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Introduction

In this thesis, the Ising model, initially formulated with two-spin interactions,

is extended to include three-spin interactions. The extended version incorporates

the necessary mathematical rigor to investigate the effect of three-spin interactions

on the formation of phase separations. This section of the thesis provides an intro-

duction to the Ising model, offering a historical background on its development. It

includes an overview of the thesis, introduces the extension of the Ising model to a

three-spin model, and outlines the structure of the thesis.

The Ising model was originally proposed by the German physicist Wilhelm Lenz

and his graduate student, Ernst Ising, during the early 1920s as a model for fer-

romagnetism. It is notable that Ising, received the credit for the model rather

than his advisor, which is uncommon in scientific nomenclature. Lenz’s interest in

Curie’s law, proposed by Pierre Curie in 1895 [1], which describes the properties

of magnetic susceptibility of a material in relation to temperature and an applied

external magnetic field, motivated his study. In his work [2], Lenz made the as-

sumption that elementary magnets have only two possible opposite directions; that

laid the groundwork for Ising’s subsequent investigations on ferromagnetism under

his guidance [3].

Pierre Curie’s observation in 1895 [1] noted that magnets lose their magnetic

properties when heated beyond a certain critical temperature known as the Curie

temperature. Regardless of the specific temperature, the underlying phenomenon

remains the same: a magnet can only exhibit magnetisation in the presence of an

external magnetic field below the Curie temperature, while above it, the magnet

behaves as a paramagnetic material. This phenomenon is called phase transition

between a paramagnetic and a ferromagnetic phase. Curie drew parallels between

the behaviour of ferromagnetic and paramagnetic phases in magnets and the liquid

and gas phases in fluids concerning temperature and external fields.

In [4], Pierre Weiss in 1907 proposed an explanation for Curie’s observations [1]

v
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based on the interactions between atoms within a magnetic material. He intro-

duced the mean-field approximation theory, suggesting that each atom experiences

the combined effect of all other atoms within the material. Weiss’s theoretical pre-

dictions using this model aligned remarkably well with experimental measurements.

Together with Curie’s observation this assumption gave rise to a mean-field model,

now called the Curie-Weiss model. While this model offered valuable insights, it

did not fully capture the complexities of phase transitions.

The work of Pierre Curie [1] forms the basis of the work carried out by Lenz and

latter generalised or modified by Ising. Lenz in his work [2], failed to propose an

explicit form for the interaction between elementary magnets or magnetic particles.

He explained the typical behaviour of a paramagnet, which has zero magnetisation

when no magnetic field is applied, and a magnetisation when such a magnetic field

is applied, but Lenz made no mention of what will later be referred to as the ferro-

magnetic behaviour [5]. Although Lenz did not say much about the ferromagnetic

behaviours, he made an important contribution: according to [3], Lenz noted that

“For ferromagnetic bodies, in addition to the temperature dependence of the sus-

ceptibility, one has to explain first of all the fact of spontaneous magnetisation, as

is observed in magnetite and pyrites...”

Lenz’s work [2] laid the foundation for Ising’s contributions, specifically in de-

scribing the interactions between elementary magnets or magnetic particles. Ising

assumed that interactions between magnets decay rapidly with distance, primarily

considering the influence of neighbouring magnets. Additionally, he postulated that

the configuration requiring the minimum energy occurs when neighbouring atoms

act in the same direction. These assumptions led to the formulation of the math-

ematical model discussed in the subsequent chapters of this thesis. Ising further

assumed that the elementary magnets are arranged in a linear chain to facilitate

analysis.

Ising’s analysis of the one-dimensional variant of his model resulted in the correct

conclusion that a linear chain of two-state spins cannot undergo a phase transition

at finite temperature. However, when extending his conclusions to two and three

dimensions, Ising’s predictions were proven to be incorrect. Despite some attempts

to generalise the model, including non-nearest neighbour interactions and variations

in spin directions, an explanation for ferromagnetism remained elusive [5]. Ising

conjectured that the model was insufficient for describing ferromagnetism, even

when considering higher-dimensional spin arrangements.
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Ising’s work, published in 1925 [6], has gained attention for its unexpected im-

pact, as it revealed a superficial understanding of the profound problems addressed

in twentieth-century physics. Although Ising’s conclusions were incorrect, the model

he proposed encapsulated essential aspects of phase transitions, critical phenomena,

and many-body problems. The two-dimensional version of the Ising model was later

successfully solved by Lars Onsager [7], while on the three-dimensional lattice re-

mains unsolved. However, continued progress and numerical techniques have shed

further light on the problem’s structure. Despite its analytical challenges, the Ising

model and its variants have found applications in diverse fields such as condensed

matter physics, physical chemistry, neuroscience, and the study of complex systems.

Heisenberg provided another model of ferromagnetism based on quantum me-

chanics a few years following Ising’s work, in which the “classical” spins of the Ising

model are substituted with electron quantum spins [8]. The Heisenberg model aims

to explain ferromagnetism through the interplay of electron spin angular momen-

tum in atoms, whereas the Ising model relied on their magnetic moments. In certain

ways, the Ising model is indeed a semi-classical variant of the Heisenberg model,

and as such it contradicted recent advances in quantum mechanics. The disparity

between the Heisenberg model’s tremendous prediction success and the challenge of

aligning the Ising model with recent advancements in contemporary physics nearly

discredited the model as a good explanation of ferromagnetic materials.

The Ising model [6] is a valuable source of ideas and methods for studying

statistical dependences in networks. By definition the Ising model naturally fits the

problem of describing pairwise interactions among dichotomic variables. The model

is represented on a lattice, with a molecule or atom having a discretised magnetic

moment that assumes only two directions with values +1 for an upward and −1

for a downward direction at each lattice site i. The spin of a magnetic moment

at site i is represented as σi = ±1. These spins interact with their neighbours

via an interaction potential which may induce alignments of the neighbours. The

interaction between neighbouring spins is favourable if the neighbours have the same

spin alignment (i.e., both are +1 or both are −1), and unfavourable otherwise. The

two possible states indicate whether two spins i and j are aligned and thus parallel

(σi · σj = +1) or antiparallel (σi · σj = −1). If the two magnetic moments are

aligned, the system is in a state with lower energy otherwise in a state with higher

energy. To minimise the energy, the system therefore tends to align all magnetic

moments in one direction.



viii CONTENTS

Overview

In the early 1970s, a rigorous analysis of the nature of phase transitions in

multi-spin systems lacking the usual spin-reversal symmetry drew a lot of attention

because it was discovered that their critical behaviours differed from that of the

nearest-neighbour two-spin interacting model [9–11]. The Ising model with three-

spin interactions is one of such multi-spin systems that have been considered [11].

In this thesis, the mean-field Ising spin model with three-spin interactions is

investigated both for the forward and the inverse problem. Note that lower energy

state for the system with three-spin interaction is not an indication of spin align-

ments, since different spin orientations can lead to the same energy levels. The aim

of this thesis is not to argue on the importance of three-spin interactions, but to

gain a theoretical understanding of their role in the occurrence of phase separation.

The interest in such a model comes from two large fields of research. The

first is condensed matter physics, where the three-spin interaction plays a role in

the description of the phase separation phenomena of some magnetic alloys [12]

lacking spin-flip symmetry. Those physical systems cannot be described by the

sole use of a two-spin interaction, while a three-spin term captures some features

of their behaviour [9]. This fact is well paralleled by the Ginibre theorem about

functions of spin configurations that are fully classified by an orthonormal base of k-

body interactions [13]. Those physical phenomena are well described by statistical

mechanics models on regular lattices in finite (d=2,3) dimensions. While some

of those models have an exact solution in very special cases [10, 11], it is well

known that the mean-field approximation provides an analytically viable setting

and a fair description of the phase separation. In those cases, the term mean-field

approximation is understood in the sense of a special class of probability measure

where the Boltzmann-Gibbs variational principle is optimised: instead of minimising

the free energy over all probability measures, one restricts it to product measures

on single spins [14,15].

The other field in which the three-spin (i.e., three-body) interactions came to

play a role is that of the applications to complex systems, in particular those of a

socio-technical nature where the social network structure with long-range interac-

tion represents a realistic description of the phenomenon and not an approximation

of its finite-dimensional version [16–19]. In this case, from a mathematical perspec-

tive, the introduction of the three-body interaction entails moving from a graph-

theoretical environment of vertices and edges to a richer hypergraph setting where
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the three-body terms, representing the faces of the hypergraph, are also taken into

account.

The presence of the three-spin interactions brings technical difficulties in the

analysis of the model. In particular, the non-convex energy contribution due to the

cubic power prevents the use of the Hubbard-Stratonovich transform, which instead

is very efficient in the case of quadratic interactions. More precisely, even if the

thermodynamic limit of the free energy can be easily computed by large deviation

arguments, the fluctuations of the order parameter cannot be analysed with the

classical rigorous methods for a mean-field system with pairwise interaction [20–22].

In order to overcome this obstacle we need a fine control on the N -asymptotic

behaviour of the partition function that is obtained by a method similar to that

recently introduced in [23].

Layout of thesis

The first chapter of the thesis provides some mathematical background to the

Ising model with two-spin interaction and an external magnetic field.

The Ising model with three-spin interaction is formally introduced in chapter

two. In chapter two, the considered model has three- and two-spin interactions and

an external magnetic field. The large N behaviour governing the system, thermody-

namic limit of the pressure density, is shown to exist using methods based on large

deviations machinery. The equilibrium properties of the system are then investi-

gated by generating phase plots for the order parameter. The phase properties of

the model is thoroughly studied using the mean-field approximation theory. Some

basic concepts and properties of the model, such as the existence and uniqueness

of phase transitions, the properties of the magnetic order parameter and an order

parameter with a critical point characterised by critical exponents are analysed in

the subsequent chapters 3 and 4.

In chapter three, the equilibrium measure for large volumes is shown to have

three pure states in the phases of the model in the absence of an external field.

These phases include the two with opposite magnetisation and an unpolarised one

with zero magnetisation, merging at the critical point. The Central Limit Theorem

is shown to hold for a suitably rescaled magnetisation, while its violation with the

typical quartic behaviour appears at the critical point.

In the fourth chapter, the equilibrium and phase properties of the Ising model
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with three-spin interaction and an external field are studied. The thermodynamic

properties of the model reveals two coexistence curves, signifying two distinct

second-order phase transitions, dependent on the domain of the interaction pa-

rameter. The critical exponents of the magnetic order parameter are calculated

in all directions of the phase space and show their agreement with the mean-field

universality class.

Chapter five of this thesis deals with the inverse problem for the Ising model with

three-spin interaction where the couplings and bias between particles describing

the microscopic interactions are computed from its statistical properties. In this

chapter the inverse problem is solved following an analytical approach, i.e., naive

mean-field method or method of moments. To compute the couplings and bias,

we first obtain analytical formulas for the system’s macroscopic variables in the

thermodynamic limit where they provide explicit expressions of the parameters.

Starting from configuration data generated according to the distribution of the

model we reconstruct the free parameters of the system and test the robustness of

the inversion procedure both in the region of uniqueness of the solutions and in the

region where multiple thermodynamic phases are present.

In chapter six, a multipopulated version of the model introduced in chapter two

is studied. Here, the spin particles are partitioned into r−blocks and the thermo-

dynamic limit of the pressure density is shown to exist using methods from large

deviations. It is shown that the Central Limit Theorem holds for a vector of rescaled

block magnetisation when the limiting pressure per particle has unique global max-

imiser and local multivariate Gaussian fluctuations for the vector of block magneti-

sation around multiple global maximisers. A bipopulated version of the model is

then used as a paradigm to model a complex system made of Human (H) and AI

agents. The system is studied analytically using a simple model where two-body

and three-body interactions among units are present. The interactions and the rel-

ative size α (0 ≤ α ≤ 1) of the two populations are the control parameters that can

be changed to drive the system through different phases with transitions of different

orders between them. It is shown that for suitable values of the interaction parame-

ters, arbitrarily small values of α may trigger dramatic changes for the system, and

the results are interpreted in terms of the Human-AI ecosystem.



Chapter 1

The Ising model

The Ising model was introduced to explain the ferromagnetic behaviour of some

types of metals or alloys. These materials, after being exposed to an external

magnetic field, develop magnetisation with the same sign as the field. When the

field is switched off, the materials show two different behaviours that depend on the

temperature at which the magnetisation is induced. If the temperature (T ) is below

a certain critical value, Tc, the materials retain a certain degree of magnetisation,

called spontaneous magnetisation, while at a temperature greater than or equal to

the critical value they do not exhibit such property. As the temperature approaches

its critical value from below, the spontaneous magnetisation disappears.

Let us consider the finite d−dimensional integer lattice {d = 2, 3, ...}, Zd, and

a finite subset Λ ⊂ Zd. Let G = (Λ, E) be a finite graph such that the spins

are located in the vertex-set Λ and the edge-set E represents the set of the links

between neighbouring spins which describe their interactions. For each vertex i ∈ Λ,

a collection of the microstates of the spins is given as (σi : i ∈ Λ) = σ ∈ {−1, 1}|Λ| =
ΩΛ, where σ is the spin configuration representing the state of the magnetic material.

1.1 The model

The energy of a spin configuration σ onG is defined as the sum of the interactions

over all pairs of spins and addition of the interaction of each spin with an external

magnetic field:

HG(σ) = −
∑
i,j∈E

Ji,jσiσj −
∑
i∈Λ

hiσi. (1.1)

1
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Equation (1.1) is the Hamiltonian of the system for a given spin configuration σ;

it is called the nearest neighbour ferromagnetic Ising model if the following choices

are made: Ji,j = J > 0 when |i− j| = 1, Ji,j = 0 if |i− j| ≠ 1, and hi = h ∈ R. In
this case, the first sum is over all nearest neighbour pair of spins in Λ which reflects

the fact that the interactions vanish at long distances, J measures the interaction

strength between neighbouring pair of spins and h is the strength of an applied

external magnetic field. The ferromagnetic property of the model is implied by

the sign of the interaction strength J such that, minimisation of the Hamiltonian

(1.1) in the whole configuration space Λ requires neighbouring spins to align. Note

that, by definition of equation (1.1), one can extend the Ising model to incorporate

non-nearest neighbour interactions when the constraint on |i− j| = 1 is relaxed and

anti-ferromagnetic interactions when Ji,j = J can be negative.

It is important to note that the Hamiltonian (1.1) can give rise to a rich diversity

of behaviours depending on the choice of Ji,j : ferromagnetism, frustration, glassy

systems, etc, of which only the first will be discussed while the others are beyond

the scope of this thesis.

A key focus in statistical mechanics is the computation of the probability of

a system being in a particular state, given the definition of the Hamiltonian for

a specific configuration. The probability measure for each configuration σ ∈ ΩΛ,

associated with the Hamiltonian (1.1) in a finite-volume system, is expressed by the

Gibbs measure:

µG(σ) =
exp(−βHG(σ))

ZG
, (1.2)

where ZG =
∑

σ∈ΩΛ
exp(−βHG(σ)) is the normalising constant on G, also called

the partition function, β = 1/T > 0 is the inverse of the temperature. Note that the

likelihood of observing a certain configuration depends largely on the external field

and the spin orientations. If the strength of an applied external field h is nonzero for

a given spin configuration σ̃, whose spin orientations are all aligned in the direction

of h, then σ̃ has the least energy, since J > 0. Hence, the probability µG(σ̃) is the

largest one when compared to those for all other configurations σ ̸= σ̃ ∈ ΩΛ.

An important observation is that, in the absence of a magnetic field (that is,

when h = 0), even though local spin alignment is favoured by the Hamiltonian (1.1),

neither of the +1 or −1 orientations is favoured globally. Namely, if −σ denotes

the spin-flipped configuration in which (−σ)i = −σi, then HG(−σ) = HG(σ); this

implies that µG(−σ) = µG(σ). The model is then said to be invariant under global

spin flip. Whereas, when h ̸= 0, this symmetry no longer holds.
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For any given observable g on ΩΛ, i.e., g(σ) : ΩΛ → R, we denote by ⟨g(σ)⟩ its
average value with respect to the measure (1.2) as:

⟨g(σ)⟩G =

∑
σ∈ΩΛ

g(σ)e−βHG(σ)

ZG
. (1.3)

The normalising factor ZG plays a crucial role in computing the Gibbs free energy,

which is the generating functional of the moments of (1.2) via suitable derivatives

of:

FG = − 1

β
logZG (1.4)

and its thermodynamic limit defined as,

fG = − 1

β
lim
Λ↑Zd

1

|Λ|
logZG, (1.5)

provided it exists. A quantity of central importance is the magnetisation density

or magnetic order parameter for a given configuration σ ∈ ΩΛ, which provides

information about the balance between the two spin values of the system. The

magnetic order parameter is defined as:

mΛ(σ) =
1

|Λ|
MΛ (1.6)

where MΛ =
∑

i∈Λ σi is the total magnetisation. Notice that, once equation (1.4) is

computed, the Gibbs state of mΛ can be obtained as

⟨mΛ⟩G =
∂FG

∂h
(1.7)

and in the thermodynamic limit, the average magnetisation density (1.7), is given

by

m(βJ, βh) = lim
Λ↑Zd

⟨mΛ⟩G =
∂fG
∂h

. (1.8)

As it has already been pointed out, the Gibbs distribution is invariant under a

global spin-flip when h = 0. Hence, as a consequence and by symmetry, ⟨mΛ⟩ = 0,

and m(βJ, 0) = limΛ↑Zd⟨mΛ⟩ = 0 for all temperatures.

Let’s consider the behaviour of the system when β ↓ 0 (infinite temperature)

and β ↑ ∞ (zero temperature). In the limit as β → 0, the Gibbs distribution

converges to a uniform distribution on ΩΛ for all spin configurations σ ∈ ΩΛ. In

this case, MΛ becomes the sum of independent and identically distributed random

variables. On the other hand, when β ↑ ∞, the Gibbs distribution concentrates

on those configurations that minimise the Hamiltonian, the so-called ground states
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and different behaviours appear depending on the value of β. The ground states of

the model, can easily be identified as the configuration having all of its spins equal

+1 or −1. This gives exactly two ground states, namely, σ+ ∈ ΩΛ and σ− ∈ ΩΛ,

where σ+ represents a configuration with all of its spins pointing up (i.e., σi = +1

for all i) and σ− represents a configuration with all the spins pointing down (i.e.,

σi = −1 for all i). Therefore, due to the invariant property of the Gibbs measure,

it’s easy to verify that:

lim
β↑∞

µG(σ;h = 0) =


1
2 , if σ ∈ {σ+, σ−}

0, otherwise
. (1.9)

This implies that, with equal probability the system has higher chance of getting

frozen in one of the two ground states in the limit of very low temperatures (T ). In

this case, there exists a global order in the system called spontaneous magnetisation,

given that the majority of the spins have the same sign. Hence, we say that the

symmetry under a global spin flip is spontaneously broken, since configurations

belonging to one of the two is favoured.

Now, let’s discuss the behaviour of the system when 0 < β < ∞. If β > 0 and

finite, there exists a critical value βc such that for all β < βc, m(βJ, βh) → 0 as

h→ 0+. On the other hand, if β > βc and h→ 0+, then m(βJ, βh) converges to a

positive number, while when h→ 0− it converges to a negative number [20].

If β is sufficiently small (i.e., in the high temperature regime), the interac-

tion is not strong enough to produce any order, and the limiting Gibbs measure

is uniquely determined. In contrast, when β is sufficiently large (in the low-

temperature regime), the interaction becomes so strong that a long-range order

appears: the bias towards neighbour pairs of aligned spins then implies that the

Gibbs measure prefers configurations with either a vast majority of plus spins or a

vast majority of minus spins, and this preference even survives in the infinite volume

limit. We say that the system thus undergoes a phase transition and a spontaneous

magnetisation has occur.

1.2 The mean-field Ising model

This section explores a simplified version of the Ising model discussed earlier

using mean-field theory. By imposing this mean-field assumption, we can derive

a simplified version of the Ising model known as the Curie-Weiss model. In this
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approximation, the interactions between spins are no longer explicitly dependent

on their neighbours but are instead replaced by an effective mean interaction pa-

rameter. While this simplification may not capture all the intricacies of the original

Ising model, it still provides valuable insights into the system’s behaviour observed

at high and low temperatures, especially in relation to phase transitions. At high

temperatures, the spins tend to be more disordered, resulting in a paramagnetic

phase. On the other hand, at low temperatures, the spins tend to align, leading

to a ferromagnetic phase. These different phases are characterised by distinct ther-

modynamic properties, which can be analysed using the concepts of free energy or

pressure density.

Let us now explore an intuitive rationale of the mean-field approximation. Con-

sider an Ising spin system with σi = ±1 as described by (1.1) on Zd. The first

term in (1.1) represents the energy contribution arising from the interaction be-

tween the spin σi (where i ∈ Λ) and its neighbouring spins on the lattice. Now, the

contribution of a single spin σi can be expressed as follows [24]:

−J
∑
j:j∼i

σiσj = −2dJσi

(
1

2d

∑
j:|i−j|=1

σj

)
(1.10)

where j ∼ i denotes the sum over all nearest neighbour spins and the 2d is the

number of nearest neighbour spins of spin σi. It is evident that the contribution of

a given spin to the total energy of the system relies on the interaction of σi, i ∈ Λ,

and the local magnetisation density, represented by the average of its 2d nearest

neighbours: 1
2d

∑
j:j∼i σj . Notably, the nearest neighbour interaction is replaced

by a local magnetisation density, which varies from one point to another within

the lattice. The mean-field approximation involves making an extreme assumption

about the nature of interactions in the following manner: each spin variable interacts

with every other spin at any site of the lattice, regardless of their distance, and each

local magnetisation can be approximated by a global one. Consequently, the specific

structure of the lattice becomes irrelevant, and the sole crucial factor is the number

of spins, represented by a positive integer N . Thus, we may simplify our notation

by taking Λ ≡ {1, . . . , N}, and the configuration space becomes ΩN = {−1,+1}N .

Therefore, the mean-field Ising model, also known as the Curie-Weiss model, is

defined as:

Definition 1.2.1. The Hamiltonian of the Curie–Weiss model for any configuration
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of spins σ = (σi)i≤N ∈ {−1,+1}N = ΩN , can be defined as:

HN (σ) = − J

2N

N∑
i,j=1

σiσj − h

N∑
i=1

σi. (1.11)

The resulting system can be characterised as a spin model residing on a complete

graph comprising N vertices, where every pair of distinct vertices is interconnected

by an edge. The model is defined by a constant coupling parameter J > 0 and an

external magnetic field parameter h ∈ R. It is noteworthy that the Hamiltonian

(1.11) exhibits invariance under spin flip (σ → −σ) for transformation of h→ −h.
The primary observable of this system, known as the magnetisation density, is

expressed as:

mN (σ) =
1

N

N∑
i=1

σi (1.12)

and as a consequence, (1.11) becomes

HN (σ) = −N
(
J

2
m2

N (σ) + hmN (σ)

)
. (1.13)

Here, the mean-field model is expressed in terms of the magnetisation density, and

it involves a quadratic term and a linear term that depends on the values of J , h,

and mN (σ). For any configuration σ ∈ ΩN , the Gibbs distribution associated to it

can be written as:

µN (σ) =
exp(−βHN (σ))

ZN
(1.14)

and

ZN =
∑

σ∈ΩN

e−βHN (σ) (1.15)

is the normalisation factor also called the partition function and β is the usual in-

verse temperature. Let us now examine the Hamiltonain (1.13) in the absence of

the external field h = 0. Notably, due to the invariance property of the Hamiltonian

(1.11) under global spin flip for h = 0, the magnetisation density exhibits a sym-

metric distribution, specifically, µN (mN (−σ) = −m) = µN (mN (σ) = m), leading

to the particular case of ⟨mN ⟩ = 0. As previously discussed for the Ising model on

G, when βJ is small, it is expected that the spins would be essentially independent.

However, when βJ is large, the most probable configurations would involve most

spins having the same orientation, effectively approaching one of the two ground

states where all spins are equal. To be more precise, there exists a critical point Jc
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of βJ such that, when βJ < Jc, the magnetisation density mN (σ) is approximately

0 (zero) with high probability, whereas if βJ > Jc, the following condition holds:

mN (σ) ≃

+m with probability close to 1/2,

−m with probability close to 1/2
.

It is important to observe that as N tends to infinity, the limiting distribution

of the magnetisation is as follows:

lim
N→∞

µN (mN (σ))

δ0 if βJ < Jc,

1
2(δ+m + δ−m) if βJ > Jc

. (1.16)

Here, δm represents a Dirac probability measure on the interval [−1, 1]. Notably, for

large N and βJ > Jc, this implies that the typical magnetisation values observed

during configuration sampling are close to either +m or −m. However, it is crucial

to reiterate that this fact does not contradict the overall average magnetisation

being zero when h = 0, i.e., ⟨mN ⟩ = 0.

Moving forward, we consider β to be absorbed by the parameters J and h, and

we simply write βJ = J and βh = h. The focus now shifts to the thermodynamic

properties of the model, which are dictated by the large N behaviour of the pressure

per particle. The pressure per particle, denoted as pN , represents, up to a negative

multiplicative factor, the specific Gibbs free energy per site of the system when

β = 1 and is defined as:

pN =
1

N
logZN . (1.17)

Notice that, by the use of mean-field approximation, we can characterise the macro-

scopic behaviour of the physical system through the magnetisation density mN (σ).

The goal is to find an explicit expression of (1.17) in terms of the order parameter,

the magnetisation density, and then we impose at the same time a minimisation

of the energy and a maximisation of the entropy. This endeavor typically leads to

a self-consistency equation, also known as the mean-field equation, which allows

us to study the phase properties the system. In this context, the self-consistency

equation serves to determine the equilibrium magnetisation.

Note that the exisitence of thermodynamic limit for (1.17):

p := lim
N→∞

pN (1.18)

can be shown by a straightforward application of Varadhan’s integral lemma [20,

25, 26] which we will not illustrate here. The limiting pressure per particle (1.18)

satisfies a one dimensional variational problem:
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Definition 1.2.2. For any m ∈ [−1, 1], let ϕ(m) = U(m)− I(m) such that,

U(m) =
J

2
m2 + hm

is the energy contribution coming from (1.11) and

I(m) =
1−m

2
log

(
1−m

2

)
+

1 +m

2
log

(
1 +m

2

)
is the binary entropy, expressing the logarithmic number of ways m can be obtained

from σ ∈ ΩN . Then the limiting pressure per particle has the following variational

representation:

p = sup
m
ϕ(m). (1.19)

Proofs of the preceding results can be achieved using various methods (see [20,

25,26], wherein the results are derived through the machinery of large deviations).

Interested readers can find a comprehensive analysis of the thermodynamic limit of

the Gibbs measure in them.

Another approach, known as Guerra’s interpolation method, can be utilised

to demonstrate the existence of thermodynamic limit of the pressure per particle

[27,28]. The fundamental concept is to compare the pressure per particle of a large

system comprising N spin sites with two independent subsystems, each composed

of N1 and N2 sites, respectively, where N1 + N2 = N . It has been demonstrated

by Ruelle [29], that if one can establish that the pressure function is sub-extensive,

or possibly super-extensive, with an essential condition that it remains stable and

does not oscillate, and that it is bounded, then, by Fekete Lemma, the sequence

FN , FN+1, ..., F∞ must converge.

Now, from Definition 1.2.2 notice that U(m) and I(m) are both convex, but

ϕ(m) is not always convex for some fixed values of J and h and its supremum can

be obtained following the stationarity condition:

∂

∂m
ϕ(m)|m = Jm+ h−

[
1

2
log

(
1 +m

1−m

)]
= 0. (1.20)

From the above equation, we have that

m = tanh(Jm+ h). (1.21)

Here, m, is called the magnetic order parameter, and (1.21) is the self-consistency

equation also known as the mean-field equation. Therefore, for fixed J and h,

p(m; J, h) =
J

2
m2 + hm−

[
1−m

2
log

(
1−m

2

)
+

1 +m

2
log

(
1 +m

2

)]
. (1.22)
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The investigation of the limiting pressure per particle commences with an exam-

ination of its behaviour with respect to the coupling strength (J) and subsequently

applies it to analyse the magnetic order parameter’s typical behaviour. Figure 1.1

Figure 1.1: Pressure per particle p, of the system as a function of the magnetic

order parameter m, with h = 0 and varrying J .

illustrates the case of no applied magnetic field, h = 0, starting at high temperature,

i.e., J is small. The pressure per particle as a function of m resembles a downward-

pointing parabola with its maximum at m = 0, as depicted in Figure 1.1 (a). As

temperature decreases, i.e., by increasing the value of J , the curve around m = 0

becomes flatter. At a critical value of J = Jc = 1, as shown in Figure 1.1 (b),

the maximum becomes so flat that the second derivative approaches zero. Con-

sequently, the curve transforms from a parabolic shape to that of a fourth-order

function. Further decreasing the temperature leads to the splitting of the single

maximum at m = 0 into two maxima at small positive and negative values of m, as

depicted in Figure 1.1 (c). As the temperature continues to decrease, the maxima

move outward and eventually approach ±1, as shown in Figure 1.1 (d).

An important observation here is that at high temperature, the system tends

to adopt a state with no magnetic order, i.e., m = 0, due to the favouring effect

of entropy. Conversely, at low temperature, the system tends to take on a state

with some magnetic order (m). In the absence of an external magnetic field, the

system has no preference for the direction of the magnetic order (up or down),
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and thus randomly selects one of the maxima with either positive or negative m.

This low-temperature state with spontaneous magnetic order, not induced by an

external field, is referred to as the ferromagnetic phase. On the other hand, the high-

temperature state without spontaneous magnetic order is called the paramagnetic

phase. The transition from the paramagnetic to the ferromagnetic phase at a specific

temperature signifies a phase transition.

Another significant observation is the point of symmetry: the high-temperature

paramagnetic phase exhibits symmetry between up and down directions, with no

preference for either. However, in the low-temperature ferromagnetic phase, this

symmetry is broken, and the system randomly selects one direction or the other.

This spontaneous random selection is termed spontaneous symmetry breaking. Im-

portantly, the high-temperature state possesses more symmetry and is disordered,

while the low-temperature state has less symmetry and is more ordered. In this

context, order denotes the absence of symmetry; it signifies broken symmetry.

The behaviour of the magnetic order parameter (1.21) for h = 0 can be described

by Figure 1.2 below.

Figure 1.2: Magnetic order parameter, m, as a function of J at h = 0.

The curves in Figure 1.2 represent all the solutions of (1.21). The orange curve

corresponds to the positively polarised stable phase, the green curve is the negatively

polarised stable phase, the red curve denotes the paramagnetic phase above which

the symmetry is broken and the blue curve is an unstable phase of the system

(see Figure 1.1 for comparison). The red, orange and green curves are the ones

that realise the supremum of the variational principle (1.19). The magnetic order

parameter exhibits continuity with respect to J , leading to the classification of
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the critical phenomenon as a continuous phase transition or a second-order phase

transition. The term “second-order phase transition” arises from the discontinuity’s

impact on the fluctuations of the magnetisation, which diverge at Jc.

Now, let’s examine the behaviour of the pressure per particle and its max-

imiser(s) in the presence of a very small applied magnetic field (h) as depicted in

Figure 1.3 and Figure 1.4. It becomes evident that with the magnetic field h present,

Figure 1.3: Pressure per particle p as a function of the magnetic order parameter

m, for fixed h and J .

the free energy has its global maximum with the same sign as h. This behaviour

is also evident in Figure 1.4 where the magnetic order exhibits the same sign as h,

while varying J .

