sessions;

(2) applies very aggressive signal filtering over 200 ms time windows, thus significantly

smoothing the transients discussed in 4.1.2; and (3) embeds outlier removal into the

algorithm, thus excluding the transients from the accuracy. For a fair comparison, the

RBF-SVM and TCN are evaluated discarding the transients, obtaining results com-

parable to the SoA. Validated on the steady segments, the RBF-SVM yielded 69.2%

intra-session accuracy (just 0.6% below SoA) and 60.4% inter-session accuracy, while the

TCN achieved 71.3% intra-session accuracy (1.5% above SoA) and 65.0% inter-session

accuracy.

The improvement achieved in inter-session accuracy is due to the successful regular-

ization provided by multi-session training, as for the classical ML algorithms. Moreover,

the higher results compared to classical ML corroborate the initial assumption that

TCNs can achieve superior generalization thanks to their higher ability to process raw

data and handle the variability of the sEMG signal between sessions.

4.1.3.3 TCN distillation

On top of evaluating the accuracy performance of the TCN-based approach, this

subsection discusses the memory requirements of the proposed solution to understand

how it can be deployed on a resource-constrained platform. Three new networks are

distilled from the initial one, applying (1) a stride factor s in the first two convolutional

layers (s1 = 2 in the first and s2 = 4 in the second), (2) 16-bit quantization for the

convolutional layers and 8-bit quantization for the FC layers, and (3) the pruning of the

network weights.

Table 4.1 reports the memory occupancy and the accuracy of the different config-

urations of the network, compared to the baseline SVM. Remarkably, introducing the

strides, quantizing, and pruning causes an accuracy loss of only 4.7% intra-session and

2.5% inter-session. This lowest-area configuration requires 120× less memory than the

initial configuration and 4× lower memory footprint compared to the SVM, yet demon-

strates an inter-session accuracy higher than the SVM. In addition, neural networks

can benefit from a far better parallelization than SVMs, leading to lower delay in the

recognition.

Classification: sEMG-based Hand Gesture Recognition 66

4.2 Robust Real-Time Embedded EMGRecognition Frame-

work Using Temporal Convolutional Networks on a

Multicore IoT Processor

4.2.1 Overview

In this section, I address the challenge of variability robustness of sEMG-based hand

gesture recognition, and I present a real-time embedded platform for robust sEMG-based

gesture recognition. The major contributions are:

• TEMPONet, a novel EMG classification algorithm based on a TCN, tested on the

benchmark sEMG dataset NinaPro DB6 (detailed in 3.1.3.3);

• a complete embedded platform for EMG acquisition and processing. The system

is based on the combination of a commercial Analog Front End for biopotential

acquisition with GAP8 (2.2), a multi-core low-power IoT processor;

• a 20-session dataset, collected with the proposed custom platform, which allows

the validation of the algorithm and profiling of a quantized version of the TCN

suitable for the deployment on a resource-constrained platform.

The performance of TEMPONet is tested on the NinaPro DB6 dataset [107] achieving

65.2% inter-session accuracy on steady signals and 49.6% inter-session on the full dataset

– 7.8% better than the current SoA [109]. Moreover, after the system design, the same

TEMPONet topology is tested on a new dataset introduced in this work, comprising 20

sessions on 3 subjects. On this dataset, the setup achieves 93.7% inter-session accuracy.

The 20-session dataset is collected using the same platform on which the recognition

algorithm is deployed. Therefore, the dataset is representative of the real-world of

data that an embedded setup can gather. The results show that the accuracy drop on

entirely unseen sessions can be reduced to 6.6% on NinaPro DB6 and 3.4% on the 20-

session dataset, surpassing the current SoA. Finally, a full quantization of TEMPONet

is performed, dropping the data representation of the weights and the feature maps

from 32-bit floating point to 8-bit integer, thus reducing the network memory footprint

by 4×. To leverage the 8-core architecture of the GAP8 processor and parallelize the

execution of the algorithm, the deployment exploits highly optimized neural network

libraries [170]. The quantized TCN can be executed in real-time on the GAP8 (2.2) chip

(a full inference takes less than 13 ms and consumes 0.9 mJ), but still achieves 93.3%

inter-session accuracy on the 20-session dataset and 61.0% on the NinaPro DB6 while

providing up to 54 h of battery life, showing a computational efficiency of 10× compared

Classification: sEMG-based Hand Gesture Recognition 67

Figure 4.4: A) Hardware diagram of the proposed system: the sEMG sensors on the
forearm are connected to the AFE, which sends the data via SPI to the GAP8 processing
platform; a Bluetooth link allows the streaming of the data and the classification to an
external gateway. B) Detailed block diagram of the GAP8 processor (2.2).

to SoA systems for sEMG processing suitable for convolutional network deployment,

such as [171] and [172].

4.2.2 Materials & Methods

4.2.2.1 Acquisition & processing platform

The sEMG signal acquisition is based on an 8 channel commercial Analog Front

End (AFE), an ADS1298 [173] connected to the GAP8 (2.2) breakout board. ADS1298

is mainly used in acquisition system design for EMG, EEG, and ECG signals, and it is

considered the de facto standard for such applications. It allows simultaneous sampling

of up to 8 bipolar channels with 24-bit resolution, reaching 32 ksps. Each channel has a

programmable Gain Amplifier with a gain that ranges from 1 to 12. In this application,

it drives 8 fully differential channels at sampling rate 4 kHz connected to an array of

passive gel-based sEMG electrodes, placed in a ring configuration around the forearm.

The block diagram of the GAP8 architecture (2.2) is reported in Figure 4.4. GAP8 has

two main functional blocks: a single tiny RISC-V core, namely the Fabric Controller

(FC), and a parallel set of 8 RISC-V core, i.e., the computational cluster. The FC

controls the SoC and the peripherals and can be viewed as a simple MCU. The 8-

core cluster is used for vectorized and parallel computationally-intensive tasks such as

embedded artificial intelligence [174].

GAP8 is not equipped with an FPU. Hence, algorithms need to be executed using

fixed-point arithmetic. The internal memory of GAP8 is divided into two layers: L1

memory and L2 memory. L2 memory is 512 kB in size and accessible by all cores. L1

memory is split into two parts: a 16 kB memory for the fabric controller and a 64 kB

shared memory for the cluster cores. There is also a third level, i.e., L3, externally

connected via quad-SPI or a HyperBus interface. The GAP8 processor also includes

an internal programmable DC/DC converter which provides power supply to the fabric

Classification: sEMG-based Hand Gesture Recognition 68

controller and cluster (0.9 V to 1.3 V; 0.8 V for retentive sleep mode). As shown in Fig-

ure 4.4, this setup is developed for measurement and characterization using development

boards; nevertheless, by virtue of the BGA packages of the ADC and GAP8, the whole

system can be integrated into a single PCB with 30 mmtimes20 mm form factor suitable

for wearable applications.

All firmware was written in C and runs on the low-power GAP8 processor. The soft-

ware development relied on the GAP8 Software Development Kit (SDK) [175], which

embeds all the APIs to access the GAP8 hardware features such as DMA engines, hard-

ware timers, and I/O. The GAP8 SDK also includes a customized version of the RISC-V

GCC compiler with support for the GAP8 ISA extensions used to accelerate the infer-

ence of DNNs [170]. As shown in Figure 4.4, GAP8 is connected to the ADS1298 AFE

via a 20 MHz SPI connection (GAP8 acts as master) in parallel to an interrupt wire

(#DRDY) connected to a GAP8 digital pin. Once a new sample is ready, the AFE asserts

the #DRDY signal with a pulse. The #DRDY pulse wakes up an interrupt routine on the

GAP8 FC, which starts acquiring the SPI data using the embedded I/O µDMA. Data

loaded via SPI is stored in the GAP8 L2 memory as 24-bit signed fixed-point numbers,

with the least significant bit representing a value of Vref/(223–1). Acquired sEMG sam-

ples are then used as input of the TEMPONet TCN, whose embedded implementation

is described in 4.2.2.3 and profiled in 4.2.3.

4.2.2.2 TEMPONet TCN architecture

Unlike previous studies in sEMG-based gesture recognition, which are formulated

as single-sample recognition [92] or image recognition [98] and mostly rely on extracted

features, this contribution addresses the sEMG signal as a time series, using a small

TCN-based architecture to assign labels to 150 ms raw sEMG time windows. An in-

depth presentation to TCNs is provided in Section 2.1. Figure 4.5 portrays an example of

TCN convolutions acting on a raw signal without any preliminary feature extraction; this

work is built on this principle. This section presents the novel TCN-based topology, the

Temporal Embedded Muscular Processing Online Network (TEMPONet), also displayed

in Figure 4.6. TEMPONet stacks 3 Convolutional Blocks, each composed by:

• 2 temporal convolutional layers with filter size 3 × 1, variable dilation, and full

padding;

• 1 convolutional layer with filter size 5×1 and variable stride and padding, followed

by an Average Pooling (AvgPool) with kernel 2× 1.

Classification: sEMG-based Hand Gesture Recognition 69

Figure 4.5: Structure and functioning of TEMPONet’s 2nd Convolutional Block: 2
dilated convolutions (d = 4), 1 strided convolution (s = 2), and average pooling. The
input of the block is the temporal sequence computed by the 1st Convolutional Block.

/D

3x1

B
N

x 2
/S

5x1

B
N

x 3

B
N

x 2
9

Receptive Field: 377 > 300
Out. F. Map: 5 x 1 x 128 Out. F. Map: 1 x 1 x 128

/D,S

Nx1

Convolution
/D,S: dilation or stride
Nx1: filter

Batch
Normalization

Fully
Connected

ReLU Dropout

Sec. 1:
Dilated Conv.

Sec. 3:
Fully Conn.

300 x 1 x 14

150 ms @ 14 ch

P
L

Sec 2:
Dim. Reduction

PoolingB
N

P
L

Flatten

~ ~~ ~:
~ ~~ ~

:

128*5

128

8

~ ~
~ ~

:

14 16*2i-1

300

n/2i-2

16*2i

n/2i-1
n/2i

16*2i

CONVOLUTION CONVOLUTION POOLING

FULLY CONNECTED

Figure 4.6: Processing diagram of the proposed algorithm. In the TEMPONet TCN
architecture, the three blocks (each one composed of 2 convolutional and one pooling
layer) are used to extract temporal features, followed by two fully connected layers that
perform the final classification.

Classification: sEMG-based Hand Gesture Recognition 70

The 3 blocks are characterized by dilation d = 2, 4, 8, respectively, and stride s =

1, 2, 4, respectively. The strided convolution of the 1st, 2nd, and 3rd block raises the

number of channels to 32, 64, and 128 respectively, whereas each AvgPool halves the

sequence length immediately after. As an example, Convolutional Block 2 is represented

in Figure 4.5. The Convolutional Blocks are followed by 2 Fully Connected (FC) layers

with dropout (to help regularization [165]) and a SoftMax operation. The FC layers

flatten the input information to compute the final label assigned to the sequence. All

layers have ReLU non-linearity as activation function and are equipped with BN to

counter the internal covariate shift [117].

The two main characteristics of this network, namely block composition and 1D

dilated convolutional layers, are inspired by the novel developments in the deep learning

field. The division into blocks of several layers where the number of channels and size

of the activation tensors is kept constant is typical of many modern networks [176]–

[179]. It enables building a network where the temporal dimension is consumed “slowly,”

thus enabling a deeper network with more powerful processing of the raw information

in the time series. On the other hand, dilated layers allow to gradually increase the

receptive field of each layer (2.1). Dilation factors are chosen so that the receptive field

at the network’s end covers an entire time window. The modular nature of the network

structure would allow stacking further blocks so as to process signals on different timing

windows; for the sEMG-based gesture recognition, this is of particular interest since the

time-window width could change based on the target application.

The network topology is designed so that the convolutional block increases the re-

ceptive field and reduces the width of the signal (i.e., the input time window “visible”

from a given neuron in the layer). A larger input window can then be analyzed by

stacking more blocks instead of increasing the filter sizes, i.e., by making the network

deeper instead of wider, thus limiting the increase in the number of parameters. Com-

bining these insights, the TEMPONet 3-blocks configuration presented in this paper

can process a 150 ms input window using only 460 k parameters, which is well suited for

implementing the setup described in the following parts of this section.

4.2.2.3 TEMPONet embedded deployment

This section describes the procedure to distill the TEMPONet algorithm for the

embedded platform for sEMG acquisition and classification.

Quantization As mentioned in 4.2.2.1, the target execution platform GAP8 has lim-

ited memory capacity and no support for floating-point data. Therefore, to enable

Classification: sEMG-based Hand Gesture Recognition 71

deployment of the trained TEMPONet on an embedded platform, quantization (2.3.1)

is required to reduce the net to only 8-bit integer parameters and feature map tensors.

The pre-trained TCNs are fine-tuned after replacing ReLU activation functions with

step functions using the PACT methodology [67]; weights are also quantized using a

similar function. Quantization is performed layer-wise. The 8-bit representations of

feature maps y and weights W are given by (respectively)

ŷ =

⌊
clip[0,αy)(y)

εy

⌋
, with εy =

αy

256
; (4.1)

Ŵ =

⌊
clip[αW,βW)(W)

εW

⌋
, with εW =

βW − αW

256
. (4.2)

The quantization procedure operates as follows, starting from a pre-trained full-precision

network: first, the quantization parameters αW and βW are initialized with the mini-

mum and maximum values of W, respectively, while αy parameters are initialized by

registering minimum and maximum values of y over a run on the training set. All pa-

rameters (including W, αW, βW, αy) are then fine-tuned via back-propagation using the

Adam optimizer. The learning rate is set to a small value (10−6) for both datasets, and

the training is stopped after 30 epochs or earlier if convergence is achieved (i.e., if the

difference in loss between two epochs is < 0.05). The quantized network can be deployed

on GAP8 by directly using the int8 weights Ŵ and implementing Equation 4.1 as a

set of comparisons against thresholds [180]. Apart from fitting in the GAP8 L2 512 kB

memory constraint (the 8-bit TEMPONet has a footprint of 460 kB), quantization also

removes all floating-point multiplications, reducing both the time and energy per clas-

sification as GAP8 has no floating-point unit and would emulate these operations in

software.

Optimized execution The GAP8 processor receives and accumulates the data to

fill an internal 150 ms × 8 channel (i.e., ∼ 10 kB) buffer in L2 and then starts the

classification. Meanwhile, a second buffer, also located in L2, receives the data in real-

time from the AFE in a double-buffering procedure. Data is fed to the network at

2 kHz sampling rate and using int32 representation only for the input data (as the

ADC resolution is 24 bits – 4.2.2.1). The implementation of TEMPONet on GAP8

is based on the dedicated PULP-NN libraries [170] for optimized ad-hoc convolutional

kernels deployment. PULP-NN uses all the cores available in the GAP8 cluster, their

SIMD extensions, and their bit-manipulation instructions to obtain the best speed-up

and energy-efficiency from the chip. As PULP-NN functions work on data in the 64 kB

L1 scratchpad, it is necessary to move weights and feature maps between the 512 kB L2

memory and the L1 scratchpad. This process is performed by using the automated tool

DORy (2.3.2) [41], [42] to divide the data tensors in each layer in tiles that fit the L1, and

Classification: sEMG-based Hand Gesture Recognition 72

Figure 4.7: TEMPONet flow. Left: the DMA manages L2-L1 communication using
double-buffering. Right: the cluster executes PULP-NN on a tile stored in one of the
L1 buffers.

to insert appropriate DMA calls to realize a double buffering scheme (separate from the

one on ADC data) so that data movement is always overlapped with computation. The

DMA calls are asynchronous and non-blocking, allowing new activations and weights to

be imported while the previous calculation is ongoing. Figure 4.7 illustrates this flow by

highlighting the L2-L1 memory traffic, managed by the DMA, and the cluster execution

of PULP-NN.

4.2.3 Experimental Results

4.2.3.1 Experimental setup

The TEMPONet TCN is implemented using Python 3.5 and the specialized DL de-

velopment PyTorch 1.1 framework [65], [66]. The TCN is fed with 150 ms time windows

(slide 15 ms) of the raw 14-channel and 8-channel sEMG signal, for the NinaPro DB6

and the 20-session dataset respectively. To analyze the accuracy drop in multi-session

classification, the setup uses an incremental training protocol that sweeps the training

data from 1 to a maximum of half dataset sessions (i.e., 5 for NinaPro DB6 and 10

for the 20-session dataset), using the remaining half for testing. The training sessions

always precede the testing ones in a sequential scenario to maintain temporal coher-

ence among sessions. Regarding the amount of data used for the training, the strategy

Classification: sEMG-based Hand Gesture Recognition 73

adopts an internal 2-fold stratified (i.e., with an equal number of gesture repetitions

for each fold) cross-validation to evaluate the algorithm also on the same sessions used

for training (i.e., without the temporal variability). TCN training uses cross-entropy as

a loss function and stochastic gradient descent for 20 epochs (minibatch size 64) with

L2 regularization (PyTorch’s weight decay = 10−4). The initial learning rate is set to

0.001 for the NinaPro DB6 dataset and 0.01 for the 20-session dataset; in both cases,

it is divided by 10 at epoch 9 and 19. It is worth observing that these training settings

are very similar to the ones used in the previous contribution on NinaPro DB6, pre-

sented in Section 4.1; these settings proved heuristically effective on the new 20-session

dataset as well. Furthermore, TCN topology is compared against an RBF-SVM applied

on the RMS of the sEMG signal, computed on 60 ms time windows. As in 4.1, this setup

is chosen as a baseline since it is a widely used approach [123] and it allows to show

how the algorithm performs against a well-established classification scheme. The SVM

is implemented using the Scikit-learn framework (version 0.20.0) [166], and the SVM

parameters are set to C = 1 and gamma = 'scale'.

Two figures of merit are introduced to evaluate the method, based on the protocol:

(1) the intra-session validation accuracy, computed as the average accuracy on the

fold not used for training (alternately), and (2) the inter-session validation accuracy,

calculated as the average accuracy on sessions 6-to-10 for the NinaPro DB6 and 11-to-20

for the 20-session dataset, which are never used for training. Network training is always

performed offline, hence on steady segments, removing contraction transients. Steady

segments are obtained by discarding the first and the last 1.5 s of each gesture for NinaPro

and 300 ms for the dataset introduced in this work, thus focusing the classification only

on steady signal portions.

To evaluate the inference performance, TEMPONet is run on the Ninapro DB6,

comparing the results of the multi-session testing described in [109] that represents the

previous SoA inter-session accuracy for NinaPro DB6. The obtained average accuracy

is 49.6% against 41.8% reported in [109]. In this test, the accuracy is evaluated on the

complete gestures, including transients). Figure 4.10 displays the results of the RBF-

SVM and the TCN on the NinaPro DB6 dataset, evaluated on the full validation set.

The algorithm comparison shows that the TCN performs 4.3% better than the SVM.

All accuracy results are reported as mean (i.e., average over subjects, training folds, and

validation sessions) or as mean ± Standard Error.

It is noteworthy that since most of the classification errors are located in the tran-

sients, the design of an end-to-end gesture controller usually requires removing gesture

transients. This procedure is well-established and common to both inter-session [90],

Classification: sEMG-based Hand Gesture Recognition 74

N
in

aP
ro

 D
B6

20
-s

es
si

on

strategy [tr. session 1-to-*]

strategy [tr. session 1-to-*]

Figure 4.8: Average inter-session accuracy obtained on steady signals (removing tran-
sients, in full color) and on full signals (including transients, in light color) for both
datasets and both algorithms.

[168], [169] and inter-subject [167] studies; this procedure is also sufficient for the pur-

pose of a steady gesture controller design. It can be done using techniques such as

threshold comparison, Dynamic Time Warping, or Hidden Markov Models. For this

reason, the following paragraphs present the accuracy results also with data purged of

transients. To provide better insight into how the accuracy varies when removing tran-

sients, Figure 4.8 compares the average inter-session accuracy achieved testing only on

steady signals and on full ones for both datasets and considering both RBF-SVM and

TEMPONet TCN approaches. Similarly to what happens with steady signals, the ad-

vantage of TEMPONet in terms of accuracy on full grows proportionally to the number

of sessions involved in the training. The accuracy drop on full compared to steady is

substantially similar between RBF-SVMs and TCNs for both datasets.

4.2.3.2 Accuracy on NinaPro DB6 (steady)

On the NinaPro DB6, both the SVM and the TCN yield the best recognition accu-

racy when trained with a higher number of sessions, namely 1-to-5 (i.e., the first half

of the dataset sessions). Recognition accuracy over time is plotted in Figure 4.11. The

Classification: sEMG-based Hand Gesture Recognition 75

Figure 4.9: Hand gestures used during experimentation, including finger and wrist
contractions.

SVM trained on sessions 1-to-5 reaches an average intra-session validation accuracy of

(69.2 ± 0.7)%, and an average inter-session validation accuracy on sessions 6-to-10 of

(60.4 ± 0.9)%, resulting in a drop of 8.8%. Compared to training on only session 1,

the 5-session training maintains the same intra-session accuracy (+0.4%) but increases

the inter-session accuracy by 9.5%. The TEMPONet TCN trained on sessions 1-to-5

reaches a similar intra-session validation accuracy of (71.8 ± 0.7)% (2.6% higher than

the SVM); it also increases the inter-session validation accuracy by 4.8% compared to

the SVM ((65.2 ± 1.0)%), with a resulting drop of 6.6%. Compared to training on

only session 1, the 5-session training increases the intra-session accuracy by 5.5%) and

significantly increases the inter-session accuracy by 17.5%. Remarkably, increasing the

amount of training data is crucial for TEMPONet, which strongly increases its perfor-

mance. These results confirm the initial assumption that TCNs are more efficient in

extracting information directly from raw data and removing part of the noise due to

temporal variability, thus achieving better generalization over time.

4.2.3.3 Accuracy on the 20-Session Dataset (steady)

The new dataset was acquired for 10 days and involved 3 subjects (all male, average

age of 29 ± 3 years). Each day includes 2 sessions, taking place in the morning and

afternoon, for a total of 20 sessions for the complete experimentation. A single session

has an approximate duration of 1.5 minutes and includes 8 hand gestures and rest,

as shown in Figure 4.9. Each gesture is repeated 6 times with a contraction time of

approximately 3 s. To ease the labeling process, 3 s of rest are interleaved between

contractions of the same gestures, and up to 5 s of rest are interleaved between different

gestures.

Classification: sEMG-based Hand Gesture Recognition 76

A
c

c
u

ra
c

y
[%

]

1 2 3 4 5 6 7 8 9 10
time [session]

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-5

intra-sess. val.

inter-sess. val.

RMS + RBF-SVM

A
c

c
u

ra
c

y
[%

]

1 2 3 4 5 6 7 8 9 10
time [session]

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-5

intra-sess. val.

inter-sess. val.

Temporal Convolutional Network

60

50

40

30

60

50

40

30

Ninapro DB6

time [session]
5 6 7 8 9 10

A
c
c

u
ra

c
y

[%
]

60

55

50

45

40

TCN + raw signal

RBF-SVM + RMS

intra-sess. val.

inter-sess. val.

Std. Error

Trained on sess. 1-to-5

Figure 4.10: Left and Center: classification accuracy of RMS + RBF-SVM and
TEMPONet, using the incremental training framework on NinaPro DB6. Right: clas-
sification accuracy of RMS + RBF-SVM and TEMPONet, after training on sessions
1-to-5 of NinaPro DB6. All validations are done on steady states + transient states.

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-5

intra-sess. val.

inter-sess. val.

70

60

50

40

A
c

c
u

ra
c

y
[%

]

1 2 3 4 5 6 7 8 9 10
time [session]

RMS + RBF-SVM on NinaPro DB6, steady

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-5

intra-sess. val.

inter-sess. val.

70

60

50

40

A
c

c
u

ra
c

y
 [

%
]

1 2 3 4 5 6 7 8 9 10
time [session]

TEMPONet on NinaPro DB6, steady

100

95

90

85

80

75

70

65

A
c

c
u

ra
c

y
 [

%
]

TEMPONet on 20-session Dataset, steady

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-

10

intra-sess. val.

inter-sess. val.

tr. days 1-to-1

tr. days 1-to-2

tr. days 1-to-5

intra-sess. val.

inter-sess. val.

100

95

90

85

80

75

70

65

A
c

c
u

ra
c

y
 [

%
]

RMS + RBF-SVM on 20-session Dataset, steady

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-10

intra-sess. val.

inter-sess. val.

Ninapro DB6

20-session Dataset

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-5

intra-sess. val.

inter-sess. val.

70

60

50

40

A
c

c
u

ra
c

y
[%

]

1 2 3 4 5 6 7 8 9 10
time [session]

RMS + RBF-SVM on NinaPro DB6, steady

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-5

intra-sess. val.

inter-sess. val.

70

60

50

40

A
c

c
u

ra
c

y
 [

%
]

1 2 3 4 5 6 7 8 9 10
time [session]

TEMPONet on NinaPro DB6, steady

100

95

90

85

80

75

70

65

A
c

c
u

ra
c

y
 [

%
]

TEMPONet on 20-session Dataset, steady

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-

10

intra-sess. val.

inter-sess. val.

tr. days 1-to-1

tr. days 1-to-2

tr. days 1-to-5

intra-sess. val.

inter-sess. val.

100

95

90

85

80

75

70

65

A
c

c
u

ra
c

y
 [

%
]

RMS + RBF-SVM on 20-session Dataset, steady

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-10

intra-sess. val.

inter-sess. val.

Ninapro DB6

20-session Dataset

TCN + raw signal

RBF-SVM + RMS

intra-sess. val.

inter-sess. val.

Std. Error

Trained on sess. 1-to-5
80

75

70

65

60

55

A
c

c
u

ra
c

y
[%

]

time [session]
5 6 7 8 9 10

Figure 4.11: Left and Center: classification accuracy of the baseline RMS + RBF-
SVM and TEMPONet, reached on the different sessions of NinaPro DB6 after tran-
sient removal, using the incremental multi-session training framework. Adding training
sessions improves accuracy in the never-seen sessions, with better results for the TEM-
PONet TCN. Right: classification accuracy of RMS + RBF-SVM and TEMPONet,
after training on sessions 1-to-5 of NinaPro DB6. All validations are done on steady
states.

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-5

intra-sess. val.

inter-sess. val.

70

60

50

40

A
c

c
u

ra
c

y
[%

]

1 2 3 4 5 6 7 8 9 10
time [session]

RMS + RBF-SVM on NinaPro DB6, steady

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-5

intra-sess. val.

inter-sess. val.

