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Abstract

Latency can be defined as the sum of the arrival times at the customers. Minimum latency
problems are specially relevant in applications related to humanitarian logistics. This thesis
presents algorithms for solving a family of vehicle routing problems with minimum latency.
First the latency location routing problem (LLRP) is considered. It consists of determining

the subset of depots to be opened, and the routes that a set of homogeneous capacitated ve-
hicles must perform in order to visit a set of customers such that the sum of the demands of
the customers assigned to each vehicle does not exceed the capacity of the vehicle. For solv-
ing this problem three metaheuristic algorithms combining simulated annealing and variable
neighborhood descent, and an iterated local search (ILS) algorithm, are proposed.
Furthermore, the multi-depot cumulative capacitated vehicle routing problem (MDCCVRP)

and the multi-depot k-traveling repairman problem (MDk-TRP) are solved with the proposed
ILS algorithm. The MDCCVRP is a special case of the LLRP in which all the depots can be
opened, and the MDk-TRP is a special case of the MDCCVRP in which the capacity constraints
are relaxed.

Finally, a LLRP with stochastic travel times is studied. A two-stage stochastic programming
model and a variable neighborhood search algorithm are proposed for solving the problem.
Furthermore a sampling method is developed for tackling instances with an infinite number of
scenarios.
Extensive computational experiments show that the proposed methods are effective for solv-

ing the problems under study.
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1 Introduction

Vehicle routing problems (VRPs) have received a lot of attention from researchers and practi-
tioners due to the many applications and theoretical challenges that these problems represent.
They consist of deciding the sequence in which a set of customers is visited by a set of capac-
itated vehicles that must start from a depot, considering that each customer must be visited
exactly once, and the sum of the non-negative demands of the customers associated with each
vehicle must not exceed the respective capacity. Despite the family of VRPs is composed by
different variants, such as VRPs with time windows, VRPs with simultaneous pickup and de-
livery, among others (for an overview of VRPs see [1]), we would like to draw your attention to
one of the most studied variants of the VRP, which is closely related to all the problems studied
in this thesis: the multi-depot vehicle routing problem (MDVRP) [2]. In this version of the
problem there is a set of depots from where the vehicles can start the routes to be performed.
Several problems in different areas such as logistics, last-mile-delivery, home-health care, and
disaster operations management, can be modeled as MDVRPs. Some examples can be the cases
in which a company has more than one warehouse from where the products are dispatched, or
when more than one shelter is available for supplying affected areas or for receiving people after
a natural disaster.

When only a subset of depots can be opened we can talk about a location-routing problem
(LRP). The LRP is actually an extension of the MDVRP since the LRP can be reduced to the
MDVRP when the maximum number of depots to be opened is equal to the number of available
depots. In the LRP not only the location decision must be made, but also the allocation of the
vehicles, and the routes that the vehicles must perform. Several reviews regarding LRPs have
been published in the last 10 years, the reader is referred to [3], [4], and [5]. From now, when
we talk about routing problems, it also considers the LRPs.

In the classical routing problems the objective function is to minimize the global travel time
associated with the routes. Despite this approach corresponds to the most widely studied one,
several variants have been introduced along the time in order to tackle problems in which the
above mentioned approach is not suitable [6]. This is the case for the so-called customer-centric
problems, in which customer satisfaction is the key factor. For studying these problems the
concept of latency has been usually used as a measure.

1.1 Latency routing problems: Concepts and properties

The latency can be defined as the sum of the arrival times at the customers. The most-simple
latency routing problem is the traveling repairman problem (TRP), also known as minimum
latency problem, or delivery man problem [7], which is equivalent to the well-known traveling
salesman problem, but minimizing the sum of the arrival times at the customers instead of the
global travel time.
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1 Introduction

Figure 1.1: Differences between the objective functions.

Figure 1.1 presents an example showing the differences between the computation of latency
and global travel time of the route of a single vehicle. In the figure, the square represents the
depot, the circles represent the customers, above each customer i the respective arrival time
(ati) is presented, and above each edge the associated travel time is presented.

Figure 1.2: Optimal solutions: a) minimizing global travel time, b) minimizing latency.

Latency routing problems have different properties w.r.t. to the classical routing problems.
One of the most important property regards the number of vehicles used in the optimal solution.
It has been proved that, when the travel times satisfy the triangle inequality, the optimal solution
of a latency routing problem uses exactly min{Nc, Nv} vehicles, where Nc is the number of
customers, and Nv is the number of available vehicles (see [8] for details). In addition, the last
edge of each route, connecting the last customer with the depot, does not affect the objective
function, so the latency routing problems can be considered as open routing problems. These
properties are not true for the classical routing problems. A trivial example is presented in Figure
1.2 in order to illustrate the differences in the optimal solutions obtained for both objective
functions. It considers 2 customers, 2 available vehicles, and one depot.
Due to the above considerations, it is clear that optimal solutions for classical routing problems

are sub-optimal solutions for the equivalent latency routing problems as proved empirically in
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1.2 Solution methods

[9, 10].

For a recent survey paper on latency routing problems the reader is referred to [11].

1.2 Solution methods

When combinatorial optimization problems have to been faced (as is the case in this thesis), three
approaches can be adopted: i) exact methods, ii) approximation methods, and iii) heuristic
methods.

Despite in an ideal world it is always desirable to obtain the proven optimal solution for the
problems through an exact method, it is not always possible, specially in routing problems which
have been proved to be NP-hard.

On the other hand; approximation and heuristic algorithms seek for solutions that cannot be
proved to be optimal. The difference between the two mentioned methods is that the approxi-
mation algorithms ensure a minimum quality of the obtained solutions by using mathematical
properties, while the heuristic algorithms produce solutions with no theoretical quality.

Despite that fact, heuristic algorithms have been proven to be very effective for solving combi-
natorial optimization problems, requiring less computational resources for providing good quality
solutions. In fact, in this thesis, the proposed heuristic algorithms are able to outperform the
currently published exact methods when middle and large size instances are considered.

According to [12], heuristic and metaheuristic algorithms can be classified into single-solution
based heuristics and population-based heuristics.

The single-solution based heuristics modify and optimize a single solution, while those of the
second group maintain and improve multiple candidate solutions. Some examples of population-
based heuristics include the well-known genetic and ant colony optimization algorithms.

In each chapter of this thesis different single-solution based heuristic algorithms are proposed
for solving the respective problems. The proposed algorithms combine different local-search
procedures, which can be summarized as follows:

• Simulated annealing (SA)

• Variable neighborhood search (VNS)

• Variable neighborhood descent (VND)

• Iterated local search (ILS)

The SA method, originally proposed in [13], consists of generating random moves for the
current solution, which are accepted if the move improves the solution value, otherwise, the
move is accepted/rejected according to a certain probability, which depends on a “temperature”
parameter. In other words, at the beginning almost all the moves are accepted, while when the
temperature decreases, only the good moves (or at least those that are not so bad) are accepted
[14]. The stopping condition of SA is usually a final temperature parameter.

The VNS algorithm, introduced in [15], combines local search and shaking procedures (random
moves selected from the currently explored neighborhood). The local search procedure is used for
achieving local optima, while the shaking procedure is used to escape from the local optima [16].
The VNS algorithm can be summarized as follows: given a set of neighborhoods, and starting
from the first neighborhood, i) apply the shaking procedure to the current solution (incumbent),
ii) apply a local search procedure to the solution obtained after the shaking procedure, iii) if the
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solution obtained after the local search procedure is better than the incumbent update it, and
set the current neighborhood equal to the first one, otherwise, explore the next neighborhood.
This procedure is repeated until the last neighborhood is explored [15].

The VND can be considered a particular case of the VNS. This approach explores a set of
neighborhoods in descending order, under a deterministic criterion. Usually the neighborhoods
are sorted according to their complexity; in this way the less complex neighborhoods receive
a more intense exploration w.r.t. the more complex ones, avoiding extremely large computing
times. The main principle of the VND (also for VNS) approach is that a local optimum for a
certain neighborhood is not necessarily a local optimum for another neighborhood [17].

Despite it is not clear who introduced the ILS algorithm, there are several authors that have
contributed to its development along the years; some relevant works can be found in [18, 19],
and [20]. The ILS schemes combine a local search procedure with a perturbation procedure. The
perturbation procedure is used for avoiding local optima, allowing the algorithm to explore new
solution spaces. The stopping condition of ILS is usually a maximum number of iterations. One
of the main advantages of ILS is its simplicity, furthermore, it leads to better solutions w.r.t. the
execution of the corresponding local search procedure from scratch with several random trials.
[21].

When uncertainty is come to be addressed, there are mainly two methodologies that can
be used: i) robust optimization, when the probability distribution of the parameters under
uncertainty is not known, and ii) stochastic optimization, when the probability distribution of
the parameters under uncertainty is known.

A common methodology for approaching stochastic location routing problems is the two-stage
optimization [22, 23]. This methodology considers first stage decisions which should be made
before uncertainty is disclosed (e.g. the location decisions), and second stage decisions which
must be taken after uncertainty is revealed (e.g. the routing decisions).

An important aspect to be considered in a stochastic programming methodology is the attitude
of the decision maker to risk. The most common approach is to consider a risk-neutral decision
maker, which leads to optimize the expected value of the second stage problem. Nevertheless,
in problems like latency routing, which are suitable for modeling post-disaster operations and
humanitarian logistics problems, a risk-averse decision maker makes more sense [24].

The risk measure adopted in Chapter 4 is the conditional value at risk (CVaR), which seeks
for minimizing the expected value of the 1− α worst case scenarios, where α is a probability.

Capturing the stochasticity of a problem may depend of the number of scenarios that are con-
sider. The complexity of a problem grows when the number of scenarios grows. For some cases it
is necessary to consider parameters under uncertainty with continuous probability distributions,
which in practice is equivalent to consider a stochastic programming problem with an infinite
number of scenarios. This method cannot be used for problems which in their deterministic
versions are already NP-hard. In order to tackle problems with continuous probability distribu-
tions the so-called sampling methods have been used to approximate the optimal solution [25].
These methods consist of solving samples with a reduced number of independently generated
scenarios (Monte-Carlo simulation). This kind of methodologies has been applied to several
combinatorial optimization problems, and when the technique used for solving each sample is a
heuristic algorithm the method is called simheuristic [26].

Each chapter of this thesis is self-contained. Chapter 2 presents three metaheuristics com-
bining SA and VND for solving the latency location routing problem (LLRP). An ILS scheme
for solving the LLRP, the multi-depot cumulative capacitated vehicle routing problem (MDC-
CVRP) and the multi-depot k-traveling repairman problem (MDk-TRP) is detailed in Chapter
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3. Finally, Chapter 4 studies the latency location routing problem with stochastic travel times
(LLRP-STT), presenting a VNS algorithm, a two-stage stochastic programming model, and a
sampling method (including also a simheuristic algorithm).
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2 Effective metaheuristics for the latency
location routing problem

Abstract

The latency location routing problem (LLRP), a combination of the facility location problem and
the cumulative capacitated vehicle routing problem, is a recently proposed variant of location
routing problems. It corresponds to a customer-centric problem, in which the aim is to minimize
the sum of the arrival times at the customers. this work proposes three novel metaheuristic
algorithms to solve the LLRP. They use a simulated annealing (SA) framework, which after each
temperature reduction is intensified through a variable neighborhood descent (VND) procedure.
Each algorithm uses a different search strategy as intensification. Results on 76 benchmark
instances indicate that the proposed metaheurstics outperform the state-of-the-art algorithms,
finding new best solutions for all the large size instances (over 100 customers), or the currently
known optimal ones for most of the small and medium size instances, in comparable computing
times. Furthermore, in more than 80% of the instances the average value of the solutions found
by the proposed algorithms is better than or equal to that of the current best known solution.

keywords: cumulative routing; LLRP; location routing; simulated annealing; variable neigh-
borhood descent

2.1 Introduction

The location routing problem (LRP) corresponds to a problem in which two decisions must
be taken simultaneously: the location of logistic facilities and the routing of vehicles departing
from these facilities. Therefore, the LRP is a combination of two well know combinatorial opti-
mization problems: the facility location problem (FLP) and the vehicle routing problem (VRP).
Since both these problems are NP-hard, the LRP is NP-hard too. The LRP and its extensions
have been largely studied in the last decades due to their important applications in transporta-
tion and logistics. The traditional approach has been to minimize the total cost, which includes
the transportation cost, the fixed costs of set-up the open facilities, and the costs of the used
vehicles. Nevertheless, LRP may not be appropriate to model customer-centric problems, in
which customer satisfaction, defined as the requirement to attend the customer requests as soon
as possible, is the key factor. As an answer to this issue [1] began studying the latency location
routing problem (LLRP), which is a combination of the FLP and the cumulative capacitated
vehicle routing problem CCVRP (see [2]). The LLRP seeks for minimizing the sum of the arrival
times at the customers (latency). As other cumulative routing problems, research on LLRPs
is mainly motivated by post-disaster planning operations and humanitarian logistics problems

This chapter is based on the paper: Osorio-Mora A, Rey C, Toth P, Vigo D. Effective metaheuristics for the
latency location routing problem. International Transactions in Operational Research. 2023 Apr 11. doi:
https://doi.org/10.1111/itor.13294
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2 Effective metaheuristics for the latency location routing problem

[2, 1]. Since the LLRPs are closely related to humanitarian logistic, a bad planning may lead to
losses of human lives. As pointed out in [3], the LLRP has also important applications in com-
mercial systems where perishable products should be delivered, and in city logistics problems,
where deliveries to the customers are performed by means of shared intermediate facilities.

It has been empirically proved that the solutions found by algorithms designed for routing
or location-routing problems minimizing the global travel time are not appropriate for latency
problems [1, 4]. This is related to the nature of the two objective functions: while the global
travel time of a route can be computed as the sum of the travel times of the edges composing
it, the latency of a route corresponds to the sum of the travel times of the edges, with each
travel time multiplied by the number of customers following the considered edge in the route.
It is also to note that for the latency problems the last edge of each route is not involved in
the computation of the corresponding term of the objective function. There is also evidence
that the sequential approach, that is, solving first the location problem and then the routing
problem, leads to sub-optimal solutions [5]. This consideration strongly supports the importance
of solving efficiently LLRPs.

In this chapter three versions of a new metaheuristic algorithm called SA-VND are proposed
to solve the LLRP. The algorithm is a combination of simulated annealing SA (see [6]) and
variable neighborhood descent (VND) procedures [7]. The main difference between the three
algorithms is the VND strategy used. The proposed approaches are capable to outperform, in
comparable computing times, the state-of-the-art algorithms in terms of solution quality.

The paper is structured as follows. In Section 2.2 a formal description of the problem is pro-
vided, and the related literature is analyzed. Section 2.3 describes the proposed metaheuristics.
In Section 2.4 the computational results and the comparison with the state-of-the-art exact and
heuristic algorithms are presented and discussed. In addition, valid lower bounds are reported
for the instances not solved to proved optimality by the previously proposed exact methods.
Finally, in Section 2.5, the main conclusions are drawn and future directions are proposed.

2.2 Problem statement and literature review

The LLRP can be defined as follows. Let us consider a complete undirected graph G = (V,E),
where V corresponds to the set of nodes, and E is the set of edges. The set V is equal to V ′∪D,
where V ′ represents the set of Nc customers, and D is the set of Nd homogeneous uncapacitated
depots. Let also K be the set of Nv homogeneous vehicles, each with capacity Q. Each customer
i ∈ V ′ has a non-negative demand qi. Each edge (i, j) ∈ E, with i ̸= j, has an associated non-
negative travel time cij , which satisfies the triangular inequality. The problem is to select at
most p (where p is a given value) depots to open, from which the vehicles must perform their
routes in order to minimize the sum of the arrival times at the customers. Each customer must
be visited once, and each vehicle must start from an open depot. As previously mentioned, an
important feature of the cumulative routing problems is that the edges traveled from the last
customer of each route to a depot do not affect the objective function [2]. A mixed integer linear
programming (MILP) model of the LLRP has been proposed in [1]. Although the MILP model
considers a vehicle capacity potentially different for each vehicle, the algorithm proposed in this
work and the instances studied were designed for homogeneous fleets of vehicles.

It is to note that, since the travel time matrix satisfies the triangular inequality and the edges
connecting the last customer of each route to a depot do not affect the objective function, in an
optimal solution of the LLRP min{Nv, Nc} vehicles are used. On the other hand, in an optimal
solution, the number of open depots can be smaller than p (for example, when the number of
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depots “close” to the customers is smaller than p). However, since an open depot is not forced
to be used (i.e., to have customers assigned to it), we can assume that the number of depots to
be opened is exactly equal to p (although some of them could not be used).

In [1], due to the NP-hardness of the problem, the authors proposed two heuristic algorithms
to solve efficiently the LLRP: a memetic algorithm (MA) and a recursive granular algorithm
(RGA). According to their computational experiments, MA performs better than RGA for the
instances analyzed. More recently, [3] proposed two MILP models, three enumerative algorithms
and a GRASP-based iterated local search algorithm (GBILS) for the solution of the LLRP, and
report computational experiments on a subset of the LLRP benchmark instances. They were
able to provide the optimal solution for several instances with up to 50 customers using the
five exact methods, while the metaheuristic algorithm GBILS was able to find globally better
quality solutions than those obtained by the algorithms RGA and MA in small computing times.
The computational results reported in [3] clearly show that exact methods are not able to find
within reasonable computing times good quality solutions for the instances with more than 50
customers. As a consequence, it is necessary to design effective metaheuristic algorithms for
tackling large LLRP instances.

In [8] the authors studied the green location routing problem (GLRP), addressing it as a
cumulative location-routing problem. Despite the similarities in the names of the problems,
the GLRP corresponds to the family of the cumulative vehicle routing problems (CuVRPs), in
which the cumulative objective function is not the sum of the arrival times at the customers but
the sum of the travel times of the edges traveled weighted by the load inside the vehicle. In the
particular case of unitary loads both cumulative functions lead to the same value, nevertheless,
the GLRP and the LLRP are not equivalent for several reasons. First, the aim of the GLRP is
to minimize the total cost, which is the sum of the costs associated with the fuel consumption
and the fixed costs for using the depots. The cumulative (CuVRP) idea is included in the fuel
consumption expression but it is not the only component, since also the speed of the vehicle and
the technical components (engine) are considered in the computation of this cost. In addition
to the nature of the objective functions, the GLRP also considers time windows, which are
not included in the LLRP. The differences between the CCVRPs and the CuVRPs have also
been discussed recently in [9], where a review of the different cumulative routing problems is
presented. It is to note that the LLRP is an extension of the CCVRP since, if Nd = p = 1, the
problem reduces to a CCVRP.

For comprehensive surveys on the location routing problems the reader is referred to the
following works: [10, 11, 12, 13, 14, 15, 16, 17], in chronological order.

2.3 The proposed algorithms

The proposed algorithms combine SA and VND techniques. The SA is a technique used to
avoid local optima, in which random moves of a neighborhood are generated, and accepted
with a certain probability, which decreases proportionally to a “temperature” parameter which
is updated according to a “cooling” procedure. The acceptance of bad moves is used as di-
versification strategy, nevertheless, at low temperatures the algorithm intensifies the search by
accepting almost only moves which improve the objective function value. The VND techniques
are local search-based algorithms which use different neighborhoods of a certain solution. The
basic principle of the VND algorithms is that a local optimum for a certain neighborhood is
not necessarily a local optimum for other neighborhoods. VND applies a deterministic descent
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search along each neighborhood until a local optimum w.r.t. all the neighborhoods is reached.

The proposed metaheuristics combine the properties of both algorithms, diversifying the
search through the SA random exploration, and intensifying the search on potentially good
solutions using a VND approach. Furthermore, the cooling procedure of the SA helps the algo-
rithms to converge.

The proposed algorithms (whose pseudo-code is presented in Algorithm 1) start by setting
the current solution sc and the best feasible solution so far sbf equal to the initial feasible
solution s0 (see Section 2.3.2). Then a simulated annealing framework is used. The current
temperature temp is set equal to the initial temperature t0, and the number of iterations without
changes NC is set equal to 0. The procedure is applied until the minimum temperature tf is
reached (temp ≤ tf ) or until the algorithm is unable to escape from a local optimum for a
maximum number NCmax of temperature updates (NC ≥ NCmax). For each temperature
value, itSA random moves are evaluated. The moves are chosen from neighborhoods that are
classified in two groups: Group i) inter/intra route operators of insertion, swap and 2 − opt,
and Group ii) DepotOpenClose, RouteSwap, and RouteRelocation. Neighborhoods in Group
i) keep the opened depots, and the number of vehicles allocated to each depot unchanged, while
neighborhoods in Group ii) can change these choices. The probability of selecting moves from
Groups i) and ii) is different and depends on the parameter GP . Further details about the
neighborhoods and the selection process are presented in Section 2.3.3. A new solution sp is
generated by applying one of the mentioned random moves to sc, and is accepted as the new sc
under the classical SA conditions. The new solution sp replaces the current solution sc only if
one of the two following conditions holds: i) if ∆f = f(sc) − f(sp) > 0, where f(sc) and f(sp)
are the objective function values of the current solution and of the current solution with the
move applied, respectively, or ii) if ∆f ≤ 0 and r < exp(∆f/temp) where r is a random number
∈ [0, 1]. The above rule ensures that the algorithms converge to a local optimum after a certain
number of cooling steps. If f(sc) < f(sbf ), and sc is feasible (i.e., the result of the procedure
IsFeasible(sc) is true), the current solution is saved as the best feasible solution so far. Notice
that the algorithms allow infeasible solutions (violating the capacity constraints of the vehicles)
in order to extend the search space. Infeasible solutions are penalized with a factor pen for each
unit of load exceeding the vehicle capacity, see section 2.3.1 for details. If none of the itSA moves
generated were accepted, i.e. the current solution sc remains the same as the solution stemp at
the beginning of the current temperature, the counter of non-changes NC is augmented by 1,
otherwise it is set equal to 0. After the random phase a VND procedure (V NDX(sc)) is applied
to the current solution sc. The type of VND procedure applied in this phase is the only difference
between the three proposed algorithms; these procedures are presented in section 2.3.4. Then,
the value of temp is reduced according to a cooling factor α. It is to note that the random
moves applied before the VND procedure act as a perturbation step for escaping from local
optima. Finally, when the stopping condition is reached, the Lin–Kernighan-Helsgaun heuristic
(LKH-3) proposed in [18] is applied to each open depot, solving the corresponding CCVRP. The
customers and vehicles assigned to each depot are obtained from the best feasible solution sbf .
If the solution sLKH obtained by applying the LKH-3 heuristic is better than the current best
feasible solution, sbf is updated.

It is to note that the LKH-3 is the most recent update of the heuristic solver LKH, which was
originally presented for solving the traveling salesman problem [19]. The LKH solvers are based
on the Lin-Kernighan algorithm [20], which essentially consists of using λ-opt moves, calculating
the value of λ in an iterative way. The last update of the solver (LKH-3) incorporates different
optimization routines and features such as local search, special moves, perturbations, genetic
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algorithm, and penalization functions in order to solve effectively a large number of routing
problems (for further details see [18]).

Algorithm 1: Main Scheme

Input: t0, tf , GP, NCmax, itSA, α, pen, s0
Output: sbf (Final Solution)

1 temp = t0, NC = 0, sc = s0, sbf = s0
2 while (temp > tf and NC < NCmax) do
3 it = 0, stemp = sc
4 while (it < itSA) do
5 sp = RandomMove(GP, sc)
6 if (AcceptanceCriteria(temp, sp, sc)) then
7 sc = sp
8 if (f(sc) < f(sbf ) and IsFeasible(sc)) then
9 sbf = sc

10 end

11 end
12 it = it+ 1

13 end
14 if (f(stemp) = f(sc)) then
15 NC = NC + 1
16 temp = α ∗ temp

17 else
18 NC = 0
19 sc = V NSX(sc)
20 if (f(sc) < f(sbf ) and IsFeasible(sc)) then
21 sbf = sc
22 end
23 temp = α ∗ temp

24 end

25 end
26 sLKH= solution obtained by applying for each open depot the procedure LKH-3 to the

set of customers and the set of vehicles assigned to the considered depot in the
solution sbf

27 if (f(sLKH) < f(sbf )) then
28 sbf = sLKH

29 end
return: sbf

2.3.1 Search space

In order to extend the search space and avoid local optima, all the parts of the algorithms accept
infeasible solutions by applying a penalization term. Thus, the value of the objective function
f(sc) of a solution sc, feasible or not, is given by the following formula:
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f(sc) = f̄(sc) + pen∆Q (2.1)

Where pen is a penalization coefficient calculated as a percentage of the value of the objective
function corresponding to the initial solution, f̄(sc) is the sum of the arrival times at the cus-
tomers and ∆Q is the total amount of load violating the capacities of the vehicles. It is to note
that for feasible solutions the second term of the formula is equal to zero. The best improve-
ment strategy is used in the local search procedures, in which the penalized objective function
is considered. In the same way, the random moves applied may also be infeasible and penalized.

2.3.2 Initial solution

In order to provide a good initial feasible solution s0 in short computing time, a combination
of the k−means clustering algorithm [21] and the LKH-3 is used. Let us consider the instance
with Nc = 19, Nd = 5, p = 2, and Nv = 5 presented in Figure 2.1a, where the green triangles
are the customers and the red squares are the depots. The k − means algorithm is used to
define Nv clusters of customers and the corresponding centroids (Figure 2.1b: (the clusters are
represented by big circles, and their centroids are represented by blue stars). Then, a scoring
process is used to decide which depots are opened. The depots are chosen by considering their
closeness to the centroids of the clusters. Each cluster is assigned to its closest depot, and
each cluster assigned adds one point to the score of the depot (Figure 2.1c). Then, the p
depots with the highest scores are opened (depots D2 and D3 in Figure 2.1d), and the clusters
which were assigned to depots not selected, are allocated to the closest one among the open
depots (Figure 2.1d). In case of depots with the same score, the selection is random. Let us
consider OD as the set of the p opened depots. The next step is to apply the LKH-3 procedure,
solving a CCVRP for each depot j ∈ OD, considering all the customers allocated to the depot
j (Figure 2.1e). The number of vehicles assigned to each open depot j (NVj), is calculated
rounding up the ratio between the total demand of the customers allocated to j (demj), and

the vehicle capacity: NVj = ⌈demj/Q⌉. In case
∑
j∈OD

NVj ̸= Nv, a redistribution of the vehicles

is carried out. If
∑
j∈OD

NVj < Nv, a new vehicle is assigned to the depot which has the smallest

value of (NVjQ − demj), i.e. the depot which is using most intensively the capacity of its

assigned vehicles. On the other hand, if
∑
j∈OD

NVj > Nv, a vehicle is removed from the depot

which has the largest value of (NVjQ − demj), i.e., the depot with the largest unused vehicles
capacity. The LKH-3 algorithm is applied considering its default parameter configuration, except
for the number of runs which is set equal to 1. Since the obtained LLRP solution may be
infeasible in terms of the vehicle capacity, a repair procedure is applied if one or more routes are
infeasible. This procedure consists of applying a sequential inter-route local search procedure
on the insertion, swap, and 2 − opt neighborhoods (further details are given in section 2.3.3).
The move which minimizes the sum of the penalizations associated with the infeasibilities, plus
the global latency is applied (Figure 2.1f). Other approaches combining clustering and LKH
procedures have been successfully used to solve the CLRP in [22]. Nevertheless, the proposed
clustering and the location/allocation procedures are totally different from the one presented in
this work. The mentioned work proposed an iterative procedure which splits a giant tour into
clusters composed of consecutive customers taking into account the capacity of the vehicles, and
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then the location/allocation is determined by solving a MILP model.

2.3.3 Local search

The whole framework of the algorithms uses 8 neighborhoods, and the random moves are se-
lected from 6 of them. First, we describe the neighborhoods used in the random phase (Groups
i) and ii)), and then the remaining two neighborhoods, which are used only in the VND proce-
dure. Notice that the neighborhoods in Group i) are used also in the VND procedure. It is to
note that, since the objective of the LLRP is to minimize the global latency (and not the global
travel time) of the routes, each change of the current solution (concerning the positions of the
customers within the routes, the assignment of a route to an open depot, the opening or closing
of a depot) must be evaluated in an effective way in order to reduce the computing times of the
proposed procedures.

The neighborhoods in Group i) can be applied in both the intra-route and the inter-route
cases. For the inter-route case, they can be applied for routes starting from the same depot or
from different depots. The neighborhoods are the following ones:

• insertion: This operator selects a customer i and a position j, and relocates customer i
in position j.

• swap: This operator selects two customers i and j and swap their positions.

• 2− opt: This operator deletes two edges, (i, j) and (k, l), and creates two new edges, (i, k)
and (j, l). When the operator is applied to edges belonging to the same route, the edges
(i, j) and (k, l) are deleted, then the edges (i, k) and (j, l) are created, and the path from k
to j is reversed. The above is the classical 2− opt operator used in the traveling salesman
problems. On the other hand, when the operator is related to two different routes, a
crossing is applied: the heads of routes 1 and 2 (until nodes i and k, respectively) are
merged with the tails of routes 2 and 1 (from customers l and j, respectively).

The mentioned neighborhoods have been largely used in the routing problem literature, and
in the context of CCVRPs they were studied in the seminal work of [2], where the reader can
find the way to compute them efficiently. The evaluation of a move in these neighborhoods can
be performed in constant time by following the procedures proposed by [2].
The neighborhoods in Group ii) correspond to operators which change the depot/vehicle

relationship. These operators are applied only in the random phase, and are described below:

• DepotOpenClose: This operator selects two depots: i (open) and j (closed). All the
routes assigned to i are re-assigned to j. Since the current routes may not be good for
the new depot, an intra-route local search (IntraLS) procedure is applied to each route
by considering j as the starting depot. This procedure explores each insertion, swap
and 2 − opt neighborhood until no improvement is found, without cycles. The pseudo
code of procedure IntraLS is presented in Algorithm 2 (rc and rp represent, respectively,
the input and output routes; route(ng, rp) denotes the route obtained by exploring the
neighborhood ng starting from the route rp).

• RouteSwap: This operator selects two routes r1 and r2 allocated to different open depots
i and j, respectively. The relation route-depot is swapped, that is, r1 will start from depot
j and r2 will start from depot i. The IntraLS procedure is applied to the routes r1 and
r2.
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• RouteRelocation: This operator selects a route starting from a depot with more than one
route assigned. Then, this route is reassigned to a different open depot, and the IntraLS
procedure is applied.

Algorithm 2: IntraLS procedure

Input: rc, NeighIntra = {insertion, swap, 2− opt}
Output: rp (IntraLS route)

1 rp = rc
2 for (each ng ∈ NeighIntra) do
3 flag = true
4 while (flag = true) do
5 r′p = route(ng, rp)

6 if (f(r′p) < f(rp)) then

7 rp = r′p
8 flag = true

9 else
10 flag = false
11 end

12 end

13 end
return: rp

Since the application of the IntraLS procedure inside the neighborhoods of Group ii) implies
a larger computational effort compared to the neighborhoods in Group i), a lower (or equal)
probability of selecting moves in Group ii) is considered. This probability is defined by an
integer parameter GP . The random move selection is detailed in Algorithm 3. Notice that if
GP = 1 the random move has the same probability to be selected from all the six considered
neighborhoods. Similar neighborhoods have been used in other location routing problems, as
done in [23] for the CLRP. The main difference between the operators described in the mentioned
paper and those presented here is the local search procedure applied at the end of the move.
Furthermore, [23] include these operators into the insertion and swap neighborhoods, therefore
they are not allowed to be treated as “special moves” (with different probabilities of being
selected and optimized with a local search procedure).
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Algorithm 3: Random move selection (RandomMove)

Input: GP, sc
Output: sp

1 m = Rand[1, 3GP + 3]
2 if (m ≤ GP ) then
3 sp = RandomInsertion(sc)
4 end
5 if (GP < m ≤ 2GP ) then
6 sp = RandomSwap(sc)
7 end
8 if (2GP < m ≤ 3GP ) then
9 sp = RandomTwoOpt(sc)

10 end
11 if (m = 3GP + 1) then
12 (sp) = DepotOpenClose(sc)
13 end
14 if (m = 3GP + 2) then
15 (sp) = RouteSwap(sc)
16 end
17 if (m = 3GP + 3) then
18 (sp) = RouteRelocation(sc)
19 end

return: sp

It is to note that the presented simulated annealing scheme is also known in the literature as
multi-neighborhood simulated annealing [24, 25].

Finally, the following two neighborhoods are considered only in the VND procedures. In
case the operators are applied to different routes, these can start from the same depot or from
different depots. These neighborhoods are also well-known in the literature related to the vehicle
routing problems, and have been used successfully for the solution of the CCVRPs. Information
about how to compute them in constant time can be found in [26]:

• arc − swap: Two pairs of consecutive customers (i, j) and (k, l) exchange their position.
This operator can be applied both for the intra-route and the inter-route cases.

• shift2−1: A pair of consecutive customers (i, j) assigned to route r1, and a customer k
assigned to a different route r2 exchange their position.

2.3.4 Variable neighborhood descent strategies

Denote by Neigh = {insertion, swap, 2− opt, arc− swap, shift2−1} the set of the Nneigh = 5
previously described neighborhoods, and consider ng ∈ Neigh as the ngth neighborhood of the
current solution sc. The neighborhoods are explored according to the order in which they are
listed in the set Neigh. The three search strategies VND0, VND1 and VND2 are described in
the following:

• VND0: The exploration starts from the first neighborhood, which is explored until no
improvement is found. Then the exploration moves to the next neighborhood, and the
process is repeated until the last neighborhood does not improve the current solution sc.
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If some improvement was found in any of the neighborhoods, the search is restarted from
the first neighborhood. If no improvement is found for all the neighborhoods, the VND0
procedure ends.

• VND1: The exploration starts from the first neighborhood. Each neighborhood is explored
until no improvement is found, then the exploration moves to the next neighborhood: if
there is an improvement, the search restarts from the first neighborhood. The procedure
ends when no neighborhood improves the current solution sc.

• VND2: This procedure is a combination of the VND0 and VND1 search strategies previ-
ously described. When an improvement is found at the ngth neighborhood, the search re-
mains at the current neighborhood until no improvement is found, then the search restarts
from the first neighborhood. The procedure ends when no neighborhood improves the
current solution sc.

2.4 Computational results

The proposed metaheuristics were implemented in C++, and the experiments were carried out
on an Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz with 32 GB RAM, under Linux Ubuntu
18.04 operative system (single thread). The 76 instances belonging to the three available LLRP
benchmark data sets were considered to compare the proposed algorithms with the state-of-
the-art ones. The travel time matrix for all the instances was calculated with double precision.
In order to have a fair comparison with the algorithms proposed in [1], thirty random seeds
were created, and each instance was solved with each seed (i.e., 30 runs were executed for each
instance).

The 76 instances used in [1] to test the algorithms MA and RGA correspond to the 36 instances
of the Tuzun and Burke data set [27], the 30 instances of the Prodhon data set proposed by
Prins et al. in [28], and 10 out of the 19 instances of the Barreto data set [29]. Only the results
corresponding to the 30 instances of the Prodhon data set and to 8 out of the 10 instances of
the Barreto data set are reported in [3].

2.4.1 Parameter tuning

Since the number of combinations of the parameters is too large to test all of them, the iterated
racing for automatic algorithm configuration (IRACE) method (proposed in [30]) was used. This
software applies an elitist procedure, which iteratively takes samples of parameter combinations
according to a certain probability, selecting the best ones, and discarding those which lead to
low quality results. At each iteration the samples are updated, and the parameter values with
the best performance increase their probabilities of being selected.

The IRACE software was trained with a set of instances, which correspond to 1/3 of the
instances of each data set, considering different geographical distribution types, sizes and other
features. Globally, 26 out of the 76 instances were used: 12 from the Tuzun-Burke data set, 10
from the Prins et al. data set, and 4 from the Barreto data set. The objective of selecting a
heterogeneous sample of the instances is to obtain a parameter configuration that fits well for
different types of instances.

The output of the software IRACE is a set of parameter configurations, which correspond to
the most promising ones according to the training phase. Then, after preliminary experiments,
the best configurations were selected considering the obtained solution quality and the required
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computing time. It is important to note that each algorithm was calibrated independently of the
other algorithms. This implies that the algorithms SA-VND0, SA-VND1 and SA-VND2 have
different parameter configurations. The values evaluated for each parameter were the following:
t0={500, 800, 1000, 1200, 1500, 2000}, tf{1, 5, 10, 50, 100, 150}, α=[0.90 , 0.99], itSA={30, 50,
100, 200, 300, 500}, NCmax={1, 2, 3, 4, 5, 6}, GP={1, 2, 3, 4, 5, 6}, and pen={1, 3, 7, 10, 15,
20}. The selected configurations are presented in Table 2.1. The calibration process required
67020.9 s, 118441.5 s, and 122871.7 s for the algorithms SA-VND0, SA-VND1, and SA-VND2,
respectively.

Algorithm t0 tf α itSA NCmax GP pen1

SA-VND0 500 1 0.9893 300 6 1 1
SA-VND1 1000 1 0.9888 300 5 2 1
SA-VND2 1500 1 0.9885 500 2 1 15

Table 2.1: Best configuration of parameters for each algorithm

2.4.2 Gobal results

In order to provide an understandable presentation, the results are divided into four subsections,
one for each considered data set, and one for the overall data set. In the supplementary materials
the reader can find the detailed results of each run.

Tables 2.2 to 2.4 show the results obtained by the algorithms RGA, MA, SA-VND0, SA-
VND1 and SA-VND2 by executing 30 runs for each instance of the three data sets. Tables
2.3 and 2.4 also show the results obtained on the second and third data sets by the algorithm
GBILS executed 5 times for each instance, and the best solution value found by the two MILP
models (solved with the Gurobi 9.0.1 solver) and the three enumerative algorithms (implemented
with the algebraic modeling language AIMMS) as reported in [3]. The experiments in [1] were
performed on a 3.1 GHz computer with 4GB RAM. The above is the only information available
about this computer. Since the differences between the used computers are not clear, the
CPU times presented in the tables for the algorithms RGA and MA are those reported in [1];
nevertheless, by considering the ratio between the corresponding values of GHz, it is possible
to estimate that our computer is about 1.2 times faster than that used in [1]. On the other
hand, the computing times of the exact methods and of the algorithm GBILS are multiplied by
a “scaling factor” equal to 0.61, since the computer used in this work is faster than that used
in [3]. The value of the “scaling factor” was calculated as the ratio between the single thread
scorings of the two computers, which can be obtained in https://www.cpubenchmark.net/.
For each instance, the following values are given;

• Instance: Name of the instance.

• Nc: Number of customers.

• Nd: Number of depots.

• LB: Lower bound. It corresponds to the largest value between LB1, LB2 (that are the
lower bounds proposed in [1]), the optimal solution value of the linear relaxation found
after implementing the first MILP model (Model 1) presented in [3] for the LLRP, and
solving it using CPLEX 20.1, and the optimal solution value/best lower bound obtained

1As percentage of the value of the initial solution s0
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after implementing and solving (with a time limit of 216000 s) the first MILP model (Model
1) presented in [31] for the multi-depot k-traveling repairman problem (MDk-TRP). The
optimal solution value of the MDk-TRP is indeed a valid lower bound for the LLRP,
because it is a special case of LLRP in which the capacity constraints of the vehicles are
not considered, and all the available depots can be opened. It is to note that new tighter
lower bounds are reported in italic in the Tables 2.2 to 2.4. Furthermore, note that the
value (331.9) of LB2 reported in [1] for the instance 20-5-1 of the Prodhon data set is
larger than the proved optimal solution value 330.0 (see [3]). Hence, we implemented a
correct procedure and computed again the value of LB2 for all the instances.

• BKS0: Best known solution value considering the algorithms RGA, MA, the five exact
methods and the algorithm GBILS (i.e., the best known solution value found by the
current-state-of-the-art algorithms). Each BKS0 value proved to be the optimal solution
value by [3] is presented in boldface.

• BKS: Best known solution value considering all the algorithms.

• GapLB: Percentage gap between BKS and LB, computed as GapLB = 100 (BKS−LB)
LB .

It is to note that for the Prodhon and Barreto data sets, the columns Nc and Nd are not reported
since this information is present in the name of the instance: the first number corresponds to
Nc and the second one to Nd.
In addition, for each algorithm and each instance the following values are reported:

• Best: Best solution value found.

• GapB: Percentage gap between Best and BKS, computed as GapB = 100 (Best−BKS)
BKS .

• Avg: Average solution value (computed over 30 runs) for the RGA, MA, SA-VND0, SA-
VND1 and SA-VND2.

• time: Global computing time for finding the Best value (expressed in seconds). For
all the algorithms, with the exception of the exact methods, it corresponds to the average
computing time spent for each run multiplied by the number of runs. The global computing
time of the exact methods proposed in [3] is given by the sum of the “scaled” computing
times required by the five exact methods for solving the considered instance. In particular,
for each instance a time limit of 2 hours was imposed for the execution of each MILP
model, while for the execution of each enumerative algorithm the time limit was set to
2000 seconds for the instances with Nc ≤ 50 and to 2 hours for the remaining instances.
This means that if, for an instance with Nc > 50, all the five exact methods reach the
corresponding time limit, the value of time is given by 0.61*(2*2000+3*7200)=21960.00
seconds.

