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Abstract

The first chapter provides evidence that aggregate Research and Development
(R&D) investment drives a persistent component in productivity growth and
that this embodies a risk priced in financial markets. In a semi-endogenous
growth model, this component is identified by the R&D in excess of equilib-
rium levels and can be approximated by the Error Correction Term in the
cointegration between R&D and Total Factor Productivity. Empirically, the
component results being well defined and it satisfies all key theoretical pre-
dictions: it exhibits appropriate persistency, it forecasts productivity growth,
and it is associated with a cross-sectional risk premium.

CAPM is the most foundational model in financial economics, but is
known to empirically underestimate expected returns of low-risk assets and
overestimate those with high risk. The second chapter studies how risks
omission and funding tightness jointly contribute to explaining this anomaly,
with the former affecting the definition of assets’ riskiness and the latter
affecting how risk is remunerated. Theoretically, the two effects are shown
to counteract each other. Empirically, the spread related to binding leverage
constraints is found to be significant at 2% yearly. Nonetheless, average
returns of portfolios that exploit this anomaly are found to mostly reflect
omitted risks, in contrast to their employment in previous literature.

The third chapter concerns ‘sustainability’ of assets: when it is valued, its
effect on the discount rates does not only depend on the sustainability of the
asset priced, but it is intrinsically mediated by the risk profile of the asset
itself. This has implications for the assessment of the sustainability-related
spread and for hedging changes in the sustainability concern. Specifically,
(1) long-short portfolios of assets sorted on sustainability can even average
returns with the opposite sign of the spread and (2) the effectiveness of
more sustainable assets in hedging changes to the sustainability premium
will depend on their ‘sustainability intensity’ and their risk jointly. The
main implications are tested on the ESG score dimension for US data and is
inconclusive regarding the existence of a ESG-related premium in the first
place. Also, the risk profile of the long-short ESG portfolio is not likely to
impact the sign of its average returns.
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1

The long-run innovation risk
component

1 Introduction

To reconcile consumption-based asset pricing theory with the data, Bansal and
Yaron (2004) focused on a ‘small’ but persistent component of consumption
growth, named the ‘long-run risk’ (LRR) component. This process can add
little variance to consumption growth despite heavily impacting the whole
consumption path. Therefore, when coupled with preferences that are sensitive
to uncertainty in future consumption expectations, as in Epstein and Zin
(1989), it becomes a significant source of risk. Risks of this kind have proven
useful in studying various macro-financial phenomena.1 However, detecting
LRR components empirically proves challenging, undermining the validation
of mechanisms relying on them and drawing significant criticism towards
the entire framework.2 Given the extensive literature that has developed
around the LRR concept, it is essential to provide evidence that supports
its establishment: in this paper I contribute by directly documenting a
LRR component related to innovation efforts, plotted in figure 1.1. More
specifically, I empirically show that aggregate Research and Development
(R&D) investment intensity is highly persistent, it forecasts Total Factor
Productivity (TFP) growth, and it is associated to a positive risk premium in
financial markets.

Existence and relevance of long-run risks have been previously corrobo-
rated either by directly tackling the statistical difficulties in its detection, as
done for example by Ortu et al. (2013), Dew-Becker and Giglio (2016) and
Schorfheide et al. (2018), or by framing their origin in richer structural models,

1For example, exchange rates dynamics as in Colacito and Croce (2011), climate change pricing
as in Bansal, Ochoa, et al. (2016), term structures as in Ai et al. (2018), or oil dynamics as in
Ready (2018).

2Most notably, Beeler and Campbell (2012) and Epstein, Farhi, et al. (2014).
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Figure 1.1: R&D excess intensity, see section 3 for details. Shaded areas mark NBER
recessions.

which provide additional implications to test. Following the latter approach,
Kaltenbrunner and Lochstoer (2010) first showed in general equilibrium how
the long-run risk component can arise in consumption growth with standard
productivity dynamics. Then, Croce (2014) went a step further, providing
both theoretical arguments and empirical evidence for a long-run consumption
risk component being originated in the persistence of the productivity growth
process. This found additional support in Ortu et al. (2013), which found high
correlation between the components with half-life within eight and sixteen
years of consumption and TFP growth rates. Kung and Schmid (2015) moved
one further step upstream, acknowledging the well-established role of R&D
in spurring productivity growth and showing how a long-run risk component
in consumption could ultimately be driven by an endogenous and persistent
aggregate R&D investment intensity. The empirical evidence they provided to
support this claim, however, relied on a measure of R&D intensity that, with
updated data, shows undesirable statistical properties, most importantly an
apparent non-stationarity. This paper improves on this, providing empirical
evidence for a long-run risk originating in R&D efforts that is based on a more
reliable R&D intensity measure. The crucial difference from Kung and Schmid
(2015) is the definition of R&D intensity, which in this paper stems from a
semi-endogenous growth model rather than a fully endogenous one: in semi-
endogenous models R&D and TFP level are approximately cointegrated and it
is the related Error Correction Term (ECT) to reflect the fluctuations in R&D
intensity around the equilibrium level, which drive conditional expectations
of productivity growth. As the estimated Error Correction Term proves being
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§ 1.1: Introduction

stationary, analysis relying on it are less likely to produce spurious results. A
further novelty of this paper with respect to Kung and Schmid (2015) consists
of the direct employment of the long-run innovation risk component in a
cross-sectional test, which returns a positive and significant risk premium
associated to assets’ exposure to it, as expected.

The definition of R&D intensity is illustrated exploiting a semi-endogenous
‘lab-equipment’ R&D growth model, specifically.3 The allocation of resources
to R&D is modelled as a stochastic rule of thumb rather than by welfare
optimality conditions, in a similar fashion to Jones (2005). This already
provides enough structure to interpret the emerging cointegrating relation
between R&D and TFP and identify the long-run innovation risk component
in R&D fluctuations, while still ensuring a Balanced Growth Path in the
economy. From a methodological point of view, as often done in the recent
macro-finance literature, the cointegrating relation is estimated with the
Dynamic OLS methodology studied in Phillips and Loretan (1991), Saikkonen
(1991), and Stock and Watson (1993). In macroeconomics, cointegration
methods has already been employed to study the relation between R&D
and technological progress in different studies, such as Ha and Howitt (2007),
Bottazzi and Peri (2007), and more recently Herzer (2022) and Kruse-Andersen
(2023). These papers are mostly concerned with the assessment of foreign
spillovers and the comparison of fully- versus semi-endogenous growth models,
with more recent evidence leaning towards semi-endogenous ones, as also
backed by Bloom et al. (2020). This paper does not contribute directly to
the debate on the modelling comparison, rather it leverages the growing
empirical evidence in favor of semi-endogenous growth models to perform
more effective empirical analysis and test it on the new grounds, namely
that of financial economics. More broadly, cointegration in macroeconomic
variables has been widely exploited to price assets, with notable examples in
Lettau and Ludvigson (2001) and Melone (2021), but to my knowledge this is
the first application to relate aggregate R&D and asset pricing.

On the financial side of the analysis, the most important contribution
of the paper is providing empirical evidence that persistent swings in R&D
activities is a priced risk in the markets. This evidence comes from cross-
sectional pricing tests pioneered by Bansal, R. F. Dittmar, et al. (2005), and
developed by Bansal, R. Dittmar, et al. (2009) among others. Like Bansal,
R. F. Dittmar, et al. (2005), in this paper I focus on the risk premium related
to cash-flow growth rates’ sensitivities rather than returns’ sensitivities, as
discount rates may be impacted by many more factors. In this regard, I

3This class of models was introduced in Romer (1987), and is characterized by the use of units
of the final output good to produce ideas, instead of using labor as in more traditional cases à la
Romer (1990).
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§ 1.2: The R&D component of long-run productivity risk

obviously depart from them by focusing on sensitivities to the estimated
R&D intensity, which ends up showing a stronger risk premium than those
to consumption growth. I also contribute by considering a wider set of test
asset portfolios: in particular, I include portfolios sorted on firm-specific R&D.
This is interesting because this sorting leads to the greatest dispersion in
cash-flow growth rates across portfolios and it is a dimension likely relevant
for heterogeneity in sensitivities to aggregate R&D. Indeed, a clear pattern
emerge: cash-flows of more R&D intensive firms prove being much more
positively sensitive to aggregate R&D intensity, meaning that cash-flows of
more R&D-intensive firms grow more when other firms invest more in R&D
too. This is in line with both R&D-intensive firms showing higher excess
returns and spillover effects being stronger than the fishing-out effect, as
previously shown by Jiang et al. (2016). For the cross-sectional pricing test, a
traditional Fama and Macbeth (1973) is employed.

The rest is structured as follows: in section 2 I show the fragilities of the
R&D intensity measure studied in Kung and Schmid (2015) and I outline
the emergence of a long-run innovation risk component in a semi-endogenous
growth models as well as its asset pricing role; in section 3 I show the results
from the estimation of this measure and I proceed illustrating its proprieties,
forecasting power with respect to TFP and relation with markup and funding
conditions, which are known to interact with R&D investment; in section 4 I
carry out the cross-sectional pricing test; in section 5 I conclude.

2 The R&D component of long-run productivity

risk

2.1 Background

The starting point of this study is the law of motion of the aggregate intangible
capital stock 𝑁 in Kung and Schmid (2015), which, using their notation is

𝑁𝑡+1 = (1 − 𝜙)𝑁𝑡 + 𝜒 ( 𝑆𝑡
𝑁𝑡

)
𝜂

𝑁𝑡, (1.1)

where 𝑁𝑡 can be interpreted as a measure of patented ideas and 𝑆𝑡 of R&D
expenditure. 𝜙 controls ideas’ obsolescence rate, while 𝜂 captures both
the duplication effects in innovative efforts and spillover effects from past
innovations. In their economy, the intangible capital contributes to equilibrium
final goods production via technology

𝑌𝑡 = 𝑍𝑡𝐾𝛼
𝑡 𝐿1−𝛼

𝑡 where 𝑍𝑡 ≡ ̄𝐴(𝑒𝑎𝑡𝑁𝑡)1−𝛼, (1.2)
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§ 1.2: The R&D component of long-run productivity risk

with 𝐾𝑡 being the physical capital, 𝐿𝑡 the amount of labour, 𝑍𝑡 the standard
Solow residual, and 𝛼 the capital share. 𝑎𝑡 is assumed to be a stationary
process with innovations 𝜀𝑡. When 𝑎𝑡 is highly persistent and the TFP growth
rate is small, the latter can be simply approximated as

Δ ln 𝑍𝑡+1 ≈ (1 − 𝛼) [𝜒 ( 𝑆𝑡
𝑁𝑡

)
𝜂

− 𝜙] + (1 − 𝛼)𝜀𝑡+1. (1.3)

This formulation highlights the crucial role of the ratio 𝑆𝑡/𝑁𝑡, there defined
as ‘R&D intensity’: as its dynamics drive conditional expectations of TFP
growth, any persistent movement in it translates into a source of long-run
productivity risk in the sense of Croce (2014).

Kung and Schmid (2015) show theoretically that innovation efforts endoge-
nously driven by the fluctuations of profitability level set by the exogenous
process 𝑎𝑡 spontaneously lead to persistence in growth prospects, jointly ratio-
nalizing macroeconomic and asset prices dynamics. To support the idea that
R&D intensity identifies a long-run risk component, they study its empirical
counterpart formed as the raw ratio of US annual private R&D expenditure
from the National Science Foundation, measuring 𝑆𝑡, over the R&D stock
series estimate by the US Bureau of Labor Statistics, representing intangible
capital 𝑁𝑡. This measure of R&D intensity proves indeed being highly persis-
tent and co-moving at low frequencies with the price-dividend ratio as well as
forecasting the growth rates of consumption, GDP and TFP.

However, this approach has a few potential shortcomings. Indeed, their
R&D intensity measure, as in the natural logarithm of 𝑆𝑡/𝑁𝑡, is extremely
persistent, with a point estimate of the yearly first autocorrelation equal to
0.987 and a standard error of 0.005.4 It should be noted that the R&D stock
series has been updated by the Bureau of Labor Statistics with respect to the
one used in their paper and now covers a slightly different time period. Anyway,
the 95% confidence interval, which spans from 0.977 to 0.998, highlights two
potential issues with the use of this measure: the upper bound, being so
close to 1, shows that the process could well be non-stationary while the
lower bound is still so high that makes it unlikely for this process to identify
a long-run risk component in the economy related to productivity. Sample
non-stationarity is not critical to the validity of the measure and the theory it
is used to support: from a statistical point of view, R&D intensity is expected
to be persistent and the more persistent a process is, the harder it becomes to
assess its stationarity in finite samples, so the generating process could still
be stationary. Then, even if R&D intensity really was non-stationary the key
mechanism studied by Kung and Schmid (2015) could still hold, at the price

4The standard error is obtained using the Delta method and 1-step GMM estimates of the
fundamental moments.
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§ 1.2: The R&D component of long-run productivity risk

Table 1.1: statistics of R&D intensity measure from Kung and Schmid (2015). In the first
column, 𝑆 is yearly R&D expenditure from the National Science Foundation and 𝑁 is the
R&D stock from Bureau of Labor Statistics, spanning 1963 to 2020; in the second and third
column, 𝑆 is quarterly real R&D expenditure from Bureau of Economic Analysis and 𝑍 is
the quarterly utilization-adjusted TFP from Fernald (2012), spanning from 1947 Q1 to 2021
Q4. ADF u.r. stat is the statistic of the unit root coefficient in an Augmented Dickey-Fuller
test with a time trend. AC(1) is the first autocorrelation, estimated as cross-correlation
with the lagged value via 1-step GMM, and in parenthesis there are the HAC standard
error recovered via Delta-method.

(ln𝑆𝑡 − ln𝑁𝑡) (ln𝑆𝑡 − 1
1−𝛼 ln𝑍𝑡)

𝛼 − 0.35 0.3

ADF u.r. stat −2.55 −2.11 −2.09
AC(1) 0.989 0.999 1.000

(0.006) (0.000) (0.000)

Num. obs. 57 299 299
∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1

of a more complex model. Nonetheless, non stationarity of R&D intensity
undermines the regressions in which it is employed, as any results would
essentially be spurious. Unfortunately, the Augmented Dickey Fuller test with
trend delivers for this series a statistic for the unit-root coefficient of -2.21,
which is well above the 10% critical value of -3.15, thereby suggesting that the
series is highly likely non-stationary. Furthermore, even with enough evidence
backing its stationarity, another concerning issue is that this series’ first
autocorrelation is likely at least 0.977, which implies a half-life of shocks over
30 years for a yearly AR(1) process. This suits the long-run risk component
in consumption calibrated by Bansal and Yaron (2004), but it is way more
persistent than the component that Ortu et al. (2013) find consumption and
productivity to share more strongly in the data, which has half-life between
eight and sixteen years, corresponding to a maximum autocorrelation of 0.957
if modelled as a yearly AR(1). Therefore, all in all, this measure could well
identify a long-run risk source in the economy, but the empirical evidence for
it effectively identifying the long-run productivity risk originated in the R&D
investment is fragile.

There are a few details that may drive this measure away from its aim.
First, the measure of intangible capital stock used, which in this case is the
stock of R&D. This might open a wedge between the model and the data
because intangible capital, as shown in (1.1), is formed in a very different
way than simple accumulation and depreciation of R&D expenses – R&D
investments unlikely have constant marginal returns, considering duplication
and spillover effects. Another related issue is that the production of ideas
is likely not to rely solely on domestic R&D expenditure and stock of ideas
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§ 1.2: The R&D component of long-run productivity risk

anyway. This makes it difficult to rely on any measure of intangible capital
stock for an empirical analysis because it would require to account for all
spillover sources relevant to the formation of new patented ideas and make
strong assumptions on the functional form to combine them. A way to bypass
this issue could be to utilize directly the variable that the very concept of
ideas’ stock was born to drive and explain: Total Factor Productivity in the
form of Solow residual. This quantity was born in the data and requires little
structure to be identified.

Combining (1.2) and (1.3), with the assumption that the first moment of
ln(𝑆/𝑁) exists and the log-ratio does not deviate too much from it, TFP
growth can be fairly approximated in terms of 𝑆 and 𝑍 as

E𝑡 [Δ ln 𝑍𝑡+1] ≈ 𝛾0 + 𝛾1𝑎𝑡 + 𝛾1 (ln 𝑆𝑡 − 1
1 − 𝛼

ln 𝑍𝑡) . (1.4)

Here, conditional expectations of Δ𝑍𝑡+1 are impacted by R&D investment
via (ln 𝑆𝑡 − 1

1−𝛼 ln 𝑍𝑡), which contains the R&D fluctuations that moves TFP
growth expectations around; 𝑎𝑡 enters the equation mechanically following
the substitution of 𝑁𝑡 with ̄𝐴 −1

1−𝛼 𝑒−𝑎𝑡𝑍 1
1−𝛼 and can be thought as merely

compensating its implicit presence in the ‘modified R&D intensity’ term. On
one side, this formulation is empirically convenient because it provides a
way to measure TFP growth expectations involving variables that have more
obvious empirical counterparts than (1.3) – 𝑎𝑡 is not directly observable but
can be represented by a combination of processes that are able to forecast TFP
growth. Note that similar manipulations could be performed to express TFP
growth in terms of other observables too, but it would require involving much
more theoretical structure than just TFP definition and ideas’ law of motion.
An effective description of the data would then require more complex models,
with greater chances of being misspecified. On the other side, however, this
formulation makes it harder to identify the source of fluctuations in growth
prospect: even if R&D intensity 𝑆/𝑁 and expected TFP growth were actually
constant, (ln 𝑆𝑡 − 1

1−𝛼 ln 𝑍𝑡) would still fluctuate, even persistently, because of
𝑎𝑡 in 𝑍𝑡. This could be amended recovering 𝑎𝑡 from the forecasting regression
and filtering it out of (ln 𝑆𝑡− 1

1−𝛼 ln 𝑍𝑡), but this would need 𝛾1 to be estimated
consistently, which is difficult given the high non stationary behaviour shown
by (ln 𝑆𝑡 − 1

1−𝛼 ln 𝑍𝑡): this can be observed looking at table 1.1 where it is
reported the unit root coefficient statistic from the ADF test performed on the
series of (ln 𝑆𝑡 − 1

1−𝛼 ln 𝑍𝑡) built using quarterly US R&D expenditure from
the Bureau of Economic Analysis and US utility-adjusted TFP estimated by
Fernald (2012),5 for two different values of 𝛼.

A further point of departure of the theory from reality might be represented
5More details on the data are provided in the next section.
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§ 1.2: The R&D component of long-run productivity risk

by the strong scale effects in the model. As highlighted by Bloom et al. (2020),
there is wide evidence for decreasing research productivity in the data, so
this is likely a realistic feature that is necessary for a model to be applied
empirically. To take this into account, in the next section I formulate a
model based on the key dynamics of Kung and Schmid (2015) reframed in a
semi-endogenous framework, where I directly model R&D expenditure with a
stochastic thumb rule, which allows to address R&D intensity dynamics more
explicitly.

2.2 A simple data-driven model

Consider a discrete-time model where goods 𝑌𝑡 are produced using only labour
𝐿𝑡 and intangible capital 𝐼𝑡 with technology

𝑌𝑡 = 𝑒𝑎𝑡𝐼𝜉
𝑡 𝐿𝑡, (1.5)

characterized by the degree of increasing returns 𝜉. 𝑎𝑡 is a stationary exogenous
process with innovations 𝜀𝑎

𝑡 to keep track of possible external factors affecting
the dynamics of output level. As common in the ‘lab-equipment’ literature,
final goods can be employed in consumption 𝐶𝑡 and R&D expenditures 𝑆𝑡,

𝑌𝑡 = 𝐶𝑡 + 𝑆𝑡. (1.6)

R&D investment implicitly employs both capital and labor, and produces
new intangible capital with a schedule that embodies the insight of the semi-
endogenous growth theory that ideas get harder to find. Specifically, the law
of motion of the intangible capital stock is

𝐼𝑡+1 = (1 − 𝜙)𝐼𝑡 + 𝑆𝑡
𝜂𝐼𝑡

𝜓. (1.7)

Here, duplication effects are controlled via 𝜂 and are independent from how
easier/harder finding ideas gets, set by 𝜓, which is the net result of spillovers
and fishing-out effects. 𝜙 controls ideas’ obsolescence rate. This formulation
nests both fully endogenous models, which are described by setting 𝜓 = 1,
and Kung and Schmid (2015), which requires 𝜓 = 1 − 𝜂.

In this economy, the Solow residual, or TFP, 𝑍𝑡 is equal to 𝑒𝑎𝑡𝐼𝜉
𝑡 so,

performing approximations similar to those that led to (1.4), its growth rate
can be written as

Δ ln 𝑍𝑡+1 ≈ 𝛾0 + 𝛾1 (ln 𝑆𝑡 − Ψ ln 𝐼𝑡) + 𝜀𝑎
𝑡+1, (1.8)

where Ψ is short-hand for 1−𝜓
𝜂 , which is also the key difference with (1.3). In

a way, the semi-endogenous approach makes obtaining an empirical measure
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§ 1.2: The R&D component of long-run productivity risk

of R&D intensity, now intended as 𝑆𝑡/𝐼Ψ
𝑡 , more difficult because it demands

the calibration of an additional coefficient. On the other hand, the linear
relation of Δ ln 𝑍𝑡 and (ln 𝑆𝑡 − Ψ ln 𝐼𝑡) combined with the wide support for
a stationary Δ ln 𝑍𝑡 implies a cointegration relationship between 𝑆𝑡 and 𝐼𝑡,
thereby enabling a direct estimation of Ψ.

The cointegration between 𝑆𝑡 and 𝐼𝑡 suggests a stochastic rule of thumb
for the allocation of the R&D expenditures:

𝑆𝑡 = 𝑒 ̄𝑟+ ̃𝑟𝑡 𝐼Ψ
𝑡 , (1.9)

with ̃𝑟𝑡 being a stationary process. This rule can be interpreted as 𝑆𝑡 being
a stochastic proportion of 𝐼Ψ

𝑡 fluctuating around the fixed value 𝑒 ̄𝑟+Var[ ̃𝑟]/2.
The steady state in this economy is on a balanced growth path where output,
consumption and R&D investment grow at rate 𝑔 = Ψ

Ψ−𝜉𝑔𝐿 while TFP grows
at rate 𝑔TFP = 𝜉

Ψ−𝜉𝑔𝐿. 𝑆𝑡 could be set or described in a different manner,
but this way of approximating and representing it allows to directly address
the fluctuations in conditional expectations of TFP growth, which, depending
only on how 𝑆𝑡 and 𝐼Ψ

𝑡 relate to each other, are completely described in
one process, ̃𝑟𝑡. Following this, I will refer to ̃𝑟𝑡 as ‘excess R&D intensity’,
or ‘excess innovative efforts’, as in excess of the long-run equilibrium level.
Finally to close the model, for simplicity of exposition, assume labour being
entirely devoted to final goods production and growing at an exogenous rate
𝑔𝐿.

