
DOTTORATO DI RICERCA IN

INGEGNERIA BIOMEDICA, ELETTRICA E DEI SISTEMI

Ciclo 36

Settore Concorsuale: 09/G1 - AUTOMATICA

Settore Scientifico Disciplinare: ING-INF/04 - AUTOMATICA

Robotic Perception and Manipulation of
Deformable Linear Objects

Presentata da: Alessio Caporali

Coordinatore Dottorato

Michele Monaci

Supervisore

Gianluca Palli

Co-supervisore

Claudio Melchiorri

Esame finale anno 2024

iii

ALMA MATER STUDIORUM UNIVERSITY OF BOLOGNA

Abstract

School of Engineering and Architecture
Department of Electrical, Electronic and Information Engineering (DEI)

“Guglielmo Marconi”

PhD in Biomedical, Electrical and Systems Engineering

Robotic Perception and Manipulation of
Deformable Linear Objects

by Alessio Caporali

Deformable objects are pervasive in the everyday life environment, in the form of clothes,
cables, wires, ropes and many other objects. Despite their importance and widespread
diffusion, there still exist many limitations when it comes to deploying robotic systems for
interacting with deformable objects. This thesis presents a comprehensive exploration of
research activities geared towards enhancing the perception and manipulation capabilities of
a robotic system when dealing with deformable linear objects.

The activities are organized into two main research aspects, namely perception and
manipulation. In the first part of this thesis, the focus is on developing perception solutions
for deformable linear objects, primarily relying on visual data and exploiting deep learning
techniques. Consequently, innovative methods are developed to address the dataset generation
challenge with minimal to no human intervention. Furthermore, novel approaches are applied
to tackle the instance segmentation task by combining deep learning techniques with graph-
based representations of the object’s configuration. The 3D reconstruction task is also
addressed through a multi-view stereo reconstruction approach.

The second aspect of the research concentrated on the manipulation problem, specifically
in predicting how robot actions affect the deformable linear object’s configuration. This
is achieved by employing a differentiable model of the object’s dynamics that is used for
planning the optimal manipulation action for achieving a target configuration. The same
model is also used for estimating model parameters, thereby improving the prediction
accuracy and consequently enhancing the robotic system’s manipulation capabilities.

Finally, the perception methods developed in this thesis are extended to encompass
the perception of deformable multi-linear objects, such as wire harnesses. To this end,
a learning-based topological representation is conceived and applied in the context of a
dual-arm disentangling manipulation task.

Contents

1 Introduction 1
1.1 Deformable Objects in Robotics . 1
1.2 Deformable Linear Objects: Sensing and Manipulation 2
1.3 Motivation and Contributions . 3
1.4 Thesis Structure . 4

2 Dataset Generation for Segmentation Tasks 5
2.1 Introduction . 5
2.2 Related Works . 6
2.3 Chroma Separation . 8
2.4 Synthetic Images Rendering . 10
2.5 Weakly Supervised Annotation of Real Images 11
2.6 Test Dataset . 15
2.7 Experiments . 16
2.8 Conclusions . 24

3 2D Perception: Instance Segmentation and Modeling 27
3.1 Introduction . 27
3.2 Related Work . 28
3.3 The Ariadne+ Algorithm . 30
3.4 The FASTDLO Algorithm . 38
3.5 The RT-DLO Algorithm . 44
3.6 Experimental Results . 53
3.7 Conclusions . 58

4 3D Shape Estimation: Combining 2D Perception and Multiple Views 61
4.1 Introduction . 61
4.2 Related Works . 63
4.3 The DLO3DS Algorithm: Overview . 63
4.4 Instance Selection and Modeling . 64
4.5 Shape Estimation from Multiple Views 65
4.6 Experimental Validation . 70
4.7 Conclusions . 73

5 Shape Control Task with Online Model Parameters Estimation 75
5.1 Introduction . 75
5.2 Related Works . 76
5.3 Analytical Model and DLO State Representation 78
5.4 Neural Network-based DLO Model . 79
5.5 Gradient-based Estimation of Action and Parameters 81

v

vi CONTENTS

5.6 Shape Control Task with Online Parameters Adaptation 83
5.7 Experiments . 84
5.8 Conclusions . 89

6 DMLOs Topology Representation Learning 91
6.1 Introduction . 91
6.2 Related Works . 93
6.3 Method Overview . 95
6.4 Graph Initialization . 95
6.5 Topology Learning . 97
6.6 Solver . 103
6.7 Topology-driven Manipulation . 106
6.8 Experiments . 107
6.9 Conclusions . 114

7 Conclusions 115

Bibligraphy 117

List of Figures

1.1 Trend in scientific publications concerning deformable objects and robotics.
Scopus search with query ”deformable AND objects AND robotics”. . . 2

2.1 Outlined procedure for producing eight novel synthetic images through
chroma-separation and domain randomization. 9

2.2 Images used to replace the background in the output dataset. 10
2.3 Synthetically generated RGB samples of DLOs with instance-wise labels.

The samples are obtained exploiting the spline-based representation
detailed in Sec. 2.4.1. 10

2.4 VR tracker-based weakly supervised dataset generation. 12
2.5 Transformations involved in the labeling procedure using the VR tracker.

The transformations named tTr,
rTc are needed to transform the labeled

point from the VR coordinates (P t
i) to points in the robot coordinates

(P r
i) and in the camera coordinates (P c

i). 13
2.6 Labeling flow performed for each captured image. On the sampled image

(a) the input points of the VR tracker captured for each instance are
projected (b) and smoothed with a spline curve (c). Thereafter, the
CNN-based correction procedure is executed (d), the instance masks
generated (e), and the output mask finalized (f). Colors meaning: input
tracker points as white crosses, smoothed points in orange and corrected
points in cyan. 14

2.7 CNN-based corrector predicting the approximated DLO center. 15
2.8 Samples of the test set organized by category and number of intersections. 16
2.9 Qualitative results of the semantic segmentation task on the test set. . 19
2.10 Boxplot of the Dice Coefficient computed across the test set images on the

models trained with the different datasets. In all the tests the predictions
are thresholded at 0.3. 19

2.11 Evaluation of wr on DeepLabV3+. To the left is the change of average
IoU score with different wr. To the right is the change of training time
over dataset size. 21

2.12 Evaluation of wr on U2PL with the comparison between supervised (red)
and semi-supervised (blue) training. 21

2.13 Qualitative test set samples and predictions of DeepLabV3+ when trained
on 4K synthetic images (S4), 8K synthetic images (S8), a mix of 4K
synthetic and 1K real (S4 + R1, wr = 0.20) and a mix of 8K synthetic
and 1K real (S8 + R1, wr = 0.11). 22

2.14 In (a) sability measure with the SUS scale [10], the higher the better.
In (b) workload measure with the NASA TLX [43], the lower the better.
The comparison is established between chroma-key (CK), RITM [108]
and DLO-WSL. 23

vii

viii LIST OF FIGURES

2.15 Evaluation of the performances in terms of semantic segmentation and
number of clicks for the labeling approaches. The segmentation reports
the outcomes with chroma-key (CK), RITM [108], DLO-WSL and raw
data from the user (without the CNN correction) fitted with a spline (SPL). 23

3.1 FPS vs accuracy of 2D DLO-specific perception algorithms (Ariadne+,
FASTDLO and RT-DLO) versus general-purpose baselines methods con-
cerning the instance segmentation task. 28

3.2 The Ariadne+ algorithm. 30
3.3 Superpixelization of an input image containing several DLOs in an indus-

trial setting (a) with a crop of the image in (b). Graph edges computation
in (c): superpixel mask before (top) and after (bottom) gradient opera-
tion. In (c-bottom) are shown the pixels of the neighboring superpixels
in red and blue. 31

3.4 (a) the graph with intersection nodes highlighted in red, (b) the graph
simplified, (c) the graph divided into intersection-free clusters (blue) and
clusters with an intersection (yellow). 33

3.5 Example of input samples provided to TripletNet. The triplet loss is a
distance-based loss that operates on three inputs: (a) anchor data; (b)
positive data example (similar to the anchor); (c) negative data example. 34

3.6 Example of intersection node (a) and representative patches of the two
classes (b,c) for the displayed intersection. CrossNet is employed to
predict the class of each patch. 38

3.7 The FASTDLO algorithm. 39
3.8 Input images with background segmentation results and generated skele-

tons zoomed at the area of the intersections. To clarify the skeleton
visualization, the mask colors in the right column are inverted. 40

3.9 Local neighbors possibilities of a skeleton pixel given a 3×3 kernel. To clar-
ify the representation, the skeleton is dark colored while the background
is white. 40

3.10 Endpoint-pair probability computation. For the general endpoint ei, from
the source image Is and binary mask Mb a feature vector is created as
xi. The embedding vector zi is obtained after the propagation of xi in
the similarity network layers. A Gaussian activation function on the
embeddings L2-distance is employed for calculating the final score pij of
the endpoints ei and ej. 42

3.11 (a) segments generated; (b) example of intersection processing of the
region highlighted area in (a). 42

3.12 Example of the intersection layout estimation with DLOs having identical
colors, in (a) and (b), and different colors (c). In all the examples the
DLO at the top is blue labeled. 44

3.13 The RT-DLO algorithm. 45
3.14 Vertices sampling key elements: the mask Mb (a), Mdist (b) and Mmax (c),

the obtained vertices (d). The bright regions in (b) denote high-intensity
values. 47

3.15 Edges processing main elements: (a) Knn edges to obtain initial candidate
edge set; (b) positive/negative edges illustration; (c) graph generated; (d)
intersection subgraph extracted; (e) subgraph processing schema. . . . 48

3.16 DLOs instances extraction with and without consistency check in case of
a problematic mask. 52

3.17 The connectivity graph (a) is processed to extract the DLOs instances
and obtain the colored mask Mc (b). 52

LIST OF FIGURES ix

3.18 Qualitative evaluation of RT-DLO versus FASTDLO and Ariadne+ on
the test set classes. 54

3.19 Evaluation of RT-DLO, FASTDLO and Ariadne+ on the test set eroding
Mb. 56

3.20 Qualitative comparison of RT-DLO, FASTDLO and Ariadne+ given Mb

eroded for 1, 2 and 3 iterations. 56
3.21 Evaluation of RT-DLO, FASTDLO and Ariadne+ on the test set em-

ploying Mb obtained by SOS networks. 57
3.22 Qualitative comparison of the instances masks of RT-DLO, FASTDLO

and Ariadne+ given Mb from EGNet. 57
3.23 Analysis of superpixel parameter sensitivity in terms of the number

of intersections (i.e. #1, #2 and #3) and average. The number of
superpixels is varied between 10 and 90 whereas the reference value of 50
is shown with the dashed gray line. As metrics, the IoU is employed. . 59

3.24 Qualitative comparison of three different values for the number of super-
pixels for the same image. From left to right: low (10), normal (50), high
(90). 59

4.1 Showcase of DLO3DS capabilities in reconstructing the shapes of DLOs
in different scenarios. 62

4.2 3D shape estimation pipeline of DLO3DS. Data flow: the blue arrow
denotes the image; the red arrow denotes the 2D spline. 64

4.3 Target spline selection approach based on distance computation. The
symbol u denotes the spline-free parameter. 65

4.4 Scaling process. The shortest spline is selected as the reference and all
the others are scaled to match the same DLO portion as closely as possible. 66

4.5 Tracking the same DLO after a forward motion by exploiting a distance-
based computation on the overlap area. 69

4.6 Experimental setup composed of a Panda robot from Franka Emika and
a low-cost eye-in-hand 2D USB camera. 70

4.7 Error distribution on the synthetic test set when varying a single param-
eter of DLO3DS. For the optimization plot: fixed means fixed setup, b
means just baseline, z means just distance, b + z means both baseline
and distance. 71

4.8 Comparison with baseline methods in the form of depth images and
boxplot. Plot legend: 0) DLO3DS, 1) SISTER [28], 2) CENSUS/SGM
[48] and 3) MCCNN/SGM [137]. The display of the MCCNN/SGM
boxplot in the third row is avoided due to large errors. 72

4.9 Key-frames from a video sequence (available as supplementary material)
showing the tracking test performed on DLOs of different types and
diameters. Tester gripper diameter: black 6 mm, blue 10 mm. 73

5.1 Schematic view of the two phases composing the proposed manipulation
framework: 1) training phase for dataset generation and NN training,
and 2) online phase for simultaneous estimation of the best action and
model parameters during the shape control task. 76

5.2 DLO analytical model representation. 78
5.3 Example sequence of k = 5 dataset samples generated employing a

simulated DLO. Vin in red, Vout in light blue and action arrow in green. 80
5.4 Neural network architecture. With × the element-wise multiplication is

denoted. 81

x LIST OF FIGURES

5.5 Scheme of the proposed gradient-based action and DLO parameters
estimation. 82

5.6 Experimental robotic setup comprising different ropes and surfaces (a).
Target shapes achieved with the red rope on the cardboard surface (b). 84

5.7 Outcomes of the shape control task involving online adaptation of model
parameters, conducted across various rope types and surfaces. Average
results across 5 repetitions per task (standard deviations confidence region
intervals). With cl and cb the cloth and cardboard surfaces are denoted. 86

5.8 Comparing prediction errors using mid-range, online, and best model
parameters across ropes and surfaces. 87

5.9 Prediction error for fix (no params) vs conditioning parameters across
different models. For the latter, the symbol (*) denotes that the same
shape is used for parameters estimation and forward prediction error,
whereas with (**) the 4-fold cross-validation approach is denoted. With
fixed mid-range and varied the two employed datasets are indicated. . . 88

5.10 The mean prediction error (log scale) of the input parameters (ours) vs
neural network weights (RBF [134]) update, evaluated on the same shape
(*) or on different shapes (**). 89

6.1 Extracted topology representation of a DMLO from a camera sample. The
branch sections composing the DMLO are displayed in different colors
while the branch-points and intersection-points are highlighted with red
and blue dots. On the right side, the dual-arm robotic experimental setup. 92

6.2 Schema of the proposed approach. On the right side, the topology
representation provided as output is shown with the individual branch
sections of the DMLO denoted in different colors and the single branch-
point and intersection-point highlighted as red and blue dots. 94

6.3 Vertices sampling procedure from segmentation mask: distance transform
maks Mdist, local maximum mask Mmax, graph nodes V 96

6.4 Sample of the synthetic dataset. In (a) and (b) the rendered image
and mask of the randomly generated DMLO. In (c), the colored curves
represent the different sections and the red dots describe the branch-points
used in the annotation process. In (d) the obtained ground truth graph
is displayed. 98

6.5 Outcomes of the different stages of the pipeline. From the graph with the
input set of edges Eknn (a), the predicted edge probabilities are displayed
in (b) while the node orientations are in (c). The result of the node
subgraphs classification task between normal (0) and highly-connected
(1) nodes is shown in (d). 100

6.6 Effect of solver stages: (a) Obtained graph after the application of the
edge filtering stage on the input graph of Fig. 6.5a; (b) The result of the
high-degree nodes handling exploiting the estimated node classes. . . . 103

6.7 Node orientation solver updating the edges around node k in case its
orientation is consistent with the nearby existing edge eij between nodes
i and j. 104

6.8 Clusters formation for branch-point and intersection-point regions. High-
degree nodes are denoted in black. 105

6.9 Schematic of the manipulation motion originated for the topology repre-
sented. 106

6.10 DMLOs real-world test samples. 108

LIST OF FIGURES xi

6.11 Snapshots of the untangling manipulation experiment employing three
different automotive DMLOs. The branch-points and intersection-points
are shown as red and blue dots. 109

6.12 Offline evaluation results of the single learned components of the proposed
pipeline for the different DMLOs composing the test set. With ALL, the
entire set of samples is considered. 111

6.13 Comparisons of the proposed method against RT-DLO [15] and mBEST
[24] performing the instance segmentation task on the respective proposed
DLOs test datasets. 112

6.14 Ablation study of link prediction and node orientation tasks with compo-
nents proposed in RT-DLO. 113

6.15 Limitations of the proposed method concerning topologies derived from
masks that exhibit artifacts and gaps. To pinpoint the specific issue, a
red arrow is employed. 114

List of Tables

2.1 The average Dice Coefficient computed across the test set images on the
models trained with the different datasets. In all the tests the predictions
are thresholded at 0.3. 18

2.2 Factorial design for the analysis of dataset mixtures. The table shows
the size of real-world dataset given the synthetic dataset and ratio wr.
With � are denoted the configurations where U2PL is trained also in a
semi-supervised fashion. With * are denoted the configurations used only
by DeepLabV3+ and YOLACT. 20

3.1 Ariadne+, FASTDLO and RT-DLO versus baseline methods. Key-point
denotes that the method also provides a representation of the detected
DLOs as sequence of points. The symbol ’*’ indicates that the method is
tested on a reduced dataset. 53

3.2 Ariadne+ average execution timings of the different main parts and total
computed over the test set. Values in milliseconds. 55

3.3 FASTDLO main procedures average execution times and total with
respect to the number of intersections in the test set images, i.e. 1, 2,
and 3. Values in milliseconds. 55

3.4 Average execution times [ms] of the main RT-DLO stages with respect
to the number of intersections in the image, i.e. 1, 2, and 3. 55

3.5 Performances of RT-DLO when varying the vertices sampling ratio α
and the number of Knn nearest neighbors. In bold the values within 1%
distance from the best one. 58

6.1 Offline evaluation results in terms of dice score for the link predicted in
graph G ′′

and detection accuracy for B and I. 109
6.2 Timings of the main procedures of the approach across the test set. Values

in milliseconds. 111

xiii

List of Abbrevations

DO Deformable Object

DLO Deformable Linear Object

DMLO Deformable Multi-Linear Object

NN Neural Network

CK Chroma Key

VR Virtual Reality

CNN Convolutional Neural Network

FPS Frames Per Second

DCNN Deep Convolutional Neural Network

RAG Region Adjacency Graph

SGM Semi-Global Matching

GNN Graph Neural Network

xv

Chapter 1

Introduction

1.1 Deformable Objects in Robotics

Deformable Objects (DOs) refer to objects with the ability to change their shape when
subjected to external forces. They are commonly found in everyday life, for instance, in
the form of clothes, wires, cables, and ropes. However, they are also vastly present in
other fields, such as the medical, agricultural and industrial domains.

The problem of DOs sensing and manipulation is an emerging research topic in
robotics [132]. Since DOs are ubiquitous in our daily lives, the ability to perceive and
manipulate them is a crucial skill for robots to possess [150]. For instance, robots
can provide valuable assistance in elderly care by helping with tasks like dressing and
handling textile objects [96]. DOs are also commonly found in industrial settings, where
they are used for wiring all the electrical components of a vehicle [119, 53] or for the
assembly of wire harnesses and wires in general [107]. Manipulating DOs with a robotic
system can help to automate these tasks, thus reducing the need for human intervention
and increasing productivity [150]. Fruits and vegetables are also DOs, and robots can
help with harvesting and handling them [80]. Finally, the medical field is another sector
where the manipulation of DOs can be beneficial. For instance, robots can perform
tasks such as chaterization, suturing, and tissue manipulation [52, 91].

The research related to DOs spans every aspect of robotics, including perception,
planning, and control [150]. The increasing trend in the number of publications related
to DOs and robotics, as depicted in Fig. 1.1, underscores the growing interest and
commitment of researchers in this field.

The field of DOs is vast and encompasses a wide range of objects with different
characteristics. Therefore, it is common practice to categorize DOs based on their
geometry and physical attributes [99].

With respect to their geometry, DOs can be classified as either uniparametric,
biparametric or triparametric. Uniparametric objects are those with one dimension
significantly greater than the other two, such as a cable where the length far surpasses
its width and height. On the other hand, biparametric objects are characterized by one
dimension considerably smaller than the other two as, for example, a sheet of paper
whose thickness is negligibly small compared to its width and height. Triparametric
objects refer to solid objects with substantial dimensions in all three aspects.

Concerning their physical attributes, DOs can be grouped into two categories: DOs
with no compression strength, and DOs with large strain. DOs lacking compression
strength, like ropes and clothes, deform and change their shape without offering any
resistance when subjected to forces applied from opposite ends. In contrast, DOs with
large strain have the capacity to deform under the influence of force but can also return

1

2 CHAPTER 1. INTRODUCTION

1985 1990 1995 2000 2005 2010 2015 2020
Year

0

20

40

60

80

100

Nu
m

be
r o

f P
ub

lic
at

io
ns

Deformable Objects in Robotics (1985 - 2022)

Figure 1.1: Trend in scientific publications concerning deformable objects and robotics. Scopus search
with query ”deformable AND objects AND robotics”.

to their original shape. Examples of such objects include springs and elastic wires.
Deformable Linear Objects (DLOs), which are the central focus of this thesis, fall into

the category of uniparametric DOs. They can exhibit either no compression strength,
similar to ropes, or large strain, as seen in cables and wires. The following section
provides an overview of DLOs from the perspective of robotics.

1.2 Deformable Linear Objects: Sensing and Manipulation

The category of DLOs comprises a diverse array of items, including wires, cables, ropes,
elastic tubes, and strings. Slightly differing from DLOs, there exists another class of ob-
jects known as Deformable Multi-Linear Objects (DMLOs), which encompass structures
like wire harnesses, hoses, and other constructs made up of multiple interconnected
DLO components. DMLOs share numerous attributes with DLOs, with the primary
distinguishing factor being the presence of branch-points, which are points where two
DLO components are interconnected. Therefore, within this thesis, the term DLOs is
employed to encompass both DLOs and DMLOs. If necessary, explicit differentiation
between these two categories is provided.

DLOs are commonly found in industrial scenarios, for instance, in the automotive
[119, 53] and aerospace [107] industries. Despite their widespread use in industrial
applications, automating processes involving DLOs and DMLOs remains a formidable
challenge [119]. This is primarily attributed to the scarcity of effective solutions for
perceiving and manipulating these objects.

The perception of DLOs can pose challenges due to their inherently ambiguous
characteristics. The absence of distinctive shapes and colors makes it challenging to
differentiate between various DLOs within a given scene and to distinguish DLOs from
other objects. Furthermore, their relatively small dimensions, particularly in terms of
diameters, present an additional hurdle when it comes to their 3D perception, which
many sensors struggle to achieve, as highlighted in [26]. Finally, their deformable nature
compounds the challenges associated with perception.

Manipulating DLOs can also pose a challenge as their intrinsic deformability results in
a high-dimensional state space with complex and nonlinear dynamics [128, 77]. Therefore
a deep understanding of their physical characteristics is required in manipulation tasks
to predict and control their shape effectively.

1.3. MOTIVATION AND CONTRIBUTIONS 3

1.3 Motivation and Contributions

The objective of this thesis is to develop robotic solutions tailored for the perception
and manipulation of DLOs in diverse environments. These environments range from
complex, unstructured settings like domestic spaces to semi-structured, yet demanding
industrial environments.

Robotic applications typically require a reliable perception of target objects to
effectively plan and execute manipulation tasks. Consequently, the perception system
must be capable of furnishing 3D scene information. Typically, this is achieved by
employing a 3D sensor such as an RGBD camera. Hence, the initial portion of this thesis
is dedicated to addressing the challenge of achieving 3D perception of DLOs starting
from 2D vision data.

Upon establishing a reliable solution for DLO perception, the subsequent task is
to tackle the complex problem of DLO manipulation. Manipulating DLOs presents
a formidable challenge due to their deformable nature, which renders their behavior
during manipulation challenging to predict. Therefore, part of this thesis is dedicated
to resolving some challenges associated with the prediction of the change in the DLO
shape subject to the action of the robot.

The presence of branch-points in DMLOs makes them more demanding to perceive
and manipulate compared to DLOs. Indeed, methods and algorithms developed for
DLOs cannot be directly applied to DMLOs. Therefore, the final portion of this thesis
is dedicated to extending the discussion to DMLOs.

1.3.1 Perception of DLOs

Solving the 3D perception problem for DLOs is challenging due to their small dimensions
and deformability, as mentioned before. Therefore, in this thesis, the 3D perception of
DLOs is accomplished by first solving the 2D perception problem. The 2D detection
can then be extrapolated in the 3D domain by either relying on accurate 3D sensors
capable of dealing with the DLOs’ thin diameters or by combining the 2D results with
a multi-view stereo approach, thus requiring only a simple 2D camera.

In images, deep learning approaches able to obtain precise and robust results are
employed for detecting and segmenting DLOs. However, the problem of gathering the
data required by the deep learning pipelines needs to be addressed. Manually annotating
data containing multiple DLOs is a time-consuming and tedious task. Therefore,
approaches for generating training data with zero or minimal human intervention have
been developed.

Thereafter, the instance segmentation task is addressed. This task is crucial for
the 3D shape estimation since it allows the association of the 2D detections with
the corresponding 3D points, for instance by utilizing an RGBD camera. Instance
segmentation means that each pixel of the image is assigned to a specific instance of the
object class. This is a challenging task for DLOs since they are usually characterized by
a lack of specific shape and color. Therefore, novel approaches for instance segmentation
of DLOs have been formulated.

Finally, the 3D shape estimation task is tackled. The goal of this task is to provide a
full description in the 3D space of the shape of the DLOs. Considering the difficulties
that arise when it comes to detecting small and thin objects with the majority of
3D sensors, a novel approach is proposed. It combines the results of the 2D instance
segmentation with a multi-view stereo approach for accurately reconstructing the 3D
shape even of very thin DLOs.

4 CHAPTER 1. INTRODUCTION

1.3.2 Manipulation of DLOs

Manipulating DLOs is a challenging task for a robotic system due to their unpredictable
configuration, high-dimensional state space and complex nonlinear dynamics. Model-
based approaches are typically employed to tackle the manipulation problem. However,
the high-dimensional state space and the complex dynamics of DLOs make it challenging
to obtain an accurate and efficient model. Therefore, a data-driven approach is proposed.
It relies on a Neural Network (NN) to learn the dynamics of the DLOs and to predict
their behavior during manipulation. The NN is trained using an analytical model of
the DLO dynamics. The complete task developed is the model-based shape control of
DLOs with the simultaneous online gradient-based estimation of model parameters.

1.3.3 Extension to DMLOs

The extension of the proposed perception and manipulation strategies to the sub-category
of DMLOs is also addressed. The main difference between DLOs and DMLOs is the
presence of branch-points. Therefore, the perception problem is tackled by extracting
a topological representation of the DMLO analyzed which is in turn employed for
performing a manipulation task.

1.4 Thesis Structure

This thesis is organized as follows:

� Chapter 2 presents the data generation problem and proposes three different
methods for collecting and annotating images. These methods are used to generate
the datasets employed in Chapter 3.

� Chapter 3 tackles the issue of 2D detection and segmentation. It proposes three
distinct learning-based approaches for solving the instance segmentation task. The
approaches are presented in chronological order of development highlighting the
improvements and differences between them.

� Chapter 4 addresses the problem of estimating the 3D shapes of DLOs via an
approach employing only a simple 2D camera. The proposed solution combines the
results of Chapter 3 with a multi-view stereo approach for accurately reconstructing
the 3D shape even of very thin DLOs.

� Chapter 5 presents a manipulation framework for shaping DLOs toward a goal.
Simultaneously to the manipulation, several model parameters are estimated for
improving the capabilities of the robotic system.

� Chapter 6 extends the perception methods and algorithms developed for DLOs
to the sub-category of DMLOs. Therefore, the perception problem is tackled by
extracting a topological representation of the DMLO analyzed which is in turn
employed for performing a manipulation task.

� Chapter 7 draws the conclusions about the overall work and reports open issues
and possible future research developments.

Chapter 2

Dataset Generation for
Segmentation Tasks

Deep learning approaches provide remarkable results in segmentation tasks. However,
the problem of gathering the data required by the deep learning pipelines affects and
limits their potential. Manually annotating data containing multiple DLOs is a time-
consuming and tedious task. Therefore, approaches for generating training data with
zero or minimal human intervention are developed.

2.1 Introduction

In computer vision, common tasks involve image classification, object detection and
segmentation, either semantic-wise or instance-wise. Image classification consists of
assigning a label or class describing the content of the image. Object detection is a
harder task having the goal of assigning bounding boxes to different semantic objects.
Finally, the segmentation task refers to the general problem of labeling each pixel of the
image either by an object semantic class (semantic segmentation) or instance-wise (in
the instance segmentation case).

The availability of big public datasets, e.g. [33, 12, 66], has promoted advances in
deep learning algorithms in computer vision applications, such as image classification,
object detection and semantic segmentation [44]. As a consequence, the key issue in
modern computer vision deals more and more with gathering and labeling big amounts
of data to be used for training deep learning models.

Usually, the process of segmenting and annotating training images is performed
manually, and it is notoriously tedious, inaccurate and time-consuming. Moreover, the
more complex the visual perception task is, the slower becomes the required annotation
procedure. For instance, labeling a single image for 2D semantic segmentation can take
several hours. Innovative companies, like Scale.ai, Superannotate.ai, Segments.ai and
many others, are basing their business on advanced image labeling pipelines that can
speed up and lighten the burden. These solutions often exploit a superpixel algorithm
[1] which helps the user quickly select large portions of the image instead of individual
pixels. Other new approaches rely on weakly supervised learning [148] that iterates
between image labeling and model training to provide the user with initial and coarse
labels for each new image instead of having it labeled from scratch.

The aforementioned big public datasets [33, 12, 66] usually concern general classes
(e.g. person, car, tree, cat, dog, etc.) that may not suit the needs of a specific task.
Robotic applications, especially in industrial settings, typically require detection or

5

6 CHAPTER 2. DATASET GENERATION

segmentation with a very high success rate of a small but very specific set of object
instances captured from different viewpoints in highly cluttered scenes.

DLOs, more than other objects, have some peculiarities that bring some interesting
challenges on vision tasks: 1) they are deformable objects, which means that they
are not characterized by a specific shape; 2) they are very lacking in features; 3) they
aren’t characterized by any particular color. Considering the peculiarities of DLOs
and the final goal of this thesis, i.e. perception and manipulation methods for robotic
applications, vision tasks like object detection or image classification are not relevant.
Indeed, a bounding box is not sufficient to characterize the DLO configuration in the
image. Instead, tasks like semantic or instance segmentation allow to properly set apart
the DLO configuration. Thus, the rest of this chapter addresses the 2D perception
problem by mostly tackling the segmentation of DLOs from images.

Since a DLO can feature a wide variety of shapes and colors, relying on standard
computer vision methods is not sufficient. Instead, deep learning tools can be exploited
since they can be trained to generalize well on the challenging class of DLOs. Learning
this variance with a trained segmentation model is not an easy job and the success is
strictly related to the quality of the training data. Thus, the generation of a large-scale
dataset able to cover this variability as much as possible is of paramount importance.

This chapter, having motivated the lack of simple and effective solutions to generate
big image datasets for training in the specific field of DLOs (see Sec. 2.2), proposes
three approaches to generate training samples of DLOs with zero or minimal human
intervention. The methods and results discussed in this chapter have been published as
[136, 19]. Specifically, in Sec. 2.3 a method to generate images of DLOs by exploiting
the chroma separation principle between background and foreground is presented. In
Sec. 2.4, synthetic images of DLOs with varying shapes and colors are generated by
exploiting a rendering engine. Finally, in Sec. 2.5 a method to collect real images of
DLOs and perform the annotation process with a weak supervision is discussed.

2.2 Related Works

The annotation processes for semantic segmentation are labor-intensive using traditional
methods [98, 66]. The efficient generation of ground truth segmentation masks, in
general, is explored in many studies. Indeed, a lot of research effort has been spent on
investigating alternative strategies to help the human operator in this task [149]. The
research area is primarily motivated by the need for large data variability in training
datasets to achieve performance saturation [111]. Furthermore, supervised methods, i.e.,
those trained on manually annotated data, currently best perform in public benchmarks
[79]. However, the manual labeling process can become burdensome with large datasets.
Therefore, to make the image labeling process more efficient, a broad range of methods
come into consideration. Specifically, two major groups or methods are 1) weakly or
semi-supervised segmentation detailed in Sec. 2.2.1, and 2) synthetic image generation
and domain adaptation discussed in Sec. 2.2.2. Additionally, the robotic community
has also developed some methods to generate datasets for object detection and pose
estimation, as discussed in Sec. 2.2.3.

2.2.1 Weakly Supervised Learning

To minimize the need for pixel-wise annotated training data, the development of weakly
supervised training methods is one of the most active research fields. Weakly supervised
learning studies attempt to construct predictive models by learning with incomplete,
inexact or inaccurate supervision [148]. Here, all kinds of weak supervision sources

2.2. RELATED WORKS 7

are explored to generate segmentation masks, including image labels [88], point clicks
[87], bounding boxes [9], or scribbles [65]. Alternatively, saliency detection can be
employed [139], but it cannot differentiate among objects’ instances. Furthermore, the
performances of models trained in these ways are still significantly worse than that of
models trained with fully annotated masks [79].

To correct faulty detections from weakly annotated data, interactive segmentation is
introduced. In interactive segmentation frameworks [94] small portions of target objects
are roughly highlighted by human operators through markers, called seeds. These seeds
are used for a training stage that will produce some rough labels for all other images.
The user can then produce more seeds and repeat the procedure until the desired quality
level is reached.

In [3] the authors present a method that generates initial pixel-wise masks starting
from a human-annotated bounding box. The predicted mask can be subsequently
annotated with corrective clicks, which are used by the network to generate an improved
mask. This process is repeated until the expectations of the human annotator are reached.
More than that, the segmentation model generating the mask predictions is re-trained
using the information from the initial bounding boxes and eventual corrections.

In [74] an industrial weakly supervised labeling tool is introduced where the image
is first oversegmentated in superpixels and the user must label only a few superpixels
per class. Then, based on a superpixel similarity metric, an algorithm annotates the
remaining superpixels.

Another approach is an automatic adjustment of the given weak noisy labels which
are corrected based on specific knowledge about their generation process [147]. In the
work of [69] this approach is applied by using gradient guidance to automatically correct
manual annotations of edge positions. A different idea, however, is proposed in [108]
where the authors show that using pre-trained networks to infer object masks after the
user labels a few points can diminish the labeling effort.

Despite these promising results, all the presented methods apply to single images
only. Therefore, they are difficult to scale to big datasets while limiting user label points.
Additionally, there is a certain gap between models trained by weak/semi-supervision
and models trained by full supervision, although many researchers are making efforts to
reduce this gap.

2.2.2 Synthetic Images and Domain Adaptation

A widely adopted strategy for efficient high-volume labeled data generation is to produce
synthetically rendered images [31, 93]. With this approach, the generation of a virtually
unlimited number of synthetic and photo-realistic images encompassing various types
of objects with different sizes, shapes, compositions and 3D distributions is enabled.
Thereby, the respective synthetic ground truth segmentation mask is automatically
derived for each generated image reaching a segmentation accuracy comparable to human-
made labeling. This method is already applied to the problem of three-dimensional pose
estimation of DLOs tips by [36] but is also used in related research areas [118, 115, 117,
110, 100, 41].

However, simulated data can cause a domain gap (or shift) which refers to a loss in
model performance due to a difference from training data to test data [90]. In order
to reduce this shift, several domain adaptation techniques are usually applied [100, 97,
8]. Recent works [100, 32, 145] focus on developing ad-hoc adaptation techniques to
close the performance gap between training and test distribution. Unfortunately, the
performance achievable is still quite far from those obtainable training on real data or
fine-tuning on a few annotated samples.

8 CHAPTER 2. DATASET GENERATION

2.2.3 Datasets for Robotic Applications

Several approaches for creating datasets have been developed also within the robotics
research community. A semi-automatic method to create labeled datasets for object
detection is presented in [29]. The system leverages a 2D camera moved by means of a
robot and an augmented reality pen to define the initial object bounding box. In [138]
a 6D pose estimation system for Amazon Picking Challenge is presented, where a set of
target objects is placed on the shelf and they are segmented and labeled from depth
and multi-view information. This work, not only requires depth information but is also
strongly tailor-made to the task’s domain.

2.3 Chroma Separation

In this section, a novel method for generating a dataset of DLOs for semantic segmenta-
tion is presented. The proposed strategy employs a chroma-key (CK) technique to first
label a set of images and then replace the background to randomize the domain and
enlarge the dataset. The procedure is illustrated in Fig. 2.1.

2.3.1 Auto-labeling with Chroma Key

The CK is a technique widely used in movies and motion picture industries to combine
two images, usually foreground and background. It requires a foreground image Ifg
containing a target object that is overlapped with a background image Ibg. The target
must be placed in front of a monochromatic panel, called screen, usually green or
blue. The technique consists of a chroma-separation phase, where the target foreground
object is isolated from the monochromatic panel, i.e. original background, and then an
image-overlay phase, where the foreground is composed with a new background of choice.
In the chroma-separation phase, a specific hue range is selected such that it contains
solely the color of the screen (e.g. green) and excludes any other color belonging to the
foreground. Then, by finding the pixels within that range, a mask for the target Mt

and a complementary mask for the monochromatic background Mc are obtained. Thus,
creating a dataset with this technique is straightforward and it can be done in just two
steps:

1. record a high-quality video of the target object on a green screen, from which the
input images are extracted;

2. find the chroma range of the pixels belonging to the monochromatic background
and create the correspondent mask employing chroma separation.

In the DLOs dataset, while gathering the images, the DLO is held by its extremities
and moved within the frame composing different shapes. To generalize more, the light
setups are changed, as well as the DLO color and the number of DLOs in the scene.
From a random video frame, the hue levels for the specific screen color are easily found.
These levels, once found for one image, remain valid for any other image taken with the
same light temperature setting and white balance. Hence, knowing the chroma range of
the screen, it is possible to immediately obtain the mask for the DLO from each frame
in the video.

2.3.2 Domain Randomization

The labeling procedure with chroma separation automatically generates labeled data
ready to be used for training, but with low variability. In fact, in the gathering phase,

2.3. CHROMA SEPARATION 9

Raw image

Mask

Background

Chroma
separation

Image overlay

Figure 2.1: Outlined procedure for producing eight novel synthetic images through chroma-separation
and domain randomization.

the scene featuring the target object is randomized in the following aspects: number
of instances, color, size, position and shape. Nevertheless, the background is always
uniform and monochromatic. The performance of a segmentation algorithm trained with
images having homogeneous backgrounds would be significantly degraded when working
in a complex and chaotic environment. Indeed, a cluttered background would easily
confuse a learning-based segmentation algorithm, due to possible similarities between the
target and the background, especially if the algorithm has never seen them during the
training phase. This weakness can be readily overcome by replacing the background in
the input images (i.e. image-overlay phase). In fact, by using the masks, the foreground
can be combined with a random background that replaces the green screen. This process,
known as domain randomization [8, 116], aims to provide enough synthetic variability
in training data such that, at test time, the model is able to generalize to real-world
data. Hence, the choice of background images is a key point for generalizing well to
multiple real-world target domains without the need to access any target scenario data
in training.

The backgrounds proposed for achieving a domain-independent dataset can be divided
into three categories: (1) lowly textured images with shadows and lights; (2) highly
textured images with color gradients and regular or geometric shapes; (3) highly textured
images with chaotic and irregular shapes. In Fig. 2.2 a set of candidate background
images following the proposed style are shown. These backgrounds introduce high
variance in the environment properties that should be ignored in the learning task. The
segmentation algorithm will learn to ignore shadows and cubic or spherical objects,
while it will be forced to focus more on cylindrical shapes.

The presented method introduces two main difficulties that must be faced. The first
evident issue of CK concerns the color of the target object. The color histogram of
the target object should be clearly separated from the range reserved for the screen.
For instance, green DLOs on a green screen are not possible. This implies that the
segmentation algorithm will never see green DLOs in training, meaning that if it
encounters a green DLO in a real scene, it would likely produce some false negative.
The solutions to this issue are two: a different background for the green objects (e.g.
a blue screen) can be employed or, the hue of the DLO can be randomized, trying to
cover the missing color range (i.e. green).

Another issue is caused by the background replacement, which introduces a discon-
tinuity in the synthetic image generated. This may be problematic for the learning,
especially in the case of DLOs, since the algorithm will probably focus on that sharp
feature to segment the object, compromising the prediction in a real image, devoid of

10 CHAPTER 2. DATASET GENERATION

Figure 2.2: Images used to replace the background in the output dataset.

Figure 2.3: Synthetically generated RGB samples of DLOs with instance-wise labels. The samples are
obtained exploiting the spline-based representation detailed in Sec. 2.4.1.

the learned discontinuity. To overcome this issue, the output image Iout is obtained
according to the following formula

Iout = MG
t Ifg + (1h×w −MG

t)Ibg. (2.1)

i.e. as a linear combination of the foreground Ifg and background Ibg images weighted
respectively by the target mask processed by a Gaussian filter MG

t = G(Mt) and its
complement (1h×w −MG

t), where 1h×w is a unit matrix with the same size of the mask.

