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Abstract

Quantum Materials are many body systems displaying emergent phenomena
caused by quantum collective behaviour, such as superconductivity, charge
density wave, fractional hall effect, and exotic magnetism. Among quantum
materials, two families have recently attracted attention: kagome metals and
Kitaev materials.

The kagome metals have a unique crystal structure made up of triangular
lattice layers that are used to form the kagome layer. Due to superconduc-
tivity, magnetism, and charge ordering states such as the Charge Density
Wave (CDW), unexpected physical phenomena such as the massive Anoma-
lous Hall Effect (AHE) and possible Majorana fermions develop in these
materials.

Kitaev materials are a type of quantum material with a unique spin model
named after Alexei Kitaev. They include fractional fluctuations of Majorana
fermions and non-topological abelian anyons, both of which might be used in
quantum computing. Furthermore, they provide a realistic framework for the
development of quantum spin liquid (QSL), in which quantum fluctuations
produce long-range entanglements between electronic states despite the lack
of classical magnetic ordering.

In my research, I performed several nuclear magnetic resonance (NMR), nu-
clear quadrupole resonance (NQR), and muon spin spectroscopy (µSR) ex-
periments to explain and unravel novel phases of matter within this unusual
family of materials. NMR has been found to be an excellent tool for studying
these materials’ local electronic structures and magnetic properties. I could
use NMR to determine, for the first time, the structure of a novel kagome
superconductor, RbV3Sb5, below the CDW transition, and to highlight the
role of chemical doping in the CDW phase of AV3Sb5 superconductors.

µSR has been used to investigate the effect of doping on kagome material
samples in order to study the presence and behaviour of an anomalous phase

v



developing at low temperatures and possibly related to time-reversal sym-
metry breaking.

Anomalous oscillations of the muon asymmetry observed in the normal state
of A15 compounds gave us the possibility to accurately study the quantum
entanglement between muon and nuclear spin greater than 1/2, providing a
proof of concept for how µSR can be used to probe charge-related phenom-
ena.

Finally, the use of µSR in addition to neutron scattering experiments, DFT,
and CEF calculations revealed the magnetic excitation spectra of the Kitaev
antiferromagnet Na2PrO3, revealing unusual information about the nature
of its magnetic ground-state.
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Introduction

Quantum materials, one of the most exciting groups of materials currently,

have distinctive and unique features that originate from the quantum me-

chanical behavior of their component particles. These materials are defined

by their strong electron-electron interactions, complicated electronic band

structures, and distinct phases of matter. There is significant potential for

current technology and basic physics research to understand and use the fea-

tures of quantum materials. Recently layered quantum materials containing

hexagonal arrays have attracted a lot of attention thanks to their peculiar

Fermi topology and/or the presence of anisotropic interactions and frustra-

tion. Kagome and Kitaev materials have been increasingly studied and char-

acterized in the very last few years, making them one of the most appealing

classes of quantum materials. The investigation of these two material families

is the main object of this thesis work.

The term kagome comes from a traditional Japanese wooden basket and spec-

ifies an exotic two-dimensional geometrical array composed of overlapping

triangles and large hexagonal voids. It gives a unique platform to compre-

hend the interweaving between diverse electronic orderings such as supercon-

ductivity, long-range magnetism, and CDW, owing to its innate geometrical

frustration.

The so-called Kitaev materials, named after Alexei Kitaev, who first devel-

oped a theory to explain the ground-state of these materials, are composed

of honeycomb edge-sharing lattices that provide strong geometrical frustra-

tion and a possible realization of Kitaev Spin Liquid (KSV), characterized by
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anisotropic interactions. These materials provide a fruitful platform for cre-

ating new magnetic orderings and understanding the significance of diverse

exchange interactions in shaping the ground-state Hamiltonian.

Among all the potential experimental methods in Condensed Matter Physics,

Nuclear Magnetic Resonance (NMR), Nuclear Quadrupole Resonance (NQR),

and Muon Spin Spectroscopy (µSR) have the great advantage of studying the

material properties by using nuclei and muons as local probes to obtain in-

sights into the electrical structure, magnetic properties, and superconducting

behavior of kagome metals and Kitaev materials.

NMR is a method for examining the surroundings and behavior of nuclei,

utilizing their inherent magnetic moments, sensitive to local dipolar and hy-

perfine interactions. NQR, similarly, exploits the interaction of the nuclear

electric quadrupole with the electric field gradient around the nucleus and is

sensitive to charge-related phenomena.

On the other hand, µSR is an experimental approach that employs muons

as local magnetic probes, which are unstable subatomic particles emitting

positrons. When muons have been implanted in a material, they function as

small magnetic dipoles that are particularly sensitive to local magnetic fields.

Crucial information on the material’s magnetic and superconducting charac-

teristics can be obtained by probing local magnetic field behavior trough the

spatial and temporal decay emission.

Chapter 1 presents a broad introduction to quantum materials, their physical

characteristics, and their applications, with a special emphasis on kagome and

Kitaev materials.

In Chapter 2, we present the theoretical specifics and the experimental set-

tings of the NMR and NQR techniques.

In Chapter 3, we present the theoretical specifics and the experimental set-

tings of the µSR technique, following the scheme of Chapter 2.

Chapter 4 is devoted to the findings acquired by employing NMR spec-

troscopy in my Ph.D. research, with a special emphasis on kagome super-
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conductors.

In Chapter 5, we are going to illustrate µSR results applied to quantum

materials, notably kagome superconductors.

Chapter 6 concerns the use of µSR to exploit intriguing quantum phenomena

like the quantum entanglement between muons and high nuclear spins as a

probe of the charge environment.

Chapter 7 will discuss the use of µSR in conjunction with neutron scatter-

ing experimental data to comprehend the magnetic ground-state of Kitaev

antiferromagnet Na2PrO3.

Finally, the chapter Conclusions reports a summary of the main outcomes of

this work.
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Chapter 1

General background: quantum

materials

This Ph.D. thesis is primarily concerned with the physical characterization

of novel quantum materials, and we will provide a general overview of them

in this first part. In addition, the fundamental physical properties and tech-

nological applications of quantum materials will be discussed.

1.1 Definition of quantum materials

The word quantum materials, as the name implies, refers to a large group of

materials in which quantum mechanics plays a significant and representative

role in our macroscopic world. This is not the same as a material whose

physical properties are governed by quantum mechanics, as all materials are;

a very simple example is represented by semiconductors, which are at the

heart of our technological advancement in electronics and informatics, and

whose behaviour cannot be described in terms of classical physics.

The idea of free or nearly free electrons, which is based on electrons that

are not in contact with one another under a constant lattice potential, has

proven beneficial in understanding the fundamental electronics of solid-state

systems, including metal and semiconducting behavior. Interactions between

CHAPTER 1. GENERAL BACKGROUND: QUANTUM MATERIALS 5



1.1. DEFINITION OF QUANTUM MATERIALS

particles, such as electron-electron and electron-phonon interactions, have a

significant impact on the physical properties of materials in strongly cor-

related systems, where the Coulomb interaction cannot be ignored and is

comparable to or stronger than the kinetic energy of electrons [1]. Supercon-

ductivity (SC), complex magnetism, charge density waves (CDW), spin den-

sity waves (SDW), nematic/smectic orders, pair density waves (PDW), Mott

insulating behavior, and other novel quantum phases with broken symmetry

can be produced by electron correlation, which can also cause instabilities at

the Fermi surface and drive electronic fluctuations.

All these exotic quantum phenomena have been hugely demonstrated in novel

materials such as heavy fermion materials, high-temperature superconduc-

tors, complex oxide perovskites, transition metal dichalcogenides, and twisted

graphene [2–5]. They do not have to be separate; they can coexist in the

same substance and even compete each other. In cuprate superconductors,

for example, superconductivity is competing with CDW and SDW phases,

and a potential ”mother phase” has been identified as PDW.

As a result, the correct definition of ”quantum materials” is a family of mate-

rials whose primary physical properties are controlled by the strong electrical

interaction that gives rise to distinct phases of matter. Superconductivity

is a simple example, where the strong electron-phonon-electron interaction

produces a macroscopic representation of the ground-state electronic wave-

function. Various types of quantum materials have emerged in recent years,

generating considerable interest in the field of condensed matter physics, with

the goal of discovering new phases of matter and harnessing them for prac-

tical uses. Some examples are Kagome lattices, topological insulators, Weyl

semimetals, and quantum spin liquids [6–19]. In this work, we are going to

talk about the first and the latter class of materials. Figure 1.1 shows a

graphical representation of some of the classes of quantum materials under

study in recent years, along with present and future technological applica-

tions. In general, quantum materials, according to [21], are those with novel

topological or entanglement properties, i.e., materials with an entanglement

that exceeds what Fermi statistics require and topological responses, such as

6 CHAPTER 1. GENERAL BACKGROUND: QUANTUM MATERIALS



1.1. DEFINITION OF QUANTUM MATERIALS

Figure 1.1: Different classes of Quantum materials, with present and future
applications of them (taken from [20]).

the quantized vortices found in superconductors [22]. An invariance indicator

describes how this phase is connected to magnetic flux, which leads to the

creation of these vortices in the superconducting condensate. This integer

winding number is a fundamental example of a topological invariant, which

is a trait that endures in a system despite smooth changes. Around a vortex,

the phase may only wind by an integer multiple of 2.

Cooper pairs are another example of spin or electron entanglement in complex

magnets. Conventional graphics are incapable of accurately depicting any

of these extraordinary physical phenomena. We can distinguish between

innovative and more typical types of quantum order provided by topology

and entanglement using phase transitions. This is why the material study has

only touched the surface of these tremendously complex quantum states of

matter. Figure 1.2 shows some of the above-mentioned quantum phenomena

occurring in quantum materials. After all this introduction, let us dive into

the classes of materials I personally studied in this Ph.D. thesis, namely

Kagome and Kitaev materials.

CHAPTER 1. GENERAL BACKGROUND: QUANTUM MATERIALS 7



1.2. KAGOME MATERIALS

Figure 1.2: Different classes of Quantum materials, along with some peculiar
physical phenomena which occur inside them (taken from [23]).

1.2 Kagome materials

Despite the ’fancy’ appellation, the term kagome has been used in condensed

matter physics for a long time to characterize novel materials and their char-

acteristic lattice structure. This word is derived from a Japanese phrase that

refers to a traditional Japanese woven bamboo basket design. The primary

similarity between the subject of investigation and the materials under con-

sideration is their geometric organisation. There is a certain arrangement of

equilateral triangles and regular hexagons in both circumstances, where each

hexagon is surrounded by a ring of equilateral triangles, and each equilateral

triangle is surrounded by a continuous chain of neighbouring hexagons. This

unusual geometric configuration is known as ”regular hexagonal and trian-

gular tiling” and is derived from the combination of regular hexagonal and

triangular tessellation patterns. Two hexagons and two triangles alternate

around each vertex, and their edges create an infinite number of lines. Fig-

ure 1.3 shows a graphical representation of what a kagome lattice structure

is. This lattice is one of the most fascinating places to study new quantum

phenomena in condensed matter. Because of its triangular lattice, it readily

hosts geometrical frustration, which leads to magnetic frustration in some

kagome magnets, such as the mineral Herbrtsmithite with the chemical for-

mula ZnCu3(OH)6Cl2 [24, 25]. This material is also expected to produce

valance bond solid states [26] and strongly correlated quantum spin liquid

8 CHAPTER 1. GENERAL BACKGROUND: QUANTUM MATERIALS



1.2. KAGOME MATERIALS

(a) (b)

Figure 1.3: (a) Japanese ’kagome’ basket and (b) Kagome lattice structure.

states [27]. Topological Dirac/Weyl/nodal line points, van Hove singulari-

ties (vHSs), and flat bands are also observed in this peculiar electronic band

structure. The vHSs and flat bands have high state densities and enhanced

effective masses, resulting in significant correlations around these bands. Be-

cause every kagome material has an electrical band structure, we will use the

term kagome metal as a synonym for kagome material. The intrinsic geomet-

ric frustration induced by the kagome lattice’s triangle structure provides a

fertile platform for studying the interplay of magnetic, charge, and ordering

frustrated events. A pictorial example of a frustrated magnetic kagome lat-

tice, whose spin cannot order in a classical anti/ferromagnetic way, is shown

in Figure 1.4. The electron interaction in the kagome lattice can be de-

scribed with a Hubbard model, and the typical Hamiltonian takes the form

[29, 30]:

H = H0 +Hint

H0 =
X

{i,j}σ

�
tij ĉ

+
iσ ĉjσ + h.c.

�
+ µ

X

i,σ

ni,σ

Hint = U0

X

i

ni↑ni↓ +
U1

2

X

<i,j>,σ,σ′

ni,σnj,σ′

(1.1)

H0 describes the tight-binding Hamiltonian, which comprises the chemical

potential µ and the hopping integral tij. The latter defines the kinetic energy

of electrons hopping from one site to a neighbouring one. Furthermore, we

define the annihilation operator of electrons on the i site with spin σ as ĉiσ,

CHAPTER 1. GENERAL BACKGROUND: QUANTUM MATERIALS 9



1.2. KAGOME MATERIALS

Figure 1.4: Section of the kagome lattice with spins in the fully ordered√
3×

√
3 structure (taken from [28]).

with property ni,σ = ĉ+iσ ĉiσ. Going on, Hint represents the Hamiltonian of

the system consisting of the local Hubbard interaction with scale U0 and the

Coulomb interaction of scale U1 between the nearest neighboring atoms.

We may explain the general features of ”kagome bands,” the three bands

that are commonly associated with kagome lattice, and the effect of other

variables on those bands and their accompanying physical properties us-

ing this formulation [1]. The corresponding electronic and band structures

are highlighted in Figure 1.5. The fundamental band structure of the ideal

kagome lattice (tij is the same for nearest neighbour sites in upward and

downward triangles, e.g. t1 = t2 in Figure 1.5b) is the same without consid-

ering electron interactions and symmetry breakdown. If we consider a tight

bonding model, Figure 1.5(c) represents the classical features of a doubly

degenerated flat band connected with other bands, a Dirac point around the

K point, and van-Hove singularities around the M point (Figure 1.5c) [29,

30, 32]. The density of states (DOS) and electron effective mass at the Fermi

level are considerably increased at the flat band and vHSs, where the high

electron correlation must be taken into account (Figure 1.5c). Furthermore,

10 CHAPTER 1. GENERAL BACKGROUND: QUANTUM MATERIALS



1.2. KAGOME MATERIALS

Figure 1.5: Kagome lattice structure and electronic band property. a) The
fundamental structure of an ideal kagome lattice. b) Schematic of the Fermi
surfaces in the Hexagonal Brillouin zone, with three ordering wave factors Qi,
i = 1, 2, 3. This sub-image is from the reference [31]. c) Labelled schematic of
the ideal kagome lattice band structure and accompanying DOS, van Hove
singularity (vHS), Dirac point (DP), and flat band (FB). This graphic is
based on the reference [1].

the hexagonal Fermi surface in momentum space is useful in the context of

Fermi surface nesting because it allows for the formation of links between

parallel Fermi surface sheets via three unique nesting vectors (as shown in

Figure 1.5(b)). It is worth mentioning that near the van Hove singularities

(vHSs), Fermi surface nesting becomes very evident, resulting in a significant

increase in electronic susceptibility and, eventually, Fermi surface instability.

At the vHSs point, the Fermi surface nesting is significant, resulting in diverg-

ing electronic susceptibility and Fermi surface instability. When symmetry

is broken, as in some of the previously discussed phase transitions, these

kagome bands may be modified and can generate new nontrivial topological

states such as CDW, nematic, and superconducting ones.

Over the previous four decades, a wide variety of kagome metals have been

developed and studied. Some examples include classical ferromagnets like

Co3Sn2S2 [33, 34] and non-collinear ferromagnet Fe3Sn2 [35, 36], with the

presence of Weyl fermions and magnetic skyrmions; occurrence of Dirac

points and flat bands in the antiferromagnet FeSn [37] and in the paramagnet

CoSn [38, 39], and chiral spin structures in the non-collinear antiferromag-

net Mn3X (X=Sn, Ge) [40, 41]. After this general introduction to Kagome

CHAPTER 1. GENERAL BACKGROUND: QUANTUM MATERIALS 11



1.2. KAGOME MATERIALS

materials, in the following, we will focus on the specific AV3Sb5 (A = K, Rb,

Cs) family that has been studied in this work.

1.2.1 AV3Sb5 kagome metals (A = Rb, Cs, K)

Recently, there has been a substantial increase in study interest in topo-

logical kagome metals, notably those labelled as AV3Sb5(with A indicating

potassium (K), cesium (Cs), and rubidium (Rb)). This increased interest

is primarily due to the remarkable discoveries made within these materials,

where a variety of physical phenomena, such as superconductivity, charge

density wave (CDW), nematic order, and a significant anomalous Hall effect,

have been observed to coexist within a single material, with their emergence

and evolution dependent on temperature variations [42–44] . These com-

plicated, symmetry-breaking, ordered states are discovered to compete or

interweave with one another, much like high-temperature superconductors.

These metals are made up of an alkali metal (Rb, Cs, K), a vanadium kagome

layer, and antimony interstitial layers separated into two inequivalent sites

(Sb1 and Sb2). The schematic representation of the unit cell for the RbV3Sb5

sample (equal to the CsV3Sb5 and KV3Sb5 ones) is shown in Figure 1.6. The

Figure 1.6: On the left, the unit cell of the ”pristine” (i.e., normal) crystalline
structure of RbV3Sb5. On the right, the 2-dimensional kagome layer formed
by vanadium atoms.

alkali metal is found at the corners of the unit cell, distant from the central

plane, as seen in Figure 1.6. Because most of the interactions that give rise to
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their particular physics occur in the kagome layer, these materials are usually

referred to as ”2-D kagome metals.” As an example, as recently established

in prior research [6], the in-plane (in the kagome layer) resistivity is ∼ 600

times less than the out-of-plane (along the c axis) resistivity. The lattice

parameters for this unit cell are a = b = 5.42 Å, c = 9.09 Å, and the space

group is hexagonal P6/mmmm. We now reach the ”core” of the crystalline

structure, the kagome layer. It is composed of vanadium atoms (shown in

red in Figure 1.6), with a V-V distance of dV−V ∼ 2.74 Å. Intercalated in-

side it are antimony Sb1 sites (in blue) located at the middle plane’s edges,

whose distance to the nearest V atoms is equivalent to the V-V distance

(dV−Sb1 ∼ 2.74 Å). Finally, the antimony Sb2 sites are located above and

below the kagome plane, resulting in graphene-like layers with a length of

dSb2−Sb2 ∼ 3.16 Å. The AV3Sb5 prototype has just three structural degrees

of freedom (a and c lattice parameters, z-coordinate on Sb2) due to the high

symmetry of the P6/mmm space group and the tiny unit cell.

As already stated, the lattice frustration inherently present within AV3Sb5

kagome metals promotes distinct physical phenomena that can coexist. At

Tc ∼ 0.8− 2.5 K (0.8 K for RbV3Sb5 and KV3Sb5, 2.5 K for CsV3Sb5), these

systems experience a superconducting transition, [7], the cause of which is

unknown. Furthermore, for higher temperatures in the range Tx = 68− 103

K (68 K for KV3Sb5, 94 K for CsV3Sb5, and 103 K for RbV3Sb5), certain

anomalies in magnetization and specific heat have been discovered, indicating

the possibility of another transition. Because the majority of the previously

cited kagome materials exhibit some kind of long-range magnetic ordering,

preliminary studies have focused on the search for the magnetism of elec-

tronic origin within this novel class of materials, but the results from muon

exclude the presence of local magnetic moments inside AV3Sb5 samples [42].

With this insight, subsequent studies using X-rays, STM, and Angle-resolved

photoemission spectroscopy (ARPES) discovered evidence confirming a spe-

cific type of charge ordering happening at Tx, namely a Charge-density Wave

(CDW) transition.

The CDW transition is a collectively ordered phase of the charge degrees
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of freedom that spontaneously destroys the underlying lattice’s translation

symmetry. It might be due to significantly different microscopic physics.

One of the most prevalent situations is the Peierls scenario, in which the

instability is caused by Fermi surface nesting. For the sake of simplicity,

consider a 1-dimensional atomic lattice with atoms separated by a constant

z distance. According to Ref. [45], if an energy gap is opened at k = ±kF ,

where kF is the Fermi wavevector, the energies of the occupied states below

EF (the Fermi energy) are dropped, lowering the overall electronic energy.

By rebuilding the Fermi surface and opening a gap, this system expends

energy in the form of strain but saves more energy than if it had not. Peierls

pointed out that a modulation of the positions of the lattice atoms of the

form:

δun = δu cos [Qz + ϕ] (1.2)

with wavevector Q = 2kF (and wavelength λc = π/kF ) would produce gaps

at ±kF . At lower temperatures, the expenditure of elastic energy associated

with changing atomic positions is offset by a rise in conduction electron

energy. As a result, the charge density wave (CDW) configuration emerges as

the preferred ground-state form [46]. Thermal excitation of electrons across

a gap reduces electrical energy increase at high temperatures, stabilizing

the metal state [47]. According to [48], the second-order transition between

metal and CDW states is known as the Peierls transition. A complicated

order parameter Ψ = ∆eiϕ characterizes the CDW state. The magnitude

∆ governs the extent of the electronic energy gap as well as the amplitude

δu of atomic displacements. The phase ϕ determines the CDW’s location in

relation to the underlying lattice.

Electrons included within a charge density wave (CDW) have the ability

to form standing waves while also conducting electrical current. Electron

transport in such a CDW arrangement can appear as a strongly coupled

flow along a linear chain structure, similar to the behaviour found in super-

conductors. It is crucial to highlight that, unlike superconductors, electrical

CDW currents display erratic behaviour, which is mostly due to their elec-

trostatic properties. This effect is caused by electrons’ intrinsic wavelike
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nature, which is a manifestation of the fundamental quantum mechanical

concept of wave-particle duality. As a result, the electronic charge density

within metallic crystals is spatially modulated, characterised by periodic os-

cillations or ”bumps” in charge distribution. The creation of these standing

waves results from the superposition of opposing momentum electron states

represented by wavefunctions, determining the behaviour of all electronic

wave functions. In terms of electrical charge, the periodic deformation of the

atomic lattice, which is essentially a superlattice, is linked with the CDW.

A graphical representation of a CDW transition is shown in Figure 1.7. The

Figure 1.7: A graphic illustration of a one-dimensional periodic metallic lat-
tice experiencing a charge density wave (CDW) transition and a Peierls-
distorted insulating lattice, is shown here. (a) Without electron-phonon
interaction, the periodicity a of lattice has a uniform charge density dis-
tribution, and all electron states inside this lattice extend up to the Fermi
level. (b) When the electron-phonon interaction is considered, the insertion
of Peierls distortion generates a consistently modulated charge density inside
the lattice, establishing an energy gap at the Fermi level. Reproduced with
permission from [49].

kagome metals AV3Sb5 go through this one-of-a-kind transition, which co-

exists with the superconducting one. In this context, some questions arise,

such as what the superlattice formed by the CDW modulation is below Tx

(which will be called Tcdw going forward), how to detect the formation of

this superlattice, how the superconducting state and the CDW state interact

below Tc, and if there are any other intriguing instabilities in the temper-

ature range Tc ≤ T ≤ Tcdw. Most of these concerns will be answered and
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investigated in the next chapters when I provide my experimental results for

AV3Sb5 samples. Table 1.1 shows the kagome metals characterized person-

ally by means of NMR and µSR, their composition and form, either single

crystal (SC) or polycrystalline (powder). Overall, AV3Sb5 kagome metals

Table 1.1: List of kagome metals of the AV3Sb5 family characterised by means
of NMR and µSR, along with their composition, form, and technique used.

Composition Doping Label Form Tecnhique Chapter
RbV3Sb5 Undoped RVS Crystal NMR/NQR Chapter 4
KV3Sb5 Undoped KVS Crystal NQR Chapter 4
CsV3Sb5 Undoped CVS Crystal NQR Chapter 4

x = 0.05 CVS-Sn05 Powder NQR Chapter 4
CsV3Sb5−xSnx x = 0.08 CVS-Sn08 Powder µSR Chapter 5

x = 0.35 CVS-Sn35 Powder µSR Chapter 5
x = 0.04 CVS-Te04 Powder NQR Chapter 4

CsV3Sb5−xTex x = 0.06 CVS-Te06 Powder NQR Chapter 4
x = 0.08 CVS-Te08 Powder µSR Chapter 5

provide an intriguing and intriguing platform for revealing the link between

various types of topological phase transitions, the origin of which is still being

studied by a large number of research organizations all over the world.

1.3 Kitaev materials

This section will be devoted to the explanation of Kitaev materials. Among

all the references that will be cited, the major contributions to this text

will be taken from the review [50]. Kitaev materials have recently received

a lot of interest due to their exciting potential for unique unconventional

magnetism, particularly the realization of quantum spin liquids in lattice

geometries other than one [51–53]. Due to the intricate interactions between

the electronic, spin, and orbital degrees of freedom, transition-metal oxides

with partly filled 4d and 5d electron shells have received a lot of research

interest. According to Ref. [54], this complexity arises from an equilibrium

combining electronic correlations, spin-orbit entanglement, and crystal-field

phenomena that are mostly accidental.
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The fundamental building block of Kitaev materials is bond-directional in-

teractions, which are comparable to Ising-like interactions and in which the

orientation of the exchange easy axis relies on the spatial alignment of an

exchange bond. When compared to other exchange methods, these interac-

tions have the highest coupling intensity. The microscopic reasons for these

bond-directional interactions in transition-metal compounds with a d5 elec-

tron configuration were made clear by Khaliullin and Jackeli [51, 55].

According to Khaliullin and Jackeli work, the geometric configuration of

neighbouring IrO6 octahedra is a crucial factor influencing the microscopic

exchange interactions of magnetic moments focused on the iridium ions po-

sitioned at the cores of these octahedral formations. They find two critical

options, which are illustrated (with an extension) in Figure 1.8. It is in-

Figure 1.8: Several geometric orientations of nearby IrO6 octahedra result
in diverse kinds of (dominant) exchange interactions between the magnetic
moments located at the core of these octahedra. A dominant symmetric
Heisenberg exchange is obtained for corner-sharing geometry (I), whereas a
dominating bond-directional, Kitaev-type exchange is found for edge-sharing
geometry (II). Taken from [50].

triguing to note that two nearby IrO6 octahedra in the perovskite iridates

class—which includes compounds like Sr2IrO4—share a common corner. This

geometric arrangement results in a single Ir-O-Ir exchange channel, often

known as the 180� link, connecting the two iridium ions. Despite the strong

existence of spin-orbit coupling along this bond type, the dominating inter-

action mechanism is described by a symmetric Heisenberg exchange between

the spin-orbit entangled moments with angular momentum j = 1/2.

In the context of materials having a distinctive structural arrangement, a
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scenario arises when two IrO6 octahedra close to one another share an edge.

This design shows two distinct Ir-O-Ir exchange channels with a 90� bonding

shape. The existence of these two exchange channels acquires critical signifi-

cance since they lead to various outcomes: either a destructive interference of

the symmetric Heisenberg exchange when the interaction is restricted to the

j = 1/2 bands or a considerable attenuation of certain residual Heisenberg

exchange contributions when a complete multi-orbital model that incorpo-

rates the (virtual) j = 3/2 bands is utilised. The type of shared edge at

their junction determines the specific pairing of d-orbitals linked to the two

neighbouring octahedra that lead to this bond-directionality in the exchange

coupling. Moving on, the general form of the Hamiltonian governing the in-

teractions between j = 1/2 spin-orbit entangled moments of Kitaev materials

is as follows:

H = −
X

γ−bonds

JSiSj +KSγ
i S

γ
j + Γ

�
Sα
i S

β
j + Sβ

i S
α
j

�
(1.3)

where the sum is applied to nearest-neighbor spins coupled by a bond ⟨i, j⟩
along the γ = (x, y, z) direction. J represents the isotropic Heisenberg cou-

pling, and bond-directional couplings include:

� a Kitaev term of strength K that couples the spin component γ along

a γ-bond;

� a symmetric off-diagonal exchange Γ that couples the two orthogonal

spin components a, b ⊥ γ for a bond along the γ = (x, y, z) direction.

Different exchange couplings have different relative strengths and indications,

depending on the material. But all Kitaev materials share the dominance

of the Kitaev coupling (K) over the Heisenberg coupling (J), denoted as

K > J . This ratio between the Kitaev and Heisenberg exchange interactions

is extremely stable in the context of honeycomb iridates. The microscopic

model given in Equation (1.3), also known as the JKΓ model, is often sim-

plified in the Heisenberg-Kitaev model (Γ = 0) [56]. Bond-directional inter-

actions create significant exchange frustration since these interactions cannot
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be reduced concurrently, as shown in Figure 1.9. Because of exchange frus-

Figure 1.9: The Kitaev model of the honeycomb structure is depicted
schematically. The bond-dependent Ising-type interaction -JSγ

j S
γ
j′ (γ =

x,y,z) is specified on the bonds denoted by blue, green, and red for = x,
y, and z, respectively. Taken from [57].

tration, which is related to geometric frustration in that lattice geometry

imposes constraints that cannot be satisfied simultaneously, residual ground-

state entropy is created and magnetic ordering is suppressed. It is intriguing

that a significant fraction of the j = 1/2 Mott insulators cannot undergo

a finite-temperature phase transition according to the conventional Kitaev

honeycomb model [58, 59]. The Coulomb phase instead undergoes a ther-

mal crossover at absolute zero [60]. The pure Kitaev model, defined by J

and Γ being equal to zero, is crucial in studying condensed matter physics.

It is renowned for supporting both gapped and gapless quantum spin-liquid

ground states. Furthermore, it is one of the few microscopic models that can

be accurately solved analytically [61]. This particular concept gave rise to

the broader category of materials known as Kitaev materials. This model has

been studied extensively since the realisation of Kitaev Spin Liquids (KSLs)

which are obtained as the exact solution of the Kitaev spin model and are
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characterised by quantum frustrations that arise from the bond-dependent

anisotropic Kitaev interactions driven by Jeff = 1/2 Kramers doublets spin-

orbit entangled local magnetic moments.

1.3.1 Kitaev antiferromagnet Na2PrO3

In this subsection, I will briefly talk about one specific material in the huge

class of Kitaev materials: the antiferromagnet Na2PrO3. More will be dis-

cussed in the relative section of Chapter 6, where I will describe my experi-

mental work on Na2PrO3 using µSR and neutron scattering techniques. As

its name suggests, this material undergoes an antiferromagnetic transition at

TN ≃ 4.9 K, and its honeycomb lattice structure provides isotropic Heisen-

berg J interactions as well as anisotropic bond-dependent Kitaev interactions

K among Pr4+ ions. Furthermore, this material has attracted a lot of at-

tention since, by moving on beyond the Jackeli-Khaliullin mechanism, it has

recently been established that features of dominant Kitaev interactions are

realizable in compounds with the f1 electronic configuration, such as Ce3+

and Pr4+ [53, 62].

Some of the most important questions regarding this material included the

possible realization of a Kitaev Spin Liquid (KSL), the determination of

the antiferromagnetic structure below TN , and the precise description of the

ground-state exchange interactions in the magnetic order, which will be an-

swered in the dedicated part of Chapter 7.
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Chapter 2

NMR technique and

experimental methods

This chapter will describe the theory underlying the experimental technique

of Nuclear Magnetic Resonance (NMR), along with its experimental realiza-

tion. The latter includes the experimental setup, the cryogenic apparatus,

and the software acquisition of the NMR signal.

2.1 Theory of NMR

Protons and neutrons make up each atom, with electrons circling around

them. The nucleus (protons and neutrons) and electrons each have an in-

herent magnetic moment known as spin. This item is entirely quantum and

has no classical analog. The technique we’ll be discussing is called Nuclear

Magnetic Resonance (NMR) spectroscopy, and at its heart is the concept

of nuclear spin, which is commonly abbreviated as I (the electronic spin is

abbreviated as S).

Without an external magnetic field, the nuclear spins will be directed at ran-

dom orientations inside the bulk matter The magnet’s static magnetic field

B0 applied along a specified direction (usually the z axis in the laboratory

reference system) forces the nuclear spin to align with it. In the case of a
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group of hydrogen atoms with a single proton with nuclear spin I = 1/2,

there are only two possible orientations of I: I = +1/2 and I = -1/2. Be-

cause the +1/2 spin state has a lower energy, more than half of the hydrogen

atoms in the analyzed ensemble will be in this state, whereas slightly less

than half will be in the -1/2 state. The energy gap between the two spin

states grows as B0 increases.

The application of a second, oscillating magnetic field B1(t), significantly

less in modulus than the static one, in the perpendicular plane to B0 causes

the nuclear spins to tilt and follow the second field. This occurs only when

the frequency of the oscillating field B1(t) is ∼ to one of the intrinsic nuclear

energy levels, thus the term Nuclear Magnetic Resonance. After a short time,

B1(t) is turned off, and the nuclear spin realigns to the static field B0, i.e.,

they ”relax” back to the equilibrium state. In a word, this is the idea behind

NMR technology.

We have just given a basic overview of the NMR technique here, and we

will go into further detail about the physics behind it, the experimental re-

sults that may be obtained, and the applications of the technology. These

subsections will be mostly derived from books [63–66], and [67], a Ph.D.

thesis. The first two books are considered reference texts for Nuclear Mag-

netism and its application to NMR spectroscopy; the third book focuses on

the practical aspects of NMR spectroscopy (electronics, spectrometers, signal

generation, and so on); and the final book is a theoretical essay on Nuclear

Quadrupole Resonance (NQR), NMR’s ”cousin” in zero-field. Finally, the

above-mentioned Ph.D. thesis is largely based on the aforementioned schol-

arly references. For the classical and quantum description of nuclear spin

dynamics, please refer to Appendix A.

