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ABSTRACT

Biological processes are very complex mechanisms, most
of them being accompanied by or manifested as signals
that reflect their essential characteristics and qualities. The
development of diagnostic techniques based on signal and
image acquisition from the human body is commonly re-
tained as one of the propelling factors in the advancements
in medicine and biosciences recorded in the recent past.

It is a fact that the instruments used for biological signal
and image recording, like any other acquisition system,
are affected by non-idealities which, by different degrees,
negatively impact on the accuracy of the recording. This
work discusses how it is possible to attenuate, and ideally
to remove, these effects, with a particular attention toward
ultrasound imaging and extracellular recordings.

Original algorithms developed during the Ph.D. research
activity will be examined and compared to ones in literature
tackling the same problems; results will be drawn on the
base of comparative tests on both synthetic and in-vivo
acquisitions, evaluating standard metrics in the respective
field of application. All the developed algorithms share an
adaptive approach to signal analysis, meaning that their
behavior is not dependent only on designer choices, but
driven by input signal characteristics too.

Performance comparisons following the state of the art
concerning image quality assessment, contrast gain estima-
tion and resolution gain quantification as well as visual
inspection highlighted very good results featured by the
proposed ultrasound image deconvolution and restoring
algorithms: axial resolution up to 5 times better than algo-
rithms in literature are possible. Concerning extracellular
recordings, the results of the proposed denoising technique
compared to other signal processing algorithms pointed
out an improvement of the state of the art of almost 4dB.
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SOMMARIO

I processi biologici sono meccanismi complessi, la maggior
parte dei quali accompagnati da segnali che ne riflettono
le caratteristiche e le qualità essenziali. Lo sviluppo di tec-
niche diagnostiche basate sull’acquisizione di segnali ed
immagini provenienti dal corpo umano è comunemente
ritenuto come uno dei fattori chiave dello sviluppo delle
scienze mediche e biologiche registrato nel recente passato.

È un dato di fatto che gli strumenti utilizzati per la re-
gistrazione di segnali biomedici, come ogni altro sistema
di acquisizione, siano affetti da non-idealità le quali, in
diversa maniera, influenzano negativamente l’accuratezza
dei dati registrati. Questo lavoro discute come sia possibi-
le attenuare, ed idealmente rimuovere, questi effetti, con
una particolare attenzione per l’elaborazione di immagini
ecografiche e segnali extracellulari.

Durante la trattazione verrano esaminiati gli algoritmi
sviluppati durante l’attività di dottorato, comparandoli con
altri presenti in letteratura e progettati per la soluzione de-
gli stessi problemi; ogni conclusione verrà tratta in seguito
a test comparativi su acquisizioni di segnali sintetici ed in-
vivo ed in base a metriche standard nel rispettivo campo di
applicazione. Tutti gli algoritmi sviluppati condividono un
approccio adattativo all’analisi di segnale, ovvero l’elabora-
zione non dipende soltanto dalle scelte del progettista ma è
guidata anche dalle caratteristiche del segnale di ingresso.

Il confronto delle prestazioni misurate sia in base allo
stato dell’arte in fatto di stima della qualità delle imma-
gini, guadagno di contrasto e di risoluzione, sia tramite
ispezione visuale, ha evidenziato ottimi risultati per quanto
riguarda gli algoritmi proposti per la deconvoluzione ed
elaborazione delle immagini ecografiche, riportando risolu-
zioni assiali fino a 5 volte superiori agli algoritmi presenti in
letteratura. Nel campo dei segnali extracellulari, il confron-
to dei risultati forniti dalla tecnica di rimozione del rumore
qui proposta con altri algoritmi di elaborazione del segnali
ha mostrato che è possibile migliorare lo stato dell’arte di
circa 4 dB.
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INTRODUCTION

Biological processes are very complex mechanisms, encom-
passing both neural and hormonal stimuli and responses,
inputs and outputs in the most different forms, including
physical material or information, and actions that could as
well be mechanical, electrical, or biochemical. Most of these
processes are accompanied by or manifest themselves as sig-
nals that reflect their essential characteristics and qualities.
Such signals may be very different in nature, for example
biochemical, in the form of hormones and neurotransmit-
ters; electrical, such as potentials and currents; physical,
like pressure and temperature.
The development of diagnostic techniques based on sig-

nal and image acquisition from the human body is com-
monly retained as one of the propelling factors of the ad-
vancements in medicine and biosciences recorded in the
recent past.

In fact, diseases or defects in biological systems almost
always cause alterations in normal functions, giving birth
to pathological processes that negatively impact on the
performance and behavior of the systems themselves. A
pathological process is typically associated with signals pat-
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2 introduction

terns and anatomical features that are somewhat different
from the ones of the corresponding healthy state. If a good
understanding of the system of interest is retained, it is
possible, after the investigation of the signals and features
originated by the system, to assess its state, discriminating
between normal and abnormal responses.
However, most physicians, like radiologist and neurosci-

entists, have to deal with additional problems when faced
to the problem of diagnosing the health state of a biological
system from its recorded signals. Like any acquisition sys-
tem, the instruments used for biological signal and image
recording are affected by non-idealities which, by different
degrees, negatively impact on the accuracy of the recording.
Unwanted spectral deformations, artifacts, and additional
signal-dependent noise components are just a few examples
of undesired effects introduced by the acquisition equip-
ment.

Furthermore, both the undeformed signal and a signifi-
cant part of these effects are characterized by behaviors
which change over time, the respective degree of non-
stationarity being the most varying, ranging from inter-
acquisition to intra-acquisition. Being capable of tailoring
their own processing to the time-varying characteristics of
the input signals, adaptive algorithms are the most suited
to this environment. A multiscale approach should also be
employed in order to best exploit the information concern-
ing the different time scales: separately tracking short- and
long-term variations in a system provides better control
over its behavior.

This work discusses how it is possible to attenuate, and
ideally to remove, these effects, with a particular attention
to ultrasound imaging and extracellular recordings. Algo-
rithms in literature tackling this problem will be examined
and compared to original ones developed during the Ph.D.
research activity; results will be drawn on the base of com-
parative tests on both synthetic and in-vivo acquisitions,
evaluating standard metrics for the respective field of appli-
cation.

Some background material will be presented in Part i,
discussing about the two chosen target environments of
ultrasound imaging (Chapter 1) and extracellular recording
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(Chapter 2) and about Wavelet Transform (Chapter 3).
In particular, Chapter 1 opens up with an overview about

the history and the problems connected to imaging tech-
niques based on ultrasound generation and acquisition.
This brief discussion will be followed by a section illustrat-
ing how signal is acquired and the most typical parameters
and quantities involved in this process. Finally, a compre-
hensive model in literature will be illustrated, discussing
its structure and explaining how it is possible to move from
this to other models describing different features of the
investigated tissue.
A very similar structure is featured by Chapter 2, where

the developments of extracellular recordings over the last
one and a half century and the difficulties arising from their
recording and processing will be briefly discussed. Mod-
ern neural signal acquisition technique will be described
subsequently, outlining a typical experimental setup, its
parameters and the acquisition equipment employed. Next,
the classical neural signal model will be presented and
compared to an original one, developed during the Ph.D re-
search activity and discussed in Section 2.4, encompassing
also a signal dependent noise component which allows for
a more accurate representation of the received signal.

Chapter 3 introduces the Wavelet Transform as a tool
for non-stationary signal representation. Four different fla-
vors of this transform will be presented and discussed,
explaining how each one deals with time-scale sampling
and transform-domain representation redundancy; efficient
implementations of each transform, based on perfect re-
construction filter banks, will also be provided. Finally, an
algorithm for scaling function iterative generation will be
illustrated, allowing for the computation of Wavelet filters
coefficients.

The main contributes will be presented in Part ii, dis-
cussing tools for automatic impulse response estimation
(Chapter 4), signal deconvolution (Chapter 5), adaptive fil-
tering (Chapter 6) and denoising (Chapter 7).

More in details, Chapter 4 will introduce two algorithms
already in literature, one of them based on the properties
of the Wavelet Transform, both meant for the estimation
of the acquisition system impulse response and based on
the assumption of minimum phase. An original estimation
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algorithm, which combines the benefits of the two former
approaches, will then be presented in Section 4.3. After
a brief discussion about the experimental setup usually
adopted in this context, chapter will conclude with a com-
parative analysis of the performance of the three algorithms
in terms of estimation accuracy and output response stabil-
ity.

Chapter 5 will introduce the problem of signal deconvo-
lution, discussing how it is possible to jointly estimate the
unblurred signal and refine the first guess impulse response.
Two algorithms already in literature will be illustrated and
compared with two original techniques discussed in Sec-
tion 5.2.1 and Section 5.3. While the first one is actually an
evolution of a known algorithm, the second constitutes a
remarkable perspective change, as it tackles the problem
of deconvolving an echo signal in which reflectors are not
time-aligned with the sampling grid. Performance compar-
isons at the end of the chapter will highlight how much
positively this new algorithm compares with the state of
the art.

Next, in Chapter 6 the wide class of Least Mean Square
adaptive filtering algorithm will be presented. Four differ-
ent filtering structures will be examined, ranging from the
plain finite impulse response filter to the sub-band filtering
scheme; for each of them, an adaptive gain version will
also be depicted, with more details and original contributes
given in Appendix A. Again, performance comparisons
based on widely accepted image quality assessment metrics
will be used to study weaknesses and strong points of each
algorithm when used in the context of image deblurring.

Finally, Chapter 7 will make use of the model depicted
in Section 2.4 to develop an original denoising algorithm
capable of removing a wide spectrum of signal dependent
noises from an incoming input signal. Algorithm derivation
in the time domain presented in Section 7.1 will be followed
by the discussion of the hypotheses made to find a tractable
form and by the development of a similar algorithm in the
Wavelet domain, as described in Section 7.2. A discussion
concerning real-time estimation of algorithm parameters
concluded by performance comparisons with other Wavelet-
based denoising algorithm will end this chapter.

As a conclusion of this work, two sample applications
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will be discussed in Part iii, one concerning the automatic
classification of biological tissues by means of received
ultrasonic echoes (Chapter 8), the other dealing with the
problem of neural spike sorting (Chapter 9).

First, in Chapter 8, two sections will propose an original
two-step biological tissue classifier. In the first section, dis-
cussion will be centered around signal preprocessing: the
adaptive signal processing algorithms presented so far will
be combined in order to remove systematic trends, attenuate
the spectral deformation due to the ultrasound transducer
and separate the true echo signal from the speckle compo-
nent. The second section will discuss the problem of tissue
classification, involving features extraction and statistical
parameters evaluation on a given set of zones and regions
of interests.

On the other hand, in Chapter 9, a classical spike sort-
ing algorithm will be examined and then compared to an
original approach based on pulse estimation and signal
deconvolution. Insights about how to improve this method
will be given, introducing an approach based on Shift In-
variant Space and the exploitation of the intrinsic sparsity
of the neural signal.
Two appendixes covering the topics of Least Mean Square

filtering and Wavelet adaptive denoising will close this
work.





Part I

BACKGROUND





1
ULTRASOUND IMAGING

Ultrasound (US) imaging, is a relatively inexpensive, fast
and radiation-free imaging modality. It is excellent for a
non-invasive imaging and diagnose of a number of organs
and conditions, without x-ray radiation; it is however often
difficult to interpret: as a matter of fact, results of diagnos-
tics using conventional US images are highly dependent on
the physician’s skills.

Modern obstetric medicine relies heavily on ultrasounds
to provide detailed images of the fetus and uterus both in
2D and, more recently, 3D. Ultrasound is also extensively
used for evaluating the kidneys, liver, pancreas, heart, and
blood vessels of the neck and abdomen. Last but not least,
ultrasound can also be used to guide fine needle, tissue
biopsy, and to facilitate sampling cells from an organ for
lab testing, for example, to test for cancerous tissue.

US imaging is finding a greater role in the detection, di-
agnosis and treatment of heart disease, heart attack, acute
stroke and vascular disease which can lead to stroke. More-
over, due to the recent developments in US signal process-
ing, ultrasound is also being used more and more to image

9



10 ultrasound imaging

the breasts and the prostate in order to allow for an early
diagnosis of cancer in both these glands.

1.1 ultrasound imaging : an overview

The development of ultrasound applications started in 1826,
with a European experiment measuring distance under
water using sound waves: Jean-Daniel Colladen, a Swiss
physicist/engineer and Charles-Francois Sturm, a mathe-
matician, used an underwater bell in an attempt to calculate
the speed of sound in the waters of Lake Geneva. Despite
their crude instruments, they managed to determine that
the speed of sound under water was 1435m/s, a result not
too different from what it is known today.
Many advancements in this field were carried out, mainly

in England during the XVIIth century, but the real break-
through in the evolution of high frequency echo-sounding
techniques came when the piezoelectric effect in certain
crystals was discovered in 1880 by Pierre Curie and his
brother Jacques Curie in Paris [1]. Further research and de-
velopment in piezoelectricity soon followed, while the turn
of the century saw the invention of the diode and the triode,
allowing powerful electronic amplifications necessary for
the developments of ultrasonic instruments.
The first tentative ultrasonic instruments for medical di-

agnosis date back to 1942 [2]: the images they produced
were very rudimentary mosaics of light intensity points
photographically recorded on heat-sensitive paper.

Systematic investigations of ultrasound techniques as
a diagnostic tool finally took off in the United States in
the late 1940s with the work of George Ludwig, who also
determined the actual mean value of the velocity of sound
in animal soft tissues [3]. 1952 saw the invention of the first
linear hand-held B-mode instrument by John Reid and John
Wild [4]: the instrument operated at a frequency of 15MHz
and allowed to visualize tumors by sweeping from side to
side through breast lumps.
The increase in the research and application of ultrasound

to medicine appeared to boom from 1966 onwards when
there was an upsurge of centers and people in Europe, the
United States and Japan begun to embark on studies about
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the application of ultrasound to medical diagnosis.
Nowadays, modern ultrasound imaging systems are used

to obtain images from almost any kind of soft tissue struc-
tures present in the human body: although anatomy can
still be studied through the same 2D images made up of
bright dots of the 1942 Dussik’s experiment, although with
a much higher resolution, 3D ultrasound technology is
now becoming a viable commercial proposition due to the
improvements in computer technology.

Figure 1 shows an example of echographic image along
with some basic elaboration: this in-vivo scan of a human
prostatic gland portraits one vertical section of the gland,
containing a malignant tumor called carcinoma. This lesion
is characterized by a lower echogenicity with respect to
the healthy prostatic tissue: this corresponds to a lower
intensity of the reflected echo signal. In fact, by carefully
inspecting figure 1a near to the top border, it is possible to
identify a slightly darker region. Skilled physicians use this
kind of images to diagnose diseases embedded in many
different tissues.
The elaborated image in figure 1b highlights a low-pass

spatial effect introduced by the transducing equipment
which may be due to the non homogeneous thickness of the
gel coating used to bridge the gap between the transducer
and the skin or to non-idealities in the transducer itself. This
is only one example of the undesired effects the transducer
has on the recorded echo signal.
Moreover, due to its finite bandwidth, the transducer pro-

duce a deformation in the spectrum of both the transmitted
pulse and the received echo. While the first deformation
can be regarded as part of the transmitted pulse, the sec-
ond deformation may alter significantly the received echo,
reducing the resolution of the echographic image. It is un-
derstandable how this phenomenon is strictly dependent
on the transducer: different probes would cause different
distortions while recovering the same incoming echo signal.

Because of this, the first and most important task in
tissue classification is the removal of the signal deformation
introduced by the echographic probe.

This is not a trivial task: first of all, the probe impulse
response changes, in practice, from column to column as
the piezoelectric transducers configuration is modified to
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Figure 1: A B-mode ultrasound scan of an in-vivo human prostatic
gland affected by a carcinoma (a) and the corresponding
transducer fingerprint extracted from the image (b);
both image quality and tissue classification performance
can be improved by removing transducer effects.
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achieve focus. Next, even if the impulse response could be
perfectly recovered, the presence of noise would give way
to an ill-posed inversion problem [5, 6, 7, 8]. Finally, as the
same transducer is used for both transmitting and receiving
the ultrasound signal, it is not possible to recover the real
pulse the tissue sees as a stimulus.

In this context, adaptive signal processing techniques are
mandatory in order to track and remove the time-varying
deformations the incoming ultrasound signal undergoes
during the acquisition phase. Fast convergence to the trans-
ducer impulse response and real time data processing capa-
bilities are both requirements that a system addressing this
problem must satisfy in order to attenuate the impact the
probe has on the acquired data.

1.2 signal acquisition

The main units of a modern echographic equipment [9]
are depicted in Figure 2. The echographic transducer is
designed for both transmitting and receiving ultrasound
signals: as the transmitted pulse features much more power
than the received echo, in order to avoid saturation in the in-
put stage an efficient insulation device must be employed to
decouple it from the US transmitter during pulse emission.

The central frequency of the transmitted pulse is in be-
tween 2 and 15MHz basing on the different tissues that
are going to be investigated; some special equipments for
dental or skin ultrasonography have a central frequency
exceeding 50MHz. Relative bandwidth at −6dB is typically
in the order of 60 ∼ 70% but there are cases in which rel-
ative bandwidth over 100% may be required. Because of
this, the piezoelectric transducer is almost always built from
advanced composite materials.

Sound speed c in the investigated tissues varies from the
1450m/s of the body fat to the 1585m/s of the muscles,
with the two significant exceptions of lungs and bones, as it
is shown in Table 1. Taking a mean value of 1540m/s and
considering resolvable an object with a diameter of 5 wave-
length, the typical axial resolution of a 7.5MHz transducer
is approximatively 1mm.
To improve axial resolution, higher frequencies must be
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Figure 2: Schematic design of an ultrasound imaging equipment
highlighting signal flow through the different units

c
[m
s

]
α

[
dB

MHz·cm
]

Air 330 � 10

Blood 1575 0.18

Bone 4080 8

Fat 1460 0.6
Lungs 900 30

Muscles 1580 1.5
Water 1480 0.002

Table 1: Sound speed and attenuation in various kinds of tissues
[3].
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employed: however, sound attenuation α must be taken into
consideration too. This is another tissue dependent param-
eter: differently from the sound speed, there are various
order of magnitude between the least and the most attenuat-
ing tissues, at it is shown in Table 1. Using a mean value of
0.7dB/MHz · cm, the total attenuation from an echo source
at 6 cm depth at 7.5MHz is 31.5dB and increases to 52.5dB
at a depth of 10 cm.
In order to compensate this depth dependent attenuation

a post processing stage, known as Time-Gain Compensation
(TGC), must be performed. This elaboration is based on
a manual estimate of the attenuation, in the form of a
TGC curve: a set of gain sliders corresponding to different
tissue depth are moved until a calibration image looks
homogeneous.

The physical system is usually made up of specialized
integrated low noise logarithmic amplifiers, as they have to
process signals with more than 60dB of dynamic. Most state
of the art echographic units allow to extract the Radiofrequency
(RF) signal from the system at this point: only a few of them
provide an RF output before the TGC.

After time-gain compensation took place, in order to
recover the local intensity of the received echo, the signal
is envelope detected by means of an Hilbert Transform.
Signal is then fed into the display memory, in order to be
shown or stored. If the ultrasonic probe is built on a convex
piezoelectric array, like in Figure 2, the image is shaped to
an annulus sector by means of the scan converter, otherwise
is kept rectangular.

1.3 signal model

Echographic signals result from the interaction between the
pressure wave generated by the transducer and the tissue
structure. A comprehensive model for the received signal
y(t), shown in Figure 3, is discussed in [10]:

y(t) = u(t) ∗ Tf(t) ∗ Pf(t) ∗ x0(t) ∗ Pb(t) ∗ Tb(t) (1.1)

where u(t) is the electrical impulse driving the transducer,
Tf(t) and Tb(t) are the transmission and reception trans-
ducer impulse response respectively, Pf(t) and Pb(t) are the
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PbTby(t)

Equipment Tissue

Figure 3: Time-domain convolutive model for the received echo-
graphic signal.

forward and backward propagation path impulse response
respectively, and x0(t) is the target tissue impulse response.

Let x(t) = Pf(t) ∗ h0(t) ∗ Pb(t) be the tissue response and
h(t) = U(t) ∗ Tf(t) ∗ Tb(t) be the imaging system effective
pulse; under the assumptions of weak scattering, narrow
ultrasound beam and linear propagation, the echo signal
y(t) can be expressed [11] as

y(t) = h(t) ∗ x(t) = c(t) + d(t) (1.2)

with

c(t) =
∑Nc

k=1 h(t) ∗ ck(t − θk)

d(t) =
∑Nd

k=1 h(t) ∗ dk(t − τk)
(1.3)

where c(t) and d(t) derive from the interaction of the pulse
with the resolvable reflectors and the randomly located
diffuse scatterers respectively, while Nc and Nd are the
number of coherent reflectors and diffuse scatterers, θk and
τk their time delays to the receiver, and ck and dk their
relative strengths.

While coherent and diffuse component superposition
is not altered by sampling y(t), a noise component γ is
introduced:

y(n) = c(n) + d(n) + γ(n) (1.4)
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Wold-decomposition theorem allows to split y(n) into
its components [12]. The coherent component c(n) can be
approximated by a summation of Gaussian modulated si-
nusoids: the resolvable reflector structure can be viewed
as a summation of delta functions of random strength
located at the resolvable scatterers’ location, while the
echo pulse can be thought a Gaussian modulated sinusoid.
The diffuse component d(n) is well modeled by an Auto-
Regressive (AR) stochastic process. The noise component
γ(n) is usually considered white, although a more careful
modeling may use a signal dependent model to improve
the description of the acquisition system.
Due to the focusing equipment used in the modern ultra-

sonographers, the reception transducer impulse response
can be modeled by a time varying transfer function: as a
consequence, the whole imaging system effective pulse h(t)

becomes a time dependent function. On the other hand,
due to the frequency dependent nature of the attenuation,
both the forward and backward propagation path impulse
response should be considered intrinsically time dependent.
This means that the Power Spectral Density (PSD) of the

backscattered signal received by the ultrasound probe a
held over a particular point is a function of both location
(m,n) and frequency f [13]:

E[|Y(m,n, f)|2] = |H(m,n, f)|2|X(m,n, f)|2 +σ2
γ(m,n) (1.5)

where the noise γ(t) was supposed zero-mean Gaussian
with standard deviation σγ and E[•] is the expectation oper-
ator.

Exploiting the Born approximation, the intensity of the
backscattered signal can be represented by a combination
of two terms:

|X(m,n, f)| = A(m,n, f)B(m,n, f) (1.6)

where A(m,n, f) describes the cumulative attenuation of the
sample at location (m,n) and B(m,n, f) is the backscatter
intensity of the sample. Several models exist for the last [11],
while the former, expressed in Neper, is usually assumed
to be linearly proportional to the frequency [14].





2
EXTRACELLULAR S IGNAL RECORDINGS

The simultaneous and coordinated activity of neurons and
the physical networks they create through their interconnec-
tions allow human brain to process and store informations.
It is commonly believed that both spatial and temporal infor-
mation are involved in these processes, generating patterns
which are currently investigated by neurophysiologist.

Extracellular electrophysiology is currently the best tool
for investigating the high-resolution recordings from awake
animal neural tissue necessary to study these patterns. This
tool is capable of delivering information on both spiking
and synaptic activity by recording the electrical potentials
which are generated in the neighborhood of neural cells.

The retrieved information must be carefully examined
and interpreted, since it is extremely redundant as spikes
are almost always superimposed: interpretation requires
time, patience and attention. However, thanks to the steady
developments in the automatic interpretation of Extracellu-
lar Recordings (ER) data, more and more tools are given to
the neurophysiology community to ease this process.

19
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2.1 extracellular recordings : an overview

ER measure changes in potential in the neighboring of a
neuron or an axon. The first breaking in this field date
back to 1875, when Richard Caton discovered that currents
could be recorded from deep inside the brain [15]. ER have
progressed significantly over the past 130 years, allowing
scientist and physician to describe neurons and their in-
terconnections in details, and are actually one the most
common techniques for monitoring the activity of small
neurons populations.

In 1952, two scientists, Hodgkin and Huxley, published
a set of articles [16, 17] describing the way neural Action
Potentials (AP) originate in neurons, winning the Nobel
Prize in Physiology or Medicine 1963. Using a set of dif-
ferential equations, they described the behavior of the cell
membrane when excited by an external electrical stimulus,
giving way to a clear interpretation of the mechanisms in-
volved in excitation and inhibition in the peripheral and
central portions of the nerve cell membrane.

Based on their observation, many models for both the
neural cells behavior and their interconnections have been
derived: ER and, more recently, Multielectrode Extracellular
Recordings (MER) have been extensively used to validate
these models, since they provide information both about
spiking and synaptic activity.

However, both ER and MER suffers of a common draw-
back: each channel collects and records the AP of many
neurons and/or axons at the same time, as well as a certain
amount of background noise. This fact reflects into the ne-
cessity of a post-processing step known as spike sorting. As
well as ER spike sorting, MER spike sorting is built on the
identification and separation of the different spike wave-
forms –templates– throughout the recorded channels, but
instead of looking at one channel at a time, each spike is
detected using the information brought by all the channels
at the same time.
Figure 4 shows an example of MER along with some basic

elaboration: the data collected in this figure contains a train
of four AP, whose presence can be easily detected by means
of both visual inspection and data processing. The top row
of the figure contains an estimation of the entropy of the
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Figure 4: Extracellular waveform recordeda from the locust (Schis-
tocerca americana) antennal lobe filtered between 300Hz
and 5kHz; on the top row, entropy estimation is per-
formed to reveal the four neural spikes recorded by the
tetrode; on the bottom rows, the raw signal is associ-
ated to its multiscale analysis to enhance the differences
between the recordings of each channel.

a The author gratefully acknowledge C. Pouzat and the Laboratoire de
Physiologie Cérébrale, UFR biomédicale de l’Université René Descartes
(Paris V) for the data provided.
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signal, each color referring to a different electrode: four
distinct peaks are present, corresponding to each AP. Each
of the following rows shows on the left size the electrical
potential recorded by the corresponding electrode, while
on the right side a multiband signal processing technique is
employed to show the Wavelet Packet Tree power spectrum.

AP clearly overlaps both in time and frequency, making
it harder to separate each other; at the same time, each
electrode records a different mixture for each train of action
potential; this is due to the attenuation each AP undergoes
during the travel from the spiking neuron to the recording
electrode.

The first and most important task in spike sorting is the
detection of each spike. This is typically done using de-
tectors which are triggered on any times the input signal
becomes greater than a fixed threshold. It is easy to under-
stand how noise can interfere with such a detector: if the
noise power is sufficient to make the signal greater than the
detector threshold even in absence of an AP, a false AP is
recorded.
At the same time, noise can alter the feature of an AP in

different ways, simply by delaying, anticipating, lengthen-
ing or shortening the duration of an AP. These problems
becomes more evident in MER spike sorting, where each
channel contributes to the localization of the AP. In this
context, noise is considered as the principal cause of the
statistical spreading of model parameters, thus impinging
negatively on the classification capability of algorithms
based on clustering techniques to separate the different
spikes.

In most ER and MER experimental setups and equip-
ments, signal is filtered before the detection stage takes
place [18]. However, this filtering stage is performed for
reasons that differ from denoising: first of all, it is used to
remove the Local Field Potential (LFP), that is, the part of
the signal that depends on the synchronous flow of current
into a parallel set of dendrites [18], this fact being com-
monly observed in electromyography (EMG) [19, 20] and
electroencephalography (EEG) [21].

Second, it is necessary in order to guarantee that the
subsequent analog to digital conversion does not introduce
aliasing into the sampled signal, that is the production of
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artifacts as a results of sampling at intervals too large to
permit a faithful reconstruction of the original signal. As
a byproduct of this step, noise is filtered out outside the
filter bandwidth, but more intensive calculations must be
performed in order to eliminate or at least reduce the noise
within the filter bandwidth.

2.2 signal acquisition

Acquiring neural signals using the MER technique require a
proper experimental setup, as it is shown in Figure 5. In the
case depicted, the MER probe is going to be inserted into
the antennal lobe of a common insect (bug, cricket, locust,
. . . ) in order to record the AP evoked by different odors
delivered to the receptors on the antennas.