2.4 Synthetic Images Rendering

The CK method, detailed in Sec. 2.3, presents a robust approach for creating a DLO
dataset for semantic segmentation with minimal human involvement, primarily in data
collection and the initial labeling stages. However, it proves less suitable for generating
datasets for instance segmentation tasks, as illustrated in Fig. 2.3, due to its inability to
distinguish between distinct DLOs within the scene. To address these limitations, a novel

2.5. WEAKLY SUPERVISED ANNOTATION OF REAL IMAGES 11

approach is introduced for constructing a DLO dataset. The method represents DLOs as
spline curves and utilizes a rendering engine to generate entirely synthetic photo-realistic
DLO images, complete with instance-level labels. The spline-based representation of
DLOs is detailed in Sec. 2.4.1, while the rendering pipeline is described in Sec. 2.4.2.

2.4.1 Spline-based DLO Representation

A generic DLO shape can be represented in the Cartesian space by a 3rd-order spline
basis as a function of a free coordinate u representing the position along the cable
starting from an endpoint (u = 0) to the opposite end (u = L) being L the length of
the DLO. That is:

q(u) =
n∑

i=1

bi(u)qi (2.2)

where q(u) = [x(u) y(u) z(u)]T is the vector of Cartesian coordinates of each point
along the DLO, bi(u) is the i-th elements of the spline polynomial basis used to represent
the DLO shape and qi are n properly selected coefficients, usually called control points,
used to interpolate the DLO shape through the bi(u) function basis. Since open ended
DLOs are considered, a simpler spline-based representation is preferred over more
advanced parametric curves, such as NURBS. However, the proposed approach can be
easily extended to NURBS-like curves.

The set of control points is constructed with an iterative propagation method. Being
pt the last element of the ordered set of already generated control points, the new point
pt+1 is defined as pt+1 = pt + s d where s is the propagation step randomly selected
between two boundary values and d describes a random direction vector pointing
forward with respect to the existing sequence of points. The z component of the point
is constrained within specific limits to ensure that the resulting curve closely matches
an actual DLO shape. As a result, a random sequence of points is generated and
subsequently interpolated into a spline curve, as described in eq. (2.2).

2.4.2 Synthetic Image Rendering

Concerning the rendering of the synthetic images, a novel pipeline making use of Blender
is exploited [31]. A mesh object is created based on the DLO model generated through
splines. Parameters such as DLO thickness, color, and stripes are defined during this
process. These attributes can also be randomized to introduce greater diversity into the
dataset. Additionally, random background textures and lighting settings are selected to
add further variability, enabling the simulation of various shadow combinations. These
techniques are essential for enhancing the generalization capabilities of data-driven
methods and fall into the previously introduced domain randomization paradigm [116].
The final step of the rendering pipeline is the generation of the RGB image, which is
performed by rendering the scene from a randomly sampled camera perspective.

Furthermore, the rendering pipeline not only generates images but also produces label
data, usually in the form of mask images. For example, in Fig. 2.3, one can observe some
images created using the proposed procedure, along with their corresponding labels.

2.5 Weakly Supervised Annotation of Real Images

The approaches of Secs. 2.3 and 2.4 can be susceptible to the domain gap issue. The
first due to inaccuracies at the level of DLOs boundaries, the latter due to the artificial

12 CHAPTER 2. DATASET GENERATION

trajectory around objectsDLOs labeling

pixel-wise mask labeled camera sample

Figure 2.4: VR tracker-based weakly supervised dataset generation.

nature of the data. To address these constraints, an approach is introduced for creating
a dataset of real images that come with instance-level labels.

The method is based on the use of a VR tracker to label DLOs in real images. A
schematic view of the approach is detailed in Fig. 2.4. In particular, at first, the dataset
is recorded as outlined in Sec. 2.5.1. Then, instances of DLOs are labeled via a VR
tracker as described in Sec. 2.5.2. Finally, the generated labels are corrected to account
for possible calibration and user input errors as illustrated in Sec. 2.5.3. The proposed
weakly supervised labeling procedure is denoted in the following as DLO-WSL.

2.5.1 Recording of Images with a Robot

To create a dataset via DLO-WSL, images along with the position of the camera in
the world coordinate system are required. Therefore, a 2D RGB camera is mounted
on the flange of a robotic arm in an eye-in-hand configuration, as shown in Fig. 2.4.
This configuration offers a dual advantage: it allows for the rapid capture of multiple
images and ensures that the camera’s position is continuously known while mechanically
connected to the robot

However, realizing these benefits required addressing two key challenges. First,
the transformation from the camera’s frame to its mounting position was determined
through an iterative camera calibration process described in [64]. Second, a robot
trajectory with an ellipsoidal shape was incorporated into the robot’s control system to
guarantee that the object always remained at the center of the trajectory when viewed
by an inward-facing camera. The trajectory is calculated using eq. (2.3), where x, y, z
represent the trajectory points, a, b, c are the ellipsoid parameters, θ denotes the zenith
angle, ϕ represents the azimuth angle, and x0, y0, z0 correspond to the initial position
coordinates.”

x = a sin θ sinϕ+ x0

y = −b sin θ sin θ + y0
z = c cos θ + z0

(2.3)

2.5. WEAKLY SUPERVISED ANNOTATION OF REAL IMAGES 13

VR tracker

VR anchor

DLO

Camera

Figure 2.5: Transformations involved in the labeling procedure using the VR tracker. The transforma-
tions named tTr, rTc are needed to transform the labeled point from the VR coordinates (P t

i) to points
in the robot coordinates (P r

i) and in the camera coordinates (P c
i).

2.5.2 VR Tracker Labeling

A methodology involving a sensor tracked in space is selected to label instances of
DLOs. Therefore, an input methodology similar to [29] is preferred. However, an
alternative tracking technology is adopted to eliminate the need for an additional camera
to determine the position of the tracked sensor, while also offering an industrial solution.
More precisely, the Tracepen Virtual Reality (VR) pen is selected. This VR pen works on
the basis of reflective photodiode sensors which, by receiving and mirroring an infrared
signal, enable the calculation of the sensor’s pose from the emitting station. Due to
this working principle, the coordinates of the VR pen are expressed in reference to the
emitting station (P t

i) [85]. However, to obtain DLOs instance labels for the images, such
positions had to be transformed in camera pixel coordinates (P c

i). To solve this issue,
homogeneous transformations between the emitting station and the camera position
had to be considered as shown in Fig. 2.5. Hence, the approach of [143] is used and the
transformation between the emitting station and the robot (tTr) is calculated to obtain
VR tracker points in the robot coordinate frame (P r

i).
Subsequently, these 3D points can be projected onto the 2D images to create training

data. This projection is accomplished using eq. (2.4), where u and v represent the
pixel coordinates, w′ is the scaling factor, K corresponds to the intrinsic camera matrix
obtained via camera calibration, rTc denotes the transformation from the robot to the
camera, and [x, y, z] represents the 3D point that requires projection. This projection is
achieved by calculating u = u′/w′ and v = v′/w′. u′

v′

w′

 = K rTc

x
y
z
1

 (2.4)

Consequently, by employing this approach, images of real-world scenarios captured
from various camera positions are obtained using a single labeled input. This process is
iterated for each DLO instance requiring labeling.

14 CHAPTER 2. DATASET GENERATION

(a) input image (b) VR input (c) spline (d) correction (e) instance mask (f) output mask

Figure 2.6: Labeling flow performed for each captured image. On the sampled image (a) the input
points of the VR tracker captured for each instance are projected (b) and smoothed with a spline curve
(c). Thereafter, the CNN-based correction procedure is executed (d), the instance masks generated (e),
and the output mask finalized (f). Colors meaning: input tracker points as white crosses, smoothed
points in orange and corrected points in cyan.

2.5.3 Weakly Supervised Semi-automatic Labeling

Unlike synthetic labeling, which is inherently error-free, during the labeling of real-world
DLOs performed by a human operator, some level of error is expected. In particular, the
major sources of errors are due to inaccuracies in 1) the calibration of the annotation
tool and/or eye-in-hand camera; and 2) the labeling performed by the human operator.
The presence of errors is more evident and severe, especially on very thin DLOs.

To overcome these problems, a fine-tuning step is applied after the human input to
each labeled DLO instance. The main stages are shown in Fig. 2.6. First, the labeling
points of one DLO instance are smoothed employing an approximating spline curve in
the 2D pixel space, similar to the definition of eq. (2.2), see Fig. 2.6(c).

Then, an approach based on a Convolutional Neural Network (CNN) is applied
to compute a correction offset for each labeled point. Given the source image I, the
vertically oriented crop extracted around the i-th labeled point and having a size of s× s
pixels is denoted as Îi. With vertically oriented, the condition with the DLO having an
almost vertical shape in Îi is denoted, see input crop in Fig. 2.7. Thus, the CNN-based
network H(·) performs the following operation:

h = H(Îi)

being h ∈ Rs the vector approximating the location of the DLO in the image along
the horizontal axis, see the output in Fig. 2.7. In other words, h describes the probability
of each image column, i.e. column 0 to column s− 1, of corresponding to the center-line
of the DLO in Îi. Finally, the maximum of h is obtained as:

k = argmax(h) : ḣk = 0

being ḣk the derivative of h evaluated at point k. Hence, the correcting offset δ for the
crop Îi is computed as δ = k − s/2, being s the crop size fixed to be 96 in the following.

The CNN structure is composed of a feature extractor, i.e. ResNet-18 [44], and two
Fully Connected linear layers, i.e. FC512,256 and FC256,96. Binary cross-entropy is used
as the loss function during the training stage to optimize the network weights.

The dataset for the training of this network is obtained from the synthetic samples of
Sec. 2.4. Thus, crops of 96× 96 pixels are randomly extracted from the synthetic images,

2.6. TEST DATASET 15

CNN corrector

ResNet-18

Feature

Extraction

input crop prediction

FC

512-256

FC

256-96

96-dim output

Figure 2.7: CNN-based corrector predicting the approximated DLO center.

given the available spline description, employing a fictitious offset to simulate the user
error. Hence, the offset is converted with a Gaussian distribution centered at the offset
value and with a variance of 8 pixels. In total, 40000 crops are used for the optimization
with the typical 90-10 split in training and validation sets. The network is optimized
for 50 epochs, employing a batch size of 128 and a learning rate of 5 × 10−5. Adam
is selected as optimizer with the final network weights chosen based on the validation
loss. Having corrected the points, Fig. 2.6(d), the knowledge of the DLO thickness is
exploited to construct a polygon that precisely follows the contour of the targeted DLO
in each image plane. Thereafter, from the polygon, an instance mask can be easily
drawn as shown in Fig. 2.6(e) and the final combined mask can be obtained as shown in
Fig. 2.6(f).

2.6 Test Dataset

To evaluate and compare the performances on real data of the deep learning segmentation
models trained with the datasets generated according to the proposed methods, a test
set is constructed. The test set is composed of 135 real images of electrical wires with
varying diameters and grouped into 3 categories, each consisting of 45 images defining a
specific scenario, labeled as C1, C2 and C3. The test set was originally deployed in [20]
and extended in [17].

The image categories are defined as follows:

C1 : scenes with only the target wires lying on a surface and no other disturbing objects.
The difficulties in these scenes are the high contrast shadows of the wires, possible
chroma similarities between the wires and the background, the dense crosses of
wires, the light settings and the perspective distortions.

C2 : scenes with the target wires on a highly-featured and complex background and no
other disturbing objects. Here the challenge is to extract the wires correctly in a
cluttered scene.

C3 : scenes with the target wires in a realistic setting as an industrial one (e.g. an electric
panel). These can be considered as an example of an application setting, where
the difficulties may be given by the metallic surface reflecting the wires and other
disturbing objects like commercial electromechanical components characteristic of
these panels.

Each category is further divided into sub-classes based on the number of intersections
between the DLOs present in the images, i.e. 1, 2, and 3, with 15 samples each. In
Fig. 2.8 some samples of the test set are shown.

16 CHAPTER 2. DATASET GENERATION

1 intersection 2 intersections 3 intersections
C
1

C
2

C
3

Figure 2.8: Samples of the test set organized by category and number of intersections.

2.7 Experiments

The dataset generation methods proposed in this chapter are evaluated from different
perspectives in this section. In particular, the dataset obtained exploiting Sec. 2.3 and
Sec. 2.4 are validated on the task of semantic segmentation of DLOs. The focus is
on the segmentation of electric wires and cables, which is a fundamental task in the
industrial automation domain. This evaluation is presented in Sec. 2.7.1. The dataset
obtained with Sec. 2.5 is instead used to validate a dataset mixture scheme in which
synthetic and real images are mixed to train a segmentation model. Indeed, the weakly
supervised method of Sec. 2.5 is not suitable for generating an enormous amount of
data. However, it can be used to generate a small dataset of real images that can be
mixed with a larger synthetic dataset to train a segmentation model. Also, the mixture
scheme is validated on the task of semantic segmentation of DLOs and the results are
presented in Sec. 2.7.2. The experiments are performed on the test set introduced in
Sec. 2.6. A video showcasing DLO-WSL is available as supplementary material1.

Finally, in Sec. 2.7.3 the usability of the method of Sec. 2.5 is evaluated by comparing
the annotation time with the one required by baseline methods, including the one of
Sec. 2.3.

2.7.1 DLOs Semantic Segmentation

Two different datasets have been generated, one employing the CK method of Sec. 2.3
and a fully synthetic one according to Sec. 2.4. These datasets serve as training data
for a deep learning semantic segmentation network. Subsequently, the resulting models
are assessed using the test set introduced in Sec. 2.6.

Datasets Details

The strategy presented in Sec. 2.3.1 has been employed for generating a dataset of about
29000 RGB images, with a resolution of 720× 1280 pixels. This dataset constitutes the
chroma-key dataset. The dataset is obtained starting from 3176 images featuring blue,
red, yellow, white and black wires, with different light setups and shapes. To improve
the background and wire separation, besides the hue, also the saturation and value
channels are augmented. For each raw image, a new background image is randomly
picked among the pool of 15 shown in Fig. 2.2 and 8 new synthetic images are created,
as visible in Fig. 2.1. In each new image, the foreground and background are separately

1https://www.youtube.com/watch?v=5F7tf9swhvw

2.7. EXPERIMENTS 17

augmented (by using the mask) before the merging is performed. In particular, the
background is randomly flipped, shifted, scaled and rotated. Then, it is processed
with motion blur and elastic transformation (p = 0.2), and it is randomly cropped at
the dataset resolution. The foreground, instead, is transformed only by shuffling the
channels (p = 0.5), converting to grey (p = 0.1) and randomizing the hue in the range
of [−100, 100] (p = 0.5). The chroma-key dataset dataset contains synthetic images
obtained by chroma-key overlay. However, the reality gap in the resulting dataset
is considerably small compared to those that might be obtained from rendering or
simulation. In fact, the main visual discrepancy between real and output images is
the object’s contour, which has already been smoothed with the approach described
in Sec. 2.3.2. To further reduce the reality gap, the input images with the original
background are also added to the dataset.

Moreover, a dataset of synthetically generated wires is built by randomizing the
shapes, radius, color, stripes, backgrounds and lights as presented in Sec. 2.4. Overall, a
total of about 32, 000 images were rendered constituting the synthetic dataset.

Semantic Segmentation Network

The deep learning NN exploited to perform the training and testing needed to estimate the
datasets’ performances is DeeplabV3+ [23], a popular encoder-decoder architecture with
proven performances especially in decoding precise object boundaries. As encoder, the
original implementation of DeepLabV3+ employs a modified ResNet [44] backbone with
atrous convolutions, instead of the common convolutions, allowing the explicit control
of the computed features resolution via the output stride parameter. In this section,
a comparison also exploiting other state-of-the-art backbone architectures is provided.
The selected backbones are Swin-Transformer [70] and ConvNeXt [71]. In summary,
the following backbones are employed: ResNet-50, ResNet-101, Swin-Transformer-T,
Swin-Transformer-S, ConvNeXt-T and ConvNeXt-S. The other backbones of Swin-
Transformer and ConvNeXt are selected to match the model complexity of the ResNet
ones.

The decoder consists of a simple yet effective module that refines the segmentation
results along object boundaries. Here, the low-level features are concatenated to
the bilinearly upsampled (4x) high-level features coming from the encoder. Several
convolutions are performed to refine the features and a final upsampling (4x) is performed.
This design choice of the decoder, compared to a direct bilinear 16x upsampling, provides
improved performances [23]. The final output is a probability map of the same size as
the input image, where each pixel is associated with a probability of belonging to the
DLO semantic class or the background.

Training Procedure

The semantic segmentation models are trained with the following hyperparameters:
batch size 4, Adam optimizer with learning rate 10−6 and polynomial learning rate
adjustment policy to a minimum of 10−8, with power 0.95. A warmup procedure is
executed for the first 1000 steps with an initial learning rate of 10−8. The ResNet
backbones are trained with an output stride of 16 and separable convolutions. The
training is executed for a maximum of 300.000 steps and the best weights are saved
according to the validation loss. The models are implemented in PyTorch 1.10.0 and
trained with an NVIDIA GeForce GTX 2080 Ti on an Intel Core i9-9900K CPU clocked
at 3.60GHz. The training dataset is obtained from 90% of the original one, while the
validation is done on the remaining 10%. The data augmentation scheme includes hue
randomization, channel shuffling, flipping and finally resizing to 360× 640 pixels.

18 CHAPTER 2. DATASET GENERATION

Table 2.1: The average Dice Coefficient computed across the test set images on the models trained
with the different datasets. In all the tests the predictions are thresholded at 0.3.

Backbone Family Backbone Type
chroma-key dataset synthetic dataset

C1 C2 C3 Tot. C1 C2 C3 Tot.

ResNet [44]
ResNet50 78.946 68.777 81.372 76.365 79.562 75.241 76.383 77.062
ResNet101 82.955 72.207 85.269 80.144 84.105 66.798 84.880 78.594

Swin Transformer [70]
SwinT 83.832 85.028 83.454 84.104 85.047 82.510 82.803 83.453
SwinS 86.103 87.579 87.490 87.058 86.830 85.951 84.683 85.821

ConvNext [71]
ConvNextT 85.784 87.856 83.793 85.811 85.327 87.368 84.265 85.650
ConvNextS 86.426 88.524 84.111 86.354 85.085 87.598 84.288 85.657

Evaluation Metric

The evaluation of the results is performed with the Dice coefficient by comparing the
predicted mask with the ground truth one of the labeled test set. The Dice coefficient

is defined as Dice = 2 |Mp∩Mgt|
|Mp|+|Mgt| where Mp and Mgt are the predicted and ground truth

masks, respectively. The Dice coefficient is computed for each image of the test set and
then averaged across the images of each category and for the total.

Results Discussion

In Tab. 2.1 the average Dice obtained in the test dataset by DeepLabV3+ trained on the
chroma-key dataset and the synthetic dataset and with the different set of backbones are
reported. The results are shown for each category and the total across all the samples.

From the values reported in Tab. 2.1, the synthetic dataset exhibits a slight drop in
performances compared to the chroma-key dataset. This is probably due to the reality
gap between the synthetic and real images, being larger for the fully synthetic dataset
of Sec. 2.4. However, the results are still comparable and the synthetic dataset can
be considered a valid alternative to the chroma-key dataset for training the semantic
segmentation models. Indeed, looking at the qualitative samples shown in Fig. 2.9, the
difference between the two datasets is barely noticeable, with some predicted masks
being better for one dataset and some for the other. To better compare the two datasets,
in Fig. 2.10 the boxplot of the Dice Coefficient computed across the test set images
on the models trained with the different datasets is shown. The boxplot shows that
the synthetic dataset has a slightly lower median and a slightly larger interquartile
range, but the difference is not significant. Concerning the backbone choice, the SwinS
transformer seems to be the best choice for both datasets.

2.7.2 Synthetic and Real Samples Dataset Mixture

In this section, the impact of the dataset mixture of synthetic and real samples on the
training of data-driven segmentation algorithms for DLOs is investigated. The mixture
is obtained by combining the dataset generated in Sec. 2.4 with the real-world dataset of
Sec. 2.5. The goal is to understand with which measure the inclusion of real-world data
in the synthetic dataset, through DLO-WSL, helps the training of data-driven methods.
The dataset mixture is obtained by combining the two datasets with different ratios,
specifically:

F (x) = wrPr(x) + wsPs(x) (2.5)

where, wr and ws are the ratios between real-world and synthetic datasets with
wr = 1 − ws, Pr(x) and Ps(x) representing the distributions of the real-world and
synthetic dataset respectively, and F (x) is the resulting distribution. Therefore, during
training, samples extracted from F (x) are used to optimize the learning models. For

2.7. EXPERIMENTS 19

C1 C2 C3
In
p
u
t

G
T

R
S
1
0
1

ch
ro
m
a
-k
ey

d
a
ta
se
t

S
w
in
S

C
o
n
vS

R
S
1
0
1

sy
n
th
et
ic

d
a
ta
se
t

S
w
in
S

C
o
n
vS

Figure 2.9: Qualitative results of the semantic segmentation task on the test set.

ResNet50 ResNet101 SwinT SwinS ConvNextT ConvNextS
Backbone

0.50

0.60

0.70

0.80

0.90

Di
ce

 c
oe

ffi
cie

nt

chroma-key
synthetic

Figure 2.10: Boxplot of the Dice Coefficient computed across the test set images on the models trained
with the different datasets. In all the tests the predictions are thresholded at 0.3.

the investigation of ws and wr, a full factorial experiment with the datasets as factors
on three levels with three runs has been conceived. Specifically, the experiments with
the respective wr are shown in Tab. 2.2.

20 CHAPTER 2. DATASET GENERATION

Table 2.2: Factorial design for the analysis of dataset mixtures. The table shows the size of real-world
dataset given the synthetic dataset and ratio wr. With � are denoted the configurations where U2PL
is trained also in a semi-supervised fashion. With * are denoted the configurations used only by
DeepLabV3+ and YOLACT.

Synthetic
dataset size

Real-world dataset size given ratio wr

0 0.05 0.11 0.20 0.33

4000 0 - - 1000� 2000�

8000 0 - 1000� 2000� -
16000 0* 1000* 2000* - -

Experiments Settings

For the semantic segmentation task, DeepLabV3+[23] and U2PL[123] are used as
networks for the tests. The former is introduced in Sec. 2.7.1. The latter is a recently
proposed semi-supervised method. The usual setting of semi-supervised learning consists
of: (i) a small or moderately sized ’labeled’ dataset, and (ii) a much larger ’unlabeled’
dataset. The goal is to leverage the unlabeled data to improve the performance of the
model trained on the labeled data. Typically, the unlabeled data is used to generate
pseudo-labels, which are then employed during the model optimization. Obviously, the
quality of the pseudo-labels is far from that of the labeled data. However, the unlabeled
data has two main advantages: 1) it can be easily collected in large numbers since
labeling is avoided, and 2) it is usually closer in terms of domain to the one in which
the model is expected to be deployed. For the experimental evaluation proposed in
this section, the real-world dataset is used both as labeled (where the labels come from
the proposed approach) and unlabeled. This approach allows for the evaluation of the
benefits of labeling real-world data as opposed to a semi-supervised approach.

DeepLabV3+ is trained with a ResNet-101 [44] backbone with a batch size of 10,
output stride of 16, separable convolutions, a polynomial learning rate of 10−5 with power
0.95, and Adam optimizer. Instead, U2PL is trained with a ResNet-50 [44] backbone with
a batch size of 2, a polynomial learning rate of 5× 10−5 with power 0.9, and stochastic
gradient descent (SGD) as optimizer. Both networks are optimized for 50 epochs with
the final weights selected based on the validation loss. As augmentation scheme, the
following is employed: channel shuffling; hue, saturation and value randomization;
flipping; perspective distortions; random cropping; random brightness and contrast.

With reference to Tab. 2.2, for DeepLabV3+ the training mixtures consist of a
total of 9 configurations. For U2PL, due to computation burden, the synthetic 16K
configuration is avoided thus resulting in a total of 10 configurations accounting also
the semi-supervised condition.

As evaluation metric, the IoU is used. The IoU is defined as |M∩Mgt|
|M |+|Mgt| , where M is

the predicted binary mask for the semantic segmentation task and Mgt is the ground
truth.

Discussion

In Fig. 2.11 results of the semantic segmentation task employing DeepLabV3+ are shown.
From the plot of Fig. 2.11a, it is evident that the introduction of real images helps in
achieving higher accuracy in general. For instance, employing a total of 5K samples (4K
synthetic and 1K real, wr = 0.20) an IoU of M=82.83%, SD=0.54 is obtained compared
to M=74.97%, SD=2.78 for the 4K synthetic only dataset (statistically significant
p < 0.05, CI = 95%). Similarly, when employing 1K real images on the 8K synthetic

2.7. EXPERIMENTS 21

0.0 0.1 0.2 0.3
ratio wr

72.5

75.0

77.5

80.0

82.5

Io
U

sc
or

e
[%

]

(a) IoU score

0.0 0.1 0.2 0.3
ratio wr

0.00

0.02

0.04

0.06

0.08

0.10

tim
e

[m
in

/s
am

pl
e]

(b) time

Figure 2.11: Evaluation of wr on DeepLabV3+. To the left is the change of average IoU score with
different wr. To the right is the change of training time over dataset size.

0.0 0.1 0.2 0.3
ratio wr

60

65

70

75

Io
U

sc
or

e
[%

]

supervised
semi-supervised

(a) IoU score

0.0 0.1 0.2 0.3
ratio wr

0.1

0.2

0.3

tim
e

[m
in

/s
am

pl
e]

supervised
semi-supervised

(b) time

Figure 2.12: Evaluation of wr on U2PL with the comparison between supervised (red) and semi-
supervised (blue) training.

dataset (wr = 0.11), an overall higher IoU of M=83.93%, SD=0.17 is reached compared
to M=81.60%, SD=0.42 for the 8K synthetic only dataset (statistically significant
p < 0.05, CI = 95%). For comparison, an IoU score of 81.9% is obtained on the same
test set when employing the dataset from Sec. 2.3 for training. Concerning Fig. 2.11b,
the training time shows a slight rise as wr increases, as expected due to the growth of
the overall dataset size.

In Fig. 2.13 a qualitative analysis of the results from DeepLabV3+ is performed.
Visually, both synthetic and real samples bring important benefits. The first ones
permit an accurate segmentation of the DLO thanks to the availability of high-quality
error-free ground truth labels. The latter allows, during the training stages, to recover
the DLOs texture and appearance real information that is difficult to capture in synthetic
renderings. Indeed, in Fig. 2.13, the DLOs with complex textures and lights are better
handled once the real samples are employed (e.g., yellow DLO sample 1, blue DLO
sample 2). The contribution of increasing the size of the synthetic dataset is beneficial
but less significant.

The evaluation of the segmentation and time performances achieved by U2PL is
instead shown in Fig. 2.12. Focusing on Fig. 2.12a and comparing the scores for the
same values of wr, it is possible to observe how the semi-supervised training brings only
very marginal benefits compared to the only synthetic fully-supervised one. Instead,
the utilization of labels obtained exploiting DLO-WSL for the real samples boosts the
IoU performances by about 10% with the highest result for wr = 0.20. The timings of
Fig. 2.12b depict how the semi-supervised training approach is much slower due to the

22 CHAPTER 2. DATASET GENERATION

sample 1 sample 2 sample 3 sample 4 sample 5
in
p
u
t

S
4

S
8

S
4
+

R
1

S
8
+

R
1

Figure 2.13: Qualitative test set samples and predictions of DeepLabV3+ when trained on 4K synthetic
images (S4), 8K synthetic images (S8), a mix of 4K synthetic and 1K real (S4 + R1, wr = 0.20) and a
mix of 8K synthetic and 1K real (S8 + R1, wr = 0.11).

need to construct pseudo-labels at run-time.
In conclusion, the results of the experiments show that the introduction of real

samples in the synthetic dataset is beneficial for the training of data-driven segmentation
algorithms for DLOs. In particular, the results show that the best results are obtained
when the real samples are about 20% of the total dataset. Additionally, wr seems
to not drastically change the training time if differences between semi-supervised and
supervised training are not considered.

2.7.3 DLO-WSL Perceived Usability and Performances

The goal of this section is to evaluate the perceived usability, required effort and labeling
accuracy of the DLO-WSL method discussed in Sec. 2.5. In this regard, a user test with
a balanced randomized order of three subsequent interactions was envisioned.

Concerning labeling methods for big datasets with uneven backgrounds and requiring
annotation just for one image of the set, there is nothing in the literature to compare
with. Therefore, the comparison is done against the chroma-key technique of Sec. 2.3 for
its adequacy to generate multi-image datasets with single human intervention in even
backgrounds, and RITM [108] due to its good performance in state-of-the-art single
image weakly-supervised labeling. For these comparisons, the users were requested to
label 10 images with three different methods. At the end of each interaction, usability
and workload were measured through the System Usability Scale (SUS) [10] and the
NASA-TLX [43]. Additionally, the number of clicks (NoC) to complete the labeling
task was also recorded.

A total of 13 users, not experienced with labeling techniques, age mean (M) = 32.70
yrs, standard deviation (SD) = 9.23, participated in the study. All of them performed

2.7. EXPERIMENTS 23

CK RITM DLO-WSL0

20

40

60

80

100

SU
S

sc
or

e
[%

]

(a) usability

CK RITM DLO-WSL0

20

40

60

80

100

TL
X

sc
or

e
[%

]

(b) effort

Figure 2.14: In (a) sability measure with the SUS scale [10], the higher the better. In (b) workload
measure with the NASA TLX [43], the lower the better. The comparison is established between
chroma-key (CK), RITM [108] and DLO-WSL.

CK RITM DLO-WSL SPL0

20

40

60

80

100

Io
U

sc
or

e
[%

]

(a) segmentation

CK DLO-WSL SPL RITM

10−1

100

101

Io
U/

No
C

[%
/c

lic
ks

]

(b) segmentation and number of clicks

Figure 2.15: Evaluation of the performances in terms of semantic segmentation and number of clicks for
the labeling approaches. The segmentation reports the outcomes with chroma-key (CK), RITM [108],
DLO-WSL and raw data from the user (without the CNN correction) fitted with a spline (SPL).

the test correctly and no data were discarded.
Concerning the usability, the score for chroma-key is M=60.38%, SD=21.00, for

DLO-WSL is M=69.61%, SD=16.26, and for RITM is M=82.30%, SD=9.54. A Mann-
Whitney-U-Test is applied for statistical difference as long the normality pre-condition
did not hold true p > 0.05 (CI=95%). The test reported p > 0.05 (CI=95%) when
comparing DLO-WSL with the other methods. Fig. 2.14a shows the results of the SUS
scores. Therefore, it is possible to conclude that the usability of DLO-WSL is good and
comparable to chroma-key and RITM.

Regarding perceived effort, the score for chroma-key is M=30.51%, SD=15.08, for
DLO-WSL is M=29.74%, SD=12.96, and for RITM is M=22.31%, SD=13.12. A Mann-
Whitney-U-Test is applied for statistical difference as long the normality pre-condition
did not hold true p > 0.05 (CI=95%). Fig. 2.14b shows the results of the NASA-TLX
scores. The test reported p > 0.05 (CI=95%), therefore it is possible to conclude that
the workload perceived in using DLO-WSL is comparable to the other methods.

Finally, to examine the performances of labeling, the average Intersection over Union
(IoU) and IoU over the average Number of Clicks (NoC) for the dataset of 10 images are

used. The IoU is defined as |M∩Mgt|
|M |+|Mgt| , where M is the mask generated with a specific

method and Mgt is the ground truth. The results are shown in Fig. 2.15. To further
analyze the differences across the distributions, a pair-wise Mann-Whitney-U-Test is
conducted due to the invalidity of the homogeneity of variance pre-condition. The

24 CHAPTER 2. DATASET GENERATION

test reported p < 0.05 (CI=95%) when comparing DLO-WSL with the other methods.
More precisely, IoU scores were M=91.68%, SD=6.56, M=91.32%, SD=1.52, M=81.05%,
SD=6.22 and M=36.88%, SD=12.45 for chroma-key, RITM, DLO-WSL and spline
respectively. IoU/NoC scores were M=15.31%/clicks, SD=1.09, M=6.54%, SD=2.78,
M=3.16%/clicks, SD=2.05 and M=0.21%/clicks, SD=0.13 for chroma-key, DLO-WSL,
spline and RITM respectively. Thus, DLO-WSL obtains a good average IoU while
minimizing the number of clicks for uneven backgrounds.

Discussion

As shown from the results, the usability and the workload of DLO-WSL are comparable
with the chroma-key and RITM approaches. However, DLO-WSL enables users to label
more images with good average IoU while requiring fewer clicks in uneven backgrounds
as shown by the IoU/NOC metric, thus lowering the overall effort.

Despite these results, DLO-WSL showed worse statistically significant performance in
the average IoU of the labels, however still better than the spline approach. Therefore,
some pitfalls might have been in the CNN fine-tuning step proposed in Sec. 2.5.3. To
better evaluate its specific performances, a synthetic test set is generated. This set
consisted of 1000 randomly cropped image regions obtained according to Sec. 2.4 where
a random horizontal shift of the DLO is introduced to simulate user error. Afterward,
this set was used to evaluate the CNN corrector by monitoring the offset prediction error
computed as δ = Op −Ogt, where Op is the offset predicted and Ogt is the ground truth.
Out of this test, the resulting error δ can be approximated by a normal distribution
with M=0.05 pixels, SD=1.57. Thus, considering that the test DLOs have diameters
in the range of 10-20 pixels wide, one source of error resulting in a non-optimal IoU is
due to the not-perfect matching of the DLOs edges by the CNN fine-tuning. Therefore,
future work should address this issue and improve the pixel-wise labeling of the DLOs
around the contour of the instances.

2.8 Conclusions

Three methods to generate training samples of DLOs with zero or minimal human
intervention have been presented in this chapter. The first method exploits the chroma
separation principle between background and foreground to generate labeled images of
DLOs. The second method generates synthetic images of DLOs with varying shapes and
colors by exploiting a photo-realistic rendering engine. Finally, the third method collects
real images of DLOs and performs the annotation process with a weak supervision
approach.

The generated datasets have been used to train several segmentation models and the
results have been compared against real-world complex test images. The results show
that the proposed methods are able to generate datasets of DLOs that can be used to
train segmentation models that generalize well on real-world images.

Moreover, the chroma separation method and the weakly supervised annotation
approach have been compared in terms of usability, effort and labeling accuracy. The
results show that the weakly supervised labeling approach is as usable as the chroma-key
method but drastically reduces the number of necessary clicks for uneven backgrounds.

Finally, the weakly supervised annotation approach has been used to generate a small
dataset of real images that have been mixed with a larger synthetic dataset to train a
segmentation model. The results show that the mixture scheme is able to improve the
segmentation accuracy of the model trained only on synthetic data by introducing not
modeled specific texture and appearance information in the dataset.

2.8. CONCLUSIONS 25

Despite the positive results, several points that can be further studied in future
work are identified. In particular, the chroma separation method could be improved
by introducing more sophisticated merging techniques to better handle the foreground-
background high-frequency separation artifacts. Moreover, the synthetic-to-real domain
gap of the segmentation models trained on synthetic data could be investigated more in-
depth and the application of domain adaptation techniques could be studied. Concerning
the weakly supervised annotation approach, the proposed CNN fine-tuning method used
to correct the noisy user input in Sec. 2.5 could be improved in terms of annotation
precision possibly exploiting the already corrected points to robustify the system. Finally,
the mixture scheme presented in Sec. 2.7.2 could be further studied to better understand
the impact of the real data on the segmentation accuracy.

Chapter 3

2D Perception: Instance
Segmentation and Modeling

Segmenting DLOs instance-wise in images allows the extraction of key information that
can be used for manipulation tasks. However, the instance segmentation of DLOs is
a challenging task since DLOs are characterized by a high variability in shape and
appearance, and it is often challenging to disentangle them from the background.
Moreover, the lack of publicly available datasets and the difficulty of annotating DLOs
instance-wise make the application of deep learning-based methods difficult. Therefore,
novel approaches for instance segmentation of DLOs are developed.

3.1 Introduction

The term 2D perception is usually referred to the process of extracting information
from an image. In robotics, 2D perception is one of the tools used to understand the
environment surrounding the robot and consequently to plan the correct robot’s actions.
This chapter focuses on the 2D perception of DLOs, i.e. on the processing of images of
the scene containing an unknown and variable number of DLOs. The overall goal is to
extract information about the DLOs in the scene, possibly their configuration (or shape),
and to distinguish them from the background and other objects. This information can
be used to plan the robot’s actions, e.g. where to grasp the DLOs, how to perform the
manipulation or how to avoid other DLOs.

Among the several tasks of 2D perception, the instance segmentation task is the one
that best fits the problem of DLOs perception. Instance segmentation is a challenging
problem in computer vision, which consists of detecting and segmenting each instance
of a class in the scene [81]. In practice, starting from the input image, an output mask
is generated where each pixel is assigned to a specific instance of a semantic class. This
is the general case for images with DLOs (i.e. one semantic class), where the goal is
to segment each DLO from the background (another semantic class) and from each
other (same semantic class but different instances). The instance segmentation task is
usually addressed by means of deep learning-based methods, which are able to achieve
state-of-the-art performances in common benchmarks [81]. However, applying these
methods to DLOs is challenging due to the difficulty of DLO perception (as discussed
in Chap. 1) and the dataset issue, particularly with regards to datasets availability and
instance-wise annotation difficulties (as outlined in Chap. 2).

In this chapter, three algorithms for the instance segmentation of DLOs in images
are presented. These algorithms are as follows:

27

28 CHAPTER 3. 2D PERCEPTION: INSTANCE SEGMENTATION AND MODELING

20 30 40 50 60 70 80
Accuracy [IoU %]

0

5

10

15

20

25

30

35

40

FP
S

real− time
RT-DLO

Re−net-101

Resnet-50

FASTDLO

Ariadne+

YOLACT
YOLACT++

BlendMask

CondInst
+29 FPS

+10 FPS

FPS vs Accuracy

DLO-specific general-purpose

Figure 3.1: FPS vs accuracy of 2D DLO-specific perception algorithms (Ariadne+, FASTDLO and
RT-DLO) versus general-purpose baselines methods concerning the instance segmentation task.

� Ariadne+: Drawing inspiration from the Ariadne algorithm [27], this approach
involves first the semantic segmentation of the scene through a deep learning NN,
which is then complemented by a superpixels-based over-segmentation to effectively
handle DLOs within complex backgrounds. Additionally, color, curvature, and
intersection layout predictors are utilized to accurately extract individual DLO
instances from the semantic segmentation mask.

� FASTDLO : Enhanced version of Ariadne+ that is capable of performing DLOs
instance segmentation at a frame rate exceeding 20 frames per second (FPS). It
employs a skeletonization approach to retrieve sections from the mask, followed by
their proper connection based on a similarity network.

� RT-DLO : Enhanced version of FASTDLO achieving real-time DLOs instance
segmentation performances at a frame rate exceeding 30 FPS. This algorithm
utilizes a graph-based representation of DLOs within the scene proving to be both
efficient and robust.

The methods and results discussed in this chapter have been published as [20, 17, 15].
Fig. 3.1 illustrates the performances of the proposed algorithms in terms of accuracy
and frame rate. The algorithms are compared with several advanced deep-learning NN
addressing the instance segmentation task.

The remainder of this chapter is organized as follows. In Sec. 3.2, the related
work concerning the problem of 2D detection and segmentation of DLOs is presented.
Then, Secs. 3.3, 3.4 and 3.5 describe the proposed Ariadne+, FASTDLO and RT-DLO
algorithms. Sec. 3.6 presents the experimental results with cross-comparisons between
the methods proposed and other additional baselines. Finally, Sec. 3.7 provides the
conclusions of this chapter.

3.2 Related Work

3.2.1 General Problem of DLOs Identification

In the past, the problem of DLO identification has been solved in simple settings: in
[54] the authors requires the presence of a single DLO in the scene and its segmentation

3.2. RELATED WORK 29

is based on a color threshold with a controlled background; in [128] a good contrast
between the background and the DLO is again assumed; in [151] a threshold is applied in
a controlled background to segment the cable. Also in [122], for instance, the tracking of
DLOs is presented where the images are segmented relying on simple color information.
In [128], instead, a good contrast between foreground and background is assumed to
be available. Alternatively, in [53], the utilization of augmented reality markers for the
detection of wiring harness endpoints is proposed.

