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Abstract

In this work, we explore and demonstrate the potential formodeling and classi-
fication using quantile-based distributions, which are random variables defined
by their quantile function.
In the first part we formalize a least squares estimation framework for the class
of linear quantile functions, leading to unbiased and asymptotically normal es-
timators. Among the distributions with a linear quantile function, we focus on
the flattened generalized logistic distribution (fgld), which offers a wide range
of distributional shapes. A novel naïve-Bayes classifier is proposed that utilizes
the fgld estimated via least squares, and through simulations and applications,
we demonstrate its competitiveness against state-of-the-art alternatives. The
least squares estimator also enables asymptotic hypothesis tests that can serve
as a variable selection method in this classification algorithm.
In the second part we consider the Bayesian estimation of quantile-based dis-
tributions. Despite being computationally expensive, modern computational
tools now allow routine implementation. We introduce a factormodel with in-
dependent latent variables, which are distributed according to the fgld. Similar
to the independent factor analysis model, this approach accommodates flexi-
ble factor distributions while using fewer parameters. The model is presented
within a Bayesian framework, anMCMC algorithm for its estimation is devel-
oped, and its effectiveness is illustrated with data coming from the European
Social Survey.
The third part focuses on depth functions, which extend the concept of quan-
tiles to multivariate data by imposing a center-outward ordering in the multi-
variate space. We investigate the recently introduced integrated rank-weighted
(IRW) depth function, which is based on the distribution of random spherical
projections of themultivariate data. This depth function proves to be computa-
tionally efficient and to increase its flexibility we propose different methods to
explicitly model the projected univariate distributions. Its usefulness is shown
in classification tasks: the maximum depth classifier based on the IRW depth
is proven to be asymptotically optimal under certain conditions, and classifiers
based on the IRW depth are shown to perform well in simulated and real data
experiments.
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Chapter 1

Introduction

Quantile-based distributions provide the quantile of a random variable using an
analytical expression, which corresponds to the inverse of the cumulative dis-
tribution function. Utilizing quantile functions, as opposed to classical density
functions, offers the advantage of constructing flexible distributional families
using only a few parameters. Numerous such distributions have been proposed
in the statistical literature, often by extending common distributions, such as
the g-and-k distribution, which introduces skewness and kurtosis parameters
to the normal distribution. However, a significant drawback of quantile-based
distributions is the increased computational complexity associated with con-
ventional estimation methods, such as maximum likelihood or posterior in-
ference. Nevertheless, recent advances in Bayesian estimation have made use
of increased computing power and improved sampling algorithms, partially
addressing this challenge, though it comes with a computational burden for
high-dimensional data.

The first contribution of this thesis is the development of a least squares
method for estimating univariate quantile-based distributions, specifically those
which are linear in their parameters. Our focus centered on the flattened gen-
eralized logistic distribution (fgld), which can be cast in the class of linear quan-
tile functions, thus offering closed-form estimators. It is characterized by four
parameters, making it highly versatile in capturing a wide range of data shapes,
including skewed or flattened distributions. The resulting estimators are unbi-
ased and asymptotically normal, enabling the derivation of a testing procedure.
Furthermore, based on the theoretical insights regarding the fgld distribution,
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we proposed a novel naïve-Bayes classifier that utilizes this quantile-based dis-
tribution instead of the conventional Gaussian density. In empirical studies,
the naïve-Bayes with the fgld demonstrated good performance, showcasing its
potential as a promising alternative to existing classifiers. Moreover, the appli-
cation of the proposed testing procedure led to valuable by-products, such as
strategies for variable importance and selection, offering practical insights for
the data analysis process.

In the second part of this thesis, our focus shifted towards the development
of a factor model with independent latent variables distributed according to
univariate quantile-based distributions; in particular we again utilized the fgld.
This model shares similarities with the independent factor analysis, wherein
the components are independently distributed as mixtures of Gaussians. How-
ever, our proposed model proves to be more suitable for effectively describing
data distributions with skewness or flattened central regions. Notably, the
model can be easily estimated within a Bayesian framework, assuming weakly
informative priors, making it a convenient and powerful approach. Through-
out this line of research, we thoroughly investigated identifiability conditions
and model selection strategies. The effectiveness of the model is illustrated on
real-world data from the European Social Survey.