Before starting the experiment, the insect is stripped of
part of the head exoskeleton; mandibles and alimentary
canal are removed too, in order to prevent the insect to
swallow. Insect is then firmly held by a constraining device,
connected to the micromanipulator. This device is used to
position the MER probe tip, shown in Figure 6, near the
antennal lobe, in the insect brain. Microphotographies like
Figure 7 allow physicians to asses the correct positioning of
the probe within the brain.

Antennas are then connected to the odor delivery sys-
tems by means of small pipes: a computer controlled pump
allows vaporized micro drops of essence to be delivered
from a cartridge to the antennas. Insect life is sustained
during all the experiment by means of a saline solution.

A Faraday cage is usually employed in order to insulate
both the experiment and the recording equipment from
electromagnetic interference, since the MER probe acts like
an antenna. Vibrations that could alter the position of the
probe tip in the insect brain, thus modifying the AP wave-
forms, are dampened by means of a floating table.

The recording system, not shown in Figure 5, amplifies
and samples the electric potentials measured at each elec-
trode in the probe tip. Low noise amplification with gains
in the order of tenth of thousands are quite common in
this field as the recorded potentials are in the order of the
hundred of microvolts, as discussed in [22, 23].
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Figure 5: Extracellular signal acquisition equipments; the system
is insulated from external vibrations and electromag-
netic noises.

Figure 6: Schematic design of one tip of the MER acquisition
probe; each tip carries 8 electrodes grouped in two
tetrodes.
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Figure 7: Microphotography of the MER probe inserted near a
Locust antennal lobe; both the probe tips are visible.

As discussed in the previous section, signal is then fil-
tered: a four pole elliptic low-pass filter with a cutoff fre-
quency of 300Hz is usually employed to extract the LFP,
while band-pass filtering between 300Hz and 5kHz is used
to capture the AP. The signal is then sampled with fre-
quencies ranging from 10kHz to 25kHz, depending on the
hardware setup and the application.

2.3 classical signal model

The classical model for ER signals, shown in Figure 8, con-
sists of three main components [18]: the pure superposition
of the AP, the LFP and a purely additive white noise. Under
the assumptions of low-pass bandwidth for the LFP and
Gaussian nature for the noise, a simple elliptic based fil-
tering stage is often employed [24, 25, 26, 27] to remove
both the LFP and part of the noise. As visible in Figure 9,
the recorded signal still contains background noise, as pre-
dicted by the model, with spikes embedded in it.

It may happen that some spikes have amplitude similar
to the noise: this is the case of the one at about 40msec
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Figure 8: Classical extracellular recordings signal model; signal
path from neurons to the electrodes has been high-
lighted.
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Figure 9: Extracellular waveform recorded from the locust (Schis-
tocerca americana) antennal lobe filtered between 300 Hz
and 5 kHz.
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in Figure 9. Threshold-based detector will usually fail in
detecting spikes like this one, unless a certain number of
false spikes is allowed to leak in the subsequent elaboration
stages. If a feasible denoising technique is applied to the ER
signal before the detection stage, performance will improve,
allowing to recover fainter spikes.

Basing on a model rather similar to the one depicted
in Figure 8, many algorithms were designed in the field
of Signal Processing [28] in order to recover a signal em-
bedded in stationary white noise. As this model does not
consider the LFP as a source of noise, algorithms that are
build on it do not separate LFP from the AP sequence. This
is not an issue in fields like EEG spike detection [27, 29],
where researchers are interested in reconstructing both high
frequency (Gamma, Beta, SRM) and low frequency waves
(Alpha, Theta and Delta). On the contrary, these algorithms
are not so effective when neurobiologists are interested in
getting rid of LFP or separate them form the APs sequence.

Finally, it has been recently observed [30, 29, 31, 32, 33]
that the noise in which the APs are embedded can be much
more accurately modeled using non-stationary or signal
dependent models.

Following these consideration, a flexible signal model
has been developed, whose parameters allow to take into
consideration different kinds of noise, as additive Gaussian,
jitter and speckle.

2.4 extended signal model

This model, depicted in Figure 10, simply extends the clas-
sical model, while preserving the additive structure and the
basic components of the sampled signal. Terms have been
grouped together in order to describe their origin: both LFP
and AP originate directly from neurons and the extracellular
environment and, as they are the primary signal source,
they are grouped together in the Neural Stage. On the other
hand, the Noise Stage encompasses both the white noise,
whose presence is commonly accepted for many reasons,
for example the thermal induced effects onto the recording
electrodes, and the signal dependent component.

In fact, as the sampled signal cannot be perfectly aligned
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Figure 10: Extended signal model with signal dependent noise;
contributes to the sampled signal are separated in two
different stages, depending on their origin.

to each maximum of the AP sequence, AP generated by
the same neuron could differ one from each other in the
recorded signal: this effect can be well modeled by a jitter-
like noise term, which is intrinsically signal dependent
and should be considered beside the Gaussian noise term.
Moreover, due to the interaction with the neighboring en-
vironment, most of the noise concentrates around the AP,
showing a behavior much similar to a speckle-like noise
term, which again is signal-dependent. Finally, since sam-
pled signals are processed, quantization noise should be
considered: this noise originates from the rounding error
between the analog input voltage of the A/D converter
and the output digitized value, it is strongly related to the
number of quantization bits [34] and again it is non linear
and signal dependent.
These considerations lead to the following signal model:

y[k] = x[k] + (x ∗ f)[k]u[k] + v[k] (2.1)

where the term the v[k] represents the white noise while the
signal dependent component (x ∗ f)[k]u[k] is modeled with
a direct product between a stationary, uncorrelated noise u

with given mean and variance and a filtered version of the
clean signal.
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The flexibility in the model is given by the filter f: in fact,
it is possible to specialize (2.1) for different kinds of noise
simply by adjusting the filter coefficients.

In particular, if f is chosen to be a first order derivative
filter, (2.1) can be thought as the first order truncated Taylor
series of

y[k] = x(kTs + u[k]) + v[k] (2.2)

centered on kTs where z(kTs) has been substituted with the
convolution of the clean signal with the filter.

Moreover, if f is set to be a Kronecker delta sequence,
the convolution operation has no effect on x, leading to a
model where the signal is in direct product with the station-
ary uncorrelated noise u. This is rather similar to a fully
developed speckle model, this fact hinting that standard
despeckling techniques too may achieve good denoising
results in this case. Finally, if f is set to zero, the signal
dependent noise term disappears, giving way to a standard
additive Gaussian noise model.

Concerning AP signals, they are well localized both in
time and frequency: they last a finite amount of time, a
few milliseconds typically, and most of their energy is con-
centrated within finite bandwidth, usually no more than
1 kHz [18, 35]. Because of this, it is natural to search for
mathematical operators that behaves well in both these
domains in order to design proper denoising algorithms.
From this standpoint, Wavelet Analysis (WA) is among the
best techniques that can be used to elaborate signals of this
kind, as it cuts up data into their different frequency com-
ponents and then studies each component with a resolution
matched to its scale.





3
WAVELETS

Any functional equation of the form

f(t) =

N∑
k=0

ckf(2t − k) (3.1)

is said dilation equation or two-scale difference equation and
any non-zero solution f(t) is called scaling function [36, 37];
coefficients c0, . . . , cN may be real or complex: if they are
real then the scaling function f(t) will be real-valued. It can
be shown that there exists a square-integrable scaling func-
tion f(t) if the coefficients c0, . . . , cN satisfy the following
conditions:∑

k

c2k =
∑

k

c2k+1 = 1 (3.2)

and ∑
k

ckck+2j =

{
2, if j = 0

0, if j �= 0
(3.3)

where it is assumed ck = 0 if k < 0 or k > N [38, 39].
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Under these conditions it is defined wavelet function [40]
or simply wavelet the following function:

g(t) =

N∑
k=0

(−1)kcN−kf(2t − k) (3.4)

while the functions

ga,b(t) =
1√
a

g

(
t − b

a

)
(3.5)

are obtained by dilation and translation from g(t).
In case f(t) satisfies∫+∞

−∞ f(t)f(t − k)dt = 0, ∀k �= 0 (3.6)

then the scaling function f(t) is orthogonal to its integer
translate, and the functions g2j,2jk(t) form an orthonormal
base for L2(R) after a proper normalization of g(t); this
property is central in the process of signal reconstruction
[41, 42].

3.1 wavelet transform definition

Given a signal x(t) with time-variant spectrum the Contin-
uous Wavelet Transform (CWT) is defined as the orthogonal
projection of x(t) on the functional space defined by the
functions ga,b(t) [41]:

CWT(x,g;a,b) = 〈x|ga,b〉 =

∫+∞
−∞ x(t)ga,b(t)dt (3.7)

where a ∈ R+ \ {0} is the scale or dilation parameter and
b ∈ R is the time or translation parameter.

For computational reasons, different sampling methods
have been applied to the domain of the dilation and trans-
lation parameters: each method leads to a different wavelet
transformation technique, to improve time-frequency reso-
lution or computational efficiency; examples of these sam-
pling methods are the Discrete Wavelet Transform (DWT)
[41], the Stationary Wavelet Transform (SWT) [43] and the
Quasi-Continuous Wavelet Transform (QCWT) [42].
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In the DWT the scale and time parameters are defined
respectively as a = 2j and b = 2jk where j,k ∈ Z: the
result is a very fast implementation [41, 43] that does not
introduce any form of redundancy but has a very poor time-
scale resolution at the higher scales. This fact introduces
an upper limit in the scale domain: it can be shown that a
strong relationship exists between the number of samples
of the signal x(t) and the scale bound.

The SWT tries to avoid the poor time-scale resolution
keeping a low computational weight [43]: this is achieved by
defining the scale and time parameters respectively as a =

2j and b = k where j, k ∈ Z; an efficient implementation of
this technique consists in a filter bank where each filter is
the dyadic up-sampled version of the previous one.
The QCWT is an even better solution to the poor time-scale

resolution of the DWT but it is computationally heavier than
the SWT [42]. Scale and time parameters are defined as
a ∈ R+ \ {0} and b ∈ Z: this means that only the time
parameter has been sampled, while the scale parameter
can be set at designer’s will. Like the SWT, an efficient
implementation of the QCWT uses a filter bank but direct
relations between filters cannot be always shown.

3.2 discrete wavelet transform

The DWT [41, 43] is the most efficient method to compute a
Wavelet Transform (WT) but suffers of very low time-scale
resolution problems; anyway, whenever very high speed
and low resource usage is needed, this method is to be
taken in consideration. The DWT defines the scale and time
parameter as a = 2j and b = 2jk where j,k ∈ Z so that
ga,b(t) can be written in the form

gj,k(t) = 2−j/2g(2−jt − k) (3.8)

An auxiliary function

fj,k(t) = 2−j/2f(2−jt − k) (3.9)

is also defined. Defining a new set of coefficients dk =

(−1)kcN−k, it is possible to write both the expressions of
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f(t) and g(t) in a similar form:

f(2−1t) =

N∑
k=0

ckf(t − k) (3.10)

and

g(2−1t) =

N∑
k=0

dkf(t − k) (3.11)

Applying the induction principle to (3.8) and (3.9) the
following is obtained:

gj,k(t) = 2−1/2gj−1,k(2
−1t)

=
∑

n 2−1/2dn−2kfj−1,n(t)
(3.12)

and symmetrically

fj,k(t) = 2−1/2fj−1,k(2
−1t)

=
∑

n 2−1/2cn−2kfj−1,n(t)
(3.13)

The results of the projection of the signal x(t) on the
functional space generated by the family of functions fj,k(t)

are called approximation coefficients:

Aj,k =

∫+∞
−∞ x(t)fj,k(t)dt (3.14)

while the detail coefficients are the result of the projection
of the signal x(t) on the functional space generated by the
family of functions gj,k(t):

Dj,k =

∫+∞
−∞ x(t)gj,k(t)dt (3.15)

To avoid nomenclature issues, from here on the wavelet
coefficients will be defined as follow:

Lk = 2−1/2ck Hk = 2−1/2dk (3.16)

where L stands for low-pass and H stands for high-pass.
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Figure 11: Block diagram of the DWT algorithm

This straightly leads to the definition of the algorithm
used for the calculus of the DWT:

A0,k =
∫+∞

−∞ x(t)f(t − k)dt

Aj,k =
∑

n Ln−2kAj−1,n

Dj,k =
∑

n Hn−2kAj−1,n

(3.17)

The convolutions at each stage have a step equal to 2: this
can be easily accomplished in hardware by applying a
standard convolution with step equal to 1 and discarding
the even numbered elements in each Aj,k sequence.

The scale parameter j defines the octave at which the
transform is computed; each hardware stage implements an
octave and is composed by two FIR filters with coefficients
Lk and Hk respectively for the approximation and the detail
channel and a dyadic down-sampler that operates only
on the approximation channel; each stage takes its inputs
from the previous stage approximation output channel. The
resulting structure is shown in Figure 11.

3.3 stationary wavelet transform

The SWT method basically tries to augment the time-scale
resolution keeping a low computational weight [43]: it is a
very good compromise solution that should be taken in con-
sideration whenever high frequency sampling is combined
with low frequency signal analysis. Despite it resembles the
DWT, its complexity grows exponentially with the number
of octaves.

The SWT defines the scale and time parameter as a = 2j

and b = k where j, k ∈ Z: this allow to write ga,b(t) in the
form

gj,k(t) = 2−j/2g(2−j(t − k)) (3.18)
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As well as the DWT, the following auxiliary function is
defined:

fj,k(t) = 2−j/2f(2−j(t − k)) (3.19)

Expressions (3.10) and (3.11) hold also in the case of the
SWT; applying the induction principle to (3.18) and (3.19)
the following holds:

gj,k(t) = 2−1/2gj−1,k/2(t/2)

=
∑

n 2−1/2d2−(j−1)(n−k)fj−1,n(t)
(3.20)

and symmetrically

fj,k(t) = 2−1/2fj−1,k/2(t/2)

=
∑

n 2−1/2c2−(j−1)(n−k)fj−1,n(t)
(3.21)

Using the expressions (3.14), (3.15) and (3.16) it is possible
to define the algorithm used for the evaluation of the SWT:

A0,k =
∫+∞

−∞ x(t)f(t − k)dt

Aj,k =
∑

n L2−(j−1)(n−k)Aj−1,n

Dj,k =
∑

n H2−(j−1)(n−k)Aj−1,n

(3.22)

In this case too non-standard convolutions are present,
whose structure is:∑

n

a

[
n − k

2α

]
· b[n] =

∑
m

a[m]· b[2αm + k] (3.23)

This kind of convolution can be implemented in hardware
by inserting 2α − 1 zeros between each element of a[m] and
applying a standard convolution with step equal to 1.

The SWT has the same structure of the DWT [41, 43] as
each hardware stage implements an octave and is composed
by two Finite Impulse Response (FIR) filters respectively
for the approximation and the detail channel; in this case
however the filters coefficients are not constant throughout
the whole system: in fact at each stage an exponentially
growing number of zeros are inserted between the elements
of Lk and Hk. The resulting structure is shown in Figure 12.
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Figure 12: Block diagram of the SWT algorithm

3.4 quasi-continuous wavelet transform

The QCWT uses a totally different approach to overcome the
poor time-scale resolution of the DWT [42]: first of all it uses
a filter bank where filters are each other independent and
each one is used to compute a single scale; second, there are
no approximation channels as each stage produces directly
the final result.

As it was discussed in the previous sections, scale and
time parameters are defined as a ∈ R+ \ {0} and b ∈ Z: this
shows that only the time parameter is sampled – a fact very
useful in digital systems, where the data channel does not
bear a time-continuous information but is a sampled version
of a time-continuous signal – while the scale parameter
retains his domain.
Using the relations that bounds the scale function to the

wavelet function it can be shown that, for a proper set of
coefficients qa[n], the following equality holds:

a−1/2g(a−1t) =
∑
n

qa[n]f(t − n) (3.24)

Whenever f(t) is orthogonal to its integer translates it is
possible to calculate the coefficients qa[n]:

qa[n] =
〈a−1/2g(a−1t)|f(t − n)〉

〈f(t)|f(t)〉 (3.25)

All the elements to define the QCWT algorithm being
known, the resulting structure is given by:

Da,b =
∑

n A0,n · qa[n − b]

A0,n =
∫+∞

−∞ x(t)f(t − b)dt
(3.26)
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It is therefore quite simple to devise a system based on
the QCWT algorithm: in fact the whole system consists of
a bank of filters whose coefficients can be precalculated
with the use of (3.25) providing that f(t) is orthogonal to
its integer translates [38]; in this case the orthogonality of
f(t) is fundamental for both analysis and reconstruction.

3.5 scaling function generation

According to what it is said in [40], if the value of the
scaling function at the integers are known, then the dilation
equation determines the values of the scaling function at
the half-integers and, by recursion, at every dyadic point
x = 2−nk where n ∈ N and k ∈ Z.

This observation is the key of the dyadic interpolation
method: Daubechies and Lagarias [44] and Micchelli and
Prautzsch [45] independently developed this recursion us-
ing products of two N × N matrices built with the coeffi-
cients c0, . . . , cN to calculate the scaling function at every
dyadic point.

Given an orthogonal set of coefficients c0, . . . , cN two
N×N matrices (T0)i,j = c2i−j−1 and (T1)i,j = c2i−j are build
as follow:

T0 =

⎛
⎜⎜⎜⎜⎝

c0 0 0 · · · 0 0

c2 c1 c0 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · cN cN−1

⎞
⎟⎟⎟⎟⎠ (3.27)

and

T1 =

⎛
⎜⎜⎜⎜⎝

c1 c0 0 · · · 0 0

c3 c2 c1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 cN

⎞
⎟⎟⎟⎟⎠ (3.28)

Each of them contains the (N − 1)× (N − 1) sub-matrix
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Mi,j = c2i−j:

M =

⎛
⎜⎜⎜⎜⎝

c1 c0 0 · · · 0 0

c3 c2 c1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · cN cN−1

⎞
⎟⎟⎟⎟⎠ (3.29)

By letting supp(f(t)) ⊂ [0, N] the function v : [0, 1] → RN

is defined as

v(x) =

⎛
⎜⎜⎜⎜⎝

f(x)

f(x + 1)
...

f(x + N − 1)

⎞
⎟⎟⎟⎟⎠ (3.30)

If f(x) is continuous and compact supported it shall be
f(0) = f(N) = 0: under these condition it is possible to
demonstrate that v(x) has the following properties [40]:

v(0) = T0v(0)

v(1) = T1v(1)

v(1/2) = T1v(0) = T0v(1)

(3.31)

For every dyadic x in the interval (0, 1), its upper binary
expansion is defined as

x =

m∑
i=1

di · 2−i (3.32)

where di ∈ {0, 1} and m < K ∈ N.
If all of the above conditions hold, it can be shown [40]

that

v(x) = Td1
· · · Tdmv(0) (3.33)

where v(0) = (0,a1, . . . ,aN−1)
T , with a = (a1, . . . ,aN−1)

T

being the right eigenvector for M for the eigenvalue 1.
Because of the orthogonality of the coefficient set, M neces-
sarily has (1, . . . , 1) as left eigenvector for the eigenvalue 1:
this means that at least one possible choice for a for every
orthogonal coefficient set is present.
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Figure 13: Binary tree used to cover dyadic points x ∈ (0, 1)

Once the starting vector has been defined, it is possible
to start the iterative method needed to define the scaling
function at every dyadic point; as shown in Figure 13, it is
possible to build a binary tree that contains every dyadic
point x ∈ (0, 1): the naming convention of each node within
the tree along with its upper binary expansion is shown in
the same figure.

Following the arrows it is possible to see that each ele-
ment ends with 1 and is obtained from the previous one by
simply introducing a 0 or a 1 after the comma; furthermore,
adding a 0 always brings to the upper half of the tree, while
a 1 takes to the lower half; finally, by using all the nodes in
the tree, the maximum coverage of the considered interval
is obtained.

Using this tree, the recursion is intuitively defined: the
vector T1v(0) is computed, corresponding to dyadic point
0.1, then the matrices T0 and T1 are used to obtain the other
nodes in the tree; in this way, every step in the loop produce
a useful result.

3.6 generation of wavelet filters coefficients

Given an orthogonal set of coefficients c0, . . . , cN, the gener-
ation of the coefficient set for the DWT and SWT FIR filters
is quite straightforward, while the QCWT requires some
consideration of algebraic nature.
For the DWT and SWT the filters were defined as

Lk = 2−1/2ck

Hk = 2−1/2dk

(3.34)
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where dk = (−1)kcN−k: Lk and Hk form a pair of quadrature
mirror filters and are fully defined as soon as the wavelet
coefficients are defined.
The QCWT uses instead the following filter definition:

qa[n] =
〈a−1/2g(a−1t)|f(t − n)〉

〈f(t)|f(t)〉 (3.35)

This means that both the scaling and the wavelet func-
tion have to be computed in order to determine the set of
coefficient of the FIR filter.

If f(t) has been already normalized, it is possible to
rewrite (3.35) as follows

qa[n] = 〈a−1/2g(a−1t)|f(t − n)〉 (3.36)

that is

qa[n] =

∫+∞
−∞ a−1/2g(a−1t)f(t − n)dt (3.37)

Since both f(t) and g(t) are compactly supported, it is
possible to restrict the integration to supports intersection
but, as a grows, the support of g(t) grows too: this is dis-
advantageous from the computational point of view if both
f(t) and g(t) had been generated by recursion. In fact, in
this case, g(t) should be interpolated in order to compute
qa[n] with the right precision.

However it is possible to elaborate (3.37) and swap the
dilation for the translation:

qa[n] =

∫+∞
−∞ a1/2g(t + a−1n)f(an)dt (3.38)

In this way, as a grows, the support of f(t) shrinks and
there is no more need of further elaboration on either f(t) or
g(t); however there still is an upper limit for a if both f(t)

and g(t) had been generated by recursion since it can be
shown that, in this case, for any given number of iterations
it exists a value for a such that the error on qa[n] is greater
than the computed value for qa[n].

From now on it is assumed that both f(t) and g(t) were
generated by recursion: f(t) and g(t) are said to have been
calculated with precision α when the interval [0, 1] has been
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divided into 2α parts: in this case it is possible to rewrite
(3.38) as follows

qa[n] =

+∞∑
i=−∞ a1/2gd[2α(iΔt+a−1n)] · fd[2α(aiΔt)]Δt (3.39)

where gd[n] = g(2−αn) and fd[n] = f(2−αn).
Simplification of (3.39) is feasible if Δt = 2−α is chosen:

because of this it follows that

qa[n] = 2−αa1/2
+∞∑

i=−∞ gd[i + n · 2α/a)] · fd[a · i] (3.40)

but supp(f(t)) ⊂ [0,N] so the sum extents can be adjusted
in this way

qa[n] = 2−αa1/2

N·2α/a∑
i=0

gd[i + n · 2α/a)] · fd[a · i] (3.41)

that originates a filter with N · a coefficients.
However it has to be noted that if f(t) and g(t) are known

in closed form, any set of coefficient can be computed
exactly; for example, by considering the Haar function, it is
possible to write

qa[k] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a−1/2 :k ∈ [0, �a/2�)
a−1/2(a − 2�a/2�− 1):k = �a/2�
−a−1/2 :k ∈ (�a/2�, �a�)
−a−1/2(a − �a/2�) :k = �a�
0 :k /∈ [0, �a�]

(3.42)

for the QCWT, while for the SWT and the DWT it simply is

Lk =

{
1√
2
,

1√
2

}
Hk =

{
1√
2
,−

1√
2

}
(3.43)
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TOOLS





4
IMPULSE RESPONSE EST IMATION

As it has been discussed before, it is of crucial importance
to remove the deformation introduced by the transducer on
the input signal. While this conversion can be skipped in
neural signal processing as electrical signals are already in-
volved, it is mandatory when treating echographic signals.

In order to remove this deformation, the need to first
estimate the acquisition system impulse response is present.
This chapter focuses on how to obtain this estimate from the
received signal itself, without the need of an experimental
setup. In fact, this information is usually obtained acquiring
the incoming signal from a test sample whose response to
the acquisition system is well known thanks to theoretical
considerations.

A common example of this measuring technique is the
insonification of a metal wire sank in a water filled tank for
the estimation of an echographic system impulse response.
The water does not significantly alter the traveling echo
pulse due to its low attenuation; at the same time, the
metal wire behaves almost as an ideal acoustic reflector,
mimicking a Dirac delta behavior.

45
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Figure 14: Acquisition system impulse response (left) and spec-
trum (top-right) recorded from a water tank experi-
ment. Impulse spectrum is much smoother than a typ-
ical incoming signal spectrum (bottom-right) recorded
from in-vivo tissues

With reference to the echo signal model (1.2), this means
that x(t) = δ(t), with a good degree of approximation. This
also means that the sampled incoming echo signal y(n)

is equal to the acquisition system impulse response h(n),
except for some unavoidable noise ν(n). This setup is easily
reproducible and affordable, however it does not consider
any time dependent behavior of the acquisition system;
anyway it gives qualitative informations about the impulse
response shape and its spectrum.

As shown in Figure 14, the echo pulse amplitude spec-
trum is quite smooth and assumes its maximum approxima-
tively in correspondence to the transducer central frequency.
On the contrary, the incoming signal spectrum is quite
peaky and its maximum shifts toward lower frequencies
due to the frequency dependent attenuation.

The next few sections will discuss how it is possible
to exploit these differences to estimate what it is called
the local impulse response directly from the incoming tissue
echo, without requiring a specifically designed experimen-
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tal setup.

4.1 homomorphic deconvolution

With reference to the signal model (1.2), if the noise term
is neglected, the incoming signal y(t) can be thought as
the convolution of the tissue impulse response x(t) and the
imaging system impulse response h(t).
By taking the Fourier Transform of y(t) the usual product

in the frequency domain is obtained:

Y(ω) = H(ω)X(ω) (4.1)

This domain change allows to better exploit the evident
differences in the spectra shown in Figure 14 in order to
estimate the imaging system impulse response from the
incoming signal.

If H(ω) is supposed to be minimum phase [6, 46, 47, 48],
all the informations regarding the shape of the imaging
system impulse response are contained in the amplitude
spectra. By taking the logarithm of the amplitude of (4.1),
the next equality holds:

log{|Y(ω)|} = log{|H(ω)|} + log{|X(ω)|} (4.2)

where two additive components are clearly highlighted.
This is the so-called log-spectrum of y(t).

Recalling the fact that H(ω) is observed to be much
smoother than X(ω), it is possible to obtain a non-minimum
phase approximation of h(t) by considering log{|Y(ω)|} as
a signal and extracting its low-pass component. This proce-
dure is equivalent to selecting the low-quefrency Nc sam-
ples of the cepstrum [49] of y(t), where Nc is the so-called
cut-off parameter.

The minimum phase version of h(t) can be easily esti-
mated in the cepstral domain [50, 51, 52]: in fact, calling Cx

the cepstrum of a real valued N-samples input signal x, its
minimum phase version Ĉx is given by

Ĉx(n) =

⎧⎪⎨
⎪⎩

Cx(n) n = 0

2�{Cx(n)} 1 � n � N
2

0 N
2 < n � N − 1

(4.3)
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where �{x} stands for the real part of x.
It is now straightforward to layout the homomorphic

deconvolution estimate of the imaging system impulse re-
sponse. First, the cepstrum Cy of the received ultrasonic
signal y is taken

Cy = F−1{log|F{y ·w}|} (4.4)

where w is a proper windowing function necessary to re-
move the undesired border effects in the inner Fourier
transform: typically an Hamming function is used.

Then, by plugging the cut-off parameter into (4.3), the
following is obtained

Ĉh(n) =

⎧⎪⎨
⎪⎩

Cy(n) n = 0

2�{Cy(n)} 1 � n � Nc

0 Nc + 1 � n � N − 1

(4.5)

from which the time domain minimum phase estimate ĥ

of the impulse response can be obtained by inverting the
cepstrum

ĥ = F−1{exp(F{Ĉh})} (4.6)

It should be remarked that it is not feasible to recover
the tissue impulse response x(t) using this method: the
minimum phase assumption used for h(t) does not hold
for x(t). More advanced deconvolution techniques must be
exploited in order to recover x(t), some of which will be
discussed in the next chapter.