2.1.1 Electrostatic interaction between Nucleus and

Electrons

In the case of only magnetic interaction among the nuclei and the static

magnetic field B0, without the accountancy of other interactions (which will
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be discussed later), the Zeeman effect removes the degeneracy of the energy

levels, thus giving rise to 2I + 1 energy levels (where I is the nuclear spin)

equally spaced by an energy difference of:

∆E = −γℏB0 (2.1)

where γ is the gyromagnetic ratio of the nuclei under study. We must be

concerned with the hyperfine structure in order to explore all of the other

conceivable interactions between nuclei and electrons. The hyperfine struc-

ture of electronic spectra in condensed materials can reveal higher orders of

the electrostatic interaction between nuclear and electron charges. This in-

teraction can be linked to the effects of the nucleus’s small size. The energy of

Coulomb interaction between the electron cloud and the nucleus, denoted by

the classical charge densities ρe (re) and ρn (rn), respectively, is introduced

as:

WE =

Z Z
dredrn

ρe(re)ρn(rn)

|rn − re|
(2.2)

We will use the following expansion:

1

|rn − re|
= 4π

∞X

l=0

lX

m=−l

1

2l + 1

rl<
rl+1
>

Y m∗
l (θn,ϕn)Y

m
l (θe,ϕe) (2.3)

where re and rn are in spherical coordinates. Y m
l (θ,ϕ) are the spherical

harmonics, and r</> denotes the smaller or bigger difference between re and

rn. We shall always assume that re > rn in the following, ignoring the

implausible penetration of electrons into the nucleus. Using the expansion

Equation (2.2), we can separate the integrand of Equation (2.2) into two

pieces that rely on the variables re and rn. As a result, the energy WE is

rewritten as follows:

WE =
X

l,m

Am
l B

m∗
l (2.4)
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where:

Am
l =

� 4π

2l + 1

� 1
2

Z
drnρn(rn)r

l
nY

m
l (θn,ϕn)

Bm
l =

� 4π

2l + 1

� 1
2

Z
dreρn(re)r

−(l+1)
e Y m

l (θe,ϕe)

(2.5)

Further calculations are reported in Appendix A. Finally, we obtain the nu-

clear Hamiltonian responsible for the quadrupole coupling in the laboratory

frame:

HQ = ⟨ψe|H2 |ψe⟩ =
X

m

Qm
2 V

−m

=
eQ

I(2I − 1)

�1
2
(3I2z − I(I + 1))V 0

+

√
6

4

�
(IZI+ + I+Iz)V

−1 + (IzI− + I−Iz)V
+1 + I2+V

−2 + I2−V
+2
��

(2.6)

Vij = ⟨Vij⟩ denotes a symmetric tensor. As a result, we may select the

coordinate system that coincides with the axes XY Z, known as the Principal

Axis System (PAS). The axes are arranged so that the eigenvalues are sorted

as |VZZ| ≥ |VXX| ≥ |VY Y |. The amounts are introduced as follows:

eq = Vzz η = (VXX − VY Y )/VZZ (2.7)

where η refers to the asymmetry parameter of the EFG tensor and offers

an approximation of the deviation from the EFG’s axial symmetry. Equa-

tion (2.7)’s three components follow the following relationship (Laplace equa-

tion): ∇2V = VXX + VY Y + VZZ = 0, implying that 0 ≤ η ≤ 1. The

quadrupolar Hamiltonian can be represented more compactly in the PAS

as:

HQ =
e2qQ

4I(2I − 1)
(3I2Z − I(I + 1) +

1

2
η(I2+ + I2−)) (2.8)
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2.1.2 Quadrupolar Effects on Nuclear Energy Spec-

trum

The complete Hamiltonian of a nucleus under the influence of a magnetic

field and the electrostatic interaction with the surrounding electrons is as

follows, according to the quadrupole interaction:

H = −γℏB0 · I +
e2qQ

4I(2I − 1)
(3I2Z − I(I + 1) +

1

2
η(I2+ + I2−)) (2.9)

where Iz, I+, and I− indicate the spherical components of I in the coordinate

system of the principal axes of the electric field gradient. Experimentally, we

can have two instances. The quadrupole energy eigenvalues are computed

first in the low magnetic field limit, and then the influence of the magnetic

field is added as a perturbation. The quadrupole term is handled as a per-

turbation of the Zeeman-splitted energy levels at the high field limit.

High magnetic fields

As a first observation, we assume that the sample under consideration is

monocrystalline in order to establish a different coordinate system SQ in

which each nucleus contains the electric field gradient tensor Vij in the diag-

onal form. It is more convenient to align the z-axis with B0 and examine the

system from the laboratory reference frame Slab when examining the system

in the high-field limit. Thus, the cartesian frame will coincide with the XYZ

frame, but the EFG tensor’s principal axis system (PAS) will coincide with

the XYZ frame. We also assume that the EFG has axial symmetry (η = 0).

In this case, we can always align the axes x and X in Slab and SQ so that

the planes xz and XZ coincide. The new Hamiltonian with this formulation

is:

H = HZ +HQ (2.10)
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with the two components (Zeeman and Quadrupolar) defined as:

HZ = −γℏB0Iz

HQ =
e2qQ

4I(2I − 1)





1

2
(3cos2θ − 1)(3I2z − I(I + 1) ∆m = 0

+
3

2
sinθcosθ [Iz(I+ + I−) + (I+ + I−)Iz] ∆m = ±1

+
3

4
sin2θ(I2+ + I2−) ∆m = ±2

(2.11)

where I± has been redefined as Ix ± iIy . The energy levels are found by

computing the perturbative contributions of increasing order, as in:

Em = E(0)
m + E(1)

m + E(2)
m + ... (2.12)

We also introduce the following parameters:

νQ =
3e2qQ

2hI(2I − 1)
a = I(I + 1) µ = cosθ νL =

γB0

2π
(2.13)

Then, second-order perturbation theory gives the following results:

E(0)
m = −γℏB0m = −hνLm

E(1)
m =

1

4
hνQ(3µ

2 − 1)(m2 − 1

3
a)

E(2)
m = −h

�
ν2
Q

12νL

�
m





3

2
µ2(1− µ2)(8m2 − 4a+ 1)

+
3

8
(1− µ2)2(−2m2 + 2a− 1)

(2.14)

The Zeeman-splitted energy levels E(0)m are evenly spaced in the absence of

the quadrupole interaction, and assuming that only transitions with ∆m =

±1 are permitted, there will be a unique resonance frequency:

νL =
E

(0)
m−1 − E

(0)
m

h
for all m (2.15)

as already mentioned in Equation (2.1). When the quadrupole energy is

taken into account, the perturbative corrections to the energy levels depend
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on m, and the resulting resonance frequencies will be multiple:

νm =
Em−1 − Em

h
= νL + ν(1)

m + ν(2)
m + ... where ν(n)

m =
E

(n)
m−1 − E

(n)
m

h
(2.16)

For instance, the 1st-order correction to the resonance frequency is:

ν(1)
m =

E
(1)
m−1 − E

(1)
m

h
= νQ

�
1

2
−m

�
3µ2 − 1

2
(2.17)

The apparent implication of this statement is that the first-order correc-

tion to the transition 1
2
⇔ −1

2
vanishes for half-integer spins. If we ignore

higher-order contributions, the corresponding line will remain fixed in place;

however, transitions between states m ̸= 1
2
and m ̸= −1

2
will drift apart and

produce the so-called satellite lines, which are arranged in an equal number

above and below the 1
2
⇔ −1

2
one. If an electromagnetic pulse is admin-

istered at precise resonance (ω = ω0), the Taylor series for the exponential

operator is as follows:

exp {−ia(n · I)t} =
∞X

j=0

(−iω1t)
j

j!
Ijx (2.18)

Since Ix = (I+ + I−)/2, the contributions to the probability of transition

between adjacent states will come only from the terms of odd order, and

primarily from the 1st order term. Hence, we find:

Pm−1,m(t) ∝ |⟨m− 1| exp {−ia(n · I)t} |m⟩|2

=

�����⟨m− 1|
∞X

j=0

(−iω1t)
j

j!
Ijx |m⟩

�����

2

=

�����
∞X

j=0

(−iω1t)
j

2j!
⟨m− 1| (I+ + I−)

j |m⟩
�����

2

∝ |⟨m− 1| Ix |m⟩|2

(2.19)

The final step is necessary since the term j = 1 has the largest weight due to

the factor 1/2j. This finding may also be used when quadrupole effects are

CHAPTER 2. NMR TECHNIQUE AND EXPERIMENTAL METHODS 27



2.1. THEORY OF NMR

included, in the approximation where perturbative corrections to the states

|m⟩ are ignored. As a result, it gives a straightforward formula for predict-

ing the relative strengths of the lines divided by quadrupole interaction in

the NMR spectrum. We may estimate the parameter νQ of a nucleus with

half-integer spin from Equation (2.17) by measuring the frequency difference

between the central line and the following ones at different angles θ. The

contrast of such experimental measures and the fitted theoretical plot for a

Na23 nucleus with spin I = 3/2 is illustrated in Figure. Figure 2.1(a). We

Figure 2.1: a) The frequency difference in NO3Na between the central line
and the symmetrically positioned satellites as a function of the angle θ be-
tween B0 and the crystal axis. The dots indicate experimental data, and the
straight curve is a fit plot that is consistent with the theoretical expectation
Equation (2.18) (derived from [63]). b) The angle θ between the magnetic
field B0 and the crystal axis affects the centre resonance frequency ν1/2 of Al

27

in Al2O3. The y-axis represents the frequency deviation with respect to ν1/2
(θ = 0), rescaled by the factor 4νL/ν

2
Q. The dots represent the experimental

data, whereas the straight line represents the predicted plot 2(1−µ2)(1−9µ2)
[63].

discover νQ = 167 kHz by fitting data using the function ∝ (3µ2 − 1)/2.

The applied field B0 in this experiment was such that nuL = 7.17 MHz,

implying an extremely tiny ratio νQ/νL. This indicates that the energy scale

of quadrupole effects is substantially lower than that of Zeeman effects, and

higher-order perturbative adjustments to energy levels can be safely ignored.
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The 2nd order correction is especially essential when the 1st one disappears, as

in the 1/2 ⇔ −1/2 transition. In this scenario, we may deduce the following

from Equation (2.14):

ν2
1/2 = − ν2

Q

16νL
(a− 3

4
)(1− µ2)(9µ2 − 1) (2.20)

The relevance of this phrase is clearly established by the ratio νQ/νL. A sys-

tem where the contribution of Equation (2.20) is plainly visible is the nucleus

of Al27 (I = 5/2) in the Al2O3 compound. Indeed, as seen in Figure 2.1(b),

the central line fluctuates significantly as a function of the angle θ. The ex-

perimental points closely match the theoretical plot of ν2
1/2 order correction.

As νQ is comparable to nuL = 2.6 MHz, the resultant measure of νQ verifies

that the 2nd order term is not insignificant this time. When the gradient of

the electric field is not axially symmetric, the first-order adjustment to the

energy levels is:

E(1)
m =

1

4
hνQ

�
3cos2θ − 1 + ηsin2θcos2ϕ

�
(m2 − 1

3
a) (2.21)

where θ and ϕ are the polar and azimuthal angles of the magnetic field B0

in the EFG’s major axis system. According to this formula, monitoring the

NMR spectra for different sample orientations offers enough information to

establish the direction of the primary axes of the electric field gradient as

well as the values of η and νQ.

Zero field spectrum

The pure Quadrupolar Hamiltonian of the nucleus, as seen from the coordi-

nate system of the principal axes of the electric field gradient, is:

HQ =
e2qQ

4I(2I − 1)
[3I2Z − I(I + 1) +

1

2
η(I2+ + I2−)] (2.22)

An electromagnetic pulse with the right frequency that connects with the

magnetic moment, similar to the pure Zeeman condition, can trigger transi-

tions between the quadrupole energy levels.
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If we assume that the electric field gradient is axially symmetric (η = 0), the

solution to the Equation (2.22) eigenvalue issue is straightforward.

Em =
e2qQ

4I(2I − 1)
[3m2 − I(I + 1)] (2.23)

From this result, one immediately realizes that the energy level corresponding

to Iz = ±m is two-fold degenerate. The transition from |1/2| ↔ |3/2|,
will equate to one line for I = 3/2. The associated frequency projections

are:

ν3/2 =
1

2

e2qQ

h
(2.24)

The transition from |0| ↔ |1| and |1| ↔ |2| will equate to two lines for I = 2.

The associated frequency projections are, in this case:

ν1 =
1

8

e2qQ

h
ν2 = 3ν1 (2.25)

In general, the frequency transitions from |m− 1| ↔ |m| and |m′− 1| ↔ |m′|
obey the following rule:

νm
νm′

=
2|m|− 1

2|m′|− 1
(2.26)

The distinction between integer and half-integer spins can be found in Ap-

pendix A.

2.1.3 Dipolar coupling and Knight Shift

Aside from the dominant Zeeman interaction and the Quadrupolar interac-

tion (which, as previously stated, can be a perturbation or the main inter-

action in the system), there are other sources of interactions between nuclei-

nuclei and nuclei-electrons that can cause the NMR lines to broaden or sift

at different frequencies. The primary contributor in the first situation is

dipolar coupling among nuclei, which generates a widening of the spectral

line, whereas the major contributors in the second case are the Knight shift

and chemical shielding. Because we are working with solid-state systems,

specifically metals, the first of the two is the more important. This is due
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to the fact that metal electrons are highly mobile and de-localized, result-

ing in a significant interaction with the nuclei ensemble under examination.

Chemical shift is substantially more pronounced in molecules and chemical

compounds, where core electrons are important.

Dipolar coupling

Apart from many inherent and extrinsic sources of widening (such as the

inhomogeneity of the applied magnetic field), the dipolar coupling is the pri-

mary cause of NMR line broadening. The following section is based primarily

on Ref.[68]. The coupling of two magnetic dipoles causes the dipole interac-

tion. Traditionally, the energy of two interacting dipoles µ1 and µ2 separated

by a distance r is given by:

ED =
µ0

4π

�
µ1 · µ2

r3
− 3 (µ1 · r) (µ2 · r)

r5

�
(2.27)

By substituting µ1 = γ1ℏI1 and µ2 = γ2ℏI2, the Hamiltionian reads:

HD =
µ0

4π

γ1γ2ℏ2

r3

�
I1 · I2 −

3 (I1 · r) (I2 · r)
r2

�
(2.28)

After turning into spherical coordinates and doing some calculations, the

dipolar Hamiltonian reads:

HD =
µ0

4π

γ1γ2ℏ2

r3
[A+ B + C +D + E + F ] (2.29)
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where the terms A-F are given by:

A = I1zI2z(3cos
2θ − 1)

B = −1

4
[I1+I2− + I1−I2+] (3cos

2θ − 1)

C = −3

2
[I1+I2z + I1zI2+] (sinθcosθ)exp(−iϕ)

D = −3

2
[I1−I2z + I1zI2−] (sinθcosθ)exp(+iϕ)

E = −3

4
[I1+I2+] sin

2θexp(−2iϕ)

F = −3

4
[I1−I2−] sin

2θexp(+2iϕ)

(2.30)

Only terms A and B commute with Iz, resulting in a Hamiltonian time-

independent Hamiltonian. As the magnetic field travels down the z-axis in

Equation (2.30), θ is the angle created by the internuclear vector and the

magnetic field B0. We have a homonuclear or heteronuclear dipolar coupling

depending on whether the two interacting nuclei are the same element or not

(for further information, please read [68]). The direction of the inter-nuclear

vector and the inverse cube of the distance impact both heteronuclear and

homonuclear dipolar coupling, and they typically result in larger lines in

single crystals and powders.

Knight shift

When electron states are not coupled by molecule states or bonds, the applied

field can cause spin degeneracy in electronic states, such as electron states

near the Fermi level in a metallic band. The contact hyperfine term may

then be induced by the electronic atomic moment, resulting in the formation

of a Beff component. The frequency shift, often known as the Knight shift,

is proportional to the metallic band’s Pauli spin susceptibility χ [69–71]. We

can start from the interaction between nuclei and electron spins:

Hne = −γℏ
X

i,k

IiAi,ksk (2.31)

32 CHAPTER 2. NMR TECHNIQUE AND EXPERIMENTAL METHODS



2.1. THEORY OF NMR

using the hyperfine coupling term Ai,k. The hyperfine field at the i-th nucleus

may thus be calculated as hi =
P

k Ai,ksk. If the average polarisation of

the electron spins is not zero ⟨s⟩, the local field felt by the nucleus will be

hi =
P

k Ai,k ⟨sk⟩. With the presence of an external magnetic field, the nuclei

will feel the following shift in the local magnetic field:

H = H0 +
X

k

Ai,k ⟨sk⟩ (2.32)

and the resonance frequency will be shifted to ω = ω0(1+∆K), where:

∆K =

P
k Ai,k ⟨sk⟩
H0

=
X

k

Akχ(q = 0, ω = 0) (2.33)

The shift in the NMR resonance spectrum may thus be used to calculate the

static uniform susceptibility associated with electron spins that interact with

nuclear spins. In the case of simple metals, the obtained value of χ may be

used to calculate the density of states at the Fermi level as follows:

χ = (gµB)
2ρ(EF )/2 (2.34)

In the end, we can summarise all the possible interactions that arise in an

NMR experiment. Figure 2.2 shows all the major interactions involved in the

NMR and NQR measurements, including the Zeeman, quadrupolar, dipolar,

and Knight shift ones.

2.1.4 Free Induction Decay (FID) and NMR/NQR spec-

trum

According to [64], the spectrum of the transitions caused by linearly po-

larised pulses in an NMR system is related to the Fourier transform of the

free precession signal recorded after a π/2 pulse is delivered. This signal is

theoretically expressed as the time dependence of the x component of the

pulse-induced magnetization. For example, the signal of a pulse running
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Figure 2.2: The diagram shows the hyperfine levels of a nucleus of I = 3/2,
and illustrates the effect of the various interactions discussed up to now.

across the time period [0,tP ] would be:

G′(t) = Mx(t) = Tr{ρ(t)Mx}, t > τ (2.35)

Combining signals received along the x and y axes, which represent the real

and imaginary components, yields a complex signal. Thus, a more accurate

formulation of Equation (2.35) would be:

G′(t) = M+(t) = Tr{ρ(t)M+}, t > τ

M+ = Mx + iMy

(2.36)

In most experiments, the same coil that produces the pulse is also used to

detect one of the magnetization components. Assume the coil completely

covers the sample, and the magnetic field produced by magnetization is

B(t) = µ0M(t). The magnetic flux across the circuit will be Φ(t) = Bx(t)NA,

where N is the total number of windings in the coil, A is its cross-sectional

area, and x is its rotational direction. The voltage induced in the coil by

the time-varying flux is defined by the Faraday-Neumann-Lenz law, which
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states:

V (t) =
dΦ(t)

dt
∝ dMx(t)

dt
(2.37)

The free precession signal fully represents the genuine signal found during

NMR study. In developing our theoretical framework for NMR/NQR, we en-

tirely overlooked the critical concept of spin relaxation. Thermalization and

regional changes in the magnetic field gradually extinguish the transverse

components of magnetization. As a result, the signal G′(t) exhibits oscilla-

tions with zero amplitude; as a result, it is known as Free Induction Decay,

or FID for short. In Figure 2.3(a), a graphic illustration is shown. The com-

Figure 2.3: a) Free Induction Decay signal, whose voltage varies in time and
decays after a certain period. b) Absorptive A(∆ω) and dissipative D(∆ω)
Lorentzian functions of NMR spectra, i.e., the Fourier Transform of FID
signal in a).

ponent of the magnetic field that is formed on the plane xy when a pulse pre-

cedes around the magnetic field B0 = B0k with frequency ω0 = ω0k = −γB0

in a pure NMR experiment is ω0 = ω0k = B0k. Without the effects of

relaxation, the free precession signal would be:

G′(t) = c[cos(ω0t) + isin(ω0)t], t > τ (2.38)

CHAPTER 2. NMR TECHNIQUE AND EXPERIMENTAL METHODS 35



2.1. THEORY OF NMR

where c is an arbitrary (real) factor. The relaxation acts as an exponential

decay with a time-constant T2:

G′(t) = c[cos(ω0t) + isin(ω0)t]e
−t/T2 , t > 0 (2.39)

and switching in the frequency domain, the Fourier transformation of the

function reads:

bG′(ω) =

Z ∞

−∞
G′(t)e−ωtdt =

1/T2

(1/T2)2 + (ω0 − ω)2
+

i(ω0 − ω)

(1/T2)2 + (ω0 − ω)2

= A(∆ω)− iD(∆ω)

(2.40)

where∆ω = ω−ω0. The absorptive and dispersive Lorentzian curves, A(∆ω)

and D(∆ω), are respectively centered at frequency 0 and have a complete

width at half height of 1/πT2 (Figure 2.3(b)), and have the form of:

A(∆ω) =
1/T2

(1/T2)2 + (∆ω)2
D(∆ω) =

i(ω0 − ω)

(1/T2)2 + (∆ω)2
(2.41)

As a result, the longer the characteristic time T2 (also known as the deco-

herence period), the more precise the localization of the peaks in the NMR

spectrum. Furthermore, Equation (2.40) demonstrates that the Fourier anal-

ysis of the FID signal yields the frequencies of the system’s transitions; in

this example, this is just the position of the peak in the Fourier spectrum

ω0.

Bloch’s equations show that when a signal G′(t) of length tP is delivered to

a sample, it relaxes with two unique decay periods, T1 and T2. The in-phase

and out-of-phase (π/2 phase) components of nuclear spin susceptibility may

be derived from the in-plane components of magnetization, as illustrated

below:

χ′(ω) =
M0

H0

ω0(ω0 − ω)T 2
2

1 + (ω0 − ω)2T 2
2

χ”(ω) =
M0

H0

ω0T2

1 + (ω0 − ω)2T 2
2

(2.42)

where χ′ is the absorptive part A(∆ω) and χ” is the dissipative part D(∆ω)
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as derived in Equation (2.41). When the sample is inserted into the NMR

coil, there are shifts in the inductance and in the resistance of the circuit

equal to:

L = L0[1 + 4πχ(ω)] ∆R = L0ω4πχ” (2.43)

The average rf power absorbed by the nuclei per unit of time is:

P (ω) =
χ0

2
ωω0H

2
1f(ω)2π =⇒ χ”(ω) = 2πf(ω)ω0χ0 (2.44)

where f(ω)dω denotes the percentage of nuclei that resonate in the frequency

range ω, ω+ dω. When ω = ω0, χ = χ0. The signal is proportional to P (ω),

which in turn is proportional to χ”(ω). Finally, the NMR spectrum f(ω) is

as follows:

f(ω) ∝ χ”(ω) =
ω

kBT

Z ∞

0

Eiωt
D
Mx(t)Mx(0)

E
dt (2.45)

As a result, the NMR spectrum is a precise Fourier transformation of the

transverse component function of nuclear magnetization at omega frequency.

2.1.5 Relaxations mechanisms

Spin-Spin Relaxation

In the following, we will refer to the reference [72]. Exogenous factors, such as

variations in the homogeneity of the magnetic field across the sample volume

caused by the magnet, can also have an impact on the decay of the Free

Induction Decay (FID) signal in addition to internal factors. Considering

this, the FID signal makes additional contributions as follows:

G(t) = G(0)e(−t/T ′
2)e(−γ∆Ht) = G(0)e(−t/T ∗

2 ) (2.46)

where the magnetic field distribution is denoted by ∆H. One of the primary

duties is to record the NMR signal in an unknown material. Because the FID,

and therefore the NMR signal, is heavily dependent on the decoherence time

T2, the pulse sequence and length must be adjusted to allow for the FID’s
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potential fast decay. Experiments have shown that T2 might be so short

that it is impossible to record the FID signal. The Spin-Echo approach may

be utilized to avoid signal deterioration before acquisition, and we will go

through it in further depth. When using the pulse sequence, we assume that

the magnetic field distribution is static.

The Spin-Echo technique, also known as the Hahn-echo method (since it was

created in nuclear magnetic resonance by Erwin Hahn in 1950), uses two rf

pulses rather than one (which is commonly used to detect the FID of nuclear

magnetization). The FID that arises from an initial 90� excitation pulse de-

cays with time due to spin relaxation and any inhomogeneous processes that

cause spins in the sample to precess at various rates when using a one-pulse

method alone. As a result, the initial relaxation results in irreversible mag-

netism loss. Inhomogeneous dephasing, on the other hand, may be eliminated

by introducing a 180� inversion pulse that inverts the magnetization vectors

after a predetermined delay τecho. A schematic representation is shown in

Figure 2.4. The temporal evolution of in-plane nuclear spins is reversed as

a result of the π rf pulse. As a result, the in-plane magnetization recovers

at 2τecho, resulting in an echo signal, and the spins’ dephasing is restored in

the second half of the sequence. It is obvious that nuclear spin refocusing

is achievable as long as the resonance frequency of each nucleus is the same

throughout the first and second halves of the pulse sequence.

Spin-Lattice Relaxation

In the following we will refer to the reference [72]. Bloch equations demon-

strate that the longitudinal component of nuclear magnetization relaxes back

to its equilibrium value, which is controlled by the lattice temperature, with

a characteristic relaxation time T1. We have difficulty with the detection

method for measuring this relaxation period. We can only detect a signal

in the xy plane since the FID signal is the Fourier transform of the mag-

netization component perpendicular to the field. This is not the case for

longitudinal magnetization recovery, which tends to align along the z axis.

To address this issue, many experimental strategies have been investigated.
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Figure 2.4: Schematic representation of the motion of spins in the case of a
spin-echo technique. It also shows the pulse sequence and the decay of the
echo.

Inversion Recovery (or T1−IR) is depicted in Figure 2.5 as a simple rf pulse

sequence that may be used to measure T1.

After switching the magnetization along z′ with a π pulse, a τ delay is kept

before a second π/2 pulse is applied. The second π/2 will reverse on the

xy plane the proportion of magnetism that has relaxed back to equilibrium

throughout time. T1 may be computed by repeating the experiment with

different τ values. Keeping in mind that T1 > T2 in solid-state materials, τ

must vary up to a few seconds in some conditions. Nuclear magnetization

will return to equilibrium depending on the likelihood of transitions between

hyperfine levels connected to the time-dependent Hamiltonian or lattice ex-

citations. The statistical populations at the hyperfine levels may also be

used to understand the impact of the previous pulse sequence on longitudi-

nal magnetization. If we investigate nuclei with I = 1/2 for convenience,

the population difference between the two levels is really Mz(t) ∝ N+ −N−.
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The following differential equation must be solved in order to determine the

Figure 2.5: Schematic representation of spin-lattice relaxation and the pulse
sequence used to measure it. In the bottom part, the effect of π/2 pulse on
the population of states

temporal evolution of population density between the levels that receive ra-

diation since, in general, with spin I, we have 2I + 1 states:

dNm

dt
=
X

n̸=m

(Nnωnm −Nmωnm) (2.47)

In the case of I = 1/2:

Mz(τ) = Mz(τ → ∞)(1− e−τ/T1) =⇒ y(τ) =
Mz(∞)−Mz(τ)

Mz(∞)
= e−τ/T1

(2.48)

Every transition that might occur for I > 1/2 and is driven by the time-

dependent component of the Hamiltonian must be considered. When solving

the system of differential equations, only transitions with ∆m = ±1 must

be considered if the fluctuations are associated with an effective fluctuating

magnetic field (such as electron spin fluctuations). If the fluctuations are
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those of the electric field gradient, then in the case of quadrupolar interaction,

one must account for ∆m = ±2 transitions since HQ is quadratic in the spin

components.

2.2 NMR experimental setup

Regarding NMR spectroscopy, I will follow here the Ref. [66]. As already

mentioned, NMR spectroscopy is a very powerful technique to explore local

microscopic interactions of magnetic and electric nature. A very complex

and big experimental apparatus is needed to account for this, since the total

nuclear magnetization revealed when applying the rf field is tiny in modulus

(order of µV). A giant superconducting/resistive magnet is needed to produce

the static magnetic field B0. Furthermore, depending on the temperatures at

which we are meant to measure an NMR signal, a cryogenic setup is needed,

thus enlarging and complicating the setup. Finally, the electronic circuit

that transmits and receives the NMR signal from the sample has to be built

properly, with many different pieces.

2.2.1 Static magnetic field

At the core of NMR spectroscopy is using a static magnetic field B0 to align

nuclear spins along it. In NMR spectroscopy, magnetic fields in the order of

7-10 T are used. Continuous magnetic fields in the 36-40 T range are feasible

in some high-field facilities, as are pulsed magnetic fields up to 100 T. These

magnetic fields can be generated using either superconducting coils cooled

with liquid helium, permanent magnets, or electromagnets. An example of

a superconducting NMR magnet is shown in Figure 2.6.

Superconducting magnets

There are two sorts of superconducting magnets in the academic context:

persistent and non-persistent. Monofilament wire, recognised for its little

resistance at joints, is the standard choice for manufacturing persistent mag-

nets. This design enables continual current flow through the coil without
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Figure 2.6: Example of an NMR superconducting magnet, from the Univer-
sity of Parma, Department of Physics, NMR laboratory of Prof. Giuseppe
Allodi. Here, the magnetic field generated is 7.95 T.

requiring a constant driving force from the power source. In contrast, non-

persistent magnets frequently utilise multifilament wire, which is capable of

withstanding greater magnetic fields and generating stronger magnetic forces.

However, multifilament wire exhibits increased electrical resistance due to its

difficulty in creating solid connections. For NMR magnets employing mul-

tifilament wire, maintaining a dependable power supply is critical for high-

resolution investigations, especially when operating at magnetic fields over 7

T. Typically, the power supply gradually energizes the coil while maintain-

ing a temperature of liquid helium (2-He). An incorporated superconducting

switch stops the electrical connection, allowing the power supply to be un-

plugged and removed, enabling persistent mode functionality. This design

often allows for the deletion of certain electrical wires entering the primary

coil and superconducting shim coils to limit heat transfer into the dewar
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and, subsequently, lower 2-He consumption. A pictorial scheme of an NMR

superconducting magnet is shown in Figure 2.7. Modern persistent mode

Figure 2.7: Scheme of a superconducting magnet used for NMR spectroscopy.
Taken and adapted from [73].

magnets feature exceptionally low 2-He boil-off rates, enabling continuous

operation. With a 2-He reservoir surpassing 50 liters and a boil-off rate of

only a fraction of a liter per day, these magnets can run for extended du-

rations, possibly exceeding two months. The 2-He holding time, controlled

by 2-He consumption rate and dewar capacity, is an important parameter

in superconducting magnet operation. Minimizing the boil-off rate is ad-

vantageous, but its impact is restricted if the storage period is short. Larger

dewars, housing the solenoid, are more efficient than smaller ones, demanding

a capacity surpassing 50 liters for optimal efficiency. Standard NMR super-

conducting magnets often attain good field homogeneities, typically about

1 part in 106 across a broad sample volume, with the assistance of super-

conducting correction (shim) coils. These long-lasting rectifying coils require

just slight changes. The introduction of ambient temperature adjustment

coils can further enhance field homogeneity.
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Electromagnets

Electromagnets are made of an iron core that is magnetized by strong electri-

cal currents. Controlling electric current is crucial for achieving stable mag-

netic fields in high-resolution electromagnets, particularly those with iron

cores. The magnetic field strength depends on the iron core’s permeability,

which is temperature-sensitive. To ensure field stability, thermal manage-

ment is essential, typically performed via temperature regulation and ap-

propriate cooling. In high-resolution applications, more coils and feedback

mechanisms based on nuclear magnetic resonance (NMR) signals are often

used to lock and stabilize the magnetic field. While NMR locks flourish

with moderate adjustments, they may lose synchronization with rapid field

changes. Therefore, they are usually deployed alongside a ”superstabilizer”

or flux stabilizer, which responds to magnetic field changes by producing

corrective currents in coils. This circuit operates like a low-pass filter, ef-

fectively dampening rapid field changes. Combining a flux stabilizer with

an NMR lock ensures constant magnetic fields across short and extended

periods.

Alternatively, field modulation can be applied using non-NMR probes like

Hall-effect probes. This approach is less sensitive to temperature-induced

permeability changes, offering the potential for high-resolution NMR mag-

nets. Field-regulated magnets are simply tunable and give repeatability,

allowing for huge field sweep ranges spanning up to 100 % of the magnetic

field. It’s worth remembering that electromagnets, save for superconducting

variants, generate significant heat due to electric current flow across coils.

Proper heat dissipation is vital in the laboratory setting and is frequently

provided using water or air cooling systems, along with delivering the requi-

site electrical power.

2.2.2 Resonant circuit

The resonant circuit is essential to the Nuclear Magnetic Resonance (NMR)

experimental setup. Creating a rf alternating pulse from a coil is a critical
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operation in the NMR technique that requires a detailed discussion. The

resonant circuit, also known as an LC (inductor-capacitor) circuit, is easily

built by selecting an inductor indicated as L and a capacitor designated as

C. This circuit’s resonance frequency (ω0) can be estimated as follows:

ω0 ≈
1√
LC

(2.49)

The impedance of the circuit is labelled Z, and its value in the resonance

condition is Z ≃ 50 Ω. The specimen is placed into the coil L, which can

be made of plain Copper (Cu) wire or other materials such as Silver (Ag)

or flat wire constructed of Cu/Ag. This coil is a solenoid with specified

characteristics such as length (l), resistance (R), and diameter (d). According

to Equation (2.49), in the context of studying systems with high resonant

frequencies, such as around 140 MHz in a magnetic field of 10 Tesla, the use

of a circuit with a low inductance value (hence a reduced number of turns,

N , in the coil) is required. The same logic applies to capacitance (C) choices.

This connection may be stated clearly as follows:

ω0 ∝
1√
N

(2.50)

A set resonant frequency for the LC circuit is insufficient to undertake studies

requiring the study of multiple nuclei or to execute a frequency scan (where

the resonant frequency is varied while keeping a fixed magnetic field to record

the whole NMR/NQR spectra). As a result, a variable frequency that can be

accurately altered based on the individual nucleus under research is required.

NMR/NQR investigations use a variable capacitor and a fixed inductor L to

accomplish this. It is worth mentioning that a different method for acquiring

spectra can also be used, including fixing the rf field and adjusting the

static magnetic field B0. However, for the sake of this study, we will only

consider the technique in which B0 remains constant while the rf frequency

varies.

Regarding the inductor L, informally known as ”the coil,” various parame-

ters might influence the amount of rf power absorbed by the sample, hence
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influencing signal quality. Considering the coil as a solenoid first, its total

volume is given by V = π(d/2)2l, where l and d signify length and diameter,

respectively. The filling factor is the ratio of the volume occupied by the

sample to the overall volume of the solenoid. A larger filling factor translates

to more power absorption by the sample, resulting in a higher SNR with fewer

experimental scans. Furthermore, to guarantee that the incident alternating

rf field is equally distributed across the sample, thereby activating all nu-

clei with the same magnetic field intensity B1, the sample length should not

exceed half the length l of the solenoid, assuring uniform irradiation.

Tuning and matching capacitors

Regarding the capacitor component, the resonant circuit in NMR investiga-

tions requires both an adjustable frequency and maximum power transfer to

the sample. A single capacitor in series with the coil L is insufficient to meet

these two needs. As a result, a typical LC circuit used in NMR investigations

includes the following components:

� an inductor L, commonly made of Cu/Ag wire, within which the sample

is inserted;

� a tuning capacitor Ctuning, which is used to change the resonant fre-

quency in order to ”tune” the system to the desired frequency;

� a matching capacitor Cmatching, which regulates the amount of power

transferred to the sample to improve both the SNR and the rf field’s

irradiation frequency bandwidth.

The capacitor marked as Cmatching is used to manipulate the circuit’s quality

factor Q, a dimensionless measure characterising the efficiency of losses inside

a resonant passive circuit. Q is defined as the ratio of average stored energy

to average power loss. As a result, a lower loss equates to a greater Q. Res-

onators with high Q-factors have bigger amplitudes of resonance (at the res-

onant frequency); nevertheless, they have a limited frequency range around

the resonant frequency within which the nuclei may successfully resonate.

The process of ”matching” the frequency in this context requires modifying
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the impedance ascribed to Cmatching to achieve a value of 50 Ω, a standard

impedance characteristic of coaxial cables and associated equipment. As a

result, the maximum amount of power is transferred to the sample when the

LC circuit impedance coincides with the transmission/reception circuit (a

topic to be discussed later). The typical scheme for this NMR circuit, along

with a graphical representation of tuning and matching an NMR signal, is

shown in Figure 2.8, with a real picture of the scheme in Figure 2.9.