70

60

50

40

A
c

c
u

ra
c

y
 [

%
]

1 2 3 4 5 6 7 8 9 10
time [session]

TEMPONet on NinaPro DB6, steady

100

95

90

85

80

75

70

65

A
c

c
u

ra
c

y
 [

%
]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time [session]

TEMPONet on 20-session Dataset, steady

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-

10

intra-sess. val.

inter-sess. val.

tr. days 1-to-1

tr. days 1-to-2

tr. days 1-to-5

intra-sess. val.

inter-sess. val.

100

95

90

85

80

75

70

65

A
c

c
u

ra
c

y
 [

%
]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time [session]

RMS + RBF-SVM on 20-session Dataset, steady

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-10

intra-sess. val.

inter-sess. val.

20-session Dataset

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-5

intra-sess. val.

inter-sess. val.

70

60

50

40

A
c

c
u

ra
c

y
[%

]

1 2 3 4 5 6 7 8 9 10
time [session]

RMS + RBF-SVM on NinaPro DB6, steady

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-5

intra-sess. val.

inter-sess. val.

70

60

50

40

A
c

c
u

ra
c

y
 [

%
]

1 2 3 4 5 6 7 8 9 10
time [session]

TEMPONet on NinaPro DB6, steady

100

95

90

85

80

75

70

65

A
c

c
u

ra
c

y
 [

%
]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time [session]

TEMPONet on 20-session Dataset, steady

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-

10

intra-sess. val.

inter-sess. val.

tr. days 1-to-1

tr. days 1-to-2

tr. days 1-to-5

intra-sess. val.

inter-sess. val.

100

95

90

85

80

75

70

65

A
c

c
u

ra
c

y
 [

%
]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time [session]

RMS + RBF-SVM on 20-session Dataset, steady

tr. sess. 1-to-1

tr. sess. 1-to-2

tr. sess. 1-to-10

intra-sess. val.

inter-sess. val.

20-session Dataset

100

96

92

88

84

A
c
c

u
ra

c
y

[%
]

time [session]

TCN + raw signal

RBF-SVM + RMS

intra-sess. val.

inter-sess. val.

Std. Error

Trained on sess. 1-to-10

10 12 14 16 18 20

Figure 4.12: Left and Center: classification accuracy of the baseline RMS + RBF-
SVM and TEMPONet, reached on the different sessions of the new 20-session Dataset
after transient removal, using the incremental multi-session training framework. Adding
training sessions improves accuracy in the never-seen sessions, with better results for
the TEMPONet TCN. Right: classification accuracy of RMS + RBF-SVM and TEM-
PONet, after training on sessions 1-to-10 of the 20-session Dataset. All validations are
done on steady states.

Classification: sEMG-based Hand Gesture Recognition 77

Ground truth

Ground truth

Ground truth

Ground truth

Ground truth

Ground truth

Figure 4.13: Comparison of the real-time inter-session classification of the RBF-SVM
and TEMPONet on the 20-session dataset.

The SVM and the TEMPONet TCN were tested again on this new 20-session

dataset. The same topology and training parameters are maintained, except for the

learning rate (4.2.3). The recognition accuracy when using the incremental training

protocol over time is plotted in Figure 4.12. Again, both the SVM and the TEMPONet

TCN reach the best average intra-/inter-session validation accuracy when trained with

the maximum number of training sessions (1-to-10). The SVM reaches (96.0 ± 0.3)%

and (91.1 ± 0.6)%, intra-session and inter-session accuracy (on sessions 11-to-20), re-

spectively, and 4.9% drop. The TEMPONet increases this performance to (97.1±0.3)%

intra-session accuracy, (93.7 ± 0.5)% inter-session accuracy, and only 3.4% accuracy-

drop. Compared to training on only session 1, the SVM maintains the same intra-

session accuracy (−0.2%), while the TEMPONet strongly increases its performance of

9.4%. Remarkably, both methods enhanced with more training sessions show a sharp

performance gain of the inter-session accuracy, namely 12.9% for the SVM and 22.7%

for the TCN. Similarly to NinaPro DB6, the effect of multi-session training on the SVM

and the TCN is similar but with higher gains for the TCN. The fact that the TEM-

PONet TCN also outperforms the SVM on the new 20-session dataset further validates

the initial hypothesis that TCNs can attain better generalization by their higher ability

to process raw data and handle the inter-session sEMG variability noise.

Furthermore, a more explicit comparison between the recognition accuracy of the

SVM and TEMPONet is shown in Figure 4.13, which displays the output labels of the

two classifiers in the real-time inter-session setup on the 20-session dataset (subject 1,

training sessions 1-to-10, validation session 20). This visual inspection highlights that

the output sequence returned by TEMPONet is more accurate and more stable (i.e.,

smooth) in inter-session validation than the output of the SVM. The smoothness of the

TEMPONet TCN classification is due to the fact that, for each inference, TEMPONet

Classification: sEMG-based Hand Gesture Recognition 78

leverages 150 ms of signal history, rich enough to enhance stability and avoid erratic

oscillations as the ones exhibited by the SVM.

Finally, it is possible to notice that the classification accuracy reached on the 20-

session dataset (all > 90%) is consistently much higher than on NinaPro DB6 (all <

75%), even in presence of a similar number of classes (8 for NinaPro DB6 vs. 9 for

the 20-session dataset) and sEMG sensors (14 for NinaPro DB6 vs. 8 for the 20-session

dataset). The cause is that hand movements in NinaPro DB6 are all grasps, thus much

less diverse and discernible than the hand gestures of the 20-session dataset.

4.2.3.4 Embedded deployment performance

Regarding the embedded implementation, the input sEMG signals are preprocessed

digitally before executing the TEMPONet TCN. This process includes a 10-tap notch

filter to remove PLI interference and a 15-tap band-pass filter between 2 Hz and 1 kHz

to cancel the DC drift and high-frequency components. The signal is then downsampled

to 2 kHz to match the sampling rate of the NinaPro DB6 dataset. The execution time

of these steps is negligible (< 100µs) and does not affect the real-time performance of

the classifier. The processing chain later continues with the execution of TEMPONet as

described in Figure 4.7.

To fairly evaluate the accuracy of the quantized version of TEMPONet, distillation

to int8 also involved the RBF-SVM support vectors. This was performed offline by

evaluating the mean µ and standard deviation σ of the support vectors and applying

Equation 4.2, setting

αW = µ− 5σ (4.3)

βW = µ + 5σ (4.4)

(empirically, different settings for αW and βW resulted in larger accuracy drops. Ta-

ble 4.2 reports the memory occupancy and the accuracy of the full-precision and 8-bit

TEMPONet, compared to the SVM baselines. Remarkably, the accuracy drop after

quantization decreases, given the quantization’s regularizing effect. On NinaPro DB6,

quantization leads to an accuracy loss of 7.3% intra-session and 4.2% inter-session, still

above the full-precision RBF-SVM baseline. On the 20-session dataset, quantization

causes an accuracy loss of just 0.5% intra-session and only 0.4% inter-session, again

above the full-precision SVM, but with a 1.5× lower memory footprint. On the other

hand, the quantization of the support vectors, which is still necessary to deploy SVMs

on the GAP8-based processing platform (512 kB memory constraint), results in a ∼ 15%

inter-session accuracy loss for both the datasets.

Classification: sEMG-based Hand Gesture Recognition 79

Table 4.2: Memory footprint and best intra- and inter-session accuracy of the baseline
RMS + RBF-SVM, full-precision TEMPONet and 8-bit quantized TEMPONet.

Memory Intra-session Inter-session
footprint accuracy (%) accuracy (%)

NinaPro DB6
RMS + RBF-SVM (float32) 1.3 MB 69.2 60.4
RMS + RBF-SVM (8-bit) 332 kB 50.7 44.7
TEMPONet (float32) 1.8 MB 71.8 65.2
TEMPONet (8-bit) 460 kB 64.5 61.0

20-Session Dataset
RMS + RBF-SVM (float32) 670 kB 96.0 91.1
RMS + RBF-SVM (8-bit) 168 kB 95.8 78.6
TEMPONet (float32) 1.8 MB 97.1 93.7
TEMPONet (8-bit) 460 kB 96.6 93.3

Table 4.3: Inference latency and energy consumption of TEMPONet executed on
GAP8 in the most efficient voltage-frequency configuration, namely 1.0 V and 170 MHz.

Inference
latency (ms)

Inference
energy (mJ)

MAC/cycle

Dilated convolutions 5.40 0.38 9.54
Non-dilated convolutions 5.86 0.41 6.95
Averag poolings 0.16 0.01 n.a.
Fully connected 1.42 0.10 4.10

Whole net 12.84 0.90 7.73

Table 4.3 highlights the performance of the TCN network in terms of inference time,

energy, and MAC/cycle, experimentally profiled from the execution of the net on the

GAP8 SoC targeting the most efficient voltage-frequency configuration to save energy,

namely Vdd = 1.0 V and fclk = 170 MHz. Also, these metrics are broken down for the

different layer types involved, namely dilated and non-dilated convolutions, AvgPool,

and Fully Connected layers. The last column of Table 4.3, the mean MAC/cycle, is a

key indicator of computational efficiency. Dilated Convolutions are not only algorithmi-

cally effective, but they also achieve the highest level of efficiency: 42% of the execution

time is spent to run 53% of the overall network operations. Overall, exploiting the 8

cores of GAP8, the network reaches a mean MAC/cycle of 7.73. Therefore, TEMPONet

can classify a time window in 12.8 ms, consuming 0.90 mJ. The real-time constraint

is given by the 15 ms of the sliding window and is therefore well-met by the embed-

ded application, as shown in Figure 4.14. Moreover, Figure 4.14 highlights that the

windowing scheme (same for off-line training and real-time inference) and computation

comply with the consensus real-time requirement, which is represented by the upper

limit of 300 ms [103]. Regarding classification energy, each time window classification

Classification: sEMG-based Hand Gesture Recognition 80

Windowing in real-time inference: 15ms slide

150ms window 12.8ms computation time

time

start window output 10ms

Figure 4.14: The windowing scheme and inference time. The system fulfills the real-
time requirement for sEMG-driven hand HMIs, which is an upper limit of 300 ms [103].

costs 0.90 mJ per inference. Between two adjacent inferences, the GAP8 SoC is only

collecting data (and not processing it) for 2.2 ms. During this phase, it is possible to

idle the 8 core cluster using its embedded hardware synchronization unit [181], which

enables fully state-retentive clock gating and wakeup in a few nanoseconds. The power

consumption in this phase is limited to the ∼ 10 mW consumed by the SoC to collect

data from the sensor. Overall, a 15 ms window costs 0.90 mJ, yielding an average power

of 60 mW. Using a small 1000 mAh battery, the sEMG gesture classification system can

run continuously for ∼ 13 · 106 classifications, i.e., for a lifetime of ∼ 54 h.

To measure the computational impact of dilated convolutions as opposed to con-

ventional ones, it is possible to project the measured results over a modified version of

TEMPONet where dilation factors are removed. Still, the dimension of the receptive

field is kept constant, covering the same time window as TEMPONet. To do so, the

filter sizes are increased to 5, 9, and 17 in each of the 3 blocks. The consequence is

two-fold: (i) execution time and energy jump to 28.7 ms and 2.0 mJ, respectively; (ii)

the dimension of the modified TEMPONet grows to 970 kB, too large to be suitable for

embedded deployment in the GAP8 L2 memory (512 kB).

For fair benchmarking, the approach must be compared against platforms capable

of running deep learning algorithms (e.g., ARM Cortex-M or ARM Cortex-A family)

on sEMG signals. There are some embedded systems for sEMG processing and gesture

classification, such as [171] and [172], which can execute DL algorithms on a Cortex-

A processor with a power envelope ≥ 500 mW, almost one order of magnitude larger

than GAP8. Platforms of this class can run inference of DNNs [182], but their size and

power envelope limit their applicability to embedded wearable systems. Recently, some

attempts have also been made to deploy DNNs onto high-end ARM Cortex-M processors

(e.g., ARM Cortex-M7 on STM32H7 MCUs), leveraging the energy-efficient software

support provided by CMSIS-NN, the SoA library in the software implementation of

DNNs. However, this kind of deployment reaches a top performance of 0.69 MAC/cycle

@ 346 mW, 400 MHz measured on an STM32H7 MCU [170], more than 10× slower

and 23× less efficient than the presented TCN implementation that combines parallel

Classification: sEMG-based Hand Gesture Recognition 81

execution of the GAP8 cluster cores and the ISA extensions utilized by the PULP-NN

computational backend [170].

4.3 Online Unsupervised Arm Posture Adaptation for sEMG-

based Gesture Recognition on a Parallel Ultra-Low-

Power Microcontroller

4.3.1 Overview

Despite the capabilities of automated learning, a major challenge to the long-term

accuracy and robustness of sEMG-based control lies in the sEMG’s inherent variability

factors, such as anatomy, fatigue, skin perspiration, and electrode repositioning. This

challenge was exposed in depth in Section 2.4.

SoA ML/DL approaches address this issue with two approaches: multi-session train-

ing or model adaptation. Multi-session training involves training a model on data

acquired on diverse conditions, varying postures, electrode placement, or users [92].

Multi-session training is the method I extensively exploited in the previous contribu-

tions presented in this chapter to increase the generalization capabilities of non-deployed

TCNs 4.1 and the fully deployed TCN TEMPONet 4.2 In contrast, model adaptation

retrains part of a model on a new session’s data. Both approaches are used in DL since

(i) multi session-training was shown to benefit Deep Neural Networks (DNNs) more

than non-deep ML [22], and (ii) DNNs’ modularity allows to limit the retuning to few

layers (such as Batch-Norms (BNs) in AdaBN [114], [116], or a net’s backend in continual

learning [183]).

Multi-session training and DNN retraining successfully improve generalization, but

both come at high computation and memory costs. Multi-session training can only be

done by saving multiple sEMG sessions and training a net on a server. On the other

hand, adaptation by fine-tuning can partially mitigate the memory requirements thanks

to latent replay techniques [184] (which only store a subset of inner activations [183]) or

by only fine-tuning the final layers or BNs (avoiding back-propagation [114]); however,

these methods still require computing complete net inferences.

Including an adaptation stage in the preprocessing steps can mitigate data variability

by avoiding retraining the classification algorithms. For instance, Canonical Correlation

Analysis (CCA) is used to linearly remap the sEMG signal of a new session to the

values of the reference session [185]–[187]. The reference session is the set of data the

classifier has initially seen in a full training, which can be done offline. However, a major

Classification: sEMG-based Hand Gesture Recognition 82

shortcoming of this technique is the lack of online adaptation since (i) CCA is trained

on sEMG steady gestures only, which requires high-accuracy segmentation of the new

session even before adaptation; (ii) CCA training needs to store data segments of both

the old session(s) and the new session; and (iii) CCA training is not implemented in

real-time.

In this contribution, I target the sEMG arm posture variability by applying the

adaptation to the preprocessing stage, classifying with a non-retrained classifier. In

contrast to CCA-based approaches, I present a real-time adaptation method based on

online Principal Component Analysis (PCA). I use online PCA to determine the prin-

cipal components of the distribution of the new sEMG data and rotate the new data

to match the new principal components to the ones of the old data. This approach

overcomes all the limitations mentioned for the CCA works: (i) PCA is unsupervised

and performed on all data, needing no training or segmentation based on the ground

truth, which is not available in real learning in-the-wild scenarios [188]; (ii) the PCA

is updated online on each sample, removing the need to store data and reducing the

computational burden.

The contribution of this section is three-fold:

• I present an adaptation method using online PCA on sEMG, based on Oja’s learn-

ing rule [189];

• I validate the strategy targeting the arm posture variability of the UniBo-INAIL

dataset [92], getting a 37% to 51% recovery of the inter-posture accuracy drop;

• I deploy the method on the PULP MCU GAP9, showing a latency compatible

with the sampling rate and channel count of SoA sEMG acquisition setups, even

high-density, e.g., a latency of 0.843 ms for dimension 32, which keeps up with 32

channels at 1 kHz).

Overall, I combine unsupervised learning, online processing, and parallel computing to

enhance embedded sEMG-based control systems in real-world scenarios.

I released the code implemented for this work.1 As a research group, we also pub-

lished the UniBo-INAIL dataset.2

1https://github.com/pulp-bio/online-semg-posture-adaptation
2https://github.com/pulp-bio/unibo-inail-semg-dataset

https://github.com/pulp-bio/online-semg-posture-adaptation
https://github.com/pulp-bio/unibo-inail-semg-dataset

Classification: sEMG-based Hand Gesture Recognition 83

4.3.2 Materials & Methods

4.3.2.1 The UniBo-INAIL dataset

This contribution targets the UniBo-INAIL sEMG dataset, realized in a collabora-

tion between the University of Bologna and the INAIL institute, first realized for the

work [92]. A thorough introduction about sEMG-driven HMIs is provided in the back-

ground Section 2.4. Ethical approval was obtained from the local ethics committee,

and all participants provided informed consent before participating in the study. The

data are from 7 healthy male participants aged 29.5 ± 12.2 years, each undergoing 8

acquisition days with 4 sessions per day, each with a different arm posture: proximal

(the sole with the arm not fully extended; the most common in literature), distal, distal

with palm down, and distal with arm 45◦ up. Each of the 224 sessions is a complete

dataset of 5 hand gestures typical of daily activities maintained for 3 seconds: power

grip, two-finger and three-finger pinch grip, pointing index, and open hand; each re-

peated 9 to 16 times. Including rest positions (3 seconds), this protocol amounts to

6 classes. sEMG data were acquired at 500 samples/s via 4 Ottobock 13E2003 sensors

placed on the forearm muscles involved in the chosen gestures (extensor carpi ulnaris,

extensor communis digitorum, flexor carpi radialis, and flexor carpi ulnaris).

4.3.2.2 Online PCA adaptation

PCA as adaptation The presented method uses PCA to identify the Principal

Components (PCs) of the sEMG sessions’ data distributions. We do not use PCA for

dimensionality reduction, but the method can include it in general. The adaptation

consists in (1) determining the PCs of the new session; then (2) using them in inference

as a linear transformation that aligns the new session to the reference session:

x′ = WrefW
⊺
newx (4.5)

where x ∈ RC×1 is the original data of the ongoing new inference session (1 sample per

channel), with C the number of channels; x′ ∈ RC×1 is the transformed sample vector.

Wref,Wnew ∈ RC×C are the PCA coefficient matrices of the reference session and the

new session respectively, where PCs w ∈ RC×1 are columns: W = [w1 · · ·wi · · ·wC].

Multiplying by W⊺
new moves x to the basis where the covariance of the new session is

diagonal; multiplying by
(
W⊺

ref

)−1
= Wref projects the data to the reference session’s

space. This is analogous to the CCA-based alignment [187]; the advantage of PCA over

CCA is that PCA matrices are orthonormal, so that inversion is just a transposition

3https://shop.ottobock.us/c/Electrode/p/13E200~550

https://shop.ottobock.us/c/Electrode/p/13E200~550

Classification: sEMG-based Hand Gesture Recognition 84

requiring no decomposition. It is worth remarking that this adaptation strategy is

unsupervised since it only deals with the distribution and covariances of the sEMG

data x, without requiring the ground truth class label, just like an actual calibration

session has input data available but no knowledge about the gesture being executed.

The following subsection deals with determining Wnew online.

Oja’s learning rule The Oja rule is an algorithm for determining the PCA coefficient

on a stream of data by updating the coefficients upon reception of each sample x ∈
RC×1 [189]. The steps for updating each component wi are the following:

1. compute yi = w⊺
i x;

2. compute the update ∆wi based on the learning rate λ:

∆wi = λ · yi ·
(
x− yiwi − 2

∑
j<i

yjwj

)
; (4.6)

3. apply the update: w̃′
i = wi + ∆wi;

4. impose normalization: w′
i = w̃′

i/ ∥w̃′
i∥2.

This produces the new orthonormal coefficient matrix W′ = [w′
1 · · ·w′

i · · ·w′
C] updated

on the fresh datum x. Step 4 is required because the summation in Step 3 implements

the orthogonality constraint but not the normalization of each vector. The two con-

straints hold after each update so that the Oja method requires no iterative matrix

orthogonalization, inversion, or decomposition. Thus, the only iteration is over time on

the stream of incoming samples.

Heuristics Applying the Oja rule successfully to sEMG sessions required the following

heuristics:

• coefficients were initialized as Wref, i.e. the PCs of the reference session;

• the learning rate λ was scheduled as a function of the sample number t (natural

dimensionless) as

λt =
1

1 + βt
(4.7)

with β = 100 (dimensionless);

• the new PCs wnew were reordered based on the best match with the reference

components wnew, and multiplied by −1 if the angle with the corresponding refer-

ence component was > π/2; It was observed that failing to apply this rematching

caused the accuracy on new sessions to drop to chance level.

Classification: sEMG-based Hand Gesture Recognition 85

Parallelization For each ∆wi, the orthogonalizer term in Equation 4.6 is a summa-

tion involving all previous i − 1 components wj for j < i. Hence, splitting over PCs,

i.e., determining ∆Wnew by blocks of columns, creates an uneven load across workers.

For this reason, the algorithm is parallelized along the PCs’ coefficients, i.e., ∆Wnew is

computed by blocks of rows, which is a workload evenly distributed across cores.

4.3.2.3 Classifier

The classification relies on the Multi-Layer Perceptron (MLP) with 8 hidden units

used in the first paper on the UniBo-INAIL dataset [92]. The setup discards the Radial-

Basis Function kernel Support Vector Machine, which proved 1% more accurate at the

cost of a non-predictable model size after each training due to the varying number of

support vectors. After training on a reference arm posture, the MLP is quantized (2.3.1)

to 8-bit (i.e., int8 weights and uint8 activations) by applying PArameterized Clipping

acTivation (PACT) [67] with the open-source library QuantLib [70]; then, the MLP is

kept frozen in the experiments on unseen arm postures, where only the PCA under-

goes adaptation. Refining the classifier is not the goal of this work; moreover, deeper

convolutional models have yielded no accuracy benefit on the UniBo-INAIL dataset so

far [190].

4.3.2.4 Experimental protocol

The analysis involves three kinds of experiments:

• Multi-posture training, as a high-accuracy baseline. For each subject, for each

day, the classifier is trained on the first 5 repetitions of all gestures from all 4

arm postures, then validated on the following repetitions. This training shows the

classifier all arm postures.

• Adaptation inter-posture, i.e., the proposed method. For each subject, for each

day, each of the 4 arm postures is selected in turn as a reference, on which the

classifier is trained using the first 5 repetitions of each gesture; then, in a nested

fashion, each of the remaining 3 arm postures is chosen as arrival posture: PCA is

adapted online on the first 5 repetitions of all gestures of the arrival arm posture,

and validation is performed on the following repetitions.

• Bottom baseline: same data split as previous, without adaptation.

All gesture repetitions include the adjacent rest positions so that trainings, adaptations,

and validations always contain all 6 classes, i.e., 5 gestures plus rest. All experiments

Classification: sEMG-based Hand Gesture Recognition 86

FABRIC CONTROLLER
clock & voltage domain

CLUSTER
clock & voltage domain

cluster
DMA

µDMA

FC

FPU

GPIO /
PWM

inter-
faces

RAM
64kB

1.5MB
interleaved

Flash
2MB

shared L1 memory

logarithmic interconnect

FPU

M
as

te
r/

C
o

re
 8

C
o

re
 0

C
o

re
 1

C
o

re
 2

C
o

re
 3

C
o

re
 4

C
o

re
 5

C
o

re
 6

C
o

re
 7

CLUSTER

Figure 4.15: Scheme of the GAP9 MCU and its 8-core cluster.

are single-subject and single-day, with no multi-subject or multi-day training or inter-

subject or inter-day validations.

4.3.2.5 Accuracy metrics

For each of the three experiments described in 4.3.2.4, the classification accuracy

is measured as median ± Mean Absolute Deviation (MAD) over the experiments’ rep-

etitions, i.e., the nested loop selecting every subject, every day, every arm posture as

a reference, and every remaining arm posture as the new target session. The MAD is

defined as

MAD = median
i

(|ai − ã|) (4.8)

where ai’s are each repetition’s accuracy values and ã is their median. Median ± MAD

is a more robust choice than mean ± standard deviation, motivated by the fact that the

experiments deal with diverse data from different users and days.

4.3.2.6 Deployment & profiling on a parallel ULP MCU

The proposed online PCA method is deployed onto GAP9 (2.2) [34] (Figure 4.15),

a commercial MCU mounting a PULP 9-core cluster accelerator based on the RISC-V

Instruction Set Architecture extended with custom instructions [62], [63]. GAP9 is SoA

in that it has the lowest energy consumption on MLPerf Tiny v1.0 benchmarks [39].

The algorithm is implemented in C, parallelizing on 8 cores as per 4.3.2.2. The MCU

is configured to Vdd = 0.65 V and fCLK = 240 MHz, which is GAP9’s best energy-

efficiency configuration. The execution cycles were measured using the performance

Classification: sEMG-based Hand Gesture Recognition 87

Table 4.4: Results of the three protocols. Accuracy is reported as median ± MAD.

DAY 1 FULL DATASET

Accuracy
(%)

Recovered
fraction of
the drop

Accuracy
(%)

Recovered
fraction of
the drop

multi-posture
training

91.0± 2.9 - 91.2± 2.3 -

no adaptation 80.8± 4.8 - 81.8± 4.9 -

online Oja-based
PCA adaptation

86.0± 4.2 0.510 85.3± 4.8 0.372

counter available in PMSIS4, the open-source system layer for GAP9’s operating system.

Latency was determined as num cycles/fCLK. The power consumption was measured

experimentally, and the energy consumption was determined as power×latency.

4.3.3 Experimental Results

4.3.3.1 Classification accuracy

The results of the three experimental protocols described in 4.3.2.4 are reported

in Table 4.4. As expected, multi-session training achieves the highest accuracy since

all arm postures are seen at training time; however, it requires storing the data of all

arm postures’ sessions and performing a complete training, which is not feasible online

on-device. The no-adaptation experiment yields the lowest accuracy and measures the

inter-posture drop if no countermeasure is taken. As can be seen, the adaptation method

relying on online Oja-based PCA recovers more than one-third (37%) of the accuracy

drop on the whole dataset. Remarkably, the recovery is slightly above 50% on Day 1,

the highest recovery across all dataset days. This difference might be related to user

experience, which was minimum on Day 1; this effect will be investigated in future work.