Figure 15 features a comparison between three different
estimations of ĥ for different values of the cut-off parameter.
All of them are smooth and feature a central frequency
around 5MHz; their spectra are quite similar, with the curve
corresponding to Nc = 10 being almost identical to the one
related to Nc = 20. In the time domain, the estimation
corresponding Nc = 10 has a shorter tail: however, all the
curves behave almost in the same way for the first 0.4 μs.

It is usually up to the user experience to set the cut-off
parameter to a proper value, to balance between spectral
estimation accuracy and smoothness. In the field of ultra-
sonic processing, Nc = 20 is usually accepted as a typycal
value for impulse response cepstral estimation.
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Figure 15: Comparison of cepstrum minimum phase estimations
for different values of Nc; time domain impulse re-
sponses are shown on top, while the corresponding
amplitude spectra ar shown on bottom.

4.2 wavelet-based blind deconvolution

Some of the reconstruction properties of the Wavelet Trans-
form can be exploited in order to further the estimation
of the acquisition system impulse response. In particular,
polynomial reconstruction is quite useful when trying to
estimate a smooth polynomial function from its noisy sam-
ples.

In fact, given an input signal s(t) made up only of a K

order polynomial component q(t), if a Wavelet φ(t) with
K + 1 vanishing moments is used to decompose it, identi-
cally zero detail coefficients will be obtained. Due to the
superposition principle, if an additive white noise term
ν(t) is added to s(t), the detail coefficients at each scale of
s(t) will correspond to the ones of ν(t). Moreover, as the
effective bandwidth at each analysis scale reduces, so does
the noise power in the approximated signals.

This means that, given a proper Wavelet with the right
number of vanishing moments, it is possible to recover an
almost perfect estimation of the polynomial component in
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Figure 16: Comparison of Wavelet minimum phase estimations
for different values of K. Both time and frequency
domain are quite insensitive to this parameter.

s(t) simply by filtering it through a proper number M of
octaves.

Here, instead of having only one parameter as in the
previous method, two parameters can be used to tune the
impulse response estimation algorithm: K, the number of
vanishing moments of φ(t), and M, the number of octaves
in the Wavelet analysis.
The resultant algorithm is quite simple: after estimating

the log-spectrum of y(t), a non-minimum phase version
of the log-spectrum of h(t) is obtained calculating an M

scale Wavelet Transform and dropping any detail coefficient
before inverting the transform. Finally the minimum phase
version is estimated by making use of (4.3).

Figure 16 compares three different minimum phase esti-
mations of h(t) obtained using this method while varying
the number of vanishing moments of the analysis Wavelet.
Symlets [53] with a 2, 4 and 6 vanishing moments were used
in this comparison. It appears that this parameter does not
alter significantly the impulse response estimated shape
both in the time and frequency domain.
On the other hand, Figure 17 highlights a problem known
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Figure 17: Comparison of Wavelet minimum phase estimations
for different values of M. The number of octaves must
be carefully chosen in order to avoid oversmoothing.

as oversmoothing [6]: using too many octaves in the Wavelet
analysis stage removes too much details from the impulse
response. The net result is a curve which is way too smooth
(hence oversmoothed) than the desired response, both in
the time and frequency domain. The opposite problem
(undersmoothing) is caused by a too coarse Wavelet analysis,
where spectrum noise leaks into the impulse response.

4.3 combined wavelet/cepstrum blind deconvo-
lution

These two techniques can be successfully combined in a
mixed Wavelet/cepstrum estimation. Both of them can be
viewed as a low pass filtering of the log-spectrum signal:
while the first operates as an ideal box filter in the cepstrum
domain, the second uses a set of weights to attenuate the
high frequency noise component.

This smoothing effect is quite useful, as it allows the
user to avoid discontinuities once the impulse response is
brought back to the time domain. However, as Wavelet basis



52 impulse response estimation

functions have a compact time-domain support, they have
an infinite frequency domain support. This means than a
certain amount of high-frequency noise always leaks into
the impulse response estimate.
Even if negligible at visual inspection, this component re-

duces the minimum distance of the zeros of the Z-transform
H(z) of h(t) from the unitary circle, making these estimates
less apt for signal deconvolution.
One possible solution to this problem is to approximate

the weight function originating from the Wavelet analysis
with a function which is non-zero for the first Nc sam-
ples, and zero elsewhere. Here, once K and M have been
set, Nc should be chosen in order to get a not too coarse
approximation of the Wavelet weight function.
The resultant algorithm is quite similar to what discussed

in Section 4.1: first the cepstrum Cy of the received ultra-
sonic signal y is calculated using (4.4); then the cepstrum of
the acquisition system impulse response is estimated using

Ĉh(n) =

⎧⎪⎨
⎪⎩

Cy(n)W(n) n = 0

2�{Cy(n)W(n)} 1 � n � Nc

0 Nc + 1 < n � N − 1

(4.7)

where W(n) are the weights obtained from the Inverse
Fourier Transform of the equivalent filter corresponding
to the Wavelet analysis with parameters K and M. Finally
the time domain minimum phase estimate ĥ is calculated
inverting the cepstrum Ĉh(n) with (4.6).

As shown in Figure 18, the cut-off parameter contributes
to the smoothing of the impulse spectrum too. However, if
its value is set too small, undesired ringings appear in the
frequency domain and the time domain response decreases
both in amplitude and duration.

In this example a second order Symlet is selected as
analysis Wavelet (K = 2) and the analysis is carried up
to the forth octave (M = 4): comparing Figure 16 with
Figure 18, Nc = 15 appears to be a good setting for the
cut-off parameter.
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Figure 18: Comparison of combined minimum phase estimations
for different values of Nc; too small values of the cut-
off parameter generate unwanted spectral oscillations.

4.4 performance comparison

Estimation algorithms are usually evaluated in terms of
accuracy, comparing the estimated signal with the true one.
However, it is not possible to perform this check for pulse
estimation algorithms: the true acquisition system impulse
response cannot be acquired, even in the water-filled tank
experiment.

In fact, the metal wire has a non negligible diameter,
which means that the probing signal encounters two – and
not one – interfaces: the first between water and metal, the
second between metal and water. As a consequence, two
usually overlapped pulses will be recorded by the imaging
system. Moreover, as each interface may occur at a depth
which does not correspond to a point belonging to the
sampling grid, the hypothesis that both these pulses have a
non-minimum phase must be considered.

Figure 19 shows an example of deconvolution of the in-
coming signal: the pulse used in this case is extracted from
the original signal using the combined Wavelet/cepstrum
estimation technique. This pulse can be fruitfully used to
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Figure 19: Top: rater-tank experiment deconvolved pulse; the
two interfaces are clearly visible at 200μm and 500μm.
Bottom: reconstruction of the incoming signal using
minimum-phase estimates.

detect the presence of the two interfaces, respectively at
200μm and 500μm, by means of a proper iterative deconvo-
lution technique, described in Chapter 5. At the same time,
it allows for the reconstruction of the incoming signal, with
a good accuracy.

Basing on this evidence, the performance of the decon-
volution techniques described in this chapter are evaluated
using the following metrics:

• the MSE between the water-tank recorded pulse and
the one estimated after two deconvolution step;

• the minimum distance from the unitary circle the
of zeros of the filter corresponding to the estimated
impulse;

• the number of coefficient which retain the 99.9% of the
corresponding estimated impulse response energy.

The first one estimates how good is the estimated impulse
response at catching the shape of the water-tank recorded
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Method Parameters MSE [dB] Distance Length

CEP
Nc = 30 −18.1 0.0126 41

Nc = 2 −5.1 0.5784 3

WAV
K = 8,M = 1 −18.4 0.0035 38

K = 8,M = 8 −5.0 0.9154 2

K = 1,M = 8 −5.0 0.8785 2

MIX
K = 4,M = 2,Nc = 32 −18.4 0.0132 42

K = 8,M = 8,Nc = 3 −5.0 0.9154 2

K = 1,M = 6,Nc = 2 −5.1 0.4716 2

Table 2: A performance comparison of some significant setups for
the different impulsive response estimation algorithms:
cepstrum based (CEP), Wavelet based (WAV), combined
Wavelet/cepstrum (MIX)

pulse from it’s deconvolution: by doing only two processing
steps, the deconvolution system is forced to consider only
the two most prominent estimated interfaces.

The second one helps in evaluating how stable a decon-
volution technique based on the corresponding impulse
response is going to be: as filter inversion is typically used
in a deconvolution process, the higher the distance, the
higher the filtering stability.

The third one is connected to how many computational
resources should be allocated to perform the corresponding
deconvolution: the fewer this number, the less multiplier
units can be used in an hardware implementation.

Table 2 features the best results in each category for
each algorithm: the optimization space comprises, where
applicable, Nc values ranging from 1 to 32 for the cut-off
parameter, K values ranging from 1 to 8 for the number of
vanishing moments, and M values ranging from 1 to 8 for
the depth of the Wavelet analysis.

Comparing the results shown in Table 2, the best re-
sults for what concerns MSE are achieved by the combined
Wavelet/cepstrum method as it allows for the same MSE but
with a distance three times higher than the plain Wavelet
based method. As for the distance of the impulsive re-
sponse zeros from the unitary circle, the best results are
again achieved by the same method: careful attention must
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Figure 20: MSE (top) and impulse response length (bottom) as
a function of the cut-off parameter in the cepstrum
(CEP) and in the best combined Wavelet/cepstrum
(MIX4,2) estimations

be paid using these estimates as the corresponding MSE is
not low enough when compared to the previous results.
Finally, almost the same considerations can be done for the
minimum filter length: using a filter so short may lead to
strongly biased estimations of the un-blurred input signal.

As a conclusion, it should be remarked that shorter im-
pulse responses can be obtained trading-off MSE for impulse
response length, as shown in Figure 20. In fact, by choosing
Nc = 7 for both the estimation techniques, correspond-
ing to the leftmost local minimum of the curves, one gets
MSE= −18dB for each of them while the corresponding
impulse response lengths are 25 and 26 coefficients respec-
tively.



5
DECONVOLUTION TECHNIQUES

Deconvolution techniques are used in signal and image
processing to remove the distortion caused by the transmis-
sion and reception systems while reducing the background
noise. Synthetic Aperture Radar (SAR) image quality typi-
cally suffers from reduced resolution due to both the effect
of limited effective aperture size and noise. Iterative and
Wavelet-based deconvolution algorithms can be applied to
SAR images to enhance contrast and visual quality, easing
the post-processing phase.
Ultrasound images obtained from echographic units can

be thought as a particular kind of SAR image. In this field, as
the ultrasonic acquisition system introduces an unwanted
spectral shaping of the backscattered echo signal, decon-
volution is used to eliminate this effect and to obtain the
pure tissue response. As discussed in Chapter 1, a conve-
nient model to represent RF echo signal y(n) at the A/D
converter output involves the convolution between the tis-
sue reflectivity function x(n) and the acquisition system
impulse response h(n):

y(n) = h(n) ∗ x(n) + γ(n) (5.1)

57
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where γ(n) is a zero-mean Additive White Gaussian Noise
(AWGN) term with variance σ2

γ [11] and ∗ denotes the con-
volution operation. Given y(n) and h(n), deconvolution
algorithms seek to estimate x(n).

A naïve deconvolution estimate x̂(n) can be obtained
by simply convolving y(n) with an approximation of the
inverse acquisition system impulse response ŵ(n) so that

h(n) ∗ ŵ(n) = δ(n − n0)

x̂(n) = x(n − n0) + γ(n) ∗ ŵ(n)
(5.2)

where δ(n) is the Kronecker delta function and n0 is an
appropriate time-delay useful to relax the minimum-phase
requirement on h(n) needed to guarantee a stable inversion
process.

Unfortunately, both the variance of the colored noise
ν(n) ∗ ŵ(n) in x̂(n) and the MSE between x̂(n) and x(n)

are large when the inversion process involving H(n) is ill
conditioned, making x̂(n) an unsatisfactory deconvolution
estimate. In general, deconvolution algorithms can be inter-
preted as estimators of x(n) from the noisy signal x̂(n) in
(5.2).

Since deconvolution is a recurring theme in a wide va-
riety of signal and image processing applications, many
algorithms have been proposed to address this problem
[5, 54, 55]. Two of the presented deconvolution algorithms
exploit the fact that the tissue response x(n) can be eco-
nomically represented in the Wavelet domain, which means
that fewer transform-domain coefficients are needed to
capture signal features. From another standpoint, due to
the complex structure of the echo scatterers in the tissue
[56, 57, 58, 54], the tissue response x(n) can be modeled as
a 1/f type process; the generalized power spectrum Sx(ω)

of such a process obeys to the following power law [59, 60]

Sx(ω) = σ2
x|ω|β−1 (5.3)

where σ2
x is the variance of the signal x(n) and β is a scaling

parameter in the range −1 � β � 1. Using this model,
the variance of the Wavelet signal coefficients xj(n) can be
shown to be

var{xj(n)} = σ2
w2−jβ (5.4)
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where j is the scale index and σ2
w a constant related to

both the variance of the signal σ2
x and the Wavelet function

used in the Wavelet Decomposition process [56]. A linear
relationship between the Wavelet scale and the logarithm
of the variance of input signal Wavelet coefficients exists,
and can be exploited to improve the estimate of the tissue
response x(n).

5.1 fourier-wavelet regularized deconvolution

The FWRD algorithm [5] consider the RF echo acquisition
system as a Linear Time Invariant (LTI) system H whose
impulse response, accordingly to (5.1), is h(n). As shown
in Figure 21, it uses scalar shrinkage in both Fourier and
Wavelet domains to obtain a good estimation of x(n) from
x̂(n). This double-domain technique is used in order to find
an effective representation of both the input signal x(n) and
the contaminating noise γ(n), as x(n) is better represented
in the Wavelet domain while γ(n) in the Fourier domain.

Given an orthonormal basis {bk}
N−1
k=0 for RN, be it the

Fourier or the Wavelet one, x̂ from (5.2) can be expressed
as

x̂ =

N−1∑
k=0

(〈x,bk〉+ 〈ŵ ∗ γ,bk〉
)
bk (5.5)

where ŵ is again the inverse acquisition system impulse re-
sponse. An improved estimate x̂λ can be obtained by simply
shrinking the k-th component in (5.5) with an appropriate
scalar λk with 0 � λk � 1:

x̂λ =

N−1∑
k=0

(〈x,bk〉+ 〈ŵ ∗ γ,bk〉
)
λkbk (5.6)

F W
 -1

F
 -1◦Wλk λj,l

f wy xFWRDˆ

H, τ wj,l, σj

Figure 21: Block diagram of the FWRD algorithm: Fourier domain
shrinking is performed in the first row, Wavelet shrink-
ing in the second one.
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The parameter λk should be taken close to 1 whenever
noise energy is negligible when compared to signal energy,
and close to 0 in the reciprocal case. The shrinkage by λk

can also be interpreted as a form of regularization for the
deconvolution inverse problem [61].
In the Fourier domain, model (5.1) can be written as

Y(fk) = H(fk)X(fk) + Γ(fk) (5.7)

where Y, H, X and Γ are respectively the N-length Discrete
Fourier Transform (DFT) of y, h, x and ν, while fk = πk/N,
k = 1, . . . , N are the normalized DFT frequencies. Rewriting
(5.2) in the Fourier domain the following is obtained

X̂(fk) =
Y(fk)

H(fk)
=

{
X(fk) +

Γ(fk)
H(fk)

|H(fk)| > 0

0 |H(fk)| = 0
(5.8)

and taking the shrinking parameter λf
k as

λf
k =

|H(fk)|
2

|H(fk)|2 + τ
(5.9)

the DFT X̂λf(fk) of the Fourier shrunk estimate can be writ-
ten as

X̂λf(fk) =
Y(fk)H

∗(fk)

|H(fk)|2 + τ
(5.10)

where τ > 0 is a regularization parameter which can be
optimized in order to minimize the MSE between the tissue
reflectivity function x(n) and its final estimate x̂(n) after
both Fourier and Wavelet shrinking have been applied [62].

As in real cases x(n) is not available, τ is usually set to
minimize the weighted MSE between y(n) and its estimate
ŷ(n) generated from x̂(n) [63]:

N/2∑
k=−(N/2)+1

|H(fk)|
2

|H(fk)|2 + η

|H(fk)X̂(fk) − Y(fk)|
2

|H(fk)|
(5.11)

where

η =
Nσ2

γ‖h‖2
2

‖y − ȳ‖2
2

(5.12)
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with ȳ being the estimated mean value of y.
After Fourier shrinking, Wavelet shrinking is performed;

this process involves the DWT of the signal x̂λf(n) obtained
from the inverse DFT of X̂λf(fk).

Calling φ the low-pass scaling function and ψ the pro-
totype bandpass Wavelet function [64], for proper choices
of these functions, φj,l(t) = 2−j/2φ(2−jt − l) and ψj,l(t) =

2−j/2ψ(2−jt − l) form an orthonormal basis for L2(R) with
j ∈ N and l ∈ Z being respectively the scale parameter and
the translation parameter. Accordingly, Wavelet coefficients
were defined as wj,l = 〈x,ψj,l〉 while scaling coefficient as
sj,l = 〈x,φj,l〉 so that a finite resolution approximation xJ of
x is given by

xJ(t) =

NJ−1−1∑
l=0

sJ−1,lφJ−1,l(t) +

J−1∑
j=0

Nj−1∑
l=0

wj,lψj,l(t)

where the parameter J controls the resolution of the Wavelet
reconstruction xJ of x.
Wavelet coefficients are shrank using λw

j,l:

λw
j,l =

|wj,l|
2

|wj,l|2 + σ2
j

(5.13)

while scaling coefficients are shrank using λs
j,l:

λs
j,l =

|sj,l|
2

|sj,l|2 + ξ2
j

(5.14)

where σ2
j and ξ2

j are the noise variances at the j-th scale,
and wj,l and sJ−1,l are respectively the Wavelet and scaling
coefficients of x(n).

As x(n) is not known, wj,l and sJ−1,l must be estimated
too. A feasible solution is performing an hard thresholding
upon the Wavelet and scaling coefficients of x̂λf(n) with
threshold σj

√
2 logN [65].

Reliable estimations of σ2
j and xi2j can be obtained respec-

tively from the Wavelet and scaling coefficients of y(n) as

σ2
j =

N/2∑
k=−(N/2)+1

|Ψj,0(fk)|
2

|H(fk)|2
σ2

γ (5.15)
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Figure 22: FWRD deconvolution comparison on synthetic signals
based on different noise models: the input/output
SNRs curves all display an upper saturation effect.

and

ξ2
j =

N/2∑
k=−(N/2)+1

|Φj,0(fk)|
2

|H(fk)|2
σ2

γ (5.16)

where Ψj,0(fk) and Φj,0(fk) are the Fourier transform of
ψj,0(n) and φj,0(n) respectively.
Finally, if not otherwise prescribed, the noise standard de-

viation σγ can be estimated too using the first scale Wavelet
coefficients of y [65]:

σγ =
MAD{w0,l}

0.6745
(5.17)

The final estimate x̂(n) of x(n) is obtained by applying
the Inverse DWT to the shrank Wavelet and scaling coeffi-
cients.

Figure 22 features a comparison of the deconvolution
performance of the FWRD algorithm when applied to three
kinds of synthetic echo signals convolved with a real world
acquisition system impulse response and corrupted by dif-
ferent levels of AWGN. Knowing exactly both the echo signal
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Figure 23: Example of FWRD deconvolution method applied to
echographic signals: improvements in both resolution
and contrast are visible.

and the impulse response, the mean SNR on 100 deconvolu-
tion trials was measured sweeping the input SNR from 0 to
30dB with a step of 0.3dB.
As already discussed, the choice of modeling the echo sig-

nal as a white, pink or brownian noise is used in literature
due to the complex structure of the scatterers in the tissue.
Recalling equation (5.3), it is possible to switch between
the different noise models by tuning the scaling parameter
β: in case of β = 1, x is purely white noise, while β = −1

corresponds to Brownian noise.
Figure 22 shows that FWRD is best at deconvolving Brow-

nian noise, whereas white and pink noise have almost the
same behavior. In all cases, due to the regularization step,
an upper performance saturation effect is present, limiting
the maximum output SNR to 18dB.

Figure 23 shows an example of in-vivo echographic im-
age deconvolution: the overall contrast improvement is
evident. Moreover, the boundaries of the different tissues
got sharper, corresponding to an image resolution improve-
ment.
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5.2 wavelet least squares deconvolution

The Wavelet Least Squares Deconvolution (WLSD) algorithm
uses equation (5.4) to drive a gradient based optimization
technique, which minimize an error energy comprising two
terms. The first one measures the non-linearity of the loga-
rithmic variance progression at each scale of the WT. The
second one evaluates how similar the convolution between
the estimated inverse filter and the acquisition system im-
pulse response is to an impulsive function.

Taking steps from the Wavelet series Xj(k) of the discrete-
time signal x(n), the Wavelet coefficients at each scale j can
be written in the matrix and vector notation as

Xj = Hjx, j = 1, . . . , J (5.18)

where Hj is a convolution type matrix whose elements
corresponds to the equivalent filter coefficients for the j-th
scale, x is the signal vector and J is the total number of
scales.

Calling Y the convolution matrix which corresponds to
the RF echo signal and ŵ the approximation of the inverse
filter vector, in absence of noise equation (5.2) can be rewrit-
ten in matrix form as

x̂ = Yŵ (5.19)

where x̂ is the estimated tissue response vector. Using (5.18)
and (5.19), the Wavelet coefficients X̂j of the estimated tissue
response can be obtained as

X̂j = HjYŵ = Djŵ, j = 1, . . . , J (5.20)

This relation can be used to estimate the variance Vj of
the Wavelet coefficients at the j-th scale

Vj =
ŵTDT

j Djŵ
Nj − 1

= ŵT Cjŵ (5.21)

where Nj is the number of Wavelet coefficients at the j-th
scale. The first part of the energy term is thus defined taking
the logarithm of (5.4) and (5.21)

ex =

J∑
j=1

(
log2(Vj) − log2(var{xj(n)})

)2
(5.22)
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which can be rewritten as

ex =

J∑
j=1

(
log2(ŵ

T Cjŵ) − (α̂ − jβ̂)
)2

(5.23)

where β̂ is the estimate of the scaling parameter and α̂ is
the estimate of the energy parameter α = log2(σ

2
w).

The second part of the energy term is defined using the
matrix form of (5.2)

ew = (Gŵ − δ)T (Gŵ − δ) (5.24)

where G is the convolution matrix for the transducer im-
pulse response and δ = [0 . . . 0 1 0 . . . 0]T . The total energy
is defined as the sum of these partial energy terms

e(ŵ, α̂, β̂) =
∑J

j=1

(
log2(ŵ

T Cjŵ) − (α̂ − jβ̂)
)2

+

+(Gŵ − δ)T (Gŵ − δ)
(5.25)

and is used to drive an iterative minimization technique
based on conjugate gradient. In order to speed-up algorithm
convergence, the gradient and the Hessian matrix of the
error energy e(ŵ, α̂, β̂) should be obtained algebraically;
additionally, ad-hoc preconditioners can be used to further
reduce the estimation time. Good guess for the first iteration
are ŵ = G†δ, α̂ = 0 and β̂ = 0.

Figure 24 features a comparison of the deconvolution
performance of the WLSD algorithm applied to the same
synthetic echo signals used for the FWRD algorithm. As the
FWRD algorithm, WLSD performs best on Brownian noise,
whereas white and pink noise are quite similar. Perfor-
mance saturation happens at a higher input SNR, making
the WLSD best suitable to process signals with an noise level
at most 15dB lower than signal level.
Figure 25 shows an example of in-vivo echographic image

deconvolution: again, the overall contrast improvement is
evident; however when compared to FWRD, WLSD result
displays less sharper tissue boundaries and an higher back-
ground noise.

5.2.1 Adaptive delay WLSD

As already stated, equations (5.2) allow for input/output
delays different from zero: this additional degree of freedom
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Figure 24: FWRD deconvolution comparison on synthetic signals
using the same parameters of Figure 22.
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Figure 25:WLSD deconvolution applied to the same echographic
image of Figure 23.
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can be used deal with non-minimum phase acquisition
system impulse responses. From the point of view of the
WLSD algorithm, exploiting this additional flexibility could
lead to a further minimization of the error energy, hence to
improve the deconvolution performances.

Recalling equation (5.21) and plugging into it the initial
guess that was used in previous section to initialize the
WLSD algorithm, the next relationships are obtain

Vj = δT (G†)T CjG†δ = δTMjδ (5.26)

Equation (5.26) simply states that, when the 1 in δ is
moved to the i-th element, the corresponding variance is
given by i-th element of the diagonal of Mj. In practice Vj

can be substituted with

Vj(n) = [diag{Mj}]n (5.27)

where diag is the operator that given an N × N square
matrix produces the N element vector corresponding to the
main diagonal and n is the position of the 1 in δ.
Since it was chose to set ŵ = G†δ, the energy term (5.24)

is usually negligible when compared to (5.22). In order to
find the best values of α̂, β̂ and n, one can minimize the
error term

E(n, α̂, β̂) =

J∑
j=1

(
log2(Vj(n)) − (α̂ − jβ̂)

)2
(5.28)

A simple procedure to achieve this result is to optimize
separately the discrete parameters (i.e. n) from the contin-
uous ones (α̂ and β̂). Starting with α̂ = 0 and β̂ = 0, one
finds the value n0 of n which minimizes (5.28).
Looking for the best values of α̂ and β̂, (5.28) is expanded

choosing n = n0{
∂E
∂α̂ = −2

∑J
j=1(log2(Vj(n0)) − (α̂ − jβ̂)) = 0

∂E

∂β̂
= 2

∑J
j=1 j(log2(Vj(n0)) − (α̂ − jβ̂)) = 0

(5.29)

which can be rewritten as{
σ0 = Jα̂ −

J(J+1)
2 β̂

σ1 =
J(J+1)

2 α̂ −
J(J+1)(2J+1)

6 β̂
(5.30)
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where σ0 =
∑J

j=1 log2(Vj(n0)) and σ1 =
∑J

j=1 j log2(Vj(n0)).
System (5.30) always has a unique solution if J �= 1, i.e. if
the Wavelet analysis has more than one octave:⎧⎨

⎩α̂0 =
2σ0(2J+1)+6σ1

J(J−1)

β̂0 =
6σ0(J+1)−12σ1

J(J2−1)

(5.31)

One now has the choice to plug α̂0 and β̂0 into (5.28)
and obtain an updated value n1 for the delay parameter,
which in times can be used in (5.30) to estimate α̂1 and β̂1.
No more than three iteration are usually required for this
algorithm to achieve convergence. The final estimates of ŵ
and x̂ are obtained in the following way:

ŵ = G†δ(nopt)

x̂ = Yŵ
(5.32)

As a consequence of the property to autonomously adapt
its input/output delay to best suit the acquisition system
impulse response, this algorithm is called Adaptive delay
Wavelet Least Squares Deconvolution (AdWLSD).

Figure 26 features a comparison of the deconvolution
performance of the AdWLSD algorithm to the same synthetic
echo signals used for the FWRD algorithm. Again, the best
performance are recored for Brownian noise, whereas white
and pink noise behaviors differ for no more than 2dB.
However, as no regularization step is necessary to perform
AdWLSD, this algorithm does not feature the performance
saturation effect characteristic of FWRD.
Figure 27 shows an example of in-vivo echographic image

deconvolution: contrast improvement is on the same levels
of FWRD while tissue boundaries sharpening is comparable
to WLSD. Finally, background noise is slightly higher than
FWRD, but less than WLSD.
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Figure 26: AdWLSD deconvolution comparison on syntetic sig-
nals using the same parameters of Figure 22.
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Figure 27: AdWLSD deconvolution applied to the same echo-
graphic image of Figure 23.
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5.3 adjustable delay iterative deconvolution

Many commonly used deconvolution algorithms, FWRD and
WLSD among them, require the acquisition system impulse
response to be minimum-phase to ensue reconstruction
stability. At the same time, impulse response estimation
algorithms usually discard phase information and perform
their task in the cepstrum domain assuming the response
to be minimum-phase. Combining these algorithms it is
possible to reconstruct an incoming blurred signal, although
with a certain degree of approximation.