Figure 2.8: (a) The image of a general NMR circuit composed of the L
coil and 2 capacitors, one for tuning (CT ) the frequency and the other for
matching (CM) the total impedance. (b) Oscilloscope visualization of an
electronic signal when considering matching and tuning in a resonant circuit.
Taken from [74].

I used this experimental setup at Brown University to conduct NMR exper-

iments as a Visiting Research Fellow.

Transformer matching

Apart from this ”classical” NMR resonant circuit, another method exists to

build an LC circuit that can be matched and tuned using only a single variable

capacitor. This method has been taught to me by Professor Allodi at the

University of Parma NMR laboratories. To account for the missing second

capacitor (the ”matching” one, CM) we can use the concept of transformer

to match the impedance of a circuit by using two inductors, the sample one,

L and the outer one, L′. Instead of using two capacitors (which are quite

expensive and fragile, especially the glass ones), two inductors can be easily
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Figure 2.9: Image of a real LC circuit using the ”classical” tuning-matching
method. It can be clearly seen by the presence of the tuning and matching
capacitors CT and CM , as well as the coil L embedded in epoxy for stabil-
ity. Taken at the LNCMI - Laboratoire National des Champs Magnétiques
Intenses, Grenoble, France.

made from plain Cu/Ag wire. The tuning capacitor CT is always present

since it is needed to tune the resonant frequency of the system, while the

matching capacitor CM is substituted by the impedance-matching that occurs

between two inductors L and L′. Depending on the desired range of resonant

frequencies needed, we can categorise a system into ”low-frequencies” (ω < 90

MHz) and ”high-frequencies” (ω > 90 MHz) modes. The two modes have

different LC circuits with this new ”transformer” procedure; in particular,

the ”low-frequencies” one will employ the use of an outer coil L′ with a

fewer number of turns N ′ respect to the sample one N ; on the other side,

in the ”high-frequencies” scenario, it has been found to be more efficient

to use an auto-transformer scheme, where the inductor L′ is simply built

by connecting part of the sample coil L to another source. The situation

for the ”transformer” and ”auto-transformer” resonant circuits is shown in

Figure 2.10, and a photograph of one of my real coils used with this method

is shown in Figure 2.11.
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Figure 2.10: (a) ”Transformer” LC circuit, good for resonant frequencies
lower than 90 MHz. The outer coil L′ is connected to the coaxial cable (and
so to the NMR circuit), while the LC circuit made of the sample coil L
and the tuning capacitor C (no subscripts needed since there is only one) is
coupled to L′, but physically disconnected from the NMR circuit. (b) ”Auto-
transformer” LC circuit, good for resonant frequencies higher than 90 MHz.
The outer coil L′ is simply built by connecting the coaxial to one of the turns
of the sample coil L.

Using these methods based on the principle of ”transformer”, we can match

the impedance of the circuit to the one of the NMR circuit by simply changing

the number of turns N ′ (in case of ω < 90 MHz) or by adjusting the position

at which the coaxial cable is connected to the turns of L (ω > 90 MHz).

I used This experimental setup various times while conducting NMR/NQR

experiments at the University of Parma.

2.2.3 Transmission and reception circuit

In the NMR circuit, the rf signal is transmitted and received through the

same coil and cables. In order to properly excite the sample with the rf pulse

and collect the NMR signal from it, we cannot keep both the transmission Tx

and reception Rx open at the same time. For this reason, we use a particular

scheme for the circuit. This scheme is shown in Figure 2.12. The trans-

mission/receiver circuit comprises a pair of silicon diodes, one configured in

reverse bias and the other in direct bias mode, with a threshold voltage de-

noted as VD ≥ 0.6 V. In the operational context, when the voltage exceeds
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Figure 2.11: Image of a real LC circuit using the ”auto-transformer” match-
ing method. The resonant frequency was around 140 MHz. It can be recog-
nized the point where the coaxial (on the left of the coil) is connected to one
of the turns of the principal coil, as in Figure 2.10(b). The tuning capacitor
CT is not visible (it is behind the white plate). Taken at the University of
Parma.

0.6 V, representing the on state, the diodes facilitate signal transmission

through the circuit. Conversely, in the off state, characterized by voltage

levels around 0 V, the diode functions as an open circuit. Another integral

component of the transmission/receiver circuit is the λ/4 cable, which con-

sists of coaxial cables with precise lengths designed to selectively permit a

specific range of frequencies to propagate through them. The frequency for

which a specific cable works as a λ/4 is described through Equation (2.51)

[66]:

Lλ/4 (cm) ≃ 45

ν (MHz)
(2.51)

where Lλ/4 is the length of the λ/4 cable in cm and ν is the frequency of

the signal to be passed in MHz. The cable under consideration exhibits

a variety of signal transmission behaviours depending on the voltage level

and frequency of the signal within its defined range. When exposed to high

voltage levels, this cable acts as an open circuit as long as the signal frequency
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Figure 2.12: Schematic diagram of an NMR circuit, consisting of the trans-
mission part and the reception part.

remains within the permitted range. When the voltage is low, about 0 V, the

cable operates as a closed circuit. The appropriate λ/4 cables are selected

depending on the anticipated operating frequency range. The λ/4 cable

bridges the gap between the circuit and the preamplifier. The pre-amplifier,

which is powered by a +15 V voltage source, is designed to amplify the

sample signal. Notably, the incoming transmission signal from the sample is

typically about 1 V, whereas the signal received is on the order of magnitude

of microvolts (µV). As a result, the pre-amplifier is important in resurrecting

the signal to around 1 volt before it is directed back to the spectrometer.

The operational principle of the system, which comprises of diodes and λ/4

cable, is as follows:

� when the signal comes from the spectrometer, it has a sufficiently high

voltage level to pass the diode threshold, and it also bypasses the λ/4

cable at its first segment. This occurs because the cable operates as an
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open circuit when the voltage at one output is elevated for the specific

frequency of the λ/4 cable. As a result, the signal is delivered directly

to the LC circuit;

� when the signal departs the sample, it typically registers at the micro-

volt (µV) level. The diodes in the Tx line do not improve the signal

in this case due to their perfect diode qualities, which allow current

to remain small as voltage approaches zero. As a result, the signal is

not sent to the Tx line, and the λ/4 cable operates as an open circuit,

reacting in the opposite way as in the prior example. The pre-amplifier

then amplifies the signal before being examined by the spectrometer.

The transmission and reception phases are shown in Figure 2.13.

Figure 2.13: The diagram shows the working principles during the transmis-
sion phase (a) and the reception phase (b).

2.2.4 Spectrometer, generation and acquisition of the

signal

The spectrometer is an electrical device that can create radio-frequency

pulses with predetermined time durations and adjustable power amplitudes.

This allows the user to precisely regulate the amplitude of the output signal

by adjusting power attenuation, pulse duration, rf pulse frequency, phase

alignment within the xyz reference frame, and several other parameters.
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These factors include, among other things, the capacity to control trans-

mission interruptions, signal acquisition time, and the creation of various

pulse sequences, which frequently include several pulses. Furthermore, the

spectrometer plays an important function in measuring electromagnetic ra-

diation wavelengths that have interacted with the sample under inquiry. Its

operational procedure includes the creation of rfwaves, the stimulation of

the sample, and the receipt of the signal after its contact with the sam-

ple. In Figure 2.14 it is shown the the Apollo RF spectrometer present in

the Bologna NMR Lab, along with the software interface of the HyReSpect

spectrometer [75] used at the University of Parma To effectively activate the

Figure 2.14: (left) The image of the Apollo Spectrometer along with the wide
range amplifier below the spectrometer used in Bologna. (right) Screenshot
of the gtknmr program during a running spin-echo experiment taken from
[75]. The main window shows the plot of the two quadrature components of
the signal (red, blue), plus its complex modulus (green)

nuclei inside the sample, the spectrometer signal must be increased. As a re-

sult, the use of an amplifier prior to transmitting the pulse to the LC circuit

is now required. An amplifier is a type of electronic device that amplifies an

electrical signal. It operates by receiving a weak input signal and converting

it into a more robust output signal, sometimes with greater power or voltage

levels. Amplifiers are distinguished by their gain, which measures the degree

of signal amplification provided. Gain is defined as the ratio of the output
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signal’s amplitude to the input signal’s amplitude. Amplifiers are built to op-

erate within specific frequency bands and have different features depending

on their intended usage and needs. Power amplifiers, voltage amplifiers, and

operational amplifiers are three types of amplifiers, each suited to a certain

use. In our experiment, we employed a wide-range power amplifier. The neg-

ative feedback circuit topology of this power amplifier reduces signal noise

and distortion across a wide frequency range.

It is critical to ensure the exact calibration of pulses in NMR investigations.

For instance, gaining ideal results in a pulse-acquire experiment requires the

use of a 90� pulse to achieve maximum signal strength, but magnetization in-

version requires the use of a 180� pulse. As a result, pulse calibration emerges

as a vital preparatory step before the start of each NMR investigation. The

tP pulse used to rotate the spins by π/2 radians from the z axis to the xy

plane has to be calibrated. To do so, we can either choose a proper power

attenuation of the spectrometer and make the tP pulse vary, or fix the pulse

duration tP and let the attenuation of the power vary. This is due to the fact

that, by recalling Equation (7.11):

θ = −γB1tP ∝ −γ
tp

TxAtt
(2.52)

where TxAtt is the attenuation of the transmitted power, which is inversely

proportional (higher attenuation→ lower spectrometer power) to the strength

of the applied rf field B1. The attenuation factor also controls the NMR sig-

nal’s amplification before irradiating the sample, which has an impact on the

power P (ω) of the NMR signal. Because the transmission gain can differ

between spectrometers and over time due to changes in hardware or other

factors, attenuation calibration is crucial. The exact attenuation factor of

the spectrometer must be ascertained and adjusted in order to achieve ac-

curate and repeatable NMR observations. Attenuation calibration gives the

optimal compromise between power and frequency window. The attenuation

TxAtt gives the right power (P (ω)) and pulse length tP gives the window

of available frequency for the particular experiment. The pulse length is in-

versely proportional to the spectral width δω, the lower the pulse width, the
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greater the frequency range covered. Similarly, for power and attenuation,

the lower the attenuation, the higher the power. We need the optimal atten-

uation to get a good signal, but also keep in mind that the sample does not

get overheated due to very high power or a very short repetition delay.

TxAtt ∝ 1

P (ω)
tP ∝ 1

∆ω
(2.53)

For example, we first fix the pulse length tP at some reasonable value and

do the attenuation sweep to find the point where the signal is highest (which

corresponds to the attenuation for the chosen pulse length, which gives a π/2

rotation). We repeat the process for different pulse lengths to get the best

pulse length and attenuation for the experiment. This example, in the real

case of Cu2O sample, is shown in Figure 2.15.

Figure 2.15: The plot shows the amplitude of the signal with respect to the
attenuation of the outgoing power from the spectrometer. This is an example
of attenuation calibration done on Cu2O sample with pulse length of 5.5 µs
and attenuation in dB to find the highest signal point.
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2.2.5 Spectra acquisition and relaxation measurements

Spectra acquisition

The usual data collection procedure for capturing a single spin-echo signal,

maintaining a constant transmitted rf strength while changing the frequency,

is as follows. This method, also known as the ”sweep-frequency” method, is

extensively used to obtain the whole spectrum of a nucleus. This procedure

uses the Spin-Echo technique, with the delay τ kept fixed at a specific value,

since we do not want to measure the relaxation time T2. Following an initial

search for the optimal π/2 pulse, described in the previous Section 3.1.3, a

series of spin-echo amplitude measurements, denoted as N , are performed.

The spectrometer is switched off for RixD seconds before each spin-echo mea-

surement. The transmission line is then energized, resulting in a pulse with

a length of tP1 (π/2 pulse). Following an additional delay period denoted

as D, a second pulse with a duration of tP2 = 2tP1 is generated (required

for spin-echo measurements so that the second pulse is precise π). After a

RinH waiting period, the receiver line is activated, and the analog-to-digital

converter (ADC) is active after another AcqD interval. After completing the

initial acquisition, the spectrometer enters an idle state for RixD seconds be-

fore repeating the cycle [76]. Waiting times, such as RixD, are essential to

prevent erroneous signals generated by transient events. These waiting peri-

ods must generally fulfill the relationship RixD ≥ 5T1 to ensure the recovery

of the whole signal along the z-axis.

The results of all N spin-echo measurements are cumulatively integrated in

real-time, as illustrated in Figure 2.16, to provide the final spin-echo ampli-

tude. The rf frequency is then automatically modified, and the procedure

described above is repeated until all of the desired frequencies have been

tested. The spin-echo Fourier Transform peak value corresponds to the gen-

uine NMR signal used for spectrum collection. The frequency-shifted and

phase-corrected envelope Fourier transforms derived from several spin echoes

captured at various reference frequencies can be used to recreate the whole

spectrum, as did in Ref.[77]. This approach is a variant of the frequency step
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Figure 2.16: Average spin-echo signal measured by the spectrometer. The
maximum amplitude is normalized by the number N of acquisitions, and
then we obtain the Fourier Transform of the spin echo signal. The amplitude
at 0 MHz is the NMR signal.

and sum method described in Ref.[78].

T1 relaxation measurement

There are different methods to determine the relaxation rate T1 during an

NMR experiment. We report here on the three main sequences.

� Inversion Recovery (IR) - This sequence is made of two pulses, the

first one able to tilt the spins by 180� and the second one by 90�. The

recovery of the magnetization has the following behavior:

MIR(t) = M(0)[1− 2e(−τ/T1)] (2.54)

� Saturation Recovery (SR) - Saturation Recovery is another technique

used in nuclear magnetic resonance (NMR) spectroscopy to measure the

T1 relaxation time of nuclear spins. Here, a series of radio-frequency

pulses is applied to the sample at a fixed repetition rate, with each

pulse saturating the magnetization of the sample. After a variable time

delay τ , a 90-degree pulse is applied to the sample, which rotates the

magnetization into the transverse plane. The signal is then detected by

means of another 90� pulse, and the T1 relaxation time is determined
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from the time constant of the exponential recovery of the signal towards

its equilibrium value. By varying the delay time between the saturation

pulses and the first ”normal” pulse, the T1 relaxation time of the sample

can be measured. It is given by the equation 2.54:

MSR(t) = M(0)[1− e(−τ/T1)] (2.55)

� Spin-Stimulaed Echo (SSE) - In an SSE experiment, a 90-degree pulse

is first applied to the sample, which tips the nuclear spins from their

equilibrium position. The spins then begin to relax back to equilibrium,

with the rate of relaxation governed by the T1 relaxation time. After

a time delay of τ1, a 180-degree pulse is applied to the sample, which

inverts the nuclear spins. The spins then continue to relax back to

equilibrium, but now in an inverted state. At a time delay of τ2, a

second 90-degree pulse is applied, which creates a spin stimulated echo.

The intensity of the SSE is proportional to the magnitude of the nuclear

magnetization at time τ1, which is influenced by the T1 relaxation time.

By varying the time delay τ2 in the SSE experiment and measuring the

intensity of the SSE as a function of τ2, it is possible to determine the

T1 relaxation time of the nuclear spins. It is given by the equation 2.56

.

MSSE(t) = M(0)e(−τ2/T1) (2.56)

The time-dependence of the magnetization recovery for the three T1 tech-

niques is shown in Figure 2.17. In each T1 relaxation experiment, it is nec-

essary to wait a proper time before the repetition of the run. In this case, as

already written, we must wait a repetition time of RixD ≥ 5T1, in order to

be sure that all the nuclear magnetization aligns back to B0 before retiring

the pulse sequence.
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Figure 2.17: The time-dependence of the magnetization recovery for the T1

pulse sequences described above.

T2 relaxation measurement

In the measurement of the spin-spin relaxation time, the time dependence of

the magnetization along the xy plane is shown in Figure 2.18 and is described

by the following relation:

M(t) = M(0)e−τ/T2 (2.57)

Figure 2.18: The time-dependence of the magnetization on the xy plane for
the T2 pulse sequence.
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2.2.6 Cryogenic setup

To conduct experiments at temperatures lower than room temperature, it

is necessary to cool the sample with liquid nitrogen (whose boiling point is

77 K) or, to go even lower in temperature, with liquid helium, which allows

for temperatures of the order of 5–6 K (its boiling point is 4 K). Other

techniques are capable of reaching temperatures of the order of 10–20 mK

using a diluition fridge, but their explanations go beyond our scope since I

didn’t use these methods in my Ph.D. project. Going back, we can use a

so-called cryostat to cool down our sample by means of liquid nitrogen or

helium. Figure 2.19 shows a classical cryostat used in low-T NMR (along

with the probe inserted) and the cryogenic setup used to flow liquid coolant

in the circuit. Depending on the cryogenic liquid used, we can talk about

Figure 2.19: (left) NMR probe inserted into a classical cryostat for liquid
nitrogen/helium measurements. On the left, is visible the tube where the
transfer line is inserted, which pumps nitrogen/helium from the dewar. On
the right, the tube that connects the pumping apparatus, capable of vacu-
uming the sample space, is visible. Taken at the University of Parma. (right)
An NMR magnet situated under the floor, with a helium liquidifier behind
it (big cilindric dewar on the right). Taken at LNCMI-Grenoble, France.
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liquid nitrogen and liquid helium.

� When liquid nitrogen (LN2) is maintained in an uninsulated vessel

for a period of time before boiling occurs, ice forms around the vessel

as water vapour condenses. A vacuum zone is included in nitrogen

cryostats to minimise boil-off rates and separate the external surfaces

from the freezing liquid. The boiling point of LN2 (77 K) is insufficient

to freeze the gases in the vacuum zone, necessitating the employment

of a charcoal absorption pump to raise the vacuum in this area [79].

� Due to high heat losses from radiation and conduction, liquid helium

(LHe) creates greater storage challenges. In the case of tiny cryostats,

it is more efficient to store LHe in an external transport dewar and

distribute helium through a ”low loss” transfer line. In addition to the

vacuum gap that separates the sample from room temperature, LHe

cryostats contain an intermediary radiation shield designed to intercept

radiative heat transfer from the ambient room temperature (300 K)

[79].

The schematic representation of the liquid helium cryostat setup is shown

in Figure 2.20. A temperature control system that includes a proportional-

Figure 2.20: Helium cryostat experimental set-up. Taken from Ref. [79].

integral-derivative (PID) controller is typically offered with cryostats. In
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conjunction with the cryostat’s heat exchanger, this controller adjusts the

voltage across the heater in response to the flow of the cryogenic material or

coolant [79].

We can summarize the entire NMR setup with a schematic figure, Figure 2.21,

that comprises all the parts discussed above.

Figure 2.21: Schematic diagram of the experimental setup for a typical NMR
experiment. Here, the motor controller automatically tunes the resonant
frequency by adjusting the tuning capacitor CT using a Linux script, while the
switch on the bottom of the figure acts as a real switch in order to disconnect
the NMR acquisition circuit while the motor is tuning the frequency, and vice-
versa to block the motor from change frequency while obtaining the NMR
signal.
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µSR technique and

experimental methods

In this chapter, I will talk about the theoretical aspects and experimental

realization of the µSR technique. More specifically, I will describe the theo-

retical basis of the muon relaxation and the experimental apparatus for the

technique, including the realization of muon beams and the spectrometers

used to analyze muons’ decays.

3.1 Theory of µSR

This section’s presentation and pictures are primarily drawn on sources [80,

81]. Muon is a powerful magnetic resonance technique that allows researchers

to investigate the nature of magnetic fields in magnetic materials. The abbre-

viation µSR refers to muon spin rotation, relaxation, or resonance, depending

on whether the muon spin motion is primarily a rotation (more precisely, a

precession around a static magnetic field), a relaxation towards an equilib-

rium direction, or a more complex dynamics dictated by the addition of short

radio frequency pulses. The positive muon µ+ is a lepton elementary particle

with the same spin as the electron, Sµ+ = 1/2; it is an unstable particle with

a mean lifetime of τµ+ = 2.2µs. It is mostly produced as a result of pion
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decay by cosmic rays. It has a mass of mµ+ = 105.7 MeV/c2, which is ∼ 200

times the mass of an electron and ∼ 1/9 the mass of a proton.

3.1.1 Muon properties and decay

Strong muon beams are generally formed in two steps at moderate-energy

particle accelerators. First, a proton beam is fired at a thin target of graphite

or beryllium, creating the following interactions between the beam’s protons

and the target’s protons and neutrons:

p+ p → π+ + p+ n

p+ n → π+ + n+ n
(3.1)

where p denotes the proton, n the neutron, and π the pion. The pion is an

unstable particle that decays into a positive muon and a muon neutrino with

a lifespan of τπ = 26 ns:

π+ → µ+ + νµ (3.2)

The decay described above is important to the formation of polarised muon

rays. The conservation of linear momentum requires the muon and neutrino

to radiate in opposite directions when they are at rest in the pion reference

system. The neutrino has negative helicity because of the parity violation,

with the spin anti-parallel to the momentum. As a consequence, the muon’s

spin is anti-parallel to its linear momentum since the pion has no spin. Fig-

ure 3.1 shows the phenomenon of parity violation. The muons halt in the

specimen of interest and decay with a probability proportional to e−t/τµ after

a time t. The muon decays via a weak nuclear reaction according to the

formula below:

µ+ → e+ + νe + ν̄µ (3.3)

where νe denotes the neutrino and antineutrino associated with the positron

and muon, respectively. Among these three particles, only the positron has

been recognized. Its energy range is 0 to Emax = 52.3 MeV. The rule 2(3−
2ϵ)ϵ2 describes the positron energy distribution, where ϵ is the positron’s

kinetic energy normalized to Emax. The direction of positron emission and
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Figure 3.1: On the left, molecules clash with the walls of a box. Because these
collisions do not violate parity, both the left-hand process and its mirror
counterpart on the right-hand side may be observed in nature. The same
cannot be stated for the muon decay process on the right. In the mirror,
the direction of the muon spin is inverted, such that positrons are typically
emitted in the opposite direction as the muon spin. Taken from [80].

the spin of the muon at decay time have a link that may be used to turn

the muon spin into a local probe of matter. This correlation enables the

observation of the direction of the muon spin during decay by observing

the direction in which the positron is released, as illustrated in Figure 3.2.

The likelihood of a positron being emitted at an angle θ, referred to as the

direction of the muon spin, is defined as W (θ). Using the theory of weak

interaction:

W (θ) ∝ [1 + aas(ϵ)cosθ] (3.4)

where aas(ϵ) is the asymmetry parameter, depending on the normalized en-

ergy ϵ of the positron. The positron will be emitted the most along the muon

spin axis (where aas(ϵ) > 0), as shown by the equation above. Positrons with

the maximum possible kinetic energy have aas → 1 and are hence the most

coveted, notwithstanding their scarcity. Lower-energy positrons have lower

aas values, and for a small number of low-energy positrons, aas is even neg-

ative. Integrating over the energy, i.e., counting all the positrons, produces

the asymmetry’s mean value, āas = 1/3.
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Figure 3.2: The angular distribution of positrons released in relation to the
initial muon-spin direction. The graph depicts the predicted distribution of
the most energetically released positrons. Taken from [80].

3.1.2 Precession and relaxation of the muon spin

In a magnetic field B, the muon-spin precesses with an angular frequency ωµ

given by ωµ = γµB, where γµ = g
2

e
mµ

is the muon’s gyromagnetic ratio. This

is referred to as Larmor precession, and it has already been seen in NMR for

a nucleus with spin I and a gyromagnetic factor γ. Precession frequencies are

greater for lighter particles, such as electrons, and lower for heavier particles,

such as protons. This explains why ESR (electron spin resonance), which

investigates the behavior of electronic spins inside a magnetic field, is nor-

mally conducted at microwave frequencies (order of GHz), but NMR (nuclear

magnetic resonance) is performed at radio frequencies (order of MHz).

Muon spin spectroscopy (µSR) covers a range of frequencies between the

ones of NMR and of ESR; however, unlike other resonance methods, no elec-

tromagnetic field is required because the precessing muon may be tracked

directly. A muon is implanted in a material with its polarisation oriented

anti-parallel to its motion. If the material has its own magnetic field, no mag-

netic field is required for the muons to precess. In general, magnetic fields

are delivered to the sample either perpendicular to the initial muon-spin di-

rection (transverse field µSR or TF-µSR) or parallel to it (longitudinal field

µSR or LF-µSR), as seen in Figure 3.3. The muon precesses in the applied
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magnetic field in the perpendicular (or transverse) case, and any dephasing

in the measured oscillations indicates either an inhomogeneous internal field

distribution or spin-spin relaxation. The parallel (or longitudinal) instance

results in spin relaxation rather than spin precession. Inhomogeneous field

distributions or spin-lattice relaxation processes might cause this. The zero

Figure 3.3: The two most prevalent forms of experimental geometry. The
example arrows illustrate the muon spin direction: the dashed one at t =
0 and the solid one at t. When a muon is implanted into a sample, the
likelihood of positron emission along the muon beam direction is shown by the
dotted line in the transverse-field geometry panel. The solid line represents
the same probability at time t later. Taken from [81].

field µSR (ZF-µSR) is a subset of the longitudinal field in which no mag-

netic field is supplied and spin relaxation occurs owing to the magnetic field

existing inside the probing material.

The temporal evolution of the number of positrons detected in the forward

and backward detectors (with regard to the muon-spin direction) is charac-

terised by the functions NF (t) and NB(t), which are depicted in Figure 3.4.

Due to the fact that muon decay is a radioactive process, these two com-

ponents add up to an exponential decay. Thus, the temporal evolution of

muon polarisation may be calculated by evaluating the normalized difference

between these two functions using the asymmetry function A(t), which is

provided by:

A(t) =
NB(t)− αNF (t)

NB(t) + αNF (t)
(3.5)

where the coefficient α should be 1, but changes due to instrumental factors
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(inhomogeneities in detectors’ response, little misalignment of the sample

with respect to the beam, etc...). This asymmetry function has a maximum

value, Amax, for a specific experimental configuration, which depends on the

initial beam polarisation (usually very close to 1), the intrinsic asymmetry of

the weak decay, and the detector efficiency for positrons of various energies,

and it is usually around Amax ∼ 0.25.

Figure 3.4: The simulation of a raw µSR spectrum in transverse geometry
is shown on the left-hand side panel. The whole line represents the positron
count N(t). The simulation of raw µSR spectra in the case of longitudinal
geometry is shown on the right-hand side panel. The two complete lines rep-
resent the counts in the forward and backward detectors. Both graphs have
an initial asymmetry of a0 = 0.25, and the dashed lines indicate the aver-
age (isotropic) exponential decay that accounts for the finite muon lifespan.
Taken from [81].

3.1.3 Muon polarization in a magnetic field

Because of the muon’s enormous magnetic moment, it is particularly sensitive

to extremely weak magnetic fields, with sensitivity as low as 10−5 Tesla. As a

result, it is particularly effective for studying materials with small magnetic

moments. The study of ferromagnetic and antiferromagnetic materials, in

which muons are employed to monitor temperature-dependent changes in

the internal magnetic field, is one of the most fundamental applications of

this technique.
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Randomly oriented static magnetic fields

Because muons have a uniform stopping distribution over a sample, the re-

lated volume percentages of muons are perfectly proportional to the signal

intensities in experimental spectra. As a result, this method works well

when dealing with multiphase samples or samples with poor sorting. Unlike

diffraction procedures, this method can usually determine magnetic order in

materials where traditional magnetic neutron diffraction is difficult (though

single crystal samples can be useful in some cases). The applied field (if used),

the dipolar and demagnetization fields (which may be derived from magne-

tization), and the hyperfine field created by the applied field are all variables

that influence the internal field at the muon site. Although it can be chal-

lenging in some cases, accurate comprehension of the muon site is necessary

for quantitative interpretation of muSR research. Under ideal conditions,

only a few possible interstitial locations are available for muon occupancy,

with just one consistent with observed data.

Consider spin precession features to gain a better grasp of the muon’s ability

to investigate the unpredictability and dynamics of magnetism. When the

local magnetic field at the muon site generates an angle θ with the muon’s

initial spin direction at the moment of implantation, the muon spin precesses

around the magnetic field. The normalized decay positron asymmetry, or

polarization, will be given by:

P (t) = cos2θ + sin2θcos(γµBt) (3.6)

If the direction of the local magnetic field is entirely random, then averaging

over all directions would yield:

P (t) =
1

3
+

2

3
cos(γµBt) (3.7)

If the intensity of the local magnetic field is selected from a Gaussian dis-

tribution with width ∆/γµ and centering on zero, then averaging across this
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distribution yields:

P (t) =
1

3
+

2

3
e−∆2t2/2(1−∆2t2) (3.8)

Kubo and Toyabe were the first to get this outcome [82]. As depicted in

Figure 3.5, the Kubo and Toyabe relaxation function would be predicted to

decline from unity to a minimum and then return to an average value, in this

instance, one-third.

Figure 3.5: Left: the temporal evolution of muon spin polarisation for equa-
tion 3 with varying magnitudes of the local field B. Right: the Kubo-Toyabe
relaxation function (Equation (3.8)) with its distinctive dip and recovery to
a value of 1/3 is obtained by averaging components from the left picture.
Taken from Ref. [81].

Fluctuating magnetic fields

At low temperatures, muons enter a stable state and exhibit precession in re-

sponse to the effect of surrounding nuclear dipoles with random orientations

relative to each other. Because of the directional variability, a field distri-

bution is created, which often conforms to Gaussian distributions centred

around zero. Any change in the geometry of the internal field distribution

would have an effect on the recorded muon-spin time evolution. Individual

muons in the sample will precess at slightly different frequencies, resulting

in an increasing phase mismatch if the material has a reasonably uniform

static internal field with just minor variations from site to site. This phe-
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nomenon manifests itself as a damping of data oscillations. When the field

changes a lot, the damping effect may be so powerful that no oscillations

are seen. However, it is crucial to distinguish between damping produced

by fluctuations in the internal field and damping caused by basic material

qualities.

One effective method for distinguishing between these conditions is to pro-

vide a magnetic field in the longitudinal direction, aligned with the initial

muon-spin orientation. Because muons precess in both the internal and ap-

plied fields, the Kubo-Toyabe relaxation function is modified, as seen in Fig-

ure 3.5. This modification results in a longer ”1/3-tail.” Notably, when a

sufficiently enough longitudinal magnetic field BL is applied, the muon-spin

remains almost constant and does not relax towards unity. The effects of

muon hopping on relaxation are shown in Figure 3.6. The hopping rate,

Figure 3.6: The relaxation function of a muon hopping at ν rate. After
each hop, the internal field value is drawn from a Gaussian distribution with
a width of ∆/µ. The curve shows the zero-field Kubo-Toyabe relaxation
function for ν = 0. Taken from Ref. [81].

denoted as ν, determines the influence of muon hopping on relaxation dy-

namics. When ν = 0, the relaxation profile corresponds to the zero-field
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Kubo-Toyabe curve. In circumstances of rapid hopping, the relaxation pro-

cess is essentially governed by the muon’s hopping dynamics, resulting in

an exponential relaxation pattern. As the hopping dynamics rise, the re-

laxation rate falls. Slow hopping, on the other hand, has almost no effect

on relaxing at extremely short intervals. During lengthy time periods, it

is particularly visible in the relaxation function’s 1/3-tail. The relaxation

function’s greater sensitivity to progressive dynamics, as demonstrated by

its long-time behaviour, enables monitoring of dynamics throughout a broad

temporal spectrum.

3.2 µSR experimental setup

In the following section, we will describe the experimental setup of a typical

µSR experiment. We will mainly follow the references [81, 83].

3.2.1 Different muons in time: pulsed vs continous

As taken from [81] and [83], the synthesis of pions, which is required for the

production of muons in µSR studies, depends on a proton beam supplied by

an accelerator. The temporal distribution of protons inside this beam signif-

icantly impacts the temporal distribution of muons in the subsequent muon

beam. Two types of proton beams define this differentiation: continuous and

pulsed.

In the case of a continuous beam, a muon detector is strategically placed

near the muon beam, close to the sample of interest. A timing mechanism

is activated when a muon passes through the detector. This temporal se-

quence begins with the implantation of the muon into the sample and ends

with the detection of the positron released during the muon’s decay, forming

what is known as an ”event.” For the necessary logic to work properly, just

one muon must be present in the sample at any one time. To avoid inter-

ference, data collection is briefly interrupted if a second muon is implanted

before the positron detection from the disintegration of the first muon. To

avoid such undesirable conditions, the intensity of the muon beam is care-
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fully maintained by modifying the muon beam optics components. Using

standard instrumentation, a muon precession frequency of roughly 600 MHz,

corresponding to a local field of 4.4 T, may be detected using such a beam

arrangement. However, it is crucial to note that this configuration has less

imbalance at the higher frequencies. Furthermore, coincidence electronics

and a veto counter make it easier to distinguish events coming from muons

stopped within the sample from those in the surrounding environment. As

a result, the obtained data is free of extraneous signals and precisely re-

flects the fundamental physics of the system under inquiry. Nonetheless, it

is worth noting that continuous beams have a disadvantage in the shape of

a rather high electrical background, which remains despite the use of coinci-

dence electronics. This makes extracting polarisation functions from raw data

more difficult and decreases the observability of slowly attenuated relaxation

signals. This approach is used at the PSI facilities in Villigen, Switzerland,

where spectrometers GPS, GPD, and FLAME are used.

On the other hand, a pulsed muon beam implants a bundle of muons into

the sample at a predetermined reference time, with the positrons released

during muon decays triggering a series of detectors. To handle the strength

of the muon pulse, this system requires a significantly higher number of de-

tectors than continuous sources. The time necessary to capture a spectrum

is nearly comparable to the time required to record a continuous muon beam.

The pulse width and the temporal spacing between individual pulses are two

critical elements of the beam’s temporal structure. The latter has a long

lifespan in comparison to the muon lifetime. For example, the pulse form of

the muon beam feeding the spectrometers at the ISIS facility is essentially

Gaussian, with a full-width at half-maximum of around 80 ns and a pulse

spacing spanning 20 ms. This one-of-a-kind temporal arrangement, distin-

guished by a scarcity of background particles occurring between the pulses,

allows for detecting extremely weakly attenuated signals and unusually low

precession frequencies as low as 0.04 mT. Unfortunately, the large beam size

compared to the one for continuous sources brings as a consequence a big-

ger background, due to the bigger number of muons that stop in the sample
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holder, thus making it more difficult to determine the form of the polarisa-

tion function. Furthermore, it is vital to recognize that the relatively wide

pulse width limits temporal resolution. A muon beam with a full-width at

half-maximum of 80 ns is inadequate for examining systems with exponen-

tial relaxation rates larger than around 10 µs−1 or external magnetic fields

greater than 50 mT.

