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Abstract

The aim of this thesis is to present exact and heuristic algorithms for the integrated

planning of multi-energy systems. The idea is to disaggregate the energy system,

starting first with its core the Central Energy System, and then to proceed towards

the Decentral part. Therefore, a mathematical model for the generation expansion

operations to optimize the performance of a Central Energy System (CES) system

is first proposed. To ensure that the proposed generation operations are compatible

with the network, some extensions (or updates) of the existing network are con-

sidered as well. All these decisions are evaluated both from an economic viewpoint,

using the objective function of the problem, and from an environmental perspective,

as specific constraints related to greenhouse gases (measured in CO2eq) emissions

are imposed in the formulation.

Then, the thesis presents an algorithm for a bottom-up optimization model for solar

organic Rankine cycle in the context of transactive energy trading. In this study,

the impact that this technology can have on the peer-to-peer trading application in

renewable based community microgrids is inspected. Here the consumer becomes a

prosumer (functioning both as energy producer and consumer), and engages actively

in virtual trading with other prosumers at the distribution system level. Moreover,

there is an investigation of how different technological parameters of the solar Or-

ganic Rankine Cycle (ORC) may affect the final solution. Finally, I study the value

of the solar ORC in the transactive energy trading context under different configu-

rations and scenarios.

Finally, the thesis introduces a tactical optimization model for the maintenance op-

erations’ scheduling phase of a Combined Heat and Power (CHP) plant. Specifically,

two types of cleaning operations are considered, i.e., online cleaning and offline clean-

ing. Furthermore, a piecewise linear representation of the electric efficiency variation

curve is included, accurately describing the impact of load and inlet air temperature

inside the compressor on the electric efficiency of the CHP plant. Given the chal-

lenge of solving the tactical management model, a heuristic algorithm is proposed.

The heuristic works by solving the daily operational production scheduling prob-

lem, based on the final consumer’s demand and on the electricity market price. The

aggregate information from the operational problem is used to derive maintenance
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decisions at a tactical level.
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Chapter 1

Introduction

The energy sector is constantly evolving, to face new challenges imposed by the

climate change problem. Great measures have been implemented to aim at a sud-

den decarbonization of the energy system, especially in Europe. Technologies that

exploit Renewable Energy Sources (RES) have quickly widespread, increasing the

level of difficulty in managing the electricity grid. This has opened the discussion

in the scientific community to understand what are the next steps to be made.

In this sense, a new interest has increased in applying Operations Research (OR)

techniques in the energy field. Both the OR community and the energy one have

expanded their interest towards each other, to understand how these two disciplines

could benefit from each other. Specifically, given the great investments that will be

necessary in the energy sector in the future, see [1]-[2] for further details, having

tools that could potentially prevent expenditure losses or optimize such investments

seems to be essential.

The problems that can be tackled in the energy field are of various natures, from

production plants’ scheduling to transmission and distribution system management.

They can be divided into three main categories depending on the time horizon they

are considering. The so-called strategic problems, usually make decisions over a wide

time range, typically several years. Instead, decisions made within the yearly time

horizon are inspected by tactical problems. Finally, problems that consider short-

period planning horizons are called operational problems.

Another consideration needs to be made on the type of power/energy being op-

timized. In fact, given the high penetration of Distributed Generations (DGs) in

the network, Virtual Power Plant (VPP) as a new concept has come into view,

with the intention of dealing with the increasing number of DGs in the system and

handling effectively the competition in the electricity markets [3]. The idea is to

manage networks of small energy-producing or storage devices, like solar panels and

batteries, that are pooled together to serve the electricity grid. VPPs rely upon soft-

ware systems to remotely and automatically dispatch and optimize generation or
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demand-side or storage resources in a single, secure Web-connected system [4]. The

advantage of VPPs is the possibility of using their energy to serve utilities during

times of high demand or to store it for later use.

All these problems imply a level of difficulty that can generate memory requirement

problems and computational time inefficiencies. Thus, the implementation of both

exact and heuristic algorithms is necessary to find the perfect balance. Exact algo-

rithms have been extensively studied and are considered adequate for moderately

size instances, whereas heuristic algorithms are considered promising for very large

instances [5]. This thesis will present both exact and heuristic solution strategies for

different problems used in energy applications.

1.0.1 Multi-energy systems

All energy systems can be reduced to a black box, having a useful product as out-

put, usually a final consumer’s demand, and a supply of primary energy as input.

The input/output interactions are typically described through conventional energy

efficiencies, and without going into further details with the equipment’s internal

description [6]. Inside the black box, a series of thermodynamic variables and pro-

cesses occur, to convert the inlet primary energy into a valuable output, as shown

in Figure 1.1. The supply of primary energy can be various, depending on the type

of technology considered, the most common are renewable energy sources or fossil

fuels. The demand can be the combination of multiple energy types, such as elec-

tric energy and thermal energy. This is very common when the final consumer is a

household or an industrial plant.

Figure 1.1: System scheme based on the black box concept

Following the same philosophy, this concept can be extended to a bigger picture

considering a system where multiple energy production technologies are intercon-

nected. In this case, splitting the black box will result in the combination of multiple

subsystems, each of them identifiable with a different energy production technology,

but all aiming to satisfy the demand of the final consumer. This concept is shown

in Figure 1.2.
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Figure 1.2: Multi-energy systems black box scheme

If we apply this basic concept to a wider realistic example, such as a nation,

what we obtain is actually the national energy system. In fact, the energy system is

basically a combination of several energy production plants that need to satisfy an

abundance of demand scattered all over the country. In this wider scheme, all actors

participating in the energy market such as producers, transmission system opera-

tors (TSOs), distribution system operators (DSOs) and consumers are considered.

In traditional power systems, the transmission system operator TSO is responsible

for the security of the grid [7]. The DSO functions are limited to operating the dis-

tribution network, make investments and perform network maintenance [8]. What

comes out of this combination is an extremely complex structure, that needs to be

constantly managed and optimized. The complexity of such structure has greatly

increased lately, with the integration of different energy sectors like the electricity

sector, the heating sector, and the natural gas sector. This concept is called sector

coupling, which implies a progressive electrification of the heating sector and the

mobility sector, and the widespread of technologies that combine the natural gas

sector with the electricity one, such as Power to Gas (P2G) plants. The aim of sec-

tor coupling is increasing the cost efficiency of the total system and, concurrently,

“contributing to achieving a clean, affordable, and secure energy system” [9].

The energy system can be viewed from a central or a decentral perspective, as

shown in Figure 1.3. From a central perspective, a large-scale energy system (e.g.

one country) requires to be planned as a whole. Central planning focuses on the

large-scale generation, as well as the transmission grid. Renewable energy plants for

self-consumption and most of the final consumers are located in distribution grids.

3



Figure 1.3: Caption

The Decentral Energy System (DES) is an inherent part of the Central Energy

System (CES). However, due to the size and mathematical complexity of the re-

sulting model, a detailed modeling of CES and DES within one planning model

becomes computationally not effective. Therefore, the idea in this thesis is to first

focus on problems related to the CES and then to problems related to the DES. This

is consistent also with recent research directions to decentralize the management of

the DES, for further details see Kok et al. [10].

Moreover, energy production plants feature numerous thermodynamic processes and

variables that increase the level of difficulty for management tools. Thus, works that

use operations research techniques on energy systems, frequently tend to treat en-

ergy production plants as black boxes, neglecting technical details. This choice is

perfectly compliant with the need to find computationally effective algorithms, that

are usually solved for long-term planning horizons, such as one year. At the same

time, it may create inaccuracies in results, and a further gap from the realistic be-

havior of such plants. Thus, in this thesis the idea is to explore in detail different

frameworks for the DES, to include more technical features in the algorithms.
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1.0.2 Central Energy System (CES)

The CES represents the part of the energy system that is regulated by the TSO.

This includes large-scale generation, like central power plants, power to gas plants,

and wind power plants as well as the transmission grid.

The main optimization problem connected to the CES is the combination of an

expansion planning problem and of a unit commitment problem. The expansion

planning problem designs the future expansion of both the generation part and the

transmission part, to be compliant with the expected GHG emissions stated by the

EU, see Koltsaklis et al. [11] for further details. The unit commitment problem reg-

ulates the correct functioning of the grid, once it has been expanded, to fulfill the

expected demand, see Montero et al. [12] for further details.

The CES is modeled using a graph. Every node in the graph is characterized by a

generation capacity coming from different kinds of technologies that can be poten-

tially expanded and a demand to be fulfilled. Every arc in the graph represents a

transmission line between nodes. An example of such graph applied on Germany as

test case is shown in Figure 1.4.
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Figure 1.4: CES of Germany seen as a graph

A set of variables decides the investments needed to expand both the generation

capacity of the nodes and the transmission capacity on the arcs. The hourly opera-

tion of the network is governed by Kirchhoff’s circuit laws: the current law and the

voltage law.

Due to long planning and construction times for new electric transmission lines, a

TSO needs to plan grid infrastructure multiple years in advance. Thus, the planning

horizon usually considered in the CES problem is at least a year.

In Chapter 2 a mathematical model for the generation expansion operations to op-

timize the performance of the CES is presented. Figure 1.5 shows an example of a

potential expansion of the CES of Germany as a test case.

6



Figure 1.5: CES of Germany potential expansion

1.0.3 Decentral Energy System (DES)

The DES represents the part of the energy system that is regulated by the DSO.

This includes utilities, distributed generation, like solar panels, combined heat and

power plants, or small wind turbines, as well as the distribution grid.

The DES has historically always been managed centrally simultaneously with the

CES. However, lately there has been a shift towards a decentralization of the man-

agement of this portion of the energy system, for further details see Kok et al.

[10]. Following this idea the DES should be managed by local actors. This way,

the consumers have the chance to actively engage to the energy market in a two-

way communication between them and providers. This concept is called transactive

energy trading, as shown in Figure 1.6

7



Figure 1.6: DES management classifications

The transactive energy trading concept opens the doors to new energy frame-

works, like local energy markets, where neighboring consumers or producers engage

actively in what is called Peer-to-peer (P2P) trading. New figures like prosumers,

which are consumers that invested in their own energy production technology and

are now also producers, increase their importance in the energy market. The need to

find new frameworks for the DES comes actually with the widespread of RES, espe-

cially for self-consumption. Self-consumption stands for a scheme where a consumer

decides to invest in an energy production technology to fulfill its own demand. It

is basically a scheme where a prosumer consumes its own energy rather than just

selling it on the market. A very common example in the RES field is solar panels,

both for heating and electricity production, installed in households, see Luthander

et al. [13] for further details. The prosumer can still decide to actively trade any

surplus of energy production, or buy it when there is a lack of production.

Chapter 3 proposes an optimization algorithm for transaction energy trading, using

a specific renewable technology called solar organic Rankine cycle. The algorithm is

used to understand the effectiveness that a new RES technology like a solar organic

Rankine cycle could have for self-consumption. Moreover, it optimizes operational

decisions for a wider framework, that considers different prosumers actively engag-

ing with each other in P2P trading.

Self-consumption can be extended also to systems with conventional energy pro-
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duction technologies. For example, if the technology used can provide simultaneously

multiple energy types, such as Combined Heat and Power (CHP) plants. This is a

common solution for big industrial plants, that have a great energy consumption

to satisfy. CHP plants use natural gas as fuel, to simultaneously produce heat and

electricity. Therefore, they are considered conventional energy production plants.

However, they are still incentivized by governments, due to their recovery of ex-

haust gases to produce thermal energy.

In Chapter 4 a tactical optimization model for the daily scheduling of a framework

that considers an industrial plant as prosumer, and a CHP plant with two boilers

as energy providers in a self-consumption scheme is explained. Moreover, the model

contains a more technical level of detail for the single CHP plant.

1.0.4 Research contribution

This thesis presents exact and heuristic algorithms for the integrated planning of

multi-energy systems. The idea is to disaggregate the energy system, starting first

with its core the Central Energy System, and then to proceed towards the Decentral

part. This is done with respect to a new trend in energy management to decentralize

the control of such a system, specifically the distribution part. Moreover, this gives

the opportunity to develop algorithms that feature technical details, predominantly

regarding the production technologies involved, to achieve more realistic results.

Thesis structure

The remainder of this thesis is structured as follows:

• Chapter 2 presents a Linear Programming (LP) model for the generation ex-

pansion operations to optimize the performance of a Central Energy System

(CES) system. The model includes extensions (or updates) of the existing net-

work, to ensure the compatibility between the proposed generation operations

and the transmission network.

This work has been done in collaboration with my supervisor professor Michele

Monaci, Paolo Paronuzzi from the University of Bologna, and Henrik Schwaeppe

from RWTH Aachen University and it has eventually been published as part

of the AIRO Springer Series book series with the title “An LP model for the

Central Energy Systems”.

• Chapter 3 shows a study of the impact that the Solar-ORC technology can

have on the peer-to-peer trading application in renewable based community

microgrids. We develop an optimization strategy based on two Mixed Integer

Linear Programming (MILP) models.

This work has been done in collaboration with Chiara Bordin from The Artic

University of Norway and Sambeet Mishra from University of South-Eastern
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Norway and is currently under revision of Energy journal with the title “A

bottom-up optimization model for solar organic Rankine cycle in the context

of transactive energy trading”.

• Chapter 4 is dedicated to a tactical optimization model for the maintenance

operations’ scheduling phase of a Combined Heat and Power (CHP) plant.

This work has been the result of a cooperation with Ola Jabali and Federico

Malucelli from Politecnico di Milano.

• Chapter 5 contains an overall conclusion of this thesis, accompanied by some

reflections on possible future developments and challenges.
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Chapter 2

An LP model for the Central

Energy System

1 In this chapter, I present a mathematical model for the generation expansion op-

erations to optimize the performance of a Central Energy System (CES) system. To

ensure that the proposed generation operations are compatible with the network,

some extensions (or updates) of the existing network are considered as well. All

these decisions are evaluated both from an economic viewpoint, using the objective

function of the problem, and from an environmental perspective, as specific con-

straints related to GHG gases (measured in CO2eq) emissions are imposed in the

formulation.

2.1 Introduction

The energy sector has been a widely discussed topic during the last years. Given

the recent worsening of climate conditions, worldwide governments, especially in

European countries, had implemented new directives in order to limit the conse-

quences of this problem. Nevertheless, the most recent energy crisis highlighted the

strong dependency that energy systems still have on conventional energy sources

and the consequences implied by this strategy also from a political point of view.

Disruptive structural developments are still necessary to deliver on the European

Union’s COP21 commitments [1]. In this sense, a strategy adopted to achieve a de-

crease of Green House Gasses (GHG) emissions is the decarbonization of the energy

sector, in spite of an increase of renewable energy sources. An efficient planning for

future energy systems must also comprise the coupling of energy sectors as well as

inter-dependencies of generation and transmission grid infrastructures [16]. The en-

ergy coupling concept consists in the integration of power and gas from a consumer

perspective, thus leading to an electrification of the thermal and mobility sector.

1The results of this chapter appear in Cordieri et al. [15]
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However, these strategies come with a significant change in the topology of energy

generation that risks to compromise the stability of the transmission system. The

system more and more often nears boundaries of safe operation, thus increasing

the probability of undesired effects, e.g., loss of synchrony and voltage collapse [17].

Thus, adequate expansion and planning become essential.

In the context of integrated energy systems, the Central Energy System (CES) rep-

resents all the entities that are relevant in the decision making process currently

regulated by the Transmission System Operator. The CES focuses on large-scale

generation, like central power plants, power to gas plants and wind power plants as

well as the transmission grid. All these entities are necessary to fulfill the final con-

sumer’s demand, on an hourly basis every day. The perfect planning of this system is

a problem associated with significant challenges. Thus, providing CES planners with

a decision support system able to compute efficient strategies to reach the aforemen-

tioned goals is fundamental. This study presents a Linear Programming (LP) model

to define the generation expansion operations needed to improve the performance

of the CES. The model includes extensions (or updates) of the existing network, to

avoid inconsistencies between the proposed generation operations and the transmis-

sion network. All these decisions are evaluated both from an economic viewpoint,

using the objective function of the problem, and from an environmental perspective,

as specific constraints related to GHG gases (measured in CO2 emissions) emissions

are imposed in the formulation. The goal of the presented formulation is to model

scenarios that represent an ideal future framework of the grid, towards which grid

managers should strive. Given the size of the instances to be solved, the formu-

lation introduces some modelling approximations, so that the resulting model can

be solved with “reasonable” computing time and memory. The remainder of this

chapter is organized as follows. Section 4.2 presents a literature review of the topics

discussed in this paper, while Section 4.3 formally presents an LP model for the

CES problem. Section 2.4 shows the numerical tests. Finally, Section 2.5 gives some

conclusions and outlines possible research perspectives.

2.2 Literature review

The generation expansion planning and the transmission expansion planning prob-

lems have gained interest within the scientific community recently. These problems

have been investigated from different perspectives, modelling different constraints

and objective, and have been attacked with different solution methods [18]. Franken

et al. [19] concentrated on the transmission expansion planning problem, explic-

itly adressing the Alternating Current (AC) systems and Phase Shifting Trans-

formers (PSTs) as well as operational congestion management interventions. The

authors proposed a multi-stage approach, based on Mixed Integer Linear Program-
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ming (MILP), aimed at determining the operating point of power flow controlling

devices while minimising expansion costs. Hörsch et al. [20] introduced the Lin-

ear Optimal Power Flow (LOPF) algorithm, which uses a linearization of the AC

load flow equations to optimize generator dispatch in a network subject to loading

constraints of the network branches. The authors showed that this formulation is

computationally more efficient than the angle formulation when solved by means of

a commercial linear programming solver. Müller et al. [21] implemented an approach

for evaluating multi-modal energy systems, showing the advantages of coupled ad-

dressing electricity, heat, fuel and mobility sectors. The modeling framework enables

system planners to optimally plan future investments in a detailed transition path-

way of the energy system of a country, considering politically defined climate goals.