This is due to the fact that each time an echo is gener-
ated by an interface which is not aligned to the sampling
grid implicitly defined by the time domain sampling, that
echo has a different phase content with respect to the ones
generated by interfaces aligned to the grid.

By considering the simplest possible tissue response in
the continuous time domain – a Dirac delta at time θ0 –
and calling h(t) the unsampled acquisition system impulse
response and T0 the sampling period, the following is ob-
tained

y(nT0) =

∫+∞
−∞ δ(τ−θ0)h(nT0 − τ)dτ = h(nT0 −θ0) (5.33)

Moving to the Z-domain and calling m the integer part
of the ratio θ0/T0, the following equality holds:

Y[z] = z−mz
−(

θ0
T0

−m)
H[z] (5.34)

Working in a discrete environment, the non-integer de-
lay term is usually neglected, giving way to approximate
estimation of the received echo and increasing the output
noise level. In order to improve deconvolution performance,
it is possible to jointly estimate what is called the equivalent
impulse response Heq[z]

Heq[z] = z
−(

θ0
T0

−m)
H[z] (5.35)

The founding idea which the ADID algorithm is built on
is the possibility to decompose any causal filter with no
poles or zeros on the unit circle in a cascade of a minimum-
phase and an all-pass filter [66]. The non-integer delay effect



5.3 adjustable delay iterative deconvolution 71

is modeled using the all-pass filter, while the amplitude
information descends from the minimum-phase estimate of
H[z].

Desiring to accurately perform the filtering stage, the
properties of the following parametric all-pass filter are
analytically evaluated, obtaining:

P(z) =
−a + z−1

1 − az−1
(5.36)

which, evaluated on the unit circle, becomes:

P(ejω) =
[(a2 + 1) cos(ω) − 2a] + j[(a2 − 1) sin(ω)]

[(a2 + 1) − 2a cos(ω)]2
(5.37)

To ensue filter stability the tuning parameter a must satisfy
|a| = 1.

While the modulus of P(ejω) is always 1 independently
of both a and ω, the analytical phase φP(ω) of P, given by
argument of P(ejω), depends on both these parameters:

φP(ω,a) = tan−1

(
(a2 − 1) sin(ω)

(a2 + 1) cos(ω) − 2a

)
(5.38)

So, the group delay τ = τg(ω,a), defined as the inverse of
the derivative of the phase [66], becomes

τg(ω,a) =
1 − a2

1 − 2a cos(ω) + a2
(5.39)

For a given value of the filter parameter a, it is possible to
evaluate the effective group delay of the whole echographic
pulse exploiting the following weighted sum:

τg,eff(a) =

∫π
0 τg(ω,a)|H(ejω)|dω∫π

0 |H(ejω|dω
(5.40)

In order to approximate equation (5.40) it is possible to es-
timate the group delay around the pulsation corresponding
to the highest energy spectral density, getting

τg,eff(a) � τg(ω0,a)|ω0 =

∫π
0 ω|H(ejω)|dω∫π

0 |H(ejω|dω
(5.41)
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Figure 28: Group delay as a function of the all-pass filter parame-
ter a for different values of the pulsation ω.

As shown in Figure 28, the group delay is a smooth
function of the filter parameter a in the definition domain;
function shape depends on the pulsation ω and is symmet-
rical around ω = π/2. Solving a from (5.39) as function of
both ω and τ, two values of a for each given ω and τ pair
are obtained

a1,2(ω, τ) =
τ cos(ω)±

√
1 − τ2 sin2(ω)

τ + 1
(5.42)

where a1 corresponds to the minus sign and a2 to the plus
one.
Recalling than m is the integer part of the ratio θ0/T0, the

difference q = θ0/T0 − m is always in the range [0, 1]. As
the all-pass filter P(z) is meant for mimicking this delay, τ

is to be kept within the same range. These values always
allow to find acceptable values for the filter parameter a

independently from ω: in fact, in order to ensue a ∈ R, τ

must not be greater than 1/ sin(ω) with ω ∈ [0,π]. Thus
the highest acceptable value for τ is 1, corresponding to
ω = π/2. This is hinted by Figure 28 where, for ω = π/2,
the highest group delay is 1, corresponding to a = 0.
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Figure 29: Phase behavior of the all-pass filter compared to the
ideal one: a1 allows to best reconstruct the ideal trend.

For different values of τ and ω, equation (5.42) always
has two solutions. The corresponding values of a reflect
into different behaviors of P(z): it is particularly interesting
to estimate how similar the unwrapped phase of the all-
pass filter is to the phase of the non-integer delay term z−q.
Exploiting the definition of phase, for this term the next
equality holds

φt(ω,q) = arg(e−jωq) = −ωq (5.43)

Using the same value for q and τ, Figure 29 shows that for
ω0 = π/3 and τ = 1/3, a1 clearly allows to best reproduce
the ideal behavior.

In order to evaluate which of the two possible values for
the filter parameter is best for mimicking the non-integer
delay term effect over all the possible values of ω0 and
τ, the MSE between φt(ω, τ) and φP(ω,a) was tabulated,
choosing a = a1,2(ω0, τ). Figure 30 displays a graphical
representations of this comparison: a1 results best over all
the acceptable values of ω0 and τ. The only case for which
a1 and a2 feature the same performance is when τ = 1

and ω0 = π/2. Otherwise a1 always corresponds to an MSE
lower than a2.
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Figure 30: Evaluation of the MSE between the phase of the all-
pass filter and the ideal delay term for different values
of τ and ω0

Having shown that an all-pass filter with an appropriate
setting of its parameter can adequately emulate the behav-
ior of a non-integer delay term, a modified version of the
CLEAN algorithm [67] is used to perform signal deconvolu-
tion. Given the dirty signal y and the estimated acquisition
system impulse response h, the original algorithm steps
can be summarized in this way:

1. Find the position pk for which h has the best correla-
tion with y.

2. Optimize the amplitude gk of h so that gk ·h becomes
a good fit for y and subtract the final result from y.

3. Repeat steps 1 and 2, each time replacing y with the
result of step 2 until its energy becomes lower than a
fixed threshold or the maximum number of iterations
is reached.

4. Return all the combinations of positions pk and am-
plitudes gk found evaluating steps 1 and 2.
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Figure 31: ADID computational grid scheme: original grid points
are filled in black, while refined points are filled in
white. The grid scheme used in the naïve implementa-
tion is depicted in the top row, while the one exploited
by the fast method is shown in the bottom row.

To the purposes of the ADID algorithm, the first step in
this sequence is substituted with one capable to take into
account non-integer delays. The values which can be use for
pk are usually taken from an integer grid: in practice, this
grid is refined adding N − 1 equally spaced points between
each point. Within each interval, each of these new points is
associated with a value of the parameter τ used to estimate
the all-pass filter parameter a: in particular, for the j-th
point τ = j/N is set.

A naïve implementation of the ADID algorithm uses the
grid shown in the top row of Figure 31: at each white
point of the grid an equivalent acquisition system impulse
response he is synthesized by convolving h with the corre-
sponding all-pass filter, while at black points the original
h is used. Correlation with the original signal is then com-
puted and a vector is generated: the position pk within
this vector, corresponding to the highest correlation, is then
used along with the matching pulse.

Although straightforward, this procedure is quite sub-
optimal and slow, since there is the need to recompute he

at each point of the grid. An optimization of this policy is
shown on the bottom row of Figure 31: instead of evaluating
he at each point, all the N − 1 versions of h are first precal-
culated then used to calculate the correlations between each
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of them and y on the original grid. In fact, the white points
corresponding to the same j are separated by the very same
interval of the black points. Thinking about the black dots
as corresponding to j = 0, the position pk is determined
by the coordinates of the interval which achieves the best
correlation with y.
So, given the dirty signal y and the estimated acquisition

system impulse response h, the ADID algorithm steps can
be summarized in this way:

1. Set the number N of subdivision of the base interval.

2. Generate the N − 1 non-integer shifted versions he of
h by filtering h with a properly set all-pass filter P(z).

3. Call H the set of h and he

4. Find the position pk for which there is the best corre-
lation between y and any of the elements of H.

5. Optimize the amplitude gk of the corresponding ele-
ment hk of H so that gk · hk becomes a good fit for y

and subtract the final result from y1.

6. Repeat steps 4 and 5, each time replacing y with the
result of step 5 until its energy becomes lower than a
fixed threshold or the maximum number of iterations
is reached.

7. Return all the combinations of positions pk and am-
plitudes gk found evaluating steps 1 and 2.

Processing the signal incoming from a water-tank ex-
periment, varying the number of subdivisions does not
significantly affect the MSE measured between the input
signal and the one reconstructed after the deconvolution,
as shown in Figure 32. However, measuring the energy frac-
tion, i.e. the ratio between the cumulative energy of the 10

1 Supposing hk and y to be vector of the same size, an estimate of gk

minimizing the MSE between them is given by

gk =
〈y|hk〉
〈hk|hk〉

where 〈•|•〉 denotes the dot product.
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Figure 32: ADID performance evaluation for a constant number
of iterations as a function of the number of subdivi-
sions. The MSE on the top row is less affected than the
energy fraction, as shown in the bottom row.
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most prominent deconvolved pulses and the energy of the
whole restored signal, a performance improvement is ob-
servable. In fact, as the number of subdivisions grows, the
energy fraction increases, meaning that a lower number of
signal samples are necessary to capture signal information,
i.e. the two interfaces are more easily located.
Figure 33 shows the opposite behavior for what concerns

the dependencies from the number of iterations. As this
number grows, the MSE decreases, meaning than the incom-
ing signal is better and better reconstructed. However, at
the same time, the energy fraction slowly decreases as more
pulses are added to the deconvolved signal.

5.4 performance comparison

As already stated, image restoration techniques, such as
deconvolution, can be employed to improve the resolu-
tion of US images and their diagnostic significance. Two
approaches are the most common when dealing with US im-
age deconvolution. The first incorporates the Point Spread
Function (PSF) estimation procedure within the deconvolu-
tion algorithm. In the second approach, PSF and true image
estimation are two disjoint procedures.

Following this second processing flow and using the
pulses estimated using the methods presented in Chap-
ter 4, the algorithms presented in this chapter were eval-
uated as de-blurring techniques for biomedical images to
verify and compare their effectiveness. They were tested
on a US RF-signal database which comprises both syn-
thetic phantom (CIRS Model 047) and in-vivo Trans-Rectal
Ultrasound (TRUS) acquisitions of prostatic glands (264
frames), all obtained with a commercial US equipment (MY-
LAB90 Esaote S.p.a.). After the processing of the signal en-
velope, de-blurring performances were evaluated in terms
of enhancement in both image resolution and quality.

To quantify resolution improvement, axial Resolution
Gain at −6dB (Gax) [68] was measured; conversely, Peak
Signal to Noise Ratio (PSNR) and Quality Index (QI) were
used to compute the dissimilarity between the original and
processed image, in terms of loss of correlation, luminance
and contrast distortion [69]; finally image contrast enhance-
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Phantoms Gax PSNR [dB] QI CG

FWRD 0.84± 0.17 22.34± 2.09 0.79± 0.09 1.15± 0.07

WLSD 3.83± 0.95 22.56± 1.92 0.83± 0.07 2.56± 0.22

AdWLSD 1.37± 0.24 21.96± 1.76 0.80± 0.07 2.35± 0.24

ADID 6.67± 0.42 21.91± 1.68 0.80± 0.06 3.33± 0.56

In-vivo Gax PSNR [dB] QI CG

FWRD 1.64± 0.22 26.54± 2.38 0.93± 0.04 0.83± 0.11

WLSD 3.38± 1.13 26.63± 1.96 0.93± 0.03 3.22± 0.28

AdWLSD 3.79± 0.97 26.19± 1.85 0.93± 0.03 3.15± 0.26

ADID 8.73± 0.54 25.45± 2.06 0.91± 0.03 4.43± 0.86

Table 3: A performance comparison of the discussed deconvolu-
tion algorithms applied on echographic images: on top,
results related to the phantoms are shown, while results
on in-vivo images are shown on the bottom.

ment on phantoms was measured by means of Contrast
Gain (CG) [70].

All the images from the dataset were processed with the
proposed deconvolution algorithms driven by the pulse
estimated by the two following procedures: in the first one,
the pulse was estimated using the returning echo of a water-
tank experiment, while in the second one the estimation
was conducted directly on the in-vivo image. It was found
that image processing based on the second method pro-
vides better performance with respect to the considered
evaluation metrics. This is due to the system response aber-
ration caused by tissue intrinsic sound speed propagation
constant inhomogeneities, which can be accounted only by
estimating the pulse form the in-vivo frames.

Table 3 reports the mean values and the standard devia-
tions of the results obtained processing both phantom and
in-vivo images. All the discussed algorithms provide a good
resolution increase in the axial direction for both in-vivo
and phantom acquisitions, with the only exception of FWRD
applied to phantoms; better performance were recorded
processing the in-vivo frames. ADID features the best results
on both phantoms and in-vivo frames with a very low devia-
tion from the mean value. The standard WLSD scores second
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on phantom while its adaptive delay version is second best
on in-vivo images, however with a deviation higher than
ADID.

Peak SNR is almost the same for all the algorithms, with
fluctuations less than 2dB, both on phantoms and in-vivo
frames. These fluctuations are comparable to the relative
deviations from the mean values, thus negligible. The same
happens regarding image quality, the only noticeable fact
being that in-vivo images are better processed comparing to
the phantoms.

Finally, contrast gain estimations again award ADID for
what concerns the mean values. However, while these re-
sults are quite good, the same cannot be told concerning
the standard deviation: in this case AdWLSD is the best al-
gorithm on in-vivo frames, while FWRD gets the best results
on phantoms.

Figure 34 features a visual comparison of the different
deconvolution algorithms processing output. At a visual in-
spection, the lumen at coordinates [5, −25] is best rendered
by the FWRD algorithm, while the best overall improvement
in image resolution is achieved by ADID.

Although the best image background noise rejection is
again obtained by FWRD, several anatomical structures were
visible after ADID processing that could not be seen in
the original image. WLSD and AdWLSD are both good com-
promise solutions, featuring the fastest computation time
among all the discussed algorithms.
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Figure 34: Deconvolution algorithms visual comparison on echo-
graphic images; from top to bottom: a) Original image,
b) FWRD output, c) ADID output, d) WLSD output, e)
AdWLSD output.





6
ADAPT IVE F ILTER ING

A very important part of statistical signal processing is
constituted by the subject of adaptive filtering. The use of
algorithms originating from adaptive filter theory is usu-
ally advantageous whenever it is necessary to elaborate
signals which are non-stationary or are generated by an
environment of unknown statistics.

However at the price of an higher computational cost,
adaptive filtering often provides new signal-processing ca-
pabilities that would not be otherwise possible using fixed
filters designed by conventional methods. Because of their
intrinsic nature to adapt themselves to the different signal
characteristics, adaptive filters have been successfully ap-
plied to fields like communications, radar, seismology and
biomedical engineering.

In each one of these environments, a signal is gener-
ated and transmitted into a medium of some kind then
received and used for a generic task: this give way to a
model where a cascade of a transmitter, a channel and a
receiver is present. The function of the transmitter is to
convert the input signal into a waveform suitable for trans-

83
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mission over the channel. Typically the channel suffers from
two major kinds of non-idealities: noise and Intersymbol
Interference (ISI).
Despite the fact that noise is always present at the output

of every signal transmission/reception system, its cause
are the most variables. In general, it can be due the system
itself or to the environment in which the system operates:
an example of the former case is the thermal noise present
in every electronic equipment, while in the latter interfering
signals may degrade what is meant to be received.

ISI is quite a different mechanism: in practice, for any
physical channel it is impossible to have a time domain
impulse response h(t) of this kind

h(t) = Aδ(t − τ) (6.1)

or equivalently in the frequency domain

H(jω) = A exp(−jωτ) (6.2)

where A is a scaling factor, δ is the Dirac function and τ is
a proper time delay.

At most, it is possible that a physical system approxi-
mates (6.2) over a finite interval of frequency. Because of
this the channel is called dispersive and each transmitted
pulse blends with its neighbors according to a pattern called
ISI [71].

In order to recover the transmitted signal, the removal of
both noise and ISI is mandatory: this task is performed by
properly filtering the received signal. Moreover, if the scal-
ing factor varies along time, adaptive filtering techniques
are necessary to track these variations and improve the
estimate of the true signal.

6.1 least mean square adaptive filter

As already discussed in Chapter 5, an ultrasound imag-
ing acquisition system introduces an unwanted spectral
shaping of the backscattered echo signal. Usually this de-
formation is quite tricky to characterize and slowly varies
along time. Similar behaviors are observed in other acquisi-
tion systems too.
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Figure 35: LMS adaptive filter as a mean for deconvolving signals:
in this configuration the adaptive filter, once tuned, can
remove the spectral deformation due to the acquisition
equipment

If a proper order AR model [71] is used to describe the
spectral deformation of the input signal, assumed having
uncorrelated samples, a Least Mean Square (LMS) adaptive
filter can be used to remove this unwanted effect in a very
simple though effective way. While LMS algorithms are not
the only solution to this filtering problem, they are the
standard against which other linear adaptive filters are
benchmarked because of their simplicity.
As shown on the right side of Figure 35, an LMS algorithm

is built around two basic structures: a filtering process, de-
noted by H̃[n], which generates an estimated signal e[n]

combining its output with the desired response d[n] and
an Adaptive Weight Control (AWC) process, which adapts
the filter weight according to the input signal u[n] and the
estimated signal. If H̃[n] is an exact copy of the autoregres-
sive coefficient sequence H[n], the output of the filtering
process effectively reconstructs the feedback term of the AR
model: as a consequence, e[n] becomes an exact copy of the
input signal x[n].

If H is supposed to be time-invariant, the whole system
can be modeled in the time domain as

y[n] = x[n] −
∑N

i=1 y[n − i]Hi−1

e[n] = d[n] +
∑N−1

i=0 u[n − i]H̃i[n]

H̃[n + 1] = AWC(H̃[n],u[n], e[n])

(6.3)

where H̃i[n] is the i-th element of the filter H̃ at time n.
If the AWC rule is properly designed, after a brief period

of time, eventually H̃ will converge to H and the AWC
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should stop updating H̃. From this time on, system (6.3)
can be rewritten as

y[n] = x[n] −
∑N

i=1 y[n − i]Hi−1

e[n] = d[n] +
∑N−1

i=0 u[n − i]Hi

(6.4)

Recognizing that d[n] = y[n] and u[n] = y[n − 1], the
following relationships are obtained

y[n] = x[n] −
∑N

i=1 y[n − i]Hi−1

e[n] = y[n] +
∑N−1

i=0 y[n − i − 1]Hi

(6.5)

where both the second members of the left hand side terms
of (6.5) can be made identical with simple algebraic substi-
tutions, making e[n] an exact copy of x[n].
The simplest AWC rule minimize J[n] = e[n]2/2 using an

iterative steepest-descent algorithm:

H̃i[n + 1] = H̃i[n] − μ
∂J[n]

∂H̃i[n]
(6.6)

where μ > 0 is the so-called step-size parameter. It can be
shown [71] that, as long as x[n] is assumed uncorrelated, if
μ is properly chosen H̃ will indeed converge to H.

Exploiting (6.3) it is possible to explicit the update term
in (6.6) as

∂J[n]

∂H̃i[n]
=

∂J[n]

∂e[n]
· ∂e[n]

∂H̃i[n]
= e[n]u[n − i] (6.7)

so (6.6) finally becomes

H̃i[n + 1] = H̃i[n] − μe[n]u[n − i] (6.8)

As a consequence, at each time step the LMS algorithm
performs the following operations

1. f[n] =
∑N

i=1 u(n − i)Hi[n]

2. e[n] = d[n] + f[n]

3.H̃i[n + 1] = H̃i[n] − μe[n]u[n − i]

Having assumed H to be time independent, the mean
time necessary for H̃ to converge to H depends on two
factors: the initial value of H̃ and the step-size parameter
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Figure 36: LMS algorithm overall and final MSE dependency on
the step-size parameter: overall MSE takes into consid-
eration the initial transient while final MSE describes
only the last 100 time steps.

μ. The closer H̃ is to H, the less time is required for conver-
gence. The larger the step-size parameter μ, the faster the
convergence rate.

Large values of μ may however lead to instability due
to the implicit feedback loop on e[n]: the highest value
of μ which guarantee stability is called critical value μcrit

and is rather difficult to identify. It is nevertheless the best
value at which μ can be set in order to get the maximum
convergence rate.

To find the optimal value of μ a sequence of values is
generated; then each value in the sequence, 100 different
realizations of the same first order AR model were simu-
lated, measuring the mean overall MSE between the whole
true and estimated input sequence and the mean final MSE
between the last 100 samples of the same sequences. Fig-
ure 36 shows the behavior of both the overall and final MSE
as a function of μ.
Both the curves feature a minimum, but they hare located

at very different positions along the μ axis. The minimum of
the overall MSE corresponds to higher values of μ as the du-
ration of the initial transient is lessened in this case. On the
other hand, the final MSE curves reach its minimum for low
values of μ as the prediction of the AR model parameters is
much more stable and reliable.
Figure 37 displays a comparison of the different LMS algo-

rithm behaviors for some values of the step-size parameter
μ. For each value of μ, 100 different realizations of the same
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Figure 37: LMS algorithm convergence behavior for different val-
ues of μ and constant H: larger values of the step-size
parameter corresponds to higher convergence rates.

first order AR model were simulated, recording both the
mean estimated AR coefficient and measuring the mean MSE
between the true and estimated input sequence.

Larger values of the step-size parameter corresponds to
higher convergence rates, meaning that the estimated value
of the filter coefficient more rapidly converges to the target
value. However, the same values of μ corresponds to larger
estimation errors, which should be avoided in order to
correctly estimate the input signal x[n].

In the more general case of H dependent on time, it is
still possible to have convergence of H̃ to H: if H changes
slowly in time, the AWC may have enough time to update
H̃, as shown in Figure 38. However, if an abrupt change
happens only high value of μ allow to track the AR model.
Here, for each value of μ, 100 different realizations of the

same time-varying first order AR model were simulated,
measuring the mean overall MSE between the whole true
and estimated input sequence and the mean finale MSE
between the last 100 samples of the same sequences. It is
evident that the higher the value of μ, the more reliable the
tracking of H is.
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Figure 38: LMS algorithm convergence behavior for different val-
ues of μ and time-varying H: only the largest value of
the step-size parameter allows for a correct tracking.

Comparing Figure 37 with Figure 38, it seems that finding
the best solution for tracking both time-dependent and
time-independent AR models requires a way to adaptively
change the time-step parameter μ. In this case, in fact, it
could be possible to smoothly move from one performance
curve to another, exploiting both the fast convergence rate
corresponding to high values of μ, and the smooth and
reliable estimation of H due to lower values of μ.

6.1.1 Adaptive Gain LMS

An improvement of (6.6) which allows for the updating of
the step-size parameters involves a steepest-descent itera-
tive minimization on μ.

H̃i[n + 1] = H̃i[n] − μ[n]
∂J[n]

∂H̃i[n]

μ[n + 1] =
[
μ[n] − α

∂J[n]
∂μ[n]

]μ+

μ−

(6.9)

where α > 0 is called learning-rate parameter, while μ−

and μ+ are respectively the lower and upper saturating
threshold on μ, used to keep the estimated value of μ within
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acceptable bounds.
By expanding the first equation in (6.9), a relationship

identical to (6.8) is found, with the only notable exception
that here μ depends on the time step n:

H̃i[n + 1] = H̃i[n] − μ[n]e[n]u[n − i] (6.10)

Doing the same with the second equation of (6.9), an
auxiliary set of variables Φi[n] must be introduced into the
computation:

Ψi[n] =
∂H̃i[n]
∂μ[n]

μ[n + 1] =
[
μ[n] − αe[n]

∑N
i=1 u[n − i]Ψi[n]

]μ+

μ−

(6.11)

Here Ψi[n] represents the gradient of the LMS adaptive
filter coefficients with respect to the step-size parameter.
The update rule for Ψi[n] is found differentiating (6.10)
with respect to μ[n]:

η[n] = e[n] + μ[n]
∑N

i=1 u[n − i]Ψi[n]

Ψi[n + 1] = Φi[n] − u[n − i]η[n]
(6.12)

where η[n] is another auxiliary variable representing the
input signal second order estimation, as it appears more
evident from the following relationship

η[n] = d[n] +

N∑
i=1

u[n − i](Hi[n] + μ[n]Ψi[n]) (6.13)

obtained from (6.12) by expanding e[n] and collecting u[n−

i].
In conclusion, at each time step the Adaptive Gain LMS

algorithm performs the following operations

1. f[n] =
∑N

i=1 u(n − i)Hi[n]

2. φ[n] =
∑N

i=1 u(n − i)Ψi[n]

3. e[n] = d[n] + f[n]

4. η[n] = e[n] + μ[n]φ[n]

5.H̃i[n + 1] = H̃i[n] − μ[n]e[n]u[n − i]

6.Ψi[n + 1] = Ψi[n] − η[n]u[n − i]

7. μ[n + 1] = [μ[n] − αe[n]φ[n]]μ+
μ−
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Figure 39: Adaptive Gain LMS algorithm performance depen-
dency on the step-size parameter: two different opti-
mization criteria can be chosen, leading to very differ-
ent algorithm behaviors.

The lower threshold μ− is usually set to 0, while μ+ and
α are left free for optimization. A typical procedure used to
setup these parameters is made up of two steps: first, with
α = 0, the best value of μ is found optimizing the overall
or final MSE in a fashion like to what was discussed in the
previous section; μ+ is then set to two times this value.
Finally, α is optimized, looking again for that particular
value which minimizes the overall or final MSE.

Figure 39 displays the estimated dependency of the two
discussed quantities as a function of μ+ and α. Also in this
case 100 different realizations of the same time-independent
first order AR model were simulated, measuring each time
the mean overall MSE between the whole true and estimated
input sequence and the mean finale MSE between the last
100 samples of the same sequences.

When μ+ is chosen so to optimize the final MSE (μ+ =

μF � 2 · 8.8 10−4), the parameter α does not have a signif-
icant influence on the final MSE; the overall MSE however
gets lower for larger values of α, so α around 10−4 should
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Figure 40: Adaptive Gain LMS algorithm performance on time-
invariant AR model: once a proper μ+ value is chosen,
good performance are obtained for a wide range of
learning-rate parameters.

be chosen. In the case of μ+ optimized for overall MSE
(μ+ = μO � 2 · 10−2), the parameter α influences both the
final and overall MSE: high values of α can be used to fur-
ther reduce the overall MSE, while optimization of the final
MSE requires very low value of α.

Figure 40 displays a comparison of the different LMS
algorithm behaviors for some values of the learning-rate
parameter α for a fixed valued of the upper saturating
threshold μ+ in the case of a time-invariant AR model.
For each value of α, 100 different realizations of the same
first order AR model were simulated, recording the mean
estimated optimal step-size parameter, the mean estimated
AR coefficient and measuring the mean MSE between the
true and estimated input sequence.
All the values of α in the simulated range allows for both

a good convergence rate and a low final MSE. Higher values
of α corresponds to a faster convergence of the estimated
AR model coefficient to its true value.

Figure 41 displays a comparison of the different LMS
algorithm behaviors for some values of the learning-rate
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Figure 41: Adaptive Gain LMS algorithm performance on time-
variant AR model: good tracking performance strongly
depends on the value of the learning-rate parameter.

parameter α for a fixed valued of the upper saturating
threshold μ+ in the case of a time-variant AR model, featur-
ing both slow and abrupt change in model parameters.

Even in this case it is possible to have H̃ converge to H:
higher values of the learning-rate parameter can be used to
improve tracking performance in presence of discontinuities
in the AR coefficients.