This rule of thumb directly implies cointegration between ln 𝑆𝑡 and ln 𝐼𝑡,
with ̃𝑟𝑡 being the error correction term, and implies a neat expression for TFP
growth:

Δ ln 𝑍𝑡+1 ≈ 𝜇 + 𝛾 ⋅ ̃𝑟𝑡 + 𝜀𝑎
𝑡+1. (1.10)

This formulation traces very closely the productivity process used in Croce
(2014), illustrating the mapping between the typical productivity long-run
component 𝑥𝑡 and the excess R&D intensity ̃𝑟, which has the potential to be
a ‘long-run innovation risk component’. The only missing piece for the two
specifications to be completely equivalent concerns the substantial persistence
in 𝑥𝑡 dynamics, which leaves open the issue of whether ̃𝑟 is persistent enough to
identify it. Kung and Schmid (2015) have provided an exhaustive theoretical
answer showing its emergence in the optimization solution, I answer this
empirically in the following section.

The thumb rule can naturally be expressed in terms of TFP instead of

9



§ 1.2: The R&D component of long-run productivity risk

intangible capital:

ln 𝑆𝑡 − 𝜓
𝜉

ln 𝑍𝑡 = ̄𝑟 + ̃𝑟𝑡 − 𝜓
𝜉

𝑎𝑡⏟
̂𝑟𝑡

, (1.11)

meaning that the residual from the regression of ln 𝑆𝑡 on ln 𝑍𝑡, ̂𝑟𝑡, actually
includes the level of any process that affect productivity levels other than
intangible capital. In terms of ̂𝑟𝑡, TFP growth is then:6

Δ ln 𝑍𝑡+1 ≈ 𝜇 + 𝛾𝜓
𝜉

𝑎𝑡 + 𝛾 ⋅ ̂𝑟𝑡 + 𝜀𝑎
𝑡+1. (1.12)

Note that the coefficient of ̃𝑟 and ̂𝑟 is the same.

2.3 The pricing of long-run innovation risk

The key object of study in asset pricing is the Stochastic Discount Factor
(SDF) 𝑚𝑡. This is a stochastic process that tracks the growth in marginal
utility of investors in a market, thus reflecting the shocks to the economy
state variables that are relevant to them. In a typical long-run risk models
this takes the form

𝑚𝑡+1 = �̄�𝑡 − 𝑏𝑥𝜀𝑥,𝑡+1 − 𝑏𝑠𝜀𝑠,𝑡+1 (1.13)

with �̄�𝑡 being its expectations conditional on previous-period information,
and 𝜀𝑥,𝑡+1 and 𝜀𝑠,𝑡+1 being innovations that affect consumption marginal
utility persistently and transiently with loadings 𝑏𝑥 and 𝑏𝑠, respectively.

The SDF plays a relevant role in studying assets price dynamics because,
in perfect markets, assets’ expected returns in excess of the risk-free return are
determined by the level of return innovations exposure to it, as the following
holds:

E𝑡 [𝑅𝑖
𝑡+1] − 𝑅𝑓

𝑡 = −𝑅𝑓
𝑡 ⋅ Cov𝑡 [𝑚𝑡+1, 𝑅𝑖

𝑡+1] . (1.14)

I complement these conditions with the assumption of the following factor
structure for returns,

𝑅𝑖
𝑡+1 = �̄�𝑖

𝑡 + 𝛽𝑖
𝑥𝜀𝑥,𝑡+1 + 𝛽𝑖

𝑠𝜀𝑠,𝑡+1 + 𝑒𝑖
𝑡+1, (1.15)

where 𝛽𝑖
𝑗 is the sensitivity of the return 𝑖 to shocks of the variable 𝑗. A

potential driver of heterogeneity in sensitivities to the long-run innovation risk
is represented by the firm-specific R&D intensity: evidence from Jiang et al.
(2016) shows that R&D spillovers do get priced in financial markets, so it is

6Full derivation in Appendix A.
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§ 1.2: The R&D component of long-run productivity risk

sensible to hypothesize that fluctuations in the aggregate R&D investment
leads to different return dynamics depending on the externality a firm can
enjoy. This will be explored in the empirical analysis by looking at the
sensitivity distribution over firm-specific-R&D-sorted stocks portfolios, but, as
more mechanisms could play a role, there is ground for further investigation.
Combining (1.13), (1.14) and (1.15) yields the main reduced-form pricing
equation,

E𝑡 [𝑅𝑖
𝑡+1] − 𝑅𝑓

𝑡 = 𝜆𝑥𝛽𝑖
𝑥 + 𝜆𝑠𝛽𝑖

𝑠, (1.16)

with 𝜆𝑗 being the so called ‘risk premium’ associated with risk factor 𝑗.
The main take-away of the long-run risk models is that the heavy lifter

in explaining stocks risk premium is, by orders of magnitude, the risk of
exposure to the factor affecting the marginal utility in a persistent manner,
i.e. 𝛽𝑖

𝑥. So, for the sake of presentation clarity, I will proceed focusing on the
cross-sectional pricing equation

E𝑡 [𝑅𝑖
𝑡+1] − 𝑅𝑓

𝑡 = 𝜆𝑥𝛽𝑖
𝑥 (1.17)

instead. The long-run risk factor in the seminal paper by Bansal and Yaron
(2004) is a persistent component of consumption directly; in Croce (2014)
this is a persistent component in productivity growth instead; Kung and
Schmid (2015) imputes this last one to persistency in R&D investment, which,
following the framework of the previous section, should be embedded in ̃𝑟𝑡.
This translates to ̃𝑟 being a risk factor priced in the cross-section, which
will be investigated later by looking at the significance of 𝜆 ̃𝑟. This obviously
represents a joint test of the theory and of the empirical identification of ̃𝑟,
which I additionally address before performing the financial analysis.

Next, consider the decomposition shown in Campbell (1996), where returns
innovations can be approximated as the sum of news to cash-flow growth
rates and to discount rates:

ln 𝑅𝑖
𝑡+1 − E𝑡 [ln 𝑅𝑖

𝑡+1] = 𝛿𝑖
𝐷,𝑡+1 − 𝛿𝑖

𝑅,𝑡+1 where

𝛿𝑖
𝐷,𝑡+1 = {E𝑡+1 − E𝑡} [

∞

∑
𝑗=0

𝜅𝑗Δ ln 𝐷𝑖,𝑡+𝑗] and 𝛿𝑖
𝑅,𝑡+1 = {E𝑡+1 − E𝑡} [

∞

∑
𝑗=1

𝜅𝑗 ln 𝑅𝑖
𝑡+𝑗] .

(1.18)

Then, as

𝛽𝑖
𝑟 = Cov [𝑅𝑖

𝑡, ̃𝑟𝑡]
Var [ ̃𝑟𝑡]

≈
Cov [𝛿𝑖

𝐷,𝑡, ̃𝑟𝑡]
Var [ ̃𝑟𝑡]

−
Cov [𝛿𝑖

𝑅,𝑡, ̃𝑟𝑡]
Var [ ̃𝑟𝑡]

= 𝛽𝑖
𝑟,𝐷 − 𝛽𝑖

𝑟,𝑅, (1.19)
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§ 1.3: Empirical long-run excess R&D intensity

the cross-sectional pricing equation can be expressed as

E𝑡 [𝑅𝑖
𝑡+1] − 𝑅𝑓

𝑡 = 𝜆𝑟𝛽𝑖
𝑟,𝐷 − 𝜆𝑟𝛽𝑖

𝑟,𝑅. (1.20)

Following Bansal, R. F. Dittmar, et al. (2005), being the long-run risk premium
a phenomenon that mainly concerns assets fundamentals, rather than condi-
tional discount rates, I focus on the cash-flows’ exposure 𝛽𝑟,𝐷 to aggregate
R&D intensity, as key dimension of risk to explain excess returns.

3 Empirical long-run excess R&D intensity

The long-run innovation risk is embodied in ̃𝑟𝑡, which is the key object of
the analysis. From the theoretical assumption of the allocation rule in (1.9)
or the simple combination of assuming the ideas production function in
(1.7) and the empirical observation of a stationary TFP growth, this could be
directly estimated as the error correction term of the cointegration relationship
between ln 𝑆𝑡 and ln 𝐼𝑡. I explore this by regressing a measure of ideas stock
on a measure of R&D expenditure. The former is built in a spirit similar
to Bottazzi and Peri (2007), i.e. recursively adding new patents, from the
quarterly series from USPTO, to a depreciated value of past patents stock.
The depreciation rate is assumed to be 0.15, a value that is in line with most
of the literature, while higher than the one used by Bottazzi and Peri (2007)
and lower than the one advocated by W. Li and Hall (2016). Different values
leads to similar conclusions, so they are not shown. The empirical measure of
R&D that I employ here, and through out the rest of analysis, is the quarterly
private R&D expenditures series expressed in chained 2012 US Dollar prices
provided by the Bureau of Economic Analysis in the National Income and
Product Accounts tables.7

The results of a DOLS estimation of the cointegrating relationship are
shown in the first two columns of Table 1.2, and they are not encouraging:
the cointegration coefficient 𝛽𝑆 is statistically insignificant with the addition
of a time trend and the error correction terms are never stationary. This was
to be expected to some extent, as patents are widely considered to be not a
good measure of successful innovation, see for example Reeb and Zhao (2020)
and Herzer (2022). Therefore, the analysis will focus instead on the error
correction term ̂𝑟𝑡 of the empirical counterpart of (1.11),

ln 𝑆𝑡 = 𝑏0 + 𝑏1 ln 𝑍𝑡 + ̂𝑟𝑡. (1.21)
7The real series is obtained deflating the nominal R&D series Y006RC of table 5.3.5 by the

deflator series Y006RG of table 5.3.4.
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§ 1.3: Empirical long-run excess R&D intensity

It should be remarked that ̂𝑟𝑡, which equals ̃𝑟𝑡 − 𝜓
𝜉 𝑎𝑡, does not directly

identify the R&D intensity ̃𝑟, which is the persistent component in TFP
growth conditional expectations. In fact even with fixed ̃𝑟, one could still
observe fluctuations in ̂𝑟, with these being due to external factors acting on
the level of TFP but not on the growth rate expectations at all. Nonetheless,
assuming that 𝑎𝑡 is spanned by some available factors 𝐟𝑡, one could still
measure the impact of ̃𝑟 on expected TFP growth rates, i.e. ‘𝛾’ in (1.10) and
(1.12), by estimating 𝑘𝑟 with

Δ𝑍𝑡+1 = 𝑘0 + 𝐤′
𝑓 𝐟𝑡 + 𝑘𝑟 ̂𝑟𝑡 + 𝑢𝑡+1. (1.22)

In principle this also allows to explicitly recover ̃𝑟𝑡 by exploiting its definition,
̃𝑟𝑡 = ̂𝑟𝑡 + 𝜓

𝜉 𝑎𝑡:8

̃𝑟𝑡 = ̂𝑟𝑡 +
𝐤′

𝑓 𝐟𝑡

𝑘𝑟
. (1.23)

However, as will be shown later, it turns out that ̂𝑟 is likely to identify ̃𝑟
already, for the purposes that are relevant to this project at least. I will now
first go through the estimation of ̂𝑟 and then proceed illustrating its case to
be a close approximation of ̃𝑟.

3.1 Estimation of ̂𝑟

I estimate parameters of (1.21) via DOLS to avoid imposing any structure on
the short-term dynamics. This implies estimating

ln 𝑍𝑡 = 𝛽0 + 𝛽𝑆 ln 𝑆𝑡 + 𝛽𝑡𝑡𝑡 +
𝐾

∑
𝑖=−𝐽

𝛽Δ𝑖Δ𝑆𝑡−𝑖 + 𝑢𝑡. (1.24)

Terms are later re-arranged to form ̂𝑟𝑡 = ln 𝑆𝑡 − 1
𝛽𝑆

ln 𝑍𝑡 + 𝛽0
𝛽𝑆

+ 𝛽𝑡𝑡
𝛽𝑆

𝑡. The
TFP series employed to measure 𝑍 is the quarterly utilization-adjusted series
by Fernald (2012), which, paired with the R&D series, cover from 1947 to
2021. Since R&D is a flow variable that measures expenditures all along the
quarter ending at time 𝑡, which in principle is continuously chosen by the
agents between 𝑡 − 1 and 𝑡, while TFP level is a stock variable, to match the
timing of economy state and economic choices at best, the main specification
will refer to 𝑍𝑡 as the interpolated value of TFP between 𝑡 − 1 and 𝑡. At the
same time, Δ𝑍𝑡+1 will simply be the difference between utility-adjusted TFP
at time 𝑡 + 1 and time 𝑡, to make TFP movements completely subsequent to

8Another way is to add the same factors to the cointegration estimation and directly obtain ̃𝑟.
However this option seems less sensible because a large number of potential regressors leads to
poor estimation accuracy and the estimation of an impractical number of regressions to perform a
formal model selection.
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§ 1.3: Empirical long-run excess R&D intensity

Table 1.2: cointegration results. HAC Standard Errors in parenthesis, computed as advised
by Lazarus et al. (2018). BIC values refer to the estimation of the same specifications on
a sample where the first 32 observations were trimmed to allow for a fair comparison in
model selection. AC(1) is the first autocorrelation estimated as cross-correlation with the
lagged value, via 1-step GMM, whose HAC Standard Errors, below in parenthesis, are
obtained via Delta-method.

ln 𝐼 ln𝑍 ln𝑍 (unadj.)
(1) (2) (1) (2) (3)

𝛽𝑆 0.09∗∗∗ 0.06 0.20∗∗∗ 0.18∗∗∗

(0.01) (0.11) (0.01) (0.03)
𝛽𝑆,𝑇 0.17∗∗∗

(0.02)
𝛽𝑡𝑡 0.0004 0.0003 0.0005

(0.0019) (0.0004) (0.0003)

J 0 0 0 0 0
K 11 11 14 15 11
BIC −1087.9 −1088.5 −1095.3 −1092.0

̃𝑟𝑡 ̂𝑟𝑡

Num. obs. 171 171 283 282 283
SD 11.8% 16.72% 18.2% 21.5% 18.8%
ADF u.r. stat −3.09 −2.85 −3.89∗∗ −3.82∗∗ −3.44∗∗

AC(1) 0.986 0.987 0.979 0.982 0.964
(0.002) (0.002) (0.002) (0.002) (0.004)

∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1

any R&D expenditure between time 𝑡 − 1 and time 𝑡. This peculiar timing
structure is a further motivation to estimate the cointegrating parameters
using DOLS instead of estimating a full Vector Error Correction Model. As a
robustness check, the results from the estimation using the raw TFP series
from Fernald (2012) (no utilization adjustment and no timing-adjustment) are
also reported in the last column of Table 1.2, where also a broader measure
of R&D is employed - private plus government R&D expenditure. The results
are extremely similar, with a cross correlation with the ̂𝑟 of the specifications
marked in Table 1.2 as (1) and (3) of 0.97%.

The formulation in (1.24) nests all the specifications tested. As advised by
Choi and Kurozumi (2012), numbers of leads and lags are selected indepen-
dently, i.e. 𝐽 needs not be equal to 𝐾, and the selection is based on the Bayes
Information Criterion (BIC). Specifically, leads of Δ𝑆𝑡 turn out to never be
significant, so I focus on specifications with 𝐽 = 0 and compare BIC values
of the models estimated on a trimmed sample that allows fair comparisons
up to 𝐾 = 32 (8 years). Leads of Δ𝑆𝑡 never being significant also motivates
keeping 𝑍 on the left-hand side: with this formulation all the first-differences
of the regressor are lags, making the estimation based on the most recent
observations of 𝑍 and 𝑆 levels; vice versa, leaving 𝑆 as a dependent variable
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§ 1.3: Empirical long-run excess R&D intensity

would otherwise make the estimation performed on a dataset without the
most recent observations in levels, lost to the missing leads of Δ𝑍𝑡. Table 1.2
shows the estimation results of the best performing specification with and
without a time trend.

𝛽𝑆 and unit root ADF statistic of the error correction term are found to be
significant, supporting the cointegration of 𝑆 and 𝑍. The time trend existence,
on the other hand, finds little support. Therefore, the preferred specification,
which will be employed in the rest of the paper, is the one used in column
‘ln 𝑍(1)’ of Table 1.2. For this series, the first autocorrelation is 0.979, which
fits in the range expected from an AR(1) long-run productivity risk component
per Ortu et al. (2013) results – between 0.979 and 0.989. Correlation among
the ECTs of the different specification can be seen in appendix at Table 1.8.

3.2 Forecast the TFP growth

The key property of ̃𝑟 is that it is supposed to drive conditional expectations of
TFP growth, therefore it should display a strong forecasting ability. Employing
̂𝑟, this can be tested estimating the regression of equation (1.22), where factors

𝐟 are added as controls to capture the exogenous factor 𝑎𝑡 hidden in ̂𝑟, which
can bias the estimates. Specifically, note that in the extreme case in which no
controls are considered at all, and one is to estimate univariate regression of
future TFP growth on ̂𝑟, the OLS-estimated slope is obviously expected to
be biased.9 Specifically,

�̂�𝑟 = 𝑘𝑟
𝜎2

̃𝑟

𝜎2
̃𝑟(1 − 𝜓

𝜉 𝑑) + (𝜓
𝜉 )

2
𝜎2

𝑎

, (1.25)

where 𝑑 is the slope coefficient of the auxiliary regression of 𝑎𝑡 on ̃𝑟, expected
to be positive from Kung and Schmid (2015) and left unspecified in section 2.2.
Correlation of 𝑎𝑡 with TFP growth on the other hand is assumed to be close
to 0, following theory in assuming a persistent 𝑎𝑡. It can be seen that �̂�𝑟 gets
inflated for 𝜓

𝜉 𝜎𝑎 < 𝜌𝑎, ̃𝑟𝜎 ̃𝑟, i.e. depending on the degree to which variations
in −𝜓

𝜉 𝑎𝑡 go to ‘compensate’ variations of ̃𝑟, compressing the volatility of ̂𝑟
without affecting its covariance with TFP growth rates.

To avoid this, I consider the sets of factors already employed for the same
purpose in Ai et al. (2018): the main one is composed by price-dividend
ratio, 3-month Treasury-bill yield, 3- and 5-year Treasury bond yields, and
integrated volatility of the CRSP stock market index; a back-up one is formed
by the 9 factors studied in Ludvigson and Ng (2009). The first set is preferred
because it is available for a significantly longer timespan, starting in 1941
against the other one starting in 1970.

9Full derivation in section C.

15



§ 1.3: Empirical long-run excess R&D intensity

Table 1.3: TFP growth forecast regression results. TFP growth is the utilization-adjusted
TFP growth from Fernald (2012); controls in (BS) specification are the predictive factors
used in Bansal and Shaliastovich (2013) plus market integrated volatility, as in Ai et al.
(2018); controls in (LN) specification are the factors computed in Ludvigson and Ng (2009)

(BS) (LN) (uv)

(Intercept) 0.0034∗∗∗ 0.0030∗∗∗ 0.0031∗∗∗

(0.0007) (0.0005) (0.0005)
̂𝑟𝑡 0.0121∗∗∗ 0.0113∗∗∗ 0.0123∗∗∗

(0.0031) (0.0025) (0.0026)
p.v. (𝐹controls) 21.2% 16.0% −

R2 9.18% 8.81% 6.90%
Adj. R2 7.27% 4.88% 6.58%
Num. obs. 292 243 292
∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1

The results are in table 1.3. The most relevant facts are, first, that �̂�𝑟 is
extremely significant with both sets of controls, and well in the confidence
interval of the univariate estimate; second, that the control factors coefficients
are jointly insignificant. These results can be interpreted in different ways:
(1) both sets of factors are simply poor controls of 𝑎𝑡; (2) 𝑎𝑡 is not there;
(3) 𝑎𝑡 is not really persistent. To see why persistency of 𝑎𝑡 is relevant here
note that the forecasting coefficient of 𝑎𝑡 shown in equation (1.12) is a fair
approximation only if 𝜌𝑎 is close to 1, otherwise it reads 𝜌𝑎 − 1 + 𝜓

𝜉 𝑘1: this
could well be 0 even with 𝑎𝑡 being very much alive. However, note that
this, considering the previous estimate 𝜓

𝜉 𝑘1 ≈ 6%, would imply a quarterly
𝜌𝑎 = 0.94 – a process with a half-life shorter than 3 years. In this case,
it is true that ̂𝑟𝑡 would not be strictly identifying ̃𝑟𝑡 because it would be
determined by both ̃𝑟𝑡 and 𝑎𝑡, but most of the low-frequency fluctuations
in ̂𝑟, which is what this paper mostly concerns about, would be generated
by ̃𝑟. Therefore, even in this case, ̂𝑟 would correctly identify the persistent
component originated in R&D intensity for our purposes. For the possibility
of both sets of factors being poor controls there are not trivial solutions, other
than testing even more sets.

3.3 Investigating fluctuations determinants

While proving causal relations are beyond the scope of this paper, it is
informative to outline the dynamic relation of R&D excess intensity with
other macroeconomic variables. Specifically, R&D investment in Kung and
Schmid (2015) is driven by markup level, but it is well known that financial
constraints play a role too in the R&D investments dynamics, see for example
Brown et al. (2012) and D. Li (2011). This might matter for both the
macroeconomic ‘origin’ of the long-run innovation risk itself as well as for
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Table 1.4: estimates of the ̂𝑟 regression from the VAR. In parenthesis, estimates’ standard
errors; ‘max |roots|’ is the maximum eigenvalue of the companion matrix estimated. Sample
from 1970 Q2 to 2017 Q4.

̂𝑟 ΔMark-Up ΔI.C.R.

Lag: 1 1.520∗∗∗ −0.058 0.146
(0.072) (0.131) (0.259)

Lag: 2 −0.756∗∗∗ 0.008 0.341
(0.121) (0.137) (0.258)

Lag: 3 0.213∗∗∗ −0.183 0.654∗∗

(0.071) (0.131) (0.258)

T R2 𝑝(𝐹) max |roots|

188 0.978 0 0.976
∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1

the determination of assets’ sensitivities to this risk. To explore the dynamic
relation between R&D intensity, mark-up and funding conditions, I estimate
a VAR with endogenous variables being ̂𝑟, the first principal component of
the 5 measures of mark-up from Nekarda and Ramey (2020), which predicts
89% of the series’ variance, and the intermediary capital ratio from He et al.
(2017). Both the mark-up and the intermediaries funding conditions series
result being non-stationary, with the ADF test unit-root statistics of -2.63
and -2.38 respectively; for this reasons I employ their first differences. The
number of lags fixed for the VAR is 3, chosen by minimizing the AIC over a
sample that allowed for a fair comparison up to 10 quarters. In Table 1.4 I
report the results of the ̂𝑟 regression.

The inverse root value indicates that the VAR is not too far from an
explosive behaviour, but it is still stationary. What is most impressive from
these results is that while mark-up does not show any predictive power with
respect to R&D excess intensity, intermediaries’ capital ratio does, with a
highly significant coefficient when lagged thrice. While this is not conclusive,
it is suggestive of a role for aggregate funding conditions on R&D and the
long-run risk, which calls for deeper research.