Additional transmission system expansion measures are identified by applying a

heuristic method, which reinforces the transmission grid in order to make use of

existing infrastructure. Schwaeppe et al. [22] proposed a mathematical model for

the single-stage generation and transmission expansion planning, that is intended

to provide a general framework for multi-energy planning. To reflect constraints in

the transmission network a power transfer distribution factor (PTDF) approach is

used. Other papers are more focused on the optimization of the generation part.

Elsido et al. [23] introduced a MILP model and a two-stage optimization algorithm

for determining the most profitable synthesis and design of Combined Heat and

Power units within a district heating network with heat storage, while taking into

account the optimal scheduling of the units over the year. Bischi et al. [24] de-

veloped a MILP model for optimizing the daily schedule of cogeneration systems

and networks of heat and power plants. Given the significant computational time

needed to solve the model on a weekly time horizon, the authors introduce a heuris-

tic rolling-horizon algorithm, in which a sequence of weekly MILP submodels is

solved, while considering production and consumption estimates based on demand

profiles from historical data. Finally, some papers in the literature try to detect the

correct integration of storage systems in the grid framework. Aghaebrahimi et al.

[25] demonstrated that, despite high cost of energy storage systems, their presence

in the grid framework may increase the total income from wind energy sales. Bordin

et al. [26] addressed the coupling of renewable energy sources and storage systems,

focusing on battery degradation costs, and proposed LP models for the optimal

management of off-grid systems. Almost all the references in the literature focus

on specific parts of the CES problem, or use modelling strategies that are different

from those we adopt. To the best of our knowledge, the first attempt to give a com-

prehensive view of CES by using the LOPF strategy, was made by Schwaeppe et

al. [27]. Our formulation extends the model proposed in [27] by including additional

details related to the technologies used in the generation part, such as renewable

plants and storage systems.
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2.3 Methodology

In the following, a generic, single-stage expansion planning model for multi-energy

systems is described. The formulation is intended to be described as pure linear

program. The problem definition involves several technologies and consumers that

are described by a set of nodes. These nodes are located in different areas, and are

interlinked by a set of arcs representing the grid lines. The objective of the problem

is to minimize a cost function that takes into account both the operational cost

(including production costs and transmission costs), and costs for installing new

facilities. In case the consumers’ demands cannot be fully satisfied, a large penalty

value is incurred in the objective function; similarly, costs for oversupply are taken

into account. Finally, the formulation introduces a cap on the allowed CO2 emis-

sions, and evaluates a preliminary analysis of the expansion of the transmission

network. In our formulation, we consider a set of candidate lines among the existing

ones that can be further expanded up to a certain value, in terms of capacity. More

precisely, the problem consists of a set N = {1, ..., n} of electric nodes. Each node

j ∈ N has a subset M(j) of available energy production technologies (both tradi-

tional ones and renewable ones). Specifically, M(j) ⊆ I, where I = {W,O,P,B, F}
is the set of technologies (W stands for wind turbines, O for offshore wind turbines,

P for photovoltaic systems, B for batteries, and F for thermal power plants). A set

T = {1, ...,Θ} of time slots is given. The transmission network topology is defined

by a set E = {1, ...,m} of edges, where each edge e ∈ E is represented as e = (u,w)

where (u,w) ∈ N and u < w. In addition to the electric power transmission grid,

there is a thermal power system, that is characterized by a set R = {1, . . . , r} of ther-

mal nodes. For each node k ∈ R, a set of available technologies MT (k) ⊆ J ∪L∪Q
is given, where J = {H,S} is a set of purely thermal technologies (H stands for

solar heating and S for thermal storage); L = {i =
(
k(i), j(i)

)
: k(i) ∈ R, j(i) ∈ N}

is a set of technologies converting electric energy from node j ∈ N to heat for node

k ∈ R (e.g.heat pumps, rods, boilers), and Q = {i =
(
k(i), j(i)

)
: k(i) ∈ R, j(i) ∈ N}

is a set of technologies obtaining heat for node k ∈ R while producing electric energy

for node j ∈ N .

The behavior of each technology associated with a given node is described by a

specific set of constraints and parameters. Installing a technology i at some node j

is associated with an installation cost CCij per unit of capacity and with the maximal

capacity Y max
ij that can be installed. For each battery i = B and node j ∈ N the

unit production cost CpBj to charge or discharge is given. For each power plant i = F

and node j ∈ N , the unit production cost CpFj and an efficiency parameter ηFj are

given. The thermal storage in each node k ∈ R is characterized by a unit production

cost CpSk to charge or discharge. For each thermal plant i ∈MT (k) and node k ∈ R,

the unit production cost is Cpik, whereas C−j and C+
j denote the costs for power

oversupply and deficit in node j ∈ N , respectively (note that C+
j >> C−j ). Finally,
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for what concerns the network, we are given a set Ecand ⊆ E of candidate lines for

transmission corridor expansion. Each candidate line g ∈ Ecand has an installation

cost CVg to build the new line.

To model the problem, we introduce variables xijt representing the amount of power

generated/withdrawn by technology i located at node j ∈ N during time slot t ∈ T .

In addition, variables yij represent the capacity that is installed for technology i at

node j ∈ N . For each time slot t ∈ T and each node j ∈ N , the curtailed power

due to oversupply or congestion is given by variable s−jt, and the power deficit is

defined by variable s+
jt. Variable ug represents the expanded fraction of candidate

line along edge g ∈ Ecand. For each t ∈ T and node j ∈ N in which a battery is

installed, we introduce a variable xcBjt to denote the amount of energy that is used

to charge the battery, and a variable xdBjt for the amount of energy taken from the

battery. For each node k ∈ R, the amount of thermal energy generated/withdrawn

by technology i during time slot t ∈ T is given by variable qikt, while variable xij(i)t
represents the amount of electric energy converted to heat from node j, through

technology i in time slot t ∈ T . Variable qcSkt denotes the amount of energy used to

charge the thermal storage located at node k during time slot t, and variable qdSkt is

used for amount of energy that is taken from the thermal storage located at node k

during time slot t.

Finally, there are some additional variables to detect the costs in the objective func-

tion. Variable cPROD computes the total production cost, variable cINST computes

the total installation cost, variable cTRAN computes the total transportation cost,

variable cSLACK computes the total opportunity cost for undersupply/oversupply

and variable cTet computes the transmission cost for edge e ∈ E during time slot

t ∈ T .

All these figures are set to their value by constraints (2.1)-(2.4).

cPROD =
∑
t∈T

 ∑
j∈N :B∈M(j)

CpBj(x
d
Bjt − xcBjt) +

∑
j∈N :F∈M(j)

CpFj
xFjt
ηFj


+
∑
t∈T

 ∑
k∈R:S∈J

CpSk(q
d
Skt − qcSkt) +

∑
k∈R

∑
i∈MT (k):i 6=S

Cpikqikt

 (2.1)

cINST =
∑
j∈N

∑
i∈M(j)

CCijyij +
∑
k∈R

∑
i∈MT (k)

CCikyik +
∑

g∈Ecand

CVg ug (2.2)

cTRAN =
∑
t∈T

∑
e∈E

cTet (2.3)

cSLACK =
∑
t∈T

∑
j∈N

(
C+
j s

+
jt + C−j s

−
jt

)
(2.4)

For time step t ∈ T the electric demand Djt to be supplied at node j ∈ N is given.

Constraints (2.5) compute the power injected in the grid (zjt) in every node j ∈ N
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during time slot t ∈ T , while constraints (2.6) impose the power balance on the grid.

zjt =
∑

i∈M(j)

xijt +Djt + s+
jt + s−jt ∀j ∈ N, ∀t ∈ T (2.5)

∑
j∈N

zjt = 0 ∀t ∈ T (2.6)

Constraints (2.7)-(2.8) limit the slack variables of the problem, while constraints

(2.9) limit the maximum capacity of renewable energy that can be installed in a

node.

0 ≤ s+
jt ≤ −Djt ∀j ∈ N, ∀t ∈ T (2.7)

s−jt ≤ 0 ∀j ∈ N, ∀t ∈ T (2.8)

yij ≤ Y max
ij ∀j ∈ N ∪R,∀i ∈M(j) ∪MT (k) (2.9)

Parameter Eg represents the total emission related to installation of candidate

lines in set Ecand. Moreover, any technology i installed at a node j ∈ N ∪ R is

characterized by the equivalent CO2 emission per unit of capacity installed (Eyij) and

per unit of power generated/withdrawn (Exij). These values are related to variable

eij that represents the total emissions at node j due to technology i, while variable

eik defines the total emissions at node k due to technology i. Constraints (2.10)-

(2.11) define the emissions produced for every technology, while constraints (2.12)

limit the total CO2 emissions to a maximum value EMISSIONtotal.

eij =
∑
t∈T

Exijxijt + Eyijyij ∀j ∈ N, ∀i ∈M(j) (2.10)

eik =
∑
t∈T

Exikqikt + Eyikyik∀k ∈ R,∀i ∈MT (k) (2.11)∑
j∈N

∑
i∈M(j)

eij +
∑
k∈R

∑
i∈MT (k)

eik +
∑

g∈Ecand

Egug ≤ EMISSIONtotal (2.12)

Constraints (2.13) define the actual available energy for each technology i located

at node j and producing renewable energy (i.e., for each i ∈ {W,O,P}), that exploits

a renewable energy source according to the normalized feed-in FEEDINijt at time

t ∈ T .

xijt = FEEDINijt yij ∀t ∈ T, ∀j ∈ N, ∀i ∈M(j) ∩ {W,O,P} (2.13)

Constraints (2.14)-(2.15) limit the charge and discharge values of batteries, re-

spectively. Constraints (2.16) impose that the actual maximum storage capacity

wmaxBj of a battery located at a node j is a fraction of the maximum value CAPBj ,

while constraints (2.17) define the amount of energy injected/withdrawn in each
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battery at node j, according to efficiency parameters to charge or discharge ηcBj and

ηdBj , respectively. Constraints (2.18) define the amount of energy hBjt to be stored

in a battery located at a node j during time slot t, whereas constraints (2.19) impose

this figure to be between a minimum value Wmin
Bj and a maximum value, depending

on the installed capacity. In our model, we assume the initial and final values for

variables hBjt must coincide. Though we fixed these values to
yBj

2 , different values

can be used to model different scenarios.

0 ≤ xdBjt ≤ yBj ∀t ∈ T, ∀j ∈ N : B ∈M(j) (2.14)

−yBj ≤ xcBjt ≤ 0 ∀t ∈ T, ∀j ∈ N : B ∈M(j) (2.15)

wmaxBj = CAPBjyBj ∀j ∈ N : B ∈M(j) (2.16)

xBjt = xdBjt + xcBjt ∀t ∈ T, ∀j ∈ N : B ∈M(j) (2.17)

hBjt = hBj,t−1 −
xdBjt

ηdBj
− xcBjtηcBj ∀t ∈ T, ∀t ≥ 1, ∀j ∈ N : B ∈M(j) (2.18)

Wmin
Bj ≤ hBjt ≤ wmaxBj ∀t ∈ T, ∀j ∈ N : B ∈M(j) (2.19)

hBj0 =
yBj
2

∀j ∈ N : B ∈M(j) (2.20)

hBjΘ =
yBj
2
∀j ∈ N : B ∈M(j) (2.21)

Each edge e ∈ E has a maximum capacity Fe in terms of flow, a unit transmission

cost cTe and a constant line reactance (p.u.) Xe. Moreover, an incidence matrix is

given, whose generic element Kje, for each edge e ∈ E and node j ∈ V , takes value 1

if edge e starts on node j, -1 if edge e ends on node j, and 0 otherwise. Cec represents

a cycle matrix, that takes value 1 if edge e ∈ E is element of cycle c ∈ {1, .., |E| −
|N | + 1}, -1 if edge e ∈ E is reversed element of cycle c ∈ {1, .., |E| − |N | + 1}, 0

otherwise. Variable fet describes the power flow along edge e ∈ E for each time slot

t ∈ T . Constraints (2.22)-(2.23) represent the Kirchhoff laws that regulate the grid.

Constraints (2.24)-(2.25) set a limit to the power flows, respect the limit of the grid

lines. Constraints (2.26) define the transmission costs.

zjt =
∑
e∈E

Kjefet ∀t ∈ T, ∀j ∈ N (2.22)∑
e∈E

CecXefet = 0 ∀t ∈ T, ∀c ∈ {1, .., E −N + 1} (2.23)

−Fe ≤ fet ≤ Fe ∀e ∈ E − Ecand,∀t ∈ T (2.24)

−Fg − ugRg ≤ fgt ≤ Fg + ugRg ∀g ∈ Ecand,∀t ∈ T (2.25)

−cTet ≤ CTe fet ≤ cTet ∀e ∈ E,∀t ∈ T (2.26)

Constraints (2.27) ensure that the thermal demand Hkt of each node k ∈ R is satis-

fied for each time step t ∈ T . Constraints (2.28) limit the amount of electric energy
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converted to thermal energy for technologies of group L, while constraints (2.29)-

(2.30) compute the amount of thermal energy generated/withdrawn respectively of

technologies of group L and of solar heating, where COPit is the coefficient of per-

formance for each conversion technology i and time slot tT , and FEEDINHkt is

the normalized feed-in for node k producing thermal energy passively from external

sources. ∑
i∈MT (k)

qikt = Hkt ∀k ∈ R,∀t ∈ T (2.27)

−yij(i) ≤ xij(i)t ≤ 0 ∀i ∈ L, ∀j ∈ N, ∀t ∈ T (2.28)

qik(i)t = −xij(i)tCOPit ∀i ∈ L,∀j ∈ N, ∀k ∈ R, ∀t ∈ T (2.29)

qHkt = −yHkFEEDINHkt ∀k ∈ R : H ∈MT (k),∀t ∈ T (2.30)

The thermal storage in each node k is characterized by a minimal and maximal

storage energy capacity, denoted by Wmin
Sk and CAPSk, respectively. Efficiency pa-

rameters ηcSk, η
d
Sk and ηsSk are associated with charge, discharge, and for hourly

standing, respectively, for storage at each node k. Constraints (2.31)-(2.33) limit

the amount of energy used to charge/discharge the thermal storage, and the max-

imal energy capacity wmaxSk for a thermal storage located at a node k. Constraints

(2.34) define the amount of thermal energy generated/withdrawn for storage sys-

tems. Constraints (2.35) limit the energy stored in thermal storage systems hSkt

located at a node k during time slot t, to maximum and minimum values, while

constraints (2.36)-(2.37) state the energy stored in thermal storage systems for the

first time period to the given value WSk0, and for all the other time periods.

0 ≤ qdSkt ≤ ySk ∀t ∈ T, ∀k ∈ R : S ∈MT (k) (2.31)

−ySk ≤ qcSkt ≤ 0 ∀t ∈ T, ∀k ∈ R : S ∈MT (k) (2.32)

wmaxSk = CAPSkySk ∀k ∈ R : S ∈MT (k) (2.33)

qSkt = qdSkt + qcSkt ∀t ∈ T, ∀k ∈ R : S ∈MT (k) (2.34)

Wmin
Sk ≤ hSkt ≤ wmaxSk ∀t ∈ T, ∀k ∈ R : S ∈MT (k) (2.35)

hSk0 = WSk0 ∀k ∈ R : S ∈MT (k) (2.36)

hSkt = hSk,t−1η
s
Sk −

qdSkt
ηdSk
− qcSktηcSk ∀t ∈ T, ∀k ∈ R : S ∈MT (k) (2.37)

Moreover, for each power plant i ∈ Q the backpressure coefficient BPCi is given.

Constraints (2.38) limit the amount of electric energy converted to thermal energy

for technologies of group Q, while constraints (2.39) define this value.

0 ≤ xij(i)t ≤ yij(i) ∀i ∈ Q, ∀j ∈ N, ∀t ∈ T (2.38)

qik(i)tBPCi = xij(i)t ∀i ∈ Q, ∀j ∈ N, ∀k ∈ R,∀t ∈ T (2.39)
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The following constraints (2.40)-(2.45) define the variables of the problem.