The values of Best equal to BKS are presented in boldface. The average values Avg better
than or equal to BKS0 are presented in italic. For each column, at the bottom of the cor-
responding table an average summary (Global avg) is presented, in which the best values are
presented in boldface.
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The Tuzun–Burke data set

The results for these instances are given in Table 2.2. No results for the exact algorithms and
the algorithm GBILS are presented on this data set in [3]. As the table indicates, the proposed
metaheuristics outperform the other two algorithms (RGA and MA) in terms of solution quality.
Each of the proposed algorithms is able to improve the value BKS0 for all the 36 instances of
this data set. Algorithms SA-VND0, SA-VND1 and SA-VND2 provide new values of BKS for
14, 10 and 13 instances, respectively. The average gap between the best solution value found
and the new value of BKS is 8.7% for RGA and 5.0% for MA. For these two algorithms, for
some instances the gap reaches 10%. It is to note that for each of the algorithms SA-VND0,
SA-VND1, and SA-VND2 the corresponding average values Avg are better than BKS0 for
35 instances. In terms of computing time, both RGA and MA are faster than the proposed
metaheuristics. The fastest one among the three proposed algorithms is SA-VND0. For all but
6 instances in this data set, the value of the solution obtained by solving the MDk-TRP is a
lower bound tighter than that proposed in [1]. The new LB values presented for these instances
correspond to the optimal solution values of the MDk-TRP, with exception of the instances
121112, 121122, 121222, and 123122 for which the best lower bound is presented. It is to note
that these values are very close to the optimal solution ones (the average MILP optimality gap
is equal to 0.008%). The average and maximum values of GapLB are equal to 15.1% and 32.4%,
respectively.

The Prodhon data set

The results of this data set are presented in Table 2.3. Also for these instances, the proposed
algorithms globally outperform the currently published algorithms in terms of solution quality.
Over the 30 instances of this data set, each of the proposed algorithms is able to improve or
find the value BKS0 for 27 instances. Algorithms SA-VND0, SA-VND1 and SA-VND2 provide
new values of BKS for 10, 5 and 5 instances, respectively, while for 9 instances the proposed
algorithms find solution values equal to BKS0. It is to note that for these 9 instances the
solutions found by the exact methods were proved to be optimal by [3]. The best solution
values found by the three proposed metaheuristics are equal to those found by the algorithms
GBILS for 5 instances, while are better for 25 (SA-VND0), 24 (SA-VND1) and 24 (SA-VND2)
instances. For the four instances with Nc = 20 the three proposed algorithms converge always
to the optimal solution. Regarding the average values Avg, the proposed algorithms find better
values than those found by RGA and MA for all the instances. In addition, for 20 (SA-VND0),
18 (SA-VND1) and 19 (SA-VND2) instances, the average value Avg obtained by the proposed
metaheuristics is better than or equal to BKS0. The overall results are very similar for the
three new algorithms, with SA-VND0 showing slightly better results. Also for this data set, in
terms of computing time, MA, RGA and GBILS are faster than the proposed metaheuristics,
and the fastest one among the latter algorithms is SA-VND0. The three proposed algorithms
are globally faster than the exact methods. For 18 (resp. 1) instances in this data set the value
of the optimal solution of the MDk-TRP (resp. the linear relaxation of the LLRP) is the tightest
lower bound, while for the remaining 11 instances LB1 is the largest lower bound value. The
average and maximum values of GapLB are equal to 8.9% and 25.0%, respectively. However,
it is to note that for the 11 instances of this data set whose optimal solution value is known,
the average and maximum values of GapLB are equal to 5.4% and 11.4%, respectively, while
the average and maximum values of GapB (i.e., of the percentage gap of the Best value with
respect to the corresponding optimal solution value) for the proposed metaheuristics are equal
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to 0.05% and 0.5%, respectively, which means that the real optimality gaps for these instances
are much smaller than the corresponding GapLB values.

The Barreto data set

For this data set, the results obtained by the proposed metaheuristics and by the state-of-the-
art algorithms are given in Table 2.4. It is to point out that for the instance Christ − 50 − 5
the best solution values found by the proposed algorithms (Best = 1661.6), and also by the
algorithm MA (Best = 1690.8), are smaller than the optimal solution value (Best = 1719.9)
reported in [3]. After implementing and executing (using CPLEX 20.1) the first MILP model
(Model 1) presented in [3] we proved that the solution found by the proposed metaheuristics
is optimal (the details are given in the Appendix 2.5), hence its solution value is presented
in boldface in column BKS. For the instance Christ − 75 − 10 we found a valid lower bound
equal to 2260.1, which is larger than the best solution value (Best = 2228.4) reported in [3].
Because of the above, these two instances were not considered in the global average results of
the exact methods and of the algorithm GBILS. For the instances Min-134-8 and Or-117-14 no
results are reported in [3]. The last line of Table 2.4 gives the average values (Global avgNG)
computed by considering only the 6 instances whose values are correctly reported in [3]. The
table shows that each of the proposed algorithms is able to improve the value BKS0 for 5 out
of the 10 instances (including the optimal solution found for the instance Christ − 50 − 5);
for the remaining 5 instances, the three algorithms are able to find the optimal solution value.
Algorithms SA-VND0, SA-VND1 and SA-VND2 provide new values of BKS for 4, 2 and 2
instances, respectively. Comparing the average values Avg, for all the instances the proposed
algorithms find better results than those obtained by the RGA and MA algorithms. In addition,
for all the instances but one, the average value Avg obtained by the proposed metaheuristics is
better than or equal to BKS0. Also, for 4 instances the average value Avg obtained by the three
proposed algorithms is equal to the optimal solution value. In terms of computing times there
are not big differences between the heuristic algorithms, with the exception of algorithm GBILS,
which has much smaller computing times. On the other hand, the exact methods are clearly
more time consuming than the heuristic ones. The global results show that the performances of
the three proposed algorithms are similar for what concerns the solution quality, while algorithm
SA-VND0 has the smallest computing times. For all the instances in this data set the values
of the new proposed lower bounds are tighter than those proposed in [1]. For 9 instances the
solution value found by solving the MDk-TRP is the best lower bound, and for one instance
the value of the linear relaxation of the LLRP is the tightest one. All the 9 instances but the
instance Min−134−8 were solved to optimally (solving the corresponding MDk-TRP), and the
MILP optimality gap obtained for this instance is equal to 0.014%. The average and maximum
values of GapLB are equal to 6.2% and 12.9%, respectively, considering all the 10 instances,
and to 5.4% and 12.6%, respectively, considering only the 6 instances correctly solved by [3].
However, it is to note that for the 6 instances of this data set whose optimal solution value is
known, the average and maximum values of GapLB are equal to 5.1% and 12.6%, respectively,
while the proposed metaheuristics solve all these instances to optimality.

Overall data set

By considering the three data sets, we can note that the average values of the percentage gaps
between Avg and Best computed for each instance and each of the algorithms RGA, MA, SA-
VND0, SA-VND1 and SA-VND2 are, respectively, 10.1%, 11.3%, 1.5%, 1.6% and 1.4% for the
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Tuzun-Burke data set, 6.5%, 6.6%, 0.9%, 0.9% and 0.9% for the Prodhon data set, and 10.9%,
6.4%, 0.7%, 0.8% and 0.7% for the Barreto data set. This proves that the proposed algorithms
not only provide better solutions, but also are much more stable than the current state-of-the-art
algorithms. This analysis cannot be performed for the algorithm GBILS, since the average values
found by this algorithm are not reported in [3]. Moreover, it can be noted that the algorithm
SA-VND0 is able to find or improve the best solution value found by GBILS for all the 36
instances analyzed, while the algorithms SA-VND1 and SA-VND2 do that for all the instances
but one. Furthermore, in, respectively, 29, 28 and 29 instances the average value obtained by the
algorithms SA-VND0, SA-VND1 and SA-VND2 is better than or equal to the best solution value
found by GBILS. Similarly, the proposed algorithms are able to find or improve the best solution
value found by the exact methods for all the instances but three. Furthermore, in, respectively,
28, 27 and 27 instances the average value obtained by the algorithms SA-VND0, SA-VND1 and
SA-VND2 is better than or equal to the best solution value found by the exact methods. With
respect to the lower bounds, by considering all the 76 instances of the three data sets, the value
of the optimal solution/best lower bound obtained by solving the MDk-TRP improved the LB
value corresponding to LB1 and LB2 for 57 instances, while the value of the linear relaxation
of the LLRP did it for 2 instances. The average and maximum values of GapLB are equal to
11.5% and 32.4%, respectively. Despite these values are large, it is important to remark that
the current lower bounds are not good approximations for the optimal solution values since, as
previously mentioned, even for the 17 instances for which the optimal solution value is known,
the value of GapLB is large. Indeed, if only the instances solved to optimally are considered,
the average value of GapLB is equal to 5.3%, with a maximum value equal to 12.6%. For 15 out
of these 17 instances the proposed metaheuristics are able to find the optimal solution value,
and, for the remaining 2 instances, the maximum value of GapB for the proposed algorithms is
equal to 0.5%. Thus, since the proposed metaheuristics find optimal or near optimal solutions
for these 17 instances, it is possible to infer that the algorithms provide good quality solutions
also for the remaining 59 LLRP instances.
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2 Effective metaheuristics for the latency location routing problem

Figure 2.1: Initial Solution Procedure. (a) An LLRP instance. (b) K −means procedure. (c)
Scoring. (d) Allocation process. (e) LKH-3 procedure. (f) Repair procedure.
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2 Effective metaheuristics for the latency location routing problem
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2.4.3 A comparison with the currently published heuristic algorithms

In order to compare the efficiency of the proposed metaheuristics with respect to that of the
published ones, experiments to determine the computing time required to reach target values
were carried out. Let us consider for each instance a target value given by the minimum value
between the solution values provided by the algorithms RGA, MA and GBILS. These exper-
iments considered a time-limit for each instance equal to the minimum between 3000 s and
the global scaled computing time required by the corresponding best algorithm for executing
its required number of runs. The SA-VND0 algorithm is able to find or improve the target
value for all the instances, while both the SA-VND1 and SA-VND2 algorithms are not able to
reach the target value for the instance 50-5-3, finding solution values with gaps equal to 0.1%
and 0.17%, respectively. Furthermore, the SA-VND1 algorithm is not able to reach the target
value within the time limit for the instance 200-10-2, obtaining a gap equal to 0.39%. Those
are the only cases for which the proposed algorithms can not reach the target value within the
time limit. The computing times for each instance and each algorithm are drawn in Figure 2.2,
where Best heuristic corresponds to the best algorithm among RGA, MA and GBILS for the
considered instance. For space reasons the horizontal axis presents only the associated data set
and not the name of all the instances. The data sets are sorted from the less complex to the
most complex (in terms of size) i.e. Barreto, Prodhon, and Tuzun-Burke. The summary of the
average results regarding the computing times, and the number of instances for which each of
the proposed algorithms is faster than the Best heuristic is presented in Table 2.6. According to
the results, the global average computing time required by the Best heuristic to reach the target
value is larger than that required by each of the three proposed algorithms (considering all the
instances). Furthermore, the computing time required by the algorithms SA-VND0, SA-VND1,
and SA-VND2 to reach the target value is smaller than the computing time required by the
Best heuristic in 66, 61, and 59 instances, respectively (columns # faster than BH in the Table).
Analyzing separately each data set, it is possible to note that the three proposed metaheuristics
require considerably less computing time than the Best heuristic for finding the target value in
the Tuzun-Burke and the Barreto data sets, while for the Prodhon data set the algorithm SA-
VND0 is slightly faster than the Best heuristic, while the algorithms SA-VND1 and SA-VND2
are slightly slower than it. As we already proved in the previous sections, running the proposed
metaheuristics for a longer time leads to much better solutions compared to those obtained
by the state-of-the-art heuristic algorithms. Nevertheless, we also proved that, in general, the
proposed metaheuristics are able to find similar quality solutions in shorter computing times
compared to those of the published heuristic methods.
It is to note that, in order to reduce the global computing times of the proposed metaheuristics

it is also possible to reduce the number of runs executed for each instance. The average results
obtained when the number of runs is reduced to 10 and 5 runs are analyzed in Appendix 2.5.

29



2 Effective metaheuristics for the latency location routing problem

T
ab

le
2.
4:

D
et
ai
le
d
re
su
lt
s
fo
r
th
e
th
ir
d
d
at
a
se
t
(B

ar
re
to

In
st
an

ce
s)
.

In
st
an

ce
LB

BK
S 0

BK
S

Ga
p L

B
RG

A
M

A
G
BI

LS
Ex

ac
tm

et
ho

ds
SA

-V
N
D
0

SA
-V

N
D
1

SA
-V

N
D
2

Be
st

Ga
p B

A
vg

tim
e

Be
st

Ga
p B

A
vg

tim
e

Be
st

Ga
p B

tim
e

Be
st

Ga
p B

tim
e

Be
st

Ga
p B

A
vg

tim
e

Be
st

Ga
p B

A
vg

tim
e

Be
st

Ga
p B

A
vg

tim
e

Ch
ris

t-5
0-5

15
23

.5
16
90
.8

16
61

.6
9.1

18
41
.7

10
.8

19
72
.3

73
8.0

16
90
.8

1.8
17
82
.4

59
1.0

-
-

-
-

-
-

16
61

.6
0.0

16
62

.1
54
1.5

16
61

.6
0.0

16
62

.1
52
8.7

16
61

.6
0.0

16
62

.3
81
3.7

Ch
ris

t-7
5-1

0
22

60
.1

25
90
.3

23
83
.0

5.4
27
03
.4

13
.4

28
93
.9

10
23
.0

25
90
.3

8.7
26
89
.8

87
3.0

-
-

-
-

-
-

24
03
.8

0.9
24
59
.0

11
59
.1

23
83

.0
0.0

24
57

.4
13
84
.4

24
08
.9

1.1
24
54
.9

15
88
.4

Ch
ris

t-1
00
-10

35
51

.8
39
84
.1

37
92
.0

6.8
41
16
.9

8.6
44
50
.8

14
82
.0

40
58
.2

7.0
41
94
.9

10
23
.0

39
84
.1

5.1
45
1.9

40
43
.1

6.6
21
96
0.0

37
92

.0
0.0

38
31

.2
19
58

.7
38
06

.4
0.4

38
38

.9
22
93
.6

37
95
.2

0.1
38

25
.4

28
76
.3

Ga
sk
ell
-21

-5
62

2.7
65
3.5

65
3.5

4.9
69
9.8

7.1
81
0.2

32
4.0

65
8.4

0.8
74
1.1

44
1.0

65
3.
5

0.0
0.9

65
3.
5

0.0
14
.9

65
3.
5

0.0
65

3.5
11
6.4

65
3.
5

0.0
65

3.5
10
2.2

65
3.
5

0.0
65

3.5
16
9.5

Ga
sk
ell
-29

-5
10

64
.9

11
99
.3

11
99
.3

12
.6

12
38
.4

3.3
13
66
.1

36
6.0

12
24
.5

2.1
12
96
.3

46
8.0

11
99

.3
0.0

5.2
11

99
.3

0.0
16
18
.1

11
99

.3
0.0

11
99

.3
31
1.0

11
99

.3
0.0

11
99

.3
25
5.4

11
99

.3
0.0

11
99

.3
48
5.9

Ga
sk
ell
-32

-5b
15

22
.8

15
52
.8

15
52
.8

2.0
16
22
.3

4.5
17
86
.2

37
2.0

15
71
.0

1.2
16
68
.4

48
3.0

15
52

.8
0.0

4.9
15

52
.8

0.0
61
2.9

15
52

.8
0.0

15
53
.3

41
7.8

15
52

.8
0.0

15
53

.3
33
7.6

15
52

.8
0.0

15
53
.3

65
0.7

Ga
sk
ell
-36

-5
15

96
.3

16
27
.2

16
27
.2

1.9
16
46
.1

1.2
16
94
.2

40
8.0

16
42
.4

0.9
16
47
.0

52
2.0

16
27

.2
0.0

3.2
16

27
.2

0.0
49
.4

16
27

.2
0.0

16
27

.2
30
8.3

16
27

.2
0.0

16
27

.2
27
4.0

16
27

.2
0.0

16
27

.2
46
5.8

M
in-

27
-5

53
82

.0
53
87
.6

53
87
.6

0.1
53

87
.6

0.0
63
43
.8

30
0.0

53
87

.6
0.0

56
97
.0

83
4.0

53
87

.6
0.0

84
.0

53
87

.6
0.0

28
.9

53
87

.6
0.0

53
87

.6
17
6.3

53
87

.6
0.0

53
87

.6
14
7.4

53
87

.6
0.0

53
87

.6
26
7.0

M
in-

13
4-8

19
35

5.7
23
38
7.0

21
85
2.4

12
.9

25
49
6.0

16
.7

28
87
2.8

24
06
.0

23
38
7.0

7.0
26
01
2.5

22
20
.0

-
-

-
-

-
-

21
85

2.
4

0.0
22

30
7.3

22
25
.7

21
91

0.5
0.3

22
30

9.2
26
24
.0

21
88
1.8

0.1
22

27
8.1

32
50
.7

Or
-11

7-1
4

50
52

6.1
56
20
9.0

53
79
8.5

6.5
60
58
0.0

12
.6

70
62
6.3

13
74
.0

56
20
9.0

4.5
61
39
6.2

15
45
.0

-
-

-
-

-
-

53
79

8.
5

0.0
54

86
6.7

12
63
.1

53
85

9.1
0.1

54
80

5.9
12
65
.5

53
79

8.
5

0.0
54

90
5.8

19
58
.4

Gl
ob

al
av
g.

87
40
.6

98
28
.2

93
90
.8

6.2
10
53
3.2

7.8
12
08
1.7

87
9.3

98
41
.9

3.4
10
71
2.6

90
0.0

-
-

-
-

-
-

93
92

.9
0.
1

95
54
.7

84
7.
8

94
04
.1

0.
1

95
49

.4
92
1.3

93
96
.6

0.
1

95
54

.7
12
52
.6

Gl
ob

al
av

gN
G

21
90
.5

23
35
.7

22
82
.1

5.4
24
51
.8

4.1
27
41
.9

54
2.0

24
23
.7

2.0
25
40
.8

62
8.5

24
00
.7

0.8
91

.7
24
10
.6

1.1
40
47
.4

23
68

.7
0.
0

23
75
.3

54
8.1

23
71
.1

0.1
23
76
.6

56
8.4

23
69
.3

0.
0

23
74

.4
81
9.2

T
ab

le
2.
5:

A
v
er
ag

e
so
lu
ti
on

va
lu
es

an
d
ga

p
s
p
ro
v
id
ed

b
y
ea
ch

p
ar
t
of

th
e
al
go

ri
th
m
s.

D
at

a
se
t

In
it
ia
l

SA
-V

N
D
0

SA
-V

N
D
1

SA
-V

N
D
2

A
vg

ga
p

A
vg SA

ga
p

SA
A
vg

LK
H

ga
p

LK
H

A
vg SA

ga
p

SA
A
vg

LK
H

ga
p

LK
H

A
vg SA

ga
p

SA
A
vg

LK
H

ga
p

LK
H

Tu
zu

n-
B
ur

ke
45
13
.2

20
.4

39
31

.5
2.
4

39
10

.6
2.
0

39
42
.5

2.
6

39
16

.9
2.
2

39
33
.3

2.
4

39
10

.6
2.
0

P
ro

dh
on

16
41
.7

9.
2

15
27

.1
1.
3

15
23

.6
1.
2

15
28
.2

1.
4

15
24

.6
1.
2

15
27
.5

1.
4

15
23
.9

1.
2

B
ar

re
to

12
13
3.
5

11
.7

95
74

.1
1.
0

95
56
.5

0.
9

95
75
.2

1.
0

95
51

.1
0.
9

95
77
.6

1.
0

95
56

.4
0.
8

G
lo
ba

la
vg

43
82
.4

14
.8

37
24

.8
1.
8

37
11

.3
1.
5

37
30
.6

1.
9

37
13

.9
1.
6

37
26
.3

1.
8

37
11

.3
1.
5

30



2.4 Computational results

Figure 2.2: Computing times (s) required by each metaheuristic to reach the target values for
the considered instances.

2.4.4 A detailed analysis of the components of the metaheuristics

Consider s0 as the initial solution, sSA as the best solution found by the proposed algorithm after
finishing the simulated annealing frame, and sLKH as the solution found by applying the LKH-3
procedure to sSA. Table 2.5 presents, for each data set, the average values of the initial solution
s0 and of the best solutions sSA and sLKH found for each instance by executing 30 runs, and the
averages of the corresponding gaps computed with respect to the best known solution value for
each considered instance. It is to note that the initial solution is shared by the three proposed
metaheuristics. The largest improvement is achieved by the simulated annealing frame, while
the LKH-3 procedure further improves the sSA solution value. This behavior is similar for the
three metaheuristics. The largest improvements produced by the LKH-3 procedure (on average
0.4%) are found in the first data set, while for the second and the third data sets the average
improvements are around 0.2% and 0.1%, respectively. Although the LKH-3 procedure does
not improve substantially the solution values, it has an important effect on the stability of the
algorithm; without including the LKH-3 procedure, the SA-VND0 and SA-VND2 algorithms
are able to improve or find the value BKS0 for, respectively, 70 and 72 instances, instead of
the 73 instances they are able to find by including the LKH-3 procedure. On the other hand
the algorithm SA-VND1 is able to improve or find the value BKS0 for 73 instances with or
without including the LKH-3 procedure. Furthermore, if the LKH-3 procedure is not executed,
the number of instances for which the average values Avg obtained by the metaheuristics are
better than or equal to BKS0 is reduced by 4, 4 and 3, for the algorithms SA-VND0, SA-VND1,
and SA-VND2, respectively.

In Figure 2.3 it is possible to analyze the percentage of the global computing time required by
each stage of the algorithms. The simulated annealing frame (SA in the figure) is the one which
requires the largest computing time. The computing time required by the LKH-3 procedure
is close to 6% of the total computing time for the algorithms SA-VND1 and SA-VND2, and
around 9% for the algorithm SA-VND0.
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Table 2.6: Average computing times required by each metaheuristic to reach the target values
for each data set.

data set
Best heuristic (BH) SA-VND0 SA-VND1 SA-VND2

time time
# faster
than BH

time
# faster
than BH

time
# faster
than BH

Tuzun-Burke 1854.7 103.9 36 206.5 36 201.0 36

Prodhon 163.3 124.1 21 302.0 16 274.1 15

Barreto 577.9 7.9 9 9.2 9 11.5 8

Total 1019.0 99.3 66 218.3 61 204.9 59

Figure 2.3: Relative computing time required by each part of the proposed metaheuristics.

Table 2.7: Average results obtained by each part of the combined phase (SA-VND).

Criteria SA-VND0
pure
SA0

pure
VND0

SA-VND1
pure
SA1

pure
VND1

SA-VND2
pure
SA2

pure
VND2

GapB 0.1 9.6 4.9 0.2 10.6 4.7 0.2 9.0 6.1

GapA−B 1.3 11.8 10.4 1.4 11.9 10.2 1.3 11.7 11.6

Avg. time 146.7 38.0 25.1 228.2 34.7 25.6 221.5 47.8 25.2
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It is possible to conclude that the proposed metaheuristics produce high quality results even
without the LKH-3 procedure; nevertheless, by paying a relative low cost in terms of computing
time, the stability of the algorithms improves.

Figure 2.4: Percentage average contribution of the neighborhoods. (a) SA. (b) VND.

As it was previously shown, the combined part of the algorithm (SA-VND) is the one which
impacts the most on the final solution. In order to understand the importance and the inter-
action for each component of the combined phase, that is, the SA and the VND procedures,
experiments considering independently each procedure were carried out. Table 2.7 presents the
average results, regarding the gap between the best solution value found and the updated BKS
(GapB), the gap between the average solution value and the updated BKS (GapA−B), and the
average computing time in seconds (Avg. time). The columns pure SA0, pure SA1, and pure
SA2 correspond to the results obtained by deleting the VND0, VND1, and VND2 procedures,
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respectively. It is to note that for the cases of pure VND0, pure VND1, and pure VND2, the pa-
rameter itSA was set equal to 1 in order to re-start the VND procedures by evaluating/applying
a single random move. According to the results, the computing times can be significantly re-
duced by applying each heuristic by itself. Nevertheless, the quality of the best and average
solutions found is considerably affected. The values of GapB are close to 10% (5%) when only
the SA (VND) is applied, while the original metaheuristics present GapB values close to 0.0%.
Furthermore, the GapA−B values are always above 10% when each heuristic is independently
applied, which means that it is necessary to run several times the algorithms in order to obtain
good quality solutions. This behavior is totally the opposite to that observed in the original
metaheuristics, which are very stable (as we proved in the previous experiments). These results
highlight the importance of combining both heuristic approaches.
Another interesting analysis regards the importance of each neighborhood both in the SA and
the VND phases. Figure 2.4 presents the percentage average contribution of each neighborhood
in terms of the number of times it is applied over the total number of moves applied, for each
of the proposed algorithms. It is to note that the contribution of the neighborhoods is analyzed
independently in the SA and VND phases. For the case of the SA neighborhoods, the analysis
considered the number of times a move was accepted (independently if it improved the solution
or not) over the total number of SA moves accepted, while for the case of VND the analysis con-
sidered the number of times a move was applied improving the current solution over all the VND
applied moves. Regarding the SA phase (see Figure 2.4.a), as it is possible to note, the contribu-
tion of each neighborhood for the SA-VND0 and the SA-VND2 algorithms is similar, presenting
a dominance in the use of neighborhoods of Group ii), while for the SA-VND1 algorithm the
contribution of all the neighborhoods is similar, with a slightly dominance of the neighborhoods
in Group i). The above can be explained by considering the values of the parameter GP , which
is equal to 1 for the algorithms SA-VND0 and SA-VND2, and equal to 2 for the algorithm
SA-VND1. When GP = 1 all the neighborhoods have the same probability of being selected,
and as it has been mentioned before, the neighborhoods in Group ii) include an embedded local
search procedure, which implies that the generated move has potentially good quality, and thus
higher probability of being accepted. On the other hand, when GP = 2, the neighborhoods in
Group i) have the double of probabilities of being selected in comparison to the neighborhoods
in Group ii). With respect to the VND phase (see Figure 2.4.b), due to the descent design of
the search strategy the neighborhoods explored at the beginning contribute the most, and this
behavior is shared by the three proposed algorithms. It is possible to note that in the SA-VND1
algorithm the contribution of the insertion neighborhood is larger in comparison to the other
two algorithms, which implies a smaller contribution for the other neighborhoods. This situation
is explained by the nature of algorithm SA-VND1, in which each time an improvement is found
the search is immediately re-started from the insertion neighborhood. On the other hand, the
algorithms SA-VND0 and SA-VND2 allow to explore in a deeper way the other neighborhoods,
which can be a possible explanation for the better results obtained by these two algorithms in
comparison to the SA-VND1 algorithm.

According to the previous experiments, all the neighborhoods provide a contribution (whose
magnitude depends either on their position in the VND or on the probability of selection in
the SA) on the global performance of the algorithm. Thus, an experiment corresponding to the
removal of each neighborhood was carried out in order to determine the effects of this action
on the performance of the algorithms, both in terms of computing time and solution quality.
Table 2.8 presents the global average results of this experiment by considering 5 runs for each
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instance. In order to evaluate the effect of removing each neighborhood, the following criteria
were considered for the Global case (average results considering the three algorithms SA-VND0,
SA-VND1, and SA-VND2):

• Best: Best solution value found.

• Avg: Average solution value (computed over 5 runs).

• time (avg): Average computing time.

• GapB: Percentage gap between Best and the new best known solution value (reported in

columns BKS in Tables (2.2-2.4)), computed as GapB = 100 (Best−BKS)
BKS .

• GapBKS0: Percentage gap between Best and the best known solution value found by
the current state-of-the-art algorithms (reported in columns BKS0 in Tables (2.2-2.4)),

computed as GapBKS0 = 100 (Best−BKS0)
BKS0

.

• leq BKS: The number of instances for which the best solution value Best found by the
proposed algorithm is better than or equal to BKS.

• leq BKS0: The number of instances for which the best solution value Best found by the
proposed algorithm is better than or equal to BKS0.

The mentioned criteria are relevant for analyzing the performance of the algorithms with
respect to both the currently published algorithms and the original version of the proposed
metaheuristics. According to the results, by removing the neighborhoods from the VND pro-
cedure reduces the computing time, but also affects the quality of the average solution. The
reduction in computing time depends on the position of the neighborhood in the VND pro-
cedure, thus, by removing the insertion or the swap neighborhoods it is possible to achieve
the largest reduction in computing time. By removing the other neighborhoods in the VND
procedure the reduction in computing time is marginal. The results regarding the Avg values
also indicate that the neighborhoods insertion and 2− opt are essential in the VND procedure
in order to consistently provide good quality solutions. By comparing the original algorithms
with each of the versions obtained by removing each neighborhood from the VND procedure,
it is possible to note that the original version of the algorithms is the best for all the criteria
but one. On the other hand, the removal of the neighborhoods in Group i) from the random
phase (SA) in general does not affect the performance of the algorithms, while the removal of
the neighborhoods in Group ii) affects negatively the performance of the algorithms in terms
of solution quality. It is to note also that the computing times are generally not reduced by
removing neighborhoods in the SA procedure. this occurs because the number of random moves
evaluated is not changed, thus, when a neighborhood is deleted the algorithms evaluate the same
number of moves from the rest of the neighborhoods. By considering all the neighborhoods, the
one that impacts the most on the performance of the algorithms (in terms of solution quality)
is the DepotOpenClose. In fact, this neighborhood affects the strategic part of the problem, i.e.
the location of the depots, and, when it is not considered, the search avoids an important part
of the solution space. By comparing the original algorithms with each of the versions obtained
by removing each neighborhood from the SA procedure, it is possible to note that the original
version of the algorithms is the best in all the criteria but two. By considering all the possible 12
versions, it is possible to note that the best Global performance is obtained by considering the
original algorithms. The original algorithms provide the best values for 5 out of the 7 criteria.
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Table 2.8: Global average results by removing each neighborhood.

Removed Neighborhood Best Avg
time
(avg)

GapB GapBKS0
leq
BKS

leq
BKS0

None (original algorithms) 3667.8 3702.0 198.4 0.57 -2.58 19.7 72.3

insertion 3709.9 3758.9 157.5 1.36 -1.82 12.7 62.7

swap 3674.9 3710.5 178.8 0.75 -2.40 16.7 70.7

2-opt 3701.8 3742.1 196.0 0.94 -2.23 15.0 70.0

arc-swap 3673.0 3709.4 197.1 0.64 -2.52 18.0 71.3

shift2−1 3672.5 3707.9 199.3 0.62 -2.53 17.7 69.7

RandomInsertion 3667.0 3702.7 205.9 0.61 -2.54 17.3 71.3

RandomSwap 3670.2 3709.5 193.8 0.66 -2.50 16.7 70.7

RandomTwoOpt 3678.0 3709.2 195.8 0.60 -2.56 17.0 71.7

DepotOpenClose 3936.2 3956.2 193.6 9.28 5.79 12.3 37.0

RouteSwap 3671.2 3705.3 204.9 0.65 -2.51 15.3 71.7

RouteRelocation 3721.0 3750.0 215.9 2.15 -1.06 12.7 56.7

According to the results presented, there are no reasons for excluding some of the proposed
neighborhoods from the SA-VND framework presented in this work.

As it was mentioned before, the presented neighborhoods have been used in several routing/location-
routing problems in the literature, some of them have also been used by previous algorithms
for solving the LLRP. Indeed, all the neighborhoods used in the VND phase with exception of
the arc − swap and the shift2−1, were also included in the RGA algorithm presented in [1],
and all those neighborhoods but the arc− swap, the shift2−1 and the inter-route 2− opt were
included in the GBILS algorithm [3]. Furthermore, the solution space of the MAs [1] is similar
to the solution space of the three proposed metaheurisrtics. Despite the above, the proposed
algorithms clearly outperform all the contenders in the literature in terms of solution quality.
Thus, we can conclude that the combination of all the proposed ingredients of the metaheuristics
presented in this work, i.e., the initial solution, the exploration (combining multi-neighborhood
SA and VNDs), the LKH-3 procedure, and the search space (allowing infeasible solutions), are
more effective than the methodologies previously used in the literature.

2.4.5 A statistical comparison of the proposed metaheuristics

According to the results reported in the previous sections, it is evident that, for what concerns
the quality of the solutions found, the proposed metaheuristics overcome the state-of-the-art
heuristic algorithms MA, RGA, and GBILS. Nevertheless, it is not clear which of the proposed
algorithms is the dominant one. In order to obtain statistical information about the means
of the algorithms, we conducted hypothesis tests using three t-tests, considering 30 runs for
each instance, comparing: SA-VND0 vs SA-VND1, SA-VND0 vs SA-VND2 and SA-VND1 vs
SA-VND2. The t-test was chosen in order to perform the same statistical analysis proposed
in [1]. The results indicate that for 60 instances, with a 5% of significance level, there are no
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Table 2.9: Summary of the results of the hypothesis tests for comparing the means of the algo-
rithms.

Preferred Algorithm(s) Instances
SA-VND0 111212, 121112, 133112, 100-10-1b

SA-VND2 131122, 133122, 133222, 100-10-2b, Christ-100-10

SA-VND0 and SA-VND1 123212, 200-10-3, Christ-100-10

SA-VND0 and SA-VND2 111122, 111122, 112122, 122122

statistically significant differences among the means of the algorithms. The 16 instances for
which there are differences among the means of the algorithms are presented in Table 2.9, with
their preferred algorithm.

After analyzing the results, it is possible to conclude that the quality of the solutions pro-
vided by the three algorithms is similar for most of the studied instances. SA-VND1 is the
algorithm with less preferences, while SA-VND0 and SA-VND2 presented different behaviors
for few instances.

2.5 Conclusions and future research

An effective metaheuristic framework for the latency location routing problem (LLRP) was
proposed. It combines the well known simulated annealing and variable neighborhood descent
techniques.

The three proposed metaheuristics (SA-VND0, SA-VND1 and SA-VND2) were tested on the
three classical LLRP benchmark data sets, with a total of 76 instances. Extensive computational
experiments show that the proposed metaheuristics outperform the state-of-the-art heuristic
algorithms MA, RGA (proposed in [1]), and GBILS (proposed in [3]), and the five exact methods
(proposed in [3]) in terms of solution quality. Compared with the currently published algorithms,
each of the proposed algorithms is able to improve or reach the best known solution value for 73
out of 76 instances. In addition, by neglecting the instances with a number of customers smaller
than 50 (which can be easily solved to optimality by the MILP models), the average solution
value found by each of the proposed algorithms is better than the best solution value obtained
by algorithm GBILS for 70% of the remaining instances, and by algorithms MA and RGA for
all but one of the remaining instances. For the small and medium size instances the proposed
metaheuristics find several proved optimal solutions, and in some cases the average value was
equal to the optimal one.

Despite the metaheuristics presented in this work are more time consuming than the algo-
rithms MA, RGA and GBILS (considering the average computing time associated with one
run), they are much more stable. The proposed metaheuristics are globally able to find target
values in smaller computing times than those of the state-of-the-art heuristic algorithms. Thus,
the presented metaheuristics can reach solutions with the same or better quality within smaller
computing times than those of the currently published algorithms, and are able to achieve even
better quality solutions when more computing time is allowed.

Comparing the three proposed algorithms, we can conclude that there are not statistically sig-
nificant differences between their performances, nevertheless, SA-VND0 is the algorithm which
requires the smallest computing time.

Based on the obtained results, it is possible to suggest as future directions to apply the
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proposed methodology to other problems related to the LLRP. Some examples are: the multi-
depot cumulative capacitated vehicle routing problem, the latency location routing problem with
time windows, and other extensions of the cumulative capacitated vehicle routing problem and
the facility location problem.

Appendix A: Optimal solution for the instance Christ-50-5

Route 1
D1 - 2 - 24 - 7 - 43 - 3 - 8 - 6 - 26
Route 2
D1 - 23 - 48 - 27 - 46 - 12 - 47 - 18
Route 3
D1 - 14 - 25 - 9 - 5 - 4 - 13 - 41 - 19 - 40
Route 4
D4 - 33 - 45 - 15 - 44 - 37 - 17 - 42
Route 5
D4 - 10 - 49 - 38 - 11 - 32 - 1 - 22 - 28 - 31
Route 6
D4 - 39 - 30 - 34 - 50 - 16 - 21 - 29 - 20 - 35 - 36

Appendix B: The effect of reducing the number of runs

As noted in the Section 2.4.2, the proposed metaheuristics are more time consuming and much
more stable than the algorithms RGA and MA. This indicates that, in order to obtain good
quality solutions with the proposed algorithms, it is not necessary to execute many runs for each
instance. Therefore, it is possible to reduce the global computing time required by the proposed
algorithms by reducing the number of runs executed for each instance. In the experiments
described in the following, the number of runs for each instance is reduced to 10 and 5, and the
results are compared with those obtained by the algorithms RGA and MA by considering 30
runs for each instance, the algorithm GBILS by considering 5 runs for each instance, and the
five exact methods. In particular, when the number of runs for each instance is fixed to 10 (resp.
to 5), the first 10 (resp. 5) random seeds, among the 30 created ones, are used. The summary
of the results is presented in Tables 2.10 and 2.11 by considering the data sets: Tuzun-Burke
(36 instances), Prodhon (30 instances), Barreto (10 instances), Barreto-NG (containing the 6
instances reported in [3]), Total (containing the 76 instances of the overall data set), and Total-
NG (containing the 36 instances reported in [3]). The rows in Table 2.10 have the following
meaning:

• # BKS: The number of instances for which the algorithm finds the value BKS. When
the number of runs for each instance is reduced, the values of BKS found with a larger
number of runs are not considered.

• # Avg−BKS0: The number of instances for which the average solution value Avg of the
considered algorithm is better than or equal to BKS0.

• # Best − BKS0: The number of instances for which the best solution value Best found
by the proposed algorithm is better than or equal to BKS0.
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Table 2.10: Summarized results on # BKS, # Avg−BKS0 and # Best−BKS0 for the complete
data set considering 30, 10 and 5 runs.

Data set
RGA MA GBILS Exact methods

30 runs 10 runs 5 runs

Tuzun-Burke (36 instances) SA-VND0 SA-VND1 SA-VND2 SA-VND0 SA-VND1 SA-VND2 SA-VND0 SA-VND1 SA-VND2

# BKS 0 0 - - 14 10 13 14 13 11 15 10 12

# Avg −BKS0 0 0 - - 35 35 35 35 35 35 36 36 35

# Best−BKS0 - - - - 36 36 36 36 36 36 36 36 36

Prodhon (30 instances)

# BKS 1 2 4 12 19 14 14 16 17 14 18 15 13

# Avg −BKS0 0 0 - - 20 18 19 20 19 19 21 19 20

# Best−BKS0 - - - - 27 27 27 27 27 26 27 26 26

Barreto (10 instances)

# BKS 1 1 - - 9 7 7 7 7 8 8 7 7

# Avg −BKS0 0 0 - - 9 9 9 10 9 10 10 10 10

# Best−BKS0 - - - - 10 10 10 10 10 10 10 10 10

Barreto – NG(6 instances)

# BKS 1 1 5 5 5 3 3 3 3 4 4 3 3

# Avg −BKS0 0 0 - - 5 5 5 6 5 6 6 6 6

# Best−BKS0 - - - - 6 6 6 6 6 6 6 6 6

Total (76 instances)

# BKS 2 3 - - 42 31 34 37 37 33 41 32 32

# Avg −BKS0 0 0 - - 64 62 63 65 63 64 67 65 65

# Best−BKS0 - - - - 73 73 73 73 73 72 73 72 72

Total - NG (36 instances)

# BKS 2 3 9 17 24 17 17 19 20 18 22 18 16

# Avg −BKS0 0 0 - - 25 23 24 26 24 25 27 25 26

# Best−BKS0 - - - - 33 33 33 33 33 32 33 32 32

The columns in Table 2.11 have the same meaning as in Tables 2.2, 2.3 and 2.4. The only
new column is Gap avg, which represents the percentage gap between Avg and BKS0 for the
considered instance. The columns report the average values computed with respect to all the
instances of the considered data set. It is to note that negative values for Gap avg indicate that
the corresponding average value is better than BKS0

By reducing the number of runs to 10, the algorithms SA-VND0, SA-VND1 and SA-VND2 are
able to improve or find the value BKS0 for 73, 73 and 72 instances, respectively. The number of
instances for which the average value is better than or equal to BKS0 is almost the same, while
the quality of the values of the best solutions is slightly reduced. The computing times are now
reduced by 3 times, which implies that the algorithm SA-VND0 performs globally faster than
the RGA and MA algorithms, and the other two proposed algorithms are more competitive in
terms of computing time. On the other hand, by reducing to 5 the number of runs, the algorithm
SA-VND0 is still able to improve or find the value BKS0 for 73 instances, while the algorithms
SA-VND1 and SA-VND2 are able to do that for 72 instances. The quality of the values of
the best solutions is slightly reduced, nevertheless, for the three proposed algorithms, in over
80% of the instances the average value is still better than or equal to the value BKS0. In this
case, the computing times are reduced by around 6 times, which leads to conclude that all the
proposed algorithms require smaller computing times than the algorithms RGA and MA to find
better solutions. Despite the above, the algorithm GBILS is the fastest algorithm among all
the analyzed ones, but is outperformed by the proposed algorithms in terms of solution quality.
According to the reported results, when the number of runs is reduced, the algorithm SA-VND0
exhibits, among the three proposed metaheuristics, the most stable performance in terms of
solution quality and the smallest computing times.
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irace package: Iterated racing for automatic algorithm configuration,” Operations Research
Perspectives, vol. 3, pp. 43–58, 2016.