4.3.3.2 Profiling

Figures 4.16 and 4.17 show the profiling results. Figure 4.16 shows the speed-

up obtained running the Oja-rule update step and the normalization on 8 cores of the

GAP9’s cluster compared to execution on 1 core. The algorithm is profiled varying the

number of channels to show how the method scales on a high sEMG channel count.

The best speed-up obtained is 6.31×. For a low channel count, the speed-up is not

4https://greenwaves-technologies.com/manuals/BUILD/HOME/html/index.html

https://greenwaves-technologies.com/manuals/BUILD/HOME/html/index.html

Classification: sEMG-based Hand Gesture Recognition 88

0 4 8 16 24 32 48 64
Number of channels (natural dimensionless)

0

2

4

6

8

Sp
ee

d-
up

(d
im

en
sio

nl
es

s)

ideal
obtained

Figure 4.16: Profiling of the Oja-rule update step and normalization on the parallel
ULP microcontroller GAP9: speed-up as a function of the number of sEMG channels.

0 4 8 16 24 32 48 64
Number of channels (natural dimensionless)

0

1

2

3

4

La
te

nc
y

(m
s)

Figure 4.17: Profiling of the Oja-rule update step and normalization on the parallel
ULP microcontroller GAP9: latency as a function of the number of sEMG channels.

optimal due to the small overall size of the computation, which is not an issue since

few channels allow for very small latency. For the high channel counts reaching speed-

up > 6×, the non-ideality is due to the overhead of the memory transfers between

the shared L2 memory and the cluster’s private L1 memory, occurring before and after

the computation. It is possible to observe that the obtained speed-up in the range

6.0 − 6.3× is in the same range as the speed-up obtained by SoA PCA + Independent

Component Analysis parallel implementations on the same number of cores, but for

inference only [191].

Figure 4.17 shows the execution latency of the Oja-update and normalization. For

channel counts up to 32, latency is 0.843 ms < 1 ms, which means that the online solution

can keep up with a sampling frequency of 1 kHz. For channel count > 32, the latency

is longer, and the application must skip samples, causing a slower fit and making the

calibration session longer. However, a 2× or 3× factor on the duration of the calibration

session is a feasible compromise since calibration sessions can last a few minutes.

The measured power consumption is of 35.1 mW, which is 31% less than previous

strategies based on retraining an embedded DNNs on-device [183]. As to energy con-

sumption, an upper bound is represented by the 64-channel setup, which has a latency

of 3.57 ms and thus consumes 0.125 mJ per update step. This energy consumption per

Classification: sEMG-based Hand Gesture Recognition 89

update is 5.2× to 7.2× smaller than the typical energy per inference on previous em-

bedded DNNs for sEMG [3], [183], proving the advantage of the presented solution over

forward-pass techniques such as retraining of the last layers or AdaBN [114], [116].

Chapter 5

Regression: sEMG-based

Estimation of Hand Kinematics

and Force

This chapter presents the contributions of this thesis that belong to the task of

multi-target regression. As Chapter 4, which dealt with multi-class classification, this

chapter entirely belongs to the domain of sEMG-based hand modeling to advance non-

invasive intuitive wearable HMIs driven by the sEMG signal processed by a low-power

MCU alone. In this research field, regression is promising for enabling a more fluid and

versatile control than recognition of fixed discrete hand positions, as exposed in 2.4.3.

This chapter presents three contributions. The first work (5.1) presents an embedded

TCN that accurately models hand kinematics by estimating the hand joint angles. The

second work (5.2) addresses the estimation of hand joint angles by extracting event-

based features. The third work (5.3) extends the previous heuristic to simultaneous

multi-finger force estimation from the HD-sEMG. The event-based features exploited

in the second and third contributions are computationally cheaper than TCNs and are

promising for future porting onto event-driven devices with reduced latency and energy

consumption.

Regression: sEMG-based Estimation of Hand Kinematics and Force 91

5.1 sEMG-based Regression of Hand Kinematics with Tem-

poral Convolutional Networks on a Low-Power Edge

Microcontroller

5.1.1 Overview

In this section, I address the challenge of sEMG-based regression to decode hand

kinematics. I present a regression framework based on a TCN (2.1), a DL model for

time series modeling suitable for real-time operation on resource-constrained devices. I

present the following contributions:

• I apply the SoA TEMPONet (4.2.2.2) TCN architecture on NinaPro DB8, a bench-

mark sEMG regression dataset also comprising trans-radial amputees, obtaining

a Mean Absolute Error as low as 6.89◦, which is 0.15◦ better than the dataset’s

SoA even if the model’s bitwidth is reduced to 8 bit, while the SoA network is in

float32.

• I further optimize the TCN, identifying the model size which yields the optimal

tradeoff of regression error vs. memory footprint and MAC operations; regres-

sion accuracy is preserved, limiting the model size to 70.9 kB and the number of

operations to 3.16 MMACs.

• I deploy the solution on the GAP8 edge microcontroller [34], measuring the perfor-

mance in terms of latency and power consumption. I obtain 4.76 ms latency and

0.243 mJ energy cost per inference, demonstrating the suitability of the regression

TEMPONet for edge low-power nodes working in real time.

5.1.2 Materials & Methods

5.1.2.1 NinaPro Database 8

The Non-Invasive Adaptive hand Prosthetics Database 8 (NinaPro DB8) [120], [192]

is a public sEMG (2.4) database for finger position decoding, intended as a benchmark for

estimation/reconstruction of kinematics instead of classification of gestures or grasps.

In particular, contralateral movements are intended as a target for sEMG regression.

NinaPro DB8 comprises 10 able-bodied subjects and 2 right trans-radial amputees. All

participants repeat 9 kinds1 of bilateral mirrored movements, lasting approximately

1Both single-finger and functional: thumb flexion/extension; thumb abduction/adduction; index fin-
ger flexion/extension; middle finger flexion/extension; combined ring and little fingers flexion/extension;
index pointer; cylindrical grip; lateral grip; tripod grip.

Regression: sEMG-based Estimation of Hand Kinematics and Force 92

Convolution BatchNorm DenseReLU Dropout

128 ms @ 2kHz

Average pool 2×B
N

P
L

dilated

k = 3

B
N

×2
×3

P
L

B
N

strided

Stacked Convolutional Blocks I, II and III
Fully Connected I and II

×2
B
N

ෝ𝒚𝟏
ෝ𝒚𝟐
ෝ𝒚𝟑
ෝ𝒚𝟒
ෝ𝒚𝟓

Fully Conn. III

16-channel raw sEMG Estimated
angles

Figure 5.1: The TEMPONet TCN architecture, adapted for regression and further
optimized compared to its first proposed version [3].

6 s − 9 s (i.e., slow on purpose, for transient modeling), interleaved with approximately

3 s of rest. The muscular potential was recorded using 16 active double-differential

sensors (from a Delsys Trigno IM Wireless EMG system), positioned on two rows of

eight units around the participants’ right forearm in correspondence to the radiohumeral

joint. Hand kinematics was acquired by an 18-DoF Cyberglove 2 worn on the left hand,

contralateral to the sEMG electrodes forearm, measuring the angles of the 18 dataglove

joints. All signals were upsampled to 2 kHz and post-synchronized.

In this X(t) 7→ Y(t) multivariate regression formulation, the input information is

the 16-channel sEMG signal, and the target is represented by 5 DoA, defined as linear

combinations of the 18 DoF of the glove [120]. This DoF-to-DoA reduction serves to (i)

discard or downscale irrelevant DoF, and (ii) directly target DoA defined as relevant

hand movements. The SoA on NinaPro DB8 is represented by the LSTM of [121], which

attains an MAE of 7.04◦. (The work [193] is more recent, but it is not SoA since it does

not address the 2 thumb DoA of the dataset, but only tackles the remaining 3, namely,

index, middle, and ring+little, without providing any justification for this limitation.)

However, the LSTM proposed in [121] is not suitable for deployment on low-power

embedded platforms due to its float32 numeric format. Furthermore, the authors do

not report the essential information about the number of hidden units, parameters, and

MAC of the LSTM employed. Moreover, LSTMs are, in general, more difficult to train

than convolutional models [15], a further downside that motivates the exploration of

Temporal Convolutional Networks, as explained in 2.1.

5.1.2.2 TEMPONet architecture for regression

The network presented in this contribution is a further development of the SoA

TEMPONet TCN (4.2.2.2) [3]. In addition to modifying it to target regression, a model

exploration is presented to identify the best tradeoff between accuracy and network

size. The net’s architecture, shown in Figure 5.1, features 3 Convolutional Blocks, each

stacking:

Regression: sEMG-based Estimation of Hand Kinematics and Force 93

• 2 dilated causal convolutions with kernel size 3, variable dilation d, and full

padding;

• 1 convolution with kernel size 5, variable stride s, followed by an average pooling

(kernel 2, stride 2).

The 3 convolutional blocks have dilation d = 2, 4, 8 and stride s = 1, 2, 4, respectively.

This novel exploration for a more efficient TEMPONet reduces the channels of the

3 convolutional blocks compared to the original model of (4.2.2.2) [3]. This exploration

halves Block I’s channels from 32 to 16, halves Block II’s channels from 64 to 32, and

explores different channel numbers for Block III, namely, 32, 48, 64, 96, 128, and 192,

searching for the best tradeoff between regression error and deployment metrics, i.e.,

model size, MAC, latency, and energy consumption. This model search on TEMPONet

is novel since it is not performed in the paper first proposing it (4.2.2.2) [3]. After the

convolutional blocks, 3 FC layers perform the classification. FC I has 4× units as Block

III’s channels (variable number as explained above), FC II has 32 units, and FC III

has 5 units, corresponding to the 5 DoA target of the regression. All layers, except

FC III, have ReLU non-linearity as the activation function and are equipped with BN

to counter internal covariate shift [117]. FC I and FC II are trained with dropout with

pdrop = 0.5, to help regularization [165]. The presented optimized TEMPONet processes

a 256 samples input window (128 ms @ 2 kHz) with less than 500 k parameters. It is fed

by raw signals, thus with no preprocessing or feature extraction overhead. Size and

computation improvements of the final selected architecture compared to the original

TEMPONet are detailed in Subsection 5.1.3.

5.1.2.3 Experimental setup details

Dataset split For each of the 12 subjects of NinaPro DB8, 3 sessions are provided.

As recommended by the dataset’s authors, session 3 (2 repetitions per movement) was

used as test set. Sessions 1 and 2 (10 repetitions per movement) were merged and used

in a 2-fold cross-validation setup.

Preprocessing The NinaPro DB8 signals made available at [192] have already been

bandpass-filtered with a 4th-order Butterworth between 10 Hz and 500 Hz. Classical ML

models, namely SVM and MLP, which need feature extraction on every signal window,

were trained on the WL feature extracted from 60 ms-windows of each channel, with a

slide of 100 ms for SVM (largest computationally affordable training set size) and 25 ms

for MLP. For the SVM, the RBF kernel was used, applied to the data scaled to unit

variance, and the C coefficient was tuned separately for each target DoA. TCNs were

Regression: sEMG-based Estimation of Hand Kinematics and Force 94

directly trained on raw sEMG signals, using time windows of 128 ms (i.e., 256 samples

@ 2 kHz).

Machine learning setup Models were implemented in Python 3.8, using Scikit-learn

0.23 [166] for SVM and MLP and PyTorch 1.6 [65], [66] for TCN. The SVM is an RBF

kernel SVM, and the MLP was implemented with 3 hidden layers. TCNs were trained

with MAE loss, AdaM optimizer, initial learning rate 1 · 10−4, and minibatch size 64.

First, 19 epochs were run in float32 format; then, post-training quantization to 8 bit

was performed, and 1 last epoch of quantization-aware training was run, using PAram-

eterized Clipping acTivation (PACT) [67] as implemented by NeMO (2.3.2) [43], [64],

an open-source library for CNN minimization to target deployment on highly memory-

constrained ultra-low power devices.

Model output postprocessing The outputs of all models were post-processed with

an Exponential Moving Average (EMA):

y′t = αEMA · y′t−1 + (1− αEMA) · yt, (5.1)

with y and y′ the unfiltered and filtered signal, respectively, t the time index, and

αEMA ∈ [0, 1] the decay factor. The decay factor αEMA was tuned per-subject, per-DoA,

for each model (after the model’s training), using only training data and optimizing by

grid search. Although the formula is differentiable, optimization by PyTorch’s auto-

matic differentiation plus SGD proved slower and less accurate than grid-search sweep.

This optimization is consistent with the ML setup (since no test data are used) and is

performed to tune the compromise between the EMA’s beneficial smoothing and the

inertia deriving from the weight of past values. It is worth remarking that the EMA is

computed using only outputs yt from the present and the past; thus, it adds no delay

to the setup.

5.1.3 Experimental Results

5.1.3.1 Evaluation metrics

Assessing the effectiveness of a regression framework on the end-to-end control of a

robotic hand is not a trivial task. The evaluation of the Mean Absolute Error (MAE)

is important, but it is necessary to consider, for instance, that a difference between

the value of estimated angles and the ground truth has a greater impact on control

when it occurs during movements rather than in static phases. For this reason, the

Regression: sEMG-based Estimation of Hand Kinematics and Force 95

models’ regression quality is measured by MAE (measured in degrees) and by a regression

accuracy defined as the frequency of the MAE being below a tolerance Θtol:

Θtol-accuracy ≜
1

T

T∑
t=1

IΘtol
(MAE(t)) (5.2)

where I denotes the indicator function:

IΘtol
(MAE(t)) ≜

1 if MAE(t) < Θtol

0 otherwise.
(5.3)

A regression-accuracy threshold Θtol = 10◦, 15◦ is empirically selected. These metrics are

reliable measures of the end-to-end quality of the control for several reasons: (i) they are

related to the actual scale of angular positions; (ii) they are statistically representative

since averages are taken over joints, movements, and subjects, including two trans-radial

amputees; (iii) MAE is first-order, hence less affected by outliers than the regression

R2. The regression accuracy, based on a threshold, is even more robust.

5.1.3.2 Models comparison

The results shown in Table 5.1 and Figure 5.2 report the tested ML (SVM and

MLP) and DL (TEMPONet) algorithms along with the LSTM of [121], used as a base-

line. In particular, Figure 5.2 depicts the search of the optimal size for the regression

TEMPONet, varying the channels of Block III over the values 32, 48, 64, 96, 128, 196

(as explained in 5.1.2.2).

Table 5.1, shows that conventional ML frameworks can not match the state-of-the-

art accuracy: the SVM reaches 7.28◦ (i.e., +0.24◦ compared to SoA), while the MLP

obtains an MAE of 7.14◦ (i.e., +0.10◦ compared to SoA). Moreover, the SVM has two

further limitations: (i) trying to improve the SVM’s accuracy by increasing the training

set size proved unfeasible due to diverging training time; (ii) even with the tuned C’s,

which regulate the bias-variance tradeoff per-DoA, the SVM incorporates on average

98.3% of the training examples as support vectors (16-dimensional), which amounts

to 1.15 MB of memory, which is demanding for embedded devices with strict memory

constraints. Note that the latter problem is an inherent methodological limitation of

SVM, whose size can not be fixed a priori before training.

TCNs are the only model which proved capable of outperforming the SoA MAE.

All reported TEMPONet’s results refer to networks quantized to 8 bit format, which

reduces the memory footprint by 4× compared to fp32. As can be seen from Figure 5.2,

the smallest and largest TEMPONet show higher errors, indicating that they produce

Regression: sEMG-based Estimation of Hand Kinematics and Force 96

underfitting and overfitting, respectively, thus identifying the best bias-variance tradeoff

in the in-between interval {64, 96, 128}. When Convolutional Block III has 64, 96, or

128 channels, TEMPONet’s regression is equally accurate. Remarkably, the baseline

is surpassed even when operating at a lower precision. Table 5.1, reports the MAE

and regression-accuracy of the TEMPONet-64 against the LSTM of [121] and the SVM

and MLP implemented in this contribution. In particular, with 64-channel Block III, the

TEMPONet has an elbow in the curves regarding model size and MAC, thus representing

the best MAE-vs-deployment tradeoff. This 64-channel TEMPONet has a memory

footprint of just 70.9 kB and requires the computation of 3.16 MMACs, which represent

a memory reduction of 6.5× and a computation reduction of 5.3× compared to the

original TEMPONet proposed in (4.2) [3].

Figure 5.3, showcases an example of the regression output provided by this network.

In particular, it is possible to observe that the output is prompt and accurate for both

narrow and wide movements. Typical errors fall into two main categories. The first kind

of error is an offset, stationary during each movement; since the output is stationary

as well, this constant difference is not expected to affect the user’s perceived accuracy;

if perceived, offsets can be easily compensated via session-specific recalibration. The

second kind of error is represented by fast erratic segments, which could be smoothed

out by strengthening the EMA postprocessing; the optimal amount of EMA smoothing

was optimized as explained in 5.1.2.3, to tune the smoothing-delay tradeoff best for the

MAE; the average decay factor obtained was αEMA = 0.862, with a standard deviation

of 0.044 across subjects and DoA.

Finally, the experiments implemented the 64-channels TEMPONet on the commer-

cial microcontroller GAP8 [34] to measure latency and energy cost per inference. For de-

ployment, the setup used the open-source tool DORY (Deployment ORiented to memorY

(2.3.2) [41], [42], [78]), with an extension to the backend to support dilated convolutions.

Computation latency and energy consumption were measured experimentally, running

inferences on GAP8. The energy consumption Eexp was determined by experimentally

measuring the current consumed, iexp(t), then integrating over the computation time

interval:

Eexp = VDD

∫ Texp

0
iexp(t)dt, (5.4)

where VDD is the supply voltage and [0, Texp] is the latency time interval required for

the inference, measured experimentally. When running at VDD = 1 V, fCLK = 100 MHz

(the most energy-efficient configuration), GAP8 has a power consumption of 51.0 mW.

This configuration yields a latency of just 4.76 ms per inference, with an energy cost

of just 0.243 mJ per inference. These values demonstrate that the selected 64-channel

TEMPONet can fit the strict constraints of resource-limited controllers and real-time

Regression: sEMG-based Estimation of Hand Kinematics and Force 97

Table 5.1: Regression quality of the explored models, compared to the SoA of the
NinaPro DB8.

Model Format MAE 10◦-accuracy 15◦-accuracy

SVM fp32 7.28◦ 0.795 0.883
MLP fp32 7.14◦ 0.799 0.889

LSTM [121] fp32 7.04◦ n.a.1 n.a.1

TEMPONet2 int8 6.89◦ 0.814 0.900
1The Correctness Score (CS) of [121] is accuracy, but is somewhat cherry-picked since

per-joint tolerances are fixed as percentiles after dynamic range clipping.
2Best one selected: Block III with 64 channels.

0 100 200 300 400 500 600
Model size (kB)

6.6

6.8

7.0

7.2

7.4

M
AE

 (d
eg

re
es

)

32

48

64 96 128

192

Regression error vs. size

0 2 4 6 8 10 12 14
Computation (MMACs)

32

48

64 96 128

192

Regression error vs. computation

0 5 10 15 20 25
Latency (ms)

32

48

64 96 128

192

Regression error vs. latency
MAE of SVM (fp32)
MAE of MLP (fp32)
MAE of LSTM (fp32)
(baseline by
Koch et al., 2020)
TEMPONet (int8),
indicating
Block III channels

Figure 5.2: Deployment metrics of the novel optimized TEMPONet on GAP8 [34],
as a function of the number of channels of Convolutional Block III.

Figure 5.3: Example of the regression produced by the novel optimized TEMPONet:
test session of Subject 1, DoA angle 5; sEMG signal from sensor 1 shown for reference.

operation. Regarding latency, the consensus on real-time requirements for artificial

hand control is 300 ms [103]. Accounting for the 128 ms input window length, plus the

4.76 ms computation latency, the application matches real-time requirements with a wide

margin, proving capable of providing a fluid control without a relevant perceived delay.

Regression: sEMG-based Estimation of Hand Kinematics and Force 98

5.2 Event-based Low-Power and Low-Latency Regression

Method for Hand Kinematics from Surface EMG

5.2.1 Overview

Finding an effective mapping from sEMG to control commands (2.4) is not a trivial

task, and SoA approaches tackle the problem by resorting to ML or DL [106] where

sEMG signals are mapped to a given set of gestures (classification) [22] or to continuous

degrees of freedom (regression) [24]. As opposed to conventional pattern recognition,

deep neural networks can learn signal features at training time, often outperforming

the handcrafted features needed for non-deep ML; the learned information extraction is

potentially optimal since data-driven, but not easily explainable.

Current research aims for a more natural and intuitive control, hence the need to

move from a limited set of predefined positions to a continuous control that can be

performed with a regression-based approach (2.4.3). So far, regression approaches to

sEMG represent a minority, whereas the vast majority of the literature is concerned

with classification, focusing mostly on DNNs to counteract the inter-session variability

of sEMG and make classification robust in the long run through regularization [22] or

adaptation [194]. In contrast, regression works are still scarce in the literature compared

to robust classification efforts. Most existing proposed solutions for sEMG regression

produce DL models that yield a low regression error [195], [196] but do not take fully into

account the memory, latency, and energy constraints of resource-constrained embedded

computational devices. Some proposed deep networks require processors designed ex-

plicitly for linear algebra [24] to be executed with ultra-low power consumption (tens of

milliwatts power envelope), a regime suitable for long-term wearable devices.

In the veins of exploring solutions for ultra-low-power execution of computationally

demanding tasks, Spiking Neural Networks (SNN) are an emerging class of artificial

neural networks specifically designed to process data in the format of spike trains (i.e.,

binary with sparse 1’s, coming as a stream in continuous physical time). Neurons in

an SNN have a state that emulates the biological membrane potential: it is excited at

the reception of events and decays over time; upon crossing a threshold, a neuron fires,

i.e., transmits an event (a spike) to the connected neurons [197]. Neuromorphic proces-

sors, either digital [198], [199] or mixed-signal [200], are an ideal substrate for deploying

SNNs since they are accelerators for the sequential computation of the emulated po-

tential varying in time. Moreover, neuromorphic processors perform event-proportional

computing [198]: since each neuron influences the others only when it fires, events are

sparse spike trains, which cause only sparse updates of the net’s neurons’ states, greatly

Regression: sEMG-based Estimation of Hand Kinematics and Force 99

reducing latency and energy consumption compared to inference in a conventional neural

network that requires to compute the entirety of activation maps.

Integration of sEMG acquisition systems with neuromorphic processors requires con-

verting the digital sEMG raw data into sequences of events, i.e., timestamps associated

with each channel to be used as input spike train for the event-based processing. Exist-

ing works on processing sEMG on event-driven hardware show that separation patterns

can be extracted with SNNs consuming < 1 nJ per spike, amounting to as little as

0.05 mW (hundredths of a milliwatt) of total power [201]. However, these works do not

address regression yet, but implement classification [201]–[203] or provide insight into

the empirical activation patterns and their class-separability [204].

In this section, I present a hybrid method based on event-based EMG encoding, a

bio-inspired feature extraction, combined with regression implemented on a low-power

processor ideal for embedded solutions. The purpose is to explore a goodness-complexity

tradeoff for sEMG regression against the existing literature that focuses on DL mod-

els [24], [193], [195], [196]. My contribution is three-fold:

• I present an event-based encoding strategy for the sEMG that works in streaming,

i.e., consumes inputs one by one, producing a stream of output spike events;

• I tune the encoding scheme on the real sEMG regression dataset NinaPro DB8

(5.1.2.1), achieving a Mean Absolute Error of 8.8 ± 2.3 degrees, comparable with

the SoA DNN, proving that the spike conversion preserves enough information for

a fine task like regression;

• I profile the resource requirements and execution of the setup on a commercial

digital microcontroller, getting 9× smaller memory footprint, 10× shorter latency,

and 13× lower energy consumption per inference compared to the SoA deep net,

proving the method a perfect fit for resource-constrained embedded platforms.

I release open-source the code developed for this research.2

5.2.2 Materials & Methods

5.2.2.1 Encoding surface EMG to events

This contribution performs EMG-to-spike conversion, i.e., encoding of the sEMG

data to an event-based format, which is a simplification of the cochlear method. Cochlear

2https://github.com/pulp-bio/event-based-semg-regression

https://github.com/pulp-bio/event-based-semg-regression

Regression: sEMG-based Estimation of Hand Kinematics and Force 100

100 101 102 103

Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Ga
in

 (d
im

en
sio

nl
es

s)

band 1
band 2
band 3
band 4

Figure 5.4: Gains of the four 4-th order Butterworth filters of the used frequency
bands. They stop at 1 kHz since it is the Nyquist frequency of the NinaPro DB8
dataset.

spike conversion is a signal processing pipeline inspired by the mechanical separation

of acoustic frequencies taking place in the mammalian cochlea prior to transduction

and encoding into neural train spikes. The natural cochlea has stimulated bio-inspired

hardware designers to implement silicon cochleas, i.e., circuitry mimicking the natural

spike conversion, either in digital [205] or analog solutions [206], [207]. The method

consists of two stages: (1) bandpass filtering and (2) Leaky Integrate-and-Fire (LIF)

neurons.

1. Bandpass filtering Each input channel is passed into a bank of bandpass filters.

The filtering used 4 bands covering the whole bandwidth from 0 to fNyquist, based on

4-th order Butterworth filters. The cutoff frequencies are set with exponential spacing

(adjusted to reach zero):

fn =
en − 1

eNbands − 1
· fNyquist n = 0, · · · , Nbands (5.5)

where Nbands = 4 is the number of bands and fn is the n-th cutoff frequency between

adjacent bands. Since NinaPro DB8 has fsample = 2 kHz and thus fNyquist = 1 kHz, the

resulting cutoff frequencies are

f0,1,2,3,4 [Hz] = 0.0, 32.1, 119.2, 356.1, 1000.0 (5.6)

The gains of the 4 4-th order Butterworth filters corresponding to the 4 bands are shown

in Figure 5.4. The NinaPro DB8 dataset is released already filtered with a 4-th order

bandpass Butterworth between 10 Hz and 500 Hz, and no additional cleaning was applied

prior to splitting bands. Passing each input channel in the 4 filters expands the number

of input channels from 16 to 64. Then, all signals are full-wave-rectified.