The occurrence of a phase transition is a result of two competing effects. The

first one tends to minimise the energy contribution and to introduce order in the

system by aligning the spins, i.e., m → ±1. On the other hand, the second effect

aims to maximise entropy, driving the system towards a configuration with random

spins and zero magnetic order. The balance between these opposing requirements

leads the system to undergo a critical behaviour as J → 1, which we will describe

in terms of the critical exponent of m.

Notice that, when J ≤ 1 and h = 0, the only solution for m in (1.21) is m = 0.

However, when J > 1, m has a unique solution m∗ > 0. Our interest now lies in

understanding the critical behaviour of (1.21) in the absence of a magnetic field as

J → 1. Notice that the value ofm∗ approaches 0 as J → 1 from the left. As a result,

the hyperbolic tangent term in equation (1.21) with h = 0 can be approximated
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Figure 1.4: Magnetic order parameter m of the system as a function of h for fixed

J . For the red curve (i.e., J < Jc), the magnetic order parameter is a continuous

function of the external field h, while in the blue curve (i.e., J > Jc) it is discontin-

uous and has a jump.

using Taylor’s expansion as follows:

m∗ = Jm∗ − J3m∗3

3
+ J3m∗3o(Jm∗) (1.23)

where o(Jm∗) → 0 and m∗ → 0. A direct computation shows that

m∗(J) ∼
√

3(J − 1)

J3
as J → 1+. (1.24)



Chapter 2

The three-spin Ising model

This chapter introduces the Ising model with three-spin interactions and ex-

plores some of its equilibrium properties. Unlike the two-spin model, lower energy

states in the three-spin model do not necessarily indicate spin alignments, as dif-

ferent spin orientations can give the same energy levels due to the presence of the

three. Applying large deviations techniques, we obtain the limiting pressure as-

sociated with the system, revealing the presence of phase transitions in a system

that lacks the conventional spin-reversal symmetry. Notably, the infinite-volume

properties of the three-spin model exhibit novel phenomena that are absent in the

two-spin mean-field case. Additionally, we consider the three-spin model as a lattice

gas model and compute its equilibrium state.

2.1 The cubic mean-field Ising model

Consider a system of N interacting spins with an internal degree of freedom

σi = {−1,+1} which represents the possible state of a spin. Define the Hamiltonian

of the system by,

HN (σ) = −
∑
⟨i,j,k⟩

Ki,j,kσiσjσk −
∑
⟨i,j⟩

Ji,jσiσj −
∑
i

hiσi, (2.1)

where σ ∈ {−1,+1}N = ΩN is a configuration of the system. The first term in the

Hamiltonian captures the modulation of interactions between triplets of spins, while

the second term the modulation of interaction between pairs of spins and the third

term represents the effect of an applied magnetic field on each spin. The parameters

Ki,j,k, Ji,j are families of real parameters that tune the interactions among triples

and pair of spins respectively while hi is also a real parameter representing an

13
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external field acting on each spin. To simplify the model, we assume isotropic

interactions and fields and apply the mean-field approximation. This allows us to

set Kijk = K/3N2, Ji,j = J/2N and hi = h in the Hamiltonian, where K,J and

h are real numbers representing the strength of interaction between spins and the

external magnetic field, respectively. The factors 1/3N2 and 1/2N of the interaction

strength accounts for the triple and double counting of interactions between spins

over the sum in (2.1) respectively, and ensure that the Hamiltonian is linear in N .

Observe that the Hamiltonian (2.1) is particularly interesting as an example of a

spin system lacking the usual spin-up and spin-down reversal symmetry. For a given

spin configuration σ ∈ ΩN , the observable of interest, namely the magnetisation per

particle, is defined as:

mN (σ) =
1

N

N∑
i=1

σi, mN ∈ [−1, 1]. (2.2)

Now, substituting the expression for magnetisation into (2.1), we obtain:

HN (σ) = − K

3N2

N∑
i,j,k=1

σiσjσk −
J

2N

N∑
i,j=1

σiσj − h

N∑
i=1

σi

= −N
(
K

3
m3

N (σ) +
J

2
m2

N (σ) + hmN (σ)︸ ︷︷ ︸
=UN

)
.

(2.3)

Here, the mean-field model is expressed in terms of the magnetisation per particle,

and it involves cubic and quadratic terms and a linear term that depend on the

values of K,J, h, and mN (σ).

The Boltzmann-Gibbs state on a configuration σ is given by

µKJh
N (σ) =

e−HN (σ)

ZN

N∏
i=1

dρ(σi), (2.4)

where ZN =
∑

σ̃∈ΩN
e−HN (σ̃)

∏N
i=1 dρ(σ̃i) =

∫
R e

−NUN (mN )QN (m) is the partition

function of the system, ρ is the distribution of a single spin such that: ρ(a) =

1/2(δa−1 + δa+1) and a ∈ {−1,+1} and the measure QN is the law of the empirical

mean mN under the Gibbs measure (2.4) denoting the product probability mea-

sure of single spins. For a given observable g(σ) the Boltzmann-Gibbs expectation

ωN (g(σ)) is defined as follows:

ωN (g(σ)) =

∑
σ∈ΩN

g(σ)e−HN (σ)

ZN
(2.5)
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and the moment generational function, i.e., pressure per particle, associated with

the system is defined as:

pN =
1

N
logZN . (2.6)

The pressure per particle pN defined here, coincide up to a multiplicative factor

with the free energy and its thermodynamic limit p = limN→∞ pN exists.

2.2 Existence of thermodynamic limit

To prove the existence of thermodynamic limit of pN and study its properties,

the standard Gaussian transformation, i.e., the Hubbard-Stratonovich transform,

fails due to the non-convex nature of (2.3). Notwithstanding, methods from large

deviation theory using extreme value distributions (i.e., tail estimation) and com-

binatorial methods which relies on Stirling’s approximation to compute a bound on

the pressure per particle. The Varadhan’s integral lemma [20,25,26] also as a large

deviation machinery can be used to verify the existence of thermodynamic limit of

(2.6).

2.2.1 Large deviations techniques

Large deviation theory explains how, on an exponential scale, the likelihood

of a very rare event decaying to zero is characterized. To be more precise, large

deviations are formally defined as follows [25,26]:

Definition 2.2.1. Let {µϵ} be a family of probability measures defined on (χ,B)
for a sequence of positive numbers {ϵ→ 0}, where χ is a topological space and B(χ)
a Borel σ-field of χ. {µϵ} satisfy a large deviation principle (LDP) with a rate

function I that is lower semicontinuous, I : X → [0,∞], and has compact level sets

such that the following holds:

− inf
x∈T

I(x) ≤ lim inf
ϵ→0

ϵ logµϵ(T ) ≤ lim sup
ϵ→0

ϵ logµϵ(R) ≤ − inf
x∈R

I(x)

for each open set T and closed set R in χ.

Observe that (2.3) is a representation of (2.1) in its macroscopic state due to

the introduction of the magnetisation density mN (σ) for a given configuration σ.

In this case, computing µKJh
N for a given configuration with mN (σ) = m ∈ [−1, 1]

involves finding the number of such configurations that share the same value of
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m. This is a consequence of the fact that different microstates (i.e., orientations

of the spins) can produce the same macroscopic behaviour (i.e., mN (σ)) and that

µKJh
N assigns equal probability to configurations that have the same magnetisation

density.

Remark 2.2.2. The normalising constant, ZN , in (2.4) can be written as:

ZN =
∑

m∈Sm

AN (m)e−HN (σ) (2.7)

where Sm = {−1 + 2k
N , k = 0, . . . , N} is the spectrum of the magnetisation and

AN (m) = card{σ ∈ {−1, 1}N : mN (σ) = m} is a count of all microscopic configu-

ration of the spins sharing the same magentisation.

From the definition of AN (m) one can compute a bound on it to obtain a closed

form of the normalising constant and use it to prove the existence of thermodynamic

limit of the pressure density describing the asymptotic properties of the system. To

achieve this we employ the same argument of Talagrand [30]:

Lemma 2.2.1. Let ΩN = {+1,−1}N denote the set of all possible configurations

of σ. Then for AN (m) ∈ N the following inequalities hold:

1

L
√
N
e−NI(m) ≤ AN (m) ≤ e−NI(m)

where L is a universal constant and,

I(m) =
1−m

2
log

(
1−m

2

)
+

1 +m

2
log

(
1 +m

2

)
.

Proof. Using that µKJh
N (σ) assigns equal probability to configurations having the

same mN (σ), to obtain the number of such configurations becomes a combinatorial

problem such that:

AN =

(
N

N(1+m)
2

)
=

N !(
N(1+m)

2

)
!
(
N(1−m)

2

)
!

(2.8)

where N(1+m)
2 corresponds to the number of spins with +1 orientation and N(1−m)

2

the number of spins with −1 orientation.

To obtain the lower bound of AN , we consider the case when N(1 + m) is

even and apply Stirling’s formula. Using Stirling’s approximation of a factorial,
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N ! = NNe−N
√
2πN(1 +O(1/N)), we have that:(

N
N(1+m)

2

)
=

N !(
N(1+m)

2

)
!
(
N(1−m)

2

)
!

=
NN

√
2[(

N(1+m)
2

)(N(1+m)
2

) (
N(1−m)

2

)(N(1−m)
2

)√
πN(1−m2)

] · (1 +O(N−1))

=

√
2

πN(1−m2)
·

· 1

exp ln

[(
(1+m)

2

)(N(1+m)
2

) (
(1−m)

2

)(N(1−m)
2

) ] · (1 +O(N−1))

=

√
2

πN(1−m2)
·

· exp

(
−N

(
1−m

2
ln

(
1−m

2

)
+

1 +m

2
ln

(
1 +m

2

))
︸ ︷︷ ︸

=I(m)

)
· (1 +O(N−1)).

The lower bound follows from the last equality.

Let’s suppose that the spins σi are independent such that µKJh
N (σi = +1) =

µKJh
N (σi = −1) = 1/2. Then the upper bound of AN can be obtained using tail

estimation. Observe that, if σi are independent for all i = 1, ..., N , then all config-

urations of ΩN , have equal probability of having a magnetisation m and thus,

AN = 2NµKJh
N (mN (σ) = m) ≤ 2NµKJh

N

(
N∑
i=1

σi ≥ Nm

)
.

The last inequality above follows from the definition of mN (σ) and leads to a tail

estimation, since σi is a random variable assumed to be independent and distributed

with equal probability for both −1 and +1 spins (i.e., ρ = 1/2(δx−1 + δx+1)).

Therefore, for any λ > 0,

µKJh
N

(
N∑
i=1

σi ≥ Nm

)
≤ exp (−λmN)

N∏
i=1

Eρexp (λσi)

= exp (N(−λm+ ln cosh (λ))).

(2.9)

Optimising over all λ, we obtain that

λ = arctanh (m) =
1

2
ln

(
1 +m

1−m

)
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and it follows that since 1/ cosh2 (y) = 1−tanh2 (y), then ln cosh (λ) = −1/2 ln (1−m2).

Substituting this observation into (2.9), we have that

AN ≤ exp (−NI(m)).

I(m) is the entropy associated to m. It quantifies the disorder in the system

for a given configuration σ. Notice that the results obtained here gives a large

deviations approximation of the Gibbs measure for the event mN (σ) = m.

Using the result of Lemma 2.2.1, we can obtain a bound on the normalising

constant. Notice that the sum over the spectrum Sm of the partition function has

N +1 terms. Since we are interested in behaviour of the system in the exponential

scale, we keep only the dominating terms [24,30];

1

L

1√
N

exp

(
N

(
max

m∈[−1,1]
f(m)

))
≤ ZN ≤ (N + 1) exp

(
N

(
max

m∈[−1,1]
f(m)

))
(2.10)

where,

f(m) =
K

3
m3 +

J

2
m2 + hm− I(m)

and I(m) is the entropy associated to m.

Now with the expanded form of the normalising constant, the existence of ther-

modynamic limit of the pressure per particle governing the asymptotic behaviour

of the system follows:

− 1

N

(
lnL+

1

2
lnN

)
+ max

m∈[−1,1]
f(m) ≤ pN ≤ 1

N
ln(N + 1) + max

m∈[−1,1]
f(m)

and

p = lim
N→∞

pN = max
m∈[−1,1]

f(m).

Hence

p = max
m∈[−1,1]

{
K

3
m3 +

J

2
m2 + hm− I(m)

}
. (2.11)

Notice from (2.11) that, p simply describes the asymptotic behaviour of the

partition function ZN , which indicates its growth or decay depending on the sign

of the maximiser.

Varadhan’s integral lemma

The Varadhan’s integral lemma studied in Theorem II.7.1 of [20], Theorem 4.3.1

of [25] and Theorem 5 of [26] will be used to assess the variational formula for the
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pressure per particle obtained in (2.11). In the sequel we will use the following

notation: let X = [−1, 1] ⊂ R be a compact space such that mN (σ) ∈ X . Further,

for every positive integer N , we define the map UN : X → R as:

UN (mN ) =
K

3
m3

N (σ) +
J

2
m2

N (σ) + hmN (σ). (2.12)

Notice that UN for all N is uniformly bounded by the sum of the absolute values

of |K3 + J
2 + h|. Now, observe that since X is a closed and bounded, i.e., compact,

subset of R and mN 7→ UN (mN ) is continuous for every N , it follows that the

function UN is equicontinuous. This is because UN is defined for all values of N

on the map mN 7→ UN (mN ) (see Theorems 7.13 and 7.24 of [31] ). Again, suppose

that mN converge to m ∈ [−1, 1], as N → ∞, then it follows from Theorem 7.25

of [31], that UN → U uniformly:

U(m) =
K

3
m3 +

J

2
m2 + hm

= lim
N→∞

UN (mN ).
(2.13)

Recall from (2.4) that

ZN =

∫
X
e−NUN (mN )QN (m)

is the partition function of the system and the measure QN is the law of the em-

pirical mean mN under the Gibbs measure (2.4). Here, QN represents the product

probability measure of the spins and has a large deviation property with a sequence

of positive numbers {aN : N = 1, 2, ...} which tends to ∞ and a good rate function

I : X → [0,∞] [26] following the results obtained from Lemma 2.2.1.

The interest is to show that the pressure per particle associated to Hamilto-

nian (2.3) admits a thermodynamic limit. This limiting behaviour is given by the

following proposition:

Proposition 2.2.1. For choices of the parameters K,J and h the limiting pressure

admits the following variational representation:

p(K,J, h) := lim
N→∞

pN = sup
m∈[−1,1]

Φ(m), (2.14)

where Φ(m) = U(m)− I(m) with

U(m) =
K

3
m3 +

J

2
m2 + hm (2.15)
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is the energy contribution and

I(m) =
1−m

2
log

(
1−m

2

)
+

1 +m

2
log

(
1 +m

2

)
(2.16)

is the binary entropy contribution.

The following theorem leads to the results of Proposition 2.2.1 which is taken

from Theorem II.7.1 of [20], signifying the leading order asymptotic behaviour of

the partition function (2.6):

Theorem 2.2.3. Let X be a complete separable metric space, B(X ) the Borel σ-field

of X , and {QN ;N = 1, 2, ...} a sequence of probability measures on B(X ). Assume

that QN has a large deviation property with rate N and rate function I, I : X → R.
Further, let the sequence of functions UN : X → R be equicontinuous converging

point-wise to a function U : X → R.
(a) Suppose that supm∈X U(m) <∞, then supm∈X {U(m)− I(m)} <∞ and

lim
N→∞

1

N
log

∫
X
exp[NUN (mN )]QN (m) = sup

m∈X
[U(m)− I(m)] . (2.17)

(b) More generally, for some constant B, if U satisfies

lim
B→∞

lim sup
N→∞

1

N
log

∫
{U≥B}

exp[NUN (mN )]QN (m) = −∞, (2.18)

then the limit (2.17) holds and is finite. In particular, if UN is bounded above on

the union of the supports of QN , then (2.18) is satisfied and thus the limit (2.17)

holds and is finite.

Proof. The lower bound for (2.17) is derived first then following condition (2.18),

we proof an upper bound for (2.17). Lastly, we show that when (2.17) is finite then

condition (2.18) holds and that completes the proof. Recall that UN (mN ) is equi-

continuous and uniformly bounded. The interest here is to prove that the limiting

pressure per particle has the following variational form:

lim
N→∞

1

N
log

∫
X
exp[NUN (mN )]QN (m) = sup

m∈X
[U(m)− I(m)] .

Now, note that, since QN has large deviation property with good rate function

I, it may be written heuristically as: dQN/dx ≈ e−NI(x). Then for any x ∈ X ,

ZN =

∫
X
eNU(x)QN (x) ≈

∫
X
eN(U(x)−I(x))dx. (2.19)
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This integral above has the form of a so called Laplace integral, which is known to

be dominated for large N by its largest integrand when it is unique. Employing

Laplace approximation or a saddle-point approximation of the integral, is justified

in the context of large deviation theory since the corrections to this approximation

are sub-exponential in N , as are those of large deviations principles. This verifies

(2.17) without the need of further clarification but for completeness a detailed step-

by-step approach is included. The Laplace integral of the partition function uses

heuristic approximations, which lead to results popularly referred to as the Varad-

han Theorem [32,33], which rigorously handles all the heuristic approximations. As

such, Varadhan’s Theorem can be considered a rigorous and general expression of

the Laplace principle.

Step 1

Let m be an arbitrary point in X and δ > 0. Since the sequence UN is equi-

continuous, it is the case that the functions UN are lower semicontinuous. Hence,

there exists a neighbourhoodG ofm such that infy∈G UN (y) ≥ UN (m)−δ for N =

1, 2, 3, .... Since G is an open set, the lower large deviation bound can be defined as

lim inf
N→∞

1

N
logQN (G) ≥ −I(G). (2.20)

Hence,

lim inf
N→∞

1

N
logZN ≥ lim inf

N→∞

1

N
logZN (G)

≥ lim inf
N→∞

1

N
log

[∫
G
exp[NUN (mN )]QN (m)

]
≥ lim inf

N→∞
UN (x) + lim inf

N→∞

1

N
logQN (G)

≥ U(m)− δ − I(m)

= U(m)− I(m)− δ.

In the second and third inequality of the equation above, it has been used that

QN has a large deviation property and UN is lower semicontinuous on a complete

separable metric space X with a compact level set [25, 26]. Now, since m ∈ X and

δ > 0 are arbitrary chosen,

lim inf
N→∞

1

N
logZN ≥ sup

m∈X
{U(m)− I(m)}. (2.21)
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Step 2

For the upper bound, let assume that the function UN is continuous and uniformly

bounded on X such that supm∈X U(m) is finite, i.e., there exists a constant M such

that supm∈X U(m) ≤M . Then for a non-negative rate function I, supm∈X {U(m)−
I(m)} <∞ and supm∈X {U(m)− I(m)} > −∞. Hence, (2.18) holds trivially.

Let A be a Borel subet of X and define for m ∈ A,

I(A) = inf
m∈A

I(m) and ZN (A) =

∫
A
eNUN (m)QN (m).

Suppose again that there exists B < ∞ such that for every m ∈ X , U(m) ≤ B

and C < min(B, supm∈X {U(m) − I(m)}). Now, let define the closed set Wn,q for

q = 1, ..., n as

Wn,q =

{
m ∈ X : C +

q − 1

n
(B − C) ≤ U(m) ≤ C +

q

n
(B − C)

}
.

From the above we have that
⋃n

q=1Wn,q = {m ∈ X : U(m) ≥ C} and then the

upper large deviation bound becomes

lim sup
N→∞

1

N
logQN (Wn,q) ≤ −I(Wn,q).

Therefore,

lim sup
N→∞

1

N
logZN ({m ∈ X : U(m) ≥ C}) ≤ max

q=1,...,n
{C +

q

n
(B − C)− I(Wn,q)}

≤ max
q=1,...,n

sup
m∈Wn,q

{U(m)− I(m)}+ B − C

n

≤ sup
m∈X

{U(m)− I(m)}+ B − C

n
.

Taking limit as n→ ∞

lim sup
N→∞

1

N
logZN ({m ∈ X : U(m) ≥ C}) ≤ sup

m∈X
{U(m)− I(m)}.

Note that ZN ({m ∈ X : U(m) ≤ C}) ≤ eNC , hence

lim sup
N→∞

1

N
logZN ≤ max

{
C, sup

m∈X
{U(m)− I(m)}

}
= sup

m∈X
{U(m)− I(m)}.

(2.22)
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Now, since ZN ({m ∈ X : U(m) ≤ C}) ≤ eNC , it follows that

lim sup
N→∞

1

N
logZN ≤ max

{
C, sup

m∈X
{U(m)− I(m)}

}
= sup

m∈X
{U(m)− I(m)}. (2.23)

Step 3

Here, for a continuous real valued function UN , we prove that the limit (2.17)

satisfies (2.18). Recall from (2.21), that

lim inf
N→∞

1

N
logZN ≥ sup

m∈X
{U(m)− I(m)}.

Equation (2.18) implies that,

lim sup
N→∞

1

N
logZN <∞ and sup

m∈X
{U(m)− I(m)} <∞

follows from (2.21). According to (2.18), there exists a constant B > 0 such that

lim sup
N→∞

1

N
logZN ({m ∈ X : U(m) > B}) ≤ sup

m∈X
{U(m)− I(m)}.

Now, let’s define U(m) = min[U(m), B] and ZN =
∫
X e

NUN (m)QN (m). U satisfy

the hypothesis in (a) of Theorem 2.2.3. Hence, we have that

ZN = ZN ({m ∈ X : U(m) ≤ B}) + ZN ({m ∈ X : U(m) > B})

= ZN + ZN ({m ∈ X : U(m) > B}).

Therefore,

lim sup
N→∞

1

N
logZN ≤ max

[
sup
m∈X

{U(m)− I(m)}, sup
m∈X

{U(m)− I(m)}
]

= sup
m∈X

{U(m)− I(m)}.

This completes the proof of part (b) of Theorem 2.2.3.

Observe that to obtain the supremum over m ∈ [−1, 1] of Φ as described by the

variational principle (2.14) we have to find the stationary conditions of Φ which can

be obtained by taking suitable derivatives. The derivative of Φ w.r.t m:

d

dm
Φ(m)|m = Km2 + Jm+ h−

[
1

2
log

(
1 +m

1−m

)]
= 0. (2.24)

From the above equation, we have that
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m(K,J, h) = tanh(Km2 + Jm+ h). (2.25)

The structure of the probability measure identified by the variational principle (2.14)

select stable solutions, i.e., a small stochastic disturbance of the system will produce

small changes on the average behaviour of the system unless it is close to a second

order phase transition. Equation (2.25) is the stationarity condition, which acts as

a self-consistency equation, and must be satisfied by the solutions of the variational

principle (2.14). The mean-field equation (2.25) can be solved by suitable numerical

methods, of which the interest is to select those solutions that realise the supremum

of Φ in (2.14). Hence, among those solutions, we identify for which values of m, Φ

is maximised. The quantity m is called the order parameter of the model. On the

other hand, one can obtain the solutions of (2.25) by maximising Φ over all m ∈ X
and selecting those that achieve the maximum.

The variational principle (2.14) depends on three parameters, K,J and h. To

better understand its behaviour, we begin the analyses by studying: first, its be-

haviour as a function of the cubic parameter K, by setting J = h = 0 and secondly,

generate phase diagrams of the order parameter (2.25). The overall phase diagram

that emerges presents novel features. When J = h = 0, (2.14) becomes:

p(m;K, 0, 0) =
K

3
m3 −

[
1−m

2
log

(
1−m

2

)
+

1 +m

2
log

(
1 +m

2

)]
. (2.26)

A numerical investigation of (2.26) for fixed values of the interaction parameter

is shown in Figure 2.1 and reveals a critical point of K above which the system

transition from one state to another. In (a) it can be observed that when K is

small, i.e., 0.7, there is only one maximum which is at zero. When K is increased

to 1.3, in (b), the maximum still remains at zero and there begins to be a rise of

another maximum point towards +1. From (c) and (d) two global maximum points

are observed resulting in the same value of the variational principle. Hence there

are two values ofm and a uniqueK at which the derivative of equation (2.26) is zero

for the result in (c) and (d). This unique K-value for which the system has two

global maximisers can be approximated using an appropriate iterative numerical

optimisation technique, such as the Levenberg–Marquardt algorithm. As can be

seen in the Figure 2.1, the critical value of K, is approximated to be ±2.0162. It’s

worth mentioning that the values 1.3 and 0.7 for K in Figures 2.1(a) and 2.1(b)

respectively have no particular meaning, but they are chosen as two examples of
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Figure 2.1: Variational free energy of the cubic mean-field model for J = h = 0 as

a function of m in blue curves and the red dashed lines denote the point at which

it gets maximised.

relatively low values, while ±2.0162 is chosen because they turn out to be critical

points from the numerical solution of self-consistency equation (2.25).

Now, for any K > 2.0162, p has a unique global maximum point, likewise

when K < −2.0162. Hence, K ≈ ±2.0162 is the critical value of K. From this

observation, it is clear that the magnetic order parameter (m) that realises the

supremum of the variational principle for J = h = 0 remains at zero until K ≈
±2.0162, where there will be a jump. Let call Kc = ±2.0163 as the critical value.

Unlike the quadratic mean field model that, for h = 0, has a second order

continuous phase transition in J , the cubic case analysed here displays a remarkable

discontinuous first order phase transition in K when J = h = 0 shown in Figure 2.2.

Starting from small absolute valued K-s and increasing or decreasing it, the value

m characterising the stable stationary solutions (see Figure 2.2 in blue) remains at

zero until K = Kc ≈ ±2.016295 where suddenly we observe a jump in the order

parameter. The phase diagram of the order parameter (2.25) for J = 1 and h = 0

is shown in Figure 2.3 and it can be observed to be continuous.

The behaviour of the order parameter in the planes (K,J, 0) and (K, 0, h) is
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Figure 2.2: Magnetic order parameter, m, of the system for J = h = 0 as a function

of K. There is a transition in m from zero to positively polarised magnetisation

when crossingK ≈ 2.0162 from below and a transition from zero to negative average

opinion when crossing K ≈ −2.0162 from above. The curves represent all the

solutions of the stationary condition (2.25), the blue ones corresponds to the global

stable ones, i.e., the solution that realise the supremum of Φ for J = h = 0, the

green ones are locally stable solutions and the red ones are the unstable solutions.

Figure 2.3: Magnetic order parameter m as a function of K at J = 1 and h = 0.

shown in Figure 2.4, while the case (0, J, h) correspond to the classical two-body

mean-field model. The behaviour of the order parameter in the planes (K,J, 0) and

(K, 0, h) will further be investigated in chapters 3 and 4 but we only give an overview

in this section. The asymptotic properties of the limiting free energy in those cases,

i.e., in the plane (K,J, 0) and (K, 0, h), will be studied in details in subsequent
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Chapters 3 and 4. In panel (a) of Figure 2.4, when J = 0, we can observe the

behaviour found in Figure 2.2 which indicates jumps at K ≈ ±2.0162 and when

K = 0, we obtain the solution of the model with only two-spin interaction (i.e.,

classical two-spin mean-field model). For J < 1, one can observe the presence of

three distinct phases: the one with negative magnetic order (in blue), the one with

zero magnetic order, i.e., no order, (in gray) and the one with positive magnetic

order (in red). The zero magnetic order, which is a stable paramagnetic state,

corresponds a state with no spontaneous magnetic order. It is an indication of

symmetry in the spin orientation (i.e., +1 and -1) with no preference for one over the

other. As K increases or decreases, the symmetry is broken, and the system shifts

to either a positive or negative state. In that region therefore a progressive increase

in K from negative to positive values encounter two consecutive jumps. In panel

(b) of Figure 2.4 the system observes two distinct second order phase transitions

in the magnetic order parameter h and K falls within certain thresholds.

Figure 2.4: Magnetic order parameter of the cubic mean-field model. In panel (a),

h = 0 while in (b) J = 0. When J = 0 in (a), we observe the global stable solution

found in Fig 2.2 which indicates jumps at Kc and when K = 0, we obtain the

solution of the simple Ising model without cubic interaction. For fixed J < 1 and

moving along K the system presents two jumps separated by a plateau at zero.

Those two jumps coalesce into a single one when J cross the unit value. In (b) we

observe a discontinuity in the magnetic order parameter for two separated jumps

when h and K falls within certain thresholds.
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2.3 Three-spin interacting lattice gas model

Let us consider the Hamiltonian of a system defined on a lattice with N sites.

Here, each site on the lattice is either occupied by a gas particle or it’s vacant. We

define the occupancy of site i as ηi = 1 when i is occupied and ηi = 0 when site i

is vacant. The model describing the system is given as follows:

H̃N (η) = − K̃

3N2

N∑
i,j,k=1

ηiηjηk −
J̃

2N

N∑
i,j=1

ηiηj − h̃

N∑
i=1

ηi, (2.27)

where η ∈ {0, 1}N . Let’s define the average density of the particles for a given

configuration η of the lattice as:

υN (η) =
1

N

N∑
i=1

ηi, (2.28)

hence,

H̃N (η) = −N

K̃3 υ3N (η) +
J̃

2
υ2N (η) + h̃υN (η)︸ ︷︷ ︸

=ŨN (υN (η))

 .

Proposition 2.3.1. Given choices of the parameters K̃, J̃ and h̃ the large number

limit of the negative free energy per site related to the Hamiltonian (2.27) has the

following variational representation:

p̃(K̃, J̃ , h̃) = sup
x∈[0,1]

ζ(x), (2.29)

where ζ(x) =
[
Ũ(x)− Ĩ(x)

]
with

Ũ(x) =
K̃

3
x3 +

J̃

2
x2 + h̃x (2.30)

is the energy contribution of the Hamiltonian and

Ĩ(x) = x log(x) + (1− x) log(1− x) (2.31)

is the entropy contribution, expressing the logarithm of the number of ways the value

x can be produced with different η configuration.
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The solution of the Hamiltonian is obtained as the stationary condition(s) of

the variational pressure defined in (2.29) with interest in the ones that realise the

supremum. These stationary points x of ζ are derived as:

d

dx
ζ(x)|x = K̃x2 + J̃x+ h̃−

[
log

(
x

1− x

)]
= 0 (2.32)

and

x =
eK̃x2+J̃x+h̃

1 + eK̃x2+J̃x+h̃
(2.33)

Equation (2.33) represents the average density of particles on the lattice and

is commonly referred to as the logistic function. Importantly, the statistical me-

chanical model discussed in this section establishes a connection between the Ising

model with three-spin interactions on the lattice and the classical logistic model

with interactions.

Remark 2.3.1. It is noteworthy that the stationary points of the variational prin-

ciple in (2.29) describe a special case within a class of probabilistic choice models

found in socioeconomic literature, known as logit models. Other examples of prob-

abilistic choice models include probit models and generalized extreme-value models.

This raises the question: what are the statistical mechanical analogues of these

models? Insights gained from these statistical mechanical models will significantly

contribute to the understanding of socioeconomic models.
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Chapter 3

Three- and two-spin

interactions: the KJ Ising

model

In this chapter, we thoroughly investigate the equilibrium properties of the Ising

model described by (2.1) under the condition of zero external field (i.e., h = 0).

Several intriguing characteristics of the model are explored, including the existence

and properties of phase transitions that delineate different phases of the system,

the limiting behaviour of the magnetisation, the magnetisation’s behaviour along

phase boundaries, and its behaviour approaching the critical point of the system. In

particular, our findings demonstrate that the equilibria of the system encompass not

only positively and negatively polarised states but also a stable unpolarised state,

which arises due to the presence of a non-zero cubic term that breaks the spin-flip

symmetry. Moreover, we conduct a comprehensive analysis of the fluctuations of

the magnetisation density across the entire phase space, with particular focus on

its behaviour during phase separation and near the critical point.