[31] M. E. Bruni, S. Khodaparasti, I. Mart́ınez-Salazar, and S. Nucamendi-Guillén, “The multi-
depot k-traveling repairman problem,” Optimization Letters, vol. 16, pp. 2681–2709, 2022.

43





3 An iterated local search algorithm for latency
vehicle routing problems with multiple depots

Abstract

The Multi-depot Cumulative Capacitated Vehicle Routing Problem (MDCCVRP) extends the
recently proposed Cumulative Capacitated Vehicle Routing Problem (CCVRP). The aim is to
minimize the sum of the arrival times at the customers considering a fleet of Nv capacitated
vehicles and a set of Nd uncapacitated depots. This chapter proposes valid lower bounds and
a novel metaheuristic algorithm for the solution of the MDCCVRP. The initial solution is ob-
tained by combining different heuristic approaches, while the improving phase consists of an
iterated local search algorithm (ILS). Computational experiments on 78 MDCCVRP bench-
mark instances show that the proposed algorithm is able to find, within reasonable computing
times, solution values globally better than those obtained by the state-of-the-art heuristic algo-
rithms. For challenging instances (having a large number of customers and a small fleet size),
the algorithm can find, within short computing times, solutions globally better than those ob-
tained by the published exact algorithms. The proposed algorithm has also been applied to the
recently introduced Multi-depot k-traveling Repairman Problem (MDk-TRP) and the Latency
Location Routing Problem (LLRP). The MDk-TRP is a particular case of the MDCCVRP aris-
ing when the vehicles are uncapacitated, while the LLRP is a generalization of the MDCCVRP
in which, at most, p of the Nd available depots can be used. The computational experiments
performed on 87 MDk-TRP benchmark instances and 76 LLRP benchmark instances show that
the proposed algorithm globally outperforms the state-of-the-art metaheuristic algorithms for
what concerns both the solution quality and the computing time. For large-size instances, the
computing time required to provide a good quality solution is considerably smaller than that
required by the previously published heuristic and exact algorithms. For all the problems, the
proposed algorithm is able to find better solution values than those obtained by the respective
state-of-the-art metaheuristic algorithms when it is executed for the same computing time as
the respective competitor.

Keywords: cumulative routing; ILS; latency; MDCCVRP ;MDk-TRP; LLRP

3.1 Introduction

The Multi-depot Cumulative Capacitated Vehicle Routing Problem (MDCCVRP) is a variant of
the well-known Multi-depot Vehicle Routing Problem (MDVRP), in which, instead of minimizing
the total travel time of the system, the aim is to minimize its global latency. The latency can
be defined as the sum of the arrival times at the customers, and it is a metric used for defining
customer satisfaction. Although the MDVRP is a well-known variant of the vehicle routing

This chapter is based on the paper: Osorio-Mora A, Escobar JW, Toth P. An iterated local search algorithm
for latency vehicle routing problems with multiple depots. Computers & Operations Research. 2023 Jun. doi:
https://doi.org/10.1016/j.cor.2023.106293
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problems (a survey on MDVRPs can be found in [1]), the classical objective function is not
appropriate for solving real-world cases concerning customer satisfaction. Indeed, it has been
proved that the optimal solutions for classical routing problems lead to sub-optimal solutions
for cumulative (latency) routing problems [2]. This work suggests that new methods must be
developed for solving effectively cumulative routing problems.
Research on cumulative capacitated vehicle routing problems (CCVRP) dates from 2010 with

the seminal work of Ngueveu, Prins, and Wolfler Calvo [3]. The CCVRP is a particular case
of the MDCCVRP considering only one depot. For a recent survey paper on cumulative-based
vehicle routing problems, focusing on the CCVRP, the reader is referred to [4]. Although the
CCVRP was relatively recently introduced, the research on latency routing problems started
in the early 90s with the traveling repairman problem (TRP) [5], also known as delivery man
problem [6] and minimum latency problem (MLP) [7]. The TRP consists of finding the best
sequence for visiting a set of customers considering a single vehicle, such that the latency is
minimized.
Some natural extensions of the TRP have been studied by different researchers. The k-TRP

[8] corresponds to a generalization of the TRP by considering k uncapacitated vehicles. This
problem has also been calledm-MLP [9]. The MDk-TRP [10] is a generalization of the k-TRP by
considering multiple depots. The MDk-TRP is also a particular case of the MDCCVRP in which
the vehicles have a capacity large enough to serve the demand of the customers. A generalization
of the MDCCVRP is the latency location routing problem (LLRP) [11], arising when at most a
fixed number of the available depots can be used. Figure 3.1 shows a diagram pointing out the
relations among the previously mentioned problems. All these problems are NP-hard since they
can be reduced to the TRP, which has been proved to be NP-hard [8, 3, 11, 12, 10].

Figure 3.1: Relations between the different latency-based routing problems.

The MDCCVRP can be defined by considering a complete undirected graph G = (V,E),
where V corresponds to the set of nodes and E to the set of edges. The set V equals V ′ ∪D,
with V ′ representing the set of Nc customers and D representing the set of Nd uncapacitated
depots. Let also K be the set of Nv homogeneous vehicles, each with capacity Q. Each customer
i ∈ V ′ has a non-negative demand qi (with qi ≤ Q). Each edge (i, j) ∈ E, with i ̸= j, has an
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associated non-negative travel time cij , which satisfies the triangular inequality. The problem
consists of defining the routes to be performed by the vehicles, minimizing the sum of the arrival
times at the customers. Each customer must be visited once. Each vehicle can perform one
route. Each route starts from a depot and visits a subset of customers whose global demand
cannot exceed the vehicle capacity Q. As in the classical MDVRP, the MDCCVRP does not
consider the availability of the vehicles at each depot. Note that it is not mandatory to use all
the depots. The objective of the cumulative routing problems is to minimize the sum of the
arrival times at the customers. Hence the last edge of each route (connecting the last customer
of the route with a depot) has not to be considered in evaluating the objective function [3].
Therefore, the routes can be considered as “open routes”.

The notation of the problem is summarized in Table 3.1.

Table 3.1: Notation of the multi-depot cumulative capacitated vehicle routing problem.

Sets

V ′ : Set of Nc customers.

D : Set of Nd identical uncapacitated depots.

V : Set of nodes, V = V ′ ∪D.

K : Set of Nv identical vehicles.

Parameters

Q: Capacity of the vehicles.

qi: Demand of customer i (i ∈ V ′).

cij : Travel time between nodes i and j (i, j ∈ V ′, i ̸= j).

p: Maximum number of used depots for the LLRP.

The MDCCVRP was introduced in [12], where a mixed-integer linear programming (MILP)
formulation and a POPMUSIC matheuristic algorithm are proposed to solve the problem. The
POPMUSIC method begins generating an initial solution through a greedy clustering algorithm.
The idea is to improve the solution by partitioning the MDCCVRP into smaller sub-problems.
The sub-problems are solved separately with the commercial solver CPLEX, and then included
within the global matheuristic solution. Some relevant features of the MDCCVRP have been
discussed in that work; in particular, the proof that the number of vehicles in the optimal
solution is equal to min{Nv, Nc}, and the relations of the MDCCVRP with the TRPs.

In [13], a perturb-based local search (PLS) metaheuristic algorithm has been proposed to
solve the MDCCVRP. A constructive heuristic based on the k-regrets insertion criterion [14] is
used for finding the initial solution. Then, a local search procedure is applied by exploring six
different moves under the first improvement criterion. Once no improvement can be reached,
2-opt and 2-exchange moves are applied to perturb the solution and explore a new search space.
The efficiency of this approach is compared with the results previously presented in [12].

A branch-cut-and-price algorithm for solving the CCVRP and the MDCCVRP is proposed in
[15]. The algorithm is able to provide the optimal solution for many small/medium size instances
and high-quality solutions for large-size instances by fixing the maximum number of customers
in each route. Two MILP formulations have been proposed in [16] to solve the LLRP. These
formulations were also adapted to solve the MDCCVRP, and were able to find some optimal
solutions for small/medium-size instances (with up to 50 customers) for both the LLRP and the
MDCCVRP. The formulations were able to solve large MDCCVRP instances (with up to 192
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customers) when a large number of vehicles is considered (in [12] it has been proved that these
instances are easier than the same instances with a relative small number of vehicles).

Although the problem considered in [17] does not correspond to an MDCCVRP, it is impor-
tant to point out the differences between these two problems. Indeed, the former problem has
been defined by its authors as a cumulative multi-depot vehicle routing problem (Cu-MDVRP),
considering it as a generalization of the cumulative vehicle routing problem (Cu-VRP) proposed
in [18]. The Cu-VRP seeks to minimize the sum of the travel times of the traversed edges
weighted by the load on the vehicle at the moment of traversing the edges. Nevertheless, the
Cu-MDVRP presented in [17] seeks to minimize the sum of the arrival times at the customers
weighted by their demands. Thus, it can be considered as a weighted version of the MDCCVRP.
In addition, Cu-MDVRP considers a certain number of vehicles available at each depot, which
is another feature that makes it different from the MDCCVRP. For more details about these
two families of problems (Cu-VRPs and CCVRPs) the reader is referred to the literature review
presented in [4].

The MDk-TRP was recently introduced in [10]. For its solution, the authors proposed two
MILP models and a genetic algorithm (GA) under two different configurations. The formula-
tions, which can solve to proven optimally several large-size instances (with over 200 customers),
are based on the multi-level network approach. This approach was previously used to solve other
related latency routing problems as the MLP [19], the k-TRP/m-MLP [20, 9], and the CCVRP
[21]. More recently, as we already mentioned, it was also used to solve the LLRP and the
MDCCVRP [16]. On the other hand, the GA is able to solve large-size instances within short
computing times.

The LLRP, which is a combination of the facility location problem (FLP) and the CCVRP, was
introduced in [11]. The LLRP can be considered as an extension of the MDCCVRP in which,
at most, p of the Nd available depots can be used (i.e. opened). Two heuristic algorithms
to solve efficiently the LLRP (a memetic algorithm (MA) and a recursive granular algorithm
(RGA)) have been proposed in [11]. According to the reported computational experiments,
MA performs better than RGA for the complete set of the considered instances. Recently,
two MILP models, three enumerative algorithms, and a GRASP-based iterated local search
algorithm (GBILS) have been proposed in [16] to solve the LLRP. The authors provide the
optimal solution for several instances with up to 50 customers using the five exact methods,
while the metaheuristic algorithm GBILS found globally better quality solutions than those
obtained by the algorithms RGA and MA within short computing times. The best results on
the benchmark instances currently considered for the LLRP have been reported for the three
metaheuristic algorithms presented in [22]. These algorithms combine simulated annealing (SA)
and variable neighborhood descent (VND) procedures. The main difference between the three
proposed algorithms is the VND used strategy. The proposed approaches outperform the state-
of-the-art algorithms for the LLRP, being able to find better quality solutions within comparable
computing times.

Applications of multi-depot latency routing problems have also been studied, especially in
post-disaster and customer-centric contexts. A problem in which the visit to affected areas must
be planned after a natural disaster is studied in [23], where also the possibility of restoration of
blocked paths is considered. The authors proposed a mixed-integer programming model and two
heuristic algorithms based on the cluster-first-route-second approach for solving the problem.
A bi-objective location routing problem under uncertainty applied to humanitarian logistics is
studied in [24]. The problem considers time windows and a heterogeneous fleet of vehicles,
while a risk-averse approach is used for minimizing the total cost and the latency of the system.
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The problem was solved with a hybrid genetic algorithm. Bruni et al. [25] propose a VND
matheuristic for the Drone Routing Problem in the context of last-mile delivery. The problem
is formulated as a deterministic location-routing model and derives its robust counterpart under
the travel time uncertainty.

This chapter proposes an iterated local search metaheuristic algorithm called M-ILS to solve
effectively the MDCCVRP, the MDk-TRP, and the LLRP. The reported computational experi-
ments on benchmark instances from the literature show that the proposed algorithm finds several
current and new best-known solutions within computing times comparable with those required
by the state-of-the-art algorithms proposed for the considered problems. Furthermore, the opti-
mal solution values reported in [10] are rectified for several MDk-TRP instances. Finally, valid
lower bounds for the MDCCVRP and the MDk-TRP are presented.

The paper is organized as follows. Section 3.2 describes the proposed metaheuristic and
presents lower bounds for the MDCCVRP and the MDk-TRP. The computational results are
reported and analyzed in Section 3.3. Finally, in Section 3.4, a summary of our findings and
future directions are drawn.

3.2 Description of the proposed approach

This section presents an M-ILS metaheuristic approach for solving the MDCCVRP, the MDk-
TRP, and the LLRP. Besides, valid lower bounds are proposed for the MDCCVRP and the
MDk-TRP. The main body of the proposed approach (M-ILS algorithm) consists of two major
phases: the construction phase and the improvement phase. The goal of the construction phase is
to build an initial feasible solution s0 (see Section 3.2.1). In the improvement phase, an Iterated
Local Search (ILS) scheme, considering several diversification and local search procedures, is
applied to improve the quality of the current solution. The ILS procedure starts by setting the
current solution sc, and the best feasible solution sbf equal to s0. It consists of three procedures
executed for itmax iterations: a perturbation procedure, a local search procedure called LS, and
a procedure combining the simulated annealing (SA) and the variable neighborhood descent
(VND) frameworks (this procedure is called SA-VND). After the execution of the ILS, the
well-known Lin–Kernighan-Helsgaun heuristic (LKH-3) [26] is used to solve a CCVRP (for the
MDCCVRP and the LLRP) or a k-TRP (for the MDk-TRP) for each open depot, considering
the best feasible solution. The local search procedure LS is applied to the solution obtained
by the LKH-3 algorithm. Finally, for each route, a procedure called checking is applied. This
procedure verifies if each route’s first customer is assigned to its closest depot. If this is not the
case, the closest depot is assigned to the corresponding route. The details of the ILS procedure
are described in Section 3.2.2, and a summarized representation of the overall algorithm is
presented in Algorithm 4. Table 3.2 shows the parameters used for the proposed approach.

Table 3.2: Algorithm’s parameters

itmax : Number of iterations of the iterated local search.
itsoft : Frequency of the Route−Relocation perturbation.
ithard : Frequency of the Configuration− Swap perturbation.
a : Percentage for the penalization for each unit exceeding the capacity of the vehicles.
t0 : Initial temperature in the SA-VND procedure.
tf : Minimum temperature in the SA-VND procedure.
α : Cooling factor in the SA-VND procedure.
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The key points for the success of the proposed approach are the correct selection of the depots
using the heuristic procedure of the construction phase. Besides, the local search and diversi-
fication procedures within the improvement phase and the Lin–Kernighan-Helsgaun heuristic
(LKH-3) allow an efficient exploration of the search space. Since the most critical decisions of
the multi-depot variants of the single-depot vehicle routing problems are initially those concern-
ing the use and assignment of the depots, a correct selection of the depots can reduce the search
space for the improvement phase (avoiding local search procedures between depots). Also, start-
ing from a good initial feasible solution allows for improving the current solution by applying
the correct local search procedures. The previously mentioned procedures are described in more
detail in the following subsections.

Algorithm 4: Main Scheme

Input: A MDCCVRP/MDk-TRP/LLRP instance, Algorithm parameters
Output: sbf (Best feasible solution)

1 Constructive procedure — return: s0 (initial solution)
2 Iterated local search:
3 it = 0
4 while (it < itmax) do
5 step 1: Perturbation
6 step 2: Local search (LS)
7 step 3: SA-VND search procedure
8 it=it+1

9 end
10 For each used depot solve a CCVRP/k-TRP applying the LKH-3 heuristic
11 Local search (LS)
12 Checking

return: sbf

3.2.1 Construction phase: Initial solution

In this phase, we propose an efficient procedure to construct an initial feasible solution. The
procedure is based on an approach that combines different heuristic procedures, including the
LKH-3 heuristic. Besides, a cluster-based method is considered as starting point within the
initial iterative framework. The initial solution s0 is obtained by the following Constructive
procedure, which generally finds good feasible solutions within short computing times:

-Step 1 : Considering all the customers, construct the corresponding giant Traveling Salesman
Problem (TSP) tour using the LKH-3 heuristic. Note that for the giant TSP, the global travel
time to visit all the customers is minimized.

-Step 2 : A good initial solution can be obtained by identifying clusters of customers. To this
end, the giant tour is split into Nv clusters, as described below. We apply a clustering procedure
by considering each customer as a ”starting point”, and by splitting the giant tour into groups of
consecutive customers. For the MDCCVRP and the MDk-TRP, the splitting aims to balance the
solution. The first (Nc mod Nv) clusters are composed of ⌈Nc

Nv
⌉ customers, while the remaining

clusters are composed by ⌊Nc
Nv

⌋ customers. The idea of considering balanced solutions is based
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on the valid lower bound LB2 presented in Section 3.2.3. For the LLRP, a different clustering
procedure is applied. It consists of splitting the giant tour into groups of consecutive customers
such that the total load of each cluster does not exceed the capacity of the vehicles. If the
number of clusters created is larger than Nv, a repair procedure is applied to delete the least-
loaded clusters until the number of clusters equals Nv. The customers are removed from the
least-loaded clusters according to the order given in the clusters. Each customer belonging to
a least-loaded cluster is removed from its current position and inserted in its best position in a
different cluster, so as to minimize the score defined in equation 3.1:

ScoreIN j
ik = ∆instimeikj + θ[max{0, (dcj + qi)−Q}] (3.1)

where: ∆instimeikj represents the variation of the travel time of cluster j caused by the inser-
tion of customer i in position k, dcj represents the current load of cluster j, and θ represents a
penalization parameter (large positive value). The process is repeated until all the least-loaded
clusters are deleted.

-Step 3 : If the total load of a cluster (say cluster j) exceeds the vehicle capacity, a swapping
procedure is applied to two customers (say customers k and i, with qi < qk) with respect to their
current clusters (say clusters j and l, respectively, with j ̸= l), so as to minimize the following
score:

ScoreSW jl
ik = ∆timekij +∆timeikl + θ[max{0, (dcj − qk + qi)−Q}

+max{0, (dcl + qk − qi)−Q}]
(3.2)

where: ∆timekij (resp. ∆timeikl ) represents the variation of the travel time of cluster j (resp.
cluster l) caused by the exchange of the customers k and i. If no feasible splitting of the cus-
tomers into Nv clusters is found by this swapping procedure, the exact algorithm MTP proposed
in [27] is applied to the Bin Packing Problem (BPP) instance corresponding to the given MD-
CCVRP instance to obtain a set of at most Nv feasible clusters.

-Step 4 : Let CL be the clusters set created in the previous step. For each depot i ∈ D and for
each cluster j ∈ CL, we define an allocation cost lij , which represents the total latency of the
route composed by the customers in cluster j and depot i. This allocation cost is obtained by
applying an intra-route local search (IntraLS) procedure to the path generated for the cluster
(more details about this local search procedure are presented in Section 3.2.2).

Step 5 : The best assignment of the clusters to the depots for the MDCCVRP and the MDk-
TRP is obtained by assigning each cluster j(j ∈ CL) to the depot i such that lij = min{lhj :

h ∈ D}. Thus, the latency of the solution is given by
∑
j∈CL

min
i∈D

{lij}. We define a depot i ∈ D

as ”used” if at least one cluster is assigned to i. A depot configuration corresponds to a binary
vector Configuration of size Nd that indicates if depot i ∈ D is used (Configurationi = 1) or
not (Configurationi = 0). All the previously mentioned information is stored in this Step.

For the LLRP, the best assignment of the clusters to the depots is obtained by solving the
integer linear programming (ILP) model (3.3)-(3.8). We introduce two sets of binary variables,
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where Aij is equal to 1 if cluster j is assigned to depot i (i ∈ D, j ∈ CL), and yi is equal to 1 if
depot i (i ∈ D) is opened.

min
∑
i∈D

∑
j∈CL

lijAij (3.3)

∑
i∈D

Aij = 1 ∀j ∈ CL (3.4)

Aij ≤ yi ∀i ∈ D,∀j ∈ CL (3.5)∑
i∈D

yi ≤ p (3.6)

Aij ∈ {0, 1} ∀i ∈ D,∀j ∈ CL (3.7)

yi ∈ {0, 1} ∀i ∈ D (3.8)

Where lij is the latency of the route composed by the customers in cluster j and depot i (see
Step 4 ), dcj is the global demand of cluster j, and p is the maximum number of depots to be
opened.

The objective function (3.3) seeks to minimize the total latency. Constraints (3.4) ensure that
each cluster is allocated to exactly one depot. Constraints (3.5) impose that the clusters can
be allocated only to open depots. Equation (3.6) ensures that the maximum number of open
depots is at most p. Finally, constraints (3.7-3.8) define the domain of the variables.

-Step 6 : Note that there are exactly Nc different possibilities to split the giant tour, since
in the clustering procedure, the definition of the clusters depends only on the choice of the
first customer (starting point), and the clustering procedure is applied Nc times, by considering
each of the Nc customers as the starting point. Steps 2 - 5 are repeated until all the solutions
corresponding to the possible splittings of the customers into clusters are evaluated.

A list of promising depot configurations stores all the configurations obtained at Step 5, the
number of times that each configuration is selected, and the allocation of the clusters to the
depots that provides the minimum latency for that configuration. At each of the Nc iterations,
if the current Configuration has not yet been stored in the list, it is stored with the respective
latency and the allocation of the clusters to the depots. On the other hand, if the current
Configuration has been already stored in the list, the number of times that the corresponding
depot configuration has been selected is updated, and if the latency associated with the new
allocation is smaller than that previously stored, the best latency, and the respective allocation
are updated. At the end of the Nc iterations, the solution corresponding to the depot configu-
ration with the minimum latency is selected. Each cluster is considered an open route, which
starts from the assigned depot, and the sequence of the customers is as done at Step 4. Finally,
the list of the promising depot configurations is sorted according to the number of times that
each configuration was selected, putting in the first positions those configurations that were
selected more times. This list will be used in the perturbation procedure described in Section
3.2.2. For the LLRP, a splitting procedure is applied to add new vehicles if the number of open
routes currently created is smaller than Nv. The splitting procedure is performed based on the
idea that the total latency decreases by adding new routes for the same or different depots. It
consists of a local search procedure with the following steps.

• Select the route r containing the longest edge (i, j) (where i and j ∈ V ′).
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• Split the route r (starting from depot h) by removing edge (i, j). Two new sub-routes
(r1 and r2) are created. r1 is the sub-route starting from depot h and composed of the
customers belonging to route r until customer i. r2 is the sub-route composed by the
customers of route r from customer j to the final customer of route r.

• Assign sub-route r2 to the best depot by considering its current or its reverse sequence,
so as to minimize the corresponding latency.

• The procedure is performed until the number of routes of the current solution equals Nv.

-Step 7 : Apply the LKH-3 heuristic for each depot with its assigned routes, solving a CCVRP
or a k-TRP depending if the problem to solve is a MDCCVRP/LLRP or a MDk-TRP, respec-
tively.

-Step 8 : Apply the local search procedure LS until no improvement is found (for more details
about the procedure LS, see Section 3.2.2). This procedure allows infeasible solutions in terms
of vehicle capacity. These solutions are penalized by using a factor a, defined as a percentage of
the solution value provided at the end of Step 7.

Although there are similarities between the algorithm proposed in this work and those pro-
posed in [28, 29, 30], substantial differences are pointed out in the following. The major difference
is given by the improvement phase of the proposed algorithm (which will be described in the
next section) since all the mentioned works presented a tabu-search-based approach, while this
work proposes an iterated local search algorithm. Furthermore, due to the differences in the
cumulative and classical vehicle routing problems, there are several differences concerning the
construction of the initial solution and the diversification/intensification strategies between this
work and the mentioned works. Regarding the construction of the initial solution, in Step 4, the
mentioned works use the LKH heuristic to solve a TSP and to calculate the values lij , while in
this work, the IntraLS procedure was specifically designed for solving a TRP. In preliminary
computational experiments, an approach where the TRPs were solved using the LKH-3 heuristic
was tested, but it led to extremely high computing times for large-size instances. In addition,
the construction of the initial solution presented in the mentioned papers does not ensure that
min{Nc, Nv} vehicles will be used, while the procedure proposed in this work does it. Another
important difference is the inclusion of the binary vector storing the promising depot configura-
tions. It is noted that in the previously mentioned works, the best configuration of the depots
is first selected, and then no change of the used depots is performed. This situation may lead
to skipping promising parts of the search space.

3.2.2 Improvement Phase: Iterated local Search algorithm (ILS)

In this phase, the algorithm tries to improve the initial solution s0 by applying an Iterated Local
Search (ILS) procedure. The ILS algorithms have been successfully applied to a wide number of
combinatorial optimization problems, and the main idea is to explore new regions of the solution
space by applying a perturbation when a local optimum is reached. For further details about
the ILS algorithms the reader is referred to [31].
For the proposed ILS, the current solution sc and the best feasible solution sbf are initially

equal to the initial solution s0. The three steps of the ILS are described in this section. Note
that the local search procedure LS (step 2) is explained before the perturbation step since the
neighborhoods and the local search procedures are used in the three steps of the algorithm.
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Local search

In this section, the search space and the neighborhoods are described. The proposed algorithm
accepts solutions infeasible with respect to the vehicle capacity to avoid local optima and extend
the search space. Thus, the value of the objective function f(sc) of a solution sc, feasible or not,
is given by the following formula:

f(sc) = f̄(sc) + af(s0)∆QV (3.9)

Where f̄(sc) is the sum of the arrival times at the customers, f(s0) is the value of the objective
function corresponding to the initial solution s0 found at Step 8 of the constructive procedure,
and ∆QV is the total amount of load violating the capacities of the vehicles. It is noted that
for the feasible solutions the second term of (3.9) is equal to zero, and for the case of the MDk-
TRP, this term is always equal to zero. The best improvement strategy is used in the local
search-based procedures.

The proposed algorithm executes the following five types of moves: insertion, swap, 2− opt,
arc− swap, and shift2−1. All the neighborhoods, except shift2−1, can be applied for the intra-
route and the inter-route cases. For the inter-route case, the moves can be applied for routes
starting from the same or from different depots. The neighborhoods are the following ones:

• insertion: A customer i is transferred from its current position to another position just
after node j. Note that the selected customer can be moved to a different position in the
same or in different routes.

• swap: Two customers (i and j) exchange their positions, either in the same route or
between different routes.

• 2 − opt: This move is a classical version of the well-known 2 − opt move for the TSP, in
which two non-consecutive edges are removed, and the routes are reconnected differently.
Note that if the two selected edges are in the same route, the two opt move is equivalent
to that described by Lin and Kernighan [32]. In particular, two edges (i, j) and (k, l) are
deleted, and two new edges are created. When the move is applied to edges belonging to
the same route, the edges (i, j) and (k, l) are deleted, then the edges (i, k) and (j, l) are
created, and the connection from k to j is reversed. On the other hand, when the move
is related to two different routes, a crossing is applied: the edges (i, j) and (k, l), with
the edge (i, j) in route 1 and the edge (k, l) in route 2, are deleted, then the edges (i, l)
and (k, j) are created, and the initial customers of routes 1 and 2 (until nodes i and k,
respectively) are merged with the final customers of routes 2 and 1 (from customers l and
j, respectively).

• arc−swap: Two pairs of consecutive customers (i, j) and (k, l) are swapped with respect to
their current positions. The two pairs of customers can belong to the same or to different
routes.

• shift2−1: Two consecutive customers (i, j) assigned to route r1 exchange their current
positions with that of the customer k in the route r2, with r1 ̸= r2.

The local search procedure LS (step 2), calls for exploring all the mentioned neighborhoods
and applying the move which improves the most the current solution. The procedure stops when
no improvement move is found.
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Perturbation procedure

Since the ILS procedure can fail in finding a move to improve the current solution, the algorithm
tries to escape from a local optimum by perturbing the current solution. The perturbation
procedure considers three possible perturbations applied with different frequencies. The ”less-
aggressive” perturbations are called Route − Swap and Route − Relocation, and the ”most
aggressive” one is called Configuration − Swap. Route − Relocation is applied every itersoft
iterations, Configuration− Swap every iterhard iterations, while the Route− Swap is applied
at each iteration if no other perturbation is applied. The descriptions of the perturbations are
given in the following paragraphs (where it is assumed that each random choice is performed by
considering the same probability with respect to the possible choices):

• Route−Swap: We use an exchange scheme involving two routes. The procedure randomly
selects two routes r1 and r2 belonging to two different depots i and j, respectively. A new
solution s is obtained by considering the following move: remove the route r1 from the
depot i and assign it to the depot j; remove route r2 from the depot j and assign it to
the depot i. Since the new routes may not generate good solutions, an intra-route local
search procedure (IntraLS) is applied to r1 and r2. The IntraLS procedure sequentially
explores each insertion, swap, and 2− opt neighborhood for the considered route until no
improvement is found for the considered neighborhood.

• Route − Relocation: This perturbation procedure randomly selects a depot i with more
than one route assigned. Then, the procedure randomly selects a route r1 belonging to
the depot i. A new solution s is obtained by considering the following move: remove the
route r1 from the depot i and assign it to a different depot j, which is randomly selected
from all the remaining used depots. Then, the IntraLS procedure is applied to the route
r1.

• Configuration − Swap: This perturbation procedure swaps the current depot configu-
ration (called C1) with the first one in the list of promising configurations (called C2).
The list is sorted according to the number of times each configuration has been selected
for the initial solution. Each time a configuration is evaluated, it is removed from the
list. After picking C2, Steps 7 - 8 of the constructive procedure are applied to construct
the new solution. It is to note that, before applying the swapping, the LKH-3 heuristic
and the LS procedure are applied to the best solution found during the exploration of the
configuration C1.

For the exceptional cases in which the depot configuration considers only one available depot
(with assigned routes), the perturbations Route−Swap and Route−Relocation are replaced by
random moves applied under a simulated annealing framework described in Section 3.2.2. These
random moves are applied to the current solution. If there are no more promising configurations
to evaluate, Configuration − Swap is skipped, and Route − Relocation is applied to the best
feasible solution. In this case, the perturbation procedure is not applied to the current solution.
Note that Route − Relocation cannot be applied when all the available depots in the current
configuration have only one associated route.
The idea of applying different levels of aggressiveness in the perturbations is based on the

fact that if only the ”less-aggressive” perturbations are applied, the algorithm stacks into local-
optimum solutions. After the application of Route−Relocation or Configuration−Swap, the
proposed local search operators cannot find the same local-optimum solution found previously.
Indeed, these perturbation procedures change the allocation of routes to depots.
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The SA-VND search procedure

The SA-VND procedure is presented in Algorithm 5.
This procedure starts by applying a simulated annealing framework (see Steps 1 to 11 of Algo-
rithm 5). RandomMove(sc) denotes the solution obtained by generating random moves with the
same probability using the following neighborhoods: insertion, swap, and 2− opt. The current
temperature temp is set to an initial temperature t0. The SA procedure is applied until the
minimum temperature tf is reached (temp ≤ tf ). A new solution sp is generated by applying
to the current solution sc one of the mentioned random moves, and it is accepted as the new
sc if one of the following conditions holds (i.e., AcceptanceCriteria(temp, sp, sc) is true): i)
∆f = f(sc)−f(sp) > 0, where f(sc) and f(sp) are the objective function values of the solutions
sc and sp, respectively; or ii) if ∆f ≤ 0 and r < exp(∆f/temp) where r is a uniform random
number in the interval [0, 1]. If f(sc) < f(sbf ), and sc is feasible (i.e., IsFeasible(sc) is true),
the current solution is updated as the best feasible solution sbf found so far. Then, the value of
temp is reduced according to a cooling factor α.

After the SA framework, a variable neighborhood descent (VND) procedure is applied to the
current solution sc (see Steps 12 to 30 of Algorithm 5). Denote byNeigh = {insertion, swap, 2−
opt, arc− swap, shift2−1} the set of the five previously described neighborhoods, and consider
ng ∈ Neigh as the ngth neighborhood of the current solution sc. In addition, sol(ng, sc) denotes
the solution obtained by exploring the neighborhood ng starting from the solution sc. The
neighborhoods are explored according to the order in which they are listed in the set Neigh. In
the VND procedure, the exploration starts from the first neighborhood, which is explored until
no improvement is found. Then, the search moves to the next neighborhood, and the process is
repeated until the last neighborhood does not improve the current solution sc. Otherwise, the
search is restarted from the first neighborhood. If no improvement is found for all the neighbor-
hoods, the VND procedure ends. Each time that a move is applied to the current solution sc, if
f(sc) < f(sbf ), and sc is feasible, the current solution sc is updated as the best feasible solution
sbf found so far.

3.2.3 Lower bounds

This section describes two lower bounds, LB1 and LB2, proposed for both the MDCCVRP and
the MDk-TRP. Note that lower bounds for the LLRP have been already proposed in [11]. The
lower bounds for the MDCCVRP and the MDk-TRP generalize those proposed in [3] for the
CCVRP.

Lower bound LB1: The first lower bound does not restrict the vehicle fleet size and considers
one vehicle (i.e., one route) for each customer. The optimal solution for the unrestricted fleet
problem is to assign each customer to its closest depot. The value of this solution is a valid
lower bound for the considered problem:

LB1 =
∑
i∈V ′

min
j∈D

{cij} (3.10)

Lower bound LB2: The second lower bound assumes a cardinality balanced solution, i.e., a
solution where the routes visit an equal number of edges (i.e. of customers) or at most one edge
of difference between the route with the largest number of edges and that with the smallest
number of edges. Let us define NEk as the number of edges associated with route k, ∀k ∈ K.
The first (Nc mod Nv) routes are composed of ⌈Nc

Nv
⌉ edges, while the last Nv − (Nc mod Nv)

routes are composed by ⌊Nc
Nv

⌋ edges.
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3.2 Description of the proposed approach

Algorithm 5: The SA-VND search procedure.

Input: t0, tf , α, sc, sbf , Neigh
Output: sc (New current solution), sbf (New current best feasible solution)
/* simulated annealing procedure */

1 temp = t0
2 while (temp > tf ) do
3 sp = RandomMove(sc)
4 if (AcceptanceCriteria(temp, sp, sc)) then
5 sc = sp
6 if (f(sc) < f(sbf ) and IsFeasible(sc)) then
7 sbf = sc
8 end

9 end
10 temp = α ∗ temp

11 end
/* variable neighborhood descent procedure */

12 flagvnd = true
13 while (flagvnd = true) do
14 flagvnd = false
15 for (each ng ∈ Neigh) do
16 flagneigh = true
17 while (flagneigh = true) do
18 svnd = sol(ng, sc)
19 if (f(svnd) < f(sc)) then
20 sc = svnd
21 flagvnd = true
22 if (f(sc) < f(sbf ) and IsFeasible(sc)) then
23 sbf = sc
24 end

25 else
26 flagneigh = false
27 end

28 end

29 end

30 end
return: sc, sbf
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3 An iterated local search algorithm for latency vehicle routing problems with multiple depots

For the cumulative (latency) routing problems, the edges from the last customer of a given
route to the associated depot do not affect the objective function. Therefore, it is unnecessary
to consider them in the solution. Thus, as the total number of edges of a given solution equals
the number of customers, LB2 considers Nc edges. The first Nv edges must correspond to the
shortest edges between depots and customers, while the last (Nc −Nv) edges must correspond
to the shortest edges between customers. Let us also define the sets EDC ⊂ E and ECC ⊂ E
as the sets of the edges between depots and customers and between two different customers,
respectively. The vectors CEDC and CECC contain the travel time associated with each edge
in EDC and ECC, respectively. The edges in the sets EDC and ECC are sorted according to
ascending values of CEDC and CECC, respectively.

The proposed lower bound can be computed as described in Algorithm 6. LB2 corresponds to
the sum of the estimated latencies associated with each route. Due to the nature of the latency
functions, the edges at the initial positions of the routes have the largest impact on the value
of LB2. The procedure for the computation of this lower bound sorts the edges of the graph
to include the shortest edges at the first positions of each route. Note that the routes must
be sorted in descending order according to the value of NEk. The shortest edges are included
within the routes with the largest NEk values (i.e., those having the largest impact on the value
of the objective function). LB2 is divided into two parts: LB2a, associated with the edges
from the depots to the customers, and LB2b, associated with the edges between two different
customers.

Algorithm 6: LB2

Input: EDC, ECC, CEDC, CECC, NE, Nv, Nc

Output: LB2
1 LB2a = 0, LB2b = 0
/* Computation of LB2a */

2 for (i = 1 to Nv) do
3 k = i
4 REk = NEk

5 LB2a = LB2a+ CEDCiREk

6 REk = REk − 1

7 end
/* Computation of LB2b */

8 k = 1
9 i = 1

10 for (i = 1 to (Nc −Nv)) do
11 if (k > Nv) then
12 k=1
13 end
14 LB2b = LB2b+ CECCiREk

15 REk = REk − 1
16 k = k + 1

17 end
18 LB2 = LB2a+ LB2b

return: LB2

It is important to remark that LB2 has been previously proposed in [3] and then generalized
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3.3 Computational results

Table 3.3: Details of the computers used in each published paper.
Author [13] [15] [10, 16] Us
Computer Intel Core i5-4210M @ 2.60GHz Intel Core i7-3770 @ 3.40GHz Intel Core i5-6300U @ 2.40GHz Intel Core i7-8700K @ 3.70GHz

Single Thread Rating 1679 2071 1676 2750

Scaling factor 0.61 0.75 0.61 1

in [11]. The definition of LB2 presented in [3] and [11] is given by equation (3.11), where We and
W ′

e represent the travel time of the eth shortest edge of the graph between depots and customers,
and between two different customers, respectively.

LB2 =

Nv∑
e=1

⌈
Nc +Nv − e− (Nc mod Nv)

Nv

⌉
We +

Nc−Nv∑
e=1

⌈
Nc − e− (Nc mod Nv)

Nv

⌉
W ′

e (3.11)

Considering an instance with Nc = Nv = 5, it is possible to show that the equation (3.11) does
not define a valid lower bound for this instance. The optimal solution is to visit each customer
on a different route. Hence, each edge connecting the depots to the customers impacts the
objective function value once, while the edges connecting two customers (corresponding to the
second summation of (3.11)) give no contribution; nevertheless, according to the first summation
of (3.11), the first 4 (i.e., Nv − 1) shortest edges connecting the depots to the customers impact
two times on the objective function value.

3.3 Computational results

The overall algorithm (M-ILS) has been implemented in C++, and the computational experi-
ments have been performed on an Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz with 32 GB
RAM, under Linux Ubuntu 18.04 operative system (single thread). The travel time matrix
for all the considered instances was calculated with double precision. The ILP model (3)–(8)
has been optimally solved using the ILP solver CPLEX 20.1 [33] under the default parameters
configuration (one thread).
Since the previously published papers used different computers, the corresponding com-

puting times are scaled using a ”scaling factor,” which approximates the original comput-
ing times reported in each published paper to the expected computing time of the processor
used in our experiments. The ”scaling factor” is based on the PassMark performance test
(https://www.cpubenchmark.net/), which is focused on evaluating the CPU and memory per-
formance. Higher ”Single Thread Rating” values indicate that the corresponding CPU is faster
(considering one thread). The value of each ”scaling factor” is calculated as the ratio between
the ”Single Thread Rating” value of each computer and the ”Single Thread Rating” value of
the computer used in our experiments. The details are presented in Table 3.3.

The tables showing the computational results obtained by the proposed algorithm (M-ILS)
and by the state-of-the-art methods for the solution of the MDCCVRP, the MDk-TRP, and of
the LLRP are presented in subsections 3.3.3, 3.3.4 and 3.3.5, respectively.
For each instance, the following values are given:

• Instance: Name of the instance.

• Nc: Number of customers.
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• Nd: Number of depots.

• Nv: Number of vehicles.

• BKS: Best known solution value considering all the algorithms. The underlined values
have not been proved to be optimal.

For each algorithm and for each instance, the following values are reported:

• Best: Best solution value found. When the value of Best is equal to the corresponding
BKS, it is presented in boldface.

• gapB: Percentage gap between Best and BKS, computed as gapB = 100 (Best−BKS)
BKS .

• Avg: Average solution value computed over 30 runs for the PLS heuristic algorithm (see
[13]), and computed over 30, 10, and 5 runs for the M-ILS algorithm.

• time: Global computing time for finding the Best value (expressed in seconds).

3.3.1 Parameter tuning

For selecting the correct parameters of the M-ILS metaheuristic, the iterated racing for automatic
algorithm configuration IRACE software has been used. IRACE is a well-known calibration tool
that has been used successfully for tuning the parameters of different metaheuristic algorithms
for several combinatorial optimization problems. Details about the elitist procedures applied by
the software can be found in [34].

Because of the significant differences of the instances composing the considered benchmark
data sets, the parameter tuning was performed separately for each of the three problems. For
each problem, the training set is a sample of 1/3 of the corresponding instances of each data set.
The values analyzed for each parameter were the following: itmax:{50, 100, 150, 200}, itsoft:{5,
10, 15, 18}, ithard:{20, 25, 30, 40} (both itsoft and ithard as a percentage of itmax), t0:{100, 200,
300, 400, 500}, tf :{0.5, 1, 5, 10}, α:{0.90, 0.95, 0.98, 0.99}, and a:{0.1, 0.3, 0.5, 1, 3, 5} as a
percentage of the value of the initial solution s0. The selected configurations for each problem
are presented in Table 3.4.