Regression: sEMG-based Estimation of Hand Kinematics and Force 101

2. LIF neurons The spike conversion in the strict sense takes place in 64 LIF neurons,

each receiving the output of one filter as an injected input current. LIF neurons are a

simplified model of the natural neuron, where the state is described by a membrane

potential Vmem(t) obeying the linear electrical law

dVmem

dt
= −

(Vmem(t)− Eleak)− Iinj(t)
gleak

τ
(5.7)

where τ is the membrane relaxation time, Eleak is the leak reversal potential, Iinj is the

injected current, and gleak is the leak conductance. Each time Vmem crosses a thresh-

old Vthr, the neuron emits a spike event corresponding to the time of crossing tfire.

After each spike the LIF neuron undergoes a refractory time trefr, i.e. a time interval

[tfire, tfire + trefr] during which Vmem is forced to a reset value Vreset, and neither the decay

nor the inhomogeneous driving term Iinj(t)/gleak act:

Vmem(t) ≡ Vreset t ∈ [tfire, tfire + trefr] . (5.8)

The clearer change of variables

x(t) ≜
Vmem(t)− Eleak
Vthr − Eleak

(5.9)

xdrive(t) ≜
1

Vthr − Eleak
· Iinj(t)
gleak

(5.10)

cleans away all electrical quantities (unneeded in a numerical simulation) and yields a

dimensionless state with firing threshold xthr = 1 and law

dx

dt
= −x(t)− xdrive(t)

τ
(5.11)

making it clearer that the injected current plays the role of an external driving term.

Each of the 64 filtered signals is used to drive an independent LIF neuron, which carries

out the spike conversion. The LIF neurons are parameterized based on three values: (i)

the empirical gain gdata to convert the arbitrary-units filtered signals into xdrive(t):

xdrive(t) = gdata · |xbandpassed(t)| ; (5.12)

The grid-search explored 5 values from 1.0 ·105 to 1.0 ·106, approximately exponentially

spaced:

gdata ∈
{

1.0 · 105, 1.7 · 105, 3.0 · 105, 5.5 · 105, 1.0 · 106
}

(5.13)

(ii) the membrane relaxation time, which was set to τ = 10 ms; (iii) the refractory time,

for which the grid-search explored trefr ∈ {1 ms, 2 ms}.

Regression: sEMG-based Estimation of Hand Kinematics and Force 102

Table 5.2: Settings explored to tune the event-based encoding.

Parameter
Explored values

role symbol

gain from data to
dimensionless LIF
driving term xdrive

gdata

1.0 · 105, 1.7 · 105, 3.0 · 105,
5.5 · 105, 1.0 · 106

(dimensionless)

refractory time
of LIF neurons

trefr 1 ms, 2 ms

decay time of post-LIF
causal exponential kernel

τpost

1, 2, 5, 10, 20, 50, 100, 200,
500, 1000, 2000, 5000

milliseconds

To feed spike trains to regression, the setup adopted a rate encoding. The firing rates

were computed based on a causal exponential decay kernel [208] assigning each spike a

weight of exp(−t/τpost) for t ≥ 0 in the future. In contrast with discrete windowing,

this kernel does not require storing a variable buffer of events timestamps but only

one floating-point number. This causal exponential-kernel rate can take values ≥ 0

and < 1/ (1− exp (−trefr/τpost)). The grid-search explored 12 values from 1 ms to 5 s,

approximately exponentially spaced:

τpost [ms] ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500,

1000, 2000, 5000}.
(5.14)

For clarity and compactness, all the explored settings of the event-based encoding

are reported in Table 5.2.

LIF dynamics were implemented in Python 3.8 with the simulator Brian2 [209] v.

2.5 and run with simulation timestep 500µs, found to be a good tradeoff between time

resolution and computation time; since this is equal to the sampling time of the data,

each filtered sample drives its channel’s LIF for exactly 1 simulation step.

5.2.2.2 Regression

The experiments use linear regression to prioritize low memory and computation

requirements over refined accuracy. The setup involved no preprocessing of the ground-

truth DoA signals nor postprocessing of the regression outputs. The R64 → R5 multi-

variate regression problem is parameterized by a 5×64 coefficients matrix plus a 5-valued

intercept; in fp32, this amounts to a memory footprint of 1576 bytes (including input

and output), and a number of operations of 645 FLOP. As suggested by NinaPro DB8’s

Regression: sEMG-based Estimation of Hand Kinematics and Force 103

authors, sessions 1 and 2 (10 repetitions of each gesture) were merged and used for train-

ing and validation, and session 3 (2 repetitions of each gesture) was used for testing.

All experiments were performed separately for each subject, without any multi-subject

training or inter-subject validation. For training, the spike trains were downsampled

with a time step of 100 ms to keep the training computation time < 8 hours for the

whole dataset; at testing, the inference was called on the spike trains every 16 ms, which

is the same time step as the SoA work [24] used as a baseline.

5.2.2.3 Profiling

The proposed processing was profiled based on memory footprint, number of opera-

tions, power consumption, latency per inference, and energy consumption per inference.

To measure the latency per inference and to determine the energy consumption per infer-

ence, the setup implemented the spike conversion (filter banks + LIF neurons) and the

linear inference on an STM32 F401RE microcontroller, which mounts an ARM Cortex-

M4 processor. STM32 F401RE is not designed for event-based sparse data processing

and does not implement event-driven execution. The motivation for profiling on this

platform is to showcase how memory-, time-, and energy-efficient the proposed setup is,

even when run on a commercial general-purpose microcontroller.

It was programmed in C and compiled with optimization -Ofast. Latency was mea-

sured using the debugger of the environment STM32CubeIDE v. 1.11, whose overhead

produces a variability of cycle counts in the order of 10 cycles; at a clock frequency

of 84 MHz, this amounts to an uncertainty of 0.1µs, which is accurate enough for the

purpose. Power consumption was determined based on the value of 146µA/MHz re-

ported in the datasheet3; at clock frequency 84 MHz with a power supply of 3.3 V, this

amounts to a power consumption of 40.5 mW. Energy per inference was determined by

multiplying by experimentally measured latency.

Subsection 5.2.3 shows that the pipeline can run in streaming, i.e., consuming one

sEMG sample per channel at a time, fitting 10 update steps for each of the 64 LIF

neurons within a latency of 500µs, which is the sampling rate of the NinaPro DB8

dataset. Porting to actual event-driven neuromorphic devices (either digital [198] or

mixed-signal [200]) will constitute a future work.

3https://www.st.com/en/microcontrollers-microprocessors/stm32f401re

https://www.st.com/en/microcontrollers-microprocessors/stm32f401re

Regression: sEMG-based Estimation of Hand Kinematics and Force 104

5.2.3 Experimental Results

5.2.3.1 Evaluation metrics

The regression is evaluated using the Mean Absolute Error (MAE), measured in

degrees and defined as

MAE =
1

NinferNDoA

Ninfer∑
i=1

∥ŷi − yi∥1 (5.15)

where yi, ŷi ∈ R5 are the multivariate ground truth and estimation, measured in degrees,

corresponding to the i-th inference, respectively, ∥·∥1 is the L1-norm, NDoA = 5 is the

number of DoAs, and Ninfer is the total number of inferences in each subject’s Session

3, obtained by calling one inference every 16 ms (as explained in 5.2.2.2). The MAE

is a reliable metric of the end-to-end control goodness because it has the same scale

as the target joint angles; moreover, MAE is a first-order statistic, thus more robust

against outliers compared to (R)MSE or the multivariate coefficient of determination

R2, which are quadratic. All MAEs are averaged over time (hence over movement

types and repetitions) and over DoAs, as expressed by Equation 5.15; and over all the

12 subjects; this allows comparison with [24]. The processing pipeline is profiled by

determining memory footprint, number of operations, latency per inference (in cycles

and milliseconds), and energy per inference, as explained in 5.2.2.3.

5.2.3.2 Regression accuracy

The regression results are reported in Table 5.3, which displays the optimal decay

time τbestpost for the causal exponential kernel exp(−t/τpost) and the corresponding MAE,

obtained for the explored values of the data gain gdata and the LIF refractory time trefr,

as detailed in 5.2.2.1. These results provide insights both into the best settings and

general trends.

Focusing on the optimal settings gbestdata = 3.0 · 105 and trefr equal to 1 ms or 2 ms,

Figure 5.5 shows the curve for the search on τpost, which identified the optimal value of

the causal exponential kernel length, i.e., τbestpost = 500 ms. The curve is convex because a

too-short (respectively, too-long) decay time of the exponential kernels weighs too much

the recent (resp., old) spikes, i.e. computes the rate at a timescale that does not match

the actual timescale of the hand’s kinematics. The best MAE of 8.84 ± 2.26 degrees is

consistent within 1 standard deviation with the SoA value of the TCN in [24], which

is 6.89± 2.08 degrees. The TCN’s MAE standard deviation is not reported in the SoA

paper [24] and was determined by reproducing the setup of [24]. Compatibility within

Regression: sEMG-based Estimation of Hand Kinematics and Force 105

1 standard deviation suggests that the setup yields a regression quality as good as the

SoA from a practical point of view. The MAE standard deviations in the range from

2.0 degrees to 2.6 degrees are an empirical measure of the general, natural variability in

angular regression error across DoAs and subjects; in contrast, the literature reporting

standard deviations of regression accuracy reports only the range [120] or the standard

deviation [193] of the determination coefficient R2, which is dimensionless and standard-

ized by DoA, hence not informative about the physical scale of the error variability.

Regarding the general trends outside the best settings, it can be seen that the choice

of the refractory time has little impact compared to the choice of data gain since the

former always produces differences in MAE of less than 0.1 standard deviations, and

the range of MAEs obtained is mainly due to the data gain setting. Another strong

general trend is the consensus about τbestpost = 500 ms since even the grid-adjacent values

of 200 ms or 1000 ms never turn out to be optimal; this consensus is interpreted as a

general estimation of the characteristic time scale of the variation of the kinematics in

the NinaPro DB8 data.

It is worth remarking that τpost by no means involves a delay in computation due

to a wait. The decay due to the causal exponential kernel is applied recursively at every

update of the firing rate: at each simulation step, the rate is updated by multiplying it by

exp (−∆tsim/τpost), where ∆tsim is the simulation timestep, then incrementing by +1 if

the corresponding LIF neuron has fired at the current simulation step. This sequential

update is performed at each step, requiring a lightweight computation, regardless of

the numerical value of τpost. In detail, since exp (−∆tsim/τpost) is constant and is pre-

computed once for all, updating the rate r as r ← r · exp (−∆tsim/τpost) + 1 [if spike]

only requires 1 multiplication, 1 condition test, and (if test if positive) 1 addition per

neuron per simulation step. A long τpost, such as τbestpost = 500 ms, simply means that the

relative decrease per simulation timestep is small.

5.2.3.3 Profiling

The profiling results on the STM32 F401RE commercial microcontroller are reported

in Table 5.4. Compared with the TCN of [24], the proposed regression setup has 9.8×
smaller memory footprint, 10.6× shorter latency, and 13.3× lower energy consumption

per inference. Thus, the event-based processing proposed in this work achieves an accu-

racy comparable to the SoA [24] while fitting in a much more limited resource budget.

The memory saving is due to the fact that the application does not buffer temporal

data, always consuming data in streaming except for the filters’ states of the initial

filtering stage. In particular, it is noteworthy that the latency of ≲ 450µs per inference

Regression: sEMG-based Estimation of Hand Kinematics and Force 106

Table 5.3: Best decay time τbestpost of the causal exponential kernel and regression error
obtained for each explored combination of data gain gdata and trefr (details in 5.2.2.1).
Best results in bold.

SETTINGS RESULTS

gain
(dimensionless)

refractory
time (ms)

best decay
of kernel
τbestpost (ms)

MAE
(degrees)

1.0 · 105
1.0 500 9.47± 2.57
2.0 500 9.38± 2.52

1.7 · 105
1.0 500 9.04± 2.44
2.0 500 8.95± 2.38

3.0 · 105
1.0 500 8.84± 2.28
2.0 500 8.84± 2.26

5.5 · 105
1.0 500 9.02± 2.36
2.0 500 9.06± 2.33

1.0 · 106
1.0 500 9.39± 2.53
2.0 500 9.58± 2.62

10 3 10 2 10 1 100 101

Decay time of causal exponential kernel (s)
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
AE

 (d
eg

re
es

)

average ± std
average of TCN by (Zanghieri et al., 2021)
std of TCN, reproduced as per (Zanghieri et al., 2021)

Figure 5.5: Tuning curve of the decay time τbestpost of the causal exponential kernel, for
the optimal settings data gain gdata = 3.0 · 105 and refractory time trefr = 2 ms.

is shorter than the sampling time of the NinaPro DB8 dataset (namely, < 500µs) and

of most sEMG applications. Thus, the method meets the real-time constraints of an

sEMG-based gesture recognition device.

Regression: sEMG-based Estimation of Hand Kinematics and Force 107

T
a
b
le

5
.4
:

P
ro

fi
li

n
g

of
th

e
p

ro
p

os
ed

ev
en

t-
b

a
se

d
en

co
d

in
g

a
n

d
re

g
re

ss
io

n
p

ro
ce

ss
in

g
,

co
m

p
a
re

d
w

it
h

th
e

S
o
A

T
C

N
se

tu
p

.

P
la
tf
o
rm

M
e
m
o
ry

(k
B
)

O
p
e
ra

ti
o
n
s

L
a
te
n
c
y

P
o
w
e
r

(m
W

)
E
n
e
rg

y
p
e
r

in
fe
re

n
c
e
(µ

J
)

M
A
E

(d
e
g
re

e
s)

µ
±

σ
c
y
c
le
s
(k

)
ti
m
e
(µ

s)

T
C

N
of

[2
4]

G
A

P
8
a

[3
3]

70
.9

0
6.

32
·1

0
6

in
i
n
t
3
2
b

4
7
6

4
7
6
0

5
1
.0

2
4
3
.0

6
.8

9
±

2
.0

8c

T
h

is
w

or
k

S
T

M
32

F
40

1R
E

7.
19

7.
07
·1

0
3

in
f
p
3
2

3
7
.6

9
±

0
.0

2
4
4
8
.6
±

0
.2

4
0
.5

1
8
.2

8
.8

4
±

2
.2

6

a
h
t
t
p
s
:
/
/
g
r
e
e
n
w
a
v
e
s
-
t
e
c
h
n
o
l
o
g
i
e
s
.
c
o
m
/
g
a
p
8
_
m
c
u
_
a
i
/

b
8-

b
it

m
o
d

el
s

u
se

8-
b

it
w

ei
gh

ts
an

d
m

ap
s,

b
u

t
la

ye
rs

ru
n

in
i
n
t
3
2

a
n

d
o
u

tp
u

ts
a
re

re
q
u

a
n
ti

ze
d

to
u
i
n
t
8

a
ft

er
a
ct

iv
a
ti

o
n

.
c

T
h

e
T

C
N

’s
M

A
E

st
an

d
ar

d
d

ev
ia

ti
on

is
n

ot
re

p
or

te
d

in
[2

4
],

so
it

w
a
s

d
et

er
m

in
ed

b
y

re
p

ro
d

u
ci

n
g

th
e

se
tu

p
o
f

th
e

o
ri

g
in

a
l

w
o
rk

.

https://greenwaves-technologies.com/gap8_mcu_ai/

Regression: sEMG-based Estimation of Hand Kinematics and Force 108

parallelism

shortens

latency

Real-time embedded

force estimation

• accurate & all-fingers

• robust cross-day

High-Density

sEMG
Spike trains

parallel

ultra-low

power MCU

LIF

Neurons

𝐝𝒙

𝐝𝒕
=
𝒙𝐝𝐫𝐢𝐯𝐞 − 𝒙

𝝉

deployment of selected

LIFs’ dynamics and

fitted inference

heuristic feature selection

reduces computation

workload

fit of

linear

readout

Figure 5.6: Global scheme of the work of the present section.

5.3 Event-based Estimation of Hand Forces from High-

Density Surface EMG on a Parallel Ultra-Low-Power

Microcontroller

5.3.1 Overview

This section expands the results of the previous one (5.2), presenting a lean, bio-

inspired strategy (Figure 5.6) for an event-based encoding of the sEMG for force esti-

mation, implemented and validated on an ultra-low-power microcontroller suitable for

embedded control systems. The approach is motivated by the long-term research in-

terest in validating the accuracy and profiling the execution of event-based techniques

for future implementation onto event-based computing platforms as an alternative to

the dominant DL models relying on matrix multiplication on temporal data buffers [24],

[106]. In contrast, event-based computing promises reduced computation latency and

energy consumption [198]–[200].

This contribution presents a technique for encoding the High-Density sEMG (HD-

sEMG) signal into an event format that successfully preserves the information content

required for the multi-finger force estimation regression task. The contribution is three-

fold:

• I present an event-based method that processes the HD-sEMG samples one by one

in streaming, updating its state and generating spike trains;

Regression: sEMG-based Estimation of Hand Kinematics and Force 109

• I tune the parameters of the method on the real HD-sEMG regression dataset

HYSER, obtaining a Mean Absolute Error (MAE) of (8.42± 2.80)% of the Maxi-

mum Voluntary Contraction (MVC) in a multi-day, multi-finger scenario, on a par

with the literature that addresses easier settings;

• I deploy and profile the setup on a parallel ultra-low power MCU, getting a power

consumption ≤ 23.1 mW, an energy draw ≤ 6.37µJ per sample (2.8× to 11× more

energy-efficient than the reference SoA single-core baseline [25], and a latency

≤ 280µs per sample, shorter than HYSER’s HD-sEMG sampling period, thus

compatible with real-time processing.

This research is an extension of the previous one (5.2) [25] and expands its heuristic

findings as outlined in Table 5.5; namely, here I show that the event-based encoding

method remains accurate and versatile if ported from kinematics regression based on

sparse sEMG to force estimation based on HD-sEMG, always within strict latency and

resource limits. I released open-source the code developed for this research.4

5.3.2 Materials & Methods

5.3.2.1 HYSER dataset

This contribution targets the dataset High-densitY Surface Electromyogram Record-

ings (HYSER)5 [210], an open-access HD-sEMG dataset realized for research on hand

gesture recognition and force estimation. The background on sEMG for ML/DL-driven

HMIs is provided in Section 2.4. The dataset was collected from 20 healthy participants,

each undergoing two sessions at a distance of 3 to 25 days (8.5 ± 6.7 days on average).

The HD-sEMG data were acquired with four 8 × 8 HD-sEMG arrays (256 channels in

total) placed two on each side of the forearm on the extensor and flexor muscles, using an

OT Bioelettronica Quattrocento system and sampling at 2048 samples/s. Force signals

were acquired during isometric contractions, with a sensor-amplifier pair for each finger,

using Huatran SAS sensors and Huatran HSGA amplifiers, sampling at 100 samples/s.

The HYSER dataset is composed of 5 sub-datasets:

1 PR: pattern recognition on 34 hand gestures;

2 MVC: trials for determining the MVC of every finger’s flexion and extension;

3 1-DoF: single-finger contractions, for 1-Degree of Freedom (DoF) force estimation;

4https://github.com/pulp-bio/hdsemg-force-regression
5https://www.physionet.org/content/hd-semg/1.0.0/

https://github.com/pulp-bio/hdsemg-force-regression
https://www.physionet.org/content/hd-semg/1.0.0/

Regression: sEMG-based Estimation of Hand Kinematics and Force 110

T
a
b
le

5
.5
:

O
u

tl
in

e
of

th
e

p
re

se
n
t

w
or

k
as

an
ex

te
n

si
o
n

o
f

th
e

p
re

v
io

u
s

co
n
tr

ib
u

ti
o
n

(5
.2

)
[2

5
].

F
o
r

a
fa

ir
co

m
p

a
ri

so
n

,
th

is
w

o
rk

’s
p

ro
fi

li
n

g
sh

ow
n

h
er

e
re

fe
rs

to
64

L
ea

k
y

In
te

gr
at

e-
&

-F
ir

e
n

eu
ro

n
s

as
5
.2

[2
5
];

th
e

co
m

p
le

te
p

ro
fi

li
n

g
re

su
lt

s
a
re

ex
p

o
se

d
in

5
.3

.3
.3

.

W
O
R
K

R
e
g
re

ss
io
n

ta
rg

e
t

A
p
p
ro

a
ch

sE
M

G
ty

p
e
:

d
a
ta

se
t

S
o
A

b
a
se
li
n
e

M
C
U
:

p
ro

c
e
ss
o
r(
s)

R
e
su

lt
s

M
A
E

(a
v
e
ra

g
e
±

st
d
)

p
ro

fi
li
n
g

Z
a
n
g
h
ie
ri

e
t
a
l.

[2
5
]

(e
x
te
n
d
e
d

h
e
re

)

k
in

em
at

ic
s:

jo
in

t
an

gl
es

e
v
e
n
t-
b
a
se
d

e
n
c
o
d
in
g

sp
a
rs

e
sE

M
G

:
N

in
a
P

ro
D

B
8

[2
4
]

S
T

M
3
2

F
4
0
1
:

A
R

M
C

o
rt

ex
-M

4
F

(8
.8

4
±

2.
2
8
)

d
eg

re
es

la
te

n
cy

:
4
4
8
µ

s
en

er
g
y
:

1
8
.2
µ

J

T
h
is

w
o
rk

d
y
n

am
ic

s:
fo

rc
es

H
D

-s
E

M
G

:
H

Y
S

E
R

R
A
N
D
O
M

[2
1
0
]

[2
1
1
]–

[2
1
3
]

G
W

T
G

A
P

9
:

8
R

IS
C

-V
co

re
s

(8
.4

2
±

2.
8
0
)%

M
V

C
la

te
n

cy
:

6
9
.6
µ

s
en

er
g
y
:

1
.5

5
µ

J

Regression: sEMG-based Estimation of Hand Kinematics and Force 111

4 N-DoF: multi-finger contraction following prescribed combinations and trajectories,

for 5-DoF force estimation in controlled conditions;

5 RANDOM: with multi-finger contractions performed in a fashion defined random task,

i.e., with no prescribed protocol of combinations or trajectories.

Datasets 2 to 5 contain the forces of individual fingers for research on force estimation.

In particular, this contribution focuses on the RANDOM dataset, which consists of 5 trials

per subject, each lasting 25 s, performed with a 5 s inter-trial rest to prevent muscle

fatigue.

Most literature on HYSER focuses on discrete gesture recognition on the PR dataset,

whereas few works to date have addressed continuous force estimation on 1-DoF and

N-DoF. Moreover, the RANDOM dataset is only dealt with in the basic benchmarking of

the first HYSER paper [210]. Table 5.6 reports the SoA works on the HYSER regression

datasets. This work is (i) the first to tackle HYSER’s RANDOM dataset in a multi-day

setting; (ii) the first to deploy and profile the regression algorithm for the HYSER

task on a hardware platform suitable for low-power, low-latency wearable HMIs. Thus,

this work addresses the working conditions closest to reality, where the force ranges

and trajectories are not predefined and can differ from training to test. Moreover, this

contribution presents a regressor that is explicitly designed to be hardware-friendly,

considering the power, energy, and latency constraints of wearable real-time HMIs.

5.3.2.2 Event-based encoding

The pipeline encodes the raw sEMG to events with a power-based approach inspired

by how the mammalian cochlea transduces various frequencies into neural spike trains.

The principle of using a bank of filters combined with neural integration has been a model

for many designers of bio-inspired hardware to implement circuits that imitate the event

encoding happening in nature, either in the digital [205] or analog domain [206], [207].

The method executes the conversion to events by implementing a set of Leaky

Integrate-and-Fire (LIF) neurons, each associated with one of the processed sEMG sig-

nals. The LIF is a very parsimonious model of the biological neuron, characterized by

an inner membrane potential Vmem(t) that follows the electrical law

dVmem

dt
= −

(Vmem − Eleak)− Iinj(t)
gleak

τ
(5.16)

where τ is the membrane relaxation time, Eleak is the constant leak reversal potential,

Iinj is the injected current, and gleak is the constant leak conductance. When Vmem

Regression: sEMG-based Estimation of Hand Kinematics and Force 112

T
a
b
le

5
.6
:

O
ve

rv
ie

w
o
f

th
e

li
te

ra
tu

re
o
f

fo
rc

e
re

g
re

ss
io

n
o
n

th
e

H
Y

S
E

R
d

a
ta

se
ts

.

W
O
R
K

In
te
re

st
A
p
p
ro

a
ch

H
Y
S
E
R

su
b
-d

a
ta

se
t

D
a
ta

sp
li
t

N
u
m
e
ri
c
a
l
re

su
lt
s

(a
v
e
ra

g
e
±

st
d
)

H
W

?

J
ia

n
g

et
al

.
[2

10
]

(2
02

1)
d

at
as

et
p

re
se

n
ta

ti
on

F
IR

ke
rn

el
R
A
N
D
O
M

w
it

h
in

-d
ay

,
le

av
e-

1
-t

ri
a
l-

o
u

t
R

M
S

E
=

(8
.5

7
±

5.
2
7
)%

M
V

C
✗

J
ia

n
g

et
al

.
[2

11
]

(2
02

2)
ch

an
n

el
se

le
ct

io
n

F
IR

k
er

n
el

+
ra

n
d

o
m

m
a
sk

s
N
-
D
o
F

c
ro

ss
-d

a
y

,
le

av
e-

1
-s

u
b

je
ct

-o
u

t
R

M
S

E
=

(8
.6

6
±

0.
9
6
)%

M
V

C
✗

J
ia

n
g

et
al

.
[2

12
]

(2
02

3)

ro
b

u
st

n
es

s
v
s.

n
oi

se
,

p
h
y
si

ol
og

ic
al

ex
p

la
in

ab
il

it
y

d
ee

p
fo

re
st

s
1
-
D
o
F

c
ro

ss
-d

a
y
:

tr
a
in

o
n

d
a
y
1
,

te
st

o
n

d
a
y
2

R
M

S
E

=
(8
.0
±

2.
3
)%

M
V

C
r P

e
a
rs
o
n

=
0.

9
0
0
±

0
.1

0
1

R
2

=
0.

6
3
1
±

0.
1
7
2

✗

W
u

et
al

.
[2

13
]

(2
02

3)
ex

tr
ac

ti
on

of
m

ot
or

u
n

it
s

gC
K

C
B

S
S

+
cu

m
u

la
ti

ve
sp

ik
e

tr
a
in

+
li

n
ea

r
re

g
re

ss
io

n
1
-
D
o
F

n
o

M
L

-s
ty

le
va

li
d

a
ti

o
n

r P
e
a
rs
o
n

=
0.