3.2.2 Different muons in energy: decay, surface, cloud

From [81, 83], three distinct categories of muon beams, each characterized

by different kinetic energy regimes, are at the disposal of researchers. We

will talk about the high momentum muon beam, also called decay muons,

followed by a discussion of the surface muon beam, culminating in delineat-

ing the recently developed low-energy muon beam (or cloud muons). The

three categories are shown in Figure 3.7. The earliest beamlines constructed

Figure 3.7: There are three types of muon sources created by energetic pro-
tons from accelerators (surface µ+, cloud µ±, and decay µ±). Taken from
Ref. [83].

accommodated high-velocity muon beams. Muons are produced in these

combinations by the decay of pions in motion. A fundamental component of

these beamlines is the employment of a superconducting solenoid spanning

many meters in length and creating a magnetic field of a few teslas, referred

to as a decay channel. This device intercepts pions with predetermined mo-

mentum and directs them to the decay channel, where they decay. The

emerging muons are collected by this solenoid, which follows helical paths as
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they cross the channel, finally leading them to the sample. It should be noted

that muons produced by pion backward decay have spins parallel to their ve-

locity, as opposed to forward decay muons, particularly surface muons. As

a result, in such high momentum setups, the polarisation of the muon beam

is only 70-80 %, rather than almost 100 %. These beamlines are especially

well-suited for generating muons with momentums ranging from 50 to 100

MeV/c, necessitating large sample masses. More material, however, can be

put in front of the sample to lower muon momentum and, hence, sample

mass. These beamlines are currently only utilized when particular experi-

mental conditions, such as pressure cells or specialist sample containers, need

muons to travel through obstacles on their way to the sample.

The volume of sample required for µSR investigations became obvious in the

early 1980s as a limiting issue in the broad acceptance of these techniques

within the condensed matter research community. Fortunately, the concept

of a ”surface muon beam” was first proposed in 1976. The concept behind

this method is to set up the beamline to choose muons from pions at rest

within the pion production target. Muons having a velocity of 29.79 MeV/c

and a kinetic energy of 4.1 MeV decay from resting pions. A little amount

of matter essentially stops these muons, with only those created at or near

the target’s surface able to escape and contribute to the beam. This incident

validates the phrase ”surface muons.” In order to eliminate contaminating

particles, notably positrons, which are abundantly produced at the pion pro-

duction target, a ”separator” is required while setting up a surface muon

beamline. The separator exerts a magnetic and an electric field on the beam.

These fields run parallel to one another and in the same direction as muon

momentum. They are calibrated such that the Lorentz and Coulomb forces

acting on the muons balance each other out, allowing the muon beam to pass

through the separator unharmed. Particles having the same charge as muons

but different velocities (e.g., positrons) deviate and are prevented from fur-

ther propagation along the beamline due to an imbalance in the Lorentz and

Coulomb forces. Unlike the magnetic field, the electric field does not interact

with muon spin and does not generate Larmor precession. As a result, the
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muon spin polarisation rotates somewhat, but not insignificantly, away from

the momentum direction, often in the 5 to 10-degree range.

Nonetheless, surface muon momentum is still rather high for studying thin

films, nanomaterials, or multilayers. These muons can only traverse a few

hundred micrometers because effective stopping needs 100 to 200 mg of ma-

terial per square centimeter of cross-section. As a result, ”slow muons,” or

particles with kinetic energies in the kiloelectronvolt range or below, are in

high demand. The challenge is to maintain a high degree of polarisation while

decelerating efficiently. As a moderator, a van der Waals gas (often Ne, N2,

or Ar) is condensed onto a cold substrate. Surface muons with kinetic energy

of 4.1 MeV hit the substrate, which is thin enough to prevent just half of the

muons from passing through. They next travel through a gas layer, which is

typically 200-300 nm thick and where electron interactions slow them down.

This slowing process works well for kiloelectronvolt and higher muons but

not so well for slower muons. As a result, the moderator generates muons of

epithermal energy (less than 50 eV). Muon polarisation is greatly influenced

since this process occurs quickly (a few picoseconds). The efficiency, which

is roughly 10−4, generates almost 8000 muons per second at the sample, al-

lowing regular testing to be performed. The Paul Scherrer Institute (PSI)

has a low-energy muon research (LEM) spectrometer. The ability to reac-

celerate sluggish muons enables fine-tuning their stopping range within the

material, which may range from nanometers at 10 eV to roughly 100 nm at

20 keV.

3.2.3 Large-scale facility and spectrometer

A schematic representation of a muon facility is shown in Figure 3.8, for the

case of ISIS Neutron and Muon Source, STFC Rutherford Appleton Labo-

ratory, Oxfordshire, UK. From [84], the European Muon Facility (EMU) at

ISIS gathers a percentage of the first two pulses of surface muons released

by the muon target when the ISIS synchrotron shoots protons toward the

neutron target. Before reaching the spectrometer, these muons are concen-

trated and steered to control their impact location on the sample within the
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Figure 3.8: General layout of the European Muon Facility at ISIS. Taken
from Ref. [84].

cryostat. As seen in the graphic above, this is done by combining dipole and

quadrupole magnets. An electrostatic kicker is utilized right before the junc-

tion where the EMU and HiFi beamlines depart from the MuSR beamline to

separate the two muon pulses emerging from the muon target. This kicker

equipment employs a substantial DC voltage to divide the initial pulse of

muons, guiding them into EMU and HiFi while the second pulse continues

on its journey to the MuSR facility.

Going on, we can describe the GPS spectrometer (General Porpouse Source)

for the muon beamline at PSI laboratories, Villigen, Switzerland, which is

shown in Figure 3.9. From [85], the GPS Instrument makes use of a ”sur-

face muon beam” (positive muons created by positive pion decay that is

terminated at the surface of the production target M). These muons have

a typical range of 1.5 mm in polyethylene and 0.65 mm in aluminum. An

electromagnetic separator/spin rotator is installed on the beamline, allowing

the muon-spin direction to be turned with respect to the muon momentum.

The detector setup is composed of:
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Figure 3.9: (left) The GPS instrument in 3D without the sample insert. The
muon beam enters the instrument on the right. (right) Schematic top view
of the detectors. Taken from Ref. [85].

� a muon detector (M) with a thickness of 0.18 mm;

� six positron detectors (in the direction of the beam): forward (F),

backward (B), up (U), down (D), right (R), and left (L);

� a ”mobile” detector attached to either the R or L detector depending

on the cryogenic port utilized;

� an array (4 or 5) of SiPMs photosensors that reads each (sub)detector

on both sides;

� a detector of backward veto (Bveto). The Bveto’s goal is to collimate the

muon beam to a 7x7 mm2 spot and reject muons (and associated decay

positrons) that pass through the aperture (”active collimation”).

� a forward veto detector (Fveto) rejects muons (and accompanying decay

positrons) that have not halted in the sample.
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NMR/NQR for 2D Kagome

superconductors

4.1 General introduction

The AV3Sb5 kagome metals are particularly exciting because they exhibit a

diverse range of quantum phenomena, including topological isuperconductiv-

ity, charge-density wave (CDW) states, and possibly spontaneous symmetry-

breaking transitions. These properties are deeply intertwined with the elec-

tronic structures of the materials. NMR spectroscopy can be employed to

investigate the electronic structure of AV3Sb5 kagome metals by measuring

the local electronic environments around specific nuclei, typically 121Sb and
51V nuclei in these materials. By analyzing the NMR spectra, we can deter-

mine the presence of phase transitions and their nature via changes in the

local magnetic susceptibility and electric field gradients, coupled to the nu-

clear spin and electric quadrupole, respectively. NMR/NQR measurements

on different nuclei (87Rb, 51V, and 121Sb) as a function of temperature and for

different charge chemical doping allows us to detect the temperature tran-

sitions and study the character of the phase transitions at play and their

possible interplay. In this chapter, I will present the main result of my Ph.D.

project regarding the study of Kagome superconductors using NMR spec-
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troscopy on a number of samples summarized in Table 4.1.

Table 4.1: List of kagome metals of the AV3Sb5 family characterised by means
of NMR/NQR, along with their composition and form.

Composition Doping Label Form
RbV3Sb5 Undoped RVS Crystal
KV3Sb5 Undoped KVS Crystal
CsV3Sb5 Undoped CVS Crystal

CsV3Sb5−xSnx x = 0.05 CVS-Sn05 Powder
CsV3Sb5−xTex x = 0.04 CVS-Te04 Powder

x = 0.06 CVS-Te06 Powder

4.2 Methods

Here I will give further details of some specific instrumental set-ups regarding

the NMR/NQR measurements presented so far, in addition to the general

methods introduced in Chapter 2. 51V/87Rb nuclear magnetic resonance

(NMR) spectra have been collected on a single crystal of RbV3Sb5 as a

function of temperature, with an external magnetic field B0 = 7.95 T and 6.99

T. In addition, 121Sb zero-field nuclear quadrupolar resonance (NQR) spectra

have also been acquired. For KV3Sb5,
121Sb zero-field nuclear quadrupolar

resonance (NQR) spectra have been acquired on a single crystal.

The NMR/NQR spectra and relaxation times T1 and T2 have been acquired in

a wide range of temperatures, from roughly 10 to 290 K, using custom-made

spectrometers and cryogenic setups for liquid nitrogen and helium.

The 121Sb NQR spectra at 77/69 K for RbV3Sb5 and KV3Sb5 were measured

by immersing the tuned LC probe head directly in liquid nitrogen inside a

nitrogen dewar, which provided a hold time of several days with excellent

sample temperature stability and allowed recording spin echo signals at high

averaging statistics (≈ 5 × 105 scans), as needed to detect the weaker and

broader Sb1 peaks with a good signal-to-noise ratio. Spin echoes were excited

at discrete frequencies with typical frequency stepping of 50 or 100 kHz, by
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employing either a standard equal-pulse spin echo sequence P − τ −P − τ −
echo or a three-pulse stimulated spin echo sequence π/2−τ−π/2−τ ′−π/2−
τ − echo [86, 87], with suitable phase alternation of pulses and delays τ just

longer than the receiver dead time but, in all cases, well shorter than the spin-

spin relaxation time T2. In the former, the two rf pulses P were optimized for

maximum signal intensity (a condition corresponding to a nutation angle of

4π/3 [86]). The stimulated echo sequence was mostly employed to detect the

weaker 121Sb NQR, in spite of its slightly reduced refocusing efficiency, owing

to its immunity to spurious magneto-acoustic (ringing) and magneto-elastic

couplings, which, on the contrary, may affect the basic two-pulse excitation

sequence by yielding spurious echo signals that are not completely rejected

by phase cycling. In either case, spectra were reconstructed as the envelope

of the frequency-shifted, phase-corrected Fourier transforms of the various

spin echoes recorded at different reference frequencies. Such a method can

be regarded as a variant of the frequency step and sum method illustrated

in Ref. [78], more suited than the latter to the analysis of frequency-swept

spectra.

4.3 Determination of CDW structure in RVS

and KVS

In the following section, I will report the results of Ref. [77], which regards the

first unambiguous determination of the CDW configuration for the RbV3Sb5

kagome superconductor, conducted using NMR and NQR experimental tech-

niques in addition to ab-initio DFT calculations (DFT in collaboration with

Dr. P. Bonfá from the University of Parma). Furthermore, I will describe

the results of the determination of the CDW structure for the parent sample

KV3Sb5, not been published yet.

4.3.1 Introduction

An important issue that required urgent clarification about Kagome super-

conductors was the structure of the charge density wave ordering among a
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subset of proposed configurations in the literature. NMR/NQR is an elec-

tive technique since it is extremely sensitive to detecting both inequivalent

magnetic and electric sites. Earlier discoveries using Angle-resolved photoe-

mission spectroscopy (ARPES) and Density Functional Theory (DFT), have

proposed that the specific CDW structure is dependent upon the presence

of A cations in the system [88], adding complexity to the problem. The

goal of this current work, which is focused on RbV3Sb5 and KV3Sb5 sam-

ples, is to definitively determine the ground-state structural configuration

below the CDW phase transition. Figure 4.1 shows how RbV3Sb5 (and sim-

ilarly, KV3Sb5) adopts a layered form at ambient temperature known as the

”Pristine” phase, which is defined by hexagonal symmetry and space group

P6/mmm, No. 191. The salient feature of this material is the formation of a

two-dimensional (2D) kagome layer comprising V atoms (Figure 4.1a), with

its electronic band structure exhibiting distinct characteristics, as extensively

detailed in the literature [89–91]. The possible different configurations ex-

pected below the CDW transition are summarised in Figure 4.1(b-e), and

detailed in the following.

At temperatures exceeding the CDW transition temperature (TCDW ), which

is established at 103 K (≃ 70 K for KV3Sb5), the high-temperature phase of

RbV3Sb5/KV3Sb5 exhibits two non-equivalent Sb sites: Sb1 sites lie in the

same plane as V, whereas Sb2 sites are situated both above and below the

V layer, forming a graphene-like hexagonal lattice. Specifically, Sb1 occupies

the center of V hexagons, while Sb2 potentially resides at the center of V

triangles. In the CDW state, below TCDW = 103 K, the lattice undergoes

a structural transition. First-principles calculations initially proposed two

possible distortions for arranging the kagome planes. One is the Star-of-

David (SD) distortion (Figure 4.1b) of V atoms, which resembles the well-

known motif of the CDW state found in transition-metal dichalcogenides [92,

93]. The other is an inverse deformation of the SD pattern (ISD, Figure 4.1c).

This results in a periodic arrangement of V atoms in triangles and hexagons,

which is also called Tri-Hexagonal (TrH) structure. Regarding the stacking

along the c-axis, different arrangements have been proposed:
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Figure 4.1: The crystalline structure of RbV3Sb5, above and below TCDW . a)
The pristine phase adopted above TCDW , with the V atoms (in red) forming
a 2D kagome lattice. The Sb atoms are divided into Sb1 (in blue) and
Sb2 (in dark green). The Rb atoms are labeled in magenta. This is the
same structure adopted by KV3Sb5 in the normal phase. b), c), d), e) The
four considered structures below TCDW : Star-of-David (SD), Inverse Star-of-
David (ISD) or tri-hexagonal, (staggered) Star-of-David and Inverse Star-of-
David with π-shift (SD-π and ISD-π, respectively). Here, the Sb atoms in
the top figures are not displayed for clarity purposes. f) The pattern formed
by vanadium atoms above and below CDW transition (ISD-π structure),
with the formation of V1 and V2 sublattices (colored in red and orange,
respectively) in the CDW phase.

� repetition of SD or ISD (Figure 4.1b and c);

� alternation of ISD and SD;
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� a π-shift translation between adjacent planes (SD-π and ISD-π, Fig-

ure 4.1d and e).

The overall distortion must, therefore, be described in, at least, a 2×2×2

supercell. In this work, we resolve this controversy for RbV3Sb5 and KV3Sb5

by combining 51V/87Rb NMR and 121Sb NQR measurements for RbV3Sb5,

and 121Sb NQR measurements for KV3Sb5, with Density Functional Theory

(DFT) calculations, unambiguously identifying the crystalline structure of

the CDW phase among the many variants proposed in the literature for

both samples.

4.3.2 Results and discussion

RbV3Sb5 results

In the NMR/NQR spectra, the resonance frequency is sensitive to the mag-

netic and charge environment, hence, non-equivalent nuclear sites arising

from the symmetry-breaking effects are typically detected by frequency peak

splittings across the phase transition. In addition, the area Ai of the i − th

NMR/NQR peak is proportional to the statistical occupation of a specific

i− th nucleus, i.e. to the multiplicity of each non-equivalent site in the unit

cell. We base the determination of the CDW configuration upon:

� theAi/Aj ratio of the NMR/NQR peaks for each couple of non-equivalent

nuclei (i ̸= j), equal to the population ratio of the non-equivalent nu-

clear site per species;

� the quadrupolar frequency νQ and asymmetry parameter of the Electric

Field Gradient (EFG) tensor η of each peak that we compare to DFT-

based calculations of the EFG in the various phases.

In the lowest symmetry configurations considered here, i.e. SD-π and ISD-π,

the V and Rb (for RbV3Sb5) atoms split into two sublattices, while three

non-equivalent sites are obtained for Sb1 and Sb2 nuclei. These are shown in

Figure 4.1d and e. The multiplicity of each non-equivalent site is summarised

in Table 4.2 for both the pristine (T > TCDW ) and various proposed CDW
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(T < TCDW ) phases.

Table 4.2: Atomic occupations for 51V, 121Sb and 87Rb atoms in RbV3Sb5

above and below CDW transition. The same applies to KV3Sb5.

Phase Atoms Multiplicity

Rb 1
Pristine V 3

Sb1 1
Sb2 4

Rb1/Rb2 6/2
2×2×2 CDW V1/V2 12/12

(ISD or SD, no π-shift) Sb1-a/Sb1-b 2/6
Sb2-a/Sb2-b 8/24
Rb1/Rb2 4/4

2×2×2 CDW V1/V2 12/12
(ISD or SD, with π-shift) Sb1-a/Sb1-b’/Sb1-b” 2/2/4

Sb2-a/Sb2-b’/Sb2-b” 8/8/16

121Sb (with nuclear spin I = 5/2) NQR measurements are the most sensitive

to distinguish between the SD and ISD structures, as already shown for

the case of CsV3Sb5 [44, 94]. Due to the different and lower symmetry of

their positions, Sb2 and Sb1 nuclei are distinguished into Sb2-a/Sb2-b and

Sb1-a/Sb1-b when the SD or the ISD structures are considered and further

separated into Sb2-a/Sb2-b/Sb2-b” and Sb1-a/Sb1-b’/Sb1-b” non-equivalent

sites when a π-shift is introduced, as shown in Figure 4.1. Figure 4.2 shows

selected 121Sb NQR spectra for 5/2 → 3/2 NQR transition. Above TCDW =

103 K (bottom of Figure 4.2) two peaks are present and assigned according to

the 1:4 occupation ratio Sb1:Sb2 (Figure 4.1a and Table 4.2). In the CDW

phase (center of Figure 4.2), we expect four peaks for a simple stacking

of SD or ISD-ordered kagome planes, while six peaks should appear when

introducing a further π-shift along c. The data for T < TCDW show 5 peaks,

with 4 of them clearly visible and an additional spectral weight appearing as

a bump next to the most intense peak. From this, we can exclude the two

simpler SD or ISD structures with no pi-shift, since they would give only

four peaks in the 121Sb NQR spectrum.
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Figure 4.2: Representative 121Sb NQR spectra above (106 K, bottom) and
below TCDW (77 K, center) for 5/2 → 3/2 NQR transition. In the top part,
vertical ticks display the relative values calculated below TCDW by DFT for
SD, ISD, and ISD-π configurations with respect to the quadrupolar frequency
of Sb sites above TCDW (see text); the height of the ticks is proportional to
the site multiplicity. In the center, the y scale is logarithmic. The DFT
spacing is calculated for the normal state in the bottom part.

According to the site multiplicity summarised in Table 4.2, the most intense

peak, at almost 145 MHz, is assigned to the Sb2-b”. To proceed further, we

estimate the quadrupolar frequencies for the various structures with ab initio

simulations by collecting the electric field gradient (EFG) at each 121Sb nu-

cleus in the SD, ISD, SD-π and ISD-π structures. The absolute values of the

calculated νQ at the Sb sites are affected by a systematic error, but these are

canceled when the variations of νQ between the pristine phase (T > TCDW )

and the low-temperature structures are considered. The mismatch between
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the experimental results and the prediction for the SD structure is immedi-

ately evident (Sb2-a and Sb2-b nuclei have very different quadrupolar reso-

nance frequencies in the SD and ISD structures), and therefore the addition

of a π-shift for the SD structure does not improve the matching. Instead,

a good agreement is found for the ISD structure, and the small change in-

troduced by the π-shift along the c direction further improves the agreement

between the prediction and the experiment. We can, therefore, safely rule

out the presence of SD distortions in the kagome plane. Table 4.3 summarizes

the Ai/Aj ratio obtained from the area of the NQR peaks and the relative

site occupation in the ISD-π phase. The values are in very good agreement

Table 4.3: Multiplicity ratio between 121Sb sites in the CDW phase, accord-
ing to the crystalline structure (center) and experimental NQR area (right
column).

Phase Sites Crystal NQR area (T = 77 K)

Pristine Sb2:Sb1 4 4.2(3)
Sb2-b”:Sb1-a 8 7.8(3)

CDW Sb2-b’:Sb1-a 4 4.0(2)
Sb2-a:Sb1-a 4 3.9(2)

(Sb1-b”+Sb1-b’):Sb1-a 3 3.0(2)

within the experimental error. As a result, we can attribute the bump at

around 145 MHz to the combined signal from Sb1-b’ and Sb1-b” sites of the

π-shifted ISD structure, as shown in the center of Figure 4.2. To further

justify the site assignment, we also collect the 3/2 → 1/2 NQR transition

and we estimate the asymmetry parameter η of the EFG tensor from the

following ratio, valid if η ≤ 0.1 [63, 65]

ν121
Q (5/2 → 3/2)

ν121
Q (3/2 → 1/2)

≃ 2(1− 35

27
η2) . (4.1)

The experimental values of η for Sb sites are compared with the DFT predic-

tion for the ISD-π structure in Table 4.4. Taken together, the above results

allow us to unambiguously conclude that the kagome planes undergo an ISD

distortion in RbV3Sb5 and support the presence of a π-shift along c direction,
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Table 4.4: Comparison between experimental and predicted values for the
asymmetry parameter η.

Site DFT (ISD-π) Exp. (T = 77.3 K)

Sb1-a 0 0.001(5)
Sb1-b’ 0.056 0.034(5)
Sb1-b” 0.058 0.034(5)
Sb2-a 0 0.001(6)
Sb2-b’ 0.117 0.074(6)
Sb2-b” 0.116 0.076(6)

in agreement with previous theoretical predictions [88, 95, 96].

To validate the proposed arrangement of the kagome layers along the c axis,

we study the symmetry change of the Rb site. Figure 4.3 shows selected

spectra of 87Rb with H0 = 7.95 T // c axis. As expected for the quadrupole

109.0 109.15

H0
 = 7.95 T ||  c

110.8 110.9

Frequency (MHz)

Rb1 Rb2

112.6 112.75

T = 125 K

T = 78 K

8
7
R

b
 N

M
R

 in
te

n
s
ity

 (
a

. 
u

.)

||||

Figure 4.3: Temperature dependence of the 87Rb NMR spectra above and
below TCDW = 103 K, with H0 = 7.95 T // c axis.

perturbed NMR spectra of the I = 3/2 87Rb nuclear spin, three peaks ap-
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pear above TCDW = 103 K, related to the ±1/2 transition for the central line

plus the +3/2 → +1/2 and −1/2 → −3/2 transitions for the low and high-

frequency satellites, respectively. Below TCDW = 103 K, both the satellites

and the central line clearly split, thus reflecting the presence of two inequiv-

alent sites, labeled Rb1 and Rb2. The splitting of all the transition peaks

for the I = 3/2 is due to the consequence of different electric field gradients

and local susceptibilities at the two sites. This behavior is in agreement with

the behavior of the 51V NMR in CsV3Sb5 [44, 90]. As already done for 121Sb

NQR measurements, we consider the relative area between the two NMR

peaks of a doublet, which is proportional to the ratio between the multiplic-

ity of the corresponding inequivalent atomic sites. The stacked ISD layer

with a π-shift [44] yields a 1:1 multiplicity ratio between Rb1 and Rb2 sites.

On the other hand, the structures with alternating SD and ISD layers [43]

proposed for CsV3Sb5 or stacked of ISD layers without π-shift yield to a 3:1

ratio. Figure 4.3 clearly shows that the ratio between Rb1 and Rb2 peak

intensities is nearly equal to 1:1 for the central or satellite doublets. This

result excludes the alternate SD and ISD configurations and is only compat-

ible with the stacking made by ISD layers, π-shifted from one layer to the

other.

KV3Sb5 results

The 121Sb NQR spectra in the pristine phase have been acquired at T = 77

K and in the CDW phase at T = 69 K, and can be seen in Figure 4.4. As

the temperatures show, the already reported CDW measurements in KV3Sb5

were not so precise in the determination of the transition temperature. In

fact, the exact CDW transition temperature is less than 70 K, around 10 K

less than the reported ones [7]. Moving on to the determination of the CDW

structure, we first report the area ratios between Sb2 and Sb1 peaks in the

pristine phase. As it can be seen in Table 4.5, this is in agreement with the

expected one within the error bar. We can clearly see that, opposite to the

RbV3Sb5 case, in the pristine phase of KV3Sb5, Sb1 site has a higher NQR

frequency with respect to Sb2, so it is reasonable to expect that at T = 69
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Figure 4.4: Representative 121Sb NQR spectra above (77 K, bottom) and
below TCDW (69 K, center) for 5/2 → 3/2 NQR transition in KV3Sb5 single
crystal. In the top part, vertical ticks display the relative values calculated
below TCDW by DFT for SD, ISD, and ISD-π configurations with respect to
the quadrupolar frequency of Sb sites above TCDW for RbV3Sb5 (see Sec-
tion 4.3.2); the height of the ticks is proportional to the site multiplicity. In
the center, the y scale is logarithmic.

K (CDW state) Sb1 sites (Sb1-b’, Sb1-b” and Sb1-a) will have higher NQR

frequencies than in RbV3Sb5. By looking at the middle panel of Figure 4.4,

the NQR spectra in the CDW phase show many similarities with the NQR

spectra of RbV3Sb5. The frequencies of Sb1 sites (Sb1-b”, Sb1-b’ and Sb1-a)

have a higher value with respect to the same for RbV3Sb5 measurements, as

predicted before. The area assignments, depicted in Table 4.5, are close to

the theoretical expectations, and the relative peaks’ positions with respect to

DFT calculations for RbV3Sb5 safely prove that the CDW structure adopted

by KV3Sb5 below TCDW = 70 K is the ISD-π, as for RbV3Sb5.
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Table 4.5: Multiplicity ratio between 121Sb sites in the CDW phase for
KV3Sb5, according to the crystalline structure (center) and experimental
NQR area (right column).

Phase Sites Crystal NQR area (T = 77 K)

Pristine Sb2:Sb1 4 4.6(5)
Sb2-b”:Sb1-a 8 7.9(4)

CDW Sb2-b’:Sb1-a 4 4.2(2)
Sb2-a:Sb1-a 4 4.4(3)

(Sb1-b”+Sb1-b’):Sb1-a 3 2.7(2)

4.4 Temperature-dependent behaviour of RVS

We report here the results I obtained in these three years regarding the

NMR/NQR temperature-dependent behaviour of 121Sb and 51V nuclei in the

kagome superconductor RbV3Sb5. This includes the measurements (not yet

published) of NMR Knight shift and Full-Width-Half-Maximum (FWHM),

relaxation times T1 and T2, and, finally, quadrupolar frequencies.

4.4.1 Introduction

Kagome superconductors AV3Sb5 undergo a unique phase transition, namely

the CDW one, in the temperature range TCDW 70–103 K. Apart from this,

they become superconducting at a critical temperature TC = 0.8–2.5 K. In the

middle of these two transitions, a lot of studies are currently being performed

to determine the possible existence of other transitions or exotic phases.

Some preliminary NMR studies on CsV3Sb5 suggest the occurrence of a ne-

matic phase at a temperature Tnem ≃ 40K [44], in which rotational symmetry

is spontaneously broken by electronic degrees of freedom, while other µSR

results highlight [97, 98] the possible existence of a time-symmetry breaking

transition that occurs in all AV3Sb5 materials at around 40–50 K. In both

cases, the presence of orbital currents that flow along the ”kagome” bonds

is suspected to be at play and responsible for a time-reversal symmetry-

breaking mechanism; thus, NMR can capture their effects since a current
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loop induces a magnetic field, possibly measurable in the NMR spectrum or

relaxation times.

4.4.2 Results and discussion

51V NMR results

FWHM and Knight shift. We start by looking at the Full-Width-Half-

Maximum of the central line (−1/2 → 1/2 transition) of 51V NMR spectra

(Figure 4.5(a)), which is coupled mainly to the magnetic channel and only

in second order to the quadrupolar one. These data were collected with an

applied magnetic field of 7 T /7 c axis on a RbV3Sb5 single crystal. Just

Figure 4.5: Temperature behaviour of a) FWHM and b) Knight shift of the
central 51V NMR spectrum on RbV3Sb5 single crystal (H0 = 7 T // c axis).
Below TCDW , V1 and V2 inequivalent sites are plotted by red circles and
blue squares, respectively.

immediately after the CDW transition, the FWHM of both vanadium sites

shows an abrupt increase, a sign of the transition occurring, and then a de-

crease to almost a constant value for T ∼ 85 K. The data show a clear increase

in the FWHM for the V2 (triangular) site below 50 K. The V1 (hexagonal)

site does not show any clear anomaly around 50 K but a monotonic increase

from higher temperatures. This might be tentatively attributed to the fact

92 CHAPTER 4. NMR/NQR FOR 2D KAGOME SUPERCONDUCTORS



4.4. TEMPERATURE-DEPENDENT BEHAVIOUR OF RVS

the possible loop currents occur within the V triangle of the Kagome struc-

ture and V1 is less sensitive. This is compatible with the results of Ref. [44],

where 51V NMR measurements performed on CsV3Sb5 at high field (16 T)

show a splitting of both 51V site peaks below 40 K, being for V2 higher. The

phenomenon has been interpreted as due to electronic-nematicity-enhanced

C2 splitting, or spontaneous Rotational Symmetry Breaking (RSB). In our

measurement performed at a much smaller field, the splitting is not resolved,

instead appearing as an enhancement of the peak broadening at 50 K, at

least for the V2 site.

In Figure 4.5(b), the Knight shift K for the central line (−1/2 → 1/2 tran-

sition) 51V nuclei, expressed as the percentage of shift with respect to the

applied field B0 = 7 T, shows almost constant behaviour in the pristine

phase while splitting into two almost specular lines below the CDW transi-

tion. The behavior of the Knight shift does not show any anomaly around

50 K for both peaks, probably because an independent trend is followed by

the peak maximum.

Relaxation times. After analyzing the linewidths and the frequency shifts

of the NMR spectra, we can now focus on the study of spin dynamics for
51V nuclei, by measuring the spin-lattice relaxation time T1. The spin-lattice

T1 measurements have been acquired in a wide range of temperatures, from

10 to 290 K, using a standard Saturation Recovery (SR) technique. The

inverse of it multiplied by the temperature, namely the 1
T1T

, from the theory

of Fermi liquid models [70] is expected to be constant in a simple metal.

In particular, both the isotropic part of the Knight shift Kiso, which is the

average of the Knight shift with the field applied in the plane and along

the c axis, and 1/T1T are related to the density of states (DOS) ρ(EF ) at

the Fermi level through the Pauli magnetic susceptibility χP0 and should be

constant in temperature:

Kiso =
A0χP0

gµBℏγn
1

T1T
=

πkBA
2
0ρ

2(EF )

ℏ

(4.2)
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where A0 is the hyperfine coupling constant, ℏ the reduced Planck’s con-

stant, µB the Bohr’s magneton, g and γn the gyromagnetic factor and the

gyromagnetic ratio for the nucleus under study, respectively. By looking at

Figure 4.6, the quantity 1/T1T is not temperature-independent even above

the CDW transition, where the system is in the metallic regime. This is a hint

of a possible ”hidden” ordering that occurs at high temperatures (T > 160

K) and/or the possible presence of strong electron correlation. When cross-

ing the CDW transition, the system is no longer in a classical metallic state,

hence, the two 51V sites have different and increasing values of T1 (and there-

fore, decreasing 1/T1T) which is a sign of a different modulation of the DOS

at the Fermi level for the two sites, a consequence of the CDW ordering [99,

100]. The inset in Figure 4.6 highlights the 10-80 K region of the 1/T1T.

Figure 4.6: NMR relaxation measurements on RbV3Sb5 single crystal to
determine 1/T1T for 51V nuclei, in an applied magnetic field of 7 T // c axis.
In the inset, the zoom on the 10-80 K region.

When reaching Tx = 50 K (detected from FHWM vs. T in Figure 4.5(a) on

V2 site), the 1/T1T possibly changes its slope and becomes almost flat; after

that, it decreases again and reaches a plateau at very low temperatures. A

deeper analysis and more experimental points are needed. Overall, the 51V

NMR results as a function of temperature presented in this chapter confirm

the presence of anomalies at around Tx ≃ 50 K, with hints of a change in
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the charge distribution for certain vanadium nuclei. To better understand

the mechanism that lies behind this anomalous change, further analyses are

needed.

87Rb NMR results

To further elucidate the T-dependence of RbV3Sb5, we analyzed
87Rb nuclei

with NMR, in an applied magnetic field of 7 T.

Knight shift. Starting from the NMR spectra (reported for selected tem-

peratures in Figure 4.3), we collected the Knight shift in a wide range of

temperatures and with the applied field B0 along the c axis and parallel to

the ab plane of the sample. Figure 4.7 shows the Knight shift values in the

two field configurations, along with the difference δK between the two Rb

sites below the CDW transition. By looking at Figure 4.7(a) in the pristine

Figure 4.7: NMR measurements on RbV3Sb5 single crystal in a magnetic
field H0 = 7 T // c axis and // ab plane. (a) The temperature dependence
of the Knight shift K for 87Rb central lines. (b) The Knight shift difference
δK between the two split peaks Rb1 and Rb2.

phase (T > 103 K), K is almost temperature-independent, therefore fulfilling

Equation (4.2) for a simple Fermi liquid. We only notice a major shift in the

case of B0 // ab plane than to the c axis, of about 0.05 % more. When

crossing the CDW transition temperature, the Rb1 and Rb2 sites have sim-

ilar K up to 90 K, and then their splitting becomes larger and larger. In
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Figure 4.7(b), the difference δK between Rb1 and Rb2 is plotted. We no-

tice a negative difference in the range 95-103 K, and then a normal increase

up to the saturation at T ≃ 50 K when B0 // c. Accidentally, we observe

a crossing of the two curves. The very abrupt character of this change at

TCDW suggests that the transition is of first-order type. Regarding the hints

for a transition at Tx = 50 K, we cannot conclude anything from these data,

since more points for temperatures lower than 30 K would be needed.

Relaxation measurements. We discuss the results obtained for 87Rb re-

garding the spin-lattice relaxation time T1. In Figure 4.8, the 1/T1T mea-

surements collected with B0 = 7 T // c and ab are shown, respectively. In

Figure 4.8: 1/T1T for 87Rb nuclei in RbV3Sb5, in an applied magnetic field
of 7 T measured with B0 a) // c and b) // ab, respectively.

both field configurations, the 1/T1T above TCDW is almost constant in tem-

perature, resembling the behaviour of the Knight shift K. Below the CDW

transition, the two 87Rb sites have equal values of T1 up to almost 75 K,

when the slope of 1/T1T changes, and the two sites differ in that value. Un-

fortunately, we are missing data for T < 30 K when B0 // c axis, and even

worse for T < 50 K when B0 // ab plane.

In conclusion, the data collected as a function of temperature show that 87Rb

is also very sensitive to the CDW transition. The behavior of the Knight

shift is almost constant for T > TCDW , but this is not the case for the 1/T1T

which shows a small linear dependence, showing a more complex scenario

than for a simple metal. The CDW transition looks first-order. No special
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clues come at first glance from the temperature behavior below TCDW since

in these preliminary measurements performed around 50 K, no evidence of

specific anomalies is detected. More information might come from a finer

T scan, possibly at much lower temperatures. An accurate analysis of the

1/T1T term and contributions should reflect the complex band topology of

this system and is beyond the scope of this work.