6.2 non-linear even moments

The LMS algorithm belongs to a class of adaptive methods
designated as Second Order Statistics (SOS): this family of
techniques deals only with signal power, thus requiring
only the first and second moment of the input signal to be
estimated. These methods are suitable when the signal to be
filtered is Gaussian as these two quantities completely char-
acterize the signal. As already discussed, very interesting
simplifications leads to algorithms which computationally
slight intensive, involving only linear operations.
A more versatile family is constituted by the Higer Order

Statistics (HOS) adaptive algorithms, which make use of a
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larger set of signal moments, making the techniques be-
longing to this class capable of dealing with non-Gaussian
input signals. Although these algorithms require more in-
tensive computations since they usually involve non linear
operations, they yield better approximations of the true
distribution of the elaborated signals [72].

The simplest HOS extension of the LMS algorithm is the
Least Mean Fourth (LMF) adaptive filter [73]. In this al-
gorithm, the function the AWC rule aims to minimize is
substituted by the following fourth order function:

J[n] =
1

4
e[n]4 (6.14)

Higher order function can be used as well: suitable func-
tion are typically in the form

J[n] =
1

2K
e[n]2K (6.15)

where K is a suitable integer used to chose the model order.
Applying (6.6) to this function choice, the following AWC

rule is obtained:

H̃i[n + 1] = H̃i[n] − μe[n]2K−1u[n − i] (6.16)

which is identical to (6.8) with the only exception of the
non linear power operator applied to the estimated signal
e[n].

A further optimization can be made observing that any
positive weight combination of even powers is a convex
function: this means that the resulting function has no local
minima and only one global minimum. It is thus suitable
for steepest-descent optimization.
In this case AWC rule minimizes

J[n] =

M∑
i=1

ai

2i
e[n]2i (6.17)

where M set the maximum model order and ai is a set of
positive weights defining the convex minimization surface.
Applying (6.6) in this case too the AWC rule becomes:

H̃i[n + 1] = H̃i[n] − μ

(
M∑
i=1

aie[n]2i−1

)
u[n − i] (6.18)
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Figure 42: NEM algorithm performance dependency on step-size
and function weights: overall MSE is greatly dimin-
ished for larger values of a2, however μ must be kept
low to ensure convergence.

The algorithm originating from this choice is called Non-
linear Even Moments (NEM) [72].
At each time step the NEM algorithm compute the follow-

ing operations

1. f[n] =
∑N

i=1 u(n − i)Hi[n]

2. e[n] = d[n] + f[n]

4. ε[n] =
∑M

i=1 aie[n]2i−1

3.H̃i[n + 1] = H̃i[n] − με[n]u[n − i]

Optimization of this algorithms involves the choice of
both μ and the minimization function weights. While for the
latter no optimization policy is known, the former can be
again chosen to minimize the overall or final MSE between
the true and the estimated input signal.

Setting different values of a2 and performing the same
tests done for the previous algorithms, Figure 42 was ob-
tained: this graph shows that as a2 becomes larger, the
overall MSE reduces with respect to the same value of μ.
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Figure 43: NEM algorithm convergence study on a time-invariant
AR model for a varying a2 and constant μ: high values
of a2 allow for a faster convergence.

This means that higher convergence rate can be obtained
at a cost of lower values of μ. Moreover, the minima of the
two curves gets closer when a2 gets larger, meaning that it
becomes easier to find a value of μ which minimizes both
the overall and final MSE.

Figure 43 is a study of the convergence behavior of the
NEM algorithm performed on 100 different realizations of
the same first order time-invariant AR model, for the same
value of the step-size parameter μ. The weight a1 was kept
constant at the value of 1, while a2 was set to different
values; the mean estimated AR coefficient the mean MSE be-
tween the true and estimated input sequence were recored.
All the values of a2 allowed NEM convergence to the target
coefficient value: as anticipate in Figure 42, higher values
of a2 corresponds to faster convergence.

Figure 43 shows a comparisons of the different conver-
gence behaviors of the NEM algorithm estimated averaging
100 different realizations of the same first order time-variant
AR model, for the same value of the step-size parameter
μ. The same policy of Figure 43 was used for the function
weights.
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Figure 44: NEM algorithm convergence study on a time-variant
AR model for a varying a2 and constant μ: high values
of a2 allow for a faster convergence.

The tracking of time-variant AR models is not as suc-
cessful as for the case of the adaptive gain LMS algorithm,
nevertheless good agreement between the estimated filter
weight and its true value can be obtained for high values of
a2.

An adaptive gain version of the NEM algorithm can be
devised in a manner very similar to the one used for the
LMS adaptive filter, as discussed in Section A.1. The opera-
tion scheduled at each time step for this algorithm are the
following:

1. f[n] =
∑N

i=1 u[n − i]H̃i[n]

2. φ[n] =
∑N

i=1 u[n − i]Ψi[n]

3. e[n] = d[n] + f[n]

4. ε0[n] =
∑M

i=1 aie[n]2i−1

5. ε1[n] =
∑M

i=1(2i − 1)aie[n]2i−2

6. η[n] = ε0[n] + μ[n]ε1[n]φ[n]

7.H̃i[n + 1] = H̃i[n] − μ[n]ε0[n]u[n − i]

8.Ψi[n + 1] = Ψi[n] − η[n]u[n − i]

9. μ[n + 1] = [μ[n] − αε0[n]φ[n]]μ+
μ−
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Figure 45: Schematic of the sub-band adaptive filter: this design
is equivalent to the left side of figure 35; within the
gray shaded region, processing happens at a different
rate.

6.3 sub-band adaptive filter

Another way to improve the convergence rate of the LMS
algorithm is to use a sub-band decomposition scheme for
the filtering process. In fact it has been observed [74] that
convergence performance depends on the length of the
adaptive filter: the longer the filter, the slower the conver-
gence.

Moreover, in ultrasound processing applications the sig-
nal elaborated by the adaptive filter is correlated: the stan-
dard LMS algorithm guarantee stability for a proper value
of μ only for uncorrelated signals. Adopting a sub-band de-
composition scheme may be helpful, as correlation length in
each band can be diminished exploiting properly designed
filter banks.

These advantages come at the cost of the introduction of
an additional analysis and a synthesis section, enclosing a
region where processing happens at rate different from the
external environment: the Sub-band Adaptive Filter (SAF)
algorithm in fact belongs to the so called multirate filter
class.



6.3 sub-band adaptive filter 99

In order to perform sub-band decomposition, a pair of
perfect reconstruction analysis and synthesis filters are
needed, respectively denoted in Figure 45 by G0(z), G1(z),
F0(z) and F1(z). Orthogonal Wavelet filters were chosen for
this application.

Next, polyphase decomposition must be applied to the
FIR filter H̃:

H̃(z) = H̃0(z
2) + z−1H̃1(z

2) (6.19)

where H̃0 and H̃1 are both FIR filters accounting respectively
for the even and odd coefficients of H̃.

Finally, exploiting the linearity of the filtering and down-
sample operation it is possible to highlight two similar
signal paths: one originating from u0[n] and ending into
e0[n], the other from u1[n] to e1[n]. Each path corresponds
to a different signal band: because of the Wavelet choice,
filter G0 is associated to the lower half-band, while G1 to
the upper half.
In this case, the function cost to be minimized is chosen

as:

J[n] =
1

2
(a0e0[n]2 + a1e1[n]2) (6.20)

where a0 and a1 are two positive real constants.
Applying (6.6) to this function choice, it is necessary

to distinguish between the filter coefficients belonging re-
spectively to H̃0 and H̃1. Because of this, the AWC rule is
effectively composed by two rules

H̃0,i[n + 1] = H̃0,i[n] − μ
∂J[n]

∂H̃0,i[n]

H̃1,i[n + 1] = H̃1,i[n] − μ
∂J[n]

∂H̃1,i[n]

(6.21)

where H̃0,i[n] and H̃1,i[n] are respectively the i-th coeffi-
cients of H̃0 and H̃1.

Expanding the partial derivatives in (6.21) the following
relationship are obtained:

∂J[n]

∂H̃0,i[n]
= a0e0[n]

∂e0[n]

∂H̃0,i[n]
+ a1e1[n]

∂e1[n]

∂H̃0,i[n]
∂J[n]

∂H̃1,i[n]
= a0e0[n]

∂e0[n]

∂H̃1,i[n]
+ a1e1[n]

∂e1[n]

∂H̃1,i[n]

(6.22)
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Then, from Figure 45, it is possible to write down both
e0[n] and e1[n] respectively as

e0[n] = d0[n] +
∑N/2

i=1 u00[n − i]H̃0,i[n]

+
∑N/2

i=1 u01[n − i]H̃1,i[n]

e1[n] = d1[n] +
∑N/2

i=1 u10[n − i]H̃0,i[n]

+
∑N/2

i=1 u11[n − i]H̃1,i[n]

(6.23)

Thus, the generic term ∂eα[n]/∂H̃β,i[n] becomes

∂eα[n]

∂H̃β,i[n]
= uαβ[n − i] (6.24)

Substituting (6.24) into (6.22), (6.21) becomes

H̃0,i[n + 1] = H̃0,i[n] − μa0e0[n]u00[n − i]

−μa0e0[n]u01[n − i]

H̃1,i[n + 1] = H̃1,i[n] − μa0e0[n]u10[n − i]

−μa0e0[n]u11[n − i]

(6.25)

It is in general possible to extend the SAF algorithm to
an arbitrary number of sub-bands exploiting, for example,
the structure of the Wavelet Packet Transform (WPT): in this
case, the filters G0, G1 are substituted by the orthogonal
decomposition filter bank G, as well as F0, F1 by the recon-
struction bank F. At the same time, the coefficients of the
filter H̃ are subdivided into smaller groups, according to
the remainder of the division of their index by the total
number of bands: if K bands are used, coefficients H̃0, H̃K,
H̃2K, . . . will be grouped together; the same will happen for
coefficients H̃1, H̃K+1, H̃2K+1, . . . and so on.
The AWC rule thus become

H̃β,i[n + 1] = H̃β,i[n] − μ

K−1∑
α=0

aαeα[n]uαβ[n − i] (6.26)

where α is an integer index running from 0 to K − 1.
In conclusion, at each time step within the gray shaded

region of Figure 45, for α,β ∈ [0,K − 1], the SAF algorithm
performs the following operations:

1. fα[n] =
∑K−1

β=0

∑N/K
i=1 uαβ[n − i]Hβ,i[n]

2. eα[n] = dα[n] + fα[n]

3.H̃β,i[n + 1] = H̃β,i[n] − μ
∑K−1

α=0 aαeα[n]uαβ[n − i]



6.3 sub-band adaptive filter 101

10
−4

10
−3

10
−2

10
−1

10
0

−25

−20

−15

−10

−5

0

5

10

15

μ

M
S

E
 [d

B
]

Overall
Final

Figure 46: SAF algorithm overall and final MSE dependency on
the step-size parameter: the minima of the two curves
are closer each other than the standard LMS algorithm.

Processing before entering this region involves filtering with
the analysis filter bank and downsampling; after exiting the
same region, upsampling, filtering with the synthesis filter
bank and summation is performed.

To optimize the SAF behavior, the set of weight a and the
step-size parameter can be used. In particular, it is useful
to choose each aα as the reciprocal of the power associated
to the corresponding signal band α. This choice allows for
faster convergence rates of the SAF algorithm [74].

As it is usually not possible to know in advance these
values, or when the signal to be elaborated is non-stationary,
power estimations after the processing of the input signal
u[n] with the corresponding analysis filter Gα can be per-
formed. The reciprocal of these estimations are used in
place of the constant weighting coefficients. This technique
is useful to track time variations of the power distribution
among signal bands.

To find the optimal value of μ, a technique identical to
the one used for the standard LMS algorithm may be em-
ployed. Figure 46 shows how final and overall MSE change
as function of μ, averaging the results of 100 simulations of
the same second order AR model. The SAF algorithm was
setup for estimating a second order filter using a two band
scheme designed on the Haar wavelet.
Both curves feature a minimum, located each other closer

than the minima of the basic LMS algorithms. As already
discussed for the NEM algorithm in the previous section,
this means that it is easier to find a value of μ capable to
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Figure 47: SAF algorithm convergence behavior for different val-
ues of μ and time-invariant AR model: both coeffi-
cients can be estimated quite accurately with fast con-
vergence.

minimize both the overall and final MSE.
Figure 47 displays a comparison of the different SAF al-

gorithm behaviors for some values of the step-size parame-
ter μ. For each value of μ, 100 different realizations of the
same second order time-invariant AR model were simulated,
recording both the mean estimated AR coefficients and mea-
suring the mean MSE between the true and estimated input
sequence.
The results obtained are in accordance to Figure 46: in fact,

μ = 3e−2 allows for faster convergence, a lower overall MSE
but a higher final one; on the other side, when μ = 1e − 2,
a slower convergence and an higher overall MSE are found,
while the final MSE improves of almost 3dB.

In the case of a second order time-variant AR model,
tracking performance are globally worse than the adaptive
gain LMS algorithm, with a prediction MSE of at most −20dB
when convergence is reached. As expected, higher values
of μ corresponds to faster tracking.

Again, an adaptive gain version of the NEM algorithm
can be derived to improve the time-tracking capabilities,
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Figure 48: SAF algorithm convergence behavior for different val-
ues of μ and time-variant AR model: tracking perfor-
mance are much worse than the standard LMS algo-
rithm.

as discussed in Section A.2. For this adaptive algorithm,
the following operations will be executed within the gray
shaded region for α,β ∈ [0,K − 1] instead of the already
listed ones:

1. fα[n] =
∑K−1

β=0

∑N/K
i=1 uαβ[n − i]H̃β,i[n]

2. φα[n] =
∑K−1

β=0

∑N/K
i=1 uαβ[n − i]Ψβ,i[n]

3. eα[n] = dα[n] + fα[n]

4. ηα[n] = eα[n] + μnφα[n]

5.H̃β,i[n + 1] = H̃β,i[n] − μ(n)
∑K−1

α=0 aαeα[n]uαβ[n − i]

6.Ψβ,i[n + 1] = Ψβ,i[n] −
∑K−1

α=0 aαηα[n]uαβ[n − i]

7. μ[n + 1] =
[
μ[n] − ξ

∑K−1
α=0 aαeα[n]φα[n]

]μ+

μ−

Processing outside this region goes on as in the fixed gain
algorithm: the same structure of filter banks, downsamplers
and upsamplers may be used.
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Figure 49: IIR configuration LMS adaptive filter for signal decon-
volutions: this structure can be useful for restoring
either very long finite or infinite deformations with
high convergence rates.

6.4 infinite impulse response lms

Switching to an Intinite Impulse Response (IIR) filter model
is another way to improve the convergence rate of the LMS
algorithm when dealing with very high order AR model.
This is moreover the most straightforward solution to re-
cover the input sequence of an Auto-Regressive Moving-
Average (ARMA) model [71] as shown in Figure 49. In fact,
the adaptive filter structure is the mirror inverse version of
the one generating the spectrally deformed signal y[n].

In this case, two adaptive filters are used, one recovering
AR part of the model (H̃d), the other estimating the Moving-
Average (MA) part (H̃n). The coefficients of these two filters
will become estimates of the respective elements of Hd and
Hn.

Some consideration must be made when the same filter-
ing structure is used to estimate the coefficients of an AR
model. In fact, only the filter Hd is present in this case. If a
number of coefficients equal or greater than the AR model
order is used for the H̃d, filters H̃n and H̃d will eventually
converge respectively to 0 and to Hd in the same fashion of
the standard LMS algorithm.
However, if the number of coefficients is lower than the AR

model order, it is not possible for the two filters to converge
to the correct values. Nevertheless, the adaptive algorithm
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is forced by its AWC rule to recover the original signal x[n]

at its best, using all its degree of freedom. Exploiting the Z-
transform of H̃n and H̃d it is possible to obtain an estimate
of Hd.

In fact, with reference to Figure 49, in the Z-transform
domain the following relationships does hold

Y(z) = 1
1+z−1Hd(z)

X(z)

E(z) =
1+z−1H̃d(z)

1+z−1H̃n(z)
Y(z)

(6.27)

where Hd(z), H̃d(z) and H̃n(z) are respectively the Z-transform
of the filters Hd, H̃d and H̃n.
If convergence is reached E(z) = X(z), so it must be

1 + z−1Hd(z) =
1 + z−1H̃d(z)

1 + z−1H̃n(z)
(6.28)

which leads to the following relationship between Hd(z)

and the two adaptive filters

Hd(z) =
H̃d(z) − H̃n(z)

1 + z−1H̃n(z)
(6.29)

This is an effective mean for estimating very long Hd fil-
ters using short adaptive filters. In fact (6.29) can potentially
account for infinite length Hd filters due to its structure,
identical to the one of an IIR filter. A similar result can be
obtained to estimate the parameters of a MA model, simply
by switching H̃d with H̃n and vice versa:

Hn(z) =
H̃n(z) − H̃d(z)

1 + z−1H̃d(z)
(6.30)

In order to derive the sequence of operations defining the
AWC rule, the relationship linking the inputs u[n] and d[n]

to the estimated signal must be drawn:

e[n] = d[n]+

M∑
i=1

Hd,i[n]u[n− i]−

N∑
i=1

Hn,i[n]e[n− i] (6.31)

where M and N are respectively the order of the filters H̃d
and H̃n, and Hd,i[n] and Hn,i[n] their i-th coefficients at
time-step n.
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The AWC rule minimizes the same instantaneous cost
function of the FIR version, so J[n] = e[n]2/2. If a fixed gain
steepest-descent algorithm is applied to optimize both the
filters, the following rules are obtained:

H̃d,i[n + 1] = H̃d,i[n] − μ
∂J[n]

∂H̃d,i[n]

H̃n,i[n + 1] = H̃n,i[n] − μ
∂J[n]

∂H̃n,i[n]

(6.32)

Expanding the two partial derivatives, the dependency
of the current estimated value e[n] from its past samples
must be considered:

∂J[n]

∂H̃d,i[n]
= e[n]

∂e[n]

∂H̃d,i[n]

= e[n]
(
u[n − i] −

∑N
j=1 H̃n,j[n]

∂e[n−j]

∂H̃d,i[n]

)
∂J[n]

∂H̃n,i[n]
= e[n]

∂e[n]

∂H̃n,i[n]

= e[n]
(
−e[n − i] −

∑N
j=1 H̃n,j[n]

∂e[n−j]

∂H̃n,i[n]

)
(6.33)

If the two filters adapt slowly enough, the following
approximations hold [71]:

∂e[n−j]

∂H̃d,i[n]
� ∂e[n−j]

∂H̃d,i[n−j]
= αi[n − j]

∂e[n−j]

∂H̃n,i[n]
� ∂e[n−j]

∂H̃n,i[n−j]
= βi[n − j]

(6.34)

Combining (6.34) with (6.33) highlights another couple
of recursive relationships:

αi[n] = u[n − i] −
∑N

j=1 H̃n,j[n]αi[n − j]

βi[n] = −e[n − i] −
∑N

j=1 H̃n,j[n]βi[n − j]
(6.35)

Finally, it is possible to plug αi[n] and βi[n] into (6.32)
obtaining

H̃d,i[n + 1] = H̃d,i[n] − μe[n]αi[n]

H̃n,i[n + 1] = H̃n,i[n] − μe[n]βi[n]
(6.36)

In conclusion, at each time-step, the IIR LMS algorithm
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Figure 50: LMS IIR algorithm overall and final MSE dependency
on the step-size parameter: overall results are slightly
better than LMS FIR algorithm.

performs the following operations

1. f1[n] =
∑M

i=1 H̃d,i[n]u[n − i]

2. f2[n] =
∑N

i=1 H̃n,i[n]e[n − i]

3. g1,i[n] =
∑N

j=1 H̃n,j[n]

4. g2,i[n] =
∑N

j=1 H̃n,j[n]

5. e[n] = d[n] + f1[n] − f2[n]

6. αi[n] = u[n − i] − g1,i[n]

7. αi[n] = −e[n − i] − g2,i[n]

8.H̃d,i[n + 1] = H̃d,i[n] − μe[n]αi[n]

9.H̃n,i[n + 1] = H̃n,i[n] − μe[n]βi[n]

Despite its complexity, only one parameter is needed to
optimize the behavior of this algorithm: like the FIR LMS
algorithm, μ is left free for optimization.

Adopting the same strategy employed for FIR LMS al-
gorithm optimization, Figure 50 was obtained. The best
overall MSE obtained in the case of a time-invariant first
order ARMA model is better than the result reported for the
FIR version on an AR model; however, a far worse result is
found for the final MSE.

This may be due to the fact that the optimization surface
has may local minima [71], in addition to global minima,
meaning that, during optimization, LMS IIR algorithm can
get stuck far away from the optimal solution.

This is clearly observable in Figure 51, where the LMS IIR
algorithm is tested against a first order time-invariant ARMA
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Figure 51: LMS IIR algorithm convergence behavior for different
values of μ on a time-invariant ARMA model: how-
ever model weights are not correctly estimated, the
resulting prediction MSE is acceptable.
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Figure 52: LMS IIR algorithm convergence comparisons for dif-
ferent values of μ on a time-variant ARMA model:
a behavior very like to the time-invariant model is
observed.
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model. While the prediction MSE is acceptable and the con-
vergence rate is still quite good, the estimated values for the
AR and MA weights are not matching their corresponding
true values. As in the case of the FIR version, higher values
of the step-size parameter ar useful in order to obtain fast
convergence rate, but almost always corresponds to higher
prediction MSE, and vice versa.

The same happens in the case of a time-variant ARMA
model: the algorithm is still capable to track both smooth
and abrupt variations in the model parameters, however
it converges to wrong values. In this case it is even more
evident the fact that a time-based optimization of the step-
size parameter can greatly help in achieving better results in
the final prediction MSE while keeping an high convergence
rate.

An adaptive gain version of the IIR LMS algorithm can be
obtained following the procedure illustrated in the case of
the standard LMS, as discussed in Section A.3. It has how-
ever a very high computational cost due to the presence of
many filters linked to the feedback loops. At each time step,
this algorithms computes the following filtering operations:

1. f1[n] =
∑M

i=1 u[n − i]H̃d,i[n]

2. f2[n] =
∑N

i=1 e[n − i]H̃n,i[n]

3. f3[n] =
∑N

i=1 φ[n − i]H̃n,i[n]

4.g1,i[n] =
∑N

j=1 ai[n − j]H̃n,j[n]

5.g2,i[n] =
∑N

j=1 bi[n − j]H̃n,j[n]

6.g3,i[n] =
∑N

j=1 αi[n − j]H̃n,j[n]

7.g4,i[n] =
∑N

j=1 βi[n − j]H̃n,j[n]

8. Γ1[n] =
∑M

i=1 u[n − i]Ψd,i[n]

9. Γ2[n] =
∑N

i=1 e[n − i]Ψn,i[n]

10. Γ3,i[n] =
∑N

j=1 ai[n − j]Ψn,j[n]

11. Γ4,i[n] =
∑N

j=1 bi[n − j]Ψn,j[n]

The remaining operations are linked to the update of the
quantities that are input to the filters and give origin to the
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final estimate e[n]:

12. e[n] = d[n] + f1[n] − f2[n]

13. ai[n] = u[n − i] − g1,i[n]

14. bi[n] = −e[n − i] − g2,i[n]

15. φ[n] = Γ1[n] − Γ2[n] − f3[n]

16. αi[n] = −Γ3,i[n] − g3,i[n]

17. βi[n] = −φ[n − i] − Γ4,1 − g4,i

18. η[n] = e[n] + μ[n]φ[n]

19.H̃d,i[n + 1] = H̃d,i[n] − μ[n]e[n]ai[n]

20.H̃n,i[n + 1] = H̃n,i[n] − μ[n]e[n]bi[n]

21. Ψdi
[n + 1] = Ψdi

[n + 1] − η[n]ai[n] − μ[n]e[n]αi[n]

22. Ψni
[n + 1] = Ψni

[n + 1] − η[n]bi[n] − μ[n]e[n]βi[n]

23. μ[n + 1] = [μ[n] − Ke[n]φ[n]]μ+
μ−

6.5 performance comparison

As discussed in the introduction of this chapter, adaptive fil-
tering techniques can be fruitfully employed to remove the
time-varying signal deformations present in environments
such as US imaging. Because of this, algorithm configu-
rations discussed in this chapter were designed in order
to perform signal deconvolution, so to estimate the input
signal x[n]. This signal can be thought as the undeformed
incoming echo before RF signal acquisition: the various AR
models reflect different way to describe the effect the US
transducer has on this signal.

In this section, the algorithms presented in this chapter
are testbenched as de-blurring techniques for biomedical
images to verify and compare their effectiveness. Using
the same databases and metrics discussed in Section 5.4,
images were processed with the proposed deconvolution
algorithms initialized with null filters and the parameters
listed in Table 4.

Two parameters category were identified and optimized:
filter related parameters which include, where applicable,
order, optimization function weights (NEM) and number of
bands (SAF); on the other hand, step-size related parame-
ters include, where applicable, the step-size and its upper
threshold and the learning-rate (Adaptive Gain LMS).
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Algorithm Filter Step-size Power [dB]

LMS N = 2 μ = 1.29 −27.7
LMS-AG N = 3 μ+ = 0.93,α = 7.28 −27.5
LMS-NEM N = 3,a2 = 1.36 μ = 0.15(∗) −25.2
LMS-SAF N = 4,K = 4 μ = 0.23 −29.3
LMS-IIR M = 3,N = 8 μ = 0.13 −29.3

Table 4: Optimized LMS parameters for US image deconvolution:
the same parameters where used on phantoms and in-vivo
images. (*) For in-vivo images μ = 0.053 was found.

The values listed in Table 4 were obtained minimizing
the overall estimated signal power e[n] over a subset of the
whole database. This procedure is equivalent to a minimiza-
tion of the variance of estimated signal e[n] and is one of
the most widely used parameter optimization technique
when it is impossible to know the true signal x[n],

The main alternative to this optimization technique is
based on the minimization of the correlation between the
output sequence samples. This procedure, assuming of the
true input signal to be white, did not prove as effective as
the variance minimization: this is most probably due to the
fact the true input signal is not perfectly white, as reported
by some authors [56, 57, 58, 54].

Table 5 reports the mean values and the standard devia-
tions of the results obtained processing both phantom and
in-vivo images. All the discussed adaptive filters features
a positive increase in axial resolution both on in-vivo and
phantom images, with very similar performance between
the two kind of images. Best results in terms of mean axial
resolution gain is achieved by the standard LMS algorithm,
however the SAF algorithm features the highest ratio be-
tween mean and standard deviation. Second in line on the
base of both these criteria is the adaptive gain variant of the
standard LMS algorithm.
Peak SNR features some significant variants on the in-vivo

images, ranging from 24 to the almost 30dB of the NEM
algorithm. While this same algorithm achieves the best re-
sults on the phantom images too, its fluctuations around the
mean value are the biggest among all the tested algorithms.
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Phantoms Gax PSNR [dB] QI CG

LMS 1.81± 0.16 21.06± 1.47 0.71± 0.11 1.76± 0.20

LMS-AG 1.39± 0.23 21.37± 1.30 0.73± 0.10 1.65± 0.11

LMS-NEM 1.30± 0.17 24.30± 1.47 0.90± 0.03 1.32± 0.05

LMS-SAF 1.41± 0.21 22.38± 1.55 0.79± 0.10 1.39± 0.06

MS-IIR 1.60± 0.30 23.47± 1.26 0.87± 0.03 1.45± 0.10

In-vivo Gax PSNR [dB] QI CG

LMS 1.93± 0.39 24.04± 2.00 0.85± 0.06 2.84± 0.31

LMS-AG 1.81± 0.22 24.30± 1.93 0.86± 0.06 2.04± 0.17

LMS-NEM 1.14± 0.15 29.64± 3.10 0.97± 0.02 1.25± 0.09

LMS-SAF 1.45± 0.17 25.30± 2.24 0.88± 0.06 1.58± 0.13

LMS-IIR 1.46± 0.24 27.62± 2.11 0.95± 0.02 1.65± 0.22

Table 5: A performance comparison of the discussed adaptive
filters applied on US images: results on phantom images
are shown on top, on in-vivo on the bottom.