9
0
8
±

n
.a

.
✗

T
h
is

w
o
rk

ev
en

t-
b

as
ed

M
L

em
b

ed
d

ed
on

p
ar

al
le

l
u

lt
ra

-l
ow

p
ow

er
M

C
U

en
co

d
in

g
a
s

ev
en

ts
+

li
n

ea
r

re
g
re

ss
io

n
R
A
N
D
O
M

c
ro

ss
-d

a
y
:

tr
a
in

o
n

d
a
y
1
,

te
st

o
n

d
a
y
2

M
A

E
=

(8
.4

2
±

2.
8
0
)%

M
V

C
✓

Regression: sEMG-based Estimation of Hand Kinematics and Force 113

surpasses a fixed threshold level Vthr, the LIF creates a spike, which acts as an emitted

event associated with the time of crossing tspike. Then, the LIF is subject to a refractory

time trefr, defined as a segment of time [tspike, tspike + trefr] where the LIF is forced to a

reset value Vreset:

Vmem(t) ≡ Vreset t ∈ [tspike, tspike + trefr] , (5.17)

also pausing the response to the inhomogeneous driving term Iinj(t)/gleak.

The numerical LIF emulation for accuracy-oriented regressions does not need to

account for the electrical nature of the bio-inspired model. This makes it convenient to

change variables to remove the electrical quantities and simplify the notation:

x(t) ≜
Vmem(t)− Eleak
Vthr − Eleak

(5.18)

xdrive(t) ≜
1

Vthr − Eleak
· Iinj(t)
gleak

. (5.19)

The physical sense of this transformation is to refer the membrane voltage to the constant

Eleak, and measure the membrane voltage and Iinj(t)/gleak (dimensionally a tension) as

a fraction of of Vthr − Eleak, which is the dynamic range of the system. This yields a

dimensionless state x(t) with firing threshold xthr = 1 and law

dx

dt
= −x− xdrive

τ
. (5.20)

This form of the law makes it more evident that the injected current plays the role of an

external driving term. The processing encodes the sEMG as events using each channel

to drive an independent LIF unit. The experiments set the relaxation time to τ = 10 ms

and the refractory time to trefr = 2 ms. To create the driving term from the raw sEMG

data, the dataset values sEMG(t) are multiplied by an empirical gain gdata, converting

the arbitrary-units into an xdrive(t):

xdrive(t) = gdata · |sEMG(t)| , (5.21)

experimenting different values of gdata. Since the signals of the HYSER dataset are

available as voltage values, gdata has dimensions V−1.

After each LIF, a post-synaptic potential xpost(t) is simulated, driven by the spikes

generated by the corresponding source LIF. This potential also undergoes relaxation,

with a relaxation time τpost that causes decay toward 0 if no spikes are received. More

formally, xpost obeys the law

dxpost
dt

= −xpost
τpost

+
∑
tspike

δ(t− tspike) (5.22)

Regression: sEMG-based Estimation of Hand Kinematics and Force 114

where δ denotes the Dirac delta and represents the fact that xpost is raised by +1

(dimensionless) increments at each received spike. The relaxation regulated by τpost has

the effect of a causal exponential decay kernel [208], a form of rate encoding. This rate

encoding is equivalent to an event count that, at the present time t, weights every spike

in the past as exp(− (t− tspike) /τpost) ≤ 1. This causal exponential-kernel rate always

takes values in the range

0 ≤ xpost <
1

1− e−trefr/τpost
(5.23)

In the experiments, τpost is set to 250 ms, thus getting xpost values in the range [0, 125.5).

Finally, all LIFs’ xpost values are used as the input regression features for force estima-

tion.

Numerically, the simulations of the LIF neurons can be implemented as discrete

updates of x and xpost:

x← x · e−
∆t
τ + xdrive · (1− e−

∆t
τ) (5.24)

xpost ← xpost · e
− ∆t

τpost + 1 [if spike] (5.25)

where ∆t is the discrete time step of the simulation; Equation 5.24 is skipped during

refractories. A key feature of Equations 5.24) and 5.25) is that they update online, i.e.,

they consume one single sEMG input for each channel at a time, computing xdrive and

then the new xpre and xpost; at the next sampling period, the new sEMG input data

overwrite the old ones. Hence, the size of the input data stored at each sampling period

never exceeds Nch×4 bytes = 256×4 bytes = 1 KiB for float32 data on the Nch = 256-

channel HYSER dataset. In addition, L1-regularization is applied for a data-driven

channel selection, further reducing the size of inputs and computation, as explained

in 5.3.2.3.

Two implementations of the event-based encoding and the inference were developed:

• in Python (v. 3.8), I directly configured the NeuronGroup and Synapses classes

native to the simulator Brian2 [209] v. 2.5;

• in C, for deployment on the MCU, I implemented (5.24) and (5.25) and refractories,

parallelizing as detailed in 5.3.2.4.

The Python and C implementations were used to compute the regression error statistics

in offline experiments on a PC and online experiments on GAP9, respectively. In the

Python offline experiments, the whole output time series of each HYSER RANDOM’s 25-

second recording is available for taking the error statistics. In the online experiments, a

PC sends the HYSER’s samples to the MCU via a serial interface in streaming; the MCU

Regression: sEMG-based Estimation of Hand Kinematics and Force 115

consumes them to update the neurons’ states and the inference; finally, the MCU sends

the inference output back to the PC. The GAP9 MCU repeats the reception-processing-

transmission loop online for each sample of every HYSER RANDOM’s 25-second recording.

On the PC side, a script reads the regression outputs and saves them into an array.

This series is used to check the numerical match of the results of the Python and the C

implementations and to compute the regression error statistics.

5.3.2.3 Regression

Force estimation is tackled with linear regression to ensure reduced memory and

computation requirements, prioritizing the low embedded resource budget. With the

Nch = 256 HD-sEMG channels and the NDoFs = 5 of the HYSER dataset, the force

estimation task is framed as a

x ∈ RNch 7−→ y ∈ RNDoFs (5.26)

multivariate, multi-target regression, parameterized by a W ∈ RNch×NDoF = R5×256

coefficients matrix and an intercept ytrain ∈ RNDoFs = R5 equal to the sample mean

of the training set values. In float32 format, each inference amounts to a memory

footprint of 6184 bytes (including input and output) and 1285 FLOP.

To keep the processing hardware-friendly, the resource budget is reduced by applying

a strong L1 regularization. The target function of the regression is thus

1

Ntrain

Ntrain∑
i

∥ŷi − yi∥22 + α ∥W∥1 (5.27)

where yi, ŷi = Wx ∈ R5 are the multivariate ground truth and estimation, respectively,

corresponding to the i-th inference, Ntrain is the total number of inferences (equivalent

to the training set size, i.e., each HYSER RANDOM Day 1 session), ∥·∥2 is the Euclidean

norm, ∥·∥1 is the L1-norm, and α is the parameter governing the amount of regularization

(notice that it does not get divided by Ntrain). The amount of regularization is tuned

by exploring different values for α.

In addition to countering overfitting, the prerogative of the L1 regularization is to

perform automatic sEMG channel selection. The reason why L1 regularization results

in automatic feature selection is that it induces sparsity since reducing any coefficient

benefits the penalty term equally, regardless of the coefficient’s magnitude; in contrast,

Lp>1-norms privilege reducing the larger coefficients (since the p > 1 exponent makes

their contribution to the norm larger), thus making Lp>1-norms less likely to push

coefficients to 0.

Regression: sEMG-based Estimation of Hand Kinematics and Force 116

The L1-induced data-driven feature selection on the sEMG channels results in fewer

associated LIF units compared to HYSER’s Nch = 256 total sensors. Channel selection

reduces the application’s requirements, namely input data bandwidth, memory footprint,

and computational load. This reduction makes the processing more hardware-friendly

for resource-constrained computation devices such as the MCU targeted in this work

(5.3.2.4). Moreover, this data-driven reduction experimentally determines the number of

channels actually required for an accurate regression. So, in this setup, L1-regularization

is the key for studying the integration of HD-sEMG acquisition setup and embedded

platforms.

As a dataset split on HYSER RANDOM, the Day 1 session was used for training

and the Day 2 session was used for validation; for both sessions, all the 5 trials were

used. Training and test were run separately for every subject without any multi-subject

training or inter-subject validation. Together with the choice of HYSER RANDOM itself,

this dataset split is the most challenging and closest to a real test scenario; no previous

work on HYSER has addressed multi-day inference of 5-finger forces (Table 5.6).

The regression accuracy is determined using the Mean Absolute Error (MAE):

MAE =
1

NinferNDoF

Ninfer∑
i=1

∥ŷi − yi∥1 (5.28)

where Ninfer is the total number of inferences, i.e., the validation set size, and the rest

follows the notation of 5.3.2. The error is measured as a fraction of the MVC, as is

the standard approach [210]–[213]. To rescale forces to the MVC scale, the MVC was

determined for each direction (i.e., flexion or extension) of each finger of each subject

using the data from HYSER MVC following the same heuristic as suggested by the dataset

authors, namely determining the MVC as the average of the 200 strongest values.6

Assessing the control quality via the MAE is convenient because the MAE is first-

order, thus more robust to outliers than quadratic statistics such as the (R)MSE or the

multivariate coefficient of determination R2. The MAE is averaged over time (i.e., over

the 5 trials of each session) and over all 5 finger DoFs, as expressed by (5.28), and over

all 20 participants.

5.3.2.4 Deployment and profiling on a parallel ULP MCU

The numerical model was deployed of the LIF neurons associated with each HD-

sEMG onto the commercial MCU GAP9 (2.2; Figure 4.15), which features a Parallel

6https://www.physionet.org/content/hd-semg/1.0.0/toolbox/function

https://www.physionet.org/content/hd-semg/1.0.0/toolbox/function

Regression: sEMG-based Estimation of Hand Kinematics and Force 117

Ultra-Low Power (PULP) [62], [63] 9-core cluster accelerator based on the RISC-V In-

struction Set Architecture extended with specialized DSP and ML instructions. This

device is a SoA low-power processor that ranked first in latency and energy consumption

on the benchmarks MLPerf Tiny v1.0 [39]. In a potential complete prototype imple-

menting the HD-sEMG-based control policy, the MCU’s role is computation, i.e., the

data processing that consists of updating the LIF neurons’ states and executing the

regression inference. In contrast, the upstream functions of data sampling and trans-

mission are to be performed by other ADC and interface modules that produce the data

and convey them to the MCU.

GAP9 was programmed implementing the LIF update steps in C with paralleliza-

tion. Parallelization comes naturally since all LIFs are independent as to both state

variables and operations, so LIFs were distributed evenly across the cores, with a work-

load difference of 1 LIF at maximum in the experiments where LIFs are not a multiple

of the used cores. A core getting assigned a LIF means that the core will execute all that

LIF’s x and xpost discrete update iteration steps. The implementation parallelizes over

up to 8 cores since GAP9’s cluster’s ninth core, referred to as Master Core or Core 8,

only serves as a cluster controller and manages Direct Memory Access (DMA) memory

transfers.

For profiling, the configuration used the settings corresponding to GAP9’s highest

energy-efficiency, namely Vdd core = 0.65 V and fCLK = 240 MHz. Latency was mea-

sured in cycles by exploiting the performance counter exposed by the API of PMSIS,7

the open-source system layer for GAP9’s operating system. Latency in physical time

was determined as num cycles/fCLK. The power draw was measured experimentally,

using the GAP9’s Evaluation Kit8,9 and a Nordic Semiconductor Power Profiler Kit II

(PPK2).10 The PPK2 measured the current consumption of GAP9’s core, excluding the

peripherals and the off-chip memories. A GPIO was used to synchronize the current

measurement with the code execution. Finally, the energy consumption was determined

as power×latency.

5.3.3 Experimental Results

5.3.3.1 Time-domain behavior

Figure 5.7 displays a representative example of the time-domain behavior of the fin-

ger force estimation provided by the algorithm. The reported results are from HYSER’s

7https://greenwaves-technologies.com/manuals/BUILD/HOME/html/index.html
8https://greenwaves-technologies.com/product/gap9_evk-gap9-evaluation-kit-efused/
9https://greenwaves-technologies.com/product/gap9-resources/

10https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2

https://greenwaves-technologies.com/manuals/BUILD/HOME/html/ index.html
https://greenwaves-technologies.com/product/gap9_evk-gap9-evaluation-kit-efused/
https://greenwaves-technologies.com/product/gap9-resources/
https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2

Regression: sEMG-based Estimation of Hand Kinematics and Force 118

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Fo
rc

e
(M

VC
)

Trial 1

ground truth
regression estimate

Trial 2

Trial 3

Finger 1: Thumb

Trial 4

Trial 5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Fo
rc

e
(M

VC
)

Finger 2: Index

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Fo
rc

e
(M

VC
)

Finger 3: Middle

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Fo
rc

e
(M

VC
)

Finger 4: Ring

0 5 10 15 20 25
Time (s)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Fo
rc

e
(M

VC
)

0 5 10 15 20 25
Time (s)

0 5 10 15 20 25
Time (s)

Finger 5: Little

0 5 10 15 20 25
Time (s)

0 5 10 15 20 25
Time (s)

Figure 5.7: Force estimation results obtained for regression inference on HYSER’s
Subject 1, RANDOM dataset, Day 2 (the one not seen in training), all 5 trials, all 5
fingers.

Subject 1, RANDOM dataset, Day 2 (i.e., the one never seen in training), all 5 trials, all

5 fingers. These data are chosen for display as they are representative of the general

time-domain trends observed in the results.

The reported trials contain many examples of good regression quality, especially

for the thumb, middle, and ring fingers. The rest position is generally well-modeled,

with a good match between the ground truth and the estimation when force is in the

interval ±0.05 MVC. The timing of the falling and rising fronts, corresponding to the

dynamic phases of flexions and extensions, respectively, are also accurate. In contrast,

the estimation errors mainly happen in the central regions of flexions and extensions,

where the estimation often stops before the force reaches its full amplitude; this happens

both in some steady central segments and in some triangular peaks. Interestingly, this

kind of time-domain behavior, with accurate timing in transients and a central offset

error, is the same as observed in the estimation of the hand kinematics (5.1) [24].

Regression: sEMG-based Estimation of Hand Kinematics and Force 119

The displayed results also contain the typical estimation errors obtained with the

algorithm, especially in the index finger trials. A common regressor’s mistake is failing

to recognize negative forces, i.e., finger flexions. This error is one of the most frequent

erratic behaviors in the results. In future work, the trials with poor modeling of con-

tractions can be addressed by adding a flexion-vs-extension(-vs-rest) detector before the

regressor, using the regressor only for estimating the amount of force and the dedicated

detector for recognizing the force’s sign. The little finger’s results are the ones show-

ing the least accurate regression. The reason why this poor modeling does not harm

the overall performance of the method is that the little finger has an MVC, and thus

a force dynamic range, that is on average (0.55 ± 0.07)× compared to the other single

fingers. This means that the little finger contributes to the global dynamics of the hand

forces by approximately one-half compared to the other single fingers, making errors less

impactful from an end-to-end application viewpoint.

It is worth remarking that the regression issues illustrated here are only discussed to

present an overview of the most typical errors from a time-domain point of view. These

behaviors do not compromise the average regression quality. The overall competitiveness

of the method compared to the SoA is shown by the regression error statistics presented

in the next subsection.

5.3.3.2 Regression error

Figure 5.8 shows the regression error obtained evaluating a grid of pairs of gdata and

α, exploring

gdata
[
V−1

]
= 5.0, 10.0, 15.0, 20.0, 25.0, 30.0 (5.29)

α = 10−1, 10−1.5, 10−2. (5.30)

The fits with the mildest regularization α = 0.01 do not yield reliable results: the high

variability of the MAE means a high regression error for a relevant fraction of fingers

or subjects; α = 0.01 proves thus poor methodologically. Pushing regularization to α =

0.032 makes results more stable, improving both the MAE’s average and variance for all

values gdata. Tightening to α = 0.1 further improves both averages and variances for all

the explored gdata yielding the lowest error, i.e. (8.42±2.80)% MVC for gdata = 15.0 V−1.

These results prove that the method can work in a multi-day multi-finger setup in the

absence of fixed force exercises, achieving results in the same range as previous works that

tackled the HYSER dataset in easier settings, namely within-day [210], with predefined

force protocol [211], or single-finger [212] (as summarized in Table 5.6), whereas the

validation is closer to actual non-laboratory scenarios.

Regression: sEMG-based Estimation of Hand Kinematics and Force 120

5.0 V 1 10.0 V 1 15.0 V 1 20.0 V 1 25.0 V 1 30.0 V 1

Experiments grouped by data gain gdata

0.00

0.05

0.10

0.15

0.20

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
VC

)

average ± std, for L1 = 0.010
average ± std, for L1 = 0.032
average ± std, for L1 = 0.100

Figure 5.8: Regression error results. Explored data gains shown as categorical to
allow horizontal x-displacement to de-overlap bars.

In the perspective of pursuing real-world implementations, error variability is method-

ologically as essential as error average to ensure that a method is capable of uniform

performance across different users. The standard deviation is due to the inherent vari-

ability across subjects and sessions, which produce sEMG data with easier or harder

patterns. Tightening the screw of regularization has decreased both the average er-

ror and its dispersion, proving more beneficial than adjusting gdata, which only yielded

plateaus with uniform variance.

As to the feature sparsity obtained from the L1 regularization, the identified optimal

solution α = 0.1, gdata = 15.0 V−1 has a minimum of 42 sEMG channels (out of Nch =

256) with a non-zero coefficient for at least one of the 5 fingers (i.e., maximum sparsity

of 83.6%, for subject 6), and a maximum of 84 (i.e., minimum sparsity 67.2%, for subject

13), with a median of 55 (sparsity 78.5%, for subjects 10 and 18). These results are not

only competitive but also interesting for the insight they provide in the perspective of

integrating HD-sEMG with embedded systems. On the one hand, the heuristic range 42

– 84 is above the typical channel count of a low-density, sparse sEMG setup, confirming

that the use of HD-sEMG is motivated. On the other hand, the resulting 42 – 84 channels

are much fewer than HYSER’s total Nch = 256 (i.e., sparsity is high), informing in a

data-driven way that an accuracy-oriented application does not require channel counts

of the order of 100 or even 200. So, a key insight of the regression results is the empirical

estimate of the useful channel count actually needed for a low regression error.

The amount of L1-induced data-driven sparsity also shapes the conclusions of the on-

device profiling results (5.3.3.3) since the application only needs to implement the LIFs

associated with the selected input channels. For instance, a consequence of sparsity is on

Regression: sEMG-based Estimation of Hand Kinematics and Force 121

input data memory footprint: sparsity lowers the size of input data from the theoretical

maximum of 1 MiB (as explained in 5.3.2.2) to a minimum of 168 bytes, a maximum

of 336 bytes, and a median of 220 bytes across subjects, corresponding to the values

of 42, 84, and 55 channels reported above. These results prove that L1-regularization

contributes to making the method hardware-friendly in the presence of a high number

of input channels, such as the 256 sensors of the HYSER dataset.

5.3.3.3 Profiling

Figures 5.9 and 5.10 show the profiling results regarding speedup and latency on 8

cores, respectively.

The experimental speedup on 8 cores (Figure 5.9) is close to 8× and is better for a

higher number of simulated LIF neurons. The speedup on 8 cores for 64 and 256 LIFs

is 7.45× and 7.81× on a theoretical maximum of 8×. Since all LIFs are independent,

the algorithm is fully parallelizable mathematically. The only sequential part when

executing on HW is the initial DMA transfer of one float32 value per channel from the

MCU’s L2 memory to the cluster’s L1 memory for faster access during the subsequent

computation. This DMA transfer takes < 2 cycles per float32 datum. According to

Amdahl’s law, this overhead yields an ideal speedup of 7.95× on 8 cores, equal for all

the profiled workloads since both the transfer and the computation are proportional to

the number of LIFs. Considering the Amdahl upper bound, the obtained speedup is

97.6% and 98.3% of the Amdahl ideal for 64 and 256 LIFs, respectively.

The latency results (Figure 5.10) show that the implementation satisfies the real-

time constraint since it can update all LIFs within the sampling period

TsEMG HYSER =
1

2048 Hz
≈ 488µs, (5.31)

thus proving able to use every sEMG sample as a driving term for the corresponding

LIF. The highest workload case, i.e., 256 LIFs, has a latency of 276µs. We observe that

workloads between 64 and 96 LIFs have a latency of 69.6µs to 103µs, which is in the

range of 1/7 to 1/5 of the available time. This range of workloads is similar to the range

of lower-sparsity subjects identified in the regression results of the previous subsection

(5.3.3.2), namely 55 (median) to 84 (maximum) LIFs. These results confirm that the

amount of parallelism pursued is required by the use case, motivating the choice of the

parallel platform. Overall, the solution is consistent with the HYSER dataset and with

SoA sEMG applications, characterized by sampling frequencies typically > 1 kHz.

Regression: sEMG-based Estimation of Hand Kinematics and Force 122

0 16 32 64 96 128 192 256
Number of LIF neurons
(dimensionless natural)

0

2

4

6

8

Sp
ee

du
p

@
 8

 c
or

es
(d

im
en

sio
nl

es
s)

Figure 5.9: Speedup on 8 cores obtained for different numbers of executed LIF neu-
rons. The grey region is the unreachable speedup ≥ 8×.

0 16 32 64 96 128 192 256
Number of LIF neurons
(dimensionless natural)

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

(m
s)

HYSER sampling time
1 / 2048Hz 0.49ms
real-time
not real-time
latency @ 1 core
latency @ 8 cores

Figure 5.10: Latency as a function of the number of executed LIF neurons, on 8 cores.

The measured power consumption is 22.3 mW and 23.1 mW for 64 and 256 LIF

neurons respectively, with a respective energy consumption of 1.55µJ and 6.35µJ. In

particular, the energy draw for 64 LIFs is 11.7× lower compared to the 18.2µJ of the

previous work with 64 LIFs deployed on a single-core MCU (STM32 F401, featuring

ARM Cortex-M4F) [25], denoting the improved energy-efficiency of the parallel imple-

mentation.

Chapter 6

Conclusion

This Ph.D. thesis has presented methods and contributions on the topic of energy-

efficient time-series analysis addressed with automated learning ported on resource-

constrained, low-power computing platforms, with solutions based on DL and traditional

non-deep ML. This dissertation has covered different fields in both basic and applied re-

search, ranging from research on the accuracy-efficiency algorithmic tradeoff for biosignal

analysis to tasks inspired by industrial use cases. The unifying approach that embraces

the whole of this research work is the methodology and interest in addressing time-series

ML/DL as a computational task to be executed obeying the resource constraints char-

acteristic of low-power embedded computing platforms. This perspective has allowed

exploiting the energy-efficiency of both single- and multi-core embedded MCUs.

This thesis has spanned the three types of automated learning tasks: binary classi-

fication, multi-class (single-label) classification, and regression. Regarding binary clas-

sification, I presented a proximity sensor for safety around industrial machinery that

is accurate and robust against acoustic noise, and an embedded solution for epilepsy

detection from iEEG data. Both setups rely on a TCN deployed onto an edge MCU,

demonstrating the methodology’s performance and accuracy. As to multi-class (single-

label) classification and regression, the research focused on hand modeling from sEMG

signals. After developing a non-deployed TCN for discrete hand gesture classification,

I advanced the setup by deploying the model onto a multi-core MCU and investigating

heuristic unsupervised adaptation to different arm postures. As to regression, needed

for continuous and more natural control of HMIs, I presented an embedded TCN for

accurate hand kinematics estimation; then, I targeted the modeling of both finger force

and hand kinematics using event-based features, which are computationally cheaper and

are thus amenable for a future porting onto event-driven devices with reduced latency

and energy consumption. The contributions to the topic of sEMG-based hand modeling

are fruitful for progress in intuitive and non-invasive HMIs.

Conclusion 124

It is interesting to highlight that a challenge common to most of the heuristics and

analyses presented in this thesis is the generalization on data coming from conditions

unseen at training time: iEEG from unseen epileptic seizures, sEMG from unseen ac-

quisition sessions, sEMG from unseen arm postures, and HD-sEMG from unseen force

patterns and ranges. It is worth remarking that this success has involved models from

both classical, non-deep Machine Learning and Deep Learning. Generalization was

mainly achieved thanks to two strategies: (i) training on data collected from diverse ac-

quisition settings and (ii) designing lightweight algorithms whose compact size induces

regularization. The latter constraint coincides with the model compactness desired for

embedded deployment and is a general feature of TinyML.

In conclusion, the global contribution of the research work reported in this thesis

is the success of the embedded methodology for time-series ML/DL, which has yielded

SoA accuracy and efficiency, proving this approach effective and promising for several

commercial, clinical, and industrial scenarios.

Bibliography

[1] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep

learning for time series classification: A review,” Data Mining and Knowledge

Discovery, vol. 33, no. 4, pp. 917–963, Mar. 2019. doi: 10.1007/s10618-019-

00619-1.

[2] A. Rajkomar, E. Oren, K. Chen, A. M. Dai, N. Hajaj, M. Hardt, P. J. Liu, X.

Liu, J. Marcus, M. Sun, P. Sundberg, H. Yee, K. Zhang, Y. Zhang, G. Flores,

G. E. Duggan, J. Irvine, Q. Le, K. Litsch, A. Mossin, J. Tansuwan, D. Wang,

J. Wexler, J. Wilson, D. Ludwig, S. L. Volchenboum, K. Chou, M. Pearson, S.

Madabushi, N. H. Shah, A. J. Butte, M. D. Howell, C. Cui, G. S. Corrado, and J.

Dean, “Scalable and accurate deep learning with electronic health records,” NPJ

Digital Medicine, vol. 1, no. 1, May 2018. doi: 10.1038/s41746-018-0029-1.

[3] M. Zanghieri, S. Benatti, A. Burrello, V. J. Kartsch Morinigo, F. Conti, and L.

Benini, “Robust real-time embedded EMG recognition framework using temporal

convolutional networks on a multicore IoT processor,” IEEE Transactions on

Biomedical Circuits and Systems, vol. 14, no. 2, pp. 244–256, 2020. doi: 10.

1109/TBCAS.2019.2959160.

[4] N. D. Truong, A. D. Nguyen, L. Kuhlmann, M. R. Bonyadi, J. Yang, S. Ippolito,

and O. Kavehei, “Convolutional neural networks for seizure prediction using in-

tracranial and scalp electroencephalogram,” Neural Networks, vol. 105, pp. 104–

111, 2018. doi: 10.1016/j.neunet.2018.04.018.