Indeed, the major difficulties in DLO identification rely on its simplicity, which does
not offer distinguishing features to be used for unambiguous detection. Moreover, the
knowledge of the number of DLOs in the scene is usually assumed, e.g. in [54].

Although for cables, and DLOs in general, the literature concerning perception
algorithms is quite reduced, this is not the case for other domains where the treated
objects may have some similarities with cables, such as vessel [82] and suture threads [73]
segmentation in medical images. In fact, DLOs appear as tubular structures in images.
Hence, algorithms developed for curvilinear structures can find potential applications
for DLOs. Regarding the medical domain, in [82] the authors propose a new curvilinear
structure segmentation network and show their application to vessel segmentation tasks.
In [73] an approach consisting of the identification of the suture thread tips and a novel
marching algorithm is presented aiming at segmenting the thread from the background.

Among simpler general ”filters” for tubular structures, the most popular one, com-
monly addressed as Frangi filter, is [35], which is a multi-scale procedure able to highlight
tubular structures. In addition, a well-known method is the Ridge filter [109], which is
an algorithm used to extract image ridges, commonly applied to medical images showing
vessel structures. Both the Frangi and Ridge filters are based on the Hessian matrix,
hence many false positives can be detected in case of complex backgrounds [27]. Lastly,
ELSD [89] is an algorithm developed for detecting line segments and elliptical arcs. Also
ELSD suffers in case of complex backgrounds [27].

The assumptions about identification capability and the number of expected instances
limit the applicability of the proposed solutions in real-case scenarios where DLOs are
commonly involved.

3.2.2 DLOs Segmentation in Complex Images

Ariadne [27] is the most advanced method for cable detection and segmentation in
images featuring complex backgrounds. It is able to perform both semantic segmentation
and B-Spline modeling for multiple DLOs in the scene. However, it has a few drawbacks,
the main ones being: it requires a NN (or a manual intervention) to specify the cables’
start and endpoints; it is intrinsically slow due to the exploration process involved; its
performances are heavily affected by perspective settings; it is not robust to specific
background/foreground color combinations.

Regarding other data-driven approaches, the advancements of deep learning in the
last years resulted in several Deep Convolutional Neural Networks (DCNNs) tailored for
the general problem of instance segmentation task, e.g. YOLACT [6], YOLACT++ [5],
BlendMask [22] and CondInst [114]. A relevant problem in the application of data-driven
approaches for instance segmentation of DLOs resides in the lack of good-quality publicly
available datasets and, consequently, the difficulty in annotating a large set of images.
However, some approaches have emerged focusing on synthetic data generation pipelines
[31, 93] that tackle this problem, as described in Sec. 2.4.

30 CHAPTER 3. 2D PERCEPTION: INSTANCE SEGMENTATION AND MODELING

spline
points

Ariadne+ Algorithm SchemaSuperpixel
Segmentation

Paths
Discovery

Paths
Layout

Inference

B-Spline
Modelling

DCNN

Semantic Segmentation

Input Image

Mc

Graph

Figure 3.2: The Ariadne+ algorithm.

3.3 The Ariadne+ Algorithm

The Ariadne+ algorithm represents an enhanced approach in comparison to the original
Ariadne method introduced in [27]. This algorithm takes an input image of a scene and
leverages a combination of deep learning and computer vision techniques to identify
individual instances of each DLO within the scene.

The process begins with a DCNN performing semantic segmentation on the source
image, yielding a binary mask as output. Subsequently, a computer vision pipeline
processes both the input image and its binary mask. This pipeline includes a super-
pixel segmentation step to reduce complexity. The resulting superpixel structure and
properties are efficiently managed using a Region Adjacency Graph (RAG). This RAG
is subjected to simplification, refinement, and clustering, followed by a procedure to
identify the path of each DLO. Ultimately, a task-specific DCNN is employed to assess
the arrangement of the DLOs. The identified instances are then modeled using B-Splines,
providing a valuable representation for manipulation tasks.

Regarding the enhancements introduced in Ariadne+, several key improvements have
been made compared to the original Ariadne method:

� No Manual Initialization: The need for manual intervention to initialize the algo-
rithm has been eliminated.

� Endpoint Independence: The approach is now capable of functioning even when
the endpoints of the objects are not visible in the image.

� Efficiency Optimization: The superpixel segmentation and graph generation steps
are no longer applied to the entire image, resulting in a significant reduction in
execution time.

� Enhanced Robustness: The introduction of novel NN methods has significantly
increased the algorithm’s robustness, making it more adaptable to complex and
diverse real-world scenarios.

In summary, Ariadne+ outperforms Ariadne in terms of its broader applicability,
improved accuracy, and reduced execution time.

In Fig. 3.2 an overview of the algorithm pipeline is provided. The main steps of the
Ariadne+ algorithm are summarized as follows:

1. Semantic Segmentation: A DCNN segments the input image and provides a
binary mask Mb as output;

2. Superpixels Segmentation: The input image is segmented into superpixels
taking advantage of Mb;

3.3. THE ARIADNE+ ALGORITHM 31

(a) (b) (c)

Figure 3.3: Superpixelization of an input image containing several DLOs in an industrial setting (a)
with a crop of the image in (b). Graph edges computation in (c): superpixel mask before (top) and
after (bottom) gradient operation. In (c-bottom) are shown the pixels of the neighboring superpixels in
red and blue.

3. Graph Generation: A RAG is created to manage superpixels efficiently in terms
of neighborhood search and endpoints identifications;

4. Graph Simplification: The graph’s nodes degree is used to find intersection
nodes, simplifying them to a single equivalent node;

5. Graph Clustering: The graph is divided into clusters based on a connectivity
measure;

6. Intersection Score Evaluation: In case intersection nodes are present, the scores
of their neighbor’s couples are evaluated using a DCNN called TripletNet ;

7. Paths Finder: A paths finding strategy is executed to discover the path of each
DLO and maximize the coverage of the graph;

8. Paths Layout Inference: A DCNN is used to predict the layout of the DLOs in
the intersection areas for creating correct instance masks.

9. B-Spline Modelling: The computed paths are approximated by B-Spline curves.

In the following, each of those steps is discussed in detail.

3.3.1 Semantic Segmentation

As starting point of the Ariadne+ algorithm, a DCNN performs the semantic segmenta-
tion of the input image, producing a binary mask Mb of the DLOs. The DeeplabV3+
DCNN model [23] is chosen for that purpose since it provides reliable semantic seg-
mentation results concerning DLOs as detailed in Sec. 2.7.1. However, it is worth
remarking that any model capable of extracting a good-quality mask from the scene can
be employed in the pipeline since no specific constraints are introduced in this regard.
As dataset, 29.000 samples of DLOs of different shapes and colors obtained exploiting
the chroma-key method with background swapping (Sec. 2.3) is employed. Details and
performances of the dataset are provided in Sec. 2.7.1.

3.3.2 Superpixels Segmentation

The superpixel segmentation of images consists of partitioning them into local meaningful
subregions by capturing local similarity among the pixels. This procedure aims to simplify
the image and speed up the processing. There exist two main branches of superpixel

32 CHAPTER 3. 2D PERCEPTION: INSTANCE SEGMENTATION AND MODELING

segmentation algorithms: graph-based methods [34] and gradient-ascent approaches
[120]. In the proposed Ariadne+ algorithm, the Simple Linear Iterative Clustering
(SLIC) segmentation algorithm [1] is adopted. This solution generates superpixels by
clustering pixels based on their color and proximity in the image plane using a 5D
space. Since a binary mask discerning the DLOs present in the image is available, the
algorithm called MaskSlic [51] is employed. It is derived as an extension of the original
SLIC and it is able to perform the clustering only within regions of interest. Thus, the
region of interest I

′
S, i.e. the DLOs, on the input image IS is partitioned into sub-regions

denoted by Ri, i.e. the superpixels, such that I
′
S = ∪Ri where i = 1 . . . r. From the

computed superpixel labels, the centroid information is extracted from each superpixel.
The superpixel centroids are then used in the last pipeline step as reference points for
DLOs’ B-Spline interpolation. Fig. 3.3 displays the result of the superpixelization on a
sample image displaying several DLOs in an industrial setting.

3.3.3 Graph Generation

In this step, an undirected and non-weighted RAG is built from the image superpixel
segmentation, where each superpixel becomes a graph node. Hence, the graph is
composed of r nodes, where r is the original number of superpixels. The undirected
unweighted RAG is denoted by G = (V,E), where V is the set of nodes (or vertices) vi,
corresponding to each region Ri, and E is the set of edges ej,k such as that ej,k ∈ E if
Rj and Rk are adjacent. With adj(vi) the set of nodes adjacent to vi is denoted. The
RAG generation and its usage are made as efficient as possible to make the pipeline’s
run-time execution faster.

The edges of the graph are, instead, computed by exploiting the neighbors of each
superpixel. Given a node of the graph, its superpixel label is retrieved and a binary
mask of the superpixel is generated. A morphology gradient operation is performed
on the mask to fetch pixels belonging to the neighboring superpixels. Consequently,
from the labels of these neighbors, the knowledge of the neighboring relationship of the
considered superpixels is obtained. Thus, an edge connection is established between the
node considered and each associated neighboring node. Fig. 3.3c shows an outline of
the approach on a sample superpixel.

In the following, the degree of a node, denoted by d(vi), represents the number of
its neighbors, and the following classification is adopted for the nodes based on their
degree:

� vi is an outlier if d(vi) = 0 and thus it is removed from the RAG;

� vi is an endpoint if d(vi) = 1;

� vi is a segment if d(vi) = 2;

� vi is an intersection if d(vi) > 2.

Each node is also augmented with the following attributes :

� label ID : to link each node to the original superpixel;

� centroid coordinates : defining the centroid point of the corresponding superpixel in
the image;

� intersection: 0 (zero) if the node is not an intersection (degree < 2), 1 (one)
otherwise.

3.3. THE ARIADNE+ ALGORITHM 33

(a) (b) (c)

Figure 3.4: (a) the graph with intersection nodes highlighted in red, (b) the graph simplified, (c) the
graph divided into intersection-free clusters (blue) and clusters with an intersection (yellow).

3.3.4 Graph Simplification

Given the RAG initialized in the previous stage from the point of view of nodes and
edges, the simplification of the graph is carried out in this pipeline step by exploiting
the degree property of the nodes. An intersection is defined as an area of the graph
composed of one or more intersection nodes. Exploiting the RAG, the intersections
nodes are easily identified and organized, based on neighboring relationships, into groups
(intersections) characterizing a given area of the image.

The graph is then simplified by replacing each intersection group with a single
equivalent node that shares the same neighboring relationships as the original group,
e.g. one of all the nodes combined. This simplification makes the path discovery on the
graph simpler, in particular in the case of large intersections. Fig. 3.4b shows the result
of the simplification applied to the initial situation depicted in Fig. 3.4a.

3.3.5 Graph Clustering

At this stage, RAG nodes appearing to be closer to each other based on some similarity
measure are grouped. The similarity measure is usually a topological criterion, e.g. the
graph structure. In the proposed method, the graph is clustered based on connected
components, i.e. each cluster is connected if a path from any point to any other point of
that given cluster exists. The result of the clustering is to split G into clusters (subsets)
Ci, i = 1, . . . , c where c is the number of clusters, such that G = ∪Ci that can be
classified into two main groups:

� intersection-free clusters, i.e. not having any intersection node inside, shown in
blue in Fig. 3.4c;

� clusters with intersections, shown in yellow in Fig. 3.4c with the intersection node
marked in red.

Each cluster will be then processed as described in Sec. 3.3.7.

3.3.6 Intersection Score Evaluation

The evaluation of the intersections is performed through a partially learning-based
predictor. To this end, the intersection nodes are collected in the set Vint and the
nodes adjacent to an intersection are grouped into a set called N := {v ∈ C : d(v) ≤
2 ∧ adj(v) ∩ Vint ̸= ∅}, with ni ∈ N , i = 1 . . .m, being m the number of elements in
N (i.e. m = #N). Thereafter, a square matrix Wpred ∈ Rm×m is built and initialized
to zero. In case no intersection nodes are present in the RAG, this procedure ends
immediately and an empty Wpred is produced as output. Otherwise, Wpred will contain
the predictions among each couple of neighbours of each intersection node vintj ∈ Vint,

34 CHAPTER 3. 2D PERCEPTION: INSTANCE SEGMENTATION AND MODELING

(a) (b) (c)

Figure 3.5: Example of input samples provided to TripletNet. The triplet loss is a distance-based loss
that operates on three inputs: (a) anchor data; (b) positive data example (similar to the anchor); (c)
negative data example.

where the generic element wkl ofWpred describes the value obtained for the pair of nodes
{nk, nl}, where nk, nl ∈ N . If follows that the matrix Wpred will have a strictly positive
value (< 1 as described in the following) only if nk and nl are neighbors of the same
intersection point vintj .

TripletNet Score

The values of Wpred are calculated employing a data-driven procedure, that is preferred
with respect to hand-tuned criteria. For this reason, a DCNN called TripletNet is
developed to perform this prediction. The name of this DCNN is inspired by the fact
that the triplet loss criterion [105] is exploited for the required optimization. An example
of the input samples of the network is provided in Fig. 3.5.

The structure of TripletNet is composed of a feature extractor (ResNet18) and a
fully connected layer (FC512,256) with an input dimension of 512 and outputting the
embedding representation with a dimension of 256. The 18-layer version of ResNet [44]
is selected as a good trade-off between model complexity and quality of the result.

At inference time, the patches xnk and xnl are obtained from input nodes nk and nl

respectively by performing two crops of size 32× 32 in the source image around each
node centroid.

TripletNet computes the distance between each pair of patches, as d = ∥f(xn) −
f(xnl)∥22. Then, a sigmoid activation function is used to translate the distance into a
probability-like value constrained between 0 and 1, where probability 1 is associated
with zero distance. Thus, stkl denotes the score associated with the pairs of nodes nk

and nl. In this way a score is assigned to each prediction coming from the network: in
case of very similar patches their associated score is close to 1, otherwise it is near 0.

Curvature Score

In addition to the prediction performed by TripletNet, the curvature between nk and nl

is calculated, similarly to what is shown in [27], and a score sckl based on this curvature
calculation is assigned. As a matter of fact, a small ordered sequence of nodes is built by
looking at the single neighbors of nk and nl, here denoted as nn

k and nn
l . The constructed

sequence is thus Pj = {nn
k , nk, nl, n

n
l }. If the full sequence can not be built (i.e. is

not possible to retrieve nn
k , n

n
l or both), a shorter version devoted to one or both of

them can be adopted. Indeed, the only requirement for the sequence is to contain three
nodes. Thus, in extreme cases, although very unlikely, the intersection node can be
adopted as a replacement, obtaining Pj = {nk, vintj , nl}. In general, a sequence without
the intersection node is preferred since it better approximates the curvature of the
DLO in the region, i.e. it is more robust with respect to the spurious location of the

3.3. THE ARIADNE+ ALGORITHM 35

nodes. By considering the consecutive edges between each pair of nodes in Pj, the
angles ϕr are calculated, with r = 1 . . .#Pj − 2. Then, the Von Mises distribution
M(·) is deployed for converting the angles information into a score value obtained as
sckl =

1
#Pj−2

∏
rM(ϕr − ϕr+1).

Combining the Scores

The curvature score is used to penalize the score computed by TripletNet by multiplying
the latter with the first:

skl = svkl s
c
kl (3.1)

with skl representing the final prediction score associated to nodes nk and nl and inserted
to the corresponding entry k, l of Wpred.

For a given intersection node vintj , the prediction is performed considering all the

possible h pairs of neighbor nodes, with h =
(
t
z

)
, t denoting the number of items in the

set, i.e. the number of neighbors of vintj , and z describing the number of items forming
the combinatorial set (i.e. in our case equal to 2). Thus, the prediction score for every
kl pair in h is computed and Wpred updated accordingly. Thereafter, the procedure is
repeated for each intersection node in G.

3.3.7 Paths Finder

A path P over a generic cluster C is a sequence of distinct alternating nodes and edges,
such as (vi1 , ei1,2 , vi2 , ei2,3 , . . . , vil−1

, eil−1,l
, vil), where an edge eij,k connects nodes vij and

vik . To simplify the notation, the i-th path is referred as Pi = {vi1 . . . vil} where l is the
total number of nodes denoting path i. The goal is to extend the path node by node in
such a way that every node introduced in the sequence belongs to the same DLO in the
input image. Nodes vi1 and vil will be denoted as endpoints. It is worth mentioning
that, as a result of Sec. 3.3.5, in the remainder of this section the focus is related to
considering only a single cluster of nodes C, which represent a subset of the entire set of
nodes of graph G. The procedure explained is then carried out for every cluster in G.

With reference to Alg. 1, the generic cluster C is first scanned to find the set of
candidate endpoints E , i.e. the set of nodes having d(ϵi) = 1, where ϵi ∈ E is used
to refer to the i-th endpoint candidates. In case C is an intersection-free cluster (see
Sec. 3.3.5), the set of endpoints will have two elements only, and the path discovery is
started directly from one of the two cluster endpoints indifferently. Then, the nodes are
connected in sequence exploiting neighboring relations until the second endpoint of the
cluster is reached, and the resulting path is added to the set of all the complete paths P.

However, in case the cluster C presents some intersections, the set N including all the
nodes that are neighbors of intersection nodes is considered. Thereafter, the procedure
PartialPath creates a partial path P starting from an endpoint ϵ and adding neighbor
nodes to this path until a node in N is reached. It is worth mentioning that this is
the only option because, if an endpoint node would be reached, this means that this
part of the cluster could be classified as intersection-free. Then, the last added node
is removed from N and the partial path P is added to the set of all the partial paths
Ptmp. The procedure is then repeated for each endpoint in the cluster. This will cover
all the partial paths from the endpoints to an intersection, but will not cover the partial
paths between two intersections. For this reason, new partial paths are then created
considering as starting nodes the ones remaining in N and added to the set partial paths
Ptmp. Once these steps are concluded, the set of neighbor nodes should be empty, i.e.

36 CHAPTER 3. 2D PERCEPTION: INSTANCE SEGMENTATION AND MODELING

Algorithm 1: Paths Finder
Input: C,Wpred

Output: P
1 E ← {v ∈ C : d(v) = 1}
2 Etmp ← E
3 Vint ← {v ∈ C : d(v) > 2}
4 N ← {v ∈ C : d(v) ≤ 2 ∧ adj(v) ∩ Vint ̸= ∅}
5 Ntmp ← N
6 P← ∅
7 Ptmp ← ∅
8 PartialPath(E,N ,P,Ptmp)
9 E ← Etmp

10 N ← Ntmp

11 while Wpred ̸= ∅ ∧Wpred ̸= 0k×k do
12 {ni, nj} ← {ni, nj ∈ N : argmaxi,j wi,j ∈ Wpred}
13 v ← {v ∈ Vint : {ni, nj} ∈ adj(v)}
14 Vint ← Vint \ v
15 P ← {Pi ∈ Ptmp : ni ∈ Pi}
16 Ptmp ← Ptmp \ Pi

17 P ← P ∪ v
18 P ← P ∪ {Pj ∈ Ptmp : nj ∈ Pj}
19 Ptmp ← Ptmp \ Pj

20 if #(P ∩ E) = 2 then
21 P← P ∪ P
22 else
23 Ptmp ← Ptmp ∪ P
24 for l ∈ {1, . . . , k} do
25 Wpred[i, l] = 0
26 Wpred[l, i] = 0
27 Wpred[j, l] = 0
28 Wpred[l, j] = 0

29 return P

N = ∅, and the set of partial paths should cover the whole cluster but the intersection
nodes, i.e. Ptmp = C \ Vint.

In the last phase of the algorithm, the partial paths are joined on the basis of the
Intersection Score Evaluation previously performed, see Sec. 3.3.6. To this end, the
nodes pair (n1, n2) associated to the maximum value of Wpred is selected together with
the associated intersection node vint and the two partial paths containing n1 or n2 as
starting or ending node extracted from Ptmp. These two partial paths are then joined
via the intersection node vint, then the resulting path is added to P if the starting and
ending nodes are endpoints, otherwise it is added back to Ptmp. Then, the rows and
columns of Wpred associated with both the couple (n1, n2) and (n2, n1) are zeroed to
remove them from the selection, and the procedure is repeated until non zero values are
present in Wpred.

3.3.8 Paths Layout Inference

The set of paths obtained from Sec. 3.3.7 is not sufficient for performing a correct
instance segmentation in case of intersections. Indeed it is not possible to draw the
boundary of each DLO’s instance in the image since each intersection node is assigned
to all the paths involved. The goal of this section is to present the deep learning-based
approach that handles this last issue. As the source of information, image patches with
size 64× 64 are used. The patches are obtained by cropping the source image around
the centroid points associated with the intersection nodes and then by post-processing

3.3. THE ARIADNE+ ALGORITHM 37

Procedure PartialPath(S,N ,P1,P2)

Input: S,N ,P1,P2

Output: S,N ,P1,P2

1 while S ̸= ∅ do
2 s← S
3 P ← s
4 S ← S \ s
5 v ← adj(s)
6 while v /∈ S ∨ v /∈ N do
7 P ← P ∪ v
8 v ← adj(v) \ P
9 if v ∈ S then

10 S ← S \ v
11 P1 ← P1 ∪ P
12 else
13 N ← N \ v
14 P2 ← P2 ∪ P

15 while N ̸= ∅ do
16 s← N
17 P ← s
18 N ← N \ s
19 v ← adj(s)
20 while v /∈ N do
21 P ← P ∪ v
22 v ← adj(v) \ P
23 N ← N \ v
24 P2 ← P2 ∪ P
25 return S,N ,P1,P2

further the crops. For ease of presentation, the following analysis is focused on a sample
intersection, as the one depicted in Fig. 3.6a where the crossing is constituted by an
intersection node shared between two different paths. For each path, a 2D spline curve
is interpolated using the nodes’ centroid coordinates as control points and, given the
spline, a binary mask of the DLO corresponding to the path is generated. The crop
shown in Fig. 3.6a is thus processed utilizing the computed masks obtaining Figs. 3.6b
and 3.6c, where the spline-based masks are used to discard all the pixels of the crop not
belonging to the considered DLO.

The obtained patches are provided as input to CrossNet, a deep neural network
employed for their classification. It is composed of a feature extractor (ResNet18)
combined with a fully connected layer (FC512,1) with an input dimension of 512 and an
output dimension of 1, followed by a sigmoid activation function. Thus, the network
performs a binary classification task between two classes (e.g. is above and is not above)
and provides a single probability value as output: 1 (one) if the input patch is predicted
to represent a DLO placed at the top of the intersection area, 0 (zero) otherwise.

Considering again the example shown in Fig. 3.6, the predicted probabilities computed
by CrossNet for both patches of Fig. 3.6b and 3.6c are acquired. As DLO (and path)
is above, it is selected the one with the highest probability. So, the selection is performed
based on an output comparison. In fact, since in the proposed framework there is
always one is above class sample among the patches when classifying an intersection, the
utilization of a threshold for the probability value is avoided, making the approach more
reliable for example in the case of difficult samples where fixing a threshold value can
be challenging. The approach is not limited to just two DLOs crossing, but it applies
also to three or more DLOs.

38 CHAPTER 3. 2D PERCEPTION: INSTANCE SEGMENTATION AND MODELING

(a) intersection node (b) is above class (c) is not above class

Figure 3.6: Example of intersection node (a) and representative patches of the two classes (b,c) for the
displayed intersection. CrossNet is employed to predict the class of each patch.

3.3.9 B-Spline Modelling

The final paths obtained from Sec. 3.3.8 are employed for estimating B-Splines curves.
For every path, the ordered sequence of nodes is translated into a sequence of 2D points
by reading the nodes’ centroid coordinates attributes. The centroid coordinates were
computed at the superpixel segmentation stage (Sec. 3.3.2). A cubic B-Spline is fitted to
this set of points. The obtained curve is thus discretized into an ordered fixed number
of 2D points in pixel coordinates. In this way, a light model of each DLO in the image
is provided that can be useful, for example, in robotic manipulation and tracking tasks.

3.4 The FASTDLO Algorithm

The FASTDLO algorithm, where the name stands for FAst SegmenTation of Deformable
Linear Objects, is a novel method for a reliable, accurate and fast instance segmentation
of DLOs assuming zero knowledge about the background and the number of objects in
the scene.

Compared to Ariadne+ of Sec. 3.3, FASTDLO introduces several improvements
addressing the Ariadne+ weaknesses. Indeed, Ariadne+ throughput is limited to a
few FPS providing a strong limiting factor for its applicability on real-world problems.
Thus, instead of a paths discovery method based on the superpixelization that requires
significant processing effort and the definition of the number of superpixels in an image,
FASTDLO focuses directly on solving the intersection areas of the image between
multiple DLOs to distinguish the instances, increasing the speed and accuracy of the
results.

More in detail, FASTDLO takes as input an image and provides as output a colored
mask where each DLO instance is denoted with a unique color. In addition, FASTDLO
outputs a sequence of key points for each DLO instance, similarly to Ariadne+. From
the input image, the background, i.e. pixels not corresponding to a DLO-like object, is
removed utilizing DCNN, generating as output a binary mask. Thereafter, the binary
mask is processed with a skeletonization algorithm and the ambiguous intersections
between the DLOs are solved with a second data-driven approach based on a shallow
similarity-based NN. Synthetically generated data are deployed in the learning-based
methods allowing fast adaptability to every possible custom scenario. FASTDLO
achieves a processing rate higher than 20 FPS with an image size of 640×360 pixels,
employing, as hardware, a workstation with an Intel Core i9-9900K CPU clocked at
3.60GHz and an NVIDIA GeForce GTX 2080 Ti.

The FASTDLO pipeline, schematized in Fig. 3.7, consists of the following main steps:

1. Background Segmentation : A DCNN performs the segmentation of the source
image discerning background pixels from DLOs pixels, outputting a binary mask
Mb.

3.4. THE FASTDLO ALGORITHM 39

Semantic
Segmentation

Skeleton
Pixels

Classification

endpoint
section
intersection

Segments
Generation

Intersections
Processing

FASTDLO

Informed
Merging

Intersections
Layout

Input
Image

Mc

key-points

DLOs
Instances

Figure 3.7: The FASTDLO algorithm.

2. Skeleton Pixels Classification : A skeleton Ms is generated from the mask Mb

and its pixels are classified depending on their local neighborhoods.

3. Segments Generation: The intersection areas of Ms are filtered out and segments
are generated;

4. Intersections Processing: A shallow NN is employed to predict connection
probabilities among endpoint pairs;

5. Informed Merging: The segments are concatenated to recover the full description
of each DLO employing the result of intersections processing;

6. Intersections Layout: The standard deviations of the DLOs instances RGB
colors at the level of the intersections are used to assess the correct ordering at the
intersection areas to create correct instance masks.

In the following, the aforementioned steps are analyzed in detail.

3.4.1 Background Segmentation

Like in Ariadne+, the generic input image Is is processed employing a DCNN performing
the semantic segmentation following the same methodology explained in Sec. 3.3.1. As
dataset for the training of DeepLabV3+ [23], synthetic images of DLOs rendered in
Blender are used as detailed in Sec. 2.4 and 2.7.1.

In Fig. 3.8 an example of the segmentation process on real samples is shown: the
shadows present in the input image do not affect the predicted mask and are successfully
neglected; instead, the background object in the second row is more difficult to handle
since it appears as a thin wire in the image, so few false positives can be found in the
associated mask.

3.4.2 Skeleton Pixels Classification

The segmentation mask Mb is processed with a skeletonization algorithm consisting
of a thinning iterative approach which erodes the input mask. Thus, a new mask Ms

is obtained having the following properties: 1) same connectivity as the input mask;
2) 1-pixel width across the mask instead of the original mask thickness; 3) equidistant
skeleton to the borders of Mb. In Fig. 3.8 (last column) the masks Mb and Ms are
combined to highlight these properties.

From an image comprising several DLOs and exploiting the linearity property of
the latter, for each pixel of the skeleton Ms, defining a small (3×3) kernel, only three
types of local neighbors can be experienced. They are depicted in Fig. 3.9 with the
target pixel at the center of the local region highlighted with a red contour. After the
skeletonization, each pixel of Ms receives a label depending on its local neighborhood:

� endpoint : only one pixel in addition to the central one is contained in the local
neighborhood, i.e. Fig. 3.9a;

40 CHAPTER 3. 2D PERCEPTION: INSTANCE SEGMENTATION AND MODELING

Input image Segmentation mask Skeleton

Figure 3.8: Input images with background segmentation results and generated skeletons zoomed at the
area of the intersections. To clarify the skeleton visualization, the mask colors in the right column are
inverted.

(a) endpoint (b) section (c) intersection

Figure 3.9: Local neighbors possibilities of a skeleton pixel given a 3×3 kernel. To clarify the
representation, the skeleton is dark colored while the background is white.

� section: two more pixels are present in the neighborhood, i.e. Fig. 3.9b. The term
section refers to the considered pixel being placed along a section of a DLO and
not at its end.

� intersection: the central pixel is surrounded by three more pixels in the neighborhood
forming, in general, a characteristic ’Y ’ shape [54], i.e. Fig. 3.9c. This condition
arises in the case of binary masks describing DLOs crossing each other.

3.4.3 Segments Generation

The intersection pixels with their surrounding area are discarded from Ms since they
correspond to a topologically misleading region of Ms due to the DLOs crossing. Indeed,
these phenomena can be appreciated in Fig. 3.8 where the generated skeletons nearby
the intersection pixels do not describe correctly the DLO topology, i.e. center line, as
opposed to the skeleton pixels far away from it. The discard operation is performed
based on the distance transform image of the local area considered. The distance
transform is an operation that computes the distance, in pixel values, between a given
pixel location to the nearest boundary [7], i.e. black pixels of Mb.

Because of the removal of the intersection areas, new endpoint pixels emerge in the
updated skeleton. Thus, segments are generated between two connected endpoints.
A segment is defined as an ordered sequence of pixels where the elements inside the
sequence are sections whereas the extremities are endpoints. The segment sequence can
be effectively obtained by sliding the skeleton with a 3×3 kernel from one of its endpoints,
collecting the only pixel not already in the segment under construction and updating
the kernel anchor to the added pixel location. In addition, for each segment, a common
thickness is estimated based on a distance transform previously computed. The overall

3.4. THE FASTDLO ALGORITHM 41

Algorithm 2: Intersections Processing
Input: C, S, E
Output: Z

1 P ← ∅ // endpoint-pairs collection

2 foreach c ∈ C do
3 Ec ← {e ∈ E ∩ e ∈ C}
4 Pc ← combination(Ec, 2)
5 P ← P ∪ Pc

6 Z ← ∅ // similarity network predictions

7 foreach (ei, ej) ∈ P do
8 xi ← getFeatureVector(ei)
9 xj ← getFeatureVector(ej)

10 zi ← computeEbbendingVector(xi)
11 zj ← computeEbbendingVector(xj)

12 pij ← e−∥zi,zj∥2

13 Z ← Z ∪ {ei, ej , pij}
14 return Z

segment thickness is obtained by computing the median value of the distances gathered
for each segment’s pixel. The median allows gaining robustness against spurious values
due to noisy boundaries in Mb. In Fig. 3.7 the segments generated for the considered
image are denoted with unique colors.

3.4.4 Intersections Processing

The intersections among the DLOs are solved by comparing the feature vectors of the
endpoints of two candidate segments via a shallow neural network, i.e. similarity network,
predicting the probability of their connection. The computation of the connection
probabilities is schematized in Alg. 2 showing the two main phases: endpoint-pairs
collection; similarity network predictions. The inputs of the algorithm are the set of all
the intersections in the image, i.e. C, and, given the updated skeleton of Sec. 3.4.3, the
sets of the endpoints and of the segments, i.e. E and S respectively.

The approach starts by collecting all the endpoint pairs whose connection needs to
be evaluated by initializing P empty (line 1). Thus, for each intersection to be solved
c, the endpoints of the segments associated to c, i.e. originally connected to c before
removing the intersection pixels from the skeleton (see Sec. 3.4.3), are extracted from E
and collected into Ec, line 3. Then, the components of Ec are organized into combinations
of 2 elements, i.e. endpoint-pairs, in Pc, and the set of endpoint-pairs P is updated
accordingly, lines 4 and 5.

The collected endpoint pairs P are now processed by a similarity network. The goal
of this network is to transform an input feature vector into an embedding space where
similar input vectors are close together and dissimilar ones are far apart. In the setup
adopted in this work, the triplet loss [105], originally introduced in Sec. 3.3.6, is deployed
for the required optimization of the network. The loss is computed between an anchor,
a positive and a negative sample. The distance in the embedding space between anchor
and positive is minimized, while the one between anchor and negative is maximized.
The input feature vectors are obtained from the endpoints of the segments around a
given intersection. As feature elements of the input vector x ∈ Rdi , the following values
are used: RGB color of the local endpoint area; thickness of the segment associated
with the endpoint; endpoint direction estimate.

In Alg. 2, the feature vector for the endpoints ei and ej are created at lines 8 and
9. Then, a forward pass in the network layers is performed to compute the embedding

42 CHAPTER 3. 2D PERCEPTION: INSTANCE SEGMENTATION AND MODELING

[16][32][7]

z
j

z
i

Gaussian

Activation
Nodes

Features

Extractor

x
i

x
j

e
j

e
i

e
0

e
n

... ...

I
s

M
b

P

p
ij

Shared
Weights

li
lh lo

li
lh lo

Figure 3.10: Endpoint-pair probability computation. For the general endpoint ei, from the source
image Is and binary mask Mb a feature vector is created as xi. The embedding vector zi is obtained
after the propagation of xi in the similarity network layers. A Gaussian activation function on the
embeddings L2-distance is employed for calculating the final score pij of the endpoints ei and ej .

(a) different segments

a

b c

d

a c
b d

d a
b a

d
c b
c

0.987
0.928
0.290

0.249
0.185

0.160

predictions

(b) intersection processing with predic-
tions of the endpoints pairs

Figure 3.11: (a) segments generated; (b) example of intersection processing of the region highlighted
area in (a).

vectors zi and zj, lines 10 and 11.
As mentioned, the prediction is based on the distance of the embedding vectors which

can be computed as dij = ∥zi, zj∥2, where ∥ · ∥2 denotes the L2-distance. To obtain a
probability-like value in the [0, 1] range describing the likelihood of the connection, the
distance is transformed through a Gaussian activation function as pij = e−dij . This last
step in the similarity network is provided at line 12 while an illustration schematizing the
computation flow of the similarity network from its inputs till the predicted connection
score is available in Fig. 3.10.

To conclude, for each endpoint pair, a probability value pij is computed and the set
Z updated (line 13) with tuples of three values, i.e. endpoint pair (ei,ej) and connection
probability pij. Although Alg. 4 describes the process for each element of P , the actual
implementation is based on batch processing enabling an efficient computation of the
scores. In Fig. 3.11b an example of the processing for four segments (six endpoint-pairs)
extracted from Fig. 3.8 (first row) is shown.

3.4.5 Informed Merging

Exploiting the endpoint pairs connection probabilities computed in Sec. 3.4.4 it is possible
to concatenate segments obtaining the full description of each DLO in the image. This

3.4. THE FASTDLO ALGORITHM 43

Algorithm 3: Informed Merging
Input: Z, S
Output: S

1 Z ← sorted(Z, ”descending”)
2 Ez ← ∅
3 foreach (ei, ej , pij) ∈ Z do
4 if ei /∈ Ez and ej /∈ Ez then
5 if pij > tc then
6 si ← getSegmentFromEndpoint(S, ei)
7 sj ← getSegmentFromEndpoint(S, ej)
8 s← si ∪ sj
9 S ← S ∪ s \ {si, sj}

10 Ez ← Ez ∪ {ei, ej}

11 return S

concatenation process is addressed as informed merging and it is schematized in Alg. 3,
showing how Z is employed to iteratively update S till each s ∈ S describes a whole
DLO.

First, the elements of Z are sorted based on the connection probability values in
descending order (line 1), thus prioritizing during the merging process the most probable
connections. The set of nodes already processed, i.e. Ez, is initialized to zero at line 2.
An iteration on the elements of Z is performed and, starting from the highest score
and moving toward the lowest one, the merging of the segments, i.e. Fig. 3.11a, is
executed. Indeed, if both the endpoints retrieved from one of the elements of Z are not
already processed (line 4), and their endpoint-pair connection probability is larger than
a user-defined threshold tc (line 5), the two corresponding segments associated to the
endpoints are collected (lines 6 and 7), merged (line 8) and the segments set updated
(line 9). The term informed merging is referred the high-level operation of performing
the union between the two segments sets taking into consideration their ordering, e.g.
head-tail, tail-tail and all the other combinations.

Consequently, the endpoint pairs having lower scores and with one of the two endpoint
elements already associated are not considered and their merging is avoided. The
described association continues for all the elements of Z having a connection probability
larger than the threshold tc, introduced to avoid merging endpoints with incompatible
orientations, colors or thicknesses. This threshold is effectively used only in situations
where the mask Mb is not reliable and borderline conditions occur. Instead, in normal
settings, the merging process would result in the first association of high-probability
endpoints thus making the low-probability ones already incompatible irrespective of the
threshold value.

The presented merging process is performed directly on the existing segments, thus
the operation is propagated by updating the set of segments accordingly. For instance,
in case of a segment disputed by two different intersections, at the second merging
process, the operation of joining the two candidates segments is performed on the new
merged segment (obtained after the first merging process) and not on the initial one.

3.4.6 Intersections Layout

As additional information aiming at providing a complete and accurate solution of the
scene, the order of the DLOs in a given intersection, i.e. which is the one at the top of
the pile, is provided by comparing the standard deviation of the RGB colors along the
line connecting the endpoint-pair previously solved. For example, given an intersection
made of two DLOs, i.e. with four endpoints, and hence two endpoint-pairs predicted,

44 CHAPTER 3. 2D PERCEPTION: INSTANCE SEGMENTATION AND MODELING

4.99

13.6

(a) example 1

3.46

24.4

(b) example 2

14.5

40.1

(c) example 3

Figure 3.12: Example of the intersection layout estimation with DLOs having identical colors, in (a)
and (b), and different colors (c). In all the examples the DLO at the top is blue labeled.

the RGB color values along the two endpoint-pairs positions are collected and their
mean standard deviation, i.e. the mean of the standard deviations computed for each
channel, compared. The pair with the smallest standard deviation is assumed to be
at the top of the intersection pile, while the highest standard deviation pair is below.
The difference in the value is due to the change in the color along the line for the DLO
not at the top or, in the case of DLOs with identical colors, mostly due to the shadows
projected from the above DLO onto the one below. In the case of a cross composed
of three or more DLOs, only the instance above them all can be identified since the
continuity in the colors in the intersection region is the main deciding condition. This
continuity is only met for the top DLO. The approach is quite simple and yet proves to
be effective and inherently fast given the intersection solution provided in Sec. 3.4.4 is
reliable.

DLOs ordering in an intersection is particularly needed in case this approach is
integrated into a larger manipulation pipeline with a robotic system for routing or pick
and place tasks. The information about the layout of the DLOs in an intersection is
missing both in [27] and [54]. Instead, the solution initially proposed in Sec. 3.3.8 is based
on a data-driven classification approach requiring specific training and constrained at
precise image crop resolutions. On the contrary, the approach proposed with FASTDLO
exploits the accurate DLOs center line localization obtained from the skeleton, as
opposed to the superpixels centroids used in Sec. 3.3.2, avoiding then the introduction of
additional data-driven approaches. In Fig. 3.12 some example intersections are displayed
with the computed values.

3.5 The RT-DLO Algorithm

The RT-DLO algorithm, the last approach proposed after Ariadne+ (Sec. 3.3) and
FASTDLO (Sec. 3.4), is a real-time capable and robust approach concerning the instance
segmentation of DLOs. The name RT-DLO stands for Real-Time instance segmentation
of Deformable Linear Objects.

RT-DLO, as the previous two methods, does not require any assumption about the
background and the number of DLOs present in the scene. Again, similarly to Ariadne+
and FASTDLO, as input it acquires the RGB image of the scene while providing as
output a pixel-mapped colored mask where each DLO is represented by a unique color
identifying its ID. In addition, being the DLO instances modeled as a sequence of key
points, a representation of the scene with spline curves can be easily obtained, e.g. for
manipulation tasks employing a state-space representation different from the image
space [128], see Sec. 3.3.9.