4 Cross-sectional risk premium

The key asset pricing implication of swings in R&D intensity generating
persistent fluctuations in expected growth rates of the economy, is that asset
returns covarying more with R&D intensity should be regarded as riskier
and be held for a higher compensation, i.e. a higher expected excess return.
Following Bansal, R. F. Dittmar, et al. (2005), this hypothesis is tested in the
cross-section of US stocks, by forming portfolios based on stocks sorts that

17
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give rise to a documented spread in average excess returns and testing whether
the differences in sensitivities of these portfolios’ cash flows to aggregate R&D
intensity are related to the differences in excess returns in a manner consistent
with theory.

4.1 Test assets

Following Bansal, R. F. Dittmar, et al. (2005), the set of test assets considered
here are all stocks portfolios, 10 based on size sorting, 10 on Book/Market
equity sorting, 10 on past-year return sorting and 5 on firm-specific R&D
intensity. The R&D-sorted portfolios are less than the other sortings to keep
a level of diversification inside the portfolio that is homogeneous with the
others, considering the severe under-reporting of R&D expenditures which
Koh and Reeb (2015) reports being 42% between 1980 and 2006.

Cash-flows growth rates of each portfolio is computed as in Bansal, R. F.
Dittmar, et al. (2005). A measure ℎ𝑡 of capital gain is built for each stock
and then summed up with those of the other stocks proportionally to the
respective portfolio weight, obtaining a portfolio capital gain series ℎ𝑝,𝑡. From
this series the current value of a dollar invested at the beginning of the series
is computed as 𝑉𝑝,𝑡+1 = ℎ𝑝,𝑡+1𝑉𝑡, where 𝑉𝑡 is naturally initialized setting
𝑉𝑝,0 = 1. The measure of cash-flows obtained with such strategy is then
𝐷𝑝,𝑡+1 = 𝑦𝑝,𝑡+1𝑉𝑝,𝑡 where 𝑦𝑝,𝑡+1 is the portfolio dividend-yield, obtained
exploiting 𝑅𝑝,𝑡 = ℎ𝑝,𝑡 + 𝑦𝑝,𝑡. ℎ𝑡 is computed adjusting CRSP ex-dividend
returns RETX for share repurchases as follows:

ℎ𝑡 = (
𝑃𝑡+1
𝑃𝑡

) ⋅ min [(
𝑛𝑡+1
𝑛𝑡

) , 1] . (1.26)

Essentially, capital gains are less than proportional to price appreciation when
there is a reduction in (equivalent) shares outstanding, which is likely related
to share repurchases, a form of payout not accounted for in dividends records.
Then, quarterly dividends series are obtained by simply summing monthly
values up and deflating them by the implicit price deflator of nondurable
and services consumption shown in Hansen et al. (2005). As the quarterly
series still show strong seasonalities, quarterly values are de-seasoned by
applying a 4-quarter rolling mean. The series of cash-flows growth rates are
then obtained taking the first difference of the log-series of de-seasoned real
quarterly dividends.

Monthly stock data is from CRSP, starting at the beginning of 1926 and
stopping and the end of 2021. Yearly accounting data is from Compustat
Fundamentals dataset, starting in 1950 and ending in 2021. All the monthly
returns are compounded to obtain a quarterly figure and then deflated with
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§ 1.4: Cross-sectional risk premium

Table 1.5: Test asset portfolios returns and cash-flows growth: quarterly summary statistics.
All series are from 1947 Q2 to 2022 Q1, a part from the R&D portfolios, which start from
1975 Q1.

Portfolio Returns Mean Returns SD CF growth Mean CF growth SD

size.01 0.06569 0.18418 0.02767 0.17561
size.02 0.03768 0.15135 0.01470 0.15258
size.03 0.03366 0.14015 0.01166 0.15642
size.04 0.03014 0.13445 0.00962 0.16473
size.05 0.02812 0.13136 0.00491 0.14426
size.06 0.02720 0.11971 0.01022 0.14199
size.07 0.02575 0.11947 0.01026 0.12372
size.08 0.02432 0.11418 0.00699 0.14256
size.09 0.02213 0.10717 0.00659 0.15094
size.10 0.01758 0.09801 0.00241 0.09691

bm.01 0.02476 0.10114 0.02050 0.28804
bm.02 0.02337 0.09135 0.01872 0.25541
bm.03 0.02499 0.08891 0.01845 0.23877
bm.04 0.02297 0.08454 0.01540 0.26606
bm.05 0.02271 0.10876 0.00682 0.14774
bm.06 0.02234 0.10538 0.00496 0.13942
bm.07 0.02118 0.10769 0.00411 0.14106
bm.08 0.02991 0.09674 0.01757 0.22745
bm.09 0.02741 0.11662 0.00933 0.20893
bm.10 0.03312 0.12231 0.01144 0.19516

mom.01 0.01498 0.21583 -0.01330 0.22345
mom.02 0.01176 0.12973 -0.00812 0.16180
mom.03 0.01468 0.11705 -0.00452 0.15323
mom.04 0.01739 0.10650 -0.00042 0.20205
mom.05 0.01824 0.09819 0.00122 0.15589
mom.06 0.01622 0.09966 0.00043 0.15794
mom.07 0.01882 0.09758 0.00126 0.16452
mom.08 0.02378 0.09693 0.00536 0.17665
mom.09 0.02605 0.10352 0.00245 0.26211
mom.10 0.03639 0.12087 -0.00819 0.29443

rd.01 0.02895 0.10367 0.00954 0.15829
rd.02 0.02464 0.08621 0.00528 0.12731
rd.03 0.02935 0.09370 0.01006 0.17154
rd.04 0.03991 0.11387 0.01552 0.16616
rd.05 0.06591 0.19221 0.03406 0.20777

the same deflator used for dividends. The construction of the portfolios closely
follows Bansal, R. F. Dittmar, et al. (2005) for comparison purposes; detailed
procedure descriptions follow while the main statistics of the formed portfolios’
returns and cash-flow growth rates are in table 1.5.

Size-sorted portfolios All firms covered by CRSP are assigned to deciles
based on their market capitalization at the end of June of each year relative to
NYSE breakpoints. Weights are assigned based on the market capitalization
relative to the total capitalization of the portfolio and are re-assigned at the
end of every June. Both returns and cash-flows growth display a remarkable
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§ 1.4: Cross-sectional risk premium

reduction for greater-size portfolios, which is in line the usual Small-minus-Big
returns spread and cash-flows patterns observed in Bansal, R. F. Dittmar,
et al. (2005).

B/M-sorted portfolios All firms covered by both CRSP and Compustat are
assigned to deciles based on their book to market ratio and NYSE breakpoints.
Portfolios are value-weighted and formed at the end of every June, where for
year 𝑡 the book-to-market ratio is based on book equity of fiscal year 𝑡−1 and
market capitalization at the end of calendar year 𝑡 − 1. Both portfolio returns
and cash-flows growth rates show an increasing pattern with the B/M ratio, in
line with previous evidence on the value premium and Bansal, R. F. Dittmar,
et al. (2005).

Momentum portfolios This set of portfolios employs stocks traded on NYSE
or AMEX markets only. The assignment of a stock to a decile portfolio is
determined at each end-of-quarter month 𝑡 and is based the rank of the
respective stock compound return from the beginning of month 𝑡 − 12 to
the end of month 𝑡 − 1. These portfolios too are value-weighted. In line
with previous evidence both returns and cash-flows increase with momentum,
with the exception of the cash-flows growth of the most positive momentum
portfolio.

R&D-sorted portfolios Firm-specific R&D intensity has been known to
be associated to dispersion in excess returns since Chan et al. (2001). I
specifically include these portfolios to provide further evidence that can be
relevant in the study of the effects of R&D efforts aggregation. If spillover
effects are stronger than fishing-out effects, then one would expect more R&D
intensive firms to gain more when the whole economy invests more in R&D
and the innovation LRR is higher, which leads to sensitivity heterogeneity
along the R&D dimension. To enter these portfolios a stock has to be: of
ordinary or common type; traded on either NYSE, AMEX, or NASDAQ; not
being of a firm working in the utility or financial sectors; have at least one
record of R&D expenditure. Similarly to book-market-ratio sorting, at the
end of each June each firm is ranked depending on its own R&D intensity,
measured by the ratio of R&D expenditure in the previous fiscal year over
market capitalization at the end of the previous calendar year. Then, stocks
are value weighted. The data highlights higher returns and higher cash-flows
growth for higher firm-specific R&D intensity.
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§ 1.4: Cross-sectional risk premium

Table 1.6: Test assets cash-flows sensitivity to long-run risk components. From 1975 Q1 to
2022 Q1.

Portfolio 𝛽𝐶 𝛽𝑍 𝛽 ̂𝑟 𝛽 ̃𝑟

size.01 1.865 6.873 12.360 9.570
size.02 0.773 7.586 8.042 8.557
size.03 -0.072 1.919 1.013 -7.730
size.04 0.655 3.010 2.808 -3.880
size.05 1.231 2.638 2.087 7.114
size.06 1.104 0.541 0.025 0.411
size.07 1.087 3.675 2.443 -9.770
size.08 1.443 -0.924 1.416 -6.097
size.09 1.011 1.257 -3.608 -16.928
size.10 0.190 -0.688 -0.348 -7.804

bm.01 0.631 7.751 -3.374 -8.638
bm.02 0.902 6.230 -0.130 -4.021
bm.03 1.677 7.184 0.152 -2.351
bm.04 1.105 7.258 -2.307 -3.631
bm.05 0.954 2.592 2.052 -1.085
bm.06 0.144 0.354 -1.179 -4.207
bm.07 -0.166 2.900 -0.417 -12.966
bm.08 0.226 6.503 -2.226 -1.546
bm.09 0.129 0.334 0.536 -11.556
bm.10 0.437 -0.834 1.842 -0.085

mom.01 -0.770 -4.243 -0.953 2.946
mom.02 1.496 -2.634 -0.821 -8.086
mom.03 1.305 -2.806 -3.117 -0.962
mom.04 -0.418 -2.404 0.893 -8.338
mom.05 1.971 -2.639 -2.557 -6.691
mom.06 0.488 -3.783 1.353 -6.335
mom.07 -0.125 0.069 3.677 -8.790
mom.08 -0.204 -4.465 1.471 2.005
mom.09 2.283 -3.785 1.352 2.935
mom.10 1.099 -2.887 -2.676 -20.877

rd.01 0.366 -0.605 -1.988 2.864
rd.02 -1.151 3.810 -1.506 -8.603
rd.03 -1.452 2.862 -2.036 -16.581
rd.04 -0.307 7.867 -0.220 -6.877
rd.05 -0.779 4.454 7.927 11.295

4.2 Time-series sensitivities

As in Bansal, R. F. Dittmar, et al. (2005), 𝜃𝑝,𝑥, the sensitivity of portfolio 𝑝
to a risk factor – the long-run risk component in variable 𝑥, is estimated with
the following regression:

Δ ln 𝐷𝑝,𝑡 = 𝜃𝑝,𝑥 ( 1
𝐿

𝐿

∑
𝑙=1

𝑥𝑡−𝑙) + 𝑣𝑝,𝑡. (1.27)

Both dependent and independent variables are demeaned before estimation.
Estimating the coefficient over the rolling mean of the process 𝑥𝑡 has the
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§ 1.4: Cross-sectional risk premium

purpose of filtering persistent components of the regressor that should have a
long-lasting impact on cash-flows growth. Indeed, the coefficient is asymptoti-
cally equivalent to the one estimated in the regression

1
𝐿

𝐿

∑
𝑙=1

Δ ln 𝐷𝑝,𝑡+𝑙 = 𝜃𝑝,𝑥𝑥𝑡 + 𝑣′
𝑝,𝑡. (1.28)

with an inferential advantage in small samples, as illustrated by Hodrick
(1992). The long-run risk components studied here are those contained
in consumption growth, productivity growth and R&D intensity, i.e. 𝑥 ∈
{Δ ln 𝐶, Δ ln 𝑍, ̂𝑟, ̃𝑟}, where I also include ̃𝑟, the series based on ideas proxied
by patents, for robustness. 𝐾 is fixed to 12, i.e. 3 years, in the main analysis,
but results are not significantly different for reasonable changes. Results over
the period where all the portfolios are available, i.e. from 1975 to 2022, are
shown in table 1.6.

It can be noted that sensitivities to persistent movements in consumption
show a pattern for size and BM portfolios, but not quite as much for momentum
and R&D portfolios. Long-run productivity risk component produce much
starker patterns across all sortings and the long-run innovation risk component
too. Even more interestingly, the sensitivities to R&D intensity increases with
firm-specific R&D intensity, meaning that cash-flows of firms investing more
in R&D grow more when the whole economy is investing relatively more too.
This could support the thesis empirically studied by Jiang et al. (2016) that
firms gain from higher R&D investment of peers, here on a economy-wide
scale, but changes in payout policies would have to be controlled for in a more
formal setting to validate such claim.

4.3 Cross-sectional risk premium

Following Fama and Macbeth (1973), risk premia are estimated with a second-
step where each period the returns are regressed on a constant and the risk
measure – the cash-flows sensitivities. Estimates are shown in table 1.7.

The most surprising result is that the premium associated to long-run
consumption risk is far from significant. This could be related to known
measurement error in consumption series,10 as well as the predominance of
other factors in pricing R&D portfolios. Indeed, in estimations over different
time periods not shown here, exploiting the series from the beginning of
its availability in 1947 and ignoring R&D portfolios, it becomes stronger.
Results concerning other risk factors, on the other hand, strongly support
the existence of a premium for long-run productivity risk, both directly and
through the innovation channel, i.e. related to sensitivities of cash-flows to

10See, for example, Savov (2011).
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§ 1.5: Conclusion

Table 1.7: cross-sectional risk premia estimated following Fama and Macbeth (1973).
t-statistics are HAC, computed as advised by Lazarus et al. (2018), and corrected for
error-in-variable following Shanken (1992). From 1947 Q2 to 2022 Q1.

𝐶 𝑍 ̂𝑟 ̃𝑟

intcpt (%) 1.920∗∗∗ 1.621∗∗∗ 1.730∗∗∗ 2.329∗∗∗

t-stats (3.899) (3.225) (3.625) (4.450)

lambda (%) 0.015 0.196∗∗∗ 0.315∗∗∗ 0.096∗∗∗

t-stats (0.083) (3.100) (3.619) (3.619)

R2 (%) 0.01 29.12 55.71 24.93
∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1

R&D excess intensity. In both cases the premium is significantly different
from 0 and the cross-sectional R2 is remarkable for a single non-traded factor.
This is further supported by the premium associated to sensitivity to the
R&D intensity measure based on patents being significant too. These results
suggest that persistent innovation originated in R&D is indeed priced, as
expected by the long-run risk framework.

5 Conclusion

Persistent fluctuations in consumption are theorized to heavily impact investors
welfare and how they price financial assets. These swings have also been
shown to be originated in persistent swings in productivity, which has, itself,
proven to be strictly related to R&D investments in the economy. This
paper defines a relevant and empirically-feasible measure of R&D investment
intensity and its estimates adhere to theoretical predictions. Specifically,
deviations of R&D investment from an equilibrium proportion of TFP level,
labelled ‘long-run innovation risk component’, prove being persistent, predict
productivity growth rates and are associated to a significant risk premium in
the cross section for assets whose cash-flows are more sensitive to them. This
provides further support to the existence of a long-run risk component and
the relevance of the long-run risk framework.
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A R&D-TFP cointegration

A.1 In Kung and Schmid (2015)

Using their notation, the starting conditions are:

𝑍𝑡 = ̄𝐴(𝑒𝑎𝑡𝑁𝑡)1−𝛼 (1.29)
𝑁𝑡+1
𝑁𝑡

= 1 − 𝜙 + 𝜒 ( 𝑆𝑡
𝑁𝑡

)
𝜂

. (1.30)
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Then, the intangible capital growth rate is

Δ ln 𝑁𝑡+1 ≈ 𝜒 ( 𝑆𝑡
𝑁𝑡

)
𝜂

− 𝜙 (1.31)

= 𝜒 exp {𝜂 (ln 𝑆𝑡 − ln 𝑁𝑡)} − 𝜙 (1.32)
= 𝜒 exp {𝜂 (ln 𝑆𝑡 − ln 𝑁𝑡) − 𝜂 ̄𝑟} 𝑒𝜂 ̄𝑟 − 𝜙 (1.33)
≈ 𝜒𝑒𝜂 ̄𝑟 {1 + 𝜂 (ln 𝑆𝑡 − ln 𝑁𝑡) − 𝜂 ̄𝑟} − 𝜙 (1.34)
= 𝜒𝑒𝜂 ̄𝑟(1 − 𝜂 ̄𝑟) − 𝜙 + 𝜒𝑒𝜂 ̄𝑟𝜂 (ln 𝑆𝑡 − ln 𝑁𝑡) (1.35)
= 𝑎𝑁 + 𝑏𝑁 (ln 𝑆𝑡 − ln 𝑁𝑡) , (1.36)

and the TFP growth rate, in terms of intangible capital is11

𝑍𝑡+1
𝑍𝑡

= 𝑒(1−𝛼)(𝑎𝑡+1−𝑎𝑡) (
𝑁𝑡+1
𝑁𝑡

)
(1−𝛼)

(1.37)

Δ ln 𝑍𝑡+1 = (1 − 𝛼)((𝜌 − 1)𝑎𝑡 + 𝜀𝑡+1) + (1 − 𝛼) ln [1 − 𝜙 + 𝜒 ( 𝑆𝑡
𝑁𝑡

)
𝜂

]

(1.38)

≈ (1 − 𝛼)((𝜌 − 1)𝑎𝑡 + 𝜀𝑡+1) + (1 − 𝛼) [𝜒 ( 𝑆𝑡
𝑁𝑡

)
𝜂

− 𝜙] (1.39)

= (1 − 𝛼)((𝜌 − 1)𝑎𝑡 + 𝜀𝑡+1) + (1 − 𝛼) [𝜒𝑒𝜂(ln 𝑆𝑡−ln 𝑁𝑡)−𝜂 ̄𝑟𝑒𝜂 ̄𝑟 − 𝜙]
(1.40)

≈ (1 − 𝛼)((𝜌 − 1)𝑎𝑡 + 𝜀𝑡+1) + (1 − 𝛼) [𝜒 (1 + 𝜂 (ln 𝑆𝑡 − ln 𝑁𝑡) − 𝜂 ̄𝑟) 𝑒𝜂 ̄𝑟 − 𝜙]
(1.41)

= (1 − 𝛼)((𝜌 − 1)𝑎𝑡 + 𝜀𝑡+1) + (1 − 𝛼) [𝜒𝑒𝜂 ̄𝑟(1 − 𝜂 ̄𝑟) − 𝜙 + 𝜒𝜂𝑒𝜂 ̄𝑟 (ln 𝑆𝑡 − ln 𝑁𝑡)] .
(1.42)

Expressing this in terms of TFP level, from Equation 1.38,

Δ ln 𝑍𝑡+1 = (1 − 𝛼)((𝜌 − 1)𝑎𝑡 + 𝜀𝑡+1) + (1 − 𝛼) ln [1 − 𝜙 + 𝜒 ( 𝑆𝑡

𝑍
1

1−𝛼
𝑡

̄𝐴 1
𝛼−1 𝑒−𝑎𝑡

)
𝜂

]

(1.43)

= (1 − 𝛼)((𝜌 − 1)𝑎𝑡 + 𝜀𝑡+1) + (1 − 𝛼) ln [1 − 𝜙 + 𝜒 ( 𝑆𝑡

𝑍
1

1−𝛼
𝑡

̄𝐴 1
1−𝛼 𝑒𝑎𝑡)

𝜂

]

(1.44)

≈ (1 − 𝛼)((𝜌 − 1)𝑎𝑡 + 𝜀𝑡+1) + (1 − 𝛼) [𝜒 ( 𝑆𝑡

𝑍
1

1−𝛼
𝑡

̄𝐴 1
1−𝛼 𝑒𝑎𝑡)

𝜂

− 𝜙]

(1.45)
11In this simple formulation the presence of a deterministic trend would surely deteriorate

the accuracy of the last approximation but would not necessarily invalidate it, depending on its
magnitude. Anyway, as shown in the following analysis, the presence of a time trend is statistically
rejected.
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= (1 − 𝛼)((𝜌 − 1)𝑎𝑡 + 𝜀𝑡+1)+ (1.46)

+ (1 − 𝛼) [𝜒 ⋅ exp (𝜂(ln 𝑆𝑡 − 1
1 − 𝛼

ln 𝑍𝑡 + ln ̄𝐴
1 − 𝛼

+ 𝑎𝑡) − 𝜂 ̄𝑟) 𝑒𝜂 ̄𝑟 − 𝜙]

≈ (1 − 𝛼)((𝜌 − 1)𝑎𝑡 + 𝜀𝑡+1)+ (1.47)

+ (1 − 𝛼) [𝜒 (1 + 𝜂(ln 𝑆𝑡 − 1
1 − 𝛼

ln 𝑍𝑡 + ln ̄𝐴
1 − 𝛼

+ 𝑎𝑡) − 𝜂 ̄𝑟) 𝑒𝜂 ̄𝑟 − 𝜙]

= (1 − 𝛼)((𝜌 − 1)𝑎𝑡 + 𝜀𝑡+1)+ (1.48)

+ (1 − 𝛼) [𝜒𝑒𝜂 ̄𝑟(1 − 𝜂 ̄𝑟) − 𝜙 + 𝜒𝑒𝜂 ̄𝑟𝜂 (ln 𝑆𝑡 − 1
1 − 𝛼

ln 𝑍𝑡 + ln ̄𝐴
1 − 𝛼

+ 𝑎𝑡)]

= (1 − 𝛼)((𝜌 − 1 + 𝜒𝑒𝜂 ̄𝑟𝜂)𝑎𝑡 + 𝜀𝑡+1)+ (1.49)

+ (1 − 𝛼) [𝜒𝑒𝜂 ̄𝑟 (1 − 𝜂 ̄𝑟 + 𝜂 ln ̄𝐴
1 − 𝛼

) − 𝜙 + 𝜒𝑒𝜂 ̄𝑟𝜂 (ln 𝑆𝑡 − 1
1 − 𝛼

ln 𝑍𝑡)]

= (1 − 𝛼)((𝜌 − 1 + 𝜒𝑒𝜂 ̄𝑟𝜂)𝑎𝑡 + 𝜀𝑡+1)+ (1.50)

+ (1 − 𝛼) [𝜒𝑒𝜂 ̄𝑟𝜂 (1
𝜂

− ̄𝑟 + ln ̄𝐴
1 − 𝛼

) − 𝜙 + 𝜒𝑒𝜂 ̄𝑟𝜂 (ln 𝑆𝑡 − 1
1 − 𝛼

ln 𝑍𝑡)]

= 𝑎𝑍 + 𝑏𝑍𝑎𝑡 + 𝑐𝑍𝜀𝑡+1 + 𝑑𝑍 (ln 𝑆𝑡 − 1
1 − 𝛼

ln 𝑍𝑡) . (1.51)

A.2 In my model

The conditions needed for derivation of (1.8):