[5] A. Burrello, F. B. Morghet, M. Scherer, S. Benatti, L. Benini, E. Macii, M.

Poncino, and D. J. Pagliari, “Bioformers: Embedding transformers for ultra-low

power sEMG-based gesture recognition,” in 2022 Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2022, pp. 1443–1448. doi: 10.23919/

DATE54114.2022.9774639.

125

https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1038/s41746-018-0029-1
https://doi.org/10.1109/TBCAS.2019.2959160
https://doi.org/10.1109/TBCAS.2019.2959160
https://doi.org/10.1016/j.neunet.2018.04.018
https://doi.org/10.23919/DATE54114.2022.9774639
https://doi.org/10.23919/DATE54114.2022.9774639

Bibliography 126

[6] A. Burrello, D. J. Pagliari, M. Risso, S. Benatti, E. Macii, L. Benini, and M.

Poncino, “Q-PPG: Energy-efficient PPG-based heart rate monitoring on wearable

devices,” IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no. 6,

pp. 1196–1209, 2021. doi: 10.1109/TBCAS.2021.3122017.

[7] H. F. Nweke, Y. W. Teh, M. A. Al-garadi, and U. R. Alo, “Deep learning al-

gorithms for human activity recognition using mobile and wearable sensor net-

works: State of the art and research challenges,” Expert Systems with Applica-

tions, vol. 105, pp. 233–261, 2018. doi: 10.1016/j.eswa.2018.03.056.

[8] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-based

activity recognition: A survey,” Pattern Recognition Letters, vol. 119, pp. 3–11,

2019. doi: 10.1016/j.patrec.2018.02.010.

[9] W. He, P. Motlicek, and J.-M. Odobez, “Deep neural networks for multiple

speaker detection and localization,” in 2018 IEEE International Conference on

Robotics and Automation (ICRA), 2018, pp. 74–79. doi: 10.1109/ICRA.2018.

8461267.

[10] M. Azimi, A. D. Eslamlou, and G. Pekcan, “Data-driven structural health mon-

itoring and damage detection through deep learning: State-of-the-art review,”

Sensors, vol. 20, no. 10, 2020. doi: 10.3390/s20102778.

[11] T. Cerquitelli, D. J. Pagliari, A. Calimera, L. Bottaccioli, E. Patti, A. Acqua-

viva, and M. Poncino, “Manufacturing as a data-driven practice: Methodologies,

technologies, and tools,” Proceedings of the IEEE, vol. 109, no. 4, pp. 399–422,

2021. doi: 10.1109/JPROC.2021.3056006.

[12] C. W. Tan, C. Bergmeir, F. Petitjean, and G. I. Webb, “Time series extrinsic

regression: Predicting numeric values from time series data,” Data Mining and

Knowledge Discovery, vol. 35, pp. 1032–1060, Mar. 2021. doi: 10.1007/s10618-

021-00745-9.

[13] C. W. Tan, C. Bergmeir, F. Petitjean, and G. I. Webb, Monash University, UEA,

UCR time series extrinsic regression archive, 2020. doi: 10.48550/arXiv.2006.

10996.

[14] Z. C. Lipton, J. Berkowitz, and C. Elkan, A critical review of recurrent neural

networks for sequence learning, 2015. doi: 10.48550/arXiv.1506.00019.

[15] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolu-

tional and recurrent networks for sequence modeling,” CoRR, vol. abs/1803.01271,

2018. doi: 10.48550/arXiv.1803.01271.

https://doi.org/10.1109/TBCAS.2021.3122017
https://doi.org/10.1016/j.eswa.2018.03.056
https://doi.org/10.1016/j.patrec.2018.02.010
https://doi.org/10.1109/ICRA.2018.8461267
https://doi.org/10.1109/ICRA.2018.8461267
https://doi.org/10.3390/s20102778
https://doi.org/10.1109/JPROC.2021.3056006
https://doi.org/10.1007/s10618-021-00745-9
https://doi.org/10.1007/s10618-021-00745-9
https://doi.org/10.48550/arXiv.2006.10996
https://doi.org/10.48550/arXiv.2006.10996
https://doi.org/10.48550/arXiv.1506.00019
https://doi.org/10.48550/arXiv.1803.01271

Bibliography 127

[16] A. Burrello, A. Dequino, D. J. Pagliari, F. Conti, M. Zanghieri, E. Macii, L.

Benini, and M. Poncino, “TCN mapping optimization for ultra-low power time-

series edge inference,” in Proceedings of the ACM/IEEE International Symposium

on Low Power Electronics and Design, ser. ISLPED ’21, IEEE Press, 2021. doi:

10.1109/ISLPED52811.2021.9502494.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.

Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural

Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30, Curran Associates,

Inc., 2017. doi: 10.48550/arXiv.1706.03762.

[18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of deep

bidirectional transformers for language understanding, Jun. 2019. doi: 10.18653/

v1/N19-1423.

[19] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A.

Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G.

Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter,

C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,

S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are

few-shot learners,” in Proceedings of the 34th International Conference on Neu-

ral Information Processing Systems, ser. NIPS’20, Red Hook, NY, USA: Curran

Associates Inc., 2020. doi: 10.5555/3495724.3495883.

[20] M. Zanghieri, F. Indirli, A. Latella, G. M. Puglia, F. Tecce, F. Papariello, G.

Urlini, L. Benini, and F. Conti, “An extreme-edge TCN-based low-latency collision-

avoidance safety system for industrial machinery,” IEEE Access, pp. 1–1, 2024.

doi: 10.1109/ACCESS.2024.3357510.

[21] M. Zanghieri, A. Burrello, S. Benatti, K. Schindler, and L. Benini, “Low-latency

detection of epileptic seizures from iEEG with temporal convolutional networks

on a low-power parallel MCU,” in 2021 IEEE Sensors Applications Symposium

(SAS), 2021, pp. 1–6. doi: 10.1109/SAS51076.2021.9530181.

[22] M. Zanghieri, S. Benatti, F. Conti, A. Burrello, and L. Benini, “Temporal vari-

ability analysis in sEMG hand grasp recognition using temporal convolutional

networks,” in 2020 2nd IEEE International Conference on Artificial Intelligence

Circuits and Systems (AICAS), 2020, pp. 228–232. doi: 10.1109/AICAS48895.

2020.9073888.

https://doi.org/10.1109/ISLPED52811.2021.9502494
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.5555/3495724.3495883
https://doi.org/10.1109/ACCESS.2024.3357510
https://doi.org/10.1109/SAS51076.2021.9530181
https://doi.org/10.1109/AICAS48895.2020.9073888
https://doi.org/10.1109/AICAS48895.2020.9073888

Bibliography 128

[23] M. Zanghieri, M. Orlandi, E. Donati, E. Gruppioni, L. Benini, and S. Benatti,

“Online unsupervised arm posture adaptation for sEMG-based gesture recog-

nition on a parallel ultra-low-power microcontroller,” in 2023 IEEE Biomedi-

cal Circuits and Systems Conference (BioCAS), 2023, pp. 1–5. doi: 10.1109/

BioCAS58349.2023.10388902.

[24] M. Zanghieri, S. Benatti, A. Burrello, V. J. Kartsch Morinigo, R. Meattini,

G. Palli, C. Melchiorri, and L. Benini, “sEMG-based regression of hand kine-

matics with temporal convolutional networks on a low-power edge microcon-

troller,” in 2021 IEEE International Conference on Omni-Layer Intelligent Sys-

tems (COINS), 2021, pp. 1–6. doi: 10.1109/COINS51742.2021.9524188.

[25] M. Zanghieri, S. Benatti, L. Benini, and E. Donati, “Event-based low-power and

low-latency regression method for hand kinematics from surface EMG,” in 2023

9th International Workshop on Advances in Sensors and Interfaces (IWASI),

2023, pp. 293–298. doi: 10.1109/IWASI58316.2023.10164372.

[26] M. Zanghieri, P. M. Rapa, M. Orlandi, E. Donati, L. Benini, and S. Benatti,

“Event-based estimation of hand forces from high-density surface EMG on a

parallel ultra-low-power microcontroller,” IEEE Sensors Journal, pp. 1–1, 2024.

doi: 10.1109/JSEN.2024.3359917.

[27] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Temporal convolu-

tional networks for action segmentation and detection,” in 2017 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 1003–1012. doi:

10.1109/CVPR.2017.113.

[28] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N.

Kalchbrenner, A. Senior, and K. Kavukcuoglu, WaveNet: A generative model for

raw audio, 2016. doi: 10.48550/arXiv.1609.03499.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[30] Arm Holdings, Cortex-M7, available at https://developer.arm.com/Processors/

Cortex-M7 (24/01/2024).

[31] STMicroelectronics, STM32H742xI/G STM32H743xI/G, available at https://

www.st.com/resource/en/datasheet/stm32h743vi.pdf (25/01/2024), 2023.

[32] A. Pullini, D. Rossi, I. Loi, G. Tagliavini, and L. Benini, “Mr. Wolf: An energy-

precision scalable parallel ultra low power SoC for IoT edge processing,” IEEE

Journal of Solid-State Circuits, vol. 54, no. 7, pp. 1970–1981, 2019. doi: 10.1109/

JSSC.2019.2912307.

https://doi.org/10.1109/BioCAS58349.2023.10388902
https://doi.org/10.1109/BioCAS58349.2023.10388902
https://doi.org/10.1109/COINS51742.2021.9524188
https://doi.org/10.1109/IWASI58316.2023.10164372
https://doi.org/10.1109/JSEN.2024.3359917
https://doi.org/10.1109/CVPR.2017.113
https://doi.org/10.48550/arXiv.1609.03499
https://doi.org/10.1109/CVPR.2016.90
https://developer.arm.com/Processors/Cortex-M7
https://developer.arm.com/Processors/Cortex-M7
https://www.st.com/resource/en/datasheet/stm32h743vi.pdf
https://www.st.com/resource/en/datasheet/stm32h743vi.pdf
https://doi.org/10.1109/JSSC.2019.2912307
https://doi.org/10.1109/JSSC.2019.2912307

Bibliography 129

[33] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg, and L. Benini,

“GAP-8: A RISC-V SoC for AI at the edge of the IoT,” in 2018 IEEE 29th In-

ternational Conference on Application-specific Systems, Architectures and Pro-

cessors (ASAP), 2018, pp. 1–4. doi: 10.1109/ASAP.2018.8445101.

[34] GreenWaves Technologies, Low-power processors, available at https://greenwaves-

technologies.com/low-power-processor/ (25/01/2024).

[35] A. Burrello, “Optimizing AI at the edge: From network topology design to MCU

deployment,” Ph.D. dissertation, University of Bologna, Bologna, Italy, available

at https://amsdottorato.unibo.it/10542/ (25/01/2024), 2023.

[36] A. Rahimi, I. Loi, M. R. Kakoee, and L. Benini, “A fully-synthesizable single-

cycle interconnection network for shared-L1 processor clusters,” in 2011 Design,

Automation & Test in Europe, 2011, pp. 1–6. doi: 10.1109/DATE.2011.5763085.

[37] D. Rossi, I. Loi, G. Haugou, and L. Benini, “Ultra-low-latency lightweight DMA

for tightly coupled multi-core clusters,” in Proceedings of the 11th ACM Confer-

ence on Computing Frontiers, ser. CF ’14, Association for Computing Machinery,

2014. doi: 10.1145/2597917.2597922.

[38] A. Pullini, D. Rossi, G. Haugou, and L. Benini, “µDMA: An autonomous I/O

subsystem for IoT end-nodes,” in 2017 27th International Symposium on Power

and Timing Modeling, Optimization and Simulation (PATMOS), 2017, pp. 1–8.

doi: 10.1109/PATMOS.2017.8106971.

[39] MLCommons, MLPerf inference: Tiny benchmark suite results, available at https:

//mlcommons.org/benchmarks/inference-tiny/ (25/01/2024).

[40] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and quantiza-

tion for deep neural network acceleration: A survey,” Neurocomputing, vol. 461,

pp. 370–403, 2021. doi: 10.1016/j.neucom.2021.07.045.

[41] A. Burrello, F. Conti, A. Garofalo, D. Rossi, and L. Benini, “DORY: Lightweight

memory hierarchy management for deep NN inference on IoT endnodes: Work-in-

progress,” in Proceedings of the International Conference on Hardware/Software

Codesign and System Synthesis Companion, ser. CODES/ISSS ’19, Association

for Computing Machinery, 2019. doi: 10.1145/3349567.3351726.

[42] A. Burrello, A. Garofalo, N. Bruschi, G. Tagliavini, D. Rossi, and F. Conti,

“DORY: Automatic end-to-end deployment of real-world DNNs on low-cost IoT

MCUs,” IEEE Transactions on Computers, vol. 70, no. 8, pp. 1253–1268, 2021.

doi: 10.1109/TC.2021.3066883.

[43] F. Conti, Technical report: NEMO DNN quantization for deployment model, 2020.

doi: 10.48550/arXiv.2004.05930.

https://doi.org/10.1109/ASAP.2018.8445101
https://greenwaves-technologies.com/low-power-processor/
https://greenwaves-technologies.com/low-power-processor/
https://amsdottorato.unibo.it/10542/
https://doi.org/10.1109/DATE.2011.5763085
https://doi.org/10.1145/2597917.2597922
https://doi.org/10.1109/PATMOS.2017.8106971
https://mlcommons.org/benchmarks/inference-tiny/
https://mlcommons.org/benchmarks/inference-tiny/
https://doi.org/10.1016/j.neucom.2021.07.045
https://doi.org/10.1145/3349567.3351726
https://doi.org/10.1109/TC.2021.3066883
https://doi.org/10.48550/arXiv.2004.05930

Bibliography 130

[44] M. G. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan, and

F. Hussain, “Machine learning at the network edge: A survey,” ACM Comput.

Surv., vol. 54, no. 8, Oct. 2021. doi: 10.1145/3469029.

[45] Google DeepMind, TensorFlow Lite, available at https://www.tensorflow.

org/lite/guide (25/01/2024).

[46] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O.

Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow:

Large-scale machine learning on heterogeneous distributed systems, 2016. doi:

10.48550/arXiv.1603.04467.

[47] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,

D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y.

Yu, and X. Zheng, “TensorFlow: A system for large-scale machine learning,”

in Proceedings of the 12th USENIX Conference on Operating Systems Design

and Implementation, ser. OSDI’16, USENIX Association, 2016, pp. 265–283. doi:

10.48550/arXiv.1605.08695.

[48] Google DeepMind, TensorFlow, available at https://www.tensorflow.org/

(25/01/2024).

[49] Google DeepMind, Keras: The high-level API for TensorFlow, available at https:

//www.tensorflow.org/guide/keras (25/01/2024).

[50] Google DeepMind, TensorFlow Lite for microcontrollers, available at https :

//www.tensorflow.org/lite/microcontrollers (25/01/2024).

[51] Open Neural Network Exchange, available at https://github.com/onnx (25/01/2024).

[52] T. Jin, G.-T. Bercea, T. D. Le, T. Chen, G. Su, H. Imai, Y. Negishi, A. Leu,

K. O’Brien, K. Kawachiya, and A. E. Eichenberger, Compiling ONNX neural

network models using MLIR, 2020. doi: 10.48550/arXiv.2008.08272.

[53] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen, L. Wang, Y.

Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, TVM: An automated end-to-end

optimizing compiler for deep learning, 2018. doi: 10.48550/arXiv.1802.04799.

[54] TVM: Open deep learning compiler stack, available at https://github.com/

apache/tvm/tree/main (25/01/2024).

https://doi.org/10.1145/3469029
https://www.tensorflow.org/lite/guide
https://www.tensorflow.org/lite/guide
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.1605.08695
https://www.tensorflow.org/
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://github.com/onnx
https://doi.org/10.48550/arXiv.2008.08272
https://doi.org/10.48550/arXiv.1802.04799
https://github.com/apache/tvm/tree/main
https://github.com/apache/tvm/tree/main

Bibliography 131

[55] microTVM design document, available at https://tvm.apache.org/docs/

arch/microtvm_design.html (25/01/2024).

[56] STMicroelectronics, X-CUBE-AI documentation, available at https://wiki.

stmicroelectronics.cn/stm32mcu/wiki/AI:X- CUBE- AI_documentation

(25/01/2024).

[57] STMicroelectronics, STM32CubeMX, available at https://www.st.com/content/

st_com/en/stm32cubemx.html (25/01/2024).

[58] Arm Holdings, Common Microcontroller Software Interface Standard (CMSIS),

available at https://www.arm.com/technologies/cmsis (24/01/2024).

[59] C. N. Coelho, A. Kuusela, S. Li, H. Zhuang, J. Ngadiuba, T. K. Aarrestad,

V. Loncar, M. Pierini, A. A. Pol, and S. Summers, “Automatic heterogeneous

quantization of deep neural networks for low-latency inference on the edge for

particle detectors,” Nature Machine Intelligence, vol. 3, no. 8, pp. 675–686, Jun.

2021. doi: 10.1038/s42256-021-00356-5.

[60] L. Geiger and P. Team, “Larq: An open-source library for training binarized

neural networks,” Journal of Open Source Software, vol. 5, no. 45, p. 1746, 2020.

doi: 10.21105/joss.01746.

[61] A. Pappalardo, Xilinx/brevitas, 2023. doi: 10.5281/zenodo.3333552.

[62] PULP Platform, PULP Platform, available at https://www.pulp-platform.

org/ (25/01/2024).

[63] F. Conti, D. Rossi, A. Pullini, I. Loi, and L. Benini, “PULP: A ultra-low power

parallel accelerator for energy-efficient and flexible embedded vision,” J. Signal

Process. Syst., vol. 84, no. 3, pp. 339–354, Sep. 2016. doi: 10.1007/s11265-015-

1070-9.

[64] F. Conti and A. Di Mauro, NEMO (NEural Minimizer for pytOrch), available at

https://github.com/pulp-platform/nemo (25/01/2024).

[65] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.

Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,” in

2017 Conference on Neural Information Processing Systems (NIPS 2017), 2017.

[66] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z.

Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M.

Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,

“PyTorch: An imperative style, high-performance deep learning library,” in Pro-

ceedings of the 33rd International Conference on Neural Information Processing

Systems. Curran Associates Inc., 2019. doi: 10.5555/3454287.3455008.

https://tvm.apache.org/docs/arch/microtvm_design.html
https://tvm.apache.org/docs/arch/microtvm_design.html
https://wiki.stmicroelectronics.cn/stm32mcu/wiki/AI:X-CUBE-AI_documentation
https://wiki.stmicroelectronics.cn/stm32mcu/wiki/AI:X-CUBE-AI_documentation
https://www.st.com/content/st_com/en/stm32cubemx.html
https://www.st.com/content/st_com/en/stm32cubemx.html
https://www.arm.com/technologies/cmsis
https://doi.org/10.1038/s42256-021-00356-5
https://doi.org/10.21105/joss.01746
https://doi.org/10.5281/zenodo.3333552
https://www.pulp-platform.org/
https://www.pulp-platform.org/
https://doi.org/10.1007/s11265-015-1070-9
https://doi.org/10.1007/s11265-015-1070-9
https://github.com/pulp-platform/nemo
https://doi.org/10.5555/3454287.3455008

Bibliography 132

[67] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan, and K.

Gopalakrishnan, PACT: Parameterized clipping activation for quantized neural

networks, 2018. doi: 10.48550/arXiv.1805.06085.

[68] torch.nn.Module, available at https://pytorch.org/docs/stable/generated/

torch.nn.Module.html (25/01/2024).

[69] Automatic Differentiation Package - torch.autograd, available at https://pytorch.

org/docs/stable/autograd.html (25/01/2024).

[70] M. Spallanzani, G. Rutishauser, M. Scherer, P. Wiese, and F. Conti, QuantLib,

available at https://github.com/pulp-platform/quantlib (25/01/2024).

[71] M. Spallanzani, G. Rutishauser, M. Scherer, P. Wiese, and F. Conti, QuantLab,

available at https://github.com/pulp-platform/quantlab (25/01/2024).

[72] M. Spallanzani, G. Rutishauser, M. Scherer, A. Burrello, F. Conti, and L. Benini,

QuantLab: A modular framework for training and deploying mixed-precision NNs,

available at https://cms.tinyml.org/wp- content/uploads/talks2022/

Spallanzani-Matteo-Hardware.pdf (25/01/2024).

[73] Horovod on GPU, available at https://horovod.readthedocs.io/en/stable/

gpus_include.html (25/01/2024).

[74] M. Spallanzani, G. P. Leonardi, and L. Benini, “Training quantised neural net-

works with STE variants: The additive noise annealing algorithm,” in 2022 IEEE

/ CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022,

pp. 470–479. doi: 10.1109/CVPR52688.2022.00056.

[75] P. Busia, “Optimizing neural networks for embedded edge-processing platforms,”

Ph.D. dissertation, University of Cagliari, Cagliari, Italy, available at https:

//iris.unica.it/handle/11584/357302 (25/01/2024), 2023.

[76] T. M. Ingolfsson, U. Chakraborty, X. Wang, S. Beniczky, P. Ducouret, S. Benatti,

P. Ryvlin, A. Cossettini, and L. Benini, “EpiDeNet: An energy-efficient approach

to seizure detection for embedded systems,” in 2023 IEEE Biomedical Circuits

and Systems Conference (BioCAS), 2023, pp. 1–5. doi: 10.1109/BioCAS58349.

2023.10388554.

[77] L. Zanatta, A. Di Mauro, F. Barchi, A. Bartolini, L. Benini, and A. Acquaviva,

“Directly-trained spiking neural networks for deep reinforcement learning: Energy

efficient implementation of event-based obstacle avoidance on a neuromorphic ac-

celerator,” Neurocomputing, vol. 562, p. 126 885, 2023. doi: 10.1016/j.neucom.

2023.126885.

https://doi.org/10.48550/arXiv.1805.06085
https://pytorch.org/docs/stable/generated/torch.nn.Module.html
https://pytorch.org/docs/stable/generated/torch.nn.Module.html
https://pytorch.org/docs/stable/autograd.html
https://pytorch.org/docs/stable/autograd.html
https://github.com/pulp-platform/quantlib
https://github.com/pulp-platform/quantlab
https://cms.tinyml.org/wp-content/uploads/talks2022/Spallanzani-Matteo-Hardware.pdf
https://cms.tinyml.org/wp-content/uploads/talks2022/Spallanzani-Matteo-Hardware.pdf
https://horovod.readthedocs.io/en/stable/gpus_include.html
https://horovod.readthedocs.io/en/stable/gpus_include.html
https://doi.org/10.1109/CVPR52688.2022.00056
https://iris.unica.it/handle/11584/357302
https://iris.unica.it/handle/11584/357302
https://doi.org/10.1109/BioCAS58349.2023.10388554
https://doi.org/10.1109/BioCAS58349.2023.10388554
https://doi.org/10.1016/j.neucom.2023.126885
https://doi.org/10.1016/j.neucom.2023.126885

Bibliography 133

[78] A. Burrello, F. Conti, L. Macan, G. Rutishauer, T. M. Ingolfsson, A. Garofalo,

N. Bruschi, G. Tagliavini, D. Rossi, and L. Benini, DORY: Deployment ORi-

ented to memorY, available at https://github.com/pulp- platform/dory

(25/01/2024).

[79] N. Bruschi, G. Haugou, G. Tagliavini, F. Conti, L. Benini, and D. Rossi, “GV-

SoC: A highly configurable, fast and accurate full-platform simulator for RISC-V

based IoT processors,” in 2021 IEEE 39th International Conference on Computer

Design (ICCD), 2021, pp. 409–416. doi: 10.1109/ICCD53106.2021.00071.

[80] D. Farina and A. Holobar, “Characterization of human motor units from surface

EMG decomposition,” Proceedings of the IEEE, vol. 104, no. 2, pp. 353–373,

2016. doi: 10.1109/JPROC.2015.2498665.

[81] M. J. Cheok, Z. B. Omar, and M. H. Jaward, “A review of hand gesture and sign

language recognition techniques,” International Journal of Machine Learning and

Cybernetics, vol. 10, pp. 131–153, 2019. doi: 10.1007/s13042-017-0705-5.

[82] R. Meattini, S. Benatti, U. Scarcia, D. De Gregorio, L. Benini, and C. Melchiorri,

“An sEMG-based human–robot interface for robotic hands using machine learn-

ing and synergies,” IEEE Transactions on Components, Packaging and Manu-

facturing Technology, vol. 8, no. 7, pp. 1149–1158, 2018. doi: 10.1109/TCPMT.

2018.2799987.

[83] T. S. Saponas, D. S. Tan, D. Morris, J. Turner, and J. A. Landay, “Making

muscle-computer interfaces more practical,” in Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, ser. CHI ’10, Association for

Computing Machinery, 2010, pp. 851–854. doi: 10.1145/1753326.1753451.

[84] L. Guo, Z. Lu, and L. Yao, “Human-machine interaction sensing technology based

on hand gesture recognition: A review,” IEEE Transactions on Human-Machine

Systems, vol. 51, no. 4, pp. 300–309, 2021. doi: 10.1109/THMS.2021.3086003.

[85] T. Starner, J. Weaver, and A. Pentland, “Real-time american sign language recog-

nition using desk and wearable computer based video,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 20, no. 12, pp. 1371–1375, 1998.

doi: 10.1109/34.735811.

[86] T. S. Saponas, D. S. Tan, D. Morris, R. Balakrishnan, J. Turner, and J. A.

Landay, “Enabling always-available input with muscle-computer interfaces,” in

Proceedings of the 22nd Annual ACM Symposium on User Interface Software and

Technology, ser. UIST ’09, Association for Computing Machinery, 2009, pp. 167–

176. doi: 10.1145/1622176.1622208.

[87] Össur, i-Limb Ultra, available at https://www.ossur.com/en-us/prosthetics/

arms/i-limb-ultra (24/01/2024).

https://github.com/pulp-platform/dory
https://doi.org/10.1109/ICCD53106.2021.00071
https://doi.org/10.1109/JPROC.2015.2498665
https://doi.org/10.1007/s13042-017-0705-5
https://doi.org/10.1109/TCPMT.2018.2799987
https://doi.org/10.1109/TCPMT.2018.2799987
https://doi.org/10.1145/1753326.1753451
https://doi.org/10.1109/THMS.2021.3086003
https://doi.org/10.1109/34.735811
https://doi.org/10.1145/1622176.1622208
https://www.ossur.com/en-us/prosthetics/arms/i-limb-ultra
https://www.ossur.com/en-us/prosthetics/arms/i-limb-ultra

Bibliography 134

[88] Ottobock, Myoelectric prosthetics, available at https://www.ottobockus.com/

prosthetics/upper-limb-prosthetics/solution-overview/myoelectric-

prosthetics/ (24/01/2024).