We establish that the critical exponent for the magnetisation takes on a value of

zero in the direction of unpolarised states in the phase space, and further identify

the occurrence of phase transitions in the antiferromagnetic region of the model.

The study offers valuable insights into the intricate equilibrium properties of the

Ising model with three-spin interactions and highlights the significance of the cubic

term’s influence on the system’s behaviour. The results discussed here can be found

in the reference list as [34].

31
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3.1 Definitions and main results

It worth noticing that the parameters K and h, appearing in equation (2.1),

both act as a symmetry breaking parameter when the other is absent. In order to

emphasis their different role we will restrict the attention to the case where h = 0.

Indeed the model for K = 0 is well known as the classical two-spin interacting

Curie-Weiss model. Hence, the Hamiltonian to be considered in this chapter is

HKJ
N (σ) = − K

3N2

N∑
i,j,k=1

σiσjσk −
J

2N

N∑
i,j=1

σiσj

= −N
(
K

3
m3

N (σ) +
J

2
m2

N (σ)

) (3.1)

on an N interacting Ising spin lattice with σ = (σi)i≤N ∈ {−1,+1}N , where

(K,J) ∈ R2 and mN (σ) is defined by (2.2).

The parameters K and J tune the interactions among triples and pair of spins

respectively. The Hamiltonian (3.1) is particularly interesting as an example of

a spin system lacking the usual spin-up and spin-down reversal symmetry. Let’s

observe that, the Hamiltonian (3.1) is invariant under the transformation K 7→ −K
and σi 7→ −σi, hence, without loss of generality, we can study the model only for

K ≥ 0.

The Hamiltonian (3.1) induces a Boltzmann-Gibbs probability measure on the

configuration space given by:

µKJ
N (σ) =

e−HKJ
N (σ)

ZN
, (3.2)

where ZN =
∑

σ∈{−1,+1}N exp
(
−HKJ

N (σ)
)
is the partition function. In equation

(3.2) we set the usual inverse temperature β to 1 since it can be absorbed in the

parameters.

Our aim is to obtain a complete characterisation of the model’s phase diagram,

an analysis of the asymptotic distribution of the magnetisation in the presence and

absence of phase transitions, the fluctuations of the suitably rescaled magnetisation

w.r.t. the Boltzmann-Gibbs measure (3.2) at and away from the critical point, and

the computation of the critical exponents.

All the above properties are strictly related to the analytical properties of the

free energy of the system, which is the starting point of our analysis. Let us recall

that the thermodynamic pressure, i.e., the generating functional, has the same form

as (2.6):
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pN =
1

N
logZN (3.3)

which equals the free energy up to a minus sign. The thermodynamic limit of (3.3)

can be easily computed applying Varadhan’s integral lemma [20,25,26], obtaining:

Proposition 3.1.1. Given that (K,J) ∈ R2 the limiting pressure (3.3) admits the

following variational representation:

p := lim
N→∞

pN = sup
m∈[−1,1]

ϕ(m), (3.4)

where ϕ(m) = U(m)− I(m) with

U(m) =
K

3
m3 +

J

2
m2 (3.5)

is the energy contribution and

I(m) =
1−m

2
log

(
1−m

2

)
+

1 +m

2
log

(
1 +m

2

)
(3.6)

is the binary entropy contribution.

The variational principle (3.4) has solution(s) that satisfy the stationarity con-

dition,

m = tanh(Km2 + Jm) (3.7)

sometimes called the consistency equation. A careful analysis shows that, among the

solutions of (3.7), the function ϕ(m) in (3.4) can have one or two global maximisers

in the interval (−1, 1) for fixed (K,J) (see Figure 3.1).

In particular, we can divide the parameter space (K,J) ∈ R+ × R accordingly

to the following:

Proposition 3.1.2 (Phase diagram). For any K > 0, there exists J = γ(K)

such that the function m 7→ ϕ(m) has a unique maximum point m∗ for (K,J) ∈
(R+×R)\γ. Moreover, on the curve γ there are two global maximisers, 0 = m0 < m1

and the limit as K → 0 of γ(K) identifies the critical point (Kc, Jc) = (0, 1) where

the magnetisation takes the value mc = 0. The explicit definition of J = γ(K) will

be given in Proposition 3.2.3.

In physical terms, the presence of two global maximisers corresponds to the

existence of two different thermodynamic equilibrium phases, whereas the curve

γ represents the coexistence curve. Let’s note that m0 and m1 represent a stable
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Figure 3.1: Stable solutions of the mean-field equation as a function of K and J .

There are three stable phases presented here: the positive polarised phase depicted

in red, the unpolarised phase given as the gray plateau, and the negative polarised

phase denoted by the blue colour. At the critical point, (K,J) = (0, 1), the three

phases of the cubic model as well as the two phases of the Curie-Weiss plane (K = 0)

coalesce.

paramagnetic state and a positively polarised state, respectively. The paramagnetic

state is characterised by the absence of spontaneous magnetic order and the presence

of symmetry between the up and down spin, with no preference for either direction.

The jump from the paramagnetic state to the polarised state, namely when the

magnetisation jumps from m0 to m1, represents a first-order phase transition [35],

which is markedly different from the quadratic mean-field model (K = 0) having a

second-order phase transition in J . More precisely if we denotes by m∗(K,J) the

unique maximizer of ϕ, for any K̄ > 0 there exists J̄ = γ(K̄) ∈ (−∞, 1) such that

0 = lim
J→J̄−

m(J, K̄) ̸= lim
J→J̄+

m(J, K̄) > 0.

This behaviour is somehow reminiscent of the Curie-Weiss Potts model analyzed

in [36] where for any value of the parameter q a first order phase transition is

observed. Numerical simulations of the phase diagram described in Proposition

3.1.2 can be seen in Figure 3.2.

In the standard Curie-Weiss model, when J > 0 we know that as soon as h > 0

one obtains a positive magnetisation. The reason is that the energy contribution

due to h favours only spins aligned with sign(h). On the contrary, in our system,

J,K > 0, the energy contribution due to K can be minimised by configurations
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Figure 3.2: Phase diagram of the model with coexistence curve γ and the critical

point (Kc, Jc) in the (K,J) plane.

containing both up and down spin signs. This implies that the entropy contribution

can dominate also for small but non-zero K, giving a zero magnetisation.

Finally, we study the behaviour of the limiting value of the magnetisation near

the critical point (Kc, Jc) = (0, 1) namely the critical exponents of the model. The

average value of the magnetisation will be given by the Law of Large Numbers (LLN)

in Theorem 3.3.1 and denoted by m∗(K,J). The following proposition describes

the critical behaviour of m∗(K,J) when (K,J) → (Kc, Jc) from various directions.

Proposition 3.1.3. Let m∗(K,J) be the unique maximiser of ϕ(m) defined in

Corollary 3.2.1. Given α ∈ R consider the lines

J(K) = 1 + αK , K > 0 (3.8)

and the function m∗(K) ≡ m∗(K,J(K)). Then, for K → 0+, the following holds

m∗(K) ∼


√
3α

√
K, for α > 0

3K, for α = 0

0, for α < 0

. (3.9)

Remark 3.1.1. Notice that when α < 0 the critical exponent is 0. The case K = 0

and J → 1+ corresponds to the classical mean-field Ising model (i.e., Curie-Weiss

model) shown in Chapter 1 and is well known that

m∗(0, J) ∼
√

3(J − 1)

J3
. (3.10)
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3.2 Properties of the Solution

This section contains the proofs of the above results by studying the properties

of the stationary points of the variational principle, ϕ(m,K, J), in equation (3.4)

and is organised as follows:

In Sections 3.2.1 and 3.2.2, we prove Proposition 3.1.2 by studying the properties

of the function ϕ(m) appearing in the variational problem (3.4). Finally, in Section

3.2.3, we compute the critical exponents of the model described by Proposition

3.1.3.

3.2.1 Phase diagram

Proof of Proposition

The complete proof of Proposition 3.1.2 follows from Propositions 3.2.1, 3.2.2,

3.2.3 and 3.2.4 below. Let us start studying in detail the variational principle (3.4)

and observe that the function ϕ(m) satisfies

∂

∂m
ϕ(m) = Km2 + Jm− 1

2
log

(
1 +m

1−m

)
,

∂2

∂m2
ϕ(m) = 2Km+ J − 1

1−m2
.

(3.11)

Therefore the variational pressure ϕ(m) attains it maximum in at least one point

m = m(K,J) ∈ (−1, 1), which satisfy

∂

∂m
ϕ(m) = 0, i.e., m = tanh (Km2 + Jm). (3.12)

Indeed, from (3.11) limm→−1+ ϕ
′(m) = +∞ and limm→1− ϕ

′(m) = −∞. Therefore,

there exists ϵ > 0 such that ϕ(m) is strictly increasing on [−1,−1 + ϵ] and strictly

decreasing on [1 − ϵ, 1]. This implies that, the local maximisers of ϕ(m) does not

include −1 and +1. Notice also that, since K > 0, if m̄ > 0 then ϕ(m̄) > ϕ(−m̄);

therefore the supremum of ϕ(m) cannot be reached at negative values.

A complete classification of the critical points of ϕ(m) is contained in the fol-

lowing proposition:

Proposition 3.2.1. (Classification of critical points) For all K > 0 and J ∈ R,
the solutions to equation (3.12) can be described as follow:
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Define the function

Ψ(K) := min
m∈[0,1]

g(m,K)

m
< 1 (3.13)

where g(m,K) := arctanh(m)−Km2 and set Jc = 1. Then:

a. for J < Ψ(K), there exists a unique solution, m0 = 0, and it is the maximum

point of ϕ(m),

b. for Ψ(K) < J < Jc, equation (3.12) has three solutions i.e., m0,m1 > m3 > 0.

Furthermore, m0,m1 are local maximum points while m3 is a local minimum

point of ϕ(m),

c. for J = Ψ(K), there exist two solutions, m0 and m1 > 0, where m0 is the

maximum point of ϕ(m) and m1 is an inflection point.

d. If J ≥ Jc, there exists a unique positive solution m2 which is the only maxi-

mum point of ϕ(m) in equation (3.4).

Proof. Let us start by noticing that m = 0 is always a solution of (3.12). Moreover,

ϕ′′(0)

< 0, if J < 1

> 0, if J > 1
.

Now, let’s rewrite (3.12) as

mJ =

[
arctanh(m)−Km2

]
︸ ︷︷ ︸

=g(m,K)

. (3.14)

The solutions of (3.12) are the intersections between the line mJ and the func-

tion g(m,K). Therefore the function Ψ(K) in (3.13) is a benchmark to study the

number of solutions of ϕ′(m) = 0 when J varies. Indeed by definition, Ψ(K) rep-

resents the smallest value of J in order to have a positive solution for (3.14). Let

us start collecting some properties of the function g(m,K). By definition we have

that

g′(m,K) =

[
1

1−m2
− 2Km

]

g′′(m,K) =

[
2m

(1−m2)2
− 2K

]
.

(3.15)
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This implies that,

g′(0,K) = 1,

g′′(0,K) = −2K < 0 for all K > 0.

Since the functionm 7→ 2m

(1−m2)2
is strictly increasing on [0, 1), then g′′(m,K) = 0

has only one solution, namely g(m,K) has only one inflection point. Moreover,

observe that, as m→ 1−, g(m,K) → +∞.

a. If J < Ψ(K) then it’s clear that (3.12) has a unique solution m0 = 0 which is

a maximum point since in this case ϕ′′(0) < 0 .

b. If Ψ(K) < J < Jc, continuity of g and the fact that for m → 1−, g(m,K) →
+∞, imply that (3.12) has three solutions, m0,m1 and m3, where m1 and

m3 are positive. It’s also easy to check using the properties of the function

g(m,K) that m0 and m1 are local maxima while m3 is a local minima.

c. If J = Ψ(K), then there is only one intersection point m4 between the line

mJ and the function g(m,K). Standard reasoning allows to conclude that

m4 is an inflection point for ϕ.

d. Finally suppose that J ≥ Jc. The fact that g′(0,K) = 1 and g′′(0,K) =

−2K < 0 for K > 0, means that the line mJ starts above the function g.

Now, since g has at most one inflection point and g(m,K) → +∞ as m→ 1−,

one can conclude that there exist a unique positive solution m2 ∈ (0, 1) of

ϕ′(m) = 0.

The solutions made mention in Proposition 3.2.1 are displayed in Figure 3.3.

In the next proposition we obtain the differentiability of the solution(s) of the

consistency equation (3.12) with respect to the parameters J and K.

Proposition 3.2.2. (Regularity properties). Let m0,m1 and m2 be the (local) max-

ima of ϕ described in Proposition 3.2.1. Then for K > 0, the following properties

hold:

(a) m1 is continuous in its domain namely Ψ(K) ≤ J < Jc and C
∞ in its interior,

while m2 is C∞ in its domain, namely J ≥ Jc.
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Figure 3.3: The points of intersection between the blue curve g(m,K) as defined

in (3.14) and red curve f(m) = Jm. The solution of the equation (3.12) are the

points of intersection between g(m,K) and f(m).

Figure 3.4: The variational free energy, ϕ as a function of m(K,J) for fixed K and

J .
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(b) ϕ′′(m0) = ϕ′′(0) < 0, ϕ′′(m1) < 0 for Ψ(K) < J < Jc, and ϕ
′′(m2) < 0 for

J ≥ Jc.

Moreover, for any i ∈ {0, 1, 2} it holds that

∂

∂J
ϕ(mi) =

1

2
m2

i ,
∂

∂K
ϕ(mi) =

1

3
m3

i (3.16)

∂mi

∂J
= − mi

ϕ′′(mi)
,

∂mi

∂K
= − m2

i

ϕ′′(mi)
. (3.17)

Proof. Since m0 = 0 there is nothing to prove for it. We focus on the properties of

m1 and m2.

(a) Let’s start withm1 and take (K,J) in its domain, namely D := {(K,J)|K >

0,Ψ(K) ≤ J < Jc} . We define τ(K,J) =

(
1

J
− 1

)
J

K
> 0 and ϕ̃(m) :=

ϕ(m)|[τ(K,J),1]. Observe from (3.12) that,

m1 =
1

J

[
arctanh(m1)︸ ︷︷ ︸

≥m1

−Km2
1

]

=⇒ m1 ≥
(
1

J
− 1

)
J

K
= τ(K,J).

Hence, m1 is the unique maximum point of ϕ̃(m), then by the Berge’s maximum

theorem A.2.1 (see [37,38]), m1 is continuous for (K,J) ∈ D. To prove the smooth-

ness of m1 on the interior of its domain it’s enough to show that ϕ′′(m1) < 0 and

then apply the implicit function theorem A.2.2 (see [31, 38]). Let G(m) := ϕ ′′(m)

then,

∂G

∂m
(m) = 2K − 2m

(1−m2)2

∂2G

∂m2
(m) = −2(3m2 + 1)

(1−m2)3
< 0 ∀ m ∈ [0, 1)

and hence, 

G(0) = J − 1 < 0, ∀ J < Jc

G ′(0) = 2K > 0, ∀ K > 0

G ′′(0) = −2

limm→1− G(m) = −∞ ∀ K > 0 and J < Jc.

(3.18)
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We want to prove that G(m1) < 0 if Ψ(K) < J < Jc. Clearly since m1 is a local

maximiser it’s enough to show that G(m1) ̸= 0. Recall that m1 is the biggest

positive solution of ϕ′(m) = 0. It’s easy to check that G(m) = 0 has at most

two solutions. Assume by contradiction that G(m1) = 0 if Ψ(K) < J < Jc, then

G(m) < 0 or G(m) > 0 in a left neighbourhood of m1.

• Suppose that G(m) < 0 in a left neighbourhood of m1 then G(m) cannot

be always negative, otherwise ϕ′(m) is decreasing and, since ϕ′(0) = 0 then

ϕ′(m) = 0 can not have more than one solution. This contradicts point b)

of Proposition 3.2.1. Therefore there exists an interval where G(m) > 0 but

keeping in mind the properties of G in (3.18) and the fact that G is continuous,

this implies that there are at least three solutions for G(m) = 0, but this is

impossible because we already observed that G(m) = 0 has at most two

solutions.

• Suppose that G(m) > 0 in a left neighbourhood of m1, then G(m) = 0 has

in addition to m1 another solution that we denote by m̄. Clearly m̄ < m3

otherwise m3 cannot satisfies ϕ′(m3) = 0. Therefore G(m) ≡ ϕ′′(m) > 0 if

m3 < m < m1 and this contradicts the fact that ϕ′(m3) = ϕ′(m1) = 0.

Let’s focus on m2. Since for K > 0 and J ≥ Jc, m2 is the only maximiser of

ϕ(m) it’s enough to show that ϕ′′(m2) < 0 to get smoothness of m2 by using the

implicit function theorem. Let’s note that if J ≥ Jc then ϕ
′′(0) ≥ 0 and ϕ′′(m) = 0

has a unique positive solution. Furthermore, ϕ(m) has a unique maximum point,

m2 ∈ (0, 1) and ϕ′(m2) = 0. It is easy to show that ϕ′′(m2) ̸= 0 by contradiction.

Let’s assume that ϕ′′(m2) = 0 then ϕ′′(m) > 0 for m < m2, therefore, using

the Taylor’s series expansion of ϕ(m) around m2 one gets ϕ(m) > ϕ(m2) which

contradicts the fact that m2 is the global maximum.

Therefore by the implicit function theorem A.2.2, since ϕ′′(m) ̸= 0 on the interior

of the domains of m1 and m2, we can conclude that m1 and m2 are C∞.

(b) We already proved that for any i ∈ {0, 1, 2}, ϕ′′(mi) < 0 for suitable K,J .

For the second part a direct computation shows that:
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∂

∂J
ϕ(mi) =

∂

∂m
ϕ(m)

∣∣∣∣
m=mi

∂mi

∂J
+
m2

i

2

=
m2

i

2

(3.19)

and similarly,

∂

∂K
ϕ(mi) =

∂

∂m
ϕ(m)

∣∣∣∣
m=mi

∂mi

∂K
+
m3

i

3

=
m3

i

3
.

(3.20)

Using the fact that mi, i = {0, 1, 2} are the stationary points of ϕ(·), we have that
∂mi

∂K
satisfies

1

1−m2
i

∂mi

∂K
−m2

i − 2Kmi
∂mi

∂K
− J

∂mi

∂K
= 0

∂mi

∂K

[
1

1−m2
i

− 2Kmi − J

]
= m2

i

∂mi

∂K
= − m2

i

ϕ′′(mi)

(3.21)

and similarly for
∂mi

∂J
one obtains

1

1−m2
i

∂mi

∂J
− 2Kmi

∂mi

∂J
−mi − J

∂mi

∂J
= 0

∂mi

∂J

[
1

1−m2
i

− 2Kmi − J

]
= mi

∂mi

∂J
= − mi

ϕ′′(mi)

(3.22)

and this concludes the proof.

Remark 3.2.1. Note that from (b) of Proposition 3.2.2, we can deduce that there

are no degenerate maximum points of ϕ(m) for K > 0. Consequently, the only

occurrence of a degenerate maximum arises for the critical point (Kc, Jc) = (0, 1),

corresponding to a Curie-Weiss model, where the magnetisation takes the value

mc = 0.
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The critical point (Kc, Jc) is identified as the point (K,J) where ϕ(m) has a

unique degenerate maximum point mc, signifying that ϕ′′(mc)|(Kc,Jc) = 0. These

critical values, mc,Kc and Jc, can be determined analytically.

Recall from equation (3.11) that ϕ′′(m) = 2Km + J − 1
1−m2 . Now, we define

η(m) = (1−m2)ϕ′′(m), leading to the expression:

η(m) = 2Km− 2Km3 + J − Jm2 − 1.

The magnetisation at the critical point, denoted as mc, can be found as the root

of η′(m), while the coordinates of the critical point, represented by (Kc, Jc), can be

obtained by simultaneously solving η(mc) = 0 and η′(mc) = 0.

Upon inspection, it is observed that η′(m) has two roots that are not defined

within the domain of m, i.e., m ∈ (−1, 1), when (K,J) ∈ (R+,R), and m = 0

when K = 0. Consequently, the magnetisation at the critical point for which

ϕ′′(m) = 0 is m = mc = 0. It is easy to check that solving η(mc) and η
′(mc) results,

(Kc, Jc) = (0, 1).

3.2.2 Existence and uniqueness of phase transition

Under this section, we study which of the stationary points described by Propo-

sition 3.2.1 is or are global maximisers of ϕ(m) and show the existence of phase

transition. These stationary points are: m0(K,J),m1(K,J), and m2(K,J). Let us

start by recalling the result of Proposition 3.2.1:

• if J < Ψ(K), then m0 is the only global maximum point of ϕ,

• if Ψ(K) < J < Jc then ϕ(m) has two local maximisers m0 and m1,

• if J ≥ Jc then m2 is the only the global maximum point of ϕ(m).

To identify the coexistence of two global maximum points of ϕ(m) when Ψ(K) <

J < Jc, consider the following function:

∆(K,J) = ϕ(m1,K, J)− ϕ(m0,K, J). (3.23)

Notice that ∆(K,J) can be extended by continuity at J = Ψ(K) and J = Jc.

In the above equation we use ϕ(·,K, J) to emphasis the dependence of ϕ on the

parameters.

Proposition 3.2.3. (Existence and uniqueness). For all K > 0 there exists a

unique J = γ(K) ∈ (Ψ(K), Jc) such that ∆(K,J) = 0. Furthermore,
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∆(K,J)

< 0, if Ψ(K) ≤ J < γ(K)

> 0, if γ(K) < J ≤ Jc.
(3.24)

Proof. Let us start by observing that

• ∆(K,Ψ(K)) < 0, since for J = Ψ(K), m0 is the only maximum point of

ϕ(m,K, J).

• ∆(K,Jc) > 0, since limJ→1− m1(K,J) = m2(K, 1) and m2(K, 1) is the only

global maximum for ϕ(m,K, J).

Now, by continuity of ϕ(m) and m1, we have that J 7→ ∆(K,J) is a continuous

function, and then the existence of the wall J = γ(K) follows from the applica-

tion of the intermediate value theorem. For the uniqueness part we observe that

J 7→ ∆(K,J) is strictly increasing. Indeed from Proposition 3.2.2 we know that

ϕ(m1),m1 are smooth functions and

∂∆

∂J
(K,J) =

∂

∂J
ϕ(m1)−

∂

∂J
ϕ(m0)

=
1

2
m1

2 − 1

2
m0

2

=
1

2
m1

2 > 0

(3.25)

for J ∈ (Ψ(K), Jc).

Corollary 3.2.1. The function ϕ(m) has a unique global maximum point m∗(K,J)

given by:

m∗(K,J) :=


m0 = 0, if J < γ(K)

m1(K,J), if γ(K) < J < Jc

m2(K,J), if J ≥ Jc

(3.26)

where the function γ(K) is defined by Proposition 3.2.3 and ϕ′′(m∗) < 0.

Note that on the curve γ there are two global maximum points of ϕ(m). Let us

define

γ(K) :=

γ(K), if K > 0

Jc, if K = Kc = 0.
(3.27)
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Therefore by Proposition 3.2.2 one can conclude that m∗(K,J) is continuous on its

domain (R+×R)\γ and it is C∞ on (R+×R)\γ. Moreover the following properties

holds:

Proposition 3.2.4. (Regularity properties.) The function γ(K) is C∞(R+ \ {0})
and at least C1 for K = 0. In particular,

γ ′(K) := −2

3
m1(K, γ(K)) ∀ K > 0 (3.28)

and

γ ′(Kc) := −2

3
mc. (3.29)

Proof. i. We begin by showing that γ(K) ∈ C∞(R+). By Proposition 3.2.3, J =

γ(K) is a unique solution of the equation

∆(K,J) = 0,

where ∆ is defined by equation (3.23) for Ψ(K) ≤ J < Jc and K > 0. Furthermore,

observe that ∆ is C∞ in its domain by the smoothness of ϕ and m1. Recall from

the proof of Proposition 3.2.3 that

∂

∂J
∆(K,J) ̸= 0 ∀ (K,J) s.t. J = γ(K), (3.30)

hence, by the implicit function theorem A.2.1 γ(K) ∈ C∞(R+). Therefore

∆(K, γ(K)) ≡ 0 =
d

dK
∆(K, γ(K))

=
∂∆

∂J
(K, γ(K))γ ′(K) +

∂∆

∂K
(K, γ(K))

=⇒ γ ′(K) =− ∂∆

∂K
/
∂∆

∂J
(K, γ(K)).

(3.31)

From equations (3.19) and (3.20), we have that,

∂∆

∂K
=
m3

1

3
− m3

0

3
and

∂∆

∂J
=
m2

1

2
− m2

0

2
,

hence

γ ′(K) = −2

3
m1(K, γ(K)) (3.32)

since m0(K, γ(K)) = 0, ∀K > 0. Notice that, by (3.7), m1(K, γ(K)) −−−−→
K→∞

1

which implies that

lim
K→∞

γ ′(K) = −2

3
.
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A consequence of this property is that also when J < 0 (antiferromagnetic case)

and very large there is always going to be phase transition between a polarised and

unpolarised state.

ii. Now we prove that the extended function γ ∈ C1(R+). Recall that γ(K) ∈
[Ψ(K), Jc] and observe that limK→K+

c
Ψ(K) = Jc then

lim
K→K+

c

γ(K) = Jc

which implies that γ is continuous at Kc. Now we have that

γ ′(K) = −2

3
m1(K, γ(K)) −−−−−→

K→K+
c

−2

3
mc = 0 (3.33)

which implies that γ′(Kc) = −2
3mc = 0 by the application of mean value theorem.

3.2.3 Critical exponent

Proof of Proposition 3.1.3

Under this section we study the behaviour of the solutions of the mean-field

equation (3.12) near the critical point (Kc, Jc) = (0, 1).

Proof. Let us start with the case α ≥ 0. This implies from equation (3.8) that

J(K) ≥ Jc = 1 and then m∗(K) ≡ m2(K,J(K)) where m2 is the only positive

solution of the consistency equation (3.12).

Clearly m∗(K) → 0 as K → 0+, hence by Taylor’s expansion we have that

m∗(K) = J(K)m∗(K) +Km∗(K)2 − J(K)3m∗(K)3

3
+O(m∗(K)4)

= (1 + αK)m∗(K) +Km∗(K)2 − (1 + αK)3m∗(K)3

3
+O(m∗(K)4).

(3.34)

Hence

(1 + α3K3 + 3α2K2 + 3αK)m∗(K)2

3
−Km∗(K)− αK = O(m∗(K)3).

From the above equation, neglecting higher order corrections we have

m∗(K) ∼ 3

2

(
K +

√
K2 +

4

3
αK + 4α2K2

)
. (3.35)
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Now, if α > 0 then

m∗(K) ∼
√
3αK. (3.36)

Otherwise if α = 0, then

m∗(K) ∼ 3

2

(
K +

√
K2
)
∼ 3K. (3.37)

This implies that the behaviour of the magnetisation when approaching the critical

point is linear in K.

Now, let’s turn on the case α < 0. From Proposition 3.2.4 we know that γ(K)

is at least C1 at K = 0. Since limK→0+ γ
′(K) = 0 we know that if J(K) < γ(K)

for K small enough, then m∗(K) ≡ m0(K,J) = 0.

3.3 Fluctuations of the magnetisation

In this section, we delve into the study of the asymptotic distribution of the

magnetisation mN (σ) for a given configuration σ of spins distributed according to

the equation (3.2). Building upon the extensive research conducted in [23], which

focuses on the mean-field Ising model with a p-spin (p > 2) interaction, we adopt the

formalism introduced in that work to investigate the fluctuation properties of the

magnetisation density of the mean-field Ising model with both cubic and quadratic

interactions. Specifically, we examine the limiting behaviour of the magnetisation

mN (σ) in cases where ϕ(m) exhibits a unique global maximum, more than one

global maximum point, and at the critical point.

For technical purposes, we consider slightly perturbed parameter values (K,J, hN )

in the proofs, where hN −−−−→
N→∞

h = 0 for some yet-to-be-determined sequence. Ad-

ditionally, it is essential to note that the partition function ZN , which lacks a closed

form, plays a crucial role in the probability mass function (3.2) of the magnetisation

density mN (σ). Therefore, obtaining a precise approximation of ZN is necessary

to compute the limiting properties of mN (σ). The study of (3.12) allows us to

identify the regions in the (K,J) plane where ϕ(m) has a unique global maximum

point m∗(K,J) and where it has multiple global maximum points. Figure 3.5 shows

that, aside the open curve defined by the implicit equation J = γ(K), the func-

tion m∗(K,J) in (3.12) is unique and continuous in the (K,J) plane. Moreover,

m∗(K,J) is a smooth function outside of the curve γ ∪ (Kc, Jc).
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Figure 3.5: The coexistence curve γ and the critical point (Kc, Jc) in the (K,J)

plane.

The following theorem presents the law of large numbers and the central limit

theorem for the distribution of mN (σ) under the Boltzmann-Gibbs measure (3.2).

Theorem 3.3.1 (Asymptotic distribution of the magnetisation). Consider the

Hamiltonian in (3.1), then the following holds:

1. For (K,J) ∈ (R+×R)\(γ ∪ (Kc, Jc)) the function ϕ(m) in (3.4) has a unique

global maximiser m∗ such that ϕ′′(m∗) < 0 and

mN
D−−−−→

N→∞
δm∗ . (3.38)

Moreover,

N
1
2 (mN −m∗)

D−−−−→
N→∞

N
(
0,− 1

ϕ′′(m∗)

)
. (3.39)

2. Given (K,J) ∈ γ we denote by m0 < m1 the two global maximisers of ϕ(m).

For i ∈ {0, 1} we define the quantity

ρi :=
[(m2

i − 1)ϕ′′(mi)]
− 1

2

[(m2
0 − 1)ϕ′′(m0)]

− 1
2 + [(m2

1 − 1)ϕ′′(m1)]
− 1

2

. (3.40)

Then we have that

mN
D−−−−→

N→∞

∑
i∈{0,1}

ρiδmi . (3.41)
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Moreover let Ai ⊆ [−1, 1] be an interval containing mi in its interior such

that ϕ(mi) > ϕ(m) for all m ∈ cl(Ai)\{mi}, then

N
1
2 (mN −mi)

∣∣{mN ∈ Ai}
D−−−−→

N→∞
N
(
0,− 1

ϕ′′(mi)

)
. (3.42)

3. At the critical point (Kc, Jc), we have that

mN
D−−−−→

N→∞
δ0. (3.43)

Moreover,

N
1
4 mN

D−−−−→
N→∞

C exp

(
ϕ(4)(0)

24
x4
)
dx = C exp

(
−x4

12

)
dx, (3.44)

where ϕ(4)(0) = −2 denote the fourth derivative of ϕ(m) evaluated at m = 0

and

C−1 =

∫ ∞

−∞
exp

(
−x4

12

)
dx =

4√3 Γ( 1
4
)√

2
.

3.3.1 Asymptotic distribution of the magnetisation

In this section, we will present a detailed proof of Theorem 3.3.1, building upon

the work in [23]. To do this we provide a brief description of what will be involved in

the details of the proof based on the behaviour of ϕ with respect to its maximisers:

1. Uniqueness region (ϕ(m,K, J) has a unique global maximiser): We initiate

the proof by establishing a concentration inequality for mN in an asymptot-

ically vanishing neighbourhood of m∗. In this case, the partition function is

constrained to the spin configurations where mN falls within a concentration

neighbourhood of m∗. Subsequently, we derive an asymptotic approximation

expansion of the partition function, which becomes instrumental in proving

the central limit theorem.