Taking again into consideration the ratio between mean and
standard deviation, the best algorithm on both categories is
the IIR LMS. Almost the same considerations can be drawn
for image quality.

Finally, concerning contrast gain estimations, the best
overall results are obtained by the standard LMS algorithm
followed by its adaptive gain version. However, these two
algorithms feature a rather high deviation from their mean
values: the two best algorithms following this criteria are
again the NEM and the SAF.

Figure 53 shows a visual comparison of the estimations
performed by each adaptive filter on a single US image.
From a visual inspection, the tissue structure around coordi-
nates [10, 20] is most clearly reconstructed by the Adaptive
Gain LMS and IIR adaptive filters. On the other hand, in
terms of noise rejection and border sharpening, the best
algorithms is the SAF, most probably due to the adaptive
weighting applied to the different bands.

Finally, although featuring the best resolution improve-
ment, the estimation yielded by the standard LMS algo-
rithms is the noisiest and the less contrasted out of the five,
justifying the adoption of advanced filtering techniques.
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Figure 53: LMS algorithms visual comparison on echographic
images deconvolution; from top to bottom: a) Original
image, b) LMS output, c) Adaptive Gain LMS output, d)
NEM output, e) SAF output, f) IIR LMS output.





7
ADAPT IVE DENOIS ING

In Section 2.4 the following model for the acquired neural
signal was introduced:

y[k] = x[k] + (x ∗ f)[k]u[k] + v[k] (7.1)

where the term v[k] represents the white noise component
and the signal dependent one, (x ∗ f)[k]u[k], is modeled
with a direct product between a stationary, uncorrelated
noise u with given mean and variance and a filtered version
of the clean signal.
This model can be specialized for different kinds of noise

simply by adjusting the coefficients of the filter f. In order to
fully exploit the inherent model flexibility, an ad-hoc denois-
ing algorithm called Wavelet Adaptive Rescaling (WARES)
was designed, which depends directly on the filter coeffi-
cients, rather than focusing only on some of the many noise
models.

The next sections discuss the WARES algorithm starting
from consideration based on a time domain approach to the
problem; some limitations will then be highlighted, leading
to a Wavelet domain approach. Some details are given

115
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about the adaptive rescaling parameter; the discussion is
concluded by signal denoising performance comparisons
both on synthetic and real-world data.

7.1 extracellular recordings denoising

In order to estimate x[k] from its noisy samples y[k], fol-
lowing [75] a Linear Minimum Mean Square Error (LMMSE)
approach can be adopted, resulting in:

x̂ = E[x] + CxyC−1
yy · (y − E[y]) (7.2)

with x = (x[0], x[1], . . . , x[k]) and y = (y[0],y[1], . . . ,y[k])

being the vectors corresponding respectively to the signal to
recover and the recorded signal and Cxy and Cyy covariance
matrices between the subscripted signals. This means that to
be able to denoise the recorded signal, only the expectation
of the AP sequence and noise statistics up to the second
order must be given.

Expanding the sample indexes in equation (7.2) one ob-
tains

x̂[k] = E
[
x[k]

]
+

∑
pl

[
Cxy

]
kp

[
C−1

yy

]
pl

(y[l] −E
[
y[l]

]
) (7.3)

where the subscript ij has been used to indicate the ele-
ment on the i-th row and j-th column of the corresponding
matrix.

If u and v are supposed to be both stationary with zero
mean and u, v and x each other independent, it can be
shown that

E
[
x[k]

]
= E

[
y[k]

]
(7.4)

Cxy

]
= Cxx (7.5)

Cyy = Cxx + Czz • Cuu + Cvv (7.6)

where z represent the signal originating from the convolu-
tion of x with the filter f and • represents the Hadamard or
entrywise matrix product.

These relationships are derived in Section B.1, and link
quantities measured on the received noisy signal y with
quantities which could be measured on the clean signal x.

Moreover, if u and v are suppose to be both uncorrelated,
the matrices Cuu and Cvv are both diagonal. Now, if Cxx
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is supposed to be diagonal too, Cxy and Cyy both become
diagonal, making the product CxyC−1

yy of straightforward
calculation. However, this means that the signal itself is
supposed to be uncorrelated: it is common opinion that this
hypothesis is unrealistic.

7.2 denoising in the wavelet domain

By approaching in the Wavelet domain the problem dis-
cussed in the previous section, the uncorrelation hypothesis
on the signal can be translated into a less stringent one,
involving only its Wavelet coefficients.
Recalling the definition of SWT as

SWTm,n(x) =
∑
k∈Z

x[k] hm[k − n] m ∈ N, n ∈ Z (7.7)

it is possible to substitute the estimation of x[k] in (7.1)
with the estimation of its SWT coefficients starting from the
SWT coefficients of y[k]. Calling m the octave index of the
SWT, inspired by [75], the following LMMSE in the Wavelet
domain for the estimation of xm[k] is proposed:

x̂m = E[xm] + CxmymC−1
ymym

· (ym − E[ym]) (7.8)

with xm = (xm[0], xm[1], . . . , xm[k]) being the vector corre-
sponding to the m-th octave SWT coefficients of the signal
to recover, ym = (ym[0],ym[1], . . . ,ym[k]) the one referring
to the recorded signal and Cxmym and Cymym covariance
matrices between the subscripted Wavelet coefficients. In
order to denoise the recorded signal, the statistics of both
the AP sequence and noise must be known up to the second
order in the Wavelet domain.

As well as it was done for the time domain, the sample
indexes in equation (7.8) can be expanded, obtaining

x̂m[k] = E
[
xm[k]

]
+

∑
pl

[
Cxmym

]
kp

· [C−1
ymym

]
pl

(ym[l] − E
[
ym[l]

]
) (7.9)

where the symbology is the same of the time-domain case.
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Again, if u and v are supposed to be both stationary with
zero mean and u, v and x each other independent, it can be
shown that

E
[
xm[k]

]
= E

[
ym[k]

]
(7.10)

Cxmym = Cxmxm (7.11)

Cymym = Cxmxm + C
(1)
m + C

(2)
m (7.12)

with[
C

(1)
m

]
pq

=
∑
ij

Hm[p,q, i, j]
[
Cvv

]
ij

[
C

(2)
m

]
pq

=
∑
ijrs

Am[p,q, i, j, r, s]
[
Rxx

]
rs

[
Cuu

]
ij

where Rxx is the autocorrelation matrix of x[n] and

Hm[p,q, i, j] = hm[p − i] hm[q − j]

Am[p,q, i, j, r, s] = hm[p − i] hm[q − j] f[i − r] f[j − s]

These relationships are derived in Section B.2.
Comparing equation (7.12) with (7.6) it is possible to see

that in the Wavelet domain it is not so straightforward to un-
derstand under which conditions Cymym becomes diagonal.
Exploiting all the previous assumptions and supposing u

and v to be also both uncorrelated with standard deviations
σu and σv, Cuu and Cvv can be written as:

[
Cuu

]
ij

=

{
σ2

u, i = j

0, i �= j

[
Cvv

]
ij

=

{
σ2

v, i = j

0, i �= j
(7.13)

Using (7.13) and assuming x to be stationary over both
the supports of f and hm, the last two terms of (7.12) can
be simplified, highlighting their underlaying structure:[

C
(1)
m

]
pq

= σ2
v Rhmhm[p − q] (7.14)[

C
(2)
m

]
pq

= σ2
u Rhmhm[p − q]

∑
d

Rff[d]R(q)
xx [d] (7.15)

where Rhmhm[ · ] is the value assumed by the autocorre-
lation function of the filter hm at the corresponding lag,
Rff[ · ] is its equivalent for the filter f and R(q)

xx [ · ] the same
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for the signal x but this time centered on the sample q.
More details are given in Section B.2.

If the octave index m is not too large, the support S
(h)
m of

hm is sufficiently small so that the autocorrelation function
of hm can be well approximated by a delta function, x can
be supposed stationary over S

(h)
m and the matrix Cxmxm is

almost diagonal.
This is commonly retained to be much more realistic than

supposing x uncorrelated. Moreover, it can be read as a
requirement for x to carry its most significant frequency
components within a sufficiently narrow support in the
frequency domain, which is verified by the AP waveform.

Thanks to these hypothesis, Rhmhm[p − q] = γm δ[p −

q] holds, thus both Cxmym and Cymym become diagonal,
leading to

x̂m[k] = E
[
ym[k]

]
+

[
Cxmym

]
kk[

Cymym

]
kk

(ym[k] −E
[
ym[k]

]
) (7.16)

and, since the filters hm are never low-pass, the continu-
ous component of y gets annihilated, resulting into the
following equality

x̂m[k] =

[
Cxmym

]
kk[

Cymym

]
kk

ym[k] = λm[k] ym[k] (7.17)

which clearly represents a rescaling approach to the denois-
ing problem in the Wavelet domain with rescaling factor
λm[k].

7.3 expanding the rescaling parameter

The resulting denoising algorithm, called WARES, is made
adaptive by designing the estimation of the rescaling param-
eter λm[k] for each sample k and each octave m to be driven
by the input signal y. Moreover, as this involves statistics
taken from all the octaves in the SWT, performance are in-
trinsically tied to the Wavelet Transform and influenced
by the choice of the Wavelet base. Finally, it is possible to
calculate both upper and lower constraints for the value of
the rescaling factor, leading to an always stable, non-linear
denoising algorithm.
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Plugging (7.10–7.12) and (7.14–7.15) in (7.17), the follow-
ing relationship for the rescaling factor are obtained

λm[k] = 1−
Rhmhm[0][
Cymym

]
kk

(
σ2

v +σ2
u

∑
d

Rff[d]R(k)
xx [d]

)
(7.18)

where only the quantity R(k)
xx [d] is unknown. To estimate

this term, the following relationship can be exploited:

[
Cxmxm

]
kk

= E
[
(xm[k] − E[xm[k]])2

]
= E[xm[k]2] − E[xm[k]]2 (7.19)

where, thanks to the fact that filters hm are never low-pass,
the last term is zero, thus leaving only E[xm[k]2]. Now, by
expanding the SWT filters and exploiting the linearity of the
expectation operator, the following holds

[
Cxmxm

]
kk

=
∑
ij

hm[i] hm[j]E[x[k − i] x[k − j]] (7.20)

where the stationarity of x over the Wavelet filters’ supports
can be exploited to adjust the summation indexes as follows

[
Cxmxm

]
kk

=
∑
d

E[x[k] x[k+d]]
∑

j

hm[j+d] hm[j] (7.21)

which results in[
Cxmxm

]
kk

=
∑
d

R(k)
xx [d]Rhmhm[d] (7.22)

Equipped with this relationship, (7.12) can be used to
estimate R(k)

xx [d]: in fact, rearranging its terms it is possible
to write

[
Cymym

]
kk

− σ2
v Rhmhm[0] =

∑
d

R(k)
xx [d]

·
(
Rhmhm[d] + σ2

u Rhmhm[0]Rff[d]
)
(7.23)

where one can substitute
[
Cymym

]
kk

with σ2
ym

[k] and Rhmhm[0]

with 2−m because of the properties of the Wavelet filters [38].
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Note that the term between parenthesis does not depend
on the sample index k.
By letting

sm[k] =
[
Cymym

]
kk

− σ2
v Rhmhm[0] (7.24)

rd[k] = R(k)
xx [d] (7.25)[

A
]
md

= Rhmhm[d] + σ2
u Rhmhm[0]Rff[d] (7.26)

equation (7.23) can be rewritten as

sm[k] =
∑
d

[
A

]
md

rd[k] (7.27)

Then, R(k)
xx [d] is estimated by using the pseudoinverse of

A as this matrix is rectangular in most cases

R(k)
xx [d] �

∑
m

[
A†]

dm

(
σ2

ym
[k] − 2−m σ2

v

)
(7.28)

Equality (7.18) can be split into two terms as follows

λm[k] =
σ2

ym
[k] − 2−m σ2

v

σ2
ym

[k]
−

∑
dp

(
2−m σ2

u Rff[d]
)

· [A†]
dμ

σ2
yμ

[m] − 2−μ σ2
v

σ2
ym

[k]
(7.29)

As one can notice, the first and the last term in (7.29) have
the same structure; moreover, the double summation can be
thought as a matrix product between three terms. By doing
the following positions[

U
]
md

= 2−m σ2
u Rff[d] (7.30)

[
V[k]

]
μm

=
σ2

yμ
[m] − 2−μ σ2

v

σ2
ym

[k]
(7.31)

equation (7.29) simply becomes

λm[k] =
[
V[k]

]
mm

−
∑
dμ

[
U

]
md

[
A†]

dμ

[
V[k]

]
μm

(7.32)

where the right hand side term clearly is the diagonal of
V[k] − U A† V[k]. Calling diag the operator which extracts
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the main diagonal from a matrix, the next relationship
holds:

λm[k] =
[
diag((I − U A†) V[k])

]
m

(7.33)

where V, the only term that depends on the sample index m,
was separated from the other terms which do not depend
on it and thus can be precalculated in order to reduce
the computational cost. The term Λ = I − U A† is called
rescaling matrix .
Finally, it is possible to show that λm[k] is both upper and

lower bounded:

0 � λm[k] � 1 (7.34)

Concerning the lower bound, λm[k] represents a ratio
between positive quantities, respectively the local variance
of signals x and y, so it must always be positive. More-
over, under the hypotheses made, it’s easy to verify that
the variance of x cannot be greater than the variance of y.
Following the definition, the next relationship holds

σ2
y = E[(y − E[y])2]

= E[(x + (x ∗ f) u + v − E[x])2]

= σ2
x + 2E[(x − E[x])((x ∗ f) u + v)] + E[((x ∗ f) u + v)2]

where the second term in the last equation is zero since u

and v are supposed to be stationary with zero mean and
independent of x. So the following is obtained

σ2
x = σ2

y − E[((x ∗ f) u + v)2]

showing that σ2
x must be lower than σ2

y since the right hand
term is the expectation of positive quantities.

Since λm[k] was estimated through a MSE minimization,
it is possible to obtain values outside the theoretical bounds.
Whenever this happens, the corresponding element of λm[k]

should be trimmed to the nearest boundary of the interval
of feasible values.

The estimation of the rescaling factor can be now sum-
marized into these steps:

1. Estimation of the variance of the Wavelet coefficients
of y around sample m;
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2. Generation of the variance ratios matrix V;

3. Matrix product between the rescaling matrix Λ and V
and extraction of the principal diagonal of the result;

4. Trimming of the resulting vector to the interval [0, 1]

As anticipated at the beginning of this section, this proce-
dure is clearly both data driven and non-linear. Moreover,
since a matrix product is involved, the value of the rescaling
factor of each octave depends on the whole set of Wavelet
coefficient and not on a subset nor a single coefficient.

Finally, it is reasonable remark that the computational
complexity of this approach is fairy small, as Wavelet co-
efficients variance can be easily computed on-line using
an appropriate non linear filter, and matrix multiplication
followed by diagonal extraction can be substituted by a
series of vector inner product. In numerical terms, if N

is the number of octaves in the Wavelet Transform, only
N variances, N2 divisions, N2 multiplications and O(N2)

linear operations must be calculated at any given time-step.

7.4 synthetic signal denoising

In order to quantitatively evaluate denoising performance
of the WARES algorithm when applied to ER signals, tests on
synthetically generated signals with decreasing SNR where
preformed, comparing WARES to other Wavelet-based algo-
rithms [28].
Each spike is described as the superposition of 2 or more

functions in the form

f(t,p) =

{
p0

(
t

p1
exp

(
1 − t

p1

))p2
, t > 0

0, t � 0
(7.35)

where p = (po,p1,p2) is the set of parameters defining
the shape of the function: p0 sets the maximum amplitude,
which is reached at x = p1, while p2 controls how fast the
function vanishes in 0 and toward +∞. As a result, an AP
is defined as follows

s(t) =

Nc∑
i=0

f(t − θi,pi) (7.36)
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0 10 20 30 40 50 60 70
msec

Figure 54: Example of synthetic spike train generated using for-
mulas (7.35-7.37).

where θi is a set of time displacements and pi is a set of
valid parameters for the function (7.35).

Finally, to generate a non-overlapping spike train, a se-
quence of amplitude scaled and translated versions of func-
tion (7.36) is computed

x(t) =

Ns∑
i=0

Ai s(t − τi) (7.37)

where Ai is the set of scalar amplitudes and τi the set of
time displacements.
An example of spike train generated in this way is showed

in Figure 54: by adding a proper amount of noise, very re-
alistic test sequences can be obtained, as it can be seen in
Figure 55.

The synthetic signal in Figure 54 was used with different
levels of noise to assess WARES performance against the
seven best Wavelet denoising algorithms chosen from [28].
From now on, these algorithms will be called competitors
for the sake of briefness.

The SNR for the additive component was swept over the
range [−10, 30] dB with a step of 5 dB, at different SNR for
the multiplicative component. For each value of the input
SNR, 1000 noisy sequence were generated and processed
using each of the chosen denoising algorithms; the output
SNR was calculated comparing the denoised signal to the
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0 10 20 30 40 50 60 70
msec

Figure 55: A noisy version of the synthetic spike train shown in
Figure 54.
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Figure 57: Input/Output SNR performance chart for different
Wavelet-based denoising techniques in presence of
medium multiplicative noise.
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Figure 58: Input/Output SNR performance chart for different
Wavelet-based denoising techniques in presence of
high multiplicative noise.
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original clean signal. The curves shown in figures 56-58
display the output SNR as a function of the input SNR for
WARES and its competitors.

The results show that for every test point at least 1dB is
gained in terms of output SNR, this gain being more evident
in presence of high multiplicative noise (Figure 58), where
WARES performs almost 5dB than its competitors.

In fact, in presence of low multiplicative noise (Figure 56)
the difference between the model (7.1) and a standard addi-
tive white noise model is not enough to produce a signifi-
cant separation between WARES and its competitors.

However, starting from intermediate levels of multiplica-
tive noise (Figure 57) an asymptotical behavior in the per-
formance of the tested algorithms appears: under these
conditions, WARES performs 2 dB better than any competi-
tor, gaining almost 4dB in the high SNR region where signal
model (7.1) is more accurate than the pure additive model.

Finally, under high levels of multiplicative noise, WARES
is much more effective than any other Wavelet based algo-
rithms, providing an evident improvement in performance
over all the SNR tested: here the multiplicative component is
strong enough to make the additive noise model to simple
for the simulated data.

7.5 real data denoising

It is believed that performance evaluation of denoising
algorithms on real data requires more than a numerical as-
sessment of the quality of the denoised data in terms of SNR,
a visual inspection of them being much more preferable.

WARES denoising was performed on three sets of data,
all of them courtesy of Dr. Christophe Pouzat, Laboratoire
de Physiologie Cérébrale, UFR biomédicale de l’Université
René Descartes (Paris V). The first one, called locust, is
a tetrode recording of 20 s from the locust (Schistocerca
americana) antennal lobe, sampled at 15 kHz and digitally
filtered between 300 Hz and 5 kHz, in order to eliminate
LFP and avoid aliasing. The second and the third ones,
called rampe15s and rampe10s, are both electromyographic
recording of 15 s and 10 s respectively.
For each of these three datasets a comparison is presented
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Figure 59: Comparison of the original signal and its denoised
versions for a sample of the locust dataset containing
spikes with different amplitude.

between 70 ms of the original signal (top track in each of
Figures 59-61) and its denoised version (center and bottom
tracks) obtained respectively by applying the WARES and
the recneighblock algorithms to the original signals. The rec-
neighblock algorithm was chosen because all three datasets
have an intermediate level of multiplicative noise and this
is the second best algorithm out of WARES in processing this
kind of data, according to Figure 57.

The locust dataset (Figure 59) is the noisiest of the three,
but spikes with very different amplitudes can still be easily
identified; the presence of noise motivated the choice to
apply a denoising method. The overall result appears quite
good in terms of both smoothness and noise rejection, but
some slight alterations in spikes amplitude can be high-
lighted. The region between two adjacent spikes tends to be
much less noisier when compared to the signal denoised
by the competitor algorithm. The absence of LFP is evident
in both the original and the denoised signals.
The rampe15s dataset (Figure 60) has very little noise, but

the presence of a small amount of LFP alters the data in-
troducing a low frequency component. Since WARES makes
use only of the WT detail coefficients, it can remove the
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Figure 60: Comparison of the original signal and its denoised ver-
sions for a sample of the rampe15s dataset containing
both spikes and LFP.
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Figure 61: Comparison of the original signal and its denoised ver-
sions for a sample of the rampe10s dataset containing
both spikes and LFP.
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LFP much better than its competitors, simply by changing
the number of scales the WT is performed on. This is quite
evident in the results shown, where the denoised spikes
resemble much more closely to the well-known waveform
than the noisy ones.

Finally, the rampe10s dataset (Figure 61) has again very
little noise, but the LFP presence is much more evident
and alters the data much more seriously than the rampe10s
dataset. Again, after a good tuning of the number of WT
scales, WARES can remove the LFP much better than its
competitors and efficiently recovers the spikes waveforms.
However, since the LFP component is much stronger than
the previous case, some leakage of this low-pass component
into the denoised signal is present.
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As already discussed in Chapter 1, ultrasounds are a cost
effective, mobile, noninvasive, harmless, and sufficiently
accurate imaging technique. In Section 1.1 the problems
involved into the acquisition and processing of ultrasound
signals were introduced: the main drawback is that signal
resolution is limited by finite bandwidth of the transducer
and by non-negligible width of the transmitted acoustic
beams.
Image restoration techniques, such as deconvolution tech-

niques, can be employed to improve US images resolution
and their diagnostic significance. Generally speaking, as the
PSF is a band-limited function and due to the presence of
noise, true image estimation is an ill-posed problem.

To obtain a stable algorithm which provides a unique
solution, additional constraints must be imposed. Designing
a method which exhibits the most appropriate compromise
among computational complexity, reliability and portability
for biomedical real-time imaging applications is still an
open challenge.
Moreover, signal processing after image restorations must

133
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Figure 62: Schematic of the proposed US signal processing al-
gorithm: pulse estimation and deconvolution may be
jointly substituted by adaptive filtering.

deal with a noise peculiar of this kind imaging systems:
speckle noise. This image degradation effect appears as a
granular texture in different shades of gray and increases
the difficulty of human interpretation in discriminating fine
details of images.

The source of this noise is attributed to random inter-
ference between the returns issued from numerous sub-
resolution scatterers present on a surface, so it is the result
of tissue ultrasound interaction, and not of noise originat-
ing at some external source. Thus, even if speckle degrades
the visual quality of US images, on the other hand it can
provide useful information on many characteristics of the
scatterer structure: for this reason, de-speckling procedures
are important for both enhancing US images and extracting
speckle patterns for automatic classification of the investi-
gated tissues.

8.1 echographic signal processing

Echographic signal processing is usually designed as a
multistep process, as shown in Figure 62. As introduced in
Section 1.1, the first step is the removal of the Deterministic
Trends (DT) in the US received echo.

These trends are present both in phantom and in-vivo im-
ages, depending on the US recording equipment and have
a piecewise polynomial behavior, as shown in Figure 63.
Experimental measurements showed that negligible differ-
ences are present between DT belonging to adjacent vertical
scan lines and that no information related to the tissue is
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Figure 63: Piecewise polynomial trends in the received ultra-
sound signals: their presence is relevant both in phan-
tom (top) and in-vivo (bottom) images.

present.
Removal of DT is took to be mandatory for image restora-

tion and quality improvement as they may alter the US echo
in significant ways. As shown in Figure 64, the effect of DT
removal is much more evident in the lower portion of the
US image, where cumulative frequency dependent attenu-
ation is responsible for contrast reduction and resolution
degradation.

DT removal can be performed by means of proper order
MA filtering using, for example, a specifically tuned adap-
tive filter from 6. As an alternative, jointly DT and noise
removal can be performed using the adaptive denoising
algorithm discussed in Chapter 7: in fact, DT can be seen as
the equivalent of LFP in the neural environment.

Once DT removal has been performed, signal deconvolu-
tion can be carried on. Two approaches are followed above
all to face with US image deconvolution.

The first incorporates the PSF identification procedure



136 biological tissue classification

Before

0 10 20

0

10

20

30

40

50

60

After

0 10 20

0

10

20

30

40

50

60

Removed trend

0 10 20

0

10

20

30

40

50

60

Figure 64: A comparison of the incoming US image with and
without trend removal: the lower part of the elaborated
image feature much more contrasted details.

within the deconvolution algorithm. This usually lead to
the development of computationally heavy algorithms, com-
monly retained as far from satisfying the real-time signal
processing constraints required for US biomedical investiga-
tion. Adaptive algorithms discussed in Chapter 6 are some
notable exceptions within this category.

In the second approach, PSF and true image estimation
are two disjoint procedures. Within this context, these proce-
dures can be implemented by relatively simple algorithms,
often suitable for real-time implementation, as shown in
Chapter 4 and in Chapter 5.
Figure 62 feature a block structure which follows this last

policy: in fact, after DT removal, US signal is fed in parallel
to both an impulse response estimator and to a deconvolu-
tion algorithm. As the former updates the estimate of the
US acquisition equipment impulse response, the latter is re-
sponsible for the true deconvolution step. The link between
these units allows the system to adapt continuously to the
different equipment working conditions.
Finally, more advanced US deconvolution technique can

be used: Viterbi algorithm decoding [76, 77] can be sup-
ported by adaptive filtering and dynamic alphabet estima-
tions in order to improve its time tracking capabilities. The
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Figure 65: Advanced deconvolution algorithm based on Viterbi
decoding and adaptive filtering: Viterbi time track-
ing capabilities are enhanced by means of adaptive
techniques.

configuration depicted in Figure 65 originate from the paral-
lel that can be made between the US acquisition system and
a generic transmission channel: from this standpoint, the
transducer PSF represents the ISI introduced by the channel.

Here the LMS adaptive filter bank is used to feed the
Viterbi decoder with the estimated transducer PSF rather
than to perform signal deconvolution. Assuming that the
filters in this section are capable of efficiently tracking the
time variations of the PSF, Viterbi algorithm can recover the
true US signal very efficiently.

However, due to its computational complexity, a sim-
plification in the trellis diagram is mandatory in order to
achieve real-time signal processing. Besides this structural
optimization, dynamic adaptation of the decoding alphabet
is deemed fundamental to aid in shrinking the research
space required for the estimation of the optimal output
sequence.

Table 6 shows how deconvolution based on Viterbi de-
coding positively confronts with the other deconvolution
techniques presented in Chapter 5. Although ADID is the
best at enhancing image contrast, the best results with re-
spect to axial resolution gain, peak SNR and quality index
are obtained applying Viterbi decoding.
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Gax PSNR [dB] QI CG

Viterbi 11.00 30.50 0.94 3.96

ADID 8.73 25.45 0.91 4.43

WLSD 3.38 26.63 0.93 3.22

FWRD 1.64 26.54 0.93 0.83

Table 6: Viterbi algorithm compared to the deconvolution algo-
rithms of Chapter 5: positive results are obtained on
in-vivo images.

Finally, the last preprocessing step suggested by Fig-
ure 62 is the separation of the speckle component. The
point scatterer model for the RF echo introduced in Chap-
ter 1 is adequate when weak scattering, narrow ultrasound
beam and linear propagation hypothesis are fulfilled; in-
stead, for real US images, more sophisticated models were
proposed [78].

Since signals of interest are not stationary, the speckle
noise term must be assumed non-stationary as well and a
time-frequency projection is supposed to be suitable for the
analysis. Additionally, as the envelope-detected signal can
be modeled by a Rayleigh distribution with mean propor-
tional to the standard deviation, speckle could be modeled
as multiplicative noise [79].
Because of this, it is possible to separate this component

by means of the adaptive algorithms discussed on Chapter 7:
in fact, substituting the filter f in (7.1) with a Kroneker delta
sequence, a multiplicative noise model is obtained. Being
both capable of dealing with non-stationary signals and
multiplicative noise, the WARES algorithm is among the
best suited algorithms to perform speckle detection and
separation from the true RF echo within the incoming US
signal.