The extension of the quantile function and quantiles to multivariate sce-
narios has garnered significant attention, with numerous proposals and the-
oretical constructs, among which the concept of depth functions stands out.
Depth functions impose a center-outward ordering of the multivariate space
and various definitions have been studied extensively and compared according
to their properties. In the third part of this thesis, we focused on the recently
introduced integrated rank-weighted (IRW) depth function, part of the class
of the integrated depth functions, which can be seen as the expectation of
univariate depths along infinite uniformly distributed random directions. We
extend the definition of the depth function, by considering the estimation of
univariate cumulative distribution functions, needed for its empirical compu-
tation, via parametric or nonparametric models, with the quantile-based fgld
being a valuable option. This depth definition offers both computational fea-
sibility and flexibility, which in general do not go hand in hand for the most

4



famous depth functions. We show that its only missing property to qualify
as a so-called statistical depth function, affine invariance, is gained when the
data is sphered. We also highlight that the Mahalanobis depth can be seen as
an integrated depth function when working with sphered data. Furthermore,
we prove that the depth completely characterizes the probability distribution
of the data and it gives rise to nested, though not necessarily convex, contours.
Of particular significance is the application of depth functions to classification
tasks. In this thesis, we prove that the maximum-depth classifier based on the
IRW depth is asymptotically optimal under certain conditions, and we show its
competitiveness against alternative algorithms in both simulated and real data
experiments, where the IRW depth also proves useful as the basis for the more
flexible DD-classifier.

These findings could hopefully contribute to the understanding and appli-
cability of quantile-based distributions in statistical modeling and classification
tasks, offering promising tools and insights that may pave the way for further
advancements and future research in this field.

At the time of writing, I have presented the research findings from this re-
search at three scientific meetings. The first contribution has been published
as an article in the Statistics and Computing journal (Redivo, E., Viroli, C.,
& Farcomeni, A., 2023, Quantile-distribution functions and their use for classifica-
tion, with application to naïve Bayes classifiers). The second part of the thesis is
currently under submission. Regarding the third contribution, we have devel-
oped an R package named dqclass, available on GitHub, and a corresponding
paper has been prepared and is also currently under submission.
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Chapter 2

Quantile-distribution Functions
and Their Use for Classification,
with Application to Naïve Bayes
Classifiers

2.1 Introduction
Quantile functions, defined as the generalised inverse of cumulative distribu-
tion functions, have nice properties that make them a valuable inferential tool.
For instance, sums and convex linear combinations of quantile functions are
still quantile functions. As a consequence, it is possible to construct arbitrary
new quantile functions that have great flexibility and a small number of param-
eters (see, for instance, Karvanen (2006)). Thus, we can obtain distributions
with a wide range of different shapes and also the exact or approximate form
of many common distributions, including the normal, Students T and logistic
distributions. See Gilchrist (2000) for a clear introduction to the use of quantile
functions, their properties, and the main estimation methods.

Various flexible quantile functions have been proposed in the literature.
The so-called g-and-k distribution (Haynes et al., 1997; Rayner andMacGillivray,
2002) is defined as a generalization of the Gaussian distribution with addi-
tional skewness and kurtosis parameters. Freimer et al. (1988) introduced the
quantile-based representation of the generalized Lambda distribution. Sankaran
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et al. (2016) proposed a new quantile function based on the sum of generalized
Pareto and Weibull quantile functions.

Quantile functions that are linear in their parameters have desirable infer-
ential properties, as will be shown in the following. Well-known examples
are the flattened logistic distribution (Sharma and Chakrabarty, 2019) and the
generalized flattened logistic distribution (Chakrabarty and Sharma, 2021).

Quantile functions can be estimated according to different strategies. Dis-
tributions that have analytical L-moments can be estimated by matching sam-
ple L-moments with their theoretical counterparts, in the same spirit as the
method of moments (see, for instance, Chakrabarty and Sharma (2021)). Max-
imum likelihood estimation is possible as well; however, if the quantile func-
tion is not invertible - as is usually the case - then, for each observation of the
data sample, say x, a numerical inversion needs to be carried out to find the
correspondent percentile u, thus making the parameter estimation process nu-
merically unstable and computationally expensive (Rayner and MacGillivray,
2002). An alternative illustrated in Gilchrist (2000) is based on the minimiza-
tion of theL1 norm between the ordered statistics and their theoretical median,
leading to a least absolute deviation method. Without explicit density func-
tions Bayesian estimation cannot be applied; however Allingham et al. (2009);
Drovandi and Pettitt (2011) developed an Approximate Bayesian Computation
(ABC) strategy for the estimation of some classes of quantile functions.