[89] J. Yousefi and A. Hamilton-Wright, “Characterizing EMG data using machine-

learning tools,” Computers in Biology and Medicine, vol. 51, pp. 1–13, 2014. doi:

10.1016/j.compbiomed.2014.04.018.

[90] P. Kaufmann, K. Englehart, and M. Platzner, “Fluctuating EMG signals: Inves-

tigating long-term effects of pattern matching algorithms,” in 2010 Annual In-

ternational Conference of the IEEE Engineering in Medicine and Biology, 2010,

pp. 6357–6360. doi: 10.1109/IEMBS.2010.5627288.

[91] M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A.-G. M. Hager, S. Elsig, G.

Giatsidis, F. Bassetto, and H. Müller, “Electromyography data for non-invasive

naturally-controlled robotic hand prostheses,” Scientific Data, vol. 1, no. 1, Dec.

2014. doi: 10.1038/sdata.2014.53.

[92] B. Milosevic, E. Farella, and S. Benatti, “Exploring arm posture and temporal

variability in myoelectric hand gesture recognition,” in 2018 7th IEEE Interna-

tional Conference on Biomedical Robotics and Biomechatronics (BioRob), 2018,

pp. 1032–1037. doi: 10.1109/BIOROB.2018.8487838.

[93] L. G. Tassinary, J. T. Cacioppo, and E. J. Vanman, “The skeletomotor sys-

tem: Surface electromyography,” in Handbook of Psychophysiology, J. T. Ca-

cioppo, L. G. Tassinary, and G. Berntson, Eds. Cambridge University Press, 2000,

pp. 267–300. doi: 10.1017/cbo9780511546396.012.

[94] C. J. D. Luca, “The use of surface electromyography in biomechanics,” Journal

of Applied Biomechanics, vol. 13, no. 2, pp. 135–163, 1997. doi: 10.1123/jab.

13.2.135.

[95] R. M. Rangayyan, Introduction to Biomedical Signals. 2002. doi: 10 . 1109 /

9780470544204.ch1.

[96] M. Tomasini, S. Benatti, B. Milosevic, E. Farella, and L. Benini, “Power line

interference removal for high-quality continuous biosignal monitoring with low-

power wearable devices,” IEEE Sensors Journal, vol. 16, no. 10, pp. 3887–3895,

2016. doi: 10.1109/JSEN.2016.2536363.

[97] S. Benatti, F. Casamassima, B. Milosevic, E. Farella, P. Schönle, S. Fateh, T.

Burger, Q. Huang, and L. Benini, “A versatile embedded platform for EMG

acquisition and gesture recognition,” IEEE Transactions on Biomedical Circuits

and Systems, vol. 9, no. 5, pp. 620–630, 2015. doi: 10 .1109 /TBCAS . 2015 .

2476555.

https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/myoelectric-prosthetics/
https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/myoelectric-prosthetics/
https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/myoelectric-prosthetics/
https://doi.org/10.1016/j.compbiomed.2014.04.018
https://doi.org/10.1109/IEMBS.2010.5627288
https://doi.org/10.1038/sdata.2014.53
https://doi.org/10.1109/BIOROB.2018.8487838
https://doi.org/10.1017/cbo9780511546396.012
https://doi.org/10.1123/jab.13.2.135
https://doi.org/10.1123/jab.13.2.135
https://doi.org/10.1109/9780470544204.ch1
https://doi.org/10.1109/9780470544204.ch1
https://doi.org/10.1109/JSEN.2016.2536363
https://doi.org/10.1109/TBCAS.2015.2476555
https://doi.org/10.1109/TBCAS.2015.2476555

Bibliography 135

[98] Y. Hu, Y. Wong, W. Wei, Y. Du, M. Kankanhalli, and W. Geng, “A novel

attention-based hybrid CNN-RNN architecture for sEMG-based gesture recog-

nition,” PLOS ONE, vol. 13, pp. 1–18, Oct. 2018. doi: 10.1371/journal.pone.

0206049.

[99] P. Tsinganos., B. Cornelis., J. Cornelis., B. Jansen., and A. Skodras., “Deep learn-

ing in EMG-based gesture recognition,” in Proceedings of the 5th International

Conference on Physiological Computing Systems - PhyCS, INSTICC, SciTePress,

2018, pp. 107–114. doi: 10.5220/0006960201070114.

[100] L. Nieuwoudt and C. Fisher, “Investigation of real-time control of finger move-

ments utilizing surface EMG signals,” IEEE Sensors Journal, vol. 23, no. 18,

pp. 21 989–21 997, 2023. doi: 10.1109/JSEN.2023.3299384.

[101] L. Tong, M. Zhang, H. Ma, C. Wang, and L. Peng, “sEMG-based gesture recog-

nition method for coal mine inspection manipulator using multistream CNN,”

IEEE Sensors Journal, vol. 23, no. 10, pp. 11 082–11 090, 2023. doi: 10.1109/

JSEN.2023.3264646.

[102] O. Kerdjidj, K. Amara, F. Harizi, and H. Boumridja, “Implementing hand gesture

recognition using EMG on the Zynq circuit,” IEEE Sensors Journal, vol. 23, no. 9,

pp. 10 054–10 061, 2023. doi: 10.1109/JSEN.2023.3259150.

[103] B. Hudgins, P. Parker, and R. Scott, “A new strategy for multifunction myo-

electric control,” IEEE Transactions on Biomedical Engineering, vol. 40, no. 1,

pp. 82–94, 1993. doi: 10.1109/10.204774.

[104] K. Englehart and B. Hudgins, “A robust, real-time control scheme for multifunc-

tion myoelectric control,” IEEE Transactions on Biomedical Engineering, vol. 50,

no. 7, pp. 848–854, Jul. 2003. doi: 10.1109/TBME.2003.813539.

[105] C. Castellini, E. Gruppioni, A. Davalli, and G. Sandini, “Fine detection of grasp

force and posture by amputees via surface electromyography,” Journal of Physi-

ology - Paris, vol. 103, no. 3, pp. 255–262, 2009. doi: 10.1016/j.jphysparis.

2009.08.008.

[106] A. Phinyomark and E. Scheme, “EMG pattern recognition in the era of big data

and deep learning,” Big Data and Cognitive Computing, vol. 2, no. 3, 2018. doi:

10.3390/bdcc2030021.

[107] F. Palermo, M. Cognolato, A. Gijsberts, H. Müller, B. Caputo, and M. Atzori,

“Repeatability of grasp recognition for robotic hand prosthesis control based

on sEMG data,” in 2017 International Conference on Rehabilitation Robotics

(ICORR), 2017, pp. 1154–1159. doi: 10.1109/ICORR.2017.8009405.

https://doi.org/10.1371/journal.pone.0206049
https://doi.org/10.1371/journal.pone.0206049
https://doi.org/10.5220/0006960201070114
https://doi.org/10.1109/JSEN.2023.3299384
https://doi.org/10.1109/JSEN.2023.3264646
https://doi.org/10.1109/JSEN.2023.3264646
https://doi.org/10.1109/JSEN.2023.3259150
https://doi.org/10.1109/10.204774
https://doi.org/10.1109/TBME.2003.813539
https://doi.org/10.1016/j.jphysparis.2009.08.008
https://doi.org/10.1016/j.jphysparis.2009.08.008
https://doi.org/10.3390/bdcc2030021
https://doi.org/10.1109/ICORR.2017.8009405

Bibliography 136

[108] S. Benatti, E. Farella, E. Gruppioni, and L. Benini, “Analysis of robust im-

plementation of an EMG pattern recognition based control,” in Proceedings of

the International Joint Conference on Biomedical Engineering Systems and Tech-

nologies - Volume 4, ser. BIOSTEC 2014, SCITEPRESS - Science and Technology

Publications, Lda, 2014, pp. 45–54. doi: 10.5220/0004800300450054.

[109] V. H. Cene, M. Tosin, J. Machado, and A. Balbinot, “Open database for accurate

upper-limb intent detection using electromyography and reliable extreme learning

machines,” Sensors, vol. 19, no. 8, 2019. doi: 10.3390/s19081864.

[110] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[111] K.-H. Park and S.-W. Lee, “Movement intention decoding based on deep learning

for multiuser myoelectric interfaces,” pp. 1–2, 2016. doi: 10.1109/IWW-BCI.

2016.7457459.

[112] P. Tsinganos, B. Cornelis, J. Cornelis, B. Jansen, and A. Skodras, “Improved

gesture recognition based on sEMG signals and TCN,” pp. 1169–1173, 2019. doi:

10.1109/ICASSP.2019.8683239.

[113] J. L. Betthauser, J. T. Krall, R. R. Kaliki, M. S. Fifer, and N. V. Thakor, “Stable

electromyographic sequence prediction during movement transitions using tem-

poral convolutional networks,” pp. 1046–1049, 2019. doi: 10.1109/NER.2019.

8717169.

[114] Y. Du, W. Jin, W. Wei, Y. Hu, and W. Geng, “Surface EMG-based inter-session

gesture recognition enhanced by deep domain adaptation,” Sensors, vol. 17, no. 3,

2017. doi: 10.3390/s17030458.

[115] M. Atzori, M. Cognolato, and H. Müller, “Deep learning with convolutional neural

networks applied to electromyography data: A resource for the classification of

movements for prosthetic hands,” Frontiers in Neurorobotics, vol. 10, 2016. doi:

10.3389/fnbot.2016.00009.

[116] Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou, Revisiting batch normalization for

practical domain adaptation, 2016. doi: 10.48550/arXiv.1603.04779.

[117] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” in Proceedings of the 32nd Interna-

tional Conference on International Conference on Machine Learning - Volume 37,

ser. ICML’15, JMLR.org, 2015, pp. 448–456. doi: 10.5555/3045118.3045167.

[118] W. Wei, Y. Wong, Y. Du, Y. Hu, M. Kankanhalli, and W. Geng, “A multi-stream

convolutional neural network for sEMG-based gesture recognition in muscle-

computer interface,” Pattern Recognition Letters, vol. 119, pp. 131–138, 2019.

doi: 10.1016/j.patrec.2017.12.005.

https://doi.org/10.5220/0004800300450054
https://doi.org/10.3390/s19081864
https://doi.org/10.1109/IWW-BCI.2016.7457459
https://doi.org/10.1109/IWW-BCI.2016.7457459
https://doi.org/10.1109/ICASSP.2019.8683239
https://doi.org/10.1109/NER.2019.8717169
https://doi.org/10.1109/NER.2019.8717169
https://doi.org/10.3390/s17030458
https://doi.org/10.3389/fnbot.2016.00009
https://doi.org/10.48550/arXiv.1603.04779
https://doi.org/10.5555/3045118.3045167
https://doi.org/10.1016/j.patrec.2017.12.005

Bibliography 137

[119] B. Milosevic, S. Benatti, and E. Farella, “Design challenges for wearable EMG

applications,” in Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2017, 2017, pp. 1432–1437. doi: 10.23919/DATE.2017.7927217.

[120] A. Krasoulis, S. Vijayakumar, and K. Nazarpour, “Effect of user practice on pros-

thetic finger control with an intuitive myoelectric decoder,” Frontiers in Neuro-

science, vol. 13, 2019. doi: 10.3389/fnins.2019.00891.

[121] P. Koch, M. Dreier, A. Larsen, T. J. Parbs, M. Maass, H. Phan, and A. Mertins,

“Regression of hand movements from sEMG data with recurrent neural net-

works,” in 2020 42nd Annual International Conference of the IEEE Engineering

in Medicine & Biology Society (EMBC), 2020, pp. 3783–3787. doi: 10.1109/

EMBC44109.2020.9176278.

[122] A. Krasoulis and K. Nazarpour, “Myoelectric digit action decoding with multi-

output, multi-class classification: An offline analysis,” Scientific Reports, vol. 10,

no. 1, Oct. 2020. doi: 10.1038/s41598-020-72574-7.

[123] C. Castellini and P. van der Smagt, “Surface EMG in advanced hand prosthetics,”

Biological Cybernetics, vol. 100, no. 1, pp. 35–47, Nov. 2008. doi: 10.1007/

s00422-008-0278-1.

[124] International Electrotechnical Commission (IEC), IEC 61508-1:2010, Functional

safety of electrical/electronic/programmable electronic safety-related systems -

Part 1: General requirements, available at https://webstore.iec.ch/publication/

5515 (25/01/2024), Edition 2.0, 2010.

[125] A. Shrestha and A. Mahmood, “Review of deep learning algorithms and archi-

tectures,” IEEE Access, vol. 7, pp. 53 040–53 065, 2019. doi: 10.1109/ACCESS.

2019.2912200.

[126] K. Cao, Y. Liu, G. Meng, and Q. Sun, “An overview on edge computing research,”

IEEE Access, vol. 8, pp. 85 714–85 728, 2020. doi: 10 . 1109 / ACCESS . 2020 .

2991734.

[127] F. Wang, M. Zhang, X. Wang, X. Ma, and J. Liu, “Deep learning for edge com-

puting applications: A state-of-the-art survey,” IEEE Access, vol. 8, pp. 58 322–

58 336, 2020. doi: 10.1109/ACCESS.2020.2982411.

[128] L. Dutta and S. Bharali, “TinyML meets IoT: A comprehensive survey,” Internet

of Things, vol. 16, p. 100 461, 2021. doi: 10.1016/j.iot.2021.100461.

[129] P. P. Ray, “A review on TinyML: State-of-the-art and prospects,” Journal of King

Saud University - Computer and Information Sciences, vol. 34, no. 4, pp. 1595–

1623, 2022. doi: 10.1016/j.jksuci.2021.11.019.

https://doi.org/10.23919/DATE.2017.7927217
https://doi.org/10.3389/fnins.2019.00891
https://doi.org/10.1109/EMBC44109.2020.9176278
https://doi.org/10.1109/EMBC44109.2020.9176278
https://doi.org/10.1038/s41598-020-72574-7
https://doi.org/10.1007/s00422-008-0278-1
https://doi.org/10.1007/s00422-008-0278-1
https://webstore.iec.ch/publication/5515
https://webstore.iec.ch/publication/5515
https://doi.org/10.1109/ACCESS.2019.2912200
https://doi.org/10.1109/ACCESS.2019.2912200
https://doi.org/10.1109/ACCESS.2020.2991734
https://doi.org/10.1109/ACCESS.2020.2991734
https://doi.org/10.1109/ACCESS.2020.2982411
https://doi.org/10.1016/j.iot.2021.100461
https://doi.org/10.1016/j.jksuci.2021.11.019

Bibliography 138

[130] Y. Abadade, A. Temouden, H. Bamoumen, N. Benamar, Y. Chtouki, and A. S.

Hafid, “A comprehensive survey on TinyML,” IEEE Access, pp. 1–1, 2023. doi:

10.1109/ACCESS.2023.3294111.

[131] A. Burrello, M. Scherer, M. Zanghieri, F. Conti, and L. Benini, “A microcontroller

is all you need: Enabling transformer execution on low-power IoT endnodes,” in

2021 IEEE International Conference on Omni-Layer Intelligent Systems (COINS),

2021, pp. 1–6. doi: 10.1109/COINS51742.2021.9524173.

[132] R. S. Peres, X. Jia, J. Lee, K. Sun, A. W. Colombo, and J. Barata, “Industrial

artificial intelligence in Industry 4.0 - systematic review, challenges and outlook,”

IEEE Access, vol. 8, pp. 220 121–220 139, 2020. doi: 10.1109/ACCESS.2020.

3042874.

[133] Artificial intelligence for digitizing industry, May 2019. doi: 10.3030/826060.

[134] International Electrotechnical Commission (IEC), IEC 61496-1:2020, Safety of

machinery electro-sensitive protective equipment - Part 1: General requirements

and tests, available at https://webstore.iec.ch/publication/63115 (25/01/2024),

Edition 4.0, 2020.

[135] F. Conti, F. Indirli, A. Latella, F. Papariello, G. M. Puglia, F. Tecce, G. Urlini,

and M. Zanghieri, “AI-powered collision avoidance safety system for industrial

woodworking machinery,” in AI4DI – Applications. River Publishers, 2021. doi:

10.1201/9781003337232-17.

[136] SCM Group, Morbidelli M100/M200. numerical-controlled machining centres,

available at https://www.scmgroup.com/en/scmwood/products/machining-

centres.c874/cnc-machining-centres-for-routing-and-drilling.878/

morbidelli-m100-200.32314 (25/01/2024), 2022.

[137] HOMAG Group, CNC processing center CENTATEQ P-210, available at https:

//www.homag.com/en/product-detail/cnc-processing-center-centateq-

p-210 (25/01/2024), 2023.

[138] Biesse Group, Rover K FT. CNC machining centre, available at https://www.

biesse.com/ww/wood/cnc-work-centres/rover-k-ft (25/01/2024), 2023.

[139] Biesse Group, Rover K Smart. CNC machining centre, available at https://

www.biesse.com/ww/wood/cnc-work-centres/rover-k-smart (25/01/2024),

2023.

[140] Biesse Group, Rover A 12/15/18. CNC machining centre, available at https:

//www.biesse.com/ww/wood/cnc-work-centres/rover-a-1215 (25/01/2024),

2023.

https://doi.org/10.1109/ACCESS.2023.3294111
https://doi.org/10.1109/COINS51742.2021.9524173
https://doi.org/10.1109/ACCESS.2020.3042874
https://doi.org/10.1109/ACCESS.2020.3042874
https://doi.org/10.3030/826060
https://webstore.iec.ch/publication/63115
https://doi.org/10.1201/9781003337232-17
https://www.scmgroup.com/en/scmwood/products/machining-centres.c874/cnc-machining-centres-for-routing-and-drilling.878/morbidelli-m100-200.32314
https://www.scmgroup.com/en/scmwood/products/machining-centres.c874/cnc-machining-centres-for-routing-and-drilling.878/morbidelli-m100-200.32314
https://www.scmgroup.com/en/scmwood/products/machining-centres.c874/cnc-machining-centres-for-routing-and-drilling.878/morbidelli-m100-200.32314
https://www.homag.com/en/product-detail/cnc-processing-center-centateq-p-210
https://www.homag.com/en/product-detail/cnc-processing-center-centateq-p-210
https://www.homag.com/en/product-detail/cnc-processing-center-centateq-p-210
https://www.biesse.com/ww/wood/cnc-work-centres/rover-k-ft
https://www.biesse.com/ww/wood/cnc-work-centres/rover-k-ft
https://www.biesse.com/ww/wood/cnc-work-centres/rover-k-smart
https://www.biesse.com/ww/wood/cnc-work-centres/rover-k-smart
https://www.biesse.com/ww/wood/cnc-work-centres/rover-a-1215
https://www.biesse.com/ww/wood/cnc-work-centres/rover-a-1215

Bibliography 139

[141] International Electrotechnical Commission (IEC), IEC 62046:2018, Safety of ma-

chinery - Application of protective equipment to detect the presence of persons,

available at https://webstore.iec.ch/publication/27263 (25/01/2024),

Edition 1.0, 2018.

[142] SCM Group, Morbidelli X200/X400. CNC nesting machining centres for drilling

and routing, available at https://www.scmgroup.com/products/docs/CDL/

Morbidelli_x200-x400_rev00_mag19_Ing.pdf (25/01/2024), 2019.

[143] Höchsmann, SCM Morbidelli X200, available at https://wtp.hoechsmann.com/

it/lexikon/40505/morbidelli_x200 (25/01/2024).

[144] K. M. Fiest, K. M. Sauro, S. Wiebe, S. B. Patten, C.-S. Kwon, J. Dykeman,

T. Pringsheim, D. L. Lorenzetti, and N. Jetté, “Prevalence and incidence of

epilepsy: A systematic review and meta-analysis of international studies,” Neu-

rology, vol. 88, no. 3, pp. 296–303, 2017. doi: 10.1212/WNL.0000000000003509.

[145] L. Kalilani, X. Sun, B. Pelgrims, M. Noack-Rink, and V. Villanueva, “The epi-

demiology of drug-resistant epilepsy: A systematic review and meta-analysis,”

Epilepsia, vol. 59, no. 12, pp. 2179–2193, doi: 10.1111/epi.14596.

[146] M. Hirsch, D.-M. Altenmüller, and A. Schulze-Bonhage, “Latencies from intracra-

nial seizure onset to ictal tachycardia: A comparison to surface EEG patterns and

other clinical signs,” Epilepsia, vol. 56, no. 10, pp. 1639–1647, doi: 10.1111/epi.

13117.

[147] C. Rummel, E. Abela, R. G. Andrzejak, M. Hauf, C. Pollo, M. Müller, C. Weis-

stanner, R. Wiest, and K. Schindler, “Resected brain tissue, seizure onset zone

and quantitative EEG measures: Towards prediction of post-surgical seizure con-

trol,” PLOS ONE, vol. 10, pp. 1–26, Oct. 2015. doi: 10.1371/journal.pone.

0141023.

[148] B. C. Munsell, C.-Y. Wee, S. S. Keller, B. Weber, C. Elger, L. A. T. da Silva,

T. Nesland, M. Styner, D. Shen, and L. Bonilha, “Evaluation of machine learning

algorithms for treatment outcome prediction in patients with epilepsy based on

structural connectome data,” NeuroImage, vol. 118, pp. 219–230, 2015. doi: 10.

1016/j.neuroimage.2015.06.008.

[149] A. K. Jaiswal and H. Banka, “Local pattern transformation based feature ex-

traction techniques for classification of epileptic EEG signals,” Biomedical Signal

Processing and Control, vol. 34, pp. 81–92, 2017. doi: 10.1016/j.bspc.2017.

01.005.

https://webstore.iec.ch/publication/27263
https://www.scmgroup.com/products/docs/CDL/Morbidelli_x200-x400_rev00_mag19_Ing.pdf
https://www.scmgroup.com/products/docs/CDL/Morbidelli_x200-x400_rev00_mag19_Ing.pdf
https://wtp.hoechsmann.com/it/lexikon/40505/morbidelli_x200
https://wtp.hoechsmann.com/it/lexikon/40505/morbidelli_x200
https://doi.org/10.1212/WNL.0000000000003509
https://doi.org/10.1111/epi.14596
https://doi.org/10.1111/epi.13117
https://doi.org/10.1111/epi.13117
https://doi.org/10.1371/journal.pone.0141023
https://doi.org/10.1371/journal.pone.0141023
https://doi.org/10.1016/j.neuroimage.2015.06.008
https://doi.org/10.1016/j.neuroimage.2015.06.008
https://doi.org/10.1016/j.bspc.2017.01.005
https://doi.org/10.1016/j.bspc.2017.01.005

Bibliography 140

[150] S. N. Baldassano, B. H. Brinkmann, H. Ung, T. Blevins, E. C. Conrad, K. Leyde,

M. J. Cook, A. N. Khambhati, J. B. Wagenaar, G. A. Worrell, and B. Litt,

“Crowdsourcing seizure detection: algorithm development and validation on hu-

man implanted device recordings,” Brain, vol. 140, no. 6, pp. 1680–1691, Apr.

2017. doi: 10.1093/brain/awx098.

[151] Y. Yuan, G. Xun, K. Jia, and A. Zhang, “A multi-view deep learning framework

for EEG seizure detection,” IEEE Journal of Biomedical and Health Informatics,

vol. 23, no. 1, pp. 83–94, 2019. doi: 10.1109/JBHI.2018.2871678.

[152] R. Hussein, H. Palangi, Z. J. Wang, and R. Ward, “Robust detection of epileptic

seizures using deep neural networks,” in 2018 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 2546–2550. doi:

10.1109/ICASSP.2018.8462029.

[153] Y. Nagahama, A. J. Schmitt, D. Nakagawa, A. S. Vesole, J. Kamm, C. K. Kovach,

D. Hasan, M. Granner, B. J. Dlouhy, M. A. Howard, and H. Kawasaki, “Intracra-

nial EEG for seizure focus localization: Evolving techniques, outcomes, complica-

tions, and utility of combining surface and depth electrodes,” Journal of Neuro-

surgery, vol. 130, no. 4, pp. 1180–1192, 2019. doi: 10.3171/2018.1.JNS171808.

[154] A. Burrello, S. Benatti, K. Schindler, L. Benini, and A. Rahimi, “An ensem-

ble of hyperdimensional classifiers: Hardware-friendly short-latency seizure de-

tection with automatic iEEG electrode selection,” IEEE Journal of Biomedical

and Health Informatics, vol. 25, no. 4, pp. 935–946, 2021. doi: 10.1109/JBHI.

2020.3022211.

[155] W. Stacey, M. Le Van Quyen, F. Mormann, and A. Schulze-Bonhage, “What is

the present-day EEG evidence for a preictal state?” Epilepsy Research, vol. 97,

no. 3, pp. 243–251, 2011, Special Issue on Epilepsy Research UK Workshop 2010

on “Preictal Phenomena”. doi: 10.1016/j.eplepsyres.2011.07.012.

[156] A. Bablani, D. R. Edla, D. Tripathi, and R. Cheruku, “Survey on brain-computer

interface: An emerging computational intelligence paradigm,” ACM Comput.

Surv., vol. 52, no. 1, Feb. 2019. doi: 10.1145/3297713.

[157] J. Parvizi and S. Kastner, “Promises and limitations of human intracranial elec-

troencephalography,” Nature neuroscience, vol. 21, no. 4, pp. 474–483, 2018. doi:

10.1038/s41593-018-0108-2.

[158] J. Becedas, “Brain–machine interfaces: Basis and advances,” IEEE Transactions

on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42,

no. 6, pp. 825–836, 2012. doi: 10.1109/TSMCC.2012.2203301.

https://doi.org/10.1093/brain/awx098
https://doi.org/10.1109/JBHI.2018.2871678
https://doi.org/10.1109/ICASSP.2018.8462029
https://doi.org/10.3171/2018.1.JNS171808
https://doi.org/10.1109/JBHI.2020.3022211
https://doi.org/10.1109/JBHI.2020.3022211
https://doi.org/10.1016/j.eplepsyres.2011.07.012
https://doi.org/10.1145/3297713
https://doi.org/10.1038/s41593-018-0108-2
https://doi.org/10.1109/TSMCC.2012.2203301

Bibliography 141

[159] W. A. Ŕıos-Herrera, P. V. Olgúın-Rodŕıguez, J. D. Arzate-Mena, M. Corsi-

Cabrera, J. Escalona, A. Maŕın-Garćıa, J. Ramos-Loyo, A. L. Rivera, D. Rivera-

López, J. F. Zapata-Berruecos, and M. F. Müller, “The influence of EEG ref-

erences on the analysis of spatio-temporal interrelation patterns,” Frontiers in

Neuroscience, vol. 13, 2019. doi: 10.3389/fnins.2019.00941.