Table 3.4: Best configuration of parameters for each problem

Problem itmax itsoft ithard t0 tf α a

MDCCVRP 200 18 20 500 10 0.98 0.1
MDk-TRP 200 18 30 500 5 0.98 -
LLRP 200 15 20 400 10 0.90 5

3.3.2 An analysis of each ingredient of the M-ILS algorithm

This section presents an analysis regarding the quality of the solution obtained and the com-
puting time required by each ingredient of the proposed algorithm. Furthermore, the efficiency
of the local search procedures and the importance of each neighborhood structure are studied.
This analysis is performed to evaluate the main contribution of each ingredient of the proposed
approach to the quality of the solution concerning the objective function value and the com-
puting time. For each problem, we have considered a set of unique parameters (described in
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the previous section) for analyzing the behavior of each ingredient of the proposed algorithm.
It is to note that the global contribution of each ingredient remains even if the values of the
parameters are changed.
Table 3.5 presents the global average results obtained by removing the different ingredients

of the M-ILS algorithm and by executing 5 runs for each instance. The columns of the table
correspond to the following values:

• M-ILS: The results obtained by the complete proposed algorithm.

• Initial Solution: The results obtained by the initial Constructive procedure, removing the
ILS procedure (see Section 3.2.1).

• M-ILS (wLS): The results obtained by the proposed algorithm when the local search
procedure (step 2 of the algorithm) is removed.

• M-ILS (wSA-VND): The results obtained by the proposed algorithm when the SA-VND
procedure (step 3 of the algorithm) is removed.

• M-ILS (wLKH-3): The results obtained by the proposed algorithm when the LKH-3 pro-
cedure is removed from the first part of the perturbation Configuration−Swap and from
the final part of the Improvement phase.

In order to evaluate, for each problem and for each data set, the quality of the initial solution
and the effect of removing step 2, step 3, and the LKH-3 procedure from the M-ILS algorithm,
the following values (with the averages computed over all the corresponding instances) are
considered.

• A−Best: Average of the best solution values (Best) found by the considered algorithm.

• A − Avg: Average of the average solution values found for each run by the considered
algorithm.

• A − time (avg): Average of the average computing times required for each run by the
considered algorithm.

• A − gapB0: Average of the percentage gaps gapB0 between the values of Best found by
the considered algorithm and BKS0, where BKS0 represents the currently published best
known solution value for the respective instance, with gapB0 = 100 (Best−BKS0)

BKS0
.

• leq BKS0: The number of instances for which the best solution value Best found by the
considered algorithm is better than or equal to BKS0.

The results reported in Table 3.5 show that the largest reduction of the computing time is
achieved when the SA-VND procedure is removed. However, this also implies a considerable
reduction of the solution quality. On the other hand, the results indicate that when the local
search procedure LS (step 2) is removed, the computing time increases, generally without af-
fecting considerably the quality of the solutions. These results suggest that the LS procedure
helps to avoid extensive explorations during the execution of the SA-VND procedure. The re-
sults obtained by removing the LKH-3 procedure are worse than those obtained by the complete
algorithm for all the data sets but the MDCCVRP data set lr, for which the results obtained
by the two versions of the algorithm are similar. In all the cases, there is a reduction of the
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computing times; nevertheless, by considering the most complex data sets it is clear that by
not considering the LKH-3 procedure the quality of the solution is negatively affected. Con-
cerning the initial Constructive procedure, it is possible to note that it can provide reasonably
good quality solutions in very short computing times; indeed, it can find solution values that
are better than or equal to BKS0 for 5 instance for the MDCCVRP, for 10 instances for the
MDk-TRP, and for 13 instances for the LLRP. Globally, the best results are obtained when
all the parts of the M-ILS algorithm are considered. This shows that all the ingredients of the
proposed algorithm contribute to the final solution and must be considered.
Another interesting analysis regards the importance of each neighborhood in the local search

(LS) and VND procedures. Figure 3.2 presents the percentage average contribution of each
neighborhood for each problem. The contribution is measured in terms of the ratio of the
number of times a move was applied, improving the current solution, over all the applied moves.
Regarding the LS procedure (see Figure 3.2.a), the neighborhoods 2−opt and insertion corre-

spond to those which produce the largest impact on the effectiveness of the proposed algorithm.
On the other hand, due to the descent design of the VND procedure, the neighborhoods explored
at the beginning give the largest contribution to the final solution (see Figure 3.2.b), with the
neighborhood insertion (which is the first neighborhood executed in the VND exploration),
being the most applied move. As it is possible to note, all the neighborhoods contribute to the
final solution in both procedures, even if some of them are not intensively applied.

(a)

(b)

Figure 3.2: Percentage average contribution of the neighborhoods. (a) LS. (b) VND.
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3 An iterated local search algorithm for latency vehicle routing problems with multiple depots

The perturbations play a crucial role for the success of M-ILS. In order to evaluate the impor-
tance of the criterion based on the level of aggressiveness used in the perturbation step, three
different versions of the M-ILS algorithm are compared with the original one. The considered
versions are the following:
-P1: Route− Swap is removed and replaced by Route−Relocation.
-P2: Route−Relocation is removed and replaced by Route− Swap.
-P3: Configuration− Swap is removed and replaced by Route−Relocation.
The comparison presented in Table 3.6 considers the same values defined at the beginning of
this subsection. The results show that the original algorithm leads to the best global results
regarding solution quality for the three problems. The version P1 leads to results similar to
those obtained by the original version of M-ILS; nevertheless, P1 is clearly outperformed by
the original M-ILS when the most complex instances are analyzed. Furthermore, in general,
P1 requires larger computing times than the original version of the algorithm. The reason
for the similar results obtained by the two versions is that the solution space does not change
when the perturbation Route − Swap is applied. With respect to P2, it is possible to note
that also this version obtains results similar to those obtained by the original algorithm for the
three problems in similar computing times; nevertheless, for the three problems, the original
version is clearly more stable (see columns Avg and gapB0). It is to note that the perturbation
Route−Relocation modifies the search space since the number of routes assigned to each used
depot is changed; nevertheless, this search space can be potentially explored when new depot
configurations are evaluated by applying Configuration− Swap, since the allocation of routes
to depots is changed. Finally, the results show that P3 leads to the worst results in terms of
solution quality among all the analyzed versions. By removing Configuration − Swap it is
possible to achieve a considerable reduction in the computing times; however, by avoiding an
important part of the solution space associated with the used depots, worse-quality solutions
are obtained.

3.3.3 The multi-depot cumulative capacitated vehicle routing problem
(MDCCVRP)

There are four papers in the literature for the solution of the MDCCVRP: the POPMUSIC
matheuristic [12], the PLS heuristic algorithm [13], the branch-and-cut-and-price algorithm
(BCP) [15], and the two MILP formulations presented in [16]. For the MDCCVRP, the M-
ILS algorithm is executed for each instance with a number of runs equal to 30, 10 and 5.
Since in [13] the heuristic algorithm PLS has been shown to be more effective than the

matheuristic POPMUSIC in terms of both the solution values and the computing times, the
latter algorithm is not considered in the following.
In [15], the authors presented computational results for two configurations of the BCP, one ob-
tained by fixing a small value for the maximum number of customers that can be visited in the
same route (BCPfix), and the other without fixing this value (BCPnf ). According to the results
reported in [15], BCPfix dominates the non-fixed version since it can find the optimal solution
for all the instances solved to proven optimality by BCPnf , but within shorter computing times.
In addition, BCPfix can find feasible solutions for 14 instances for which BCPnf runs out of
memory without finding a feasible solution. Of course, the solutions found by BCP fix for these
14 instances are not proved to be optimal.
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3.3 Computational results
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3 An iterated local search algorithm for latency vehicle routing problems with multiple depots

In order to present a fair comparison, the global computing times reported in Tables 3.7, 3.8
and 3.9 for each instance correspond to: i) for PLS to the average computing time reported in
[13] multiplied by 30 (number of runs) and by the scaling factor (0.61); ii) for BCP to the scaled
computing times (considering a scaling factor equal to 0.75) reported for BCPfix in [15], and
iii) for the two formulations to the scaled computing time (considering a scaling factor equal
to 0.61) of the fastest between the two MILP models, as the computing time of each separate
model was not reported in [16]. The computing times reported for M-ILS correspond to the
average computing times multiplied by the respective number of runs. Furthermore, for each
number of runs of M-ILS the following values are reported:

• gapPLS : Percentage gap between the Best solution value found by M-ILS (Best) and the

Best solution value found by PLS (BestPLS), computed as gapPLS = 100 (Best−BestPLS)
BestPLS

.

• gapBCP : Percentage gap between the Best solution value found by M-ILS and the Best
solution value found by BCP (BestBCP ), computed as gapBCP = 100 (Best−BestBCP )

BestBCP
.

The p-pr data set

The computational results corresponding to the 33 instances of the data set p-pr are reported in
Table 3.7. This data set contains the most challenging MDCCVRP instances due to the large
number Nc of customers and the small number Nv of vehicles (generally, the smaller Nv, the
more difficult is the instance [12, 15]). According to the results reported in Table 3.7, only the
metaheuristic algorithms, i.e., PLS and M-ILS, can find a feasible solution for all the instances in
this data set. BCPfix can find the proven optimal solution for 18 instances and the best-known
feasible solution for 6 instances (no feasible solution is found for the remaining 9 instances).

For the 9 instances for which BCPfix runs out of memory without a feasible solution, M-
ILS provides the new best-known solution value (outperforming the solution value provided by
PLS), independently of the number of runs. The corresponding values of LB and gapLB (where

gapLB is the percentage gap between BKS and LB, computed as gapLB = 100 (BKS−LB)
LB ) for

these instances are the following: p08: 14444.3 (19.58%), p09: 11742.3 (27.045%), p11: 9883.96
(43.27%), p21: 21397.1 (19.18%), p22: 20822.2 (16.85%), p23: 20247.4 (16.67%), pr05: 6436.69
(52.34%), pr06: 7434.05 (46.26%), and pr10: 7645.9 (48.25%). Furthermore, considering the 24
instances for which BCPfix provides the best-known solution value, M-ILS (executed for 30 and
10 runs) finds the optimal solution value for 7 instances, and the average percentage gap between
the best solution value provided by M-ILS and BKS is equal to 0.29% when M-ILS is executed for
30 runs. The global average computing time required by BCPfix for solving these 24 instances
is 1.6 times larger than that required by M-ILS (executed for 30 runs). No computing time has
been reported in [15] for the 9 instances for which BCPfix runs out of memory without finding
a feasible solution. Therefore, it is impossible to compute the global average computing time
(considering all the 33 instances) associated with this algorithm. The corresponding values of
LB and gapLB for the 6 instances for which BCP provides the best known feasible solution value
are the following: p10: 10478.5 (33.84%), p18: 13535.5 (16.14%), p19: 13097.9 (15.33%), p20:
12672.8 (15.15%), pr04: 5559.22 (63.18%), and pr09: 5586.49 (61.60%). On the other hand, the
MILP formulations can solve optimally only two small-size instances (with up to 50 customers)
and provide, within the time limit, feasible solutions for 7 additional instances with up to 100
customers, with an average percentage value of gapB equal to 2.48%. For the 9 instances for
which the MILP formulations are able to provide a solution, the average percentage value of
gapF (where gapF is the percentage gap between the Best solution value found by M-ILS and the
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3.3 Computational results

Best solution value found by the formulations (BestF ), computed as gapF = 100 (Best−BestF )
BestF

) is
equal to -2.18%, -2.13%, and -1.99% when M-ILS is executed for 30, 10 and 5 runs, respectively.
Since the MILP formulations are dominated by BCP, the results associated with them are not
reported in Table 3.7.
By comparing the best results provided by the heuristic algorithms PLS and M-ILS (both

executed for 30 runs) on the 33 instances of this data set, it is possible to see that M-ILS
provides better solutions than PLS for 27 instances, the same solution value for 4 instances and
worse solution values only for 2 instances. The final average percentage value of gapPLS equals
-0.92%. However, it is to note that, although M-ILS provides better quality solutions than PLS,
the computing times required by PLS are clearly smaller than those required by M-ILS.
For all the instances but one, the Avg. solution value provided by M-ILS is better than the Avg.
solution value provided by PLS. Furthermore, for 12 instances, the Avg. solution value provided
by M-ILS is better than the best solution value reported for PLS. The global average percentage
gap between the average solution value provided by M-ILS and the best solution value provided
by PLS is equal to 0.16%. This indicates that M-ILS is more stable than PLS, hence it needs
fewer runs to provide good-quality solutions. Indeed, reducing the number of runs to 10 and 5,
the number of instances for which M-ILS provides better solution values than those found by
PLS equals 27 and 24, respectively. For 4 (resp. 3) instances, both heuristic algorithms found
the same solution value when M-ILS is executed for 30 (resp. 10 and 5) runs. Globally, the
gapPLS value is equal to -0.72% and to -0.57% by considering 10 and 5 runs, respectively; this
means that independently of the number of runs, M-ILS overcomes PLS in terms of solution
quality. For 11 and 13 instances, the average solution value provided by M-ILS is better than the
best value found by PLS when, respectively, 10 and 5 runs are considered for M-ILS. In addition,
when M-ILS is executed for 5 runs, the average solution value provided by M-ILS is equal to the
best solution value found by PLS for two instances. Thus, the reduction in the number of runs
does not significantly affect the quality of the solutions provided by the proposed algorithm. In
contrast, the global computing time of M-ILS is drastically reduced to very competitive ones
with respect to those of PLS.

The p-pr data set with Nv=35

The p-pr data set with Nv=35 is composed of 24 instances, and the corresponding computational
results are reported in Table 3.8. BCPfix can obtain a proven optimal solution for 16 instances
and the best-known feasible solution for the remaining 8 instances. The MILP formulations
cannot find a feasible solution for 9 large-size instances, and the largest-size instance that can
be solved optimally considers 192 customers. The columns gapBCP and gapF are not reported
in Table 3.8, since for all the instances the solution values provided by BCPfix are equal to BKS
(so the value of gapBCP is always equal to gapB), and all the instances solved by the MILP
formulations were solved to proven optimally (so the value of gapF is equal to gapB for these
instances). Furthermore, by considering only the 15 instances for which the MILP formulations
can provide the optimal solution, the global computing time required by the formulations is
larger than that required by BCPfix (134.4 s > 70.5 s). Since the MILP formulations are
dominated by BCP, the results associated with them are not reported in Table 3.8.
The global average value of gapB obtained by M-ILS (with 30 runs) is equal to 0.07%. M-ILS

finds the optimal solution value for 10 instances and near-optimal solution values (the largest
gapB value is equal to 0.34%) for all the remaining ones. Compared to PLS, M-ILS (with 30
runs) provides a better solution value for 20 instances, the same solution value for 3 instances,
and a worse solution value for one instance. The global value of gapPLS for M-ILS (with 30 runs)
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3 An iterated local search algorithm for latency vehicle routing problems with multiple depots

is equal to -0.22%, while the global average percentage gap between the Avg value provided by
M-ILS and the best solution value obtained by PLS is equal to 0.04%. Regarding the global
computing time, M-ILS presents large computing times when 30 runs are considered. However,
when the number of runs is reduced to 10 or to 5, the quality of the solutions is not affected
significantly, and the computing times decrease considerably. The global values of gapB are
equal to 0.10% and 0.17% when the number of runs is reduced to 10 and 5, respectively. M-ILS
provides better solution values than those obtained by PLS for 19 and 18 instances when 10 and
5 runs are considered, respectively.
The average solution value provided by M-ILS is better than (for 21 instances) or equal to

(for two instances) the average solution value provided by PLS, independently of the number
of runs. Furthermore, for 8 and 7 instances, the average solution value provided by M-ILS
considering 30 (or 5) and 10 runs, respectively, is better than the best value provided by PLS.
For two instances, these values are equal, independently of the number of runs. The global
average percentage gap between the value Avg provided by M-ILS and the best solution value
obtained by PLS equals 0.05% and 0.07% when 10 and 5 runs are considered, respectively.
For two instances, the average solution value provided by M-ILS is equal to the optimal

solution value independently of the number of runs. In addition, the global percentage gap
between the average solution value provided by M-ILS and BKS is equal to 0.33% and 0.35%,
when M-ILS is executed with 30 (or 10) and 5 runs, respectively. A single run may provide
solution values close to BKS, making M-ILS competitive with respect to the global computing
time.

The lr data set

The lr data set is composed of 21 instances and corresponds to the simplest data set due to
the small number of customers and the relatively large size of the fleet. The corresponding
computational results are reported in Table 3.9. This data set was proposed in [12] as a small
data set which allows the exact methods to find optimal solutions. Indeed, all the instances of
this data set were solved to proven optimality in [15]. Besides, all the instances but three were
also solved optimally in [16]. For the same reasons given in the previous Section (3.3.3), the
columns gapBCP and gapF are not reported in Table 3.9.

By comparing the best results provided by the metaheuristic algorithms, it is possible to note
that M-ILS (with 30 runs) provides solutions better than those found by PLS for 8 instances,
and the same solution value for 10 instances. The value of gapPLS is equal to -0.13%. Regarding
the computing times, PLS is globally much faster than M-ILS. For all the instances, the Avg.
solution value provided by M-ILS is better than the Avg. solution value provided by PLS.
Furthermore, for 3 instances, the Avg. solution value provided by M-ILS is better than the best
solution value reported for PLS. For 4 instances, these values are the same. The global average
percentage gap between the average solution value provided by M-ILS and the best solution
value provided by PLS is equal to 0.06%.
Also for this data set, the results indicate that M-ILS is more stable than PLS; hence, it needs

fewer runs to provide good-quality solutions. Indeed, the number of instances for which M-ILS
provides better solution values than those obtained by PLS is equal to 7 when the number of
runs is reduced to 10 or to 5. Furthermore, for 10 instances, both algorithms found the same
solution value independently of the number of runs executed by M-ILS.
Globally, the gapPLS value is equal to -0.13% and -0.11% by considering 10 and 5 runs,

respectively, which means that independently of the number of runs, M-ILS overcomes PLS in
terms of solution quality. Furthermore, when the number of runs is equal to 10 (resp. 5), the

70



3.3 Computational results

Table 3.10: Average results obtained by each metaheuristic considering time limits and target
values for each MDCCVRP data set.

Data set # Instances
PLS M-ILS

TV TL BestTL gapTL #TV timeTL

p-pr 33 9758.57 369.4 9718.85 -0.32 21 205.5

p-pr with Nv=35 24 5543.59 192.5 5545.27 0.02 15 155.5

lr 18 3959.37 71.3 3960.42 0.00 12 39.1

All the instances 75 7017.97 241.3 7001.28 -0.13 48 149.6

number of instances for which the average solution value provided by M-ILS is better than the
best solution value found by PLS is equal to 4 (resp. 2), and for 5 instances these values are
equal when 10 or 5 runs are considered.

Comparing the results obtained by M-ILS versus the optimal solution values, it is possible to
see that M-ILS can find the optimal solution value for 18, 16, and 14 instances, with a global
value of gapB equal to 0.01%, 0.05%, and 0.08%, when respectively, 30, 10, and 5 runs are
executed. Furthermore, for 4 and 6 instances the average solution value obtained by M-ILS
is equal to the optimal solution value by considering 30, and 10 (or 5) runs, respectively. In
addition, the global percentage gap between the average solution value provided by M-ILS and
the optimal solution value is equal to 0.27%, 0.28%, and 0.30% when the algorithm is executed
with 30, 10, and 5 runs, respectively. A single run may provide near-optimal solution values,
making M-ILS competitive in terms of computing time.

Overall results on the MDCCVRP

Analyzing the results, it is possible to state that the proposed algorithm M-ILS overcomes PLS
in terms of solution quality for all the studied data sets by executing 30, 10, or 5 runs. The global
average percentage gapPLS value is equal to -0.51%, -0.41%, and -0.31% when M-ILS is executed
with 30, 10, and 5 runs, respectively. As it is possible to note, the current MILP formulations
[16], and the BCP algorithm [15] can manage small-size instances in reasonable computing times.
Indeed, BCPfix can solve medium and large-size instances with large fleet sizes. Nevertheless,
for the most challenging instances, the proposed M-ILS proved to be the most effective algorithm
for what concerns the solution quality, providing the best results within competitive computing
times with respect to PLS, and much shorter computing times with respect to BCP. As a
consequence of the stability in the performance shown by M-ILS, the number of runs needed for
obtaining good quality solutions is not large.

Regarding the proposed lower bounds, we found that the average value of gapLB for the 23
instances not solved to proven optimally is equal to 26.48%. Despite this value is large, it does
not mean that the BKS values for these instances correspond to bad quality solutions. Indeed,
the average value of gapLB obtained by considering only the instances solved to proven optimally
is equal to 14.31%, which means that the proposed lower bounds are not tight. It is possible
to note that the proposed lower bounds provide reasonable good approximations of the optimal
solution value for instances with a relative large number of vehicles. The average value of gapLB
obtained by considering only the instances in the data sets p-pr with Nv = 35 and lr is equal to
6.40%.

In order to compare the efficiency of the algorithm M-ILS with that of the algorithm PLS, new
experiments were carried out to compare the quality of the solutions obtained by both algorithms
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within the same global computing time, and to determine the computing time required by M-ILS
to reach for each instance a given target value. Let us consider, for each instance, a target value
(TV) given by the best solution value obtained by the algorithm PLS and a time limit (TL)
given by the global computing time required by PLS to find the target value.
The summary of the average results of this experiment is presented in Table 3.10 for each data

set and for the overall set of instances. The reported columns correspond to: the averages of
the target values (TV) and of the time limits (TL), the average of the best solution value found
by M-ILS within the time limit (BestTL), the average of the percentage gap between BestTL

and TV (gapTV ), the number of instances for which the target value is found by M-ILS within
the time limit (#TV), and the average of the computing times required by M-ILS to reach the
target values (timeTV ). It is to note that, for the instances for which M-ILS cannot find the
target value, timeTV is equal to the time limit.
The results show that M-ILS is able to find globally better results than PLS by considering

the same global computing time for both algorithms (considering all the instances). It can be
noted that M-ILS can find the target value (for 11 instances) or improve it (for 37 instances)
for 48 out of the 75 considered instances within the time limit, obtaining a global average value
of gapTV equal to -0.13%. This means that M-ILS can find better quality solutions than those
obtained by PLS within computing times slightly larger than half of the times reported for
PLS. It is to note that M-ILS clearly dominates PLS for the p-pr data set, which contains the
most challenging instances. For the other two data sets, both algorithms provide similar results,
nevertheless, for each of the three considered data sets, M-ILS is able to find or improve the
target value for more than 60% of the instances within the time limit.
As we proved in the previous sections, running the proposed metaheuristic for a longer time

leads to better solutions than those obtained by the PLS algorithm. Nevertheless, this experi-
ment also proved that in general the proposed M-ILS is superior to the current state-of-the-art
metaheuristic when both algorithms compete with the same conditions.
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3.3 Computational results
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3.3 Computational results
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3.3 Computational results

3.3.4 The multi-depot k-traveling repairman problem

In this sections we compare the proposed M-ILS algorithm with the two mathematical formula-
tions and the two configurations of the genetic algorithm (GA in the tables) presented in [10],
the only work in the literature dealing with the multi-depot k-traveling repairman problem. For
the MDk-TRP, the M-ILS algorithm is executed for each instance with a number of runs equal
to 10, 5 and 1. It is to note that both configurations of the algorithm GA are executed with a
single run (the stopping criterion being defined by the maximum number of iterations, whose
value is defined depending on the size of the instance.)
In order to present a fair comparison between M-ILS and the solution methods proposed in

[10], for each instance the global computing times presented in Tables 3.11-3.14 for the latter
methods correspond to the scaled values (using a scaling factor equal to 0.61) of:
i) the sum of the computing times reported in [10] for each configuration of GA (since there is
no dominance between the two configurations), and
iia) the computing time reported in [10] of the dominant formulation (Model 2) when the time
limit is not reached, or iib) the sum of the computing times of both formulations when the time
limit is reached for Model 2. Furthermore, for each number of runs of M-ILS and each instance,
also the following values are reported:

• gapGA: Percentage gap between the Best solution value found by M-ILS (Best) and the

Best solution value found by GA (BestGA), computed as gapGA = 100 (Best−BestGA)
BestGA

.

• gapF : Percentage gap between the Best solution value found by M-ILS and the Best
solution value found by the Formulations (BestF ), computed as gapF = 100 (Best−BestF )

BestF
.

The p-pr data set with reduced fleet

The computational results corresponding to the 24 instances of the p-pr data set with reduced
fleet are reported in Table 3.11. This data set was proposed in [10], and contains the most
challenging MDk-TRP instances due to the large number of customers (Nc) and the small
number of vehicles (Nv). According to the results presented in Table 3.11, M-ILS (executed
with 10 and 5 runs) can find globally better solutions than those obtained by the formulations
(with values of gapF equal to -0.05 and -0.03, respectively) in shorter computing times (almost
three and six times smaller, respectively). The maximum value of gapB associated with M-ILS,
executed with 10 or 5 runs, is equal to 2.15%, while the maximum value of gapB associated with
the formulations is equal to 8.52%. M-ILS, executed with 10 runs, can find the proven optimal
solution value for 5 instances and provides new best-known solution values for 3 large instances.
The corresponding values of LB and gapLB for the 8 instances for which the formulations have
not been solved to proven optimally are the following: p09: 11742.3 (25.47%), p10: 10478.5
(34.13%), p11: 9883.96 (41.61%), p15: 9048.53 (14.61%), p18: 13535.5 (15.86%), pr05: 6436.69
(26.73%), pr06: 7434.05 (25.99%), and pr10: 7645.9 (29.09%).
Compared to GA, M-ILS is superior in terms of solution quality, improving the global best

solution value of GA by over 7%, even when a single run is executed. M-ILS can find a better
best solution value than that found by GA for all the instances but one, when 10 and 5 runs are
executed, and for all the instances but 2 when a single run is performed. The average solution
value obtained by M-ILS by executing 10 or 5 runs is better than the best solution value obtained
by GA for all the instances but three. The global computing time required for executing M-ILS
with 5 runs is slightly smaller than the global computing time required by GA. Nevertheless, the
quality of the solutions provided by M-ILS is clearly better. In addition, when M-ILS is executed
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with a single run, the global computing time is 5 times smaller than the global computing time
required by GA, and the quality of the solutions provided by M-ILS is still considerably better
than that of GA.

The p-pr data set with Nv=35

Table 3.12 presents the results for the p-pr data set with Nv = 35, obtained by the p-pr data set
with the reduced fleet by setting Nv = 35 for all 24 instances. We found that for 10 instances of
this data set, the values reported in [10] as optimal/best solution values found by the formulations
were smaller than the corresponding LB values 1.The 10 instances with the respective values
reported in [10], and the corresponding LB values are the following: p01: 660.34 < 707.68, p02:
660.34 < 707.68, p04: 1881.48 < 1926.16, p05: 1871.62 < 1956.75, p06: 1460.6 < 1500.48, p12:
2769.07 < 2897.06, p15: 5618.84 < 5794.11, pr01: 1167.74 < 1260.41, pr02: 2422.94 < 2527.15,
and pr07: 1594.15 < 1691.14.

In order to determine the right solution values found by the two MILP formulations proposed
in [10] for the instances of this data set, we implemented both MILP formulations and solved
all the instances on our computer using the MILP solver Gurobi 9.1.2 [35] with a time limit
of 4392 s, which is the scaled value of the time limit of 7200 s imposed in [10]. First, we
solved Model 2; only in case the time limit is reached we solved Model 1, and the best solution
value found is reported in column Best. All the values presented in Table 3.12 for the MILP
formulations correspond to those found by our implementation and should be used in future
research. It is to note that all the instances but p18 and pr10 were solved to proven optimality
within the time limit. For the instance p18 the best lower bound found was equal to 11364.06,
implying an optimality gap equal to 0.61%, while for the instance pr10, the best lower bound
found was equal to 9082.66, implying an optimality gap equal to 0.28%. These lower bounds are
tighter than LB (11364.06 > 9934.63, and 9082.66 > 7645.90, for the instances p18 and pr10,
respectively), and should be used in future research as best lower bounds for these instances. In
the Appendix the optimal solutions for two instances are presented. In the results reported in
[10], the solution values obtained by algorithm GA for the instances pr01 and pr07 are smaller
than the corresponding optimal solution values, hence these values are not considered in Table
3.12. It is to note that Table 3.12 does not include the values of gapF since the formulations
always provide the best-known solution values, which implies that gapF is equal to gapB for all
the instances of this data set.

According to the results shown in Table 3.12, M-ILS can find the optimal solution values
for 8, 5, and 4 instances by performing 10 run, 5 runs, and 1 run, respectively. For all the
other instances, it can provide near-optimal solutions independently of the number of runs. The
global average value of gapB is equal to 0.11% by executing M-ILS with 10 runs, 0.14% when
it is executed with 5 runs and 0.43% considering a single run. Although, by executing 10 runs
for each instance, M-ILS is more time-consuming than the formulations, by considering 5 runs,
the global computing time is slightly smaller than that required by the formulations, and by
considering a single run, M-ILS is six times faster than the formulations.

Compared to GA, M-ILS is superior in the solution quality since the global value of gapGA

is around -8%, independently of the number of runs. For all the instances but two, the best
solution value provided by M-ILS is better than that provided by GA (independently of the
number of runs). For the two remaining instances, when 10 runs are considered, M-ILS and GA

1We have jointly checked the results of the considered instances with the authors of [10], who acknowledged an
error in the procedure used to read the input files.
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find the same best (optimal) solution value for both instances, while when 5 runs are considered,
each algorithm finds a solution better than that of the competitor for one instance. Furthermore,
the Avg. solution value provided by M-ILS, by considering 10 and 5 runs, is smaller than (for
20 instances) or equal to (for one instance) the best solution value obtained by GA for all the
instances but one. Regarding the computing times of the two metaheuristics, M-ILS is more
time-consuming than GA when it is executed with 10 and 5 runs, while it is almost the same
when it is executed with a single run.

The lr data set

The computational results corresponding to the 21 instances of the lr data set are reported in
Table 3.13. Since the instances lr10, lr11, and lr12 with 25 vehicles were not considered in [10],
we solved them optimally under the same conditions mentioned in Section 3.3.4. The values
reported in [10] for both GA and the formulations are presented for all the other instances.
This is the easiest of the considered data sets since all its instances have been solved to proven
optimality by the formulations within very short computing times (at most 37.8 seconds).

The results presented in Table 3.13 show that M-ILS can find the optimal solution value for
15, 14, and 9 instances by performing 10 runs, 5 runs, and 1 run, respectively. For all the
other instances, M-ILS can provide near-optimal solution values independently of the number
of runs. The average value of gapB is equal to 0.06% by performing 10 runs, 0.09% for 5 runs
and 0.29% considering a single run. M-ILS is more time-consuming than both the formulations
and GA, independently of the number of runs. Nevertheless, by executing only one run, M-ILS
provides good quality solutions in reasonable computing times (on average around 40 s). For
what concerns the values of the solutions provided by M-ILS compared to those obtained by
GA, it is possible to conclude that M-ILS outperforms GA independently of the number of runs.
By executing M-ILS with 10 runs, the best solution value found by M-ILS is better than (for
12 instances) or equal to (for 5 instances) the best solution value provided by GA for all the
instances but one. Similarly, by executing M-ILS with 5 runs, the best solution value found
by M-ILS is better than (for 11 instances) or equal to (for 5 instances) the best solution value
provided by GA for all the instances but two. By executing a single run, the best solution
value provided by M-ILS is better than (for 10 instances) or equal to (for 3 instances) the best
solution value provided by GA for all the instances but 5. The good performance of M-ILS is
more evident for the large size instances of this data set (NC=100) for which the average value
of gapGA is equal to -2.98% (considering a single run for M-ILS).

The lr data set with reduced fleet

The computational results corresponding to the 18 instances of the lr data set with reduced
fleet are reported in Table 3.14. Since for the instances lr5 and lr15 the best solution values of
the feasible solutions found by M-ILS are smaller than the optimal solution values reported in
[10], we solved these two instances optimally under the same conditions mentioned in Section
3.3.4. The optimal solution values presented in Table 3.14 are the correct ones, and should be
used in future research. For what concerns the results reported in [10] regarding GA, the best
solution value presented for the instance lr4 is smaller than the optimal solution value, so this
value is not considered in Table 3.14. The original values reported in [10] are presented for all
the other instances. It is to note that all the instances of this data set have been solved to
proven optimality with the formulations.

The results presented in Table 3.14 show that M-ILS can find the optimal solution value for
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3 An iterated local search algorithm for latency vehicle routing problems with multiple depots

12, 10 , and 9 instances by performing 10 runs, 5 runs, and 1 run, respectively. The proposed
algorithm can find near-optimal solution values for all the remaining instances, obtaining an
average value of gapB equal to 0.20%, 0.24%, and 0.64% when the number of runs executed
for each instance is 10, 5, and 1, respectively. Regarding the global computing times, M-ILS is
more than four times faster than the formulations and two times faster than GA when 10 runs
are performed. M-ILS outperforms GA for what concerns both the computing time and the
solution quality. When the number of runs executed is equal to 10 or 5 for each instance, M-ILS
finds better solution values than those obtained by GA for 14 instances and the same solution
value for the remaining 3 instances. When a single run is considered for M-ILS, it finds solution
values better than (for 13 instances) or equal to (for 3 instances) those obtained by GA for all
the instances but one. In addition, the average solution value obtained by M-ILS by performing
10 runs is better than (for 12 instances) or equal to (for 3 instances) the best solution value
obtained by GA for all the instances but two. Similarly, the average solution value obtained by
M-ILS by performing 5 runs is better than (for 13 instances) or equal to (for 3 instances) the
best solution value obtained by GA for all the instances but one. M-ILS obtained an average
value of gapGA equal to -2.42%, -2.39%, and -1.98% when the number of runs executed for each
instance is 10, 5, and 1, respectively. It is to note also that for 6 (7) instances, the average
solution value found by M-ILS corresponds to the optimal solution value when 10 (5) runs are
performed.

Overall results on the MDk-TRP

After analyzing the results, it is possible to conclude that the proposed algorithm M-ILS over-
comes GA in terms of solution quality for all the considered data sets by executing a number
of runs equal to 10, 5, or 1 for each instance. The global average value of gapGA is equal to
-5.20%, -5.17%, and -4.87% when M-ILS is executed with 10, 5, and 1 runs, respectively. By
considering a single run, M-ILS is globally faster than GA for 2 of the 4 data sets, while the
average global computing time is similar and competitive (less than 60 s) for the remaining two
data sets. By considering the global average computing time (computed over all the instances),
M-ILS (executed with 1 run) is three times faster than GA (112.21 s vs. 376.05 s, respectively).
For the two data sets with reduced fleets (which contain the most challenging instances), M-ILS
is faster than GA when 5 runs are executed. Compared to the formulations, M-ILS finds optimal
or near-optimal solution values in globally shorter computing times for most of the considered
instances. The global average value of gapB (computed over all the instances) is equal to 0.11%
for the formulations, and 0.17% for M-ILS (when 10 runs are executed), while the average global
computing time is 1677.82 s for the formulations and 1077.61 s for M-ILS (when 10 runs are
executed).
Regarding the proposed lower bounds, we found that the average value of gapLB for the 10

instances not solved to proven optimality is equal to 24.77%. Also for this problem, despite
this value is large, it does not mean that the BKS values for these instances correspond to
bad quality solutions. Indeed, the average value of gapLB obtained by considering only the
instances solved to proven optimality is equal to 20.52%, which means that the proposed lower
bounds are not tight. It is possible to note that the proposed lower bounds provide reasonable
good approximations of the optimal solution value for instances with a relative large number of
vehicles. The average value of gapLB obtained by considering only the instances in the data sets
p-pr with Nv = 35 and lr is equal to 6.38%, while when only the instances in the data sets p-pr
and lr with reduced fleet are considered, the value obtained is equal to 36.68%.
In order to compare the efficiency of the algorithm M-ILS with that of the algorithm GA, new
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Table 3.15: Average results obtained by each metaheuristic considering time limits and target
values for each MDk-TRP data set.

Data set # Instances
GA M-ILS

TV TL BestTL gapTL #TV timeTL

p-pr with reduced fleet 24 7852.07 740.4 7293.30 -7.08 22 43.7

p-pr with Nv=35 22 6734.22 207.6 5910.76 -7.75 19 18.0

lr 18 4047.94 7.8 4001.30 -0.15 9 6.1

lr with reduced fleet 17 6763.40 469.6 6573.52 -2.02 15 10.6

All the instances 81 6474.61 376.1 6035.17 -4.66 65 21.4

experiments were carried out to compare the quality of the solutions obtained by both algorithms
within the same global computing time, and to determine the computing time required by M-ILS
to reach for each instance a given target value. Let us consider, for each instance, a target value
(TV) given by the best solution value obtained by the algorithm GA and a time limit (TL) given
by the global computing time required by GA to find the target value.

The summary of the average results of this experiment is presented in Table 3.15 for each data
set and for the overall set of instances. The reported columns correspond to: the averages of the
target values (TV) and of the time limits (TL), the average of the best solution value found by
M-ILS within the time limit (BestTL), the average of the percentage gap between BestTL and
TV (gapTV ), the number of instances for which the target value is found by M-ILS within the
time limit (#TV), and the average of the computing times required by M-ILS to find the target
values (timeTV ). It is to note that, for the instances for which M-ILS cannot find the target
value, timeTV is equal to the time limit. For the instances for which TL is equal to 0.0 we allow
M-ILS to perform only the Constructive phase, which generally requires small computing times,
and for small instances requires less than 1 s.

The results show that the M-ILS algorithm can find (for 7 instances) or improve (for 58 in-
stances) the target value for 65 out of 81 instances within the time limit, obtaining a global
average value of gapTV equal to -4.50%. Considering all the instances, M-ILS requires consid-
erably less computing time than that required by GA for finding solutions with similar quality,
and when M-ILS is executed for the same global time reported for GA it is able to largely
outperform GA in terms of solution quality. The only data set for which M-ILS does not totally
dominate GA is the lr data set. For these instances M-ILS is generally able to perform only
the Constructive procedure. Although the results of both heuristics are competitive in terms
of solution quality and computing time, M-ILS performs slightly better than GA, being able
to find the target value for half of the instances within the time limit. On the other hand, the
average computing times required by GA for finding the target values are 17, 12, and 44 times
larger than those required by M-ILS for the p-pr with reduced fleet, p-pr with Nv = 35, and lr
with reduced fleet data sets, respectively.

The computational experiments presented in this Section show that M-ILS clearly outperforms
GA both in terms of solution quality and computing time.

3.3.5 The latency location routing problem

The algorithms proposed in the literature for the solution of the LLRP are the following: the
memetic algorithm (MA) and the recursive granular algorithm (RGA) proposed in [11], the exact
methods and the GRASP-based iterated local search algorithm (GBILS) presented in [16], and
the three simulated annealing-variable neighborhood descent based metaheuristics SA-VND0,
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3 An iterated local search algorithm for latency vehicle routing problems with multiple depots

SA-VND1, and SA-VND2 presented in [22]. For the LLRP, the M-ILS algorithm is executed for
each instance with a number of runs equal to 30 and 5.
The results reported in [11] indicate that the algorithm MA dominates the RGA approach.

Besides, the exact methods proposed in [16] are able to solve to optimality only instances with
up to 50 customers. In particular, they solve the instances with 20 customers, from 21 to
36 customers, and with 50 customers, with average scaled computing times equal to 28, 465,
and 5312 seconds, respectively. For all the instances with more than 50 customers, the exact
methods are able to find, within a time limit of 21960 seconds, feasible solutions with an average
value of gapB (considering the values of BKS reported in Tables 3.17 and 3.18) equal to 5.05%.
For large-size instances, the metaheuristic algorithms GBILS, SA-VND0, SA-VND1, and SA-
VND2 perform globally better than the other methods for what concerns both the solution
quality and the computing times. According to the results presented in [22], the algorithms
SA-VND0, SA-VND1, and SA-VND2 are also more effective than RGA for all the considered
instances. Therefore, we have excluded the algorithm RGA ([11]) and the exact methods ([16])
for comparison purposes. On the other hand, despite the algorithms SA-VND0, SA-VND1, and
SA-VND2 have been proved to outperform the GBILS approach, the latter is included in the
comparison since it presents relatively good solution quality and short computing times. Note
that no average solution values have been reported in [16] for GBILS.
In order to present a fair comparison, the global computing times reported in Tables 3.16,

3.17 and 3.18 for each instance correspond to:
i) for MA to the times reported in [11], which correspond to the execution of 30 runs. The

experiments in [11] were performed on a 3.1 GHz computer with 4 GB RAM. The above is
the only information available about this computer, and it does not allow us to determine a
scaling factor. Nevertheless, considering the ratio between the corresponding values of GHz, it
is possible to estimate that our computer is about 1.2 times faster than that used in [11].
ii) for GBILS to the scaled computing time (considering a scaling factor equal to 0.61) of the

times reported in [16], which correspond to the execution of 5 runs;
iii) for SA-VND0, SA-VND1, and SA-VND2 to the computing time reported in [22], cor-

responding to the global computing time associated with 30 runs for each algorithm. It is to
note that the computing times of the mentioned algorithms do not need to be scaled since these
algorithms were executed on the same computer on which the M-ILS has been executed;
The computing times reported for M-ILS correspond to the average computing times multi-

plied by the respective number of runs.
Furthermore, for each number of runs of M-ILS, the following values are reported:

• gapMA: Percentage gap between the Best solution value found by M-ILS (Best) and the

Best solution value found by MA (BestMA), computed as gapMA = 100 (Best−BestMA)
BestMA

.

• gapSA: Percentage gap between the Best solution value found by M-ILS (Best) and
the Best solution value found by the best among SA-VND0, SA-VND1, and SA-VND2
(BestSA), computed as gapSA = 100 (Best−BestSA)

BestSA
.