In this work we show that the family of linear quantile functions can be
efficiently estimated using least squares by exploiting the properties of the or-
der statistics. We also develop the asymptotic distribution of a statistical test
to check whether two estimated quantile functions have the same parameters.
We also show how the procedure can be used for classification, by constructing
a simple Naïve Bayes classifier based on quantile distributions, where the pro-
posed testing procedure is used for variable selection and variable importance
in a two-class problem. Empirical studies indicate that the proposed variable
screening can help the classification task, and, in this perspective, it is alterna-
tive to variable weighting (see, for instance, Jiang et al. (2018) and Jiang et al.
(2019)) or structure extensions by hidden variables Jiang et al. (2008). A com-
pletely different approach where quantile functions are used for classification
is reported in Farcomeni et al. (2022a).

The rest of the paper is organised as following. In the next section we out-
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line linear quantile functions and define our least squares estimator. Asymptotic
results are given in Section 2.2.3, where we also derive the null distribution of
relevant test statistics. In Section 2.3 we discuss how to use linear quantile func-
tions for supervised classification and variable selection. Simulation studies are
reported in Section 2.4 and the proposed strategy is illustrated on real data in
Section 2.5.

2.2 Quantile-based distributions
Denote with F (x;θ) a distribution function that is right-continuous, depend-
ing on a vector of parameters θ of length p. The quantile distribution function
can be defined as in Parzen (1979):

F−1(u;θ) = Q(u;θ) = inf{x : F (x;θ) ≥ u},

for 0 < u < 1. As in Tukey (1965), we call

q(u;θ) = Q′(u;θ),

the quantile density function, which is related to the density function as:

f(x;θ) =
1

q(F (x;θ))
. (2.1)

For certain probability distributions the quantile function can be derived
in analytical form through the inversion of the cumulative distribution func-
tion. Some examples are reported in Table 2.1. Most probabilistic densities
do not admit closed-form quantile functions though. One notable example is
the Gaussian distribution. The contrary is also true: a quantile function can
be defined without making reference to an explicit probability distribution
function.

An interesting family of quantile functions is given by the ones that are
linear in their parameters. Starting from the symmetric quantile function of
the logistic distribution:

Q(u;θ) = α + β[log u− log (1− u)] (2.2)

Sharma and Chakrabarty (2019) proposed the flattened version
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Q(u;θ) = α + β

[
log

u

1− u
+ κu

]
,

where the additional component indexed by the shape parameter κ reg-
ulates the flatness of the peak of the distribution. They derived classical and
quantile-based properties of the distribution and compared its flexibility with
respect to the logistic distribution in terms of fitting in empirical contexts.

More recently, Chakrabarty and Sharma (2021) proposed a generalization
of the flattened logistic distribution (fgld):

Q(u;θ) = α + β [(1− δ) log u− δ log (1− u) + κu] (2.3)

that proved to be very flexible and outperformed the existing strategies in terms
of model fitting. Figure 2.1 and Figure 2.2 show the range of shapes this dis-
tribution can take.

2.2.1 Least squares estimation

In order to estimate the quantile function Q(u,θ), different strategies can be
applied. L-moments matching (Chakrabarty and Sharma, 2021) requires the
analytical form of L-moments for the quantile function, along the same lines

Probability distribution Density function Quantile function

Exponential θe−θx − log(1−u)
θ

Extreme Value 1
β
e

x
β exp

[
−e

x
β

]
β log log(1− u)−1

Weibull k
λ

(
x
λ

)k−1
e−(x/λ)k λ{log(1− u)−1}1/k

Logistic e−(x−α)/β

β(1+e−(x−α)/β)
2 α + β log u

(1−u)

Double-Exponential e−|x|

2
log 2u, u < 0.5

− log 2(1− u), u > 0.5

Cauchy 1
π(1+x2)

tan π(u− 0.5)

Pareto αµα

xα+1 µ log(1− u)−
1
α

Table 2.1: Quantile functions of some probability distributions.
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Figure 2.1: fgld with α = 5, β = 2, κ = 1 and varying δ.
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of method of moments. Maximum likelihood is a possible alternative strat-
egy but it requires the approximation of the percentiles for each observation
and the inversion of the derivative of the quantile function, thus resulting in
an computationally expensive method (Rayner and MacGillivray, 2002). In a
Bayesian perspective, an Approximate Bayesian Computation (ABC) method
has been developed (Allingham et al., 2009; Drovandi and Pettitt, 2011) for
specific classes of quantile functions, but again at the price of computational
burden.