121Sb NQR results

Finally, we characterized the temperature-dependent behaviour of 121Sb nu-

clei by performing zero-field NQR at a wide range of temperatures for the

2nd NQR transition (|5/2⟩ → |3/2⟩). In particular, we collected the NQR

frequencies for antimony sites in the range 4–275 K, while the Half-Width-

Half-Maximum (HWHM) and the 1/T1T have been collected only up to 70

K. This mismatch is caused by the poor width resolution of the 121Sb peaks

for T > 80 K, which cannot give a reliable FWHM (and hence, HWHM),

but can still be used to extract the NQR frequencies of the peaks.

NQR frequencies and HWHM. In the pristine phase, the two antimony

sites, Sb1 and Sb2, have the asymmetry parameter of the EFG η = 0, hence

the measured NQR frequencies are exactly 2νQ, where νQ is the quadrupolar

frequency, since we are measuring the 2nd NQR transition. This is due to the

fact that when considering the 121Sb nuclear spin I = 5/2, we can calculate

the NQR frequencies for |3/2 → 1/2⟩ transition, which correspond to the

quadrupolar frequency νQ, and for |5/2 → 3/2⟩ transition using the relation

(valid for an asymmetry parameter of the EFG η ≤ 0.1) [63, 65]:

ν
3/2→1/2
Q =

3eQVzz

20h

�
1 +

59

54
η2
�

ν
5/2→3/2
Q =

3eQVzz

10h

�
1− 11

54
η2
�

(4.3)

In the formula, Q is the quadrupole moment of the nucleus, Vzz the principal

component of the EFG tensor in the Principal Axis System (PAS), I the

nuclear spin, and η the asymmetry parameter of the EFG tensor in the PAS

notation. It can be seen that for η = 0, the 5/2 → 3/2 NQR transition

frequency is exactly twice the one of 3/2 → 1/2 transition, thus explaining
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what we observed. Figure 4.9 displays the measured NQR frequencies and

the half width half maximum (HWHM), both taken from the NQR spectra

of 121Sb. As written in the caption of Figure 4.9, in the CDW phase, we only

Figure 4.9: ZF-NQR on 121Sb nuclei in RbV3Sb5. a) Temperature depen-
dence of the NQR frequencies for 121Sb sites above and below the CDW
transition. Below the CDW transition, the three Sb1 sites (see Figure 4.1)
are not shown since their low intensity makes them difficult to follow in tem-
perature. b) Half width half maximum (HWHM) of 121Sb NQR spectra as
a function of temperature, below the CDW transition. Horizontal lines are
the average of points for T > 50 K.

acquired the data for the three Sb2 sites (Sb2-b’, Sb2-b” and Sb2-a) and we

ignored the three Sb1 sites (Sb1-b’, Sb1-b” and Sb1-a, see Figure 4.1). This is

due to two main factors: i) The Sb1 sites have very low intensity compared to

Sb2 ones (1:4 for each Sb1-x:Sb2-x couple, respectively), therefore a very high

number of scans would be needed to uncover them in the NQR spectra. This

has been done in Figure 4.2 and Figure 4.4, at only one specific temperature,

to unravel the CDW structure for RbV3Sb5 and KV3Sb5, collecting 2 days of

statistics for each point. ii) A high number of points is needed when doing a

temperature-sweep study, hence, it would require days or even weeks of each

temperature to follow the T-behaviour of Sb1 sites with a sufficient SNR

ratio to make them evident from the noise.
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Going back to Figure 4.9(a), the NQR frequency results show an abrupt split-

ting of Sb2 sites into Sb2-b’, Sb2-b” and Sb2-a just after the onset of CDW

transition, with the latter site having the highest and most split frequency

of all. This abrupt character is again compatible with a first-order-like tran-

sition. No clear anomalies of the frequency peaks are found across Tx =

50 K. On the other hand, regarding the linewidth, all the 121Sb NQR lines

measured here as a function of temperature show a possible increase at Tx

(Figure 4.9(b)), consistent with the V2 behavior (Figure 4.5(a)).

Relaxation measurements. To conclude our temperature-dependent be-

haviour, we report here the 1/T1T measurements collected in zero-field NQR

in the CDW phase, for only the three Sb2 sites. The results are shown in

Figure 4.10. Apparently, there are no signs of anomalous deviations in the

Figure 4.10: Zero-field NQR 1/T1T measurements on 121Sb nuclei in the
CDW phase.

trend of 1/T1T, and the lack of experimental points for T > 70 K does not

help with this.

Summarizing, for all the nuclei, the temperature dependence of NMR/NQR

measurements shows very clearly the occurrence of the CDW transition (and

offers a formidable tool to identify the CDW transition, as seen in Sec-
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tion 4.3). Notably, it seems less sensitive to the occurrence of the anomalous

phase expected below Tx: only the linewidth of V2 and possibly Sb2 sites

indicates some change around 50 K. They might be related to the possible

occurrence of spontaneous loop currents and/or a suble charge rearrangement

(due to further local structural symmetry breaking within the CDW phase).

Further studies are needed to better understand this phenomenon. As we

will see in Chapter 5, the µSR technique is more sensitive to the presence of

this anomalous low-T phase.

4.5 Determination of substitutional site in charge-

doped CVS

The next work I will present is determining the substitutional site in Sn-

doped CsV3Sb5−xSnx [101], published in the journal Physical Review Mate-

rials. After the introduction, I will report the part I personally conducted,

namely the NQR measurements of 121Sb in different concentrations of doped

CsV3Sb5−xSnx. Furthermore, I will report similar results obtained in Te-

doped CsV3Sb5 [102], published in the journal Frontiers in Electronic Mate-

rials - Superconducting Materials. Both Te and Sn substitutions have been

performed in CsV3Sb5 powder samples.

4.5.1 Introduction

In novel kagome superconductor CsV3Sb5, carrier doping is an appealing

means of tuning CDW and superconductivity relative to the Fermi level

and probing the coupling of the CDW and SC states. Shifting the relative

positions of the VHS and Γ pocket relative to EF and probing the evolution

and interplay of the CDW and SC phase transitions can provide insights into

the origins of each state.

In the case of hole doping, a recent study on oxidized thin flakes of CsV3Sb5

shows that hole doping on the Cs site can enhance TC while also suppressing

CDW order [103]. In addition, density functional theory (DFT) calculations
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show that hole doping drives the VHS in the opposite direction relative to

EF than that expected via external hydrostatic pressure [104]. Given that an

unusual coupling between SC and CDW states was observed under variable

pressure [105], a systematic study of hole-doping effects is an important ex-

perimental window into understanding this unconventional coupling. Here,

the effect of hole doping on the CDW and SC states in CsV3Sb5−xSnx with

0 ≤ x ≤ 1.5 is presented. Hole doping is achieved via the substitution of

Sn onto the Sb sites, and because Sn and Sb are very similar in size, this

drives negligible coincident steric effects in the band structure. As holes are

introduced, the CDW state is rapidly suppressed, and the three-dimensional

CDW order vanishes near x = 0.06. In parallel, SC is enhanced and reaches

a maximum TC = 3.6 K at x = 0.03 within the CDW state before decreasing

as the CDW is fully suppressed. Continued hole doping beyond the suppres-

sion of CDW order results in a second maximum in TC = 4.1 K at x = 0.35

prior to bulk SC weakening and vanishing beyond x = 0.5. The above-cited

scenario is shown in the left part of Figure 4.11. In the case of electron dop-

ing, one unanswered question is whether an electron-hole imbalance occurs

in the carrier-tuned phase diagram of CsV3Sb5. The relative shift of the Van

Hove points relative to EF should be crucial to system response in a rigid

band shift model, and in the more realistic scenario of orbitally selective dop-

ing, the impact of the relative shifts of the Sb pz mixed bands on the CDW

state stands to inform more about its function in charge order generation.

The electron-doping can be achieved via Te substitution onto the Sb sites in

CsV3Sb5−xTex, which is the other focus of this part. Our data demonstrate

the limited solubility of Te into the CsV3Sb5 doped sample matrix before

phase separation occurs near x ≃ 0.08 and that Te preferentially occupies

the Sb-sites in the V-kagome plane. The electron doping induces a monotonic

decrease of Tc and a weaker effect on the CDW state, displaying high TCDW

in the whole investigated range. Unfortunately, the low chemical solution

limit of the Te/Sb substitution, occurring at x ≈ 0.1, prevents the study

for further doping. Anyway, the hole and electron dopings display markedly

different behaviour.
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Figure 4.11: Hole and electron-doping phase diagram for CsV3Sb5−xSnx, ob-
tained by magnetization measurements from the group of S. Wilson at Santa
Barbara Univ., USA, and published in refs. [101, 102]. Left) A double-dome
structure is present for Sn dopant and CDW seems to disappear for x > 0.05.
Right) for electron doping up to the solution limit of the Te/Sb substitution
(x ≈ 0.1), CDW still persists at high temperature while Tc is monotonically
decreased, indicating a marked asymmetric behavior with respect to the hole
doping case.

In these works, we analyzed pure CVS and electron- and hole-doped CVS-

Te06/CVS-Sn05, and conducted room-temperature NQRmeasurements. Since

CsV3Sb5 possesses two equivalent Sb sites (Sb1 in-plane with vanadium, and

Sb2 out of the plane; see Figure 1.3), it is crucial to understand the substi-

tutional position of Sn/Te dopants between these two Sb sites. DFT calcu-

lations and nuclear quadrupolar resonance measurements establish a strong

preference for Sn/Te to occupy Sb sites within the kagome plane.
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4.5.2 Results and discussion

Sn-doped results

In Figure 4.12 we plot the doping dependence of the NQR frequency spectra

for 121Sb sites Sb1 and Sb2. In addition, in Table 4.6, we summarize the

frequency shift associated with the first moment of Sb sites Sb1 and Sb2 for

two Sn doping concentrations.

Figure 4.12: Sn doping dependence of the ZF-NQR spectra for the Sb2 (blue)
and Sb1 (green) nuclei of two powder samples of CsV3Sb5 for x = 0 (bottom)
and 0.05 (top). Dashed lines denote the position of all the spectral lines of
undoped sample.

Table 4.6: Doping dependence of the frequency shift of the quadrupolar line
for |±5/2⟩ ↔ |±3/2⟩ transition, for both Sb sites, at room temperature.

Sb site Sn concentration νQ (MHz)
Sb2 0.00 145.7197± 0.0012

0.05 145.7988± 0.0012
Sb1 0.00 140.0024± 0.0012

0.05 139.9963± 0.0012

Considering the crystalline structure shown in Figure 1.6 and the distances

between different Sb sites, we conclude that in order to see a shift in the

CHAPTER 4. NMR/NQR FOR 2D KAGOME SUPERCONDUCTORS 103



4.5. DETERMINATION OF SUBSTITUTIONAL SITE IN CHARGE-DOPED
CVS

quadrupolar frequency only for Sb2 sites at low concentrations, the dopant

should substitute only the in-plane kagome Sb1 sites. As it can be seen, the

distances between Sb1-Sb1 sites are much larger than Sb1-Sb2 ones, and so a

substitution of Sb1 nuclei will only affect Sb2 nuclei, therefore modifying the

electronic charge distribution around them and the value of the Electric Field

Gradient (EFG) tensor, resulting in a different quadrupolar coupling. In the

other case, a dopant in Sb2 sites would affect both Sb1 and Sb2 sites since

Sb1-Sb2 and Sb2-Sb2 distances are comparable, and so an appreciable shift of

the quadrupolar frequency should also be observed for Sb1 sites. Evidently,

only the Sb2 site line shifts when Sn dopants are added to the sample, while

Sb1 spectra remain at the fixed frequency position unaffected by Sn doping.

Therefore, NQR measurements indicate that Sn dopants preferably occupy

only Sb1 sites.

Te-doped results

In Figure 4.13 we plot the doping dependence of the NQR frequency spectra

for 121Sb sites Sb1 and Sb2. In addition, in Table 4.7, we summarize the

frequency shift associated with the first moment of Sb sites Sb1 and Sb2 for

two Te doping concentrations.

Table 4.7: Doping dependence of the frequency shift of the quadrupolar line
for |±5/2⟩ ↔ |±3/2⟩ transition, for both Sb sites, at room temperature.

Sb site Te concentration νQ (MHz)
Sb2 0.00 145.7197± 0.0012

0.06 145.9902± 0.0012
Sb1 0.00 140.0024± 0.0012

0.06 140.0098± 0.0012

Evidently, only the Sb2 site line shifts when Te dopants are added to the

sample, while the Sb1 spectra remain at the fixed frequency position, unaf-

fected by Te doping. Therefore, NQR measurements indicate that Te dopants

preferably occupy only Sb1 sites, as seen for Sn doping.
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Figure 4.13: Te doping dependence of the ZF-NQR spectra for the Sb2 (blue)
and Sb1 (green) nuclei of two powder samples of CsV3Sb5 for x = 0 (bottom)
and 0.06 (top). Dashed lines denote the position of all the spectral lines of
undoped sample.

4.6 CDW temperature for electron-doped CVS

Here I present Sb NQR measurements for the determination of the deter-

mination of the CDW transition temperature for undoped CsV3Sb5 and

CsV3Sb5−xTex, with x = 0.04 Te, referred to as CVS-Te04, in comparison

with magnetization data from Ref. [102]. This work has been performed

as a part of the Master’s Thesis of the student Sahil Parvez [106], which I

personally followed as a co-supervisor in the first months of 2023.

4.6.1 Introduction

To accomplish this work, we performed a temperature sweep set of 121Sb ZF-

NQR measurements on undoped CsV3Sb5 and CVS-Te04, in powder forms,

to determine the onset of the CDW transition, its mean temperature, and

its offset (where the system lies in the ”pristine”, or normal, phase). We

only looked for the Sb2 site in the normal phase, whose multiplicity is four

times the one for the Sb1 site, and lies at around 147.5 MHz at T = 106

K (see Figure 4.13, where Sb2 site at room temperature lies at around 146
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MHz for the |5/2⟩ → |3/2⟩ transition), and for the Sb2-b’ and Sb2-b” sites

in the CDW phase (as a reference, please look at Figure 4.2). This way is

extremely sensitive to the occurrence of the CDW since the change in the

electric field gradient moves apart the Sb2-b peaks from the Sb2 frequency

peak position of the normal phase, as shown in the previous paragraphs. For

this reason, we also neglected the Sb2-a site (expected around 150 MHz),

since it is redundant for this aim.

4.6.2 Results and discussion

The aim of this work is to compare the area of the Sb2 site above TCDW

with the areas of Sb2s sites below the CDW transition, to determine the

temperature at which the undoped CsV3Sb5 and CVS-Te04 samples enter

the CDW phase. We first investigate the undoped CsV3Sb5, which will be

taken as a reference for the Te-doped analysis. The top panels of Figure 4.14

shows the a) undoped 121Sb NQR spectra for the |5/2 → 3/2⟩ NQR transition

for selected temperatures in the range 94-106 K, and b) the relative peaks

area of the normal and the CDW phases. The fitting of the peaks in panel a)

has been done by using multiple Lorenztian peaks to determine the area of

each NQR line, which is proportional to the number of nuclei in that specific

environment. The area of the normal phase Anormal is simply the area of the

Sb2 peak (in red), while the CDW area ACDW is the sum of the Sb2-b’ peak’

area multiplied by two (to account for the Sb2-a site, which is expected to

have the same multiplicity of Sb2-b’), and the Sb2-b” one, both in green.

Finally, we calculated the relative area of the CDW and normal phases with

respect to the total area of the peaks:

Arel
i =

Ai

Anormal + ACDW

(4.4)

whose results are shown in the top panel of Figure 4.14(b). We observe the

coexistence of the two phases across the TCDW instead of a sharp transition

detected in single crystals. Here we use powder samples and we might expect

a distribution of TCDW among different grains due to the presence of defects,
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Figure 4.14: a) 121Sb NQR spectra for the undoped CVS (top) and doped
CVS-Te04 (bottom) samples. The green curve is the fitting to the CDW
peaks, while the red curve is the fit to the normal phase. The cyan dotted
curve is the global fit to the experimental data. b) Relative areas of the CDW
and normal phases for undoped CsV3Sb5 (top) and CVS-Te04 (bottom) as
obtained by using Equation (4.4), with their best erf(x) fit (see text below).

impurities, or little chemical inhomogeneities. By assuming a Gaussian dis-

tribution of T ′
CDW transitions, the data can be fitted to an error function-like

behavior erf(T −TCDW/σ), being centered at TCDW =< T ′
CDW > and σ the

distribution width. The fit gives us a value of:

TCVS
CDW ≃ (100.9± 1.8) K σCVS

CDW ≃ (4.2± 0.2) K

(the typical value for a CVS single crystal is 94 K [6]). The same analysis

for the CVS-Te04 sample is shown in the bottom panels of Figure 4.14(a)

and (b). We observe a big increase in the width of all the peaks in both the

normal and CDW phases. We can attribute this phenomenon to the doping

itself, since in general, the line width reflects some kind of distribution of

EFG due to structural disorder or some dopant inhomogeneity, typical of
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partially doped powder samples. The results of the relative areas are plotted

in the bottom panel of Figure 4.14(b), and the temperature point at which

the CDW and normal phase have equal weight gives us the value of the mean

transition temperature for the doped CVS-Te04:

TCVS-Te04
CDW ≃ (93.6± 1.8) K σCVS-Te04

CDW ≃ (5.5± 0.2) K

The values of both TCDW and σCDW for the undoped and Te-doped CVS are

summarized in Table 4.8. In the end, we can compare our NQR results with

TCDW (K) σCDW (K)
CVS 100.9 ± 1.8 4.2 ± 0.2

CVS-Te04 93.6 ± 1.8 5.5 ± 0.2

Table 4.8: Values of TCDW and σCDW for both CVS and CVS-Te04, extracted
from the fit to the relative areas (see text above).

the one obtained for the magnetization in Ref. [102]. The comparison is

shown in Figure 4.15. We can see that our values and the magnetization

Figure 4.15: Comparison between NQR and magnetization results on the
transition temperatures for undoped CsV3Sb5 and CVS-Te04. NQR points
are labeled in red, while magnetization points are in blue.
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ones are in agreement within the error.

4.7 Summary

Regarding the determination of the CDW structure for RbV3Sb5 and KV3Sb5,

we measured a wide range of NMR spectra, including zero-field 121Sb NQR,

and 51V/87Rb NMR measurements in both RbV3Sb5 and KV3Sb5 kagome

superconductors. For RbV3Sb5, the examination of the NMR/NQR spectra

from all three nuclear species, supported by DFT calculations, resulted in a

clear identification for the first time [77] of the structure stabilized below the

CDW transition, as seen in Section 4.3 in Figure 4.2. The low-temperature

structure is a 2 × 2 × 2 superlattice created by alternating Inverse Star-of-

David (ISD) layers, π-shifted from one to the other, according to an evalua-

tion of the multiplicity of the nonequivalent sites for each species, as shown

in Figure 4.1 In KV3Sb5, from the analysis of the NQR peaks’ frequencies

and the comparison with RbV3Sb5 results obtained, we conclude that the

CDW structure adopted by kagome superconductor KV3Sb5 is the Inverse

Star-of-David (ISD) with π-shift, the same as for RbV3Sb5, as it can be seen

in Figure 4.4.

For the T-dependent analysis RbV3Sb5 in Section 4.4, we can summarize the

main results in the following points:

�
51V FWHM for V2 site show signs of anomalous deviations at Tx ≃
50 K (see Figure 4.5(a)), which are probably due to a change in the

local dipolar field attributable to nematic order or orbital currents (i.e.,

Rotational Symmetry Breaking), and/or to a change in the dipolar field

distribution as a consequence of a secondary charge rearrangement;

�
87Rb NMR measurements are very sensitive to the CDW transition and

helped identify its specific configuration in Section 4.3. However, the

limited measured temperature range, in this case, does not allow us to

conclude anything about the possible change of state at Tx = 50 K;

� on the other side, 121Sb NQR measurements do show a possible increase
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in the linewidth at Tx (see Figure 4.9(b)).

Overall, the above-presented NMR/NQR measurements give an experimental

fingerprint of the presence of a peculiar phase transition that seems to occur

at 50 K for RbV3Sb5, analogous to that already reported from NMR in

CsV3Sb5 at T ≃ 35 K [44]. Further analysis and measurements would be

needed to better understand the nature of the physical phenomena that lie

behind this scenario. To this aim, we have recently started a complementary

µSR study of the low-T state, whose preliminary results will be presented in

the next chapter.

We also performed a study of room temperature and zero-field 121Sb NQR

measurements of Sn and Te-doped CsV3Sb5, for two different concentrations

of undoped and of Sn- and Te-doped CVS (CsV3Sb5−xMx (M = Sn, Te),

namely for x[Sn] = 0.05 and x[Te] = 0.04). Our results show that both

dopants occupy the Sb1 sites in the kagome plane, based on the analysis of the

shift of the NQR peaks in Figure 4.12 and Figure 4.13. Electron-doping via

Te-substitution in CsV3Sb5 largely preserves the CDW state, whereas hole-

doping with Sn-dopant seems to rapidly suppress long-range CDW order [101,

102]. These findings helped the characterization of hole- and electron-doped

kagome superconductor CsV3Sb5, and provided a way to analyze the role of

Sn doping in tuning the Fermi level and, hence, CDW and superconducting

interplay, as discussed in Ref. [101].

Finally, our 121Sb NQR measurements as a function of temperature on un-

doped CVS and CVS-Te04 powder samples showed that across the transition,

the normal and CDW states coexist in a T range of about ∼ 10 K around

an average TCDW which is doping dependent (Table 4.8). The mean value of

TCDW transition is in agreement with magnetization M(T) data (Figure 4.15).
121Sb NQR is a very powerful tool to characterize the CDW phase transition

(and less powerful for the transition at Tx) at the microscopic level with high

accuracy for these Kagome compounds.
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Chapter 5

µSR study: CDW in

charge-doped CVS

This chapter will be devoted to the presentation of the main results in

Kagome superconductors AV3Sb5 using Zero-Field (ZF) µSR. In particular,

we are going to present the results obtained for Sn- and Te-doped CsV3Sb5

samples at a wide range of temperatures, mainly with the aim of studying

the effect of doping on the low-T at Tx, determined by an anomalous in-

crease in the depolarization rate in all the undoped materials [97, 98, 107].

The effect of doping studied by µSR is poorly studied in the literature, and

this section reports the preliminary results of our work, which creates the

phenomenological basis for a more detailed ongoing and future investigation.

The samples studied are summarized in Table 5.1.

Table 5.1: List of kagome metals of the AV3Sb5 family characterised by means
of µSR, along with their composition and form.

Composition Doping Label Form
CsV3Sb5−xSnx x = 0.08 CVS-Sn08 Powder

x = 0.35 CVS-Sn35 Powder
CsV3Sb5−xTex x = 0.08 CVS-Te08 Powder
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5.1 Introduction

So far it is clear that (at least) three transition temperatures characterize the

temperature behavior of the AV3Sb5 kagome metals: TCDW , Tx, Tc. Consid-

ering TCDW and Tx, in Chapter 4 we saw that NMR/NQR is very sensitive

to detecting TCDW , and less sensitive to detecting Tx, while we will see in

this chapter that µSR acts conversely. Hence for our scopes, µSR and NMR

are complementary. Here we present some Zero Fieled (ZF) µSR measure-

ments as a function of temperature for some selected Sn and Te dopings on

CsV3Sb5 samples. This is a preliminary investigation of the potentiality of

µSR in investigating the doped kagome materials and checking the effects of

doping on Tx and to some extent on TCDW . The samples under investigation

are summarised in Table 5.1, with their labels.

As presented in preceding sections, hole- and electron-doped CsV3Sb5 kagome

superconductors offer an invaluable experimental platform for investigating

the interplay between the CDW and Superconducting (SC) states, which

can be effectively manipulated by fine-tuning the Fermi level through chem-

ical doping. Specifically, for hole-doping, achieved through Sn substitution

into Sb, for hole doping the CDW seems to vanish for x > 0.05-0.08, from

magnetization measurements, while a second superconducting dome appears

(Figure 4.11). Conversely, for electron-doped CsV3Sb5, the CDW transition

persists at least up to the solution limit of Te (x ∼ 0.1).

In addition to the examination of the CDW transition, it is worth follow-

ing the doping dependence of the ”nematic” or ”Time-Reversal Symmetry

Breaking” (TRSB) phase transition, observed to be approximately Tx ∼ 40

K for the specific case of pure CsV3Sb5, as reported in references [44] and

[97].

5.2 Methods

To accomplish this, we performed a comprehensive set of ZF-µSR measure-

ments in Sn and Te-doped CsV3Sb5−xMx (M = Sn, x = 0.08, 0.35; M = Te,
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x = 0.08) samples in a wide range of temperatures (5–300 K). These sam-

ples will be referred to as doped CVS-Sn08, Sn35, and Te08, respectively,

throughout this chapter. We chose Te08 because is the maximum Te-doping

possible, Sn08 for comparison of hole/electron dopant concentration with

Te08, and Sn35 to check the behavior for different doping content and for

the sample with max Tc (second SC dome in Figure 4.11).

The measurements for Te08 have been performed with the GPS spectrometer

at the Paul Scherrer Institut, Villigen, Switzerland, while the measurements

for Sn08 and Sn35 have been conducted with the EMU spectrometer at the

ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory,

Harwell-Oxford, UK. For the EMU experiment at ISIS, the CVS-Sn08 and

Sn35 powders with a mass of approximately 1.5 g have been put on a circular

section of ϕ = 30 mm inscribed in an Ag square sample holder. For the GPS

experiment at PSI, the CVS-Te08 powder with a mass of approximately

0.35 g was put inside aluminium foil to form a rectangular package of sides

approximately 10x10 mm2, and then stitched with Kapton tape on a Cu fork

to be inserted onto the probe.

Due to the pulsed source of muons, the EMU data at ISIS can cover a higher

window in time (up to 20 µs) with a higher counting rate and are suitable

for non-magnetic samples (as the AV3Sb5 family); on the opposite, the high

beam size provides a large background of the order of 30%, thus reducing

the total asymmetry. The continuous source of muons at PSI does not al-

low the measurements to go beyond 9-10 µs of time windows, hence hiding

important information about the muon polarization’s tail in samples with a

low relaxation rate such as the ones under investigation. The advantage is

that, by having a smaller beam size, the background is minimal.

After calibrating both samples in a Transverse-Field of 20 G, to determine

the α coefficient of Equation (2.48), a temperature scan of Zero-Field mea-

surements has been performed to measure the relaxation rates and the asym-

metry values of the muon polarization. The data collected at ISIS have been

analyzed using WiMDA software [108], while the data for PSI using the mu-
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lab package for Matlab, made available by Prof. Roberto de Renzi and Prof.

Giuseppe Allodi at the University of Parma, Italy.

5.3 Results and discussion

As an example, the experimental ZF-µSR polarization Pz(t) at T = 90 K

for both CVS-Sn08 and Te08 is shown in Figure 5.1. The muon polarization

Pz(t) is defined as:

Pz(t) =
A(t)

A(t=0)

where A(t) is the muon asymmetry. The same behaviour of muon polar-

ization is followed by CVS-Sn35. As pointed out in Section 5.2, it is clearly

Figure 5.1: Representative µSR polarization Pz(t) plots at T = 90 K for a)
CVS-Sn08 and b) CVS-Te08. The black curves indicate the fit, as described
later in the text.

visible in Figure 5.1 the difference in time-window between the data collected

at ISIS (left) and PSI (right). The time dependence of the muon polariza-

tion resembles the behavior described by a Kubo Toyabe function (see Equa-

tion (3.3)), which is typically expected for the dipolar distribution of nuclear
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magnetic moments. Actually the best fit in the whole T range requires an

additional exponential factor with a lambda decay. This term is introduced

phenomenologically by following refs. [97, 98, 107], and it accounts for pos-

sible contributions of electronic origin. Thus, the fitting function used to

analyze the µSR spectra is:

P (t) =

�
1

3
+

2

3
e−σ2t2/2

�
1− σ2t2

��
e−λt (5.1)

where σ and λ are the relaxation rates of the nuclear static part and possibly

the electronic dynamic part, respectively.

From the literature [97, 98], it has already been shown that in undoped sam-

ples, a moderate change in relaxation occurs at the CDW transition. There-

fore, by looking at the relaxation rates, we can possibly answer the question

about the presence or not of the CDW transition for doped CVS-Sn08 and

Te08 samples, as well as to uncover possible anomalies at Tx, which for the

undoped CsV3Sb5 is found to be at around 35 K [97, 107]. Let us now discuss

briefly why the presence of a possible TRSB transition also affects the relax-

ation rates and the asymmetry of the muon precession. As already discussed

in Chapter 4, a TRSB transition can arise due to multiple physical phenom-

ena; among all of them, the presence of orbital currents in the kagome plane

[97, 98] represents a remarkable example of how to break the time-reversal

symmetry by inducing currents along the V-V bonds and, hence, producing

a tiny magnetic field, which contributes to the distribution of the magnetic

dipolar field around the muon and enhances the relaxation rates. On the

contrary, a similar effect can also be due to the occurrence of a structural

transition that modifies the muon-nuclei distance; hence, again, the dipolar

field distribution around the muon is reflected in the KT decay. This lat-

ter hypothesis represents what happens in the CDW transition, where the

modulation of the electron density is related to a structural deformation and

the formation of a superlattice. Finally, a nematic transition, in which the

electronic degrees of freedom drive a reduction of rotational symmetry (for

example, from C4 to C2) [44, 109], could also explain the increase in the relax-
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ation rates for both pure and hole-/electron-doped AV3Sb5 materials, since

the reduction in the symmetry affects the lattice structure by modifying the

distance between muon and nuclei, as explained before. Other contributions

might be of pure dynamical origin, which is reflected in the T1 and T2-like

processes, hence affecting the muon relaxation rate.

5.3.1 CVS-Sn08 vs. CVS-Te08

The analysis of the µSR ZF-spectra for the doped CVS-Sn08 and CVS-Te08

samples are shown in Figure 5.2, in the range of temperature 0 < T < 115

K. Figure 5.2 displays the relaxation rates σ and λ of the muon polarization

Figure 5.2: µSR relaxation rates (left) σ and (right) λ for the CVS-Te08/Sn08
sample (in red and black, respectively). The up arrows represent the Tx tem-
peratures, while the down arrow is the TCDW for CVS-Te08 from magnetiza-
tion data M(t) (Figure 4.15). The solid lines are guides for the eyes.

function in Equation (5.1).

CVS-Sn08 discussion

For the CVS-Sn08 sample, an increase in both the nuclear and electronic

relaxation rates is visible at about 30 K. This particular temperature re-

sembles the one found in Ref. [44] for the NMR experiment on CsV3Sb5,
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and could represent the rise of the nematic phase under debate. These signs

possibly confirm the occurrence of a phase transition, but in order to deter-

mine its exact nature, further studies must be conducted (actually, they’re

currently under investigation by our group). The data of σ and λ are both

totally flat for T > 30 K, up to 115 K. This might indicate that the CDW

transition does not occur in this sample in agreement with magnetization

measurements (Figure 4.11 and Ref. [101]). However, the detection of CDW

through magnetization data appears as a peak on the first derivative with

respect to temperature, which is smeared out progressively as a function of

doping, and local probes are needed to carefully check local symmetry break-

ing. In addition, µSR is not very sensitive to the pure CDW transition, since

the muon decay rate generally gives a small bump around it. Furthermore,

this transition might occur below Tx and elude the detection. So we cannot

conclude about the absence or presence of the CDW transition here. Further

investigation by Sb NQR is planned soon to detect its possible presence, by

following the examples in Section 4.4.

CVS-Te08 discussion

Considering the relaxation rates, both σ and λ display change in their be-

haviours when going down T = 85 K; σ slightly decreases, while λ shows a

steep increase in its value. These results indicate that the CDW transition is

still present in the doped CVS-Te08, in agreement with magnetization data

[101, 102].

By looking at Te-doped results, the nuclear relaxation rate σ shows an in-

crease in its value below 25 K, while the scattering in the λ points cannot

reveal a similar phenomenon. In summary, there are signs that indicate the

presence of a nematic/TRSB transition in the doped CVS-Te08 sample.

5.3.2 CVS-Sn08 vs. CVS-Sn35

Figure 5.3 displays the relaxation rates σ and λ of the muon polarization

function in Equation (5.1) for the Sn08 and Sn35 samples. We can clearly
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Figure 5.3: µSR relaxation rates (left) σ and (right) λ for the CVS-Sn08 and
Sn35 sample (in black and magenta, respectively). The up arrows represent
the Tx temperatures.

see from the σ results in Figure 5.3(left) that the CVS-Sn35 sample shows a

bigger increase in the relaxation rate, and at a higher temperature (Tx = 42

vs. 30 K) with respect to the Sn08 one. Above 42 K, the relaxation rate σ

is almost equal for both doped samples. On the other side, the λ results also

show appreciable differences between CVS-Sn08 and CVS-Sn35 in the tem-

perature at which the value goes from flat to increasing. To conclude, when

going from one of the two superconducting domes to the other, the muon

relaxation rate is higher, and the Tx increases by about 10 K. The reason

why this happened is still unclear and deserves further investigation.

5.4 Summary

In conclusion, we performed ZF-µSR measurements on doped CVS-Sn08/Sn35

and CVS-Te08, to conduct a preliminary investigation of the effect of both the

doping content and type (hole/electron) on the occurrence of the CDW phase

and in the anomalous low-temperature behaviour, where a possible reduction

of the rotational symmetry seems to occur. A proper, more rigorous analysis

of the muon polarization spectra would require a more detailed study of the
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contributions of the dipolar field and electric field gradient terms for differ-

ent possible charge arrangements around nuclei, by following the procedure

developed by us and applied to other materials presented in Chapter 6. This

study, which includes support from DFT calculations, is underway and is be-

yond the scope of this thesis. Despite that, the use of the phenomenological

KT×exp function captures the main features occurring as a function of tem-

perature, revealed by the σ(T) and λ(T) behavior. Doping concentrations

higher than x = 0.05 at the Sb substitutional site for the hole counterpart

(Sn in our case) seem to suppress the CDW transition, while for the electron

counterpart (Te doping) it is still present even with x = 0.08.

Regarding the presence of the nematic/TRSB transition, for which muons

look to be more sensitive, both the hole- and electron-doped CsV3Sb5 show

an upturn of the relaxation rates in the low T region (< 50 K). This gives evi-

dence that this anomalous phase is ubiquitous and possibly survives when the

CDW is suppressed (to be checked and confirmed by NMR/NQR measure-

ments when the CDW is fully suppressed). Furthermore, we observe some

difference of Tx and the relaxation rates as a function of the doping content

(Sn08 vs Sn35) indicating that the phenomenon is sensitive to the position of

the Fermi level. Further measurements and calculations are currently going

on to explore the connection between this transition, the CDW, and their

intertwining with the superconducting state. The obtained results possess

a purely phenomenological and preliminary nature, albeit they serve as the

foundational groundwork for a more meticulous investigation that has re-

cently started. This investigation is being supported by simulations of muon

polarization relaxation, by assuming different theoretical configurations con-

sistent with various predictions of spontaneous temporal symmetry breaking,

to be compared against experimental data.