2. Multiple maximisers of ϕ(m,K, J): We adopt a similar approach to prove

the law of large numbers and the central limit theorem in scenarios where

ϕ(m,K, J) has two global maximisers, denoted as mi. For this case, we estab-

lish a conditional concentration inequality for mN , considering its concentra-

tion at each of the maximisers mi when mN lies in a vanishing neighbourhood

of mi.
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3. Critical point (Kc, Jc): At the critical point, where ϕ′′(mc,Kc, Jc) = 0, we

follow a similar approach as before, but with appropriate modifications to

account for the critical behaviour.

It worth to mention that the proof of Theorem 3.3.1 will be attacked in three main

parts, each corresponding to the nature of the solution of the consistency equation

(3.12), just as mentioned above.

Throughout the analysis of the asymptotic distribution of mN , we will refer to

the general remark below, Remark 3.3.2, that will be used to facilitate our study.

Remark 3.3.2. Consider a mean-field spin model with energy density gN , namely

HN (σ) = −NgN (mN (σ)) , σ ∈ {−1, 1}N (3.45)

where mN = 1
N

∑
i≤N σi is the magnetisation density. We assume that (gN ) is a

sequence of continuous functions gN : [−1, 1]N → R converging uniformly to g. We

assume also that gN has bounded derivatives up to order 4 converging uniformly to

g′, g′′, g′′′, g′′′′. We denote the law of the magnetisation under the Gibbs measure by

µN (σ) =
e−HN (σ)

ZN
. (3.46)

The partition function ZN can be written as

ZN =
∑
x∈RN

AN (x)eNgN (x), (3.47)

where RN = {−1 + 2k
N , k = 0, . . . , N} and AN (x) = card{σ ∈ {−1, 1}N : mN (σ) =

x}. Now, it follows from Lemma 2.2.1 that, for some universal constant L

1

L
√
N
e−NI(x) ≤ AN ≤ e−NI(x) (3.48)

where I(x) is defined in (3.6). Define the sequence ϕN as

ϕN (x) = gN (x)− I(x). (3.49)

Notice the assumption on (gN ) that ϕN → ϕ = g − I uniformly on (−1, 1), as well

as its derivarites up to order 4 on (−1, 1). Let observe that since there are N−spin

particles, mN can assume explicitly N+1 different values for K > 0 over the defined

range RN .
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Lemma 3.3.1. Let (gN ) be a sequence of continuous functions gN : [−1, 1]N → R
converging uniformly to f . Suppose that gN has bounded derivatives up to order 4

which converges uniformly to g′, g′′, g′′′, g′′′′. Then ϕN → ϕ uniformly.

Proof. Note that for any generic function gN , for a mean-field spin model of the

type studied here, the map x 7→ gN (x) is continuous for every N and uniformly

bounded. For instance, in this work, (2.12) is uniformly bounded by |K3 + J
2 + h|.

Observe further thatmN is a closed and bounded, i.e., compact, subset of R. Hence,
it follows from Theorems 7.13 and 7.24 of [31] that gN is equicontinuous. Now

since gN is uniformly bounded and equicontinuous, gN → g uniformly. Hence, by

extension, it follows from the convergence of gN to g that ϕN → ϕ uniformly.

The convergence of gN to its derivatives follows directly from Theorem 7.17

of [31].

Part 1: Uniqueness region

Suppose we are in the domain of (K,J) where m∗(K,J) is the unique global

maximiser of ϕ(m,K, J). Now, for a sequence hN = t√
N

converging to 0 as N → ∞,

define ϕN (x) := ϕ(x) + t√
N
x, where ϕ(x) has its usual representation as illustrated

in (3.4). Suppose that ϕN (m) has a unique global maximiser m∗
N such that as

N → ∞, m∗
N → m∗(K,J) (see Lemma 3.3.2), we can define BN,α for α ∈ (0, 1)

BN,α =

(
m∗

N −N− 1
2
+α,m∗

N +N− 1
2
+α

)
(3.50)

where mN (σ) concentrates around m∗
N with respect to the Boltzmann Gibbs mea-

sure (3.2) at rate N− 1
2
+α.

The following lemma contains concentration properties of the magnetisation

densitymN w.r.t. the Gibbs measure µN and asymptotic expansions of the partition

function ZN . For any α > 0 and y ∈ R we denote by BN,α(y) the open ball with

center y and radius N−1/2+α and by Bc
N,α(y) its complement.

Lemma 3.3.2. Assume that ϕ(m) has a unique global maximiser m∗ ∈ (−1, 1) such

that ϕ′′(m∗) < 0. Then for N large enough ϕN has a unique maximiser m∗
N → m∗

such that ϕ′′N (m∗
N ) < 0. Moreover for α ∈

(
0, 16
]
and N large enough we have that

µKJ
N (mN (σ) ∈ Bc

N,α) = exp

{
1

2
N2αϕ′′(m∗)

}
O(N

3
2 ), (3.51)
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and the partition function (3.47) can be expanded as,

ZN =
eNϕN (m∗

N )√
(m∗2

N − 1)ϕ′′N (m∗
N )

(
1 +O

(
N− 1

2
+α

))
. (3.52)

Proof. Let m∗
N be any maximiser of ϕN which exists since [−1, 1] is compact. Then

there exists a subsequence {Nl}l≥1 such that m∗
Nl

converges to some y. We know

that ϕNl
(m∗

Nl
) ≥ ϕNl

(m) for all m ∈ [−1, 1], therefore by uniform convergence and

taking l → ∞ we obtain ϕ(y) ≥ ϕ(m) for all m ∈ [−1, 1] and this implies that y is

a global maximiser of ϕ(x). But m∗ is the unique global maximiser of ϕ(m), hence

y = m∗.

Since ϕ′′(m∗) < 0 one has, for ϵ small enough, ϕ(m) < 0 for any m ∈ [m∗ −
ϵ,m∗ + ϵ]. Let mN and yN be two global maximisers of ϕN . We already know that

mN → m∗ and yN → m∗. Therefore for N large enough mN , yN ∈ [m∗ − ϵ,m∗ + ϵ].

Using the fact that ϕ′′N converges uniformly to ϕ′′ one can show that for N large

enough ϕN is strongly convex on [m∗−ϵ,m∗+ϵ] and therefore has unique maximiser

which implies that xN = yN .

In order to lighten the notation set BN,α = BN,α(m
∗
N ). From equations (3.46),

(3.47) and (3.48) we have that,

µKJ
N (mN ∈ Bc

N,α) =

∑
m∈RN∩Bc

N,α
AN exp

{
N

(
K

3
m3 +

J

2
m2 + hNm

)}
∑

m∈RN
Am exp

{
N

(
K

3
m3 +

J

2
m2 + hNm

)}

≤

∑
m∈RN∩Bc

N,α
exp

{
N

(
K

3
m3 +

J

2
m2 + hNm− I(m)

)}
∑

m∈RN

1
L
√
N
exp

{
N

(
K

3
m3 +

J

2
m2 + hNm− I(m)

)}

=
LN

1
2 supx∈Bc

N,α
eNϕN (x)

supx∈[−1,1] e
NϕN (x)

= exp

{
N

(
sup

x∈Bc
N,α

ϕN (x)− ϕN (m∗
N )

)}
O(N

3
2 ).

(3.53)

In the third equality, Laplace heuristic approximation of the sum is used leading to

taking the supremum. Now, by Lemma B.11 of [23] it is known that for large N ,

and x ∈ BN,α, m
∗
N is the unique maximiser of ϕN (x) and if x ∈ Bc

N,α then from

(3.50), the maximiser of ϕN (x) is either m∗
N −N− 1

2
+α or m∗

N +N− 1
2
+α due to the
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concaveness of ϕN (x). This implies that supx∈Bc
N,α

ϕN (x) is either ϕN (m∗
N−N− 1

2
+α)

or ϕN (m∗
N + N− 1

2
+α). Note that ϕ

′
N (m∗

N ) = 0 since m∗
N is the maximiser and

ϕ
(3)
N (m∗

N ) is uniformly bounded on any closed interval in (−1, 1). Hence by a second-

order Taylor expansion of ϕ(m∗
N ±N− 1

2
+α) at the point m∗

N , we have that

ϕ(m∗
N ±N− 1

2
+α) = ϕN (m∗

N ) +
1

2
N−1+2αϕ′′N (m∗

N ) +O(N− 3
2
+3α). (3.54)

Notice that ϕ′′(m∗
N ) −−−−→

N→∞
ϕ′′(m∗) < 0. This completes the first part of the proof

of Lemma 3.3.2 following from equation (3.53).

To complete the proof of Lemma 3.3.2, let’s start by observing that almost all

the contribution to ZN comes from spin configurations having magnetisation density

in a vanishing neighbourhood of the maximiser m∗
N , i.e., µKJ

N (mN (σ) ∈ BN,α) =

1−O(e−Nα
).

Let’s observe that

µKJ
N (mN (σ) ∈ BN,α) =

1

ZN

∑
m∈RN∩BN,α

(
N

N(1+m)
2

)
exp

{
N

(
K

3
m3+

J

2
m2+hNm

)}
.

(3.55)

Hence,

ZN = (1 +O(e−Nα
))

∑
m∈RN∩BN,α

(
N

N(1+m)
2

)
exp

{
N

(
K

3
m3 +

J

2
m2 + hNm

)}
︸ ︷︷ ︸

=ζ(m)

(3.56)

where ζ : [−1, 1] → R. With this, one can accurately approximate the partition

function over all configurations σ whose mean lies within a vanishing neighbourhood

of m∗ using standard approximation techniques.

We begin by applying the Laplace approximation of an integral over a shrinking

interval BN,α via the Riemann approximation of the sum in equation (3.56) with

an integral and the binomial coefficient can be approximated by the Stirling’s ap-

proximation method. Notice that by the Riemann approximation of the sum, we

have that∣∣∣∣∣
∫
BN,α

ζ(x)dx− 2

N

∑
m∈RN∩BN,α

ζ(m)

∣∣∣∣∣ ≤ 1

2
(N− 1

2
+α) ·N−1 sup

x∈BN,α

|ζ ′(x)|

= O(N− 1
2
+α ·N−1 ·N

1
2
+α)ζ(m∗

N )

= O(N−1+2α)ζ(m∗
N ).

(3.57)
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Observe that the binomial coefficient in (3.56) can be approximated by the

Stirling’s approximation method which gives(
N

N(1+m)
2

)
=

√
2

πN(1−m2)
e−NI(m) (1 +O(N−1)) (3.58)

and hence,

ζ(m) =

√
2

πN(1−m2)
eNϕN (m) (1 +O(N−1)). (3.59)

It follows from equations (6.12), (3.58), (3.59) and the Laplace approximation

of an integral over a shrinking interval BN,α that:∑
m∈RN∩BN,α

ζ(m) =
N

2

∫
BN,α

ζ(x)dx+O(N2α)ζ(m∗
N )

=
N

2

∫
BN,α

√
2

πN(1− x2)
eNϕN (x)(1 +O(N−1))dx

+O(N2α) ·

[√
2

πN(1−m∗2
N )

eNϕN (m∗
N ) (1 +O(N−1))

]

=

√
N

2
(1 +O(N−1))

∫
BN,α

eNϕN (x)

√
2

π(1− x2)
dx

+

√
2

πN(1−m∗2
N )

eNϕN (m∗
N ) (1 +O(N−1))O(N2α)

=

√
N

2

√
2π

N |ϕ′′N (m∗
N )|

√
2

π(1−m∗2
N )

eNϕN (m∗
N ) (1 +O(N− 1

2
+3α))

+

√
2

πN(1−m∗2
N )

eNϕN (m∗
N ) (1 +O(N−1))O(N2α)

=
eNϕN (m∗

N )√
(m∗2

N − 1)ϕ′′N (m∗
N )

· (1 +O(N− 1
2
+3α)).

(3.60)

From equations (3.56) and (3.60), we have that

ZN = (1 +O(e−Nα
)) · (1 +O(N− 1

2
+3α)) · eNϕN (m∗

N )√
(m∗2

N − 1)ϕ′′N (m∗
N )

=
eNϕN (m∗

N )√
(m∗2

N − 1)ϕ′′(m∗
N )

· (1 +O(N− 1
2
+3α))

(3.61)
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This completes the proof of Lemma 3.3.2 and we use this results to prove the central

limit theorem of mN (σ).

The following results make use of the arguments of Lemma 3.3.2 to proof the

first part of Theorem 3.3.1, thus the law of large numbers and the central limit

theorem of the distribution of mN in the uniqueness regime of the consistency

equation (3.12).

Proof. CLT in the Uniqueness region

By proposition 3.1.2 we know that if (K,J) ∈ (R+×R)\(γ∪(Kc, Jc)) then ϕ(m) has

a unique global maximiserm∗ with ϕ′′(m∗) < 0. It’s easy to check that ϕ(m) satisfies

the hypothesis of Lemma 3.3.2, therefore (3.51) gives concentration inequality for

mN in a suitable neighbourhood of m∗ under the probability measure (3.2). More

precisely, for any α ∈ (0, 16 ] and N large enough one has

µKJ
N (mN ∈ Bc

N,α(m
∗)) = exp

{
1

2
N2αϕ′′(m∗)

}
O(N

3
2 ) (3.62)

where Bc
N,α(m

∗) = {m ∈ R : |m −m∗| ≤ N− 1
2
+α}. Therefore the convergence

in distribution (3.38) follows from (3.62) by standard approximation arguments.

Now, in order to obtain the central limit theorem of mN , we will show that

the moment generating function of N
1
2 (mN − m∗) with respect to the measure

µN converges pointwise to the moment generating function of the distribution

N
(
0,− 1

ϕ′′(m∗)

)
. To obtain the central limit of mN it is enough to compute the

limit of the moment generating function of N
1
2 (mN −m∗). For a fixed t ∈ R, the

moment generating function of N
1
2 (mN −m∗) can be expressed as

E
[
etN

1
2 (mN−m∗)

]
= e−tN

1
2m∗ Z̃N (t)

ZN
(3.63)

where Z̃N (t) is a perturbed partition function associate to the Hamiltonian

H̃N (σ) = HKJ
N (σ) +

√
N tmN (σ). (3.64)

We start by noticing that H̃N (σ) = NgN (mN (σ)) where gN (x) = K
3 x

3+ J
2x

2+ t√
N
x

and then gN together with all its derivatives tends uniformly to g(x) = K
3 x

3 + J
2x

2

as introduced in Remark 3.3.2.

Observe that Lemma 3.3.2 provides the asymptotic expansion of ZN and similar

applies to Z̃N (t). Now, using the fact that m∗
N (t) → m∗, the fractional term on the
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right side of equation (3.63) as N → ∞ can be rewritten as

Z̄N (t)

ZN
= eN

(
ϕN (m∗

N (t))−ϕ(m∗)
)
(1 +O(N− 1

2
+3α)), (3.65)

where ϕN (x) = gN (x)−I(x) and for N large enough m∗
N (t) is its unique maximiser.

Let’s observe that m∗
N (0) = m∗ and m∗

N (t) satisfies the equation

m∗
N (t) = tanh

(
Km∗

N (t)2 + Jm∗
N (t) +

t√
N

)
. (3.66)

Hence, it’s easy to check that
∂m∗

N (t)
∂t |t=0 = − 1√

Nϕ′′(m∗)
and

∂2m∗
N (t)

∂t2
= O(N−1).

Therefore the Taylor’s expansion of m∗
N (t) around t = 0 is

m∗
N (t) = m∗

N (0)− t√
Nϕ′′(m∗)

+O(N−1). (3.67)

Following from the definition of ϕ(m) in equation (3.4), one can easily check

that ϕN (m∗
N (t)) = ϕ(m∗

N (t)) +
t√
N
m∗

N (t). Hence,

N

(
ϕN (m∗

N (t))− ϕ(m∗)

)
=N

(
ϕ(m∗

N (t)) +
t√
N
m∗

N (t)− ϕ(m∗)

)
=N

(
ϕ(m∗

N (t))− ϕ(m∗)

)
+ t

√
Nm∗

N (t)

(3.68)

and a Taylor expansion of ϕ(m∗
N (t)) around m∗ gives

N
(
ϕ(m∗

N (t)− ϕ(m∗)
)
=
N

2

(
m∗

N (t)−m∗)2ϕ′′(m∗) + o(1). (3.69)

From (3.67) we know that

m∗
N (t)−m∗ = − t

N
1
2ϕ′′(m∗)

+O(N−1) (3.70)

and consequently,

t
√
Nm∗

N (t) = t
√
Nm∗(K,J)− t2

ϕ′′(m∗)
+O(N−1). (3.71)

Hence, it implies from (3.68) that,

N

(
ϕN (m∗

N (t))− ϕ(m∗)

)
= t

√
Nm∗ − t2

2ϕ′′(m∗)
+O(N−1) (3.72)

and by (3.65) the limiting moment generating function is given as

lim
N→∞

E
[
etN

1
2 (mN (σ)−m∗)

]
= exp

{
− t2

2ϕ′′(m∗)

}
, (3.73)

which implies (3.39) by noticing that the moment generating function ofN (0,− 1
ϕ(m∗))

evaluated at t is given by the constant in the limiting expectation (3.73).
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Part 2: Multiple maximisers

Let’s recall that on the coexistence curve γ, there are two global maximisers

mi(K,J) of ϕ(m,K, J) for i ∈ {0, 1}. Similarly we consider a perturbed parameter

hN = tN− 1
2 converging to 0 as N → ∞ and let’s define ϕN (mi) := ϕ(mi, hN ) such

that mi,N is a local maximiser of ϕN (x) and mi,N → mi as N approach infinity,

i.e., N → ∞.

When there are more than one local maximiser, the Boltzmann-Gibbs proba-

bility distribution becomes multimodal and centered around each local maxima.

Hence, the distribution has to be defined on clusters of spins around each local

maxima or defined over subsets of the range of the magnetisation which contains

each of the local maxima. Let’s define Ai to be an open interval centered at one of

the local maximisers, mi, such that it is the global maximiser of ϕ(m,K, J). Now,

let mi,N be a local maximiser for ϕN (mi,N ) which converges to mi as N → ∞. We

can condition our distribution for mN (σ) ∈ Ai, such that for any open ball BN,α

with α ∈ (0, 1),

BN,α(mi,N ) =

(
mi,N −N− 1

2
+α,mi,N +N− 1

2
+α

)
, (3.74)

mN (σ) concentrates around mi at rate of N− 1
2
+α. The following lemma details

the conditional concentration inequality of the distribution for mN (σ) and shows

that it concentrates around the local maximisers mi when defined in a vanishing

neighbourhood of the maximisers.

Lemma 3.3.3. Suppose ϕ(m) has S ∈ N global maximisers mi such that ϕ′′(mi) <

0. For i ≤ S, let Ai ⊂ [−1, 1] be an interval such that mi ∈ int(Ai) is the unique

maximiser of ϕ on cl(Ai). Then for N large enough ϕN has a unique global max-

imiser mi,N → mi on Ai with ϕ
′′
N (mi,N ) < 0 and for α ∈

(
0, 16
]
, one has

µKJ
N (mN ∈ Bc

N,α,S) = exp

{
1

2
N2αmax

i≤S
ϕ′′N (mi,N )

}
O(N

3
2 ) (3.75)

where BN,α,S =
⋃

i≤S BN,α(mi,N ), moreover the restricted partition function on Ai

can be expanded as,

ZN

∣∣
Ai

=
eNϕN (mi,N )√

(m2
i,N − 1)ϕ′′N (mi,N )

(
1 +O

(
N− 1

2
+α

))
(3.76)
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and the unrestricted partition function can be expanded as,

ZN =
∑
i≤S

eNϕN (mi,N )√
(m2

i,N − 1)ϕ′′N (mi,N )

(
1 +O

(
N− 1

2
+α

))
. (3.77)

Note that, here, int(Ai) and cl(Ai) denote the interior and closure of Ai, respec-

tively.

Proof. The fact that forN large enough ϕN has a unique maximisermi,N → mi with

ϕ′′(mi,N ) < 0 can be proved applying to the function ϕN restricted to cl(Ai) and us-

ing the same argument of Lemma 3.3.2. Clearly, for N large enough, BN,α(mi,N ) ⊂
Ai and

µKJ
N (mN (σ) ∈ Bc

N,α(mi,N )|mN (σ) ∈ Ai) = exp

{
1

2
N2αϕ′′N (mi,N )

}
O(N

3
2 ) (3.78)

following a step-by-step argument used to prove equation (3.51).

Now, for i ≤ S and N large enough, one has that Ai \BN,α(mi,N ) = Ai \BN,α,S

and then µN (mN (σ) ∈ Bc
N,α(mi,N )

∣∣mN (σ) ∈ Ai) = µN (mN (σ) ∈ Bc
N,α,S |mN (σ) ∈

Ai). Therefore,

µKJ
N (mN (σ) ∈ Bc

N,α,S) =
∑

1≤i≤S

µKJ
N (mN (σ) ∈ Bc

N,α,S

∣∣mN (σ) ∈ Ai)µ
KJ
N (mN (σ) ∈ Ai)

≤ exp

{
1

2
N2α max

1≤i≤S
ϕ′′(mi)

}
O(N

3
2 )
∑

1≤i≤S

µKJ
N (mN (σ) ∈ Ai)

= exp

{
1

2
N2α max

1≤i≤S
ϕ′′(mi)

}
O(N

3
2 ).

(3.79)

This completes the proof of equation (3.75) following from equation (3.79).

As observed from the proof above, the distribution of the magnetisationmi,N (σ)

concentrates in a neighbourhood within which the local maximisers mi(K,J) are

defined asN grows to infinity for i ∈ {0, 1}. Hence to prove the central limit theorem

for mi,N (σ), we need to condition the partition function on the neighbourhood

for each of the maximisers. After obtaining the conditional partition function on

the neighbourhood of each maximiser, we then use the result to prove conditional

central limit theorem of mi,N (σ). To do this, we need to find an approximation of

the conditional partition function

ZN |Ai :=
∑

σ∈ΩN :mi,N (σ)∈Ai

exp

{
N

(
K

3
m3

i,N (σ) +
J

2
m2

i,N (σ) + hNmi,N

)}
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when mi,N (σ) concentrates around mi ∈ Ai and Ai is defined as in Lemma 3.3.3.

The following lemma approximates the partition function.

The proof for (3.76) and (3.77) follows exactly the argument in the results of

the previous Lemma 3.3.2. Note that for fixed i ∈ {0, 1} and mi,N (σ) concentrating

around mi ∈ Ai,

µKJ
N (mN (σ) ∈ BN,α(mi,N )|mi,N (σ) ∈ Ai)

=
1

ZN |Ai

∑
m∈RN∩BN,α

(
N

N(1+m)
2

)
exp

{
N

(
K

3
m3 +

J

2
m2 + hNm

)}
.

(3.80)

Now, following the exact computation and argument in Lemma 3.3.2, we have that

the restricted partition function can be expanded as

ZN |Ai =
∑

m∈RN∩BN,α

(
N

N(1+m)
2

)
exp

{
N

(
K

3
m3 +

J

2
m2 + hNm

)}

=
eNϕN (mi,N )√

(m2
i,N − 1)ϕ′′(mi,N )

· (1 +O(N− 1
2
+3α))

(3.81)

and observe that, for each of the global maximisers mi

ZN |Ai =
eNϕN (mi,N )√

(m2
i,N − 1)ϕ′′(mi,N )

· (1 +O(N− 1
2
+3α)). (3.82)

Assuming that mN (σ) concentrates around the two global maximisers mi,N for

i ∈ {0, 1} then, following from the proof of Lemma 3.3.3, equation (3.77) follows

from (3.82). Hence, we have

ZN =
∑

i∈{0,1}

ZN |Ai . (3.83)

Proof. CLT for multiple maximisers

Let’s recall that by Proposition 3.1.2 there exist two global maximisers mi of ϕ(m)

for i ∈ {0, 1} on γ. Moreover by point b) of Proposition 3.2.2 we know that ϕ′′(mi) <

0 for i ∈ {0, 1}.
We can now use the results of Lemmas 3.3.3, specifically (3.75) and (3.76) as

an argument to the convergence in distribution (3.41) and (3.40). To begin with,
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let’s define Bi,ϵ := (mi − ϵ,mi + ϵ) for ϵ > 0 and i ∈ {0, 1}. Hence, for all ϵ > 0,

ϕ(mi) > ϕ(m) for all m ∈ Bi,ϵ\{mi}. Observe that for i ∈ {0, 1},

µKJ
N (mN (σ) ∈ Bi,ϵ) =

ZN |Bi,ϵ

ZN
. (3.84)

From equation (3.82) and (3.76)

ZN |Bi,ϵ =
eN supm∈[−1,1] ϕ(m)√
(m2

i − 1)ϕ′′(mi)
· (1 + o(1)) (3.85)

and

ZN = eN supm∈[0,1] ϕ(m)
∑

i∈{−1,1}

1√
(m2

i − 1)ϕ′′(mi)
· (1 + o(1)). (3.86)

Now, equation (3.41) is derived from the following equations (3.84), (3.85) and

(3.86).

To obtain the local central limit theorem for mN around the global maximisers

mi, we will show that the moment generating function of N
1
2 (mN −mi)

∣∣{mN ∈ Ai}
with respect to the measure µN converges pointwise in distribution to the moment

generating function of N
(
0,− 1

ϕ′′(mi)

)
. Here Ai ⊂ [−1, 1] is such that mi is the

unique maximiser of ϕ(m) on its interior. The moment generating function of

N
1
2 (mN −mi)

∣∣{mN ∈ Ai} at a fixed t ∈ R is

E
[
etN

1
2 (mN−mi)

∣∣∣∣{mN ∈ Ai}
]
= e−tN

1
2mi

Z̄N (t)
∣∣
Ai

ZN

∣∣
Ai

(3.87)

where Z̄ is the perturbed partition function. Following the asymptotic expansion

of the partition function in (3.76) (see Lemma 3.3.3), the fraction on the right side

of equation (3.87) reduces to

Z̄N (t)
∣∣
Ai

ZN

∣∣
Ai

∼ eN
(
ϕN (mi,N (t))−ϕ(mi)

)
. (3.88)

Now, taking Taylor’s expansion of ϕN (mi,N (t)) at mi up to the second order, one

can repeat the same arguments as in the unique maximum case, obtaining

E
[
etN

1
2 (mN−mi)

∣∣∣∣{mN ∈ Ai}
]
−−−−→
N→∞

exp

{
− t2

2ϕ′′(mi)

}
. (3.89)

This completes the proof of (3.42).
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Part 3: Critical point

Notice that the critical point (Kc, Jc) = (0, 1) is a degenerate maximum point

for ϕ(m) in the sense that ϕ′′(m∗(K,J))
∣∣
(K,J)=(0,1)

= 0. Notice again that m∗ = mc

and it is a unique maximiser of ϕ(m) at the critical point. This does not allow

the use of the asymptotic expansions in Lemma 3.3.2. However, one can simply

notice that the Hamiltonian HKJ
N of the model at the critical point (Kc, Jc) = (0, 1)

coincides at any N ∈ N with the Hamiltonian function of the standard Curie-Weiss

model at the critical temperature J = 1 and zero external field. Therefore (3.43)

and (3.44) are well known results and their proof can be found in [21].

Under this section we study the asymptotic behaviour of the magnetisation

mN (σ) at the critical point mc. Recall from equation (3.11) that at the critical

point (Kc, Jc) = (0, 1), ϕ′′(mc,Kc, Jc) = 0 where mc is the unique maximiser of

ϕ(m,K, J). Here the proof follows the same argument as before for the case with

unique maximiser but taking into account the fact that ϕ′′(mc,Kc, Jc) = 0 and this

will require higher order Taylor expansion. Now, for a sequence hN = h + tN− 3
4

converging to h, we define ϕN (m(KN , J)) := ϕ(m(K,J, hN ),K, J, hN ) and suppose

that m∗
N (hN ) is its unique global maximiser which converges to mc as N → ∞.

In this case we consider that mN (σ) concentrates around m∗
N with respect to the

Boltzmann Gibbs measure at the rate ofN− 1
4
+α for α > 0 and define a concentration

window as

BN,α =

(
m∗

N −N− 1
4
+α,m∗

N +N− 1
4
+α

)
. (3.90)

We use the following Lemma to show that mN (σ) concentrates around m∗
N at the

rate of N− 1
4
+α for α ∈ (0, 1

20 ].

Lemma 3.3.4. Suppose ϕ(m,K, J) has a unique global maximiser mc. Then for

α ∈ (0, 1
20 ] and BN,α as defined above in equation (3.90),

µKJ
N (mN (σ) ∈ Bc

N,α) = exp

{
1

24
N4αϕ(4)(mc)(1 + o(1))

}
O(N

3
2 ). (3.91)
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Proof. Following the argument in the proof of Lemma 3.3.2

µKJ
N (mN (σ) ∈ Bc

N,α)

= exp

{
N

(
sup

x∈Bc
N,α

ϕN (x)− ϕN (m∗
N )

)}
O(N

3
2 )

≤ exp

{
N(ϕN (m∗

N ±N− 1
4 )− ϕN (m∗

N ))

}
O(N

3
2 )

= exp

{
1

6
N

1
4
+3αϕ

(3)
N (m∗

N ) +
1

24
N4αϕ

(4)
N (m∗

N ) +O(N− 1
4
+5α)

}
O(N

3
2 ).

(3.92)

Let’s observe that ϕ(4)(m,K, J) < 0 for all m ∈ [0, 1] and ϕ
(3)
N (m∗

N ) → 0 as m∗
N →

mc. Hence using that m∗
N → mc as N → ∞,

1

6
N

1
4
+3αϕ

(3)
N (m∗

N ) +
1

24
N4αϕ

(4)
N (m∗

N ) =
1

24
N4αϕ(4)(mc)(1 + o(1)). (3.93)

Lemma 3.3.4 now follows from equations (3.92) and (3.93).

We now need an approximation of the partition function at the critical point

since Lemma 3.3.4 shows that when we reach the critical point mN (σ) concentrates

in a vanishing neighbourhood of mc.

Lemma 3.3.5. Suppose ϕ(m,K, J) has a unique global maximiser mc(K,J) and

let hN := h+tN− 3
4 for t ∈ R. Then for α ∈ (0, 1

20 ] and N large enough the partition

function can be expanded as,

ZN =
N

1
4 eNϕN (m∗

N )√
2π(1−m∗2

N )

∫ ∞

−∞
eηt(y)dy(1 + o(1)), (3.94)

where ηt(y) := ay2 + by3 + cy4, with

a :=
(6t)

2
3 (ϕ(4)(mc))

1
3

4
, b :=

(6t)
1
3 (ϕ(4)(mc))

2
3

6
, and c :=

ϕ(4)(mc)

24
. (3.95)

Proof. We follow the same argument of in Lemma 3.3.2 for this proof. Let’s note

from Lemma 3.3.4 that

ZN = (1 +O(e−Nα
))

∑
m∈RN∩BN,α

ζ(m), (3.96)
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where ζ(m) is as defined in Lemma 3.3.2 and BN,α is defined in 3.90. Similarly,

following Lemma 3.3.2, it’s easy to show that∣∣∣∣∣
∫
BN,α

ζ(x)dx− 2

N

∑
m∈RN∩BN,α

ζ(m)

∣∣∣∣∣ = O(N−1+4α)ζ(mN∗). (3.97)

It follows from the above equation that (see Lemma A.5, B.6 and B.10 of [23])∑
m∈RN∩BN,α

ζ(m) =
N

2

∫
BN,α

ζ(x)dx+O(N4α)ζ(m∗
N )

=

√
N

2
(1 +O(N−1))

∫
BN,α

eNϕN (x)

√
2

π(1− x2)
dx+O(N4α)ζ(m∗

N )

=
N

1
4 eNϕN (m∗

N )√
2π(1−m∗2

N )

∫ Nα

−Nα

eηt(y)dy(1 +O(N− 1
4
+5α))

+O(N4α) ·

[√
2

π(1−m∗2
N )

eNϕN (m∗
N ) (1 +O(N−1))

]

=
N

1
4 eNϕN (m∗

N )√
(m∗2

N − 1)ϕ′′N (m∗
N )

·
∫ ∞

−∞
eηt(y)dy(1 + o(1)).