An example of the results of these preprocessing steps is
shown in Figure 66: here, the received echo from a prostatic
gland affected by carcinoma is elaborated following the
scheme depicted in Figure 62. From the raw image on
the top, to the representations of coherent and speckle
components on the bottom, it is possible to evaluate how
each step in the preprocessing scheme operates on the
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Figure 66: Visual comparison of several echo preprocessing steps:
from top to bottom, the raw RF image of an in-vivo
prostatic gland, the same for detrending and deblur-
ring, and finally two representations of coherent and
speckle components.
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Figure 67: Schematic of the proposed US tissue classification algo-
rithm: upper blocks are used only during the training
phase to test for the effectiveness of the chosen features
and parameters.

data, enhancing contrast, improving axial resolution and
providing a better separation between tissue kinds.

8.2 ultrasound image classification

After being preprocessed, signal is ready for being classified.
For this purpose, a modular algorithm has been designed,
separating conceptually different procedures in six blocks,
as shown in Figure 67. The three upper blocks are used
only during algorithm training, while the remaining three
constitutes the actual classification path.

Within the zone definition block, large and usually un-
structured regions are identified within the RF received
echo image, representing homogeneous portion of the im-
age and corresponding to the different kinds of tissue the
system is going to be trained to recognize and separate.
This identification process is usually performed by some
skilled user, capable of identifying the target tissues by vi-
sually inspecting the US image, as shown on the left side
of Figure 68. Up to a certain level, this task can be autom-
atized employing segmentation algorithms initialized by
expectation maximization procedures.

This step is meant for generating the groundtruth to be
compared with the classification results in order to estimate
the Receiver Operating Characteristic (ROC) curve of the
current algorithm setup. It is useful for estimating other per-
formance metrics too: knowing the response of the “oracle”
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about a given region of tissue, it is possible to estimate how
good at discriminating between tissues a given combination
of feature and parameter is. Features and parameter will be
discussed later on in this section.

During the training phase, a list of Region of Interest
(ROI) is generated too. These regions are small patch of US
image, usually each other overlapped, which constitutes
the smallest portion of image the classifier is going to work
on. Although the classifier is capable to work on elements
smaller than a ROI, these patches were introduced to add
robustness to tissue analysis.

In fact, processing the data originating from a clinical
database comprising of more than 250 malignant and 150
benignant US images highlighted the fact that information
relevant for tissue classification can be extracted not only
from the punctual value of the estimated features but from
the moments of the local value distribution too. Because
of this, within each previously identified zone, ROI repre-
senting square portions of the tissue under examination
are generated and then fed to both feature extraction and
parameter estimation blocks.

In order to increase the number of points on which pa-
rameter computation is going to be performed, larger and
larger ROI can be generated, with the upper limit of one ROI
coinciding to its parent zone. On the other hand, to keep
the balance between the ROI population within the different
zones, random generation of ROI is supported: with this
choice, the same number of ROI is instantiated at random
locations within each region, as shown on the right side of
Figure 68.

Concerning the feature extraction block, it is dedicated to
performing topology preserving operations, allowing the al-
gorithm to access local information regarding the currently
examined tissue in domains different from the starting one.
Estimations of Fourier or Wavelet signal components are
usually performed in this block, as well as AR, MA or ARMA
parameters.

The distinction between coherent and diffuse compo-
nents, as well as the separation between speckle and signal
components discussed in the previous section, can be seen
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(a) Selected zones (b) Random generated ROIs

Figure 68: Selected zones and the corresponding set of ROI for a
US image of a prostate affected by carcinoma: different
colors highlight different tissues.

as particular kinds of feature extractions, and are usually
integrated within this block. This is due to the fact that, as
discussed in the introduction of this chapter, the diffuse
and the speckle components usually contain meaningful in-
formation regarding tissue structure and are thus retained
significant from the standpoint of tissue classification.

Features are usually classified into two different cate-
gories: textural features and parametric features. The first
group is composed by features that examine and numeri-
cally evaluate aspects related to image topology and geo-
metrical structures, like repeating patterns, reflector clusters
and macroscopic edges. The second group collects features
which are much more strictly related to the incoming sig-
nal model, locally estimating its parameters, like its central
frequency, attenuation coefficient, power within a given set
of sub-bands and so on.

The former feature set is intrinsically connected to bidi-
mensional information and investigate the signal at a larger
scale, examining somewhat larger chunks of image than
the latter features, resulting into coarser resolution esti-
mates. Vice versa, parametric features describe the tissue at
a lower scale, focusing on details which are observed at a
lower scale and directly on the received signal, during its
acquisition.
It is usually preferable to first extract the information con-
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Figure 69: Visual comparison of textural and parametric feature:
on the left, a prostatic gland affected by carcinoma
(red spots); on the right, two different visualization of
the same image, one obtained from a textural analysis
(top), the second from a parametric one (bottom).

tained within the raw RF signal by computing parametric
features, then convert the received US echo into an image
and estimate the chosen textural features on it, rather than
to pick one feature kind. Although this increases the com-
putational cost of classification algorithms, the return in
terms of augmented accuracy pays off in full. In fact, while
the first feature set somehow mimics the diagnostic skill
of an expert physician, the second allow the classification
algorithm to examine and exploit information which is not
perceived by a visual inspection.

Figure 69 shows an example of low-resolution textural
and parametric features compared to the original US image
of a prostatic gland affected by carcinoma. Groundtruth
originating from subsequent in-vivo gland biopsy is high-
lighted by red and yellow spots, both on the original image
and on the derived features. It is possible to observe how
both the features allow to separate different kind of tis-
sues: by combining the information from each feature, it
is possible to achieve tissue classification with a satisfying
accuracy.
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After features have been generated, parameters are es-
timated over each ROI. As discussed in the previous para-
graphs, estimations about the statistical distribution of fea-
ture values over each ROI are performed, allowing the clas-
sification engine to access local information concerning the
second and higher moments.
As a results, for each ROI, a set of parameter is generated.

Concatenating the parameter sets resulting from each fea-
ture, a feature vector x̄ with cardinality equal to the product
between the number of selected features and parameters
is generated. Exploiting the output of the zone definition
block, each ROI, thus each feature vector, can be tagged as
belonging to a given zone.

During the training phase, this information is used by
the final blocks for two different purposes: while the tis-
sue classification block trains itself to discriminate between
feature vectors belonging to the different classes, the pro-
cessing statistics block numerically quantify the goodness
of a given feature-parameter combination x̄k at discrimi-
nating between ROI belonging a given pair of zones zi and
zj.
Two different parameters are estimated by this final block:

1. the Fisher Discriminant Ratio (FDR) [80], defined as
the ratio

d(i,j,k) =
(μi,k − μj,k)

2

σ2
i,k + σ2

j,k

where values μi,k and μj,k are the mean value of the
x̄k estimated respectively over zone zi and zj, and σi,k
and σj,k are the corresponding standard deviations;

2. the histogram neg-superposition or divergence [80],
defined as

s̄i,j,k =

∫+∞
−∞ (p(x̄k|zi) − p(x̄k|zj)ln

p(x̄k|zi)

p(x̄k|zj)
dx̄k

where p(x̄k|zi) is the probability of the value x̄k to be
present within the i-th zone.

As the cardinality of the space x̄ belongs to may be very
high, non-linear, kernel based, feature extraction [81] is per-
formed on data: feature-parameter combinations ranking
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Training [ms] Testing [ms] ROC area FoM
[ROC area
Test time

]
FLD 0.348 1.93 0.998 517

RLS 52.1 59.2 0.989 16.7
SVM 2750 7.46 0.998 134

EN 0.255 0.988 0.986 998

Table 7: Performance comparison of the chosen classification algo-
rithms: EN and FLD yield the best performance in terms
Figure of Merit (FoM).

by means of classification accuracy is a very time consum-
ing process, which however yield very important results in
terms of classification computational complexity reduction.
The compound of ranking, FDR and divergence is used to
identify which ones feature-parameter combinations are the
the best suited for tissue identification.
Finally, the performance yielded by the classifier on a test-

ing set disjoint from the training/validation set are retained
as a valid index of the currently extracted feature-parameter
set accuracy at discriminating between the different zones.
In particular, choosing a zone zi and estimating the fractions
of true positives and false positives of the test “x̄ belongs to
zone zi” [81] as the detection threshold is varied, the ROC
curve can be plotted, as shown in Figure 70. The area under
this curve can vary between 0 and 1, being 1/2 the worst
value.

This parameter is related in a direct and natural way to
cost/benefit analysis of diagnostic decision making. It was
widely used by physicians in medicine, radiology, psychol-
ogy and other areas for many decades since now, and it
has been introduced relatively recently in other areas like
machine learning and data mining.

Figure 70 represents a comparison between the ROC
curves obtained from four different classifiers processing
a dataset of US images of prostatic glands affected by car-
cinoma. More than 9000 ROI where automatically gener-
ated, their feature vector estimated, then classified with
four different algorithms: Fisher Linear Discriminant (FLD)
[80], Regularized Least Square (RLS) [82], Support Vector
Machine (SVM) [83], and Elastic Net (EN) [84].
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Figure 70: A comparison of the ROC curves obtained from dif-
ferent classification algorithms on the same data-set
processed with the proposed method of feature/pa-
rameter generation.

As shown in Table 7, all the tested classifier gave very
good results in terms of area below their ROC curves, with
EN being the fastest algorithm in terms of combined training
and testing time. The fact that a simple classifier like FLD
is capable of yielding almost ideal ROC hints that kernel-
based feature extraction techniques generate components
very representative of the different tissue kinds, making
sufficiently fast and accurate tissue classification feasible.



9
NEURAL SP IKE SORT ING

In Section 2.1 a technique known as multi-electrode extra-
cellular recordings or MER was introduced: this is one of
the main techniques used by neurophysiologist to study
the central nervous system and by neurologist to diagnose
neuro-muscular diseases. These recordings are made of the
superposition of neural action potentials AP, which must be
separated and assigned to individual neurons: this problem
is called spike sorting.

To improve existing sorting algorithms [85], a signal
model was presented in Section 2.4 which allowed to de-
velop an ad-hoc Wavelet based denoising algorithm which
can account for different kinds of noise, as discussed in
Chapter 7. The application of this algorithm to MER proved
quite useful to ease the sorting of overlapping APs using an
efficient L1 norm minimization approach with a reduced
implementation complexity.

147
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Figure 71: Schematic of a classical spike sorting algorithm: tem-
plate matching is used to sort single and multiple
events, originating an exponential dependency of
computational cost from the number of superimpose
spikes.

9.1 classical spike sorting algorithms

A spike sorting algorithm [85] is typically a multistep algo-
rithm based on a five steps, as shown in Figure 71. Spike
detection is performed by amplitude thresholding each of
the signals received from the MER acquisition probe: an
AP is recorded whenever the neural signal exceeds a fixed
amplitude threshold.

After this step, the recorded APs are oversampled by
means of interpolation algorithms and aligned to their re-
spective peaks: this procedure has a poor efficiency as no
information concerning the noise embedding the signal is
exploited. Moreover its accuracy is fundamental for the
subsequent step, where a spike templates library is build
by means of Principal Component Analysis (PCA). This step
is responsible both for the removal of the noise in which
the spikes are embedded and for the generation of the set
of templates used to distinguish between different cells
activation.
The last step, which constitutes the real sorting phase, is

performed following two different policies: in case of single
events, where only one cell fires a spike at a given time,
template matching is performed, selecting the most feasible
template from the generated library. All the detected activa-
tions undergo this phase: if a sufficient accuracy is reached,
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the activation is considered sorted and is excluded from the
phase of multiple activation template matching, otherwise
it is marked for further processing.

Only the unsorted activations are processed with multi-
ple templates: this is due to the fact that this procedure has
a very high computational cost, thus requiring a very long
time to be carried on. Naïve multiple template matching
algorithms try every possible combination of template and
relative delays, resulting into a complexity which is expo-
nential in the number of superimposed AP to be sorted and
in the maximum lag separating two adjacent spikes.

To reduce this cost to a more acceptable one, a Monte-
Carlo Markov Chain (MCMC) approach can be followed
[85], embedding into the Markov Chain model informa-
tions about refractory times, inter-spike interval and any
other meaningful parameter related to neuronal activation.
At the same time, thanks to the Monte Carlo approach,
only a fraction of all the candidate activation sequences
is testes and matched with the current activation. Never-
theless, triple and more complex activations are still too
complex to be sorted, resulting into a number of unsorted
events depending on the recorded neural activity.

9.2 improved spike sorting algorithms

Tackling the inefficiency of standard spike sorting algo-
rithms, improvements can be worked out exploiting the
information embedded into the signal. Three different ar-
eas had been identified where advancements could take
place: signal preprocessing, template extraction and spike
sorting. Different techniques can be exploited in each area
to optimize the sequence of operations and reduce the com-
putational complexity.

First, it proved quite successful to introduce a denois-
ing stage before spike detection take place, as shown in
Figure 72. Adopting model (7.1) for the neural signal, it is
natural to remove noise with the WARES algorithm, as dis-
cussed in Chapter 7. This adaptive denoising algorithm can
account for a large number of noise models, while preserv-
ing the shape of the neural spikes, as shown in Figure 73.
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Figure 72: Schematic of the proposed improved spike sorting
algorithm: different techniques can be exploited in
each area to optimize the sequence of operations and
reduce the computational complexity.

Comparing the results obtained from this algorithm with
the output of the adaptive block denoising technique rec-
neighblock [28], some differences may be highlighted: first
of all, WARES features a better noise rejection than the block
technique, as shown in figures 56-58. Secondly, in presence
of adjacent spikes WARES allows for a better reconstruction
of low amplitude APs. Last but not least, LFP low-frequency
oscillations can be removed much more efficiently, without
requiring and additional filtering stage.

In conclusion, as the global noise level gets reduced,
AP detection thresholding can be lowered, improving the
efficiently in discerning faint spikes; at the same time, since
the WARES algorithm accounts for jitter noise removal AP
interpolation is not deemed important anymore.

Moving on, thinking about spike sorting as a complex
deconvolution process, template extraction can be substi-
tuted by one of the impulse response estimation algorithms
discussed in Chapter 4. In fact, although the fired AP may
change over the entire lifetime of a neural cell, it commonly
assumed [18, 32] to do not change over a short amount of
time.

From this standpoint, the series of events represented
by a neuron firing its AP at given instants in time can be
thought as the convolution of the neuron AP with a train
of properly spaced Dirac delta functions. Because of this,
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Figure 73: Received neural signal compared to two different de-
noised versions: one resulting from a block algorithm
(recneighblock [28]), the other from the WARES adaptive
algorithm.

if it is assumed that all neurons involved in a given MER
experiment fire the same AP, cepstral techniques can be
used, after a proper signal denoising step, to estimate the
AP.

The biggest difficulty in this task is that of the AP being
not guaranteed to be minimum-phase: this fact implies that
algorithms discussed in Chapter 4 will fail in reconstructing
the phase of the AP, as it can be clearly seen in Figure 74.
Here, after performing signal denoising with the WARES
algorithm, a mixed domain cepstral processing was under-
taken to extract the neural AP, whose estimation is shown
on the right side of Figure 74.

The shape of the estimated AP resembles the true one,
although not as closely as one could desire. In fact, a phase
inversion is present, as each of the recorded AP shown on
top of Figure 74 first display a pronounced undershoot,
followed by two oscillations; on the contrary, the estimated
AP features first an overshoot followed by an undershoot.

Besides, the effects of this phenomenon are visible in the
results of the deconvolution processing; processing the de-
noised signal by means of the ADID algorithms –on bottom
left of Figure 74–, all the estimated spikes amplitudes are
negative. Nevertheless, the results of the deconvolution are
quite good at locating the AP in time, while preserving the
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Figure 74: Example of spike sorting combining pulse estimation
and deconvolution algorithms: mixed domain cepstral
estimation and ADID were used respectively.

relative spacing.
An alternative solution can be envisioned by means of

Shift Invariant Spaces (SIS) [86, 87]: in this context a signal
in L2 is assumed to belong to a space in the form

S(Φ) := closureL2
span{φi(x − k) : i = 1, . . . ,n,k ∈ Zd}

(9.1)

where Φ = {φ1, . . . ,φn} is a set of function in L2(Rd).
Given a space S and a set of functions Φ, if (9.1) holds for

every element in the space, then Φ is called a set of generators
for S. If so, a generic element in S can be expressed as

x(n) =

N∑
i=1

∑
j∈Zd

αi(j)φi(n + j) (9.2)

where αi ∈ l2(Zd) is a proper set of weights.
Thinking about f in (9.2) as the received neural signal, it is

possible to associate the set of AP templates fired by the cells
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to the set of generators φi and the amplitude of each AP to
the set of weights αi. From this point of view, the problem
of estimating the set of AP templates given the signal f is
the same of identifying the generator set Φ which give birth
to the space S which f belongs to. According to [86, 87], this
problem can be efficiently solved in the frequency domain
by means of Singular Value Decomposition (SVD).
Depending on the assumptions made on the AP waveform

set, the pulse estimation or the SIS method are used as
template extraction procedure in the schematic of shown in
Figure 72.

Once the set of AP templates has been estimated, it is
possible to exploit the intrinsic signal sparsity and adopt
a L1 norm minimization technique to sort the spikes with
a reduced complexity. In fact, due to the presence of the
refractory period, neural cells can fire AP only once or twice
every 5ms: at a sampling rate of 25KHz, this means that if
it could be possible to look to the true activation sequence,
more or less only one over 100 of its samples are different
from zero. The information resulting from spike soring is
thus very sparse.
In mathematical terms, looking at the received signal x[n]

as to a superposition of convolutions between the activation
sequence of each neural cell ai[n] and the corresponding
action potential φi, it is possible to express x[n] as

x[n] =

N∑
i=1

∑
m∈Z

ai[m]φi[n − m] (9.3)

where N is the number of concurrently spiking neurons.
Considering only an interval in time, (9.3) can be rewrit-

ten in matrix form as

x = Φa (9.4)

where Φ is the column-wise tiling of the convolution ma-
trices Φ0,Φ1, . . . ,ΦN and a is the row-wise tiling of the
activation vectors a0, a1, . . . , aN.
In theory, to recover the activation vector a, the following

constrained minimization of the L0 norm of a should be
used.

ae = mina‖a‖0 s.t. Φa = x (9.5)
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In presence of noise, a vector n is added to x; if this
noise is considered to have zero mean and variance σ2

n, the
minimization problem becomes

ae = mina‖a‖0 s.t. ‖Φa − x‖2 � σ2
n

(9.6)

Both these minimizations are NP complex problems due
to the presence of the L0 norm: according to [88, 89], under
some constraints on the sparsity of a and the structure of Φ,
the L0 norm can be substituted by a L1 norm. The resulting
problem is thus much easier to solve.

Moreover, additional constraints can be introduced to
further simplify the minimization task. First of all, if the set
of AP waveforms was correctly estimated, there is no need
to consider negative values of the elements of the activation
vector: AP may have different amplitudes on different elec-
trodes due to distance attenuation but no phase inversion is
possible. Next, neurons shall activate only once in a given
time interval if such is chosen short enough.

These considerations can be expressed in mathematical
terms as

a � 0

aTΣa = 0
(9.7)

where Σ is the so called selection matrix.
In case of single events sorting Σ elements are all ones

except for the main diagonal, which is filled with zeros.
When multiple activation is considered, Σ features a block
structure: on the main diagonal, blocks identical to the
previous case are present; outside the main diagonal, blocks
are filled with ones if the corresponding neurons cannot
activate simultaneously, with zeros otherwise. Finally, in
case a given neuron cannot activate at all in the considered
time interval, the corresponding diagonal block is filled
with ones on the main diagonal too.

Thanks to the first constraint in (9.7) the L1 norm of a
can be written as the plain sum of the activation vector
elements; the minimization problem thus becomes

ae = mina 1Ta s.t. a � 0

aTΣa = 0

‖Φa − x‖2 � σ2
n

(9.8)



9.2 improved spike sorting algorithms 155

20 40 60

0

0.2

0.4

0.6

0.8

1

Unit 1 true activation

20 40 60 80 100 120
−5

0

5
x 10

−3 Electrode 1 recordings

20 40 60

0

0.2

0.4

0.6

0.8

1

Unit 2 true activation

20 40 60 80 100 120
−5

0

5
x 10

−3 Electrode 2 recordings

20 40 60

0

0.2

0.4

0.6

0.8

1

Unit 1 estimated activation

20 40 60

0

0.2

0.4

0.6

0.8

1

Unit 2 estimated activation

Figure 75: L1 norm minimization based spike sorting example: a
test on two very similar superimposed spikes shows
that sorting is feasible.

which is a much simpler Linear Programming (LP) task [90].
As hinted in Figure 72, by switching the selection matrix,

thus the LP task constraints, the same technique can be used
to sort both single and multiple activation, originating a
spike sorting algorithm with a complexity much lower than
the classic one.
Figure 75 shows a test of the L1 norm minimization based

spike sorting technique performed on two very similar su-
perimposed spikes in the case of a two channel simulated
MER. The estimated activation vectors for the involved neu-
rons are very similar to the true one, although a complete
separation was not possible.





CONCLUS ION

Adaptive processing of biological signals in the recent past
years steadily increased in importance due to the improve-
ments in the acquisition equipment. In the US field it is pos-
sible nowadays to record up to 50 high resolution frames
per seconds made of more than 4000 rows and 128 columns.
At the same time, in the MER research environment, 64 or
more ER traces can be recorded at the same time in order to
track the activity of neural systems as complex as Primates
brain.

Signals incoming from these sources feature complex
models and are typically subject to non-linear, time-varying
degrading effects due to signal dependent noise and to
acquisition equipment. In this work, many advanced signal
processing algorithms, most of them original creations de-
veloped during Ph.D research activity, were presented as a
mean to adaptively recover the undistorted incoming signal.
These algorithms share an adaptive approach to signal anal-
ysis, meaning that their behavior is not dependent only on
designer choices, but driven by input signal characteristics
too.
In Chapters 1 and 2 of this work, after a swift recalling of
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US imaging and MER technique history, a wide perspective
about how signals are acquired was given. Respective signal
models were then presented, highlighting the differences
between the current state of the art and what was developed
during the research activity. In particular, an innovative
flexible signal model was introduced for the purpose of
ER signal processing, introducing a signal dependent noise
component to account for misalignment between neural
spikes and recording clock.
Chapter 3 discussed about some flavors of Wavelet Trans-

form, namely CWT, DWT, SWT and QCWT, presenting the dif-
ferences between each of them, their strong points and the
algorithms meant for calculating the respective transform
domain coefficients. The last sections of this chapter dis-
cussed respectively how to iteratively estimate the Wavelet
scaling function for the purpose of computing the QCWT
and how to calculate the coefficients of the filters employed
in SW/HW implementation of the different transforms.
Detailed descriptions of the tools employed in this work

to perform signal processing were given in the central four
chapters. Impulse response estimation tools were intro-
duced first, in Chapter 4: starting from two known tech-
niques, an original algorithm combining the advantages of
the former two was proposed. The three resulting methods
were then compared in terms of estimation error, impulse
stability and coefficient number: the flexibility of the pro-
posed algorithm allowed it to better the other methods on
two metrics out of three.
In Chapter 5 the discussion moved to deconvolution tech-

niques: two algorithms already in literature are compared
to an original one, called ADID, capable of dealing with
both non-minimum phase estimated impulses and non-
synchronized sampling. A non-iterative, adaptive version
of the WLSD algorithm was also presented in this chapter:
these techniques were both developed during the current
research activity. Performance comparisons made use of
the state of the art concerning image quality assessment,
contrast gain estimation and resolution gain quantification;
visual inspection was also used in the concluding part of
the chapter, highlighting the good results featured by ADID.

Chapter 6 examined several adaptive filtering techniques
based on the LMS filter update policy in a configuration
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meant for signal deconvolution. Starting from the basic
adaptive FIR filter, three advanced algorithms were pre-
sented, based respectively on higher order statistics, poly-
phase decomposition and IIR filtering. Original contributes,
constituted by the adaptive gain versions of the NEM, SAF
and IIR LMS algorithms, were introduced in this chapter by a
discussion on the adaptive gain FIR LMS filter and are devel-
oped in details in the following appendixes. Performance
comparison followed the same criteria of Chapter 5.
Finally, Chapter 7 presented an innovative denoising algo-

rithm, called WARES, based on the signal model introduced
in Chapter 2; this technique was developed during the re-
search activity for the purpose of signal dependent noise
removal. The method is based on LMMSE minimization:
Wavelet domain was used in order to overcome some restric-
tive hypotheses that were introduced by the development
of a similar technique in the time domain. Performance
comparison was performed both on terms of synthetic and
real signals denoising, paralleling the results of WARES with
other Wavelet based signal processing algorithms. A de-
tailed documentation concerning the derivation of both the
time and Wavelet domain implementations is given in the
following appendixes.

The final chapters examined two possible applications
of adaptive multiscale signal processing algorithms. An
innovative preprocessing section meant for biological tissue
classification by means of US imaging was presented in
Chapter 8: thanks to the flexibility of the model adopted
in WARES, this algorithm was used both to perform prelim-
inary denoising and to separate true echoes from speckle
noise. Blind deconvolution was accomplished first by es-
timating the acquisition system PSF with the algorithms
presented in Chapter 4 then applying the deconvolution
techniques discussed in Chapter 5. A classification protocol
exploiting the results produced by this section was also
detailed, showing that accurate tissue classification based
on US imaging is feasible.

A second application concerning neural spike sorting
was depicted in Chapter 9: again WARES algorithm was em-
ployed to extract the desired signal from the embedding
noise. Spike template library was built by applying pulse
estimation on the denoised signal. Finally, ADID deconvo-
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lution allowed for position and amplitude estimation of
each neural spike within the selected time interval. Some
more advanced techniques were also presented, offering
the possibility to reduce the overall system complexity and
to improve accuracy in presence of simultaneous firing
neurons.

Parts of the research results presented in this thesis have
already been published in [P-1, P-2, P-3, P-4, P-5, P-6, P-7,
P-8, P-9, P-10]. The other results will be the subject of future
papers.



Part IV

APPENDIX





A
LEAST MEAN SQUARE F ILTER ING

a.1 adaptive gain nem derivation

The derivation of the adaptive gain version of the NEM
algorithm starts from (6.17). This relationship defines the
instantaneous cost function J(n) as

J[n] =

M∑
i=1

ai

2i
e[n]2i (A.1)

where, with reference to Figure 35,

e[n] = d[n] +

N∑
i=1

u[n − i]H̃i[n] (A.2)

is the estimate of the input signal x[n] at time step n and
H̃i[n] is the i-th coefficient of the filter H̃ at the same step.