0 ≤ xijt ≤ yij ∀j ∈ N, ∀i ∈M(j),∀t ∈ T (2.40)

zjt ≶ 0 ∀j ∈ N, ∀t ∈ T (2.41)

fet ≶ 0 ∀e ∈ E,∀t ∈ T (2.42)

xBjt ≶ 0 ∀j ∈ N : B ∈M(j),∀t ∈ T (2.43)

xSkt ≶ 0 ∀k ∈ R : S ∈MT (k), ∀t ∈ T (2.44)

0 ≤ ug ≤ 1 ∀g ∈ Ecand (2.45)

Finally, the objective function (2.46) minimizes the total costs calculated through

constraints (2.1)-(2.4).

min cPROD + cINST + cTRAN + cSLACK (2.46)

Table 2.1 summaries all the elements of the model.
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Table 2.1: Sets, parameters and variables of the model

Sets

t ∈ T = {1, ...,Θ} Set of time slots

j ∈ N = {1, ..., n} Set of nodes

I = {W,O,P,B, F} Set of technologies

M(j) ⊆ I Subset of technologies available at node j ∈ N
e ∈ E = {1, ...,m} Set of edges

k ∈ R = {1, ..., r} Set of thermal nodes

J = {H,S} Set of purely thermal technologies (H stands for solar heating, S for thermal storage)

L = {i =
(
k(i), j(i)

)
: k(i) ∈ R, j(i) ∈ N} Set of technologies converting electric energy from node j ∈ N to heat for node k ∈ R

Q = {i =
(
k(i), j(i)

)
: k(i) ∈ R, j(i) ∈ N} Set of technologies obtaining heat for node k ∈ R while producing electric energy for node j ∈ N

MT (k) ⊆ J ∪ L ∪Q Subset of technologies available at node k ∈ R
g ∈ Ecand ⊆ E Set of candidate lines for transmission corridor expansion

Parameters

CpBj Unit production cost to charge or discharge of battery at node j

CpFj Unit production cost of power plant at node j

ηFj Efficiency of power plant at node j

CCij Installation cost per unit of capacity of technology i at node j

Y max
ij Maximum capacity of technology i that can be installed at node j

CVg Installation cost to build new line g

CpSk Unit production cost to charge or discharge at node k

Cpik Unit production cost of thermal plant i at node k

C−j and C+
j Costs for power oversupply and deficit at node j

Djt Electric demand to be supplied at node j for time step t

Eg Total emission related to installation of candidate line g

Eyij Equivalent CO2 emission per unit of capacity installed of technology i at node j

Exij Equivalent CO2 emission per unit of power generated/withdrawn by technology i at node j

FEEDINijt Normalized feed-in for each technology i at node j at time slot t

CAPBj maximum storage capacity that can be installed at node j

Wmin
Bj Minimum electric storage at node j

ηcBj and ηdBj Efficiency to charge or discharge for battery at node j

Fe Maximum capacity in terms of flow for edge e

cTe Unit transmission cost of edge e

Xe Line reactance p.u. of edge e

Kje Incidence matrix for edge e and node j

Cec Cycle matrix for edge e and cycle c

Hkt Thermal demand for node k and time step t

COPit conversion performance for technology i and time slot t

FEEDINHkt Normalized feed-in from external sources for node k

Wmin
Sk Minimum thermal storage at node k

CAPSk Maximum thermal storage at node k

ηcSk, η
d
Sk and ηsSk Efficiency for charging, discharging, and for hourly standing of thermal storage at node k

WSk0 Initial value of thermal storage at node k

BPCi Backpressure coefficient for each power plant i

Variables

xijt Amount of power generated/withdrawn by technology i at node j during time slot t

yij Capacity installed for technology i at node j

s−jt and s+
jt Slack variables of over/under supply for time slot t and node j

ug Expanded fraction of candidate line along edge g

xcBjt and xdBjt Amount of energy used to charge/discharge the battery at node j during time slot t

yik Capacity installed for technology i at termal node k

qikt Thermal energy generated/withdrawn by technology i at node k during time slot t

xij(i)t Electric energy converted to heat from node j, through technology i during time slot t

qcSkt Energy used to charge the thermal storage at node k during time slot t

qdSkt Energy taken from the thermal storage at node k during time slot t

cPROD Total production cost

cINST Total installation cost

cTRAN Total transportation cost

cSLACK Total opportunity cost for undersupply/oversupply

cTet Transmission cost for edge e during time slot t

eij Total emissions at node j due to technology i

eik Total emissions at node k due to technology i

EMISSIONtotal Total CO2 emissions

wmaxBj Maximum storage capacity of a battery installed at node j

hBjt Energy to be stored in a battery located at node j during time slot t

fet Power flow along edge e during time slot t

wmaxSk Maximum energy capacity for thermal storage at node k

hSkt Thermal storage systems at node k during time slot t
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2.4 Numerical tests

We tested the model on two instances on three types of hardware architectures, using

in all cases Gurobi as LP solver. Table 2.2 reports the main characteristics of the

instances and of the hardware, as well as the results obtained in terms of computing

time. Obviously, the time needed to compute an optimal solution depends on the

instance and the machine used. While a solution for instance IEEE-118 was found by

all the three machines, when considering the larger instance (UC1-575), a solution

could be found only using a large amount of memory, as the one available on machine

IAEW.

Instance IEEE-118 was used for preliminary tests, which confirmed the relevant

role of renewable sources and storage systems: in particular, 49.75% and 29.1% of

the maximum capacity was installed, respectively. Instance UCI-575, represents a

more realistic case, associated with Germany in year 2050. The optimal solution

has a total cost of operation and expansion equal to 38.26 billion Euros p.a. The

more significant capacity expansion is experienced in wind power (205 GW) and

photovoltaic power (402 GW), while storage systems and conventional power plants

are expanded by 61 GW and 86 GW, respectively. We notice that 99.5% of the

demand is fulfilled, with a contribution of 84% given by renewable sources. A large

percentage of CO2 emissions is produced by gas-fired power plants (66%), closely

followed by grid expansion (23%).

Table 2.2

Instance Electric

nodes

Electric

branches

Heat nodes Storages Time steps Variables Constraints

IEEE-

118

118 165 296 106 8760 2.11e7 2.84e7

UCI-575 575 802 755 465 8760 6.87e7 9.35e7

IEE-118 UC1-575 cpu ram os

LAPTOP (4 cores) 3:42h Does not com-

pute

Intel Core i7-7700HQ

2.80GHz

32 GB Windows10

CLAIX2018 (16 cores) 2:10h Does not com-

pute

2x Intel Skylake 192 GB Linux

IAEW (16 cores) 1:26h 11:25h up to 2x56 threads up to 1 TB Linux

2.5 Conclusions and future developments

We proposed an LP model for the Central Energy System expansion planning, that

minimizes both the operational cost and the installation cost. The model imposes

limitations on the allowed CO2 emissions, while satisfying the customers’ demands.

Moreover, the costs of oversupply or shortage are considered. To ensure that the

proposed generation operations are compatible with the network, the problem takes
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into consideration also a preliminary analysis of the expansion of the transmission

network.

Moreover, we conducted some tests on two different instances, to detect the effec-

tiveness of the methodology proposed, using Gurobi as a solver and three different

types of machines. The results showed the high dependency of the memory required

to find an optimal solution, on the number of time steps and number of cores used

to solve the problem. In fact, while the smaller instance was successfully solved by

all the machines, the larger one could be computed up to its optimum only by the

machine with the larger memory available.

Finally, given the complexity of the problem and the size of the instances of real

scenarios, a heuristic may be necessary to create more competitiveness from a com-

putational point of view.

This is a preliminary work that requires additional research. From a modelling view-

point, a further step in the direction of energy coupling consists in the integration of

the gas network. From a computational perspective, the design and implementation

of alternative solution methods, possibly based on the structure of the problem,

could allow to solve larger instances and/or to reduce the computing time needed

for obtaining an optimal (or near-optimal) solution.
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Chapter 3

A bottom-up optimization

model for solar organic Rankine

cycle in the context of

transactive energy trading

1 Solar Organic Rankine Cycles (ORC) based power production plants utilize solar

irradiation for thermal power generation. Given the significant compatibility be-

tween the operating temperatures of solar irradiation based technologies and the

temperature needs of the cycle, they can be a promising renewable technology.

Moreover, their higher performance compared to steam Rankine cycles in small size

applications, makes them interesting within the smart grid context and microgrid

communities. In this study, we inspect the impact that this technology can have

on the peer-to-peer trading application in renewable based community microgrids.

Here the consumer becomes a prosumer (functioning both as energy producer and

consumer), and engages actively in virtual trading with other prosumers at the dis-

tribution system level. Specifically, we concentrate on a microgrid where the solar

ORC is combined with a storage system, to fulfill the final consumer’s demand. In

fact, the combination of these plants with storage systems is fundamental to in-

creasing their predictability and competitiveness with conventional plants, but it is

quite challenging from a management perspective. Thus, we develop a methodology

based on operations research techniques to use this system at its optimal point.

Moreover, we investigate how different technological parameters of the solar ORC

may affect the final solution. Finally, we study the value of the solar ORC in the

transactive energy trading context under different configurations and scenarios. The

results highlight an overall gain in the implementation of a predictable and man-

1The results of this chapter appear in [28]

27



ageable system as the one we present in this paper for a P2P transactive energy

trading context, on average 16% in terms of operational costs.

3.1 Introduction

The new millennium has started with several innovations driven by the fast evolu-

tion of technologies in the energy sector [6]. The worsening of climate conditions has

created a challenge for worldwide governments. Despite the implementation of new

directives to limit the consequences of climate change, the most recent energy crisis

highlighted the strong dependency that energy systems still have on conventional

energy sources. Disruptive structural developments are still necessary to deliver on

the European Union’s COP21 commitments [1], COP23 commitments [29] and UN

sustainable goals [2]. In this sense, the scientific community is addressing these is-

sues with widespread approaches, but the common trend is described by the words

energy efficient and environmentally friendly. Electricity production from solar en-

ergy has been proven to be a viable option for green energy production [30]. Because

of its abundance and availability, new solutions are continuously studied, to fully

exploit its potential. Some studies are based on the idea to exploit the full knowl-

edge and experience gained over the last century on conventional power generation

technologies and cycles, but in a greener decarbonized framework. For what so-

lar energy is concerned, a valid solution is represented by Organic Rankine Cycles

(ORCs). These cycles apply the same principles of a traditional steam Rankine cy-

cle, replacing water as working fluid with an organic fluid. Moreover, such cycles

give the possibility to select the best working fluid and plant size depending on the

available heat source. The possibility to select the best working fluid depending on

the available heat source and the plant size results in multiple advantages: (i) more

efficient turbomachinery, (ii) limited vacuum at condenser and (iii) higher perfor-

mance compared to both steam Rankine cycles and gas cycles especially for heat

sources lower than 400◦C and power output lower than 20 MW [31]. Therefore, it

seems perfectly suitable in a framework where a conventional heat source is substi-

tuted by a renewable one, i.e., solar energy. In fact, solar-driven technologies such

as parabolic trough collectors can effectively produce heat at temperatures between

50 ◦C and 400 ◦C [32]. The framework consisting of an ORC driven by a solar heat

source is referred to in the literature as Solar Organic Rankine Cycle (Solar-ORC).

Another research trend in the energy scientific community is smart grids. In

such a system, vast numbers of devices, passively connected to the grid, will become

actively involved in system-wide and local coordination tasks [10]. In this context

transactive energy trading emerges as a valid contender, to optimally coordinate

such a complex scheme. The focus in this concept is mainly on the distribution
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level and its actors. Here, smart homes, buildings, and industrial sites engage in

automated market trade with others at the distribution system level and with a

two-way negotiation based on prices and energy quantities [10]. In the future trend

consumers become prosumers who can both produce and consume energy, but most

importantly supply other consumers on a local level. This transactive energy trad-

ing among prosumers is called Peer-to-Peer (P2P) energy trading [33]. P2P is a

decentralized form of transactive energy trading where prosumers are given the

opportunity to engage without the need for an intermediary. This way, renewable

energy integration is promoted either by investments in locally distributed energy

resources made by prosumers or encouraging consumers to purchase green energy

locally, if they are incapable of investing in renewable energy sources. Although at

the early stage, the P2P electricity trading without the need for utilities is expected

to increase as the awareness of the shared economy has grown and the microgrid

has spread [34]. The main advantages of this system are: the power generation can

be made meeting the requirements of the end users and the utilization of the re-

sources can be optimized through the cooperative network between producers and

consumers [35].

The objective of this study is to investigate:

• The compatibility between ORC and solar technology in very different loca-

tions weather-wise, Tromsø and Bologna.

• The potential that the Solar-ORC coupled with a storage system could have

on a P2P transactive energy trading context. Given the applications of this

technology for reduced plant sizes, see Tartiere et al. [31], it seems suited for

the self-consumption requirements of a prosumer in such a trading context.

Moreover, we want to develop a tool that can optimize the management of the sys-

tem we are considering. We do so, by means of operations research based techniques.

First, we develop a MILP model for the operations scheduling of the Solar-ORC,

called the S-ORC model. Then, we develop an MILP model for the P2P Transactive

Energy Trading between multiple prosumers in a local energy market where some

Solar-ORCs are present as power generations plants owned by some prosumers,

called the TET model.

The remainder of this chapter is organized as follows. Section 4.2 presents a

literature review of the topics discussed in this paper, while Section 3.2.1 shows the

novelty and key contributions of this work. Section 3.3 explains the main technical

notes, assumption, and definitions, specifically in Section3.3.1 we focus on the Solar-

ORC, while in Section3.3.2 we focus on the transactive energy trading part. Section

3.4 formally presents the S-ORC model and the TET model, discussed respectively in
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Section3.4.1 and 3.4.2. Section 3.5 shows the computational experiments, specifically

Section 3.5.1 presents a sensitivity analysis on the S-ORC model, while Section

3.5.2 and Section 3.5.3 discuss the computational experiments respectively on the

S-ORC model and on the TET model. Section 3.6 contains further discussions and

reflections on the computational results, while Section 3.7 outlines possible research

perspectives. Finally, Section 3.8 draws conclusions.

3.2 Literature review

In this section, we discuss the main contributions related to transactive energy

trading with a solar organic Rankine cycle problem. This analysis is functional to

contextualize the results that will be consequently presented.

This paper combines the study of several topics, which in the past have been

usually analyzed separately. Therefore, it seemed more functional to group all the

contributions depending on the main topic they focus on, as one can observe in

Table 3.1. We classify the literature based on the main modeling features of the

treated problems.
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Transactive

energy

trading

Peer-to-

peer

Organic

Rankine

cycle

Solar-

ORC

Energy

storage

Simulation

models

Prescriptive

analytics

[31] X X

[36] X X X

[37] X X X

[10] X

[38] X X

[34] X X

[39] X X

[40] X X X

[41] X X X

[30] X X X X

[42] X

[43] X X X X

[44] X X X

[45] X X X

[46] X X X X

[47] X X X X

[48] X X X X

[49] X X X X

[50] X X X X

[51] X X X X

[52] X X X

[53] X X X

[54] X X X

Our pa-

per

X X X X X X X

Table 3.1: Classification based on objective from the literature

The discussion surrounding energy systems decentralization has drawn much at-

tention among researchers to look into transactive energy trading, especially in a

P2P framework. Kok et al. [10] give an insight on the main coordination mecha-

nisms of the smart grid vision, and on the role of transactive energy trading in this

context. Zia et al. [38] highlight potential reasons for avoiding the use of centralized

microgrid transactive energy system, and discuss existing architectures for a decen-

tralized transactive energy system. Park et al. [34] provide a comprehensive review

of the design of peer-to-peer markets, as well as their challenges and opportunities,

while Zhang et al. [39] discuss existing P2P projects. The scientific community’s sig-

nificant interest in P2P energy trading, has produced different strategies to tackle

this problem. Esmat et al. [50] propose a platform for a decentralized P2P trading

based on two key layers. A market layer features a short-term multi-staged multi-

period market with a uniform pricing mechanism. Then a blockchain layer offers
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a high level of automation, security, and fast real-time settlements through smart

contract implementation. Mishra et al. [46] develop a multi-agent approach, where

a math-heuristic model is used in the context of decentralized power distribution

system. In their work Wang et al. [49] present a method based on the double auction

market. Here each prosumer firstly dispatches its flexible energy resources with the

objective of minimum cost, then the coordination of energy resources among diver-

sified prosumers can be achieved with the aid of P2P energy transactions. Finally,

Khorasany et al. [51] implement a platform, where prosumers with excess energy

and consumers communicate with each other to maximize their welfare. A double

auction with an average mechanism is applied to determine the allocation and price

of energy.

The role of Solar-ORCs has been widely discussed in the literature. Zhao et al.

[40] provide a detailed literature review on each design procedure of ORCs using

artificial intelligence algorithms. While a comprehensive view of the ORC market

is given by Astolfi et al. [31], explaining the main ongoing applications and the

role of Solar-ORCs. Pierobon et al. [41] show a multi-objective optimization with a

genetic algorithm for the optimal design of ORCs. Other papers study specifically

on Solar-ORCs, focusing on different aspects. Tchanche et al. Some works [36]- [37]

investigate the impact of different organic working fluids on the plant’s overall per-

formance, while Chen et al. [48] introduce and evaluate using Aspen-HYSYS and

MATLAB software, a Solar-ORC configuration where solar energy plays a key role

in the production of energy and hydrogen fuel. Here the ORC is fed by a solar farm

based on the parabolic trough solar collector (PTSC), and then a fraction of the elec-

trical energy obtained is fed into an alkaline electrolyzer (AEL) to produce hydrogen

fuel. Mehrpooy et al. [47] concentrate on the design optimization of the Solar-ORC,

which is evaluated through a thermoeconomic performance. The optimal point was

selected using TOPSIS decision making technique among the Pareto frontier of the

genetic algorithm. Finally, Yu et al. [30] implement a simulation-based optimization

model in Aspen HYSYS to optimize both the design and operation of a Solar-ORC.