𝑍𝑇 ≡ 𝑒𝑎𝑡𝐼𝜉
𝑡 (1.52)

𝐼𝑡+1 = (1 − 𝜙)𝐼𝑡 + 𝑆𝜂
𝑡 𝐼𝑡

Ψ. (1.53)

Consider the following basic manipulations,

𝐼𝑡+1
𝐼𝑡

= 1 − 𝜙 + ( 𝑆𝑡

𝐼𝑡
𝜓 )

𝜂

(1.54)

Δ ln 𝐼𝑡+1 ≈ ( 𝑆𝑡

𝐼𝑡
𝜓 )

𝜂

− 𝜙 (1.55)

ln 𝑍𝑡+1 = 𝑎𝑡 + 𝜉 ln 𝐼𝑡 (1.56)
Δ ln 𝑍𝑡+1 = (𝜌𝑎 − 1)𝑎𝑡 + 𝜀𝑎

𝑡+1 + 𝜉Δ ln 𝐼𝑡+1 (1.57)

≈ (𝜌𝑎 − 1)𝑎𝑡 + 𝜀𝑎
𝑡+1 + 𝜉 [( 𝑆𝑡

𝐼𝑡
𝜓 )

𝜂

− 𝜙] (1.58)

= (𝜌𝑎 − 1)𝑎𝑡 + 𝜀𝑎
𝑡+1 + 𝜉 [exp {𝜂(ln 𝑆𝑡 − 𝜓 ln 𝐼𝑡)} − 𝜙] (1.59)

≈ (𝜌𝑎 − 1)𝑎𝑡 + 𝜀𝑎
𝑡+1 + 𝜉 [1 + 𝜂(ln 𝑆𝑡 − 𝜓 ln 𝐼𝑡) − 𝜙] (1.60)

= (𝜌𝑎 − 1)𝑎𝑡 + 𝜀𝑎
𝑡+1 + 𝜉 [1 − 𝜙] + 𝜉𝜂(ln 𝑆𝑡 − 𝜓 ln 𝐼𝑡). (1.61)
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Then, assuming 𝜌𝑎 ≈ 1,

Δ ln 𝑍𝑡+1 = 𝛾0 + 𝛾1(ln 𝑆𝑡 − 𝜓 ln 𝐼𝑡) + 𝜀𝑎
𝑡+1. (1.62)

B Half-lives

The half-life of the AR(1) process of interest is between 8 and 16 years,

𝜌𝑁𝑌
𝑌 = 0.5 ⇒ ln(0.5)

ln 𝜌𝑌
= 𝑁𝑌 ∈ [8, 16]. (1.63)

The coefficient 𝜌𝑌 such that this is true can range between

0.51/8 = 0.9170 <𝜌𝑌 < 0.9576 = 0.51/16. (1.64)

Quarterly,

𝜌𝑁𝑄
𝑄 = 0.5 ⇒ ln(0.5)

ln 𝜌𝑄
= 𝑁𝑄 ∈ [32, 64]. (1.65)

So, the AR(1) coefficient can take values

0.51/32 = 0.9786 <𝜌𝑄 < 0.9892 = 0.51/64. (1.66)

C Forecast regression bias

In case of omitted controls for 𝑎𝑡, the regression reads:

Δ ln 𝑍𝑡+1 = 𝛽0 + 𝛽 ̂𝑟 ̂𝑟𝑡 + �̂�𝑡+1 (1.67)

Then, 𝛽 ̂𝑟 is estimated as

𝛽 ̂𝑟 =
Cov [Δ ln 𝑍𝑡+1, ̃𝑟𝑡] − 𝜓

𝜉 Cov [Δ ln 𝑍𝑡+1, 𝑎𝑡]

Var [ ̃𝑟] + (𝜓
𝜉 )

2
Var [𝑎𝑡] − 𝜓

𝜉 Cov [ ̃𝑟𝑡, 𝑎𝑡]
(1.68)

=
Cov [Δ ln 𝑍𝑡+1, ̃𝑟𝑡]

Var [ ̃𝑟]
1 − 𝜓

𝜉 Cov [Δ ln 𝑍𝑡+1, 𝑎𝑡] /Cov [Δ ln 𝑍𝑡+1, ̃𝑟𝑡]

1 + (𝜓
𝜉 )

2
Var [𝑎𝑡] /Var [ ̃𝑟] − 𝜓

𝜉 Cov [ ̃𝑟𝑡, 𝑎𝑡] /Var [ ̃𝑟]
(1.69)

= 𝛽 ̃𝑟
1 − 𝜓

𝜉 Cov [Δ ln 𝑍𝑡+1, 𝑎𝑡] /Cov [Δ ln 𝑍𝑡+1, ̃𝑟𝑡]

1 + (𝜓
𝜉 )

2
Var [𝑎𝑡] /Var [ ̃𝑟] − 𝜓

𝜉 Cov [ ̃𝑟𝑡, 𝑎𝑡] /Var [ ̃𝑟]
. (1.70)
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Assuming 𝑎𝑡 is extremely persistent,12 Cov [Δ ln 𝑍𝑡+1, 𝑎𝑡] ≈ 0. Further, if one
assumes that the relation between ̃𝑟 and 𝑎 can be specified as 𝑎𝑡 = 𝑑 ⋅ ̃𝑟𝑡 + 𝑤𝑡,
where 𝑤𝑡 are shocks uncorrelated to ̃𝑟 and 𝑑 is expected from theory to be
positive,

𝛽 ̂𝑟 = 𝛽 ̃𝑟
1

1 + (𝜓
𝜉 )

2
Var [𝑎𝑡] /Var [ ̃𝑟] − 𝜓

𝜉 𝑑
. (1.71)

So the proportional bias in 𝛽 ̂𝑟 with respect to 𝛽 ̃𝑟 is

𝛽 ̂𝑟 − 𝛽 ̃𝑟
𝛽 ̃𝑟

=
𝑑 − 𝜓

𝜉 (𝜎𝑎
𝜎�̃�

)
2

𝜉
𝜓 + 𝜓

𝜉 (𝜎𝑎
𝜎�̃�

)
2

− 𝑑
, (1.72)

which is positive only in the case

0 < 𝑑 − 𝜓
𝜉

(𝜎𝑎
𝜎 ̃𝑟

)
2

< 𝜉
𝜓

(1.73)

or, considering the OLS estimator of 𝑑:

0 < 𝜌𝑎, ̃𝑟 − 𝜓
𝜉

(𝜎𝑎
𝜎 ̃𝑟

) < 𝜉
𝜓

(𝜎 ̃𝑟
𝜎𝑎

) . (1.74)

D Additional tables and graphs

Correlations among the R&D intensity measures are in Table 1.8.

Table 1.8: correlation among specifications of the ECTs. ‘t.t.’ stands for ‘time trend’.

̃𝑟(1) ̃𝑟(2) ̂𝑟(1) ̂𝑟(2) ̂𝑟(1𝑏) ̂𝑟(2𝑏)

̃𝑟(1) 1.000 0.989 0.798 0.817 0.718 0.663
̃𝑟(2) 0.989 1.000 0.765 0.822 0.719 0.675
̂𝑟(1) 0.798 0.765 1.000 0.960 0.763 0.723
̂𝑟(2) 0.817 0.822 0.960 1.000 0.784 0.761
̂𝑟(𝑢𝑛𝑎𝑑𝑗.) 0.718 0.719 0.763 0.784 1.000 0.969
̂𝑟(𝑢𝑛𝑎𝑑𝑗. + 𝑡.𝑡.) 0.663 0.675 0.723 0.761 0.969 1.000

12In case it is not, bias in the forecasting regression coefficient would be more easily positive,
but concerns for pricing implications about using ̂𝑟 instead of ̃𝑟 would alleviate significantly, since
the source of persistency of ̂𝑟 would be more likely ̃𝑟 then 𝑎𝑡.
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2

Does CAPM overestimate more
the risk or its price?

1 Introduction

The Capital Asset Pricing Model (CAPM) introduced by Sharpe (1964)
has been the first attempt to provide a theoretical framework that relates
remuneration and risk in financial markets. It states that the return of every
asset with an uncertain payoff is expected to exceed the risk-free rate by a
measure of the asset’s undiversifiable riskiness times a market-wide unique
premium per unit of risk. The only driver of cross-sectional variation in
expected returns is then the assets’ riskiness, which the CAPM measures with
beta – the sensitivity of an asset’s returns to the market returns, while the
common risk premium amounts to the expected excess return of the market.1

Its simplicity contributed to making it the most seminal model in the field
of financial economics and still makes it one of the most common models of
use by practitioners to estimate the cost of capital as well as by teachers to
introduce the subject.2 Nonetheless, such simplicity has a cost in terms of
empirical performance, making CAPM often a simple benchmark to more
advanced models.

One of its most studied fallacies is the empirical regularity of assets’ average
excess returns growing with the respective beta by less than what implied by
the average market excess return in the same period. Picture 2.1 summarizes
this finding graphically for a few US stocks portfolios: it can be seen that the
security market line (SML), which describes the relation between risk and

1This follows from assuming perfect markets and variance being the only statistical property of
wealth affecting agents’ utility besides its first moment; then the market portfolio is the optimal
risky holding for any agent because it is the most diversified portfolio possible. From this follows
that: first, the risk of every asset is intended as the increase in portfolio variance associated with a
greater holding of it, which depends on how much it covaries with the market; second, that such
risk addition is compensated competitively just as the variance of the optimal portfolio is, i.e. by
the market expected excess return.

2See Pinto et al. (2019) and Brealey et al. (2022).
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Figure 2.1: 10 US stocks portfolios. Monthly data, 1963-2019, source: K. French data
library.

remuneration, seems actually flatter than predicted by CAPM. This leads to
low-beta portfolios to outperform CAPM predictions and high-beta ones to
underperform them, making it in principle possible to build a self-financing
portfolio that earns a positive return on average despite having no exposure
to the market, i.e. no risk. This phenomenon commonly takes the name of
‘low-risk anomaly’ and was first shown by Miller and Scholes (1972). Black
et al. (1972) immediately noted that from a purely statistical perspective the
empirical SML can be flatter than predicted by CAPM because of the error-
in-variable problem afflicting the cross-sectional premium estimation stage,
which relies on previous estimates of the individual-asset betas as measured
regressors. They proposed an easy and effective fix, currently employed by the
majority of the studies on the topic: grouping assets in portfolios – but the
anomaly survived to these days and has proved being way more pervasive than
US stocks, as shown by Baker et al. (2014) and Frazzini and Pedersen (2014).
More empirical concerns about estimation of the CAPM still stand as historical
averages could be not a good measure of expectations, as highlighted by Elton
(1999), and the overall validity of the CAPM when the market portfolio is
unobservable is possible but still has no inferential theory behind it to make
it viable, as shown in Guermat (2014). Anyway, while pressing, addressing
statistical issues with the implementation of CAPM is not a primary concern
of this paper, which focuses on the potential economic drivers of the anomaly.

The low-risk anomaly can essentially be rationalized (1) by a lower premium
for the beta risk, which would remain the only source of cross-sectional
variation in expected returns, or (2) by properties of assets other than their
CAPM beta being priced besides it. Specifically, in the latter case, assuming
the additional property is associated with a positive premium, it needs to be
distributed among assets inversely of how the CAPM beta is, to counter-act
the increase in risk premium of higher beta assets and produce a flatter
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SML.3 The coexistence of these two deviations from CAPM, however, is not
trivial: the more the mispricing comes from high-beta assets being more
desirable than the beta suggests (e.g. they systematically have low sensitivity
to a second factor), the less the mispricing can be originated in a ‘cut’ on
how much undesirability, such as market risk, is remunerated. In other
words, the stronger is one argument, the weaker has to be the other. I study
this, considering a simple model that features both effects and illustrating a
representation that synthesizes the optimal pricing condition into the same
two dimensions that entirely describe markets in CAPM: a single risk measure
per individual stock, 𝛾, and a premium associated to it that is shared by
the whole market, which happens to be the expected market excess return
minus a constant 𝜓. Then, I empirically measure the extent to which CAPM
deviations from (a better approximation of) reality can be attributed to
mis-measurement of risk, 𝛾 − 𝛽, and of its price, 𝜓. Given the non-trivial
interaction between the two mechanisms, it is crucial to assess them jointly.
Understanding the relevance of one against the other then helps answering
the question ‘in which way is one more likely to be wrong, when she looks
at returns from the simplifying lens of CAPM?’ Because of the economics
behind the proposed explanations, the answer to this question actually has
profound practical implications.

Black (1972) was the first to theoretically address the low-risk anomaly
and showed that the addition of restricted borrowing in a standard economy
leads to a flatter SML than CAPM prediction because it generates a spread
between the zero-beta return with respect to a risk-free rate.4 Later, Frazzini
and Pedersen (2014) built on this idea and suggested to specifically be interme-
diaries’ funding tightness in the form of binding leverage constraints to lower
the market risk premium. Then, the low-risk anomaly would then emerge
because the risk premium of high-beta assets is reduced to compensate a need
of leverage to attain any level of expected payoffs that is lower than with
low-beta counterparts, since their higher discount rates make them cheaper.
They support this view by testing the implications of a dynamic and more
flexible version of Black (1972) and showing a portfolio that embodies the

3The study of the specific relation between additional assets’ features and their beta is what
distinguish the low-risk anomaly literature from the multi-factor one, whose successes and current
state can be seen in Feng et al. (2020). The sensitivity to a second factor could be significantly
priced besides the market-beta, but without evidence of a specific relation with assets’ market-beta,
nothing can be concluded on how it affects the spread between high market-beta assets and low
market-beta assets.

4In such a framework the only way to form efficient portfolios that are riskier than the market
would be taking a bigger position in the market itself and financing it by shorting a portfolio of
risky assets, which is less remunerative per unit of additional portfolio volatility than financing
it by borrowing at the risk-free rate. Then, as the market portfolio is a weighted average of
constrained and unconstrained agents’ portfolios, its expected returns have to be lower than the
standard CAPM formulation because it is not maximally diversified.
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mispricing, the so called ‘Betting Against Beta’ (BAB) factor, earning a
positive return, not explained by other risk factors.5

The zero-beta interest rate has been previously studied, most recently by
Di Tella et al. (2023), with strong evidence of a positive spread with respect to
the risk-free rate. Notice that a zero-beta spread implies that any risk which
increases discount rates, i.e. risk premia, and thus makes expected payoffs
cheaper to be bought, should get a liquidity-motivated reduction in premium,
just as the market risk premium does. This effect weakens a second set of
explanations of the anomaly, related to all the assets’ features whose impact
on discount rates has been found to be inversely related to the assets’ betas.
For example: assets with high beta, which is associated to higher premia, also
have higher residual coskewness, which is associated to lower premia. Then, if
the premium for coskewness is smaller because of funding tightness, it will also
explain less of the anomaly.6 Residual coskewness was shown explaining the
anomaly by Schneider et al. (2020), but there are more assets’ features that
have been shown having explanatory power with respect to the anomaly, such
as past highest returns, idiosyncratic volatility and idiosyncratic skewness,7

all of which Bali, Brown, et al. (2017) shown being strictly related to each
other; size, shown in Novy-Marx and Velikov (2022); and extent of overpricing,
which leads to higher sensitivity to disagreement, in Hong and Sraer (2016). A
point that might be worth making is that also sensitivity to funding liquidity,
considered for example in Lu and Qin (2021), is likely to enter this category,
as high beta assets are expected to be positively related to funding shocks
and vice-versa low beta stocks to be negatively related, which would make
high beta stocks better hedges for funding shocks, lowering their discount
rates, just like residual coskewness does. Nothing precludes for more features
have a similar role despite not being yet discovered.

Baker et al. (2014) is a perfect example of why it is useful to understand
how much of low-risk anomaly is to be imputed to funding motives versus
omitted risk factors: they argue that stricter regulations raises banks’ cost of
capital building on the assumption that all of the anomaly is to be attributed
to a low market risk premium and that the risk of banks is low. However,
if omitted risks turned out to be the biggest driver of the anomaly, this

5Further empirical support came in later, most notably from Lu and Qin (2021), Asness et al.
(2020) and the studies therein cited.

6The generalization is not trivial: in Frazzini and Pedersen (2014) the multiplier acts as a
discount on the price, which means that the cut on a positive premium happens only if the asset
that provides such a premium has a positive price. In the coskewness case, one could be buying
either ‘the market squared’, which bring a negative premium at a positive price, or derivatives,
which bring a positive premium at a positive price in the form of opportunity cost of immobilized
margin capital. The result is that in the latter case the coskewness premium is reduced just like
the market risk premium is, while in the former case the coskenwess premium is even increased by
funding tighness.

7See Ang et al. (2006) and Brunnermeier et al. (2007).
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conclusion would be challenged, as banks, and the other low-beta equities,
would be more likely riskier than measured by CAPM and moving beyond
CAPM would be necessary to make a proper assessment of how much would
changes in the regulation affect their discount rates. Further, this can affect
firms’ choices regarding capital structure, as firms that are less constrained
than the marginal investor can potentially gain from leveraging up. Indeed, if
cash obtained at the market risk-free rate is used to pay back shareholders,
equity will have a higher beta: in the Frazzini and Pedersen (2014) world the
embedded leverage would be rewarded with a lower premium that would raise
the residual equity valuation, which could be seen as remuneration for liquidity
provision by the firm; if it is omitted risks to drive most of the anomaly, the
residual equity could increase in value because of other characteristics gained
besides the higher beta, but more elements may prevent this from happening or
such characteristics might be undesired by the firm managers.8 The empirical
results show a statistically significant spread averaging above 2% annually
even controlling for 8 risk factors, which is 4 times what Lu and Qin (2021)
find and a fourth of Di Tella et al. (2023). Nonetheless, most of the BAB
factor gets predicted by the risk omission rather than the liquidity spread –
two thirds in the BAB factor that is robust to Novy-Marx and Velikov (2022)
criticisms and all of it in the original BAB portfolio of Frazzini and Pedersen
(2014).

The cornerstone of this analysis is the synthetic measure of risk, 𝛾, which
is defined as the ratio of an asset covariance with the marginal utility over
the market covariance with the marginal utility. These covariances are the
holy grail of the whole asset pricing literature and their estimation is clearly
the most delicate step of any empirical analysis. It should be stressed that
while it would obviously be ideal to observe the marginal utility directly, the
goal of this work is not as presumptuous to effectively study the discrepancies
of CAPM from reality, but rather from better representations of it. With
the explicit intent to allow for the most agnostic and accurate estimation
possible, utility does not have a specific functional form in the theoretical
model, although it is pretty straightforward to move in that direction given
the simplicity of the set-up. At the current state, the empirical analysis
is performed assuming a factor structure in the returns, which justifies the
use of a low-dimensionality approximation of the marginal utility projection
on all the assets in the market. This, in turn allows for a convenient and
contemporaneous estimation of the factors loadings and average premium

8For example, with coskewness the residual equity would essentially be valued more for a greater
value of the option embedded in equity. It can be observed that whether high leverage actually
results in greater value depends on multiple other elements, such as how levered the firm already
is; and, more importantly, it is not obvious whether trying to increase equity value by being closer
to bankruptcy is desirable for managers.
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spread 𝜓, with GMM. The factors are chosen to be the market, the market
squared, since coskewness is a known to be relevant for the anomaly, and
the principal components of a large pool of test assets orthogonalized with
respect the first two known factors. In section A I also outline an extension
of Pukthuanthong et al. (2021) to estimate the time series of both marginal
utility and 𝜓 non parametrically, for which no formal inferential theory is
available at this stage though.9

It must also be noted that my approach encompasses only the pricing
information coming from the systematic components of assets features, which
gets reflected in the pervasive risk factors forming the marginal utility: purely
diversifiable behavioural motives are not captured. Nonetheless, the result
shown in Schneider et al. (2020) of a coskewness factor capturing much of
the idiosyncratic volatility pricing dispersion partly mitigates this concern. It
should also be stressed that it is important to include additional and agnostic
factors because, sacrificing identification of the risk source, there a lower risk
of omitting relevant factors. This is important for two reasons, obtaining a
better pricing performance and, more importantly, potentially capture risk
factors that are not yet known to affect the relation beta-return, but they do.
Indeed, I find that adding the principal components to market and market
squared does impact the risk assessment of the beta-sorted portfolios, with
the ‘robust’ BAB portfolio explanation changing from mostly due to funding
motives to omitted risks.10

The bottom line is that financial imperfection, in the form of leverage
constraints, decisively proved to matter, but from a quantitative perspective
the omission of relevant factors is likely to impact more the discrepancies
between CAPM and the data.

This study naturally enters the low-risk anomaly literature, providing
evidence on how different approaches combine together. Specifically, it strongly
supports the relevance of a spread in the zero-beta rate with respect to the
risk-free rate in explaining the anomaly when directly facing coskewness
contribution. It also provide guidance on how much information in risk
factors besides market and coskewness can help in explaining the anomaly.
Upon completion, relying on subsection 2.3, further evidence on the relation
between the zero-beta rate and funding constraints should be provided. The
most closely related papers are naturally Frazzini and Pedersen (2014) and
Schneider et al. (2020), of which this is essentially an integrated framework.
My work is also related to the work of Di Tella et al. (2023), which, focusing

9A time series of the spread 𝜓 would enable direct analysis of the relation between such spread
and intermediaries liquidity measures.

10I will have to compare the estimation results with principal components as factors against a set
of risk factors with a similar numerosity, such as the Fama-French 6 factors or the Ludvigson-Ng 9
macro-financial factors.
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more on the macroeconomic implications, studies the zero-beta rate, but does
so employing a wide set of predetermined factors, which the BAB factor of
Frazzini and Pedersen (2014) proved surviving anyway. Indeed, including
coskewness, which is a known factor impacting the anomaly reduces the
magnitude of the funding multiplier in an appreciable way.

Further, this paper is related to research that studies imperfect financial
markets and asses the impact of intermediaries’ funding frictions, such as
Adrian et al. (2014) and He et al. (2017), and more specifically quantifies the
cost of liquidity tightness, such as Jylhä (2018), Lu and Qin (2021) and Du
et al. (2022). In this case, the peculiarity is that the estimates comes directly
from the cross-section of stocks, although at this stage no explicit test of the
relation between the zero-beta spread and intermediaries’ funding tightness is
carried out (it will be).

Regarding the method, this work draws from two substantial literatures.
One is composed by the studies employing Principal Component Analysis in
asset pricing, which was pioneered by Chamberlain and Rothschild (1983) and
saw a rise in popularity in recent years, together with other machine learning
methods.11 The second one is composed by the many studies employing GMM
to estimate factor loadings of the Stochastic Discount Factor (SDF), such as
Croce et al. (2023).

In section section 2 I review the theoretical set-up and how to measure
the contributions of deviation in the zero-beta rate from the risk-free rate and
the omission of relevant risks in explaining the low-risk anomaly; in section
section 3 I show one way to make the analysis empirically feasible (paired
with section A, where a more agnostic one is explored); in section section 4 I
show the estimates of the coefficients from a cross-sectional pricing exercise
and the implied decomposition of the CAPM anomaly; section 5 concludes.

