Energy-efficient time series analysis with machine learning and deep learning on embedded computing platforms

Zanghieri, Marcello (2024) Energy-efficient time series analysis with machine learning and deep learning on embedded computing platforms, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Data science and computation, 35 Ciclo. DOI 10.48676/unibo/amsdottorato/11234.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (14MB)

Abstract

The present Ph.D. thesis presents techniques and solutions for energy-efficient time-series analysis based on automated learning executed on resource-constrained, low-power computing platforms, with an interest in both Deep Learning and traditional, non-deep Machine Learning. This dissertation spans diverse domains, from algorithmic research on the accuracy-efficiency tradeoff in processing different biosignals to applied research inspired by industrial scenarios. The unifying methodology that brings all the research questions addressed in this thesis under the same perspective is the interest in time-series analysis as a task to be performed in the presence of the resource constraints characteristic of low-power edge computing devices. This dissertation covers the three major types of automated learning tasks: binary classification, multi-class (single-label) classification, and regression. Starting from binary classification, this work presents a proximity sensor for active safety in industrial machinery and a setup for epilepsy detection from intracranial electroencephalography. Both solutions are based on a Temporal Convolutional Network (TCN) executed on an embedded MCU. Moving to multi-class (single-label) classification and regression, the research addresses hand modeling from the surface electromyographic (sEMG) signal. Starting with off-device TCNs for the recognition of discrete hand gestures, the classification setup is advanced via deployment on a multi-core MCU and heuristics for unsupervised adaptation to arm posture. Then, regression was addressed for a more versatile control of Human-Machine Interfaces (HMIs). Developing an embedded TCN accurate in hand kinematics estimation, I addressed the modeling of hand kinematics and force with event-based features, which are computationally cheaper and promising for future porting onto event-driven devices with reduced latency and energy consumption. The sEMG contributions advance the field of non-invasive intuitive wearable HMIs. This research work proves the success of the embedded approach to time-series Machine Learning, achieving SoA accuracy and efficiency and proving promising for impactful applications in the industrial, clinical, and consumer domains.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Zanghieri, Marcello
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Energy-Efficiency, Time Series, Machine Learning, Deep Learning, Embedded Systems
URN:NBN
DOI
10.48676/unibo/amsdottorato/11234
Data di discussione
21 Giugno 2024
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^