[160] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung,

and B. J. Lance, “EEGNet: A compact convolutional neural network for EEG-

based brain–computer interfaces,” Journal of Neural Engineering, vol. 15, no. 5,

p. 056 013, Jul. 2018. doi: 10.1088/1741-2552/aace8c.

[161] N. Waytowich, V. J. Lawhern, J. O. Garcia, J. Cummings, J. Faller, P. Sajda, and

J. M. Vettel, “Compact convolutional neural networks for classification of asyn-

chronous steady-state visual evoked potentials,” Journal of Neural Engineering,

vol. 15, no. 6, p. 066 031, Oct. 2018. doi: 10.1088/1741-2552/aae5d8.

[162] T. Schneider, X. Wang, M. Hersche, L. Cavigelli, and L. Benini, “Q-EEGNet:

An energy-efficient 8-bit quantized parallel EEGNet implementation for edge

motor-imagery brain-machine interfaces,” in 2020 IEEE International Confer-

ence on Smart Computing (SMARTCOMP), 2020, pp. 284–289. doi: 10.1109/

SMARTCOMP50058.2020.00065.

[163] G. M. Schroeder, B. Diehl, F. A. Chowdhury, J. S. Duncan, J. de Tisi, A. J.

Trevelyan, R. Forsyth, A. Jackson, P. N. Taylor, and Y. Wang, “Seizure path-

ways change on circadian and slower timescales in individual patients with focal

epilepsy,” Proceedings of the National Academy of Sciences, vol. 117, no. 20,

pp. 11 048–11 058, 2020. doi: 10.1073/pnas.1922084117.

[164] P. Q. Duy, G. L. Krauss, N. E. Crone, M. Ma, and E. L. Johnson, “Antiepileptic

drug withdrawal and seizure severity in the epilepsy monitoring unit,” Epilepsy

& Behavior, vol. 109, p. 107 128, 2020. doi: 10.1016/j.yebeh.2020.107128.

[165] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting,” Journal

of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, Jan. 2014. doi:

10.5555/2627435.2670313.

[166] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.

Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine

learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–

2830, Nov. 2011. doi: 10.5555/1953048.2078195.

https://doi.org/10.3389/fnins.2019.00941
https://doi.org/10.1088/1741-2552/aace8c
https://doi.org/10.1088/1741-2552/aae5d8
https://doi.org/10.1109/SMARTCOMP50058.2020.00065
https://doi.org/10.1109/SMARTCOMP50058.2020.00065
https://doi.org/10.1073/pnas.1922084117
https://doi.org/10.1016/j.yebeh.2020.107128
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.5555/1953048.2078195

Bibliography 142

[167] M. Atzori, A. Gijsberts, S. Heynen, A.-G. M. Hager, O. Deriaz, P. van der Smagt,

C. Castellini, B. Caputo, and H. Müller, “Building the ninapro database: A re-

source for the biorobotics community,” in 2012 4th IEEE RAS & EMBS Interna-

tional Conference on Biomedical Robotics and Biomechatronics (BioRob), 2012,

pp. 1258–1265. doi: 10.1109/BioRob.2012.6290287.

[168] S. Amsüss, L. P. Paredes, N. Rudigkeit, B. Graimann, M. J. Herrmann, and D.

Farina, “Long term stability of surface EMG pattern classification for prosthetic

control,” in 2013 35th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBC), IEEE, 2013. doi: 10.1109/embc.

2013.6610327.

[169] J. He, D. Zhang, N. Jiang, X. Sheng, D. Farina, and X. Zhu, “User adapta-

tion in long-term, open-loop myoelectric training: Implications for EMG pattern

recognition in prosthesis control,” Journal of Neural Engineering, vol. 12, no. 4,

p. 046 005, Jun. 2015. doi: 10.1088/1741-2560/12/4/046005.

[170] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini, “PULP-NN: Accel-

erating quantized neural networks on parallel ultra-low-power RISC-V proces-

sors,” Philosophical Transactions of the Royal Society A: Mathematical, Physi-

cal and Engineering Sciences, vol. 378, no. 2164, p. 20 190 155, Dec. 2019. doi:

10.1098/rsta.2019.0155.

[171] J. Liu, F. Zhang, and H. H. Huang, “An open and configurable embedded sys-

tem for EMG pattern recognition implementation for artificial arms,” in 2014

36th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society, 2014, pp. 4095–4098. doi: 10.1109/EMBC.2014.6944524.

[172] X. Zhang, H. Huang, and Q. Yang, “Real-time implementation of a self-recovery

EMG pattern recognition interface for artificial arms,” in 2013 35th Annual In-

ternational Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC), 2013, pp. 5926–5929. doi: 10.1109/EMBC.2013.6610901.

[173] Texas Instruments, ADS129x low-power, 8-channel, 24-bit analog front-end for

biopotential measurements, available at http://www.ti.com/lit/ds/symlink/

ads1298.pdf (24/01/2024), 2015.

[174] D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza, and L. Benini,

“A 64-mW DNN-based visual navigation engine for autonomous nano-drones,”

IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8357–8371, 2019. doi: 10.

1109/JIOT.2019.2917066.

[175] GreenWaves Technologies, GAP SDK, available at https://greenwaves-technologies.

com/setting-up-sdk/ (24/01/2024).

https://doi.org/10.1109/BioRob.2012.6290287
https://doi.org/10.1109/embc.2013.6610327
https://doi.org/10.1109/embc.2013.6610327
https://doi.org/10.1088/1741-2560/12/4/046005
https://doi.org/10.1098/rsta.2019.0155
https://doi.org/10.1109/EMBC.2014.6944524
https://doi.org/10.1109/EMBC.2013.6610901
http://www.ti.com/lit/ds/symlink/ads1298.pdf
http://www.ti.com/lit/ds/symlink/ads1298.pdf
https://doi.org/10.1109/JIOT.2019.2917066
https://doi.org/10.1109/JIOT.2019.2917066
https://greenwaves-technologies.com/setting-up-sdk/
https://greenwaves-technologies.com/setting-up-sdk/

Bibliography 143

[176] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.

Andreetto, and H. Adam, Mobilenets: Efficient convolutional neural networks for

mobile vision applications, 2017. doi: 10.48550/arXiv.1704.04861.

[177] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2:

Inverted residuals and linear bottlenecks,” in 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2018, pp. 4510–4520. doi: 10.1109/

CVPR.2018.00474.

[178] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely efficient

convolutional neural network for mobile devices,” in 2018 IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, 2018, pp. 6848–6856. doi:

10.1109/CVPR.2018.00716.

[179] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the

inception architecture for computer vision,” in 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016, pp. 2818–2826. doi: 10.

1109/CVPR.2016.308.

[180] M. Rusci, A. Capotondi, F. Conti, and L. Benini, “Work-in-progress: Quantized

NNs as the definitive solution for inference on low-power ARM MCUs?” In 2018

International Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), 2018, pp. 1–2. doi: 10.1109/CODESISSS.2018.8525915.

[181] F. Glaser, G. Haugou, D. Rossi, Q. Huang, and L. Benini, “Hardware-accelerated

energy-efficient synchronization and communication for ultra-low-power tightly

coupled clusters,” in 2019 Design, Automation & Test in Europe Conference &

Exhibition (DATE), 2019, pp. 552–557. doi: 10.23919/DATE.2019.8715266.

[182] A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, T. Hartley, and L. Van

Gool, “AI benchmark: Running deep neural networks on Android smartphones,”

in Computer Vision – ECCV 2018 Workshops, L. Leal-Taixé and S. Roth, Eds.,

Springer International Publishing, 2019, pp. 288–314. doi: 10.1007/978-3-030-

11021-5_19.

[183] A. Burrello, M. Zanghieri, C. Sarti, L. Ravaglia, S. Benatti, and L. Benini, “Tack-

ling time-variability in sEMG-based gesture recognition with on-device incremen-

tal learning and temporal convolutional networks,” in 2021 IEEE Sensors Ap-

plications Symposium (SAS), 2021, pp. 1–6. doi: 10.1109/SAS51076.2021.

9530007.

[184] L. Pellegrini, G. Graffieti, V. Lomonaco, and D. Maltoni, “Latent replay for

real-time continual learning,” in 2020 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2020, pp. 10 203–10 209. doi: 10.1109/

IROS45743.2020.9341460.

https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00716
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CODESISSS.2018.8525915
https://doi.org/10.23919/DATE.2019.8715266
https://doi.org/10.1007/978-3-030-11021-5_19
https://doi.org/10.1007/978-3-030-11021-5_19
https://doi.org/10.1109/SAS51076.2021.9530007
https://doi.org/10.1109/SAS51076.2021.9530007
https://doi.org/10.1109/IROS45743.2020.9341460
https://doi.org/10.1109/IROS45743.2020.9341460

Bibliography 144

[185] R. N. Khushaba, “Correlation analysis of electromyogram signals for multiuser

myoelectric interfaces,” IEEE Transactions on Neural Systems and Rehabilitation

Engineering, vol. 22, no. 4, pp. 745–755, 2014. doi: 10.1109/TNSRE.2014.

2304470.

[186] Z. Fan, Z. Wang, G. Li, and R. Wang, “A canonical correlation analysis based

EMG classification algorithm for eliminating electrode shift effect,” in 2016 38th

Annual International Conference of the IEEE Engineering in Medicine and Bi-

ology Society (EMBC), 2016, pp. 867–870. doi: 10.1109/EMBC.2016.7590838.

[187] E. Donati, S. Benatti, E. Ceolini, and G. Indiveri, “Long-term stable electromyo-

graphy classification using canonical correlation analysis,” in 2023 11th Inter-

national IEEE/EMBS Conference on Neural Engineering (NER), 2023, pp. 1–4.

doi: 10.1109/NER52421.2023.10123768.

[188] S. Lee and S. Nirjon, “Learning in the wild: When, how, and what to learn for on-

device dataset adaptation,” in Proceedings of the 2nd International Workshop on

Challenges in Artificial Intelligence and Machine Learning for Internet of Things,

ser. AIChallengeIoT ’20, Association for Computing Machinery, 2020, pp. 34–40.

doi: 10.1145/3417313.3429382.

[189] A. Hyvärinen, J. Karhunen, and E. Oja, “Principal component analysis and

whitening,” in Independent Component Analysis. John Wiley & Sons, Ltd, 2001,

ch. 6, pp. 125–144. doi: 10.1002/0471221317.ch6.

[190] M. Zanghieri, sEMG-based hand gesture recognition with deep learning, M.Sc.

thesis, University of Bologna, Bologna, Italy, 2019. doi: 10.48550/arXiv.2306.

10954.

[191] M. Orlandi, M. Zanghieri, V. J. Kartsch Morinigo, F. Conti, D. Schiavone, L.

Benini, and S. Benatti, “sEMG neural spikes reconstruction for gesture recogni-

tion on a low-power multicore processor,” in 2022 IEEE Biomedical Circuits and

Systems Conference (BioCAS), 2022, pp. 704–708. doi: 10.1109/BioCAS54905.

2022.9948617.

[192] NinaPro Team, NinaPro DB8, available at https://ninapro.hevs.ch/instructions/

DB8.html (24/01/2024).

[193] T. Bao, Y. Zhao, S. A. R. Zaidi, S. Xie, P. Yang, and Z. Zhang, “A deep Kalman

filter network for hand kinematics estimation using sEMG,” Pattern Recognition

Letters, vol. 143, pp. 88–94, 2021. doi: 10.1016/j.patrec.2021.01.001.

https://doi.org/10.1109/TNSRE.2014.2304470
https://doi.org/10.1109/TNSRE.2014.2304470
https://doi.org/10.1109/EMBC.2016.7590838
https://doi.org/10.1109/NER52421.2023.10123768
https://doi.org/10.1145/3417313.3429382
https://doi.org/10.1002/0471221317.ch6
https://doi.org/10.48550/arXiv.2306.10954
https://doi.org/10.48550/arXiv.2306.10954
https://doi.org/10.1109/BioCAS54905.2022.9948617
https://doi.org/10.1109/BioCAS54905.2022.9948617
https://ninapro.hevs.ch/instructions/DB8.html
https://ninapro.hevs.ch/instructions/DB8.html
https://doi.org/10.1016/j.patrec.2021.01.001

Bibliography 145

[194] U. Côté-Allard, C. L. Fall, A. Drouin, A. Campeau-Lecours, C. Gosselin, K.

Glette, F. Laviolette, and B. Gosselin, “Deep learning for electromyographic hand

gesture signal classification using transfer learning,” IEEE Transactions on Neu-

ral Systems and Rehabilitation Engineering, vol. 27, no. 4, pp. 760–771, 2019.

doi: 10.1109/TNSRE.2019.2896269.

[195] R. C. Ŝımpetru, M. Osswald, D. I. Braun, D. S. Oliveira, A. L. Cakici, and A.

Del Vecchio, “Accurate continuous prediction of 14 degrees of freedom of the

hand from myoelectrical signals through convolutive deep learning,” in 2022 44th

Annual International Conference of the IEEE Engineering in Medicine & Biology

Society (EMBC), 2022, pp. 702–706. doi: 10.1109/EMBC48229.2022.9870937.

[196] R. C. Ŝımpetru, A. Arkudas, D. I. Braun, M. Osswald, D. S. de Oliveira, B.

Eskofier, T. M. Kinfe, and A. Del Vecchio, “Sensing the full dynamics of the

human hand with a neural interface and deep learning,” Cold Spring Harbor

Laboratory, 2022. doi: 10.1101/2022.07.29.502064.

[197] W. Maass, “Networks of spiking neurons: The third generation of neural network

models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671, 1997. doi: 10.1016/

S0893-6080(97)00011-7.

[198] A. Di Mauro, A. S. Prasad, Z. Huang, M. Spallanzani, F. Conti, and L. Benini,

“SNE: An energy-proportional digital accelerator for sparse event-based convo-

lutions,” in 2022 Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2022, pp. 825–830. doi: 10.23919/DATE54114.2022.9774552.

[199] A. Di Mauro, M. Scherer, D. Rossi, and L. Benini, “Kraken: A direct event/frame-

based multi-sensor fusion SoC for ultra-efficient visual processing in nano-UAVs,”

in 2022 IEEE Hot Chips 34 Symposium (HCS), 2022, pp. 1–19. doi: 10.1109/

HCS55958.2022.9895621.

[200] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore archi-

tecture with heterogeneous memory structures for dynamic neuromorphic asyn-

chronous processors (DYNAPs),” IEEE Transactions on Biomedical Circuits and

Systems, vol. 12, no. 1, pp. 106–122, 2018. doi: 10.1109/TBCAS.2017.2759700.

[201] E. Donati, M. Payvand, N. Risi, R. Krause, and G. Indiveri, “Discrimination of

EMG signals using a neuromorphic implementation of a spiking neural network,”

IEEE Transactions on Biomedical Circuits and Systems, vol. 13, no. 5, pp. 795–

803, 2019. doi: 10.1109/TBCAS.2019.2925454.

[202] Y. Ma, E. Donati, B. Chen, P. Ren, N. Zheng, and G. Indiveri, “Neuromorphic

implementation of a recurrent neural network for EMG classification,” in 2020

2nd IEEE International Conference on Artificial Intelligence Circuits and Sys-

tems (AICAS), 2020, pp. 69–73. doi: 10.1109/AICAS48895.2020.9073810.

https://doi.org/10.1109/TNSRE.2019.2896269
https://doi.org/10.1109/EMBC48229.2022.9870937
https://doi.org/10.1101/2022.07.29.502064
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.23919/DATE54114.2022.9774552
https://doi.org/10.1109/HCS55958.2022.9895621
https://doi.org/10.1109/HCS55958.2022.9895621
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/TBCAS.2019.2925454
https://doi.org/10.1109/AICAS48895.2020.9073810

Bibliography 146

[203] Y. Ma, B. Chen, P. Ren, N. Zheng, G. Indiveri, and E. Donati, “EMG-based ges-

tures classification using a mixed-signal neuromorphic processing system,” IEEE

Journal on Emerging and Selected Topics in Circuits and Systems, vol. 10, no. 4,

pp. 578–587, 2020. doi: 10.1109/JETCAS.2020.3037951.

[204] E. Donati, M. Payvand, N. Risi, R. Krause, K. Burelo, G. Indiveri, T. Dalgaty,

and E. Vianello, “Processing EMG signals using reservoir computing on an event-

based neuromorphic system,” in 2018 IEEE Biomedical Circuits and Systems

Conference (BioCAS), 2018, pp. 1–4. doi: 10.1109/BIOCAS.2018.8584674.

[205] A. Jiménez-Fernández, E. Cerezuela-Escudero, L. Miró-Amarante, M. J. Domı́nguez-

Morales, F. de Aśıs Gómez-Rodŕıguez, A. Linares-Barranco, and G. Jiménez-

Moreno, “A binaural neuromorphic auditory sensor for FPGA: A spike signal

processing approach,” IEEE Transactions on Neural Networks and Learning Sys-

tems, vol. 28, no. 4, pp. 804–818, 2017. doi: 10.1109/TNNLS.2016.2583223.

[206] S.-C. Liu, A. van Schaik, B. A. Minch, and T. Delbrück, “Event-based 64-channel

binaural silicon cochlea with Q enhancement mechanisms,” in 2010 IEEE Inter-

national Symposium on Circuits and Systems (ISCAS), 2010, pp. 2027–2030. doi:

10.1109/ISCAS.2010.5537164.

[207] M. Yang, C.-H. Chien, T. Delbruck, and S.-C. Liu, “A 0.5V 55µW 64×2 channel

binaural silicon cochlea for event-driven stereo-audio sensing,” IEEE Journal of

Solid-State Circuits, vol. 51, no. 11, pp. 2554–2569, 2016. doi: 10.1109/JSSC.

2016.2604285.

[208] I. M. Park, S. Seth, A. R. Paiva, L. Li, and J. C. Principe, “Kernel methods on

spike train space for neuroscience: A tutorial,” IEEE Signal Processing Magazine,

vol. 30, no. 4, pp. 149–160, 2013. doi: 10.1109/MSP.2013.2251072.

[209] M. Stimberg, R. Brette, and D. F. Goodman, “Brian 2, an intuitive and efficient

neural simulator,” eLife, vol. 8, F. K. Skinner, R. L. Calabrese, F. K. Skinner,

F. Zeldenrust, and R. C. Gerkin, Eds., e47314, Aug. 2019. doi: 10.7554/eLife.

47314.

[210] X. Jiang, X. Liu, J. Fan, X. Ye, C. Dai, E. A. Clancy, M. Akay, and W. Chen,

“Open access dataset, toolbox and benchmark processing results of high-density

surface electromyogram recordings,” IEEE Transactions on Neural Systems and

Rehabilitation Engineering, vol. 29, pp. 1035–1046, 2021. doi: 10.1109/TNSRE.

2021.3082551.

[211] X. Jiang, X. Liu, J. Fan, C. Dai, E. A. Clancy, and W. Chen, “Random chan-

nel masks for regularization of least squares-based finger EMG-force modeling

to improve cross-day performance,” IEEE Transactions on Neural Systems and

https://doi.org/10.1109/JETCAS.2020.3037951
https://doi.org/10.1109/BIOCAS.2018.8584674
https://doi.org/10.1109/TNNLS.2016.2583223
https://doi.org/10.1109/ISCAS.2010.5537164
https://doi.org/10.1109/JSSC.2016.2604285
https://doi.org/10.1109/JSSC.2016.2604285
https://doi.org/10.1109/MSP.2013.2251072
https://doi.org/10.7554/eLife.47314
https://doi.org/10.7554/eLife.47314
https://doi.org/10.1109/TNSRE.2021.3082551
https://doi.org/10.1109/TNSRE.2021.3082551

Bibliography 147

Rehabilitation Engineering, vol. 30, pp. 2157–2167, 2022. doi: 10.1109/TNSRE.

2022.3194246.

[212] X. Jiang, K. Nazarpour, and C. Dai, “Explainable and robust deep forests for

EMG-force modeling,” IEEE Journal of Biomedical and Health Informatics, vol. 27,

no. 6, pp. 2841–2852, 2023. doi: 10.1109/JBHI.2023.3262316.

[213] W. Wu, L. Jiang, B. Yang, K. Gong, C. Peng, and T. He, “A new EMG de-

composition framework for upper limb prosthetic systems,” Journal of Bionic

Engineering, Jul. 2023. doi: 10.1007/s42235-023-00407-0.

https://doi.org/10.1109/TNSRE.2022.3194246
https://doi.org/10.1109/TNSRE.2022.3194246
https://doi.org/10.1109/JBHI.2023.3262316
https://doi.org/10.1007/s42235-023-00407-0

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions & Thesis Structure
	1.1.1 Publication-related structure

	2 Background
	2.1 Temporal Convolutional Networks
	2.2 Microcontrollers of Interest
	2.3 Embedding Deep Networks: Compression & Deployment
	2.3.1 Quantization
	2.3.2 Frameworks and tools for embedded deep inference

	2.4 sEMG-based Human-Machine Interfaces
	2.4.1 The sEMG signal
	2.4.2 Classification of sEMG: hand gesture recognition
	2.4.3 Regression on sEMG: hand kinematics and finger force

	3 Binary Classification
	3.1 An Extreme-Edge TCN-based Low-Latency Collision-Avoidance Safety System for Industrial Machinery
	3.1.1 Overview
	3.1.2 Related Work
	3.1.2.1 Safety systems in industrial woodworking machinery
	3.1.2.2 Rationale of this work in relation to the established functional safety standards

	3.1.3 Materials & Methods
	3.1.3.1 Targeted woodworking machine
	3.1.3.2 System architecture
	3.1.3.3 Data acquisition
	3.1.3.4 Incremental learning protocol
	3.1.3.5 TCN structure, training, and deployment
	3.1.3.6 Evaluation metrics

	3.1.4 Experimental Results
	3.1.4.1 Dataset
	3.1.4.2 Accuracy
	3.1.4.3 Performance and memory footprint

	3.2 Low-Latency Detection of Epileptic Seizures from iEEG with Temporal Convolutional Networks on a Low-Power Parallel MCU
	3.2.1 Overview
	3.2.2 Materials & Methods
	3.2.2.1 Short-Term SWEC-ETHZ iEEG Database
	3.2.2.2 TCN Framework
	3.2.2.3 Baseline and time-consistent setup
	3.2.2.4 Details on the ML setup
	Timing
	TCN training
	Postprocessing & delay-specificity curves
	TCN quantization & deployment

	3.2.2.5 Evaluation Metrics

	3.2.3 Experimental Results
	3.2.3.1 Delay-specificity Pareto frontier
	3.2.3.2 Deployment on a parallel MCU

	4 Classification: sEMG-based Hand Gesture Recognition
	4.1 Temporal Variability Analysis in sEMG Hand Grasp Recognition using Temporal Convolutional Networks
	4.1.1 Overview
	4.1.2 Materials & Methods
	4.1.2.1 The NinaPro Database 6
	4.1.2.2 TCN model

	4.1.3 Experimental Results
	4.1.3.1 Classical ML accuracy
	4.1.3.2 TCN accuracy
	4.1.3.3 TCN distillation

	4.2 Robust Real-Time Embedded EMG Recognition Framework Using Temporal Convolutional Networks on a Multicore IoT Processor
	4.2.1 Overview
	4.2.2 Materials & Methods
	4.2.2.1 Acquisition & processing platform
	4.2.2.2 TEMPONet TCN architecture
	4.2.2.3 TEMPONet embedded deployment

	4.2.3 Experimental Results
	4.2.3.1 Experimental setup
	4.2.3.2 Accuracy on NinaPro DB6 (steady)
	4.2.3.3 Accuracy on the 20-Session Dataset (steady)
	4.2.3.4 Embedded deployment performance

	4.3 Online Unsupervised Arm Posture Adaptation for sEMG-based Gesture Recognition on a Parallel Ultra-Low-Power Microcontroller
	4.3.1 Overview
	4.3.2 Materials & Methods
	4.3.2.1 The UniBo-INAIL dataset
	4.3.2.2 Online PCA adaptation
	PCA as adaptation
	Oja's learning rule
	Heuristics
	Parallelization

	4.3.2.3 Classifier
	4.3.2.4 Experimental protocol
	4.3.2.5 Accuracy metrics
	4.3.2.6 Deployment & profiling on a parallel ULP MCU

	4.3.3 Experimental Results
	4.3.3.1 Classification accuracy
	4.3.3.2 Profiling

	5 Regression: sEMG-based Estimation of Hand Kinematics and Force
	5.1 sEMG-based Regression of Hand Kinematics with Temporal Convolutional Networks on a Low-Power Edge Microcontroller
	5.1.1 Overview
	5.1.2 Materials & Methods
	5.1.2.1 NinaPro Database 8
	5.1.2.2 TEMPONet architecture for regression
	5.1.2.3 Experimental setup details
	Dataset split
	Preprocessing
	Machine learning setup
	Model output postprocessing

	5.1.3 Experimental Results
	5.1.3.1 Evaluation metrics
	5.1.3.2 Models comparison

	5.2 Event-based Low-Power and Low-Latency Regression Method for Hand Kinematics from Surface EMG
	5.2.1 Overview
	5.2.2 Materials & Methods
	5.2.2.1 Encoding surface EMG to events
	5.2.2.2 Regression
	5.2.2.3 Profiling

	5.2.3 Experimental Results
	5.2.3.1 Evaluation metrics
	5.2.3.2 Regression accuracy
	5.2.3.3 Profiling

	5.3 Event-based Estimation of Hand Forces from High-Density Surface EMG on a Parallel Ultra-Low-Power Microcontroller
	5.3.1 Overview
	5.3.2 Materials & Methods
	5.3.2.1 HYSER dataset
	5.3.2.2 Event-based encoding
	5.3.2.3 Regression
	5.3.2.4 Deployment and profiling on a parallel ULP MCU

	5.3.3 Experimental Results
	5.3.3.1 Time-domain behavior
	5.3.3.2 Regression error
	5.3.3.3 Profiling

	6 Conclusion
	Bibliography