2 Theoretical set-up

2.1 A simple model with leverage constraints

On the lines of Frazzini and Pedersen (2014), consider a simple Overlapping-
Generations model where there is a representative agent that is born at time
𝑡 with wealth 𝑊𝑡, invests it, and finally consumes all of the payouts at time
𝑡 + 1, right before dying. Wealth at time 𝑡 can only be invested in a risk-less
asset with price 1, held in the amount 𝑋0

𝑡 , and a set of 𝑆 risky securities, held
11For a review see Giglio et al. (2022).
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in the amount 𝑋𝑠
𝑡 for 𝑠 ∈ {1, … , 𝑆}, with budget constraint

𝑊𝑡 = 𝑋0
𝑡 +

𝑆

∑
𝑠=1

𝑋𝑠
𝑡 𝑃 𝑠

𝑡 . (2.1)

Wealth consumed in the following period will then be determined by the
known and exogenously set gross risk-free return 𝑅𝑓

𝑡 and risky securities’
prices, 𝑃 𝑠

𝑡+1, and dividends, 𝐷𝑠
𝑡+1, by:

𝑊𝑡+1 = 𝑋0
𝑡 𝑅𝑓

𝑡 +
𝑆

∑
𝑠=1

𝑋𝑠
𝑡 (𝑃 𝑠

𝑡+1 + 𝐷𝑠
𝑡+1). (2.2)

The objective of the agent is then to maximise expected utility from final
wealth:

max
{𝑋𝑠

𝑡 }𝑆
0

E𝑡 [𝑢 (𝑊𝑡+1)] . (2.3)

Plugging constraints (2.1) and (2.2) in the objective function (2.3), the problem
solved by the agent can be expressed as

max
{𝑋𝑠

𝑡 }𝑆
1

E𝑡 [𝑢 (𝑊𝑡𝑅
𝑓
𝑡 +

𝑆

∑
𝑠=1

𝑋𝑠
𝑡 (𝑃 𝑠

𝑡+1 + 𝐷𝑠
𝑡+1 − 𝑃 𝑠

𝑡 𝑅𝑓
𝑡 ))] . (2.4)

The key addition this standard set-up, to rationalize the low-risk anomaly in
the spirit of Frazzini and Pedersen (2014), is a leverage constraint:

𝑊𝑡 ≥ (
𝑆

∑
𝑠=1

𝑋𝑠
𝑡 𝑃 𝑠

𝑡 ) ⋅ 𝑐𝑡, (2.5)

which depends on the stylized and exogenously-set margin requirement 𝑐𝑡.
The first order condition with respect to holding 𝑋𝑠

𝑡 is then

E𝑡 [𝑢′(𝑊𝑡+1)(𝑅𝑠
𝑡+1 − 𝑅𝑓

𝑡 )] − 𝜓𝑡 = 0 (2.6)

where 𝑅𝑠
𝑡+1 =

𝑃 𝑠
𝑡+1 + 𝐷𝑠

𝑡+1
𝑃 𝑠

𝑡
is the gross return on asset 𝑠 and 𝜓𝑡 is the Lagrange

multiplier of (2.5), which is greater than 0 when the leverage constraint binds.
As the representative investor in this set-up has to hold all of the assets, a
binding constraint happens any time 𝑐𝑡 > 1. This condition can be interpreted
as the assets holder, representing the intermediary sector, being asked to
add holdings of the risk-free asset to simply force a safer portfolio onto it,
considering that the 𝑅𝑓 is not determined by market equilibrium and risky
assets are in fixed supply in the short-term.
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From (2.6) it follows that

E𝑡 [𝑟𝑠
𝑡+1] = ̃𝜓𝑡 − Cov𝑡 [�̃�′

𝑡+1, 𝑟𝑠
𝑡+1] , (2.7)

where 𝑢′
𝑡+1 = 𝑢′(𝑊𝑡+1), ̃𝑥 = 𝑥/E𝑡 [𝑢′

𝑡+1], and 𝑅𝑖
𝑡+1 − 𝑅𝑓

𝑡 = 𝑟𝑖
𝑡+1. Remember

that 𝑅𝑓
𝑡 is exogenously set. (2.7) holds similarly for the market, meaning that

E𝑡 [𝑟𝑀
𝑡+1] = ̃𝜓𝑡 − Cov𝑡 [�̃�′

𝑡+1, 𝑟𝑀
𝑡+1] . (2.8)

Combining these last two equation one obtains

E𝑡 [𝑟𝑠
𝑡+1] = ̃𝜓𝑡 (1 −

Cov𝑡 [�̃�′
𝑡+1, 𝑟𝑠

𝑡+1]
Cov𝑡 [�̃�′

𝑡+1, 𝑟𝑀
𝑡+1]

) +
Cov𝑡 [�̃�′

𝑡+1, 𝑟𝑠
𝑡+1]

Cov𝑡 [�̃�′
𝑡+1, 𝑟𝑀

𝑡+1]
⋅ E𝑡 [𝑟𝑀

𝑡+1] . (2.9)

Labelling Cov𝑡[�̃�𝑡+1,𝑟𝑠
𝑡+1]

Cov𝑡[�̃�𝑡+1,𝑟𝑀
𝑡+1] as 𝛾𝑠

𝑡 , (2.9) can be more simply stated as

E𝑡 [𝑟𝑠
𝑡+1] = ̃𝜓𝑡 (1 − 𝛾𝑠

𝑡 ) + 𝛾𝑠
𝑡 ⋅ E𝑡 [𝑟𝑀

𝑡+1] . (2.10)

Here 𝛾 is the only determinant of cross-sectional variation in expected returns
and can be interpreted as as assets’ comprehensive measure of risk, playing in
fact the role that 𝛽 has in a similar equation in Frazzini and Pedersen (2014).
Also in a similar way, 𝜓 measures the zero-beta spread that modifies how risk
is rewarded with respect to a perfect market with no financing frictions.

2.2 Deviations from CAPM

Defining the expectations formed following (2.10) as E𝑡
FULL[𝑟𝑠

𝑡+1] and the
expectations formed following standard CAPM as

E𝑡
CAPM[𝑟𝑠

𝑡+1] = 𝛽𝑠
𝑡 ⋅ E𝑡 [𝑟𝑀

𝑡+1] 𝛽𝑠
𝑡 =

Cov𝑡 [𝑅𝑀
𝑡+1, 𝑅𝑠

𝑡+1]
Var𝑡 [𝑅𝑀

𝑡+1]
, (2.11)

then deviations from CAPM predictions can be summarized by 𝛼𝑠
𝑡 = E𝑡

FULL[𝑟𝑠
𝑡+1]−

E𝑡
CAPM[𝑟𝑠

𝑡+1], which takes value

𝛼𝑠
𝑡 = ̃𝜓𝑡(1 − 𝛾𝑠

𝑡 )⏟⏟⏟⏟⏟
Liquidity deviation

+ (𝛾𝑠
𝑡 − 𝛽𝑠

𝑡 )E𝑡 [𝑟𝑀
𝑡+1]⏟⏟⏟⏟⏟⏟⏟

Omitted risk deviation

(2.12)

= ̃𝜓𝑡 [(1 − 𝛽𝑠
𝑡 ) − (𝛾𝑠

𝑡 − 𝛽𝑠
𝑡 )] + (𝛾𝑠

𝑡 − 𝛽𝑠
𝑡 )E𝑡 [𝑟𝑀

𝑡+1] . (2.13)

(2.12) shows that the deviation of the expected return of a security from
CAPM predictions can be split in a part due to a binding leverage constraint,
or more generally a spread in the zero-beta rate, and a part due to a different
assessment of ‘total’ risk from the beta measure. (2.13) makes an even clearer
distinction between two stories put forward to explain the CAPM anomaly:
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Frazzini and Pedersen (2014) finds alpha equating ̃𝜓(1 − 𝛽), Schneider et al.
(2020) relies on 𝛾 − 𝛽 where 𝛾s explicitly deviate from 𝛽 because of the market
squared in the marginal utility formation. Then, the counteracting effect of
the two effects, liquidity motives versus the omitted risk factors, is synthesized
by 𝛾 − 𝛽: the greater is the distance of ‘total’ risk from 𝛽, the more 𝛼 will be
due to risk remuneration of omitted risks, the smaller the term is, the more 𝛼
will be due to a different market premium which gets captured by portfolios
with simply different betas.

To understand in more practical terms the meaning of this, think first of
the case in which the market really is the only relevant risk factor: 𝛾 − 𝛽 will
be zeros and one would be exactly back to the pricing equation of Frazzini
and Pedersen (2014) where it is the multiplier producing alpha as beta grows.
Adding a second priced factor to which assets are sensitive in random way
will not change much:12 high-beta assets will be as riskier than low-beta
assets as before, so 𝛼 in the cross section would still decrease with 𝛽 with
the zero-beta spread driving it. Finally think of a second risk factor to which
assets are sensitive to in an opposing way relative to how they are sensitive
to the market, such as coskewness. Now high-beta assets are good hedges of
market variance shocks and vice-versa low-beta assets are riskier in this second
dimension. Bringing the counteracting effect to an extreme, 𝛾 could become
a constant across assets; then, a liquidity spread would still be present in the
market, but the relationship of alphas with beta would now be exclusively
driven by the mis-measurement of how risky a security actually is.

Another way to synthesise how flatter the SML is relatively to the theo-
retical CAPM prediction, and possibly trade on it, is to look at the expected
return of a BAB factor. Following Novy-Marx and Velikov (2022) observations,
this can be formed holding a set of low CAPM-beta assets, shorting a set of
high CAPM-beta ones, and making the portfolio beta-neutral by holding the
market proportionally to the beta-tilt of the first two holdings, while financing
this with the risk-free asset:

E𝑡 [𝑟𝐵𝐴𝐵
𝑡+1 ] = E𝑡 [𝑟𝐿

𝑡+1] − E𝑡 [𝑟𝐻
𝑡+1] − (𝛽𝐿

𝑡 − 𝛽𝐻
𝑡 )E𝑡 [𝑟𝑀

𝑡+1] (2.14)
= ̃𝜓𝑡 (𝛾𝐻

𝑡 − 𝛾𝐿
𝑡 ) + [(𝛽𝐻

𝑡 − 𝛽𝐿
𝑡 ) − (𝛾𝐻

𝑡 − 𝛾𝐿
𝑡 )] E𝑡 [𝑟𝑀

𝑡+1] . (2.15)

From here it is further clear that the origin of the CAPM mispricing critically
depends on how different is the assets’ ‘real’ total risk from CAPM assessment.
Specifically, the smaller the difference in the 𝛾s of the beta-sorted portfolios,
the greater the error by CAPM would be due to an omitted risk factor making
more market-sensitive assets not so risky after all, and vice-versa. It should
also be noted that adding coskewness, for example, one expects to lower the

12Random in a cross-sectional sense, not in a time-varying fashion.
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gamma-differential as high-beta assets are safer than low-beta ones in the
coskewness dimension, but there could even be risk factors with the opposite
link that could counteract the counteracting effect of coskewness. On the
other side, instead, if actually riskier assets, i.e. those with higher 𝛾, also have
high 𝛽, either because the market is the only risk priced or because the other
risks are neutrally distributed along 𝛽 dimension, funding-motives will more
likely drive the anomaly and show up as a reduction in the premium.

2.3 Betting Against Gamma

With the synthetic risk measure 𝛾 capturing risk as 𝛽 does in CAPM, to
isolate the intercept-related spread, one can build a portfolio similar to BAB:
long on low-𝛾 (LG), short on high-𝛾 (HG) and hedging the exposure with
position 𝛾𝐿𝐺 − 𝛾𝐻𝐺 in the market. I call this portfolio ‘Betting Against
Gamma’ (BAG):

E𝑡 [𝑟𝐵𝐴𝐺
𝑡+1 ] = E𝑡 [𝑟𝐿𝐺

𝑡+1] − E𝑡 [𝑟𝐻𝐺
𝑡+1 ] − (𝛾𝐿𝐺 − 𝛾𝐻𝐺)E𝑡 [𝑟𝑀

𝑡+1] (2.16)
= ̃𝜓𝑡 (𝛾𝐻𝐺

𝑡 − 𝛾𝐿𝐺
𝑡 ) . (2.17)

This portfolio allows to investigate the sources of variation in the intercept,
hypothesized to be related to funding motives, as can be seen through the
lens of the decomposition from Campbell (1991),

𝑟𝐵𝐴𝐺
𝑡 ≈ E𝑡−1 [𝑟𝐵𝐴𝐺

𝑡 ] +
∞

∑
𝑗=0

𝜌𝑗 ⋅ (E𝑡 − E𝑡−1)[Δ ln 𝐷𝐵𝐴𝐺
𝑡+𝑗 ] −

∞

∑
𝑗=1

𝜌𝑗 ⋅ (E𝑡 − E𝑡−1)[𝑟𝐵𝐴𝐺
𝑡+𝑗 ].

(2.18)

Assuming, without great loss of generality, constant 𝛾s of the high and low
portfolio; that shocks to the multiplier are i.i.d; and that shocks to cash flows
expectations are independent from those to the leverage constraint, which
is reasonable at high frequencies given the interpretation of the model; the
contemporaneous relation between changes in 𝜓 and 𝐵𝐴𝐺 returns is

𝜕 (𝑟𝐵𝐴𝐺
𝑡 − E𝑡−1 [𝑟𝐵𝐴𝐺

𝑡 ])
𝜕 ( ̃𝜓𝑡 − E𝑡−1[ ̃𝜓𝑡])

= −𝜌 (𝛾𝐻𝐺
𝑡 − 𝛾𝐿𝐺

𝑡 ) . (2.19)

Therefore, a further testable implication is that a variable that captures
funding tightness should covary negatively with the 𝐵𝐴𝐺 returns, controlling
for other factors.
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3 Empirical implementation

The key object of this study, as in most asset pricing models, is the marginal
utility, whose covariance with assets’ returns determines everything shown so
far. It is important to recover its process in the most agnostic way to avoid
the risk of omitting variables, which is high in mapping it on arbitrary factors.
To do so, I look at its minimum-variance projection on all the assets returns,
in the style of Hansen and Jagannathan (1991), and assume a latent factor
structure in returns. I then proceed with the contemporaneous estimation of
the average zero-beta spread and the marginal utility loadings of the first few
principal components only, in a standard GMM procedure.13

3.1 A sparse and agnostic approach

As an empirical counterpart of the standardized marginal utility �̃�′
𝑡+1, consider

its linear projection �̃�′∗
𝑡+1 on 𝑁 returns, with coefficients 𝜷𝑢𝐫,

�̃�′∗
𝑡+1 − 1 = (𝐫𝑡+1 − E [𝐫𝑡+1])⊤𝜷𝑢𝐫, (2.20)

where 𝐫𝑡 is the vector of 𝑁 returns at time 𝑡. Then, the coefficients can then
be retrieved by substituting �̃�′∗

𝑡+1 in the stacked unconditional expectations of
all excess returns, as in (2.6), scaled by E [𝑢′

𝑡+1], i.e.

E [�̃�′∗
𝑡+1𝐫𝑡+1] = E [ ̃𝜓𝑡]1𝑁. (2.21)

Subtracting E [𝐫𝑡+1] from both sides, one obtains

E [(�̃�′∗
𝑡+1 − 1)(𝐫𝑡+1 − E [𝐫𝑡+1])] = E [ ̃𝜓𝑡]1𝑁 − E [𝐫𝑡+1] , (2.22)

from which 𝜷𝑢𝐫 can be obtained by plugging the definition of �̃�′∗
𝑡+1 − 1 in,

𝜷𝑢𝐫 = Σ−1
𝐫𝐫 (E [𝜓𝑡]1𝑁 − E [𝐫𝑡+1]), (2.23)

where Σ𝐫𝐫 is the covariance matrix of the 𝑁 returns. The resulting process of
the marginal utility projection process is

𝑢′∗
𝑡+1 − 1 = (𝐫𝑡+1 − E [𝐫𝑡+1])⊤Σ−1

𝐫𝐫 (E [𝜓𝑡]1𝑁 − E [𝐫𝑡+1]). (2.24)

This involves estimating a great number of parameters and inverting a huge
matrix, both concerning Σ𝐫𝐫, so this formulation is highly impractical.

13To see how realistic is for the first few principal components to capture most of the relevant
information pricing-wise, an extension of Kozak et al. (2018) is needed, which will likely result
in some bound for 𝜓 on the lines of Jiang and Richmond (2022) and Cochrane and Saa‐Requejo
(2000).
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Looking for a formulation of the problem that maintains as much informa-
tion as possible while keeping the problem empirically feasible, I make the
further assumption of a perfect factor structure for returns innovations such
as

𝐫𝑡+1 − E [𝐫𝑡+1] = 𝐞𝑡+1 (2.25)
= Β ⋅ 𝐟𝑡+1 + 𝝐𝑡+1, (2.26)

where Β is the 𝑁 × 𝐾 matrix of factor loadings. Factors 𝐟 and residuals 𝝐
are independent and both zero mean, with E [𝐟𝑡+1𝐟⊤

𝑡+1] = 𝐼𝐾, and E [𝝐𝑡+1𝝐⊤
𝑡+1]

being a diagonal matrix filled with the vector 𝝈2
𝝐 , as most standard applications

of factor structures.
The marginal utility projection process can then be expressed as

�̃�′∗
𝑡+1 = 1 + (𝐟⊤

𝑡+1Β⊤ + 𝝐⊤
𝑡+1)Σ−1

𝐫𝐫 (E [𝜓𝑡]1𝑁 − E [𝐫𝑡+1]), (2.27)

or, more succinctly,

�̃�′∗
𝑡+1 = 1 − 𝐟⊤

𝑡+1𝜷𝑢𝐟 − 𝝐⊤
𝑡+1𝜷𝑢𝝐, (2.28)

where 𝜷𝑢𝐟 are the loadings of the pervasive factors in marginal utility and 𝜷𝑢𝝐

is the linear mapping of the marginal utility on the individual innovations
residuals.

Using the projected marginal utility, the pricing equation (2.7) becomes

E𝑡 [𝑟𝑠
𝑡+1] = ̃𝜓𝑡 + 𝜷⊤

𝑢𝐟 ⋅ Cov𝑡 [𝐟𝑡+1, 𝑟𝑠
𝑡+1] + 𝜷⊤

𝑢𝝐 ⋅ Cov𝑡 [𝝐𝑡+1, 𝑟𝑠
𝑡+1] . (2.29)

If the factor structure approximates well the returns distribution, the variance
of idiosyncratic residuals Cov𝑡 [𝝐𝑡+1, 𝑟𝑠

𝑡+1] = 𝜎2
𝜖,𝑠 will be minimal, although

not zero. While I have no formal guarantee that 𝜷𝑢𝝐 tends to 0 in any way
at this stage, assuming 𝜷⊤

𝑢𝝐 ⋅ Cov𝑡 [𝝐𝑡+1, 𝑟𝑠
𝑡+1] ≈ 0 has the advantage that the

following condition involves only a few unknown constants, E [ ̃𝜓𝑡] and 𝜷𝑢𝐟,
to make meaningful asset pricing predictions and obtain estimates of 𝛾s:

E [𝑟𝑠
𝑡+1] = E [ ̃𝜓𝑡] + 𝜷⊤

𝑢𝐅 ⋅ Cov [𝐟𝑡+1, 𝑟𝑠
𝑡+1] . (2.30)

A sense of how much information that is relevant to pricing has gotten lost is
offered by ex-post performance measures. Again, a model that tends to have
no pricing errors would be ideal, but a ‘wrong’ model can still be good enough
to leave no room for flipping the results with a better, or even perfectly,
performing model. Therefore, the exercise is likely meaningful even with
errors as long as these are reasonably small.
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4 Empirical Analysis

4.1 Empirical strategy and test assets

The analysis verges around the estimates of E [ ̃𝜓𝑡] and 𝜷𝑢𝐅, to obtain an
empirical counterpart of �̃�′

𝑡. Assuming a constant 𝜓𝑡, this implies estimating
the coefficients {𝑎, 𝐛} of the following moment condition, given by the pricing
equation (2.30):

E [𝑟𝑠
𝑡 ] − 𝑎 − E [𝐛⊤ ̂𝐟𝑡 ⋅ (𝑟𝑠

𝑡 − E [𝑟𝑠
𝑡 ])] = 0. (2.31)

This can be easily used in a GMM estimation, after which the estimates of
unconditional 𝛾s amount to

𝛾𝑠 =
𝐛⊤Cov [ ̂𝐟𝑡, 𝑟𝑠

𝑡 ]

𝐛⊤Cov [ ̂𝐟𝑡, 𝑟𝑀
𝑡 ]

, (2.32)

with standard errors obtainable using the Delta method and GMM estimates
of the covariances.

Before moving to GMM the procedure needs an earlier step to form the
factors. Indeed, these are composed by (1) risk factors previously known to
be relevant for the anomaly and (2) pervasive latent factors of a wide set of
test assets. More precisely, the market factor and the market squared excess
returns, for coskewness, are the first two. The rest of the factors are the
first few Principal Components (PCs) the test assets, whose computation
procedure exactly aims at minimizing the assets’ residuals’ variance. Before
performing PCA, the test assets are orthogonalized with respect to the market
and the market squared to avoid redundant information.14 .

The market factor is the monthly CRSP value-weighted market index
in excess of the 1-month risk-free, again from CRSP. The test assets pool
from which PCs are extracted is mostly populated by the 153 monthly stock
portfolios used in Jensen et al. (2021),15 all of which are available from
November 1971 to December 2022. The original BAB portfolio from Frazzini
and Pedersen (2014) is among these portfolios. Then, I add 10 beta-sorted
stocks portfolios and the key asset of the analysis: the BAB factor, based on
a 3-fold split of beta-sorted US stocks, robust to the criticisms of Novy-Marx
and Velikov (2022).

To keep the dimensionality of the GMM problem reasonable and the
estimation well behaved, the test assets actually used in the GMM step of

14To do so, I simply regress every test asset on the market and the market squared, keeping the
residuals.

15Available at https://jkpfactors.com.

44

https://jkpfactors.com/


§ 2.4: Empirical Analysis

Table 2.1: Beta-sorted portfolios statistics. In parenthesis, HAC standard errors obtained
as suggested in Lazarus et al. (2018). Monthly annualized returns from Nov 1971 to Nov
2022.

Bottom Top BAB Orig. BAB

Avg. ret (%) 11.935 12.635 3.881 10.083
SD (%) 43.274 80.635 42.549 40.741

CAPM 𝛼 (%) 7.283 3.179 4.079 10.52
(1.219) (1.446) (1.986) (2.773)

CAPM 𝛽 0.684 1.391 −0.029 −0.064
(0.048) (0.041) (0.065) (0.099)

Res. coskew. (×103) 0.217 0.429 −0.111 −1.659
(0.199) (0.291) (0.449) (0.447)

the analysis are a ‘condensed’ version of the ones used to obtain ̂𝐟. Precisely,
this second set of test assets is formed by the market excess returns, the BAB
factor, 3 beta-sorted stocks portfolios, and 13 ‘themed’ portfolios build by
clustering the 153 portfolios of Jensen et al. (2021), provided by the same
authors. Statistics for these portfolios are in Table 2.6, in the appendix.
The clustering technique used to create these 13 theme-portfolios has the
precise intent of keeping a great dispersion across-theme and a high degree of
within-theme correlation and economic concept similarity. The original BAB
portfolios is among those clustered in the ‘low risk’-themed portfolio, but I
also explicitly add it to the test assets pool of the second step for consistency
with the other BAB factor.