One major challenge facing a solar driven energy source such as Solar-ORC, is

the intermittency which makes it unreliable for steady energy supply. Through the

energy storage concept, these renewable resources can be made to be reliable and

steady energy sources [42]. The coupling of energy generation and storage has be-

come a trend nowadays in the scientific community. Casati et al. [43] study the role of

thermal energy storage for a Solar-ORC. Manfrida et al. [54] focus on a robust math-

ematical model of a Latent Heat Storage (LHS) system constituted by a storage tank

containing Phase Change Material spheres. The model is simulated under dynamic

(time-varying) solar radiation conditions with the software TRNSYS. Marefati et al.
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[52] present the performance study of a Pumped-Hydro and Compressed-Air storage

system, coupled with an organic Rankine cycle (ORC). Wang et al. [53] implement

an LP optimization model for a combined heat and power (CHP) based DH system

with RES and energy storage system (ESS). Finally some papers [45]-[44] propose

optimization models that include battery degradation, and highlight its impact on

having realistic performance of such systems.

While many works in the literature address some of the topics covered in this

paper, the majority do it separately, featuring just some of them.

Therefore there exists a research gap in the form of:

• Technological representation of solar ORC in ways suitable for inclusion within

mathematical optimization models for operational planning of energy systems.

• A practical understanding of the value of solar ORC in peer-to-peer interaction

at the microgrid level.

To the best of our knowledge, the problem we introduce in this paper is the first

to simultaneously feature a MILP model for transactive energy trading in a P2P

context for a Solar-ORC coupled with a storage system.

3.2.1 Novelty and key contribution

The main contributions of this work can be divided into two categories: a method-

ological contribution and an analytical contribution.

From a methodology point of view, we propose a MILP model for Solar-ORCs

coupled with a storage system that includes technological details. More specifically,

the model considers detailed energy balances for the components of the cycle. It

also contains thermodynamic properties of the fluid to see how different working

fluids impact the performance of the plant. Moreover, battery degradation is also

included, to optimize battery usage. Such a model is inserted in a wider optimiza-

tion model for P2P transactive energy trading. Here several microgrids each of them

representing a single prosumer, are able to exchange energy with each other. Both

models can be used as stand alone models or can be easily included in large open

source energy system models. Traditional energy systems models available in the

literature, especially the largest ones, are usually technology agnostic, thus do not

contain a detailed description of the technologies involved. In fact, technologies are

usually treated as black boxes without considering technological features. This sim-

plification may be functional for certain problems, and may be more competitive

from a computational time point of view. However, including technological details

can be the key to more realistic implementations and results. Moreover, having such
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details can open possibilities for new users, that specifically request such informa-

tion.

The analytical contribution given by this paper is represented by an extensive

sensitivity analysis. We first test different frameworks for the Solar-ORC with sev-

eral working fluids and plant sizes. We implement this analysis to understand the

general value of the Solar-ORC. Then we introduce the Solar-ORC in a P2P trans-

active energy trading framework to perform more analyses. The aim is to evaluate

the value of such a system in this context and to better understand the benefit that

this plant system could have on the community. We consider different scenarios,

i.e. different energy communities. We create instances that represent domestic and,

industrial users that can also be prosumers, thus satisfying their own demand. Fi-

nally, all the tests are repeated for different cities and different seasons of the year,

to understand how the performance and value of the system may be affected.

3.3 Technical notes, assumptions, and definitions

In this section, we give an insight of which are the main technical aspects and

assumptions concerning this work. Such insight is substantial for the reader to better

understand the models that we propose later on. More specifically in section 3.3.1

the insight is referred to the Solar-Organic Rankine cycle, while in section 3.3.2 we

focus on the transactive energy trading part.

3.3.1 Solar-Organic Rankine cycle

Solar-Organic Rankine cycles are characterized by using the sun as a source of ther-

mal energy. In fact, a solar collector acts as an evaporator to heat the working fluid

of the Rankine cycle. The use of solar irradiation for driving an ORC is a promis-

ing renewable energy-based technology due to the high compatibility between the

operating temperatures of solar thermal collector technologies and the temperature

needs of the cycle [55]. In fact, organic Rankine cycles usually operate at tempera-

tures of up to 400 ◦C or 500 ◦C, which is perfectly compatible with thermal energy

available from solar-based technologies.

The Solar-ORC scheme is depicted in Figure 3.1. The ORC sub-system consists of

a pump, an evaporator, a turbine and a condenser. The organic working fluid is

pumped from condensation pressure to evaporation pressure. After pumping, the

organic working fluid is vaporized and superheated in the evaporator, using ther-

mal energy supplied by solar panels. Next, the high temperature and high pressure

vapor is expanded through the turbine to generate power. Finally, the working fluid

is condensed in the condenser.
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Figure 3.1: Scheme of the Solar-ORC

The scope of our research work is surrounding the economic operational opti-

mization of the plant’s scheduling. Thus, we include in our optimization process the

components of the cycle, that are directly connected to the net power output of the

plant, i.e., the pump, the turbine and the heat exchanger connected to the solar

panels.

The regulation of the steam turbines is used at a constant velocity to adapt the

power of the turbine. We assume to apply lamination as a regulation policy of the

cycle. In this regulation the process is at constant enthalpy. By closing a valve, thus

reducing the section area, at the entrance of the turbine the pressure of the steam

is reduced, while the entropy rises. As the valve is closed, the constant enthalpy

process occurs through the valve with an increase in entropy and a decrease in the

availability of energy per unit of mass flow rate.

The thermodynamic properties of the working fluid are fundamental to deter-

mine the economics of an ORC. A bad choice could lead to a low efficient and

expensive plant [36]. Thus, we include in our model a more detailed calculation of

the mass flow rate of the working fluid, directly dependent on the type of organic

fluid used. We choose to use density as the parameter representative of the thermo-
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dynamic properties of the organic working fluid.

We present 9 different types of organic fluid, already well-known in the literature.

These fluids are considered valid candidates. However, the methodology that we

propose in Section 3.4 can be applied to any type of organic fluid.

Energy storage is an essential link in energy supply chain [42]. This is enhanced

when it comes to most renewable energy resources, especially solar and wind. As a

matter of fact, they occur intermittently, which makes them unreliable for a steady

energy supply. If coupled with energy storage technologies, these renewable resources

can increase their reliability.

Battery system technology is the most widespread energy storage device for power

system application [56]. They seem to be a commonly applied solution lately to

deal with renewable energy sources’ instability. Nonetheless, the gain obtained in

stabilizing the system may not be proportional to the increase in costs. In fact,

the installation of batteries does not always automatically reduce the cost enough

to pay for the installation [44]. Therefore, including an optimization of the storage

system from a usage point of view, may be crucial to contain economic losses. In

fact, the lifetime of a battery is highly influenced by the way it is operated, and

by deterioration. Bad handling could result in more frequent substitutions of the

battery, thus in higher costs.

The parameter that measures the life of a battery is called lifetime throughput. It

defines the total dischargeable amount of energy in kWh, before it is no longer able

to deliver energy, enough to satisfy the load requirements of the system. The resid-

ual number of cycles to failure is inversely proportional to the depth of discharge.

Deeper discharge results in a lower number of related cycles to failure.

Another important parameter is the state-of-health of a battery. This is a percentage

of the battery capacity available when fully charged relative to its rated capacity.

The state-of-health accounts for battery aging. Manufactures guarantee that the

capacity of the battery will not drop more than a certain percentage as long as the

total energy drawn is kept within the lifetime throughput [45].

In our paper, we include both the lifetime throughput and the battery fade due

to aging in our methodology. This way, the optimization process will avoid a non

economically optimal use of the storage system.

3.3.2 Transactive energy trading

Transactive energy trading emerges as a valid option among smart grids handling

tools. The concept of having local actors that handle the grid on a distribution

level, opens the opportunity for consumers to be more active and involved. Consid-

ering that self-consumption has become greatly widespread, thanks also to incentives
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given in the last decades by governments, the role of consumers has substantially

changed. The so called prosumers are now important actors, that can no more be

considered as passive entities. Especially, when the stability of the grid is involved,

it becomes even more clear that new management options are necessary to deal with

these deep changes in the grid’s framework.

From the prosumers’ point of view, especially those less experienced, having an

automated market trade can be crucial. This way they can concentrate on the opti-

mization of their own profit. In a self-consumption framework, the prosumers invest

to fulfill their own consumption, usually using a renewable energy source. Thus,

the profit comes mainly from handling his own demand. The possibility of selling

overproduction to other prosumers, or buying when there’s a lack of production, is

a plus. In view of this concept, the goal of our work in the trading phase, is to only

optimize the under/over supply of electricity among the micro-grids of our system.

As we will discuss more in detail later on, this also will give us a great advantage

from a computational point of view.

In this paper, we concentrate on short (hour)-medium (week) operational plan-

ning. We consider this to be more meaningful for the problem we are inspecting.

Therefore, we concentrate on a weekly time range to lead computational experi-

ments.

Figure 3.2 shows the scheme of the single microgrid that we want to optimize.

The Solar-ORC is coupled with a battery, to fulfill the prosumer’s demand. The grid

is used to balance over/under supply by the Solar-ORC.

Figure 3.2: Scheme of the system considered

Figure 3.3 shows the total P2P transactive energy trading system that we want
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to optimize in our work. Here the microgrids that represent the single prosumers are

able to interact with each other. The grid is used to balance the total over/under

supply of the prosumers. The scheme is optimized considering virtual energy. In

fact, the microgrids can be seen as VPPs.

Figure 3.3: Scheme of the system used for the P2P trading

3.4 Methodology

In this section, we present the two MILP models that we used to optimize the prob-

lem previously presented. In section 3.4.1 we present an optimization model for the

management of S-ORCs coupled with a storage system, called the S-ORC model.

In section 3.4.2 we present an optimization model for Transactive Energy Trading,

called the TET model, in a P2P context for a Solar-ORC coupled with a storage

system. A list of acronyms is provided in table 3.2.

ORC Organic Rankine Cycle

S-ORC Solar-ORC

TET Transactive Energy Trading

P2P Peer-to-Peer

MILP Mixed Integer Linear Programming

Table 3.2: List of acronyms

Table 4.1 summarises all the sets parameters and variables used in the S-ORC

model and in the TET model.
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Sets

t ∈ {0, .., T} Set of time intervals

i ∈ N Set of microgrids

Parameters

ηth Efficiency of the heat exchanger

ηb Charging/discharging efficiency of the storage system

ηI Efficiency of the Solar-ORC

ηsolar Efficiency of the solar system

cp Cost of production

ctt,ij Transmission cost from i ∈ N to j ∈ N
cb Cost of charging/discharging

xmin Minimum power boundary of the ORC

xmax Maximum power boundary of the ORC

zmin Minimum power boundary of the pump

zmax Maximum power boundary of the pump

gmin Minimum boundary of electricity that can be injected in the grid

gmax Maximum boundary of electricity that can be injected in the grid

bmin Minimum power boundary of the storage system

bmax Maximum power boundary of the storage system

Dt Demand of each t ∈ {0, .., T}
v Velocity of the working fluid

Asolar Area of the solar system

Itsolar Beam irradiation for every t ∈ T
fmaxij Maximum flux of electricity limit from prosumer i ∈ I to prosumer j ∈ J
fminij Minimum flux of electricity limit from prosumer i ∈ I to prosumer j ∈ J
ρ Density of the working fluid

∆hP Enthalpy difference in the pump

∆htT Enthalpy difference in the turbine

Bfade Battery fade in efficiency due to aging

Bthroughput Battery throughput

Variables

gt Injection of electricity in t ∈ {0, .., T}
qtin Thermal power coming from the heat exchanger for every t ∈ {0, .., T}
zt Power consumed by auxiliaries and pump in the ORC

bt Battery level for every t ∈ {0, .., T}
btin Power flow entering the battery for every t ∈ {0, .., T}
btout Power flow injected in the grid for every t ∈ {0, .., T}
btmax Maximum capacity of the storage system

dt Storage system degradation

qtsolar Solar power injected in the heat exchanger for t ∈ {0, .., T}
xt Power produced by the Organic Rankine cycle for t ∈ {0, .., T}
mt
ORC Mass flow rate of the Organic Rankine Cycle for t ∈ {0, .., T}

At Section area traversed by the mass flow rate for t ∈ {0, .., T}
f tij Flux of electricity sold from microgrid i ∈ I to consumer j ∈ J
etin Electricity taken from the grid by the single microgrid every t ∈ T
etout Electricity sold to the grid by the single microgrid every t ∈ T
htin Electricity taken from the grid to balance the whole system every t ∈ T
htout Electricity sold to the grid to balance the whole system every t ∈ T

Table 3.3: Sets, parameters and variables used in the S-ORC model and in the

TET model
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3.4.1 S-ORC model

In the following, we present an optimization model for the management of S-ORCs

coupled with a storage system, called S-ORC model.

The planning horizon is divided into t ∈ T hourly intervals. Note that this can be

adjusted to meet the needs of the application of the model. For each time interval,

the final consumer’s demand is given Dt. Several parameters are related to the ther-

modynamic characteristics of the system. The efficiency of the Solar-ORC is denoted

by parameter ηI , while ηth is the efficiency of the heat exchanger. The maximum and

minimum electric energy production limits of the Solar-ORC are xmax and xmin,

whereas gmax and gmin limit the electricity available to be injected in the or needed

by the system. In this sense, the grid is used in this model to balance the system in

case of over/under production. Thus, the overproduction can be injected into the

grid and vice versa underproduction can be withdrawn from the grid. The velocity

v and density ρ of the working fluid are given, as the specific heating value CP,ORC .

The Solar-ORC is characterized by a temperature difference inside the pump ∆TP

and inside the turbine ∆TT , whereas the efficiencies of the pump and the turbine

are denoted as ηP and ηT .

The solar system is defined by the total area Asolar and the efficiency of the solar

panel ηsolar. For every time interval t ∈ T the beam irradiation Itsolar is given.

The storage system is defined by the charging/discharging efficiency ηb, and by a

maximum and minimum limit the capacity, respectively bmax and bmin. We consider

a battery as a storage system. To better evaluate the actual capacity of the battery,

we introduce two parameters, the lifetime throughput of the battery Bthroughput,

and the battery fade Bfade. The lifetime throughput measures the life of a battery.

It defines the total amount of energy in kWh that can be discharged before it cannot

satisfy the load requirements of the system. Additionally, the battery fade is used

to calculate the loss of capacity as the battery ages. The capacity of the battery

will not drop more than a certain percentage, i.e. Bfade as long as the total energy

drawn is kept within the lifetime throughput [45].

Every kWh of electricity produced by the Solar-ORC has a cost cp while every kWh

of electricity stored has a storage cost of cb.

The objective of the model minimizes the total costs of production, given by the

cost of production and the cost of storage. The electricity produced by the turbine of

the Solar-ORC every time interval t ∈ T is measured by variable xt, while variables

btin and btout measure the electricity respectively charged or discharged every t ∈ T .

[S-ORC model] minimize
∑
t∈T

cpx
t + cb(b

t
in + btout) (3.1)

Constraints (3.2)-(3.4) define variable gt, the electricity available to be used every

40



t ∈ T . Specifically, constraints (3.2) limit its capacity, while constraints (3.3)-(3.4)

are energy balances on the system. Furthermore, variables etin and etout indicate the

amount of electricity withdrawn or injected in the grid.

gmin ≤ gt ≤ gmax ∀t ∈ T (3.2)

gt = xt − zt − ηbbtin +
btout
ηb
∀t ∈ T (3.3)

gt + etin ≥ Dt + etout ∀t ∈ T (3.4)

Constraints (3.5)-(3.7) describe the energy balances to define the actual electric-

ity production of the Solar-ORC. More precisely constraints (3.5) connect the net

energy produced, given by the subtraction of the energy produced by the turbine

xt and the one consumed by the pump zt to the thermal energy coming from the

heat exchanger for every t ∈ T . While constraints (3.6)-(3.7) measure the energy

respectively produced by the turbine and consumed by the pump. Both these ener-

gies are regulated by the mass flow rate of the working fluid represented by variable

mt
ORC . The value of energy respectively produced by the turbine and consumed by

the pump is limited by constraints (3.8)-(3.9).

xt − zt = ηIq
t
in ∀t ∈ T (3.5)

xt = mt
ORC∆hT ∀t ∈ T (3.6)

zt = mt
ORC∆hP ∀t ∈ T (3.7)

xmin ≤ xt ≤ xmax ∀t ∈ T (3.8)

zmin ≤ zt ≤ zmax ∀t ∈ T (3.9)

(3.10)

The mass flow rate of the working fluid for every t ∈ T is calculated through con-

straints (3.11). Here variable At represents the actual section of the pipes, regulated

every t ∈ T .

mt
ORC = ρAtv, ∀t ∈ T (3.11)

The solar system is managed through constraints (3.12)-(3.13). In fact, constraints

(3.12) link the thermal energy provided by the solar panels to the thermal energy

available at the heat exchanger of the Solar-ORC, whereas constraints (3.13) com-

pute the thermal energy provided by the solar panels with respect to the beam

radiation.

qtin ≤ ηthqtsolar ∀t ∈ T (3.12)

qtsolar = ηsolarAsolarI
t
solar ∀t ∈ T (3.13)
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The battery management is provided by constraints (3.14)-(3.21). More specifically,

constraints (3.14) measure the battery level bt for each t ∈ T . At the beginning of the

time horizon considered the energy stored in the battery and the energy withdrawn

from it are both set to zero by constraints (3.15)-(3.16). The presence of variables

ytin and ytin in constraints (3.17) guarantee that there is no simultaneous withdrawal

and injection happening in the battery for every time step t ∈ T . In fact, ytin and

ytout represent binary variables that take the value 1 if energy is respectively injected

in or withdrawn from the battery in t ∈ T and 0 otherwise.

bt = bt−1 + ηbb
t
in −

btout
ηb
∀t ∈ T (3.14)

b0 = 0 (3.15)

b0out = 0 (3.16)

ytin = 1− ytout ∀t ∈ {0, .., T} (3.17)

btout ≤ bmaxytout ∀t ∈ {0, .., T} (3.18)

btin ≤ bmaxytin ∀t ∈ {0, .., T} (3.19)

The following set of constraints accounts for the degradation of the battery in time.