Compared to Ariadne+ and FASTDLO, RT-DLO employs an efficient and informative
graph representation of the scene as opposed to the skeleton originated segments-
based approach of FASTDLO and superpixel-based one of Ariadne+, resulting in

3.5. THE RT-DLO ALGORITHM 45

input image

binary mask

intersections
layout

instances mask

CNN
Angle

vertices orientations

0

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

graph
generation

vertices sampling

edges sampling

sub-
graphs

processing

DLOs
instances
extraction

key-points

19

40

8

27

17

25

34

39

rgb values

Figure 3.13: The RT-DLO algorithm.

faster processing times and improved accuracy, especially at the DLOs intersection.
Indeed, RT-DLO can handle degraded masks more effectively since the continuity of
the segmentation mask foreground along a DLO is not required.

In RT-DLO, as a pre-processing step, the input RGB image is propagated through a
DCNN trained on synthetically generated data aiming at segmenting the background, i.e.
pixels not representing a DLO, and providing as output a binary mask. Then, a graph
representation of the scene is constructed by efficiently sampling the vertices from the
segmentation mask. The edges connecting the graph’s vertices are instead computed by
reasoning about the topology expressed by the mask, with an approach that considers
both the proximity and orientation constraints among the vertices. Ideally, only a
maximum of two edges per vertex should be sampled. In the case of intersections of
DLOs resulting in the presence of high-degree vertices in the graph, sub-graphs around
the target vertices are extracted and further processed to disentangle the DLOs in the
graph. Finally, the single DLOs are extracted from the graph based on an analysis of
the graph connectivity. RT-DLO achieves a processing rate higher than 30 FPS with
an input image of 640 × 360 pixels employing the same hardware of Ariadne+ and
FASTDLO.

To summarize, the idea exploited in RT-DLO is to model the current configuration
of the DLOs present in the image with a graph structure G = (V , E) and then to extract
the DLO instances from the obtained graph. The approach, schematized in Fig. 3.13,
can thus be subdivided into six main steps:

1. Mask Generation: obtaining a binary mask Mb from the input color image via a
DCNN;

2. Vertices Sampling: processing Mb, with vertices orientation characterization
based on a CNN;

3. Edges Sampling: exploiting the proximity among the vertices and the orientation
between vertices and edges;

4. Intersections Processing: disentangling the DLOs in the graph representation
via sub-graphs analysis;

5. DLOs Instances Extraction: computing pixel-wise DLOs instances masks in
the image plane;

6. Intersections Layout: assessing the correct instances locally at the intersections.

In the remainder of this section, the procedures for obtaining the graph representation
and extracting coherently DLOs instances from it are presented. First, the binary mask
Mb generation is discussed in Sec. 3.5.1. Then, concerning the graph formation process,
the vertices are examined in Sec. 3.5.2 while the edges are in Sec. 3.5.3. Thereafter,

46 CHAPTER 3. 2D PERCEPTION: INSTANCE SEGMENTATION AND MODELING

the algorithm employed for processing problematic regions of the graph is provided in
Sec. 3.5.4. Finally, the extraction of the DLO instances, given the graph representation,
is presented in Sec. 3.5.5 while the approach for analyzing their layout is in Sec. 3.5.6.

3.5.1 Mask Generation

The mask generation step can be considered a pre-processing phase of RT-DLO since
the graph representation of the DLOs is obtained employing only the binary mask Mb

of the scene and not the RGB image. As in Sec. 3.4.1, DeepLabV3+ [23] trained on
synthetically generated data (Sec. 2.4) is employed as DCNN. This choice is convenient
since 1) good performances are shown in Sec. 2.7.1 concerning the semantic segmentation
capabilities of this method; 2) a simplification on the comparison of RT-DLO against
FASTDLO is achieved. Therefore, a binary mask Mb is obtained by setting the pixels
predicted to belong to a DLO to 1 and the remaining ones to 0.

It is worth mentioning that RT-DLO is independent of the method used to obtain
the semantic segmentation mask. Different approaches can be employed depending on
application requirements.

3.5.2 Vertices

First, vertices of the graph G are sampled from the binary maskMb and then characterized
in terms of local orientation by a CNN.

Vertices sampling

The set V = {vi}ni=1 contains the n vertices of the graph efficiently sampled from the
binary mask Mb. First, the distance transform operator is executed on Mb obtaining
Mdist. This operator computes the Euclidean distances between the non-zero values of
Mb and the nearest boundaries (zero/black values) [7], thus assigning an intensity value
to each pixel based on the computed distance. In Fig. 3.14b, Mdist originated from Mb

(Fig 3.14a) is shown where Mdist is color-mapped on the grayscale level from dark (zero
distance) to bright (maximum distance).

Then, Mdist is dilated with a small square kernel (i.e. 3× 3). The dilation operation
is a maximum locating morphology operation. Indeed, as the kernel is convolved over
the target image, the maximal pixel value overlapped by the kernel is computed and
the corresponding image pixel at the anchor position is replaced. Dilation is usually
applied on binary masks to enlarge the foreground (white) portion. Instead, in RT-DLO,
the dilation operation is applied to the mask Mdist which contains intensities values,
i.e. Mdist is not binary, obtaining Mdil. The local maximums of Mdist are retrieved by
comparing pixel-wise Mdist and Mdil masked using Mb, as follows:

Mmax(i, j) =

{
1 if Mdil(i, j) = Mdist(i, j) and Mb(i, j) = 1

0 otherwise

Indeed, if the value of pixel (i, j) in Mdist and Mdil is the same, this means that the
considered pixel is a local maximum. By assigning the pixel value of 1 to the maximums
and 0 to the rest of the pixels, a new mask is obtained, denoted withMmax, and illustrated
in Fig 3.14c. It is worth mentioning that, by construction, Mmax approximates the center
lines of the DLOs in the mask. The dilation-based approach resemble the non-maximum
suppression (NMS) operation employed in the context of object detection [4]. Indeed,
the NMS operation is used to remove redundant detections by keeping only the most

3.5. THE RT-DLO ALGORITHM 47

(a) Mb (b) Mdist (c) Mmax (d) vertices

Figure 3.14: Vertices sampling key elements: the mask Mb (a), Mdist (b) and Mmax (c), the obtained
vertices (d). The bright regions in (b) denote high-intensity values.

confident ones. In RT-DLO, it is employed to remove redundant pixels in the mask
Mdist by keeping only the local maximums.

The set of maximum pixels of Mmax, i.e. pixels whose value is equal to 1, is denoted
as Vmax. The cardinality of Vmax is relatively large and not really tractable in case
real-time applications are sought. Thus, the farthest point sampling (fps) algorithm [92]
is employed for down-sampling Vmax. A sampling ratio of α ∈ [0, 1] is used to specify the
amount of down-sampling. The set of vertices V of the graph G is obtained as αVmax.
In Fig. 3.14d the vertices extracted from the sample mask of Fig. 3.14a with α = 0.15
are depicted.

Vertices Orientations

In the context of linear objects and linear shapes representation, for each given vertex of
the graph, an orientation characterization can be performed. The objective is to describe
locally the section of the linear object in the vicinity of the vertex as an orientation
attribute of the vertex itself. Thus, the local orientation θ of a given vertex at pixel
coordinates (x, y) is derived from a local patch of size δ × δ pixels, centered at (x, y)
and with intensity values extracted from the distance transform image Mdist.

A CNN is used to estimate an angular value from a given patch. Predicting an
angular value via a learning-based method can become quite a complex task due to the
periodicity of the angular data resulting in inaccurate distance representations when
computing the loss function. Indeed, an angle of 2◦ describes an orientation quite close
both to 5◦ and 179◦, although the corresponding loss values when applying common
losses, e.g. L1-loss or MSE-loss, are quite different. An approach pioneered in [129] is
thus employed to address the angular periodicity and ambiguity in the loss computation.
A given angular value θ in the range [0◦, 180◦] is encoded as a 180-dimensional vector
with entries defined by applying a Gaussian function centered at θ and with variance
σ. In this way, the angle θ is propagated smoothly in its proximity enabling benefits
during the loss computation. The network structure is composed of two convolutional
layers followed by a fully connected linear layer. Each convolution layer comprises a 2D
convolution followed by batch normalization. Between the two layers, a max-pooling
operation takes place. After the convolution layers, the embedded data are flattened and
the fully connected layer is used as an output to classify the patch in the 180-dimensional
vector. Binary cross entropy is used as loss function during the training stages, effectively
shaping the learning task as a classification problem of the angular value in one of
the 180 available classes. Consequently, the predicted angle is easily obtained from
the 180-dimensional vector as the index of the vector associated with the maximum
probability. This angular value characterizes the orientation of the vertex associated
with the processed patch.

48 CHAPTER 3. 2D PERCEPTION: INSTANCE SEGMENTATION AND MODELING

0

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

(c) graph generated

19

40

8

27

17

25

34

30
47

(a) Knn edges

19

40

8

27

17

25

34

30
47

(b) pos/neg edges

19

40

8

27

17

25

34

39

(e) subgraph
processing

19

40

8

27

17

25

34

39

30
47

(d) intersection
subgraph

Figure 3.15: Edges processing main elements: (a) Knn edges to obtain initial candidate edge set;
(b) positive/negative edges illustration; (c) graph generated; (d) intersection subgraph extracted; (e)
subgraph processing schema.

3.5.3 Edges

The set E = {ej}mj=1 contains the m edges of the graph. Identifying the correct edges to
be inserted in the graph is a complex task. Indeed, the connections between the vertices
should consider both their relative proximity as well as orientation constraints, the latter
in the form of vertex orientation and edge orientation. The vertices orientations were
described in Sec. 3.5.2. For convenience, a matrix E ∈ Rm×2 describing the edge set E
as organized tuples is introduced.

The relative proximity between vertices is exploited to obtain an initial candidate
set of edges, denoted as Eknn = {ej}mknn

j=1 . That is, for each vertex, the Knn nearest
neighbors in V are retrieved as edges. The value of Knn is a user-defined parameter
and it follows that mknn = n×Knn if the edges are considered as directed. In addition,
Eknn ∈ Rmknn×2 is the matrix description of Eknn. The Knn nearest neighbor case with
Knn = 8 for a sample vertex is depicted in Fig. 3.15a.

Vertex-Vertex Similarity

The orientation constraints between two general vertices v1 and v2 are evaluated by
assigning a score to their connection by means of the cosine similarity defined as

s(d1
v,d

2
v) =

d1
v
T
d2
v

∥d1
v∥∥d2

v∥
(3.2)

In particular d1
v is obtained as [cos(θ1), sin(θ1)]

⊤, where θ1 is the orientation of v1
obtained from Sec. 3.5.2. For d2

v the derivation is similar. In eq. (6.2), the product of
the norms is denoted at the denominator. The cosine similarity is then used to score
the orientations between two vertices pair.

For efficiency reasons, the cosine similarity is evaluated by means of matrix operations.
Given the matrix Dv ∈ Rn×2 of vertices orientations in the form of direction vectors
obtained from the predicted angles, i.e. for vertex i as di

v/
∥∥di

v

∥∥, the cosine similarity

3.5. THE RT-DLO ALGORITHM 49

between each pair of vertices of the set V can be obtained as

Sv,v = |DvD
T
v | (3.3)

being Sv,v ∈ Rn×n and | · | denoting the absolute value.

Vertex-Edge Similarity

Similarly to the vertex-vertex case, the matrix De ∈ Rmknn×2 of edges orientations can
be defined. It contains the direction vectors obtained by subtracting the coordinates
of the associated vertices followed by a normalization by their distance. The cosine
similarity between each vertex of V and each edge of Eknn is obtained as:

Sv,e = DvD
T
e (3.4)

with Sv,e ∈ Rn×mknn being the obtained similarity matrix between vertices and edges.

Combining Sv,v and Sv,e

At the current stage, because of the dimensions mismatch, it is not possible to combine
Sv,v (eq. (3.3)) and Sv,e (eq. (3.4)). Thus, an augmented similarity vertices score matrix
S̄v,v ∈ Rn×mknn is introduced. This matrix is obtained by mapping the values of Sv,v in
a column vector employing the entries of Eknn as row-column pairs to access Sv,v. Then,
a matrix is constructed by repeating the column vector n times along the rows. Notice
that this is a valid operation since Sv,v is a symmetric matrix. The complete similarity
score matrix is obtained as:

S = Sv,e ⊙ S̄v,v ⊙B (3.5)

where B ∈ Rn×mknn is the oriented incidence matrix and ⊙ the Hadamard product. The
matrix B is used to inject into the scores the knowledge of the edge existence (entries
0) and direction (entries ±1). i.e. source vertex to target vertex. This information is
very helpful since it allows the discrimination of the edge set based on the sign of their
similarity score, i.e. the entries of S. An illustration of the two possible situations that
can occur is provided in Fig 3.15b. The cosine similarity between the sample vertex
30 and its Knn neighbors can provide both positive values, in case the edge direction
vectors and the vertex orientation vector of 30 are both in the green region or negative
values if instead, they lay in the red region.

Based on the scores contained in the similarity matrix S, a positive and a negative
edge for each vertex of V are sought, being the characterization of an edge as positive
or negative related to the sign of the associated score in S. Notice that it may happen
that a positive or negative edge for a given vertex does not exist, e.g. in the presence of
a vertex describing the terminal region of a DLO. The calculus to extract the positive
and negative edges from the similarity matrix S of eq. (3.5) is provided in the following.

Positive Edges

Given B+ ∈ Rn×m as the positive incidence matrix where the entries −1 of B are set to
zero, i.e. B+ contains values of the set {0,+1}. Defining also a row vector d ∈ R1×mknn

containing the lengths of the edges. A matrix D ∈ Rn×mknn can be created stacking
n times d along the rows. Thus, the entries of D can be filtered out based on B+ as
D+ = D⊙B+. Then, a generic entry (i, j) of S is weighted based on the associated edge

length as wij
+ = 1− dij+−min(di

+)

max(di
+)

. The vector di
+ denotes the i-th row of D+. The matrix

50 CHAPTER 3. 2D PERCEPTION: INSTANCE SEGMENTATION AND MODELING

containing all the computed weights is denoted as W+ ∈ Rn×mknn . The presence of B+

makes W+ sparse since only the entries associated with an entry +1 in B+ will have
a weight different from zero. It follows that S+ = S ⊙W+, where S+ is the similarity
matrix associated with the positive incidence matrix. Finally, an edge, if it exists, is
selected for each row of S+ as the edge associated with the maximum entry of S+ along
the considered row. Thus, considering the generic vertex i, i.e. row i of S+, its positive
edge ei+ is obtained as ei+ = {Eknn}j∗ , with j∗ = argmax(si+), s

ij∗

+ > µ, where with
si+ is denoted the i-th row of S+, with {Eknn}j∗ ∈ R1×2 the column vector at index j∗

containing the indices of the source and target vertices and with µ a small threshold to
avoid selecting edges with a very low similarity score.

Negative Edges

Following a similar discussion to the one of positive edges, let’s define B− ∈ Rn×m as
the negative incidence matrix where the entries +1 are set to zero, i.e. B− contains
values {−1, 0}. The entries of D can be filtered out based on B− as D− = D ⊙ B−.
The weight matrix associated with D− can be defined as W− ∈ Rn×mknn where only the
entries associated with −1 in B− are different from zero. A generic entry wij

− of W− is

obtained as wij
− = 1 − dij−−min(di

−)

max(di
−)

. It follows that S− = S ⊙W−, obtaining S− as the

similarity matrix associated with the negative incidence matrix. Finally, an edge, if it
exists, is selected for each row of S− as the edge associated with the minimum entry of
S− along the considered row. The generic edge ei− is obtained as ei− = {Eknn}j∗ , with
j∗ = argmin(si−), s

ij∗

− < −µ.

Edge Set

The obtained positive and negative edges are combined into a single edge set denoted as
E with which the graph G is generated (Fig. 3.15c).

3.5.4 Intersections Processing

Although the graph G should contain vertices having a degree, i.e. number of neighbors,
of only 1 or 2, depending on if the considered vertex is an endpoint, vertices having a
higher degree, i.e. 3 or more, are still possible. This happens if the considered vertex is
placed at the intersection area between multiple DLOs resulting in several ambiguous
edge connections, e.g. Fig. 3.15d. To address this problem, Alg. 4 is employed: it detects
the problematic vertices, extracts subgraphs around each of them, and by employing
the cosine similarity approach it finds the correct edges.

With more details, Alg. 4 takes as input the graph G just created and provides as
output the updated graph G ′ where the ambiguous vertices are removed and their edges
redistributed correctly in their local subgraphs.

First, the ambiguous vertices are detected as those vertices with a degree larger than
2 and collected in Vint, line 1. Then, for each v in Vint, the neighbor vertices are collected
(lines 2 to 5).

In case one or more vertices of one set of neighbors overlap with another one, those
sets are merged (line 6) grouping all vertices and treating the problematic area as the
composition of the original ones. Each set N of N̄ defines a subgraph around the
problematic area.

For each subgraph defined by the vertices in N , the number of connections (edges) to
establish is determined by kconn as the integer division between the cardinality of N and

3.5. THE RT-DLO ALGORITHM 51

Algorithm 4: Intersections Processing

Input: G = (V, E)
Output: G′

1 Vint ← {v ∈ V : deg(v) > 2}
2 N̄ ← ∅
3 foreach v ∈ Vint do
4 N ← neighbors(v)
5 N̄ ← N̄ ∪ N
6 N̄ ← merge overlapping(N̄)
7 Enew ← ∅
8 foreach N ∈ N̄ do
9 kconn = |N | div 2

10 C ← combinations(N , 2)
11 Z ← edge solver(C)
12 Z ← sorted(Z, ”descending”)
13 Vdone ← ∅, c← 0
14 while c ≤ kconn do
15 foreach (vi, vj , sij) ∈ Z do
16 if vi /∈ Vdone and vj /∈ Vdone then
17 Enew ← Enew ∪ (vi, vj)
18 Vdone ← Vdone ∪ {vi, vj}
19 c← c+ 1

2 (line 9). The combinations of 2 elements of the vertices contained in N are collected
in the set C (line 10). These tuples of elements can be considered edge candidates for
the subgraph. For instance, in Fig. 3.15e, the candidate edges of the subgraph under
analysis are depicted in red (wrong) and green (valid). Thus, an edge solver (line 11) is
employed to assign a score to each of those. In particular, given two sample vertices,
i.e. v1 and v2, which connection should be scored, the direction of the edge connecting
them is computed as d1,2

e = v1 − v2. Then, the connection cosine similarity score, as in
eq. (6.2), is evaluated as

sint(d
1
v,d

2
v,d

1,2
e) =

∣∣s(d1
v,d

1,2
e) s(d2

v,d
1,2
e)
∣∣

where with d1
v and d2

v the vertices orientations are denoted. Notice that the absolute
value of the similarity is employed since the interest is not in its sign, but only in its
magnitude. Each (vi, vj) of C is therefore augmented by the computed score sij as
(vi, vj, sij) and collected by the set Z which is then sorted based on the score values in
descending order (line 12). Finally, an interactive procedure takes place to loop through
the elements of Z and collect the kconn new edges into Enew as those defined by vertices
not being already assigned to other edges (lines 13 to 19). The sample subgraph is
solved by obtaining the final graph depicted in Fig. 3.17a.

3.5.5 DLOs Instances Extraction

The single instances of the DLOs present in the scene are retrieved considering the
connectivity of the graph, i.e. each DLO is represented as an isolated sub-graph from
the initial global graph. For each subgraph, the path from one endpoint (a vertex with
degree 1) to the other is extracted. A path Pt can be denoted as an ordered sequence of
vertices as Pt = {vt1, vt2, . . . vttn}. The extracted path denotes the sequence of key points
describing the DLO instance. From these key points, a spline curve can be fitted to
better approximate the DLO shape and then an estimate of the DLO thickness can

52 CHAPTER 3. 2D PERCEPTION: INSTANCE SEGMENTATION AND MODELING

input binary mask without check with check

Figure 3.16: DLOs instances extraction with and without consistency check in case of a problematic
mask.

0

1

2

3

4

5

6
7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

48

49

50

(a) grap final (b) colored mask

Figure 3.17: The connectivity graph (a) is processed to extract the DLOs instances and obtain the
colored mask Mc (b).

be obtained from the distance transform mask Mdist. Thus, a colored mask Mc can be
drawn as shown in Fig. 3.17.

In some cases, two or more DLO instances may be effectively denoted by a single
path. This situation can occur in case, for instance, the intersection between two
DLOs happens along the border of the image. RT-DLO, employing only the mask
image, tries to solve this scene by connecting jointly the two distinct DLOs, see as
an example Fig. 3.16 showing the obtained DLOs instances given the source image
and mask. To handle this condition, as a final consistency check along the obtained
path, the cosine similarity is computed between each vertex of the path and its two
neighbors. In particular, given a sample vertex vti , i ∈ [2, tn − 1] belonging to path
Pt. Its two neighboring vertices are vti−1 and vti+1 while the two edges directions are
di,i−1
e and di,i+1

e . According to eq. (6.2), the cosine similarity between di
v and di,i−1

e

can be denoted as si,i−1 = s(di
v,d

i,i−1
e), where di

v describes the orientation of vertex vti .
Similarly, si,i+1 = s(di

v,d
i,i+1
e). If the product si,i+1 si,i−1 is negative, it means that the

path is not smooth at vertex vti . Thus, the path Pt is detached at vertex vti into two
different paths, see Fig. 3.16.

3.5.6 Intersections Layout

To correctly assign the DLOs IDs in the intersection areas among two or more DLOs,
additional color information is required. Indeed, only from the binary mask Mb and the
corresponding constructed graph, this information is not achievable. In RT-DLO, the
approach first described in [17] is deployed: the standard deviation of the RGB color
along the edge connecting two vertices in the area of the intersection is used. For a
given intersection, all the involved edges are collected and the standard deviation of the
RGB values along the edges is compared. The edge corresponding to the smallest value
is selected as the one placed at the top of the pile. Therefore, the mask Mc is drawn
taking into account this information.

3.6. EXPERIMENTAL RESULTS 53

Table 3.1: Ariadne+, FASTDLO and RT-DLO versus baseline methods. Key-point denotes that the
method also provides a representation of the detected DLOs as sequence of points. The symbol ’*’
indicates that the method is tested on a reduced dataset.

Group Method Backbone Key-points FPS ↑ Time [ms] ↓ IoU [%] ↑

general purpose

YOLACT ResNet-50 ✗ 44 23 32.15
YOLACT ResNet-101 ✗ 32 31 35.25
YOLACT++ ResNet-50 ✗ 42 24 29.96
YOLACT++ ResNet-101 ✗ 31 32 29.64
BlendMask ResNet-50 ✗ 15 66 15.92
BlendMask ResNet-101 ✗ 12 81 21.24
CondInst ResNet-50 ✗ 16 62 23.29
CondInst ResNet-101 ✗ 13 78 29.24

DLO specific

Ariadne - ✓ < 1 > 1000 *23.80*
Ariadne+ ResNet-50 ✓ 3 354 73.96
Ariadne+ ResNet-101 ✓ 3 360 76.87
FASTDLO ResNet-50 ✓ 23 44 73.89
FASTDLO ResNet-101 ✓ 22 46 77.77
RT-DLO ResNet-50 ✓ 36 27 77.65
RT-DLO ResNet-101 ✓ 32 31 79.91

3.6 Experimental Results

The proposed algorithms are evaluated on the test set, introduced in Sec. 2.6, addressing
both general scenarios as well as industrial-related ones. The performances are com-
pared both within the proposed algorithms and with general-purpose DCNNs, namely
YOLACT [6], YOLACT++ [5], BlendMask [22] and CondInst [114]. For these baselines,
the synthetic dataset of Sec. 2.4 is employed for their training, since it allows the
generation of a large number of images with a precise instance-wise annotation of the
DLOs.

The evaluation of the performances is provided in Sec. 3.6.1 while the timings are
in Sec. 3.6.2. Moreover, an analysis of the robustness of the proposed algorithms is
presented in Sec. 3.6.3 and sensitivity to user-defined parameters for RT-DLO and
Ariadne+ are discussed in Secs. 3.6.4 and 3.6.5.

The experiments are performed employing, as the hardware platform, a workstation
with an Intel Core i9-9900K CPU clocked at 3.60GHz and an NVIDIA GeForce GTX
2080 Ti. A video showcasing RT-DLO in action is available as supplementary material1.

3.6.1 Performances Evaluation

The evaluation of the performances is addressed by employing as metric the Intersection

over Union (IoU) defined as IoU = |M∩Mgt|
|M |+|Mgt| . In the definition, M is the predicted

mask of the DLOs instances and Mgt is the ground truth. In M , each DLO instance is
denoted by a unique color and the IoU score is computed as the average score across
the instances of the image.

The comparison of Ariande+, FASTDLO and RT-DLO against the baseline methods
is presented in Tab. 3.1 by means of the IoU score computed starting from the color
masks provided as output by each method. The table also provides details about the
average inference time, FPS, and key-points availability as output.

The results show that the proposed algorithms outperform the baseline methods in
terms of IoU score. In particular, RT-DLO shows the best performances with an IoU
score of 79.91% and 77.65% when employing the ResNet-101 and ResNet-50 backbones
respectively.

1https://www.youtube.com/watch?v=W4rfY-Ap eE

54 CHAPTER 3. 2D PERCEPTION: INSTANCE SEGMENTATION AND MODELING

Input RT-DLO FASTDLO Ariande+
C
1

C
2

C
3

Figure 3.18: Qualitative evaluation of RT-DLO versus FASTDLO and Ariadne+ on the test set classes.

Among the DLO-specific methods, clear improvements are shown by Ariadne+ with
respect to Ariadne, i.e. +50.16% and +62.07% improvements when employing the
ResNet-50 and ResNet-101 backbones respectively. Instead, FASTDLO and RT-DLO
show a slight improvement over Ariadne+, i.e. +3.91% and +2.05% improvements
when employing the ResNet-50 backbone, and +0.91% and +1.04% improvements when
employing the ResNet-101 backbone respectively. But, focusing on the efficiency, the
differences between Ariadne+, FASTDLO and RT-DLO are more sharp. It is worth
mentioning that RT-DLO can provide the same level of performance of FASTDLO
employing a lighter backbone, thus making it possible to reach a frame-rate of 36 FPS,
+13 FPS over FASTDLO.

A qualitative comparison on a few samples of the test set among Ariande+, FASTDLO
and RT-DLO is provided in Fig. 3.18, where the superiority of RT-DLO is especially
visible at the intersections. Indeed, the major advantage of RT-DLO against the other
proposed approaches resides in its graph representation which is based on Mb but is
less susceptible to the degraded area as opposed to the skeleton approach of FASTDLO
and mask-guided superpixels method of Ariadne+. In this regard, deeper analysis on
RT-DLO robustness capabilities is reported in Sec 3.6.3, where the requirement of an
accurate segmentation mask Mb is experimentally relaxed.

3.6.2 Inference Time Evaluation

The inference time of the proposed algorithms is evaluated on the test set images. The
results for Ariadne+, FASTDLO and RT-DLO are reported in Tabs. 3.2, 3.3 and 3.4
respecively. The timings are computed on the same hardware platform described at the
beginning of Sec. 3.6, allowing a fair comparison among the algorithms.

As a segmentation network, DeepLabV3+ with a ResNet-101 or ResNet-50 backbone
is employed for all the algorithms. The inference time of the segmentation network is
about 20 and 15 ms depending on the choice of the two backbones when processing
the 640 × 360 images of the test set. Thus, for all methods, faster overall processing
times can be achieved by deploying the lighter backbone ResNet-50, saving several
milliseconds in the binary segmentation phase.

In Tab. 3.2, the timings of the different stages of Ariadne+ are reported. The

3.6. EXPERIMENTAL RESULTS 55

Table 3.2: Ariadne+ average execution timings
of the different main parts and total computed
over the test set. Values in milliseconds.

Procedure Time [ms]

Superpixels Segmentation 167
Graph Generation 46
Graph Simplification and Clustering 47
Paths Discovery 20
Paths Layout Inference 17
Total 342

Table 3.3: FASTDLO main procedures average
execution times and total with respect to the
number of intersections in the test set images,
i.e. 1, 2, and 3. Values in milliseconds.

Procedure
Number of Intersections

1 2 3

Skeleton Generation 12.27 13.26 14.25
Endpoint-pairs Predictions 0.80 1.04 1.21
Informed Merging 15.13 17.09 18.81
Total 28.20 31.39 34.27

Table 3.4: Average execution times [ms] of the main RT-DLO stages with respect to the number of
intersections in the image, i.e. 1, 2, and 3.

Procedure
Number Intersections

1 2 3

Graph Generation 6.69 8.23 9.17
Intersections Processing 0.57 0.80 0.95
DLOs Instances Extraction 1.25 1.55 1.79
Intersections Layout 0.61 1.13 1.65
Output Colored Mask 0.37 0.45 0.51
Total 9.50 12.15 14.07

superpixels segmentation stage is the most time-consuming one, requiring about 167
ms. Overall, with a total processing time of 360 ms on average, Ariadne+ is the slowest
method of the group and is not suitable for real-time applications.

Tab. 3.3 reports the average execution times of the different stages of FASTDLO
with respect to the number of intersections in the image. The total processing time
excluding the initial segmentation is about 28 ms on average, with a maximum of 35 ms
for highly complex scenes. The inference performed by the similarity network is very
fast and does not suffer significantly from the increase in the number of intersections to
process thanks to the possibility of employing batch inference. Compared to Ariadne+,
FASTDLO is about 13 times faster, thanks mostly to the skeleton representation of the
DLOs. FASTDLO can thus be considered a quasi-real-time algorithm, with a frame
rate higher than 20 FPS considering also the initial semantic segmentation stage.

Concerning RT-DLO, Tab. 3.4 presents the timings of the different stages of the
algorithm with respect to the number of intersections in the image, as for FASTDLO.
The graph generation stage is the most time-consuming one, requiring about 8 ms. But,
compared to the previous approaches, the graph representation of RT-DLO highlights its
efficiency. Overall, the total processing time excluding the initial semantic segmentation
is about 12 ms on average, with a maximum of 14 ms for highly complex scenes. If
the colored mask is not required, for instance in the case of robotic manipulation tasks
where the key-points representation is more useful, the last two stages can be skipped
shortening the computation time by 1 to 2 milliseconds depending on the number of
intersections, as shown in Tab. 3.4. A similar timing, of about 13.5 ms, is obtained
deploying RT-DLO on a consumer laptop (Intel Core i7-12700H CPU). Indeed, high
computation power is mostly required only for the DCNN. Thus, if the application
does not require a complex deep model for scene semantic segmentation, the hardware
specifications can be relaxed or higher overall FPS can be achieved.

56 CHAPTER 3. 2D PERCEPTION: INSTANCE SEGMENTATION AND MODELING

20

40

60

80

Io
U
[%

]

ResNet-101
MASK
ARIADNE+
FASTDLO
RT-DLO

ev
al
 o
n
te
st
-s
et

ResNet-50

0 1 2 3 4
iterations

−10

0

Io
U
[%

]

0 1 2 3 4
ite%ations

w%
t m

as

Figure 3.19: Evaluation of RT-DLO, FASTDLO and Ariadne+ on the test set eroding Mb.

Mask (Mb) RT-DLO FASTDLO Ariadne+

1

2

3

Figure 3.20: Qualitative comparison of RT-DLO, FASTDLO and Ariadne+ given Mb eroded for 1, 2
and 3 iterations.

3.6.3 Masks Degradation and Different Segmentation Back-Ends

The improvements of RT-DLO against Ariadne+ and FASTDLO, are not only in the
form of faster processing time and better accuracy. Indeed, an important benefit of the
fully graph-based representation approach of RT-DLO is its ability to better handle
degraded semantic segmentation masks Mb. To illustrate the graph-based advantage
of RT-DLO, a two-fold study is conducted. On one hand, the performance drop of the
proposed algorithms is evaluated after an erosion process is applied on Mb. On the other
hand, different segmentation networks trained on public datasets, i.e. not DLO-specific
ones, are employed. Thus, the predicted masks Mb are not as accurate as the ones
obtained with the DLO-specific segmentation network and the performance drop of the
proposed algorithms is evaluated.

Masks with Erosion Process

Concerning the first study, the masks Mb of the test set are iteratively eroded, that is
the process consisting in thinning the foreground area of a binary mask, with a kernel of
3× 3 pixels to simulate the effects of less precise segmentation masks. The evaluation is
performed by comparing Ariadne+, FASTDLO and RT-DLO on the masks obtained
from the two different backbones, i.e. ResNet-50 and ResNet-101, see Fig. 3.19. From

3.6. EXPERIMENTAL RESULTS 57

EGNet F3Net CPD PoolNet32

37

42

47

Io
U
[%

]

MASK
ARIADNE+

FASTDLO
RT-DLO

Figure 3.21: Evaluation of RT-DLO, FASTDLO and Ariadne+ on the test set employing Mb obtained
by SOS networks.

Mask (Mb) RT-DLO FASTDLO Ariadne+

Figure 3.22: Qualitative comparison of the instances masks of RT-DLO, FASTDLO and Ariadne+
given Mb from EGNet.

the plots of Fig. 3.19, RT-DLO shows the capability of maintaining an almost steady
performance after the first round of the erosion process, followed by a drop in the
scores in the subsequent iterations. On the contrary, the drop of scores associated with
FASTDLO and Ariadne+ is significant from the very first iteration. Considering the
mask IoU score as an upper bound, RT-DLO is capable of maximizing its score as
opposed to the compared approaches. The images of Fig. 3.20 allow to catch better the
effects of the erosion process and the RT-DLO advantages on the test sample C1 of
Fig. 3.18.

Different Segmentation Networks

A study about replacing the DLO-specifically trained segmentation back-end with
ImageNet pre-trained salient object segmentation (SOS) approaches is conducted in
Fig. 3.21, thus avoiding the need for a specific DLO-based dataset and training procedure.
The SOS architectures tested are: EGNet [146], F3Net [124], CPD [126] and PoolNet
[68]. When evaluated on the test set, RT-DLO continues to achieve strong performances
compared to Ariadne+ and FASTDLO, see Fig. 3.21. The advantages of RT-DLO in
the case of degraded masks are even more apparent for the sample images of Fig. 3.22
which show how RT-DLO is able to minimize the number of extracted instances.

3.6.4 RT-DLO: Parameters Sensitivity

RT-DLO employs two user-defined parameters that can affect the method performances,
the vertex sampling ratio α and the number of Knn nearest neighbors. In Tab. 3.5,
the performances of RT-DLO on the test set are compared by varying α and Knn.

58 CHAPTER 3. 2D PERCEPTION: INSTANCE SEGMENTATION AND MODELING

Table 3.5: Performances of RT-DLO when varying the vertices sampling ratio α and the number of
Knn nearest neighbors. In bold the values within 1% distance from the best one.

Knn
vertices sampling ratio α

0.05 0.1 0.15 0.2 0.25 0.3

4 51.20 75.06 77.10 76.70 75.87 75.32
8 57.98 78.19 79.80 79.20 77.50 77.38
16 56.68 78.72 79.91 79.86 78.86 78.83
32 56.31 77.78 79.42 79.13 78.79 78.25

RT-DLO maintains remarkably strong performances across a wide range of values for α,
i.e. between 0.1 and 0.3. On the contrary, selecting α as 0.05 results in a quite reduced
number of vertices, hurting the description power of the graph. The selection of Knn is
also not critical with a value of 8 already sufficient to reach top performances.

3.6.5 Ariadne+: Superpixels Parameters Sensitivity

As described in Sec. 3.3.2, Ariadne+ relays on a superpixel segmentation algorithm to
construct the graph representation. Although the employed algorithm to this end [1, 51]
exposes several tunable parameters, the only parameter in the Ariadne+ method that
needs to be adjusted to extract the best result is the number of superpixels in the image.
In all the experiments reported in Tab. 3.1, this value is fixed at 50. Instead, for the
evaluation reported in Fig. 3.23, the number of superpixels is varied between 10 and 90
with a step of 10 to describe the effects on the overall scores. In particular, the analysis
is carried out for each number of intersections highlighting how as the complexity of
the scene increases, a higher number of superpixels improves the performance. The
plot shows that Ariadne+ can provide consistent results for a wide range of superpixel
numbers, i.e. from 40 to 90, resulting in an almost steady IoU score. Generally speaking,
a low number of superpixels oversimplifies the scene whereas an unnecessarily high value
causes the introduction of false intersections. Fig. 3.24 provides examples for three
conditions. It is worth mentioning that the sensitivity of the result to this parameter is
somehow mitigated by the graph simplification described in Sec. 3.3.4.

3.7 Conclusions

In this chapter, the task of instance segmentation of DLOs in images has been analyzed.
Three algorithms, namely Ariadne+, FASTDLO and RT-DLO, developed to accomplish
this task robustly and efficiently have been proposed.

The Ariadne+ algorithm is the first one developed and exploits a DCNN for scene
semantic segmentation and a superpixel-based graph representation to extract the DLOs
instances. The FASTDLO algorithm is the second one developed and replaces the
superpixel approach with a skeleton-based method for improved efficiency. A similarity
network is employed to predict the merging between different disjoint DLO sections.
The RT-DLO algorithm is the last one developed and is based on a fully graph-based
representation to extract the DLOs instances. The graph is preferred for its robustness
against degraded segmentation masks and its efficiency.

The three algorithms have been evaluated on a dataset of images of DLOs in real-
world scenes. The experiments allowed to catch the differences and drawbacks of
each method. In particular, the RT-DLO algorithm showed the best performances
in terms of accuracy, and efficiency. Moreover, the RT-DLO algorithm showed the
best robustness against degraded segmentation masks and the possibility to employ

3.7. CONCLUSIONS 59

10 30 50 70 90
number of superpixels

30

40

50

60

70

80

90

Io
U

[%
]

#1
#2
#3
average

Figure 3.23: Analysis of superpixel parameter sensitivity in terms of the number of intersections (i.e.
#1, #2 and #3) and average. The number of superpixels is varied between 10 and 90 whereas the
reference value of 50 is shown with the dashed gray line. As metrics, the IoU is employed.

Figure 3.24: Qualitative comparison of three different values for the number of superpixels for the same
image. From left to right: low (10), normal (50), high (90).

different segmentation networks trained on public datasets. Finally, the sensitivity of
the RT-DLO and Ariadne+ algorithms to a few user-defined parameters has been also
evaluated, showing that both algorithms are able to provide consistent results for a wide
range of values.

In future research endeavors, there are numerous opportunities for enhancing and
extending the proposed algorithms. For instance, the RT-DLO algorithm could be
expanded to incorporate a 3D graph representation, utilizing depth information derived
from a 3D camera. Additionally, the use of video sequences, rather than individual
images, could be explored as source media for all the methods. This would enable the
utilization of information from previous frames, potentially leading to more efficient and
rapid generation of segmentation masks. Furthermore, investigating a tracking system
to match DLO instances across video sequences is also a promising direction for future
investigation.

Chapter 4

3D Shape Estimation: Combining
2D Perception and Multiple Views

Robotic solutions require an accurate estimation of the 3D shape of DLOs for several
tasks, such as grasping, manipulation, and tracking. In this chapter, the problem of 3D
DLOs perception is analyzed and a multi-view stereo-based algorithm is proposed. First,
2D images of the scene are acquired from different viewpoints and processed according
to Chap. 3. Thus, a spline-based matching followed by a triangulation procedure are
employed for obtaining the 3D information.

4.1 Introduction

Sensors commonly employed for robotics applications are 2D cameras, 3D cameras, and
laser scanners. Among these sensors, only 3D cameras and laser scanners are able to
provide 3D information.

Laser scanners are usually employed in industrial applications where high accuracy is
required. However, they are expensive, bulky, and heavy. Moreover, they are not able
to detect transparent materials [45], such as in the case of medical hoses manufacturing,
i.e. a type of DLOs. Among 3D cameras, it is possible to distinguish passive and active
devices [55, 45]. The first group of cameras exploits the stereo vision principle and
matching techniques to infer the depth of the scene [103]. The second group, instead,
employs a projector to illuminate the scene with a special pattern [141] or a time-of-flight
sensor to measure the time of flight of the emitted signal [42]. In both cases, a depth
map is obtained and the 3D information is inferred.