In Gilchrist (2000) two estimation methods based on ‘lack of fit criteria’
are introduced, which are denoted as distributional least absolutes and distri-
butional least squares. The first is based on the minimization of the L1 norm
between the ordered statistics and their theoretical median. The second ap-
proach consists in minimizing the L2 norm between the expected and the ob-
served ordered statistics. Gilchrist highlights that, if no analytical form for the
expected order statistics is available, they need to be approximated by a Taylor
series expansion. For this reason the author champions the approach of the
L1 norm, which does not require such derivation. Here instead, we develop a
framework under which the least squares approach can be effectively and ef-
ficiently used with a closed form solution, and we also derive some theoretical
results.

In fact, there is a specific link between theoretical order statistics and quantile-
based distributions (David andNagaraja, 2004). More specifically, the expected
value of an order statistic can expressed in terms of the quantile distribution as
follows:

E[X(i)] =
1

B(i, n− i+ 1)

∫ 1

0

Q(u;θ)ui−1(1− u)n−idu. (2.4)

As stated in the following Lemma, if the quantile function is linear in its pa-
rameters, the expected value of the theoretical order statistics takes a similar
linear form that simplifies the estimation method.

Lemma 1 If a quantile distribution function is linear with respect to its parameters,
then the expected order statistics of that distribution will also be linear with respect to
those same parameters.

The proof is shown in Appendix A. Take for instance the simple quantile
function Q(u;θ) = θ0 + θ1u, with θ1 > 0 and θ = (θ0, θ1). Then by solving
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the integral in (2.4) we easily get

E[X(i)] = θ0 + θ1
i

n+ 1
=
[
1 i

n+1

] [θ0
θ1

]
= b⊤

i θ.

For a quantile function with a quadratic term in u, Q(u;θ) = θ0 + θ1u+ θ2u
2,

similarly we get

E[X(i)] = θ0 +
i

n+ 1
θ1 +

i (i+ 1)

(n+ 2)(n+ 1)
θ2.

Thus, for any linear quantile function, the expected values of the order statistics
can written as

E[X(i)] = b⊤
i θ,

where bi are p-dimensional vectors of known coefficients.
Now, given a sample of IID observations (x1, . . . , xn) from X ∼ F (θ)

denote with x(i) the observed i-th order statistics. We can minimize:

ϕ(θ) =
n∑

i=1

(
x(i) − E[X(i)]

)2
=

n∑
i=1

(
x(i) − b⊤

i θ
)2 (2.5)

with respect to θ.
The resulting least squares estimation method is very efficient, since it pro-

vides a closed-form solution for the parameters.
By defining B as the matrix of dimension n × p having as rows bi and by

X(·) the ordered random sample, the estimate of θ is

θ̂ = (B⊤B)−1B⊤X(·). (2.6)

Furthermore we have:

E[θ̂] = (B⊤B)−1B⊤E[X(·)] = (B⊤B)−1B⊤Bθ = θ (2.7)

and
V [θ̂] = (B⊤B)−1B⊤ ΣB(B⊤B)−1

where V [X(·)] = Σ is the covariance matrix of the order statistics. So the
estimator θ̂ is unbiased, but, given the correlation among order statistics, we
can not invoke the BLUE property of the Gauss-Markov theorem.
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2.2.2 An example: the flattened generalised logistic distri-
bution

In this section, we derive the results needed for least squares parameter esti-
mation of the flattened generalized logistic (fgld) quantile function defined in
equation (2.3). To this aim it is convenient to re-parameterise the quantile
function as follows: 

α = θ0

βκ = θ1

β(1− δ) = θ2

βδ = θ3


α = θ0

β = θ2 + θ3

δ = θ3
θ2+θ3

κ = θ1
θ2+θ3

The quantile distribution function of the fgld becomes:

Q(u) = θ0 + θ1 u+ θ2 log u− θ3 log (1− u) (2.8)

To estimate the parameters via least squares we need to derive the expected
value of the order statistics.