The superconducting state of these samples is currently under study in order

to determine the exact nature of the superconducting state by using TF-µSR

and how it intertwines with both the CDW and the possible anomalous phase

that occurs below Tx.
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Chapter 6

µSR as local charge-probe

technique

In this chapter, I will report the result obtained in the article [110], regard-

ing the use of muons as local charge probes for quantum entanglement with

quadrupolar nuclei (I = 7/2). This work started during my Master’s Thesis

and ended during my second year of Ph.D., and includes µSR experiments,

DFT calculations, and X-ray diffraction (XRD) characterizations and refine-

ments.

6.1 Introduction

Quantum coherence between an implanted positively charged muon and nu-

clei in a solid was first conclusively demonstrated using muon-spin spec-

troscopy (µSR) experiments on simple ionic fluorides [111]. The strong

hydrogen-like bonding of the implanted positive muon (chemically identi-

fied as µ+) to nearest-neighbor F ions, characterized by a single spin 1/2
19F nuclear isotope, gives rise to a hierarchical separation of the muon spin

interactions. Typically, dipolar couplings with two nearest-neighbor (nn) 19F

nuclear spins, I1, and I2, determine the dominant spin-Hamiltonian of the

S = 1/2 muon, whereas all the residual interactions, starting from the next
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nearest neighbours (nnn), can be ignored to a first approximation. Thanks

to the 100% initial muon spin polarization, a prerogative of µSR, this shows

up experimentally as a characteristic coherent spin precession pattern in the

muon time-dependent asymmetry, uniquely determined by the geometry of

the F–µ–F bonds. Many fluorinated compounds display this coherent pattern

in non-magnetic phases, including ionic fluorides [112–115], fluoropolymers

[116, 117] and molecular magnets [118]. For these materials, the absence or

the fast fluctuation of electronic magnetic moments leaves the nuclear spin

interactions to determine the dynamics of the muon spin polarization. This

allows a very precise assignment of the muon implantation site, now known

to be particularly accurate with the help of density functional theory (DFT)

ab-initio simulations of the muon stopping-site inside the crystal (a technique

which is also known as DFT+µ [119–123]). A similar coherent spin behav-

ior has been identified in certain hydrides [124–126] and in metal–organic

frameworks [127], where for instance a close association of a proton and the

positive muon approximates a muoniated hydrogen molecule, µH, or possi-

bly, a bonded molecular ion, (µH)+, (µH)−. Notice that 1H, like 19F, is a

spin I = 1/2 nucleus hence with zero electric quadrupole moment.

In the case of 1H, as for the cases of many other nuclear species, such a

coherent pattern is rarely observed in µSR experiments. Much more often a

large number of unpolarized nuclear spins give rise to a T−1
2 relaxation process

with either Gaussian or Lorentzian lineshapes, both the hallmarks of fast

decoherence on the timescale of the period of coherent quantum interference

processes. Fluorine is special since it is very electronegative, and it has

both a small ionic radius and a large nuclear moment, so that its dipolar

coupling to the muon is strong and consequently several oscillations in any

quantum-coherent signal can be observed before all muons have decayed or

any nuclear relaxation process has become significant. The special F–µ–F

case was very recently revisited by some of us [128], showing the role of the

rest of the nuclear spins (nnn and beyond) in the slow decoherence process

of F-µ-F. This work implies that the very well-known F-µ-F effect, confined

until now among the technicalities of the muon spectroscopy, displays all

122 CHAPTER 6. µSR AS LOCAL CHARGE-PROBE TECHNIQUE



6.1. INTRODUCTION

the features of a very high accuracy quantum sensor that can be exploited

for microscopic detection of important physical phenomena [129] and can

be finely controlled by electromagnetic excitation [115]. Unfortunately, until

now, the sensor has been available only for F−- and, much more rarely, for

H−-containing materials, insensitive to quadrupolar interaction.

In the present work, we demonstrate the same surprising type of quantum

coherence due to the entanglement of the muon spin with nn quadrupolar

nuclear spin (I > 1/2) and we establish that this quantum coherence can

provide a muon spectroscopy-based quantum sensor of local charge-related

phenomena. We show this phenomenon in three intermetallic compounds,

Nb3Sn, V3Si and V3Sn, which belong to the A15 cubic phases (Pm3n, group

number 223), whose members include several technologically dominant con-

ventional superconductors [130]. In stark contrast to the well-studied I = 1/2

case of 19F and 1H, the presence of nn nuclei with I > 1/2, namely I = 7/2,

9/2 of 51V and 93Nb respectively, implies the existence of quadrupolar inter-

actions. This has two effects that could potentially spoil the quantum sensor

concept: first, it was until now unclear that detectable quantum coherence

could nevertheless show up in the muon asymmetry; second, quadrupolar

interactions are proportional to the electric field gradient (EFG) at the nu-

cleus in question, not just on the pure geometry of the bonds. EFG tensors

are very accurately determined by DFT in bulk materials [131] and com-

pared to the values measured for instance by nuclear magnetic resonance

(NMR) [132]. The muon embedding in the crystal alters the bulk EFG in

more than one way. We show that the coherent effect survives and we de-

velop here an accurate model to describe this phenomenon. Our modeling

of the coherence entails identifying precisely the muon site and calculating

muon perturbed EFG tensors at nn and nnn nuclei. The results show that

the observed phenomenon is highly sensitive to small structural and elec-

tronic differences among the same A15 family, paving the way to extend the

use of muon spectroscopy as a quantum sensing technique for charge-related

phenomena.
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6.2 Methods

6.2.1 X-rays diffraction characterization

Figure 6.1: X-ray diffraction patterns for V3Si, V3Sn, and Nb3Sn, at T =
300 K. The blue points are the experimental data, the red lines the Rietveld
refinement fits and the green ticks represent the Bragg reflections of the A15
cubic structure with the Pm3n, group number 223.

Synchrotron x-ray powder diffraction measurements have been performed at

the ELETTRA synchrotron Facility in Trieste (Italy). V3Si and V3Sn sam-

ples were measured at the XRD1 beamline using wavelength 0.7 Å whereas

Nb3Sn was measured at the Xpress beamline using wavelength 0.4957 Å.

Rietveld refinements were made by using GSAS-II software and aimed mainly

to check phase purity and to determine the lattice parameters, necessary as

input parameters for the simulation of the muon polarization (see below).

Representative diffraction patterns measured at room temperature are dis-

played in Figure 6.1 with their Rietveld fit curves. All the samples have an

A15 cubic structure with the Pm3n, group number 223, symmetry and dis-

play lattice parameters a = 4.7226(2) Å, 4.98186(2)Å, 5.28868(2) Åfor V3Si,
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V3Sn and Nb3Sn respectively, in agreement with previous results [133–136].

Unlike V3Si and Nb3Sn, in the case of V3Sn we observed several minor im-

purity phases which were identified to be due to different oxide phases of V

and Sn (about 3-5 %) and an additional 5 % contribution of the hexagonal

V3Sn phase. Since these phases are segregated and the µSR measurements

give a bulk response, proportional to the relative volume phase, the results

of this work are not affected by a small fraction of spurious phases.

6.2.2 µSR experiments

Our experiments were performed using the EMU spectrometer at the pulsed

beam ISIS Facility, Rutherford Appleton Laboratory, UK, and GPS spec-

trometer at the continuous beam Swiss Muon Source SµS, Paul Scherrer

Institute, Villigen, Switzerland. The first allows for the collection of high

statistics, thanks to the high data rate acquisition of time-differential data

at pulsed sources, but is typically affected by a large background due to

muons implanting in the sample holder or in the wall of the cryostat. On the

other hand, the second allows for nearly eliminating the background signal

thanks to the smaller beam size and the use of the VETO option. In our

case, the combination of the two is essential in order to collect data acquisi-

tion much higher than the muon lifetime (τ = 2.2 microseconds, as described

in Chapter 3), to resolve possible long-time features of the µSR signal, and

to properly subtract the background for a more accurate comparison with

the DFT simulations. All the powder samples were measured with the GPS

spectrometer, while V3Sn and V3Si were also measured with the EMU in-

strument, with high statistics for some selected temperatures. The powders

were wrapped in a sheet of 25 µm silver foil and were placed in the cryostat,

collected, and measured in the range 20-300 K and in zero external magnetic

field conditions. The Earth’s magnetic field was compensated to better than

50 µT using active field compensation.

In the muon experiment, a beam of spin-polarized muons was implanted

into a sample, and the number of positrons emitted in both the forward

and backward detectors, NF (t) and NB(t) respectively, were measured. The
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muon spin polarization was calculated as P (t) = A(t)/A0 being A(t) the

time-dependent muon decay asymmetry and A0 its initial value A(0). The

muon asymmetry, as derived in Chapter 3, is determined as A(t) = (NB(t)−
αNF (t))/(NB(t)+αNF (t)) where the parameter α takes into account system-

atic differences between the readings of both sets of detectors. Both α and A0

were properly calibrated at high temperatures by applying a small transverse

field (of a few mT). The background component of ISIS measurements has

been estimated by comparing them with the acquisitions performed at PSI at

the lowest temperature. The data are linearly interpolated at the same time

intervals. Finally, the constant shift providing the best overlap among the

two curves is estimated and subtracted from the ISIS measurements.

6.2.3 Computational results

Density Functional simulations have been performed using a plane wave

(PW) basis with the Quantum ESPRESSO code, and with Augmented Plane

Waves using the Full Potential (FP) code Elk [137, 138]. In all simulations,

we used the PBE exchange and correlation functional [139]. In PW-based

simulations, the maximum k-point distance was 0.2 Å−1, obtained using a Γ

centered 4 × 4 × 4 grid for the 2 × 2 × 2 supercells and with a Γ centered

2×2×2 grid for the 3×3×3 supercells. A Marzari-Vanderbilt smearing with

5 mRy width was used. We chose ultrasoft pseudopotentials [140] for lattice

structure relaxation, and PAW potentials [141] for estimating electric field

gradients (EFG) at the various nuclear sites. A cutoff of 60 (600) Ry was

used for wavefunction (charge) cutoffs. The experimental lattice parameters

of the cubic structure were always enforced. FP simulations were performed

in a high-quality setting for the description of the basis (refer to Elk’s man-

ual for further details), but carefully defining muffin tin radii to allow the

simulation of the interstitial H atom. The maximum k-point distance in the

grid was smaller than 0.4 Å−1 in this case (with Γ centered 8 × 8 × 8 grids

for the unit cells, and Γ centered 2× 2× 2 for the supercells).
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6.3 Results and discussion

6.3.1 Experimental A15 µSR spectra and DFT calcu-

lations

Zero-field (ZF) µSR temperature scans, using the EMU spectrometer at the

ISIS Muon Source and the GPS spectrometer [142] at the Paul Scherrer In-

stitute, have been conducted as a function of temperature. Figure 6.2 shows

the µSR spectra (time-dependent spin polarization of the muon ensemble)

for all the samples at various representative temperatures. The temperature
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Figure 6.2: Experimental results obtained for V3Si(a), V3Sn(b) and Nb3Sn(c)
at various temperatures in ZF. The initial asymmetry has been normalized to
1 and the various measurements are shifted along the y axis by multiples of
0.5. The black line in (c) is the best fit for a static Kubo-Toyabe function. In
picture (d) the lattice structure of A15 compounds and the candidate muon
sites identified in this class of materials are depicted.

dependence is relatively weak, except above 200 K, where thermally activated

µ+ diffusion occurs in V3Si [143]. A similar trend is envisaged for Nb3Sn,

but with slightly higher activation energy, while a small increase in the tail

is observed in V3Sn at and above 150 K. At low temperatures, where the

muon is static in the µSR time window, the results are remarkably sample

dependent despite all the X3Y samples (X = {V,Nb} and Y = {Si, Sn})
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being very similar metals, sharing the same A15 cubic lattice structure. The

structure is shown in Figure 6.2d and our samples have a cubic lattice pa-

rameter a = 4.72 Å, 4.98 Å, 5.29 Å for V3Si, V3Sn and Nb3Sn respectively,

in agreement with previous results [133–135]. The nuclei of the X atoms are

closer to the calculated muon sites, as shown in Figure 6.2d with labels A

and B, and all have similar properties: 51V with 99.8% abundance has spin

I = 7/2, gyromagnetic ratio γV = 70.45× 106 rad/(sT) and quadrupole mo-

ment Q =-0.052(10) barn and 93Nb with 100% abundance has spin I = 9/2,

γNb = 65.64× 106 rad/(sT) and Q =-0.32(2) barn. The oscillatory behavior

observed in V3Si (Figure 6.2a) is in marked contrast to the cases of both

Nb3Sn (Figure 6.2c), which resembles the conventional Kubo-Toyabe (KT)

relaxation function (empirical KT best fit shown by the dashed line in the

same panel and characterized by a dip and a tail that flattens at 1/3 of the

initial value), and of V3Sn (Figure 6.2b), which could be described by a

KT relaxation, with an additional decay of the 1/3 tail which has no evident

physical origin. The surprisingly slow oscillations observed in V3Si (Fig-

ure 6.2a) cannot be due to internal fields of electronic origin since all these

A15 samples are non-magnetic. Instead, as we will show, they result from a

quantum coherent precession pattern due to the coupling between the muon

and nearby 51V nuclear moments, analogous to the F–µ–F case, and never

reported before for systems containing I > 1/2 nuclear spins.

In order to explain the three precession patterns of Figure 6.2 we now con-

sider the microscopic nuclear and electronic degrees of freedom entering the

quantum mechanical model of the muon polarization. The model requires

the knowledge of three ingredients to reproduce the experimental muon po-

larization: (i) the muon site, (ii) the perturbation induced by the µ+ on

the position of the neighboring atoms, (iii) the perturbation induced by the

muon on the EFG at the nuclear sites with spin I > 1/2. This information

allows us to fully define the spin Hamiltonian H given by:

H =
NnucX

i

µ0

4π

γµγiℏ2

r3i
Sµ ·Di · Ii + eQi

2I(2I − 1)
Ii ·Vi · Ii, (6.1)
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Figure 6.3: Comparison between experimental and predicted muon spin po-
larization obtained using atomic displacements and EFGs from plane wave-
based DFT calculations. The black dots in panels a), b), and c) are the lowest
temperature data collected at PSI for V3Si, V3Sn, and Nb3Sn respectively
(orange and red points of Figure 6.2). The green bars in panel (b) are ISIS
results collected at 20 K. A background has been estimated by comparing the
asymmetries collected at ISIS and PSI and removed. The red (orange) line in
all plots is the depolarization obtained using first principles results from PW
(FP) simulations to solve Equation (6.1). Shaded areas highlight different
trends that originate by taking into account typical uncertainties of the DFT-
based predictions (see main text). The insets show the perturbation induced
by the muon on its X-type neighbours (X =V,Nb). In particular, in the
presence of the muon, the displacement of each X atom from its equilibrium
position in the unperturbed lattice and the values of Vzz at the considered
atomic site are reported on the left-hand and right-hand y-axes, respectively,
as a function of the unperturbed distance of the considered atom from the
µ+ interstitial position in a 3x3x3 supercell.

where Sµ is the spin of the muon and ri is its distance from nucleus i, Ii and

Qi are respectively the spin and the quadrupole moment of nucleus i, D and

V are the dipolar and EFG tensors at nuclear site i, and other symbols have

their standard meaning. All the quantities entering Equation (6.1) can be

accurately estimated with DFT-based ab initio approaches and we describe

below the results that we obtained following the DFT+µ procedure.

Two candidate muon sites are present in our A15 compounds and are shown
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in Figure 6.2d with labels A and B. Site A corresponds to site T2 in Ref [143]

and is located in the center of the tetrahedron formed by four X atoms while

site B is in the center of the triangle formed by three X atoms. We find

that site B always has higher energy than site A by hundreds of meV and is

therefore omitted from the subsequent analysis. DFT simulations produce,

as an additional outcome, the displacements of the atoms surrounding the

muon. In all cases, the nn X atoms are substantially displaced by the muon

and the nearest neighbor distances increase by 6%, 5%, 4% respectively in

V3Si, V3Sn, Nb3Sn (the absolute values are shown in the insets of Figure 6.3

against the unperturbed µ-X distance).

The next step is the evaluation of the EFG at the quadrupolar nuclei in

each compound. While for ionic materials a point charge approximation may

sometimes be sufficient, covalent and metallic systems require more elaborate

strategies. Full potential (FP) DFT simulations yield very accurate estimates

in materials where the mean-field approximation does not break down owing

to strong correlation, but are extremely computationally demanding. For this

reason, and aiming at providing an easily adoptable approach, we opted for

an effective compromise between accuracy and speed using a plane wave basis

[137, 144, 145] combined with PAW [146] pseudopotentials.. Notably, this

procedure converges much faster than the equivalent technique aimed at the

prediction of magnetic contact hyperfine fields at the muon sites [147].

Unsurprisingly, the EFG of the four X neighbors of the muon is drastically

affected by the presence of the interstitial charge. For example, in V3Si the

unperturbed EFG tensor at V nuclei in the pristine material, with Vzz =

2.2 × 1021 V/m2 and η = 0, in agreement with the experimental value of

Vzz = 2.37 × 1021 V/m2, reduces by almost an order of magnitude as a

consequence of the presence of the positive impurity and the lattice distortion,

in agreement with earlier work [143]. Note that site assignments come with

some small uncertainty, and previous investigations that can be compared

with experiment [120, 128, 129, 148, 149] reveal that a discrepancy of the

order of a tenth of Angstrom is to be expected. On the other hand, plane

wave-based estimations of EFGs are subject to a much larger uncertainty
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of the order of 30% and 1.17 × 1021 V/m2 in relative and absolute terms

[150].

Having collected all parameters entering Equation (6.1), we proceed to com-

pute the time-dependent muon polarization numerically. For the A15 com-

pounds, the inter-nuclear dipolar interactions can be safely neglected thus

allowing the adoption of the approach proposed by Celio [151, 152] and im-

plemented in the publicly available code UNDI [153], which makes the es-

timate very quick. Our calculations consider only the effect of the nearest

nuclei, but some of we have recently shown it [128] how to effectively include

the effect of farther nuclei with an appropriate re-scaling of second nearest

neighbors interaction, allowing a substantial reduction of the otherwise ex-

ponentially diverging dimension of the Hilbert space. Following [128], we

consider 4 nn and 4 nnn whose positions are homogeneously rescaled by a

small amount to compensate for the remaining nuclei.

The predicted µSR signal obtained fully ab initio, i.e. without free param-

eters, is shown for all samples in Figure 6.3 by a red line (PW results) and

an orange dashed line (FP results), while shaded area indicates the uncer-

tainty in the PW based prediction quantified with a reduction or increase

of 3 % (29%) of dµ−X (EFG values). Experimental data acquired at the

lowest temperature for each compound are shown for comparison. Perfect

agreement is found for Nb3Sn [Figure 6.3(c)], while for V3Si [Figure 6.3(a)]

a small deviation is observed at about 4 µs where the first bump is slightly

overestimated, although the experimental result falls inside the shaded area.

A small increase of 15 mÅ in the µ-V distance allows the recovery of perfect

agreement. Remarkably, the oscillation (the time position of minima and

maxima) is very well reproduced. V3Sn is the sample showing the worst

agreement in the long-time tail. In this case, the deviation can be partially

attributed to the limits of the PAW approximation in reconstructing the EFG

at the V sites. Indeed the FP prediction, which differs from the PW-based

estimate by 16%, improves the agreement with the experimental data. These

trends demonstrate the exquisite sensitivity of µSR to atomic distances and

EFGs.
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6.3.2 Point-charge simulations of V3Si µSR spectra

As a comparison with DFT calculation, whose results are very accurate in

describing the muon polarization in A15 compounds, we report here the

simulation of the µSR spectra of V3Si using the point-charge model. The

basic concept behind this model is to approximate each ion in a crystal lattice

by its ionic charge, centred at a point of radius zero. In general, the EFG

is a difficult quantity to compute since it must be derived by differentiating

the potential:

V (r0) =
1

4πϵ0

Z
ρ(r′)

r
dτ ′ (6.2)

where the integral is taken over a volume swept out by r′, and the vector

r = r′ − r0. So as long as the charge distribution, ρ(r), is unknown, this

integral cannot be solved. Since simulations in this project will assume a

point charge distribution, however, the equation can be simplified to:

V (r0) =
1

4πϵ0

X

k

qk
r′k

(6.3)

by substituting in the charge distribution of k point charges ρ(r) =
P

k qkδ
3(r−

rk). This equation for V(r0) is a quantity that is at least possible to differ-

entiate, as can be easily shown:

Vij(r0) =
∂2

∂xi∂xj

 
1

4πϵ0

X

k

qk
r′k

!
=

1

4πϵ0

X

k

qk

�
∂2

∂xi∂xj

1

r′k

�

=
1

4πϵ0

X

k

V
(k)
ij

(6.4)

where some algebra will yield:

V
(k)
ij = qk

 
3x′i3x′j − δijr

′2k

r′
5
k

!
(6.5)

This quantity is the (unscaled) contribution of each charge towards the (i,j)th

component of the EFG tensor. Thus, to calculate the net EFG, one only
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needs to specify the partial EFG due to each point charge, and sum up each

contribution.

To achieve this, I personally wrote a Python code [154] to allow the user to

calculate the point-charge EFG at the desired nucleus in both an unperturbed

or perturbed crystal (by a vacancy, a muon, etc...), which is reported in

Appendix C. It is based on a previous code written in C++ [155], which I

improved and implemented with other functions. To start with, we used the

UNDI package as in Ref. [110], with the difference that the EFG used here

is calculated by the point-charge model instead of DFT calculations, using

POCSI [154]. The distance between the muon and the nearest-neighbours

vanadium nuclei dµ−V is enlarged by 5%, as reported in the paper from ab-

initio. There are no other constraints in the simulation. The unperturbed

point-charge EFG of V3Si at the vanadium nuclei has a value of:

EFGunperturbed
V 3Si

=



−2.30 0.00 0.00

0.00 −2.30 0.00

0.00 0.00 4.60


 × 1020

V

m2

Since this model is an approximation, it does not include any possible shield-

ing or antishielding (Sternheimer) factor, thus the absolute values are about

5 times smaller than the true one [156]. Despite this, the relative result is in

good agreement with NMR measurements on pure V3Si, where it is shown

that the EFG tensor is perfectly diagonal with the asymmetry parameter η

= 0. When the muon is introduced, it perturbes the distances among the nn

vanadium nuclei, thus altering the cubic structure and giving a non-diagonal

EFG. Furthermore, the muon itself produces an electric field gradient, thus

the vanadium nuclei will experience an EFG which is the combination of

the perturbed EFG of the nn vanadium nuclei and the one produced by the

muon itself. The calculated EFG at the vanadium nuclei from PC with the

CHAPTER 6. µSR AS LOCAL CHARGE-PROBE TECHNIQUE 133



6.3. RESULTS AND DISCUSSION

perturbing muon has the following value:

EFGperturbed
V 3Si

=



−4.20 0.00 0.00

0.00 −1.62 −3.18

0.00 −3.18 5.82


 × 1020

V

m2

We can clearly see the presence of off-diagonal terms, as predicted. Finally,

we used the latter calculated EFG and simulated the µSR spectra of V3Si,

whose results are shown in Figure 6.4. The agreement between the simulation

Figure 6.4: Comparison between experimental (black points) and simulated
from PC model (red curve) µSR spectra for V3Si.

and the experimental curve is not perfect, but the main experimental feature

representing the coherent oscillation at around 4 µs is well reproduced. To

conclude, the point-charge simulation is a rough approximation of the more

accurate DFT-based simulation, but can represent a good starting point in

the analysis of µSR.
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6.4 Summary

In summary, we have presented experimental evidence of coherent oscillations

resulting from interactions between quadrupolar nuclei and muons in the µSR

spectra of A15 superconductors. Solving parameter free spin Hamiltonians

that effectively include all nuclear spins in the system and take into account

the perturbed EFG at nuclear sites surrounding the muon led to an accurate

description of the µSR spectra. The charge distribution can be accurately

modeled using DFT-based simulations, and we have demonstrated how this

approach can be combined with straightforward spin Hamiltonians to accu-

rately predict the µSR spectra of nuclear origin in virtually any crystalline

specimen.

This study gives a concept of proof that µSR can be used not only as a

quantum sensing probe for magnetism but also for charge-related phenomena

thanks to the quantum entanglement between muons and quadrupolar nuclei.

The use of this scope requires accurate calculation of the muon position

and of its effect on the surroundings. We demonstrated that clear coherent

oscillations are not always present in the µSR spectra (actually very rarely).

However, the shape of KT-like behavior requires this approach to properly

consider the quadrupolar interaction contribution.

This approach will be used to properly study the µSR results on the Kagome

materials presented in the previous chapter when the CDW occurs and fur-

ther below Tx. This would allow disentangling possible extra contributions

coming from more exotic time-reversal symmetry-breaking phenomena from

the more trivial due to the charge rearrangement in the CDW phase.
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Chapter 7

Magnetic ground state in

Na2PrO3

In this chapter, I present the results of the complementary effort utilizing

µSR and neutron scattering experiments in addition to DFT and model

Hamiltonian calculations. These approaches were implored to investigate the

magnetic ground state of Na2PrO3 and at the same time explore the underly-

ing microscopic exchange interactions and crystal field splitting mechanism,

aimed at understanding Na2PrO3 potentials for the realization of Kitaev spin

liquid.

The manuscript of the results presented in this chapter will be submitted for

publication to Physical Review B [J. Frassineti, I. J. Onuorah, M. M. Isah,

P. Bonfá, J. G. Rau, J. A. Rodriguez-Rivera, A. I. Kolesnikov, S. Sanna,

V. F. Mitrović, and K. W. Plumb, Unraveling the magnetic ground-state in

alkali-metal lanthanide oxide Na2PrO3, to appear soon on Arxiv].

7.1 Introduction

The investigation of Kitaev spin liquids (KSLs) has recently been of extensive

interest owing to their intriguing potential for novel exotic magnetism, partic-

ularly the realization of quantum spin liquids in more than one-dimensional
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lattice geometries [51, 52, 62]. The KSLs are obtained as the exact solution

of the Kitaev spin model [61] and are characterized by quantum frustrations

that arise from the bond-dependent anisotropic Kitaev interactions driven

by Jeff = 1/2 Kramers doublets spin-orbit entangled local magnetic moments

[51, 55]. In practice, the generic Hamiltonian for describing the interactions

in a Kitaev material contains the suppressed isotropic Heisenberg interac-

tions, hence the Heisenberg-Kitaev model, and also possibly, in addition,

the symmetric off-diagonal exchange interaction [56, 157, 158]. Dominant

Kitaev interactions have been proven to be hosted typically by compounds

with partially filled 5d and 4d states transition metal ions in the low-spin d5

electronic configuration, including the Ir4+ oxides and Ru3+ based chlorides

and trihalides [51, 52, 56, 157–162]. In these compounds, the geometric ori-

entation of the neighboring TM-ligand octahedral complexes were shown to

play a crucial role in the underlying microscopic exchange interactions within

the Jackeli–Khaliullin mechanism [51].

Recently, it has been shown beyond the Jackeli-Khaliullin mechanism that

features of dominant Kitaev interactions are realizable in compounds with

the high spin d7 electronic configuration cations such as Co2+ and Ni3+ [163,

164] and the f1 electronic configuration such as Ce3+ and Pr4+ [53, 62, 165,

166]. Of particular interest to this work is Na2PrO3, which hosts the Pr4+

cation in the f1 electronic configuration. It crystallizes in the C2/c space

group (no. 15), and its structural geometry shows the edge-sharing nature of

the neighbouring PrO6 octahedra with the Pr−O−Pr exchange path required

for the realization of the dominant bond directional exchange similar to the

d5 electron Kitaev materials [51, 158]. The crystalline structure adopted by

Na2PrO3 is shown in Figure 7.1. The two inequivalent Pr atoms, Pr1 and

Pr2, form networks of two-dimensional honeycomb lattice in the ab plane

with two intraplane Pr-Pr distances of d = 3.433 and d′ = 3.458 Å, while

along the c axis the networks are separated by layers of Na atoms with an

interplane Pr-Pr distance of dp = 5.867 Å [167, 168]. Theoretically, using ab

initio DFT and the projection of the electronic bands onto Wannier Orbitals,

Na2PrO3 has been predicted to host antiferromagnetic Kitaev’s anisotropic
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Figure 7.1: (a) the crystalline structure adopted bu Na2PrO3, with the pres-
ence of Pr-O octahedra. (b) the Pr1-Pr2 bonds are highlighted, and the
formation of Pr hexagons is visible.

bond directional interactions, with Jeff = 1/2 Kramers spin-orbit entangled

local moment by the 4f electrons of the Pr4+ cation [53, 169]. On the contrary,

results of inelastic neutron scattering revealed rather weak Kitaev interac-

tions in Na2PrO3 with dominating Heisenberg exchange interactions and the

presence of reduced magnetic moments at Pr sites attributed to increased

crystal field effects [168]. This further casts doubt on the true magnetic

ground state and the nature of the microscopic exchange interactions that

characterize the ground state of Na2PrO3.

Here, using µSR, and neutron scattering measurements accompanied by

DFT and model Hamiltonian simulations (based on linear spin wave the-

ory (LSWT) and point charge (PC) theory), we investigate the magnetic

ground state structure (properties) of Na2PrO3 and the underlying micro-

scopic exchange interactions that characterize the ground state in search of

the signatures of Kitaev interactions.

7.2 Methods

Powder samples of Na2PrO3 were synthesized via solid-state reactions from

Na2O2 and Pr6O11. Dry starting reagents were weighed in a metal ratio,

Na/Pr∼2.2, to account for sodium evaporative losses, ground in an agate
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motor and pestle, and pelletized under an argon environment. The pre-

pared materials were enclosed in Ag ampules and heated at 750◦C under

dry, flowing oxygen for 36 hours. Samples were furnace-cooled to ∼ 150◦C

and immediately transferred to an Argonne glovebox for storage.

µSR measurements were carried out on the GPS spectrometer at the Paul

Scherrer Institut, Switzerland. The measurements were performed both in

a weak transverse field (TF) mode to calibrate the asymmetry parameter of

the muon polarization, and in zero field (ZF) to uncover the spontaneous

oscillations that give rise to the internal magnetic field. The ZF µSR spectra

were collected at temperatures ranging from 1.5 K to 5.2 K using a helium

flow cryostat. The sample was packed into aluminium foil inside a glovebox to

avoid air contamination and put into a Cu fork inserted into the experimental

probe. The time-differential µSR data were fitted using MUSRFIT software

[170], and the MuLab suite, a home-built Matlab toolbox.

Neutron scattering measurements were carried out on powder samples us-

ing the Multi-Axis Crystal Spectrometer (MACS) at the NIST Center for

Neutron Research. Elastic (E = 0) measurements were conducted with the

monochromator in a vertical focusing configuration using neutron energy of

5 meV. Inelastic measurements were carried out using a double-focusing con-

figuration and a fixed final energy of 3.7 meV with Be and BeO filters before

and after the sample, respectively. For energy transfers above 1.4 meV, we

used a fixed final energy of 5 meV with a Be filter after the sample and no

incident beam filter. Data for energy transfers above 1.4 meV was corrected

for contamination from high-order harmonics in the incident beam neutron

monitor.

To find the muon implantation sites, we used the well-established DFT+µ

approach [121, 122, 147, 171]. Non-spin polarized DFT calculations were

performed within generalized gradient approximation (GGA) for the PBE

(Perdew-Burke-Ernzerhof [139]) exchange-correlation functional as imple-

mented in the Quantum Espresso code [144]. The muon was treated as

a hydrogen impurity in a 2×1×1 charged supercell (96 host atoms and 1
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muon) with a compensating background. For Na, O, and H atomic species,

the norm-conserving pseudopotentials were used, while for Pr, the Projector

augmented wave (PAW) with no 4f electron state in the valence was used in

order to avoid the well-known difficulty in describing the 4f valence shell [146]

and very expensive calculations with high plane-wave cut-off requirements.

The cut-off used for the plane waves was 100 Ry while the Brillouin zone was

sampled using a 4×4×4 mesh of K-points [172].

To analyze and obtain an in-depth understanding of the INS data, we have

performed model Hamiltonian calculations using the SpinW [173] code. We

have also carried single ion point charge (PC) model calculations utilizing

the PyCrystalField Python package [174] in order to characterize the crystal

field excitations and study the spin-orbital coupling mechanism.

7.3 Results and discussion

7.3.1 µSR results

The measured ZF µSR asymmetry spectra, aZF(t), is shown in Figure 7.2a

for four temperatures: 1.5 K, 4.6 K, 4.9 K, and 5.1 K. At high tempera-

tures (above ∼ 4.9 K), the µSR signal shows no oscillations, indicating that

the sample is in the paramagnetic phase. However, lowering the tempera-

ture reveals damped coherent oscillations in the µSR signal, indicating the

emergence of long-range magnetic order due to the presence of an internal

magnetic field and the spontaneous muon precession around it. Also, a fast

relaxation at short times reflecting static magnetic moments is observed. As

the temperature is further lowered to 1.5 K, the signature oscillations of the

long-range magnetic order become more pronounced and dominate the µSR

spectra. In order to understand and parameterize the contributions to the

spectra at each temperature, all the observed ZF-µSR spectra are well fitted

by the following model below, well-known for fitting signals in the antiferro-
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Figure 7.2: (a) Muon asymmetry spectra obtained at temperatures of 1.5
K (blue), 4.6 K (yellow), 4.9 K (green), and 5.1 K (red). The solid lines
are the best fit to the asymmetry data using Equation (7.1). For clarity, the
spectra are shifted on the y-axis by 1/3. (b) The real part of the Fast Fourier
Transform (FFT) of the experimental µSR spectrum at T = 1.5 K, showing
three oscillating fields (in Tesla) at A1, A2, and A3. (c) The local field (Bµ)
in Tesla at the three muon sites A1, A2, and A3 as a function of temperature.
The solid lines represent the fit to the power law function (see text). (d) The
magnetic volume fraction VM as a function of temperature, coloured shaded
to illustrate the % contribution of each term in Equation (7.1).

magnetic phase:

aZF(t) = a0

� nX

i=1

fie
−λitcos(γµBµ,it+ ϕ) + ffaste

−λfastt + fle
−λtailte−(σtailt)

2

�

(7.1)
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The first term in Equation (7.1) describes the exponentially damped oscil-

lating signal components with a transverse relaxation rate λ, summed over n

number of distinct muon sites and fi controls the contribution of each muon

at site i to the total asymmetry signal. γµ = 135.5 MHZ T−1 is the gyro-

magnetic ratio, Bµ is the internal magnetic field at the muon site, and ϕ is

the phase. The second term accounts for the fast non-oscillating relaxations

with amplitude afast and depolarization rate, λfast. The third term accounts

for the slow-damped Gaussian relaxations (at the tail) of the signal with

amplitude atail and relaxation rates, λtail and σtail.