Popular active camera options are from the RealSense and PrimeSense families
[138]. These devices are classified as general purpose consumer cameras due to their
affordable price. Despite their popularity, almost all general purpose consumer 3D
cameras fail in perceiving thin objects like DLOs [26], irrespective of the specific 3D
depth technology employed. The only category of 3D active cameras that can reliably
detect the shape of very thin cylindrically shaped objects like DLOs with a diameter
as low as 2-3mm is the high-end one, consisting of devices like Zivid One+/Two and
Photoneo MotionCam3D [26]. In fact, these devices can reach sub-millimeter depth
accuracy, but, on the other hand, they show several limitations in terms of pricing,
bulkiness, and working constraints. Thus, they are usually placed at a fixed position
and not at the end-effector level, increasing the risk of occlusions and reducing the
flexibility of the robotic application. If semi-transparent materials are taken into account

61

62 CHAPTER 4. 3D SHAPE ESTIMATION

Sw
itchgear

Real Reconstructed

D
esk

Figure 4.1: Showcase of DLO3DS capabilities in reconstructing the shapes of DLOs in different scenarios.

even high-end 3D sensors are not able to correctly detect those materials because of
transparency, refraction and internal reflections [26].

In contrast, passive 3D devices, for instance 2D cameras arranged in a stereo (or
multi-view stereo) setup, could potentially be more effective in detecting thin DLOs.
However, these devices have limitations in terms of baseline (which is fixed and optimized
for distant objects) and usually struggle in case of changes in lights and non-textured
areas. DLOs, having small dimensions and lacking relevant textures, represent a difficult
object to tackle for passive stereo cameras.

To address the drawbacks of both 3D active and passive cameras, a single 2D camera
mounted on a robotic arm could be deployed. Utilizing just a 2D camera brings many
beneficial effects including price, weight and size. Additionally, they have a wide range
of resolutions and fields of view. Finally, with the 2D camera placed on the robotic arm,
the high repeatability and accuracy of the latter can be exploited to avoid occlusions
while, at the same time, enabling immense flexibility in terms of baselines and distances
from the target.

In this chapter, a method to infer the 3D shape of DLOs in static scenes is presented.
The method and results presented are based on the following publications [13, 14]. The
approach makes use of the 2D perception algorithms discussed in Chap. 3 and exploits
the mobility of the robotic arm to emulate a multi-baseline system. The proposed
method is referred to as DLO3DS in the following. DLO3DS is able to reconstruct the
3D shape of DLOs from multiple images taken at known viewpoints without any prior
knowledge of the DLOs or the surrounding scene, independently from the background.
The DLO instances, after being modeled as B-spline curves, are matched by exploiting
a triangulation-based method. DLO3DS provides reliable results where standard stereo-
matching algorithms [48] fail due to the peculiar characteristics of DLOs previously
discussed. Finally, the availability of the robotic arm is exploited by optimizing at
run-time the baseline and distance from the target, thus reducing, even more, the
estimation error. In Fig. 4.1 the capabilities of DLO3DS in two different scenarios are
shown.

In the following, Sec. 4.2 reviews the closest contributions and methods dealing with
multi-view stereo matching. Then, the proposed method is detailed in Sec 4.3, with the
processing and estimation of a spline for each captured image in Sec. 4.4 and details on
how the different k splines are matched and exploited for obtaining the final 3D shape

4.2. RELATED WORKS 63

of a given DLO in Sec. 4.5. In Sec. 4.6, the experimental validation of DLO3DS in
simulation and with real data is reported. Finally, Sec. 4.7 presents some final remarks
and future research directions.

4.2 Related Works

The 3D shape reconstruction of objects from 2D images is a complex and extensively
analyzed problem in computer vision. In this chapter, the concept of multi-view stereo is
exploited for the 3D estimation of DLOs. The goal of multi-view stereo is to reconstruct
a complete 3D object model from a collection of images taken from known camera
viewpoints [37].

In order to achieve high accuracy in the 3D reconstruction, both the disparity error
and the geometric error [39] should be tackled. The first is related to correspondence
algorithms while the latter is related to physical parameters like baseline and distance
from the objects. In the context of correspondence algorithms, stereo approaches are
usually classified between local and global methods [103]. The latter are usually slower
but more effective than the first in the case of non-textured areas. Among the many
existing approaches, Semi-Global Matching (SGM) [48] is the most widely used approach
due to its balance between quality, efficiency and scalability. However, its limitations
in the case of non-textured areas are well-known [104] and several works have tried to
address its weaknesses, such as time execution with a GPU implementation [47]. With
the rise of deep learning, several approaches have been proposed for the computation
of correspondence by employing SGM with, for instance, learned parameters [137] or
learned matching cost [106]. A complete end-to-end learning approach [21] has been
also proposed. Learning methods could potentially solve several challenges of traditional
stereo algorithms, although the problem of dataset generation and model deployment in
the real world remains to be evaluated.

Concerning the geometric error, it is not possible to adjust the baseline in case of
a fixed stereo setup, as well as with commercial solutions. Thus, only the distance
of operation (and possibly the resolution) can be modified for reducing the geometric
error. In this context, some works exploit multiple 2D cameras mounted with different
baselines to combine the advantages of short and wide baseline systems [49]. Other
works employ a single 2D camera and a robot to emulate a multi-baseline system [28].

DLO3DS tackles both the disparity and geometric errors. The first is addressed
by the reliable processing of the 2D images and the matching of splines. The latter
is tackled by exploiting the robotic arm optimizing at run-time the baseline and the
distance from the target.

4.3 The DLO3DS Algorithm: Overview

The 3D shape estimation pipeline of DLO3DS is illustrated in Fig. 4.2. The algorithm
takes as input a set of k images of the scene, where each image contains one or more
DLOs. DLO3DS consists of two main steps: (i) the processing and estimation of a
spline for each captured image detailed in Sec. 4.4 and (ii) the matching of the splines
and the triangulation of the 3D shape of the DLOs provided in Sec. 4.5.

The set of k images is processed by an instance selection algorithm for extracting
the DLOs from each individual image. A B-spline model is computed for each detected
instance (Sec. 4.4.1). Therefore, a single 2D target spline is selected from each image
sample (Sec. 4.4.2). The set of selected B-splines is matched (Sec. 4.5.1) before performing
the triangulation procedure (Sec. 4.5.2), obtaining a 3D spline describing the DLO shape

64 CHAPTER 4. 3D SHAPE ESTIMATION

Sample 1 DLOs Segmentation

B-Spline Modeling

Spline Selection

Sample 2

Sample k

Spline Matching

Multi-View Triangulation

Error Reprojection

3D DLO Spline

Camera Instance Selection and Modelling Shape Estimation From Multiple Views

Figure 4.2: 3D shape estimation pipeline of DLO3DS. Data flow: the blue arrow denotes the image;
the red arrow denotes the 2D spline.

in world coordinates. The 3D spline is then filtered to eliminate outliers and overlaps
produced by subsequent acquisitions. Finally, the 3D spline is reprojected on each image
and the difference with respect to the input 2D spline provided by the instance selection
algorithm is computed (Sec. 4.5.3). The mean error norm is used to evaluate the quality
of the estimation result. The availability of the robotic arm is exploited by optimizing
at run-time the baseline and distance from the target, thus reducing, even more, the
estimation error (Sec. 4.5.4). In the following, the details of the different steps of the
algorithm are presented.

4.4 Instance Selection and Modeling

This section reports the details about the processing and estimation of a spline for each
captured image. The estimated spline is employed both for computing the 3D shape of
the DLO but also for aligning the camera with the target DLO main direction through
principal component analysis. Indeed, in order to increase the portion of the same DLO
visible in every sample, it is assumed to have the camera oriented along the DLO main
axis and to record the samples by sliding orthogonally to it, see Fig. 4.3 for an example
of the sliding direction with respect to the DLOs orientation.

4.4.1 DLOs Segmentation and B-spline Modeling

DLO3DS exploits existing approaches for segmenting the DLOs from an image. In
this chapter, the learning-based algorithm named FASTDLO of Sec. 3.4 is employed,
taking as input the RGB image of the scene and providing as output both an instance
mask, where each DLO is denoted with a unique color identifying the assigned ID,
and a sequence of 2D coordinates in the image plane for each detected DLO. A cubic
B-spline is fitted to these coordinate points obtaining a continuous representation of
the considered DLO. The considered spline is addressed as q(u), where u ∈ [0, 1] is
the free parameter, i.e. the normalized position along the spline neutral axis. The
computed curve is then discretized into a fixed number ns of points. The utilization of a
learning framework in FASTDLO allows to intrinsically deal with changes in lights and
textureless areas, partially solving the limitations discussed in Sec. 4.1. However, other
image processing pipelines can be employed for increased robustness and depending on
the application scenario.

4.5. SHAPE ESTIMATION FROM MULTIPLE VIEWS 65

u

di
st

an
ce

 (
px

) 1
3

2

Sample i-1 Sample i

T

1

2

3
T

sliding direction

x

y

Figure 4.3: Target spline selection approach based on distance computation. The symbol u denotes the
spline-free parameter.

4.4.2 Spline Selection

The spline selection is performed in case an image contains multiple DLOs. Indeed,
all the instances extracted from an image are modeled in Sec. 4.4.1. However, in the
following, a single DLO spline per image is expected. Thus, a regression-based distance
approach is employed for retrieving the target DLO in sample i, based on sample i− 1,
with i = 2, . . . , k. In particular, the point-to-point distance between the target spline T
of a sample i− 1 and each newly detected spline of a sample i is computed, as shown in
Fig. 4.3. Then, a line is regressed for each distance curve and the spline associated with
the smaller slope line is selected. Indeed, due to the orthogonal sliding direction, the
same portion of DLO is assumed to be visible in each sample, thus an overall constant
distance between the two curves given by the motion of the baseline step is expected.

4.5 Shape Estimation from Multiple Views

This section details how the different k splines are matched and exploited for obtaining
the final 3D shape of a given DLO, see Fig. 4.2. In Sec. 4.5.1 the matching of the splines
is discussed, while in Sec. 4.5.2 the triangulation approach is detailed. In Sec. 4.5.3
the possibility of employing the reprojection error for evaluating the quality of the
estimation is presented. In Sec. 4.5.4, the optimization of the baseline and distance from
the target is described. Finally, in Sec. 4.5.5, the applicability of DLO3DS in a DLO
tracking framework is analyzed.

4.5.1 Splines Matching

A spline qi(u) can be sampled by defining a suitable vector u of ns equally-spaced free
parameter values in the interval [0, 1] (see Sec. 2.4.1). Thus, ns 2D pixel points along
the DLO for the i-th view are retrieved.

Let’s denote with pij = [pxij
pyij]

T the j-th spline sample on the i-th image plane,
with i = 1, . . . , k and j = 1, . . . , ns. To assess the accurate 3D location of a generic
point seen from multiple images at pixel coordinates pij , the precise computation of the
corresponding points pij is required. For this purpose, both the constraints embedded in
the case of a normal stereo setup and the availability of the splines modeling the DLO
are exploited.

The first step consists of sampling all the splines over the same DLO section by
defining suitable vectors ui, one for each spline. The length li of each spline is measured
by summing the distance in pixels among adjacent points. Then, the index r of the

66 CHAPTER 4. 3D SHAPE ESTIMATION

Sample 1

sliding direction

Sample kSample rx

y

Figure 4.4: Scaling process. The shortest spline is selected as the reference and all the others are scaled
to match the same DLO portion as closely as possible.

shortest spline is taken as a reference

r = argmin
i
{li : i ∈ 1, . . . , k}

Thus, the splines are re-sampled according to the redefined vectors of free parameters

ui ← ui
li
lr
+

d(qi(0), qr(0))

li

where the function d(·, ·) provides the distance in pixels between two points. As a
consequence, the spline samples qi(ui) provide a coarse matching across the different
views.

The ns spline samples of the shortest spline need to be precisely matched in all the
other splines qi(u), i = 1 . . . k \ r. In this regard, the corresponding j-th point on the
i-th image plane pij is searched along the row coordinate of prj, empowering the basic
constraints of epipolar lines in case of a normal stereo rig, as the intersection point with
the spline qi(u). In the eventuality of multiple matches between the spline curve and the
epipolar line, a smoothness constraint is also employed enforcing the most consistent
point based on the past matches.

The aforementioned procedure is depicted in Fig. 4.4. The spline samples pij are
then used to compute the DLO 3D shape as detailed in Sec. 4.5.2.

4.5.2 Multi-View Triangulation

For the sake of simplicity, the discussion is focused first on just one target point, i.e.
j = 1. Let us consider the case in which a single unknown point p in the Cartesian
space expressed with respect to the world reference frame is observed by the camera
mounted on the robot from multiple points of view. Provided that the camera frame
with respect to the world frame at the i-th points of view is

wT ci =

[
wRci

wtci
0 0 0 1

]
where wRci is the rotation matrix and wtci is the position of the camera frame origin in
world coordinates obtained from the kinematics of the robot and the extrinsic parameter
of the camera calibration. It is assumed that the point p is seen in the image related to
the i-th points of view at pi = [pxi

pyi]
T , being pxi

and pyi the point pixel coordinates in
the image.

4.5. SHAPE ESTIMATION FROM MULTIPLE VIEWS 67

A so-called unit ray vi passing through the image reference frame origin and p can
be expressed in the image frame considering the pixel coordinates pi and the camera
focal distance f

v′i =

 pxi
− cx

pyi − cy
f

 , vi =
v′i
∥v′i∥

where cx and cy are the pixel coordinates of the image center (assuming the camera
frame is centered with respect to the image). Then, vi can be expressed in the world
frame by

wvi =
wT civi

Provided that k distinguished points of view are available, the estimation p̃ of the
unknown point p can be obtained by looking for the point having the minimum distance
from all the rays. By defining the symmetric Vi matrix

Vi = I − wvi
wvTi (4.1)

providing the semi-norm on the ray distance, the point location estimate x̃ is provided
by the nearest point search algorithm, i.e.

p̃ =

(
k∑

i=1

Vi

)−1(k∑
i=1

Vi
wtci

)

The aforementioned algorithm is thus applied to estimate the DLO segment employing
as input the spline samples pij = pi(uj), j = 1, . . . , ns, i = 1, . . . , k. The vector of
control points qv = [q1 · · · qns]

T of the 3D spline q(u) that optimally approximated the
set of point estimates pij can be defined as

qv = B#x̃v

where # represents the matrix pseudo-inverse and

B =

b1(u1) · · · bnu(u1)
b1(u2) · · · bnu(u2)

...
...

...
b1(uns) · · · bnu(uns)

x̃v =

(∑k
i=1 Vi1

)−1 (∑k
i=1 Vi1

wtci

)
(∑k

i=1 Vi2

)−1 (∑k
i=1 Vi2

wtci

)
...(∑k

i=1 Vins

)−1 (∑k
i=1 Vins

wtci

)

being Vij the matrix computed according to eq. (4.1) for the j-th sample provided by
the i-th image.

68 CHAPTER 4. 3D SHAPE ESTIMATION

4.5.3 Evaluation of Estimation Error by Reprojection

To evaluate the estimation error, the 3D DLO B-spline obtained in Sec. 4.5.2 is repro-
jected on each image and the difference with respect to the input 2D spline provided by
Sec. 4.4.1 is computed. Considering a generic 3D spline sample q(uj) = B qv, its homo-
geneous representation is provided by q̄(uj) = [q(uj)

T 1]T . The projected coordinates
p̃ij = [p̃xij

p̃yij]
T of the j-th spline sample on the i-th image plane can be written as

p̃′ij =

 p̃′xij

p̃′yij
p̃′zij

 = A [wRT
ci
| − wRT

ci
wtci] q̄(uj)

p̃ij =

[
p̃xij

p̃yij

]
=

[
p̃′xij

/p̃′zij
p̃′yij/p̃

′
zij

]
where

A =

 f 0 cx
0 f cy
0 0 1

is the camera matrix containing the camera intrinsic parameters, such as the focal
length f and center point coordinates cx and cy. Then, the overall error is provided
by collecting all together in a single vector the error related to every single image, i.e.
e = [· · · eij · · ·]T , j = 1, . . . , ns, i = 1, . . . , k, where eij = ∥pij − p̃ij∥ is the distance
between the corresponding initial spline sample provided by Sec. 4.4.2 and the projection
on the image plane of the estimated 3D spline sample. Finally, the mean error norm
∥e∥nsk =

√
eT e/(ns k) can be used to evaluate the quality of the estimation result.

4.5.4 Online Reconstruction Optimization

In a general stereo setup, the two sensors are fixed and, as a consequence, their baseline
can not be modified. Here, instead, the mobility of the robot can be exploited in order
to find the best baseline and distance from the object corresponding to the minimum
depth error. Indeed, both the baseline b and the distance from the target object z are
responsible for the overall depth estimation error arising in triangulation methods, with
the well-known relationship [39]:

ϵ =
z2

b f
ϵd (4.2)

where ϵ denotes the depth error, f the focal length of the camera and ϵd the disparity
error (assumed to be within one pixel in the following). Thus, given a set of points
in the 3D space p : {pi = (xi yi zi)

T , i ∈ [1, ns]}, the optimization problem aiming at
minimizing the depth error can be implemented, having the following cost function:

min
δz ,b

1

n

ns∑
n=0

(zi + δz)
2

b f

where δz denotes the camera distance increment from the object, a value that can be
either positive or negative.

4.5. SHAPE ESTIMATION FROM MULTIPLE VIEWS 69

overlap

di
st

an
ce

 (
px

)

1

3

2

After

1

2

T 31

2

T

Before

forward motion along -y

x

y

ov
er

la
p

Figure 4.5: Tracking the same DLO after a forward motion by exploiting a distance-based computation
on the overlap area.

This multi-variable optimization problem is subjected to a set of bounds and con-
straints that limit the admissible search space. The bounds are thus defined as :

b ≥0
δmin
z ≤δz ≤ δmax

z

whereas the constraints are :
zmin − zi ≤ δz

zi (−pxi
+ σ) ≤ b f + δz (pxi

+ σ) (4.3)

b f + δz (pxi
+ σ − w) ≤ zi (−pxi

− σ + w) (4.4)

where pxi
is the row pixel value corresponding to the 3D coordinate pi, σ is a safe offset

in pixel coordinates to avoid regions of the image near the borders, w is the image width
and zmin denotes the minimum distance of the camera from the 3D point. The solution
to this minimization problem provides the optimal pair of baseline b and camera distance
increment δz. Notice that eq. (4.3) and (4.4) restrict the value of the parameters b and
δz such that all the points p are inside the k images taken using the optimal parameters.

The optimization routine requires as input an initial guess of the depth values zi.
Thus, a coarse guess should be utilized or an initial execution of DLO3DS with fixed
default parameters for b and δz is required for computing the initial guess. Moreover, in
the case of tracking the DLO shape (see Sec. 4.5.5), the values of the previous section
can be used as an initial guess.

4.5.5 Tracking

In order to achieve a precise estimation of the DLO shape, DLO3DS is executed with
camera samples captured in the proximity of sections of the DLO, e.g. the depth error
is proportional to z (eq. (4.2)). Thus, if the estimation of a long DLO shape is sought, a
different approach is required. In this section, the steps employed for applying DLO3DS
in a tracking framework are described. Thus, the full 3D shape of a DLO combining
individual estimations of small sections is achieved. In particular, after the estimation
of a given section of the DLO, the camera is moved forward along the DLO principal
direction and centered with respect to the estimated points. Thus, based on the overlap
parameter no, a given percentage of previous points are still visible in the next DLO
section and they are used for keeping track of the DLO under reconstruction, even in
the presence of multiple DLOs in the scene, as shown in Fig. 4.5.

Upon completion of the tracking process along a DLO, the 3D points calculated for
each segment of the analyzed DLO are aggregated into a unified vector. This collective

70 CHAPTER 4. 3D SHAPE ESTIMATION

7DoF Robot

2D USB Camera

Figure 4.6: Experimental setup composed of a Panda robot from Franka Emika and a low-cost eye-in-
hand 2D USB camera.

data is then employed to generate a single spline curve capable of representing the
overall 3D shape of the DLO.

Furthermore, to enhance the accuracy of the estimation, these points undergo a
filtering process to remove any outliers and overlaps that might result from successive
acquisitions. For this purpose, the LOWESS algorithm [25], a locally weighted regression
method that functions by defining a window in the sample data, is employed for the
ultimate point filtering.

4.6 Experimental Validation

DLO3DS is validated experimentally employing a 7DoF robotic arm, the Panda from
Franka Emika, equipped with an eye-in-hand 2D low-cost camera having a resolution
of 640 × 480 pixels. The camera is both intrinsically and extrinsically calibrated, as
shown in Fig. 5.6. The experiments are performed both with simulated and real data, in
Sec. 4.6.1 and Sec. 4.6.2 respectively. Moreover, in Sec. 4.6.3, DLO3DS is characterized
in terms of processing time. A video of the experiments is available as supplementary
material1.

4.6.1 Evaluation in Simulation

To perform a proper evaluation of DLO3DS, ground truth data is needed. Considering
that it is quite difficult to obtain an error-free 3D ground truth shape of a real DLO,
synthetically generated data [31] is exploited to assert the DLO3DS performances. Thus,
a test set of 10 randomly shaped reference synthetic DLOs of 0.8 meters in length is
generated resembling the shape and appearance of real DLOs. They are accompanied
by ground truth data in the form of 3D points describing their center line.

Influence of DLO3DS parameters and DLO diameter

The test set is rendered using three different reference diameters ϕ = 2.0, 3.5, and
5.0mm to analyze how the DLO thickness may affect the performance of DLO3DS. In
addition, the influence of the number of views, the percentage of overlap during the
tracking (Sec. 4.5.5), and the contribution of the online optimization approach compared

1https://www.youtube.com/watch?v=beS9JgxJem8

4.6. EXPERIMENTAL VALIDATION 71

2.0 3.5 5.0
0.0

0.5

1.0

1.5

2.0

2.5

er
ro

r [
m

m
]

diameters [mm]

2 3 5

views

30 50 70
0.0

0.5

1.0

1.5

2.0

2.5

er
ro

r [
m

m
]

overlaps [%]

fixed b z b+z

optimization

Figure 4.7: Error distribution on the synthetic test set when varying a single parameter of DLO3DS.
For the optimization plot: fixed means fixed setup, b means just baseline, z means just distance, b + z
means both baseline and distance.

to a fixed stereo parameter setup or a partial optimization is analyzed. When otherwise
not specified, the default values are cable diameter 3.5 mm; number of views 3; overlap
50%; optimization of baseline and distance from the object (b+z). With default settings,
the estimation mean error is 0.821 mm whereas the reprojection mean error is 0.731
pixels.

The box plots resulting from this analysis are depicted in Fig. 4.7, where the error
values are computed on the test set samples between the estimated 3D points and the
ground truth ones. From the plots, it is possible to conclude that the diameter of the
DLO does not play a major role in the estimation error. The same can be said for the
overlap percentage, with the only remark that in a real estimation, a bigger overlap may
help to compensate for calibration errors. On the contrary, the slight drop in the error
between 2 and 3 views is noticeable. Indeed, DLO3DS is commonly deployed using 3
views since the increase in the algorithm processing time is negligible and can be mostly
compensated by its execution in masked time, as detailed in Sec. 4.6.3.

Ultimately, online optimization does play a major role in bringing the interquartile
range of the reconstruction error between 1 and 0.5 mm. The contribution of optimizing
just the baseline corresponds to an error drop of 9 % compared to the fixed setup.
Instead, the optimization of the camera distance provides a drop of 22 %. The joint
optimization makes the error drop of 29 %. The major relative improvement of z as
opposed to b compared to the fixed setup is due to the changing of the virtual baseline,
i.e. the baseline virtually increases when the camera is moved closer to the object. Thus,
in the z experiment there is an actual minor coupling with b making its result closer to
the b+ z configuration.

Comparison with Baseline Methods

A comparison between DLO3DS, established methods like Semi-Global Matching (SGM)
[48], and more recent approaches like SISTER [28] is provided by rendering the sample
number 1 of the test set with different backgrounds and colors. For the estimation

72 CHAPTER 4. 3D SHAPE ESTIMATION

Input Image DLO3DS SISTER CENSUS/SGM MCCNN/SGM Error
W

o
o
d

0 1 2 3

−2

0

2

er
ro

r [
m

m
]

M
et

al

0 1 2 3
−4

−2

0

2

er
ro

r [
m

m
]

P
o
ll

o
ck

0 1 2 3

2
0
−2
−4 er

ro
r [

m
m

]

Figure 4.8: Comparison with baseline methods in the form of depth images and boxplot. Plot legend:
0) DLO3DS, 1) SISTER [28], 2) CENSUS/SGM [48] and 3) MCCNN/SGM [137]. The display of the
MCCNN/SGM boxplot in the third row is avoided due to large errors.

performed by DLO3DS, 3 views are used. Concerning the SGM method, just 2 views are
employed and the matching cost is computed one time via Census Transform (denoted as
CENSUS/SGM) and a second time via a learned similarity measure [137, 102] (denoted
as MCCNN/SGM). Finally, for SISTER, 5 views are employed as detailed in [28].
Aiming at a fair evaluation, in all the experiments the baseline was set to 25 mm, and
the not-optimized fixed setup was employed, see Sec. 4.6.1.

Fig. 4.8 shows the computed depth images normalized between the min and max
values of the ground truth one. Both SISTER and SGM provide as output a disparity
image. Thus, those images are converted into a depth image given the known baseline
and focal length. Instead, DLO3DS provides as output just 3D points describing the
DLO center line. In order to compute the depth image, the estimated 3D points and
the colored mask of Sec. 4.4.1 are used to first estimate the radius of the DLO in world
coordinates. Then, the original center line description is over-sampled and used to
reconstruct the DLO surface keeping into consideration its radius. The result is a dense
depth image of the DLO. For a fair comparison, the methods are evaluated only for
what concerns the depth values belonging to the DLO, the ground truth mask was
used to select those points. The error between each method and the ground truth
depth is computed by subtracting the latter from the first and it is shown using a
box plot capturing the error distribution. From the figure, it is clear that DLO3DS
provides an overall better estimate of the depth with wrong estimates only along the
DLO boundaries due to prediction error in the segmentation mask.

4.6.2 Real-world Evaluation

To establish a boundary value of the estimation error in a real application, an experiment
is performed using two types of purposely designed gripper fingers that, once closed,
provide a hollow circle with a diameter of 6 and 10 mm respectively. First, DLO3DS
is applied to estimate the DLO shape, then the center of the circumference is used
as the reference frame for the generation of the motion: the robot should successfully
follow the DLO without touching it, despite the shape of the DLO and changes in the
z values. For the sake of generality, this experiment is performed both with electrical

4.7. CONCLUSIONS 73

Semi-transparent Hose Electrical Wire

Figure 4.9: Key-frames from a video sequence (available as supplementary material) showing the
tracking test performed on DLOs of different types and diameters. Tester gripper diameter: black
6 mm, blue 10 mm.

cables having a diameter of 3.5mm and also with a different type of DLO, a polymeric
hose for medical applications with an external diameter of 1.2mm. The material of
this hose is semi-transparent, such that it is almost invisible to commercial 3D sensors
(including high-end ones) and laser scanners [26]. In Fig. 4.9, key-frames from a video
sequence showing the experiment are reported. The cable of 3.5mm is tested with the
10mm gripper, while the hose with the one of 6mm. Despite the complexity of the task,
the cheap 2D camera used in this work is able to provide a reliable reconstruction of
the sample objects, allowing for correct tracking without touching in both experiments.

4.6.3 Timings

The execution timings of DLO3DS are affected, other than the specific computing
resources used, by the instance segmentation, modeling and selection performed in
Sec. 4.4, and by the triangulation procedure of Sec. 4.5. The timings of the first
are mostly correlated to the choice of the image processing algorithm. By employing
FASTDLO (Sec. 3.4), 20 FPS are guaranteed for processing a single image when
deployed on a workstation equipped with an Intel i9-9900K CPU and Nvidia 2080Ti.
The performances of the triangulation procedure of Sec. 4.5 is affected by the number of
points (ns) at which the spline is evaluated. The following values are obtained for some
configurations: ns = 10, 7.5 ± 3.3 ms; ns = 20, 19.5 ± 9.3 ms; ns = 40, 27.2 ± 12.1 ms.
Overall, DLO3DS provides competitive performances. It is worth mentioning that the
data processing on a real setup can be mostly executed in masked time while the robot
is moving toward the next pose.

4.7 Conclusions

In this chapter, an algorithm for the 3D shape estimation and tracking of DLOs, dubbed
DLO3DS, is presented. DLO3DS leverages multiple 2D acquisitions within a multi-view
stereo framework to achieve precise 3D shape estimation of DLOs. This algorithm

74 CHAPTER 4. 3D SHAPE ESTIMATION

serves as a fundamental tool for enabling the manipulation of DLOs by robots, all
without the need for costly, bulky, and restrictive 3D sensors. Consequently, DLO3DS
holds particular significance for industrial applications seeking cost-effective and efficient
solutions to intricate manufacturing tasks that involve the handling of cables, hoses,
wires, ropes, and similar objects.

As it stands, DLO3DS primarily deals with static scenes, where the DLOs remain
stationary between image acquisitions and may be influenced by the quality of the
extracted splines. Consequently, promising avenues for future research include: 1) ad-
dressing dynamic scenes by developing a tracking algorithm for DLOs, and 2) enhancing
the spline extraction algorithm to better handle complex and cluttered scenes.

Chapter 5

Shape Control Task with Online
Model Parameters Estimation

Manipulating DLOs is a challenging task for a robotic system due to their unpredictable
configuration, high-dimensional state space and complex nonlinear dynamics, as already
outlined in Chap. 1. In this chapter, a framework is presented that targets the task of
manipulating DLOs to achieve a target shape via a model-based approach. During the
task execution, an online gradient-based estimation of model parameters is performed.

5.1 Introduction

Robotic solutions involving DLOs are highly complex, presenting various challenges
from the perspectives of perception and manipulation, as detailed in Chap. 1. The first
has been thoroughly investigated in Chaps. 2, 3 and 4.

Regarding the manipulation, DLOs prove to be challenging due to their unpredictable
configuration behavior, high dimensional state-space, and complex nonlinear dynamics
[134, 130]. Therefore, a deep understanding of their physical characteristics is essential
for predicting and controlling their shape effectively [77].

In this chapter, a manipulation framework exploiting a physical prior of DLOs
dynamics is proposed. The method and results presented are based on the following
publication [18]. Based on an analytical DLO model, a data-driven learned model of the
DLOs’ dynamics is developed to predict the DLO behavior under manipulative actions.
The prediction is made using a NN trained to approximate the dynamics of a class of
DLOs, by conditioning its predictions on the set of the analytical model parameters.

First, the DLO’s dynamics is modeled by a set of differential equations describing
the DLO as point masses connected by axial and torsional springs [76], obtaining a
so-called analytical DLO model. Then, the analytical DLO model is used to generate
a comprehensive dataset by systematically sampling a variety of model parameters,
diverse DLO configurations, and various manipulation actions. Consequently, a NN is
trained utilizing this generated dataset, as visualized in the training phase depicted in
Fig. 5.1. Notably, the NN is conditioned over the model parameters, such that it can be
easily adapted to match different real-world DLOs.

The obtained NN model is employed during the online phase in Fig. 5.1 to estimate
the manipulation actions to steer the DLO from its initial to a final target configuration,
performing a task commonly referred to as shape control. In this context, the adoption
of the network model is preferred over the analytical model due to its computation
efficiency, stability, and scalability.

75

76 CHAPTER 5. SHAPE CONTROL MANIPULATION

DLO Analytical
Model

dataset
generation

training

Robot
Manipulation

DLO Perception

D
LO

 s
ta

te

best action

update
vision

training phase online phase

target DLO
configuration

DLO Neural
Network Model

model
parameters
updateDLO Neural

Network Model

SerifShow SVG Download SVG

\ddot{x} = f(x,u)Enter LaTeX

Figure 5.1: Schematic view of the two phases composing the proposed manipulation framework: 1)
training phase for dataset generation and NN training, and 2) online phase for simultaneous estimation
of the best action and model parameters during the shape control task.

The proposed method employs a gradient-based approach to estimate the best
manipulation action to achieve a desired target configuration, by minimizing the error
between the network prediction and the desired DLO configuration. A similar gradient-
based approach is exploited to estimate the model parameters of the DLO, where the
estimation is performed by minimizing the error between the model prediction and the
observed real-world DLO configuration obtained after a manipulation action.

The unique characteristics of the proposed framework enable its direct application to
various DLOs being manipulated on diverse surfaces, eliminating the need to: generate
every time new task-specific data as in [130], introduce complex online adaptation
controllers as in [134, 121], perform cumbersome and not intuitive parameters identifica-
tion procedures as in [77, 67]. In summary, the main characteristics of the proposed
framework are: 1) NN-based DLO dynamics approximation conditioned on several
analytical model parameters allowing adaptability to different real-world scenarios; 2)
efficient differentiable formulation to perform a gradient-based optimization aiming for
either action prediction or parameters estimation employing the same learned NN model;

In the following, the related works are discussed in Sec. 5.2. The DLO analytical
model and the DLO state representation are introduced in Sec. 5.3.1. The NN model is
presented in Sec. 5.4 whereas the gradient-based estimation of the action and model
parameters is discussed in Sec. 5.5. The shape control task with online parameters
adaptation is presented in Sec. 5.6. The experimental evaluation of the method is
provided in Sec. 5.7 and the conclusions are drawn in Sec. 5.8.

5.2 Related Works

5.2.1 DLO Shape Control Task

The term shape control of DLOs is typically used to refer to two different manipulation
problems targeting the achievement of a final target shape: 1) the manipulation of a soft
DLO with a sequence of pick and place actions [128, 63, 142], where the deformation of
the DLO is held in place by the friction of the surface underneath. 2) the manipulation
of elastic DLOs with one or more robotic arms and/or one end of the DLO fixed [134,
121, 130, 62, 58], where the second arm is used to achieve better control of the shape, e.g.

5.2. RELATED WORKS 77

in the situation where the DLO’s stiffness and the object exhibit rigid or plastic behavior.
The outcome of the task can be assessed by comparing the achieved configuration to the
target one in two possible ways [61]: by measuring their relative similarity ; by evaluating
their absolute similarity (i.e. a more challenging alternative considering also the final
positioning in space). In this chapter, the latter approach is employed.

5.2.2 Model-free Approaches

One of the popular approaches for manipulating DLOs is to use methods that do
not require nor create DLO models. Examples of these methods are those based on
expert demonstration. In [113], shape similarity is used to determine which human
demonstration should be replayed by the robot to achieve the goal. Instead, in [95],
human demonstrations were used to create a set of control primitives from which one
can build the manipulation plan. Whereas in [112], human expertise was used to
learn the DLO manipulation policy. This kind of policy can be also learned without
supervision in a reinforcement learning paradigm, however, it is typically done only in
simulation [61], which limits the potential application to the real DLOs. To approach
this reality-gap and improve the robustness, authors of [83, 151, 2] focused on the
online adaptation of the DLO control strategy. In the case of [2], the parameters of
the controller were adjusted online based on the tracking error. Whereas in [83, 151],
the control law relies on the Jacobian that locally approximates how the movement
of the grippers affects the DLO. These methods, which utilize local approximations of
DLO motions and online adaptation of controller parameters, have the potential to
enhance the system’s manipulation abilities in the context of model-free approaches.
Nevertheless, model-based approaches can typically strengthen the system’s robustness
through its better generalizability to diverse scenarios.

5.2.3 Learned DLO Models

The literature related to learning-based methods can be divided by the type of DLO to
be manipulated. Concerning the manipulation of soft DLOs like ropes with pick and
place actions, in [63] an image-based predictive DLO model is learned in a self-supervised
manner. Instead, in [142], the image of the DLO is embedded in the latent space with
linear dynamics imposed on it. Differently, [128] proposes learning the DLO dynamics
in state-space while enforcing the physic priors via a biLSTM architecture modeling the
DLO as a chain-like mass-spring system. In all these works, manipulation actions are
sampled randomly and the best one is selected considering suitable cost functions. On
the contrary, a gradient-based approach for estimating the best action is proposed in
this work, where also a rotation component is estimated. In this way, a more complex
manipulation action can be executed with respect to the simpler linear displacement
operation. Regarding the manipulation of elastic DLOs, several works proposed a
learning-based framework to predict the DLO dynamics. In [130, 134, 121] the DLO
dynamic is approximated with data-driven approaches trained using simulation data. In
[134] the authors propose an online adaptation of the DLO model to compensate for
the reality gap. Similarly, in [121] a linear residual model is estimated online.

5.2.4 DLO Analytical Models and Physical Parameters

Many different physical models of DLOs have been proposed in the past [77], ranging from
simpler mass-spring [76] and energy-based models to more accurate but computationally
demanding elastic-rod, dynamic splines, and finite element models [77]. Other than the
selection of a specific model, the choice of the integration method is crucial to achieve

78 CHAPTER 5. SHAPE CONTROL MANIPULATION

Figure 5.2: DLO analytical model representation.

a good trade-off between simulation accuracy and efficiency, and different integration
approaches like Runge-Kutta and symplectic have been proposed [56]. As opposed to
the mentioned force-based methods, a differentiable position-based simulation of DLOs
is proposed in [67] where the integration steps are avoided leading to a more efficient
and stable simulation.

Despite the many models available, their application in robotic systems is usually
marginal due to the high computational cost and sensitivity to the choice of physical and
simulation parameters. Indeed, their estimation is a cumbersome task, as can be seen in
[77] where the physical model parameters are constantly adjusted to make the simulation
results approach the experimental ones. Alternatively, in [67], the differentiability of the
framework is exploited for the estimation of model parameters. However, the process is
quite slow and can not be performed in an online framework.

Learning-based methods usually employ a DLO simulator to collect training data,
where the simulator is generally constructed based on one of the mentioned DLO models.
However, only a few learning-based works pay attention to DLO parameters. In [142]
and [130] the DLO parameters employed in the simulator are estimated by optimizing
the simulation against a small set of real samples, employing a sampling-based method
[142] or a differential evolution strategy [130].

Compared to the parameters estimation procedures of [77, 67, 130, 142], this chapter
proposes an efficient gradient-based procedure which can seamlessly be performed online
during the execution of the shape control task.

5.3 Analytical Model and DLO State Representation

5.3.1 Analytical Model

A DLO can be physically modeled via a set of nodes having proper mass and axial
springs connecting the nodes to create a serial chain [76], as shown in Fig. 5.2. In
addition, the bending stiffness of the DLO is modeled by placing a torsional spring at
each node. To improve the stability of the model, a viscous friction proportional to the
velocity of the node is included as a damping term.

The dynamics of the generic node i can be written as:

mip̈i = −kdṗ+ f si + f bi , (5.1)

where p is the node coordinates, kd a damping constant, f s
i the force due to the axial

effects and f b
i the forces due to the bending effects. The axial effects f s

i are computed
as:

f si = −ks(li − l0i)ui + ks(li+1 − l0i+1)ui+1, (5.2)

5.4. NEURAL NETWORK-BASED DLO MODEL 79

where li and l0i are the current and initial lengths of link i respectively, while ui represent
the unit vector of node i. With reference to Fig. 5.2, the bending effect can be written
as:

f bi =kb
βi−1

li sin βi−1
ui × (ui−1 × ui)− kb

βi

li sin βi

ui × (ui × ui+1)

−kb
βi

li+1 sin βi

ui+1 × (ui × ui+1) + kb
βi+1

li+1 sin βi+1

ui+1 × (ui+1 × ui+2),

(5.3)

where

βi = arctan
||ui+1 × ui||
⟨ui+1,ui⟩

represents the angle between ui and ui+1.
The manipulation action executed on the DLO model is parametrized as a pick-

and-place operation executed on the edge of the DLO, i.e. between two consecutive
nodes. The decision to perform actions at the edge level is primarily influenced by the
physical design of the gripper. In fact, the gripper does not interact with the DLO at
a single node, but it engages with the DLO in a manner that can be more accurately
described as the movement of the segment between two consecutive nodes. The DLO
action parameters vector is defined by

a = [α, δx, δy, δθ], (5.4)

where α denotes the index of the edge to grasp, δx and δy are the linear displacements
applied to the selected edge {pα,pα+1} and δθ is the rotation applied to the initial edge
orientation. The effect of the action introduced above is simulated using forward Euler
method applied to the discretized version of eq. (5.1).