• gapGBILS : Percentage gap between the Best solution value found by M-ILS and the Best
solution value found by GBILS (BestGBILS), computed as gapGBILS = 100 (Best−BestGBILS)

BestGBILS
.

The Tuzun–Burke data set

This data set contains the most challenging benchmark instances for the LLRP. Table 3.16 gives
the corresponding results. Since no results for GBILS are reported on this data set in [16],
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M-ILS is compared only with the MA algorithm presented in [11], and the three metaheuristics
presented in [22]. As the table indicates, M-ILS outperforms MA, SA-VND0, SA-VND1, and
SA-VND2 regarding both the solution quality and the computing time.
The proposed M-ILS improves the best-known solution value for 32 out of the 36 instances

of this data set. The average values of gapB are 5.56%, 0.77%, 0.84%, and 0.86% for MA,
SA-VND0, SA-VND1, and SA-VND2, respectively, while this value is equal to 0.04% for M-ILS.
Regarding the computing times, M-ILS is more than two times faster than SA-VND1 and SA-
VND2 and 1.5 times faster than SA-VND0 (considering 30 runs for each algorithm). On the
other hand, when 30 runs are considered for M-ILS, its computing times are larger than those
of MA; nevertheless, when the number of runs is reduced to 5, M-ILS is three times faster than
MA, being able to provide a better solution value than MA for all the instances. Furthermore,
when 5 runs are considered, M-ILS provides a better solution value than the best found by
SA-VND0, SA-VND1, and SA-VND2 for 22 instances, in global computing times more than 9
times shorter than those required by SA-VND0, which is the fastest among the three mentioned
algorithms.
The average solution value obtained by M-ILS is better than that obtained by MA, SA-VND0,

SA-VND1, and SA-VND2 for 36, 33, 34, and 32 instances, respectively. Furthermore, for seven
instances, the average solution value obtained by M-ILS is better than the best solution value
obtained by the best among the four competitors. Note that the average solution value provided
by M-ILS is better than the best solution value reported for MA for all the instances but one
(considering 30 runs). In the same direction, the average gapSA value equals -0.51%, and -
0.22%, and the average gapMA value equals -5.17%, -4.90%, when 30 and 5 runs are considered
for M-ILS, respectively.

The Prodhon data set

The results of this data set are presented in Table 3.17. Over the 30 instances of this data
set, M-ILS, executed with 30 runs, can find the proved optimal solution value for 11 instances,
provides new best-known solution values for 16 instances, and finds the current best-known
solution value for one instance. The average values of gapB obtained by M-ILS are equal to
0.05% and 0.19% considering 30 and 5 runs, respectively. These values of gapB are better than
those associated with all the competitors. It is to note that instance 50-5-3 was not solved
to proven optimality in [16]. Nevertheless, we implemented the MILP formulation “Model 2”
presented in [16] and solved this instance without considering a time limit, proving that the best
solution value reported in Table 3.17 corresponds to the optimal one.
Comparing M-ILS with the current state-of-the-art metaheuristics proposed in [22], it is pos-

sible to conclude that M-ILS outperforms the three algorithms SA-VND0, SA-VND1, and SA-
VND2, obtaining an average value of gapSA equal to -0.24%, and -0.09% when 30, and 5 runs
are considered, respectively. Regarding the computing time, M-ILS is 1.7, 2.7, and 2.5 times
faster than SA-VND0, SA-VND1, and SA-VND2, respectively (considering 30 runs for each
algorithm). When 5 runs are considered, M-ILS can find solution values better than (for 13
instances) or equal to (for 9 instances) the best found by SA-VND0, SA-VND1, and SA-VND2
for 22 instances, in global computing times more than ten times smaller than those required
by SA-VND0, which is the fastest among the three mentioned algorithms. Although GBILS is
faster than M-ILS (independently of the number of runs), the values of the solutions obtained
by M-ILS are considerably better than those found by GBILS. The average value of gapGBILS

equals -2.40% and -2.26% considering 30 and 5 runs, respectively. Furthermore, the average so-
lution value obtained by M-ILS (considering 30 runs) is better than or equal to the best solution
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3 An iterated local search algorithm for latency vehicle routing problems with multiple depots

value obtained by GBILS for all the instances but 3. Also, considering 5 runs, M-ILS provides a
solution value better than (for 25 instances) or equal to (for 4 instances) the best solution value
reported for GBILS for all the instances but one. Finally, M-ILS is able to provide a solution
value better than (for 28 instances) or equal to (for one instance) that reported for MA for all the
instances but one, independently of the number of runs. When 30 runs are considered, M-ILS
is more time-consuming than MA, obtaining an average gapMA equal to -3.77%; nevertheless,
considering 5 runs, M-ILS is 3.3 times faster than MA, providing an average value of gapMA

equal to -3.63%.

84



3.3 Computational results

T
ab

le
3.
16

:
D
et
ai
le
d
re
su
lt
s
fo
r
th
e
L
L
R
P

T
u
zu

n
-B

u
rk
e
d
at
a
se
t

.

In
st
a
n
c
e

N
c

N
d

N
v

B
K
S

M
A

S
A
-V

N
D
0

S
A
-V

N
D
1

S
A
-V

N
D
2

M
-I
L
S

3
0
r
u
n
s

M
-I
L
S

5
r
u
n
s

B
e
st

A
v
g

ti
m
e

g
a
p
B

B
e
st

A
v
g

ti
m
e

g
a
p
B

B
e
st

A
v
g

ti
m
e

g
a
p
B

B
e
st

A
v
g

ti
m
e

g
a
p
B

B
e
st

A
v
g

ti
m
e

g
a
p
B

g
a
p
M

A
g
a
p
S
A

B
e
st

A
v
g

ti
m
e

g
a
p
B

g
a
p
M

A
g
a
p
S
A

1
1
1
1
1
2

1
0
0

1
0

1
1

3
8
3
4
.9
1

4
0
1
7
.9
0

4
2
7
0
.1
0

1
2
0
0
.0

4
.7
7

3
8
6
2
.8
6

3
9
7
1
.5
0

1
9
1
2
.8

0
.7
3

3
8
9
2
.9
7

3
9
7
2
.9
3

2
3
9
0
.6

1
.5
1

3
8
8
2
.7
6

3
9
6
4
.1
2

2
8
0
1
.2

1
.2
5

3
8
3
4
.9
1

3
8
9
0
.1
3

2
1
4
9
.2

0
.0
0

-4
.5
5

-0
.7
2

3
8
4
9
.1
0

3
8
9
5
.1
7

3
4
2
.0

0
.3
7

-4
.2
0

-0
.3
6

1
1
1
1
2
2

1
0
0

2
0

1
1

3
6
1
2
.3
6

3
7
1
9
.1
0

4
0
8
7
.5
0

1
2
0
0
.0

2
.9
5

3
6
1
2
.3
6

3
6
9
4
.7
0

1
9
3
4
.6

0
.0
0

3
6
3
3
.6
0

3
7
1
2
.6
4

2
4
1
9
.2

0
.5
9

3
6
2
3
.6
9

3
6
8
7
.8
5

2
8
6
0
.6

0
.3
1

3
6
5
9
.4
6

3
6
9
5
.6
9

2
1
3
0
.6

1
.3
0

-1
.6
0

1
.3
0

3
6
8
3
.5
8

3
6
9
2
.6
5

3
4
2
.1

1
.9
7

-0
.9
6

1
.9
7

1
1
1
2
1
2

1
0
0

1
0

1
0

3
9
1
9
.7
4

4
2
6
4
.4
0

4
5
6
3
.5
0

1
2
4
5
.0

8
.7
9

3
9
6
0
.2
4

4
0
3
8
.2
4

1
8
0
5
.4

1
.0
3

3
9
8
8
.1
1

4
0
6
7
.9
1

2
3
3
5
.5

1
.7
4

3
9
3
8
.8
8

4
0
6
6
.1
3

2
6
9
2
.0

0
.4
9

3
9
1
9
.7
4

4
0
0
0
.9
4

2
4
5
5
.1

0
.0
0

-8
.0
8

-0
.4
9

3
9
1
9
.7
4

3
9
9
3
.5
4

3
9
4
.9

0
.0
0

-8
.0
8

-0
.4
9

1
1
1
2
2
2

1
0
0

2
0

1
1

4
0
6
5
.0
4

4
2
7
8
.3
0

4
5
5
7
.3
0

1
2
4
2
.0

5
.2
5

4
0
8
6
.7
4

4
1
4
0
.3
3

1
9
0
9
.6

0
.5
3

4
0
7
7
.8
7

4
1
4
7
.9
0

2
3
7
6
.2

0
.3
2

4
0
6
8
.3
4

4
1
3
8
.7
8

2
7
8
5
.2

0
.0
8

4
0
6
5
.0
4

4
1
3
9
.6
4

2
3
1
2
.7

0
.0
0

-4
.9
8

-0
.0
8

4
0
6
5
.0
4

4
1
2
5
.5
4

3
7
9
.0

0
.0
0

-4
.9
8

-0
.0
8

1
1
2
1
1
2

1
0
0

1
0

1
1

2
7
2
6
.4
1

2
7
9
5
.6
0

3
0
4
9
.7
0

1
2
4
2
.0

2
.5
4

2
7
3
9
.1
6

2
7
5
5
.5
3

2
2
8
1
.4

0
.4
7

2
7
4
0
.2
1

2
7
5
9
.4
3

2
9
0
8
.3

0
.5
1

2
7
4
1
.8
2

2
7
5
6
.0
7

3
2
7
1
.1

0
.5
7

2
7
2
6
.4
1

2
7
4
9
.5
6

1
6
4
9
.9

0
.0
0

-2
.4
7

-0
.4
7

2
7
4
7
.0
4

2
7
5
1
.0
0

2
6
5
.7

0
.7
6

-1
.7
4

0
.2
9

1
1
2
1
2
2

1
0
0

2
0

1
1

2
0
5
7
.3
0

2
0
9
7
.9
0

2
7
0
2
.6
0

1
3
2
9
.0

1
.9
7

2
0
6
0
.2
9

2
0
7
2
.5
7

2
2
1
1
.6

0
.1
5

2
0
5
7
.4
5

2
0
7
8
.0
3

2
7
9
7
.4

0
.0
1

2
0
6
0
.8
0

2
0
7
1
.8
5

3
2
0
5
.3

0
.1
7

2
0
5
7
.3
0

2
0
6
3
.8
9

1
1
9
3
.4

0
.0
0

-1
.9
4

-0
.0
1

2
0
5
9
.0
8

2
0
5
9
.2
8

1
6
9
.6

0
.0
9

-1
.8
5

0
.0
8

1
1
2
2
1
2

1
0
0

1
0

1
2

1
3
9
4
.6
5

1
4
4
2
.2
0

1
6
0
4
.9
0

1
4
5
5
.0

3
.4
1

1
4
0
2
.9
7

1
4
1
6
.2
0

2
3
4
9
.9

0
.6
0

1
4
0
3
.5
7

1
4
1
6
.7
2

3
0
5
0
.0

0
.6
4

1
3
9
7
.3
9

1
4
1
4
.9
8

3
3
3
5
.3

0
.2
0

1
3
9
4
.6
5

1
4
1
1
.8
5

1
4
9
0
.7

0
.0
0

-3
.3
0

-0
.2
0

1
3
9
4
.6
5

1
4
1
1
.2
5

2
4
0
.1

0
.0
0

-3
.3
0

-0
.2
0

1
1
2
2
2
2

1
0
0

2
0

1
1

1
6
2
1
.4
0

1
6
5
9
.0
0

2
0
8
4
.1
0

1
3
1
4
.0

2
.3
2

1
6
2
3
.6
9

1
6
3
3
.0
0

2
5
2
2
.2

0
.1
4

1
6
2
1
.4
0

1
6
3
3
.9
4

3
1
3
7
.8

0
.0
0

1
6
2
6
.8
6

1
6
3
3
.8
9

3
5
6
2
.2

0
.3
4

1
6
2
3
.3
9

1
6
3
0
.3
6

1
6
5
2
.2

0
.1
2

-2
.1
5

0
.1
2

1
6
2
3
.3
9

1
6
3
6
.9
3

3
3
7
.6

0
.1
2

-2
.1
5

0
.1
2

1
1
3
1
1
2

1
0
0

1
0

1
1

2
8
2
8
.2
4

2
8
9
7
.7
0

3
1
6
2
.6
0

1
1
7
0
.0

2
.4
6

2
8
3
7
.5
1

2
8
5
2
.6
3

2
0
4
3
.2

0
.3
3

2
8
3
5
.7
6

2
8
5
3
.5
7

2
7
3
5
.6

0
.2
7

2
8
3
9
.5
0

2
8
5
7
.5
0

3
0
1
4
.0

0
.4
0

2
8
2
8
.2
4

2
8
4
1
.9
3

2
0
9
1
.6

0
.0
0

-2
.4
0

-0
.2
7

2
8
3
7
.8
2

2
8
4
3
.7
7

3
7
7
.9

0
.3
4

-2
.0
7

0
.0
7

1
1
3
1
2
2

1
0
0

2
0

1
1

2
7
7
2
.9
8

2
9
1
2
.0
0

3
3
3
0
.0
0

1
2
4
8
.0

5
.0
1

2
7
7
6
.3
8

2
7
8
2
.5
2

2
0
6
3
.4

0
.1
2

2
7
7
4
.3
6

2
7
8
4
.4
2

2
7
6
2
.2

0
.0
5

2
7
7
6
.3
8

2
7
8
2
.0
7

2
9
9
8
.4

0
.1
2

2
7
7
2
.9
8

2
7
9
7
.0
8

2
7
5
3
.4

0
.0
0

-4
.7
7

-0
.0
5

2
7
7
2
.9
8

2
7
9
9
.4
6

4
4
5
.6

0
.0
0

-4
.7
7

-0
.0
5

1
1
3
2
1
2

1
0
0

1
0

1
2

1
8
1
5
.6
2

1
8
3
2
.1
0

1
9
0
1
.0
0

1
4
5
8
.0

0
.9
1

1
8
1
7
.0
0

1
8
2
3
.1
5

2
3
2
6
.4

0
.0
8

1
8
1
5
.6
2

1
8
2
2
.8
1

2
9
2
2
.2

0
.0
0

1
8
1
5
.6
2

1
8
2
2
.7
6

3
3
2
6
.7

0
.0
0

1
8
1
7
.0
0

1
8
3
5
.8
0

2
0
2
3
.4

0
.0
8

-0
.8
2

0
.0
8

1
8
1
7
.3
3

1
8
3
2
.7
6

3
8
2
.7

0
.0
9

-0
.8
1

0
.0
9

1
1
3
2
2
2

1
0
0

2
0

1
1

1
8
7
6
.1
4

2
0
3
7
.5
0

2
3
6
0
.6
0

1
2
3
9
.0

8
.6
0

1
8
7
6
.1
4

1
8
8
8
.4
6

2
1
1
7
.2

0
.0
0

1
8
7
9
.6
3

1
8
9
0
.9
6

2
8
1
6
.5

0
.1
9

1
8
7
6
.9
3

1
8
8
8
.9
0

3
0
6
3
.5

0
.0
4

1
8
7
6
.5
8

1
8
8
5
.3
1

1
9
4
0
.0

0
.0
2

-7
.9
0

0
.0
2

1
8
8
2
.3
0

1
8
8
8
.4
6

3
2
3
.2

0
.3
3

-7
.6
2

0
.3
3

1
3
1
1
1
2

1
5
0

1
0

1
6

5
4
1
0
.9
6

5
8
6
3
.8
0

6
1
6
0
.7
0

1
7
9
7
.0

8
.3
7

5
4
7
3
.1
7

5
5
8
2
.9
4

4
0
6
0
.2

1
.1
5

5
4
6
4
.2
1

5
5
7
0
.1
2

6
1
0
8
.7

0
.9
8

5
4
4
8
.8
6

5
5
7
6
.0
1

6
4
0
9
.4

0
.7
0

5
4
1
0
.9
6

5
4
7
8
.4
3

3
8
5
4
.6

0
.0
0

-7
.7
2

-0
.7
0

5
4
3
4
.6
1

5
4
9
0
.7
5

6
5
3
.7

0
.4
4

-7
.3
2

-0
.2
6

1
3
1
1
2
2

1
5
0

2
0

1
6

4
9
2
6
.8
7

5
3
1
0
.3
0

5
6
4
9
.3
0

1
7
4
6
.0

7
.7
8

4
9
9
3
.3
6

5
1
4
2
.0
6

4
4
6
2
.0

1
.3
5

5
0
0
9
.2
6

5
1
4
3
.1
9

6
5
4
9
.2

1
.6
7

4
9
7
4
.2
8

5
1
0
5
.7
2

6
8
7
6
.6

0
.9
6

4
9
2
6
.8
7

5
0
5
3
.1
3

3
9
7
0
.3

0
.0
0

-7
.2
2

-0
.9
5

5
0
0
3
.5
5

5
0
6
0
.7
8

6
6
3
.0

1
.5
6

-5
.7
8

0
.5
9

1
3
1
2
1
2

1
5
0

1
0

1
6

5
5
2
8
.8
5

5
9
6
7
.6
0

6
2
3
4
.2
0

1
7
4
6
.0

7
.9
4

5
6
7
9
.7
0

5
7
8
7
.3
4

4
5
8
8
.6

2
.7
3

5
6
0
6
.3
1

5
7
8
5
.1
8

6
7
6
5
.0

1
.4
0

5
6
5
3
.2
0

5
7
7
1
.6
3

7
0
5
1
.5

2
.2
5

5
5
2
8
.8
5

5
6
3
9
.9
0

4
0
0
7
.7

0
.0
0

-7
.3
5

-1
.3
8

5
5
2
8
.8
5

5
6
1
5
.2
6

6
9
3
.1

0
.0
0

-7
.3
5

-1
.3
8

1
3
1
2
2
2

1
5
0

2
0

1
6

5
0
6
0
.7
1

5
2
6
1
.0
0

5
6
1
0
.4
0

1
7
6
7
.0

3
.9
6

5
1
4
1
.8
9

5
2
8
4
.4
5

4
5
8
0
.2

1
.6
0

5
1
2
6
.9
5

5
2
7
7
.6
5

6
6
2
7
.3

1
.3
1

5
1
3
4
.3
9

5
2
9
6
.6
2

7
0
9
3
.9

1
.4
6

5
0
6
0
.7
1

5
1
0
7
.5
3

4
0
9
3
.6

0
.0
0

-3
.8
1

-1
.2
9

5
0
6
0
.7
1

5
0
9
0
.4
8

6
8
5
.6

0
.0
0

-3
.8
1

-1
.2
9

1
3
2
1
1
2

1
5
0

1
0

1
6

3
8
5
0
.9
0

4
0
2
6
.7
0

4
2
4
6
.2
0

1
7
4
6
.0

4
.5
7

3
8
6
8
.8
8

3
8
9
5
.9
1

5
9
6
3
.0

0
.4
7

3
8
8
3
.4
0

3
8
9
9
.4
1

8
5
4
2
.7

0
.8
4

3
8
7
4
.4
4

3
8
9
4
.2
9

8
7
7
1
.5

0
.6
1

3
8
5
0
.9
0

3
8
8
1
.7
0

4
0
3
4
.9

0
.0
0

-4
.3
7

-0
.4
6

3
8
5
6
.3
4

3
8
7
4
.1
3

5
7
3
.8

0
.1
4

-4
.2
3

-0
.3
2

1
3
2
1
2
2

1
5
0

2
0

1
6

3
7
3
4
.8
3

3
8
7
4
.0
0

4
1
8
5
.5
0

1
7
8
5
.0

3
.7
3

3
7
4
0
.1
0

3
7
9
5
.9
3

5
1
5
5
.0

0
.1
4

3
7
5
2
.7
6

3
7
8
7
.7
2

7
7
9
6
.2

0
.4
8

3
7
5
5
.5
1

3
7
9
7
.3
3

7
7
6
8
.9

0
.5
5

3
7
3
4
.8
3

3
7
6
2
.4
1

3
7
6
2
.9

0
.0
0

-3
.5
9

-0
.1
4

3
7
4
4
.4
4

3
7
6
0
.2
4

5
9
0
.9

0
.2
6

-3
.3
4

0
.1
2

1
3
2
2
1
2

1
5
0

1
0

1
7

2
8
3
5
.6
6

2
9
0
6
.0
0

3
1
2
9
.9
0

1
7
7
9
.0

2
.4
8

2
8
4
2
.1
0

2
8
5
7
.4
3

5
8
3
9
.7

0
.2
3

2
8
3
7
.8
4

2
8
6
0
.7
0

8
7
9
2
.6

0
.0
8

2
8
4
3
.1
8

2
8
5
7
.0
2

8
7
1
4
.5

0
.2
7

2
8
3
5
.6
6

2
8
5
0
.3
8

3
3
4
5
.7

0
.0
0

-2
.4
2

-0
.0
8

2
8
4
4
.1
1

2
8
5
3
.4
8

5
8
0
.1

0
.3
0

-2
.1
3

0
.2
2

1
3
2
2
2
2

1
5
0

2
0

1
7

1
6
5
1
.9
1

1
7
8
4
.8
0

2
1
5
2
.3
0

1
7
7
3
.0

8
.0
4

1
6
6
0
.8
9

1
6
9
1
.9
7

6
3
4
0
.4

0
.5
4

1
6
7
2
.8
6

1
6
9
7
.4
5

9
1
4
5
.6

1
.2
7

1
6
7
7
.9
5

1
6
9
5
.1
5

9
2
8
8
.8

1
.5
8

1
6
5
1
.9
1

1
6
7
6
.4
0

2
8
2
4
.2

0
.0
0

-7
.4
5

-0
.5
4

1
6
6
4
.0
8

1
6
7
8
.6
4

4
8
5
.9

0
.7
4

-6
.7
6

0
.1
9

1
3
3
1
1
2

1
5
0

1
0

1
6

4
5
7
8
.8
7

5
0
3
4
.0
0

5
4
6
5
.9
0

1
7
3
7
.0

9
.9
4

4
5
8
8
.3
7

4
6
1
9
.9
1

4
6
7
0
.1

0
.2
1

4
5
9
8
.2
3

4
6
3
0
.6
9

7
3
1
3
.4

0
.4
2

4
5
9
6
.3
5

4
6
2
5
.7
2

7
1
3
0
.4

0
.3
8

4
5
7
8
.8
7

4
6
1
2
.4
6

3
3
3
9
.0

0
.0
0

-9
.0
4

-0
.2
1

4
5
9
0
.9
7

4
6
1
4
.5
4

5
3
2
.7

0
.2
6

-8
.8
0

0
.0
6

1
3
3
1
2
2

1
5
0

2
0

1
6

3
2
1
1
.9
8

3
4
7
4
.0
0

3
8
4
9
.1
0

1
7
6
7
.0

8
.1
6

3
2
2
3
.4
4

3
2
5
9
.4
5

5
3
1
7
.0

0
.3
6

3
2
2
5
.5
6

3
2
7
1
.0
4

8
0
5
2
.6

0
.4
2

3
2
2
3
.4
0

3
2
4
8
.4
2

8
0
1
2
.0

0
.3
6

3
2
1
1
.9
8

3
2
3
6
.2
7

3
8
1
3
.4

0
.0
0

-7
.5
4

-0
.3
5

3
2
1
1
.9
8

3
2
2
2
.4
6

6
7
7
.2

0
.0
0

-7
.5
4

-0
.3
5

1
3
3
2
1
2

1
5
0

1
0

1
7

2
9
0
3
.3
6

3
0
0
8
.0
0

3
2
8
4
.5
0

1
7
7
0
.0

3
.6
0

2
9
1
1
.5
8

2
9
3
8
.0
5

5
8
8
7
.3

0
.2
8

2
9
1
1
.3
5

2
9
3
8
.0
1

8
5
7
2
.0

0
.2
8

2
9
0
6
.9
6

2
9
3
5
.0
0

8
7
5
4
.9

0
.1
2

2
9
0
3
.3
6

2
9
1
8
.0
6

3
1
1
6
.3

0
.0
0

-3
.4
8

-0
.1
2

2
9
0
8
.5
1

2
9
1
7
.7
5

5
1
6
.9

0
.1
8

-3
.3
1

0
.0
5

1
3
3
2
2
2

1
5
0

2
0

1
7

2
4
8
5
.0
7

2
6
1
7
.4
0

3
0
1
6
.9
0

1
7
5
5
.0

5
.3
3

2
5
0
2
.9
7

2
5
5
0
.0
1

5
6
9
2
.6

0
.7
2

2
5
0
2
.6
8

2
5
5
8
.3
4

8
2
7
4
.9

0
.7
1

2
5
0
1
.0
3

2
5
3
1
.5
6

8
6
6
4
.8

0
.6
4

2
4
8
5
.0
7

2
4
9
6
.1
2

3
0
2
0
.2

0
.0
0

-5
.0
6

-0
.6
4

2
4
8
5
.0
7

2
4
9
7
.9
9

5
5
5
.3

0
.0
0

-5
.0
6

-0
.6
4

1
2
1
1
1
2

2
0
0

1
0

2
1

6
5
7
2
.4
3

7
0
0
8
.7
0

7
3
7
1
.1
0

2
5
0
2
.0

6
.6
4

6
6
0
8
.4
5

6
8
2
1
.2
0

8
3
9
2
.7

0
.5
5

6
6
2
1
.5
5

6
8
8
1
.3
8

1
3
9
1
9
.9

0
.7
5

6
6
8
3
.2
4

6
8
4
8
.6
0

1
4
0
0
6
.4

1
.6
9

6
5
7
2
.4
3

6
6
3
2
.6
4

6
0
9
6
.4

0
.0
0

-6
.2
2

-0
.5
5

6
5
7
2
.4
3

6
6
3
0
.6
5

1
0
3
8
.2

0
.0
0

-6
.2
2

-0
.5
5

1
2
1
1
2
2

2
0
0

2
0

2
2

5
6
1
2
.0
3

6
0
3
9
.6
0

6
5
0
1
.6
0

2
4
9
0
.0

7
.6
2

5
7
3
0
.5
3

5
9
5
4
.2
3

9
9
9
1
.8

2
.1
1

5
7
8
8
.7
2

5
9
6
6
.3
8

1
5
6
7
2
.5

3
.1
5

5
7
8
4
.7
1

5
9
5
2
.6
3

1
6
3
1
3
.2

3
.0
8

5
6
1
2
.0
3

5
6
6
8
.7
5

5
9
4
8
.1

0
.0
0

-7
.0
8

-2
.0
7

5
6
3
1
.6
2

5
6
4
8
.0
4

9
9
7
.3

0
.3
5

-6
.7
6

-1
.7
3

1
2
1
2
1
2

2
0
0

1
0

2
1

6
4
0
9
.7
4

6
7
4
4
.3
0

7
3
1
8
.6
0

2
5
5
9
.0

5
.2
2

6
5
0
3
.3
6

6
6
1
3
.8
4

8
3
9
1
.2

1
.4
6

6
4
2
9
.6
2

6
6
0
8
.9
2

1
3
7
7
8
.5

0
.3
1

6
5
0
2
.7
3

6
6
1
0
.4
6

1
3
9
1
0
.1

1
.4
5

6
4
0
9
.7
4

6
4
4
9
.9
2

5
9
0
6
.0

0
.0
0

-4
.9
6

-0
.3
1

6
4
2
1
.1
6

6
4
4
6
.4
8

9
1
1
.5

0
.1
8

-4
.7
9

-0
.1
3

1
2
1
2
2
2

2
0
0

2
0

2
1

6
3
8
3
.3
0

6
8
2
8
.5
0

7
5
6
7
.2
0

2
5
5
3
.0

6
.9
7

6
5
5
1
.7
3

6
7
5
9
.2
2

8
3
9
1
.4

2
.6
4

6
5
6
2
.1
1

6
7
9
6
.7
1

1
4
0
2
3
.1

2
.8
0

6
6
4
8
.2
0

6
7
7
6
.4
4

1
3
8
5
1
.2

4
.1
5

6
3
8
3
.3
0

6
5
2
6
.1
3

6
6
1
0
.6

0
.0
0

-6
.5
2

-2
.5
7

6
4
8
0
.1
2

6
5
3
7
.5
8

1
1
5
8
.5

1
.5
2

-5
.1
0

-1
.0
9

1
2
2
1
1
2

2
0
0

1
0

2
1

6
1
1
1
.5
2

6
6
4
3
.8
0

7
1
0
6
.9
0

2
5
7
1
.0

8
.7
1

6
1
5
4
.6
4

6
2
5
5
.1
0

9
4
6
3
.2

0
.7
1

6
1
8
4
.7
0

6
2
8
0
.3
1

1
8
3
4
0
.7

1
.2
0

6
1
6
8
.3
2

6
2
6
8
.3
6

1
4
6
7
9
.6

0
.9
3

6
1
1
1
.5
2

6
2
0
8
.8
7

9
1
5
1
.9

0
.0
0

-8
.0
1

-0
.7
0

6
1
6
7
.6
3

6
2
0
6
.1
7

1
4
8
6
.9

0
.9
2

-7
.1
7

0
.2
1

1
2
2
1
2
2

2
0
0

2
0

2
1

3
7
2
5
.0
7

4
0
1
2
.9
0

4
9
1
5
.7
0

2
5
4
7
.0

7
.7
3

3
7
5
7
.3
7

3
7
8
2
.4
7

1
0
5
5
5
.0

0
.8
7

3
7
5
7
.2
7

3
7
9
2
.6
8

1
7
3
1
4
.9

0
.8
6

3
7
4
4
.7
4

3
7
8
5
.4
6

1
6
7
0
1
.0

0
.5
3

3
7
2
5
.0
7

3
7
5
6
.1
6

4
9
7
6
.8

0
.0
0

-7
.1
7

-0
.5
3

3
7
2
8
.3
4

3
7
6
8
.2
8

7
4
8
.8

0
.0
9

-7
.0
9

-0
.4
4

1
2
2
2
1
2

2
0
0

1
0

2
1

4
0
2
5
.1
3

4
2
2
7
.5
0

4
4
4
8
.1
0

2
5
3
5
.0

5
.0
3

4
0
4
6
.8
1

4
0
7
5
.7
8

9
8
4
5
.3

0
.5
4

4
0
4
6
.4
2

4
0
7
8
.6
0

1
7
1
1
6
.3

0
.5
3

4
0
4
3
.5
3

4
0
7
7
.4
2

1
5
4
9
0
.2

0
.4
6

4
0
2
5
.1
3

4
0
4
2
.7
8

3
8
7
1
.8

0
.0
0

-4
.7
9

-0
.4
6

4
0
4
0
.8
8

4
0
4
5
.3
6

5
8
4
.4

0
.3
9

-4
.4
1

-0
.0
7

1
2
2
2
2
2

2
0
0

2
0

2
2

2
0
4
9
.6
8

2
1
2
7
.9
0

2
3
4
5
.5
0

2
5
1
1
.0

3
.8
2

2
0
5
4
.3
1

2
0
8
3
.5
6

1
1
2
6
6
.8

0
.2
3

2
0
5
2
.2
2

2
0
8
4
.1
0

1
8
5
3
3
.2

0
.1
2

2
0
5
2
.1
6

2
0
7
9
.6
8

1
7
6
5
2
.2

0
.1
2

2
0
4
9
.6
8

2
0
5
6
.0
8

3
8
2
6
.1

0
.0
0

-3
.6
8

-0
.1
2

2
0
4
9
.6
8

2
0
5
2
.8
6

7
2
0
.0

0
.0
0

-3
.6
8

-0
.1
2

1
2
3
1
1
2

2
0
0

1
0

2
2

4
8
6
8
.9
0

5
0
9
9
.0
0

5
5
2
7
.4
0

2
5
5
9
.0

4
.7
3

4
9
1
6
.9
7

5
0
2
4
.0
7

1
0
8
6
9
.1

0
.9
9

4
9
6
7
.1
1

5
0
4
7
.8
7

1
7
2
7
5
.1

2
.0
2

4
9
4
0
.8
1

5
0
2
9
.6
4

1
7
2
5
9
.7

1
.4
8

4
8
6
8
.9
0

4
9
2
1
.2
3

6
2
5
3
.2

0
.0
0

-4
.5
1

-0
.9
8

4
8
8
0
.2
7

4
9
1
7
.2
7

1
1
0
2
.4

0
.2
3

-4
.2
9

-0
.7
5

1
2
3
1
2
2

2
0
0

2
0

2
2

4
6
7
5
.1
9

5
1
8
8
.7
0

5
8
6
2
.9
0

2
5
4
4
.0

1
0
.9
8

4
7
2
5
.9
1

4
7
7
1
.9
0

1
0
5
9
0
.0

1
.0
8

4
7
0
7
.6
1

4
7
8
5
.8
9

1
6
6
8
9
.1

0
.6
9

4
7
1
9
.9
0

4
7
7
7
.0
7

1
7
0
2
1
.6

0
.9
6

4
6
7
5
.1
9

4
7
0
3
.1
7

6
0
9
9
.4

0
.0
0

-9
.9
0

-0
.6
9

4
6
8
2
.4
6

4
6
9
0
.4
7

9
8
8
.0

0
.1
6

-9
.7
6

-0
.5
3

1
2
3
2
1
2

2
0
0

1
0

2
2

5
1
3
5
.2
1

5
3
6
3
.0
0

5
6
7
8
.5
0

2
5
4
4
.0

4
.4
4

5
1
7
0
.7
7

5
2
1
8
.4
3

1
0
2
0
6
.0

0
.6
9

5
1
7
8
.0
3

5
2
2
5
.0
4

1
7
7
3
7
.1

0
.8
3

5
1
9
5
.4
8

5
2
4
7
.1
8

1
6
2
0
5
.9

1
.1
7

5
1
3
5
.2
1

5
1
7
4
.7
4

4
0
3
3
.7

0
.0
0

-4
.2
5

-0
.6
9

5
1
4
3
.3
9

5
1
6
6
.9
6

6
1
9
.7

0
.1
6

-4
.0
9

-0
.5
3

1
2
3
2
2
2

2
0
0

2
0

2
2

2
5
2
2
.8
9

2
6
5
7
.5
0

3
9
1
7
.6
0

2
5
7
7
.0

5
.3
4

2
5
6
7
.2
0

2
6
2
9
.4
6

1
0
6
7
6
.9

1
.7
6

2
5
5
5
.1
8

2
6
3
3
.8
6

1
8
0
6
5
.4

1
.2
8

2
5
5
3
.2
1

2
6
0
6
.5
4

1
7
0
9
6
.2

1
.2
0

2
5
2
2
.8
9

2
5
5
1
.9
0

3
9
6
1
.3

0
.0
0

-5
.0
7

-1
.1
9

2
5
2
6
.6
8

2
5
4
4
.0
0

6
4
0
.0

0
.1
5

-4
.9
2

-1
.0
4

G
lo
b
a
l
a
v
g
.

3
7
9
9
.8
8

4
0
2
8
.4
1

4
4
2
2
.7
8

1
8
6
1
.2

5
.5
6

3
8
3
5
.2
7

3
9
0
1
.7
7

5
7
4
0
.9

0
.7
7

3
8
3
7
.8
5

3
9
0
9
.5
1

8
9
9
0
.5

0
.8
4

3
8
4
0
.9
9

3
9
0
2
.1
9

8
9
3
4
.4

0
.8
6

3
8
0
1
.3
0

3
8
4
2
.9
8

3
7
1
5
.6

0
.0
4

-5
.1
7

-0
.5
1

3
8
1
4
.1
6

3
8
4
0
.5
7

6
1
6
.8

0
.3
4

-4
.9
0

-0
.2
2

85



3 An iterated local search algorithm for latency vehicle routing problems with multiple depots

T
ab

le
3.
17

:
D
et
ai
le
d
re
su
lt
s
fo
r
th
e
L
L
R
P

P
ro
d
h
on

d
at
a
se
t

.