Constraints (3.20) computes the degradation factor in each t ∈ T , which is then

applied to the maximum capacity limit in constraints (3.21). Finally, constraints

(3.22)-(3.23) limit the energy withdrawn/injected every t ∈ T .

Bfade

Bthroughput
|bt − bt−1| ≤ dt ∀t ∈ T (3.20)

btmax ≤ dtbmax ∀t ∈ T (3.21)

bmin ≤ btin ≤ btmax ∀t ∈ T (3.22)

bmin ≤ btout ≤ btmax ∀t ∈ T (3.23)

Finally, constraints (3.24)-(3.26) define the variables.

xt, zt, bt, btin, b
t
out, e

t
in, e

t
out, q

t
in, q

t
solar,m

t
ORC ≥ 0 ∀t ∈ T (3.24)

gt ≶ 0 ∀t ∈ T (3.25)

0 ≤ ytin, ytout ≤ 1 ∀t ∈ T (3.26)

3.4.2 TET model

In the following, we present an optimization model for Transactive Energy Trading,

called the TET model, in a P2P context for a Solar-ORC coupled with a storage

system. The TET model is implemented after the S-ORC model to optimize the

P2P trading among microgrids. In this sense, a set N of participants in the trading

is defined. The participants are essentially consumers or prosumers that can partic-

ipate as part of the demand, as part of the providers or both for every time step t in
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which the time range T is divided. The S-ORC model is solved in parallel for every

participant, calculating the imbalances produced by over/underproduction of each

system. These imbalances were handled in the S-ORC model by the grid, through

variables etout and etin. The optimal values of these variables produced by the S-ORC

model are then optimized by the TET model. In fact, they are used as parameters

etj,out and etj,in. More precisely etj,in is the energy needed by participant j ∈ N , while

etj,out that can be traded by participant j ∈ N . The variables that represent the

fluxes of energy that move among participants j ∈ N every time step t ∈ T are

computed by variables f tij . The grid is used once again to deal with imbalances.

However, this time such imbalances concern the whole system and not the single

participant. The pseudo-code of this process are shown in Algorithm 1.

Input: Set of participants N and set of time steps T ;
for j ∈ N do

Input: Parameters for the S-ORC model;
Solve the S-ORC model;
Output: etj,out and etj,in

end
Input: For every j ∈ N and t ∈ T etj,out and etj,in;
Solve the TET model;
Output: Optimal solution for the TET model

Algorithm 1: Pseudo-code of the solving procedure

The methodology described is functional to the problem we are trying to solve.

In fact, we want each single prosumer to first fulfill their own demand, and then

to think about trading of residual capacity. Therefore, it seemed more practical to

avoid a single optimization model that contained both the TET model and the S-

ORC model.

The objective of the TET model (3.27) aims to minimize the overall costs of the

trading system. Such costs are represented mainly by transmission costs given by

parameter ctT for every kWh that goes from participant i ∈ N to participant j ∈ N
every t ∈ T .

[TET model] minimize
∑
t∈T

∑
i∈N

∑
j∈N

ctT,ij |f tij | (3.27)

Constraints (3.28)-(3.29) balance the energy sold to another participant or bought

from another participant for every participant i ∈ N and j ∈ N , every time step

t ∈ T . ∑
j∈N

f tij ≥ etj,out ∀t ∈ T, , ∀i ∈ N (3.28)

∑
i∈N

f tij ≥ etj,in ∀t ∈ T, , ∀j ∈ N (3.29)
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Constraints (3.30) balance the overall system with the grid, to control over/under

production.

htin +
∑
i∈N

∑
j∈N

f tij = htout ∀t ∈ T (3.30)

Constraints (3.31) limit the fluxes between all the participants i, j ∈ N to a mini-

mum and a maximum value, i.e fminij and fmaxij , every time step t ∈ T .

fminij ≤ f tij ≤ fmaxij ∀t ∈ T, ∀i ∈ N, ∀j ∈ N (3.31)

Finally constraints (3.32)-(3.33) define the variables.

f tij ≶ 0 ∀i, j ∈ N ∀t ∈ T (3.32)

htin, h
t
out ≥ 0 ∀t ∈ T (3.33)

3.5 Computational experiments

In this section, we will present the results obtained by the computational exper-

iments. The computational experiments have been done with four threads with 8

GB, on a computer having 4 cores and a processor Intel(R) Core(TM) i5-7200U

@2.50 GHz. All the tests were performed using Gurobi 9.1.2 [57] as solver. The

models were implemented using the JuMP package of Julia [58].

3.5.1 Sensitivity analysis on the S-ORC model

In this Section, we present the results obtained by performing a sensitivity analysis

on the S-ORC model. This was done to inspect, how changing some specifics of

the Solar-ORC would affect the system. The demand is represented by an industrial

plant, that uses the Solar-ORC in a self-consumption setting. We solve every instance

considering a time horizon of one week, with hourly intervals. All the instances

presented, where solved within 0.06 seconds. First, we tested the model using 9

different types of working fluids for the Solar-ORC, to detect the effects that this

might have on the mass flow rate. The working fluids have different specifics that

are shown in Table 3.4.
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Fluid Molecular Weight [kg/mol] Tcrit[
◦C] Pcrit[MPa] Cp [J/kg ◦C] Density [kg/m3̂]

Ethanol 0.046 240.8 6.148 2432 0.253100481

Methanol 0.032 240.2 8.104 2512 0.369822485

Cyclohexane 0.084 280.5 4.075 154.37 0.632911392

R134a 0.102 101 4.059 1268 0.8838

R141b 0.11695 204.2 4.249 895 0.195

RC318 0.2 115.2 2.778 898 0.028

R114 0.17 145.7 3.289 845 0.05

R113 0.187 214.1 3.439 867 0.215

R32 0.052 78.11 5.784 848 0.011

Table 3.4: Working fluids thermodynamic properties

Figure 3.4 shows the mass flow rate needed using different fluids for a 2 kW

Solar-ORC, considering the same working conditions. As one can observe working

fluids like Ethanol, Methanol, Cyclohexane and, R134a need a lower mass flow rate.

Thus, from an economic perspective, these fluids can be interesting, especially for

large capacity systems.

Figure 3.4: Mass flow rate for different type of working fluids

Subsequently, we analyzed the consequences on the system’s performance by

considering 9 different sizes of the ORC, shown in Table 3.5.
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Size [kW]

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Table 3.5: Organic Rankine Cycle sizes

Figure 3.5 shows the difference in objective function considering Ethanol as

working fluid. As one can observe, the objective decreases by increasing the size

of the plant, up to a certain threshold. The decrease in the objective is due to

a decrease in the electricity provided by the grid, to satisfy the final consumer’s

demand. When the optimal size to satisfy such demand is reached, there is no

economic benefit to increase the plant’s size further. This is consistent with the

self-consumption framework that we are considering.

Figure 3.5: Objective difference with the size of Solar-ORC

Later we inspected the effect of weather conditions on the system. We detected

four representative weeks in the months of April, July, October, and January. More-

over, we considered two locations for the system: the city of Bologna in Italy, and the
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city of Tromsø in Norway. These cities represent two completely opposite scenarios,

that could both potentially benefit from the system considered. In fact, Bologna

(44.4949◦ N, 11.3426◦ E) is located in the northern part of Italy in Emilia-Romagna

region. It has a typically humid temperate climate with cold, humid winters and hot,

muggy summers. Precipitation is moderate, while the rains are fairly well distributed

throughout the year, even if two maxima are noted in spring and autumn, and two

relative minima in winter and summer. On the other hand, Tromsø (69.6492◦ N,

18.9553◦ E) is a city in Northern Norway located in the county of Troms and Finn-

mark. It is subject to a subarctic climate, with very cold winters and cool summers.

Since we are north of the Polar Circle, the sun does not rise (polar night) from

November 28th to January 14th, while it does not set (midnight sun) from May

19th to July 26th.

We present results for a 2 kW Solar-ORC using Ethanol as working fluid. We make

the hypothesis of considering the same cost of electricity sold by the grid both in

Bologna and Tromsø. This is done to highlight the real difference in terms of solar

incidence between these two locations. This hypothesis stands for all the following

tests unless specified.

Figure 3.6: Comparison of objectives for two different locations for four significant

weeks

As shown in figure 3.6 Bologna as a location gains a higher economic advantage

than Tromsø, regardless of the season. However, this advantage is more significant

during July and January. This is consistent with the weather conditions in Tromsø

during winter, with almost no solar incidence. Moreover, regardless of the midnight

sun phenomenon occurring in Tromsø during summer, the solar incidence in Bologna
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is still higher due to its latitude.

We introduce also two more representative weeks in December and August, as shown

in Figure 3.7. In fact, we want to inspect further possible minimum and maximum

points. As one can observe, while the real minimum point is going to be between

the last week of July and the first of August for both cities, the real maximum point

is more evident in December for Tromsø than it is for Bologna where December and

January are almost equivalent.

Figure 3.7: Comparison of objectives for two different locations for six significant

weeks

3.5.2 Computational experiments on the S-ORC model

In this Section, we present results given by testing the S-ORC model. The results

shown are referred to the city of Bologna. Figure 3.8 and figure 3.9 show the results

given by the model in terms of Solar-ORC production, electricity withdrawn from

the grid and battery usage.
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Figure 3.8: Solar-ORC production and electricity withdrawn from the grid for the

city of Bologna

Figure 3.9: Battery charge and discharge for the city of Bologna

As one can observe in Figure 3.8 the grid is used by the S-ORC model to com-

pensate for the lack of production by the Solar-ORC. Specifically, it is used most

during the first time periods when there is no solar energy available and the battery

is still not charged. This behavior is consistent with the realistic management of the

plant. Moreover, as shown in Figure 3.9 usage of the battery is accordingly to its

charging operations. In fact, the withdrawal from the battery starts consequently

to charging operations, meaning there is actually available energy in the storage

49



system.

3.5.3 Computational experiments on the TET model

A second step was to inspect the role that the Solar-ORC can potentially have when

introduced in a peer-to-peer context. We tested the TET model with multiple in-

stances. Each instance represents a different energy community. At first, we consider

an instance that is described in Figure 3.10. Here, the components of the system are

partly consumers and partly prosumers. The prosumers are supplied energy by a

Solar-ORC in a self-consumption framework, thus the Solar-ORC should first satisfy

their demand and then the other consumers’ demand. We introduce different types

of demand, i.e. industries (that work 24/7) and households.

Figure 3.10: Sytem with different types of consumers, some of them being

prosumers supplied by a Solar-ORC

Then, we consider an instance where all the consumers become prosumers, each

of them being supplied by a different Solar-ORC. The system of the instance is

represented in Figure 3.11.
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Figure 3.11: Sytem where all consumers are prosumers supplied by a the

Solar-ORC

The results of such instances are shown in Figure 3.12.

Figure 3.12: Results from the TET model tested on different instances

The introduction of Solar-ORC in a P2P trading context results in a economic

gain of averagely 4%, compared to having a single Solar-ORC. The tests show a

higher gain in terms of total operational costs for the Bologna location, on average

4.5%. This is coherent with the results obtained by the S-ORC model, as shown

previously. The results obtained in Bologna by the S-ORC model are still better in

51



terms of operational costs than the ones obtained in Tromsø by the TET model. This

is justified by the latitude of Bologna and its greater solar irradiation. Moreover, the

gain increased during the summer and spring seasons, in both locations. This is also

consistent with the higher solar activity of such periods, as previously discussed.

3.6 Discussions

In this section, we discuss further the results presented in section 3.5. The results

show that both the S-ORC model and the TET model produce realistic solutions.

The use of Solar-ORC resulted in an improvement of 12% on average ( 10% for

Tromsø and 14% for Bologna) in terms of operational costs, compared to not us-

ing such technology. Moreover, when introduced in a P2P trading context the im-

provement is even greater, around 16% on average (19% for Bologna and 14.7%

for Tromsø). These solutions change reasonably with the weather conditions both

in terms of latitude and season. In fact, given the same cost of electricity, Bologna

tends to have greater economic gain compared to Tromsø. The difference in varies

between 1% and 20%, with a medium value of 11.72%. This is consistent with the

difference in solar incidence that these two locations have, because of their latitude.

Furthermore, this difference is enhanced during the winter season, especially in De-

cember and January, where the difference in terms of costs is around 20%. As a

matter of fact, during these months Tromsø is subject to the ”Polar Night” phe-

nomenon, with almost 24 hours of darkness. On the contrary, during springtime, the

difference in the objective is almost none, around 1%, consistently with the weather

in Bologna being often cloudy.

Concentrating just on the Tromsø instance, one can observe that the results change

when taking into account local electricity prices. In fact, the objective values are

drastically decreased due to lower local electricity prices, especially during summer

when they are extremely low. Given that the electricity prices in Norway are sig-

nificantly lower than in Italy, especially during summer, it might seem not much

convenient to invest in a renewable energy source such as Solar-ORC. However, re-

cently new studies, i.e. Nguyen et. al [59], have concentrated on solar power systems

in this area, showing how Tromsø may profit from them. According to Eikeland et.

al [60], the energy production of these systems could be coupled with Cruise ships’

energy consumption. Cruise ships have a great demand, that needs to be fulfilled

even when they are located in a harbor. If the energy supply from the harbor is

not sufficient, the ships need to run their own motors to operate, thus producing a

great environmental impact. Furthermore, Eikeland et. al [60] state that the highest

number of visiting Cruise ships (C.S) is during the tourist season in June, July and

August. This period coincides with the ”Midnight Night” phenomenon in Tromsø,

with almost 24 hours of solar power availability.
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Another way to increase the exploitability of this technology in artic areas like

Tromsø, could be the coupling with seasonal storage. Considering the before men-

tioned peculiar climate of this area, long-term storage seems even more appropriate.

This way, the great solar energy availability in summer would be exploited also dur-

ing winter. Thus, the economic advantage would be evenly distributed throughout

the year.

A more detailed focus needs to be made on the computational time. Both the

S-ORC model and the TET model are able to solve all the instances within a few

seconds. This seems reasonable with the time range of optimization considering that

never goes above one week. In this paper, we concentrate on this time range, since

it is more meaningful for the short-medium operational planning time range that

we are inspecting. Moreover, the TET model solves first multiple S-ORC models in

parallel (one for each micro-grid) and then optimizes the trading within the S-ORC

models. Thus, the computational time is given by the addition of the longest compu-

tational time among the parallel S-ORC models and the trading part computational

time. This solution is less time costly than considering a single general optimization

of the system and is more consistent with the self-consumption framework we are

considering. In fact, in a self-consumption framework, the final user’s goal is first

to fulfill its demand through its own power production plant and then to adjust

over/undersupply. In view of this concept, the goal of our model in the trading

phase is to only optimize the under/oversupply of electricity among the micro-grids

of our system.

Being computationally tractable, these modeling approaches can be of great value

for a wide variety of energy and power systems tools. Indeed, they can be introduced

in larger energy and power systems models, if the user wishes to investigate solar

ORC in a broader context. Open source tools such as PyPSA, [61], highRES [62],

GenX from MIT [63], Sienna from NRL [64], could benefit from such a technology-

oriented approach to be included, for instance, as a module for more specialized

studies.

3.7 Limitations of the work and future research

The results shown in section 3.5 highlight an overall gain in the implementation

of a predictable and manageable system as the one we present in this paper for a

P2P transactive energy trading context. However, in this paper, an investment costs

analysis is not included. Having investment costs would give for sure a more complete

view of the real gain of such systems. However, the scope of this paper was to produce

an optimization model for the operational management of the system. The main
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assumption is that all the technologies involved are already installed. In fact, our

purpose was not to discuss strategies connected to the investment phase. Therefore,

a suggestion for future directions related to this work could be to concentrate on

the integration of investment decisions.

The role of seasonal storage could also be a future direction to investigate. It would

be interesting to see how the presence of seasonal storage could impact the efficiency

of the system and the economic gain.

Finally, further analysis could be made focusing on the impact of the real cost of

electricity for the Tromsø instance. As we mentioned in section 3.6, in this study

we concentrate on the meteorological impact on the system, using the same cost

of electricity for Bologna and Tromsø. Thus, future works could inspect the role of

electricity costs.

3.8 Conclusions

In this chapter, we investigate the potential that a power generation technology like

a Solar-ORC could have in being introduced in a P2P transactive energy trading

context.

In sight of this, we implemented a tool based on operation research techniques, able

to optimize the scheduling of both the Solar-ORC and the trading process. First,

we developed a MILP model for the operations scheduling of the Solar-ORC, the

S-ORC model. Then, we developed an MILP model for the P2P transactive energy

trading between multiple prosumers in a local energy market where some Solar-

ORCs are present as power generations plants owned by some prosumers, the TET

model.