5.3.2 DLO Perception and State Representation

Since the DLO’s dynamics is based on a mass-spring-damper system, an appropriate
representation according to the chosen model is utilized. The DLO state V is represented
as a sequence of n 2D points in the Cartesian space, i.e. V ∈ Rn×2. In the simulation,
each node represents the position of the simulated masses. The 2D coordinates of
the DLO in the real scenario are obtained using the algorithm RT-DLO presented in
Sec. 3.5. The input image is provided by a fixed 3D vision sensor. From the acquired
point cloud, the workspace plane is segmented out to obtain the DLOs points in the
scene. These points are then projected on the image plane by utilizing the camera’s
intrinsic parameters obtaining a binary mask of the DLO in the scene. The binary
mask is forwarded to RT-DLO that performs the modeling of the DLO as a line graph
representation of the DLO, i.e. a sequence of nodes and edges, as shown in Fig. 5.1.
Therefore, the node coordinates in the line graph represent the state V .

5.4 Neural Network-based DLO Model

A NN is employed to approximate the DLO model and gain a significant boost in terms
of computational efficiency. Indeed, the complexity of the analytical DLO model, i.e.
eqs. (5.1)-(5.3), affects its performance, which makes using it in an online framework
challenging. Instead, a NN can be trained to accurately replicate the DLO dynamics
by exploiting a dataset of DLO movements, which can be generated offline using the

80 CHAPTER 5. SHAPE CONTROL MANIPULATION

1 2 3 4 5

Figure 5.3: Example sequence of k = 5 dataset samples generated employing a simulated DLO. Vin in
red, Vout in light blue and action arrow in green.

analytical DLO model. Thanks to the use of a relatively small neural network, a constant
and short inference time is obtained which is more than an order of magnitude smaller
than the time needed to evaluate the analytical DLO model. While the analytical model
can be hard to differentiate, the NN model is easily differentiable with respect to the
parameters, improving the possibility of optimizing all relevant tasks.

5.4.1 Dataset Generation

The dataset is generated by simulating the analytical DLO model subjected to a set of
random actions. Each data sample consists of the DLO initial and final configurations,
the performed action, and the employed model parameters.

The DLO initial and final configurations are sets of 2D points characterizing the
DLO state, i.e. Vin and Vout, while the action is described by parameters introduced in
eq. (5.4).

The DLO axial deformation is assumed to be negligible for the purposes of this
chapter, thus the coefficient ks is kept fixed to a high value. Instead, the damping
term kd, the bending term kb, the length of the DLO, and the mass of the DLO change
within predefined ranges. In particular, both the length and the mass are assumed to
be known quantities since they can usually be measured. Eventually, the DLO length
can be estimated online using the perception algorithm and the mass can be measured
using force sensors mounted on the robot. The other two terms are instead difficult to
measure, so they are estimated online.

Aiming to learn a general DLO model, both the action and model parameters are
drawn from a broad range of values covering the expected real-world variability. In
particular, each value is sampled from a uniform distribution with specific boundaries,
except for the edge index which is sampled from a discrete uniform distribution.

To generate the dataset, the physical parameters are set to random values from the
physically plausible ranges, and the simulated DLO is initialized with an almost linear
initial configuration. Then, a set of k actions is sampled and the behavior of DLO is
simulated after applying them sequentially. This procedure is exploited in order to
build a diversified dataset in terms of DLO configuration complexity. In Fig. 5.3 an
example sequence is shown. After the execution of each action, a dataset sample is
saved containing the reached DLO configuration, the initial DLO configuration, the
model parameters, and the performed action.

5.4.2 Data Augmentation

To improve the training efficiency and generalization capabilities of the NN model,
several augmentation and normalization strategies are implemented on the data. The

5.5. GRADIENT-BASED ESTIMATION OF ACTION AND PARAMETERS 81

25
6

25
6

25
6

un
�a

tt
en

25
6

25
6

25
6

�a
tt
en

DLO block

25
6

25
6

action block

25
6

25
6

parameters block

prediction block

linear + ReLU

Show SVG

Enter LaTeX

SerifShow SVG Download SVG

\begin{bmatrix} \alpha \\ \deltax\\ \Enter LaTeX

SerifShow SVG Download SVG

\begin{bmatrix} m \\ kb\\ k d\end{Enter LaTeX

co
nc

at
en

at
e

25
6

Show SVG Download SVG

\timesEnter LaTeX

Show SVG Download SVG

\timesEnter LaTeX

Show SVG Download SVG

\timesEnter LaTeX

Show SVG Download SVG

\timesEnter LaTeX

element-wise
multiplication

Figure 5.4: Neural network architecture. With × the element-wise multiplication is denoted.

idea is to exploit the symmetries in the DLO data to reduce the amount of information
the NN has to learn.

The normalization is performed by finding a transformation that makes Vin aligned
to the x-axis and mean-centered, and applying it to normalize both Vin and Vout. This
transformation is composed of the translation equal to the negative geometrical center of
the Vin and rotation that is required to make the first principal component of the points
Vin aligned to the x-axis. The nodes are ordered from negative to positive x values
by flipping Vin and Vout along the rows if necessary. The action index α is adjusted
accordingly. In addition, the action parameters are scaled to be within the [0, 1] range
for α and [−1, 1] range for the displacements. The model parameters are also normalized
within the [0, 1] range.

5.4.3 Neural Network Architecture

The neural network architecture is based on a set of Linear layers followed by ReLU
activation functions. In detail, the network is composed of four main blocks illustrated
in Fig. 5.4: the action block, the physical parameters block, the DLO block, and the
prediction block. The input of the network is the initial configuration of the DLO Vin,
the action parameters a, and the model parameters p. The length is not provided as
input since it is implicit from Vin, thus p denotes only the model parameters provided as
input, i.e. p = [m, kb, kd]. The output of the network, denoted as Ṽ , is the sequence of
predicted changes of the 2D DLO coordinates from the initial configuration. The final
predicted DLO configuration Vpred is expressed as

Vpred = F(Vin, a, p) = Ṽ (Vin, a, p) + Vin. (5.5)

The network is trained to minimize the mean squared error between the predicted Vpred

and the expected Vout final configurations.

5.5 Gradient-based Estimation of Action and Parameters

The trained NN model is used to estimate both the next manipulation action and
the parameters that allow for accurate approximation of the observed DLO behavior.
These two estimation procedures are performed using numerical optimization of the loss

82 CHAPTER 5. SHAPE CONTROL MANIPULATION

DLO
Neural

Network
Model

model parameters
target configuration

action index ()

SerifShow SVG Download SVG

\alphaEnter LaTeXinput initial configuration

action displacements

action performed
observed configuration

model parameters

output

parameters estimation action estimation

Show SVG Download SVG

\deltax, \deltaEnter LaTeX

Show SVG Download SVG

kb, kdEnter LaTeX

Figure 5.5: Scheme of the proposed gradient-based action and DLO parameters estimation.

function between two DLO states, e.g. V1 and V2. This loss is computed as the sum of
L2 norms between corresponding points among the two states and can be defined by

D(V1, V2) =
n∑

i=1

∥V1,i − V2,i∥. (5.6)

An illustration of this idea is provided in Fig. 5.5. Since the NN model is intrinsically
differentiable, a gradient-based approach can be used for the optimization of the above-
mentioned loss function. In addition, thanks to the possibility of performing the
optimization in batch, the mentioned gradient-based optimization can be performed
quite efficiently.

5.5.1 Action Estimation

For the best action estimation given the current DLO state Vin and the model parame-
ters p, the action parameters a minimizing the difference between the NN prediction
F(Vin, a, p) and the target shape Vtgt, i.e. the goal to be reached in the shape control
task, are sought. While this can be easily done using gradients for the edge displacement
parameters, this is not the case for the edge index. Thus, the efficient batch process-
ing capabilities of the NN model are employed, and n− 1 optimizations are executed
simultaneously, with the assumption that the edge index is held constant in each of
them. Finally, the best action among the ones evaluated for each edge is selected. This
optimization procedure can be in general described by

a∗ = argmin
a
D(F(Vin, a, p), Vtgt), (5.7)

where a∗ denotes the action that maximally reduces the difference between Vin and
Vtgt according to the used NN model F . However, as mentioned, in practice first are
performed n− 1 optimizations of the form

a∗j = [j, argmin
δx,δy ,δθ

D(F(Vin, [j, δx, δy, δθ], p), Vtgt)], (5.8)

where a∗j denotes the best action obtained for the fixed edge index j, and then the best
action a∗ is sought from the a∗j by

a∗ = argmin
a∗j for j∈{1,2,...,n−1}

D(F(Vin, a
∗
j , p), Vtgt). (5.9)

5.6. SHAPE CONTROL TASK WITH ONLINE PARAMETERS ADAPTATION 83

Algorithm 5: Online Adaptation
Input: Vtgt

Output: Vout, kd, kb

1 kd, kb ← kd,start, kb,start
2 Vin,Vout,A∗ ← ∅
3 Vin ← get dlo state()
4 ϵ← D(Vin, Vtgt)/n
5 while ϵ > ϵth do
6 a∗ ← best action(Vin, Vtgt, kd, kb)
7 robot manipulation(a∗)
8 Vout ← get dlo state()
9 Vin,Vout,A∗ ← update dataset(Vin, Vout, a∗)

10 kd, kb ← best parameters(Vin,Vout,A∗)
11 ϵ← D(Vout, Vtgt)/n
12 Vin ← Vout

5.5.2 Parameters Estimation

Similarly to actions, the model parameters are estimated by searching for the ones that
minimize the difference between the NN prediction Vpred and the observed DLO state
Vout. This optimization can be written by

k∗b , k
∗
d = argmin

kb,kd

D(F(Vin, a, p), Vout) (5.10)

where k∗b , k
∗
d denotes the optimal values of the bending and damping coefficients, and

p = [m, kb, kd]. Since the mass m can be measured, it is not optimized but measured
and provided as input to the NN model.

5.6 Shape Control Task with Online Parameters Adaptation

To improve the manipulation capabilities of the robotic system in the case of the shape
control task for a real previously unseen DLOs, an approach that utilizes both model-
based DLO shape control and the online model parameters adaptation is proposed. This
can be achieved by jointly using the gradient-based action and parameters optimization
routines developed in Sec. 5.5. In Alg. 5, the proposed method is detailed. If there is
no prior knowledge, the model parameters kd and kb can be initialized at the midpoint
of the range used in the dataset generation, see Sec. 5.4.1. Therefore, given a target
shape Vtgt, the robotic system iterates (line 5) executing a sequence of manipulation
actions until the error between the current observed state Vout and the target shape Vtgt

computed according to eq. (5.6) is below a user-defined threshold ϵth.
At each iteration, the camera system is first used to capture a new sample from the

scene and process it via the perception system described in Sec. 5.3.2, thus obtaining
an initial configuration (line 3). Then, the best action to move the DLO toward the
target configuration is computed (line 6) according to eq. (5.7), and the result of the
performed action on the real system is observed (line 8). The interaction with the real
system is saved (line 9) into a task dataset, which is initialized empty at the beginning
of the task. The task dataset is used for the best parameters estimation performed
following eq. (5.10) (line 10). Finally, the configuration error is updated (line 11) by
comparing the achieved shape to the target one.

84 CHAPTER 5. SHAPE CONTROL MANIPULATION

cardboard surfacecloth surface

white

black

red

(a) Ropes and surfaces

U A S I
(b) Reached target shapes

Figure 5.6: Experimental robotic setup comprising different ropes and surfaces (a). Target shapes
achieved with the red rope on the cardboard surface (b).

5.7 Experiments

The manipulation framework is evaluated in the context of a shape control task, with
a robotic setup composed a Panda Robot equipped with a parallel-jaw gripper, a
Photoneo Motioncam3D statically mounted on the robotic cell, and a selection of ropes
and surfaces.

Three ropes are used in the experiments: a white rope (0.45 m, 0.02 kg, 0.01 m
diameter); a black rope (0.42 m, 0.05 kg, 0.014 m diameter); and a red rope (0.50 m,
0.02 kg, 0.005 m diameter). Note, the black rope is the stiffest one, while the red rope
exhibits a higher degree of bending elasticity compared to the white rope. Additionally,
two planar surfaces with different physical properties are used: a cloth and a cardboard
surface. The cardboard is smoother and more slippery than the cloth.

The experiments were executed employing as hardware an Ubuntu PC equipped with
an Intel CPU i7-12700H clocked at 2.3GHz and an Nvidia GPU 3050Ti. A video of the
experiments is available as supplementary material1.

5.7.1 Optimization Details

The NN model (Sec. 5.4) is trained on a dataset of DLO manipulation samples, obtained
by the analytical model (Sec. 5.3.1), comprising about 275K elements. The dataset is
generated by employing the following boundary values for action and model parameter
ranges. Regarding the action, α ∈ [0, 15]; δx and δy are confined at ±0.10 m; and δθ is
within ±π/4 rad. Concerning the model parameters, the damping coefficient kd ∈ [3, 30]
Ns/m; the bending coefficient kb ∈ [0.05, 1.0] N/m; the DLO length within [0.15, 0.50]
m; the mass within [0.02, 0.1] kg.

1https://www.youtube.com/watch?v=GWv3CFQqSzo

5.7. EXPERIMENTS 85

NN Model Training

A 90-10% split is employed to organize the dataset into training and validation sets.
The network is trained for 100 epochs (batch size 128, learning rate 5× 10−5). The final
weights are selected as the ones having the minimum mean squared error validation loss.

Action and Parameters Estimation

The gradient-based action estimation of Sec. 5.5 is performed for 500 optimization steps
employing a learning rate of 0.005. Regarding the estimation of the parameter, the
optimization is performed for 3000 steps with a learning rate of 0.01. In both cases, an
early stopping procedure is implemented in case of the earlier convergence. The tanh
and sigmoid activation functions are employed to limit the normalized action and model
parameters, respectively, to the ranges of [−1, 1] and [0, 1] (Sec. 5.4.2). This ensures to
obtain denormalized values consistent with the boundaries employed in the dataset.

5.7.2 Shape Control Task with Online Parameters Estimation

The shape control task involves the manipulation of four distinct target shapes: the U,
A, S and I shapes (see Fig. 5.6b). Notably, the A shape differs from the U shape by
requiring a more pronounced bending in its central region. Conversely, the S shape is
characterized by two opposing and symmetric bends. The I shape is used to evaluate
the situation of zero curvature target, where the I target is rotated by 90 deg with
respect to the initial configuration. The reachability of all these shapes was ensured
by rearranging the ropes between the target and initial configurations using a single
human arm restricted to the motions available to the robot.

The task is performed following the online adaptation approach introduced in Sec. 5.6.
The initial DLO configuration Vin is a straight line. The initial model parameters kd, kb
are selected around the mid values of their ranges in the dataset, i.e. kd = 14 and
kb = 0.5. The task is executed for each target shape Vtgt on each planar surface 5 times.
The execution of the task is terminated once the error computed according to eq. (5.6)
between Vout and Vtgt is below 0.01 m.

The results of the experiments are provided in Fig. 5.7, where, within each subplot
of a specific rope, columns illustrate the task execution for specific target shapes, while
rows provide an analysis of error and model parameters. In detail, the first row focuses
on the mean error, with a dashed horizontal line denoting the 0.01 m threshold marking
the completion of the task. The second and third rows delve into the examination
of the bending parameter kb and the damping parameter kd respectively. Here, the
dashed lines represent the estimated model parameters derived from all samples across
all repetitions performed for a given shape. These values, in essence, serve as potential
reference values for the specific parameters.

Analyzing the x-axis in the plots, iteration 0 represents the initial condition with a
straight DLO configuration and model parameters at their initial values. An action is
then executed by the robotic system, updating the observed DLO configuration. Model
parameters are recalculated based on a single data sample, resulting in updated values at
manipulation iteration 1. This iterative process continues until the specified termination
condition is met. At manipulation iteration m, the parameter estimation is based on m
data samples.

Examining the plots in Fig. 5.7, it is worth noting that similar bending parameters
are consistently estimated for each specific rope on the cloth surface, regardless of the
chosen target shape. The parameters estimated on the cardboard surface exhibit a
higher degree of variability, indicating the presence of more complex dynamics due

86 CHAPTER 5. SHAPE CONTROL MANIPULATION

0.000

0.025

0.050
m

ea
n

er
ro

r [
m

] U shape
cl cb

A shape
cl cb

S shape
cl cb

I shape
cl cb

0

1

be
nd

in
g ref_cl: 0.06 ref_cb: 0.44 ref_cl: 0.06 ref_cb: 0.26 ref_cl: 0.05 ref_cb: 0.21 ref_cl: 0.06 ref_cb: 0.67

0 3 6 9
iteration

0

20

da
m

pi
ng

ref_cl: 28.77 ref_cb: 16.20

0 3 6 9
iteration

ref_cl: 18.77 ref_cb: 27.90

0 3 6 9
iteration

ref_cl: 29.81 ref_cb: 25.96

0 3 6 9
iteration

ref_cl: 26.23 ref_cb: 19.13

(a) white rope

0.000

0.025

0.050

m
ea

n
er

ro
r [

m
] U shape

cl cb

A shape
cl cb

S shape
cl cb

I shape
cl cb

0

1

be
nd

in
g ref_cl: 0.19 ref_cb: 0.75

ref_cl: 0.22 ref_cb: 0.89

ref_cl: 0.17 ref_cb: 0.50

ref_cl: 0.19 ref_cb: 0.98

0 3 6
iteration

0

20

da
m

pi
ng

ref_cl: 29.39 ref_cb: 28.85

0 3 6
iteration

ref_cl: 28.17 ref_cb: 28.13

0 3 6
iteration

ref_cl: 28.39 ref_cb: 28.75

0 3 6
iteration

ref_cl: 5.94 ref_cb: 12.02

(b) black rope

0.000

0.025

0.050

m
ea

n
er

ro
r [

m
] U shape

cl cb

A shape
cl cb

S shape
cl cb

I shape
cl cb

0

1

be
nd

in
g ref_cl: 0.09 ref_cb: 0.16 ref_cl: 0.09 ref_cb: 0.18 ref_cl: 0.05 ref_cb: 0.05 ref_cl: 0.08 ref_cb: 0.14

0 3 6 9 12
iteration

0

20

da
m

pi
ng

ref_cl: 28.66 ref_cb: 19.97

0 3 6 9 12
iteration

ref_cl: 23.81 ref_cb: 27.42

0 3 6 9 12
iteration

ref_cl: 25.53 ref_cb: 9.29

0 3 6 9 12
iteration

ref_cl: 20.84 ref_cb: 14.59

(c) red rope

Figure 5.7: Outcomes of the shape control task involving online adaptation of model parameters,
conducted across various rope types and surfaces. Average results across 5 repetitions per task
(standard deviations confidence region intervals). With cl and cb the cloth and cardboard surfaces are
denoted.

5.7. EXPERIMENTS 87

0.00

0.01

0.02
clo

th
 m

ea
n

 e
rro

r [
m

]

white
mid
online
best

black red

0 5 10
iteration

0.00

0.01

0.02

ca
rd

bo
ar

d
 m

ea
n

er
ro

r [
m

]

0 5 10
iteration

0 5 10
iteration

Figure 5.8: Comparing prediction errors using mid-range, online, and best model parameters across
ropes and surfaces.

to increased slippage. The estimation of the damping term is less stable. In general,
different pairs of kd and kb values are estimated for the same rope on different surfaces,
highlighting the adaptation processes. The estimated bending parameters comparison
confirms significantly different physical properties between the three ropes and that the
black rope is the stiffest one, as initially predicted. For instance, on the cloth surface,
the reference bending values are approximately 0.06 and 0.08 for the white and red
ropes and about 0.19 for the black rope.

To gain a deeper insight into the impact of the online model parameters estimation,
Fig. 5.8 presents a comparison among mid-range, online estimated, and best parameters.
The latter refers to those estimated at the end of each task repetition, while the mid-
range to the ones from which online estimation starts. These parameter setups were
compared using the mean prediction error, denoted as D(Vpred, Vout), computed after
each iteration of the shape control task across all the target shapes. The plots illustrate
how, within just a few iterations, the proposed method attains parameters that yield a
mean error between Vpred and Vout comparable to the best scenario, and in most of the
cases significantly better than for the mid-range parameters.

5.7.3 Comparison with state-of-the-art

The NN model of Sec. 5.4.3, and here shortly denoted as NN, is subjected to a comparative
analysis against several previously proposed architectures concerning DLO dynamics
prediction. These include the bi-directional LSTM (BiLSTM) [128], the interaction-
network bi-directional LSTM (INBiLSTM) [130], the graph neural network architecture
(GNN) [121], and the RBF network [134]. To ensure a fair comparison, a comparable
number of parameters is employed across all the networks. The goals of this section are:
(i) to compare different neural network-based DLO models, (ii) to show that the proposed
approach to DLO modeling with conditioning on parameters and online adaptation is
architecture-agnostic, (iii) to compare the performance of the proposed adaptation of
the input model parameters against the direct adjustment of the neural network weights,
as in [134].

The analysis is carried out on the data obtained in the shape control task of Sec. 5.7.2
on the cloth surface, by computing the mean prediction error. A 4-fold cross-validation
approach is used. Fold 1 employs the data of the U shape for parameters estimation
and the data of the A, S, and I shapes for forward prediction error. The same holds for
sets 2, 3 and 4 for shapes A, S and I respectively.

88 CHAPTER 5. SHAPE CONTROL MANIPULATION

NN GNN
BiLSTM

INBiLSTM
0.00

0.01

0.02
m

ea
n

er
ro

r [
m

] white

NN GNN
BiLSTM

INBiLSTM

black

NN GNN
BiLSTM

INBiLSTM

red
conditioning params (*)
conditioning params (**)

no params (fixed mid-range)
no params (varied)

Figure 5.9: Prediction error for fix (no params) vs conditioning parameters across different models.
For the latter, the symbol (*) denotes that the same shape is used for parameters estimation and
forward prediction error, whereas with (**) the 4-fold cross-validation approach is denoted. With fixed
mid-range and varied the two employed datasets are indicated.

Fixed vs Conditioning Parameters

To validate the choice of a NN model conditioned on the model parameters, a new dataset
of 275K samples is generated with fixed mid-range parameters (kd = 14, kb = 0.5, mass
of 0.02kg, and length in [0.4, 0.5]m). The comparison is performed by optimizing the
models using three different approaches: 1) the mid-range dataset without considering
parameters (no params (fixed mid-range)); 2) the varied parameters dataset of Sec. 5.7.1
without considering parameters (no params (varied)); 3) using modified architectures
that incorporate model parameters as input (conditioning params). Notably, the latter
case implies estimating the parameters according to Sec. 5.5 before evaluating the
prediction error. This is performed either employing the same shape for both estimation
and prediction (conditioning params (*)) or with the introduced 4-fold cross-validation
procedure (conditioning params (**)). The results are shown in Fig. 5.9. The plots
show that conditioning the models on the parameters allows to achieve better accuracy
than with the model that is trained to be robust to the range of the parameters (no
params (varied)), or only with fixed parameters (no params (fixed mid-range)), for all
considered architectures. Moreover, this is true also when optimized and tested for
different shapes (compare conditioning params (*) and (**) cases, see also Sec. 5.7.3).
Additionally, since all architectures show similar accuracy, a simpler and faster fully
connected NN model is preferable (see Sec. 5.7.3).

Parameters vs Weights Update

Prior work proposed to directly update the weights of the model to achieve online
adaptation [134]. In this section, a comparison against this approach is established in
Fig. 5.10, where fold refers to the 4-fold cross-validation approach. Fig. 5.10 shows that
updating the network weights directly, as proposed in the RBF approach [134], leads to
overfitting to the specific target shape, resulting in a loss of generality (compare (*) and
(**) cases). In contrast, when the model parameters update is considered, as employed
in the proposed approach (NN), a higher level of generalization is observed, resulting
in consistent outcomes across various tasks, regardless of the specific task performed
during parameter estimation.

Architecture Efficiency

To provide an insight about the considered DLO model architecture efficiency, the time
to perform forward and backward passes is measured: NN 0.20/0.65 ms; BiLSTM
0.48/0.98 ms; INBiLSTM 0.75/1.42 ms; GNN 0.63/1.05 ms. Taking into account the

5.8. CONCLUSIONS 89

1 2 3 4
Folds

0.001

0.010

0.100
m

ea
n

er
ro

r [
m

] white

1 2 3 4
Folds

black

1 2 3 4
Folds

red
NN (*) NN (**) RBF (*) RBF (**)

Figure 5.10: The mean prediction error (log scale) of the input parameters (ours) vs neural network
weights (RBF [134]) update, evaluated on the same shape (*) or on different shapes (**).

time complexity of each architecture, it can be concluded that the proposed simple NN
model emerges as the most favorable.

5.7.4 Limitations

The proposed framework exhibits several limitations. First, the action is predicted over
a 1-step horizon, in contrast to other approaches [128, 121]. Nevertheless, the current
gradient-based action estimation can be expanded to a N -step horizon using the same
batch approach. However, encompassing all possibilities would result in an exponential
growth of the task. Therefore, the introduction of sampling-based, Top-K, or other
techniques is necessary to constrain the prediction task scale. Moreover, our approach is
also a forward model of the DLO, so it can be used in any MPC-like framework to enable
manipulation planning in longer horizons. The second limitation is related to the fixed
number of nodes, e.g. 16 in this work, which would necessitate the generation of new
data and the retraining of a new network with adapted dimensions if modified. A third
limitation is to assume the DLO dynamics negligible during manipulation. Indeed, the
analytical model provides a full trajectory of the DLO response to the pick-and-place
action. However, the current NN model only captures the final response.

5.8 Conclusions

This chapter introduces a novel framework for DLO manipulation. The framework
is based on a NN model that approximates the dynamics of DLOs, coupled with a
gradient-based procedure for action and parameter estimation. The NN model is trained
using a dataset comprising samples of DLO manipulation, obtained from an analytical
model of DLO dynamics. The framework’s performance is assessed in the context of a
shape control task with real-time parameter adaptation within the model.

Experimental results demonstrate the framework’s capability to effectively manipulate
DLOs with various shapes, materials, and surface properties. When compared to several
state-of-the-art NN architectures, the framework exhibits comparable performance while
maintaining superior efficiency.

Currently, the framework is tailored for 2D DLO manipulation, with the potential
for expanding its capabilities to encompass 3D DLO manipulation. Additionally, the
analytical model of DLO dynamics, which relies on simplifying assumptions, may benefit
from a more accurate representation.

Furthermore, an investigation is planned to extend the framework to scenarios in-
volving dual-arm manipulation and manipulation tasks conducted in the presence of
environmental obstacles. Finally, there is an interesting avenue for extending the frame-
work to handle multiple interconnected DLOs, such as DMLOs, where the manipulation
process must consider constraints arising from the presence of branch-points .

Chapter 6

DMLOs Topology Representation
Learning

The representation of complex deformable multi-linear objects, such as wire harnesses,
poses significant challenges in various applications, including robotic systems’ perception
and manipulation planning. By extending the solutions developed in Chap. 3 for
deformable linear objects, this chapter proposes an approach to address the robust
and efficient topological representation of deformable multi-linear objects leveraging a
graph-based description of the scene exploiting graph neural networks.

6.1 Introduction

Deformable Multi-Linear Objects (DMLOs), also known as Branched DLOs [125, 152],
are flexible objects that possess a linear structure similar to DLOs but also feature
branching or bifurcation points where the object’s path diverges into multiple branches.
This complexity in their deformation sets them apart from simple DLOs. Examples
of such objects include wire harnesses, as illustrated in Fig. 6.1, and branched hoses
commonly encountered in manufacturing settings. Detecting and manipulating these
objects require advanced techniques that can account for both their linear deformations
and branching behavior. While several algorithms and approaches have been developed
in recent years for general DLOs, addressing the perception and manipulation of DMLOs
remains an ongoing challenge [119]. Some research exists in the literature of DMLOs
domain, such as [57, 38, 131, 86, 46, 135, 144, 152, 125]. Nevertheless, these efforts
often focus on specific scenarios and types of objects, thus presenting limitations in their
general applicability.

In this chapter, the challenging task of describing the configuration of a DMLO via
a graph-based representation is tackled. The proposed approach is currently under
review as a journal publication [16]. A topological representation is particularly suitable
for DMLOs since it allows to capture high-level information about the objects, which
can be exploited easily in robotic manipulation tasks. The graph representation of
DMLOs is derived through a multi-step process. Initially, graph nodes are extracted by
sampling along the estimated centerlines of the objects on a binary mask of the scene.
Subsequently, a data-driven pipeline is employed to acquire knowledge about how to
assign graph edges between these nodes and determine the type of each node based on
their local topology and orientation. Finally, by utilizing the learned information, a
solver is applied to combine the predictions and generate a coherent representation of

91

92 CHAPTER 6. DMLOS TOPOLOGY REPRESENTATION LEARNING

dual-arm robotic setupDMLO topology

camera view

Figure 6.1: Extracted topology representation of a DMLO from a camera sample. The branch sections
composing the DMLO are displayed in different colors while the branch-points and intersection-points
are highlighted with red and blue dots. On the right side, the dual-arm robotic experimental setup.

the objects in the scene.
Obtaining a robust and efficient graph representation of the DMLOs entails addressing

two pivotal challenges: link prediction, which involves predicting the existence of
connections between nodes in the graph, and node characterization, which aims to
understand and capture key nodes’ information such as their local orientation and
topology. These two challenges are tackled by exploiting Graph Neural Networks
(GNNs) [127] to learn the topology of the DMLOs. GNNs have revolutionized the field
of machine learning, enabling effective learning on graph-structured data [59]. They
have demonstrated their prowess across a wide spectrum of tasks, encompassing node
classification, link prediction, and graph generation. GNNs excel at capturing the
structural information of graphs and leveraging node and edge features to learn powerful
representations that encode the relationships and dependencies within the data. This
makes them particularly suitable for the task of learning the topology of DMLOs.

The learning phases exploit an inductive framework [40]: The GNN weights are
optimized based on a labeled training dataset while the model is tested and deployed
on unseen data (i.e. graphs) samples. In particular, graphs synthesized in a simulated
environment are employed in the training set, allowing the optimization of the model on
a large number of graphs, while enabling important generalization capabilities in unseen
real-world graphs.

The proposed method, thanks to the graph-based representation, preserves satisfactory
levels of robustness in the presence of noise and disruptions in the input image mask,
i.e. it is not affected by the possible presence of large connectors, clips, and other
fixtures along the object branch sections. Additionally, there is no prior knowledge of
the structure of the DMLO and the method is capable of simultaneously identifying
branch-points and resolving intersection-points among different branch sections.

The evaluation is conducted by performing a disentangling manipulative operation
with a dual-arm robotic setup, shown in Fig. 6.1. The DMLOs employed in the
experiments are complex real-world wire harnesses from the automotive domain. The
experiments demonstrate the effectiveness and accuracy of the framework in generating

6.2. RELATED WORKS 93

a robust and efficient topological representation leading to a simplified manipulation
task by the robotic system.

To summarize, the main contributions of this chapter are:

1. Description of the configuration of DMLOs with a topological graph obtained by
exploiting a GNN model learned in an inductive framework to provide a robust
and efficient representation;

2. Robustness to noise in the input mask and to the presence of connectors, clips, and
other fixtures that can be connected to the branch sections of DMLOs;

3. Extensive evaluation in disentangling manipulative operations with complex real-
world automotive wire harnesses, demonstrating its effectiveness in generating an
accurate and efficient topological representation, which simplifies manipulation
tasks.

6.2 Related Works

6.2.1 Graph Neural Networks

A graph is a mathematical structure consisting of a set of nodes (or vertices) and a
set of edges (also called links) that connect pairs of nodes [11]. Graphs are a powerful
tool to represent data that can be modeled as a set of objects/points (nodes) and their
relationships (edges). Indeed, graphs found applications in many fields, ranging from
social networks to chemistry and biology [127].

Graph Neural Networks (GNNs) [101] are a powerful extension of classical graph
analysis methods where the graph’s underlying structure is exploited in a learning frame-
work. The idea of GNNs is to iteratively update node representations by aggregating
information from their neighboring nodes of the graph. This allows GNNs to capture
local relationships between the nodes, and through the propagation of the embedding
via the network layers, it is also possible to capture more global relationships.

GNNs have been successfully applied to a wide range of tasks, including node classifi-
cation, link prediction, and graph classification [127]. In particular, graph classification
and link prediction are the two tasks also addressed in this chapter. The first focuses
on predicting the class or label of a set of nodes composing a graph. The task is
usually performed by first learning node embeddings via a GNN, combining all the nodes
embedding via a graph pooling operation, and then applying a classifier [127]. Link
prediction aims to estimate the existence of connections between nodes in the graph.
This task is usually performed by learning a similarity function between nodes and then
predicting the existence of a link between two nodes based on their similarity [140].

Concerning deformable objects, GNNs were successfully adopted for the manipulation
of linear and planar objects. In particular, GNNs are usually exploited for learning
the interaction between key-points on clothes or ropes [78, 30, 72]. In [78], the GNN
is combined with a recurrent neural network for tracking the key-points and an MPC
for planning the manipulation action. In [30] a second GNN is used also for planning
the action. A GNN is employed as a forward dynamics module for a planar deformable
object in [72].

6.2.2 Deformable Objects State Representation

Deformable object perception and representation is still an open research problem [132].
Considering the complexity of the perception of such objects, many researchers use

94 CHAPTER 6. DMLOS TOPOLOGY REPRESENTATION LEARNING

GNN-based
Link

Predictor

Graph
Initialization

CNN
Features
Extractor

Node
Orientation
Predictor

GNN-based
Node

Classificator

Solver

learnedmask Mb topology
representation

Nodes

Edges

Figure 6.2: Schema of the proposed approach. On the right side, the topology representation provided
as output is shown with the individual branch sections of the DMLO denoted in different colors and
the single branch-point and intersection-point highlighted as red and blue dots.

simplified scenarios to segment the objects from the scene, e.g. by using color difference,
controlled backgrounds, or markers, as highlighted in [19]. This clearly limits the
possible utilization of these methods in real scenarios, where the inconsistency of the
background or the sensitivity to the quality of the segmentation mask can restrain a
method from being used. Learning-based methods have emerged as a key tool for tackling
the perception problem of linear and planar deformable objects. Usually, key-points are
automatically extracted from an image [30, 78].

Specifically for DLOs, several works have addressed the synthetic and real-world
dataset generation [19], the instance segmentation task [15, 24], 3D shape estimation
[14, 75], and crossing points detection [50]. It is clear however the lack of solutions for
identifying more complex DMLOs. Indeed, methods developed for DLOs can not be
directly applied to DMLOs, but modifications and extensions [152] are required.

6.2.3 Deformable Multi-Linear Objects

Despite some research have been conducted in the past, e.g. wire harness manufacturing
automation in [86] and collaborative robots in wire harness assembly in [84], the state
representation of DMLOs remains largely unexplored. Incorporating more structural
information into the state representation of manipulated objects would greatly facilitate
planning and manipulation tasks. For instance, in [46], an automatic path-planning
algorithm for wire harness installations is presented. However, this approach requires
complete knowledge of the entire topological structure and the initial state of the DMLO,
which can be a significant limitation in real-world applications.

In an attempt to extract partial information, [135] developed a vision system that
identifies the final connectors of a wire harness through image processing. However, they
did not address other related tasks such as recognizing branch-points and intersection-
points, leaving the geometric reconstruction of the main trunk and branch sections for
future work. Another approach, presented in [57], involves classifying branch sections
of the wire harness from raw RGBD images and augmenting the data using elastic
transformation. However, the neural network trained in this work does not solely focus
on specific connectors within each branch but also considers the entire branch section as
a whole. This approach provides a black box solution encoding all information related
to the branch sections and the DMLO into classification data, limiting its portability
across tasks and/or different DMLOs.

Tracking of DMLOs has been investigated in several works [125, 131]. In [125] a
modified registration method is combined with a topology model of the DMLO for
its tracking under occlusions. The approach is evaluated on a wire harness featuring
connectors and clips, similar to the one employed in this work. However, knowledge
of the DMLO structure is required and the DMLO is assumed to be in a fully visible

6.3. METHOD OVERVIEW 95

and entirely disentangled configuration. Instead, in [131], tracking using depth images
via particle filtering is proposed. Here a data-driven predictor is used to assess the
likelihood of each particle based on the depth image. However, the method is evaluated
on simplified DMLOs with no intersections between the branch sections, nor connectors
and other disturbing objects along the branch sections themselves. Similarly to the
tracking methods described above, in [152] the matching of an observed topological
configuration of a DMLO with a model representation is performed via a cost function.
A score evaluating the topological uniqueness of a DMLO is also proposed.

The disentangling of DMLOs is investigated in [144], where a bin-picking policy
for grasping and extracting a DMLO in an untangled configuration is learned from
real-world data.

This chapter proposes an approach capable of extracting and representing DMLO
topological information in a graph representation that can be easily incorporated into a
robotic manipulation framework. Noteworthy, in the approach, no prior knowledge of
the DMLO structure is required.

6.3 Method Overview

The proposed approach aims at providing as output a topological representation of the
DMLO, as schematized in Fig. 6.2. The approach can be subdivided into three main
stages, which are:

1. Graph Initialization: the graph representation is initialized with a set of nodes
and edges from an image of the scene;

2. Topology Learning: the graph edges are assigned a probability of existence; the
nodes are classified according to their local topology and orientation;

3. Solver: the learned information is processed by a solver to obtain a coherent
representation of the DMLOs in the scene.

In particular, the graph initialization phase is detailed in Sec. 6.4. Then, the topology
learning phase is described in Sec. 6.5. The solver is described in Sec. 6.6. Therefore,
the obtained representation can be used effectively for disentangling the DMLO branch
sections, as detailed in Sec. 6.7.

6.4 Graph Initialization

An undirected graph of n nodes and m edges is initialized and denoted as G = (V , E),
where the single node i is denoted as vi. Given two nodes vi and vj, their edge is
indicated as eij.

6.4.1 Semantic Segmentation

The input data to the proposed approach is a binary mask Mb of the scene where the
pixels are classified to either belong to DMLOs (value of 1) or not (value of 0). An
example of a mask Mb is provided in Fig. 6.2.

Obtaining Mb is not the focus of this chapter as it is considered a pre-processing
step. For getting Mb, in the following a 3D sensor capturing a point-cloud of the scene
is employed. Thus, a plane segmentation approach on point-cloud data is executed and
an image mask is computed. However, the proposed approach is independent of the
method used to obtain the semantic segmentation mask. Alternative approaches like the
ones highlighted in Chap. 3 can be employed depending on application requirements.

96 CHAPTER 6. DMLOS TOPOLOGY REPRESENTATION LEARNING

SerifShow SVG Download SVG

$M \text{dist}$Enter LaTeX

SerifShow SVG Download SVG

$M \text{max}$Enter LaTeX

Show SVG Download SVG

\mathcal{V}Enter LaTeX

Figure 6.3: Vertices sampling procedure from segmentation mask: distance transform maks Mdist, local
maximum mask Mmax, graph nodes V.

6.4.2 Vertices Sampling

The set V = {vi}ni=1 contains the n vertices of the graph efficiently sampled from the
binary mask Mb. The sampling strategy follows the approach already presented in
Sec. 3.5. First, the distance transform operator is executed on Mb obtaining Mdist. This
operator computes the Euclidean distances between the non-zero values of Mb and the
nearest boundaries (zero/black values) [7], thus assigning an intensity value to each
pixel based on the computed distance. In Fig. 6.3, Mdist originated from Mb (left side of
Fig. 6.2) is shown where Mdist is color-mapped on the grayscale level from dark (zero
distance) to bright (maximum distance).

Next, Mdist is dilated using a small square kernel, i.e. 3× 3, resulting in Mdil. The
local maxima of Mdist are then extracted by comparing pixel-wise values of Mdist and
Mdil, masked using Mb. This process generates a binary map Mmax, which indicates the
positions of local maxima, approximating the center lines of the DMLOs in the mask.
The computation of Mmax can be expressed as follows:

Mmax(i, j) =

{
1 if Mdil(i, j) = Mdist(i, j) and Mb(i, j) = 1

0 otherwise

The set of maximum pixels of Mmax, i.e. pixels whose value is equal to 1, is denoted
as Vmax. The cardinality of Vmax is quite high (see Mmax in Fig. 6.3). Thus, the farthest
point sampling algorithm [92] is employed for down-sampling Vmax. The ratio α ∈ [0, 1]
is used to specify the amount of down-sampling. It is chosen such that the density of the
nodes is kept mostly constant. This is important since different DMLOs can have very
diverse amounts of branch sections and thus foreground pixels. The constant density is
obtained by dividing the current mean point-to-point distance in Vmax with the target
distance to achieve. Therefore, the set of vertices V of the graph G is obtained as αVmax.