(3.98)

Now, from equations (3.96) and (3.98), we have that

ZN = (1 +O(e−Nα
)) · (1 + o(1)) · N

1
4 eNϕN (m∗

N )√
(m∗2

N − 1)ϕ′′N (m∗
N )

·
∫ ∞

−∞
eηt(y)dy

= (1 + o(1)) · N
1
4 eNϕN (m∗

N )√
(m∗2

N − 1)ϕ′′N (m∗
N )

·
∫ ∞

−∞
eηt(y)dy

(3.99)

This completes the proof of Lemma 3.3.5 and we use this results to prove the central

limit theorem of mN (σ).

Proof. CLT at the critical point

To obtain the central limit theorem of mN (σ) at mc we use the results of Lemma

3.3.5 and follow the argument used in the case of unique maximiser in section 3.3.1.

For a fixed t ∈ R, denote the moment generating function of N
1
4 (mN (σ)−mc) by

E
[
etN

1
4 (mN (σ)−mc)

]
= e−tN

1
4mc

ZN (K,J, h+ tN− 3
4 )

ZN (K,J)
. (3.100)

Considering equation (3.99) and observing that m∗
N → mc as N → ∞, we have
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ZN (K,J, h+ tN− 3
4 )

ZN (K,J)
∼ eN{ϕN (m∗

N (h+tN− 3
4 ))−ϕ(mc(K,J))}. (3.101)

By the definition of the variational pressure in equation (3.4),

N{ϕN (m∗
N (h+ tN− 3

4 ),K, J, hN )− ϕ(mc(K,J),K, J)} =

=N{ϕ(m∗
N (h+ tN− 3

4 )) + tN− 3
4m∗

N (h+ tN− 3
4 )− ϕ(mc(K,J))}

=N{ϕ(m∗
N (h+ tN− 3

4 ))− ϕ(mc(K,J))}+ tN
1
4m∗

N (h+ tN− 3
4 ).

(3.102)

Applying Taylor expansion around the unique maximiser mc(K,J), we have that

N{ϕ(m∗
N (h+ tN− 1

2 ))− ϕ(mc(K,J))} =

=
N

2
{m∗

N (h+ tN− 1
2 )−mc(K,J)}2ϕ′′(mc(K,J))

+
N

6
{m∗

N (h+ tN− 1
2 )−mc(K,J)}3ϕ(3)(mc(K,J))

+
N

24
{m∗

N (h+ tN− 1
2 )−mc(K,J)}4ϕ(4)(mc(K,J))

+O(N{m∗
N (h+ tN− 1

2 )−mc(K,J)}) + o(1).

(3.103)

We apply a further Taylor expansion of ϕ′(m,K, J) around mc and use the fact

that ϕ′(mc) = ϕ′′(mc) = ϕ(3)(mc) = 0,

ϕ′(m∗
N (hN )) =ϕ′(mc) + {m∗

N −mc}ϕ′′(mc) +
{m∗

N −mc}2

2
ϕ(3)(mc)

+
{m∗

N −mc}3

6
ϕ(4)(mc) +O(N− 1

4 )

=
{m∗

N −mc}3

6
ϕ(4)(mc) +O(N− 1

4 ).

(3.104)

Which implies that,

6ϕ′(m∗
N )

ϕ(4)(mc)
∼ (m∗

N −mc)
3. (3.105)

Let us recall that, m∗
N and mc are the unique global maximisers of ϕN (m,K, J, hN )

and ϕ(m,K, J) respectively at the critical point (Kc, Jc) and observe further that

by definition of ϕ(m∗
N (hN )) and ϕN (m∗

N (hN )),

ϕ′(m∗
N ) = ϕ′N (m∗

N )− tN
−3
4 = −tN

−3
4

=⇒ − 6t

ϕ(4)(mc)
= N

3
4 (m∗

N −mc)
3 +O(N− 1

4 ).
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Notice that m∗
N → mc as N → ∞. Hence

(m∗
N −mc) = −

(
6t

ϕ(4)(mc)

) 1
3

·N− 1
4 +O(N− 1

4 ) (3.106)

and

N
1
4 (m∗

N −mc) = −
(

6t

ϕ(4)(mc)

) 1
3

+O(N− 1
4 ). (3.107)

Therefore from (3.103), we have

N{ϕ(m∗
N (h+ tN− 1

2 ))− ϕ(mc(K,J))}

=
N

24

(
−N− 1

4 ·
(

6t

ϕ(4)(mc)

) 1
3

)4

ϕ(4)(mc) + o(1)

=
ϕ(4)(mc)

24

(
6t

ϕ(4)(mc)

) 4
3

+ o(1).

(3.108)

Now, from (3.106),

tN
1
4m∗

N (h+ tN− 3
4 ) = tN

1
4mc(K,J)− t

(
6t

ϕ(4)(mc)

) 1
3

+O(N− 3
2 ) (3.109)

Hence,

N{ϕN (m∗
N (h+ tN− 1

2 ))− ϕ(mc(K,J))} =

=
ϕ(4)(mc)

24

(
6t

ϕ(4)(mc)

) 4
3

+ tN
1
4mc − t

(
6t

ϕ(4)(mc)

) 1
3

+ o(1).
(3.110)

Therefore, the limiting moment generation functions of mN (σ) at mc becomes

lim
N→∞

E
[
etN

1
4 (mN (σ)−mc)

]
= exp

{
ϕ(4)(mc)

24
x4 − tx

}
(3.111)

where x =

(
6t

ϕ(4)(mc)

) 1
3

.
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Chapter 4

Three-spin and an external

field: the Kh Ising model

This chapter investigates the phase properties of the Ising model with three-

spin interactions and an external magnetic field within the framework of mean-field

approximation theory. The objective is to minimise the free energy using an appro-

priate variational principle, which allows for the calculation of the magnetic order

parameter. The behaviour of the magnetic order parameter is then thoroughly

analysed, specifically in relation to the interaction parameter and the external mag-

netic field. The investigation focuses on fundamental concepts and properties of

the model, such as the existence and uniqueness of phase transitions as well as the

properties of an order parameter that exhibits a critical point characterised by crit-

ical exponents. The results discussed in this chapter can be found in the reference

list as [39].

4.1 The model and results

Starting from the Hamiltonian of a system with three-spin interactions and

an external field, the following features are studied: the existence and properties

of phase transitions, the properties of the magnetisation and its behaviour along

phase boundaries, and the behaviour of the magnetisation near transition point of

the system. In particular, this chapter uses the following specified Hamiltonian:

HKh
N (σ) = −

∑
⟨i,j,k⟩

Kijkσiσjσk −
∑
i

hiσi, (4.1)

67
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defined on N−spins with σ = (σi)i≤N ∈ {−1,+1}N = ΩN . The first term in

the Hamiltonian modulates the interactions between triplets of spins, while the

second term represents the effect of an applied magnetic field on each spin. Hence,

following the normalisation of the parameters K and h introduced in Chapter 2,

(4.1) becomes:

HKh
N (σ) = −N

(
K

3
m3

N (σ) + hmN (σ)

)
(4.2)

where mN (σ) is the magnetisation density. Here, the model is expressed in terms

of the magnetisation per particle, and it involves a cubic term and a linear term

that depend on the values of K, h, and mN (σ). The Hamiltonian (4.2) is invariant

if we reverse the direction of K and h and of all spins σi → −σi (i = 1, ..., N),

i.e., HKh
N (σ;K,h) = HKh

N (−σ;−K,−h). The Boltzmann-Gibbs type probability

measure related to the Hamiltonian (4.2) for a given configuration σ is

µKh
N (σ) =

e−HKh
N (σ)

ZN
, (4.3)

where ZN =
∑

σ∈ΩN
exp

(
−HKh

N (σ)
)
is the normalisation factor, also called the

partition function. The interest here is to study the limiting behaviour of mN (σ)

as a function of K and h.

In the thermodynamic limit, the Hamiltonian in (4.2) can be described by its

order parameter denoted asm(K,h), which is the limiting expected value ofmN (σ).

The order parameter characterises the entire phase space of the model and can be

identified among the solutions of the consistency equation

m = tanh(Km2 + h). (4.4)

In the plane (K,h), the order parameter m is shown to have two distinct jumps

or discontinuities in the phase space which is characterised by a curve implicitly

defined as h = γ(K). The curve γ(K) is differentiable and smooth outside the

critical point (Kc, hc),

(Kc, hc) =

(
± 3

√
3

4
, arctanh

(
± 1√

3

)
− Kc

3

)
, (4.5)

and originates at

mc = ± 1√
3

(4.6)

in the phase space. The order parameter m(K,h) near the critical point is charac-

terised by the critical exponents of the mean-field theory: 1 along the direction of γ

and 1/2 along any other direction of the plane (K+, h) where K+ refers to K > 0.
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It is worth noting that the law of large numbers and the central limit theorem

for the distribution of mN (σ) have been studied in [23] for K > 0 and therefore will

not be discussed in this work. The limiting distribution of the magnetisation away

from the curve γ was found to be Gaussian, with local Guassian fluctuations on the

coexistence curve γ and non-Gaussian at (Kc, hc) with rate N1/4.

This chapter is organised as follows: Section 4.2 introduces the Gibbs free energy

of the model and solves it via an appropriate variational principle. The properties

of the order parameter describing the system in its steady-state equilibrium are

also discussed in this section. These properties allow an analytical description of

the phase diagram of the system and the calculation of the critical exponents. The

conclusion and future prospects of the model are discussed in section 4.3.

4.2 Definitions and exact solution

The generating functional of the moments for the distribution (4.3), the ther-

modynamic pressure is defined as:

pN =
1

N
logZN (4.7)

and its thermodynamic limit

p := lim
N→∞

pN (4.8)

can be computed by an application of the Varadhan’s integral lemma [20, 25, 26].

The limiting pressure (4.8) admits the following variational representation:

p = sup
m∈[−1,1]

ϕ(m), (4.9)

where ϕ(m) = u(m)− I(m) with

u(m) =
K

3
m3 + hm (4.10)

is the energy contribution, and

I(m) =
1−m

2
log

(
1−m

2

)
+

1 +m

2
log

(
1 +m

2

)
(4.11)

is the binary entropy contribution. The solutions of the variational principle (4.9)

coincide with its stationary points which are obtained as the roots of the mean-field

equation,

m = tanh(Km2 + h) (4.12)
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for fixed K and h. Figure 4.1 represents the solutions of (4.12) that realise the

supremum of (4.9) and shows that the function ϕ(m) in (4.9) can have not more

than two global maximisers in the interval (−1, 1) for fixed (K,h).

(a) (b)

Figure 4.1: Stable solutions of the mean-field equation as a function of K and h

showing two discontinuous jumps or transitions with m varying smoothly for all h

and K ∈
(
− 3

√
3

4 , 3
√
3

4

)
.

Due to the invariance property of (4.2) under spin reversal and transformation

of the parameters K and h, one can study the model only for K > 0 without loss of

generality. In what follows the parameter space will be restricted to (K,h) ∈ R+×R
and the phase space is divided accordingly as:

Proposition 4.2.1 (Phase diagram). For any K > 0, there exists h = γ(K)

such that the function m 7→ ϕ(m) has a unique maximum point m∗ for (K,h) ∈
(R+×R)\γ and on the curve γ there are two global maximisers m1(K,h),m2(K,h),

such that the limit as K → Kc of γ(K) identifies the critical point (Kc, hc) at

m = mc =
1√
3
.

The two global maximisers of Proposition 4.2.1 indicates the presence of two

different thermodynamic equilibrium phases, while the curve γ represents the co-

existence curve. Figure 4.2 displays numerical simulations of the phase diagram as

described in Proposition 4.2.1.

The critical exponents of the model are computed to understand the limiting

behaviour of the magnetisation approaching the critical point (Kc, hc). The average

value of the magnetisation in this case will be denoted by m∗(K,h). The following
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Figure 4.2: Phase diagram of the model with coexistence curve γ and the critical

point (Kc, hc) in the (K,h) plane for K > 0. The colormap has the same scale as

used in Figure 4.1.

proposition describes the critical behaviour of m∗(K,h) when (K,h) → (Kc, hc)

from various directions:

Proposition 4.2.2. Let m∗(K,h) be the unique global maximiser of ϕ(m) defined

in Corollary 4.2.1. Given any curve h = τ(K) tangent to the wall γ(K) at the

critical point such that τ ′(Kc) = −m2
c and another not tangent to the critical point

with τ ′(Kc) ̸= −m2
c . Then, as (K,h) → (Kc, hc),

m∗(K,h)−mc ∼

C(K −Kc), if τ ′(Kc) = −m2
c

C1(K −Kc)
1/2, if τ ′(Kc) ̸= −m2

c

(4.13)

for all K > Kc, and C and C1 are constants.

In the sequel the proof of the above two propositions, Propositions 4.2.1 and

4.2.2, which characterises the phase of the model is given.

4.2.1 Proofs

The proofs of the results of this chapter are given in this section and organised

as follows: an analysis of the properties of the function ϕ(m) appearing in the
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variational problem (4.9) is given in this section and used as the proof of Proposition

4.2.1 and the critical exponents of the model are computed in section 4.2.1.

Proof of Proposition 4.2.1

The proof comes in several steps following from Lemma 4.2.1, Propositions 4.2.3,

4.2.4, 4.2.5 and 4.2.6 below. From the variational principle in (4.9), let us observe

that the function ϕ(m) satisfies the following:

∂

∂m
ϕ(m) = Km2 + h− arctanh(m) = 0 and

∂2

∂m2
ϕ(m) = 2Km− 1

1−m2
.

(4.14)

Note from (4.14) that, limm→−1+ ϕ
′(m) = +∞ and limm→1− ϕ

′(m) = −∞. Hence,

there exists an interval [−1,−1+ϵ] such that ϕ(m) is strictly increasing and strictly

decreasing on [1− ϵ, 1] for ϵ > 0. It then follows that the local maximisers of ϕ(m)

do not include the endpoints −1 and +1, since they are singular points of ϕ′(m).

It is therefore obvious that the variational pressure ϕ(m) reaches its maximum in

at least one point m = m(K,h) ∈ (−1, 1) which satisfies the following condition:

∂

∂m
ϕ(m) = 0, i.e., m = tanh (Km2 + h). (4.15)

Now there is a unique critical value for (K,h), denoted by (Kc, hc), such that ϕ(m)

has a unique degenerate maximum mc, in the sense that ϕ′′(m)
∣∣
(Kc,hc)

= 0.

Lemma 4.2.1 (Critical values). The degenerate maximum points of ϕ(m) are ob-

tained for Kc = ±3
4

√
3 and hc = arctanh

(
± 1√

3

)
− Kc

3 . The magnetisation at the

point (Kc, hc) takes the value mc = ± 1√
3
.

Proof. The critical values (Kc, hc) and mc can be determined analytically by first

observing from (4.15) that tanh (Km2 + h)︸ ︷︷ ︸
=y

−m = 0 has a triple root mc such that

the following holds:

tanh (Kcm
2
c + hc)−mc = 0

η =
∂y

∂m

∣∣∣∣
(mc,Kc,hc)

− 1 = 0

η′ =
∂2y

∂m2

∣∣∣∣
(mc,Kc,hc)

= 0.

(4.16)
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Notice that

η(mc) = 2Kcmc(1−m2
c)− 1 = 0

and

η′(mc) = 2Kc − 6Kcm
2
c = 0.

Solving η and η′ simultaneously for Kc and mc, we find that η′ has two roots,

mc := ± 1√
3
and each of these roots is a local maximum point of η for Kc := ±3

4

√
3.

Knowing mc and Kc, it follows that hc := arctanh
(
± 1√

3

)
−

√
3
4 .

Let m̄ ∈ (−1, 1) be any solution of ϕ′′(m) = η(m) = 0. Observe that for all

m ≤ 0 and K ≥ 0, η(m) = ϕ′′(m) ≤ −1, which implies that m̄ is a solution of

ϕ′′(m) = η(m) = 0 if m̄ ∈ (0, 1). We have already shown that the only positive

solution (zeros) of η′(m) = 0, is m = mc = 1√
3
which occurs as a double root of

η(mc) = 0 at K = Kc = 3
4

√
3. Therefore, it follows from Rolle’s theorem that

η(m) evaluated at K = Kc = 3
4

√
3, cannot have any positive root other than

m̄ = mc =
1√
3
and hence it is the only root of ϕ′′(m) if and only if K = Kc =

3
4

√
3.

Now, since ϕ′′(mc) = η(mc) = η′(mc) = 0 for K = Kc, it is easy to see that if h = hc

then ϕ′(mc) = ϕ(3)(mc) = 0. Moreover, it is worth noting that for K = Kc and

h = hc, ϕ
′(m) > 0 holds for all m ∈ (−1,mc) and ϕ

′(m) ≤ 0 holds for m ∈ [mc, 1),

which is a consequence of the fact that ϕ′(m) −−−−−→
m→−1+

∞ and ϕ′(m) −−−−→
m→1−

−∞.

This implies that for K = Kc > 0 and h = hc > 0, ϕ′(m) is decreasing, has a unique

triple root at mc and ϕ′′(m) ≤ 0 on the domain (−1, 1) for 0 ≤ K ≤ Kc. Given

this, it is clear that if K > Kc, there exists a ϵ > 0 such that ϕ′′(m) > 0 on the

domain m ∈ (mc − ϵ,mc + ϵ) and hence has exactly two roots. Note further that

ϕ′′(m) = 0 holds forK = Kc if and only ifm = mc. Consequently,mc = ± 1√
3
are the

degenerate maximum points of ϕ(m) and that ϕ′′(m)
∣∣
{mc=

1√
3
} ≥ ϕ′′(m)

∣∣
{mc=− 1√

3
}

with equality only at K = Kc.

In the rest of the work, due to the fact that the Hamiltonian (4.1) for the

transformation of the direction of the cubic interaction parameter (K) and the

external field parameter (h) is invariant under spin flip, the analysis of the model is

restricted to the case where K ≥ 0. The following proposition provides a complete

classification of the stationary points of ϕ(m):

Proposition 4.2.3. (Classification of stationary points) For all K ≥ 0 and h ∈ R,
the roots of equation (4.15) are described as follows:
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1. Define the following functions for K > Kc

ψ1(K) := min
m∈[−1,1]

g(m,K), (4.17)

ψ2(K) := max
m∈[−1,1]

g(m,K) (4.18)

where g(m,K) := arctanh(m)−Km2 and ψ1(K), ψ2(K) < hc. Hence:

a. if h = ψ1(K), then ϕ′(m) has two solutions m1(K,h) < m2(K,h).

m1(K,h) is a local maximum point and m2(K,h) is an inflection point

of ϕ(m).

b. if h < ψ1(K), then ϕ′(m) has a unique solution m1(K,h) with the same

sign of h such that it is the unique maximum point of ϕ(m).

c. if ψ1(K) < h < ψ2(K), then ϕ′(m) has three solutions m1(K,h) <

m̃(K,h) < m2(K,h). Where m1(K,h) and m2(K,h) are local maximum

points while m̃(K,h) is a local minimum point of ϕ(m).

d. if h = ψ2(K), then ϕ′(m) has two solutions m1(K,h) < m2(K,h). Here

m1(K,h) is an inflection point of ϕ(m) while m2(K,h) is a local maxi-

mum point.

e. if h > ψ2(K), then there exists a unique positive solution m2(K,h) of

ϕ′(m) such that it is the only maximum point of ϕ(m).

2. Given that 0 ≤ K ≤ Kc and h ∈ R, there exist a unique solution m3(K,h) of

ϕ′(m) with the sign of h, which is zero if and only if h = 0, and it is the only

maximal point of ϕ(m).

Proof. It is easy to observe that m = 0 is always a solution of (4.15) and that

ϕ′′(0) < 0 for all K. The mean-field equation (4.15) can be rewritten as follows

h =

[
arctanh(m)−Km2

]
︸ ︷︷ ︸

=g(m,K)

. (4.19)

The solutions of (4.15) follow from (4.19) as the intersections between h and the

function g(m,K). Let us now begin by examining some properties of the function

g(m,K) as defined in (4.19). Given that g(m,K) := arctanh(m)−Km2, then it’s
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first and second partial derivatives with respect to m are:

g′(m,K) =

[
1

1−m2
− 2Km

]
and

g′′(m,K) =

[
2m

(1−m2)2
− 2K

]
.

(4.20)

Note that the function g′′(m,K) is strictly increasing on (−1, 1) for all K, hence it

has a unique solution. Furthermore, observe that,

g′(0,K) = 1, ∀ K

g′′(0,K) = −2K ≤ 0, ∀ K ≥ 0

limm→1− g(m,K) = +∞,

limm→−1+ g(m,K) = −∞.

(4.21)

Now, let us notice from (4.17) and (4.18) that ψ1(K) and ψ2(K) denote the mini-

mum and maximum values of g(m,K) for K > Kc, respectively. In the following,

ψ1(K) and ψ2(K) are used together with the properties of g(m,K) in (4.21) to

study the solutions of ϕ′(m) = 0.

1. Notice that since the function g(m,K) → −∞ as m → −1+ and g(m,K) →
∞ as m → 1−, any horizontal line tangent to g(m,K) at ψ1(K) or ψ2(K)

identifies two solutions of ϕ′(m). Thus, when h = ψ1(K), it is easy to see

that ϕ′(m) has two solutions, one of which, namely m2(K,h), is a horizontal

tangent point of the function g(m,K) such that g′(m2,K) = 0 and turns

out to be an inflection point of ϕ(m), while the other, namely m1(K,h), is

a maximum point of ϕ(m). Likewise, if h = ψ2(K), ϕ′(m) has two solutions

where the one tangent to ψ2(K) is an inflection point of ϕ(m).

Hence by definition, it is clear that if h < ψ1(K) then (4.15), ϕ′(m), has a

unique solution m1(K,h) that has the same sign as h. On the other hand, if

ψ1(K) < h < ψ2(K), by continuity of g(m,K) and the fact that for m→ 1−,

g(m,K) → +∞, imply that (4.15) has three solutions, namely m1(K,h) <

m̃(K,h) and m2(K,h). Furthermore, when h > ψ2(K) clearly there is a

unique solution m2(K,h) of (4.15).

2. Now, let us consider the case where 0 ≤ K ≤ Kc. Since the function ϕ′(m)

is decreasing and ϕ′′(m) ≤ 0 on the domain m ∈ (−1, 1), for K ∈ [0,Kc] and

h ∈ R, this implies that ϕ′(m) can have only one solution namely m3(K,h).
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Notice that m3(K, 0) = 0 and has the same sign as h for h ̸= 0 and ϕ′′(m) = 0

if m3(Kc, hc) = mc. Since m3(K,h) is the unique solution of ϕ′(m) on the

interval 0 ≤ K ≤ Kc, it is the unique maximum point of ϕ(m) as ϕ′′(m) ≤ 0

on the domain m ∈ (−1, 1).

The classification of the solutions of ϕ′(m) and their characterisations given by

Proposition 4.2.3 are shown in Figures 4.3, 4.4 and 4.5.

Figure 4.3: The intersections of the blue curve g(m,K), as defined in (4.19), and

the red solid horizontal line corresponding to h are the stationary points of ϕ(m).

These intersection points represent the solutions of the consistency equation (4.15).

The following proposition examines the regularity properties of the solution(s)

of the consistency equation (4.15) with respect to the parameters K,h.

Proposition 4.2.4. (Regularity properties). Let m1(K,h),m2(K,h) and m3(K,h)

be the stationary points of ϕ(m) described in Proposition 4.2.3 and defined on their

respective domains D1 := {(K,h)|K > Kc, h ≤ ψ1(K)}, D2 := {(K,h)|K > Kc, h ≥
ψ2(K)} and D3 := {(K,h)|0 ≤ K ≤ Kc, h ∈ R}. Then the following properties hold:

(a) for any i ∈ {1, 2, 3}, ϕ′′(mi(K,h)) < 0 on the interior of the respective do-

mains Di for mi(K,h),
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Figure 4.4: The variational pressure as a function of the magnetisation.

Figure 4.5: Boltzmann-Gibbs distribution of the total magnetisation.

(b) mi(K,h) are continuous and C∞ on the interior of their respective domains.

(c) For any i ∈ {1, 2, 3}
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∂

∂h
ϕ(mi) = mi,

∂

∂K
ϕ(mi) =

1

3
m3

i , (4.22)

∂mi

∂h
= − 1

ϕ′′(mi)
,

∂mi

∂K
= − m2

i

ϕ′′(mi)
(4.23)

and

∂2mi

∂h2
= − ϕ(3)(mi)[

ϕ′′(mi)
]3 , ∂2mi

∂K2
= −m

4
iϕ

(3)(mi)[
ϕ′′(mi)

]3 − 2m3
i[

ϕ′′(mi)
]2 (4.24)

on the interior of Di such that ϕ′′(mi(K,h)) ̸= 0.

Proof. (a) Let denote by G(m) := ∂2ϕ(m)
∂m2 and let us show that G(m)

∣∣
mi(K,h)

< 0

on the interior of the domains of mi(K,h). Note first, by the definition of the

variational principle in (4.9), that the m ∈ (−1, 1) satisfying (4.9) are the maximis-

ers of ϕ(m) and hence it is expected that G(m)
∣∣
mi(K,h)

< 0 on the interior of the

respective domains of mi(K,h). Some properties of G(m) are given below:

∂G

∂m
(m) = 2K − 2m

(1−m2)2

∂2G

∂m2
(m) = −2(3m2 + 1)

(1−m2)3
< 0 for m ∈ (−1, 1)

and hence,



G(0) = −1 < 0,

G ′(0) = 2K ≥ 0, ∀ K ≥ 0

G ′′(0) = −2

lim m→1−

m→−1+
G(m) = −∞, ∀ K > 0.

(4.25)

From Lemma 4.2.1 it was discussed that for K > Kc there exists an interval (mc −
ϵ,mc + ϵ) for which G(m) > 0. Together with the properties of G given in (4.25),

this implies that G(m) = 0 can have at most two solutions. Recall from Proposition

4.2.3 that if K > Kc, then ϕ
′(m) = 0 can have at most three solutions and these

solutions correspond to the turning points of ϕ(m). Similarly, G(m) = 0 has exactly

two solutions identifying the turning points of ϕ′(m), which characterise the zeroes

of ϕ′(m) as a local maximum or local minimum or an inflection point of ϕ(m).

Note again that ϕ′(m) does not always decrease on the entire domain of m, for
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m ∈ (−1, 1), although ϕ′(m) −−−−−→
m→−1+

∞ and ϕ′(m) −−−−→
m→1−

−∞. The formal proof

uses the above arguments as follows:

i. Consider the domain D1 := {(K,h)|K > Kc, h ≤ ψ1(K)}. We want to show

that G(m1(K,h)) < 0 on the interior of D1. From Proposition 4.2.3 it follows

that for fixed K > Kc, m1(K,h) is the smallest solution of ϕ′(m) = 0 and

that it is unique on the interior of D1. Since G(m) = 0 has exactly two roots

for any K > Kc, ϕ
′(m) has exactly two turning points, i.e., one is a global

maximum point and the other a global minimum point of ϕ′(m). Hence, it is

clear that the root of ϕ′(m) = 0 on the interior of D1 is smaller than all two

roots of G(m) = 0, since h < ψ1(K). Considering the properties of G(m) in

(4.25), in particular lim m→1−

m→−1+
G(m) = −∞ ∀ K > 0, and the fact that it

is a continuous function implies that G(m)
∣∣
(m1−ϵ,m1+ϵ)

< 0 for ϵ > 0. Since

G(m) < 0 holds in both the left and right neighbourhoods of m1(K,h) for

ϵ > 0, it follows that G(m1(K,h)) < 0 holds on the interior of D1. Therefore

by extension and a direct application of the implicit function theorem A.2.2,

since G(m1(K,h)) ̸= 0 and ϕ′(m) ∈ C∞, then G(m1(K,h)) ∈ C∞ on the

interior of D1.

Given that (K,h) is in the interior of D2, it is known by point e. of the

Proposition 4.2.3 that m2(K,h) is the unique solution of ϕ′(m) = 0. There-

fore, following similar argument as for the case of m1(K,h) proves that on the

interior of the domain D2, G(m2(K,h)) < 0 and C∞.

ii. On the interior of D3 := {(K,h)|0 ≤ K ≤ Kc, h ∈ R}, ϕ′(m) has a unique

solutionm3(K,h). In Lemma 4.2.1 it was shown that G(m) = 0 whenm = mc

andK = Kc, but on the interior ofD3, K ̸= Kc. Again, from the same lemma,

it was also shown that for all K < Kc, G(m) < 0 and therefore on the interior

of D3, it follows that G(m3(K,h)) < 0 and C∞.

Now, since we have been able to show that G(mi(K,h)) < 0 for i = 1, 2, 3, it can

be concluded in addition that mi(K,h) are the maximum points of ϕ(m) on the

interior of their respective domains.

(b) The proof follows directly from the discussion of the proof of point (a) above

and an application of Berge’s maximum theorem. It is evident from Proposition

4.2.3 and the proof of point (a) above thatm1(K,h),m2(K,h), andm3(K,h) are the

unique maximum points of ϕ(m)
∣∣
D1
, ϕ(m)

∣∣
D2

, and ϕ(m)
∣∣
D3

, respectively. Therefore,
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by the application of Berge’s maximum theorem (see [31,37]) and the continuity of

ϕ(m) implies that m1(K,h),m2(K,h), and m3(K,h) are continuous on the interior

of their respective domains D1, D2 and D3. Hence, the smoothness of mi(K,h) on

the interior of its domain follows directly from noticing that ϕ(m) ∈ C∞ and hence

ϕ′(m) ∈ C∞, i.e., m1(K,h),m2(K,h), and m3(K,h) are C
∞ on the interior of their

respective domains.

(c) It has already been established that for any i ∈ {1, 2, 3}, ϕ′′(mi) ̸= 0 for

suitable K,h. Hence, a direct computation shows that:

∂

∂h
ϕ(mi) =

∂

∂m
ϕ(m)

∣∣
m=mi︸ ︷︷ ︸

=0

∂mi

∂h
+

∂

∂h
ϕ(m)

∣∣
m=mi

= mi

(4.26)

and similarly,

∂

∂K
ϕ(mi) =

∂

∂m
ϕ(m)

∣∣
m=mi

∂mi

∂K
+

∂

∂K
ϕ(m)

∣∣
m=mi

=
m3

i

3
.

(4.27)

Recall that mi, i = {1, 2, 3} are the stationary points of ϕ(·), and hence taking the

first order partial derivative of arctanh(mi)−Km2
i − h = 0 with respect to K and

h,
∂mi

∂K
satisfies

1

1−m2
i

∂mi

∂K
−m2

i − 2Kmi
∂mi

∂K
= 0

∂mi

∂K

[
1

1−m2
i

− 2Kmi

]
︸ ︷︷ ︸

=−ϕ′′(mi)

= m2
i

∂mi

∂K
= − m2

i

ϕ′′(mi)

(4.28)

and similarly for
∂mi

∂h
one obtains
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1

1−m2
i

∂mi

∂h
− 2Kmi

∂mi

∂h
− 1 = 0

∂mi

∂h

[
1

1−m2
i

− 2Kmi

]
= 1

∂mi

∂h
= − 1

ϕ′′(mi)
.