In
st
an

ce
N

v
B
K
S

M
A

G
B
IL

S
S
A
-V

N
D
0

S
A
-V

N
D
1

S
A
-V

N
D
2

M
-I
L
S

30
ru

n
s

M
-I
L
S

5
ru

n
s

B
es
t

A
vg

ti
m
e

ga
p B

B
es
t

ti
m
e

ga
p B

B
es
t

A
vg

ti
m
e

ga
p B

B
es
t

A
vg

ti
m
e

ga
p B

B
es
t

A
vg

ti
m
e

ga
p B

B
es
t

A
vg

ti
m
e

ga
p B

ga
p M

A
ga

p G
B
IL

S
ga

p S
A

B
es
t

A
vg

ti
m
e

ga
p B

ga
p M

A
ga

p G
B
IL

S
ga

p S
A

20
-5
-1

5
33
0.
00

33
7.
30

37
8.
00

38
7.
0

2.
21

33
0.
00

1.
0

0.
00

33
0.
00

33
0.
00

12
5.
2

0.
00

33
0.
00

33
0.
00

11
7.
8

0.
00

33
0.
00

33
0.
00

16
6.
4

0.
00

33
0.
00

33
0.
00

16
7.
8

0.
00

-2
.1
6

0.
00

0.
00

33
0.
00

33
0.
00

30
.2

0.
00

-2
.1
6

0.
00

0.
00

20
-5
-1
b

3
60
8.
06

60
8.
06

63
6.
80

37
5.
0

0.
00

60
8.
06

0.
5

0.
00

60
8.
06

60
8.
06

14
5.
7

0.
00

60
8.
06

60
8.
06

12
2.
3

0.
00

60
8.
06

60
8.
06

24
4.
9

0.
00

61
5.
66

61
5.
66

11
3.
6

1.
25

1.
25

1.
25

1.
25

61
5.
66

61
5.
66

19
.7

1.
25

1.
25

1.
25

1.
25

20
-5
-2

5
30
1.
97

30
4.
80

35
4.
40

38
1.
0

0.
94

30
1.
97

0.
7

0.
00

30
1.
97

30
1.
97

10
6.
3

0.
00

30
1.
97

30
1.
97

98
.5

0.
00

30
1.
97

30
1.
97

15
0.
5

0.
00

30
1.
97

30
1.
97

16
1.
8

0.
00

-0
.9
3

0.
00

0.
00

30
1.
97

30
1.
97

27
.2

0.
00

-0
.9
3

0.
00

0.
00

20
-5
-2
b

3
48
6.
55

48
6.
55

51
1.
20

38
1.
0

0.
00

48
6.
55

0.
8

0.
00

48
6.
55

48
6.
55

15
8.
7

0.
00

48
6.
55

48
6.
55

13
2.
8

0.
00

48
6.
55

48
6.
55

26
6.
6

0.
00

48
6.
55

48
6.
55

11
4.
3

0.
00

0.
00

0.
00

0.
00

48
6.
55

48
6.
55

18
.7

0.
00

0.
00

0.
00

0.
00

50
-5
-1

12
84
3.
94

85
9.
90

91
7.
30

54
6.
0

1.
89

84
6.
88

15
3.
5

0.
35

84
6.
17

84
9.
77

70
9.
2

0.
27

84
6.
52

85
0.
10

81
5.
3

0.
31

84
3.
94

85
0.
40

85
9.
5

0.
00

84
3.
94

84
5.
80

58
9.
0

0.
00

-1
.8
6

-0
.3
5

0.
00

84
3.
94

84
5.
19

92
.3

0.
00

-1
.8
6

-0
.3
5

0.
00

50
-5
-1
b

6
12
93
.4
6

13
30
.2
0

13
79
.8
0

52
2.
0

2.
84

12
93
.9
3

65
.5

0.
04

12
93

.4
6

12
93
.7
1

61
9.
7

0.
00

12
93

.4
6

12
93

.5
4

60
2.
2

0.
00

12
93

.4
6

12
93
.5
5

93
3.
8

0.
00

12
93

.4
6

12
93
.9
5

68
2.
8

0.
00

-2
.7
6

-0
.0
4

0.
00

12
93

.4
6

12
93

.4
6

10
7.
5

0.
00

-2
.7
6

-0
.0
4

0.
00

50
-5
-2

12
68
4.
13

72
3.
40

78
6.
20

55
2.
0

5.
74

69
1.
67

11
7.
4

1.
10

68
4.
13

69
4.
42

62
4.
0

0.
00

68
4.
13

69
2.
43

75
6.
3

0.
00

68
4.
13

69
4.
69

75
2.
8

0.
00

68
4.
13

69
0.
41

93
0.
0

0.
00

-5
.4
3

-1
.0
9

0.
00

68
4.
13

68
9.
20

16
4.
4

0.
00

-5
.4
3

-1
.0
9

0.
00

50
-5
-2
b

6
95
3.
25

96
5.
70

10
09
.4
0

57
3.
0

1.
31

95
4.
88

68
.4

0.
17

95
3.
25

95
3.
50

53
4.
8

0.
00

95
3.
25

95
3.
35

53
4.
2

0.
00

95
3.
25

95
3.
33

79
9.
3

0.
00

95
3.
25

95
3.
67

56
3.
9

0.
00

-1
.2
9

-0
.1
7

0.
00

95
3.
25

95
3.
27

94
.9

0.
00

-1
.2
9

-0
.1
7

0.
00

50
-5
-2
B
IS

12
94
5.
45

95
5.
20

98
1.
50

53
7.
0

1.
03

95
2.
55

12
0.
7

0.
75

94
9.
13

95
0.
77

88
3.
4

0.
39

94
9.
57

95
1.
13

10
81
.1

0.
44

95
0.
12

95
0.
93

10
24
.7

0.
49

94
5.
45

94
5.
77

14
93
.0

0.
00

-1
.0
2

-0
.7
5

-0
.3
9

94
5.
45

94
6.
31

23
0.
3

0.
00

-1
.0
2

-0
.7
5

-0
.3
9

50
-5
-2
bB

IS
6

80
3.
90

81
1.
80

88
4.
90

53
4.
0

0.
98

80
3.
90

96
.6

0.
00

80
3.
90

80
3.
90

62
6.
9

0.
00

80
3.
90

80
3.
90

64
9.
9

0.
00

80
3.
90

80
3.
90

88
3.
7

0.
00

80
3.
90

80
3.
90

70
8.
2

0.
00

-0
.9
7

0.
00

0.
00

80
3.
90

80
3.
90

12
3.
5

0.
00

-0
.9
7

0.
00

0.
00

50
-5
-3

12
83
1.
57

84
8.
10

92
8.
90

61
2.
0

1.
99

83
2.
15

11
9.
2

0.
07

83
1.
97

83
5.
10

71
2.
3

0.
05

83
3.
01

83
4.
91

81
0.
3

0.
17

83
3.
59

83
5.
17

86
3.
8

0.
24

83
1.
57

83
4.
22

10
84
.5

0.
00

-1
.9
5

-0
.0
7

-0
.0
5

83
1.
57

83
3.
95

17
9.
3

0.
00

-1
.9
5

-0
.0
7

-0
.0
5

50
-5
-3
b

6
11
01
.5
7

11
63
.9
0

11
98
.8
0

53
1.
0

5.
66

11
06
.5
7

69
.4

0.
45

11
01

.5
7

11
03
.1
5

53
8.
4

0.
00

11
01

.5
7

11
03
.9
5

54
1.
3

0.
00

11
01

.5
7

11
03
.5
3

79
4.
5

0.
00

11
01

.5
7

11
02
.7
6

46
7.
3

0.
00

-5
.3
6

-0
.4
5

0.
00

11
01

.5
7

11
01

.5
7

80
.0

0.
00

-5
.3
6

-0
.4
5

0.
00

10
0-
5-
1

24
20
00
.8
0

20
30
.9
0

20
44
.3
0

89
1.
0

1.
50

20
35
.6
0

64
.8

1.
74

20
04
.3
3

20
23
.3
5

30
39
.4

0.
18

20
10
.4
9

20
23
.7
8

47
91
.3

0.
48

20
08
.9
5

20
26
.4
5

37
77
.3

0.
41

20
00

.8
0

20
12
.9
3

24
74
.4

0.
00

-1
.4
8

-1
.7
1

-0
.1
8

20
05
.3
0

20
13
.2
3

49
6.
7

0.
22

-1
.2
6

-1
.4
9

0.
05

10
0-
5-
1b

12
23
11
.2
1

23
74
.9
0

25
07
.8
0

74
4.
0

2.
76

23
57
.8
7

10
2.
8

2.
02

23
11
.8
4

23
36
.6
4

22
21
.6

0.
03

23
12
.5
3

23
37
.2
7

28
71
.7

0.
06

23
13
.7
0

23
42
.8
0

31
26
.5

0.
11

23
11

.2
1

23
46
.5
6

21
64
.6

0.
00

-2
.6
8

-1
.9
8

-0
.0
3

23
16
.2
0

23
43
.4
4

38
3.
1

0.
22

-2
.4
7

-1
.7
7

0.
19

10
0-
5-
2

24
11
28
.4
3

12
26
.1
0

15
00
.9
0

85
2.
0

8.
66

11
44
.7
0

81
.1

1.
44

11
32
.3
6

11
35
.9
9

27
60
.8

0.
35

11
29
.8
3

11
35
.4
9

39
76
.1

0.
12

11
31
.2
8

11
35
.7
0

35
82
.7

0.
25

11
28

.4
3

11
33
.5
3

27
18
.1

0.
00

-7
.9
7

-1
.4
2

-0
.1
2

11
31
.1
7

11
33
.0
1

44
1.
3

0.
24

-7
.7
4

-1
.1
8

0.
12

10
0-
5-
2b

11
15
07
.8
8

16
22
.9
0

17
01
.0
0

85
5.
0

7.
63

15
67
.4
4

96
.8

3.
95

15
07

.8
8

15
17
.1
1

25
30
.4

0.
00

15
10
.5
7

15
19
.0
4

31
41
.3

0.
18

15
10
.5
7

15
19
.5
6

34
48
.8

0.
18

15
07

.8
8

15
12
.5
5

15
40
.1

0.
00

-7
.0
9

-3
.8
0

0.
00

15
11
.0
6

15
14
.1
7

21
5.
0

0.
21

-6
.8
9

-3
.6
0

0.
21

10
0-
5-
3

24
15
72
.6
1

17
10
.4
0

17
26
.2
0

90
3.
0

8.
76

15
96
.7
7

49
.2

1.
54

15
81
.9
3

15
87
.2
0

27
84
.3

0.
59

15
81
.9
3

15
86
.4
9

40
72
.3

0.
59

15
81
.9
3

15
87
.2
0

35
95
.7

0.
59

15
72

.6
1

15
81
.4
9

29
43
.9

0.
00

-8
.0
6

-1
.5
1

-0
.5
9

15
72

.6
1

15
81
.1
7

48
3.
5

0.
00

-8
.0
6

-1
.5
1

-0
.5
9

10
0-
5-
3b

11
19
33
.0
0

20
54
.8
0

21
90
.5
0

87
0.
0

6.
30

20
32
.1
3

11
4.
9

5.
13

19
33
.7
0

19
50
.8
9

23
15
.8

0.
04

19
35
.7
0

19
53
.8
5

29
32
.6

0.
14

19
33

.0
0

19
54
.9
7

32
47
.9

0.
00

19
34
.9
3

19
54
.2
7

21
40
.7

0.
10

-5
.8
3

-4
.7
8

0.
10

19
34
.9
3

19
46
.6
8

37
4.
3

0.
10

-5
.8
3

-4
.7
8

0.
10

10
0-
10
-1

26
14
58
.8
0

15
24
.1
0

15
89
.9
0

12
15
.0

4.
48

14
81
.5
6

80
.3

1.
56

14
72
.8
5

15
11
.0
0

29
94
.7

0.
96

14
70
.7
1

15
03
.9
2

41
43
.4

0.
82

14
78
.0
1

15
10
.9
8

39
08
.8

1.
32

14
58

.8
0

14
65
.0
1

25
93
.2

0.
00

-4
.2
8

-1
.5
4

-0
.8
1

14
60
.5
5

14
65
.3
3

45
5.
5

0.
12

-4
.1
7

-1
.4
2

-0
.6
9

10
0-
10
-1
b

12
18
94
.9
2

19
60
.7
0

21
38
.6
0

11
85
.0

3.
47

19
84
.9
1

10
0.
8

4.
75

19
01
.2
7

19
53
.9
6

21
20
.3

0.
34

19
15
.7
7

19
72
.2
6

27
23
.1

1.
10

19
08
.6
3

19
63
.5
3

29
99
.3

0.
72

18
94

.9
2

19
16
.9
0

22
11
.6

0.
00

-3
.3
5

-4
.5
3

-0
.3
3

19
11
.8
9

19
28
.2
4

37
2.
8

0.
90

-2
.4
9

-3
.6
8

0.
56

10
0-
10
-2

24
11
37
.5
9

11
75
.0
0

12
36
.3
0

13
26
.0

3.
29

12
87
.5
0

75
.8

13
.1
8

11
43
.3
0

11
52
.8
1

28
99
.7

0.
50

11
42
.3
1

11
55
.4
7

41
32
.2

0.
41

11
45
.9
3

11
55
.2
9

37
39
.8

0.
73

11
37

.5
9

11
45
.9
1

31
67
.4

0.
00

-3
.1
8

-1
1.
64

-0
.4
1

11
42
.2
8

11
45
.1
1

48
3.
9

0.
41

-2
.7
8

-1
1.
28

0.
00

10
0-
10
-2
b

11
15
61
.4
0

16
25
.8
0

17
24
.2
0

12
30
.0

4.
12

16
45
.0
7

13
9.
1

5.
36

15
66
.4
8

15
85
.6
7

22
08
.4

0.
33

15
66
.4
8

15
88
.2
4

28
89
.5

0.
33

15
63
.9
9

15
78
.9
0

31
15
.3

0.
17

15
61

.4
0

15
70
.8
1

24
25
.8

0.
00

-3
.9
6

-5
.0
9

-0
.1
7

15
61

.4
0

15
65
.7
7

41
0.
8

0.
00

-3
.9
6

-5
.0
9

-0
.1
7

10
0-
10
-3

25
12
04
.6
4

12
46
.8
0

12
88
.3
0

13
32
.0

3.
50

12
16
.2
0

57
.2

0.
96

12
09
.2
0

12
21
.5
2

31
45
.2

0.
38

12
09
.8
6

12
25
.9
8

42
90
.2

0.
43

12
11
.4
9

12
24
.7
2

40
60
.6

0.
57

12
04

.6
4

12
09
.1
0

19
19
.8

0.
00

-3
.3
8

-0
.9
5

-0
.3
8

12
04
.9
5

12
08
.0
5

36
0.
6

0.
03

-3
.3
6

-0
.9
3

-0
.3
5

10
0-
10
-3
b

11
16
53
.8
3

17
99
.0
0

18
90
.2
0

12
87
.0

8.
78

17
45
.0
5

70
.1

5.
52

16
62
.4
3

17
05
.6
3

21
46
.0

0.
52

16
65
.6
9

17
06
.6
8

28
31
.1

0.
72

16
70
.1
7

17
07
.1
1

30
58
.5

0.
99

16
53

.8
3

16
73
.1
9

23
34
.1

0.
00

-8
.0
7

-5
.2
3

-0
.5
2

16
53

.8
3

16
69
.6
4

42
6.
0

0.
00

-8
.0
7

-5
.2
3

-0
.5
2

20
0-
10
-1

49
27
80
.0
3

29
20
.7
0

30
92
.4
0

34
14
.0

5.
06

28
61
.8
5

27
8.
2

2.
94

27
98
.5
8

28
54
.1
0

16
84
6.
7

0.
67

27
97
.8
6

28
63
.2
7

26
67
3.
1

0.
64

28
03
.5
7

28
60
.6
4

23
81
9.
4

0.
85

27
80

.0
3

27
88
.6
6

66
64
.8

0.
00

-4
.8
2

-2
.8
6

-0
.6
4

27
85
.7
5

27
90
.2
8

11
25
.8

0.
21

-4
.6
2

-2
.6
6

-0
.4
3

20
0-
10
-1
b

22
32
90
.7
3

35
32
.2
0

38
09
.3
0

32
40
.0

7.
34

35
57
.9
6

30
4.
1

8.
12

33
68
.7
1

34
77
.0
7

11
34
1.
6

2.
37

33
55
.7
0

34
78
.9
1

17
98
3.
6

1.
97

33
27
.0
8

34
52
.8
4

17
33
4.
9

1.
10

32
90

.7
3

33
34
.9
8

62
72
.8

0.
00

-6
.8
4

-7
.5
1

-1
.0
9

32
90

.7
3

33
12
.4
1

10
90
.0

0.
00

-6
.8
4

-7
.5
1

-1
.0
9

20
0-
10
-2

49
19
72
.3
3

20
64
.2
0

21
53
.3
0

34
11
.0

4.
66

19
97
.0
1

34
2.
5

1.
25

19
84
.9
6

20
01
.9
7

17
48
2.
5

0.
64

19
86
.5
5

20
04
.5
1

29
59
0.
3

0.
72

19
88
.3
1

20
02
.4
8

24
95
9.
6

0.
81

19
72

.3
3

19
81
.4
1

55
60
.2

0.
00

-4
.4
5

-1
.2
4

-0
.6
4

19
79
.9
9

19
82
.1
3

95
4.
4

0.
39

-4
.0
8

-0
.8
5

-0
.2
5

20
0-
10
-2
b

23
23
25
.4
3

25
16
.4
0

26
84
.5
0

31
41
.0

8.
21

24
73
.2
4

27
3.
7

6.
36

23
36
.1
1

23
79
.0
1

12
34
7.
0

0.
46

23
55
.1
5

23
78
.2
1

19
72
0.
6

1.
28

23
68
.8
8

23
80
.0
9

18
69
9.
6

1.
87

23
25

.4
3

23
58
.0
2

51
60
.5

0.
00

-7
.5
9

-5
.9
8

-0
.4
6

23
41
.7
7

23
53
.4
6

82
7.
8

0.
70

-6
.9
4

-5
.3
2

0.
24

20
0-
10
-3

48
27
27
.1
5

28
05
.9
0

30
66
.1

30
84
.0

2.
89

27
83
.2
0

32
3.
8

2.
06

27
41
.1
6

27
58
.0
9

14
78
6.
4

0.
51

27
44
.6
7

27
57
.4
2

27
90
0.
5

0.
64

27
51
.2
3

27
63
.7
9

21
62
3.
8

0.
88

27
27

.1
5

27
36
.4
9

54
79
.3

0.
00

-2
.8
1

-2
.0
1

-0
.5
1

27
27

.1
5

27
36
.0
7

78
9.
2

0.
00

-2
.8
1

-2
.0
1

-0
.5
1

20
0-
10
-3
b

22
31
90
.3
4

33
47
.0
0

34
54
.6
0

32
67
.0

4.
91

34
13
.3
4

28
1.
4

6.
99

32
42
.1
8

32
74
.5
8

95
11
.1

1.
62

32
33
.8
9

32
67
.8
1

16
53
4.
2

1.
37

32
25
.7
5

32
73
.6
8

14
93
3.
5

1.
11

31
90

.3
4

32
18
.1
0

39
24
.1

0.
00

-4
.6
8

-6
.5
3

-1
.1
0

32
08
.8
8

32
19
.0
6

60
4.
2

0.
58

-4
.1
3

-5
.9
9

-0
.5
2

G
lo
ba

la
vg

.
14
94
.5
0

15
64
.4
2

16
10
.3
3

12
72
.6

4.
03

15
46
.3
5

12
1.
7

2.
59

15
02
.9
8

15
21
.2
5

39
75
.5

0.
37

15
03
.9
2

15
22
.2
8

62
48
.6

0.
43

15
03
.7
7

15
21
.7
6

56
92
.4

0.
45

14
94

.8
2

15
04
.8
2

22
92
.4

0.
05

-3
.7
7

-2
.4
0

-0
.2
4

14
97
.7
3

15
03

.6
1

38
2.
1

0.
19

-3
.6
3

-2
.2
6

-0
.0
9

T
ab

le
3.
18

:
D
et
ai
le
d
re
su
lt
s
fo
r
th
e
L
L
R
P

B
ar
re
to

d
at
a
se
t

.

In
st
an

ce
N v

BK
S

M
A

G
BI

LS
SA

-V
N
D
0

SA
-V

N
D
1

SA
-V

N
D
2

M
-IL

S
30

ru
ns

M
-IL

S
5
ru

ns
Be

st
A
vg

tim
e

ga
p B

Be
st

tim
e

ga
p B

Be
st

A
vg

tim
e

ga
p B

Be
st

A
vg

tim
e

ga
p B

Be
st

A
vg

tim
e

ga
p B

Be
st

A
vg

tim
e

ga
p B

ga
p M

A
ga

p S
A

Be
st

A
vg

tim
e

ga
p B

ga
p M

A
ga

p S
A

Ch
ris

t-5
0-
5

6
16
61
.64

16
90
.80

17
82
.40

59
1.0

1.7
5

–
–

–
16

61
.6
4

16
62
.07

54
1.5

0.0
0

16
61

.6
4

16
62
.13

52
8.7

0.0
0

16
61

.6
4

16
62
.35

81
3.7

0.0
0

16
61

.6
4

16
69
.05

61
4.2

0.0
0

-1
.72

0.0
0

16
61

.6
4

16
63
.39

10
7.1

0.0
0

-1
.72

0.0
0

Ch
ris

t-7
5-
10

9
23
70
.73

25
90
.30

26
89
.80

87
3.0

9.2
6

–
–

–
24
03
.79

24
59
.03

11
59
.1

1.3
9

23
83
.04

24
57
.45

13
84
.4

0.5
2

24
08
.92

24
54
.95

15
88
.4

1.6
1

23
70

.7
3

24
09
.75

16
12
.4

0.0
0

-8
.48

-0
.52

23
91
.95

24
06
.42

28
4.5

0.9
0

-7
.66

0.3
7

Ch
ris

t-1
00
-1
0

8
37
91
.98

40
58
.20

41
94
.90

10
23
.0

7.0
2

39
84
.05

45
1.9

5.0
7

37
91

.9
8

38
31
.18

19
58
.7

0.0
0

38
06
.39

38
38
.89

22
93
.6

0.3
8

37
95
.15

38
25
.37

28
76
.3

0.0
8

38
03
.50

38
45
.85

21
10
.8

0.3
0

-6
.28

0.3
0

38
25
.29

38
42
.92

36
0.7

0.8
8

-5
.74

0.8
8

Ga
sk
ell
-2
1-
5

4
65
3.4

8
65
8.4

0
74
1.1

0
44
1.0

0.7
5

65
3.
48

0.9
0.0

0
65

3.
48

65
3.
48

11
6.4

0.0
0

65
3.
48

65
3.
48

10
2.2

0.0
0

65
3.
48

65
3.
48

16
9.5

0.0
0

65
3.
48

65
3.
48

14
3.0

0.0
0

-0
.75

0.0
0

65
3.
48

65
3.
48

23
.1

0.0
0

-0
.75

0.0
0

Ga
sk
ell
-2
9-
5

4
11
99
.33

12
24
.50

12
96
.30

46
8.0

2.1
0

11
99

.3
3

5.2
0.0

0
11

99
.3
3

11
99

.3
3

31
1.0

0.0
0

11
99

.3
3

11
99

.3
3

25
5.4

0.0
0

11
99

.3
3

11
99

.3
3

48
5.9

0.0
0

11
99

.3
3

11
99

.3
3

28
3.2

0.0
0

-2
.06

0.0
0

11
99

.3
3

11
99

.3
3

46
.7

0.0
0

-2
.06

0.0
0

Ga
sk
ell
-3
2-
5b

3
15
52
.84

15
71
.00

16
68
.40

48
3.0

1.1
7

15
52

.8
4

4.9
0.0

0
15

52
.8
4

15
53
.29

41
7.8

0.0
0

15
52

.8
4

15
53
.29

33
7.6

0.0
0

15
52

.8
4

15
53
.29

65
0.7

0.0
0

15
52

.8
4

15
56
.58

28
4.4

0.0
0

-1
.16

0.0
0

15
52

.8
4

15
55
.52

43
.7

0.0
0

-1
.16

0.0
0

Ga
sk
ell
-3
6-
5

4
16
27
.17

16
42
.40

16
47
.00

52
2.0

0.9
4

16
27

.1
7

3.2
0.0

0
16

27
.1
7

16
27

.1
7

30
8.3

0.0
0

16
27

.1
7

16
27

.1
7

27
4.0

0.0
0

16
27

.1
7

16
27

.1
7

46
5.8

0.0
0

16
27

.1
7

16
28
.12

36
9.1

0.0
0

-0
.93

0.0
0

16
27

.1
7

16
27

.1
7

61
.0

0.0
0

-0
.93

0.0
0

M
in
-2
7-
5

4
53
87
.55

53
87

.5
5

56
97
.00

83
4.0

0.0
0

53
87

.5
5

84
.0

0.0
0

53
87

.5
5

53
87

.5
5

17
6.3

0.0
0

53
87

.5
5

53
87

.5
5

14
7.4

0.0
0

53
87

.5
5

53
87

.5
5

26
7.0

0.0
0

53
87

.5
5

53
87

.5
5

13
4.0

0.0
0

0.0
0

0.0
0

53
87

.5
5

53
87

.5
5

23
.8

0.0
0

0.0
0

0.0
0

M
in
-1
34
-8

11
21
75
2.0

0
23
38
7.0

0
26
01
2.5

0
22
20
.0

7.5
2

–
–

–
21
85
2.4

0
22
30
7.2

8
22
25
.7

0.4
6

21
91
0.5

0
22
30
9.2

0
26
24
.0

0.7
3

21
88
1.8

0
22
27
8.0

5
32
50
.7

0.6
0

21
75

2.
00

22
44
2.4

1
21
27
.0

0.0
0

-6
.99

-0
.46

21
86
5.0

0
22
29
7.0

8
35
5.4

0.5
2

-6
.51

0.0
6

Or
-1
17
-1
4

7
53
79
8.5

0
56
20
9.0

0
61
39
6.2

0
15
45
.0

4.4
8

–
–

–
53

79
8.
50

54
86
6.7

2
12
63
.1

0.0
0

53
85
9.1

0
54
80
5.8

8
12
65
.5

0.1
1

53
79

8.
50

54
90
5.7

7
19
58
.4

0.0
0

54
41
3.9

0
56
79
4.1

2
15
98
.2

1.1
4

-3
.19

1.1
4

56
22
8.4

0
57
51
7.5

0
27
3.0

4.5
2

0.0
3

4.5
2

Gl
ob

al
av
g.

93
79
.52

98
41
.92

10
71
2.5

6
90
0.0

3.5
0

–
–

–
93

92
.8
7

95
54
.71

84
7.8

0.1
9

94
04
.10

95
49

.4
4

92
1.3

0.1
7

93
96
.64

95
54
.73

12
52
.6

0.2
3

94
42
.21

97
58
.62

92
7.6

0.
14

-4
.06

0.
05

96
39
.26

98
15
.04

15
7.
9

0.6
8

-2
.06

0.5
8

Gl
ob

al
av
g
GB

IL
S

23
68
.72

24
23
.68

25
40
.78

62
8.5

2.0
0

24
00
.74

91
.7

0.8
4

23
68

.7
2

23
75
.33

54
8.1

0.
00

23
71
.13

23
76
.62

56
8.4

0.0
6

23
69
.25

23
74

.3
6

81
9.2

0.0
1

23
70
.64

23
78
.48

55
4.1

0.0
5

-3
.2
4

0.
05

23
74
.28

23
77
.66

93
.1

0.1
5

-2
.59

0.1
5

86



3.3 Computational results

The Barreto data set

This data set considers the less complex instances for the LLRP. Indeed, 6 out of 10 instances
of this data set (those for which Nc ≤ 50) have been solved to proven optimality with the
MILP models presented in [16]. The results of this data set are presented in Table 3.18. For
the instances Min-134-8 and Or-117-14, no results are reported for GBILS in [16], while for the
instances Christ-50-5 and Christ-75-10 the results provided in [16] for GBILS were neglected
(as done in [22]), since they correspond to different instances. The last line of Table 3.18 gives
the average values (Global avg GBILS) computed by considering only the 6 instances whose
values are correctly reported in [16]. Since GBILS obtains the optimal solution value for all
the instances reported but for Christ-100-10, the column gapGBILS is not included in the table.
According to the results, M-ILS is able to find the proven optimal solution value for 6 instances
and, for two instances, new best-known solution values. There are no significant differences
concerning the solution quality and the computing times between M-ILS and the three heuristic
algorithms presented in [22]. Nevertheless, M-ILS presents the smaller global value for gapB
(0.14%) among all the algorithms.

Although the global computing time required by M-ILS, considering 30 runs, is larger than
the one required by GBILS, the average computing times of both algorithms (considering a
single run) are similar. Thus, by comparing M-ILS and GBILS, both considering 5 runs, the
computing times are equivalent, and both algorithms find the proved optimal solution for 5
instances. Nevertheless, for the instance Christ-100-10 M-ILS provides a better solution value
than GBILS with a gapGBILS equal to -3.98%. Finally, regarding MA, M-ILS outperforms it
regarding the solution quality in similar computing times. M-ILS provides a better solution
value than MA for all the instances but one in which both algorithms provide the same optimal
solution value. Furthermore, the average solution value provided by M-ILS is better than the
one provided by MA for all the instances. The average value of gapMA equals -3.24% and -2.59%
when 30 and 5 runs are considered for M-ILS, respectively. Indeed, M-ILS outperforms MA,
even considering 5 runs, in global computing times almost 6 times smaller.

Overall results on the LLRP

After analyzing the results, we can state that the proposed algorithm M-ILS outperforms the
state-of-the-art algorithms regarding the solution quality for all the considered data sets. The
global average value of gapB (computed over all the instances) is equal to 0.06% and 0.32% when
M-ILS is executed with 30 and 5 runs, respectively. This value is better than the best among
all the competitors (0.53% for SA-VND0). Comparing M-ILS to the algorithms proposed in
[22], the global average value of gapSA equals -0.33% and -0.07% when M-ILS is executed with
30 and 5 runs, respectively. Considering 30 runs, M-ILS is globally faster than the algorithms
SA-VND0, SA-VND1, and SA-VND2 for the two more complex data sets. In contrast, all the
algorithms require similar computing times in the third data set (Barreto data set). The average
global computing time is 2786.95 s for M-ILS and 4400.23 s for SA-VND0 (the fastest among
the state-of-the-art algorithms) when 30 runs are executed for both algorithms. On the other
hand, comparing M-ILS to GBILS, the global average value of gapGBILS (computed over all the
instances reported for GBILS) is equal to -2.13% and -2.00% when M-ILS is executed with 30,
and 5 runs, respectively. Finally, comparing M-ILS to MA, the global average value of gapMA

(computed over all the instances reported for MA) equals -4.35% and -4.07% when M-ILS is
executed with 30 and 5 runs, respectively.

It is to note that for this problem we do not present the computational experiments regard-
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3 An iterated local search algorithm for latency vehicle routing problems with multiple depots

ing the comparison of the computing times required by the considering algorithms to reach the
target values. The reason is that most of the values BKS0 were provided for one of the three
metaheuristics presented in [22], and since M-ILS outperforms these algorithms, finding better
solution values within shorter computing times, considering a time limit larger than the comput-
ing time reported for M-ILS would lead to redundant conclusions. The same situation applies if
a target value worse than the best solution value obtained by M-ILS is considered. Furthermore,
for the instances in the Barreto data set, M-ILS (considering 5 runs) was able to find the same
solution values as those obtained by GBILS (the fastest among the heuristics) in equivalent
computing times for all the instances but one, in which M-ILS finds a better solution.

3.4 Conclusions and future research

An effective metaheuristic (M-ILS) is proposed for solving the MDCCVRP, the MDk-TRP, and
the LLRP. The algorithm was tested on several benchmark data sets, with a total of 78 instances
for the MDCCVRP, 87 instances for the MDk-TRP, and 76 instances for the LLRP. Extensive
computational experiments show that M-ILS outperforms in terms of solution quality the state-
of-the-art metaheuristic algorithms PLS (proposed in [13] for the MDCCVRP), GA (proposed
in [10] for the MDk-TRP), and SA-VND0, SA-VND1, and SA-VND2 (proposed in [22] for the
LLRP), with competitive computing times.

The experiments also show that the stability of the proposed metaheuristic allows for a re-
duction of the number of runs necessary to provide good-quality solutions, implying global
computing times shorter than those required by the currently published heuristic methods. In-
deed, when M-ILS is executed with a time limit equal to that required by PLS and GA for the
MDCCVRP and the MDk-TRP, respectively, M-ILS is able to find solution values better than
those obtained by the mentioned competitors. For the LLRP, M-ILS requires shorter computing
times and finds better quality solutions than those corresponding to the algorithms SA-VND0,
SA-VND1, and SA-VND2, considering the same number of runs (30). Indeed, M-ILS outper-
forms the mentioned algorithms even when the number of runs considered is much smaller (5).

According to the results reported in Section 3.3, the proposed metaheuristic is globally the
most effective algorithm for the considered problems when challenging instances, in which the
number of customers is large, and the number of vehicles is relatively small, must be solved. In
addition, the proposed algorithm provides optimal or near-optimal solution values for the easiest
instances.

Based on the obtained results, it is possible to suggest the application of the proposed method-
ology to other related problems as future research directions. Some examples could be extensions
of single-depot latency vehicle routing problems studied in the literature, for example, including
time windows (generalizing the problem studied in [36]), considering priorities for the customers
(generalizing the problem studied in [37], or combining truck and drones in last-mile delivery
operations (generalizing the problem studied in [38]). Also, since M-ILS can provide good qual-
ity solutions for large-size instances within short computing times compared to those required
by the exact methods, M-ILS could be useful to solve real-life problems related to humanitar-
ian logistics ([37] and [23]) or other applications. Another interesting variant of the problem
(especially suitable for post-disaster management) could consider pickup and delivery decisions,
where some vital products, such as water and food, must be delivered, while injured people must
be picked-up.
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3.4 Conclusions and future research

Appendix: Optimal solution for the MDk-TRP instances with
Nv = 35

Instance p01

Route 1 Route 6 Route 11 Route 16 Route 21 Route 26 Route 31
D1 - 13 D3 - 38 D3 - 16 D1 - 15 D3 - 30 D1 - 41 D1 - 17 - 37
Route 2 Route 7 Route 12 Route 17 Route 22 Route 27 Route 32
D4 - 21 D2 - 1 D2 - 23 - 43 D1 - 4 - 18 D4 - 22 D1 - 42 D3 - 49 - 33
Route 3 Route 8 Route 13 Route 18 Route 23 Route 28 Route 33
D4 - 35 - 36 D1 - 25 D3 - 10 D3 - 39 D2 - 48 - 7 D2 - 6 - 24 D2 - 46 - 11
Route 4 Route 9 Route 14 Route 19 Route 24 Route 29 Route 34
D2 - 14 D2 - 26 D2 - 12 D2 - 32 D3 - 5 D1 - 44 - 45 D3 - 34
Route 5 Route 10 Route 15 Route 20 Route 25 Route 30 Route 35
D4 - 29 - 2 D4 - 20 - 3 D2 - 27 - 8 D2 - 47 D3 - 9 - 50 D4 - 28 - 31 D1 - 19 - 40

Instance p12

Route 1 Route 8 Route 15 Route 22 Route 29
D1 - 26 D1 - 5 - 13 D1 - 28 - 36 D2 - 42 - 50 - 58 - 66 - 74 D1 - 14
Route 2 Route 9 Route 16 Route 23 Route 30
D1 - 2 - 18 D2 - 44 - 52 - 60 - 68 - 76 D1 - 6 - 22 - 30 D2 - 45 - 53 - 61 - 69 - 77 D1 - 38
Route 3 Route 10 Route 17 Route 24 Route 31
D1 - 10 D1 - 9 D1 - 34 D1 - 39 D1 - 27
Route 4 Route 11 Route 18 Route 25 Route 32
D1 - 4 - 12 - 20 D2 - 46 - 54 - 62 - 70 - 78 D1 - 3 D2 - 51 - 67 D2 - 47
Route 5 Route 12 Route 19 Route 26 Route 33
D2 - 65 D1 - 7 - 15 - 23 - 31 D2 - 41 - 49 - 57 - 73 D1 - 11 - 19 - 35 D2 - 71 - 79
Route 6 Route 13 Route 20 Route 27 Route 34
D2 - 48 - 56 - 64 - 72 - 80 D1 - 40 D1 - 8 - 16 - 24 - 32 D2 - 59 - 75 D2 - 55 - 63
Route 7 Route 14 Route 21 Route 28 Route 35
D1 - 1 D1 - 17 - 33 D1 - 25 D1 - 21 - 29 - 37 D2 - 43
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4 A risk-averse latency location-routing
problem with stochastic travel times

Abstract

In this chapter, a latency location routing problem with stochastic travel times (LLRP-STT) is
investigated. The problem is modelled as a two-stage stochastic program, by setting the location
decisions at the first stage, and the routing decisions at the second one. A risk-averse decision
maker is assumed. An efficient and effective multi-start variable neighborhood search algorithm
is proposed for tackling the problem. Furthermore, a sampling method is presented for solving
instances with continuous probability distribution. Finally, several insights are provided.

Keywords: LLRP, cumulative routing, uncertainty, variable neighborhood search, simheuristic

4.1 Introduction

The location-routing problem (LRP) is a combination of two well-known combinatorial opti-
mization problems: i) the facility location problem (FLP), and ii) the vehicle routing problem
(VRP). Several variants of the problem have been studied in the literature, being the capacitated
location routing problem (CLRP) the one that attracted more attention. In this paper we focus
on a relatively new variant of the LRP: the latency location routing problem (LLRP). Given a
set of customers to be served and a set of potential depots, the problem consists of determining
the subset of depots to open, the customers and the vehicles to be assigned to each open depot
and the routes to be constructed to fulfill the demand of the customers. The objective is to min-
imize the sum of the arrival times at the customers, i.e., the latency. The following assumptions
are considered for the LLRP:

• there is a fleet of homogeneous capacitated vehicles;

• there is a set of potential uncapacitated depots;

• at most p depots can be opened;

• each customer (demand node) has a non-negative demand that must be fulfilled exactly
once by a single vehicle;

• due to the nature of the objective function, the routes are considered “open”, e.g., each
vehicle finishes its route after visiting its last customer;

• the sum of the demands of the customers visited by each route cannot exceed the vehicle
capacity.

This chapter is based on the paper: Osorio-Mora A, Saldanha-da-Gama. F, Toth P. A risk-averse latency
location-routing problem with stochastic travel times. submitted to European Journal of Operational Research.
2023 Oct.
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The chapter is organized as follows. An in-deep literature review is presented in Section
4.2. Section 4.3 presents a formal description of the problem and a mathematical formulation.
The proposed solution method is described in Section 4.4. The computational experiments are
described, and the respective results are reported and analyzed in Section 4.5. Finally, in Section
4.6, a summary of our findings and future directions are drawn.

It is to note that no survey paper has been published addressing location routing problems
under uncertainty. Consequently, Section 4.2.1 can be consider a contribution itself since a
detailed overview of the area is given. There, the interested reader can easily find potential
research avenues.

4.2 Literature review

LRPs have received much attention in the past years. However, there is still a gap in the liter-
ature when it comes to hedging against uncertainty in such problems. In the same way, latency
routing problems started to receive more attention in the past 10 years, due to their importance
when post-disaster operations and other customer-centric problems have to be faced. Neverthe-
less, there is still a gap regarding the inclusion of uncertainty in this kind of problems. Next,
we review the related literature both for LRPs and latency routing problems under uncertainty.
For comprehensive surveys on the LRPs, the reader should refer to [1], [2], [3], [4] and [5] (in
chronological order). For an overview on FLPs under uncertainty the reader can refer to [6]. For
a review on VRPs under uncertainty, the interested reader can refer to [7], and [8, 9]. Finally,
for a recent survey on latency vehicle routing problems the reader can refer to [10].

4.2.1 Location routing problems under uncertainty

To the best of the authors’ knowledge, the first LRP considering uncertainty was studied by
[11]. The authors cast the problem as a two-stage stochastic programming problem. Uncertainty
stems from the demand. The first stage consists of deciding the location of the facilities and
the routes for the vehicles. The operating cost of the depots, the cost for using the vehicles,
and the transportation cost of the planned routes are accounted for at this stage. In the second
stage, a recourse action is performed if the capacity of the vehicles is violated: the vehicle must
return to the depot to empty its load and then resume the planned route from the customer in
which the capacity was, or would be, exceeded. These violations have a penalty associated. Two
mathematical models are proposed seeking to minimize the first-stage costs and an additional
constraint induced by the second stage decision: i) the probability of route failure does not
exceed a given threshold, and ii) the expected penalty of any route does not exceed a fraction of
its planned cost. A branch-and-bound algorithm (B&B) was proposed for solving the problem.
Gaussian demand are assumed.

A two-stage stochastic LRP using uncapacitated vehicles can be found in [12]. A major
distinguishing feature is that the authors assume that if the actual demand of the customers
served by a depot exceeds its capacity, then some customers (randomly chosen) are not served
and a penalty is incurred. The authors assume that the second-stage routes follow the same
sequence of customers decided a priori but skipping the selected customers. The objective is
to minimize the sum of the fixed costs for opening the depots plus the total expected penalty.
The demand of the customers is assumed to follow a Bernoulli distribution. This calls for
approximating the recourse function since its exact value can hardly be assessed. A heuristic
algorithm is proposed: i) a constructive phase is considered in which the location, the allocation,
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and the routes are decided using different exact and heuristic procedures, and ii) an improvement
phase is performed that is based on local search.

[13] and [14] address the CLRP with stochastic demands, casting it also as a two-stage stochas-
tic programming problem. In both works, the authors consider a “safety stock” in the vehicles,
i.e., when a given proportion of the capacity of the vehicle is already used, the vehicle returns to
the depot to fully unload/replenish, and then the route is resumed. A particle swarm optimiza-
tion (PSO) heuristic is proposed in the first work while a simheuristic algorithm is considered
in the second. The demands are assumed to follow a Poisson and log-Normal distribution,
respectively.

[15] assume fuzzy demands. The authors seek to minimize the total cost of the system, which
includes the fixed cost for opening depots and using vehicles as well as the variable costs of the
routes. A fuzzy chance-constrained programming (FCCP) model is derived. Nevertheless, due
to the difficulty in tackling the model using a general-purpose solver, the authors consider a
relaxation for providing a lower bound on the optimal value. For the whole problem, a heuristic
algorithm is proposed. [16] study a multi-period version of the above problem. Location decisions
must be made in the first period and should remain fixed throughout the planning horizon, while
the routing decisions can change according to the actual demands observed along the different
periods. A penalty is assumed for not serving customers, which is included in the objective
function. An FCCP model is derived and tackled using an off-the-shelf solver, which, nonetheless
is not efficient for large-scale instances. Thus, a heuristic procedure similar to that devised by
[15] is proposed.

A CLRP with time windows (CLRP-TW) under uncertainty in demands and travel times is
investigated by [17]. The problem involves a fleet of homogeneous capacitated vehicles and a
set of heterogeneous capacitated depots. Uncertainty is captured by means of fuzzy numbers.
The objective function accounts for the total cost associated with the location of the depots
plus the routing costs and the total additional travel distance due to route failures. The authors
introduce a FCCP model and propose a simulated annealing (SA) algorithm for tackling the
problem. A similar problem is analyzed by [18]. Nevertheless, now only the demands are assumed
to be fuzzy. The objective function seeks to minimize the total cost that results from adding the
transportation costs, the fixed costs for using depots and vehicles, and the penalties for violating
the time windows of the customers. The problem is tackled using a variable neighborhood search
algorithm (VNS) which was hybridized with an evolutionary algorithm.

A bi-objective stochastic demand CLRP with time windows and a heterogeneous fleet is
investigated by [19] considering a risk-averse decision maker The objectives to minimize are the
conditional value-at-risk (CVaR), using the regret as the loss function, both for the total cost
and the latency. The problem, is cast as a two-stage stochastic programming problem. Not
only are penalties assumed for not fully supplying customers but also for over-supplying them.
The authors assume that the demands of the customers lie in a given interval. The amount
to supply becomes a decision to make. The authors introduce a metaheuristic that consists of
solving a single-objective LRP using a genetic algorithm (GA) followed by an approximation of
the Pareto frontier obtained using a non-dominating sorting algorithm type II (NSGA-II).

A LRP subject to infrastructure disruptions is called a reliable location-routing problem
(RLRP). Such a problem is investigated by [20], who considered disruptions both at the de-
pots and also in the vehicles. The former corresponds to random reductions in the capacities,
while the latter imply that some routes cannot be operated. The objective is to minimize the to-
tal cost of the system, which includes the fixed costs for opening depots, the transportation costs
for visiting customers, and the disruptions costs. The authors derive mixed-integer-linear pro-
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gramming (MILP) models for three scenarios: moderate, cautious, and pessimistic. The models
are solved using a general-purpose solver for small- to medium-sized instances. For large-scale
ones a heuristic algorithm based on simulated annealing is proposed. For the computation tests
the authors assume that the disruptions at the depots and those related with the vehicles are
well described by uniform and binomial probability distributions, respectively.

[21] studied a RLRP considering disruptions only at the depots. In particular, it is assumed
that when a depot is disrupted it cannot be used. A two-stage decision making process is as-
sumed. The goal is to decide the depots to open, the routes to consider for a fleet of homogeneous
capacitated vehicles, and the allocation of the routes to depots in the two stages. In particular, if
a route is allocated to a certain depot in the first stage and the depot turns out to be disrupted,
then a backup operation must be performed. This is accomplished by re-allocating the route to
another depot without changing the sequence in which the customers are visited. This incurs
a cost higher than that for the original planed routes. Furthermore, if all the backup depots
for a certain route are disrupted, then a cost is assumed for not serving the customers. The
authors also assume independence in terms failure of the depots with equal failure probabilities.
An integer programming (IP) model is derived that is solved using an algorithm combining
Lagrangian relaxation with column generation.

A similar problem was analyzed by [22]: a two-stage stochastic RLRP is investigated consid-
ering that the depots to open and the planned routes are ex ante decisions (before the failures
occur) and the final routing decisions are ex post decisions (considering the non-disrupted opened
facilities). Unlike the problem studied by [21], it is now possible to adapt routes as a result of
the observed disruptions. A two-stage stochastic mixed-integer programming (MIP) model is
proposed. The complexity of the problem calls for using an approximate procedure. A sampling
technique is the choice made. It can be looked at as a particular case of the sample average
approximation method [23]. In particular, the authors impose that only those scenarios with
the highest probability of occurrence are chosen. In the computational tests presented, the dis-
ruption risk is assumed to be uniformly distributed in a given set. Only small instances can be
solved using an off-the-shelf solver. For this reason, a matheuristic combining different heuristics
and exact procedures is proposed for handling large-sized instances.

A robust LRP with time windows considering electric vehicles is studied by [24]. The problem
consists of deciding the location of a set of recharging stations as well as the routes of the vehicles
considering linear recharging and consumption rates. Uncertainty is assumed for the demands,
time windows and service times of the customers. The robustness method used by the authors is
the adversarial approach. A parallelized adaptive large neighborhood search (ALNS) algorithm
is developed for finding feasible solutions to the problem.