This vertices sampling process ensures an efficient representation of the DMLO’s
topology, reducing redundancy while preserving the key structural information necessary
for subsequent analysis and modeling.

6.4.3 Edges Sampling

In order to create a set of initial edges, referred as Eknn, the proximity between vertices
is leveraged. This involves retrieving and using the Knn nearest neighbors in V as edges
for each vertex. The proposed method employs a value of 8 for Knn. By utilizing a
sufficiently large number of nearest neighbors as initial edges, comprehensive coverage
of the local connectivity in the graph is guaranteed, which can be advantageous for the
subsequent learning phases of Sec. 6.5.

6.5. TOPOLOGY LEARNING 97

6.5 Topology Learning

Learning on graphs using GNNs involves processing the graph structure, node features,
and edge features.

In a graph with n nodes, the graph structure can be represented by an adjacency
matrix A ∈ Rn×n. The adjacency matrix A encodes the connections between nodes,
where Aij = 1 if there is an edge between nodes i and j, and Aij = 0 otherwise.

The node features in the graph are represented by a node feature matrix Fv ∈ Rn×h,
where each row i corresponds to the h features associated with node ni. The edge
feature matrix, denoted as Fe ∈ Rm×d, represents instead the features associated with
each edge in the graph. Here, d denotes the dimensionality of the edge features.

By incorporating the adjacency matrix A, the node feature matrix Fv, and the edge
feature matrix Fe, GNNs can effectively process and learn from the structural, node,
and edge information of the graph to perform various graph-based learning tasks.

In the context of this chapter, the graph learning strategy is based on an inductive
framework with supervision provided by ground truth data [40]. A synthetic dataset of
DMLO graphs is generated and exploited, as detailed in Sec. 6.5.1. The nodes and edges
feature computations are discussed in Sec. 6.5.2. Hence, the link and node orientation
prediction tasks are presented in Secs. 6.5.3 and 6.5.4. In Sec. 6.5.5 the node subgraph
classification task is analyzed and Sec. 6.5.6 details the overall training strategy.

6.5.1 Synthetic Dataset

For training the GNN model, a synthetic dataset is exploited. Similarly to [19], each
section of the synthetic DMLO is modeled as a 3rd-order spline curve and a rendering
pipeline based on Blender [31] is used for obtaining the image samples.

First, a synthetic DMLO in a random configuration is generated. It is composed of
a maximum of 5 main sections, organized by up to two branch-points. A branch-point
is defined as an area of the DMLO where different sections are connected. Then, the
camera location is randomized and an image of the scene is rendered. In Fig. 6.4a an
example of the generated data is provided.

Along with the generated image, the randomly generated spline curves are saved and
used for annotation purposes. Indeed, since the proposed learning strategy is supervised,
for each generated mask sample (Fig.6.4b), annotation data is required. Therefore, a
ground truth graph is generated based on the available annotations. The vertices of
the ground truth graph are obtained by exploiting the sampling strategy of Sec. 6.4.2.
The edges are instead computed by processing the ground truth spline curve used to
synthesize the DMLO sample. These curves are projected from the cartesian space to
the image plane by knowing the camera location in the synthetic scene, as shown in
Fig. 6.4c. Then, each sampled node is associated with the correct curve. The ordering of
the vertices and thus the sequence of edges to add is obtained by traversing the vertices
on the corresponding ground truth curve. The only edges missing are the ones at the
branch-point locations. In this case, since the structure of the DMLO is known, this
information is exploited to add the proper edges. The result is a full graph representation
of the scene provided by the mask, as shown in Fig. 6.4d. Given the association between
the graph nodes and the initial spline curves, it is also possible to associate a ground
truth value in terms of node direction as the tangent of the spline at the node location.

By generating synthetic data and annotating the ground truth graphs, a labeled
dataset is created, which can be used to train the models of Secs. 6.5.3 and 6.5.5.

98 CHAPTER 6. DMLOS TOPOLOGY REPRESENTATION LEARNING

(a) image (b) mask

(c) annotation (d) ground truth

Figure 6.4: Sample of the synthetic dataset. In (a) and (b) the rendered image and mask of the
randomly generated DMLO. In (c), the colored curves represent the different sections and the red dots
describe the branch-points used in the annotation process. In (d) the obtained ground truth graph is
displayed.

6.5.2 Encoding Nodes and Edges

The use of node features is crucial for enhancing the performance of GNNs [127]. Each
node is given an input feature vector that originates from two sources: 1) the encoded
normalized absolute position of the node in the image plane, 2) and a vector of values
that are obtained by sampling the encoded mask Menc at the node’s location. Features
are also computed for the edges. The details of the node and edge features are provided
in the following.

Encoding of Node Positions

The node positions, normalized in the (0, 1) range, are encoded through a linear layer
with ReLU activation having an input dimension of 2 (the pixel locations of each node)
and an output dimension of h. This results in a matrix FP of size Rn×h. Each row of FP

corresponds to the encoded feature vector of a node, capturing its position information.

Encoding of Mask

For the mask encoding, the Mdist mask is first normalized and then processed through
a two-layer CNN. Each convolutional layer uses a 5× 5 kernel with a padding of 2 to

6.5. TOPOLOGY LEARNING 99

maintain the input image size. A batch normalization layer is included between the
convolutional layers to stabilize the training process. Finally, a max pooling operation
is performed with a 2× 2 kernel and a stride of 2. The first convolutional layer expands
the input channels from a dimension of 1 to h/2, while the second layer increases the
channel’s dimension further to h. This encodes the Mdist mask into a new mask Menc

with half the dimensions and h channels. The node features are then extracted from
Menc by sampling each node location (adjusted by the new dimensions) along all the h
channels. This results in the matrix FM of size Rn×h where each row encodes the mask
information at each node location.

The encodings obtained from FP and FM are concatenated column-wise, resulting
in the combined node feature matrix FPM ∈ Rn×2h. Each row of FPM represents the
concatenated feature vector of a node, combining both the position information and
the encoded mask information. A final non-linear transformation is performed on FPM

using a linear layer with ReLU activation for downsampling the feature dimension to h.
The output of this transformation is the final node feature matrix Fv ∈ Rn×h.

Encoding of Edges

Similarly to nodes, edge features are of paramount importance for enhanced GNNs
performance. Therefore, the features associated with the edges are obtained by encoding
the edge direction and norm. In particular, for each edge in the set Eknn, the norm is
computed, normalized, and encoded via a linear layer from a dimension of 1 to h/2
followed by a ReLU activation function. Likewise, the edge direction is converted to
an angular value and first encoded as a 180-dimensional vector with entries defined by
applying a Gaussian function centered at the edge angle. This encoding is necessary to
address the angular periodicity [129]. Then, the 180-dimensional vector is embedded by
a linear layer from a dimension of 180 to h/2 followed by a ReLU activation function.
Finally, the embedded norm and direction are concatenated and further processed by
a second linear layer providing an output dimension of h. Therefore, an edge feature
matrix Fe ∈ Rm×h is obtained, where each row represents the feature vector of an edge
in the graph.

6.5.3 Link Prediction

Link prediction in graph theory refers to predicting the likelihood of an edge (link)
between two nodes. In this chapter, the task is to determine the probability of existence
for each edge in the set Eknn.

To accomplish this, a Graph AutoEncoder (GAE) [60] is utilized, which is charac-
terized by an encoder-decoder structure. The encoder takes the initialized graph from
Sec. 6.4 as input and uses GNN layers to aggregate and update the features of each node
based on the extracted input features of Sec. 6.5.2. The encoder’s purpose is to learn a
latent representation that captures the underlying structure and patterns in the graph.

On the other hand, the decoder processes the node features obtained from the encoder
through multiple neural network layers. When given two nodes for testing, the decoder
produces a value that represents the probability of their connection. The decoder’s aim
is to rebuild the graph structure based on the learned node representations.

GNN Structure

To perform link prediction using GNNs, a 3-layer GNN is utilized to process the node
and edge features along the graph structure. Each GNN layer aggregates and updates

100 CHAPTER 6. DMLOS TOPOLOGY REPRESENTATION LEARNING

(a) initial edges Eknn

0 1

Edge Probability

(b) link probabilities Zlp

0 90 180

Node Angle [deg]

(c) node orientations Zθ

0 0.5 1.0

Node Class Probability

(d) node class probabilities Zcls

Figure 6.5: Outcomes of the different stages of the pipeline. From the graph with the input set of edges
Eknn (a), the predicted edge probabilities are displayed in (b) while the node orientations are in (c).
The result of the node subgraphs classification task between normal (0) and highly-connected (1) nodes
is shown in (d).

the node features followed by a non-linear transformation. The GNN layer operation,
adapted from [133], can be expressed as follows:

x
(k+1)
i = σ

 ∑
u∈N(vi)

(Wx(k)
u +Bx

(k)
i +Kf (u,i)

e) + Sx
(k)
i

Here, x

(k+1)
i represents the updated embedding vector of node vi in the (k + 1)-

th GNN layer. The terms W , B, and K are trainable matrices that perform linear
transformations of the neighbor embeddings, i.e. u ∈ N(vi), the current node embedding

xk
i , and the edge feature between the considered nodes f

(u,i)
e , respectively. The matrix

S is a trainable matrix that accounts for a skip connection. The function σ represents
a non-linear activation function, such as ReLU. Each GNN layer transforms the node
features while maintaining their dimensions as h. Two batch normalization layers are

6.5. TOPOLOGY LEARNING 101

placed between the GNN layers to help stabilize the training process. For the first GNN
layer, the embedding x0

i corresponds to the node features row-vector f i
v extracted from

matrix Fv.

Links Decoding

Following the GNN processing, the node embeddings obtained by the last layer are
used to predict the probability of a connection for each edge in the set Eknn. The link
predictor decoder is conceived as a 3-layer MLP (Multi-Layer Perceptron) with an input
and output dimension of h and ReLU activation functions between the layers, except
for the last layer. Given two graph nodes vi and vj with their encoded node features xi

and xj, the probability of a connection between them is obtained as:

zlpij = σ(MLP(xi · xj))

Here, σ represents a sigmoid activation function, ensuring that the predicted proba-
bility is within the range (0, 1). The MLP applies a series of linear transformations and
non-linear activations to the dot product of the node features zi and zj before producing
the final probability value. In Fig. 6.5b the link probabilities predicted for a sample
input graph (Fig. 6.5a) are shown.

6.5.4 Node Orientation Prediction

When representing linear objects and shapes, it is possible to perform an orientation
characterization for each vertex of the graph. This characterization aims to describe the
local section of the linear object near the vertex by assigning an orientation attribute to
the vertex itself. To achieve this, the features FM extracted in Sec. 6.5.2 with dimensions
h are mapped to a 180-dimensional vector through a single neural network linear layer
followed by a softmax activation function. This process is similar to what is done
in [15], with the fundamental difference being that the input features are extracted
from the encoded mask Menc instead of employing fixed-size crop images of Mdist. The
resulting 180-dimensional vector represents the node orientation as a Gaussian function
centered at the predicted orientation, similar to the encoding performed to the edges in
Fe (see Sec. 6.5.2). To obtain the actual angular value, the argmax function is applied
to determine the peak of the predicted distribution. An example of the estimated node
orientations for a sample graph is shown in Fig. 6.5c.

6.5.5 Node Subgraph Classification

Until now all the nodes v ∈ V are regarded as similar with no distinction. However,
in the context of DMLOs, it is possible to distinguish between two types of nodes:
highly-connected nodes and normal nodes. A highly-connected node is defined as a
node having a degree of more than 2, which instead is the limit for normal nodes, i.e. a
node that is contained in a given section of the DMLO. An example of highly-connected
nodes are branch-points and intersection-points. A branch-point is characterized by a
degree of 3, while an intersection-point has a degree of more than 3.

The node classification task is employed to predict the type of each node in the graph
among the two possible ones. Classifying directly the nodes of the graph is challenging,
even exploiting the graph structure, since the condition of being a highly-connected node
is due to an area around the node rather than the node itself. To better characterize
the task, subgraphs of one hop around the considered node are computed and used in
the classification task. The features of the nodes composing the subgraph are exploited

102 CHAPTER 6. DMLOS TOPOLOGY REPRESENTATION LEARNING

to enrich the set of data making the classification problem easier. A GNN is utilized
to process the node features of the subgraph and predict the probability of the entire
subgraph originating from a highly-connected (label 1) or normal (label 0) node.

As node features, the encoded position and mask information are exploited as
described in Sec. 6.5.2. In addition, the node embedding obtained by the last GNN
encoder layer of Sec. 6.5.3 is concatenated as well. Thus, a linear layer is used to process
the node feature vector of dimension 3h/2 to a dimension of h.

As edge features, the encoded norms and direction as detailed in Sec. 6.5.2 are
exploited. The output of the decoder of Sec. 6.5.3 is processed by a linear layer with
input dimension 1 and output dimension h followed by a ReLU activation function,
obtaining F lp

e . The final edge features are obtained by summing the entries of Fe and
F lp
e .
The structure of the GNN is similar to the one employed in Sec. 6.5.3. It is composed

of one GNN layer with an input and output dimension of h and a ReLU activation
function. Then, as output, an add-pooling operation is performed at the graph level to
aggregate all the features of the nodes into a single embedding vector of dimension h.
Finally, two linear layers compress the embedding first to a dimension of h/2 and then
to an output dimension of 1. A sigmoid activation function is thus applied to the output
to obtain the final probability value in the range (0-1). In Fig. 6.5d an illustration
describing the predicted node classes for a sample graph is depicted.

6.5.6 Training Strategy

For all network training, the binary cross-entropy loss function is employed. The link
prediction task of Sec. 6.5.3 and the node orientation prediction task of Sec. 6.5.4 are
optimized together with a combined loss function, as:

Llink,θ = Llink + Lθ (6.1)

The link prediction task is optimized by computing the loss among the positive
(predicted value of 1) and negative (predicted value of 0) edges. The first relates to
the edges present in the ground truth graph as described in Sec. 6.5.1. The latter is
obtained starting from the set Eknn by subtracting the ground truth edges.

Regarding the node orientation prediction task, the smooth label strategy is employed
for mapping the angular values from the [0◦, 180◦] domain to a 180-dimensional domain
in the form of a Gaussian distribution centered at the angular value [129]. Thus, this
encoding is applied to the angular ground truth data of Sec. 6.5.1 and the network is
trained to predict a similar output in the form of a classification task with respect to the
180-dim classes, i.e. the node orientation angles in degrees. The binary-cross entropy
loss Lθ is thus computed element-wise on the predicted and ground truth value across
the vector dimension.

The node subgraph classification network of Sec. 6.5.5 is also trained with a binary-
cross entropy loss between the node labels and the output provided by the network.
The labels are obtained from the ground truth graph, where nodes in the proximity
of branch-points and intersection-points locations are given a value of 1 instead of 0
assigned to all the others. Since the ratio between the 0-class and 1-class is quite
unbalanced toward the first one, the 0-class is downsampled to roughly match the
number of elements in the 1-class.

6.6. SOLVER 103

Algorithm 6: Solver
Input: V, Eknn, Zlp, Zθ, Zcls

Output: P, B, I
1 /* Edges Filtering */
2 Elp ←link prediction solver(V, Eknn, Zlp)
3 Ef ← edges simplification(V, Elp, Zθ)
4 G′ ← (V, Ef)
5 /* High-degree Nodes Handling */
6 E0 ← process normal nodes(V, Ef, Zcls)
7 E1 ← process high deg nodes(V, E0, Zcls)
8 G′′ ← (V, E1)
9 /* Topology Output */

10 B ← branch points extraction(G′′)
11 P ← sections extraction(G′′)
12 I ← intersection points extraction(G′′)
13 return P, B, I

(a) G′ (b) G′′

Figure 6.6: Effect of solver stages: (a) Obtained graph after the application of the edge filtering stage on
the input graph of Fig. 6.5a; (b) The result of the high-degree nodes handling exploiting the estimated
node classes.

6.6 Solver

To compute a final representation of the DMLO, the solver combines predicted link
probabilities, node orientations, and node classes. The solver, outlined in Alg. 6, performs
three main steps:

A) Edges filtering: the input graph edges are refined based on the predicted link
probabilities (Sec. 6.5.3) and nodes orientations (Sec. 6.5.4) as described in Sec. 6.6.1;

B) High-degree nodes handling: based on the predicted node classes, high-degree nodes
are interpreted and handled accordingly, as detailed in Sec. 6.6.2;

C) Sections , branch-points and intersection-points extraction: the final topology repre-
sentation is computed, as detailed in Sec. 6.6.3.

In the following, each step is discussed in detail.

6.6.1 Edges Filtering

The first step of the solver is filtering the edges of the input graph. Indeed, the cardinality
of Eknn is quite large since the majority of edges are either connecting two different

104 CHAPTER 6. DMLOS TOPOLOGY REPRESENTATION LEARNING

i

j
k

i

j
k

node
orientation

Figure 6.7: Node orientation solver updating the edges around node k in case its orientation is consistent
with the nearby existing edge eij between nodes i and j.

DMLO sections or just redundant within the same section. The filtering is accomplished
by first accounting the predicted link probabilities Zlp (line 2), and then by considering
also the node orientations Zθ (line 3).

Link Prediction Solver

The link prediction solver takes into account the predicted link probabilities Zlp to
select the edges that are more likely to be part of the same DMLO section. The link
probabilities are computed by the GNN network of Sec. 6.5.3. The link prediction solver
is employed to just remove all the very unlikely edges in the graph, thus a quite low
threshold value (e.g. 0.05) on the computed probabilities is employed and only the
edges having a probability greater than the threshold are kept. The resulting graph is
Glp = (V , Elp).

Node Orientation Solver

This step is performed to remove redundant edges that result, for instance, in graph
cycles. The edges are checked for removing the ones that are mostly aligned with other
nodes.

The alignment is evaluated by considering the node orientations Zθ. In particular, the
orientation of a node is an angular value, which is converted into a direction vector, e.g

a direction vector of node vi with orientation zθi is obtained as di =
[
cos
(
zθi
)

sin
(
zθi
)]⊤

.
The cosine similarity is employed to evaluate the alignment between the direction vectors
of the edges and the nodes. The cosine similarity for two general vectors a and b is
defined as:

cos sim(a, b) =
aT b

∥a∥∥b∥
(6.2)

With reference to Fig. 6.7, let’s consider one edge eij and a separate node vk. The
direction of edge eij is denoted as deij. The distance between the edge segment and
node vk is computed. If the distance is less than the estimated DMLO thickness at
point vk (this is easily obtained by Mdist), then the edge is removed if the orientation
of node vk is consistent with the one of edge eij, i.e. |cos sim(dk, d

e
ij)| < 0.5 where | · |

denotes the absolute value. In particular, two additional edges eik and ekj are inserted
to compensate for the removal of eij as shown in Fig. 6.7. This process can be applied to
multiple nodes simultaneously by projecting them onto the edge and placing new edges
accordingly. Moreover, it is carried out for all nodes in V via matrix multiplications,
resulting in efficient processing times. All the selected edges are stored in Ef obtaining
the graph G ′ as shown in Fig. 6.6.

6.6. SOLVER 105

2

3

1

cluster

(a) branch-point cluster

cluster
1

2

3

4

(b) intersection-point cluster

Figure 6.8: Clusters formation for branch-point and intersection-point regions. High-degree nodes are
denoted in black.

6.6.2 High-Degree Nodes Handling

The predicted node classes Zcls of Sec. 6.5.5 are exploited for further refining the graph
G ′ = (V , Ef). First, the predicted normal nodes are processed (Sec. 6.6.2). Then, high-
degree nodes are clustered and processed, Sec. 6.6.2. Considering the predicted values
Zcls, the nodes in V with a class score below a threshold value (e.g. 0.5) are considered
normal nodes, Vnormal. The remaining nodes are considered high-degree nodes, Vhigh.

Normal Nodes Processing

Among the normal nodes, those having a node degree higher than 2 in G ′ are processed
in order to simplify the graph since their connectivity is in contrast with the predicted
class. For a given node vi characterized by a degree larger than 2, all the edges connected
to vi are retrieved and organized in combinations of two elements. Indeed, since vi is
assumed to be part of a DMLO section, it should have just two edges. Among the
combinations, the one describing the smoothest connection is selected and the other
edges are removed. The smoothness is evaluated by employing the cosine similarity as in
eq. (6.2). In particular, considering two edges eji and eik of node vi, their smoothness is
obtained as sjik = cos sim(deji, d

e
ik). The final set of edges E0 is computed after processing

all the normal nodes.

Cluster-based High-degree Nodes Processing

The nodes in Vhigh are processed by first organizing them into clusters considering as
graph G0 = (V , E0). Each cluster describes one given DMLO area characterized by
high-degree nodes. Indeed, since multiple nodes can describe the same branch-points
and intersection-points area of the DMLO, neighboring nodes will have similar class
predictions, as shown in Fig. 6.5d where the two high-degree areas of the graph show
smooth values between 0 and 1. Thus, the clustering is performed by collecting the
neighbors of each node in Vhigh and accounting for possible overlapping.

Then, each cluster is solved by connecting the individual sections in the most smooth
way possible. Indeed, with reference to Fig. 6.8 showing the clustering results on a
branch-point and intersection-point, the following assignments are made. For Fig. 6.8a,
sections 2 and 3 are connected together. For Fig. 6.8b, the connection is established
between sections 1-3 and 2-4. The merging is performed by evaluating proposals of
merged sections and estimating a smoothness score similarly to what performed at the

106 CHAPTER 6. DMLOS TOPOLOGY REPRESENTATION LEARNING

rotation
centrer

Figure 6.9: Schematic of the manipulation motion originated for the topology represented.

node-level on eq. 6.2.
The final set of edges E1 is thus obtained and the final graph G ′′ = (V , Eint) is

generated. In Fig. 6.6b an example of the computed graph G ′′ is depicted.

6.6.3 Topology Output

The last step of the solver is the computation of the final topology representation. The
branch-points are extracted from the graph G ′′ by considering the nodes with degree 3 and
stored in B (line 10 in Alg. 6). Then, the sections are computed by traversing the graph
starting from the nodes with degree 1 or degree 3, and ending at the nodes with degree
1 or degree 3. The sections are stored in P (line 11). Finally, the intersection-points are
obtained by checking the intersections between different sections in P and saving the
result in I (line 12).

6.7 Topology-driven Manipulation

The usefulness and efficiency of the proposed DMLO topology representation approach
are demonstrated by solving a manipulation task. Thus, the objective of this section is
to introduce the proposed manipulation framework. More specifically, the problem of
spreading a DMLO, i.e. removing all the intersections between different sections of the
object, is analyzed.

In this context, the following assumptions are introduced: 1) the structure of the
DMLO is not known, therefore no information from it is exploited, e.g. root location.
2) Given the stiffness of the DMLO considered, e.g. an automotive wire harness, the
motion of a section of the DMLO is approximated by a rigid transformation constrained
to rotate around the associated branch-point. To solve the manipulation task, a dual-arm
robot system is employed. One arm is used to keep a part of the DMLO fixed in place.
The second arm performs a pick-and-place operation with a motion trajectory around
an estimated center of rotation, i.e. the branch-point, see Fig. 6.9.

The manipulation task, schematized in Alg. 7, works in the following way. As input,
the topology representation of the DMLO contained in the scene under analysis is
provided, in the form of sections P, branch-points B and intersection-points I. The
goal is to solve all the possible intersections present in the DMLO (line 2), where each
possible manipulation action computed is saved into A (line 1).

For a given intersection i, the segments characterizing it are retrieved at line 3. Given
the two segments, the section of the DMLO above at the intersection i is evaluated from
the 3D data (line 4). Thus, the branch-point constraining the motion of the section
above is retrieved (line 5). This will give the rotation point of the movement performed
by the second robot. Therefore, a full pose for the first arm is computed (line 6). The

6.8. EXPERIMENTS 107

Algorithm 7: DMLO Intersection Manipulation
Input: P, B, I
Output: dual-arm manipulation to perform

1 A ← 0
2 for i ∈ I do
3 si,0, si,1 ← GetSegmentIntersection(i)
4 sabove ← getSegmentAbove(si,0, si,1)
5 b← getBranchPoint (sabove)
6 pcenter ← getCenterOfRotation(b)
7 T ← getPickAndPlaceTrajcetory(b, sabove)
8 A ← [T , pcenter]
9 a∗ ← getBestAction(A)

10 dual arm manipulation(a∗)

pick-and-place trajectory is computed considering also the center of rotation (line 7).
The set of actions is updated at line 8.

The trajectory of the pick-and-place motion is obtained by simulating the motion
of the section above with a circular trajectory around the obtained center (kept fixed
by the other arm). The direction of rotation is computed by evaluating the direction
in which the angle at the branch-point is increased, i.e. spreading objective. Given
multiple intersection-points, the one to manipulate is selected as the most external in
the graph topology (line 9), i.e. closer to graph terminal nodes with degree 1, since it is
assumed to be easier to solve. Thereafter, the robots perform the manipulation (line 10).
An illustration of the approach is provided in Fig. 6.9. The assignment of the task for
each arm, either for the hold or motion action, is based on the distance between the
robots and the target poses.

6.8 Experiments

The experiments involve the evaluation of the proposed topology representation pipeline
in a real-world manipulation scenario. The experimental setup is composed of a robotic
cell containing two Panda robots from Franka Emika shown in Fig. 6.1. The robotic cell
is equipped with a Photoneo MotionCam3D structured-light camera statically mounted.

Details about the training dataset and hyperparameters are provided in Sec. 6.8.1
whereas the DMLOs employed in the experiments are presented in Sec. 6.8.2. Then,
Sec. 6.8.3 discusses the manipulation experiment that is used to both evaluate the
application of the proposed method for manipulation purposes and also to collect
test samples. Sec. 6.8.4 analyses the collected samples. An analysis of the timing
performances of the method is provided in Sec. 6.8.5. Comparisons with methods from
the DLOs domain are performed in Sec. 6.8.6. The limitations are detailed in Sec. 6.8.7.

6.8.1 Training Details

The synthetic dataset introduced in Sec. 6.5.1 is exploited for the training of the method.
It consists of a total of about 1600 graph samples used for train and 280 graph samples
used for validation. First, the link predictor and node orientation predictor are trained.
A learning rate of 10−3 is employed with the Adam optimizer. The batch size is set to 2,
the hidden dimension h to 32, and the training is performed for 200,000 steps. The best
model is selected based on the validation loss. Then, the node subgraph classificator is
trained by employing the same dataset but also the previously trained predictors, which
are kept frozen in this last training phase. A similar training process is employed. In

108 CHAPTER 6. DMLOS TOPOLOGY REPRESENTATION LEARNING

(a) WH1 (b) WH2 (c) WH3

Figure 6.10: DMLOs real-world test samples.

particular, a learning rate of 10−5 is used with the Adam optimizer. The batch size is
set to 64, the hidden dimension h to 32, and the training is performed for 50,000 steps.
The best model is selected based on the validation loss.

6.8.2 Test DMLOs

The experiments are performed using real-world automotive wire harnesses, shown in
Fig. 6.10. Samples differ by increasing the complexity of the structures and the number
of final endpoints. The samples, with reference to Fig. 6.10, are named and characterized
in the following way:

� WH1: Plain taped cables with 1 branch-points and two end-points.

� WH2: Taped cables with side routing clips. A total of 4 branch-points and 5
end-points. Various final connectors with different sizes and shapes.

� WH3: Taped cables with side routing clips. A total of 6 branch-points with multiple
end-points of different sizes.

6.8.3 Manipulation Experiment

The manipulation experiment is used to evaluate the performance of the proposed pipeline
in a real-world scenario and to collect test samples. In particular, in the experiments,
from the camera a point-cloud of the scene is acquired, the plane segmented, and
the mask of the DMLO object generated. Therefore, the mask is processed by the
proposed pipeline to extract the topological representation. The manipulation action is
computed according to Sec. 6.7, and the robot is commanded to execute it. The DMLO
is configured to have at least one intersection-point. The goal of the manipulation task is
to remove the intersection, effectively disentangling the different sections of the DMLO.
After the manipulation action is executed, the mask is processed again by the proposed
pipeline to extract the obtained topological representation. The experiment is repeated
10 times for each of the three types of DMLOs, i.e., WH1, WH2, and WH3. In total, a
set of 60 test samples is collected, 20 for each type of DMLO.

The sequence of manipulation steps for each type of the DMLO is displayed in Fig. 6.11.
The figure contains snapshots collected during the execution of the experiments. The
experiments show that the proposed pipeline is able to correctly identify all the branch-
points and sections of the DMLOs which allowed a correct manipulation action to be
computed. The results are also confirmed by the evaluation of the test samples, which
is reported in Sec. 6.8.4.

6.8. EXPERIMENTS 109

input topology scene image init move final move result image output topology
W

H
1

W
H

2
W

H
3

Figure 6.11: Snapshots of the untangling manipulation experiment employing three different automotive
DMLOs. The branch-points and intersection-points are shown as red and blue dots.

Table 6.1: Offline evaluation results in terms of dice score for the link predicted in graph G′′
and

detection accuracy for B and I.

category link pred branch-points intersection-points
dice score accuracy (ratio) accuracy (ratio)

WH1 0.952 1.0 (20/20) 1.0 (10/10)
WH2 0.938 0.952 (60/63) 0.938 (15/16)
WH3 0.944 0.846 (93/106) 0.923 (12/13)

total 0.944 0.915 (173/189) 0.949 (37/39)

6.8.4 Offline Evaluation

The offline evaluation is performed on the 60 samples collected in the manipulation
experiment of Sec. 6.8.3. The evaluation is performed by comparing the extracted
topology representation with the ground truth one. The ground truth is manually
annotated by an expert operator. The annotation process consists of manually providing
branch-points, intersection-points, and sections labels.

Overall Results

The results of the offline evaluation are presented in Tab. 6.1, with values reported for
each test class and also as the average across the entire test dataset.

When it comes to predicting the edges for G ′′
, the results are expressed through the

dice score, emphasizing the effectiveness of the approach in generating reliable edges to
construct the topology graph.

The proposed pipeline successfully identifies the majority of branch-points within
the DMLO samples. Referring to Tab. 6.1, it is worth noting that for WH2 and WH3
samples, there are 3 and 7 instances of false positive branch-points detected, respectively.
Additionally, there are 6 false negative branch-points detected for the WH3 sample.

As for the intersection-points, there are inaccuracies in the WH2 sample, with one
intersection-point incorrectly identified as a branch-point, and in the WH3 sample, where
one intersection-point remains undetected due to graph-related inaccuracies.

110 CHAPTER 6. DMLOS TOPOLOGY REPRESENTATION LEARNING

Performance of the Single Components

To provide a more detailed analysis of the performance of each individual learned com-
ponent within the approach, here separate evaluations for the link predictor (Sec. 6.5.3),
node orientation predictor (Sec. 6.5.4), and node classifier (Sec. 6.5.5) are presented.
The results are shown in Fig. 6.12. Since the first two components are involved in
binary classification tasks, a common evaluation metric is employed — specifically,
the precision-recall curve, which provides a graphical representation of a classifier’s
performance across various thresholds.

Ground truth data is utilzed to asses the performance of the single components. For
the link predictor, ground truth edges are extracted from the reference graph and utilized
for assessment. For the node orientation predictor, ground truth node orientations are
obtained by fitting spline curves along the labeled sections and by determining the
tangent lines to the curves at each node’s position. The node classifier, on the other
hand, is assessed by utilizing the labeled branch-points and intersection-points. It’s
worth noting that the location of the assigned high-degree node point may vary in
relation to the node’s position in the graph. Consequently, the classifier is expected to
provide a one-class prediction within a specified radius, set at two times the thickness
of the DMLO in the relevant area.

When examining the outcomes of the link prediction task (as shown in Fig. 6.12a), it’s
notable that the predictor faces the challenge of accurately classifying only the two closest
neighboring nodes to the considered one. Rather than delivering a sharp distinction,
the predictor often produces a more gradual prediction, occasionally assigning high
probabilities to the two more distant nodes as well. Indeed, this is clearly illustrated by
the ALL and ALL (2hop) curves in the figure. With ALL, an edge is considered positive
if connects two nodes at a 1-hop distance along a section of the DMLO. Instead, with
ALL (2hop) are considered positive edges both the 1-hop and 2-hops ones within the
same section of the DMLO. In the proposed methodology, this behavior doesn’t pose an
issue, as it effectively filters out unnecessary edges, as elaborated in Sec. 6.6.1.

Concerning the node classification task, the plot in Fig. 6.12b provides clear evidence
of the capabilities of the classifier in locating the areas of the graph subject to high
connectivity.

Conversely, the orientation estimation error, as depicted in Figure 6.12c, exhibits a
distribution akin to the normal curve, with statistical characteristics of approximately
0.63 ± 10.03 degrees. Notably, it is essential to highlight that this error is primarily
influenced by incorrect edges within the mask and the presence of obtrusive objects
such as clips and plugs.

6.8.5 Timings

In Tab. 6.2, the recorded timings for the primary procedures of the proposed method
across the test set collected in Sec. 6.8.3 are presented. The timing values are expressed in
milliseconds and have been obtained on a laptop PC running Ubuntu 20, equipped with
an Intel Core i7-12700H processor, 16GB of RAM, and an Nvidia 3050Ti graphics card,
all powered by PyTorch 1.10 with CUDA enabled. The table provides clear evidence
of the efficiency of the approach when executed on a standard hardware configuration.
Moreover, it is noteworthy to emphasize that the computational demands increase as
the complexity of the scene grows. This is particularly evident in the average number of
graph nodes across the WH1, WH2 and WH3 samples, which stand at 62, 82, and 140,
respectively.

6.8. EXPERIMENTS 111

0.0 0.5 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on

WH1 (area = 0.746)
WH2 (area = 0.782)
WH3 (area = 0.760)
ALL (area = 0.763)
ALL (2hop) (area = 0.828)

(a) link prediction

0.0 0.5 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

WH1 (area = 0.827)
WH2 (area = 0.728)
WH3 (area = 0.758)
ALL (area = 0.737)

(b) node classification

−40 −20 0 20 40
Error [deg]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

De
ns

ity

WH1
WH2

WH3
ALL

(c) node orientation

Figure 6.12: Offline evaluation results of the single learned components of the proposed pipeline for the
different DMLOs composing the test set. With ALL, the entire set of samples is considered.

Table 6.2: Timings of the main procedures of the approach across the test set. Values in milliseconds.

Procedure WH1 WH2 WH3 All

Graph Generation 7.3 8.5 12.1 9.3
Link & Node Orientation Prediction 9.2 9.3 9.6 9.3
Node Classification 9.6 12.3 19.5 13.8
Edges Filtering 4.6 6.0 10.2 6.9
High-degree Node Solver 2.1 3.6 8.1 4.6

Total 32.8 39.7 59.7 43.9

6.8.6 Comparison with Methods from DLOs Domain

In the existing literature, there are no direct and comprehensive comparatives available
for the proposed pipeline. However, it is possible to benchmark it against methods
designed for similar tasks, particularly those related to the perception of DLOs. In this
context, two methods emerge as possible benchmarks, namely RT-DLO (Sec. 3.5) and
mBEST [24]. Both of these baseline methods focus on instance segmentation of DLOs:
starting from a semantic segmentation mask, they produce a colored mask where each
DLO is represented by a unique color corresponding to its ID. In particular, RT-DLO
employs a graph-based representation of the scene similarly to the proposed framework.
Instead, mBEST exploits a skeleton-based approach.

DLOs Instance Segmentation

The proposed method is adjusted to produce a similar output to the one of RT-DLO
and mBEST for what concerns the instance segmentation task. Therefore, given the
graph topology, a colored mask is generated based on the extracted section with mask
thickness information obtained from the distance transform image Mdist.

For the evaluation, the same test dataset as the respective works is utilized, which
includes dataset categories C1, C2 and C3 from [15] and S1, S2, and S3 from [24]. The
evaluation metric employed is the dice score.

The results of these comparisons are shown in Fig. 6.13 in the form of boxplots. From
the plots, it is evident that the proposed method serves as a viable alternative to the
baseline methods, with the primary distinction being the versatility of the proposed

112 CHAPTER 6. DMLOS TOPOLOGY REPRESENTATION LEARNING

C1 C2 C3
Dataset Category

0.70

0.80

0.90
Di

ce
 sc

or
e

RT-DLO
proposed

(a) comparison against RT-DLO

S1 S2 S3
Dataset Category

0.85

0.88

0.90

0.93

0.95

Di
ce

 sc
or

e

mBEST
proposed

(b) comparison against mBEST

Figure 6.13: Comparisons of the proposed method against RT-DLO [15] and mBEST [24] performing
the instance segmentation task on the respective proposed DLOs test datasets.

approach: it can be seamlessly applied in a context involving both DMLOs and DLOs.
When compared to mBEST, it exhibits robust performance and the capability to handle
self-loops without requiring any modifications compared to the case of DMLOs. The
slight performance dip in comparison to RT-DLO is mainly attributed to unmerged
connections between sections of the same DLO. This can be expected since the proposed
method does not make any assumptions regarding high-degree regions in the graph,
which can either be branch-points or intersection-points. This is in contrast to the DLO
methods, where the presence of a high-degree region in the graph is due solely to an
intersection thus the overall connectivity is enforced.

Ablation Study

The RT-DLO approach is similar to the proposed one in terms of graph-based repre-
sentation. More specifically, the proposed method can be viewed as a generalization
of RT-DLO, capable of encompassing both DLOs and DMLOs. This is because: 1) it
avoids making assumptions about the nature of high-degree nodes in the graph, which
can be either branch-points or intersection-points, and 2) the probability of connecting
two nodes is learned from the data and is not fixed as a function of distance and node
orientation alignments.

To better evaluate the differences between the two methods, a study about replacing
several components of the proposed pipeline with the alternative ones of RT-DLO is
conducted in this section. Specifically, the utilization of RT-DLO ’s graph generation and
link prediction approach to replace the proposed graph initialization stage (Sec. 6.4) and
the GNN-based link prediction (Sec. 6.5.3) is evaluated. The results of this evaluation
can be seen in Fig. 6.14a. One notable advantage of the proposed graph initialization
stage is its ability to maintain consistent node density, even when dealing with highly
diverse masks. In contrast, the sampling ratio of RT-DLO is manually adjusted to
match the number of nodes in the proposed approach for a fair comparison. Overall,
the proposed method demonstrates superior performance in predicting consistent edges
within the node-set, highlighting the advantage of the learning-based approach.

Additionally, the node orientation prediction task in Sec. 6.5.4 is replaced with
RT-DLO ’s specific neural network approach, which accomplishes the same task but
using image crops of Mdist. The results are presented in Fig.6.14b. The error in node
orientation prediction is comparable between the two approaches, with the primary
distinction lying in the architecture described in Sec. 6.5.4, which eliminates the need

6.8. EXPERIMENTS 113

All WH1 WH2 WH3
Dataset Category

0.6

0.7

0.8

0.9

1.0
Di

ce
 S

co
re

proposed RT-DLO

(a) link prediction scores

−40 −20 0 20 40
Error [deg]

0.00

0.02

0.04

0.06

De
ns

ity

proposed RT-DLO

(b) node orientation errors

Figure 6.14: Ablation study of link prediction and node orientation tasks with components proposed in
RT-DLO.

for mask cropping and the associated computational overhead.
An attempt is also made to utilize the graph generated by RT-DLO along with the

predicted node orientations for conducting node subgraph classification in Sec. 6.5.5.
Nevertheless, the outcomes proved to be highly unsatisfactory, underscoring the crucial
importance of the preliminary encoding stage carried out in Secs. 6.5.3 and 6.5.4.

6.8.7 Limitations

The proposed approach is not exempt from limitations and drawbacks, which manifest
themselves in two primary areas: 1) the representation of topology and 2) the manipula-
tion strategy. As for the former, key limitations are depicted in Fig.6.15. Specifically,
Fig.6.15a illustrates a scenario where two distinct branch sections are merged into a
single one, while Fig. 6.15b illustrates a situation where a branch-point is not detected.
These issues arise because the DMLO’s topology is reconstructed based solely on the
input mask, making it susceptible to inaccuracies and suboptimal topologies due to
gaps and other mask artifacts. While the graph-based approach does provide a degree
of resilience against these issues, it is limited in its effectiveness up to a certain extent.
Addressing the first limitation might be achievable by imposing a consistency constraint
on the smoothness of the extracted sections. Nevertheless, this solution introduces a
new parameter to tune and does not represent a definitive resolution.