4.2 Beta-sorted portfolios

I construct the beta-sorted portfolios using monthly data from CRSP, correct-
ing for delisting returns depending on nature of the delisting, as suggested by
Bali, Engle, et al. (2016). Following common practice in the literature, I only
consider stocks of share types 10 and 11, traded on NYSE, Nasdaq or AMEX
exchanges. To form portfolios, every month all the stocks are ranked based
on the rolling betas estimated on a 5-year window ending the month before.
They are then split into 10 or 3 portfolios with weights corresponding to the
relative capitalization. The BAB portfolio is built following Novy-Marx and
Velikov (2022), i.e. subtracting returns of the top-third beta portfolio from
bottom-third beta portfolio and subtracting to this the excess returns of the
market, proportionally to the estimated beta of the low-minus-high portfolio
in the 5 years ending the month before. Summary statistics of the bottom
and top thirds, BAB portfolio and a BAB portfolio as originally formed by
Frazzini and Pedersen (2014) are shown in Table 2.1. The timespan of the
analysis is from November 1971 to November 2022, dictated by the availability
of portfolios from Jensen et al. (2021).
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As expected, the ‘top’ portfolio earns a higher return than the ‘bottom’
one, but its CAPM alpha is significantly lower. Top portfolio also shows
a higher residual coskewness, obtained regressing CAPM residuals on the
market squared, following Schneider et al. (2020). Both BAB portfolios earn a
significant alpha with respect to CAPM while having no significant exposure
to the market. However, they significantly differ in the magnitude of alphas
and the residual coskewness, with the ‘original’ BAB portfolio earning a higher
return unexplained by CAPM and having a lower residual coskewness, which
suggests the value-weighting mitigating the coskewness risk. Statistics covering
the full sample of the portfolios are in Table 2.5, while the statistics for the
middle third portfolio and the 10-split portfolios over the same time-frame
are in Table 2.7, both showing a similar pattern.

4.3 Estimation results

PCs factors

Figure 2.2 shows the scree plot relative to the Principal Component Analysis
of the 164 test assets. At this stage no formal test is conducted to choose the
number of components to keep. Rather, I arbitrarily choose to keep 4 because
adding them to the market factor and the squared market factor results in a
total of 6 factors, which is a number comparable with the other sparse models
at the frontier at the time of this work, such as Fama and French (2018).
This also seems a sensible choice because the following component, the 5th,
would explain almost half the variance explained by the 4th one, less than
5%. The first 4 PCs end up explaining 60% of test assets’ residual variance
after orthogonalization to market and market squared; the first 6 ones explain
a total of 67%. To control for the gains from adding factors, I also use a
specification keeping 6 components, resulting in 8 factors, although it does
not change results in a significant way.

Pricing the cross-section

Table 2.2 shows the estimation results for a few specifications: ‘CAPM’, where
the only risk factor is the market and 𝜓 is fixed at 0; ‘F(Market)’, where the
market is the only factor, but E [𝜓] is freely estimated; ‘F(cskw)’, which adds
the market squared among the factors; ‘F(6)’, which adds 4 cross-sectional
principal components as factors to the previous specification; and finally,
‘F(8)’, which adds 6 components instead.

Comparing the first two columns, it can be seen that introducing the spread
E [𝜓] significantly improves the pricing of the cross-section, cutting the Mean
Absolute Pricing Error (MAPE) in half. Indeed, the spread is significantly
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Figure 2.2: Scree plot of principal component analysis. On the horizontal axis the number
of component considered, on the vertical axis the share of variance explained by the relative
component (solid line) and the cumulative share of variance explained (dotted line). The
green vertical line marks the 4th component while the red one the 6th.

different from 0 in all specifications and has a substantial magnitude, between
2% and 3.5% annually. The average unexplained return of the ‘robust’ BAB
portfolio immediately becomes statistically and economically insignificant,
while the unexplained excess return of the ‘original’ BAB factor does not.
This further remarks the difference in the two and highlights how much do
the portfolio formation details matter. The market factor is never significant
apart from the CAPM specification.

The market squared enters the marginal utility negatively and quite signifi-
cantly in all specifications including it. Also, consistently with Schneider et al.
(2020), adding the market squared among the factors makes the pricing error
in the original BAB portfolio insignificant too. This additional explanatory
power, however, appears to be more related to the non-standard practices
used to form the original BAB factor,16 rather than to an intrinsic mechanism
of the CAPM anomaly, since the robust BAB portfolio does not experience
such a reduction in pricing error. Employing the returns’ principal compo-
nents as factors further reduces MAPEs, decreasing them to less than half of
the MAPE in the model with coskewness. Indeed, deviations on both BAB
portfolios further decrease too.

All the over-restricting conditions of the models are not valid at the 0.1%
of confidence level, although F(8) has a p-value that is only slightly lower
than that. This, however, is not too much of a concern: the goal is to see

16As highlighted by Novy-Marx and Velikov (2022), these tilt holdings towards small and illiquid
stocks possibly making the portfolio load more on coskewness.
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Table 2.2: Model estimation results. HAC standard errors in parenthesis. Monthly sample
from 1971 to 2022.

CAPM F(Market) F(cskw) F(6) F(8)

E [𝜓] 3.583∗∗∗ 3.184∗∗∗ 2.050∗∗∗ 2.038∗∗∗

(0.423) (0.532) (0.256) (0.258)
Market factors 0.100∗ 0.060 0.000 0.030 0.000

(0.046) (0.046) (0.085) (0.080) (0.103)
Market squared −0.516∘ −0.485∘ −0.719∘

(0.281) (0.288) (0.385)

J-test 330.140∗∗∗ 351.514∗∗∗ 131.472∗∗∗ 42.699∗∗∗ 30.007∗∗∗

MAPE 3.431 1.625 1.505 0.709 0.570

BAB a.p.e. 4.149∗ 0.501 0.591 −0.433 −0.276
(2.005) (2.016) (2.733) (2.991) (3.173)

Orig. BAB a.p.e. 10.526∗∗∗ 6.800∗∗ 2.230 1.145 1.298
(2.722) (2.640) (3.642) (3.562) (4.402)

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05; ∘𝑝 < 0.1

through the lenses of a better reality approximation the sources of CAPM
failures and any better-performing model can be used to this aim. Obviously,
the more information a model leaves unexplained, the higher the chances of
the decomposition being twisted with an even better model. Anyway, despite
not achieving a perfect fit, over these test assets with average mean return of
around 4%,17 F(6) and F(8) produce MAPEs that are less than 1%, a fifth of
CAPM’s starting 3.5%. This certainly leaves room for additional information
to improve the analysis, but it seems a rather small space to completely
reverse the main takeaways of this exercise. This is further supported in the
next sub-section by the uniformity of the decomposition pattern development
when increasing the model complexity.

Revisiting the low-risk anomaly

Estimates of 𝐛 imply estimates of 𝛾s too, which are shown in Table 2.3. The
first pattern to emerge is that, when more risks are considered, the spread in
the synthetic risk measure decreases, which can be seen by observing the 𝛾 of
the high-minus-low beta portfolio ‘HmL’. This, again, is in line with Schneider
et al. (2020), which shows high-beta stocks being safer than what the betas
would suggest once coskewness is taken into account, and extends it further
to more unidentified risks. On the other hand, the BAB portfolio gets riskier
and riskier as the number of risks considered, and arguably the ‘realism’ of the
model, increases, although not significantly. To understand why, the definition
in (2.15) is useful: assuming the extreme case in which all actual risks in the
economy makes the high-beta and the low-beta portfolios having the same
total risk, then, any holding of the market originally taken to hedge the beta

17See Table 2.6 in the appendix.
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Table 2.3: Portolios 𝛾. HAC standard errors in parenthesis, obtained through Delta method
from previous GMM estimation. Monthly sample from 1971 to 2022.

Bottom Top HmL BAB Orig. BAB

𝛾 CAPM 0.688∗∗∗ 1.395∗∗∗ 0.707∗∗ −0.030 −0.064
(0.026) (0.034) (0.359) (0.051) (0.058)

𝛾 Market 0.688∗∗∗ 1.395∗∗∗ 0.707 −0.030 −0.064
(0.026) (0.034) (0.672) (0.051) (0.058)

𝛾 Coskew. 0.549∗∗∗ 1.109∗∗∗ 0.560 0.048 1.082
(0.157) (0.210) (0.488) (0.277) (0.702)

𝛾 All (4) 0.881∗∗∗ 1.037∗∗∗ 0.156 0.411 1.211∗∗

(0.177) (0.223) (0.429) (0.328) (0.551)
𝛾 All (6) 0.786∗∗∗ 1.047∗∗∗ 0.261 0.363 1.116∗∗

(0.177) (0.215) (0.431) (0.320) (0.497)
∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1

of the low-minus-high beta portfolio will distort the total-risk neutrality. Such
risk in this formulation is rewarded with E [𝑟𝑀] per unit of 𝛾, which would be
the source of the BAB expected return. In this case, none of the BAB return
would be due to liquidity considerations because having the high-beta and the
low-beta portfolios the same 𝛾, they would provide cash-flows with the same
discount rate, and no embedded leverage would be enjoyed by agents. Note
that this would not mean that the liquidity motive is irrelevant: the BAG
portfolio defined in (2.16) would still be entirely determined by the liquidity
compensation,18 just like the BAB return is in Frazzini and Pedersen (2014).

The last example also shows why the CAPM anomaly is not a ‘plain’
case of omitted factors: to make high-beta assets have the same total risk
of low-beta assets, assets have to be riskier in a second dimension inversely
proportional to their beta, otherwise the difference in total risk levels of
high-beta and low-beta will persist. This means that it does not suffice for
the additional factor to have a specific correlation with the market, but that
there is a deeper link in the way in which sensitivity to the market relates
to sensitivity to this second factor. Notice also that additional risks could
also make it harder to explain the anomaly, in case the risk pattern relates to
beta in the opposite way as coskewness does. However, this does not seem the
case, as 𝛾s converge towards 1 increasing the risks. All in all, as from F(cskw)
and F(6) the difference in risk between high-beta and low-beta decreases and
BAB risk increases, the evidence points towards the existence of omitted
factors relevant to the anomaly, although not yet specifically identified in the
literature.

The presence of risks not orthogonally distributed with respect to betas
is extremely clear in the original BAB, where the synthetic risk measure is

18At the current state, the BAG portfolio has not been studied, but it will be included in this
work.
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Table 2.4: Deviations’ contribution. ‘Prd/real’ is the ratio of predicted return of the
portfolio over the actual average return. HAC standard errors in parenthesis, obtained
through Delta method from previous GMM estimation. Monthly sample from 1971 to 2022.

BAB Orig. BAB

𝜓(1 − 𝛾) 𝛾 ⋅ E [𝑟𝑀] Prd/real% Δ% 𝜓(1 − 𝛾) 𝛾 ⋅ E [𝑟𝑀] Prd/real% Δ%

Market 3.69∗∗∗ −0.21 87.4 111.8∗∗∗ 3.81∗∗∗ −0.45 33.1 126.4∗∗∗

(0.49) (0.36) (21.0) (0.54) (0.42) (26.3)
Coskew. 3.03∗∗ 0.33 85.2 80.3 −0.26 7.49 78.1 −107.2∗

(1.16) (1.92) (109.1) (2.24) (5.42) (59.5)
All (4) 1.21∗ 2.85 110.9 −40.4 −0.43 8.39∗ 88.7 −110.9∗∗∗

(0.67) (2.45) (57.8) (1.14) (4.67) (25.2)
All (6) 1.30∗ 2.52 106.9 −31.9 −0.24 7.73∗ 87.2 −106.3∗∗∗

(0.67) (2.36) (63.8) (1.02) (4.25) (25.2)
∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1

significant. Any BAB portfolio is characterized by market-risk neutrality,
so a significant 𝛾, interpreted through (2.12), suggests the risk component
being relevant in explaining the CAPM anomaly, even considering the liquidity
spread. It is important however to understand the extent to which the apparent
‘mispricing’ of CAPM is due to risks remuneration or funding provision, in
order to improve assessments such as that in Baker et al. (2014). To do this, I
report in Table 2.4 the measurements of the liquidity component and the risk
component, with standard errors obtained via Delta method using previous
GMM estimates. I also compute a measure of relative contribution, the share
of return prediction that is associated to pure liquidity motives or to pure
risk mis-measurement, defined as

Δ = Liq. component − Risk component
Tot. prediction

=
E [𝜓] (1 − 𝛾𝐵𝐴𝐵) − 𝛾𝐵𝐴𝐵 ⋅ E [𝑟𝑀]
E [𝜓] (1 − 𝛾𝐵𝐴𝐵) + 𝛾𝐵𝐴𝐵 ⋅ E [𝑟𝑀]

.

(2.33)
This is positive when contribution due to the zero-beta spread is greater than
that due to 𝛾-risk, relative to the total return that the model is able to predict,
and vice-versa. Once again, remember that BAB portfolios have theoretically
and empirically 0 𝛽, so any measure of 𝛾 different from 0 is a reflection of
mis-measurement of risk in CAPM.

It can be seen that the liquidity spread play a major role when the market
risk only is considered: the liquidity component contributes 112% more than
the risk component in the prediction of the BAB return and 126% more
of the original BAB. Here, the risk component even contributes negatively,
with a negative return prediction originated in the residual market risk of
the portfolios. However, as more risks are considered, the two components
switch roles. Considering coskewness, it can be seen that for the robust BAB
portfolio the liquidity component stops significantly contributing more than
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the risk component, while for the original BAB the relative contribution
flips significantly already, again supporting the strong risk mis-measurement
motive behind it. Moving to full-fledged models, it can be seen that for
both specifications F(6) and F(8) the percentage of average return explained
by the omission of factors, which makes a BAB portfolio risky, is higher
with no statistical significance for the robust BAB, but with high statistical
significance for the original BAB. A Δ not statistically different from zero
means that an equal contribution of the liquidity and the risk components
cannot be excluded. At the same time, the standard errors of Δ for F(6)
and F(8) do not exclude all of the BAB return being due to risk omission,
while they essentially rule out the possibility of being all of it imputed to the
liquidity component.

Overall, despite possibly suffering of low estimation accuracy, the results
support the existence of a funding tightness spread as well as the prominence
of omitted risks in explaining the CAPM low-risk anomaly. This could
be further studied with a betting-against-gamma portfolio, which can also
provide information on the liquidity spread dynamics.19 The flexibility of
the formulation also allows for more complex methods, possibly even those
outlined in Didisheim et al. (2023), to be applied.

5 Conclusion

The remuneration of risk, as defined by the CAPM – the most fundamental
model in financial economics, is not as high in the data as it is expected to be
from theory. This has been hypothesized to be due either because financial
frictions reduce such remuneration or because assets do not bring as much risk
as they are expected to. In one case acting on financial frictions has an impact
on the cost of capital of firms, in the other does not. Also, in one case a firm
can expect to gain from exploiting a better funding than investors to leverage
up and harvest the zero-beta spread, while in the other case the only effect is
that it would become riskier. A formulation of the optimal pricing behaviour
of an agent with both a leverage constraint and no specific preferences, in
order to accommodate different degrees of realism, illustrates how antagonist
to each other the two effects are. In this formulation an inclusive measure
of risk can be compared to 𝛽, the CAPM risk measure, and inform on how
the two differ. It is shown that increasing the risks considered, the return
of BAB portfolios are more likely to be compensation for risks omitted by
CAPM, despite also supporting an extremely significant role of the spread

19I intend to perform these analysis. Information on the dynamics of the spread would also be
obtained with the method outlined in A.
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generated in the zero-beta asset by the financial frictions. This relation can
be further tested with the formation of a Betting-Against-Gamma portfolio,
which would also be instrumental in assessing contemporaneous relations
between the zero-beta spread and funding liquidity measures.
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A A non-parametric approach

A.1 Unconditional estimation

Following the approach used in Pukthuanthong et al. (2021):

E [𝑚𝑡+1𝑟𝑠
𝑡+1|𝐳𝑡] = 𝜓𝑡 (2.34)

E [𝑚𝑡+1𝑟𝑠
𝑡+1] = E [𝜓𝑡] (2.35)

(2.36)

where 𝑚𝑡 = 𝑢′
𝑡. This translates in GMM estimation with sample moments

𝑅′𝐦/𝑇 = 𝟏𝑆 (𝟏′
𝑇 𝝍)/𝑇 (2.37)

𝑅′𝐦 = 𝟏𝑆 (𝟏′
𝑇 𝝍) (2.38)

In principle, as long as 𝑆 > 𝑇:

𝑅𝑅′𝐦 = 𝑅 𝟏𝑆 (𝟏′
𝑇 𝝍) (2.39)

𝐦 = (𝑅𝑅′)−1𝑅 𝟏𝑆 (𝟏′
𝑇 𝝍), (2.40)

which allows to identify 𝐦/(𝟏′
𝑇 𝝍). With the further assumption that E [𝑚𝑡] =

1, the sample counterpart 𝟏′
𝑇 𝐦 = 𝑇 allows for an estimate of both the 𝐦

time series and 𝟏′
𝑇 𝝍, i.e. E [𝜓𝑡].

A.2 Conditional estimation

This approach can be extended to estimate the whole series of 𝜓𝑡, by exploiting
conditional expectations. Considering a set of 𝐾 state variables stored in the
𝑇 × 𝐾 matrix 𝑍, start by multiplying both sides of (2.34) by the value 𝑧𝑗,
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which is contained in the time 𝑡 information set, to get

E𝑡 [(𝑚𝑡+1𝑟𝑖
𝑡+1)𝑧𝑗

𝑡] = 𝜓𝑡 ⋅ 𝑧𝑗
𝑡 ∀𝑗 ∈ {1, … , 𝐾} , ∀𝑖 ∈ {1, … , 𝑁}. (2.41)

Then, assuming stationary variables, the condition

E [(𝑚𝑡+1𝑟𝑖
𝑡+1)𝑧𝑗

𝑡] = E [𝜓𝑡 ⋅ 𝑧𝑗
𝑡] ∀𝑗 ∈ {1, … , 𝐾} , ∀𝑖 ∈ {1, … , 𝑁}

(2.42)

is also true. I label 𝑟𝑖
𝑡+1𝑧𝑗

𝑡 as 𝑑𝑖𝑗
𝑡+1, so (2.42) is

E [𝑚𝑡+1𝑑𝑖𝑗
𝑡+1] = E [𝜓𝑡 ⋅ 𝑧𝑗

𝑡] ∀𝑗 ∈ {1, … , 𝐾} , ∀𝑖 ∈ {1, … , 𝑁}. (2.43)

Under standard assumptions, the sample time-averages of 𝑚𝑡+1𝑑𝑖𝑗
𝑡+1 and 𝜓𝑡𝑧

𝑗
𝑡

converge to such expectations. Then, labelling 𝐷 the 𝑇 ×𝑁𝐾 matrix obtained
by placing side-by-side all the 𝐝𝑖𝑗 vectors, first by 𝑖 and then by 𝑗, these
sample averages can be compactly expressed as

𝐷⊤⏟
(𝑁𝐾×𝑇 )

𝐦⏟
(𝑇 ×1)

/𝑇 = (𝑍 ⊗ 𝟏⊤
𝑁)⊤⏟⏟⏟⏟⏟

(𝑁𝐾×𝑇 )

𝝍⏟
(𝑇 ×1)

/𝑇 , (2.44)

where every entry of the 𝑁𝐾×1 vector on the left-hand side is ∑𝑇
𝑡=1 𝑚𝑡+1𝑑𝑖𝑗

𝑡+1/𝑇.
It follows that, as long as 𝑁𝐾 > 𝑇,

𝐷𝐷⊤𝐦 = 𝐷(𝑍 ⊗ 𝟏⊤
𝑁)⊤𝝍 (2.45)

𝐦 = (𝐷𝐷⊤)−1𝐷(𝑍 ⊗ 𝟏⊤
𝑁)⊤𝝍. (2.46)

This condition pins down a 𝐦 with respect to a 𝝍 and vice-versa, but is
not enough to obtain an estimate of the two. To do it, consider the additional
condition

E𝑡 [𝑚𝑡+1] = 1; (2.47)

this implies

E𝑡 [𝑚𝑡+1𝑧𝑗
𝑡] = 𝑧𝑗

𝑡 ∀𝑗 ∈ {1, … , 𝐾} (2.48)

and

E [𝑚𝑡+1𝑧𝑗
𝑡] = E [𝑧𝑗

𝑡] ∀𝑗 ∈ {1, … , 𝐾} . (2.49)

Exploiting once again the Law of Large Numbers on the time dimension, the
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sample counterpart is

𝑍⊤⏟
(𝐾×𝑇 )

𝐦⏟
(𝑇 ×1)

/𝑇 = 𝑍⊤⏟
(𝐾×𝑇 )

𝟏𝑇⏟
(𝑇 ×1)

/𝑇 . (2.50)

Finally, plugging (2.46), an estimate of the 𝜓𝑡 time-series is the solution to
the system

𝑍⊤(𝐷𝐷⊤)−1𝐷⊤(𝑍 ⊗ 𝟏⊤
𝑁)⊤𝝍 = 𝑍⊤𝟏𝑇, (2.51)

which is only feasible as long as the 𝐾 independent columns of 𝑍 are greater
than the number of time observations 𝑇.

B Additional tables and figures

Table 2.5: Beta-sorted portfolios statistics. In parenthesis, HAC standard errors obtained
as suggested in Lazarus et al. (2018). Monthly annualized returns from Dec 1934 to Nov
2022.

Bottom Top BAB Orig. BAB

Avg. ret (%) 11.808 13.781 3.837 8.46
SD (%) 43.801 85.02 41.325 36.795
CAPM 𝛼 (%) 5.801 1.597 3.75 8.943

(0.983) (1.159) (1.598) (1.808)
CAPM 𝛽 0.72 1.461 0.01 −0.058

(0.034) (0.056) (0.05) (0.064)
Res. coskew.×103 −0.027 0.667 −0.93 −1.335

(0.155) (0.228) (0.487) (0.332)
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3

Are you betting against
sustainability?

1 Introduction

To manage climate change , the economy needs to transition into a more
sustainable one. This requires a great mobilization of capital, which has in
fact started flowing towards investments where Environmental, Social and
Governance (ESG) factors are considered in the allocation process. Leaving
aside issues concerning other literatures, even critical ones such as what
exactly is ‘sustainable’, the key economic concern about this phenomenon is
understanding the value of economic activities’ ‘sustainability’. The financial
literature approaches this by studying the ties between this characteristic and
the discount rates that are applied to assess projects’ value, which directly
reflects how investors’ welfare is impacted by sustainability. This paper
provides further support to the view that investors do value firms’ sustainability
and highlights how the pricing of sustainability is not independent from assets’
riskiness, a phenomenon that can affect the measurement of the sustainability
‘premium’ and more dynamic considerations, which are relevant towards the
hedging of climate concerns changes for example.