We tested our models with four threads with 8 GB, on a computer having 4 cores

and a processor Intel(R) Core(TM) i5-7200U 2.50 GHz. All the tests were performed

using Gurobi 9.1.2 [57] as the solver. The models were implemented using the JuMP

package Julia [58]. The model would be made available in the GitHub platform un-

der the name “OPTI-ORC” (https://github.com/sambeets/OPTI-ORC).

First, we performed a sensitivity analysis on the S-ORC model, to inspect, how

changing some specifics of the Solar-ORC would affect the system. We inspected the

effects on the system given by different types of working fluids, different sizes of the

Solar-ORC and different weather conditions. We solved every instance for hourly

intervals within a time horizon of one week. Each instance presented were solved

within 0.06 seconds.

From an economic perspective, fluids like Ethanol, Methanol, Cyclohexane and

R134a are potentially more valuable, especially for large capacity systems. In fact,

they need a lower flow rate compared to others, given the same weather conditions
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and size of the plant.

On the contrary, when considering the same working fluid and weather conditions,

the objective decreases by increasing the size of the plant, up to a certain threshold.

In fact, when the optimal size to satisfy the demand of the prosumer is reached,

there is no economic benefit to increasing the plant’s size further. This is consistent

with the self-consumption framework that we are considering.

We then inspected the effect of weather conditions on the system. We detected six

representative weeks in the months of April, July, August, October, December, and

January. Moreover, we considered two locations for the system: the city of Bologna

in Italy, and the city of Tromsø in Norway, with the same plant size and working

fluid. The absolute gain of keeping the base cost of electricity the same in the two

locations resulted in more profit in Bologna. However, the relative gain to be realized

may vary given the cost of electricity in Northern Norway is cheaper. Nevertheless,

the scope of this paper is limited to absolute gains because of the focus on weather

conditions in the system.

Regardless of the season, Bologna as a location gains a higher economic advan-

tage than Tromsø, with two significant differences between July and August, and

December.

The proposed S-ORC model closely resembles the real-world production process

in the power plant.

The grid is used by the S-ORC model to compensate for the lack of production

by the Solar-ORC, while the usage of the battery is accordingly to its charging op-

erations.

Later we tested the TET model with multiple instances. Each instance represents

a different energy community. The TET model was able to solve all the instances

within a few seconds, giving reasonable results for all the prosumers involved. Co-

herently to the S-ORC model, the tests show a higher gain in terms of costs for the

Bologna location, around 4.5% in terms of operational costs.

In conclusion, the results highlight an overall gain in the implementation of

a predictable and manageable system as the one we present in this work for a

P2P transactive energy trading context, on average 16% in terms of operational

costs. Since the aim of this study was to produce an optimization model for the

operational management of the system, an investment costs analysis is not included.

Future directions related to this work would be to concentrate on the integration

of investment decisions. Moreover, the introduction of long-term storage systems in

artic areas like Tromsø, could be another suggestion for future studies.
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Chapter 4

A tactical maintenance

optimization model for multiple

interconnected energy

production systems

1

In this chapter fundamental issues related to the management of multiple in-

terconnected energy systems are investigated. We develop a tactical optimization

model for the maintenance operations’ scheduling phase of a Combined Heat and

Power (CHP) plant. Specifically, we consider two types of cleaning operations, i.e.,

online cleaning and offline cleaning. Furthermore, we include a piecewise linear rep-

resentation of the electric efficiency variation curve, accurately describing the impact

of load and inlet air temperature inside the compressor on the electric efficiency of

the CHP plant. Given the challenge of solving the tactical management model, we

propose a heuristic algorithm. The heuristic works by solving the daily operational

production scheduling problem, based on the final consumer’s demand and on the

electricity market price. The aggregate information from the operational problem is

used to derive maintenance decisions at a tactical level.

4.1 Introduction

During the last decades, there has been an increasing trend in developing more eco-

nomically and environmentally efficient energy production technologies. Undoubt-

edly, the need for coping with the climate change threat and for keeping the commit-

ments taken up by several countries by signing the Kyoto Protocol, represent further

1The results of this chapter appear in Cordieri et al. [65]
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key drivers towards pushing the changes the energy sector is undergoing. Consider-

ing the Italian context, distributed energy generation has been incentivized, resulting

in an increasing decentralization of energy production plants, see Chicco et al.[6] for

further details.

In the distributed energy production context, an important role has been played

by self-consumption, meaning that a portion of the distributed energy generation is

consumed in place. This option has been widespread lately as a consequence of its

potential in improving the security of the energy supply. Therefore, self-consumption

has been undertaken not just in the domestic field, but also in the industrial one,

where this concept is even more important considering the massive consumption

that most industrial processes need to handle.

The energy demand of industrial processes is usually the combination of vari-

ous energy types such as heat and electricity. The most commonly adopted self-

consumption framework, as for now, is coupling multiple interconnected energy

production systems, see Illerhaus et al.[66]. This implies the installation of differ-

ent technologies able to produce one or multiple energy types, to satisfy all energy

needs.

It must be said that multiple interconnected energy production systems, even though

very convenient, may be extremely challenging from a management point of view.

The challenge comes principally from a need to achieve a perfect synchronization

between the different energy production facilities, when operating the whole system.

All the difficulties related to running an energy production plant, are extended to

a group of plants. To achieve an optimal management of multiple interconnected

energy production systems, a proper modeling of the system needs to be performed.

Zooming inside the multiple interconnected energy production system, a further

analysis needs to be done over one specific technology, which is the cogeneration

of Combined Heat and Power (CHP). This technology can be frequently found in

industrial power systems, because of its capacity to simultaneously provide different

kinds of energy, and because it has shown itself as crucial in terms of efficiency in

energy savings, see Illerhaus et al.[66]. Even though these facilities may be interest-

ing especially when applied in multiple interconnected energy production systems

configurations, scheduling their production and maintenance is challenging. Optimal

management in this case is of extreme importance, to run CHP plants at best, and

subsequently to meet the target profit expected during the investment phase.

Several studies centered on optimizing CHP plants’ management have been con-

ducted in the past. For example, Gardner et al.[67] and Chicco et al.[68] treated

this electrical efficiency as a constant. As observed by Lozza[69], electric efficiency

is non-linear with respect to the load at which the plant is operated, and according

to the external environment’s conditions of the site where the plant is located, in

particular to the environment’s air temperature. Therefore its simplification could
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lead to an overestimation of what is the real functioning of the CHP plant. An-

other aspect of managing a CHP plant that has been neglected in past optimization

models is the scheduling of maintenance operations. There are several kinds of main-

tenance operations, often requiring a partial periodic shutdown of the production

operations. Therefore, optimizing the scheduling of such maintenance operations is

fundamental. The maintenance activities are typically of a tactical nature, i.e., they

need to be planned during the upcoming year. Thus embedding maintenance plan-

ning in the energy production schedules of multiple interconnected energy systems

requires considering a tactical planning horizon, which is substantially longer than

the typical daily planning horizon considered for operational energy production op-

timization problems.

The scientific aim of this work is to model and solve the tactical maintenance op-

timization problem encountered in multiple interconnected energy production sys-

tems. We based our models on a specific case study, with three energy production

facilities (one CHP plant and two Dual Fuel boilers). We propose optimization

models for both operational and tactical production planning. We implement a tac-

tical management model for the maintenance operations’ scheduling phase of the

CHP plant, which is essential to reach a correct and complete understanding of

the system. We specifically considered two cleaning options, i.e., online and offline.

Furthermore include a piecewise linearization procedure of the efficiency variation

curve as a function of load and inlet air temperature inside the compressor. Given

the challenge of solving the tactical management model, we propose a computation-

ally efficient heuristic algorithm. To do so, we develop a basic operational model for

production scheduling based on the final consumer’s demand, and on the electricity

market price. The aggregate information from the operational problem is used to

derive maintenance decisions at a tactical level. The remainder of this chapter is

organized as follows. Section 4.2 presents a literature review of the topics discussed

in this paper. Section 4.3 formally presents the tactical management of maintenance

operations of multiple energy systems problem and the proposed solution method.

Section 4.5 shows the computational results. Finally, Section 4.6 concludes and out-

lines research perspectives.

4.2 Literature review

As previously discussed, the use of multiple energy systems has recently become a

commonly adopted solution in the energy production field. At the same time, it also

raises a need to find proper tools to model its complex management, creating new

interesting topics for the scientific community.

Mancarella and Chicco[70] use the black-box-approach to capture the relevant energy

efficiency relationships (including off-design performance models), while reducing
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the level of complexity. According to this approach, the system is reduced to its

energy production part, which becomes the core of the problem, and it is set up to

supply the time-varying demand.

Lahdelma and Hakonen[71] focus on the optimization of the single CHP plant’s

production scheduling problem. They model the hourly CHP operation as an LP

problem, where the hourly electric power production and heat production of the

CHP plant must be contained within a characteristic region of operation, assumed

to be convex. Consequently, the production of the CHP plant for each time interval

is found as a convex combination of the extreme characteristic points of this region

of operation.

Ladhelma and Hakonen[71] has triggered further research in several directions. Kum-

bartzky et al.[72] start from Lahdelma and Hakonen’s model to demonstrate how

participating in the electricity market may be profitable for CHP plants, which are

usually used for self-consumption. Wang et al.[73] extend the problem to a multi-

ple energy system. The cost is allocated directly to the product, meaning heat and

power, without differentiating between all of its components, such as fuel or mainte-

nance costs. A similar assumption has been adopted in the work of Rong et al.[74].

This seems correct according to the time interval of at most one month at which

the algorithm works. However, in reality, decisions such as maintenance operations

are usually taken given a larger time interval, such as one year.

Milan et al.[75] focus mainly on the efficiency curves of the CHP plant. The au-

thors seek to solve a non-linear model representing these curves, showing that the

system’s performance was affected considerably, when considering the effects of a

variable efficiency. However, the solution found by Milan et al.[75] creates a non-

linear problem, which is significantly more complex than linear problems.

Bischi et al.[76] present a data-driven MILP model for planning the short-term oper-

ation of combined cooling, heat and power (CCHP) energy systems. This work adds

to previous studies a penalization of start-up operations of production facilities, and

an effective handling of production units with non-linear performance curves. Bischi

et al.[76] apply a piecewise linear approximation of performance curves considering

a different number of intervals, that can vary with temperature during the planning

horizon.

The previously presented approaches concentrated on short time intervals, neglect-

ing the effect that the scheduling of maintenance operations may have on operating

the system, especially on the CHP plant. In this sense, many studies and insights

have led to a deep understanding of the real effects of maintenance operations on the

CHP plant. Aretakis et al.[77] present a method to predict the impact of the com-

pressor’s cleaning process on the power plant’s overall profit, focusing on an offline

type of cleaning of the compressor. This way other types of cleanings are neglected,

which has been proven to be sub-optimal from other studies, e.g. Meher-Homji[78].
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Ogbonnaya[79] concentrated mainly on the consequences that an online cleaning has

when conducted on a compressor, but proceeds further by considering a combina-

tion with offline cleaning. Even though this article does not develop an optimization

model, it highlights the importance that a combination of compressor online and

offline washing may have on the performance of the plant.

To the best of our knowledge, the tactical problem we introduce in this work is the

first to simultaneously take into account the management of multiple interconnected

energy systems, the impact of load and inlet air temperature inside the compres-

sor on the electric efficiency of the CHP plant, and the maintenance operations’

scheduling phase of the CHP plant.

4.3 Problem description and formulation

In this section, we present optimization models for multiple interconnected energy

production systems. We present in section 4.3.3 a tactical management (TM) model

that accounts for scheduling maintenance activities along with production opera-

tions. We include a piecewise linearization of the efficiency variation curve with load

and inlet air temperature inside the compressor in section 4.3.1.

A simplified scheme of the system considered is depicted in Figure 4.1.

Figure 4.1: System studied

The system considered can be divided in three main parts: sources, utilities that

produce electrical and thermal energy and final consumers. The main input, that

has to be provided to the whole system in order to satisfy the final demand, is nat-

ural gas. The natural gas coming from the sources is processed inside the utilities

in order to produce electric energy and thermal energy to satisfy the demand of

the final consumers. In order to do so, three main components are currently used:

a CHP plant, based on a Gas Cycle in combination with a Heat Recovery Steam

Generator (HRSG), and two Dual Fuel Boilers. A further consideration needs to be

done for electric energy. In fact, this final product represents a further income, since

it can be sold on the electricity market and subsequently injected into the grid.

This depends mainly on whether the production exceeds the self-consumption or

not, coupled with the electricity market price. Similarly, the grid can be considered
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as a source of electric energy, whenever the production of the utilities does not meet

the expected values.

The planning horizon is divided into t ∈ {0, ..., T} hourly intervals. Note that

this can be adjusted to meet the needs of the application of the model. We denote

as K the set of final consumers and U the set of utilities that need to fulfill the de-

mand. Moreover, B ⊆ U represents those utilities that produce only thermal power.

For each time interval the demand of user k ∈ K is given in terms of electric energy

P tk and thermal energy Qtk, measured as [kWh]. Several parameters are related to

the thermodynamic characteristics of the system. The efficiency of utility b ∈ B,

is denoted by ηb. The maximum and minimum daily energy production limits for

utility u ∈ U are Pu,max and Pu,min, whereas the maximum and minimum daily

energy production limits for utility u ∈ U are Qu,max and Qu,min.

The decision variable P tu quantifies the electric energy produced by the utility u ∈ U
in time t. The decision variable Qtu quantifies the thermal energy produced by the

utility u ∈ U in time t. Furthermore binary variable ytu takes the value of one if

utility u ∈ U is operating in t, and zero otherwise.

Based on Ladhelma et al. [71], considering the CHP plant, a set JCHP of charac-

teristic points is given. Each point j ∈ JCHP has coordinates in terms of electric

energy pj and thermal energy qj , these four points determine the operational limits

of the CHP plant. Namely, the operating values of thermal and electric energy of

the CHP plant, QtCHP and P tCHP , hence will be calculated as a convex combination

of the points in JCHP . In order to do this, it is necessary to introduce a continuous

variable xtj ∈ {0, 1}, associated to each characteristic point of the feasible region at

time t ∈ {0, ..., T}.
Let V t

NG,u be the continuous variable that represents the volumetric flow rate of nat-

ural gas consumed by each energy production utility u ∈ U in time t, measured as

[Sm3/h]. Natural gas is the main fuel needed to supply each production plant, and

is usually expressed in terms of primary thermal energy thanks to a parameter, the

Lower Heating Value (LHV). The LHV represents the amount of energy obtainable

by the use of that specific fuel and is expressed as [MJ/Sm3]. We can then define

the cost of natural gas according to the natural gas market as CNG [e/Sm3]. This

cost is the result of an agreement between the plant operator and the natural gas

market operator, and stays constant throughout the whole time period considered.

The system can either withdraw electric energy from the grid to compensate for a

lack in electric energy production by the CHP plant, or it can sell the surplus of

electric energy production to the grid. We denote as P tgrid,in the amount of elec-

tricity that is being withdrawn from the grid and is entering the system at time t.

While P tgrid,out represents the amount of electricity that is being injected into the

grid and exiting the system at time t. Both these variables are each linked to a
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binary variable, respectively wtgrid,in and wtgrid,out, that express whether or not the

electricity is being withdrawn or injected in time t.

The price of electricity established by the electricity market at t is given by PUN t.

We recall that in the Italian context, the hourly electricity prices are essentially

known one day in advance of the actual production day. Therefore, we assume them

to be known parameters. Furthermore, since we aim to construct a tactical manage-

ment model, we assume that any surplus production can be sold to the grid.

Other economic aspects that have been considered to evaluate the model are related

to incentives. The incentives are calculated for every t ∈ {0, ..., T} with respect to

the energy savings, that the cogeneration of heat and power simultaneously creates.

We denote the energy savings in period t by TEEt. The revenue connected to each

incentive produced at t, is given by RTEE [e/TEE].

4.3.1 Electric efficiency variation according to load and tempera-

ture

The electric efficiency of a CHP plant can substantially change according to the

inlet air temperature inside the compressor, and according to the load at which the

plant is operated. Such changes are usually of a non-linear nature and can be ex-

pressed through various curves. Starting from the relationship between temperature

and electric efficiency, Figure 4.2 shows exactly this concept extended for each load

level at which the plant can be operated.

Figure 4.2: Efficiency correlation with inlet air temperature for each load level of

the CHP plant

The data points corresponding to the curves in Figure 4.2 are given to the plant’s

operator as tabled values, where load levels and temperature values are the ones in-

dicated on the plot. One must consider that the inlet air temperature inside the
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compressor is dependent on external weather conditions of the site where the plant

is located. This of course if an air treatment unit, such as a cooler, has not been

installed before the compressor. Hence the inlet air temperature is usually a value

known a priori, and is not affected by the decision-making process inside the opti-

mization model.

It seemed correct not to include the temperature-efficiency correlation inside the

optimization model, as a constraint. Instead, it has been implemented as a func-

tion, that we define as efficiency variations function (EVF). Given as input the

inlet air temperature inside the compressor, the EVF calculates the relative electric

efficiency-load curve. This curve is then introduced inside the optimization model

as an input parameter. Figure 4.3 explains how the EVF actually works.

Figure 4.3: Process of the EVF

A last consideration needs to be made before proceeding further. Considering

the electric efficiency of the CHP plant as a variable may result in non-linear con-

straints. In order to avoid this, the efficiency-load curves were actually transformed

to correlate directly natural gas consumption V t
NG,CHP to load. What is obtained

is a curve that relates a non-dimensional natural gas consumption
(V t

NG,CHP LHV )

PCHP,max

to load. To model the piecewise linear efficiency variations we introduce the set of

intervals of the EVF d ∈ {1, .., D + 1}, where D is the number of breakpoints, and

the parameters md, that represents the inclination of the piecewise linearization of

the curve between d − 1 and d for d ∈ {1, .., D + 1}, and qd that represents the

intercept of the piecewise linearization of the curve between d− 1 and d.