Regarding the manipulation aspect, the principal limitation originates from the
simplicity of the proposed manipulation strategy in Sec. 6.7. Indeed, the method can
fail in the case of complex DMLOs, where the branch-points are not easily accessible or
there is no space to perform the manipulation action. This simplicity is intentional, as
the chapter’s objective is to present a methodology for deriving a topological description
of a DMLO without prior knowledge of its actual structure. Hence, a straightforward
manipulation strategy is chosen to highlight the advantages of using this representation.

Both of these limitations could be mitigated by incorporating knowledge of the
DMLO’s structure and, consequently, implementing a form of matching between the
extracted DMLO and the expected one. As a result, both the topology extraction
process and manipulation could benefit substantially from such insights. However, these
enhancements are deferred as future research work.

114 CHAPTER 6. DMLOS TOPOLOGY REPRESENTATION LEARNING

(a) merging of different sections (b) missing branch-point

Figure 6.15: Limitations of the proposed method concerning topologies derived from masks that exhibit
artifacts and gaps. To pinpoint the specific issue, a red arrow is employed.

6.9 Conclusions

In this chapter, a new approach for the efficient and accurate estimation of a topological
graph-based representation of DMLOs configurations is presented. The proposed method
is based on a graph neural network that embeds node and edge features to fully
characterize the DMLO structure in terms of node connectivity, orientation and class.
The obtained topology representation is exploited to perform a dual-arm manipulation
task, which is demonstrated in a real-world scenario using DMLOs from the automotive
field. The experiments show that the proposed method is able to correctly identify
the branch-points and sections of the DMLOs which allowed a correct disentangling
manipulation action to be computed. Moreover, the proposed method is compared with
methods from the DLOs domain, showing comparable performance in terms of instance
segmentation capabilities with the main advantage of being able to handle DMLOs and
DLOs in a unified framework. The method does not come without limitations, which
are analyzed in the experiments. In particular, the proposed method is susceptible
to inaccuracies and suboptimal topologies due to important gaps and other relevant
mask artifacts. Furthermore, the manipulation strategy is simple and can fail in the
case of complex DMLOs. Therefore, future works can be focused on the integration of
knowledge about the topological structure of the DMLO. This will involve investigating
methods for matching and aligning the extracted DMLO topology with the actual scene.
Furthermore, a more sophisticated dual-arm manipulation strategy can be developed.

Chapter 7

Conclusions

The research activities presented in this thesis introduce some novel contributions in the
field of robotic perception and manipulation of DLOs and DMLOs. These contributions
encompass both perception and manipulation aspects, and a detailed description of the
main results is provided in the following.

Percception

� Efficient and minimal human intervention is possible in generating datasets for
training deep learning models through the use of synthetic data generation methods.
This can be achieved by modeling the DLOs as curves and utilizing a rendering
engine, or by leveraging the chroma separation principle. In both approaches, it is
feasible to reduce the domain gap concerning the real world by enhancing the gen-
erated dataset with real images annotated using a weakly supervised methodology.

� Using deep learning models trained on purpose-generated datasets to perform
semantic segmentation of DLOs represents an effective approach for simplifying
the challenge of image perception.

� Combining the semantic segmentation step with a graph-based representation can
be utilized for the instance segmentation of DLOs. This method enables the robust
and precise extraction of DLO instances within an image, even when dealing with
degradation and noise in the segmentation mask.

� The use of a graph-based representation of the DLOs in the image scene can
be extended to DMLOs, effectively tackling the two perception problems with a
common and unified approach.

� Accurate 3D reconstruction of DLOs can be attained by integrating the instance
segmentation techniques developed with a multi-view stereo reconstruction approach.
Specifically, a robot and a single 2D camera in an eye-in-hand configuration can be
deployed to execute the reconstruction process, capitalizing on the robot’s mobility
to enhance reconstruction outcomes.

Manipulation

� Leveraging a topological representation of the DMLOs within the scene facilitates
the execution of disentangling manipulation tasks using a straightforward yet
effective manipulation strategy.

115

116 CHAPTER 7. CONCLUSIONS

� A NN can be utilized to create an efficient predictive model of DLO dynamics,
enabling the planning of manipulation actions. The NN model can be fully trained
by simulating DLO dynamics through a physics-based analytical model.

� The utilization of a differentiable DLO model framework conditioned on model
parameters, offers the opportunity to conduct gradient-based optimization on the
same model for either the manipulation action or model parameters. In particular,
during the execution of a manipulation task, the model parameters can be optimized
to minimize the error between the NN model and the real DLO dynamics, thus
improving the accuracy of the predictive model.

Despite the promising outcomes achieved, this thesis also paves the way for further
research and exploration. Specifically, the following areas offer opportunities for future
investigation:

� To reduce the domain gap arising from synthetic data usage, future work may involve
leveraging domain adaptation techniques and enhancing the realism of synthetic
image generation. Furthermore, improving the weakly supervised annotation
methodology through the introduction of more intuitive and robust annotation
tools can enhance the efficiency of the annotation process.

� The instance segmentation approach can be further improved in two different
aspects: 1) Reducing the reliance on the quality of the semantic segmentation mask
to enhance robustness against segmentation errors; 2) Enhancing the aggregation
process for different sections of the same DLO by incorporating a model-based
approach.

� Enhancements in 3D reconstruction methods could involve accounting for the
dynamic nature of the scene. This would entail considering robot motion during
the instance segmentation process, which could lead to more comprehensive DLO
reconstruction in complex scenes and reduce sensitivity to instance segmentation
errors.

� Improve the NN model of the DLO dynamics by extending it to 3D and by
considering more sophisticated physical effects. Fixture and contact points could
be also integrated into the NN model, thus enabling the execution of more complex
manipulation through the utilization of the surrounding environment.

� Develop a more complex manipulation strategy for DMLOs, that would enable the
execution of more complex manipulation tasks. In particular, the integration of
the DLO dynamical model within the existing constraints posed by branch-points
is an interesting aspect to be investigated.

Bibliography

[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine
Süsstrunk. “SLIC superpixels compared to state-of-the-art superpixel methods”. In: IEEE
transactions on pattern analysis and machine intelligence 34.11 (2012), pp. 2274–2282.

[2] Omid Aghajanzadeh, Miguel Aranda, Juan Antonio Corrales Ramon, Christophe Cariou, Roland
Lenain, and Youcef Mezouar. “Adaptive Deformation Control for Elastic Linear Objects”. In:
Frontiers in Robotics and AI (2022).

[3] Rodrigo Benenson, Stefan Popov, and Vittorio Ferrari. “Large-scale interactive object segmenta-
tion with human annotators”. In: CVPR. 2019.

[4] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S Davis. “Soft-NMS–improving
object detection with one line of code”. In: Proceedings of the IEEE international conference on
computer vision. 2017, pp. 5561–5569.

[5] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. “YOLACT++: Better Real-time
Instance Segmentation”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2020).

[6] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. “Yolact: Real-time instance segmen-
tation”. In: Proceedings of the IEEE/CVF Conf. ICCV. 2019.

[7] Gunilla Borgefors. “Distance transformations in digital images”. In: Computer vision, graphics,
and image processing (1986).

[8] Joao Borrego, Atabak Dehban, Rui Figueiredo, Plinio Moreno, Alexandre Bernardino, and José
Santos-Victor. “Applying domain randomization to synthetic data for object category detection”.
In: arXiv preprint arXiv:1807.09834 (2018).

[9] Yuri Y Boykov and M-P Jolly. “Interactive graph cuts for optimal boundary & region segmenta-
tion of objects in ND images”. In: ICCV. IEEE. 2001.

[10] John Brooke. SUS - A quick and dirty usability scale. CRC Press, 1996.

[11] F. Bullo. Lectures on Network Systems. 1.6. Kindle Direct Publishing, 2022. isbn: 978-1986425643.
url: https://fbullo.github.io/lns.

[12] Berk Calli, Arjun Singh, James Bruce, Aaron Walsman, Kurt Konolige, Siddhartha Srinivasa,
Pieter Abbeel, and Aaron M Dollar. “Yale-CMU-Berkeley dataset for robotic manipulation
research”. In: The International Journal of Robotics Research 36.3 (2017), pp. 261–268.

[13] Alessio Caporali, Kevin Galassi, and Gianluca Palli. “3D DLO Shape Detection and Grasp
Planning from Multiple 2D Views”. In: 2021 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM). IEEE. 2021, pp. 424–429.

[14] Alessio Caporali, Kevin Galassi, and Gianluca Palli. “Deformable Linear Objects 3D Shape
Estimation and Tracking From Multiple 2D Views”. In: IEEE Robotics and Automation Letters
(2023).

117

https://fbullo.github.io/lns

118 BIBLIOGRAPHY

[15] Alessio Caporali, Kevin Galassi, Bare Luka Žagar, Riccardo Zanella, Gianluca Palli, and Alois C
Knoll. “RT-DLO: Real-Time Deformable Linear Objects Instance Segmentation”. In: IEEE
Transactions on Industrial Informatics (2023).

[16] Alessio Caporali, Kevin Galassi, Riccardo Zanella, and Gianluca Palli. “Deformable Multi-Linear
Objects Manipulation Leveraging on GNN Topology Representation Learning”. In: Submitted to
Transactions on Automation Science and Engineering (2023).

[17] Alessio Caporali, Kevin Galassi, Riccardo Zanella, and Gianluca Palli. “FASTDLO: Fast De-
formable Linear Objects Instance Segmentation”. In: Robotics and Automation Letters (2022).

[18] Alessio Caporali, Piotr Kicki, Kevin Galassi, Riccardo Zanella, Krzysztof Walas, and Gianluca
Palli. “Deformable Linear Objects Manipulation with Online Model Parameters Estimation”. In:
Submitted to IEEE Robotics and Automation Letters (2023).

[19] Alessio Caporali, Matteo Pantano, Lucas Janisch, Daniel Regulin, Gianluca Palli, and Dongheui
Lee. “A Weakly Supervised Semi-automatic Image Labeling Approach for Deformable Linear
Objects”. In: IEEE Robotics and Automation Letters (2023).

[20] Alessio Caporali, Riccardo Zanella, Daniele De Greogrio, and Gianluca Palli. “Ariadne+: Deep
Learning–Based Augmented Framework for the Instance Segmentation of Wires”. In: TII (2022).

[21] Jia-Ren Chang and Yong-Sheng Chen. “Pyramid stereo matching network”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2018, pp. 5410–5418.

[22] Hao Chen, Kunyang Sun, Zhi Tian, Chunhua Shen, Yongming Huang, and Youliang Yan.
“Blendmask: Top-down meets bottom-up for instance segmentation”. In: Proceedings of the
IEEE/CVF Conf. CVPR. 2020.

[23] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam.
“Encoder-decoder with atrous separable convolution for semantic image segmentation”. In:
Proceedings of the European conference on computer vision (ECCV). 2018, pp. 801–818.

[24] Andrew Choi, Dezhong Tong, Brian Park, Demetri Terzopoulos, Jungseock Joo, and Mohammad
Khalid Jawed. “mBEST: Realtime Deformable Linear Object Detection Through Minimal
Bending Energy Skeleton Pixel Traversals”. In: arXiv preprint arXiv:2302.09444 (2023).

[25] William S. Cleveland. “LOWESS: A Program for Smoothing Scatterplots by Robust Locally
Weighted Regression”. In: The American Statistician (1981).

[26] Konrad P Cop, Arne Peters, Bare L Žagar, Daniel Hettegger, and Alois C Knoll. “New metrics
for industrial depth sensors evaluation for precise robotic applications”. In: 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE. 2021, pp. 5350–5356.

[27] Daniele De Gregorio, Gianluca Palli, and Luigi Di Stefano. “Let’s take a walk on superpixels
graphs: Deformable linear objects segmentation and model estimation”. In: Asian Conference
on Computer Vision. Springer. 2018, pp. 662–677.

[28] Daniele De Gregorio, Matteo Poggi, Pierluigi Zama Ramirez, Gianluca Palli, Stefano Mattoccia,
and Luigi Di Stefano. “Beyond the Baseline: 3D Reconstruction of Tiny Objects With Single
Camera Stereo Robot”. In: IEEE Access (2021).

[29] Daniele De Gregorio, Alessio Tonioni, Gianluca Palli, and Luigi Di Stefano. “Semiautomatic
Labeling for Deep Learning in Robotics”. In: IEEE Transactions on Automation Science and
Engineering 17.2 (2019), pp. 611–620.

[30] Yuhong Deng, Xueqian Wang, and Lipeng Chen. “Learning visual-based deformable object
rearrangement with local graph neural networks”. In: Complex & Intelligent Systems (2023),
pp. 1–14.

[31] Maximilian Denninger, Martin Sundermeyer, Dominik Winkelbauer, Youssef Zidan, Dmitry
Olefir, Mohamad Elbadrawy, Ahsan Lodhi, and Harinandan Katam. “Blenderproc”. In: arXiv
preprint arXiv:1911.01911 (2019).

BIBLIOGRAPHY 119

[32] Carl Doersch and Andrew Zisserman. “Sim2real transfer learning for 3D human pose estimation:
motion to the rescue”. In: Advances in Neural Information Processing Systems. 2019, pp. 12949–
12961.

[33] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual
Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-network.org/challenges/
VOC/voc2012/workshop/index.html.

[34] Pedro F Felzenszwalb and Daniel.P Huttenlocher. “Efficient graph-based image segmentation”.
In: Int. J. Comp. Vision 59.2 (2004), pp. 167–181.

[35] Alejandro F Frangi, Wiro J Niessen, Koen L Vincken, and Max A Viergever. “Multiscale vessel
enhancement filtering”. In: Medical Image Computing and Computer-Assisted Intervention.
Springer. 1998, pp. 130–137.

[36] Simon Fröhlig, Maximilian von Fabris auf Mayerhofen, Moritz Meiners, and Jörg Franke. “Three-
dimensional pose estimation of deformable linear object tips based on a low-cost, two-dimensional
sensor setup and AI-based evaluation”. In: Procedia CIRP (2022).

[37] Yasutaka Furukawa, Carlos Hernández, et al. “Multi-view stereo: A tutorial”. In: Foundations
and Trends® in Computer Graphics and Vision (2015).

[38] Kevin Galassi and Gianluca Palli. “Robotic wires manipulation for switchgear cabling and
wiring harness manufacturing”. In: 2021 4th IEEE International Conference on Industrial
Cyber-Physical Systems (ICPS). IEEE. 2021, pp. 531–536.

[39] David Gallup, Jan-Michael Frahm, Philippos Mordohai, and Marc Pollefeys. “Variable baseline/
resolution stereo”. In: 2008 IEEE conference on computer vision and pattern recognition. IEEE.
2008, pp. 1–8.

[40] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation learning on large
graphs”. In: Advances in neural information processing systems 30 (2017).

[41] A Handa, V Patraucean, V Badrinarayanan, S Stent, and R Cipolla. “Scenenet: understand-
ing real world indoor scenes with synthetic data. arXiv preprint (2015)”. In: arXiv preprint
arXiv:1511.07041 (2015).

[42] Miles Hansard, Seungkyu Lee, Ouk Choi, and Radu Patrice Horaud. Time-of-flight cameras:
principles, methods and applications. Springer Science & Business Media, 2012.

[43] Sandra G. Hart and Lowell E. Staveland. “Development of NASA-TLX (Task Load Index):
Results of Empirical and Theoretical Research”. In: Advances in Psychology. Elsevier, 1988.

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for image
recognition”. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[45] Kejing He, Congying Sui, Tianyu Huang, Rong Dai, Congyi Lyu, and Yun-Hui Liu. “3D Surface
reconstruction of transparent objects using laser scanning with LTFtF method”. In: Optics and
Lasers in Engineering 148 (2022), p. 106774.

[46] Tomas Hermansson, Robert Bohlin, Johan S Carlson, and Rikard Söderberg. “Automatic
assembly path planning for wiring harness installations”. In: Journal of manufacturing systems
32.3 (2013), pp. 417–422.

[47] Daniel Hernandez-Juarez, Alejandro Chacón, Antonio Espinosa, David Vázquez, Juan Carlos
Moure, and Antonio M López. “Embedded real-time stereo estimation via semi-global matching
on the GPU”. In: Procedia Computer Science (2016).

[48] Heiko Hirschmuller. “Stereo processing by semiglobal matching and mutual information”. In:
IEEE Transactions on pattern analysis and machine intelligence 30.2 (2007), pp. 328–341.

120 BIBLIOGRAPHY

[49] Dominik Honegger, Torsten Sattler, and Marc Pollefeys. “Embedded real-time multi-baseline
stereo”. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2017, pp. 5245–5250.

[50] Xuzhao Huang, Dayuan Chen, Yuhao Guo, Xin Jiang, and Yunhui Liu. “Untangling multi-
ple deformable linear objects in unknown quantities with complex backgrounds”. In: IEEE
Transactions on Automation Science and Engineering (2023).

[51] Benjamin Irving. “maskSLIC: regional superpixel generation with application to local pathology
characterisation in medical images”. In: arXiv preprint arXiv:1606.09518 (2016).

[52] Jagadeesan Jayender, Rajnikant V Patel, and Suwas Nikumb. “Robot-assisted active catheter
insertion: Algorithms and experiments”. In: The International Journal of Robotics Research 28.9
(2009), pp. 1101–1117.

[53] Xin Jiang, Kyong-mo Koo, Kohei Kikuchi, Atsushi Konno, and Masaru Uchiyama. “Robotized
assembly of a wire harness in a car production line”. In: Advanced Robotics 25.3-4 (2011),
pp. 473–489.

[54] Azarakhsh Keipour, Maryam Bandari, and Stefan Schaal. “Deformable One-Dimensional Object
Detection for Routing and Manipulation”. In: Robotics and Automation Letters (2022).

[55] Leonid Keselman, John Iselin Woodfill, Anders Grunnet-Jepsen, and Achintya Bhowmik. “Intel
realsense stereoscopic depth cameras”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition workshops. 2017, pp. 1–10.

[56] Alaa Khalifa and Gianluca Palli. “Symplectic integration for multivariate dynamic spline-based
model of deformable linear objects”. In: Journal of Computational and Nonlinear Dynamics
(2022).

[57] Piotr Kicki, Micha l Bednarek, Pawe l Lembicz, Grzegorz Mierzwiak, Amadeusz Szymko, Marek
Kraft, and Krzysztof Walas. “Tell me, what do you see?—interpretable classification of wiring
harness branches with deep neural networks”. In: Sensors 21.13 (2021), p. 4327.

[58] Piotr Kicki, Micha l Bidziński, and Krzysztof Walas. Learning Quasi-Static 3D Models of
Markerless Deformable Linear Objects for Bimanual Robotic Manipulation. 2023.

[59] Thomas N Kipf and Max Welling. “Semi-Supervised Classification with Graph Convolutional
Networks”. In: International Conference on Learning Representations. 2016.

[60] Thomas N Kipf and Max Welling. “Variational graph auto-encoders”. In: arXiv preprint
arXiv:1611.07308 (2016).

[61] Rita Laezza and Yiannis Karayiannidis. “Learning Shape Control of Elastoplastic Deformable
Linear Objects”. In: IEEE Int. Conf. ICRA. 2021.

[62] Romain Lagneau, Alexandre Krupa, and Maud Marchal. “Automatic shape control of deformable
wires based on model-free visual servoing”. In: IEEE Robotics and Automation Letters (2020).

[63] Robert Lee, Masashi Hamaya, Takayuki Murooka, Yoshihisa Ijiri, and Peter Corke. “Sample-
efficient learning of deformable linear object manipulation in the real world through self-
supervision”. In: IEEE Robotics and Automation Letters (2021).

[64] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. “EPnP: An Accurate O(n) Solution
to the PnP Problem”. In: Int. Journal of Computer Vision (2009).

[65] Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, and Jian Sun. “Scribblesup: Scribble-supervised
convolutional networks for semantic segmentation”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2016, pp. 3159–3167.

[66] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. “Microsoft coco: Common objects in context”. In: European
conference on computer vision. Springer. 2014, pp. 740–755.

BIBLIOGRAPHY 121

[67] Fei Liu, Entong Su, Jingpei Lu, Mingen Li, and Michael C Yip. “Robotic manipulation of
deformable rope-like objects using differentiable compliant position-based dynamics”. In: IEEE
Robotics and Automation Letters (2023).

[68] Jiang-Jiang Liu, Qibin Hou, Ming-Ming Cheng, Jiashi Feng, and Jianmin Jiang. “A simple
pooling-based design for real-time salient object detection”. In: IEEE/CVF Conf. CVPR. 2019.

[69] Jiawei Liu, Qiang Wang, Huijie Fan, Shuai Wang, Wentao Li, Yandong Tang, Danbo Wang,
Mingyi Zhou, and Li Chen. “Automatic Label Correction for the Accurate Edge Detection of
Overlapping Cervical Cells”. In: arXiv preprint arXiv:2010.01919 (2020).

[70] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
“Swin transformer: Hierarchical vision transformer using shifted windows”. In: Proceedings of the
IEEE/CVF international conference on computer vision. 2021, pp. 10012–10022.

[71] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. “A convnet for the 2020s”. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2022, pp. 11976–11986.

[72] Alberta Longhini, Marco Moletta, Alfredo Reichlin, Michael C Welle, David Held, Zackory
Erickson, and Danica Kragic. “Edo-net: Learning elastic properties of deformable objects from
graph dynamics”. In: 2023 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2023, pp. 3875–3881.

[73] Bo Lu, XB Yu, JW Lai, KC Huang, Keith CC Chan, and Henry K Chu. “A Learning Approach
for Suture Thread Detection With Feature Enhancement and Segmentation for 3-D Shape
Reconstruction”. In: IEEE Transactions on Automation Science and Engineering 17.2 (2019),
pp. 858–870.

[74] Benjamin Lutz, Lucas Janisch, Dominik Kisskalt, Daniel Regulin, and Jörg Franke. “Interactive
Image Segmentation Using Superpixels and Deep Metric Learning for Tool Condition Monitoring”.
In: Procedia CIRP 118 (2023), pp. 459–464.

[75] Kangchen Lv, Mingrui Yu, Yifan Pu, Xin Jiang, Gao Huang, and Xiang Li. “Learning to estimate
3-d states of deformable linear objects from single-frame occluded point clouds”. In: 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. 2023, pp. 7119–7125.

[76] Naijing Lv, Jianhua Liu, Xiaoyu Ding, Jiashun Liu, Haili Lin, and Jiangtao Ma. “Physically
based real-time interactive assembly simulation of cable harness”. In: Journal of Manufacturing
Systems (2017).

[77] Naijing Lv, Jianhua Liu, and Yunyi Jia. “Dynamic Modeling and Control of Deformable Linear
Objects for Single-Arm and Dual-Arm Robot Manipulations”. In: IEEE Transactions on Robotics
(2022).

[78] Xiao Ma, David Hsu, and Wee Sun Lee. Learning Latent Graph Dynamics for Visual Manipulation
of Deformable Objects. 2022. arXiv: 2104.12149 [cs.RO].

[79] Kevis-Kokitsi Maninis, Sergi Caelles, Jordi Pont-Tuset, and Luc Van Gool. “Deep extreme cut:
From extreme points to object segmentation”. In: CVPR. 2018.

[80] Rene J Moreno Masey, John O Gray, Tony J Dodd, and Darwin G Caldwell. “Guidelines for the
design of low-cost robots for the food industry”. In: Industrial Robot: An International Journal
(2010).

[81] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and Demetri
Terzopoulos. “Image segmentation using deep learning: A survey”. In: IEEE transactions on
pattern analysis and machine intelligence 44.7 (2021), pp. 3523–3542.

[82] Lei Mou, Yitian Zhao, Huazhu Fu, Yonghuai Liu, Jun Cheng, Yalin Zheng, Pan Su, Jianlong
Yang, Li Chen, Alejandro F Frangi, et al. “CS2-Net: Deep learning segmentation of curvilinear
structures in medical imaging”. In: Medical image analysis 67 (2021), p. 101874.

https://arxiv.org/abs/2104.12149

122 BIBLIOGRAPHY

[83] David Navarro-Alarcon, Hiu Man Yip, Zerui Wang, Yun-Hui Liu, Fangxun Zhong, Tianxue
Zhang, and Peng Li. “Automatic 3-D Manipulation of Soft Objects by Robotic Arms With an
Adaptive Deformation Model”. In: IEEE Trans. on Robotics (2016).

[84] Gabriel E Navas-Reascos, David Romero, Johan Stahre, and Alberto Caballero-Ruiz. “Wire
harness assembly process supported by collaborative robots: Literature review and call for R&D”.
In: Robotics 11.3 (2022), p. 65.

[85] Adrian K. T. Ng, Leith K. Y. Chan, and Henry Y. K. Lau. “A low-cost lighthouse-based virtual
reality head tracking system”. In: IC3D. IEEE, 2017.

[86] Huong Giang Nguyen, Marlene Kuhn, and Jörg Franke. “Manufacturing automation for auto-
motive wiring harnesses”. In: Procedia CIRP 97 (2021), pp. 379–384.

[87] Dim P Papadopoulos, Jasper RR Uijlings, Frank Keller, and Vittorio Ferrari. “Training object
class detectors with click supervision”. In: CVPR. 2017.

[88] Deepak Pathak, Evan Shelhamer, Jonathan Long, and Trevor Darrell. “Fully convolutional
multi-class multiple instance learning”. In: preprint arXiv:1412.7144 (2014).

[89] Viorica Pătrăucean, Pierre Gurdjos, and Rafael Grompone Von Gioi. “A parameterless line
segment and elliptical arc detector with enhanced ellipse fitting”. In: Computer Vision–ECCV
2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012,
Proceedings, Part II 12. Springer. 2012, pp. 572–585.

[90] Xingchao Peng, Ben Usman, Kuniaki Saito, Neela Kaushik, Judy Hoffman, and Kate Saenko.
“Syn2real: A new benchmark forsynthetic-to-real visual domain adaptation”. In: arXiv preprint
arXiv:1806.09755 (2018).

[91] Jason Pile, George B Wanna, and Nabil Simaan. “Force-based flexible path plans for robotic
electrode insertion”. In: Proc. of the ICRA. 2014, pp. 297–303.

[92] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space”. In: Advances in neural information processing
systems 30 (2017).

[93] Weichao Qiu and Alan Yuille. “Unrealcv: Connecting computer vision to unreal engine”. In:
Proc. of the ECCV. 2016, pp. 909–916.

[94] Hiba Ramadan, Chaymae Lachqar, and Hamid Tairi. “A survey of recent interactive image
segmentation methods”. In: Computational Visual Media (2020), pp. 1–30.

[95] Matthias Rambow, Thomas Schauß, Martin Buss, and Sandra Hirche. “Autonomous manipulation
of deformable objects based on teleoperated demonstrations”. In: IEEE Int. Conf. IROS. 2012.

[96] Arnau Ramisa, Guillem Alenya, Francesc Moreno-Noguer, and Carme Torras. “Using depth and
appearance features for informed robot grasping of highly wrinkled clothes”. In: Proc. of the
ICRA. 2012, pp. 1703–1708.

[97] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. “Playing for data: Ground
truth from computer games”. In: European conference on computer vision. Springer. 2016,
pp. 102–118.

[98] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. “” GrabCut” interactive foreground
extraction using iterated graph cuts”. In: ACM transactions on graphics (TOG) 23.3 (2004),
pp. 309–314.

[99] Jose Sanchez, Juan-Antonio Corrales, Belhassen-Chedli Bouzgarrou, and Youcef Mezouar.
“Robotic manipulation and sensing of deformable objects in domestic and industrial applications:
a survey”. In: The International Journal of Robotics Research 37.7 (2018), pp. 688–716.

[100] Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain, Ser Nam Lim, and Rama Chellappa. “Learn-
ing from synthetic data: Addressing domain shift for semantic segmentation”. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 3752–3761.

BIBLIOGRAPHY 123

[101] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
“The Graph Neural Network Model”. In: IEEE Transactions on Neural Networks 20.1 (2009),
pp. 61–80. doi: 10.1109/TNN.2008.2005605.

[102] Daniel Scharstein, Heiko Hirschmüller, York Kitajima, Greg Krathwohl, Nera Nešić, Xi Wang,
and Porter Westling. “High-resolution stereo datasets with subpixel-accurate ground truth”. In:
German conference on pattern recognition. Springer. 2014.

[103] Daniel Scharstein and Richard Szeliski. “A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms”. In: International journal of computer vision 47 (2002), pp. 7–42.

[104] Daniel Scharstein, Tatsunori Taniai, and Sudipta N Sinha. “Semi-global stereo matching with
surface orientation priors”. In: 2017 International Conference on 3D Vision (3DV). IEEE. 2017,
pp. 215–224.

[105] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “Facenet: A unified embedding for
face recognition and clustering”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2015, pp. 815–823.

[106] Akihito Seki and Marc Pollefeys. “Sgm-nets: Semi-global matching with neural networks”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, pp. 231–
240.

[107] Ankit Shah, Lotta Blumberg, and Julie Shah. “Planning for manipulation of interlinked de-
formable linear objects with applications to aircraft assembly”. In: IEEE Tran. on Automation
Science and Engineering 15.4 (2018), pp. 1823–1838.

[108] Konstantin Sofiiuk, Ilya A Petrov, and Anton Konushin. “Reviving iterative training with
mask guidance for interactive segmentation”. In: 2022 IEEE International Conference on Image
Processing (ICIP). IEEE. 2022, pp. 3141–3145.

[109] Joes Staal, Michael D Abràmoff, Meindert Niemeijer, Max A Viergever, and Bram Van Ginneken.
“Ridge-based vessel segmentation in color images of the retina”. In: IEEE transactions on medical
imaging 23.4 (2004), pp. 501–509.

[110] Baochen Sun, Jiashi Feng, and Kate Saenko. “Return of frustratingly easy domain adaptation”.
In: AAAI. 2016.

[111] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. “Revisiting unreasonable
effectiveness of data in deep learning era”. In: ICCV. 2017.

[112] Priya Sundaresan, Jennifer Grannen, Brijen Thananjeyan, Ashwin Balakrishna, Michael Laskey,
Kevin Stone, Joseph Gonzalez, and Ken Goldberg. “Learning Rope Manipulation Policies Using
Dense Object Descriptors Trained on Synthetic Depth Data”. In: IEEE Int. Conf. ICRA (2020).

[113] Te Tang, Changhao Wang, and Masayoshi Tomizuka. “A Framework for Manipulating Deformable
Linear Objects by Coherent Point Drift”. In: IEEE Robotics and Automation Letters (2018).

[114] Zhi Tian, Chunhua Shen, and Hao Chen. “Conditional convolutions for instance segmentation”.
In: Proceedings of the Conf. ECCV. Springer. 2020.

[115] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
“Domain randomization for transferring deep neural networks from simulation to the real world”.
In: IROS. IEEE, 2017.

[116] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
“Domain randomization for transferring deep neural networks from simulation to the real world”.
In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.
2017, pp. 23–30.

[117] Jonathan Tremblay, Thang To, and Stan Birchfield. “Falling Things: A Synthetic Dataset for
3D Object Detection and Pose Estimation”. In: CVPR. IEEE, 2018.

https://doi.org/10.1109/TNN.2008.2005605

124 BIBLIOGRAPHY

[118] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Dieter Fox, and Stan
Birchfield. Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects.
Number: arXiv:1809.10790 arXiv:1809.10790 [cs]. 2018.

[119] Jerome Trommnau, Jens Kühnle, Jörg Siegert, Robert Inderka, and Thomas Bauernhansl.
“Overview of the state of the art in the production process of automotive wire harnesses, current
research and future trends”. In: Procedia CIRP (2019).

[120] Andrea Vedaldi and Stefano Soatto. “Quick shift and kernel methods for mode seeking”. In:
Proc. of the ECCV. 2008, pp. 705–718.

[121] Changhao Wang, Yuyou Zhang, Xiang Zhang, Zheng Wu, Xinghao Zhu, Shiyu Jin, Te Tang,
and Masayoshi Tomizuka. “Offline-online learning of deformation model for cable manipulation
with graph neural networks”. In: IEEE Robotics and Automation Letters (2022).

[122] Yixuan Wang, Dale McConachie, and Dmitry Berenson. “Tracking Partially-Occluded De-
formable Objects while Enforcing Geometric Constraints”. In: 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE. 2021, pp. 14199–14205.

[123] Yuchao Wang, Haochen Wang, Yujun Shen, Jingjing Fei, Wei Li, Guoqiang Jin, Liwei Wu, Rui
Zhao, and Xinyi Le. “Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels”.
In: CVPR. 2022.

[124] Jun Wei, Shuhui Wang, and Qingming Huang. “F3Net: fusion, feedback and focus for salient
object detection”. In: Proceedings of AAAI-20. 2020.

[125] Markus Wnuk, Chistoph Hinze, Manuel Zürn, Qizhen Pan, Armin Lechler, and Alexander Verl.
“Tracking branched deformable linear objects with structure preserved registration by branch-wise
probability modification”. In: 2021 27th International Conference on Mechatronics and Machine
Vision in Practice (M2VIP). IEEE. 2021, pp. 101–108.

[126] Zhe Wu, Li Su, and Qingming Huang. “Cascaded partial decoder for fast and accurate salient
object detection”. In: IEEE/CVF Conf. CVPR. 2019.

[127] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. “A
comprehensive survey on graph neural networks”. In: IEEE transactions on neural networks
and learning systems 32.1 (2020), pp. 4–24.

[128] Mengyuan Yan, Yilin Zhu, Ning Jin, and Jeannette Bohg. “Self-supervised learning of state
estimation for manipulating deformable linear objects”. In: IEEE robotics and automation letters
5.2 (2020), pp. 2372–2379.

[129] Xue Yang and Junchi Yan. “Arbitrary-oriented object detection with circular smooth label”. In:
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part VIII 16. Springer. 2020, pp. 677–694.

[130] Yuxuan Yang, Johannes A Stork, and Todor Stoyanov. “Learning differentiable dynamics models
for shape control of deformable linear objects”. In: Robotics and Autonomous Systems (2022).

[131] Yuxuan Yang, Johannes Andreas Stork, and Todor Stoyanov. “Tracking Branched Deformable
Linear Objects Using Particle Filtering on Depth Images”. In: Available at SSRN 4531786
(2023).

[132] Hang Yin, Anastasia Varava, and Danica Kragic. “Modeling, learning, perception, and control
methods for deformable object manipulation”. In: Science Robotics 6.54 (2021), eabd8803.

[133] Jiaxuan You, Zhitao Ying, and Jure Leskovec. “Design space for graph neural networks”. In:
Advances in Neural Information Processing Systems 33 (2020), pp. 17009–17021.

[134] Mingrui Yu, Kangchen Lv, Hanzhong Zhong, Shiji Song, and Xiang Li. “Global model learning
for large deformation control of elastic deformable linear objects: An efficient and adaptive
approach”. In: IEEE Trans. on Robotics (2022).

BIBLIOGRAPHY 125

[135] Francisco Yumbla, Meseret Abeyabas, Tuan Luong, June-Sup Yi, and Hyungpil Moon. “Prelimi-
nary connector recognition system based on image processing for wire harness assembly tasks”.
In: 2020 20th International Conference on Control, Automation and Systems (ICCAS). IEEE.
2020, pp. 1146–1150.

[136] Riccardo Zanella, Alessio Caporali, Kalyan Tadaka, Daniele De Gregorio, and Gianluca Palli.
“Auto-generated Wires Dataset for Semantic Segmentation with Domain-Independence”. In: Proc.
of ICCCR. 2021.

[137] Jure Zbontar, Yann LeCun, et al. “Stereo matching by training a convolutional neural network
to compare image patches.” In: J. Mach. Learn. Res. 17.1 (2016), pp. 2287–2318.

[138] Andy Zeng, Kuan-Ting Yu, Shuran Song, Daniel Suo, Ed Walker, Alberto Rodriguez, and
Jianxiong Xiao. “Multi-view self-supervised deep learning for 6d pose estimation in the amazon
picking challenge”. In: 2017 IEEE international conference on robotics and automation (ICRA).
IEEE. 2017, pp. 1386–1383.

[139] Hongshuang Zhang, Yu Zeng, Huchuan Lu, Lihe Zhang, Jianhua Li, and Jinqing Qi. “Learning
to detect salient object with multi-source weak supervision”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (2021).

[140] Muhan Zhang and Yixin Chen. “Link prediction based on graph neural networks”. In: Advances
in neural information processing systems 31 (2018).

[141] Song Zhang. “High-speed 3D shape measurement with structured light methods: A review”. In:
Optics and lasers in engineering 106 (2018), pp. 119–131.

[142] Wenbo Zhang, Karl Schmeckpeper, Pratik Chaudhari, and Kostas Daniilidis. “Deformable linear
object prediction using locally linear latent dynamics”. In: IEEE Int. Conf. ICRA. 2021.

[143] Wenzeng Zhang, Xiande Ma, Leqin Cui, and Qiang Chen. “3 Points Calibration Method of Part
Coordinates for Arc Welding Robot”. In: Intelligent Robotics and Applications. Springer Berlin
Heidelberg, 2008.

[144] Xinyi Zhang, Yukiyasu Domae, Weiwei Wan, and Kensuke Harada. “Learning efficient policies
for picking entangled wire harnesses: An approach to industrial bin picking”. In: IEEE Robotics
and Automation Letters 8.1 (2022), pp. 73–80.

[145] Yiheng Zhang, Zhaofan Qiu, Ting Yao, Dong Liu, and Tao Mei. “Fully convolutional adaptation
networks for semantic segmentation”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018, pp. 6810–6818.

[146] Jia-Xing Zhao, Jiang-Jiang Liu, Deng-Ping Fan, Yang Cao, Jufeng Yang, and Ming-Ming Cheng.
“EGNet: Edge guidance network for salient object detection”. In: Proceedings of the IEEE/CVF
Conf. ICCV. 2019.

[147] Guoqing Zheng, Ahmed Hassan Awadallah, and Susan Dumais. “Meta label correction for
learning with weak supervision”. In: (2019).

[148] Zhi-Hua Zhou. “A brief introduction to weakly supervised learning”. In: National Science Review
5.1 (2018), pp. 44–53.

[149] Hongyuan Zhu, Fanman Meng, Jianfei Cai, and Shijian Lu. “Beyond pixels: A comprehensive
survey from bottom-up to semantic image segmentation and cosegmentation”. In: Journal of
Visual Communication and Image Representation 34 (2016), pp. 12–27.

[150] Jihong Zhu, Andrea Cherubini, Claire Dune, David Navarro-Alarcon, Farshid Alambeigi, Dmitry
Berenson, Fanny Ficuciello, Kensuke Harada, Jens Kober, Xiang Li, et al. “Challenges and
outlook in robotic manipulation of deformable objects”. In: IEEE Robotics & Automation
Magazine 29.3 (2022), pp. 67–77.

[151] Jihong Zhu, Benjamin Navarro, Philippe Fraisse, André Crosnier, and Andrea Cherubini. “Dual-
arm robotic manipulation of flexible cables”. In: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 479–484.

126 BIBLIOGRAPHY

[152] Manuel Zürn, Markus Wnuk, Armin Lechler, and Alexander Verl. “Topology matching of
branched deformable linear objects”. In: 2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2023, pp. 7097–7103.

	Introduction
	Deformable Objects in Robotics
	Deformable Linear Objects: Sensing and Manipulation
	Motivation and Contributions
	Thesis Structure

	Dataset Generation for Segmentation Tasks
	Introduction
	Related Works
	Chroma Separation
	Synthetic Images Rendering
	Weakly Supervised Annotation of Real Images
	Test Dataset
	Experiments
	Conclusions

	2D Perception: Instance Segmentation and Modeling
	Introduction
	Related Work
	The Ariadne+ Algorithm
	The FASTDLO Algorithm
	The RT-DLO Algorithm
	Experimental Results
	Conclusions

	3D Shape Estimation: Combining 2D Perception and Multiple Views
	Introduction
	Related Works
	The DLO3DS Algorithm: Overview
	Instance Selection and Modeling
	Shape Estimation from Multiple Views
	Experimental Validation
	Conclusions

	Shape Control Task with Online Model Parameters Estimation
	Introduction
	Related Works
	Analytical Model and DLO State Representation
	Neural Network-based DLO Model
	Gradient-based Estimation of Action and Parameters
	Shape Control Task with Online Parameters Adaptation
	Experiments
	Conclusions

	DMLOs Topology Representation Learning
	Introduction
	Related Works
	Method Overview
	Graph Initialization
	Topology Learning
	Solver
	Topology-driven Manipulation
	Experiments
	Conclusions

	Conclusions
	Bibligraphy