(4.29)

Now, taking a second order partial derivative of arctanh(mi)−Km2
i − h = 0 with

respect to K and h yields:

1

1−m2
i

∂2mi

∂h2
+

(
∂mi

∂h

)2( 2mi

(1−m2
i )

2

)
− 2Kmi

∂2mi

∂h2
− 2K

(
∂mi

∂h

)2

= 0

∂2mi

∂h2

[
1

1−m2
i

− 2Kmi

]
=

(
∂mi

∂h

)2
[
2K − 2mi

(1−m2
i )

2

]
︸ ︷︷ ︸

=ϕ′′′(m)

∂2mi

∂h2
= − ϕ′′′(mi)[

ϕ′′(mi)
]3

(4.30)

and

(
1

1−m2
i

− 2Kmi

)
∂2mi

∂K2
+

(
∂mi

∂K

)2( 2mi

(1−m2
i )

2
− 2K

)
− 2mi

∂mi

∂K
= 0

∂2mi

∂h2

[
1

1−m2
i

− 2Kmi

]
=

(
∂mi

∂K

)2
[
2K − 2mi

(1−m2
i )

2

]
+ 2mi

∂mi

∂K

∂2mi

∂K2
= −m

4
iϕ

′′′(m)[
ϕ′′(mi)

]3 +
2m3

i[
ϕ′′(mi)

]2
(4.31)

and this concludes the proof.

In the following, the existence and uniqueness of the phase transition, i.e., the

existence of two thermodynamic equilibrium phases for fixed (K,h) is proved, and

its properties are also studied. Recall from the previous results of Proposition 4.2.3

that:

1. if K > Kc and h < ψ1(K), then m1(K,h) is the only local maximum point

of ϕ(m) and hence the global maximiser. ϕ(m) has two local maximisers

m1(K,h) and m2(K,h) if ψ1(K) < h < ψ2(K) while for h > ψ2(K), m2(K,h)

is the only local maximiser and thus the global maximiser of ϕ(m).
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2. if 0 ≤ K ≤ Kc and h ∈ R then m3(K,h) is the only local maximiser of ϕ(m),

hence the global maximum point.

In the first observation above, there are two local maximisers m1(K,h) and

m2(K,h) if ψ1(K) < h < ψ2(K) while when we move out of that range of h only

one survives. Now, the interest is to identify which one is the global maximiser by

considering the sign of the following function:

∆(K,h) = ϕ(m2(K,h))− ϕ(m1(K,h)) (4.32)

for K > Kc and h ∈ R. The following proposition makes use of the intermediate

value theorem to investigate the sign of ∆(K,h) on the given interval ψ1(K) ≤ h ≤
ψ2(K).

Proposition 4.2.5. (Existence and uniqueness). For all K > Kc, there exists a

unique h = γ(K) ∈ (ψ1(K), ψ2(K)) such that ∆(K,h) = 0. Furthermore,

∆(K,h)

< 0, if ψ1(K) ≤ h < γ(K)

> 0, if γ(K) < h ≤ ψ2(K).
(4.33)

Proof. For K > Kc, observe that

1. h 7→ ∆(K,h) is a continuous function, by continuity of ϕ(m),m1(K,h) and

m2(K,h). Hence the function ∆(K,h) can be extended by continuity at h =

ψ1(K) and h = ψ2(K).

2. ∆(K,ψ1(K)) < 0, because if h = ψ1(K), m1(K,h) is the only maximum point

while m2(K,h) is an inflection point of ϕ(m). Hence m1(K,h) is the global

maximum point of ϕ(m,K, h).

3. ∆(K,ψ2(K)) > 0, since at h = ψ2(K) the only maximum point of ϕ(m) is

given by m2(K,h). Hence it is the global maximum point of ϕ(m,K, J).

Since the function ∆(K,h) is continuous and changes sign from negative to

positive on the interval ψ1(K) ≤ h ≤ ψ2(K), a direct application of the inter-

mediate value theorem implies that, there exist a coexistence curve h = γ(K) ∈
(ψ1(K), ψ2(K)) such that ∆(K, γ(K)) = 0. The uniqueness of γ(K) such that

∆(K, γ(K)) = 0 follows from the fact that h 7→ ∆(K,h) is strictly increasing on

the domain ψ1(K) ≤ h ≤ ψ2(K).
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In fact, from Proposition 4.2.4, it has been shown that ϕ(mi(K,h)),mi(K,h),

i = 1, 2 are smooth functions, and hence

∂∆

∂h
(K,h) =

∂

∂h
ϕ(m2)−

∂

∂h
ϕ(m1)

= m2(K,h)−m1(K,h) > 0

(4.34)

for h ∈ (ψ1(K), ψ2(K)). Furthermore, observe that ∆(K,h) is C∞ by the smooth-

ness of ϕ(m), m1(K,h) and m2(K,h) in its domain. Note from equation (4.34)

that, since

∂

∂h
∆(K,h) ̸= 0 (4.35)

on the domain {(K,h)|K > Kc, ψ1(K) < h < ψ2(K)}, then by the implicit function

theorem it can be concluded that γ(K) ∈ C∞((Kc,∞)).

Let us note that in the case K < 0 the above results hold due to the invariance

property of the Hamiltonian under transformation of the sign of the parameters and

the spin flip. This leads to the observation of two unique phase jumps (see Figure

4.1) and a smooth variation of the order parameter between the two critical points

mc = ±1/
√
3 in the phase space.

The following corollary summarises the result above:

Corollary 4.2.1. Denote by m∗(K,h) the unique global maximum point of ϕ(m).

Then:

m∗(K,h) :=


m1(K,h), if K > Kc, h < γ(K)

m2(K,h), if K > Kc, h > γ(K),

m3(K,h), if 0 ≤ K ≤ Kc h ∈ R,

(4.36)

where γ(K) is defined by Proposition 4.2.5 and, by Proposition 4.2.4, ϕ′′(m∗(K,h)) <

0.

Note that γ(K) represents the coexistence curve in which there exist two global

maximum points of ϕ(m) and which is unique on the defined domain (K,h) ∈
(R+ \ {Kc} × R). Now, denote by

γ(K) :=

γ(K), if K > Kc

hc, if K = Kc.
(4.37)
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Hence it follows form Proposition 4.2.4 that m∗(K,h) is continuous on its domain

(R+ × R)\γ and it is C∞ on (R+ × R)\γ. In the following proposition we study

some properties of γ(K):

Proposition 4.2.6. (Regularity properties.) The function γ(K) is C∞(R+ \{Kc})
and at least C1 for K = Kc. In particular if K > Kc, then

γ ′(K) := −1

3

(
m2(K, γ(K))2+m1(K, γ(K))m2(K, γ(K))+m1(K, γ(K))2

)
(4.38)

and

γ ′(Kc) := −m2
c . (4.39)

Proof. i. To lighten the notation for the maximisers, mi will interchangeably be

used to denote mi(K, ·) for i = 1, 2. It has been shown in Proposition 4.2.5 that

γ(K) ∈ C∞((Kc,∞)) and h = γ(K) is the only solution of the equation

∆(K,h) = 0,

by an application of the intermediate value theorem, where ∆(K,h) is defined as

equation (4.32) for ψ1(K) ≤ h ≤ ψ2(K) and K > Kc. Therefore

∆(K, γ(K)) ≡ 0 =
d

dK
∆(K, γ(K))

=
∂∆

∂h
(K, γ(K))γ ′(K) +

∂∆

∂K
(K, γ(K))

=⇒ γ ′(K) =− ∂∆

∂K

/∂∆
∂h

(K, γ(K)).

(4.40)

Now, it follows from equations (4.26), (4.27) and (4.34) that

∂∆(K,h)

∂K
=
m3

2

3
− m3

1

3
and

∂∆(K,h)

∂h
= m2 −m1.

Hence substituting the above into (4.40), yields,

γ ′(K) = −1

3

(
m2

2 +m1m2 +m2
1

)
(K, γ(K)). (4.41)

ii. Now, let us consider the extended function γ. Recall that γ(K) ∈ [ψ1(K), ψ2(K)]

and observe that limK→K+
c
ψ1(K) = limK→K+

c
ψ2(K) = hc, hence

lim
K→K+

c

γ(K) = hc.
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This implies that γ(K) is continuous at Kc. Now, observe further that for i = 1, 2

mi(K,h) −−−−−−−−−→
(K,h)→(Kc,hc)

mc.

Therefore,

γ ′(K) = −1

3

(
m2

2 +m1m2 +m2
1

)
(K, γ(K)) −−−−−→

K→K+
c

−m2
c = −1

3
(4.42)

by continuity of γ(K) andmi(K,h). Now, an application of the mean value theorem

assures that γ′(Kc) = −m2
c = −1

3 .

Proof of Proposition 4.2.2

Proof. The aim of this section is to study the behaviour of the magnetisation near

the critical point (Kc, hc). It is worth noting that m∗(K)−mc → 0 as K → Kc.

Let us define for any K > Kc a curve h = τ(K) such that τ(Kc) = hc. Let us

now consider the following cases: First, if the curve τ(K) is tangent to γ in Kc,

then τ ′(Kc) = γ′(Kc) = −m2
c , and second, if it is not tangent to γ in the critical

point, then τ ′(Kc) ̸= γ′(Kc). Now the critical exponents are calculated using the

above arguments.

From equation (4.15) define ξ =: Km2 + h and ξc =: Kcm
2
c + hc such that

m ≡ m∗(K) = tanh
(
ξ
)
and mc = tanh

(
ξc
)
. Now, observe that

ξ − ξc =Km
2 + h−Kcm

2
c − hc +Km2

c −Km2
c

=K(m2 −m2
c) + (h− hc) +m2

c(K −Kc).
(4.43)

(a) If h = τ(K) and τ ′(Kc) = −m2
c then a Taylor’s expansion of τ(K) at Kc is

given as

τ(K) =τ(Kc) + τ ′(Kc)(K −Kc)

h− hc =−m2
c(K −Kc)

(4.44)

and a Taylor’s expansion of m as defined in equation (4.15) at ξc, gives,

m =tanh
(
ξc
)
+
[
1− tanh2

(
ξc
)]
(ξ − ξc)

− tanh
(
ξc
)[
1− tanh2

(
ξc
)]
(ξ − ξc)

2 +O(
(
ξ − ξc

)3
)

=mc + (1−m2
c)
(
ξ − ξc

)
−mc(1−m2

c)
(
ξ − ξc

)2
+O

((
ξ − ξc

)3)
=mc +K(1−m2

c)(m−mc)(m+mc)

−K2mc(1−m2
c)(m−mc)

2(m+mc)
2 +O

(
(m2 −m2

c)
3)
.

(4.45)
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This implies that,

1 =K (1−m2
c)(m+mc)︸ ︷︷ ︸
=α

−K2mc(1−m2
c)(m+mc)

2︸ ︷︷ ︸
=β

(m−mc) +O
(
(m−mc)

)
=αK − β(m−mc) +O

(
(m−mc)

)
=αK − αKc + αKc − β(m−mc) +O

(
(m−mc)

)
.

and simplifies as

(m−mc) ∼
α

β
(K −Kc) +

α

β
Kc −

1

β
. (4.46)

Notice that as K → Kc,
αKc
β − 1

β → 0 and α
β → 1

2K2
cm

2
c
. Hence it follows that

m−mc ∼
1

2K2
cm

2
c

(K −Kc) as K → Kc. (4.47)

(b) Now, let’s suppose that h = τ(K), hc = τ(Kc) and τ
′(Kc) = κ ̸= −m2

c , then

by a Taylor’s expansion of τ(K) at Kc

τ(K) =τ(Kc) + τ ′(Kc)(K −Kc)

=⇒ h− hc =κ(K −Kc).
(4.48)

Using the same argument as before and following from (4.43) and (4.45),

ξ − ξc = K(m2 −m2
c) + κ(K −Kc) +m2

c(K −Kc)

= K (m−mc)︸ ︷︷ ︸
=ϑ

(m+mc) + (K −Kc)(κ+m2
c)

(4.49)

and

ϑ =(1−m2
c)
[
Kϑ(m+mc) + (K −Kc)(κ+m2

c)
]

−mc(1−m2
c)
[
Kϑ(m+mc) + (K −Kc)(κ+m2

c)
]2

+O
([
Kϑ(m+mc) + (K −Kc)(κ+m2

c)
]3)

.

(4.50)

Therefore,

K2mc(1−m2
c)(m+mc)

2ϑ2 +

(
2Kmc(1−m2

c)(m+mc)(κ+m2
c)(K −Kc)

−K(1−m2
c)(m+mc) + 1

)
ϑ+mc(1−m2

c)(κ+m2
c)

2(K −Kc)
2

− (1−m2
c)(κ+m2

c)(K −Kc) ∼ 0.

(4.51)
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Notice that as K → Kc, equation (4.51) can be rewritten as:

4K2
cm

3
c(1−m2

c)ϑ
2 +

(
4Kcm

2
c(1−m2

c)(κ+m2
c)(K −Kc) + 1− 2Kcmc(1−m2

c)︸ ︷︷ ︸
=0

)
ϑ

+
[
mc(K −Kc)(κ+m2

c)− 1
]
(1−m2

c)(κ+m2
c)(K −Kc) ∼ 0.

Now, the above equation is a quadratic equation in ϑ = (m − mc) and can

be solved using the quadratic formula. Hence, in the sequel, it will be used that

a = 4K2
cm

3
c(1 − m2

c), b = 4Kcm
2
c(1 − m2

c)(κ + m2
c)(K − Kc) and c =

[
mc(K −

Kc)(κ+m2
c)− 1

]
(1−m2

c)(κ+m2
c)(K −Kc). The discriminant is then obtained as:

b2 − 4ac = 16K2
cm

3
c(1−m2

c)
2(α+m2

c)(K −Kc). (4.52)

This implies that

ϑ ∼
−4Kcm

2
c(1−mc)(κ+m2

c)(K −Kc)±
√
16K2

cm
2
c(1−m2

c)
2
√
mc(κ+m2

c)(K −Kc)

8K2
cm

3
c(1−m2

c)
(4.53)

which simplifies to

m−mc ∼
−mc(κ+m2

c)(K −Kc)±
√
mc(κ+m2

c)(K −Kc)

2Kcm2
c

∼
±
√
mc(κ+m2

c)(K −Kc)

2Kcm2
c

(4.54)

as K → Kc.

4.3 Conclusion

This chapter comprehensively characterises the equilibrium states and phase

properties of the Ising model with three-spin interaction and an external field. The

investigation covered various properties of the model, such as the existence and

uniqueness of phase transitions as well as the properties of an order parameter that

exhibits a critical point characterized by critical exponents, and excludes the asymp-

totic distribution of the magnetisation. This is because the asymptotic distribution

of the magnetisation for this model has been examined in a previous work in [23]

and can be replicated without significant modifications, specifically for K > 0.

The model exhibits two distinct second-order phase transitions in the order

parameter, which are separated by a smooth transition with respect to the external
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field. The critical exponents of the order parameter within the entire phase space

have specific values: β̃ = 1 in a direction tangential to the critical point, and β̃ = 1/2

otherwise, following mean-field behaviour.



Chapter 5

The inverse problem beyond

pairwise interaction

In this chapter we study the inverse problem for a class of mean-field models in

statistical mechanics with cubic interaction as introduced in (2.1). The discussion

follows from [40]. The direct problem of statistical mechanics is to compute macro-

scopic variables (i.e., the average values of magnetisations and correlations) when

the couplings and fields are known. In the inverse problem the reverse is done: the

couplings and fields are computed using the (statistical) datum of the macroscopic

quantities. This is often achieved by a technique known as Boltzmann machine

learning, a special case of learning in statistical inference theory [41, 42] when the

probability measure is the Boltzmann-Gibbs one.

The system we consider here is made of Ising spins and, beside an homoge-

neous magnetic field and a constant two-body interaction, it contains a constant

three-body term. One of the peculiarities of this model, which turns out to have

a cubic Hamiltonian function, is that it lacks the standard convexity property of

its quadratic version and its direct and inverse problems are therefore outside the

general methods of convex optimisation problems. Taking into account the three-

body term, we move from a generic graph (network) structure where we consider

only dyadic or pairwise interactions into hypergraphs where faces are also consid-

ered [43–45]. This allows for the consideration of a large spectrum of applications

that are closely related to real-world phenomena, such as team collaborations rather

than collaborations between pairs (see [46]). According to [44, 46] the presence of

higher-order interactions, such as three-or more-body interactions, may have signif-

icant impact also on the dynamics of interacting networked systems and potentially

89
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lead to abrupt transitions between states [12]. Abrupt transitions are a prevalent

phenomenon in nature that can be found in areas as diverse as social networks or

biology [46,47].

In recent years, studies in deep learning for artificial intelligence have been

approached in terms of the inverse problem in statistical mechanics [48–50]. The

techniques to study that case are of very different nature than those we treat in

this work because the parameters to be identified are of very high dimension and

the involved models concern the theory of disordered systems [51]. Although in this

study we are only interested in computing three parameters, we believe that a robust

understanding of the statistical mechanics low-dimensional of inverse problem may

shed some light on the general Boltzmann machine learning problem due to the

presence of phase transitions for very large systems.

A further reason of interest for the problem we deal with is that, in recent times,

this method has attracted some attention due to it’s ability to advance a useful novel

approach for several applications like neural networks, protein structures, computer

vision [52–56], and socio-economic sciences [57–65].

The model we consider is invariant under the permutation group but its exten-

sion to the case in which that symmetry is not present has already been considered

in [35] for the two-populated case with the same perspectives of the multi-populated

quadratic models [60, 66]. An intriguing feature of such model is that it shows a

discontinuous first-order phase transition which is not present in the case of the

standard quadratic mean-field model.

To solve the inverse problem we first compute, exploiting the exact solution of

the model, the analytical formulas for the system’s macroscopic variables in the

thermodynamic limit where they provide explicit expressions for the interaction

couplings (cubic and quadratic) and the magnetic field. It is worth noticing that

since the number of necessary relations to compute the free parameters is three we

need to make observations up to the third moment of the probability distribution.

To relate the analytical inversion with the (statistical) observations we use the max-

imum likelihood criteria and we establish a link between estimated and theoretical

values. Finally, we test how well the model’s free parameters are reconstructed us-

ing the inversion formulas and how their robustness is affected by both the system

size and the number of independent samples simulated from the model’s equilibrium

configuration.

The chapter is organised as follows. The cubic mean-field model is introduced
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in Section 5.1 where it has been shown how to compute and test the robustness of

the analytical inverse formulas using the maximum likelihood estimation procedure.

Section 5.2 is devoted to the numerical testing of the robustness of the inversion for-

mulas for unique stable solutions. In Section 5.3 the case of metastable or multiple

solutions for finite-size systems is discussed. The final section, Section 5.4, provides

a general conclusion and the model’s future prospects.

5.1 Inverse problem for the cubic mean-field Ising model

The Hamiltonian to be considered for this chapter is given by:

HN (σ) = −N
(
K

3
m3

N (σ) +
J

2
m2

N (σ) + hmN (σ)

)
, (5.1)

and the Boltzmann-Gibbs state on a configuration σ will be denoted by

PN,K,J,h(σ) =
e−HN (σ)

ZN
, (5.2)

where ZN is the usual normalisation constant and the pressure per particle asso-

ciated with the thermodynamic system is given by (2.6). Recall from equation

(2.5) that for a given observable f(σ) the Boltzmann-Gibbs expectation is denoted

by ωN (f(σ)). Notwithstanding, taking suitable derivatives of the pressure den-

sity function (2.6) one generates the moments of the system with respect to the

Boltzmann-Gibbs measure (5.2). Hence, one obtains the following finite-size quan-

tities:

∂pN
∂h

= ωN (mN (σ)) =

∑
σ∈ΩN

mN (σ)e−HN (σ)∑
σ∈ΩN

e−HN (σ)
, (5.3)

∂2pN
∂h2

=
N
∑

σm
2
Ne

−HN (σ) ·
∑

σ e
−HN (σ) −N

∑
σmNe

−HN (σ) ·
∑

σmNe
−HN (σ)

(
∑

σ e
−HN (σ))2

= N [ω(m2
N (σ))− ω2(mN (σ))]

= χN

(5.4)

and
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∂3pN
∂h3

=
∂χN

∂h

= N
∂

∂h

[
ω(m2

N )− ω2(mN )
]

= N

 ∂

∂h

(∑
σ∈ΩN

m2
N (σ)e−HN (σ)∑

σ∈ΩN
e−HN (σ)

)
− ∂

∂h

(∑
σ∈ΩN

mN (σ)e−HN (σ)∑
σ∈ΩN

e−HN (σ)

)2


= N

[
N
∑

σm
3
Ne

−HN (σ) ·
∑

σ e
−HN (σ) −N

∑
σmNe

−HN (σ) ·
∑

σm
2
Ne

−HN (σ)

(
∑

σ e
−HN (σ))2

]

− 2ω(mN )N

[
N
∑

σm
2
Ne

−HN (σ) ·
∑

σ e
−HN (σ) −N

∑
σmNe

−HN (σ) ·
∑

σmNe
−HN (σ)

(
∑

σ e
−HN (σ))2

]
= N2

[
ω(m3

N )− ω(mN )ω(m2
N )
]
− 2ω(mN )N2

[
ω(m2

N )− ω2(mN )
]

= N2[ω(m3
N )− 3ω(mN )ω(m2

N ) + 2ω(mN )ω2(mN )]

= ψN

(5.5)

where ωN (mN (σ)), χN and ψN are the finite-size average magnetisation, suscepti-

bility and third moment respectively. In order to solve the inverse problem analyti-

cally for a given configuration of spin particles, we first find the relation between the

model parameters and the limiting pressure per particle: p = limN→∞ pN defined

in (2.14). Observe that

∂p

∂h
= Km2 + Jm+ h− arctanh (m) = 0 i.e. m = tanh (Km2 + Jm+ h). (5.6)

The second and third partial derivatives are obtained as follows:

∂2p

∂h2
= 2Km

∂m

∂h
+ J

∂m

∂h
+ 1− 1

1−m2

∂m

∂h
= 0

=
∂m

∂h

[
2Km+ J − 1

1−m2

]
= −1

=
∂m

∂h
= − 1[

2Km+ J − 1

1−m2

]
︸ ︷︷ ︸

=ϕ′′(m)

χ =
∂m

∂h
=

(1−m2)

1− (1−m2)(J + 2Km)

(5.7)

and
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∂3p

∂h3
=
∂χ

∂h
= 2Km

∂2m

∂h2
+ 2K

(
∂m

∂h

)2

+ J
∂2m

∂h2
− 1

1−m2

∂2m

∂h2

−
(
∂m

∂h

)2( 2m

(1−m2)2

)
= 0

=
∂2m

∂h2

[
2Km+ J − 1

1−m2

]
︸ ︷︷ ︸

=−χ−1

= −
(
∂m

∂h

)2

︸ ︷︷ ︸
=−χ2

[
2K − 2m

(1−m2)2

]

ψ =
∂2m

∂h2
= χ3

(
2K − 2m

(1−m2)2

)
.

(5.8)

In Figure 5.1 we illustrate an example of critical behaviour for the model with

the presence of phase transitions occurring at J = h = 0 when K is varied.
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Figure 5.1: J = 0, h = 0. First three moments of the model as a function of K:

In a the total magnetisation shows indications of phase transitions occurring at a

critical point around ±2. At the critical point the susceptibility as seen in b and

the third moment in c has a jump to 1 and a jump to around ±4 respectively.
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The quantities, m,χ and ψ are the infinite-volume limit average magnetisation,

susceptibility and third moment corresponding to the finite-size quantities ωN , χN

and ψN respectively in the thermodynamic limit. The system of equations (5.6),

(5.7) and (5.8) has three unknowns K,J and h for which one can solve. Having

knowledge of m,χ and ψ one can compute the parameters (i.e., K,J and h) of the

model through the following equations:

K =
m

(1−m2)2
+

ψ

2χ3
, (5.9)

J =
1

1−m2
− 1

χ
− 2Km (5.10)

and the external magnetic field is then obtained from (2.25) as

h = tanh−1(m)−Km2 − Jm. (5.11)

Let us observe that, in the region of the parameter space where the consistency

equation (2.25) has a unique stable solution the following holds:

lim
N→∞

ωN (mN (σ)) = m. (5.12)

In analogy to the behaviour of the quadratic case [67], the Boltzmann-Gibbs mea-

sure (5.2) may be multimodal for some (K,J, h) in the parameter space for both

the finite-size system and in the thermodynamic limit. In this case equation (5.12)

fails to hold. We will discuss later how to handle such a case, following the work

done in [67, 68]. The procedure discussed so far deals with the analytical inverse

problem.

Now let’s focus on addressing the challenge posed by the intractability of the

normalisation constant appearing in the probability measure (5.2) for large system

size. Importantly, it worth observing that the Boltzmann-Gibbs measure (5.2) is

defined for a configuration of spins, meanwhile the Hamiltonian (5.1) is of a mean-

field nature such that the microstate of the spins configuration is replaced by its

macrostate. In this case, to compute the probability for a given observation or for

the system to be in a certain macrostate, one is first interested in answering the

question: How many ways are there to split the total number of spins (N) into

spins of +1 and −1 values, or how many microstates match a given macrostate

mN (σ) = m?

Let’s notice that the answer to this question has been addressed in chapter

2 following equation (2.8). Now, recall from equations (2.8) and (2.7) that the
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normalisation factor can be rewritten as:

ZN =
∑
x∈RN

AN (x)e−HN (x),

where RN = {−1 + 2k
N , k = 0, . . . , N} and

AN (x) =
N !(

N (1+x)
2

)
!

(
N (1−x)

2

)
!

with x =: mN (σ). Hence, (5.2) becomes:

PN,K,J,h(mN (σ) = x) =

AN exp

(
N

(
K
3 x

3 + J
2x

2 + hx

))
∑

x∈RN
AN exp

(
N

(
K
3 x

3 + J
2x

2 + hx

)) (5.13)

The remainder of this section will be devoted to the statistical procedure required

to compute the estimators of K,J and h.

We start by generating M independent spin configurations σ(1), ..., σ(M) dis-

tributed according to (5.13) from the model’s equilibrium configuration. Let’s de-

note by ml for l = 1, ...,M , the M−spin configuration means, for fixed (K,J, h)):

ml ∼ PN,K,J,h(mN (σ) = m), (5.14)

which will be used as observed data from which the parameters will be recon-

structed. Notice that the analytical inverse formulas of K,J and h in equations

(5.9), (5.10) and (5.11) respectively, are valid on the infinite volume limit of the

observables, i.e., m, χ and ψ. Hence, to compute the estimates of the model pa-

rameters K,J and h, the maximum likelihood estimation procedure will be adopted

having knowledge of real data. This procedure ensures that the estimated model

parameters maximise the probability of getting the given sample of spin configura-

tions from the distribution. Furthermore, the analytical inverse procedure requires

statistical approximation of the infinite volume limit quantities (i.e., m,χ and ψ)

which are substituted by their finite-size forms ωN , χN and ψN . The likelihood

function for the measure (5.2) is defined as

L(K,J, h) = PN,K,J,h{σ(1), ..., σ(M)}

=
M∏
l=1

PN,K,J,h{σ(l)}

=

M∏
l=1

ANe
−HN (σ(l))∑

x∈RN
ANe−HN (x)

.
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This procedure will enable defining the finite-size magnetisation ωN (mN (σ)) in

terms of the empirical average (i.e., mN ) for each of the M sampled spin configu-

rations. Further, we have that

lnL(K,J, h) =
M∑
l=1

(−HN (σ(l))−NI(ml))− ln
∑
x∈RN

e−HN (x)−NI(x)

 . (5.15)

Requiring the derivatives with respect to the parameters K,J and h to vanish

amounts to:

∂

∂h
lnL(K,J, h) = N

M∑
l=1

(
mN (σ(l))− ω(mN (σ))

)
∂

∂J
lnL(K,J, h) =

N

2

M∑
l=1

(
m2

N (σ(l))− ω(m2
N (σ))

)
∂

∂K
lnL(K,J, h) =

N

3

M∑
l=1

(
m3

N (σ(l))− ω(m3
N (σ))

)
and they vanish when

ωN (mN (σ)) =
1

M

M∑
l=1

mN (σ(l))

ωN (m2
N (σ)) =

1

M

M∑
l=1

m2
N (σ(l))

ωN (m3
N (σ)) =

1

M

M∑
l=1

m3
N (σ(l)).

(5.16)

The function L(K,J, h) is at its stationary points when the first, second and third

moments of the magnetisation in equation (5.16) are obtained. It is worth noticing

that

mN (σ(l)) =
1

N

N∑
i=1

σ
(l)
i for l = 1, . . . ,M (5.17)

are the total magnetisations of the M sample spin configurations. Let’s note that

L(K,J, h) and its derivatives are only used to solve the forward problem, but not

the inverse problem. Now, the inverse problem can be solved when we make use

of (5.9), (5.10), (5.11) and (5.16). The maximum likelihood procedure computes

the estimators of the infinite-volume quantities m, χ and ψ, from a sample data set

through the following:

m̂ =
1

M

M∑
l=1

mN (σ(l)), (5.18)
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χ̂ = N

(
1

M

M∑
l=1

m2
N (σ(l))− m̂2

)
(5.19)

and

ψ̂ = N2

(
1

M

M∑
l=1

m3
N (σ(l))− 3m̂

1

M

M∑
l=1

m2
N (σ(l)) + 2m̂3

)
. (5.20)

We now define the estimators of the three parameters of the cubic mean-field

model using the statistical estimators for the magnetisation, susceptibility and third

moment (5.18), (5.19) and (5.20) in the infinite-volume limit relations among those

quantities (5.9), (5.10) and (5.11)

K̂ =
m̂

(1− m̂2)2
+

ψ̂

2χ̂3
, (5.21)

Ĵ =
1

1− m̂2
− 1

χ̂
− 2K̂m̂, (5.22)

and

ĥ = tanh−1(m̂)− K̂m̂2 − Ĵm̂. (5.23)

At the critical point (K,J, h) = (0, 1, 0) where all the three phases of the model

meet (see Figure 3.1) the magnetisation is zero and the infinite-volume magnetic

susceptibility χ and the third moment ψ defined by equations (5.7) and (5.8) respec-

tively diverge. Hence, the inversion formulas (5.9), (5.10) and (5.11) do not hold as

it will be illustrated at the end of the next section. We do not include the inversion

formulas at the critical point in this work but the problem will be considered in

future work.

5.2 Test for the case of unique solution

In this section we are going to examine how the inversion equations perform for

different and increasing choices of N and M , respectively the number of particles

and sampled configurations. The specific case we consider is the inversion problem

for those values of the triple (K,J, h) where there is a unique stable solution of

(2.25). In this case, the Boltzmann-Gibbs distribution of the total magnetisation

has a unique peak always centered around the analytic solution m: some examples

are shown in Figure 5.2 for fixed N . The accuracy of the estimation increases as N

and M increase.