Figure 7.2b shows the real part of the Fast Fourier Transform (FFT) of the

time-domain µSR asymmetry at T = 1.5 K. Three ZF precession frequen-

cies (or, equivalently, magnetic fields) are observed, indicating three distinct

muon sites, which we have labeled A1, A2, and A3. We have attributed the

field Bµ1 with the maximum Fourier power (green line) to the A1 site, fol-

lowed by Bµ2 (pink line) to the A2 site, and then Bµ3 (brown line) to the A3

site. The values of the internal magnetic field at these distinct sites, Bµ1 =

0.0092 T, Bµ2 = 0.0070 T and Bµ3 = 0.0145 T are obtained with the best fit

of the asymmetry signal at low-temperature T = 1.5 K when the magnetic

order is in full regime. Figure 7.2c shows the temperature dependence of the

three distinct local magnetic fields extracted from the fits to Equation (7.1).

The local field due to the magnetic moments on Pr decreases steadily with

a field increase in temperature. The temperature dependence of each of the

fields is well fitted to the double-exponent power law function [175]:

Bµ(T ) = Bµ(0)

�
1−

�
T

TN

�α�β

(7.2)

which gives an estimate of TN ≈ 4.9 K consistent with earlier results [168,

176], while α ≃ 4.0 and β ≃ 0.16. The large α value hints of complex

interactions between the magnetic moments [177, 178]. The solid line curve of

the fits shows a sharp discontinuous drop of the local fields with temperature,

suggesting that the phase transition is of the first-order.

Figure 7.2d shows the temperature dependence of the magnetic volume frac-
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tion (VM) obtained by considering the asymmetry amplitudes [179] of the

terms in Equation (7.1) and color shading to show their % contribution. The

signal f1 corresponding to the muon at site A1 has a 59% contribution to VM

(green shaded area) and is the most populated site. Sites A2 (signal contribu-

tion f2) and A3 (signal contribution f3) contribute 14% and 7% respectively,

resulting in a total of 80% contribution to VM from implanted muons that

are sensitive to the internal magnetic field. The remaining 20% is from the

amplitude of the fast non-oscillating relaxing signal (ffast), showing that 20%

of the implanted muons interact with a disordered internal field distribution

with a size of few tens of Gauss, indicating an additional muon site.

Muon sites and dipolar field analysis

In order to characterize the muon spin relaxation spectra in Figure 7.2a,

and constrain the magnetic structure, we first find the muon implantation

site(s) in Na2PrO3 using the DFT+µ approach. DFT results reveal three

symmetrically distinct candidate muon sites, consistent with sites A1, A2,

and A3 from the analysis of µSR data above, which are shown in Figure 7.3.

Each of these site is at the 8f Wyckoff position, with a distance of ≈ 1

Figure 7.3: (a) Muon sites A1 (green spheres), A2 (pink), and A3 (blue) are
shown in the unit cell. (b) Muon sites in a PrO4 environment.

Å along the z axis to the three distinct O sites in the unit cell, as shown in

Figure 7.3. This is expected for oxide compounds where the positive muon
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is well known to stop near the O sites [171, 180]. These sites are found to be

in the direction of the non-magnetic Na layer and farther from the magnetic

Pr4+ ions (Figure 7.3(a)). The stability of the muon at A1, A2, and A3 sites

with DFT total energy considerations indicates that they are all populated

as the energy differences between them are less than 0.2 eV with site A1

being the least energy one. These candidate sites, as it will be shown in a

while, account for the low-temperature internal magnetic field observed from

µSR data (see Figure 7.2).

With the knowledge of the muon implantation sites, we determine the mag-

netic structure and ordered moment size in Na2PrO3 by comparing simulated

dipolar field distributions at these site(s) with µSR experimental results.

First, by considering the maximal magnetic space groups (MAXMAGN code

[181]), we have identified and explored twenty-eight (28) AF magnetic struc-

tures, within the (000), (110), and (100) propagation vectors as a function of

the Pr magnetic moment. The experimentally observed FFT power spectrum

at 1.5 K (Figure 7.2(b)) was then fitted to the convolution of the calculated

dipolar fields to a Gaussian distribution. Such that, for each magnetic struc-

ture, the dipolar field B [182] is estimated for all 24 muon sites (3 muon sites

with a multiplicity of 8) in a pristine crystal structure as a function of the

Pr moments, mPr, as described by:

p(B,mPr) =
24X

i=1

δ(B −mPrBi)

This experimental distribution is further approximated to a convolution with

a Gaussian broadening g as:

ep(B,mPr, σ) = (p ∗ g)(B) :=

Z ∞

−∞
p(τ,m)g(B − τ, σ)dτ

such that the fitting function P becomes:

P (B;m, σ, A,ABKG) = Aep(B,m, σ) + ABKG
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Figure 7.4: (a-d) Four proposed AF magnetic structures (upper panel) from
analysis of µSR data, labelled Néel-I, Néel-II, A-type, and Stripy, with the
best fit of the comparison between experimental and calculated dipolar field
distribution (lower panel) and their corresponding magnetic structures. Only
the Pr atoms are shown for clarity (with Pr1 (dark blue spheres) and Pr2 (sky
blue spheres)).

Table 7.1: The proposed magnetic sites labelled Néel-I, Néel-II, A-type, and
Stripy; their propagation vector and Group (BNS) at each structure and the
calculated dipolar field (Bdip) at muon sites A1, A2, and A3.

Label K Group (BNS) m (µB) BA1
dip(T) BA2

dip(T) BA3
dip(T)

Néel-I 000 C2′/c′ (15.89) 0.131 0.0105 0.0092 0.0094
Néel-II 000 C2′/c (15.87) 0.130 0.0099 0.0097 0.0093
A-type 000 C2/c′ (15.88) 0.212 0.0094 0.0093 0.0101
Stripy 100 PC21/c (14.84)2 0.106 0.00921 0.0115 0.0096

The µSR magnetic structural analysis suggests four possible AF magnetic

structures, labeled Néel-I, Néel-II, A-type, and Stripy that provide the best

fit to the experimental Fourier spectrum. The moment alignment of these

structures and the best fit are shown in Figure 7.4 and they all constitute

AF magnetic structures with the propagation vector K = (0,0,0) (Néel-I,
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Néel-II and A-type structures) and K = (1,0,0) (for Stripy structure) fea-

turing collinear moments that are confined along the c or a axis. The dipo-

lar simulation fits with these structures and results in very small effective

magnetic moments of 0.131, 0.130, 0.212, and 0.106 µB/Pr respectively (see

Table 7.1) and the calculated internal field at the muon are compared with

experiments.

7.3.2 Neutron scattering results

We have used inelastic neutron scattering measurements to probe the spin

dynamics of Na2PrO3. The spin wave dispersion contour plots (i.e., S(Q,E))

are shown in Figure 7.5, for temperatures below TN at 1.7 K and above

TN at 20 K. The temperature dependence depicts the existence of magnetic

excitations below TN and then their collapse to a continuum-like behaviour in

response to a paramagnetic regime above TN . The low-temperature spectrum

shows the dominance of spin-wave dispersion with a small band gap of ≈
1 meV and with plausible continuum-like modes that show up at the top

of the band above 2 meV. For T = 1.5 K, the appearance of a spin-wave

spectrum confirms the presence of a long-range magnetic order, as observed

with µSR. In Figure 7.5(c), the scan of the integrated intensities over angles

is shown. Further, performing powdered neutron diffraction simulations on

the difference data using FullProf suite [183], maintaining only the K = (0,

0, 0) propagation vector, and considering possible AFM magnetic structures

from the MAXMAGN code, the Néel-I magnetic structure (see Figure 7.4(a))

gives the best fit. The fit (see Figure 7.5d) also provides the upper bounds of

the size of the ordered moments as 0.15 µB, which is in agreement with the

µSR data above but ’critically’ very small in comparison to both the crystal

electric field calculations (CEF) value of 0.84 µB [168], and the free-ion value

of 2.54 µB.

Linear spin wave theory

Here, by simulating the inelastic neutron scattering powder spectra while

adapting a model Hamiltonian within the linear spin wave theory (LSWT)
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Figure 7.5: Inelastic neutron data for S(Q,E) contour plots (a) at 1.7 K
and (b) at 20 K . (c) The integrated intensity with respect to angle and (d)
FullProf simulation on the difference data between the 1.7 K and 20 K data,
providing the upper bounds of the magnetic moment size.

as implemented in the SpinW code [173] and comparing them to INS exper-

iment data, we elucidate the nature of the exchange interaction of Na2PrO3

and further clarify the suitability of the Heisenberg-Kitaev (H-K) model in

interpreting the magnetic properties of Na2PrO3. The form of the H-K model
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is written as;

H = J
X

i,j

�
Sx
i · Sx

j + Sy
i · Sy

j +∆Sz
i · Sz

j

�
+ J ′

X

i,j′

�
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j′ +∆Sz
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X
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X

i,j

Sγ
i S

γ
j

(7.3)

where Si and Sj are the spin vectors at sites i and j. J , J ′ and JP are

the isotropic Heisenberg interaction constant for the nearest, next nearest

neighbor intralayer and interlayer Pr-Pr sites (with distances d, d′ and dP ,

see Figure 7.1), respectively. ∆ is a parameter describing an anisotropic

Heisenberg interaction along z. K is the anisotropic bond-dependent Kitaev

interaction constant. First, for the simulated spin wave dispersion spectrum

reported in Figure 7.6, we have considered the four magnetic structures pro-

posed by the µSR analysis, however, only the Néel-I structure generates spin

wave spectrum results consistent with INS data. This further validates the

magnetic structure of Na2PrO3 in line with earlier proposals [168].

Figure 7.6 illustrates the simulated spin wave spectra using the model in

Equation (7.3) and Néel-I magnetic structure. Results of three different

conditions (labelled case1 (Figure 7.6(b)), case2 (Figure 7.6(c), and case3

(Figure 7.6(d)) of the parameters in the H-K model are shown in Figure 7.6.

The following interaction coupling constants are shown in Table 7.2, for the

different cases: The positive values of all the coupling constants indicate

J (meV) J’ (meV) JP (meV) ∆ Kγ (meV)
case1 1.0 1,0 0.15 1.2 0
case2 - - - - 0.4
case3 - - - 1.25 1.35

Table 7.2: Exchange parameters of the Hamiltonians for the three cases
described in Figure 7.6.

that the exchange interactions are antiferromagnetic. Here, it is noticeable

that case1 with the Kitaev term put to zero, misses entirely the continuum-

like feature above 2.1 meV in the low-temperature INS spectrum while an
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Figure 7.6: (a) Experimental (T = 1.5 K) INS data. Simulated spin-wave
spectrum using linear spin-wave theory (b) K=0 (case1), (c) K=0.4J (case2),
(d) K=1.25J (case3). (e) Comparison between simulated and experimental
integrated intensity with respect to energy using linear spin-wave theory.

attempt to capture these interactions by turning on the Kitaev term in case2

and case3, instead creates excitations with more gaps. This can be attributed

to the absence of quadratic and high-order terms in the LSWT or due to the

pseudo-Goldstone modes [184] that are artifacts of LSWT+. Further studies

to obtain a better fit involve simulating the model Hamiltonian within the

non-linear spin wave theory (NLSWT), which could confirm the exclusion of

anisotropic Kitaev terms and provide a better way to explain the continuum

at above 2.1 meV by means of quantum fluctuations.
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However, the important message from the spectra simulations with LSWT

is that the major characteristic features of the INS spectrum at 1.5K are

dominantly captured with the Isotropic Heisenberg interactions between Pr-

Pr sites (through the Pr-O-Pr exchange path provided by the corner-sharing

octahedral complexes), dominating over the weak bond-directional Kitaev

interactions. Regardless that the ground state of Na2PrO3 was theoreti-

cally demonstrated to fulfill the prerequisites or premises that produce dom-

inant Kitaev interactions, our neutron results depict that instead Kitaev’s

interaction in Na2PrO3 is rather weak or probably entirely absent, while in

addition, the ZF-µSR spectra unambiguously identify a long-range ordered

antiferromagnetic state, with signatures of a spin-liquid state conspicuously

absent.

Crystal electric field excitations

In order to understand the roles of the crystal field in the ground state

level splitting of Na2PrO3, we have obtained the crystal field excitations

by performing one-dimensional constant Q cuts at incident energies Ei of

the magnetic scattering to obtain the integrated intensities as functions of

energy transfer. The integrated magnetic scattering intensities have been

systematically collected over increasing incident energies (Ei) at 60 meV, 150

meV, 300 meV, 700 meV, and 2500 meV. As depicted in Figure 7.7(a), for

Ei = 700 meV, the background due to strong phonon excitations observed

mostly below 150 meV and those from the O-H stretching mode (due to

moisture contamination in the sample) at 450 meV were carefully subtracted

considering INS data of Li2PrO3. The magnetic low Q signals that might be

hidden under the phonons were explored, with likely peaks highly resolved.

The plot of the integrated intensity spectra of Na2PrO3 at T = 5 K measured

at the incident energies Ei = 700 meV at |Q|=[6,11]Å−1 and Ei = 300 meV

at |Q|=[6,8]Å−1 are shown in Figure 7.7(b) and Figure 7.7(c), respectively.

The high resolution of the experimental INS data reveals the presence of six

CEF excitations at energies: 230, 237, 300, 390, 526, 569 meV . The first

two CEF levels with varying intensities are not clearly observed with the
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Figure 7.7: (a) INS contour plot at 5K with incident energy Ei = 700
meV. (b) Integrated intensity spectrum for incident energy Ei = 700 meV
at |Q|=[6,11]Å−1, showing the subtraction of background due to the phonon
excitations (yellow line) and a fit to the Voigt line function consisting of both
the Lorentzian and Gaussian components (black dotted lines). (c) Integrated
intensity spectrum for incident energy Ei=300 meV at |Q|=[6,11]Å−1. (d) Fit
to Ei = 700 meV integrated INS spectrum utilizing the point charge model
to the INS experimental data. Red vertical bars indicate the transition levels
obtained from the PC model fit.

Ei = 700 meV plot, however, the Ei = 300 meV INS data (Figure 7.7(b)),

clearly shows two distinct crystal field excitations in the vicinity of ∼ 240

meV. The large first-level CEF excitations are comparable to the 260 meV

reported for BaPrO3 [185].

The presence of six crystal field excitations in the INS spectrum hints that

the octahedral crystal field splitting in Na2PrO3() results in a Γ7 ground

state characterized by a less symmetric mixed states instead of that observed

typically for a highly symmetric octahedral environment in rare-earth ions.
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Hence, to further understand the coupling scheme that characterizes the

ground state and investigate these spectrum peculiarities, we calculate the

Pr4+ ion crystal electric field (CEF) Hamiltonian (HCEF ) from a point charge

(PC) model. Unlike for most rare earth ions, where the crystal fields are much

weaker than spin-orbit coupling, here, the first transition level (230 meV) is

of the same order of magnitude as the spin-orbit coupling (100s of meV [186]).

Thus, to calculate the single ion crystal field within the PC model, we have

adopted the so-called intermediate coupling scheme, where the HCEF acts

only on the orbital angular momentum L (LS basis) instead of the J basis

[174]. We have used the CEF Hamiltonian (HCEF ) that has the following

form:

HCEF =B0
2O

0
2 + B±2

2 O±2
2 + B0

4O
0
4 + B±2

4 O±2
4 + B±4

4 O±4
4

+ B0
6O

0
6 + B±2

6 O±2
6 + B±4

6 O±4
6 + B±6

6 O±6
6

where B±m
n are the CEF parameters and O±m

n are the Stevens Operators.

HCEF includes contributions from the non-zero −m components that are

imaginary in the Stevens Operators that arise due to the low point symmetry

of the PrO4 environment. Here, we have deduced the B±m
n CEF parameters

by fitting to the INS data at Ei=700 meV, where the six experimentally ob-

served levels provide strong constraints to the general form of HCEF including

the SOC parameter. For the calculations, we have considered Pr4+ ions with

total angular momentum L = 3, spin quantum number S = 1/2, SOC pa-

rameter value of 55 meV, and it has been represented with its isoelectronic

Ce3+ ion.

The values of B±m
n obtained from the PC model and subsequent fits to the

INS data are reported in Table 7.4. The calculated intensity spectrum from

the fitted PC model to INS data is plotted in Figure 7.7(d) and is found to

be in good agreement with the experiment since all the CEF transfer levels

were accurately captured. The transition energies and eigen-kets showing the

mixture of the different states resulting from the fit of the PC model to the

INS data are shown in Section 7.3.2. Particularly, Section 7.3.2 shows that

the Γ7 ground state wavefunction even includes mixtures of the nominally
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Table 7.4: B±m
n values in meV obtained from the PC model, fits of the PC

model to the ligand charges, and fit of the model to the INS data at Ei =
700 meV.

B±m
n PC PC charge PC fit
B0

2 -3.8101 -4.2032 6.4760
B2

2 -11.3483 -15.9556 -3.2862
B−2

2 1.3055 0.0831 8.6586
B0

4 -0.0547 -0.0680 -0.0852
B2

4 -0.2868 -0.3853 -0.6860
B−2

4 -1.3160 -1.7433 -1.0770
B4

4 -0.5705 -0.7719 -0.0237
B−4

4 0.6112 0.8403 0.1975
B0

6 0.00672 0.0089 -0.0214
B2

6 -0.0084 -0.0121 0.0373
B−2

6 0.0097 0.0103 0.0163
B4

6 0.0474 0.0610 0.0968
B−4

6 0.01268 0.0189 0.2478
B6

6 0.0499 0.0693 -0.0001
B−6

6 -0.0108 -0.0143 -0.2462

excited states, as these states host non-vanishing coefficients. The estimated

value of the Pr powdered-averaged g−tensor gav ∼ 2.0, while the ground

state magnetic moment is obtained from < 0|Ji|0 > with J =
qP

i=x,y,z J
2
i

and the value of 1.12 µB was obtained. Here, Jx=Jy=0, with all the contribu-

tion coming from Jz indicating that the moment is aligned along the c axis.

While the value of the magnetic moment obtained is not totally consistent

with measurements obtained from neutron elastic scattering and DFT+µ, it

is much lower than the magnetic moment displayed by free Pr ions, which

is 2.54 µB. Our INS data Na2PrO3 is consistent with previous report [168,

187], particularly with the observed unusually large first CEF transition at

230 meV. Our data is of higher resolution and spans a larger energy range,

allowing us to resolve higher transition CEF levels and also better constrain

the CEF Hamiltonian parameters. The reported high-resolution INS data

and the analysis of the CEF excitations within the point charge model are

critical features of this work. Our results show that the CEF effects in-

troduce anisotropy into the system, resulting in transitions between various
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energy levels leading to mixed levels in the ground state that deviate from

the Kramers Γ7 doublet expected [53, 169] for this rare earth ion.

7.4 Summary

In conclusion, we have performed a detailed analysis of µSR and neutron

measurements to elucidate the magnetic ground state of Na2PrO3. µSR con-

firms the existence of long-range AF magnetic order below TN ∼ 4.9 K and

some degree of magnetic fluctuations have been observed. Analysis of the

µSR and neutron data by DFT calculations, muon dipolar simulations, and

spin-wave simulations has allowed us to determine the magnetic structure of

Na2PrO3 with the small observed Pr magnetic moment (0.13 µB) attributed

to the quantum fluctuations. Results of model Heisenberg-Kitaev Hamilto-

nian simulations on the INS data show strong evidence of dominant anti-

ferromagnetic isotropic Heisenberg interactions, suppressing the spin-liquid

Kitaev’s term. This evidence further establishes that the magnetic ground

state of Na2PrO3 is dominant in the Néel antiferromagnetic ordered state.

This is further evidenced by the results of the PC model crystal field analy-

sis, which show that the ground state of the Pr4+ ions in Na2PrO3() deviates

from the expected J=1/2 limit. The findings of this study could have signif-

icant implications for a more in-depth understanding of the exotic quantum

states of matter and the development of quantum technologies.
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This Ph.D. work has been mainly devoted to the study of exotic phenomena

in novel quantum materials and focused mainly on kagome and Kitaev com-

pounds, using NMR and µSR. In addition to this, other side projects have

been performed using complementary techniques such as neutron scattering

experiments, Density Functional Theory calculations, and Crystal Electric

Field simulations. All the samples used, along with the technique we used

to characterize them, are summarized in Table 7.5. To summarize this work

Table 7.5: List of all compounds measured in this work by means of NMR,
µSR, and inelastic neutron scattering (INS), along with their composition,
form, and technique used.

Composition Doping Label Form Tecnhique Chapter
RbV3Sb5 Undoped RVS Crystal NMR/NQR Chapter 4
KV3Sb5 Undoped KVS Crystal NQR Chapter 4
CsV3Sb5 Undoped CVS Crystal NQR Chapter 4

x = 0.05 CVS-Sn05 Powder NQR Chapter 4
CsV3Sb5−xSnx x = 0.08 CVS-Sn08 Powder µSR Chapter 5

x = 0.35 CVS-Sn35 Powder µSR Chapter 5
x = 0.04 CVS-Te04 Powder NQR Chapter 4

CsV3Sb5−xTex x = 0.06 CVS-Te06 Powder NQR Chapter 4
x = 0.08 CVS-Te08 Powder µSR Chapter 5

V3Si Undoped V3Si Powder µSR Chapter 6
V3Sn Undoped V3Sn Powder µSR Chapter 6
Nb3Sn Undoped Nb3Sn Powder µSR Chapter 6

Na2PrO3 Undoped Na2PrO3 Powder µSR/INS Chapter 7

and conclude it, we can present here the main results I obtained during the
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three years of my Ph.D. Overall, all these findings can help the study of these

novel quantum materials in the physical description of the peculiar quantum

phenomena that arise inside them.

Study of the quantum transitions of 2D kagome

AV3Sb5 materials

Undoped Kagome materials

We have studied and identified the CDW structure of the kagome 2D su-

perconductor in the case of RVS by combining NMR/NQR experiments and

DFT calculations. This forms a 2×2×2 superlattice with alternating Inverse

Star-of-David (ISD) layers, π-shifted relative to each other, determined by

assessing the multiplicity of nonequivalent sites for each species, and the same

applies for KV3Sb5. The results are reported in Section 4.3 (see Figure 4.2

and Figure 4.4) and published in ref.[77].

In our temperature-dependent analysis of RbV3Sb5 (Section 4.4), we have

observed several key findings, such as unusual increase of FWHM in 51V,

likely attributed to changes in the local dipolar field associated with nematic

order or orbital currents (Rotational Symmetry Breaking), for one of the two

vanadium sites when the temperature drops below 50 K (Figure 4.5); and

a subtle increase in the HWHM for 121Sb (Figure 4.9). Collectively, these

results suggest the presence of a distinct phase transition occurring around

50 K in RbV3Sb5, similar to previous findings in CsV3Sb5.

Hole-Electron doped Kagome materials

Regarding the 121Sb NQR measurements on Sn and Te-doped CsV3Sb5 at

room temperature, focusing on two different dopant concentrations ([Sn] =

0.05 and [Te] = 0.04) in comparison to the undoped CVS. Our results give

evidence that both dopants occupy the Sb1 sites within the kagome plane, as

indicated by the shift in NQR peaks (Figure 4.12 and Figure 4.13). Electron-
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doping through Te-substitution in CsV3Sb5 preserves the Charge Density

Wave (CDW) state. Conversely, hole-doping with Sn-dopant seems to quickly

suppress long-range CDW order, as summarised in Figure 4.11. These results

are published in refs. [101] and [102].

Our 121Sb NQR measurements are in agreement with magnetization data in

determining the CDW transition temperature for undoped CVS and lightly

doped CVS-Te04 (Figure 4.15). In addition, NQR is very sensitive to detect

the transition width, displaying that CDW and normal phases coexist for

about 10 K, phase separated (Figure 4.14). These results show that 121Sb

NQR is a very powerful tool to characterize at the microscopic level the CDW

phase transition in these kagome materials.

ZF-µSR measurements on CVS-Te08, Sn08, and Sn35, show only marginal

and weak features at the CDW transition but a clear upturn of the muon

depolarization rate at Tx (< 50 K), as it can be seen in Figure 5.2 and Fig-

ure 5.3. The latter suggests the presence of anomalous behaviour that might

be related to nematicity and/or the presence of spontaneous orbital currents

and/or local charge reorganisation. Further analysis and measurements are

needed to identify the proper mechanism. However, our results indicate that

the anomalous low-T phase is ubiquitous in the phase diagram, possibly also

when CDW is suppressed, and doping-dependent (Figure 5.2 and Figure 5.3

in Chapter 5).

Muon-nuclei entanglement as a probe for charge-

related phenomena

We have presented experimental evidence of coherent oscillations in the µSR

spectra of A15 superconductors (Figure 6.2), arising from quantum entan-

glement between quadrupolar nuclei and muons. We achieved an accurate

description of the µSR spectra and modeled the charge distribution using

DFT-based simulations and solving free-parameter Hamiltonian. The results

are published in papers [153] and [110]. This study gives a concept of proof
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that µSR can be used not only as a quantum sensing probe for magnetism

but also for charge-related phenomena. This approach will also be used to

study the anomalies found in the low-T regime of the CDW phase of kagome

materials.

Study of the magnetic state of Kitaev antifer-

romagnet Na2PrO3

We studied the magnetic properties of Na2PrO3 which is supposed to have

dominant antiferromagnetic Kitaev interactions. µSR results confirmed the

presence of long-range antiferromagnetic (AF) magnetic order below TN ≃
4.9 K (Figure 7.2), along with some observed magnetic fluctuations. Through

a combination of DFT calculations, muon dipolar simulations, and spin-

wave simulations, we determined the magnetic structure of Na2PrO3, with

a small Pr magnetic moment (0.13 µB) attributed to quantum fluctuations.

This reduction is attributed to the influence of quantum fluctuations, while

Kitaev anisotropic interactions are ruled out. Results of model Heisenberg-

Kitaev Hamiltonian simulations on the INS data show strong evidence of

dominant antiferromagnetic isotropic Heisenberg interactions, suppressing

the spin-liquid Kitaev’s term. A manuscript with these results is almost

ready to be submitted for publication [J. Frassineti, I. J. Onuorah, M. M.

Isah, P. Bonfá, J. G. Rau, J. A. Rodriguez-Rivera, A. I. Kolesnikov, S. Sanna,

V. F. Mitrović, and K. W. Plumb, Unraveling the magnetic ground-state in

alkali-metal lanthanide oxide Na2PrO3, to appear soon on Arxiv].
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Appendix A: theoretical

aspects of NMR

7.5 Nuclear Spin Dynamics: Classical Ap-

proach

In this first way, the nucleus will be treated as a point-like particle with a fixed

spin S = ℏI. The choice simplifies the analysis of the interactions between

it and the electromagnetic field. In each charged system, the nuclear spin I

is associated with an inherent magnetic dipole moment µ = γℏI, where γ is

the nuclear gyromagnetic ratio. According to fundamental electromagnetism,

applying a static magnetic field B0 to the system will induce a torque to act

on the spin represented by:

τ =
dS

dt
= µ× B0 =⇒ dµ

dt
= γµ× B0 (7.4)

This equation is analogous to the relationship between the derivatives of a

vector as observed from two rotating reference frames S and S
′
with fre-

quency ω rotating with regard to each other:

�
dµ

dt

�

S′
=

�
dµ

dt

�

S

+ µ× ω (7.5)

Hence, we can treat the dynamics of the magnetic moment from a rotating

reference frame Sω0 moving with respect to the laboratory frame Slab at
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an angular frequency ω0. In the new rotating frame system, the magnetic

moment is static:

�
dµ

dt

�

Sω0

=

�
dµ

dt

�

Slab

+ µ× ω0 = µ× (γB0 + ω0) = 0

=⇒ ω0 = −γB0

(7.6)

This choice of reference system clearly demonstrates that the motion of a

nuclear spin in a uniform magnetic field simply simplifies to µ (and, conse-

quently, I) precession in the direction of B0 with angular frequency ω0 (the

so-called Larmor frequency). We now introduce a second magnetic field,

B1(t), which spins in the plane perpendicular to B0 with frequency ω. We

may use coordinate axes like B0 = B0k and B1(t) = B1cos(ωt)i+B1sin(ωt)j.

This reduces the equation for µ to:

dµ

dt
= γµ× [B0 + B1(t)] (7.7)

When this second, rotating magnetic field is present, it is more convenient

to move to the reference frame, which rotates together with B1(t), namely

Sω. We can recast Equation (7.7) to:

�
dµ

dt

�

Sω

= γµ×
��

B0 +
ω

γ

�
k + B1i

�
(7.8)

A graphical representation of the rotating frame is shown in Figure 7.8. From

Equation (7.8), the magnetic moment µ is subjected to a torque coupled to

an effective field Be in the frame Sω, which is composed of three contribu-

tions:

� the static fieldB0 along the axis of rotation and therefore time-constant;

� the static field B1 in the new frame;

� the fictional field ω/γ.
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Figure 7.8: a) Effective field and b) motion of µ in the rotating reference
system (taken from [64]).

By defining the frequencies ωi = −γBi for i = 0,1, we can express Be as:

Be =
1

γ
[(ω − ω0)k − ω1i] (7.9)

Now we can write the definition of the polar angle θ between Be and z,

characteristic of the precession of µ:

tan(θ) =
ω1

ω0 − ω
sin(γ) (7.10)

The magnetic moment precedes around the effective field with frequency

a = −sin(γ)((ω−ω0)
2+ω2

1)
1
2 in the new frame Sω, whereas in the lab frame

Slab, the trajectory traced by µ is a combination of its motion in Sω and a

rotation around B0 with frequency ω. The most common case in the bulk of

the studies is when B1 ≪ B0. When this condition is met, the polar angle θ

is very tiny, and the z component of µ deviates somewhat from its original

position. However, if the denominator in Equation (7.10) is extremely small,

so |ω − ω0| < ω1, θ increases and µ can rotate at very large angles in the

reference system. To satisfy the second criterion, we must verify that the

frequency ω is almost equal to the Larmor frequency ω0, implying that we

are in ”resonance” between the spinning and static frequencies.

When the rotating field is removed, the polar angle of the magnetic moment
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stops changing, and if no relaxation processes occur, µ continues to travel

about z at a constant latitude. Adjusting the amplitude of B1 and the

duration of tP to the appropriate polar angle is possible. In particular, at

perfect resonance, the spin’s angle of rotation can be readily predicted using

the formula:

θ = atP = −γB1tP (7.11)

Figure 7.9 displays the off-resonance and resonance scenarios. When linearly

Figure 7.9: Magnetic moment µ trajectories in the laboratory frame, off-
resonance (a) and at resonance (b). In (a), |ω − ω0| ≫ ω1 and the effective
field Be are slightly slanted with respect to the z-axis, causing µ to undergo
extremely tiny nutations around z. In (b), |ω − ω0| < ω1 and Be move closer
to the xy plane, causing the magnetic moment to rotate to enormous polar
angles (derived from Ref. [67]).

polarized electromagnetic radiation is used, the time-dependent field B1(t)

can be written as:

B1(t) = 2B1cos(ωt)i

⇓
B

′
1(t) = B1[cos(ωt)i+ sin(ωt)j] B”

1(t) = B1[cos(−ωt)i+ sin(−ωt)j]

(7.12)

With B′(t) in resonance, that is |ω − ω0| < ω1 , then B”(t) will be highly

off-resonance, as | − ω − ω0| ≈ 2ω, so that the second term can be safely

neglected.
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7.6 Nuclear Spin Dynamics: Quantum Ap-

proach

In this second part, we are going to develop the NMR formalism into its

quantum mechanical counterpart. The Hamiltonian of a nuclear spin in a

magnetic field is:

H = −B · µ = −γℏB · I (7.13)

with the Zeeman energy term as its only constituent. A brief outline of why

a conventional method produces exact answers or at least approximate ones,

is useful. The Heisenberg equation can be used to express the evolution of a

quantum system:
ℏ
i

dI

dt
= [H, I] = −γℏ[B · I, I] (7.14)

with the z-component defined as:

ℏ
i

dIz
dt

= −γℏ{Bx[Ix, Iz] + By[Iy, Iz]}

=
ℏ
i
γ{ByIx − BxIy} =

ℏ
i
γ(I × B)z

(7.15)

This is the same as the traditional Equation (7.5) using operators instead of

actual functions. The expected values of the µ components, ⟨µx⟩,⟨µy⟩, and
⟨µz⟩, use the bra-operator-ket product of both sides of Equation (7.15) to

obey the classical equations. When we examine the behaviour of a large num-

ber of spins’ macroscopic magnetization, the expectation value determines

the dynamics of the system, and the classical technique may be employed

securely. To begin, we define the Schrodinger equation for a nuclear spin

under the effects of B0 and B1(t) in a microscopic approach to NMR:

iℏ
d |ψ⟩
dt

= −γℏ{B0Iz + B1[Ixcos(ωt) + Iysin(ωt)]} |ψ⟩ (7.16)

As an example of a change in the dynamical picture, a much more com-

prehensive method of recasting a problem in quantum mechanics, we are

switching to a rotating reference frame Sω. This is realised by moving to
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the R-picture associated with the lab one with frequency ω = ωk, that is,

R = ℏωIz. Given R as time-independent, the transformation is simply:

|ψ(t)⟩ → |ψ(t)⟩R = exp(iωIzt) |ψ(t)⟩ exp(iωIzt) = U−1(t) (7.17)

As an example, we can demonstrate this transformation with an eigenvector

of the azimuthal angle observable ϕ, |ϕ⟩, and apply Equation (7.17). The

Fourier spectrum allows for the expansion of this vector [63]:

|ϕ⟩ = 1√
2π

X

m

|m⟩ e−imϕ (7.18)

where m is the eigenvalues and eigenvectors of the momentum conjugate to

ϕ, which is precise to be ℏIz = −iℏ d
dϕ
. Hence, when we move to frame Sω,

we get:

eiωIzt |ϕ⟩ = 1√
2π

X

m

eiωIzt |m⟩ e−imϕ =
1√
2π

X

m

|m⟩ e−im(ϕ−ωt) = |ϕ− ωt⟩

(7.19)

that, as seen from the rotating reference frame Sω, is the same vector as

|ϕ⟩. By expanding this argument on the |ϕ⟩ basis, we can generalize it to a

generic state vector |ψ⟩. The R-picture Hamiltonian HR is

HR = U−1(t)(H −R)U(t) (7.20)

The Hamiltonian of the system H shown in Equation (7.16) can be expressed

in a more convenient way:

H = ℏω0Iz +
1

2
ℏω1

�
I+e

−iωt + I−e
iωt

�
(7.21)

where I± = Ix ± iIy are the raising and lowering operators of the nuclear

spin. The calculated R-picture is:

HR = ℏ(ω0 − ω)Iz + ℏω1Ix (7.22)
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As the new Hamiltonian is time-independent (as predicted), we can easily

express the solution to the R-picture Schrodinger equation:

|ψ(t)⟩R = exp{−i[(ω0 − ω)Iz + ω1Ix]t} |ψ(0)⟩R (7.23)

This is how the precession of µ around the effective field Be is expressed in

quantum mechanics. Returning to the lab frame, the state vector’s evolution

is provided by:

|ψ(t)⟩ = U(t) |ψ(t)⟩R = exp(−iωIzt)exp{−i[(ω0 − ω)Iz + ω1Ix]t} |ψ(0)⟩
(7.24)

where, exp(−iωIzt) = B0 and exp{−i[(ω0 − ω)Iz + ω1Ix]t} |ψ(0)⟩ = B1. We

used the fact that |ψ(0)⟩R = |ψ(0)⟩ (for t = 0, Slab and Somega coincide).