More specifically, assets’ sustainability can affect investors welfare (1)
directly, by providing non-pecuniary benefits, as in Pástor et al. (2021); (2)
by affecting consumption with inherently different cash flows from the less
sustainable counterparts (e.g. being more profitable or hedging better climate
and regulations shocks), such as in Yang (2022); or (3) via both, as in Pedersen
et al. (2021). While the second channel can have very rich mechanisms and
implications, the first one distinctly predicts more sustainable project to have
lower expected return than that of an equivalent non-sustainable counterpart.
This, in a way, has been challenged by the empirical observation that in recent
years more environmentally-sustainable (‘green’) assets had higher returns,
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not lower. However, as clearly shown by Pástor et al. (2022), this is likely due
to sustained increases in environmental concerns that intensified the demand
for greener assets. This, in turn, while lowering expected returns of greener
assets, mechanically lead to greater contemporaneous returns. I build on that,
showing that increases in the sustainability premium do not impact returns
depending on the assets’ sustainability measure only, but on their riskiness too.
In more practical terms, in a CAPM world, two assets could be identically
sustainable, but, if they had different betas, they would react differently
to increases in concerns. The reason is that the spread in returns due to
sustainability is not only related to sustainability in the first place: it depends
on the difference, in the CAPM example, between beta and the sustainability
of the asset relatively to the market. This happens because one can always
reach the same level of risk of an asset by levering the market, obtaining, per
dollar spent, the market ESG score. It follows that only assets with ESG
scores greater than the ESG provided by the equivalently-levered market
should be appreciated for the sustainability contribution to the portfolio.

First, I show this mechanism with a simple model, similar to Pástor
et al. (2021) in aim and implications, but more flexible in accommodating
multiple risk factors and in allowing more interpretations to the sustainability
premium’s origin. Specifically, a standard investor who maximises expected
utility is faced with an inequality constraint on the average ESG score of
its portfolio, which, when binding, places a ‘sustainability multiplier’ in the
optimality conditions very similar to that of an agent with linear preferences for
sustainability. While the distinction between linear preferences and a binding
constraint appears of second order of relevance, I favour this formulation
because once sustainability is modelled as affecting welfare, it is not obvious
at all why it should do so in a linear way, while a constraint can well be
interpreted as a proper requirement set by households to intermediaries, or
even as a physical requirement to achieve aggregate environmental targets,
e.g. emit less than a certain amount of CO2 to avoid catastrophes. The model
boils down to a pricing equation that, with standard CAPM assumptions on
either returns distribution or wealth utility functional form, closely adheres to
the results in Pástor et al. (2021). Nonetheless, following Franceschini (2023),
I also show a way to extend the analysis to a more realistic multi-factor setting,
while keeping track of all the risks with a synthetic measure. This theoretical
formulation enables empirical analysis that are potentially able to distinguish
between the static ESG-‘preferences’ premium and the premia associated with
sustainability-risk motives, via wealth dynamics or sustainability dynamics
directly – as displayed in the climate extension of the model of Pástor et al.
(2021).

The main result is that, ceteris paribus, more sustainable firms are ex-
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pected to yield lower returns, which is a known result. However, as the
premium for sustainability is proportional to the difference between risk and
the asset sustainability relative to the market, determining how assets react
to sustainability concern shocks is not a straightforward. Indeed, apart from
the reaction being greater the more relatively sustainable the asset is, more
interestingly, the reaction sign depends on the riskiness too. Specifically, to
be positively covarying with concerns overall, the relative sustainability has to
be greater than the risk (again, akin to the beta in the CAPM formulation).
This is an important fact to establish because it affects the hedging abilities
of most standard ‘sustainability’ portfolios, such as a market-neutral portfolio
that is long on more sustainable assets and short on the least ones. In facts,
this portfolio earns the sustainability-spread proportionally to the difference
in sustainability of the two components forming it minus the difference in
the risk levels of the two. Thus, for certain cross-sectional risk distributions,
the spread could perfectly be negative while this portfolio’s average return
is consistently positive. It follows that contemporaneous returns of this sus-
tainability portfolio in reaction to changes in the sustainability spread can
make it an effective or a terrible hedge. Also, while this consideration might
not have had an impact until now, it might in the future. For example, were
the greener assets to be given better funding to invest in innovation, they
would become riskier in the cross-section and this would harm their ability of
hedging later shocks to environmental concerns.1

This theoretically holds for any characteristic that is associated with a
constraint on the portfolio weighted value. Empirically, I test whether Refinitiv
ESG data is relevant in this sense in US data and how the risk profile of a high-
minus-low portfolio impacts its expected returns, which in turn determine its
hedging abilities. Proxying the marginal utilities with the 3 factors from Fama
and French (1993) or the market and two factors extracted from the test assets
returns, the sustainability-related spread is significantly negative. However, it
stops being significant in other specifications – when the market is the only risk
factor or when many factors extracted from test assets returns are included,
none of which result in a worse pricing performance, undermining the view
that this particular score is associated to a binding constraint in the market.
Despite the relevance of the exercise, at this stage sustainability-related risk
factors are not explicitly included among the risk factors, although they are

1From an aggregate perspective, green innovation mitigates environmental concerns. So, green
firms increasing innovation efforts would work as an hedge to environmental concern, but once the
innovation levels are set, and with them the new risk levels, their ability of hedge later shocks to
environment concerns would likely worsen. Notice that whether mitigating environmental issues is
pro- or counter-cyclical is not obvious, as highlighted by Giglio et al. (2021), so whether greener
firms’ returns show a positive or negative sensitivity to environment concerns is not so clear either.
Consequently, the effect of more aggregate green innovation is not necessarily counter-acting the
argument made in the example.
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possibly captured by the factors agnostically obtained from test assets returns.
Further, the risk of the high-minus-low portfolio is not significantly different
from 0 in all specifications beyond the market-only one, meaning that risk is
unlikely to have any impact on how the sustainability is reflected in univariate
portfolios. Spread, anyway, that is unlikely to be there in the first place,
which is why these implications will have to be tested on more sustainability
dimensions,2 such as CO2 emissions, and possibly other countries too. This,
for some sustainability measures, will also allow to include sustainable bonds,
which reduces the number of relevant parameters to be estimated. Lastly,
were these hypothesis to find any grip, a further test could rely on a risk- and
sustainability-neutral portfolio, whose contemporaneous returns covariance
with concerns is directly indicative of risk impact on the sustainability spread.

This study is clearly related to the recent theoretical literature on ESG
investment, most importantly with Pástor et al. (2021) and Pedersen et al.
(2021), to which this paper adds the study of the peculiar role that risk, in its
generality, has in sustainability premium dynamics. This model resembles the
model of Pedersen et al. (2021) if it was only populated by investors who have
average ESG score in the utility function. They end up characterizing the
security market line in terms of Sharpe Ratio and reach the similar conclusions
that returns have alphas relative to the CAPM that depend on individual
ESG scores relative to the market’s score. As they consider a predictive power
of ESG scores on profits, however, a higher relative ESG does not guarantee
a lower expected return in their model. Just as with Pástor et al. (2021),
this paper departs by considering risk beyond mean-variance optimization
set-ups and displays in greater detail its impact on predictions that seem to
be independent, such as returns on market-neutral sustainable portfolios.

Further, this paper is related to the recent empirical green finance literature,
which has been mainly focused on isolating return dynamics due to concern
increases and the ‘static’ sustainability spread, such as Pástor et al. (2022),
Hsu et al. (2020) and Ardia et al. (2022). This paper shows another reason
why greener assets have not displayed lower returns besides sustained increases
in environmental concerns, i.e. baseline assets’ risks. Second, the framework
used here allows to include environmental sensitivity as a risk and potentially
disentangle the risk-led sustainability premium from the ‘static preferences’
spread. At the current stage, this is not formally studied in this paper,
but it will be, by explicitly adding a sustainability-relevant state variable
among the risk factors.3 The empirical application also makes this paper take

2Further motivated by the findings of Berg et al. (2022).
3Several indexes that identify aggregate environmental concerns have been proposed, such as

Ardia et al. (2022) and Noailly et al. (2021). However, variables that are univocally related with
the other pillars of ESG scores are not obvious at all.
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part to the literatures employing General Method of Moments (GMM) to
estimate marginal utility loadings, and to those modelling marginal utility in
an agnostic way that do not employ pre-determined factors.

In section 2 I outline the theoretical set-up and show the impact of risk on
sustainability-related pricing implications, in the simple framework of CAPM;
in section 3, I consider the existence of a risk-free asset that also provides a
sustainability score and the existence of multiple risks priced in the market; in
section 4, I explore the main implications on US data employing the Refinitiv
ESG scores; in section 5 I conclude.

2 Basic theoretical set-up

Consider a standard two-period economy where there are 𝐼 + 1 assets indexed
by 𝑖, with 𝑖 = 0 being a risk-less asset. Then, assume a single agent living in
this economy, who is born at time 𝑡 and simply chooses assets holdings {𝑥𝑖

𝑡}𝐼
𝑖=1

to maximize utility from second-period consumption, which corresponds to
the entirety of the accumulated wealth 𝑊𝑡+1, i.e.

max
{𝑥𝑖

𝑡}𝐼
𝑖=0

E𝑡 [𝑢(𝑊𝑡+1)]

s.t. 𝑊𝑡 = 𝑥0
𝑡 +

𝐼

∑
𝑖=1

𝑥𝑖
𝑡𝑃 𝑖

𝑡

𝑊𝑡+1 = 𝑥0
𝑡 𝑅𝑓

𝑡 +
𝐼

∑
𝑖=1

𝑥𝑖
𝑡(𝑃 𝑖

𝑡+1 + 𝐷𝑖
𝑡+1),

(3.1)

where 𝑃 𝑖
𝑡 and 𝐷𝑖

𝑡+1 are the price and dividend of asset 𝑖 at time 𝑡, respectively,
and 𝑅𝑓

𝑡 is the gross risk-free return. Growing concerns about sustainability
of investments might enforce an exogenous level of greenness of the portfolio
held by this agent, either imposed by a second agent in the form of a ruling
government or a household whose savings are managed by the agent just
described.

A simple way to capture this phenomenon is to require average sustain-
ability of portfolio holdings to be greater than a certain threshold 𝑞𝑡,4 which
can be expressed as the inequality

𝐼

∑
𝑖=1

(𝑥𝑖
𝑡𝑃 𝑖

𝑡 ) ⋅ ESG𝑖
𝑡 > 𝑞𝑡 ⋅ 𝑊𝑡. (3.2)

This is close in spirit to Frazzini and Pedersen (2014), who consider leverage
4A key assumption here is that the risk-free asset does not contribute to the greenness of a

portfolio, which might can be counterfactual. An extension which allows for this is immediate and
will follow in the paper. This also implies more testable conditions.
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constraints instead of sustainability requirements. Exploiting 𝑊𝑡+1 = 𝑊𝑡𝑅
𝑓
𝑡 +

∑𝐼
𝑖=1 𝑥𝑖

𝑡(𝑃 𝑖
𝑡+1 + 𝐷𝑖

𝑡+1 − 𝑃 𝑖
𝑡 𝑅𝑓

𝑡 ), the Lagrangian related to this problem can be
expressed as

ℒ𝑡 = E𝑡 [𝑢 (𝑊𝑡𝑅
𝑓
𝑡 +

𝐼

∑
𝑖=1

𝑥𝑖
𝑡(𝑃 𝑖

𝑡+1 + 𝐷𝑖
𝑡+1 − 𝑃 𝑖

𝑡 𝑅𝑓
𝑡 ))] + 𝜆𝑡 {

𝐼

∑
𝑖=1

(𝑥𝑖
𝑡𝑃 𝑖

𝑡 ) ⋅ ESG𝑖
𝑡 − 𝑞𝑡 ⋅ 𝑊𝑡}

(3.3)

The first-order condition for the optimality of this problem solution when the
constraint binds, for each 𝑖, is

E𝑡 [𝑢′(𝑊𝑡+1)(𝑅𝑖
𝑡+1 − 𝑅𝑓

𝑡 )] + 𝜆𝑡ESG𝑖
𝑡 = 0 (3.4)

or

E𝑡 [𝑟𝑖
𝑡+1] = −𝜆𝑡

E𝑡 [𝑢′(𝑊𝑡+1)]
⋅ ESG𝑖

𝑡 − Cov𝑡 [
𝑢′(𝑊𝑡+1)

E𝑡 [𝑢′(𝑊𝑡+1)]
, 𝑟𝑖

𝑡+1] , (3.5)

where 𝑟𝑖
𝑡+1 is the excess return 𝑅𝑖

𝑡+1 − 𝑅𝑓
𝑡 . Then, the market, defined by

portfolio weights 𝜔𝑖
𝑡 that ensure ∑𝐼

𝑖=1 𝜔𝑖
𝑡 = 1, has expected excess return

E𝑡 [𝑟𝑀
𝑡+1] = −𝜆𝑡

E𝑡 [𝑢′(𝑊𝑡+1)]
ESG𝑀

𝑡 − Cov𝑡 [
𝑢′(𝑊𝑡+1)

E𝑡 [𝑢′(𝑊𝑡+1)]
, 𝑟𝑀

𝑡+1] , (3.6)

where ESG𝑀 is the ESG score per dollar of market holding. The risk-free,
not impacting the sustainability constraint is not determined differently from
more standard frameworks.

Taking the approximation 𝑢′(𝑊𝑡+1) ≈ 𝑢′(𝑊𝑡)𝑅
𝑓
𝑡 + 𝑢″(𝑊𝑡)(𝑅𝑀

𝑡+1 − 𝑅𝑓
𝑡 ),

𝑢′(𝑊𝑡+1)
E𝑡[𝑢′(𝑊𝑡+1)] can be expressed as 𝑎𝑡 − 𝑏𝑡 ⋅ 𝑟𝑀

𝑡+1, and from (3.6) the SDF loading
𝑏𝑡 can be derived as

𝑏𝑡 =
E𝑡 [𝑟𝑀

𝑡+1] + 𝜆𝑡
E𝑡[𝑢′(𝑊𝑡+1)]ESG𝑀

𝑡

Var𝑡 [𝑟𝑀
𝑡+1]

. (3.7)

Then, any asset abides by the following relation

E𝑡 [𝑟𝑖
𝑡+1] = −𝜆𝑡

E𝑡 [𝑢′(𝑊𝑡+1)]
⋅ ESG𝑖

𝑡 + (E𝑡 [𝑟𝑀
𝑡+1] + 𝜆𝑡

E𝑡 [𝑢′(𝑊𝑡+1)]
ESG𝑀

𝑡 )
Cov𝑡 [𝑟𝑀

𝑡+1, 𝑟𝑖
𝑡+1]

Var𝑡 [𝑟𝑀
𝑡+1]

,

(3.8)

or, more simply,

E𝑡 [𝑟𝑖
𝑡+1] = �̃�𝑡 ( ESG𝑖

𝑡

ESG𝑀
𝑡

− 𝛽𝑖
𝑡) + 𝛽𝑖

𝑡 ⋅ E𝑡 [𝑟𝑀
𝑡+1] . (3.9)
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�̃�𝑡 = −𝜆𝑡⋅ESG𝑀
𝑡

E𝑡[𝑢′(𝑊𝑡+1)] is a negative constant whose magnitude increases the more
constrained the agent is and the higher market ESG score is. The key
implication is that an expected excess return is proportional to the respective
CAPM beta, as in the standard CAPM, and the difference between the
‘ESG-intensity’ ESG𝑖

𝑡/ESG𝑀
𝑡 and the beta. This comes from the fact that

riskier assets, having greater discounts, provide less ESG-weighted capital per
unit of cash-flows claimed by holding that asset. For example, if two assets
have identical expected cash-flows and ESG ratings but different betas, the
cash-flows of one with the lower beta will be discounted less and have a higher
price, thus helping alleviating the constraint more than the other one.

2.1 Responsible portfolios

Let us consider a portfolio that tries to isolate the spread related to sus-
tainability without having any exposure to market risk: arguably, the most
intuitive way would be to hold a portfolio 𝑆 of more sustainable stocks, fi-
nancing this by shorting a portfolio 𝑁𝑆 of less sustainable ones and hedge
the resulting sensitivity to the market by holding it in an opposite proportion.
The expected excess return of this ‘sustainability’ portfolio, 𝑟𝑆𝑈𝑆, would be

E [𝑟𝑆𝑈𝑆] = E𝑡 [𝑟𝑆] − E𝑡 [𝑟𝑁𝑆] − (𝛽𝑆 − 𝛽𝑁𝑆)E𝑡 [𝑟𝑀] (3.10)

= �̃� [( ESG𝑆
𝑡

ESG𝑀
𝑡

− ESG𝑁𝑆
𝑡

ESG𝑀
𝑡

) − (𝛽𝑆 − 𝛽𝑁𝑆)] . (3.11)

This portfolio effectively has no exposure to the market, the only source of
risk here, but its return will reflect the sustainability spread �̃� only if the risk
is distributed evenly across assets with different sustainability. This means
that testing the existence of any premium associated to characteristics that
can be linked to constraints as those defined in this model on a generic ESG
score, cannot rely on plain univariate-sort portfolios, even with controls for
risk exposure.5 If the beta of more sustainable stocks is sufficiently higher
than that of less sustainable ones, a portfolio like this would even get to show
positive average returns, despite the multiplier on sustainability definitely
being negative.

The 𝑆𝑈𝑆 portfolio effectively has 0 beta, so it might not be obvious
from (3.9) why betas’ differential appears in (3.11). The reason is that the
ESG intensity of this portfolio ESG𝑆𝑈𝑆

𝑡
ESG𝑀

𝑡
is not simply ESG𝑆

𝑡
ESG𝑀

𝑡
− ESG𝑁𝑆

𝑡
ESG𝑀

𝑡
, but is

augmented by the ESG intensity of the market portfolio, which is 1, times
the position in it, which depends on the 𝑆 and 𝑁𝑆 betas’ differential.

5This has been done for example in Hsu et al. (2020) and Yang (2022).
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2.2 Hedging sustainability concerns risk

It follows that risk also impacts how more sustainable assets hedge sustainabil-
ity concerns shocks too. This can be seen decomposing unexpected returns into
changes to expected discount rates and to expected cash-flows growth rates,
as in Campbell (1996). Making the simplifying assumption of independence
of aggregate sustainability concern shocks with market returns expectations
and firm 𝑖 fundamentals, the contemporaneous relation between an assets
return and sustainability concerns is characterized by

𝜕(𝑟𝑖
𝑡 − E𝑡−1 [𝑟𝑖

𝑡])
𝜕 (𝜆𝑡 − E𝑡−1[𝜆𝑡])

∝ ( ESG𝑖
𝑡

ESG𝑀
𝑡

− 𝛽𝑖
𝑡) . (3.12)

Specifically, for the 𝑆𝑈𝑆 portfolio, this is

𝜕(𝑟𝑆𝑈𝑆
𝑡 − E𝑡−1 [𝑟𝑖

𝑡])
𝜕 (𝜆𝑡 − E𝑡−1[𝜆𝑡])

∝ ( ESG𝑆
𝑡

ESG𝑀
𝑡

− ESG𝑁𝑆
𝑡

ESG𝑀
𝑡

) − (𝛽𝑆 − 𝛽𝑁𝑆), (3.13)

meaning that hedging the risk of a high-minus-low sustainable portfolio can be
considered an hedge only as long as more sustainable assets are not significantly
riskier than lowly or non-sustainable. This is a fact that has relevance for the
future as the risk pattern can change over time. For example, being R&D
generally considered a risky activity, as more sustainable firm were to become
the ones closer to the technology frontier and in need of innovation, as it is
happening with the automotive sector, then, the sustainable portfolio can
potentially become a terrible hedge for sustainability concerns.6

A portfolio that is market- and sustainability-neutral allows to study
this effect explicitly. Consider a portfolio investing $ 1 in the 𝑆 port-
folio, shorting ESG𝑆/ESG𝑁𝑆 of the 𝑁𝑆 portfolio, funding this position
shorting 1 − ESG𝑆/ESG𝑁𝑆 of a risk-free asset and hedging it shorting $
𝛽𝑆 − ESG𝑆/ESG𝑁𝑆𝛽𝑁𝑆 of the market. The expected returns of this ‘Betting
Against Sustainability’ (BAS) portfolio is

E𝑡 [𝑟𝐵𝐴𝑆
𝑡+1 ] = E𝑡 [𝑟𝑆] − ESG𝑆

ESG𝑁𝑆E𝑡 [𝑟𝑁𝑆] − (𝛽𝑆 − ESG𝑆

ESG𝑁𝑆 𝛽𝑁𝑆)E𝑡 [𝑟𝑀] (3.14)

= �̃�𝑡 (𝛽𝑁𝑆
𝑡 − 𝛽𝑆

𝑡 ) (3.15)

The, the contemporaneous relation between BAS’ returns and sustainability
concerns shocks is naturally

𝜕(𝑟𝐵𝐴𝑆
𝑡 − E𝑡−1 [𝑟𝐵𝐴𝑆

𝑡 ])
𝜕 (�̃�𝑡 − E𝑡−1[�̃�𝑡])

∝ (𝛽𝑆 − 𝛽𝑁𝑆). (3.16)

6See footnote 1.
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This is helpful in identifying the impact that risk has on sustainability spreads.