As for the Adaptive Gain LMS filter, the AWC rule for this
algorithm involves the following steepest-descent update
policy for each filter coefficient H̃i[n] and for the step-size
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parameter μ[n]

H̃i[n + 1] = H̃i[n] − μ[n]
∂J[n]

∂H̃i[n]

μ[n + 1] =
[
μ[n] − α

∂J[n]
∂μ[n]

]μ+

μ−

(A.3)

where α is the learning-rate parameter for this algorithm.
Expanding the partial derivatives in (A.3), these relation-

ships are obtained:

∂J[n]

∂H̃i[n]
=

∂J[n]
∂e[n]

∂e[n]

∂H̃i[n]

= ε0[n]u[n − i]
∂J[n]
∂μ[n]

=
∂μ[n]

∂e[n]
∂e[n]

∂H̃i[n]

= ε0[n]
∑N

i=1 u[n − i]
∂H̃i[n]
∂μ[n]

(A.4)

where the partial derivative of J[n] with respect to e[n] was
conveniently named as ε0[n]. As a consequence, from the
definition of J[n] it follows that

ε0[n] =

M∑
i=1

aie[n]2i−1 (A.5)

The only yet unknown quantity in this algorithm is the
partial derivative of H̃i[n] with respect to μ[n]: calling it
Ψi[n], a recursive definition of this quantity is obtained
differentiating the first equation of (A.3):

Ψi[n + 1] = Ψi[n] −

[
∂J[n]

∂H̃i[n]
+ μ[n]

∂

∂μ[n]

∂J[n]

∂H̃i[n]

]
(A.6)

Substituting the first equation of (A.4) in (A.6) and ex-
panding the second partial derivative, the following rela-
tionship is found

Ψi[n + 1] = Ψi[n] − u[n − i]

[
ε0[n] + μ[n]

∂ε0[n]

∂e[n]

∂e[n]

∂μ[n]

]
(A.7)

where the partial derivative of ε0[n] is named ε1[n] and the
quantity between square brackets is named η[n]: from the
definition of ε0[n] it is found that

ε1[n] =

M∑
i=1

(2i − 1)aie[n]2i−2 (A.8)
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Calling φ[n] the partial derivative of e[n] with respect to
μ[n], the following relationship for η[n] is obtained

η[n] = ε0[n] + μ[n]ε1[n]φ[n] (A.9)

which concludes the derivation of the AWC rule equations
for the Adaptive Gain NEM algorithms

It is now possible to write down the sequence of oper-
ations required at each step to compute the input signal
estimation e[n] and the updates of the internal variables:

1. f[n] =
∑N

i=1 u[n − i]H̃i[n]

2. φ[n] =
∑N

i=1 u[n − i]Ψi[n]

3. e[n] = d[n] + f[n]

4. ε0[n] =
∑M

i=1 aie[n]2i−1

5. ε1[n] =
∑M

i=1(2i − 1)aie[n]2i−2

6. η[n] = ε0[n] + μ[n]ε1[n]φ[n]

7.H̃i[n + 1] = H̃i[n] − μ[n]ε0[n]u[n − i]

8.Ψi[n + 1] = Ψi[n] − η[n]u[n − i]

9. μ[n + 1] = [μ[n] − αε0[n]φ[n]]μ+
μ−

As a conclusion, it is possible to show that η[n] is weighted
sum of second estimations of the input signal x[n]. Expand-
ing ε0[n] and ε1[n] in (A.9) the following relationship is
found

η[n] =

M∑
i=1

aie[n]2i−1 + μ[n]φ[n]

M∑
i=1

(2i − 1)aie[n]2i−2

(A.10)

where it is possible to collect ai and e[n], yielding

η[n] =

M∑
i=1

aie[n]2i−2 [e[n] + (2i − 1)μ[n]φ[n]] (A.11)

Calling ξi[n] the terms between square brackets and sub-
stituting (A.2) and (A.4) into (A.11), by collecting u[n − j]

the following definition for ξi[n] is obtained

ξi[n] = d[n] +

N∑
j=1

u[n − j]
[
H̃j[n] + (2i − 1)μ[n]Ψj[n]

]
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(A.12)

Recalling that Ψj[n] is the partial derivative of H̃i[n] with
respect to μ[n], (A.12) can be thought as a second order
estimate of x[n]. Substituting (A.12) into (A.11), it is possible
to define η[n] as the following time-varying weighted sum
of second order estimations:

η[n] =

M∑
i=1

aie[n]2i−2ξi[n] (A.13)

It is worth noting that (A.13) reduces to (6.13) when
M = 1.

a.2 adaptive gain saf derivation

The derivation of the adaptive gain version of the SAF algo-
rithm is based on the following instantaneous cost function
J(n)

J[n] =
1

2

K−1∑
α=0

aα

e α
[n]2 (A.14)

where, with reference to Figure 45,

eα[n] = dα[n] +

K−1∑
β=0

N/K∑
i=1

uαβ[n − i]H̃β,i[n] (A.15)

is the estimation of the coefficients of the α-th band of
the input signal x[n] at time-step n and H̃β,i[n] the i-th
coefficients of the β-th polyphase component of the filter H̃.
The following relationship between H̃β,i[n] and H̃i[n] holds
due to the polyphase decomposition properties:

H̃β,i[n] = H̃β+iK[n] (A.16)

The AWC rule for this algorithm involves the following
steepest-descent update policy for each filter coefficient
H̃β,i[n] and for the step-size parameter μ[n]

H̃β,i[n + 1] = H̃β,i[n] − μ[n]
∂J[n]

∂H̃β,i[n]

μ[n + 1] = μ[n] − ξ
∂J[n]
∂μ[n]

(A.17)
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where ξ is the learning-rate parameter for this algorithm.
Expanding the partial derivatives in (A.17), these relation-

ships are obtained:

∂J[n]

∂H̃β,i[n]
=

∑K−1
α=0

∂J[n]
∂eα[n]

∂eα[n]

∂H̃β,i[n]
∂J[n]
∂μ[n]

=
∑K−1

α=0
∂J[n]

∂eα[n]
∂eα[n]
∂μ[n]

(A.18)

From (A.14) and (A.15) each of the partial derivatives on
the left hand side of (A.18) can be expressed as follows:

∂J[n]
∂eα[n]

= aαeα[n]
∂eα[n]

∂H̃β,i[n]
= uαβ[n − i]

∂eα[n]
∂μ[n]

=
∑K−1

β=0

∑N/K
i=1 uαβ[n − i]

∂H̃β,i[n]

∂μ[n]

(A.19)

Again, the only yet undefined quantity is the partial
derivative of ∂H̃β,i[n] with respect to μ[n]. Calling Ψβ,i[n]

this quantity, a suitable recursive relationship for its eval-
uation can be obtained differentiating the first equation in
(A.17), yielding

Ψβ,i[n + 1] = Ψβ,i[n] −

[
∂J[n]

∂H̃β,i[n]
+ μ[n]

∂

∂μ[n]

∂J[n]

∂H̃β,i[n]

]
(A.20)

where the second order derivative of J[n] can be obtained
expanding and differentiating the first equation in (A.18)

∂

∂μ[n]

∂J[n]

∂H̃β,i[n]
=

K−1∑
α=0

aαuαβ[n − i]
∂eα[n]

∂μ[n]
(A.21)

By substituting (A.18) and (A.21) into (A.20) and collect-
ing the appropriate terms, the following recursive expres-
sion for Ψi[n] is obtained

Ψβ,i[n+1] = Ψβ,i[n]−

K−1∑
α=0

aαuαβ[n− i]

[
eα[n] + μ[n]

∂eα[n]

∂μ[n]

]

(A.22)

where the term within square brackets is called η[n].
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Calling φα[n] the partial derivative of eα[n] with respect
to μ[n], η[n] can be expressed in the following way

η[n] = eα[n] + μ[n]φα[n] (A.23)

which, very likely to what was discussed in the previous
section, can be thought as a second order estimate of the
α-th band input signal coefficients.

It is now possible to write down the sequence of opera-
tions required at each step to compute the α-th band input
signal coefficient estimations eα[n] and the updates of the
internal variables:

1. fα[n] =
∑K−1

β=0

∑N/K
i=1 uαβ[n − i]H̃β,i[n]

2. φα[n] =
∑K−1

β=0

∑N/K
i=1 uαβ[n − i]Ψβ,i[n]

3. eα[n] = dα[n] + fα[n]

4. ηα[n] = eα[n] + μnφα[n]

5.H̃β,i[n + 1] = H̃β,i[n] − μ(n)
∑K−1

α=0 aαeα[n]uαβ[n − i]

6.Ψβ,i[n + 1] = Ψβ,i[n] −
∑K−1

α=0 aαηα[n]uαβ[n − i]

7. μ[n + 1] =
[
μ[n] − ξ

∑K−1
α=0 aαeα[n]φα[n]

]μ+

μ−

a.3 adaptive gain iir lms derivation

The derivation of the adaptive gain version of the IIR LMS
algorithm is based on the same instantaneous cost function
J(n) of the standard LMS

J[n] =
1

2
eα[n]2 (A.24)

where, with reference to Figure 49,

e[n] = d[n]+

M∑
i=1

Hd,i[n]u[n− i]−

N∑
i=1

Hn,i[n]e[n− i] (A.25)

Applying the steepest-descent algorithm to both filters
and to the step-size parameter, the following iterative rela-
tionships define the AWC rule set for this adaptive filtering
algorithm

H̃d,i[n + 1] = H̃d,i[n] − μ[n]
∂J[n]

∂H̃d,i[n]

H̃n,i[n + 1] = H̃n,i[n] − μ[n]
∂J[n]

∂H̃n,i[n]

μ[n + 1] = μ[n] − K
∂J[n]
∂μ[n]

(A.26)
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where K is the learning-rate parameter for the IIR LMS algo-
rithm.
Expanding the partial derivatives in (A.26), these relation-

ships are found:

∂J[n]

∂H̃d,i[n]
= e[n]

∂e[n]

∂H̃d,i[n]
= e[n]ai[n]

∂J[n]

∂H̃n,i[n]
= e[n]

∂e[n]

∂H̃n,i[n]
= e[n]bi[n]

∂J[n]
∂μ[n]

= e[n]
∂e[n]
∂μ[n]

= e[n]φ[n]

(A.27)

where the three additional variables ai[n], bi[n] and φ[n]

are used in place of the partial derivatives of e[n].
These quantities can be defined in a recursive way by

carrying on the differentiations in (A.27)

∂e[n]

∂H̃d,i[n]
= u[n − i] −

∑N
j=1 Hn,j[n]

∂e[n−j]

∂H̃d,i[n]
∂e[n]

∂H̃n,i[n]
= −e[n − i] −

∑N
j=1 Hd,j[n]

∂e[n−j]

∂H̃d,i[n]

∂e[n]
∂μ[n]

=
∑M

i=1
∂H̃d,i[n]

μ[n]
u[n − i]

−
∑N

i=1
∂H̃n,i[n]

μ[n]
e[n − i]

−
∑N

i=1 H̃n,i[n]
e[n−i]
μ[n]

(A.28)

where, if the filter adapts at a slow enough rate, the follow-
ing approximation are justified

∂e[n−j]

∂H̃d,i[n]
� ∂e[n−j]

∂H̃d,i[n−j]
= ai[n − j]

∂e[n−j]

∂H̃n,i[n]
� ∂e[n−j]

∂H̃n,i[n−j]
= bi[n − j]

∂e[n−i]
∂μ[n]

� ∂e[n−i]
∂μ[n]

= φ[n − i]

(A.29)

which can be used to close the recursive relationships in-
volving ai[n], bi[n] and φ[n]. Calling the first two partial
derivatives in the last equation of (A.27) respectively Ψd,i[n]

and Ψn,i[n], the following relationships are obtained

ai[n] = u[n − i] −
∑N

j=1 Hn,j[n]ai[n − j]

bi[n] = −e[n − i] −
∑N

j=1 Hd,j[n]bi[n − j]

φ[n] =
∑M

i=1 Ψd,i[n]u[n − i]

−
∑N

i=1 Ψn,i[n]e[n − i]

−
∑N

i=1 H̃n,i[n]φ[n − i]

(A.30)
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The quantities Ψd,i[n] and Ψn,i[n] can be evaluated by
means of recursive relationships too: differentiating the
first two equations of (A.26) and starting from Ψd,i[n], the
following is obtained

Ψd,i[n + 1] = Ψd,i[n] −

(
∂J[n]

∂H̃d,i[n]
+ μ[n]

∂

∂μ[n]

∂J[n]

∂H̃d,i[n]

)
(A.31)

Exploiting first the equation in (A.27), the second order
derivative of J[n] which appears in (A.31) can be expressed
as

∂

∂μ[n]

∂J[n]

∂H̃d,i[n]
= φ[n]ai[n] + e[n]

∂ai[n]

∂μ[n]
(A.32)

Plugging (A.32) into (A.31) and doing the following sub-
stitutions

η[n] = e[n] + μ[n]φ[n]

αi[n] =
∂ai[n]
∂μ[n]

(A.33)

equation (A.31) can be expressed as

Ψd,i[n + 1] = Ψd,i[n] − η[n]ai[n] − μ[n]e[n]αi[n] (A.34)

Calling βi[n] the partial derivative of bi[n] with respect
to μ[n] and following the same steps which lead from (A.31)
to (A.34), Ψn,i[n] can be expressed as

Ψn,i[n + 1] = Ψn,i[n] − η[n]bi[n] − μ[n]e[n]βi[n] (A.35)

Finally, it is possible to derive recursive relationships for
αi[n] and βi[n] too, differentiating the first two equations
of (A.30) with respect to μ[n] and obtaining

αi[n] = −
∑N

j=1 Ψn,j[n]ai[n − j] −
∑N

j=1 H̃n,j[n]αi[n − j]

βi[n] = −φ[n − i] −
∑N

j=1 Ψn,j[n]bi[n − j]

−
∑N

j=1 H̃n,j[n]βi[n − j]

(A.36)

It is now possible to write down the sequence of oper-
ations required at each step to compute the input signal
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estimation e[n] and the updates of the internal variables:

1. f1[n] =
∑M

i=1 u[n − i]H̃d,i[n]

2. f2[n] =
∑N

i=1 e[n − i]H̃n,i[n]

3. f3[n] =
∑N

i=1 φ[n − i]H̃n,i[n]

4. g1,i[n] =
∑N

j=1 ai[n − j]H̃n,j[n]

5. g2,i[n] =
∑N

j=1 bi[n − j]H̃n,j[n]

6. g3,i[n] =
∑N

j=1 αi[n − j]H̃n,j[n]

7. g4,i[n] =
∑N

j=1 βi[n − j]H̃n,j[n]

8. Γ1[n] =
∑M

i=1 u[n − i]Ψd,i[n]

9. Γ2[n] =
∑N

i=1 e[n − i]Ψn,i[n]

10. Γ3,i[n] =
∑N

j=1 ai[n − j]Ψn,j[n]

11. Γ4,i[n] =
∑N

j=1 bi[n − j]Ψn,j[n]

12. e[n] = d[n] + f1[n] − f2[n]

13. ai[n] = u[n − i] − g1,i[n]

14. bi[n] = −e[n − i] − g2,i[n]

15. φ[n] = Γ1[n] − Γ2[n] − f3[n]

16. αi[n] = −Γ3,i[n] − g3,i[n]

17. βi[n] = −φ[n − i] − Γ4,1 − g4,i

18. η[n] = e[n] + μ[n]φ[n]

19.H̃d,i[n + 1] = H̃d,i[n] − μ[n]e[n]ai[n]

20.H̃n,i[n + 1] = H̃n,i[n] − μ[n]e[n]bi[n]

21. Ψdi
[n + 1] = Ψdi

[n + 1] − η[n]ai[n] − μ[n]e[n]αi[n]

22. Ψni
[n + 1] = Ψni

[n + 1] − η[n]bi[n] − μ[n]e[n]βi[n]

23. μ[n + 1] = [μ[n] − Ke[n]φ[n]]μ+
μ−





B
WAVELET ADAPT IVE RESCAL ING
DENOIS ING

b.1 time-domain relationships derivation

In order to estimate the clean signal x[k] from the noisy
signal model (7.1) described in Chapter 7 some relationships
must be established between quantities dependent on x[k]

and on y[k]. Hypothesis made on both noises u and v as
well as on x during the derivation of such relationships will
be summarized at the end of this section.
Equation (7.2) involves both quantities which are directly

measurable on the input signal y[k] (E[y[k]] and Cyy) and
quantities which depends on the unknown clean signal x[k]

(E[x[k]] and Cxy). The goal is to highlight the dependency
between them, in order to infer useful properties.
Starting from E[y[k]], due to the linearity of the expecta-

tion operator, is it possible to write

E[y[k]] = E[x[k]] + E[z[k]u[k]] + E[v[k]] (B.1)

where z represent the convolution of the input signal x with
the filter f as defined by the model (2.1).
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By assuming v stationary with zero mean, the last term
in (B.1) can be removed. Now, thanks to the definition of
z and by assuming u independent of x, the following is
obtained:

E[y[k]] = E[x[k]] +
∑

i

f[i]E[x[k − i]]E[u[k]] (B.2)

where the linearity of the expectation estimator was used.
Finally, assuming u stationary with zero mean it is possible
to write

E[y[k]] = E[x[k]] (B.3)

which allow to substitute any expectation on x[n] with an
expectation on y[n] and vice-versa.

Equipped with this relationship, Cxy can be considered:
by definition[

Cxy

]
pq

= E[(x[p] − E[x[p]])(y[q] − E[y[q]]) (B.4)

Expanding the term y[m] and plugging in (B.3) the follow-
ing holds
[
Cxy

]
pq

= E
[
(x[p]−E[x[p]])(x[q]+z[q]u[q]+v[q]−E[x[q]])

]
(B.5)

Next, exploiting again the linearity of the expectation oper-
ator, (B.5) is split up into

[
Cxy

]
pq

= E
[
(x[p] − E[x[p]])(x[q] − E[x[q]])

]
+ E[x[p]z[q]u[q]] + E[x[p]v[q]]

− E[x[p]]E[z[q]u[q] − v[q]] (B.6)

As z[q]u[q] + v[q] = y[q] − x[q], assuming again u and v

stationary with zero mean and u independent of x, (B.3)
can be used to eliminate the last term from (B.6). Moreover,
if v is assumed independent of x as well, the third term of
(B.6) is zero too. Finally, remembering that z is defined as
the convolution of x with the filter f, thanks to the linearity
of the expectation, even the second term of (B.6) is zero,
leaving only[

Cxy

]
pq

=
[
Cxx

]
pq

(B.7)
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where the right hand side does not depend on y.
Finally, Cyy can be examined: by definition[

Cyy

]
pq

= E[(y[p] − E[y[p]])(y[q] − E[y[q]])] (B.8)

holds, from which, expanding the term y[p] and plugging
in (B.3), the following is obtained[

Cyy

]
pq

= E
[
(x[p] + z[p] u[p] + v[p] − E[x[p]])

· (x[q] + z[q] u[q] + v[q] − E[x[q]])
]
(B.9)

Next, exploiting again the linearity of the expectation oper-
ator, (B.9) is split up into four terms[

Cyy

]
pq

= E
[
(x[p] + E[x[p]])(x[q] + E[x[q]])

]
+ E

[
(x[p] + E[x[p]])(z[q] u[q] + v[q])

]
+ E

[
(z[p] u[p] + v[p])(x[q] + E[x[q]])

]
+ E

[
(z[p] u[p] + v[p])(z[q] u[q] + v[q])

]
(B.10)

By assuming again u and v to be both stationary with
zero-mean and independent of x, the next relationship holds[

Cyy

]
pq

=
[
Cxx

]
pq

+ E
[
z[p]z[q]

]
E
[
u[p]u[q]

]
+ E[v[p]v[q]]E

[
z[p]

]
E
[
u[p]v[q]

]
+ E

[
v[p]u[q]

]
E
[
z[q]

]
(B.11)

so that, if u and v are each other independent, the final
outcome is[

Cyy

]
pq

=
[
Cxx

]
pq

+
[
Czz

]
pq

[
Cuu

]
pq

+
[
Cvv

]
pq
(B.12)

where, again, the right hand side does not depend on y,
but only on x, u and v and each term depends only on one
of these signal.
In order to obtain these results the following hypothesis

were made on each contributor to the input signal y:

• u is supposed to be stationary with zero mean and
independent of v and x;

• v is supposed to be stationary with zero mean and
independent of u and x;

• x is supposed to be independent of both u and v,
and its first derivative z is supposed to be well ap-
proximated by the convolution of x itself with an
appropriate order derivative FIR filter k.
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b.2 wavelet-domain relationships derivation

As it was done for the time-domain in Section B.1, similar
relationship can be derived in the Wavelet domain. More-
over, since Wavelet filters are involved and their coefficients
are known quantities, they should be kept separate them
from any other term whenever useful. Hypothesis made on
both noises u and v as well as on x during the derivation
of such relationships will be summarized at the end of this
section.
Before starting, it’s worth remembering that the SWT co-

efficients of the signal x for the m-th octave are obtained in
the following way:

xm[k] =
∑

i

hm[i] x[k − i] (B.13)

where hm is the equivalent Wavelet filter for the m-th oc-
tave.

Now, considering E[ym[k]], due to the linearity of the
convolution operator embedded in the SWT, it is possible to
rewrite it as

E[ym[k]] = E

[∑
i

hm[i] y[k − i]

]
=

∑
i

hm[i]E[y[k − i]]

(B.14)

where the same hypotheses that led to (B.3) are assumed in
order to substitute the expectation on y[n] with an expecta-
tion on x[n], thus obtaining

E[ym[k]] =
∑

i

hm[i]E[x[k − i]] = E[xm[k]] (B.15)

which in turn allow to substitute any expectation on xm[k]

with an expectation on ym[k] and vice-versa.
The linearity of the SWT can be used as well to decompose

ym[k] as

ym[k] =
∑

i

hm[i] (x[k − i] + z[k − i]u[k − i] + v[k − i])

= xm[q] + (zu)m[k] + vm[q] (B.16)
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where

(zu)m[k] =
∑

i

hm[i]z[k − i]u[k − i] (B.17)

Equipped with these relationships, Cxmym is now consid-
ered: by definition[

Cxmym

]
pq

= E[(xm[p]−E[xm[p]])(ym[q]−E[ym[q]]) (B.18)

By using both (B.15) and (B.16) the following is obtained

[
Cxmym

]
pq

= E
[
(xm[p] − E[xm[p]])

· (xm[q] + (zu)m[q] + vm[q] − E[xm[q]])
]
(B.19)

which in turn can be written as

[
Cxmym

]
pq

=
[
Cxmxm

]
pq

+ E
[
xm[p](zu)m[q]

]
+ E

[
xm[p]

]
E
[
(zu)m[q] + vm[q]

]
+ E

[
xm[p]vm[q]

]
(B.20)

As (zu)m[q]+vm[q] = ym[q]−xm[q], making use of (B.15)
the last term in (B.20) can be eliminated, leaving only two
terms: by expanding the SWT transform and assuming v to
be independent of x, E[xm[p]vm[q]] becomes

E[xm[p]vm[q]] =
∑
ij

hm[i] hm[j]E[x[p− i]]E[v[q− j]] (B.21)

which is zero if v is assumed to be stationary with zero
mean. Expanding again the SWT but assuming this time u in-
dependent of x and recalling the definition of z, E[xm[p](zu)m[q]]

becomes

E[xm[p](zu)m[q]] =
∑
ijr

hm[i] hm[j] f[r]

· E[x[p − i]x[q − j − r]]E[u[q − j]] (B.22)

which in turn is zero if u is assumed to be stationary with
zero mean. Much similarly to (B.7), only remaining terms
are [

Cxmym

]
pq

=
[
Cxmxm

]
pq

(B.23)
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where the right hand side does not depend on y.
Finally, examining Cymym , by definition the following

holds[
Cymym

]
pq

= E[(ym[p] − E[ym[p]])(ym[q] − E[ym[q]])]

(B.24)

from which, expanding the term ym[p] and plugging in
(B.15), the next equation is obtained[

Cymym

]
pq

= E
[
(xm[p] + (zu)m[p] + vm[p] − E[xm[p]])

· (xm[q] + (zu)m[q] + vm[q] − E[xm[q]])
]
(B.25)

Next, exploiting again the linearity of the expectation
operator and splitting up (B.25) into[

Cymym

]
pq

=

= E
[
(xm[p] − E[xm[p]])(xm[q] − E[xm[q]])

]
+ E

[
(xm[p] − E[xm[p]])((zu)m[q] + vm[q])

]
+ E

[
((zu)m[p] + vm[p])(xm[q] − E[xm[q]])

]
+ E

[
((zu)m[p] + vm[p])((zu)m[q] + vm[q])

]
(B.26)

By assuming again u and v to be both stationary with zero
mean and independent of x, the next relationship holds

Cymym = Cxmxm + C
(1)
m + C

(2)
m + C

(3)
m +

(
C

(3)
m

)T (B.27)

where[
C

(1)
m

]
pq

= E[vm[p] vm[q]][
C

(2)
m

]
pq

= E[(zu)m[p] (zu)m[q]][
C

(3)
m

]
pq

= E[(zu)m[p] vm[q]]

Expanding the SWT and recalling the definition of z, if u

is assumed to be independent of v, the last two terms of
(B.27) can be eliminated as E[(zu)m[p] vm[q]] becomes

[
C

(3)
m

]
pq

=
∑
ijr

hm[i] hm[j] f[r]E[x[p − i − r]]

· E[u[p − i]]E[v[q − j]] (B.28)
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which is zero since u and v were supposed to be both
stationary with zero-mean.

In turn, expanding the SWT in the third term of (B.27)
and adjusting the summation indexes this expression is
obtained[

C
(1)
m

]
pq

=
∑
ij

hm[p − i] hm[q − j]E[v[i] v[j]] (B.29)

which, since v is supposed to be stationary with zero mean,
can be written as[

C
(1)
m

]
pq

=
∑
ij

Hm[p,q, i, j]
[
Cvv

]
ij

(B.30)

where
[
Cvv

]
is the autocovariance matrix of v and Hm[p,q, i, j] =

hm[p − i] hm[q − j].
Operating in the same way on the second term of (B.27),

it is first obtained

[
C

(2)
m

]
pq

=
∑
ijrs

hm[p − i] hm[q − j]f[i − r] f[j − s]

· E[x[r] x[s]]E[u[i] u[j]] (B.31)

then, since u is supposed to be stationary with zero mean,
the last term can be rewritten as[

C
(2)
m

]
pq

=
∑
ij

Am[p,q, i, j, r, s]
[
Rxx

]
rs

[
Cuu

]
ij

(B.32)

where
[
Cuu

]
is the autocovariance matrix of u,

[
Rxx

]
is

the autocorrelation matrix of x, and Am[p,q, i, j, r, s] =

hm[p − i] hm[q − j] k[i − r] k[j − s].
Finally, (B.27) can be rewritten as

Cymym = Cxmxm + C
(1)
m + C

(2)
m (B.33)

where, thanks to (B.30) and (B.32), the right hand side does
not depend on y, but only on x, u and v and each term
depends only on one of these signal, just as (B.12). More-
over, with the only exception of Cxmxm , any information
regarding the Wavelet filters hm and the derivative filter km

is contained in the terms Am and Hm.
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It’s worth noting that so far nothing more than the same
hypothesis made in the time domain were used. By making
some further assumptions, it is possible to derive two other
very interesting relationship about the second and third
term of (B.33).

In fact, if both u and v are assumed to be uncorrelated
other than stationary, their covariance matrices become
diagonal, with identical terms on the main diagonal. So,
calling σv the standard deviation of v, the next relationship
is obtained[

C
(1)
m

]
pq

= σ2
v

∑
i

hm[p − i] hm[q − i] (B.34)

where the summation in j has been removed due to the
diagonal nature of Cvv.

Now, by adjusting the only left summation index, this
equality holds:

[
C

(1)
m

]
pq

= σ2
v

∑
i

hm[i] hm[i + p − q]

= σ2
v Rhmhm[p − q] (B.35)

where Rhmhm[i] is the value assumed by autocorrelation
function of the filter hm at the i-th lag. Calling σu the
standard deviation of u and following the same steps as
before, the following is obtained

[
C

(2)
m

]
pq

= σ2
u

∑
irs

hm[i] hm[i + p − q] f[r] f[s]

· E[x[q − i − r]x[q − i − s]] (B.36)

If x is supposed to be stationary on both the support of
hm and f, the last relationship can be rewritten as

[
C

(2)
m

]
pq

= σ2
u

∑
irs

hm[i] hm[i + p − q] f[r] f[s]

· E[x[q]x[q + r − s]] (B.37)

where the expectation term is nothing more than the au-
tocorrelation function of x centered on the sample n for
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the lag r − s. Adjusting some summation indexes, the next
equality is obtained

[
C

(2)
m

]
pq

= σ2
u

( ∑
i

hm[i] hm[i + p − q]
)

·
∑
d

( ∑
s

k[s] k[s + d]
)
R(n)

xx [d]

= σ2
u Rhmhm[p − q]

∑
d

Rff[d]R(q)
xx [d] (B.38)

where Rhmhm[i] is the value assumed by autocorrelation
function of the filter hm at the i-th lag and Rff[i] is its
equivalent for the filter f. Examining equation (B.35) and
(B.38), it’s even more evident how the contributes of each
single component of the input signal y can be separated.

In conclusion, the hypothesis made to obtain these rela-
tionships can be summarized as follows:

• u is supposed to be stationary with zero mean and
independent of v and x;

• v is supposed to be stationary with zero mean and
independent of u and x;

• x is supposed to be independent of both u and v and
stationary over the support of the equivalent wavelet
filters hm and the model filter f.
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