Redefining a and θ as:

a =
�
(ω0 − ω)2 + ω2

1

� 1
2 n = (sinθ, 0, cosθ) = (

ω1

a
, 0,

ω0 − ω

a
) (7.25)

Equation (7.24) can be rewritten as:

|ψ(t)⟩ = exp(−iωIzt)exp{−ia(n · I)t} |ψ(0)⟩ (7.26)

Although these formulas and their classical counterparts share many similar-

ities, we must interpret them in a quantum-appropriate manner. Because the

Cartesian components of the magnetic moment µ are incompatible observ-

ables in the quantum treatment, the exact direction of this vector cannot be

determined. Otherwise, the system’s state is represented by a wave function,

which only provides an approximation of the probability distribution for any

value selected from one of the three µ components. We cannot predict the

orientation of µ with certainty at any moment, as we could in classical condi-

tions, because the z component changes when a rotation field B1 is applied.

These transitions’ probabilities and amplitudes are determined by:

Am′m(t) = ⟨m′|ψ(t) |m⟩ = ⟨m′| exp(−iωIzt)exp{−ia(n · I)t} |m⟩
Pm′m(t) = |⟨m′| exp{−ia(n · I)t} |m⟩|2

(7.27)

APPENDIX A 167



7.6. NUCLEAR SPIN DYNAMICS: QUANTUM APPROACH

where Am′m(t) denotes the amplitude and Pm′m(t) the probability of transi-

tioning from the state |m⟩ to the state |m′⟩. The probability of transition

between states m = 1
2
and m = −1

2
in a spin 1/2 nucleus is now considered.

We already know that such a system has the equation I = 1
2
σ, where σ =

(σx, σy, σz) are the Pauli matrices. They follow:

(n · σ)2p = 1 ⇒ (n · σ)2p+1 = (n · σ)

⇒ exp{−ia(n · I)t} = cos(
1

2
at)− i(n · σ)sin(1

2
at)

(7.28)

which implies:

P− 1
2
, 1
2
=

����
�
−1

2

���� cos(
1

2
at)− i(cosθσz + sinθσx)sin(

1

2
at)

����
1

2

�����
2

= sin2θsin2(
1

2
at)

(7.29)

The outcome of Equation (7.29), also known as Rabi oscillations in quantum

theory, clearly shows that the transition probability of the spin oscillates as

the electromagnetic pulse progresses and that the frequency ω, through the

angle θ, determines the magnitude of this oscillatory motion. A graphical rep-

resentation is shown in Figure 7.10. This switches µ between the two oppos-

Figure 7.10: Rabi oscillation between the two energy levels of a spin-1/2
system.
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ing orientations m = 1
2
and m = −1

2
with frequency a = |ω1| = |θB1|. When

the resonance condition ω = ω0 is precisely satisfied, θ becomes π
2
.

7.7 Introduction to spin relaxation and Bloch

Equations

In NMR spectroscopy, a homogeneous magnetic field produces a measurable

nuclear spin polarization (magnetization). The magnetic dipole moments

of the sample precess around the static field B0 at the nuclei’s resonance

(Larmor) frequency ω. Nuclear spins randomly precess in the applied field

while the system is in thermal equilibrium. They are phase coherent after

being impacted by rf pulses produced orthogonally to the field’s resonance

frequency. The rf pulses cause the spin-state population to deviate from its

thermal equilibrium value. The resulting transverse magnetization is then

utilized to trigger a signal in an rf coil, which may subsequently be picked

up and amplified by an rf receiver. Because we know that µ is the magnetic

moment created by nuclear spin, the total magnetization of the sample is

M = N⟨µ⟩
V

, where N is the number of nuclei that undergo a transition per

unit of time and V is the volume. We also know from the theory that

B(t) = µM(t).

In this part, we will introduce the reservoir concept, which may be thought

of as the environment around the spin ensemble that can absorb the energy

transmitted during an alternating field’s de-excitation. The number of spins

N in a spin-1/2 system is always constant, but the spin populations in the

two independent m states +1/2 and -1/2, indicated by the symbols N+ and

N−, will fluctuate due to the transitions generated by the alternating field

B1. At thermal equilibrium, the magnetization along z corresponds to a

constant quantity M0, and once the perturbing oscillating field is applied, it

will recover that value in a characteristic time value based on the relaxation
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processes present. Thus:

dMz

dt
=

M0 −Mz(t)

T1

(7.30)

Adding the term due to the torque caused by the magnetic field B0, we

obtain:
dMz(t)

dt
= γ(M(t)× B(t))z −

Mz(t)−M0

T1

(7.31)

We may construct the equations for the x and y components of magnetization

in the same way that we did for Equation (7.31). In this situation, M is

totally precessing along the z axis at thermal equilibrium, therefore, there

are no initial components for Mx and My (they’re null at t = 0). After

applying B1, the magnetization will contain x and y components that are

not zero (see Figure 7.9(b)), which will decay to zero. As a result, unlike Mz,

the x and y components of M are predicted to evaporate after a specific time

period. We may calculate the magnetization per unit time in the rotating

frame using relaxation effects like:

dMx(t)

δt
= γ(M(t)× B(t))x −

Mx(t)

T2

dMy(t)

δt
= γ(M(t)× B(t))y −

My(t)

T2

(7.32)

Equation (7.31) and Equation (7.32) are the so-called Bloch Equations, named

after Felix Bloch, who first proposed them. Two common decays are intro-

duced here: the spin-lattice relaxation time (T1) and the spin-spin relaxation

time (T2). Changes in the population of Zeeman levels that can occur after

the energy exchange with the lattice excitations are directly related to T1

since they demonstrate the temporal development of Mz. Energy must be

transferred throughout this process, necessitating contact with the reservoir.

In addition to those involved in spin-lattice relaxation that does not include

an energy exchange with lattice excitations, the decay of Mx, y in time T2 is

influenced by a number of processes. The T2 time scale is frequently much

faster than the T1 time scale since the latter does not need an energy ex-

change.
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7.8 Derivation of quadrupolar Hamiltonian

Let us now examine the structure of the nucleus in further detail. We may

think of it as a collection of A point-like nucleons, either protons or neutrons,

for our purposes. As a result, the general wavefunction of the system will

be of the type ψn (R1, ..., RA), and the charge density may be calculated

as:

ρn(rn) = ⟨ψn|
AX

i=1

eiδ(rn −Ri) |ψn⟩ (7.33)

After some calculations [63, 64], Am
l (and similarly Bm

l , can be written as:

⟨ψn|Am
l |ψn⟩ (⟨ψn|Bm

l |ψn⟩, where Am
l (Bm

l ) is the nuclear (electronic) oper-

ator:

Am
l =

� 4π

2l + 1

� 1
2

AX

i=1

eiR
l
iY

m
l (Θi,Φi)

Bm
l = −e

� 4π

2l + 1

� 1
2

ZX

i=1

r
−(l+1)
i Y m

l (θi,ϕi)

(7.34)

where (Ri,Θi,Φi) represents the spherical coordinates of each nucleon (elec-

tron). In the first equation, A represents the total number of nucleons,

whereas Z represents the atomic number. The energy of the electrostatic

interaction is determined by the expected value of the Hamiltonian on the

state of the entire atomic system, which is as follows:

HE =
X

l,m

Am
l B

m∗
l

WE = ⟨ψn| ⟨ψe|HE |ψe⟩ |ψn⟩
(7.35)

The components of a rank l tensor operator with reference to angular mo-

mentum, represented as Al, are the set of 2l+1 operators Am
l , m = −l,−l+

1, ..., l − 1, l. This tensor operator is known as the nucleus’s multipole mo-

ment of order l. Another significant aspect is that Aml disappears for all odd

values of l. Furthermore, Equation (2.5)’s integrand is an odd function that

integrates to 0 for all odd values of l.

The Wigner-Eckart theorem adds additional constraints to non-vanishing
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tensor operators Al. Tensors Al of rank l must satisfy the criterion 0 ≤ l ≤ 2I

to have non-zero matrix elements between nuclear states |I, Iz⟩. Finally,

static nuclear spins I allow only multipole moments with even ordering l

up to 2I. A spin I = 1 nucleus, for example, has an electric monopole

(l = 0), which is the nucleus’ whole charge concentrated in one spot, an

electric quadrupole (l = 2), and no electric dipole moment. The energy

of the nuclear monopole is a constant that may be ignored because nuclei

are assumed to be fixed in our discussion. As a result, we’ll focus on the

quadrupole interaction, which has been proven to be the most important

contributor of energy due to electrostatic coupling. Setting l = 2 we obtain

the expression of the components of Am
2 we obtain:

A±2
2 =

√
6

4

AX

i=1

ei(xi ± iyi)
2

A±1
2 =

√
6

2

AX

i=1

eizi(xi ± iyi)

A0
2 =

1

2

AX

i=1

ei(3z
2
i − r2i )

(7.36)

The primary issue with these formulae is that they express the components

of A2 as nucleon position functions. We may use the Wigner-Eckart theorem

again, knowing that A2 is proportional to any other rank 2 tensor operator.

As a consequence, we may define Equation (7.36) in terms of I.

Q±2 = α

√
6

4
(I±)

2

Q±1 = α

√
6

4
(IzI± + I±Iz)

Q0 =
α

2
(3I2z − I(I + 1))

(7.37)

α is the proportionality factor acquired from A0
2 and Q0 having the same

expectation value in state |I, I⟩ :

⟨I, I|A0
2 |I, I⟩ = ⟨I, I|Q0 |I, I⟩ ≡ eQ

2
(7.38)
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Going on, we have:

2 ⟨I, I|Q0 |I, I⟩ = α ⟨I, I| 3I2z − i(I + 1) |I, I⟩ with α =
eQ

I(2I − 1)
(7.39)

We can expand B2 similarly to A2. Hence, we have:

B0
2 =

e

2

ZX

i=1

(3z2i − r2i )

r5i
=

1

2

�δ2V
δz2

�
r=0

=
1

2
Vzz

B±2
2 =

1

2
√
6
(Vxx − Vyy + 2iVxy)

B±1
2 =

1√
6
(Vxz + iVyx)

(7.40)

where V(x, y, z) denotes the electrostatic potential operator as a function of

the z electron position operators. We can see that Bm∗
2 = B−m

2 . As a result,

the Hamiltonian of the quadruple interaction is:

H2 =
2X

m=−2

Qm
2 B

−m
2

X

j,k

� δ2V

δxjδxk

�
r=0

Qj,k (7.41)

where:

Qj,k =
eQ

6I(2I − 1)
[
3

2
(IjIk + IkIj)− δjkI(I + 1)] (7.42)

is an alternate representation of the cartesian tensor operator, and
�

δ2V
δxjδxk

�
r=0

is called the Electric Field Gradient (EFG) at the origin. From further as-

sumptions in bulk matter, we get:

V 0 =
1

2
Vzz =

1

2
⟨Vzz⟩

V 1 =
1√
6
(⟨Vxz⟩± i ⟨Vyz⟩)

V 2 =
1

2
√
6
(⟨Vxx⟩ − ⟨Vyy⟩± 2i ⟨Vxy⟩)

(7.43)
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7.9 Quadrupolar energy spectrum in zero-field

To generalize our analysis to the case of an asymmetric electric field gradient

(η ̸= 0), it is convenient to distinguish between instances where I is an integer

or a half-integer. We will just emphasise the results of the computations that

may be found in [63] in the following.

� Integer spins : Let us assume to have a I = 1 nucleus. The whole

Hilbert space may be divided into three 1-dimensional subspaces, each

spanned by:

– the unique odd state |ξ−⟩ = |1⟩−|−1⟩√
2

;

– the even state |0⟩;

– the even state |ξ+⟩ = |1⟩+|−1⟩√
2

;

Because the final two differ by∆m = 1, they cannot be connected byH,

and hence each of these subspaces is an eigenspace of the Hamiltonian

for the reasons stated above. The associated eigenvalues are as follows:

E0 = −1

2
e2qQ Eξ± =

1

4
e2qQ(1± η) (7.44)

Because the asymmetry of the gradient accounts for the splitting of

Eξ± in the energy spectrum, the presence of η ̸= 0 may be determined

by counting the number of spectral lines and determining whether the

degeneracy of the m states is lifted.

� Half-integer spin: Even if the states |m⟩ are no longer eigenstates when

the nuclear spin is half integer, the asymmetry η is incapable of over-

coming the degeneracy of the energy levels E±m. The experimental

analysis of a nucleus with unknown properties is complicated by the

remaining degeneracy of quadrupolar states. It is difficult, for example,

to tell whether a nucleus with spin I = 3/2 has η ̸= 0 by measuring its

unique resonance frequency ν3/2. Indeed, the expression for this latter
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in the asymmetric situation is:

ν3/2 =
e2qQ

2h
(1 +

1

3
η2)

1
2 (7.45)

The role of the asymmetry parameter is that it induces the change

in energy eigenstate |m⟩ → |m̃⟩, which implies that the selection rule

∆m = ±1 is no longer effective. With an asymmetric electric field

gradient, transitions like
��� 5̃2
E
↔

��� 1̃2
E
may be allowed.
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Appendix B: µ+-nuclei

interaction

Here, we report some supplementary theoretical aspects of the interactions

between nuclei and muons.

7.10 Quantum description of µ+ interaction

with nuclei

This subsection describes the interaction between the positive muon µ+ and

a general nucleus from a quantum theoretical point of view. Let’s start with

introducing the total Hamiltonian Htot [81] of a generic system:

Htot =
NX

j=1

�
HD

j +H
Q
j +HZ

�
(7.46)

In which the positive muon with spin Sµ+ = 1/2 interacts with the surround-

ing j-th nucleus with spin I through dipolar and quadrupolar interactions,

as well as the Zeeman interaction with the applied external magnetic field

B.

The dipolar interaction generated by the spin of the muon S and the j-th

nucleus spin I is accounted for by the dipolar term HD
j :

HD
j =

ℏ2γµ+γj
r3j

[Sµ+ · Ij − 3 (Sµ+ · nj) (Ij · nj)] (7.47)
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where γµ+ and γj are the gyromagnetic ratios of the positive muon and of

the j-th spin, rj is the distance between the two and nj is the unit vector

indicating the direction connecting the two particles. This dipolar term is

the same one described in Section 2.1.5 for NMR. This interaction is always

present in a crystal and is responsible for the classic Kubo-Toyabe behavior,

described in Equation (3.8) and shown in Figure 3.5(b).

The Zeeman term HZ accounts for the interactions between the muon and

the j-th nucleus with an applied external magnetic field B:

HZ = −ℏγµSµ+ ·B−
NX

j=1

ℏγjIj ·B (7.48)

The sum is over all the nuclei present for the part involving the crystal nuclei.

The quadrupolar term HQ acts as a perturbation of the Zeeman term HZ ,

and its definition is the same of Section 2.1.4. In the Principal Axis System

frame of the EFG tensor, HQ
j is relatively simple, and we report the definition

for clarity:

H
Q
j =

eQjV
zz
j

4Ij (2Ij − 1)

hh
3
�
Izj
�2 − (Ij)

2
i
+ ηj

h�
Ixj
�2 −

�
Iyj
�2ii

= ℏωE

hh
3
�
Izj
�2 − (Ij)

2
i
+ ηj

h�
Ixj
�2 −

�
Iyj
�2ii

(7.49)

The quantity Qj is the quadrupole moment of nucleus j and ℏωE, which

is proportional to Qj, sets the energy scale of the quadrupole interaction

energy.

The positive muon and the crystal can both generate the electric field gra-

dient. One rough assumption that can be made, that is valid for certain

situations is that the muon, assumed as a point charge in a vacuum, induces

an EFG whose principal component V zz
µ+ is equal to, at a distance r:

V zz
µ+ =

2

4πϵ0

e

r3
(7.50)

where e is the elementary charge and ϵ0 = 8.85× 10−12F/m is the dielectric
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constant of the vacuum. The EFG of the crystal is determined by the sys-

tem’s symmetry as well as the atomic chain placement. The two tensors, the

crystal’s EFG tensor, and the muon’s EFG tensor can combine to generate

a single EFG tensor, which enters into Equation (7.49). Because the muon

has a spin of 1/2 and lacks a quadrupole moment, it cannot interact with

the crystal’s surrounding EFG. Despite this, the quadrupolar term of the

Hamiltonian of the environment changes the energy levels of the neighboring

nuclei, so the muon experiences a indirect interaction with the quadrupolar

term of the system, which can lead to visible coherent oscillations in the

polarisation spectra in some cases [110] even in the absence of local mag-

netic moments. Nowadays, more accurate methods to determine the EFG

induced by the muon in a perturbed crystal are available, such as the ab-

initio DFT+µ method, which combines Density Functional Theory ab-initio

calculations with the presence of a perturbing particle as the positive muon.

Accurate results of its application can be found in Ref. [110].

The key challenge is to solve the whole Hamiltonian Htot throughout time

evolution to obtain the muon depolarization. To achieve this, we must first

diagonalize the total Hamiltonian and find the related eigenvalues and eigen-

vectors. Celio [152] presented an approach that employs the Trotter formula

for limited operators and a random-phase assumption about the starting

state of the host spin system. We are interested in the time dependence of

the muon polarization, which is determined by:

P (t) = Tr
�
ρ exp

�
iHtott/ℏ

�
σµ exp

�
−iHtott/ℏ

��
(7.51)

where σµ = 2Sµ are the Pauli matrices. For a muon initially polarized along

the z-axis and for unpolarized nuclei, the density matrix ρ is given by:

ρ =
1

2
(2I + 1)−N �

1 + σz
µ

�
(7.52)

Because the various Hamiltonian operatorsHj do not commute, an analytical

solution to Equation (7.51) is not achievable in general. The eigenvalues and

eigenvectors of Htot can be used to find a numerical solution; however, if we
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assume to have identical nuclei in the sample with spin I, this technique is

only applicable when the size d of the composite Hilbert space (d = 2(2I +

1)N) is not too big. To solve this problem, we can utilize the generalized

Trotter formula for bounded operators [188] to solve Equation (7.51). For a

set of n bounded operators Aj(j = 1, ..., N), one can show that:

exp (A1 + A2 + ...+ An) = lim
k→∞

[exp (A1/k) exp (A2/k)... exp (An/k)]
k

(7.53)

This means that instead of diagonalizing a single but very large matrix (Equa-

tion (7.51)) H, one has just to diagonalize N small matrices Hj. The Celio

approach described above has been implemented in UNDI [153], a Python

tool built by Dr. Pietro Bonfà at the University of Parma, Italy, for simula-

tions of muon polarisation. This Python library allows users to model dipolar

and quadrupolar interactions between muons and nuclei in various systems.

It employs typical Python scientific libraries such as Numpy, Matplotlib and

Qutip.
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Appendix C: POCSI (POint

Charge SImulation of electric

field gradient)

1 # -*- coding: utf -8 -*-

2 """

3 @author: Jonathan Frassineti

4 """

5

6 """

7 In this file , the functions that calculate and diagonalize

the EFG are defined.

8 """

9

10 import numpy as np

11

12 atomic_EFG = - 9.71736166 e21 # V/(m^2), atomic unit of EFG

13 angtom = 1.0e-10 # Angstrom unit of measure

14 elementary_charge = 1.6021766e-19 # Coulomb = ampere second

15 epsilon0 = 8.8541878e-12 # dielectric constant of the vacuum

16 h = 6.6260693e-34 # J s

17 hbar = h/(2*np.pi) # J s

18

19 def point_charge_EFG(pos , base , lattice_a , lattice_b ,

lattice_c , quadrupole_moment , s=15, impurity = False , xxx

= [], shifts = [], base_shifted = []):

20 """ This function calculates the point charge EFG for a

given nucleus in a specific position in the lattice
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structure.

21

22 Parameters

23 pos: position of the nucleus in which the user wants

to calculate the EFG from point charge.

24

25 s: the number of real space vectors from the origin

that build the crystalline structure , starting from the

basis;

26 greater the ’s’, more accurate the calculation , but

also much slower.

27

28 base: atomic base of the material under study.

29

30 lattice_a/b/c: lattice parameters a, b and c of the

crystal , in Angstrom.

31

32 quadrupole_moment: the quadrupole moment of the

nucleus in which calculating the EFG.

33

34 impurity = False: if True , add the possibility to add

an impurity , or vacancy , or an additional particle

35 (such as a positive muon) inside the crystal , to

obtain the EFG with this perturbation.

36 This part is currently under improvement (use with

caution !).

37

38 xxx = []: if impurity = True , define the position of

the impurity (as in the ’base’ parameter ’).

39

40 shifts = []: if impurity = True , defines the

displacement of each nearest neighbour atom of the nucleus

under study.

41

42 base_shifted = []: if impurity = True , defines the

atomic base of N nearest neighbours

43 (for this version , only 4 considered) as for the ’

base’ parameter

44
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45 Returns:

46 The point charge EFG of the nucleus under study.

47

48 """

49 a1 = np.array([lattice_a , 0, 0])

50 a2 = np.array([0, lattice_b , 0])

51 a3 = np.array([0, 0, lattice_c ])

52

53 if impurity == True:

54 for i in range(len(pos)):

55 pos[i] *= shifts[i]

56

57 v = np.zeros ((3, 3), dtype=’float64 ’)

58

59 for u1 in range(-s, s + 1):

60

61 for u2 in range(-s, s + 1):

62

63 for u3 in range(-s, s + 1):

64

65 for k in range(len(base)):

66

67 if ((u1 == 0) and (u2 == -1) and (u3

== 0) and (k == 0)):

68 continue

69 if ((u1 == -1) and (u2 == -1) and (u3

== 0) and (k == 1)):

70 continue

71 if ((u1 == 0) and (u2 == 0) and (u3

== -1) and (k == 4)):

72 continue

73 if ((u1 == 0) and (u2 == 0) and (u3

== 0) and (k == 5)):

74 continue

75

76 D = np.zeros(3, dtype=’float ’)

77 D[0] = u1 + base[k, 0]

78 D[1] = u2 + base[k, 1]

79 D[2] = u3 + base[k, 2]
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80

81 if ((D[0] == pos [0]) and (D[1] == pos

[1]) and (D[2] == pos [2])): continue

82

83 r_k = np.zeros(3, dtype=’float’)

84

85 r_k[0] = (D[0] - pos [0]) * a1[0] + (D

[1] - pos [1]) * a2[0] + (D[2] - pos [2]) * a3[0]

86 r_k[1] = (D[0] - pos [0]) * a1[1] + (D

[1] - pos [1]) * a2[1] + (D[2] - pos [2]) * a3[1]

87 r_k[2] = (D[0] - pos [0]) * a1[2] + (D

[1] - pos [1]) * a2[2] + (D[2] - pos [2]) * a3[2]

88

89 rr = r_k [0] * r_k [0] + r_k [1] * r_k

[1] + r_k [2] * r_k [2]

90

91 v[0, 0] += base[k, 3] * base[k, 4] *

(3 * r_k [0] * r_k [0] - rr) / pow(rr , 2.5)

92 v[0, 1] += base[k, 3] * base[k, 4] *

(3 * r_k [0] * r_k [1]) / pow(rr , 2.5)

93 v[0, 2] += base[k, 3] * base[k, 4] *

(3 * r_k [0] * r_k [2]) / pow(rr , 2.5)

94 v[1, 1] += base[k, 3] * base[k, 4] *

(3 * r_k [1] * r_k [1] - rr) / pow(rr , 2.5)

95 v[1, 2] += base[k, 3] * base[k, 4] *

(3 * r_k [1] * r_k [2]) / pow(rr , 2.5)

96 v[2, 2] += base[k, 3] * base[k, 4] *

(3 * r_k [2] * r_k [2] - rr) / pow(rr , 2.5)

97

98

99 for k in range(len(base_shifted)):

100

101 D = np.zeros(3, dtype = ’float ’)

102 D[0] = base_shifted[k,0];

103 D[1] = base_shifted[k,1];

104 D[2] = base_shifted[k,2];

105

106 if ((D[0] == pos [0]) and (D[1] == pos [1]) and (D

[2] == pos [2])): continue
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107

108 r_k = np.zeros(3, dtype = ’float’)

109

110 r_k [0] = ( D[0] - pos[0] )*a1[0] + (D[1] - pos

[1])*a2[0] + (D[2] - pos [2])*a3[0];

111 r_k [1] = ( D[0] - pos[0] )*a1[1] + (D[1] - pos

[1])*a2[1] + (D[2] - pos [2])*a3[1];

112 r_k [2] = ( D[0] - pos[0] )*a1[2] + (D[1] - pos

[1])*a2[2] + (D[2] - pos [2])*a3[2];

113

114 rr = r_k [0]* r_k [0]+ r_k [1]* r_k [1]+ r_k [2]* r_k [2]

115

116 v[0,0] += base_shifted[k,3] * base_shifted[k,4]

*(3* r_k [0]* r_k [0] - rr) / pow(rr ,2.5);

117 v[0,1] += base_shifted[k,3] * base_shifted[k,4]

*(3* r_k [0]* r_k [1]) / pow(rr ,2.5);

118 v[0,2] += base_shifted[k,3] * base_shifted[k,4]

*(3* r_k [0]* r_k [2]) / pow(rr ,2.5);

119 v[1,1] += base_shifted[k,3] * base_shifted[k,4]

*(3* r_k [1]* r_k [1] - rr) / pow(rr ,2.5);

120 v[1,2] += base_shifted[k,3] * base_shifted[k,4]

*(3* r_k [1]* r_k [2]) / pow(rr ,2.5);

121 v[2,2] += base_shifted[k,3] * base_shifted[k,4]

*(3* r_k [2]* r_k [2] - rr) / pow(rr ,2.5);

122

123 D = np.zeros(3, dtype = ’float ’)

124 D[0] = xxx [0];

125 D[1] = xxx [1];

126 D[2] = xxx [2];

127

128 r_k = np.zeros(3, dtype = ’float’)

129

130 r_k[0] = ( D[0] - pos[0] )*a1[0] + (D[1] - pos [1])*a2

[0] + (D[2] - pos [2])*a3[0];

131 r_k[1] = ( D[0] - pos[0] )*a1[1] + (D[1] - pos [1])*a2

[1] + (D[2] - pos [2])*a3[1];

132 r_k[2] = ( D[0] - pos[0] )*a1[2] + (D[1] - pos [1])*a2

[2] + (D[2] - pos [2])*a3[2];

133
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134 rr = r_k [0]* r_k [0]+ r_k [1]* r_k [1]+ r_k [2]* r_k [2]

135

136 v[0,0] += xxx[3] * xxx[4] *(3* r_k [0]* r_k[0] - rr) /

pow(rr ,2.5);

137 v[0,1] += xxx[3] * xxx[4] *(3* r_k [0]* r_k [1]) / pow(rr

,2.5);

138 v[0,2] += xxx[3] * xxx[4] *(3* r_k [0]* r_k [2]) / pow(rr

,2.5);

139 v[1,1] += xxx[3] * xxx[4] *(3* r_k [1]* r_k[1] - rr) /

pow(rr ,2.5);

140 v[1,2] += xxx[3] * xxx[4] *(3* r_k [1]* r_k [2]) / pow(rr

,2.5);

141 v[2,2] += xxx[3] * xxx[4] *(3* r_k [2]* r_k[2] - rr) /

pow(rr ,2.5);

142

143

144 else:

145 v = np.zeros ((3, 3), dtype=’float64 ’)

146

147 for u1 in range(-s, s + 1):

148

149 for u2 in range(-s, s + 1):

150

151 for u3 in range(-s, s + 1):

152

153 for k in range(len(base)):

154

155 D = np.zeros(3, dtype=’float ’)

156 D[0] = u1 + base[k, 0]

157 D[1] = u2 + base[k, 1]

158 D[2] = u3 + base[k, 2]

159

160 if ((D[0] == pos [0]) and (D[1] == pos

[1]) and (D[2] == pos [2])): continue

161

162 r_k = np.zeros(3, dtype=’float’)

163

164 r_k[0] = (D[0] - pos [0]) * a1[0] + (D

[1] - pos [1]) * a2[0] + (D[2] - pos [2]) * a3[0]

186 APPENDIX C



165 r_k[1] = (D[0] - pos [0]) * a1[1] + (D

[1] - pos [1]) * a2[1] + (D[2] - pos [2]) * a3[1]

166 r_k[2] = (D[0] - pos [0]) * a1[2] + (D

[1] - pos [1]) * a2[2] + (D[2] - pos [2]) * a3[2]

167

168 rr = r_k [0] * r_k [0] + r_k [1] * r_k

[1] + r_k [2] * r_k[2]

169

170 v[0, 0] += base[k, 3] * base[k, 4] *

(3 * r_k [0] * r_k [0] - rr) / pow(rr , 2.5)

171 v[0, 1] += base[k, 3] * base[k, 4] *

(3 * r_k [0] * r_k [1]) / pow(rr , 2.5)

172 v[0, 2] += base[k, 3] * base[k, 4] *

(3 * r_k [0] * r_k [2]) / pow(rr , 2.5)

173 v[1, 1] += base[k, 3] * base[k, 4] *

(3 * r_k [1] * r_k [1] - rr) / pow(rr , 2.5)

174 v[1, 2] += base[k, 3] * base[k, 4] *

(3 * r_k [1] * r_k [2]) / pow(rr , 2.5)

175 v[2, 2] += base[k, 3] * base[k, 4] *

(3 * r_k [2] * r_k [2] - rr) / pow(rr , 2.5)

176

177 v *= (elementary_charge / (4 * np.pi * epsilon0)) * (1 /

(( angtom) ** 3))

178

179 EFG = np.array ([[v[0, 0], v[0, 1], v[0, 2]],

180 [v[0, 1], v[1, 1], v[1, 2]],

181 [v[0, 2], v[1, 2], v[2, 2]]])

182

183 max_EFG = EFG.max()

184

185 threshold = max_EFG *0.01

186

187 for ii in range(len(EFG)):

188 for jj in range(len(EFG [0])):

189 if np.abs(EFG[ii][jj]) < threshold:

190 EFG[ii][jj] = 0.000

191 else: continue

192

193 return EFG
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194

195 def diagonalize_EFG(tensor , quadrupole_moment):

196 """ This function diagonalize the EFG in the Principal

Axis System (PAS).

197

198 Parameters

199 tensor: the EFG tensor calculated from point charge.

200 quadrupole_moment: the quadrupole_moment of the

nucleus under study.

201

202 Returns:

203 D: the diagonal EFG from point charge , in the PAS.

204 eta: the asymmetry parameter of the EFG.

205 chi: the quadrupolar coupling constant of the nucleus

, in MHz.

206

207 """

208 eigenvalues , P = np.linalg.eig(tensor)

209 P_inv = np.linalg.inv(P)

210 X = np.dot(P_inv , tensor)

211 D = np.dot(X, P)

212

213 max_D = D.max()

214

215 threshold = max_D *0.01

216

217 for ii in range(len(D)):

218 for jj in range(len(D[0])):

219 if np.abs(D[ii][jj]) < threshold:

220 D[ii][jj] = 0.000

221 else: continue

222

223 # Now , the diagonal components of the EFG tensor

224 Vzz = max(eigenvalues , key=abs)

225 Vyy = min(eigenvalues , key=abs)

226 Vxx = -(Vzz+Vyy)

227 eta = np.abs((Vyy - Vxx) / Vzz) # Asymmetry parameter of

the EFG tensor

228 eta = round(eta , 3)
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229 chi = np.abs(Vzz * elementary_charge * quadrupole_moment

/ h )*1e-6 # Quadrupolar constant , in MHz

230 return D, eta , chi
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S. Sanna, V. F. Mitrovi ć, R. Seshadri, and S. D. Wilson, “Fermi level tun-

ing and double-dome superconductivity in the kagome metal CsV3Sb5−xSnx”,

Phys. Rev. Mater. 6, L041801 (2022).
102A. N. C. Salinas, B. R. Ortiz, C. Bales, J. Frassineti, V. F. Mitrović,
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Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A.

Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra,
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153P. Bonfà, J. Frassineti, M. M. Isah, I. J. Onuorah, and S. Sanna, “Undi:

an open-source library to simulate muon-nuclear interactions in solids”,

Computer Physics Communications 260, 107719 (2021).
154J. Frassineti, POCSI (POint Charge SImulation of electric field gradient),

https://github.com/JonathanFrassineti/POCSI/tree/main.
155J. Schultz, “Point charge simulations of the electric field gradient”, PhD

thesis (Department of Physics and Astronomy, University of British Columbia,

2005).
156H. Haas, “Electric field gradients at V, Nb and Ta in A15 alloys”, Hyperfine

Interactions 120, 157–161 (1999).
157Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale, W. Ku, S. Trebst,

and P. Gegenwart, “Relevance of the Heisenberg-Kitaev Model for the

Honeycomb Lattice Iridates A2IrO3”, Phys. Rev. Lett. 108, 127203 (2012).
158S. Trebst and C. Hickey, “Kitaev materials”, Physics Reports 950, Kitaev

materials, 1–37 (2022).
159V. M. Katukuri, S. Nishimoto, V. Yushankhai, S.-L. Drechsler, and J.

van den Brink, “Kitaev interactions between j = 1/2 moments in honey-

comb Na2IrO3 are large and ferromagnetic: insights from ab initio quantum

chemistry calculations”, New Journal of Phyics 16, 013056 (2016).
160R. D. Johnson, S. C. Williams, A. A. Haghighirad, J. Singleton, V. Zapf,

P. Manuel, I. I. Mazin, Y. Li, H. O. Jeschke, R. Valentı, and R. Coldea,

“Monoclinic crystal structure of α − RuCl3 and the zigzag antiferromag-

netic ground state”, Phys. Rev. B 92, 235119 (2015).
161J. A. Sears, L. E. Chern, S. Kim, P. J. Bereciartua, S. Francoual, Y. B.

Kim, and Y.-J. Kim, “Ferromagnetic kitaev interaction and the origin of

large magnetic anisotropy in α-rucl3”, Nature Physics 16, 837–840 (2020).

BIBLIOGRAPHY 205



BIBLIOGRAPHY

162Y. Sugita, Y. Kato, and Y. Motome, “Antiferromagnetic kitaev inter-

actions in polar spin-orbit mott insulators”, Phys. Rev. B 101, 100410

(2020).
163H. Liu and G. Khaliullin, “Pseudospin exchange interactions in d7 cobalt

compounds: Possible realization of the Kitaev model”, Phys. Rev. B 97,

014407 (2018).
164R. Sano, Y. Kato, and Y. Motome, “Kitaev-Heisenberg Hamiltonian for

high-spin d7 Mott insulators”, Phys. Rev. B 97, 014408 (2018).
165E. M. Smith, O. Benton, D. R. Yahne, B. Placke, R. Schäfer, J. Gaudet,
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