More recently, [25] consider a LRP for electric vehicles with stochastic demands. The facilities
to locate correspond to battery-swap stations. In addition to the location decisions, the first
stage also considers the priori routes. The second stage decisions correspond to the actual
routes, which may include a replenishment trip to the depot if the observed demand exceeds the
capacity of the vehicle. An algorithm hybridizing VNS and PSO is proposed. In the instances
tested computationally the demands of the customers are uniformly distributed in a three-value
discrete set.

A robust optimization approach for the drone latency location routing problem (DLLRP) with
uncertain travel times is introduced by [26]. The problem is to decide the location of fulfillment
centers (depots), where the drones can recharge their battery, and the route that the drones
must follow, considering not only the visits to the customers but also the recharging stops at the
depots. Due to the source of uncertainty, the energy consumption constraints may be violated.
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A branch & check algorithm is proposed for solving the robust problem, and a case study is also
presented.

A stochastic CLRP with pickup and deliveries for multiple products is investigated by [27].
Both the depots and the vehicles have specific capacities for each product. The authors consid-
ered stochastic demands following a Poisson distribution. The problem is modeled as a two-stage
stochastic programming problem. In the first stage, the location, the number of vehicles and
the routes are decided; in the second stage a recourse action considers a penalty for exceeding
the capacities of the vehicles and of the depots. A tabu search (TS) heuristic is developed for
approximating the optimal solution.

A different type of LRP under uncertainty is investigated by [28]. The problem captures
features such as a maximum length acceptable for the routes and split deliveries (i.e. the
customers can be visited more than once by a vehicle). The stochastic demands are captured
using a queuing network at each customer. The problem is tackled using a heuristic that
combines the three-dimensional space-filling curve algorithm and an extended Clarke–Wright
procedure.

In the literature, we can also observe some work that embeds LRP under uncertainty within
network design problems. This is the case with multi-echelon LRPs, which have much practical
relevance namely, in Logistics and Supply Chain Management. The location-routing-inventory
problem (LRIP) under uncertainty has also attracted the attention of the scientific community
in the past years. Next, we briefly refer to these cases.

A bi-objective multi-echelon LRP with time windows is studied by [29]. Uncertainty stems
from demands and service times. The problem was inspired by the SARS-CoV-2 (COVID-19)
pandemic, where hazardous materials have to be managed. This calls for two types of facilities
to be located: treatment centers (that can be partially or permanently open), and temporary
transfer stations. The authors considered that large size customers (e.g. hospitals) can be
directly allocated to the treatment centers, while small customers (e.g. laboratories) must be
served as part of a route collecting the hazardous materials at the transfer stations before sending
them to the treatment centers. The objective is to minimize the total cost as well as the risk of
infection to which the populations close to open facilities are exposed. Three future scenarios
are considered and a variant of the ε−constrained method with a branch-and-price algorithm is
proposed for determining the Pareto front.

The two-echelon multi-period CLRP with stochastic demands is investigated by [30]. The
problem is an extension of the CLRP in which an upper level facility must also be located (in
addition to the classical location-routing decisions). The authors develop a two-stage stochastic
programming model considering the location and capacity decisions at the first stage, and the
routing decisions at the second stage. The demands are assumed to be captured by a Gaussian
distribution. A Benders decomposition algorithm is proposed.

[31] investigate a stochastic LRP in the context of disaster management. The demand in the
affected areas, the number of vehicles available (and its respective medical personnel), and the
state of the infrastructure are the three main uncertainty sources considered. The problem is
addressed within a three-stage stochastic programming modeling framework with some informa-
tion being revealed at each stage. Initially, the location of the distribution centers, the amount
of aid available at them, and the number of vehicles available at each opened distribution center
must be decided. In the second stage, after the demand is revealed, the routes of the vehicles are
decided. Finally in the third stage, after information about infrastructure conditions is revealed,
a recourse action is performed for the routes that cannot be used. The goal is to maximize the
total utility, which is mainly related to the demand fulfilled, considering the urgency associated
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with each affected area. The proposed model is solved using a commercial solver and it is tested
using several instances, including real-life-based ones.

[32] deal with a multi-modal network design problem under uncertainty. Again, a two-stage
decision making process is assumed. The first phase seeks to determine how to send the prod-
ucts from the supplier to the distribution centers (depots for the second phase), being able to
combine transportation modes. For performing a multi-modal shipment it is necessary to lo-
cate intermodal changing points. The second phase corresponds to a LRP. Time windows are
considered. Uncertainty in demand is captured using fuzzy numbers. The goal is to minimize
the total cost of the system. A fuzzy MIP model is derived that is solved (for small instances)
using a commercial solver. The complexity of the problem also motivates the development of a
genetic algorithm seeking feasible solutions.

[33] present a multi-objective humanitarian logistics network design problem under uncer-
tainty. Three different types of facilities must be located, and the routes for the delivery of
relief items must also be decided. The goal is to minimize (i) the total cost of the system, (ii)
the total time of the relief operations, and (iii) a workload balance objective. Several sources
of uncertainty are considered: the capacities, the demands and the number of people injured.
Uncertainty sets are assumed for those unknowns. Regarding the costs and the transportation
times, they are captured using fuzzy numbers. Altogether, a so-called robust neutrosophic model
is derived which is tackled using a commercial solver.

A CLRP considering stochasticity both in the demands and in the infrastructure operationality
(affecting the transportation times) is investigated by [34]. The authors were inspired by a
humanitarian logistics application. A two-stage decision making process is assumed. In the first
stage, the location and the inventory associated with the depots must be decided. The second-
stage decision regards the routes and flow transshipment between the depots. The objective is
to minimize the weighted setup cost of the depots (first stage) plus the worst-case response time
(second stage). The second-stage “cost” also accounts for a weighted penalty for not serving the
customers. The authors propose a linearization for their model and tackle it using an off-the-shelf
solver.

The location-routing-inventory problem (LRIP) is an extension of the LRP in which inven-
tory decisions are also to be made. Usually, the inventory decisions lead to non-linear cost
objective functions. Furthermore, most of the LRIPs are presented as multi-echelon network
design problems in which different types of facilities must be located (e.g. suppliers and distri-
bution centers). [35] are pioneers in this context. The authors consider Gaussian demands and
economies of scale for the transportation and inventory costs. In order to simplify the problem,
approximation costs are derived for the routing part. A MINLP formulation is derived that is
tackled using a Lagrangian-relaxation-based algorithm.

A LRIP with stochastic demands seeking for minimizing the total cost of the system is pre-
sented in [36]. The authors assume a Gaussian distribution for the demands of the customers.
In addition to the location, routing, and inventory decisions, the capacity of the open depots
must also be decided. The problem is addressed through a mixed-integer-convex programming
(MICP) model solved with a commercial solver. A metaheuristic combining tabu search and
simulated annealing is also proposed.

A similar problem was studied by [37] where a bi-objective multi-product multi-period LRIP
with stochastic demands is investigated. Again, Gaussian demands are assumed. The objec-
tive functions to minimize are the total cost and the maximum time for delivering commodities
to customers. A bi-objective MINLP model is proposed which is solved (for small instances)
with the ε-constrained method. For dealing with large-scale instances four metaheuristic algo-
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rithms are proposed out of which the so-called multi-objective imperialist competitive algorithm
(MOICA) turned out to be the most effective.
A multi-objective closed-loop supply chain network design problem under uncertainty is stud-

ied by [38]. This problem can be looked at as a special case of the multi-period LRIP in which
additional decisions are to be made. The distribution centers to open must be decided together
with the decision about which ones will also be used as re-manufacturing facilities. The capaci-
ties of these facilities is also a decision to make. The routing is only performed for the delivery
case from the distribution centers to the retailers (customers), while the products to be re-
manufactured are sent directly from the retailers to the re manufacturing centers. Uncertainty
is associated both with the demand to deliver and the amount to be re-manufactured. Such
uncertainty is assumed to be described by a Gaussian distribution. the authors seek to optimize
economic, environmental and social objectives. For solving the problem, a hybrid two-stage
approach was proposed that, nonetheless, is able to solve only small and medium size instances.
For larger ones a self-adaptive genetic algorithm metaheuristic is proposed.
A multi-objective stochastic LRIP for hazardous waste management is presented in [39]. The

objectives to minimize are the total cost as well as the environmental risks associated with
opening facilities and hazmat transportation. The authors consider uncertainty both in the
demands and in the risk parameters. The problem is tackled using a multi-objective simheuristic.
[40] investigate a multi-period multi-depot four-echelon supply chain network design problem

for perishable products assuming fuzzy demands. In addition to location, routing and inventory,
the capacity of the facilities is also a decision to make. A MILP model is derived. Small instances
are tackled by a general-purpose solver. For larger instances a hybrid metaheuristic combining
a GA and PSO is proposed.
A robust multi-period LRIP in the context of healthcare logistics is studied by [41]. The

problem consists of deciding the location of warehouses, the inventory level at those facilities,
and the routes from warehouses to the hospitals. Demand for multiple products is assumed to
be uncertain. Direct shipment from the supplier, (thus not being part of a route) is allowed
when the inventory level is not enough for satisfying the demand. Nevertheless, in such a case,
a high cost is incurred. A robust MILP model is derived whose objective function accounts
for the total cost of the system. A general solver is used for tackling the model. The robust
optimization setting adopted in this work follows the methodology proposed in [42].
A multi-objective LRIP with stochastic demands in the context of agricultural biofuel supply

chain is studied by [43]. The problem is modeled as a multi-echelon supply chain featuring
multiple periods and multiple products. In addition to the location, routing and inventory
decisions, capacity expansions, and the possibility to open/close facilities in different periods
are decisions to make. The authors develop a two-phase heuristic algorithm based on simulated
annealing.
[44] presented a multi-objective LRIP with fuzzy demands applied to perishable multi-product

materials. The three objectives to minimize are the total cost, the latency, and the pollution.
A mathematical model, able to solve small-size instances through the ε−constrained method, is
derived. Furthermore, two genetic-algorithm-based metaheuristics are proposed to tackle more
complex instances for the problem.

101



4 A risk-averse latency location-routing problem with stochastic travel times

T
ab

le
4.
1:

L
it
er
at
u
re

re
v
ie
w
:
L
R
P
s
u
n
d
er

u
n
ce
rt
ai
n
ty

an
d
re
la
te
d
p
ro
b
le
m
s.

P
r
o
b
le
m

A
u
t
h
o
r
s

T
y
p
e

U
n
c
e
r
t
a
in
t
y
s
o
u
r
c
e

O
b
je
c
t
iv
e

S
o
lu
t
io
n
m
e
t
h
o
d

L
R
P

[1
1
]

S
d

C
E

[1
2
]

S
d

C
H

[1
3
]

S
d

C
H

[1
4
]

S
d

C
H

[1
5
]

F
d

C
E
,H

[1
6
]

F
d

C
E
,H

[1
7
]

F
d
,t

C
,T

E
,H

[1
8
]

F
d

C
H

[1
9
]

S
d

C
,T

H
[2
0
]

S
O

C
E
,H

[2
1
]

S
O

C
E

[2
2
]

S
O

C
H

[2
4
]

R
d
,O

C
E
,H

[2
5
]

S
d

C
H

[2
6
]

R
t

T
E

[2
7
]

S
d

C
H

[2
8
]

S
d

C
H

M
E
+
L
R
P

[2
9
]

S
d
,t

C
,O

E
[3
0
]

S
d

C
E

[3
1
]

S
d
,q
,c
,t
,O

O
E

[3
2
]

F
d

C
E
,H

[3
3
]

R
,F

d
,q
,c
,t

C
,T
,O

E
[3
4
]

S
d
,t

C
,T

E

L
R
I
P

[3
5
]

S
d

C
E

[3
6
]

S
d

C
E
,H

[3
7
]

S
d

C
,T

E
,H

[3
8
]

S
d

C
,O

H
[3
9
]

S
d
,O

C
,O

H
[4
0
]

F
d

C
,O

E
,H

[4
1
]

R
d

C
E

[4
3
]

S
d

O
E
,H

[4
4
]

F
d

C
,T
,O

E
,H

L
T
P

[4
5
]

S
d

O
H

S
:
s
t
o
c
h
a
s
t
ic
,
R
:
r
o
b
u
s
t
,
F
:
fu
z
z
y

d
:
d
e
m
a
n
d
,
q
:
c
a
p
a
c
it
y
,
t
:
t
im

e
,
c
:
c
o
s
t
s
,
O
:
o
t
h
e
r

C
:
c
o
s
t
-
b
a
s
e
d
,
T
:
t
im

e
-
b
a
s
e
d
,
O
:
o
t
h
e
r

E
:
e
x
a
c
t
,
H
:
h
e
u
r
is
t
ic

102
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The location-transportation problem (LTP) is a generalization of the LRP in which several
transportation modes are available A multi-period LTP with stochastic demands is presented by
[45]. The problem is cast as a two-stage stochastic problem with recourse in which the objective
is to maximize the expected profit. The authors consider the location of the depots as the first-
stage decisions. The transportation planning is the recourse decision. The uncertainty in the
demands was considered in two dimensions: i) the time between consumer orders (according to
an exponential distribution), and ii) the order quantity (according to a log-Normal distribution).
A SAA approach is proposed. However, using a general-purpose solver only small instances can
be tackled. For this reason, the authors also present a heuristic algorithm based on tabu search.
More recently, insights related to different types of anticipation methods for the uncertainty
sources were studied in [46].
The Table 4.1 presents a summary with the surveyed papers.

4.2.2 Latency routing problems under uncertainty

The LLRP is a generalization of the cumulative capacitated vehicle routing problem (CCVRP).
The CCVRP considers a single depot and a fleet of capacitated vehicles. Furthermore, the
CCVRP generalizes the traveling repairman problem (TRP) which consists of a single depot
and a single uncapacitated vehicle. The TRP is also known in the literature as the delivery man
problem, and the minimum latency problem.
The LLRP, introduced in [47], considers homogeneous capacitated vehicles, and uncapacitated

depots. Furthermore, no fixed costs for using the vehicles and opening the depots are considered.
For solving the deterministic version of the problem, two heuristic algorithms are proposed: a
memetic algorithm and a recursive granular algorithm. [48] present efficient MILP formulations,
exact branch-and-cut algorithms and a greedy randomized heuristic. The exact methods are able
to solve to proven optimality instances with up to 50 customers in reasonable computing times.
More recently, [49] proposed three effective metaheuristics combining simulated annealing and
variable neighborhood descent. The most effective metaheuristic algorithm currently published
for the LLRP is the iterated local search method presented by [50] which outperforms the
currently-published heuristic and exact algorithms.
After examining the literature related to LRP under uncertainty, it is possible to conclude that

the only three works addressing a LLRP (at least considering latency as one of the objectives
to minimize) are these presented in [19], [44], and [26]. The first two mentioned works consider
the demand as uncertain source, while the third one considers uncertain travel times under a
robust approach.
Due to the nature of the latency-based routing problems, it seems natural to consider uncertain

travel times, and to adopt a risk-averse strategy for these problems. Indeed, the literature shows
that most of the efforts regarding latency routing problems under uncertainty have followed such
directions.
The traveling repairman problem with profits and uncertain travel times was studied in [51].

It consists of visiting a subset of customers such that the global expected profit (that depends
on the expected arrival time) minus the variance of the latency is maximized. The problem was
modeled using a non-linear single objective formulation, and was solved by using a beam search
heuristic algorithm. The k-TRP with profits and uncertain travel times, a generalization of the
above mentioned problem that considers a set of k uncapacitated vehicles, was studied in [52].
The problem was modeled as a weighted non-linear single-objective problem, in which the risk
aversion is measured by a “weight parameter” that multiplies both components of the objective
function: the expected profit and the variance of the latency. A GRASP algorithm was proposed
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for solving the problem. A similar approach is proposed in [53] for the selective k-TRP with
uncertain travel times. The main differences with respect to the problems mentioned before
are the inclusion of service level constraints, and the objective function, which considers the
expected latency and the variance of the latency in the weighted sum.
In this chapter we study an LLRP with stochastic travel times (LLRP-STT) considering a

risk-averse decision maker, and propose a mathematical formulation and a metaheuristic for
its solution. The problem is cast as a two-stage stochastic programming model in which the
first stage seeks for determining the best depots to be opened, while the second stage decisions
correspond to the route planning. To the best of our knowledge this is the first time the
LLRP-STT is addressed. Furthermore, a multi-start variable neighborhood search metaheuristic
algorithm is developed as an effective solution method. The algorithm allows handling a large
number of scenarios, which is a key factor to obtain a good representation of the underlying
randomness. The proposed metaheuristic can also handle instances with a large number of
customers, which is not possible by means of the mathematical model.

4.3 Problem description and modeling aspects

In the specialized literature two most commonly used risk measures are the value-at-risk (VaR),
and the conditional value-at-risk (CVaR). Putting into context, the VaR can be defined as a
quantile of the latency distribution, while the CVaR is the expected latency beyond VaR. The
risk-averse measure to be considered in this chapter is the CVaR, which has been shown to be
a good risk indicator, while exhibiting appealing mathematical properties, which is not the case
with the VaR [54].
For modeling the LLRP-STT we propose a two-stage stochastic MILP formulation based on

the second model proposed in [48] for the LLRP. It corresponds to a multi-layer formulation,
which has been proved to be effective for solving different latency vehicle routing problems.
Let us consider the following sets:

• C : Set of customers.

• D : Set of potential locations for the depots (assumed to be uncapacitated).

• V : Set of nodes, V = C ∪D.

• K : Set of identical vehicles.

• Ω: Set of scenarios. We assume that each scenario specifies one possible realization of the
travel time matrix.

The parameters are summarized in the following:

• p: Maximum number of depots to be opened.

• di: Deterministic demand of customer i ∈ C, with di ≥ 0 .

• twij : Travel time between nodes i and j (i, j ∈ V, i ̸= j, with twij = twji) under scenario w ∈ Ω.

• Q: Capacity of the vehicles.

• πw: Probability of occurrence associated with scenario w ∈ Ω, with πw > 0 ∀w ∈ Ω and∑
w∈Ω

πw = 1.
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• α: Confidence level, with 0 ≤ α < 1.

The LLRP-STT can be defined as follows. Let us consider the complete undirected graph
G = (V,E), where E is the set of edges connecting nodes in V . Each edge (i, j) ∈ E, with i ̸= j,
has an associated non-negative stochastic travel time twij under each scenario w ∈ Ω, which
satisfies the triangle inequality. The LLRP-STT comprises two decision levels. The first, which
must be implemented before uncertainty is revealed, correspond to the selection of at most p
depots to be opened. The second-stage decisions, which are implemented after uncertainty is
revealed, correspond to the definition of the routes that the vehicles must perform starting from
an open depot. If a depot i ∈ D is opened, it must be used in all the scenarios w ∈ Ω, i.e., at
least one vehicle must perform a route based upon that depot. This assumption is reasonable for
real-life problems since the decision to build facilities (such as hospitals or shelters) is a long-term
decision, and this type of facility has always vehicles allocated to it in order to be operative.
Each customer must be visited once. The routes of the vehicles (second stage decisions) may
change depending on the realized values of the random data concerning the travel times (twij),
and the sum of the demands associated with each route in each scenario must not exceed the
capacity of the vehicle. The objective is to minimize the CVaRα of the latency of the system.
It is to note that in latency routing problems when no fixed cost is considered for using the
vehicles, and the triangle inequality holds for the travel times twij , the optimal solution always
uses min{|K|, |C|} vehicles. On the other hand, in an optimal solution, the number of open
depots can be smaller than p (for example, when the number of depots “close” to the customers
is smaller than p).

A new set must be introduced in order to explain the proposed mathematical model. Let us
consider L as the set of levels in the multi-layer network. |L| corresponds to the upper bound
on the number of nodes in the routes. It is computed by sorting the demands of the customers
in ascending order, and then defining |L| − 1 as the maximum number of demands such that
their sum is less than or equal to the capacity of the vehicles. The meaning of the levels in the
multi-layer network is the opposite w.r.t. the position of the nodes in the routes, that is, the first
level of the multi-layer network represents the last customers in the routes. Since the latency
of a route can be computed as the sum of the values obtained by multiplying the number of
remaining customers in the route after each edge by the travel time associated with the edge, the
objective of the multi-layer network is, indeed, to determine the number of times that each edge
impacts in the objective function. This is determined by the level at which the edge appears in
the multi-layer network.

The following decision variables are introduced for defining the MILP formulation of the
LLRP-STT:

• zi: 1 if depot i ∈ D is opened, 0 otherwise. These variables correspond to the first-stage
decisions in our stochastic problem.

• xwir: 1 if customer i ∈ C appears in level r (r ∈ L) of the multi-layer network under scenario
w ∈ Ω, 0 otherwise.

• ywijr: 1 if the edge starting from node i ∈ V , i ̸= j, incident to customer j ∈ C that appears
in level r ∈ L, r ̸= |L| of the multi-layer network, is in the solution under scenario w ∈ Ω,
0 otherwise. When ywijr is equal to 1, r represents the number of customers in the route
after edge (i, j), including customer j.
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• vwij : The load of the vehicle when it departs from depot i ∈ D to visit customer j ∈ C,
under scenario w ∈ Ω.

• lwij : The total load of the vehicle when it departs from customer i ∈ C to arrive at customer
j ∈ C, i ̸= j, under scenario w ∈ Ω.

• η: Latency VaRα.

• Ψw: Auxiliary variable used to measure the excess latency with respect to η under scenario
w ∈ Ω.

In order to provide a clear explanation of the formulation, we present the optimal solution
(considering the deterministic problem, i.e., |Ω| = 1) for one instance that consists of 20 cus-
tomers, 5 candidate depots, at most 2 depots to be opened, and 3 vehicles (see Figure 4.1). This
corresponds to instance 20-5-2b from the Prodhon data set, usually used as benchmark for the
LLRP [47, 48, 49, 50]. In the optimal solution, the depots to be opened are dep4 and dep5. Two
routes (R1 and R2) must be performed from depot dep4 and one route (R3) from depot dep5.
R1=dep4-1-6-4-2-5-8, visiting 6 customers, R2=dep4-10-3-9-7-15-14-18 visiting 7 customers, and
R3=dep5-12-11-13-16-20-17-19 visiting 7 customers. This means that depot dep4 will appear at
levels 7 and 8 of the multi-layer network, and depot dep5 will appear at level 8. It is to note that
each customer can appear only once in the multi-layer network, while each depot can appear
more than once. The level r at which each customer i appears is defined by variable xir. The
edges (i, j) shown at level r in Figure 4.1 represent the variables yijr whose value is equal to 1.
We are omitting the scenario index because we are assuming |Ω| = 1.

Figure 4.1: Representation of the optimal solution in the multi-layer network for a specific in-
stance.

The proposed stochastic MILP formulation corresponds to (4.1)–(4.22):

minimize η +
1

1− α

∑
w∈Ω

πwΨw, (4.1)
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subject to∑
i∈D

zi ≤ p, (4.2)

Ψw ≥

∑
i∈D

∑
j∈C

∑
r∈L\{|L|}

rtwijy
w
ijr +

∑
i∈C

∑
j∈C\{i}

∑
r∈L\{|L|}

rtwijy
w
ijr

− η ∀w ∈ Ω, (4.3)

∑
r∈L

xwir = 1 ∀w ∈ Ω,∀i ∈ C, (4.4)∑
r∈L\{|L|}

∑
i∈D

∑
j∈C

ywijr ≤ |K| ∀w ∈ Ω, (4.5)

∑
r∈L\{|L|}

∑
j∈C

ywijr ≥ zi ∀w ∈ Ω, ∀i ∈ D, (4.6)

∑
i∈C

xwi1 =
∑

r∈L\{|L|}

∑
i∈D

∑
j∈C

ywijr ∀w ∈ Ω, (4.7)

∑
j∈C\{i}

ywijr = xwir+1 ∀w ∈ Ω,∀i ∈ C,∀r ∈ L\{|L|}, (4.8)

∑
i∈V \{j}

ywijr = xwjr ∀w ∈ Ω, ∀j ∈ C,∀r ∈ L\{|L|}, (4.9)

zi ≥
∑

r∈L\{|L|}

ywijr ∀w ∈ Ω,∀i ∈ D,∀j ∈ C, (4.10)

∑
h∈D

vwhi +
∑

j∈C\{i}

lwji −
∑

j∈C\{i}

lwij = di ∀w ∈ Ω,∀i ∈ C, (4.11)

vwij ≥ dwj
∑

r∈L\{|L|}

ywijr ∀w ∈ Ω,∀i ∈ D,∀j ∈ C, (4.12)

lwij ≥ dwj
∑

r∈L\{|L|}

ywijr ∀w ∈ Ω,∀i, j ∈ C|i ̸= j, (4.13)

vwij ≤ Q
∑

r∈L\{|L|}

ywijr ∀w ∈ Ω,∀i ∈ D,∀j ∈ C, (4.14)

lwij ≤ (Q− di)
∑

r∈L\{|L|}

ywijr ∀w ∈ Ω,∀i, j ∈ C|i ̸= j, (4.15)

zi ∈ {0, 1} ∀i ∈ D, (4.16)

xwir ∈ {0, 1} ∀w ∈ Ω,∀i ∈ C,∀r ∈ L, (4.17)

ywijr ∈ {0, 1} ∀w ∈ Ω,∀i ∈ V,∀j ∈ C|i ̸= j,∀r ∈ L\{|L|}, (4.18)

vwij ≥ 0 ∀w ∈ Ω,∀i ∈ D,∀j ∈ C, (4.19)

lwij ≥ 0 ∀w ∈ Ω,∀i, j ∈ C|i ̸= j, (4.20)

Ψw ≥ 0 ∀w ∈ Ω, (4.21)

η ≥ 0. (4.22)

The objective function (4.1) minimizes the CVaRα of the latency of the system. Constraint (4.2)
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4 A risk-averse latency location-routing problem with stochastic travel times

establishes that at most p depots can be opened. The constraints (4.3)–(4.15) are imposed for
each scenario w ∈ Ω. Constraints (4.3) calculate the difference between the latency of the system
and the VaRα. Constraints (4.4) ensure that each customer is visited exactly once, it is, each
customer must appear in one and only one level of the multi-layer network. In inequalities (4.5)
the maximum number of vehicles to be used is established. Constraints (4.6) establish that if
depot i is opened, it must be used in all the scenarios (at least one vehicle must perform a route
starting from the depot). Constraints (4.7)–(4.9) allow to determine the sequence in which the
nodes appear in the multi-layer network (consequently in the routes), linking variables x and
y. Equalities (4.7) state that the number of customers visited at the end of each route (level 1
in the multi-layer network) is equal to the number of vehicles performing routes. Constraints
(4.8) ensure that the edge (i, j) is in the solution only if i is visited exactly before j, i.e., if
i appears in the immediately upper level in the multi-layer network w.r.t. j (which appears
in level r). Constraints (4.9) ensure that if a customer j appears in level r, there must be an
incident edge to j. Inequalities (4.10) guarantee that the routes start only at open depots. The
load of each vehicle at each customer, is calculated with constraints (4.11). In (4.12), the load
with which each vehicle starts the route is computed. Similarly, in (4.13) the load with which
the vehicle departs from a certain customer is calculated, and it must be at least equal to the
demand of the forthcoming customer in the route. The vehicle capacity constraints are ensured
using (4.14) and (4.15) for the cases when the vehicle is departing from the depot, or from a
customer, respectively. Finally in (4.16)–(4.22) the domain of the variables is presented.

The deterministic LLRP is NP-Hard [47]. Since the LLRP-STT can be reduced to the LLRP
when |ω| = 1, the LLRP-STT is NP-Hard. The current state-of-the-art exact methods for the
LLRP (proposed in [48]) are able to solve to proven optimality only instances with up to 50
customers. The stochastic problem is even more challenging to solve.

It is to note that the feasibility conditions for the LLRPT-STT are the same w.r.t. the LLRP,
and regard the capacity of the vehicles. For a certain instance, if the respective bin-packing
problem has a feasible solution with a number of bins less than or equal to |K|, the instance
is feasible. We assume that the parameters of the instances are such that the feasibility set is
non-empty.

4.4 Methodology

In this Section our multi-start VNS (MS-VNS) is introduced. Furthermore, a sampling method
used for tackling instances with continuous probability distribution is presented.

4.4.1 Heuristic algorithm

The MS-VNS algorithm is composed of two main phases. The key factors that determine the
success of the proposed method are: i) the right selection of the depots to be opened, and ii) the
right allocation of vehicles to the open depots, and their corresponding routes. These factors
are accounted for in the corresponding first and second phases, respectively. The first phase
seeks a set of promising depot configurations, providing a pool of initial solutions, each one with
a different depot configuration. The second phase corresponds to an improvement phase with
different local search routines, which are applied to each of the initial solutions in the pool.

A summary of the MS-VNS is presented in Algorithm 7, where CVaR∗
α and Z∗ represent

the best solution value found and the depot configuration associated with it, respectively. The
details of each phase and the respective procedures are provided in the following two sections.
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Algorithm 7: The MS-VNS algorithm.

Input: Data, Algorithm parameters
Output: CVaR∗

α & Z∗ (Best feasible solution found for the stochastic problem)
1 Apply the first phase

return: Start = {s10, s20, ..., s
|Start|
0 }

2 for z ∈ {1, ..., |Start|} do
3 for w ∈ Ω do
4 Update(sz0, w)
5 Apply the second phase to sz0

return: szwbf , Lat
z
w (Best feasible solution found for scenario w using depot

configuration z and its respective latency)
6 end
7 Compute CVaRz

α

8 end
return: CVaR∗

α & Z∗

The algorithm starts by generating a set of initial feasible solutions Start = {s10, s20, ..., s
|Start|
0 },

each one considering a different depot configuration. Then for each depot configuration z ∈
{1, ..., |Start|} an improvement procedure is applied to the associated solution sz0 obtaining the
best feasible solution szbf for the considered depot configuration. Finally, the best solution among
all the szbf is reported as the global best feasible solution sbf .

First phase

The generation of set Start is done as follows. In order to find promising configurations, that
may be good for all the scenarios, the following four steps are repeated for each scenario w ∈ Ω.

1. A giant Traveling Salesman Problem (TSP) tour, considering all customers and minimizing
the sum of the travel times twij associated with scenario w, is constructed using the LKH-3
heuristic proposed in [55].

2. A partitioning procedure is applied by starting from an initial customer and by splitting
the giant tour into clusters of consecutive customers such that the total load of each cluster
is less than or equal to Q.

If the number of clusters created is smaller than |K|, a splitting procedure is applied,
which consists of a local search procedure comprising the following steps.

• Select the cluster m containing the edge (i, j) with the largest travel time (i, j ∈ C).

• Split the cluster m by removing edge (i, j). Two new sub-clusters (m1 and m2) are
created: m1 is the sub-cluster composed of the customers belonging to cluster m
until customer i; m2 is the sub-cluster composed by the customers of cluster m from
customer j to the final customer of cluster m.

On the other hand, if the number of clusters created is larger than |K|, a repair procedure
is applied to delete the least-loaded clusters until the number of clusters equals |K|. Each
customer, say i, belonging to a least-loaded cluster is considered according to the order in
which it is visited within the cluster. It is removed from its current position and is inserted
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4 A risk-averse latency location-routing problem with stochastic travel times

in its best position, say k, in a different cluster, say j, so as to minimize the score defined
in equation (4.23):

ScoreIN j
ik = ∆instimeikj + θ[max{0, (dcj + di)−Q}] (4.23)

where ∆instimeikj represents the variation of the travel time of cluster j caused by the
insertion of customer i in position k; dcj represents the current load of cluster j, and
θ represents a penalty (large positive value). If the total load of a cluster (say cluster
j) exceeds the vehicle capacity, a swapping procedure is applied to two customers (say
customers k and i, with di < dk) with respect to their current clusters (say clusters j and
ℓ, respectively, with j ̸= ℓ, and dcℓ < dcj), so as to minimize the following score:

ScoreSW jℓ
ik = ∆timekij +∆timeikℓ + θ[max{0, (dcj − dk + di)−Q}

+max{0, (dcℓ + dk − di)−Q}]
(4.24)

where ∆timekij (resp. ∆timeikℓ ) represents the variation of the travel time of cluster j (resp.
cluster ℓ) caused by the exchange of the customers k and i. If no feasible splitting of the
customers into |K| clusters is found by this swapping procedure the clustering process is
repeated starting from the customer following the previous initial customer.

Contrary to the methodology proposed in [50], where all the possible starting customers
are evaluated, the clustering process proposed here is stopped when a feasible set of exactly
|K| clusters is found. Hereafter, the feasible set of clusters is denoted by CL.

3. For each depot i ∈ D and for each cluster j ∈ CL, we define an allocation cost lij ,
which represents the total latency of the route starting from depot i and composed by
the customers in cluster j. This allocation cost is obtained by applying an intra-route
local search procedure IntraV ND (all details are presented in the following section) to
the path corresponding to cluster j. This step also provides information about how the
route should be if cluster j is selected to start from depot i (this information is stored).

4. With all the previous information, the pool of depot configurations to be explored is
defined. First, a so-called main configuration with at most p open depots is obtained by
solving the location-allocation integer linear programming (ILP) model (4.25)–(4.32), with
the binary variables Aij equal to 1 iff cluster j ∈ CL is assigned to depot i ∈ D, and Zi

equal to 1 iff depot i ∈ D is opened.
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minimize
∑
i∈D

∑
j∈CL

lijAij , (4.25)

subject to: (4.26)∑
i∈D

Aij = 1 ∀j ∈ CL, (4.27)

Zi ≤
∑
j∈CL

Aij ∀i ∈ D, (4.28)

Aij ≤ Zi ∀i ∈ D,∀j ∈ CL, (4.29)∑
i∈D

Zi ≤ p, (4.30)

Aij ∈ {0, 1} ∀i ∈ D,∀j ∈ CL, (4.31)

Zi ∈ {0, 1} ∀i ∈ D. (4.32)

The objective function (4.25) seeks to minimize the total latency. Constraints (4.27) ensure
that each cluster is allocated to exactly one depot. Constraints (4.28) establish that if depot
i is opened, it must be used (at least one cluster must be allocated to it). Constraints
(4.29) impose that the clusters can be allocated only to open depots. Constraint (4.30)
ensures that the number of open depots is at most p. Finally, constraints (4.31) and (4.32)
define the domain of the variables.

Model (4.25)–(4.32) is solved NC times (where NC is a given parameter), each time by
imposing Zi = 0, where i is the index of the open depot with the kth smallest number of
clusters allocated in the main configuration, with k ∈ {1, NC}.

Each time a promising configuration is selected the following information is stored: set
of open depots, allocation of the routes to the depots, routes, latency, number of times
that the current configuration has been selected, and scenario in which it was selected.
This information determines in fact, a feasible solution for the problem. If a configuration
was already selected, the objective functions are compared, and the one with the smallest
latency is kept. This is the end of step 4.

A feasible LLRP solution corresponds to the obtained set of open depots and to the respec-
tive routes assigned to each depot. For each configuration z a feasible solution sz0 is obtained
and it is included in the set Start. The solutions in Start are sorted in decreasing order ac-
cording to the number of times that were selected. The latency is used as tiebreaker. The
first min{MP, |Start|} (where MP is a given parameter) solutions of Start are kept for being
evaluated in the next phase, while the remaining solutions (if they exist) are discarded.

Despite the fact that several ingredients are similar to those considered for the LLRP by
[50] and other related problems such as the CLRP [56], there are new aspects that make our
methodology innovative and more efficient (in terms of computing times) with respect to the
mentioned works. In the mentioned papers, the procedures of clustering, calculation of the allo-
cation cost, and the location decision, are repeated Nc times in the first phase (initial solution for
the mentioned papers). It means that (relatively) time consuming procedures such as applying
local search and solving MILP models are repeated several times (specially for instances with a
large number of customers). It is to note that the constructive phase proposed in [50] provides
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4 A risk-averse latency location-routing problem with stochastic travel times

good quality solutions, and also valuable information about the pool of depot configurations
to explore (similar to the set Start). This exploration of depot configurations proved to be
much more effective, both in terms of solution quality and computing time, than the random
exploration proposed in [49].

In the current work we seek to find a good reduced pool of depot configurations as done in
[50], but in a shorter computing time. Other ideas for reducing the pool of depot configurations
have been also applied for solving the CLRP (see [57]). Furthermore, the routing optimization
procedures that require considerable amount of computing time are avoided. In this way, the
LKH-3 procedure used both in [49] and in [50] for constructing the initial solutions, and as a
post-optimization routine at the end of the algorithms, is not considered in our MS-VNS. In
addition, the local search procedures used in this work for the routing optimization only explore
three neighborhoods: i) Insertion, ii) Swap, and iii) 2-Opt, which are the neighborhoods that
produce the largest improvements in the previously mentioned works. In this way, faster local
search routines are applied.

Second phase—Improvement

An improvement phase is applied to each promising depot configuration (starting from each
solution sz0 ∈ Start), and for each scenario w ∈ Ω. That is, for each depot configuration we solve
|Ω| deterministic multi-depot cumulative capacitated vehicle routing problems (MDCCVRP)
obtaining the latency Latzw of scenario w when the depot configuration z is used. With these
values it is possible to trivially compute the CVaRα associated with each configuration z, CVaRz

α.
Finally, the configuration with the smallest CVaRα is selected, and the corresponding solution
is reported as the best feasible solution found for the stochastic problem.

The improvement phase (see Algorithm 8) starts by setting the current solution sc and the best
feasible solution szbf to the current depot configuration z, i.e., sz0. It is to note that the objective
function of sz0 is updated for each scenario w ∈ Ω (Update(sz0, w)). Then the local search
procedure V ND (see Algorithm 9) is applied to sc until no improvement is found, obtaining
the solution svnd. Infeasible solutions w.r.t. the capacity of the vehicles are allowed during the
second phase. For a solution sc, its solution value f(sc) considers a penalty a for each unit
exceeding the capacity, where a is a parameter. If the solution is feasible, the penalty term
is equal to 0. Let us consider Neigh = {Insertion, Swap, 2-Opt} as the set of neighborhoods
to explore. Since the proposed VNS algorithm contains randomized components it is repeated
tryV NS times, and the best solution among the tryV NS obtained solutions is stored. The
current best feasible solution is stored in saux, and it is updated for each try t ∈ tryV NS. The
VNS algorithm consists of repeating for itermax iterations the following steps.

i) The current neighborhood to explore is set equal to the first one, i.e. Insertion,

ii) Until all the neighborhoods in Neigh are explored, the following steps are repeated:

• Apply a shaking procedure, Shake, to the current solution sc, obtaining a solution s′c. The
shaking procedure consists of applying SK random moves in the current neighborhood n.

• Apply Algorithm 9 to s′c, obtaining a solution s′′c . This algorithm consists of a VND
descendent local search procedure which explores sequentially all the neighborhoods in
Neigh under the best improve criterion. First it explores all the moves in Insertion until
no improvement is found, next it does the same for Swap, and then for 2-Opt. If after
exploring all the neighborhoods an improvement was found in any of the neighborhoods
the search is restarted from Insertion. The search stops when no improvement is found
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in any of the three neighborhoods. Each time an improved solution s′′c is obtained, it
is compared with the best feasible solution szbf , whose value is updated in case a better
feasible solution is found (IsFeasible(s′′c )).

• If s′′c , the solution obtained after applying Shake and V ND, is better than sc, the current
neighborhood n is set equal to the first one, and the current solution is set equal to s′′c .
Otherwise, the next neighborhood is explored.

iii) If the current iteration number, say iter, is smaller than iterRR, then the procedure
RouteRelocation is applied to sc obtaining an updated current solution sc. RouteRelocation
consists of randomly selecting a route r from an open depot with more than one route allocated,
and reallocate r to a different open depot. The IntraV ND local search procedure is applied
to r. This procedure is similar to the V ND procedure already described, nevertheless, after
exploring all the neighborhoods the search is not restarted. If there is no open depot with more
than one route allocated, the procedure RouteRelocation is skipped. If the current iteration
number iter is greater than or equal to iterRR the search is intensified applying step ii) to the
current best feasible solution szbf .
It is to note that for the particular case in which |Ω| = 1, the problem is reduced to the

deterministic LLRP. Consequently, a by-product of our work is, in fact, an efficient metaheuristic
algorithm for the (deterministic) LLRP. Although the main contribution of this work is the
stochastic approach used for facing the LLRP, the MS-VNS turns out to be a very effective
method for finding feasible solutions, in short computing times, for the deterministic LLRP.

4.4.2 Sampling method

In this section we present a sampling method for tackling instances with continuous probability
distributions, i.e., an infinite number of scenarios. The method is also valid if the number of
scenarios is finite but too large for allowing solving the whole stochastic problem. The proposed
sampling method is a general framework that can be applied both using the proposed model
(4.1)–(4.22) or the MS-VNS algorithm. If the MS-VNS is used for tackling the problem, then
the sampling method can be considered a simheuristic [58].
The sampling method starts by generating M samples, with each sample consisting of N

independent randomly generated scenarios. For each sample m ∈ {1, ...,M} the stochastic
problem with a finite number of scenarios is solved obtaining the corresponding objective function
value CVaR∗

αm and the corresponding depot configuration Z∗m (as described in the previous
sections). A vector PromisingLocation stores the obtained depot configurations Z∗m, counting
how many times the configuration is selected and its corresponding CVaR∗

αm value (the smallest
CVaR∗

αm value is stored in case the configuration is selected more than once). This vector is
sorted in descending order according to the number of times each configuration is selected, using
the CVaR∗

αm as tiebreaker. These steps define the first phase of our procedure. Then, the T
most promising depot configurations are evaluated in a second phase, repeating the following
steps for each configuration t ∈ {1, ..., T}.
i) The depots to be opened are fixed according to the corresponding element of the vector

PromisingLocationt. If the mathematical model is used for solving the problem, it is equivalent
to fix the values of variables Zi, ∀i ∈ D. On the other hand, if the MS-VNS algorithms is being
considered then it is equivalent to use the current promising depot configuration as starting
point for the second phase of the algorithm (PromisingLocation is equivalent to Start).
ii) A single-scenario LLRP considering a randomly generated scenario and the fixed locations

is solved. When the MS-VNS is considered, this step is equivalent to solving the second phase
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Algorithm 8: The Improvement phase - VNS algorithm.