Lemma 2 The expected order statistic of the flattened generalised logistic distribution
is equal to:

E[X(i)] = θ0 + θ1
i

n+ 1
+ θ2 (ψ(i)− ψ(n+ 1)) + θ3 (ψ(n+ 1)− ψ(n− i+ 1))(2.9)

where ψ(·) indicates the digamma function, which is defined as the derivative of the
logarithm of the gamma function.

Therefore, in this case we get

bi =

(
1,

i

n+ 1
, ψ(i)− ψ(n+ 1), ψ(n+ 1)− ψ(n− i+ 1)

)
.

For a proof see the Appendix A.
In order to compute the variance of the estimator we also need to derive

the covariance matrix for the order statistics of the fgld.
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Lemma 3 The n-dimensional covariance matrix of the order statistics, Σ, of the
flattened generalised logistic distribution has diagonal variances given by

V [X(r)] = θ21
r(n− r + 1)

(n+ 1)2(n+ 2)
+ θ1θ2

2(n− r + 1)

(n+ 1)2
+

+ θ1θ3
2r

(n+ 1)2
+ θ22 (ψ1(r)− ψ1(n+ 1))+

+ θ2θ3 2ψ1(n+ 1) + θ23 (ψ1(n− r + 1)− ψ1(n+ 1))

with r = 1, . . . , n and where ψ1(·) indicates the trigamma function, which is the
derivative of digamma function ψ(·).

The covariance between any two order statistics of the flattened generalised logistic
distribution is equal to:

Cov[X(r), X(s)] = θ21

[
r(n− s+ 1)

(n+ 1)2(n+ 2)

]
+ θ1θ2

[
(n− s+ 1)(r + s)

(n+ 1)2s

]
+

θ1θ3

[
r(2n− r − s+ 2)

(n+ 1)2(n− r + 1)

]
+ θ22 [ψ1(s)− ψ1(n+ 1)] +

θ2θ3 [(ψ(n+ 1)− ψ(n− r + 1)) (ψ(n+ 1)− ψ(s)) + ψ1(n+ 1)] +

θ23 [ψ1(n− r + 1)− ψ1(n+ 1)]− θ2θ3ξ(n, r, s)

where

ξ(n, r, s) =Γ(s− r) Γ(n− s+ 1)
∞∑
h=1

1

h

Γ(h+ r)

Γ(n+ h+ 1)
(ψ(n+ h+ 1)− ψ(h+ s))

for r, s = 1, . . . , n.

A sketch of the proof in given in the Appendix A.

2.2.3 Asymptotic results

In this section we derive the asymptotic distribution of the estimator of the fgld
defined in Equation 2.6. First notice that this estimator can be expressed as a
linear combination of the order statistics:

θ̂ =
n∑

i=1

cinX(i),

where the coefficients cin are vectors of the same length p as θ̂.

14



Lemma 4 The coefficients cin for the least squares estimator of the fgld are contin-
uous and bounded.

The proof is given in the Appendix A. Given this lemma we can derive the
following theorem.

Theorem 1 The least squares estimator for the parameters of the fgld linear quantile
function has an asymptotically normal distribution:

θ̂
d−→ Np(θ,Γ) (2.10)

with Γ = (B⊤B)−1B⊤ΣB(B⊤B)−1.

The proof of Theorem 1 is shown in the Appendix A.
Given the previous result, the null hypothesis that the sample comes from

a quantile function with parameters θ0 can be tested as stated in the following
theorem.

Theorem 2 The null hypothesisH0 : θ = θ0 can be checked through the test statistic

(θ̂ − θ0)
d−→ Np(0, Γ),

where for fgld quantile function the matrices B and Σ are known quantities derived
in Lemma 1 and 3.

As a simple consequence we can also test the hypothesis that two observed
samples come from the same population H0 : Bθ1 = Bθ2 which is equivalent
to H0 : θ1 = θ2.

Under the previous assumptions we get

(θ̂1 − θ̂2)
d−→ Np(0, 2Γ)

or alternatively

1

2
(θ̂0 − θ̂1)

⊤Γ−1(θ̂0 − θ̂1)
d−→ χ2

p. (2.11)
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2.3 Application to supervised classification
Let Y be a categorical random variables taking values y = {1, . . . , K}, where
K denotes the total number of classes and let X = (X1, . . . , Xp) be a set of
observed variables. One of the most used classification methods in the super-
vised setting is the so-called naïve Bayes classifier (John and Langley, 1995;
Hand and Yu, 2001). Suppose you have a training data set in which both Y
and X are known. According to the Bayesian rule, the posterior probability
of belonging to a generic class k (k = 1, . . . , K) is

Pr(Y = k | X = x) =
πkf(x | Y = k)

f(x)
=

πkf(x | Y = k)∑K
k′=1 π

′
kf(x | Y = k′)

, (2.12)

where πk denotes the proportion of units that belong to class k in the train-
ing set.