Moreover, we introduce Ltd, which represents the decisional variable associated with
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the piecewise linearization of the curve between d − 1 and d in t ∈ {1, ..., T}, and

ztd, that represent the binary variable connected to the piecewise linearization of the

curve between d− 1 and d in t ∈ {1, ..., T}.

4.3.2 Maintenance operations

This subsection will focus on maintenance operations on the compressor, in order to

reduce the degradation of this component due to fouling. Maintenance operations

are essential, in order to better model the real functioning of the CHP plant. We

focus on two possible cleaning options for the compressor. The two options are on-

line cleaning and offline cleaning, and are quite different in the way they must be

executed, in their duration and in their impact on the CHP plant’s performance.

We now discuss how the fouling phenomenon was included in the optimization

model. According to Lozza [69], a constant degrading rate of performance of the

CHP plant can be observed, with respect to its cumulative operating hours. The

consumption calculated through the EVF does not consider the degrading phe-

nomena of performance connected to fouling. In fact, one can say it represents a

theoretical consumption for each period t ∈ {1, ..., T}. Therefore, from now on we

will refer to it as V t
NG,th. Based on real historical data of the considered system, the

fouling phenomenon directly impacts the non-dimensional consumption curve. This

results in an increase in non-dimensional consumption for every period t ∈ {1, ..., T},
(V t

NG,CHP LHV )

PCHP,max
, of a constant rate denominated as ∆Fl.

The considered online cleaning can be performed without turning off the CHP plant,

but it still hinders its maximum electric energy production PCHP,max to Preduced.

An online cleaning activity takes two hours, once performed the CHP plant does

not have to undergo other cleaning activities for a maximum period Lon, which in

our case is of fifteen days.

The considered offline cleaning, once performed, involves the complete shut-down of

the CHP plant for at least four hours. The time interval that has to pass between an

offline cleaning and another maintenance operation (i.e., online cleaning or offline

cleaning), is at most Loff , in our case sixty days. The added value of offline cleaning

∆Off , is greater than that of online cleaning ∆On, measured on non-dimensional

natural gas,
(V t

NG,CHP LHV )

PCHP,max
. Therefore, there exists a trade-off between the number

of cleanings and the degrading rate of fouling.
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Figure 4.4: Effects of maintenance operations on non-dimensional consumption

worsening due to fouling

The additional decision variables used in the mathematical formulation of the

model are all binary variables and are defined as follows. Variable st refers to whether

or not a maintenance operation is performed on the CHP plant in period t. Variable

rt indicates whether or not an online cleaning is performed on the CHP plant in t,

while variable ot indicates whether or not an offline cleaning is performed on the

CHP plant in t. Finally, variable qt takes the value of one if a maintenance activity

occurs in t or if the most recent maintenance activity wasn’t an online cleaning,

while variable ut indicates if a maintenance activity occurs in t, or if the most

recent maintenance activity wasn’t an offline cleaning.

Disruptions, including those for maintenance, generally have a physical impact also

on the electrical network. However, in this work, we want to concentrate mainly

on the effects on the power production part, as we use the network to deal with

imbalances. Thus, we deliberately neglect such effects.

4.3.3 Tactical management model

Table 4.1 summarizes all sets, parameters and variables definitions discussed in this

section. The TM model is thus stated as follows:

[TM] maximize
∑
t∈T

∑
u∈U

CNGV
t
NG,u + PUN t(P tgrid,out − P tgrid,in) +RTEETEE

t

(4.1)

s.t.

Pu,min y
t
u ≤ P tu ≤ Pu,max ytu ∀t ∈ {0, ..., T}, u ∈ U (4.2)

Qu,min y
t
u ≤ Qtu ≤ Qu,max ytu ∀t ∈ {0, ..., T}, u ∈ U (4.3)
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Qtb = ηb LHV V t
NG,b ∀t ∈ {0, ..., T}, b ∈ B (4.4)

P tCHP =
∑

j∈JCHP

ptj x
t
j ∀t ∈ {0, ..., T} (4.5)

QtCHP =
∑

j∈JCHP

qtj x
t
j ∀t ∈ {0, ..., T} (4.6)

∑
j∈JCHP

xtj ≤ ytCHP ∀t ∈ {0, ..., T} (4.7)

P tgrid,in ≥
∑
k∈K

P tk w
t
grid,in −

∑
u∈U

P tu ∀t ∈ {0, ..., T} (4.8)

P tgrid,in ≤M wtgrid,in∀t ∈ {0, ..., T} (4.9)

P tgrid,out ≤
∑
u∈U

P tu −
∑
k∈K

P tk w
t
grid,out ∀t ∈ {0, ..., T} (4.10)

P tgrid,out ≤M wtgrid,out∀t ∈ {0, ..., T} (4.11)

wtgrid,in + wtgrid,out ≤ 1 ∀t ∈ {0, ..., T} (4.12)

∑
u∈U

Qtu =
∑
k∈K

Qtk ∀t ∈ {0, ..., T} (4.13)

∑
u∈U

P tu + P tgrid,in =
∑
k∈K

P tk + P tgrid,out ∀t ∈ {0, ..., T} (4.14)

TEEt = 0, 0086KTEE (
P tCHP
ηe,r

+
QtCHP
ηth,r

− LHV V t
NG,CHP ) ∀t ∈ {0, ..., T} (4.15)

LHV V t
NG,CHP

PCHP,max
≤

∑
d∈{1,..,D+1}

md L
t
d + qd z

t
d t ∈ {0, ..., T} (4.16)

ztCHP,d d
t
d−1 ≤ Ltd ≤ ztCHP,d dtd ∀t ∈ {0, ..., T}, d ∈ {1, .., D + 1} (4.17)
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∑
dε{1,..,D+1}

ztd = ytCHP ∀t ∈ {0, ..., T} (4.18)

P tCHP
PCHP,max

=
∑

d∈{1,..,D+1}

Ltd ∀t ∈ {0, ..., T} (4.19)

∑
τ∈(0,1,..Lonline−1)

(1− st+τ ) ≤ Lonqt + Loffu
t + (1− qt − ut)M ∀t ∈ {0, . . . , T − Lon + 1}

(4.20)

∑
τ∈(0,1,..Loff−1)

(1− st+τ ) ≤ Loffut + (1− ut)M ∀t ∈ {0, . . . , T − Loff + 1} (4.21)

1− st = qt + ut ∀t ∈ {0, ..., T} (4.22)

st = ot + rt ∀t ∈ {0, ..., T} (4.23)

rt + qt ≤ 1 ∀t ∈ {0, ..., T} (4.24)

ot + ut ≤ 1 ∀t ∈ {0, ..., T} (4.25)

P tCHP ≤ Preducedrt + Pmax,CHP (1− rt) ∀t ∈ {0, ..., T} (4.26)

P tCHP ≤ Pmax,CHP (1− ot) ∀t ∈ {0, ..., T} (4.27)

LHV V t
NG,CHP

PCHPmax
=
LHV V t

NG,th

PCHPmax
+

(
LHV V t−1

NG,CHP

PCHPmax
−
LHV V t−1

NG,th

PCHPmax

)
+

−∆Off ot −∆On rt + ∆Fl ∀t ∈ {0, ..., T}

(4.28)

ut ≥ ot−1 − ot ∀t ∈ {0, ..., T} (4.29)

wt ≥ rt−1 − rt ∀t ∈ {0, ..., T} (4.30)

Tempt ≥ 8rt − (1− rt)M ∀t ∈ {0, ..., T} (4.31)
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∑
τ∈(0,1)

rt+τ ≥ 2(rt − rt−1)∀t ∈ {0, ..., T} (4.32)

∑
τ∈(0,..,3)

ot+τ ≥ 4(rt − rt−1)∀t ∈ {0, ..., T} (4.33)

The objective function (4.1) is the maximization of the plant’s overall profit for

the whole time period considered. The main costs that the plant has to face are

connected to the cost of natural gas and to the cost of electricity, which has to be

withdrawn from the grid whenever consumption exceeds production of the energy

production utilities. The profit is a result of two main incomes, incentives and elec-

tricity sold to the grid.

Constraints (4.2) impose a lower and an upper bound to the electric energy pro-

duction. While constraints (4.3) set a limit on the maximum and minimum thermal

energy that can be produced by each facility when operated. Constraints (4.4) ex-

press the energy balance of the subset B, considering in this case a thermal efficiency

that connects the outputs (Qtb) to the inputs (primary energy) of plant b.

Constraints (4.5) and (4.6) are used to calculate the production of the CHP plant

as a convex combination of the points present inside the feasible operating region.

While, constraints (4.7) limit the variables representing the points of the region to

whether the plant is operated in t ∈ {1, ..., T} or not.

Constraints (4.8) and (4.9) define and regulate the amount of electricity withdrawn

from the grid that enters the system in each period. While constraints (4.10) and

(4.11) define and regulate the amount of electricity produced from the CHP plant

that can be sold to the grid because it is not needed by the final consumers. Con-

straints (4.12) regulate the fact that the grid cannot be simultaneously withdrawn

and injected into the grid. The following constraints represent the overall energy

balances that regulate the system. The main limit here is given by the demand of

the final consumers, which must be satisfied in every t ∈ {1, ..., T}. This balance is

divided into two different sets of constraints, one for thermal energy, as one can see

in constraints (4.13), and the other for electric energy, as one can see in constraints

(4.14). Constraints (4.15) define the value of incentives for each t when the CHP

plant is working.

Similar to Froger et al. [80], constraints (4.16)-(4.19) impose the piecewise linear

curves in the model.

Constraints (4.20) and (4.21) determine the maximum time interval that can pass

between two cleanings, with respect to which type of maintenance operation has

been performed as last.

Constraints (4.22)-(4.25), determine all the consistency constraints between the bi-

nary variables.

Constraints (4.26) and (4.27) are constraints related to maximum capacities of elec-

tric energy, at which the CHP plant needs to be limited when a certain kind of
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cleaning is operated.

The real consumption of natural gas is determined through constraints (4.28). While

constraints (4.29) and (4.30) determine the correlation between the binary variables

of each cleaning. The last constraint (4.31) limits the minimum inlet air tempera-

ture inside the compressor Tempt at which an online cleaning can be performed,

which is 8◦C in our case. Under this value , there might be problems of water freez-

ing on blades. Constraints (4.32) and (4.33) impose the minimum duration of each

cleaning.
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Table 4.1: Set, parameter and variable definitions of TM model

Sets

t ∈ {1, ..., T} Set of time intervals in which the planning horizon is divided into

u ∈ U Set of utilities that produce electrical energy or thermal energy or both

k ∈ K Set of final consumers

j ∈ JCHP Set of characteristic points of the feasible region associated with the CHP plant

b ∈ B ⊆ U Set of utilities that produce just thermal energy

d ∈ {1, ..D + 1} Set of intervals of the piecewise linearization of the efficiency curve, where D is the set of breakpoints

Parameters

cNG Cost of natural gas expressed as e/Sm3

PUN t Cost of electricity expressed as e/kWh for every t

RTEE Revenues associated to incentives expressed as e/TEE

LHV Lower Heating Value of Natural Gas expressed as kJ/Sm3

ηb Efficiency of utility b ∈ B
ηe,r Reference electric efficiency given by the electricity market

ηth,r Reference thermal efficiency given by the electricity market

KTEE Coefficient given by electricity market

PCHP,min Minimum power boundary of the CHP plant, expressed as kWh

PCHP,max Maximum power boundary of the CHP plant, expressed as kWh

Qb,min Minimum power boundary of utility b ∈ B, expressed as kWh

Qb,max Maximum power boundary of utility b ∈ B, expressed as kWh

P tk Electric energy flux needed each t ∈ {1, ..., T} by k ∈ K ,expressed as kWh

Qtk Thermal energy flux needed each t ∈ {1, ..., T} by k ∈ K,expressed as kWh

pj , qj Coordinates of the characteristic points of the feasible operating region of the CHP plant

md Inclination of linearization of the curve between d− 1 and d for d ∈ {1, ..D + 1}
qd Intercept of linearization of the curve between d− 1 and d for d ∈ {1, ..D + 1}
Preduced Maximum electric energy value of the CHP plant when an online cleaning is performed

Lon Maximum period between an online cleaning and the next maintenance operation

Lff Maximum period between an offline cleaning and the next maintenance operation

∆On Added value in terms of non-dimensional fuel consumption when an online cleaning is operated

∆Off Added value in terms of non-dimensional fuel consumption when an offline cleaning is operated

Variables

xtj Continuous variable associated to each characteristic point of set JCHP in t ∈ {1, ..., T}
ytu Binary variable that indicate whether u ∈ U is producing in t

P tu Electric energy flux produced in t by the utility u ∈ U
Qtu Thermal energy flux produced in t by the utility u ∈ U
P tgrid,out Electricity flux injected to the grid in t

P tgrid,in Electricity flux withdrawn from the grid in t

wtgrid,out Whether or not electric energy is injected into the grid in t

wtgrid,in Whether or not electric energy is withdrawn from the grid in t

V t
NG,u Volumetric flow rate of natural gas consumed by each utility u in t

TEEt Incentives produced in t

V t
NG,th Theoretical volumetric flow rate of natural gas consumed by each utility u in t

Ltd Decisional variable associated with the piecewise linearization of the electric efficiency curve between d− 1 and d in t

ztd Binary variable connected to the piecewise linearization of the electric efficiency curve between d− 1 and d in t

st Whether or not a maintenance operation is performed on the CHP plant in t

rt Whether or not an online cleaning is performed on the CHP plant in t

ot Whether or not an offline cleaning is performed on the CHP plant in t

qt Whether or not a maintenance activity occurs int or if the most recent maintenance activity wasn’t an online cleaning

ut Whether or not a maintenance activity occurs in t or if the most recent maintenance activity wasn’t an offline cleaning

4.4 Heuristic for the tactical management model

As will be shown in Section 4.5.2, the TM model requires a substantial amount of

computational time (e.g., more than 10 hours in our case study). Therefore, we now

present a heuristic algorithm for the problem. The objective of the heuristic is to

produce a high-quality solution in a relatively short time. The tactical model works
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with a planning horizon of one year divided into hourly intervals, thus leading to

T=56760. Therefore, applying the TM model results in a rather large MILP. We

observe that ignoring the maintenance decisions leads to a much simpler model to

solve. This is due to the fact that the linkage between the periods in the TM model

is primarily due to the maintenance decisions. Therefore, we propose a heuristic

for the TM model based on aggregation principles. We denote this heuristic by

HTM. We define the Operational model with Efficiency Variations OEV, as the TM

model without maintenance decisions. Therefore, the OEV model is the TM model

excluding constraints (4.20)-(4.33).

The basic idea of the HTM is to solve the OEV model on an hourly basis. The

results are then aggregated on a daily basis. Once this step has been completed, the

results obtained for each day are aggregated and used as parameters to solve the

TM model for time set F, which is a set divided into daily intervals. An aggregate

version of the TM model is then run on a daily planning horizon, the results from

which indicate the days in which maintenance operations are to be performed. The

TM model is then run on an hourly basis for those particular days, in order to

schedule the maintenance activities. The heuristic algorithm is outlined in Figure

4.5. The algorithm starts by solving OEV (T), with i.e., T=56760. The results are

then aggregated on a daily basis according to the procedure detailed in Figure 4.6.

The TM model is then solved with the aggregated data, this is denoted by TM(F).

We note that the planning horizon of TM(F) consists of 365 time steps. The solution

of TM(F) will have days in which online cleaning is performed and days in which

offline cleaning is performed. We denote the former by F’ and the latter by F”. Then

an hourly version of TM is run for each day in F’ and each day in F”. The cost from

these days is added to the cost of OEV based on the T set, but without considering

the days included in sets F’ and F” days, to yield a complete solution. In conclusion,

the total profit will be calculated as the sum of the OEV T-based model’s profit,

plus the TM model’s profit of days F’ and F”.

Fig. 4.5 shows the time sequence at which the aggregated algorithm works.
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Figure 4.5: Heuristic algorithm outline

Figure 4.6: Aggregating procedure

4.5 Computational tests

To test our model we used CPLEX 12.9.0 to solve the MILP models through its

Python API. All experiments were performed, using a single thread with 8 GB, on

one computer having 4 cores and Intel(R) Core(TM) i5-7200U @2.50 GHz 2.71 GHz

processor. The data used come from the case study described in section 4.3, which is

an example of a self-consumption setting where the final consumer is represented by

an industrial process. However, for confidentiality reasons, the results are distorted

to be presented publicly.

In what follows, we discuss the historical data of the case study in section 5.1. In

section 5.2 we present the results of the TM model and compare them to the case

study. Finally, in section 5.3 we present the results of the heuristic algorithm.
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4.5.1 An overview of historical data

In this section, an overview of how the considered system has been operated in the

past will be presented.

The historical data regarding how the system has been operated in the past, takes

into account also the real functioning of the electricity market, in terms of price

and capacities. This means that not all the electric energy, which was bid on the

electricity market has been accepted. This influences how the CHP plant and the

whole system have been operated in the past.

The production levels established by the company are presented in Figure 4.7-4.8.