Input: sz0, Neigh, itermax, iterRR, SK, a, tryV NS
Output: szbf (Best feasible solution for the cuurent depot configuration)

1 sc = szbf = sz0
2 svnd = V ND(sc, s

z
bf , Neigh, a)

3 saux = svnd
4 for t = 0; t < tryV NS, t++ do
5 iter = 0
6 sc = szbf = svnd

/* VNS */

7 while (iter < itermax) do
8 n = 1
9 while (n ≤ |Neigh|) do

10 s′c = Shake(sc, n, SK, a)
11 s′′c = V ND(s′c, s

z
bf , Neigh, a)

12 n = n+ 1
13 if (f(s′′c ) < f(sc)) then
14 sc = s′′c
15 n = 1

16 end

17 end
18 if (iter < iterRR) then
19 sc = RouteRelocation(sc)
20 else
21 sc = szbf
22 end
23 iter = iter + 1

24 end
25 if (f(szbf ) < f(saux)) then

26 saux = szbf
27 end

28 end
29 szbf = saux

return: szbf
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Algorithm 9: The VND search procedure.

Input: s′c, s
z
bf , Neigh, a

Output: s′c (New current solution), szbf (New current best feasible solution)

1 flagvnd = true
2 while (flagvnd = true) do
3 flagvnd = false
4 for (each n ∈ Neigh) do
5 flagneigh = true
6 while (flagneigh = true) do
7 svnd = sol(n, s′c)
8 if (f(svnd) < f(s′c)) then
9 s′c = svnd

10 flagvnd = true
11 if (f(s′c) < f(szbf ) and IsFeasible(s′c)) then

12 szbf = s′c
13 end

14 else
15 flagneigh = false
16 end

17 end

18 end

19 end
return: s′c, s

z
bf
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for a single scenario. This step is repeated until N ′ independent randomly generated scenarios
are evaluated. For each scenario n ∈ {1, ..., N ′} the latency Lattn is stored.

iii) Finally, the estimated CVaR, say ĈV aRα
t
is calculated for each depot configuration t.

The computation of ĈV aRα
t
is done straightforwardly as follows:

• Sort in ascending order all the N ′ values of Lattn.

• Select the kth smallest Lattn, where k is equal to αN ′. This value represents the estimated
VaRα, η̂t, when configuration t is selected.

• Calculate the expected value of all the latencies Lattn larger than or equal to η̂t. This value

corresponds to ĈV aR
t

α.

After all the promising depot configurations are evaluated, the one with the smallest value of

ĈV aRα
t
is selected as the best depot configuration Z∗, and the corresponding value of ĈV aRα

t

is reported as the best feasible solution value ĈV aRα
∗
for the problem .

Algorithm 10: The sampling method.

Input: Data, N , M , N ′, T , MS-VNS parameters
Output: ĈV aR∗

α Z∗

1 Generate M samples, each consisting of N independent randomly generated scenarios.
2 for m ∈ M do
3 Solve the stochastic problem using sample m.

return: CVaR∗
αm, Z∗m

4 end
return: PromisingLocation

5 for t ∈ T do
6 Fix the open depots according to PromisingLocationt

7 for n ∈ N ′ do
8 Solve the deterministic LLRP for a randomly generated independent scenario n

using the depot configuration PromisingLocationt

return: Lattn
9 end

return: ĈV aRt
α

10 end

return: ĈV aR∗
α Z∗

4.5 Computational experiments

The proposed MILP model and the MS-VNS algorithm were implemented in C++. All the
experiments were carried out on an AMD Ryzen 7 2700X Eight-Core Processor running at 3.7
GHz with 64 GB RAM, under Linux Ubuntu 18.04 operative system. The MILP model was
solved with CPLEX 20.1 under the default parameter configuration, with a time-limit equal to
10800 seconds. The MS-VNS algorithm was executed considering 5 random seeds (i.e., 5 runs
were executed for each instance) in a single thread.
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The parameter tuning process for the MS-VNS algorithm was performed using the iterated
racing for automatic algorithm configuration (IRACE) method (see [59]). IRACE is an open-
source software that applies sampling procedures with an elitist criterion in order to identify
promising parameter configurations. This software has been used for the tuning process of
many algorithms in the literature, and its output is a set of parameter configurations, which
correspond to the most promising ones. Then, after preliminary experiments, the best configu-
ration was selected considering the obtained solution quality and the required computing time.
The following values were considered in the tuning procedure: iterRR ∈ {0.3, 0.4, 0.5, 0.6, 0.7},
a ∈ {0.1, 0.3, 0.5, 1, 3, 5}, itermax ∈ {10, 20, 30}, SK ∈ {3, 5, 7, 10, 15}, NC ∈ {1, 2,

⌈p
2

⌉
, p},

MP ∈ {3, 5, 10, |Start|}, tryV NS ∈ {3, 5, 10}. It is clear that when the parameters NC, MP ,
and tryV NS take their largest value the algorithm must perform better w.r.t. when these pa-
rameters take small values. Nevertheless, in our preliminary experiments we found that this
situation imply large computing times, without a considerable improvement in the quality of
the solutions found.

The following values were selected for each parameter: iterRR = 0.3, a = 1, itermax = 30,
SK = 15, NC = p, MP = 10, and tryV NS=3.

4.5.1 Test instances for the problem

Because the LLRP with stochastic travel times has been introduced in this work, there are no
benchmark instances available. Hence, test instances were specifically generated for performing
the tests we report in this section. We have considered as a starting point a subset of instances
from the Prodhon data set initially introduced by [60] for the CLRP, and recently adapted as
benchmark data set for the deterministic LLRP by [47]. The instances used in this work are:
20-5-1, 20-5-1b, 20-5-2, and 20-5-2b. Due to the complexity of the stochastic problem we propose
8 new deterministic small size instances with 10 customers that can be solved to optimality by
CPLEX using the proposed model. The new instances were created taking as starting point the
mentioned instances, i.e., we kept a subset of nodes, considering the original coordinates and
demands.

We assume that each scenario occurs with the same probability, i.e.,. πw = 1
|Ω| , ∀w ∈ Ω.

For the confidence level we considered α = 0.9.

For generating the stochastic travel times we considered the following two cases:

• For each edge (i, j), the travel times tij ∼ LogNormal(µ, σ) with µ = ln(t̂ij) − σ2

2 , and

σ = 1, where t̂ij is the original travel time of the deterministic instance. Since σ = 1 we
have that the expected value of the travel time for the edge (i, j) is E[tij ] = t̂ij .

• For each edge (i, j), the travel times tij ∼ unif{0.2t̂ij , 1.8t̂ij}. We have that E[tij ] = t̂ij .

After the generation of the random data the Floyd–Warshall algorithm [61] is applied to the
travel time matrix of each scenario to ensure that the triangle inequality holds.

For each base instance, 20, 30, 40, and 50 scenarios were generated according to the procedure
already described.

A total of 96 instances were considered. The instances are available to any reader upon a
request to the authors.

4.5.2 Evaluation of the proposed methods
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Table 4.2: Detailed results for the LLRP-STT instances.

CPLEX MS-VNS
Ω C Distribution Instance CvaRCPLEX time mipgap Best time DevCPLEX

20 10 LOGN 10-5-1 62.45 262.5 0.00 63.00 61.2 0.88
10-5-1b 128.93 1569.3 0.00 128.93 50.9 0.00
10-5-2 54.06 844.9 0.00 54.06 59.1 0.00

10-5-2b 72.84 195.1 0.00 72.84 51.8 0.00
10-10-1 60.02 2365.6 0.00 60.26 62.6 0.40

10-10-1b 95.96 2972.9 0.00 95.96 53.2 0.00
10-10-2 53.20 1585.6 0.00 53.20 61.7 0.00

10-10-2b 69.35 405.2 0.00 69.35 52.0 0.00
UNIF 10-5-1 131.57 337.7 0.00 131.57 62.0 0.00

10-5-1b 256.10 1699.1 0.00 256.10 51.9 0.00
10-5-2 98.02 442.7 0.00 98.02 59.0 0.00

10-5-2b 138.10 235.7 0.00 138.10 50.0 0.00
10-10-1 110.71 1440.2 0.00 111.09 64.2 0.34

10-10-1b 188.72 2254.5 0.00 191.92 53.6 1.69
10-10-2 103.57 3919.0 0.00 103.57 60.6 0.00

10-10-2b 136.05 457.8 0.00 136.05 52.5 0.00
20 LOGN 20-5-1 322.71 10800.0 70.81 104.67 384.8 -67.56

20-5-1b 913.99 10800.0 82.13 177.88 342.7 -80.54
20-5-2 338.22 10800.0 69.10 110.49 399.5 -67.33

20-5-2b 404.61 10800.0 62.67 160.66 335.1 -60.29
UNIF 20-5-1 641.02 10800.0 64.02 238.49 380.5 -62.80

20-5-1b 1633.89 10800.0 77.68 389.92 340.8 -76.14
20-5-2 582.84 10800.0 65.15 217.18 399.7 -62.74

20-5-2b 1412.55 10800.0 77.33 340.13 344.1 -75.92
30 10 LOGN 10-5-1 69.52 9398.2 0.00 69.52 92.7 0.00

10-5-1b 139.69 6418.5 0.00 139.69 78.8 0.00
10-5-2 52.86 698.3 0.00 54.83 89.5 3.74

10-5-2b 79.49 2549.1 0.00 79.49 77.6 0.00
10-10-1 56.02 10588.3 0.00 56.02 94.8 0.00

10-10-1b 103.86 2724.2 0.00 103.86 80.3 0.00
10-10-2 55.43 5451.6 0.00 57.85 92.9 4.37

10-10-2b 76.47 1111.9 0.00 76.47 79.9 0.00
UNIF 10-5-1 136.57 1181.6 0.00 136.57 91.7 0.00

10-5-1b 266.45 1727.1 0.00 266.45 77.2 0.00
10-5-2 106.70 941.6 0.00 106.70 89.8 0.00

10-5-2b 141.94 1392.7 0.00 141.94 78.4 0.00
10-10-1 109.55 2086.8 0.00 109.55 95.8 0.00

10-10-1b 192.86 7715.1 0.00 192.86 80.2 0.00
10-10-2 103.19 10415.9 0.00 103.22 92.9 0.03

10-10-2b 150.62 1948.2 0.00 150.62 74.7 0.00
20 LOGN 20-5-1 343.72 10800.0 69.89 114.55 582.3 -66.67

20-5-1b 749.22 10800.0 77.61 181.82 516.9 -75.73
20-5-2 408.86 10800.0 76.94 102.69 605.1 -74.88

20-5-2b 460.77 10800.0 66.07 165.57 516.4 -64.07
UNIF 20-5-1 627.99 10800.0 65.21 229.25 585.7 -63.49

20-5-1b 1387.33 10800.0 72.15 403.42 518.6 -70.92
20-5-2 705.13 10800.0 70.81 213.17 602.6 -69.77

20-5-2b 998.65 10800.0 67.04 353.68 510.9 -64.58

Continued on next page
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Table 4.2 – Continued from previous page

CPLEX MS-VNS
Ω C Distribution Instance CvaRCPLEX time mipgap Best time DevCPLEX

40 10 LOGN 10-5-1 68.39 8620.1 0.00 68.39 122.0 0.00
10-5-1b 153.42 10800.0 8.71 147.30 103.7 -3.99
10-5-2 56.30 10800.0 1.95 56.04 123.3 -0.46

10-5-2b 74.25 3351.9 0.00 74.25 103.9 0.00
10-10-1 184.72 10800.0 67.76 61.57 127.2 -66.67

10-10-1b 98.67 10800.0 7.96 94.94 106.9 -3.78
10-10-2 71.29 10800.0 29.79 54.27 123.6 -23.88

10-10-2b 76.41 7447.2 0.00 76.41 104.5 0.00
UNIF 10-5-1 132.74 6078.9 0.00 132.74 124.3 0.00

10-5-1b 255.42 10600.4 0.00 255.42 103.1 0.00
10-5-2 105.03 851.8 0.00 105.03 120.1 0.00

10-5-2b 141.36 372.0 0.00 141.36 102.5 0.00
10-10-1 294.51 10800.0 62.50 112.19 126.3 -61.91

10-10-1b 196.74 10800.0 1.59 196.51 107.2 -0.12
10-10-2 155.22 10800.0 31.92 108.53 116.8 -30.08

10-10-2b 136.54 6059.6 0.00 136.54 105.9 0.00
20 LOGN 20-5-1 351.62 10800.0 69.79 116.48 778.8 -66.87

20-5-1b 2336580.00 10800.0 99.99 176.76 681.3 -99.99
20-5-2 345.86 10800.0 72.47 101.98 802.3 -70.51

20-5-2b 625.54 10800.0 74.96 169.88 688.3 -72.84
UNIF 20-5-1 642.99 10800.0 66.17 227.95 771.5 -64.55

20-5-1b 4882820.00 10800.0 99.99 425.23 686.3 -99.99
20-5-2 613.57 10800.0 67.52 207.83 814.6 -66.13

20-5-2b 1209.39 10800.0 72.96 342.62 684.2 -71.67
50 10 LOGN 10-5-1 177.80 10800.0 59.07 75.28 156.8 -57.66

10-5-1b 132.99 2154.8 0.00 132.99 129.9 0.00
10-5-2 88.71 10800.0 31.08 65.16 148.8 -26.55

10-5-2b 80.06 10800.0 3.24 79.90 129.8 -0.20
10-10-1 101.32 10800.0 44.65 57.10 158.8 -43.64

10-10-1b 104.94 5227.9 0.00 104.94 133.4 0.00
10-10-2 99.68 10800.0 48.13 53.36 152.5 -46.47

10-10-2b 75.53 10800.0 0.02 75.53 133.3 0.00
UNIF 10-5-1 191.49 10800.0 29.02 135.92 159.4 -29.02

10-5-1b 258.74 3556.8 0.00 258.74 129.3 0.00
10-5-2 103.04 2722.8 0.00 103.06 150.4 0.02

10-5-2b 138.97 7753.2 0.00 138.97 129.8 0.00
10-10-1 248.30 10800.0 56.69 108.80 160.3 -56.18

10-10-1b 207.43 10800.0 3.22 203.81 134.9 -1.75
10-10-2 250.59 10800.0 59.70 103.05 153.1 -58.88

10-10-2b 142.48 5805.5 0.00 142.48 131.7 0.00
20 LOGN 20-5-1 366.93 10800.0 72.68 109.05 970.5 -70.28

20-5-1b 2406240.00 10800.0 99.99 196.38 855.6 -99.99
20-5-2 354.59 10800.0 72.60 107.96 997.1 -69.55

20-5-2b 2234180.00 10800.0 99.99 166.36 857.3 -99.99
UNIF 20-5-1 997108.00 10800.0 99.98 237.60 965.4 -99.98

20-5-1b 4920480.00 10800.0 99.99 417.02 854.9 -99.99
20-5-2 634.77 10800.0 69.84 208.26 1011.3 -67.19

20-5-2b 4448540.00 10800.0 99.99 336.37 830.1 -99.99
Global Avg. 231783.63 7270.2 31.46 149.18 281.3 -30.45

119



4 A risk-averse latency location-routing problem with stochastic travel times

The detailed results obtained both by the model and MS-VNS for each instance are presented
in Table 4.2. The values presented in boldface correspond to proven optimal solution values.

In order to evaluate the performance of the proposed heuristic method let us consider DevCPLEX

as the deviation between the best values found by MS-VNS and CPLEX. It is computed as
DevCPLEX = 100 (Best−CV aRCPLEX)

CV aRCPLEX
, where Best corresponds to the best solution value found

by MS-VNS (within the 5 runs) and CV aRCPLEX corresponds to the best value reported by
CPLEX within the time-limit.

The computing times reported in Table 4.2 for MS-VNS correspond to the global computing
time, it is the time required for running each instance 5 times.

Figure 4.2: Average computing time (s) required by the proposed methods for solving instances
with 20, 30, 40 and 50 scenarios.

The proposed model was solved to proven optimality by the solver for 46 out of the 96
instances within the time-limit. However, none of the instances with 20 customers was solved
to optimality. Moreover the average mipgap reported for these instances is equal to 77.3%. The
model can solve to proven optimality all the instances with 10 customers considering up to 30
scenarios.

MS-VNS is able to find a solution value better than (50) or equal to (38) the solution value
reported by CPLEX for 88 out of the 96 instances analyzed in computing times considerably
shorter.

Considering only the instances solved to proven optimality, the heuristic is able to find the
same solution value for 38 out of the 46 respective instances. For the 8 remaining instances
the average value of DevCPLEX is equal to 1.43%. For all the instances analyzed the global
computing time of MS-VNS (considering the 5 runs) is smaller than the computing time required
by CPLEX. On the other hand, for all the instances with 20 customers the heuristic algorithm
provides a solution value better than CPLEX.

The computing times required by the solver and by the heuristic is depicted in Figure 4.2.
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Note that the solver reaches the time-limit for almost all the instances with 40 and 50 scenarios
(34 out of 48). The computing times needed by the model are above 25 times larger than these
required by MS-VNS. The behavior of the MS-VNS in terms of computing time makes it quite
appealing.
Regarding the probability distribution underlying the travel times, we can see (Table 4.2)

that the solver requires for the log-Normal distribution slightly larger computing times than
those required for the Uniform one (7658.80 s and 6884.37 s, respectively). In the same way,
the mipgap is 32.08% and 30.84%, with 21 and 25 instances solved to proven optimality for
the log-Normal and Uniform distribution, respectively. On the other hand, MS-VNS performs
similarly irrespective of the probability distribution.

4.5.3 The relevance of considering a stochastic modeling framework

Stochastic programming problems are often more challenging to solve than their deterministic
counterparts. For the case of the (deterministic) LLRP, the mathematical formulations presented
by [48] can easily deal with 20-customers instances. On the other hand, for all the instances
with |C| = 20, the proposed stochastic programming model is not able to be solved to proven
optimality even for 20 scenarios. Therefore, it is important to study the relevance of using
the stochastic model over simpler versions namely these considering the expected values of the
stochastic parameters. In this section we present an analysis of the relevance of the stochastic
problem by considering adapted versions of two well-known measures: the expected value of
perfect information (EVPI), and the value of the stochastic solution (VSS). The EVPI assumes
a risk-neutral decision maker. It can be defined as the the maximum value that the decision
maker is willing to pay to get a complete knowledge about the future. It corresponds to the
difference between the optimal solution value of the stochastic problem υ(P ) and the value of
the wait and see solution WSS, which is the expected value of the solutions obtained when
the decision maker has perfect information about the future. The VSS compares the optimal
stochastic solution value υ(P ) with the value of EV, i.e., the value of the expected value solution
(the expected values of the stochastic parameters are considered and the resulting deterministic
problem is solved). Since these two metrics are defined for risk-neutral decision makers, we
propose the following adapted versions considering a risk-averse (RA) attitude, based on those
proposed by [62].

• RAVPI=100υ(P )−RAWSS
υ(P ) , where RAWSS corresponds to the CVaRα calculated after find-

ing the optimal solution value for each single scenario problem w ∈ Ω. Since υ(P ) ≥
RAWSS, it is always true that RAVPI ≥ 0.

• RAVSS=100RAEV S−υ(P )
RAEV S , where RAEVS can be computed as follows: i) Solve the single-

scenario problem considering the expected values of the random variables, obtaining the
optimal depot configuration associated with it. ii) Solve the second-stage problem for
each scenario w ∈ Ω considering the previously mentioned depot configuration (fixing
the depots to be open). With all that information it is possible to compute the CVaRα

associated with the depot configuration selected by considering the expected values of the
random variables. Since υ(P ) ≤ RAEVS, it is always true that RAVSS ≥ 0.

It is to note that both metrics are presented as percentage in order to make it easy to inter-
pret irrespective of the magnitude of the parameters of each instance. Furthermore, since the
computation of RAVPI and RAVSS requires solving to optimality the stochastic problem, only
the 46 instances that have been solved to proven optimality were considered for the analysis.
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Table 4.3: Detailed values of RAVPI and RAVSS for the LLRP-STT instances solved to proven
optimality.

Instance υ(P ) RAWSS RAVPI RAEVS RAVSS

10-5-1-E20-LOGN 62.45 56.26 9.92 64.22 2.76
10-5-1b-E20-LOGN 128.93 117.39 8.95 130.43 1.15
10-5-2-E20-LOGN 54.06 46.57 13.85 60.48 10.63
10-5-2b-E20-LOGN 72.84 68.23 6.33 74.17 1.79
10-10-1-E20-LOGN 60.02 54.27 9.58 64.03 6.26
10-10-1b-E20-LOGN 95.96 88.30 7.97 96.50 0.56
10-10-2-E20-LOGN 53.20 52.12 2.03 61.06 12.86
10-10-2b-E20-LOGN 69.35 65.76 5.18 73.33 5.43
10-5-1-E30-LOGN 69.52 65.60 5.64 71.51 2.79
10-5-1b-E30-LOGN 139.69 125.86 9.90 148.36 5.85
10-5-2-E30-LOGN 52.86 48.12 8.97 63.79 17.14
10-5-2b-E30-LOGN 79.49 74.69 6.04 79.63 0.17
10-10-1-E30-LOGN 56.02 48.37 13.65 59.29 5.53
10-10-1b-E30-LOGN 103.86 98.90 4.77 117.19 11.38
10-10-2-E30-LOGN 55.43 49.16 11.31 72.30 23.33
10-10-2b-E30-LOGN 76.47 73.63 3.73 79.03 3.23
10-5-1-E40-LOGN 68.39 58.19 14.92 69.01 0.89
10-5-2b-E40-LOGN 74.25 71.52 3.67 75.67 1.88
10-10-2b-E40-LOGN 76.41 73.14 4.28 77.32 1.19
10-5-1b-E50-LOGN 132.99 129.43 2.68 140.13 5.09
10-10-1b-E50-LOGN 104.94 99.88 4.83 112.84 6.99
10-5-1-E20-UNIF 131.57 125.74 4.43 140.58 6.41
10-5-1b-E20-UNIF 256.10 231.38 9.65 264.80 3.29
10-5-2-E20-UNIF 98.02 94.50 3.59 117.12 16.31
10-5-2b-E20-UNIF 138.10 135.66 1.77 143.09 3.49
10-10-1-E20-UNIF 110.71 98.00 11.49 118.89 6.88
10-10-1b-E20-UNIF 188.72 177.11 6.15 208.99 9.70
10-10-2-E20-UNIF 103.57 93.10 10.11 113.85 9.02
10-10-2b-E20-UNIF 136.05 128.17 5.80 136.51 0.34
10-5-1-E30-UNIF 136.57 134.16 1.76 141.91 3.77
10-5-1b-E30-UNIF 266.45 236.69 11.17 295.94 9.97
10-5-2-E30-UNIF 106.70 105.30 1.31 117.00 8.81
10-5-2b-E30-UNIF 141.94 134.15 5.49 143.90 1.36
10-10-1-E30-UNIF 109.55 101.02 7.79 116.38 5.86
10-10-1b-E30-UNIF 192.86 178.41 7.49 198.21 2.70
10-10-2-E30-UNIF 103.19 95.49 7.45 106.75 3.34
10-10-2b-E30-UNIF 150.62 143.87 4.48 151.44 0.54
10-5-1-E40-UNIF 132.74 125.94 5.12 133.56 0.61
10-5-1b-E40-UNIF 255.42 237.65 6.96 257.66 0.87
10-5-2-E40-UNIF 105.03 97.77 6.91 106.78 1.64
10-5-2b-E40-UNIF 141.36 137.11 3.00 145.51 2.86
10-10-2b-E40-UNIF 136.54 130.33 4.55 140.35 2.71
10-5-1b-E50-UNIF 258.74 249.67 3.51 270.22 4.25
10-5-2-E50-UNIF 103.04 94.65 8.14 113.66 9.34
10-5-2b-E50-UNIF 138.97 133.00 4.29 139.31 0.24
10-10-2b-E50-UNIF 142.48 135.57 4.85 144.87 1.64

Gloval avg. 118.96 111.30 6.64 125.16 5.28
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The detailed results are reported in Table 4.3.

For the RAVPI the minimum, average, and maximum values obtained were 1.31%, 6.64%, and
14.92%, respectively. On the other hand, for the RAVSS the minimum, average, and maximum
values obtained were 0.17%, 5.28%, and 23.33%, respectively. The above mentioned values allow
us to conclude the following:

In the case we have perfect information about the future, the solution value can be at least
1.31% better than if uncertainty is not disclosed. The average and maximum RAVPI values
suggest that capturing uncertainty in the problem is of major relevance.

Since for all the instances analyzed RAVSS is larger than 0.0%, the optimal location decisions
for the stochastic problem are never equal to those induced by the deterministic problem (con-
sidering the expected values of the travel times). On average the solutions obtained by adopting
the simplified expected value problem are 5.28% worse than those found by the stochastic model,
and the difference can be up to 23.33%. In real life situations, e.g., disaster operations manage-
ment in general, or in humanitarian logistics in particular, the above mentioned percentages can
be quite significant. To not consider the stochastic problem in the planning may imply arriving
much later to provide assistance to the affected areas.

By comparing the results aggregated by probability distribution, we found that both metrics
are larger for log-Normal instances than for Uniform ones (RAVPI:7.53%, 5.89%, and RAVSS:
6.04%, 4.64% for log-Normal and Uniform, respectively). Despite the above, its possible to see
that even for instances with Uniform distribution these values are not negligible, which means
that it is relevant to capture stochasticity irrespective of the underlying probability distribution.

4.5.4 The effect of considering a risk-averse decision maker

In this Section we analyze how the solutions change when a risk-neutral decision maker is
considered (α = 0.0, i.e., all the scenarios come into play). For this experiment only the 46
instances solved to proven optimality were considered. They were solved to proven optimality
by setting α = 0.0.

The detailed results are presented in Table 4.4.

For 35 out of the 46 instances analyzed the set of depots opened by considering the risk-averse
(RA) is different w.r.t. that if a risk-neutral (RN) decision maker is considered. Naturally, the
second stage decisions are conditioned by the first stage decisions.

In order to understand how risk-aversion influences the solutions let us consider the example
presented in Figure 4.3 for the instance 10-10-1-E20-UNIF. The depots to be open under the risk-
averse attitude are 6, 7 and 9, while for the risk-neutral case the depots to be open are 2, 4, and 6.
In Figure 4.3 the circles represent the customers, the squares the depots, and each color represent
a vehicle. The Figures 4.3a and 4.3c show the optimal solution of the second stage problem for
the (1-α) worst-case scenarios (namely S12 and S18), with α = 0.9. In Figures 4.3b and 4.3d
the optimal solution of the second stage problem for the same scenarios, but considering the
depots opened when α = 0, are presented. Despite the latency of S18 is smaller by considering
a risk-neutral attitude, it does not mean that the CVaRα (with α = 0.9) associated with the
depot configuration 2-4-6 is smaller than 110.71. Indeed, if CVaRα is calculated by fixing the
mentioned depots its value is equal to 114.02; the above is explained by the fact that the (1-α)
worst-case scenarios for the mentioned depot configuration are S12 and S3 instead of S12 and
S18. A major conclusion drawn from this figure is that the solution in the worst-case scenarios
is clearly taken into account for deciding the depots.
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Table 4.4: Detailed results for the LLRP-STT instances solved to proven optimality considering
both risk-averse and risk-neutral attitudes.

RA RN
Instance CVARα depots E[latency] depots

10-5-1-E20-LOGN 62.45 2-5 52.17 1-2
10-5-1b-E20-LOGN 128.93 1-3 97.21 1-5
10-5-2-E20-LOGN 54.06 3-4-5 41.23 4-5
10-5-2b-E20-LOGN 72.84 4 56.14 1-4
10-10-1-E20-LOGN 60.02 6-9-10 45.01 6-7-9
10-10-1b-E20-LOGN 95.96 7-10 76.69 3-10
10-10-2-E20-LOGN 53.20 4-5 39.16 5-10
10-10-2b-E20-LOGN 69.35 3-4 56.23 1-4
10-5-1-E30-LOGN 69.52 2-4-5 51.38 2-4-5
10-5-1b-E30-LOGN 139.69 3-4 101.34 1-3
10-5-2-E30-LOGN 52.86 3-5 39.14 4-5
10-5-2b-E30-LOGN 79.49 1-3 55.40 1-4
10-10-1-E30-LOGN 56.02 4-6-7 45.89 4-6-7
10-10-1b-E30-LOGN 103.86 7-10 76.98 9-10
10-10-2-E30-LOGN 55.43 5-6-10 41.35 5-10
10-10-2b-E30-LOGN 76.47 3-4 55.21 1-4
10-5-1-E40-LOGN 68.39 2-4-5 53.52 2-4
10-5-2b-E40-LOGN 74.25 4 54.41 1-4
10-10-2b-E40-LOGN 76.41 4 53.76 1-4
10-5-1b-E50-LOGN 132.99 3-5 100.52 3-5
10-10-1b-E50-LOGN 104.94 9-10 79.50 9-10
10-5-1-E20-UNIF 131.57 2-3-4 108.50 2-4
10-5-1b-E20-UNIF 256.10 3-5 210.48 1-3
10-5-2-E20-UNIF 98.02 3-4-5 84.33 4-5
10-5-2b-E20-UNIF 138.10 4 103.90 1-4
10-10-1-E20-UNIF 110.71 6-7-9 88.98 2-4-6
10-10-1b-E20-UNIF 188.72 5-10 161.30 3-10
10-10-2-E20-UNIF 103.57 3-5-10 81.83 3-5
10-10-2b-E20-UNIF 136.05 4 109.87 1-4
10-5-1-E30-UNIF 136.57 2-4 109.39 2-4
10-5-1b-E30-UNIF 266.45 3 220.94 1-3
10-5-2-E30-UNIF 106.70 4-5 87.34 5
10-5-2b-E30-UNIF 141.94 3-4 110.25 1-4
10-10-1-E30-UNIF 109.55 6-7-9 92.16 6-7-9
10-10-1b-E30-UNIF 192.86 9-10 161.80 9-10
10-10-2-E30-UNIF 103.19 5-10 85.85 5-10
10-10-2b-E30-UNIF 137.67 1-4 112.73 1-4
10-5-1-E40-UNIF 132.74 2-4-5 111.09 2-4
10-5-1b-E40-UNIF 255.42 3-5 216.31 1-3
10-5-2-E40-UNIF 105.03 4-5 84.99 5
10-5-2b-E40-UNIF 141.36 4 113.69 1-4
10-10-2b-E40-UNIF 136.54 4 107.22 1-4
10-5-1b-E50-UNIF 258.74 1-3 215.21 1-3
10-5-2-E50-UNIF 103.04 4-5 81.82 4-5
10-5-2b-E50-UNIF 138.97 4 114.28 1-4
10-10-2b-E50-UNIF 142.48 4 108.20 1-4

Gloval avg. 118.68 94.67
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4.5 Computational experiments

(a) S12 RA, latency=112.22 (b) S12 RN, latency=119.80

(c) S18 RA, latency=109.20 (d) S18 RN, latency=96.11

Figure 4.3: Risk-averse and risk-neutral solutions for the instance 10-10-1-E20-UNIF.
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4 A risk-averse latency location-routing problem with stochastic travel times

4.5.5 Sampling method - tackling instances with continuous probability
distributions

In this section the terms MS-VNS and simheuristic are used interchangeably, referring to the
execution of the sampling method by means of the MS-VNS heuristic. For these experiments
we considered the following values for each parameter: M = 100, N ∈ {10, 20, 30}, N ′ = 2000,
and T = 5.

Let us consider AV G and STD as the average and the standard deviation of the optimal
solution values associated with each samplem ∈ {1, 2, ...,M} (CVaR∗

αm), respectively, calculated

as follows: AV G = 1
M

M∑
m=1

CV aR∗
αm, and STD =

√√√√ 1
M−1

[
(

M∑
m=1

(CV aR∗
αm)2)−M(AV G2)

]
.

Since the number of samples is large (M = 100), due to the Central Limit theorem, it is
possible to assume the mean normally distributed. Thus, the 95% confidence interval (CI) for
the true optimal solution value of each instance can be defined as CI : (AV G± 1.96STD√

M
). In other

words, we are 95% confident that the true optimal solution value of each instance is between
CI− and CI+, where CI− and CI+ are the lower and upper limits of the CI, respectively. For the
computation of the CI of each instance, the sampling configuration with N = 30 was considered.

The detailed results obtained by applying the sampling method are presented in Table 4.5.
For each instance, in addition to CI− and CI+, the columns Best, DevCI−, DevCI+ and Z∗ are
reported. Best corresponds to an upper bound, equal to the minimum value between the values

of ĈV aRα
∗
obtained by CPLEX and MS-VNS; Z∗ corresponds to the subset of depots opened

in the best solution; DevCI− and DevCI+ correspond to the percentage deviation between
Best and CI− and CI+, respectively, whose values are computed as DevCI = 100 (Best−CI)

CI

(replacing CI by CI− and CI+ when it corresponds). For each method the columns ĈV aRα
∗
,

DevBest, and time are reported. ĈV aRα
∗
corresponds to the best solution value obtained

for each instance after executing the sampling method considering N equal to 10, 20, and

30. DevBest corresponds to the percentage deviation between ĈV aRα
∗
and Best, computed

as DevBest = 100 ( ̂CV aRα
∗
−Best)

Best . The column time reports the global computing time after
executing the sampling method with N equal to 10, 20 and 30.

The results indicate that for 5 out of the 16 instances analyzed the upper bound value found
is within the CI. Therefore, we can further refine the CI of the 5 mentioned instances setting
it equal to (CI−, Best). The average value of DevCI− and DevCI+ is 2.94% and 0.92%,
respectively. CPLEX finds a better solution value than MS-VNS for 11 instances. The average
value of DevBest is equal to 0.29% and 0.56% for CPLEX and MS-VNS, respectively. The
average global computing times required by CPLEX is of two orders of magnitude higher than
the time required by MS-VNS.

The average computing times required by CPLEX and MS-VNS for executing each phase of
the sampling method, considering N equal to 10, 20, and 30, are depicted in Figure 4.4. When
using CPLEX, the first phase of the sampling method requires large computing times (26295,
178684, and 694027 seconds for N equal to 10, 20, and 30, respectively), while the second phase,
which does not depend on the value ofN , requires relatively short computing times (3595 seconds
on average). The computing times required by the simheuristic are considerably smaller than
those required by CPLEX. Furthermore, the differences in computing time between the first and
second phase are not that large; the first phase requires 517, 1074, and 1619 seconds for N equal
to 10, 20 and 30, respectively, while the second phase requires on average 519 seconds.

After analyzing the results it is possible to conclude that the proposed simheuristic provides
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4.5 Computational experiments

good approximations for the optimal solution values when it comes to tackle instances with
continuous probability distributions, in relatively short computing times. On the other hand, the
extremely large computing times required by CPLEX do not provide solution values considerably
better than those provided by the simheuristic.

Figure 4.4: Average computing time (s) required by CPLEX and the MS-VNS heuristic for
performing the sampling method when N is equal to 10, 20, and 30.
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4.5 Computational experiments

Table 4.6: Summarized results for the LLRP benchmark instances.

Data set # #BKS0 #new BKS BKS Best Avg time gapB
Tuzun-Burke 36 1 13 3796.62 3822.30 3876.79 2152.8 0.84
Prodhon 30 6 5 1494.04 1504.20 1519.69 1040.6 1.14
Barreto 10 3 1 9378.70 9603.06 9755.00 322.0 1.90

All the instances 76 10 19 3622.19 3667.88 3719.80 1472.9 1.10

4.5.6 The deterministic (single-scenario) problem

In this section, the new heuristic introduced in Section 4.4.1 is compared with the currently
published heuristic algorithms when it comes to tackling the deterministic LLRP. We performed
experiments on 76 LLRP benchmark instances. All the currently published algorithms [47, 49,
50] but GBILS presented by [48] (5 runs) considered 30 runs for each instance. In order to
present a fair comparison, for each instance we executed 30 runs of MS-VNS, and we set the
parameter tryV NS equal to 1. In that way for each run of each instance it is solved once.

In the Appendix, the tables 4.8–4.10 present the detailed results for each instance. For each
instance we report the value of BKS, which is the updated best known solution value (considering
the results obtained by MS-VNS). In addition, for each instance and each algorithm we present
the following columns:

• Best: Best solution value obtained by the respective algorithm for each instance after the
respective number of runs for each instance.

• Avg: Average solution value obtained by the respective algorithm for each instance after
the respective number of runs for each instance.

• time: Global computing time in seconds. It is to note that the computing times reported
for the MS-VNS correspond to the scaled global computing time using a “scaling factor”
equal to 0.88, since the computer used in this work is slower than that used in [50]. The
value of the “scaling factor” was calculated as the ratio between the single thread scorings
of the two computers, which can be obtained in https://www.cpubenchmark.net/. The
computing times associated with the competitors are these reported by [50], that were
already scaled.

• gapB: Percentage gap between the best solution value found by the respective algorithm
(Best) and the value of BKS, computed as gapBKS = 100 (Best−BKS)

BKS .

Table 4.6 presents the aggregated results obtained by MS-VNS regarding the three benchmark
data sets for the LLRP. The following columns were added to Table 4.6:

• #: Number of instances of each data set.

• #BKS0: Number of instances for which MS-VNS is able to find the same solution value
BKS0, which is the currently published best known solution.

• #new BKS: Number of instances for which MS-VNS is able to find a solution value better
than BKS0.
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4 A risk-averse latency location-routing problem with stochastic travel times

Table 4.7: MS-VNS VS the currently published heuristic algorithms: defeats, draws, wins.

Competitor Data set L D W Total

MA
[47]

Tuzun-Burke 3 0 33 36
Prodhon 3 1 26 30
Barreto 3 1 6 10
Total 9 2 65 76

GBILS
[48]

Tuzun-Burke - - - 0
Prodhon 4 2 24 30
Barreto 2 3 1 6
Total 6 5 25 36

Best SA-VND
[49]

Tuzun-Burke 13 0 23 36
Prodhon 11 4 15 30
Barreto 6 3 1 10
Total 30 7 39 76

M-ILS
[50]

Tuzun-Burke 22 1 13 36
Prodhon 18 6 6 30
Barreto 6 3 1 10
Total 46 10 20 76

MS-VNS is able to find a solution value better than (19) or equal to (10) BKS0 for 29 out of
76 instances, with an average value gapB equal to 1.10%, and an average global computing time
equal to 1472.9 s.

Table 4.7 presents the number of instances for which MS-VNS finds a solution value worse
than (L), equal to (D), and better than (W) the respective competitor, for each data set. It
is to note that Best SA-VND corresponds to the best solution value obtained among the three
algorithms proposed in [49], for each instance. After considering the results reported in Tables
4.6 and 4.7, and the detailed results provided in the Apendix it is possible to conclude the
following: MS-VNS globally outperforms MA and GBILS in terms of solution quality. In terms
of computing time MS-VNS and MA have similar performances, while the global computing
time of MS-VNS (30 runs) is larger than the one reported for GBILS (5 runs). If the average
computing times (computing time required for a single run) are compared, both values are
similar. MS-VNS generally provides solutions with similar quality with respect to the three
SA-VND metaheuristics, requiring global computing times 3 times smaller than the SA-VND0,
which is the fastest among the three algorithms. MS-VNS is not able to outperform M-ILS in
terms of solution quality, nevertheless, it is able to find competitive results in shorter (almost 2
times) computing times.

4.6 Conclusions

Real-life problems in disaster operations management usually must deal with disruptions in
the network that directly affect the travel times. It implies that solving a simple deterministic
problem considering the expected values of the travel times may lead to sub-optimal solutions
for the real problem. Motivated by that fact, a novel problem called LLRP-STT is studied
in this chapter. The problem was formulated as a two-stage stochastic programming problem
in which the location decisions were considered at the first stage, and the routing decisions
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4.6 Conclusions

at the second stage. Furthermore, due to the nature of the problem, a risk-averse decision
maker was considered, with the CVaR as risk measure. A multi-layer formulation for modeling
the problem (solved by CPLEX), and a heuristic algorithm called MS-VNS were proposed.
Extensive computational experiments proved the effectiveness of the proposed heuristic, which
was also competitive w.r.t. the currently published algorithms for the deterministic LLRP.
Several insights were provided. With numerical experiments we highlighted the importance of
considering a stochastic approach instead of solving a deterministic version of the problem. Also,
how the solution changes when a risk-neutral attitude is considered instead of a risk-averse one.
A sampling method was proposed for tackling instances with an infinite number of scenarios.
Several research avenues emerge from this work. First, in addition to the travel times, other

sources of uncertainty can be considered, e.g., demand or capacities, which imply considering
new recourse functions. Second, other LRP under uncertainty can be studied. These directions
can be easily identified by the reader in the literature review section presented in this chapter,
nevertheless, in our opinion, some interesting problems are those related to the application of
emerging technologies such as electric vehicles [24, 25] and drones [26]. Naturally, due to the
complexity of LRPs under uncertainty, heuristic methods can be developed for tackling large-size
instances of such problems.

Appendix: Detailed results for the deterministic LLRP
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