The naïve Bayes classifier assumes conditional independence of the vari-
ables given the categorical response

f(x | Y = k) =

p∏
j=1

fj(xj | Y = k),

thus each variable is treated separately.
The class conditional distributions f(xj | Y = k) are usually assumed to

be Gaussian. An alternative has been proposed by John and Langley (2013),
who suggested the use of kernel density estimation as a tool to allow for more
flexible distributional shapes. A further common method is the discretization
of all continuous variables, that is estimating the density function via a step
function. For this method the main issue is to choose the breaks that define
the categories; a recent heuristic proposal is that of Yang andWebb (2009), the
so-called proportional discretization. This method achieves (approximately) a
discretization with bins having both equal width and equal frequency, with
the added advantage that the tuning parameter is derived automatically and
based on the sample size (n): width = frequency ≈

√
n.

Quantile-based distributions can be applied in this setting with the goal of
taking advantage of their flexible and parsimonious specifications and the fast
and reliable estimation given by the least squares method.

The application of quantile-based distributions in the naïve Bayes algo-
rithm involves the estimation ofK×p univariate distributions, similarly to the
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other methods. Each of the univariate samples is identified by a variable and a
category of the response, and their quantile function can be estimated via least
squares, provided we choose a linear quantile function. The output of the esti-
mation phase is just a set of parameters: θjk, with j = 1, . . . , p and k = 1, . . . , K .
Given a single sample identified by a set of variables x = (x1, . . . , xp), the class
conditional distribution is evaluated as follows, for each variable j and categor-
ical response k:

P (Xj = xj | Y = k) = fj(xj;θjk) =
1

qj(uj;θjk)
,

where the density is evaluated based on the relationship shown in equation
(2.1) and uj is the inverse of xj = Q(uj;θjk) and needs to be computed nu-
merically in the case of non-invertible quantile functions, such is the case of
the fgld.

As a by-product of the least square fit, a simple distance measure between
two quantile distributions can be derived. Imagine that θ̂1 and θ̂2 are the esti-
mates of the parameters of two quantile functions. For instance, the quantile
function of the classes 1 and 2 of the training sample. Then for each variable
we can measure:

∥Bθ̂1 −Bθ̂2∥2

where ∥. . . ∥2 denotes the Euclidean distance. The formula can also be
interpreted as the Euclidean distance between two vectors containing the ex-
pected order statistics for the two distributions.

The formula can be applied seamlessly in the case of two response classes
with equal number of observations. When the latter differs between the classes,
n can be chosen for instance as the minimum class frequency; when the classes
are more than two, the distance can be computed for each pair and the maxi-
mum pairwise distance can be retained, meaning that the variable can at least
discriminate between those two classes.

This measure can serve to rank variables in terms of their importance, of
course limited to their application in the naïve Bayes algorithm. This can be
useful in interpreting and explaining the model, in a similar way to the use of
variable importance measures derived from algorithms such as random forests.

Moreover, it can serve as the basis of a variable selection procedure as ex-
plained in Section 2.2.3 (Theorem 2). Imagine we have K = 2 classes, then a
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variable is relevant for classification if the null H0 : θ̂1 = θ̂2 is rejected, where
θ̂1 and θ̂2 denote the parameters in the two class-populations.

2.4 Simulation study
In this section we present some empirical studies to evaluate the goodness-of-
fit of the illustrated quantile functions in different scenarios, their classification
performance in the naïve Bayes algorithm and the behaviour of the asymptotic
test.

2.4.1 Empirical bias

In this first simulation we investigate the goodness-of-fit of three different
quantile-based distributions: the simple quantile function with a linear term
in u (linear), the quantile function with a quadratic term in u (quad) and the
fgld. In order to measure the empirical bias and the variability of the estimators
of θ we compare the observed order statistics with their expectation according
to the three models, by computing this empirical bias measure:√∑n

i=1(x(i) − Ê[X(i)])2

n
=

√∑n
i=1(x(i) −B θ̂)2

n
.