3 A more realistic model

3.1 With sustainable bonds

Consider the presence of a bond that contributes to the required sustainability
of the portfolio, such as green bonds contribute to environmental sustainability,
which is indexed as 𝑖 = 𝐺𝐵. Then,

𝑊𝑡 =
𝐼

∑
𝑖=1

𝑥𝑡𝑃 𝑖
𝑡 + 𝑥0

𝑡 + 𝑥𝐺𝐵
𝑡 (3.17)

𝑊𝑡+1 =
𝐼

∑
𝑖=1

𝑥𝑡(𝑃 𝑖
𝑡+1 + 𝐷𝑖

𝑡+1) + 𝑥0
𝑡 𝑅𝑓

𝑡 + 𝑥𝐺𝐵
𝑡 𝑅𝑓,𝐺𝐵

𝑡 , (3.18)

while the sustainability requirement becomes

𝐼

∑
𝑖=1

(𝑥𝑖
𝑡𝑃 𝑖

𝑡 ) ⋅ ESG𝑖
𝑡 + 𝑥𝐺𝐵

𝑡 ⋅ ESG𝐺𝐵
𝑡 > 𝑞𝑡 ⋅ 𝑊𝑡. (3.19)

The first-order condition related to the holdings of the sustainable risk-free
asset, which can be obtained from a Lagrangian formed in a similar way to the
previous section, implies the spread on the sustainable bond being determined
as

𝑅𝑓,𝐺𝐵
𝑡 − 𝑅𝑓

𝑡 = − 𝜆𝑡ESG𝐺𝐵
𝑡

E𝑡 [𝑢′(𝑊𝑡+1)]
, (3.20)

which is non-positive. The optimality condition for the risky asset 𝑖, combined
with the previous condition, results in a more explicit pricing condition:

E𝑡 [𝑟𝑖
𝑡+1] = ESG𝑖

𝑡

ESG𝐺𝐵
𝑡

⋅ 𝑟𝑓,𝐺𝐵
𝑡 − Cov𝑡 [

𝑢′(𝑊𝑡+1)
E𝑡 [𝑢′(𝑊𝑡+1)]

, 𝑟𝑖
𝑡+1] , (3.21)

where 𝑟𝑖
𝑡+1 is the excess return 𝑅𝑖

𝑡+1 − 𝑅𝑓
𝑡 . This essentially deviates from a

standard formulation for the term multiplying the sustainable bond rate.
In a CAPM world, this translates to

E𝑡 [𝑟𝑖
𝑡+1] = 𝑟𝑓,𝐺𝐵

𝑡
ESG𝑀

𝑡

ESG𝐺𝐵
𝑡

( ESG𝑖
𝑡

ESG𝑀
𝑡

− 𝛽𝑖) + 𝛽𝑖E𝑡 [𝑟𝑀
𝑡+1] , (3.22)

where 𝑟𝑓,𝐺𝐵
𝑡

ESG𝑀
𝑡

ESG𝐺𝐵
𝑡

essentially provides a proxy of �̃�𝑡. ‘Sustainable’ bonds are
essentially available for environmental sustainability, but it still useful as it
allows an easier empirical test. It follows that the expected returns of a plain
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high-minus-low sustainability portfolio, previously addressed as ‘SUS’ and
determined by (3.11), is now

E [𝑟𝑆𝑈𝑆] = 𝑟𝑓,𝐺𝐵
𝑡

ESG𝑀
𝑡

ESG𝐺𝐵
𝑡

[( ESG𝑆
𝑡

ESG𝑀
𝑡

− ESG𝑁𝑆
𝑡

ESG𝑀
𝑡

) − (𝛽𝑆 − 𝛽𝑁𝑆)] (3.23)

and the returns of the sustainability- and market-neutral BAS portfolio,
previously defined by (3.14), amounts now to

E [𝑟𝐵𝐴𝑆] = 𝑟𝑓,𝐺𝐵
𝑡

ESG𝑀
𝑡

ESG𝐺𝐵
𝑡

(𝛽𝑁𝑆 − 𝛽𝑆). (3.24)

3.2 Factor-zoo world

Given the remarkable amount of evidence in favour of multi-factor models,
it is useful to consider the case in which the marginal utility is affected by
risks other than undiversifiable variance. Rearranging (3.5) and (3.6), one
can obtain a broader formulation of the pricing condition that any asset has
to abide by:

E𝑡 [𝑟𝑖
𝑡+1] = �̃�𝑡 ( ESG𝑖

𝑡

ESG𝑀
𝑡

−
Cov𝑡 [𝑢′(𝑊𝑡+1), 𝑟𝑖

𝑡+1]
Cov𝑡 [𝑢′(𝑊𝑡+1), 𝑟𝑀

𝑡+1]
) +

Cov𝑡 [𝑢′(𝑊𝑡+1), 𝑟𝑖
𝑡+1]

Cov𝑡 [𝑢′(𝑊𝑡+1), 𝑟𝑀
𝑡+1]

E𝑡 [𝑟𝑀
𝑡+1] ,

(3.25)

or, more simply,

E𝑡 [𝑟𝑖
𝑡+1] = �̃�𝑡 ( ESG𝑖

𝑡

ESG𝑀
𝑡

− 𝛾𝑖
𝑡) + 𝛾𝑖

𝑡 ⋅ E𝑡 [𝑟𝑀
𝑡+1] . (3.26)

This follows closely what was previously derived, just with a broader measure
of risk, 𝛾𝑖

𝑡 = Cov𝑡[𝑢′(𝑊𝑡+1),𝑟𝑖
𝑡+1]

Cov𝑡[𝑢′(𝑊𝑡+1),𝑟𝑀
𝑡+1] . While 𝑢′(𝑊𝑡+1) is empirically not easy to

identify, all of the asset pricing literature provides alternatives, one of which
is its projection on the returns, as in the similar application in Franceschini
(2023).

This implies

E [𝑟𝑆𝑈𝑆] = �̃� [( ESG𝑆
𝑡

ESG𝑀
𝑡

− ESG𝑁𝑆
𝑡

ESG𝑀
𝑡

) − (𝛾𝑆 − 𝛾𝑁𝑆)] (3.27)

and

E [𝑟𝐵𝐴𝑆] = �̃�(𝛾𝑁𝑆 − 𝛾𝑆). (3.28)

It also naturally extends to the case where sustainable bonds are available,
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simply plugging 𝑟𝑓,𝐺𝐵
𝑡

ESG𝑀
𝑡

ESG𝐺𝐵
𝑡

for �̃�𝑡.

4 A look at ESG constraints

4.1 Test assets

The analysis focuses on the US stock market; monthly data on stocks is
provided by CRSP. The time span of the analysis is ultimately determined by
the yearly ESG data, which is from Refinitiv. The series starts in 2002, but
it had a remarkable increase in coverage in 2003, which is when the analysis
starts from, ending in 2021. Table 3.3 displays the fraction of the US stock
market coverage by the ESG measure. By no means the analysis has to be
confined to this measure, indeed it will not be, moving on, as many more
sustainability measures can be associated to constraints in portfolio formation.

The test assets pool is formed by portfolios of stocks sorted by characteris-
tics that are known to generate dispersion in average returns and are widely
used in the literature. Three of these are based on market capitalization (size),
three on book-to-market (B/M) equity ratio, three on the cumulated return
over the 11 months ending a month before (mom), and three portfolios based
on the ESG score. Finally, the SUS portfolio and the market are added, for a
total of 14 test assets. The number of portfolios per characteristic is chosen to
ensure a minimum of approximately 60 firms per portfolio, given the limited
number of firms covered by the ESG measure. Size and B/M portfolios are
formed based on NYSE capitalization quantiles. All of the portfolios are
value-weighted to obtain the portfolios’ returns and portfolios’ ESG score at
every date. Statistics of the portfolios are in table 3.1.

A clear pattern, obviously, emerges in the esg-sorted portfolio as well as in
the size portfolios as well as in the B/M, where ESG scores increase with size
and decrease with B/M. Momentum portfolios instead appears to have no
meaningful relation to esg scores. Returns mostly conform with the literature,
with returns being lower for greater size portfolios and lower B/M ratios.
Momentum portfolios show a more bizarre behaviour, with worse performing
assets having higher returns, although the unexplained returns by CAPM
increase with momentum as expected. More sustainable assets, as expected
from theory have lower returns, reflected in the negative average return of the
SUS portfolio. To have a first sight of the relation between sustainability and
risk, figure 3.1 charts the relative ESG scores and 4-year rolling window of
the high- and low-sustainability portfolios. Most of the variation comes from
the beta of the least portfolio, ‘non-sus’, but the difference in risk reached at
most half the difference in relative ESG scores, up to 2022.
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Figure 3.1: ESG intensity and 4-year rolling window of high- and low-sustainability
portfolios, both reported on the vertical axis.

4.2 Risk factors

The scaled marginal utility is assumed to be linear in a set of risk factors 𝐟, i.e.
𝑢′(𝑊𝑡+1)

E[𝑢′(𝑊𝑡+1)] = 1 − 𝐟 ′
𝑡 𝐛. Four sets of factors are used: (1) market factor only; (2)

the three factors of Fama and French (1993), which include the market, named
‘FF3’; (3) the market and the first two principal components of the test assets,
orthogonalized with respect to the market to avoid redundant information,
named ‘F(3)’; (4) the market and six principal components, named ‘F(7)’.
The number of factors are chosen with two criteria: match the size of FF3
for comparison and not including components that explain less than 5% of
returns variance given the cumulative variance explained being around 90%
already. The scree plot of the Principal component analysis is in figure 3.2.
More sets can be tested, with a special interest in including state variables
that capture sustainability-relevant concerns.

4.3 Pricing results

The main condition of interest is (3.5), which traslates into the moment
condition

E [𝑟𝑖
𝑡] − 𝑎 ⋅ ESG𝑖

𝑡−1 − E [(𝐟 ′
𝑡 𝐛)(𝑟𝑖

𝑡 − E [𝑟𝑖
𝑡])] = 0, (3.29)

where 𝑎 return the unconditional expectations of �̃� and 𝐟 are the factors
spanning the scaled marginal utility with loadings 𝐛, which are to be estimated
together with 𝑎. The covariances are then estimated contemporaneously
exploiting the moment

𝑠𝑖 + E [(𝐟 ′
𝑡 𝐛)(𝑟𝑖

𝑡 − E [𝑟𝑖
𝑡])] = 0, (3.30)
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Figure 3.2: Scree plot of principal component analysis. On the horizontal axis the number
of component considered, on the vertical axis the share of variance explained by the relative
component (solid line) and the cumulative share of variance explained (dotted line). The
green vertical line marks the 2nd component while the red one the 6th.

where 𝑠𝑖 is the empirical counterpart of Cov [ 𝑢′(𝑊𝑡+1)
E[𝑢′(𝑊𝑡+1)] , 𝑟𝑖

𝑡+1], employed to
obtain estimates of the 𝛾s. The estimation results are in table 3.2.

The unconditional sustainability spread E [�̃�] = 𝑎 ⋅ E [ESG𝑀
𝑡 ] is negative

and slightly significant only for ‘intermediately’ complex models, but not in all
of them. The market factor is always positive, and positive in all estimations
apart from the biggest model, F(7). Anyway, all the models’ validity is
rejected by the J-test. Adding factors beyond the market appears to have an
effect only for the most complex model of all, F(7), which has remarkably
lower Mean Absolute Pricing Errors (MAPE) than the other models. The
intermediate models show no material improvement on the single factor model
overall, although the SUS portfolio gets priced better, in terms of MAPE.
This results overall suggest that this model does not describe reality very
accurately; it is likely that the measure of ESG employed here is not one that
is related to strongly binding constraints. Nonetheless, estimates provide weak
support towards the existence of a negative spread related to sustainability.

To observe the impact of risk on univariate sustainability portfolios such
as SUS, the 𝛾s implied by the previous estimation are computed and reported
in table 3.3. Specifically, the differential in ESG intensity is

ΔESG𝑡 = ESG𝑆
𝑡

ESG𝑀
𝑡

− ESG𝑁𝑆
𝑡

ESG𝑀
𝑡

(3.31)
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Table 3.2: cross-sectional pricing estimation, HAC standard errors in parenthesis. Coverage
2004-2021.

Mkt only FF3 F(3) F(7)

E [�̃�] −5.753 −8.844∗ −5.146∗ 1.717
(4.023) (4.810) (3.053) (3.768)

Market factors 0.302∗∗ 0.514∗∗ 0.274∗∗ 0.142
(0.131) (0.224) (0.118) (0.114)

J-test 94.3∗∗∗ 105.5∗∗∗ 100.2∗∗∗ 97.9∗∗∗

MAPE 2.431 2.309 2.446 0.831
HML a.p.e. 3.479∗∗ 1.864 2.187 −1.392

(1.575) (1.701) (1.494) (2.217)
∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1

and the differential in risks is

Δ𝛾 = 𝛾𝑆 − 𝛾𝑁𝑆. (3.32)

It can be seen that the estimates, read with (3.27), do not suggest risk affecting
significantly how the spread �̃� gets reflected into E [𝑟𝑆𝑈𝑆]: it is unlikely that
Δ𝛾 > ΔESG, even though it can be seen that considering more risks results
in higher Δ𝛾. More accurate analysis regarding the impact of risk through
the sustainability channel would stem from exploiting (3.28), but the previous
results suggest that other constrained-characteristics, such as carbon emissions,
might be better case studies for the mechanisms highlighted in this paper.

5 Conclusion

Assessing how sustainability affects asset prices, and thus investors’ welfare,
is key to better address current generational challenges. It is shown that a
constraint on the average score of the portfolio held by an agent that binds
induces a negative spread on the risk premium of an asset that is proportional
to its sustainability score. In other words, the sustainability provided by the
asset is appreciated by the agent. The spread, however, is not only function of
how constrained the agent is or how sustainable the asset is, but also of how
risky the asset is. This happens because it is always possible to reach the same
risk of an asset by leveraging risk factors portfolios, which provides their own
sustainability scores; then, an asset’s sustainability should be remunerated
only if higher than this equivalently-levered sustainability score. This in
turn affects the returns of naive portfolios based on univariate sorting on
sustainability, which can be used to capitalize the spread or to hedge shocks
to the constraint, i.e. sustainability concerns. Empirical analysis conducted
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Table 3.3: ΔESG and Δ𝛾. In parenthesis HAS standard errors. Standard errors of Δ𝛾 are
obtained via Delta method from the covariances estimates from the GMM step.

ΔESG Δ𝛾

Market FF3 F(3) F(4)

0.855∗∗∗ −0.165∗∗ 0.094 −0.127 −0.637
(0.017) (0.067) (0.135) (0.165) (0.791)

∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1

on an ESG measure covering US data is not conclusive regarding the existence
of such a sustainability premium in the first place and that risk actually plays
a relevant role either. Anyway, this analysis can be performed on all the other
sustainability-related measures and many other countries. Further, was the
risk delta not to be found significant at current times, does not mean that it
will not be in the future as the economy structure evolves.
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A Derivations

The Lagrangian related to the problem with sustainable bonds is

ℒ𝑡 = E𝑡 [𝑢 (𝑊𝑡𝑅
𝑓
𝑡 +

𝐼

∑
𝑖=1

𝑥𝑡(𝑃 𝑖
𝑡+1 + 𝐷𝑖

𝑡+1 − 𝑃 𝑖
𝑡 𝑅𝑓

𝑡 ) + 𝑥𝐺𝐵
𝑡 (𝑅𝑓,𝐺𝐵

𝑡 − 𝑅𝑓
𝑡 ))]

+ 𝜆𝑡 {
𝐼

∑
𝑖=1

(𝑥𝑖
𝑡𝑃 𝑖

𝑡 ) ⋅ ESG𝑖
𝑡 + 𝑥𝐺𝐵

𝑡 ⋅ ESG𝐺𝐵
𝑡 − 𝑞𝑡 ⋅ 𝑊𝑡}

.

(3.33)
The resulting first order conditions are

E𝑡 [𝑢′(𝑊𝑡+1)] (𝑅𝑓,𝐺𝐵
𝑡 − 𝑅𝑓

𝑡 ) + 𝜆𝑡ESG𝐺𝐵
𝑡 = 0 (3.34)

for the sustainable bond, and

E𝑡 [𝑢′(𝑊𝑡+1)(𝑅𝑖
𝑡+1 − 𝑅𝑓

𝑡 )] + 𝜆𝑡ESG𝑖
𝑡 = 0 (3.35)

for the risky asset 𝑖.
Combining sustainable bond and common asset conditions:

E𝑡 [𝑢′(𝑊𝑡+1)(𝑅𝑖
𝑡+1 − 𝑅𝑓

𝑡 )]
ESG𝑖

𝑡
=

E𝑡 [𝑢′(𝑊𝑡+1)] (𝑅𝑓,𝐺𝐵
𝑡 − 𝑅𝑓

𝑡 )
ESG𝐺𝐵

𝑡
(3.36)

E𝑡 [𝑢′(𝑊𝑡+1)(𝑅𝑖
𝑡+1 − 𝑅𝑓

𝑡 )] = ESG𝑖
𝑡

ESG𝐺𝐵
𝑡

E𝑡 [𝑢′(𝑊𝑡+1)] (𝑅𝑓,𝐺𝐵
𝑡 − 𝑅𝑓

𝑡 ). (3.37)

So,

E𝑡 [𝑟𝑖
𝑡+1] = ESG𝑖

𝑡

ESG𝐺𝐵
𝑡

⋅ 𝑟𝑓,𝐺𝐵
𝑡 − Cov𝑡 [

𝑢′(𝑊𝑡+1)
E𝑡 [𝑢′(𝑊𝑡+1)]

, 𝑟𝑖
𝑡+1] . (3.38)

Then, the market has expected excess return

E𝑡 [𝑟𝑀
𝑡+1] =

𝐼

∑
𝑖=1

𝜔𝑖
𝑡 ⋅ E𝑡 [𝑟𝑖

𝑡+1] (3.39)

= ESG𝑀
𝑡

ESG𝐺𝐵
𝑡

⋅ 𝑟𝑓,𝐺𝐵
𝑡 − Cov𝑡 [

𝑢′(𝑊𝑡+1)
E𝑡 [𝑢′(𝑊𝑡+1)]

, 𝑟𝑀
𝑡+1] . (3.40)
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Assuming 𝑢′(𝑊𝑡+1)
E𝑡[𝑢′(𝑊𝑡+1)] = 𝑎𝑡 − 𝑏𝑡 ⋅ 𝑟𝑀

𝑡+1,

E𝑡 [𝑟𝑖
𝑡+1] = ESG𝑖

𝑡

ESG𝐺𝐵
𝑡

⋅ 𝑟𝑓,𝐺𝐵
𝑡 + 𝑏𝑡Cov𝑡 [𝑟𝑀

𝑡+1, 𝑟𝑖
𝑡+1] (3.41)

E𝑡 [𝑟𝑀
𝑡+1] = ESG𝑀

𝑡

ESG𝐺𝐵
𝑡

⋅ 𝑟𝑓,𝐺𝐵
𝑡 + 𝑏𝑡Var𝑡 [𝑟𝑀

𝑡+1] . (3.42)

Then, 𝑏𝑡 =
E𝑡[𝑟𝑀

𝑡+1]− ESG𝑀
𝑡

ESG𝐺𝐵
𝑡

⋅𝑟𝑓,𝐺𝐵
𝑡

Var𝑡[𝑟𝑀
𝑡+1] and

E𝑡 [𝑟𝑖
𝑡+1] = ESG𝑖

𝑡

ESG𝐺𝐵
𝑡

⋅ 𝑟𝑓,𝐺𝐵
𝑡 + ⎛⎜

⎝

E𝑡 [𝑟𝑀
𝑡+1] − ESG𝑀

𝑡
ESG𝐺𝐵

𝑡
⋅ 𝑟𝑓,𝐺𝐵

𝑡

Var𝑡 [𝑟𝑀
𝑡+1]

⎞⎟
⎠

Cov𝑡 [𝑟𝑀
𝑡+1, 𝑟𝑖

𝑡+1]

(3.43)

= ESG𝑖
𝑡

ESG𝐺𝐵
𝑡

⋅ 𝑟𝑓,𝐺𝐵
𝑡 + (E𝑡 [𝑟𝑀

𝑡+1] − ESG𝑀
𝑡

ESG𝐺𝐵
𝑡

⋅ 𝑟𝑓,𝐺𝐵
𝑡 ) 𝛽𝑖 (3.44)

= 𝑟𝑓,𝐺𝐵
𝑡

ESG𝐺𝐵
𝑡

(ESG𝑖
𝑡 − ESG𝑀

𝑡 𝛽𝑖) + 𝛽𝑖E𝑡 [𝑟𝑀
𝑡+1] (3.45)

= 𝑟𝑓,𝐺𝐵
𝑡

ESG𝑀
𝑡

ESG𝐺𝐵
𝑡

( ESG𝑖
𝑡

ESG𝑀
𝑡

− 𝛽𝑖) + 𝛽𝑖E𝑡 [𝑟𝑀
𝑡+1] (3.46)

For a factor-zoo with a sustainable bond:

E𝑡 [𝑟𝑖
𝑡+1] − ESG𝑖

𝑡
ESG𝐺𝐵

𝑡
𝑟𝑓,𝐺𝐵

𝑡

Cov𝑡 [ 𝑢′(𝑊𝑡+1)
E𝑡[𝑢′(𝑊𝑡+1)] , 𝑟𝑖

𝑡+1]
= −1 =

E𝑡 [𝑟𝑀
𝑡+1] − ESG𝑀

𝑡
ESG𝐺𝐵

𝑡
𝑟𝑓,𝐺𝐵

𝑡

Cov𝑡 [ 𝑢′(𝑊𝑡+1)
E𝑡[𝑢′(𝑊𝑡+1)] , 𝑟𝑀

𝑡+1]
, (3.47)

so

E𝑡 [𝑟𝑖
𝑡+1] − ESG𝑖

𝑡
ESG𝐺𝐵

𝑡
𝑟𝑓,𝐺𝐵

𝑡

Cov𝑡 [ 𝑢′(𝑊𝑡+1)
E𝑡[𝑢′(𝑊𝑡+1)] , 𝑟𝑖

𝑡+1]
=

E𝑡 [𝑟𝑀
𝑡+1] − ESG𝑀

𝑡
ESG𝐺𝐵

𝑡
𝑟𝑓,𝐺𝐵

𝑡

Cov𝑡 [ 𝑢′(𝑊𝑡+1)
E𝑡[𝑢′(𝑊𝑡+1)] , 𝑟𝑀

𝑡+1]
(3.48)

E𝑡 [𝑟𝑖
𝑡+1] − ESG𝑖

𝑡

ESG𝐺𝐵
𝑡

𝑟𝑓,𝐺𝐵
𝑡 =

Cov𝑡 [ 𝑢′(𝑊𝑡+1)
E𝑡[𝑢′(𝑊𝑡+1)] , 𝑟𝑖

𝑡+1]

Cov𝑡 [ 𝑢′(𝑊𝑡+1)
E𝑡[𝑢′(𝑊𝑡+1)] , 𝑟𝑀

𝑡+1]
(E𝑡 [𝑟𝑀

𝑡+1] − ESG𝑀
𝑡

ESG𝐺𝐵
𝑡

𝑟𝑓,𝐺𝐵
𝑡 )

(3.49)

E𝑡 [𝑟𝑖
𝑡+1] = ESG𝑖

𝑡

ESG𝐺𝐵
𝑡

𝑟𝑓,𝐺𝐵
𝑡 +

Cov𝑡 [𝑢′(𝑊𝑡+1), 𝑟𝑖
𝑡+1]

Cov𝑡 [𝑢′(𝑊𝑡+1), 𝑟𝑀
𝑡+1]

(E𝑡 [𝑟𝑀
𝑡+1] − ESG𝑀

𝑡

ESG𝐺𝐵
𝑡

𝑟𝑓,𝐺𝐵
𝑡 )

(3.50)

E𝑡 [𝑟𝑖
𝑡+1] = 𝑟𝑓,𝐺𝐵

𝑡

ESG𝐺𝐵
𝑡

(ESG𝑖
𝑡 − ESG𝑀

𝑡 𝛾𝑖
𝑡) + 𝛾𝑖

𝑡E𝑡 [𝑟𝑀
𝑡+1] (3.51)
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E𝑡 [𝑟𝑖
𝑡+1] = 𝑟𝑓,𝐺𝐵

𝑡
ESG𝑀

𝑡

ESG𝐺𝐵
𝑡

( ESG𝑖
𝑡

ESG𝑀
𝑡

− 𝛾𝑖
𝑡) + 𝛾𝑖

𝑡 ⋅ E𝑡 [𝑟𝑀
𝑡+1] .

(3.52)

B Additional tables and figures
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Figure 3.3: Refinitiv ESG scores coverage of the US market stocks in CRSP monthly file.
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