The parameters K,J and h are obtained from the computation of the finite-size

quantities mN , χN and ψN using configurations extracted from the Boltzmann-

Gibbs distribution of the data. Estimation of mN , χN and ψN for fixed triples of



98 5.2 Test for the case of unique solution

-1 0 1

0

0.005

0.01

0.015

0.02
K= 0.1 J= 0.4 h= 0.05

-1 0 1

0

0.005

0.01

0.015
K= 0.8 J= 0.4 h= 0.1

-1 0 1

0

0.01

0.02

0.03
K= -1.2 J= 0.1 h= -0.3

-1 0 1

0

0.02

0.04

0.06
K= 1.05 J= 0.8 h= 0.01

Figure 5.2: Boltzmann Gibbs distribution of the total magnetisation for N = 1000

and different sets of triples (K,J, h).

the parameters (K,J, h) and varying N ∈ [500, 10000] are shown in Figure 5.3. In

the same figure, the thermodynamic limits of those quantities are also shown.
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Figure 5.3: Finite-size average magnetisation mN , susceptibility χN and third

moment ψN as functions of N for three different set of triples (K,J, h). Blue

crosses represent the values of mN (upper panels), χN (middle panels) and ψN

(lower panels) for varying N . As N increases mN , χN and ψN approach their true

values in the thermodynamic limit given as the red horizontal lines for the chosen

values of K,J and h.
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From Figure 5.3 we can observe the monotonic behaviour of mN , χN and ψN

as N increases. In Figure 5.4 we study the relationship between the absolute dif-

ference of the finite-size quantities and their corresponding thermodynamic values

as a function of the system size N . We find evidence that the finite-size quantities

mN , χN and ψN converge to their true values with a power law behaviour as N

increases. The obtained results indicate that using N = 10000 one can estimate the

infinite-volume magnetisation, susceptibility and the third moment with vanishing

error. We will proceed to use N = 10000 as the size for each of the M indepen-

dent spin configurations σ(1), ..., σ(M). Further numerical tests will be performed

to determine a suitable number of sample configurations M that can be used for

reconstructing the model parameters using the inversion formulas.
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Figure 5.4: Absolute error of the finite size quantities mN , χN and ΨN as functions

of N together with the best power law fits. In the upper panel, |mN −m| is shown
as a function of N together with the best fit aN b, where a = 0.28 ∈ (0.06, 0.50)

and b = −1.37 ∈ (−1.49,−1.25) with a goodness of fit R2 = 0.9829. The middle

panel displays |χN − χ| as a function of N together with its corresponding best fit

cNd, with c = 0.62 ∈ (0.14, 1.09), d = −1.37 ∈ (−1.49,−1.25) and R2 = 0.9830 as

goodness of fit. The lower panel represents |ψN − ψ| as a function of N together

with its corresponding best fit gNf , with g = 1.47 ∈ (0.32, 2.62), f = −1.37 ∈
(−1.49,−1.25) and a goodness of fit R2 = 0.9826.
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To obtain the statistics associated to the reconstruction of the estimators, we

simulate from the model’s equilibrium configuration 50 different instances of the

M − iid sample configurations, i.e., (σ(1), . . . , σ(M)), apply the maximum likelihood

estimation procedure to each of them separately, solve the inverse problem using

(5.21), (5.22) and (5.23) and then average the inferred values over the 50 different

M -samples. The mean value of the estimators m̂, χ̂, ψ̂, and (K̂, Ĵ , ĥ) over the 50

different M -samples of spin configurations are denoted by m̂, χ̂, ψ̂, and (K̂, Ĵ , ĥ)

respectively. The results are shown in Figures 5.5 and 5.6.
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Figure 5.5: Reconstructed average magnetisation m̂, susceptibility χ̂ and third

moment ψ̂ (given as blue crosses in each panel) as a function of M with standard

deviation on 50 different M -sample and N = 10000. The continuous red line corre-

sponds to m, χ and ψ in the thermodynamic limit.
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Figure 5.6: K̂, Ĵ and ĥ as a function of M for N = 10000. The blue crosses are

the estimation of K̂, Ĵ and ĥ with standard deviations on 50 differentM -samples of

configurations of the same system. The horizontal red line in each panel corresponds

to the exact values of K,J and h.

Figures 5.5 and 5.6 illustrate that at M = 20000 we get smaller error bounds for

the reconstruction as compared to lesser values of M .

In the sequel, we study the behaviour of the reconstructed parameter for fixed

values of J and h and varying K (Figures 5.7 and 5.8) and also for fixed values

of K and h and varying J (Figures 5.9 and 5.10). The simulations are performed

usingM = 20000, N = 10000 and error bars are standard deviations on 50 different

M -samples of the same system. We find all the reconstructed parameter values in

good agreement with the exact ones. We can observe that as the intensity of the

cubic and quadratic coupling increases the error bars associated to the reconstructed

parameters grow, as we can expect since in that region of the parameter space the

system is more disordered due to the presence of multiple local stable states and

the fluctuations are greater.
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Figure 5.7: K̂ as a function of K for N = 10000 and M = 20000. J = 0.3, h = 0.1

in left panel and J = 0.4, h = −0.3 in the right panel. The estimations of K̂ are

given as the blue crosses in both panels with standard deviations on 50 different

M -samples of configurations of the same system. The red continuous line represents

K̂ = K.
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0.1 in the left panels and J = 0.4, h = −0.3 in the right panels. The estimates of
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50 different M -samples of configurations of the same system. The red continuous
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Figure 5.9: Ĵ as a function of J for N = 10000 and M = 20000. K = 0.05, h = 0

in the left panel and K = 0.05, h = −0.02 in the right panel. The blue crosses

are the reconstructed values of J in both panels with standard deviations on 50

different M -samples of configurations of the same system. The red continuous line

represents the exact value Ĵ = J .
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Figure 5.10: K̂ and ĥ as a function of J for N = 10000 and M = 20000. K =

0.05, h = 0 in the left panels and K = 0.05, h = 0.02 in the right panels. The

estimate of K̂ and ĥ are given as the blue crosses in all the panels with standard

deviations on 50 differentM -samples of configurations of the same system. The red

continuous lines represent the exact values of K and h.
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Furthermore, Figure 5.11 show the reconstructed parameters as a function of N at

the critical point (K = 0, J = 1, h = 0). It can be noticed that the reconstruction

at the critical point for K and h agrees with their exact values with only a small

percentage of error and that of J is underestimated.
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Figure 5.11: K̂, Ĵ and ĥ as a function of N for M = 20000. The reconstructed

estimates of K,J and h are given as the blue crosses on statistical error bars of 50

different M−samples. The red continuous line is the exact value of the parameters

K,J and h in the respective panels.

It worth observing that when K = h = 0 and J > 1 the consistency equation

(2.25) has two stable solutions. In this case, for the finite-size system and in the

thermodynamic limit, the Boltzmann-Gibbs distribution of the total magnetisation

presents two peaks each centered around one of the stable solutions. In such a

case the inverse problem procedure discussed in Section 5.1 cannot be used for

the reconstruction of the model parameters. We refer readers to [66] where this

case has been studied using the spin flip approach due to symmetry of the solution

in both finite-size and infinite-volume systems for the quadratic mean-field model.

The clustering algorithm to be outlined in the next section provides a more general

approach to handle the reconstruction of the model parameters when the phase

space has multiple locally stable solution.
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5.3 Clustering algorithm for metastable state solutions

Here, we focus on cases where equation (5.6) has a metastable solution. This

corresponds to the case where there is more than one locally stable solution of the

consistency equation (5.6). For this model, equation (5.6) can have at most three

solutions and ϕ has at most two local maxima for fixed (K,J, h). The existence of

the metastable solution in the infinite-volume limit is represented at finite N by the

occurrence of an extra peak in the distribution. Therefore, while in the thermo-

dynamic limit the Boltzmann-Gibbs distribution of the magnetisation is unimodal

with the peak corresponding to the stable solution, in the finite-size case also the

peak corresponding to the metastable one is present and the distribution is bimodal.

Hence, in this case, the inversion problem cannot be studied globally, as done in

the previous section. Instead, the procedure has to be applied locally, that is to

each subset of configurations clustered around the two local maxima. Given M

spin configurations, σ(1), ..., σ(M), we perform the reconstruction by first partition-

ing the M configurations in clusters according to their local densities around each

local maximum. More precisely, using the clustering algorithm discussed in [68–72]

we divide the M configurations into different clusters using the mutual distances

between their magnetisations of each configuration. Configurations form a cluster

if the magnetisation distances are less than a fixed threshold dc. The choice of

the optimal threshold is obviously crucial: a too small threshold will produce too

many clusters, while a too large one will give only one cluster. Given dc, for each

configuration l the algorithm computes two quantities: the local density ρl, defined

as the number of magnetisations within the given distance dc to the magnetisation

of σ(l), and the minimum distance δl between the magnetisation of configuration l

and any other configuration with a higher density.

The algorithm is based on the assumptions that the cluster centers are sur-

rounded by points with a lower density, and that the centers are at a relatively

large distance from each other. For each configuration, plotting the minimum dis-

tance δ as a function of the local density ρ provides a decision graph that gives

the cluster centers: the cluster centers are the outliers in the graph. Finally, each

remaining configuration is assigned to the same cluster of its nearest neighbour of

higher density. In this study, we identify two clusters Ck, k = 1, 2, using the optimal

threshold dc = 0.001. Notice that it is not possible to observe three clusters in the

inverse problem due to the analytical properties of the consistency equation (5.6).

Then, for each cluster Ck, k = 1, 2 we compute the estimates of the finite-size
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quantities, m̂, χ̂ and ψ̂, and the corresponding K̂, Ĵ , ĥ. More precisely, we can

define the estimators of the finite-size quantities with reference to the clusters as

follows:

m̂Ck
=

1

Mk

∑
l∈Ck

mN (σ(l)), (5.24)

χ̂Ck
= N

(
1

Mk

∑
l∈Ck

m2
N (σ(l))− m̂2

Ck

)
(5.25)

and

ψ̂Ck
= N2

 1

Mk

∑
l∈Ck

m3
N (σ(l))− 3m̂Ck

1

Mk

∑
l∈Ck

m2
N (σ(l)) + 2m̂3

Ck

 , (5.26)

where Mk is the size of the cluster Ck, k = 1, 2 such that M1 +M2 =M . After ob-

taining the quantities above, we now compute the estimated values, K̂Ck
, ĴCk

, ĥCk
,

using equations (5.21), (5.22) and (5.23) for each cluster and compute the final

estimates of the parameters K, J and h as the weighted averages:

K̂ =
1

M

2∑
k=1

MkK̂Ck
, (5.27)

Ĵ =
1

M

2∑
k=1

MkĴCk
(5.28)

and

ĥ =
1

M

2∑
k=1

MkĥCk
. (5.29)

Observe that if a point (K,J, h) in the parameter space corresponds to a metastable

solution (at finite-volume) and it is sufficiently distant from the coexistence curve,

we can expect a better reconstruction of the parameters by applying equations

(5.21), (5.22) and (5.23) to the configurations in the largest cluster. However, if

the point (K,J, h) is close to the coexistence curve, a better reconstruction can be

expected using the density clustering algorithm, i.e., by using (5.27), (5.28) and

(5.29).

Figure 5.12 illustrates how the Boltzmann-Gibbs measure of the magnetisation is

changing with varying K,J and h in each column starting from the left respectively.



5. The inverse problem beyond pairwise interaction 107

-1 0 1

0

0.01

0.02
K= 1.66 J= 0.01 h= 0.1

-1 0 1

0

0.01

0.02
K= 1.65 J= 0.015 h= 0.1

-1 0 1

0

0.01

0.02

K= 1.67 J= 0.012 h= 0.1

-1 0 1

0

0.005

0.01

0.015
K= 1.67 J= 0.01 h= 0.1

-1 0 1

0

0.01

0.02
K= 1.65 J= 0.018 h= 0.1

-1 0 1

0

0.01

0.02

0.03

K= 1.67 J= 0.012 h= 0.102

-1 0 1

0

0.02

0.04
K= 1.68 J= 0.01 h= 0.1

-1 0 1

0

0.005

0.01

0.015
K= 1.65 J= 0.02 h= 0.1

-1 0 1

0

0.02

0.04
K= 1.67 J= 0.012 h= 0.103

Figure 5.12: Boltzmann-Gibbs distribution of the total magnetisation with

metastable states for fixed K,J, h at N = 1000. The peaks of the distribution

are centered around the two solutions of the consistency equation.

5.3.1 Test for metastable state solutions

The inverse problem is solved using the density clustering algorithm as discussed

and identifying a suitable number of samples M for better reconstruction of the

model parameters. The test is performed with M = 20000 and standard deviations

are computed over 50 differentM -samples from the same distribution. As an exam-

ple, consider the reconstruction of the parameter values (K,J, h) = (1.67, 0.01, 0.1)

for M = 20000 and N = 3000. The distribution of the magnetisation at this point

is given as the blue dashed curve in Figure 5.13, where the two peaks are centered

around m1 = 0.1311 and m2 = 0.8973, the stable solution and the metastable

solution of the consistency equation (5.6), respectively.

As is evident from Figure 5.13, the cluster centered around m1 (i.e., C1) has

more configurations as compared to the other cluster centered around m2 (i.e., C2).

We get the following reconstructed estimates for the parameter values by applying



108 5.3 Clustering algorithm for metastable state solutions

-1 -0.5 0 0.5 1

0

0.005

0.01

0.015
K= 1.67 J= 0.01 h= 0.1

N=1000

N=3000

N=10000

Figure 5.13: Boltzmann-Gibbs distribution of the total magnetisation at fixed

values of N . The peaks of the distribution are centered around the two solutions of

the equation (5.6), with m1 = 0.1311 being the stable solution and m2 = 0.8973 the

metastable solution. We can observe that the probability of the metastable solution

vanishes to 0 as N goes to infinity (black continuous curve). The red dot-dashed

line corresponds to the distribution for N = 1000, blue dashed line corresponds to

the distribution for N = 3000 and the black continuous line for the distribution

with N = 10000.

equations (5.21), (5.22) and (5.23) to the setups in both clusters (i.e., C1 and C2)

according to formulas (5.27), (5.28) and (5.29):

(K̂, Ĵ , ĥ) = (1.76± 0.67,−0.11± 1.11, 0.15± 0.49).

Instead, we obtain the following reconstructed parameter values by applying equa-

tions (5.21), (5.22) and (5.23) just to the configurations in the more dense cluster

C1:

(K̂, Ĵ , ĥ) = (1.69± 0.23, 0.01± 0.06, 0.10± 0.004).

Note that, the reconstructed parameters using only the configurations in the more

dense cluster are in better agreement with the exact ones when compared to the

reconstructed parameters on both clusters. This is an indication that the point

(K,J, h) = (1.67, 0.01, 0.1) is sufficiently distant from the coexistence curve. Ob-
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serve that if two clusters have the same density, we do not choose between them

and the clustering algorithm provides an optimal reconstruction.

Now, we perform reconstruction of the parameters using the cluster with largest

size for fixed values of the model parameters and observe its performance for varying

M in Figure 5.14. It can be observed that the reconstructed parameters are in good

agreement to their corresponding exact values.
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Figure 5.14: K = 1.67, J = 0.01 and h = 0.1. K̂, Ĵ and ĥ as a function of M using

the largest cluster and N = 3000. The reconstructed estimates, K̂, Ĵ and ĥ, are

blue crosses on statistical error bars on 50 different M -samples of configurations of

the same system. The horizontal red lines in each panel correspond to the exact

values of K,J and h.

As a last remark, note that, given a point (K,J, h) in a neighbourhood of the

coexistence curve, one can observe a metastable state when the number of particles

N is not large enough. In this case, the clustering algorithm is useful to reconstruct

the parameters, but it has a high computational cost. This is easily overcome by

using large number of particles, which cause the metastable state to vanish (see

Figure 5.13) and the inversion formulas in equations (5.21), (5.22), (5.23) become

efficient.



110 5.4 Conclusion

5.4 Conclusion

In this chapter, we solved the inverse problem for a mean-field statistical me-

chanics model with three-body interaction displaying a first order phase transition.

We studied the inverse problem and tested the statistical robustness of the inversion

method and formulas. We numerically tested the inversion method for cases where

the consistency equation (5.6) has a unique stable solution as well as more than

one locally stable solution. For the case where the consistency equation (5.6) has

multiple locally stable solution, we used the clustering algorithm to reconstruct the

model parameters.

Robustness was tested for different values of the number of particles N and

samples M and reached the precision of a few percent for M = 2× 104.



Chapter 6

Multi-populated cubic

mean-field Ising model

This chapter introduces a multi-populated version of the Ising model with three-

spin interactions discussed in Chapter 2. The spins are partitioned into blocks with

their total sum being equal to the total spins of the system and interactions among

spins are governed by block membership. The limiting properties of the model is

studied via methods of large deviations. The fluctuations for vector of block mag-

netisations, is shown to be approximated by a multivariate Gaussian distribution

when the maximisers of the limiting pressure per particle is unique, while there is

a local multivariate Gaussian distribution fluctuations when the limiting pressure

has multiple maximisers. The model is then used as a minimal mathematical tool

to simulate a Human-AI ecosystem.

6.1 The model

Let us consider a system made up of N ∈ N spin particles that interact with

each other and an external field as described by (2.1). Now, let’s suppose that the

system is partitioned in r ∈ N blocks identified by B1, B2, ..., Br ⊂ {1, 2, ..., N} such

that Bi ∩Bj = ∅ for i ̸= j and |Bl| = Nl. This implies that
∑r

l=1 |Bl| = N . Let’s

denote by γ
(l)
N = Nl

N ∈ (0, 1) the relative size of block l and m(l)(σ) = 1
Nl

∑
i∈Bl

σi

the magnetisation per particle of block Bl, for l = 1, ..., r. Figure 6.1 below gives a

schematic representation of the interaction network.

111
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Figure 6.1: Schematic interacting network for the multi-populated Ising model.

To lighten notations in some cases the block magnetisation m(l)(σ) will be de-

noted bym(l). Observe that, since the system is partitioned into blocks, interactions

is based on block membership and hence, (2.1) can be written as:

HN (σ) =− 1

3N2

r∑
l=1

r∑
s=1

r∑
q=1

∑
i∈Bl

∑
j∈Bs

∑
k∈Bq

Kijkσiσlσk


− 1

2N

r∑
l=1

r∑
s=1

∑
i∈Bl

∑
l∈Bl

Jilσiσl

−
r∑

l=1

∑
i∈Bl

hiσi

=−N
r∑

l,s,q=1

Klsq

3
γ
(l)
N γ

(s)
N γ

(q)
N m(l)m(s)m(q) −N

r∑
l,s=1

Jls
2
γ
(l)
N γ

(s)
N m(l)m(s)

−N

r∑
l=1

hlγ
(l)
N m(l)

=−N(UN (m))

(6.1)

where m = (m(1), ...,m(r)) and

UN (m) :=
r∑

l,s,q=1

Klsq

3
γ
(l)
N γ

(s)
N γ

(q)
N m(l)m(s)m(q)+

r∑
l,s=1

Jls
2
γ
(l)
N γ

(s)
N m(l)m(s)+

r∑
l=1

hlγ
(l)
N m(l).

In this model, the invariance of the Hamiltonian with respect to permutations

among sites is replaced by a weaker one that takes into account the existence of
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different species of spins. This setting is particularly useful in social science applica-

tions [35,64,73,74]. The joint distribution of σ is governed by a the same Boltzmann-

Gibbs type measure (2.4) discussed in previous chapters where the Hamiltonian has

the form in (6.1).

The mean-field approximation involved in the study of some finite-dimensional

lattices provides a natural emergence of the multi-populated models. It is well

known, for instance, that a system on a simple cubic lattice [75,76] with ferromag-

netic and antiferromagnetic couplings has a factorized equilibrium measure that

corresponds to a two-populated mean-field model. Similarly, it has been shown

in [15] that on a regular square lattice, a system with cubic interaction has a prod-

uct state equilibrium described by a two-populated mean-field model, while on a

regular triangular lattice [14], by a three-populated mean-field model. This chapter

presents a more general r-populated mean-field model where interactions among

three species of particles within or across block are taking into consideration.

6.2 Existence of thermodynamic limit

In this section, the existence of thermodynamic limit of the pressure per particle

is shown using methods from large deviation theory leveraging on the extreme value

distribution (i.e., tail estimation) and combinatorial methods which rely on Stirling’s

approximation to compute a bound on the pressure per particle as done in Section

2.2. A version of the Varadhan’s integral lemma introduced in [26] can be used

to study the large deviation properties of a vector of empirical means, where the

fractions of the subgroups (i.e., partitions of the system) are of unequal sizes, and

can likewise verify the results obtained here.

Now, let us observe that the pressure per particle associated to the multi-

populated system introduced here has the same form as (2.6). The limiting proper-

ties of the pressure per particle, enables the description of the system in its equilib-

rium state(s). In the sequel, the large N behaviour of the system is studied using

modifications of the methods already introduced in Chapter 3.

Let’s notice that for a given configuration σ(l) of spins in Bl, the magnetisation

per particle m(l) has the following spectrum: Sm(l) = {−1 + 2n
Nl
, n = 0, . . . , Nl},

with |Sm(l) | = (Nl + 1). Now, considering that the Hamiltonian is expressed as a

function of the magnetisation per particle of the blocks, the partition function can
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be written as

ZN =
∑
y∈Sm

r∏
l=1

Ayl exp (−HN (σ)), (6.2)

where y = (yl)l≤r ∈ Rr and the sum is over all possible values of the random vector

m = (m(l)(σ))l≤r ∈ Rr. Similarly, for each block l ∈ {1, ..., r},

Ayl := card
{
σ(l) ∈ {−1, 1}Nl : m(l)(σ) = yl

}
=

(
Nl

Nl(1+yl)
2

)
. (6.3)

Here, Ayl counts the number of all possible configurations of σ(l) that share the

same magnetisation m(l) = yl ∈ Sm(l) . If m(l) = yl, then the configuration σ(l) has

exactly, Nl(1+yl)
2 number of +1 spins and Nl(1−yl)

2 of −1 spins.

Lemma 6.2.1. Let Ωl = {+1,−1}Nl denote the set of all possible configurations,

σ(l), of the block Bl. Then for Ayl ∈ N the following inequality holds:

1

L
√
Nl
e−NlI(yl) ≤ Ayl ≤ e−NlI(yl)

where L is a universal constant and,

I(yl) =
1− yl
2

log

(
1− yl
2

)
+

1 + yl
2

log

(
1 + yl
2

)

Proof. Notice that the bounds of Ayl are large deviation approximations of the block

magnetisation m(l) that can be obtained using Stirling’s approximation of factorial

and exploiting the tail distribution of the block magnetisations. This same technique

was illustrated in Section (2.2.1), and the sequel relies on the same approach.

Now, let’s consider the case when Nl(1 + yl) is even for a given block l, we can

apply Stirling’s formula to approximate the combinatorial appearing in (6.3). We

have that, for each block l = 1, ...r, Nl! = NNl
l e−Nl

√
2πNl(1 +O(N−1

l )), hence:
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(
Nl

Nl(1+yl)
2

)
=

Nl!
Nl(1+yl)

2 !(Nl(1−yl)
2 )!

=
NNl

l

√
2[(

Nl(1+yl)
2

)(Nl(1+yl)

2

) (
Nl(1−yl)

2

)(Nl(1−yl)

2

)√
πNl(1− y2l )

] · (1 +O(N−1
l ))

=

√
2

πNl(1− y2l )
·

· 1

exp ln

[(
(1+yl)

2

)(Nl(1+yl)

2

) (
(1−yl)

2

)(Nl(1−yl)

2

) ] · (1 +O(N−1
l ))

=

√
2

πNl(1− y2l )
·

· exp

(
−Nl

(
1− yl
2

ln

(
1− yl
2

)
+

1 + yl
2

ln

(
1 + yl
2

)))
· (1 +O(N−1

l ))

The lower bound follows from the last equality, where

I(yl) =

(
1− yl
2

ln

(
1− yl
2

)
+

1 + yl
2

ln

(
1 + yl
2

))
.

Now, exploiting the tails, we first suppose that the spins σi are independent

such that Pr(σi = +1) = Pr(σi = −1) = 1/2 for σi ∈ Bl and l = 1, ...r. Then

for all σi ∈ Bl all configurations σ
(l) ∈ Ωl, have equal probability of having the

magnetisation yl and thus,

Pr(m(l) = yl) =
∑

σ(l)∈{−1,1}Nl :m(l)=yl

Pr(σ(l)) (6.4)

where Pr(σ(l)) is the joint distribution of i.i.d. random variables distributed in the

set {−1, 1}Nl with equal probability and the sum is over all possible configurations

of σ(l) that yield a block magnetisation m(l) = yl. Observe that (6.4) gives the large

deviation principles for the block magnetisation, given that the spin variables are

independent and identically distributed. This will be discussed in the next section.

Therefore, it follows that,

Ayl = 2Nl Pr(m(l) = yl) ≤ 2Nl Pr

∑
i∈Bl

σi ≥ Nlyl

 .

The last inequality above follows from the definition of the block magnetisation and

leads to the use of tail estimation approach of m(l). Since σi is a random variable
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belonging to a block which is assumed to be independent and distributed according

to ρ, then for any λ > 0,

Pr

∑
i∈Bl

σi ≥ Nlyl

 ≤ exp (−λ ylNl)

Nl∏
i=1

Eρexp (λ σi)

= exp (Nl(−λ yl + ln cosh (λ))).

(6.5)

We can obtain λ by optimising (6.5) over all possible λ:

λ = arctanh (yl) =
1

2
ln

(
1 + yl
1− yl

)
and it follows that since 1/ cosh2 (y) = 1−tanh2 (y), then ln cosh (λ) = −1/2 ln (1− y2l ).

Substituting this observation into (6.5), we have that

Ayl ≤ exp (−NlI(yl)).

Using the result of Lemma 6.2.1, we can obtain a bound on the partition function

and use it to compute the pressure per particle. Notice that the sum in the partition

function has Nl + 1 terms and we are interested on behaviour on the exponential

scale, hence we keep only the dominating terms;

1

L

r∏
l=1

1√
Nl

exp

(
N(max

y
fN (y))

)
≤ ZN ≤

r∏
l=1

(Nl + 1) exp

(
N(max

y
fN (y))

)
(6.6)

where, y = (y1, ..., yr) and

fN (y) = UN (y)− ⟨γN , I(y)⟩ (6.7)

where I(y) is a vector of entropy associated to the block magnetisation and γN =

(γ
(l)
N )l≤r. Therefore, we obtain the following bound for the pressure function,

− 1

N

(
lnL+

1

2

r∑
l=1

lnNl

)
+max

y
fN (x) ≤ pN ≤ 1

N

r∑
l=1

ln(Nl + 1) + max
y

fN (y).

Now, the limiting pressure per particle is obtained as:

lim
N→∞

pN = p = max
y∈Rk

f(y),

were,

f = U(y)− ⟨γ, I(y)⟩ (6.8)
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is derived by taking the limit as N → ∞ of pN . Therefore,

p = max
y∈[−1,1]k

{
U(y)− ⟨γ, I(y)⟩

}
(6.9)

and it has been used that, limN→∞ UN (y) = U(y) with limN→∞ γ
(l)
N = γ(l) and γ =

(γ(l))l≤r. The limiting behaviour of the block spin model with three-spin interaction

is determined by properties of p. Observe that p is obtained at the supremum of

f(y) on the support of y ∈ Rr. The following stationarity condition holds for f :

xl = tanh

hl + r∑
s=1

γ(s)Jlsxs +

r∑
s,q=1

γ(s)γ(q)Klsqxsxq

 for l = 1, ..., r. (6.10)

The solutions of the fixed point equation (6.10), i.e., mean-field equation, identify

the stationary points of f among which we are interested in the ones that reach the

supremum. We denote by µ = (µ(d))d∈N a vector of all the global maximum points

of f on the support of the vector of block magnetisaton m = (m(l))l≤r ∈ [−1, 1]r.

Notice that since (6.10) is a fixed point equation of a tangent hyperbolic function for

all l, there exist regions of the parameter space (K,J,h, γ), for K = (Kl,s,q)l,s,q≤r,

J = (Jl,s)l,s≤r, and h = (hl)l≤r, where f has a unique or multiple maximisers.

The next section discusses the aysmptotic properties of the vector of block mag-

netisation when f has a unique global maximiser and multiple local maximisers.

6.3 Fluctuation of the block magnetisation

To study the fluctuations of the vector of random variables m = (m(l))l≤r, we

are interested in approximating the distribution of the amount the rescaled random

vector of block magentization is away form µ. To do this we first compute an asymp-

totic expansion of the partition function relying on some standard approximation

techniques to be discussed in the next section.

6.3.1 Asymptotic expansion of ZN

It is essential to note that the partition function ZN , which lacks a closed form,

plays a crucial role in the probability mass function of the magnetization density

m(l). Hence, obtaining a precise approximation of ZN is necessary to understand

the asymptotic properties of the statistical estimator m = (m(l))l≤r, i.e., the vector

of block magnetization. We will use the results obtained from Lemma 6.2.1 over
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all configurations σ(l) ∈ Ωl to obtain an asymptotic expansion of the partition

function. Notice from the expansion of the combinatorial factor Ayl using the

Stirling’s formula, the partition function becomes:

ZN =
∑
y

r∏
l=1

√
2

πNl(1− y2l )
e(−NlI(yl))e(NUN (y)) (1 +O(N−1

l ))

=
∑
y

√
2r

πr
∏r

l=1Nl(1− y2l )
eNfN (y)

[
1 +O

( r∏
l=1

N−1
l

)]
︸ ︷︷ ︸

=ζ

(6.11)

where fN is defined in (6.7) and the sum is over all possible vector of the ran-

dom vector m = (m(l))l≤r. Leveraging on the approximation methods employed

in [23, 34], we an asymptotic expansion of partition function using the Reimann

approximation of the sum by an integral A.1.3 and Laplace approximation of the

integral A.1.4.

Now, from Lemma 6.3.1, let’s suppose that xN is a random vector in (−1, 1)r

such that ∇fN (xN ) = 0 and the Hessian of fN (xN ) is negative definite, i.e.,

HfN (xN ) < 0. Again, suppose that xN is a unique vector of global maximizers

of fN converging uniformly to µ. Let’s denote by GN,α an open ball centered

around xN with radius N− 1
2
+α in Rr as:

GN,α = {x ∈ Rr | ∥x− xN∥ < N− 1
2
+α}.

Here, ∥ · ∥ denotes the Euclidean norm. The open ball consists of all vectors y

whose Euclidean distance from xN is less than N− 1
2
+α for α ∈ (0, 1/6] [34]. The set

GN,α is essentially a neighborhood around xN in Rr. Following the same argument

as in Chapter 3, we approximate the sum in (6.11) by an integral using Lemma

A.1.3 over the set GN,α with shrinking interval containing the unique vector of

global maximizer of fN which are elements of Sm:

∣∣∣∣∣
∫
GN,α

ζ(x)dx− 2r∏r
l=1Nl

∑
x∈Sm∩GN,α

ζ(x)

∣∣∣∣∣ ≤ 1

2

(
r∏

l=1

N
− 1

2
+α

l

)
·

r∏
l=1

N−1
l sup

x∈GN,α

|ζ ′(x)|

= O

(
r∏

l=1

N
− 1

2
+α

l ·
r∏

l=1

N−1
l ·

r∏
l=1

N
1
2
+α

l

)
ζ(xN )

= O

(
r∏

l=1

N−1+2α
l

)
ζ(xN ). (6.12)
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Now, following from (6.12) and applying the results of Lemma A.1.4 to approximate

the integral, we have that:

∑
x∈Sm∩GN,α

ζ(x) =

∏r
l=1Nl

2r

∫
GN,α

ζ(x)dx+O

(
r∏

l=1

N2α
l

)
ζ(xN )

=

∏r
l=1Nl

2r

∫
GN,α

√
2r

πr
∏r

l=1Nl(1− x2l )
eNfN (x)

[
1 +O

( r∏
l=1

N−1
l

)]
dx

+O

(
r∏

l=1

N2α
l

)√
2r

πr
∏r

l=1Nl(1− x2N )
eNfN (xN )

[
1 +O

( r∏
l=1

N−1
l

)]

=

∏r
l=1Nl

2r

√
2r

πr
∏r

l=1Nl(1− xN (l)2)

√
(2π)r∏r

l=1Nl det
(
−HfN (xN )

)eNfN (xN )

·
(
1 +O

(
Nα−1/2

))
=

eNfN (xN )√
det
(
−HfN (xN )

)∏r
l=1(1− xN (l)2)

·
(
1 +O

(
Nα−1/2

))
.