We note that the CHP plant’s production is not as stable and tends to adapt not

just to demand but also to the electricity market’s needs. This is evident, especially

in Figure 4.9. At the same time one can see that as in the model, the flux of

electric energy exiting the system to be injected inside the grid (Grid Out) tends

to compensate for the fluctuations in demand to keep the CHP plant’s production

as stable as possible. The role undertaken by the flux of electric energy withdrawn

from the grid entering the system is always the one to fulfill demand, whenever the

CHP plant does not produce enough because of maintenance or other events that

may hinder its production.

For what concerns the thermal energy production, as before the primary production

is represented by the CHP plant, while the two boilers are used as a back-up to fulfill

demand’s needs.

Figure 4.7: Real electric energy of historical data
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Figure 4.8: Real thermal energy of historical data

Figure 4.9: Real electric energy fluxes of historical data

4.5.2 Results from the tactical model

We run the TM model over a planning horizon of one year with an hourly planning

interval (i.e., T=56760). The results are presented in Figures 4.10-4.13, and are

summarised in Table 4.2. As can be observed in Figure 4.11, the TM model tries to

set the level of electric energy produced at its maximum capacity. This is due to the

attractive electricity prices on the market. In fact, as long as this value is favorable

to sell, the electricity production stays at the maximum capacity level. Where the

production is set to zero an offline cleaning is performed on the CHP plant, while

where an online cleaning is performed the value of production is set at the value of

its maximum reduced capacity. Figure 4.13 shows how the amount of electric energy

exiting the system to be sold to the grid, compensates the variations in demand in

order to keep the production as constant as possible. While, the amount of elec-

tric energy entering the system is used by the model to compensate for the lack of

production during the maintenance operations, or is kept at minimum to minimize

costs in the objective function.

Concerning the thermal energy production, the CHP plant is considered as the first

source of thermal energy. While the two boilers are used as back-ups, to fulfill the

amount of thermal energy not produced by the CHP plant, as shown in Figure 4.12.
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We now focus on the results concerning the electric efficiency variations. The con-

sumption adapts to the fluctuations of electric efficiency with respect to inlet air

temperature inside the compressor and load. We tested also the TM model consid-

ering the electric efficiency as a constant, thus neglecting constraints (4.16)-(4.19).

The results are compared in Figure 4.10.

The results connected to the TM model were obtained by setting the computational

time to 10 hours, at which time the MILP gap was 0.22%.

TM model

Computational time (h) 10

MILP gap (%) 0.22

Objective Function value (e) 2051446

Number of offline cleanings 6

Number of online cleanings 4

Difference in profit compared to an operational model (%) 10.66

Effects of considering the electric efficiency as a variable

Average difference in terms of natural gas consumption (%) 16.5

Difference in profit (%) 7.82

Table 4.2: Main results obtained from the TM model

Figure 4.10: Comparison of the yearly natural gas consumption considering the

electric efficiency of the CHP plant as a constant or as a variable
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Figure 4.11: Electric energy production by the TM

Figure 4.12: Thermal energy production by the TM model

Figure 4.13: Electric energy fluxes by the TM model

We now focus on economic factors. Table 4.3 compares the monthly profits of

the model’s results and of the real functioning of the system. For confidentiality

reasons, the data has been distorted. As one can see the difference between the two

values is evident for each month.

The main difference in profit between the real functioning of the system consid-

ered and the model’s results, is given by the amount of electric energy sold on the

electricity market, but also by implementing the maintenance operations’ schedul-

ing inside the optimization model. In fact, the scheduling of cleanings is strictly
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interconnected to the demand variations of the final consumers, and to the price

of electricity. Therefore, if optimized it can improve the overall profit during the

tactical time range.

Model Real Data

Number of offline cleanings 6 2

Number of online cleanings 4 10

Difference in profit (%)

Average 49

March 24.6

April 50.4

May 40.4

June 30.5

July 5

August 3.2

September 28.6

October 43.8

November 38.2

December 52.3

January 75

February 25.8

Table 4.3: Comparison between TM model and real data

4.5.3 Results from the heuristic algorithml

To evaluate the quality of the solution obtained by the heuristic, we compared its

performance with that of the TM model. These results are presented in Figure 4.14.

We observed that the ATM model is coherent with the hourly TM model, proposing

a combined solution of offline and online cleanings. Even though the two solutions

are not exactly the same, they result in similar profits, where the difference is 3.61%.

Table 4.4: Comparison between maintenance operations’ scheduling in Tm model

and heuristic

TM model Heuristic

Number of offline cleanings 6 4

Number of online cleanings 4 6

Computational time 10 h with 0.22% gap 367 sec.
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Figure 4.14: Comparison between maintenance operations’ scheduling in TM

model and heuristic

4.6 Conclusion

We proposed a tactical optimization model for the management of multiple inter-

connected energy systems. We proposed a model for the tactical setting, i.e., the

TM model. The TM model is able to schedule maintenance operations of multiple

interconnected energy systems for a planning horizon of one year. Including the

electric efficiency variations in the tactical model, led to results that are more in

line with the company’s decisions. This improvement is evident when observing the

natural gas consumption, which is more realistic.

Furthermore, given the challenge in solving the tactical management model, we

proposed a heuristic algorithm to decrease the computation time of the tactical

management model, reaching a difference in terms of profit of 3.61%. This result

opens the possibility to extend the time range of the tactical management model

from one year to several years, giving the chance to increase the planning horizon

for the plant’s operator.

At the same time it must be said that even though the production of the system

has been calculated with respect to the hourly electricity price, this price has been

considered as an input parameter. This is a valid approximation for tactical plan-

ning purposes but does not fully represent reality. Specifically, in the TM model we

explicitly assumed the a priori knowledge of the electricity prices one year in ad-

vance. To relax this assumption we conducted an additional experiment, assuming

a naive forecasting method for the electricity prices. Essentially we assumed that

the price of electricity at a given period is precisely the price observed in the same

period of the previous year. Running the TM model with this configuration led to

a difference in terms of profit of 4.56%. Hence the TM model can be considered

reliable also with a naive forecast based on historical data of the electricity prices
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of previous years.
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Chapter 5

Conclusions

The aim of this thesis was to propose exact and heuristic algorithms for the inte-

grated planning of multi-energy systems. First, a mathematical model for the gener-

ation expansion operations to optimize the performance of a Central Energy System

(CES) system is proposed. Extensions (or updates) of the existing network were in-

cluded in the model, to ensure compatibility with the network. All these decisions

were evaluated both from an economic viewpoint, using the objective function of

the problem, and from an environmental perspective, as specific constraints related

to GHG gases (measured in CO2eq) emissions were imposed in the formulation.

Two different instances were tested, to detect the effectiveness of the methodology

proposed, using Gurobi as a solver and three different types of machines. The results

showed the high dependency of the memory required to find an optimal solution, on

the number of time steps and number of cores used to solve the problem. Given the

complexity of the problem and the size of the instances of real scenarios, a heuristic

may be necessary to create more competitiveness from a computational point of

view.

Then, an algorithm for a bottom-up optimization model for solar organic Rank-

ine cycle in the context of transactive energy trading is presented. This study first

inspected the impact that this technology can have on the peer-to-peer trading ap-

plication in renewable based community microgrids. Moreover, it investigated how

different technological parameters of the solar ORC may affect the final solution.

Finally, it studied the value of the solar ORC in the transactive energy trading con-

text under different configurations and scenarios. The results highlight an overall

gain, on average 16% in terms of operational costs. Since the aim of this study was

to produce an optimization model for the operational management of the system,

an investment costs analysis is not included. Future directions related to this work

would be to concentrate on the integration of investment decisions. Moreover, the

introduction of long-term storage systems could be another suggestion for future
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studies.

Finally, a tactical optimization model for the maintenance operations’ schedul-

ing phase of a Combined Heat and Power (CHP) plant is introduced. Two types

of cleaning operations were analyzed, i.e., online cleaning and offline cleaning. Fur-

thermore, a piecewise linear representation of the electric efficiency variation curve,

accurately describing the impact of load and inlet air temperature inside the com-

pressor on the electric efficiency of the CHP plant is included. Given the challenge

of solving the tactical management model, a heuristic algorithm was developed. The

heuristic first solves the daily operational production scheduling problem, based on

the final consumer’s demand and on the electricity market price. The aggregate in-

formation from the operational problem is used to derive maintenance decisions at

a tactical level.

The models were tested on a specific case of study, with three facilities (one CHP

plant and two Dual Fuel boilers). Compared to the operational basic model, the

results found on electric efficiency variations are more in line with the actual func-

tioning. The resulting profits are 7.82% lower than those obtained by the operational

basic model. Moreover, developing a tactical management model for maintenance op-

erations’ scheduling led to more realistic results, with an estimated profit of 10.66%

lower with respect to the operational model with electric efficiency variations. There-

fore, in order to make decisions in the tactical planning horizon, the maintenance

of the CHP plant is crucial. The proposed heuristic algorithm drastically improves

the computation time of the tactical management model, reaching a difference in

terms of profit of 3.61%. This result opens the possibility to extend the time range

of the tactical management model from one year to several years.
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quero Lozano, and A. Moser, “Analyzing intersectoral benefits of district heat-

ing in an integrated generation and transmission expansion planning model,”

Energies, vol. 15, no. 7, 2022.

[28] C. Bordin, S. A. Cordieri, and S. Mishra, “A bottom-up optimization model

for solar organic rankine cycle in the context of transactive energy trading,”

submitted to Energy, 2023.

[29] United Nations, “Cop23.” [Online]. Available: https://unfccc.int/event/cop-23

[30] H. Yu, H. Helland, X. Yu, T. Gundersen, and G. Sin, “Optimal

design and operation of an organic rankine cycle (orc) system driven by

87

https://unfccc.int/event/cop-23


solar energy with sensible thermal energy storage,” Energy Conversion

and Management, vol. 244, p. 114494, 2021. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0196890421006701

[31] T. Tartière and M. Astolfi, “A world overview of the organic rankine

cycle market,” Energy Procedia, vol. 129, pp. 2–9, 2017, 4th International

Seminar on ORC Power SystemsSeptember 13-15th 2017 POLITECNICO

DI MILANO BOVISA CAMPUS MILANO, ITALY. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1876610217340286

[32] S. A. Kalogirou, “Solar thermal collectors and applications,” Progress in Energy

and Combustion Science, vol. 30, no. 3, pp. 231–295, 2004. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0360128504000103

[33] C. Zhang, J. Wu, M. Cheng, Y. Zhou, and C. Long, “A bidding

system for peer-to-peer energy trading in a grid-connected microgrid,”

Energy Procedia, vol. 103, pp. 147–152, 2016, renewable Energy Integration

with Mini/Microgrid – Proceedings of REM2016. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1876610216314746

[34] C. Park and T. Yong, “Comparative review and discussion on p2p electricity

trading,” Energy Procedia, vol. 128, pp. 3–9, 2017.

[35] C. Park, “Technology development of challenges of peer to peer energy,” Seong-

nam: KETI, 2009.

[36] B. F. Tchanche, G. Papadakis, G. Lambrinos, and A. Frangoudakis, “Fluid

selection for a low-temperature solar organic rankine cycle,” Applied Thermal

Engineering, vol. 29, no. 11, pp. 2468–2476, 2009. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1359431108004900

[37] H. Yamaguchi, X. Zhang, K. Fujima, M. Enomoto, and N. Sawada, “Solar

energy powered rankine cycle using supercritical co2,” Applied Thermal

Engineering, vol. 26, no. 17, pp. 2345–2354, 2006. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1359431106000780

[38] M. F. Zia, M. Benbouzid, E. Elbouchikhi, S. M. Muyeen, K. Techato, and J. M.

Guerrero, “Microgrid transactive energy: Review, architectures, distributed

ledger technologies, and market analysis,” IEEE Access, vol. 8, pp. 19 410–

19 432, 2020.

[39] C. Zhang, J. Wu, C. Long, and M. Cheng, “Review of existing peer-to-peer

energy trading projects,” Energy Procedia, vol. 105, pp. 2563–2568, 2017, 8th

International Conference on Applied Energy, ICAE2016, 8-11 October 2016,

88

https://www.sciencedirect.com/science/article/pii/S0196890421006701
https://www.sciencedirect.com/science/article/pii/S0196890421006701
https://www.sciencedirect.com/science/article/pii/S1876610217340286
https://www.sciencedirect.com/science/article/pii/S0360128504000103
https://www.sciencedirect.com/science/article/pii/S1876610216314746
https://www.sciencedirect.com/science/article/pii/S1359431108004900
https://www.sciencedirect.com/science/article/pii/S1359431106000780


Beijing, China. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S1876610217308007

[40] D. Zhao, S. Deng, L. Zhao, W. Xu, W. Wang, X. Nie, and M. Chen,

“Overview on artificial intelligence in design of organic rankine cycle,”

Energy and AI, vol. 1, p. 100011, 2020. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S2666546820300112

[41] L. Pierobon, T.-V. Nguyen, U. Larsen, F. Haglind, and B. Elmegaard,

“Multi-objective optimization of organic rankine cycles for waste heat

recovery: Application in an offshore platform,” Energy, vol. 58, pp. 538–549,

2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0360544213004556

[42] M. Aneke and M. Wang, “Energy storage technologies and real life

applications – a state of the art review,” Applied Energy, vol. 179, pp. 350–377,

2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0306261916308728

[43] E. Casati, A. Galli, and P. Colonna, “Thermal energy storage for solar-

powered organic rankine cycle engines,” Solar Energy, vol. 96, pp. 205–219,

2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0038092X13002788

[44] C. Bordin and O. Mo, “Including power management strategies and load

profiles in the mathematical optimization of energy storage sizing for fuel

consumption reduction in maritime vessels,” Journal of Energy Storage,

vol. 23, pp. 425–441, 2019. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S2352152X18306790

[45] C. Bordin and A. Tomasgard, “Smacs model, a stochastic multihorizon

approach for charging sites management, operations, design, and expansion

under limited capacity conditions,” Journal of Energy Storage, vol. 26,

p. 100824, 2019. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S2352152X19303044

[46] S. Mishra, C. Bordin, A. Tomasgard, and I. Palu, “A multi-agent system

approach for optimal microgrid expansion planning under uncertainty,”

International Journal of Electrical Power and Energy Systems, vol. 109, pp.

696–709, 2019. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0142061518327947

[47] M. Mehrpooya, M. Ashouri, and A. Mohammadi, “Thermoeconomic analysis

and optimization of a regenerative two-stage organic rankine cycle coupled

89

https://www.sciencedirect.com/science/article/pii/S1876610217308007
https://www.sciencedirect.com/science/article/pii/S1876610217308007
https://www.sciencedirect.com/science/article/pii/S2666546820300112
https://www.sciencedirect.com/science/article/pii/S2666546820300112
https://www.sciencedirect.com/science/article/pii/S0360544213004556
https://www.sciencedirect.com/science/article/pii/S0360544213004556
https://www.sciencedirect.com/science/article/pii/S0306261916308728
https://www.sciencedirect.com/science/article/pii/S0306261916308728
https://www.sciencedirect.com/science/article/pii/S0038092X13002788
https://www.sciencedirect.com/science/article/pii/S0038092X13002788
https://www.sciencedirect.com/science/article/pii/S2352152X18306790
https://www.sciencedirect.com/science/article/pii/S2352152X18306790
https://www.sciencedirect.com/science/article/pii/S2352152X19303044
https://www.sciencedirect.com/science/article/pii/S2352152X19303044
https://www.sciencedirect.com/science/article/pii/S0142061518327947
https://www.sciencedirect.com/science/article/pii/S0142061518327947


with liquefied natural gas and solar energy,” Energy, vol. 126, pp. 899–914,

2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0360544217304395

[48] Y. Chen, L. Feng, I. B. Mansir, and M. Taghavi, “A new coupled

energy system consisting of fuel cell, solar thermal collector, and

organic rankine cycle; generation and storing of electrical energy,”

Sustainable Cities and Society, vol. 81, p. 103824, 2022. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2210670722001512

[49] Z. Wang, X. Yu, Y. Mu, and H. Jia, “A distributed peer-to-peer energy

transaction method for diversified prosumers in urban community microgrid

system,” Applied Energy, vol. 260, p. 114327, 2020. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0306261919320148

[50] A. Esmat, M. de Vos, Y. Ghiassi-Farrokhfal, P. Palensky, and D. Epema,

“A novel decentralized platform for peer-to-peer energy trading mar-

ket with blockchain technology,” Applied Energy, vol. 282, p. 116123,

2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0306261920315373

[51] M. Khorasany, Y. Mishra, and G. Ledwich, “Auction based energy trad-

ing in transactive energy market with active participation of prosumers and

consumers,” in 2017 Australasian Universities Power Engineering Conference

(AUPEC), 2017, pp. 1–6.

[52] M. Marefati, M. Mehrpooya, and F. Pourfayaz, “Performance analysis of

an integrated pumped-hydro and compressed-air energy storage system and

solar organic rankine cycle,” Journal of Energy Storage, vol. 44, p. 103488,

2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S2352152X21011713

[53] H. Wang, W. Yin, E. Abdollahi, R. Lahdelma, and W. Jiao, “Modelling

and optimization of chp based district heating system with renewable energy

production and energy storage,” Applied Energy, vol. 159, pp. 401–421,

2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0306261915010909

[54] G. Manfrida, R. Secchi, and K. Stańczyk, “Modelling and simulation of phase
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