We simulated n = 100 observations from four different distributions: a
standard normal, a t distribution with 3 degrees of freedom, an exponential
distribution with rate parameter equal to 0.5, and a log(|tν=3|), that is the loga-
rithm of the absolute value of a t distribution (again with 3 degrees of freedom).
For each scenario we generated 100 replicates. Table 2.2 shows the mean of
the empirical bias across the replicates for each scenario and model. In brackets
the standard deviations offer an indication of the variability of the estimates.

Results show that the fgld is by far the most flexible model, it being able to
fit well in all scenarios.
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linear quad fgld
norm 0.22 (0.05) 0.21 (0.05) 0.08 (0.02)
t 0.86 (0.54) 0.84 (0.53) 0.35 (0.38)
logabst 0.43 (0.13) 0.36 (0.12) 0.13 (0.06)
exp 1.01 (0.27) 0.72 (0.26) 0.23 (0.1)

Table 2.2: Average empirical bias over 100 replicates for 4 distributional scenarios
(rows) and for 3 quantile-based distributions (columns). Standard deviations are re-
ported in brackets.

2.4.2 Classification

We evaluated the performance of the quantile-based distributions in the naïve
Bayes algorithm via a simulation study. We considered the fgld and the quantile
function with a quadratic term in u (quad) described in Section 2.2.1. We
generated p variables Xj (j = 1, . . . , p) of sample size n, according to the four
different distributions described in the previous subsection.
We fixed K = 2 classes, of equal size n/2. Denote Xj0 the variable Xj when
Y = 0 and Xj1 when Y = 1. In order to separate the classes we shifted each
variable according to the rule

Xj1 = Xj0 + 0.3 (−1)j j = 1, . . . , p

Alternatively, we have applied a scaling as

Xj1 = 0.8Xj0 j = 1, . . . , p

Shifting has been applied to all distributional settings, while scaling has
been applied only to the log(|tν=3|) distribution; thus creating five different sce-
narios: (i) shifted N(0, 1), (ii) shifted tν=3, (iii) shifted Exp(λ = 0.5), (iv) shifted
log(|tν=3|) and (v) scaled log(|tν=3|). For each scenario we let p = {10, 50, 100},
n = {100, 500, 1000}, and correlated or independent variables.

The five distributional scenarios, three variable set sizes, three sample sizes
and two correlation structures lead to ninety settings. For each setting we
repeated data generation and estimation 100 times. Misclassification rates were
evaluated on test sets generated in same way as the training samples, and we
report the average over the replicates.
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We compared with other choices for the class-conditional distributions;
namely the normal, the kernel (kde), with default Silverman’s rule for the
bandwidth, the discrete method (with proportional discretization (Yang and
Webb, 2009)), the generalized extreme value distribution (gev) estimated via
maximum likelihood by the R package evd.

Table 2.3 contains a summary of the computational times for this simu-
lation. We can note that the time needed for the methods based on the least
squares estimation of quantile functions is longer than for simplermethods such
as the normal and the discrete, but it is manageable even for the larger data sets.
Times are particularly affected by the increase in the number of independent
variables (p).

Results for the classification are presented graphically in Figure 2.3 for each
data generating distribution, where we collapse over the 18 settings evaluated
for each case. We show scaled differences with respect to a reference method
for each setting; we choose fgld as the reference. The scaled differences are
computed as follows:

djk =
ejk − ej1

ēj

where j = 1, . . . , 18 indicates the setting for fixed data generating distribution,
k = 1, . . . , 5 represents the method (with 1 being the reference method), and
ēj being the average test error for that setting. From Figure 2.3 we can see
that fgld is very competitive: as expected it performs worse than the normal
when the data are indeed normal, but the discrepancy is minimal; it is the best
method otherwise with the exception of the exponential data when only gev
performs better.