(6.13)

Hence, the partition function becomes:

ZN =
eNfN (xN )√

det
(
−HfN (xN )

)∏r
l=1(1− xN (l)2)

·
(
1 +O

(
Nα−1/2

))
. (6.14)

where α ∈ (0, 1/6] [34]. With this form of the partition function, we can now study

the fluctuations of the magnetization. The following lemma contains useful results

that will aid in later computations and arguments.

Lemma 6.3.1. Let’s suppose µ = (µ1, ..., µr) ∈ (−1, 1)r is a vector of unique global

maximum points of f(x) for some fixed parameters, defined in (6.8), such that the

Hessian Hf (µ) is negative definite, i.e., Hf (µ) < 0. Again, suppose that fN (x) is

continuous and differentiable sequence of functions, converging uniformly to f , with

bounded partial derivatives up to order four converging uniformly to those of f for

very large N . Then fN (x) has a unique maximizer x̂N → µ for N large enough and

HfN (x̂N ) < 0.

Proof. Let suppose that {x̂N} is a sequence of any maximizer of fN which exists

since it is defined over the compact set [−1, 1]r. Then there exists a subsequence

{Nn}n≥1 such that {x̂Nn} converges to some {x̂}. This imples that fNn(x̂Nn) ≥
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fNn(x) for all x ∈ [−1, 1]r. Therefore by uniform convergence and taking the limit

as n→ ∞, we obtain that f(x̂) ≥ f(x) for all x ∈ [−1, 1]r. This implies that x̂ is a

vector of the global maximizers of f(x). But we know that µ is the unique vector

of global maximizers of f(x), hence x̂ = µ.

Note that the map x 7→ fN (x) is continuous for every N and uniformly bounded.

Observe further that x is a closed and bounded, i.e., compact, subset of Rr. Hence,

it follows from Theorems 7.13 and 7.24 of [31] that fN is equicontinuous. Now

since fN is uniformly bounded and equicontinuous, fN → f uniformly. Hence,

by extension, it follows from the convergence of fN to f that x̂N → µ uniformly.

While, the convergence of fN to its derivatives follows directly from Theorem 7.17

of [31]. Since the Hessian Hf (µ) characterises the curvature of the pressure per

particle (4.7), which is related to its second partial derivative with respect to the

vector x ∈ [−1, 1]r at the point of global maximizer µ, it follows immediately that it

is negative definite. It consequently follows that the Hessian of fN , HfN , evaluated

at x̂N is negative definite given that x̂N → µ for N large enough.

Now, since Hf (µ) < 0, it’s obvious that for any x ∈ [µ− ϵ, µ+ ϵ], f(x) < 0 for

all ϵ > 0. Let’s suppose that {x̂N} and {ŵN} are sequence of any two vectors of

global maximizers of fN . Then it is obvious that their components x̂
(l)
N → µl and

ŵ
(l)
N → µl for l = 1, ..., r. Therefore for N large enough x̂

(l)
N , ŵ

(l)
N ∈ [µl − ϵ, µl + ϵ].

It is easy to verify that for N large enough fN is strongly convex on [µl − ϵ, µl + ϵ]

following from the assumption that HfN converges uniformly to Hf . Therefore, fN

has a unique maximizer which implies that x̂N = ŵN .

Corollary 6.3.1. Consider the mean-field Hamiltonian HN = −NUN (m(1), ...,m(r))

defined in (6.1). Let µ = (µ1, ..., µr) be the unique vector of global maximisers of f .

Then the asymptotic behaviour of the vector

S(σ) = (
√
N1(m

(1) − µ1), ....,
√
Nr(m

(r) − µr))

as N1 → ∞, ..., Nr → ∞ for fixed γ(1), ..., γ(r) is given by a multivariate normal

distribution with covariance matrix χ = − 1
Hf (µ)

:

χ =



(
−∂2f

∂µ2
1

)−1 (
−
√

∂2f
∂µ2

1

∂2f
∂µ2

2

)−1
· · ·

(
−
√

∂2f
∂µ2

1

∂2f
∂µ2

k

)−1(
−
√

∂2f
∂µ2

1

∂2f
∂µ2

2

)−1 (
−∂2f

∂µ2
2

)−1
· · ·

(
−
√

∂2f
∂µ2

2

∂2f
∂µ2

k

)−1

...
...

...(
−
√

∂2f
∂µ2

1

∂2f
∂µ2

k

)−1 (
−
√

∂2f
∂µ2

2

∂2f
∂µ2

r

)−1
· · ·

(
−∂2f

∂µ2
r

)−1


.



6. Multi-populated cubic mean-field Ising model 121

Proof. In order to approximate the distribution of the scaled difference between

the block magnetization and the limiting global maximizers, we will compute the

limiting moment generating function of m = (m(l))l≤r for some t ∈ Rr using the

expanded form of the partition function in (6.14):

E
[
e⟨t

T
√
N,(m−µ)⟩

]
= e−⟨tT

√
N,µ⟩e⟨t

T
√
N,m⟩

∫
Rr

µN (m)dm = e−⟨tT
√
N,µ⟩ZN (t)

ZN
,

where µN (m) denotes the Gibbs measure of the block magnetization m related to

the Hamiltonian (6.1) and N = (N1, ..., Nr) denotes a vector of the partition of

N ∈ N particles into r-blocks. From the above equality:

ZN (t)

ZN
∼
exp

(
N maxm

[
fN (m) + ⟨tT

√
N,m⟩

])
exp (N maxm fN (m))

= exp
(
N [fN (x̂N,t)− fN (ŷN )] + ⟨tT

√
N, x̂N,t⟩

)
.

(6.15)

In the first equality above, it has been used that, x̂N,t and ŷN are unique vectors of

global maximizers of fN (x)+ ⟨tT
√
N, x⟩ and fN (x) for all x ∈ (−1, 1)r respectively.

Since x̂N,t is a vector of unique global maximizers of fN (x) + ⟨tT
√
N, x⟩, its

components satisfy the following stationarity condition:

x̂
(l)
N,t = tanh

 r∑
s,q=1

γ
(s)
N γ

(q)
N Klsqx̂

(s)
N,tx̂

(q)
N,t +

r∑
s=1

γ
(s)
N Jlsx̂

(s)
N,t + hl +

tl√
Nl

, for l = 1, ..., r.

From the fixed point equation above, notice that x̂
(l)
N,0 = ŷ

(l)
N and it can be verified

for all l = 1, ..., r that:

∂x̂
(l)
N,t

∂tl
|t=0 = − 1

√
Nl∇2fN (ŷ

(l)
N )

and
∂2x̂

(l)
N,t

∂t2l
= O(N−1

l ).

Now, taking Taylor’s expansion of x̂
(l)
N,t around t = 0, we have that

x̂
(l)
N,t = x̂

(l)
N,0 −

tl
√
Nl∇2fN (ŷ

(l)
N )

+O(N−1
l ) (6.16)

and hence,

tl
√
Nl x̂

(l)
N,t = tl

√
Nl ŷ

(l)
N −

t2l

∇2fN (ŷ
(l)
N )

+O(N
−1/2
l ).
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Now, observe from (6.15) that we need to obtain the following in order to make

inference about the distribution: fN (x̂N,t) − fN (ŷN ) and ⟨tT
√
N, x̂N,t⟩. Again,

taking Taylor’s expansion of fN (x̂N,t) at ŷN to the second order, we have that:

fN (x̂N,t)− fN (ŷN ) =
1

2

〈
HfN (ŷN )(x̂N,t − ŷN ), (x̂N,t − ŷN )

〉
+O(||(x̂N,t − ŷN )3||).

(6.17)

Consequently, from (6.16) and (6.17),

x̂N,t − ŷN =
−t

⟨
√
N,HfN (ŷN )⟩

+O(N−1/2)

such that

⟨tT
√
N, x̂N,t⟩ = ⟨tT

√
N, ŷN ⟩ − ⟨tT , t⟩

HfN (ŷN )
+O(N−1/2)

and

N(fN (x̂N,t)− fN (ŷN )) =
N

2

〈
HfN (ŷN )

tT

⟨
√
N,HfN (ŷN )⟩

,
t

⟨
√
N,HfN (ŷN )⟩

〉
+ o(1)

=
⟨tT , t⟩

2HfN (ŷN )
+ o(1).

This implies that

N(fN (x̂N,t)− fN (ŷN )) + ⟨tT
√
N, x̂N,t⟩

=
⟨tT , t⟩

2HfN (ŷN )
+ ⟨t

√
N, ŷN ⟩ − ⟨tT , t⟩

HfN (ŷN )
+O(N−1/2) + o(1).

Therefore,

E
[
e⟨t

T
√
N,(m−µ)⟩

]
∼ e−⟨tT

√
N,µ⟩ · e⟨tT

√
N,ŷN ⟩ · e

− ⟨tT ,t⟩
2HfN

(ŷN ) . (6.18)

Now, following the arguments of Lemma 6.3.1,

lim
N→∞

E
[
e⟨t

T
√
N,(m−µ)⟩

]
=e−⟨tT

√
N,µ⟩ · e⟨tT

√
N,µ⟩ · e

− ⟨tT ,t⟩
2Hf (µ)

=exp

(
− ⟨tT , t⟩
2Hf (µ)

)
.

(6.19)

The proof of Corollary 6.3.1 follows by setting χ = −1
Hf (µ)

. Around the stationary

points of the pressure function, fluctuations in the magnetization are related to its

curvature. Notice that since the Hessian Hf (µ) is negative definite, hence, χ is

positive definite and denotes the covariance matrix.
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Corollary 6.3.2. Given HN = −NUN (m(1), ...,m(r)) defined in (6.1), let’s suppose

that µ = (µ1, ..., µr) is a vector of nonunique global maximum point of f . Let’s

define η to be the minimum distance between all distinct pair of global maximum

points of the function f . Then for any d ∈ (0, η) when the random vector of the

block magnetisations m = (m(l))l≤k is inside the ball B(µ, d) centered around the

components of µ with radius d, the asymptotic behaviour of the vector

S(σ) =

(√
N1(m

(1)−µ1)|{m(1) ∈ B(µ1, d)}, ....,
√
Nr(m

(r)−µr)|{m(r) ∈ B(µr, d)}
)

as N1 → ∞, ..., Nr → ∞ for fixed γ(1), ..., γ(r) is given by a local multivariate normal

distribution with covariance matrix χ|B = − 1
Hf (µ|{B}) .

Proof. The proof follows the same arguments as in Corollary 6.3.1 with respect to

the ball B(µ, d) such that for a given vector of block magnetisation m, the measure:

µN (m ∈ B(µ, d)) :=
e−HN (σ)

ZN |B

N∏
i=1

dρ(σi) → 1 (6.20)

for N → ∞. Observe that the partition function ZN |B , can be obtained using the

same arguements of (6.14) with respect to the ball B such that m(l) concentrates

uniquely around a single point of µl, since η is the minimum distance between all

distinct pairs of maximisers. Hence, B contains a unique vector of local maximiser of

µ based on the defined radius d. This yields local multivariate Gaussian fluctuations

for the vector of block magnetisation around the multiple maximisers.

6.4 Case Study: Two-component model

Now, let us consider the case where the system is partitioned into only two

blocks, consisting of two kinds of agents, i.e., a heterogeneous system, Humans (H)

and Artificial Intelligence (AI) agents. The interactions that will be taken into

account are the binary, quadratic ones (H-H, H-AI and AI-AI), the triplet or cubic

(AI-AI-AI, AI-AI-H, AI-H-H, H-H-H) while the higher order ones (quartic, etc.)

will be ignored. Furthermore, we consider the state (or opinion) variables of the

agents as binary having in mind a task with possible binary outcome, like should a

patient be operated or not. The nature of the interaction is that two or more agents

in contact may like (or dislike) each others “opinion” and they change their state

variables such that the system finds a stationary state. We assume that all agents
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are in contact with each other, i.e., they sit on the nodes of a complete graph - an

assumption needed for the analytical solvability of the system.

To this end, we investigate the two-block version of the model in equation (6.1),

which we call henceforth the two-component cubic mean-field model, described as

follows: Let partition the system of N agents into two subsystems AI and H of sizes

N1 and N2 respectively, such that AI ∩ H = ∅ and N1 + N2 = N . Let mS(σ) =
1
|S|
∑

i∈S σi be the average opinion of agents in a subsystem S and denote m1 and

m2 as the average opinion for the subsystems AI and H respectively. Further, we

define as the relative sizes of AI and H agents α1 = N1
N and α2 = N2

N respectively.

The two-component cubic mean-field model has the following energy contribution:

HN (σ)

N
=− 1

3

[
K111α

3
N1
m3

N1
+ 3K112α

2
N1
αN2m

2
N1
mN2 + 3K122αN1α

2
N2
mN1m

2
N2

]
− 1

3
K222α

3
N2
m3

N2
− 1

2

[
J11α

2
N1
m2

N1
+ 2J12αN1αN2mN1mN2 + J22α

2
N2
m2

N2

]
− h1αN1mN1 − h2αN2mN2

(6.21)

and the energy contribution of the model is given as:

U(m1,m2) =
1

3

[
K111α

3
1m

3
1 + 3K112α

2
1α2m

2
1m2 + 3K122α1α

2
2m1m

2
2 +K222α

3
2m

3
2

]
+

1

2

[
J11α

2
1m

2
1 + 2J12α1α2m1m2 + J22α

2
2m

2
2

]
+ [h1α1m1 + h2α2m2] .

(6.22)

The variational form of the large number limit of the generating functional

associated to (6.22) is:

sup
m∈[−1,1]2

Φ(m) = sup
m∈[−1,1]2

[U(m1,m2)− (α1I(m1) + α2I(m2))] (6.23)

where I(m1) and I(m2) are the entropy associated to the average opinions of the

subsystems and they sum up to the total number of configurations as a product of

the individual ones. Therefore,

p(K, J, h) = sup
m∈X

Φ(m) (6.24)

Here K, J and h denotes the vectors of model parameters (K111,K112,K122,K222),

(J11, J12, J22) and (h1, h2) respectively. The stationary solutions m of Φ are as

follows

ml = tanh

hl + 2∑
p,q=1

αp(Jlp + αqKlpqmq)mp

 for l = 1, 2, (6.25)
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from which the global stable ones are to be selected. In the rest of this work, we

assign α = α1 and (1 − α) = α2 then α ∈ [0, 1] and the total average opinion

m = αm1 + (1 − α)m2 will be used as combined order parameter. It is worth

recalling that, when α = 0 then there are only Human agents in the population

and when α = 1 there are only AI agents in the population. For the rest of the

work, we adopt the re-parameterisation of h1 and h2 found in [77]. In this sense, the

parameters h1 and h2 are thought of as dependent on the internal average opinion

(given by m∗
1 and m∗

2) and interaction within each subsystem without interaction

with the other agents. Hence following the fixed point equation (6.25), we define

h1 and h2 as

h1 =arctanh(m∗
1)−K111m

∗
1
2 − J11m

∗
1

h2 =arctanh(m∗
2)−K222m

∗
2
2 − J22m

∗
2

(6.26)

Surfaces of the solution of (6.25) that gives rise to the global maxima of Φ in

equation (6.23), with respect to the free parameters α and K112 = K122 = K for

fixed values of the other parameters are shown as Figure 6.2.

When cross cubic interactions (i.e., K112 = K122 = K) are fixed, as observed in

panels (b), (c) and (d) of Figure 6.2, there are jumps in the average opinion of the

agents depending on their relative fractions. Smaller values of α (i.e., more Human

agents), may lead to an inclination of the minus opinion while positive opinion

inclination may result from larger values of α (i.e., more AI agents). Hence, a larger

proportion of the AI agent population may lead to abrupt changes in behaviour of

the ecosystem.

AI machines are made to assist and work with humans, therefore they are as-

sumed to interact with humans. Figure 6.3 gives the scenario of an interacting

system where only Humans or only AI agents are not interacting among themselves

(see panel (a)) and when we assume that the cubic interaction among humans and

AI agents are equal (see panel (b)). In both cases we observe transitions for large

enough fraction of the AI agents in the order parameter when interaction bias and

mutual interaction are absent.

6.4.1 Exploration of the effect of the composition

In this section we present phase diagrams of the model relating the parameter α

and one among the interacting ones. The black continuous line is used to separate

the opinion phases and in particular it emphasises the first order phase transitions,
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Figure 6.2: Total average opinion surfaces of the two component cubic mean-field

model. In panel (a) we observe first order phase transitions at Kc. Here, α is

constant in K. When the cubic interactions are fixed (i.e.K111 = K112 = K122 =

K222 = K) the proportion of AI and Human agents present in the system has no

effect on their average opinion as observed in panel (a). Two distinct jumps in m

are observed in panel (b) for certain values of K and α. For panel (c) and (d)

α varies smoothly for the total average opinion and then observe sudden jump to

another phase.
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Figure 6.3: Average opinion for K111 = K222 = 0 and K111 = K222 = 1 with K112 =

K122 = K varying. In the left panel, panel (a), the cubic in-group interaction for

the AI agents and that of humans are set to zero (i.e., K111 = K222 = 0) and in (b)

to one (i.e., K111 = K222 = 1) with varying inter-group interaction.

i.e., sudden jumps of the opinion resulting in abrupt changes of colour in the picture.

This is illustrated in Figure 6.4. The α-value found in correspondence of the black

line indicates the proportion of AI agents required for Human opinion to lose its

prevalence over the entire population.

The simulation of the results obtained for suitable values of the model parameter

in Figure 6.4(a) suggests that even in the case where there is very small fraction of

AI agents we can still observe abrupt behaviours in opinion formation within the

Human AI ecosystem. This observation is likewise similar to that of panel (d) of

Figure 6.4, which illustrates that for a system where there is less interaction among

Human agents (K222), smaller fraction of the AI agents may lead to phase transition

and hence prevalent opinion formation.

6.4.2 Discussion

A noteworthy feature of the cubic mean-field model stems from the fact that we

can observe three distinct phases depending on the parameter values in the absence

of interaction bias of the agent(s) in the ecosystem (see for instance Fig 6.2(a)

and Fig 6.3). Unlike the quadratic mean-field model, where we observe a jump

from negative to positive state, instead one can observe a jump from the negative
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Figure 6.4: Phase diagram for fixed parameters of the cubic mean-field model. In

panel (a), when K112 = K122 is small the system require a larger fraction (i.e., α)

of the AI agents to observe a phase transition and as K112 = K122 increases, the

proportion of AI agents required for a phase transition decreases. In this scenario,

the relative fraction of the AI agents corresponding to the black line is a decreasing

function of K112 = K122. While panel (b) illustrate two separate jumps in the

average opinion depending on the values of K112 = K122 and α. We observe from

panel (c) that when interaction among AI agents (K111) increases their proportion

needed to observe a phase transition decreases. While in panel (d), when interaction

among Human agents (K222) increases, the fraction of AI agents needed to effect a

phase transition increases and vice versa.
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average opinion to a zero average opinion and a jump to a positive average opinion

when three-body interaction is considered. The zero average opinion, which is a

stable paramagnetic state, is an indication of symmetry in opinion such that the

agents have no preference for one over the other. As K increases or decreases, the

symmetry in opinion is broken, and the total average opinion of the agents in the

ecosystem shifts to either a positive or negative state.

The results illustrated in this work are some of the possible simulation for a wide

class of values of the parameters. The model used and the whole statistical mechan-

ics approach presented might also be used to infer the values of those parameters

starting from real data as it was done in [60,63,64,78].

Clearly, our approach has limitations. First, the dynamics leading to the sta-

tionary statistical distribution described by the pressure per particle is a special

one, while in reality opinion dynamics may be quite different as reflected in the

numerous models introduced to study it [79]. However, we believe that our simpli-

fied model is sufficient for calling the attention to a possible source of criticality,

namely that the dependence of the outcome in a Human-AI ecosystem depends

very non-linearly on the composition of the participants and this may have severe

consequences.

A further aspect is that in realistic settings time should play an important role,

which has been completely ignored here. With reference to the example above about

the decision making process in a critical situation in health care, there is probably

not enough time to achieve a complete equilibrium state of the participating opinion

carriers. Another source of non-stationarity could be that the system is driven by

a continuous flow of data. Therefore, more realistic models have to be dynamic in

nature.

The above critical points give a guide to us in which direction one should con-

tinue the research on the Human-AI ecosystem. An important step should be to

collect and use data of related systems as a starting point for the developments of

adequate models.
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Chapter 7

General Conclusions and

Outlook

In this thesis, a complete characterisation of the phase properties of the mean-

field Ising model with three-spin interaction is given. The three-spin interaction,

which provides a spin-flip symmetry-breaking parameter, induces phase transitions

with novel properties in the mean-field setting. The presence of a stable param-

agnetic phase and the fact that, also in the antiferromagnetic regime, the model

presents phase transitions and phase coexistence are interesting for applications in

socio-technical environments [35] and possibly in other fields [45, 80]. Particularly

noteworthy is the phase coexistence of magnetised and symmetric states without

the need for more than two spin states, as observed in the Potts model [36].

An interesting advancement is made in the analysis of fluctuations in magneti-

sation, both in the single-block model and the multi-populated model. The validity

of the Central Limit Theorem (CLT) provides a theoretical foundation for the para-

metric analysis in Chapter 5, as the magnetisation density tends to approximate

a normal distribution for a sufficiently large sample size. This leads to intriguing

possibilities, such as extending the results of the inverse problem in two directions:

(1) to the critical point where some observables, such as χ and ψ, diverge, and (2)

to the multi-populated case studied in Chapter 6, where the model finds applica-

tions in describing Human-AI ecosystems [35]. This would provide a more viable

framework for applying the models to real-world data.

It is worth mentioning that the results in Chapter 5 can be refined using meth-

ods from Bayesian parametric analysis. In this way, the parameters of interest are

sampled from the posterior of the likelihood, allowing for a more flexible exploration
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of the behaviour of the likelihood function. This is in contrast to relying solely on

moments, which may have limitations when dealing with the recovery of a noniden-

tifiable set of parameters or at the critical point of the system. Moreover, in the

presence of a phase transition, refined methods such as the density clustering algo-

rithm are employed, whereas the Bayesian method explores more freely. In [81], this

issue is thoroughly investigated using methods from Bayesian analysis that capture

the geometry of the likelihood function [82].

A possible research development will be to extend the results obtained in Chap-

ters 3 and 4 to the multi-populated model introduced in Chapter 6. Furthermore,

intriguing open problems lie in extending the results presented here to O(N) vec-

tor mean-field models, a direction that will be explored in future investigations.

Observe that in the case of two-spin interaction, Stein’s method provides stronger

results (Berry-Esseen type bounds) on the rate at which the convergence to the

normal distribution takes place (see [83,84]). The extension of the above method to

the model introduced in Chapter 3 of this thesis has recently been discussed in [85].

Extending such results to more general, higher-order interactions is an interesting

open problem.



Appendix A

Technical tools

A.1 Approximation lemmas

In this section, standard mathematical approximations which played a crucial

role in Chapters 3, 4, and 6 are stated.

Lemma A.1.1. (Riemann Approximation). Let f : [a, b] → R be a differentiable

function and let {x0, x1, . . . , xn} be any partition of [a, b], i.e., a = x0 < x1 < . . . <

xn = b. Furthermore, if f ′ is the derivative of f and it is continuous on [a, b] and

ϵ = max1≤i≤n(xi − xi−1) denotes the mesh size of the partition, then:∣∣∣∣∣
∫ b

a
f(x) dx−

n∑
i=1

f(ci) · (xi − xi−1)

∣∣∣∣∣ ≤ ϵ(b− a)

2
max
a≤x≤b

|f ′(x)|.

where ci is any point in the i−th subinterval [xi−1, xi].

Lemma A.1.2. (Laplace Approximation). Let a < b be fixed real numbers, g :

[a, b] −→ R be a differentiable function on (a, b), and qn : [a, b] −→ R be a sequence

in (a, b) that is bounded away from both a and b, satisfying q′n(x
∗) = 0 and q′′n(x

∗) <

0 such that qn(x
∗) > qn(x) for all x ∈ (a, b). Then for α ∈ (0, 16 ] we have as

n −→ ∞:

∫ x∗+n− 1
2+α

x∗−n− 1
2+α

g(x)enqn(x)dx =

√
2π

n|q′′n(x∗)|
g(x∗)enqn(x

∗) (1 +O(n−
1
2
+3α)) (A.1)

Lemma A.1.3 (Multivariate Riemann Approximation). Let Q = [a1, b1]× [a2, b2]×
. . .×[ar, br] be a rectangular domain in Rr, and let {(x1,0, x2,0, . . . , xr,0), (x1,1, x2,1, . . . , xr,1), . . . ,
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(x1,m, x2,m, . . . , xr,m)} be any partition of Q, where ai = xi,0 < xi,1 < . . . < xi,m =

bi for each i = 1, 2, . . . , r.

Assume that g is differentiable on Q and that its partial derivatives ∂g
∂xi

are

continuous on Q for all i = 1, 2, . . . , r. Let ϵi = max1≤j≤m(xi,j − xi,j−1) denote the

mesh size of the partition along the i-th variable. Then, the Riemann approximation

lemma for the multivariate case states:∣∣∣∣∣∣
∫
Q
g(x) dx−

m1∑
j1=1

m2∑
j2=1

. . .

mr∑
jr=1

g(cj1,j2,...,jr) ·
r∏

i=1

(xi,ji − xi,ji−1)

∣∣∣∣∣∣ ≤ ϵ1ϵ2 . . . ϵr
2

·max
x∈Q

|∇g(x)| ,

where cj1,j2,...,jr is any point in the j1-th subinterval along the first variable, j2-th

subinterval along the second variable, and so on, up to the jr-th subinterval along

the r-th variable.

Lemma A.1.4 (Multivariate Laplace Approximation). Let Q ⊂ Rr be an open set,

x∗
N a vector in Q, and qN : Q −→ R a differentiable sequence in Q that is bounded

away from the boundary of Q, satisfying ∇qN (x∗
N ) = 0 and ∇2qN (x∗

N ) is negative

definite, such that qN (x∗
N ) > qN (x) for all x ∈ Q. Given that N = (Ni)i≤r

and α ∈ (0, 16 ], as N1 → ∞, N2 → ∞, ..., Nr → ∞, then multivariate Laplace

approximation is:

∫ x∗
N+N− 1

2+α

x∗
N−N− 1

2+α
g(x)eNqN (x)dx =

=

√
(2π)r∏r

l=1Nl det(−∇2qN (x∗
N ))

g(x∗
N )eNqN (x∗

N )(1 +O(N− 1
2
+α)). (A.2)

Here, ∇qN is the gradient vector and ∇2qN is the Hessian matrix of qN .

Proof. Observe from the left hand side of equation (A.2) that:

L =

∫ x∗
N+N− 1

2+α

x∗
N−N− 1

2+α
g(x)eNqN (x)dx =

=

∫ x∗
N (1)+N

− 1
2+α

1

x∗
N (1)−N

− 1
2+α

1

· · ·
∫ x∗

N (r)+N
− 1

2+α
r

x∗
N (r)−N

− 1
2+α

r

g(x1, ..., xr)e
NqN (x1,...,xr)dx1 · · · dxr. (A.3)

Notice from the above that L is only used here to denote the Laplace approximation.

Now, let’s consider the following change of variables tl =
√
Nl(xl − x∗N (l)) for

l = 1, ..., r. Then it follows that: xl =
tl√
Nl

+ x∗N (l) and dxl =
dtl√
Nl
. We have that:
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L =

∫ Nα
1

−Nα
1

· · ·
∫ Nα

r

−Nα
r

g

(
t1√
N1

+x∗N (1), ...,
tr√
Nr

+x∗N (r)

)
e
NqN

(
t1√
N1

+x∗
N (1),..., tr√

Nr
+x∗

N (r)
)

·
( r∏

l=1

Nl

)−1/2

dt1 · · · dtr. (A.4)

For any tl ∈ [−Nα
l , N

α
l ], by application of Taylor expansion around the vector x∗

N ,

we have that:

e
NqN

(
t1√
N1

+x∗
N (1),..., tr√

Nr
+x∗

N (r)
)
= eNqN (x∗

N )+ 1
2
⟨HqN

(x∗
N )t,t⟩

(
1+O

((
t√
N

)3))
and

g

(
t1√
N1

+ x∗N (1), ...,
tr√
Nr

+ x∗N (r)

)
= g(x∗

N ) + g′(x∗
N )

(
t√
N

)
=

= g(x∗
N )

(
1 +O

(
t√
N

))
(A.5)

where t = (t1, ..., tr) and HqN (x
∗
N ) is the Hessian of qN evaluated at x∗

N . Now,

following from (A.5), the right side of (A.4) becomes:

L =

( r∏
l=1

Nl

)−1/2(
1 +O

(
Nα−1/2

))
g(x∗

N )eNqN

(
x∗
N

) ∫ Nα

−Nα

e
1
2
⟨HqN

(x∗
N )t,t⟩dt =

=

(
1 +O

(
Nα−1/2

))√
(2π)r∏r

l=1Nl det
(
−HqN (x

∗
N )
)g(x∗

N )eNqN

(
x∗
N

)
. (A.6)

Notice that we have bounded t by its limit Nα. This completes the proof of Lemma

A.1.4.

A.2 Implicit function theorem

This section of the appendix presents some useful technical results applied in

the work. We begin by stating the Berge’s maximum theorem in the following

Proposition without providing its proof.

Proposition A.2.1. Let f : [−1, 1]× Rn → R and c : Rm → [−1, 1] be continuous

functions.

(a) The following function is continuous:

F : Rn × Rm → R, F (x, y) = max
v∈[−1,c(y)]

f(v, x).
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(b) Suppose that for all x, y ∈ Rn the function v 7→ f(v, x) achieves its maximum

on [−1, c(y)] in a unique point. Then also the following function is continuous:

T : Rn × Rm → [−1, 1], V (x, y) = arg max
v∈[−1,c(y)]

f(v, x).

The following proposition partially states Dini’s implicit function theorem. Then

we provide two simple corollaries that are used in this thesis.

Proposition A.2.2. Let F : Rn ×R → R be a C∞ function. Let (x0, y0) ∈ Rn ×R
such that F (x0, y0) = 0 and ∂F

∂y (x0, y0) ̸= 0. Then there exist δ > 0, ϵ > 0 and a

C∞ function f : B(x0, δ) → B(y0, ϵ) such that for all (x, y) ∈ B(x0, δ)×B(y0, ϵ)

F (x, y) = 0 ⇐⇒ y = f(x)

Corollary A.2.1. Let F : Rn × R → R be a C∞ function. Let φ : Rn → R
be a continuous function such that for all x ∈ Rn such that F (x, φ(x)) = 0 and
∂F
∂y (x, φ(x)) ̸= 0, then φ(x) ∈ C∞(Rn).

Corollary A.2.2. Let F : Rn × R → R be a C∞ function. Let a, b : Rn → R be a

continuous function such that for all a < b. Suppose that for all x ∈ Rn there exists

a unique y = φ(x) ∈ (a(x), b(x)) such that F (x, φ(x)) = 0. Moreover, suppose that

for all x ∈ Rn,
∂F

∂y
(x, φ(x)) ̸= 0, then φ(x) ∈ C∞(Rn).
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