2.4.3 Testing procedure

In order to evaluate the performance of the test we assess the distribution of the
test statistic for the fgld and for the quad quantile functions under the null hy-
pothesisH0 : θ1 = θ2, and the power of the test when the null hypothesis is not
true. The variance of the order statistics of the quad quantile function, needed
for the variance of the least squares estimator, is reported in the Appendix A.
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method p = 10 p = 50 p = 100

n = 100 discrete 0.06 (0.01) 0.33 (2.54) 1.42 (29.54)
fgld 0.15 (0.02) 4.62 (61.03) 5.42 (61.08)
gev 0.04 (0.00) 1.16 (31.51) 1.32 (31.51)
kde 1.00 (29.54) 0.31 (0.02) 0.62 (0.04)
normal 0.02 (0.00) 0.04 (0.01) 0.09 (0.01)
quad 0.11 (0.01) 2.46 (43.17) 1.08 (0.06)

n = 500 discrete 0.06 (0.01) 0.26 (0.04) 0.51 (0.03)
fgld 0.64 (0.03) 3.25 (0.14) 6.54 (0.16)
gev 0.08 (0.01) 0.41 (0.08) 0.80 (0.12)
kde 0.34 (0.02) 1.59 (0.10) 3.13 (0.12)
normal 0.08 (0.01) 0.23 (0.03) 0.41 (0.03)
quad 0.54 (0.04) 2.74 (0.18) 5.48 (0.29)

n = 1000 discrete 0.06 (0.01) 0.27 (0.02) 0.48 (0.07)
fgld 1.31 (0.04) 6.46 (0.19) 11.94 (1.31)
gev 0.15 (0.03) 0.72 (0.16) 1.33 (0.31)
kde 0.70 (0.03) 3.19 (0.10) 5.85 (0.60)
normal 0.16 (0.02) 0.46 (0.03) 0.76 (0.09)
quad 1.11 (0.07) 5.48 (0.27) 10.12 (1.21)

Table 2.3: Computational average times in seconds for training the naïve Bayes clas-
sifier and applying its prediction on a test set over the 100 replications for the 5 distri-
butional scenarios. In brackets standard deviations are reported.
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Type I error

Under the null hypothesis the two samples come from the same distribution.
In order to evaluate the convergence of the test statistic to its null distribution
we compare empirical type I errors with the nominal significance level that
has been chosen in advance.

A total of 200 sets of parameters have been randomly generated, and for
each of them 1,000 two-group samples have been simulated. From each of
these 1,000 data sets the test statistic can be computed and the empirical type
I error corresponds to the proportion of test statistics above the critical value
(the 95th quantile of the χ2

df=4 distribution for the fgld and the χ2
df=3 for the

quad). This procedure has been repeated for different group sample sizes, with
the same parameter sets, and the results are shown in Figure 2.4. As could be
expected, the empirical type I error converges to the nominal one as the sample
size increases in both cases.

ROC curves

To evaluate the power of the test we have simulated data sets of 1,000 variables,
with half of those variables having a different distribution between the two
balanced groups, and half having the same distribution. For each variable the
p-value associated with the test statistic is computed.

This problem can be re-framed as a classification problem in which the
response is whether or not the variable is useful (having a different or equal
distribution across the two groups).

In the simulation we know whether the variable is useful or not, so we can
evaluate it with the metrics of a classification model, such as a ROC curve. This
is particularly suited to the test because the different thresholds (and subsequent
classifications) can be interpreted as significance levels.

In Figure 2.5 we report the ROC curves for the fgld and quad that evaluate
whether test statistics are able to identify correctly useful and not useful vari-
ables. In both cases we can see that as n increases the curves move more and
more towards the top left corner. Even with low sample sizes there are cutoff
points for which the test performs extremely well both in terms of sensitivity
and of specificity.

22



sample size numerical
variables

categorical
variables

response
classes

cleveland 297 6 7 2
credit 653 6 9 2
diabetes 768 8 0 2
glass 214 9 0 6
heart 270 6 7 2
ionosphere 351 32 2 2
letter 20000 16 0 26
sonar 208 60 0 2
thyroid 2751 6 21 2
vehicle 752 18 0 4
waveform 5000 40 0 3
wbcd 569 30 0 2

Table 2.4: Datasets from the UCI Machine Learning Repository used for comparing
naïve Bayes methods, with some information regarding data size and type.

2.5 Real data examples

2.5.1 Benchmark datasets

We have compared the different methods for the naïve Bayes classifier used
in Section 2.4.2 on some real datasets commonly used for benchmarking. The
chosen datasets are all publicly available from theUCIMachine LearningRepos-
itory (Dua and Graff, 2019a). When available we used the preprocessed ver-
sion from the R package mlbench (Leisch and Dimitriadou, 2021). In Table
2.4 some basic information of the datasets used is provided: we can note the
general adaptability of the naïve Bayes classifier, being able to deal with both
numerical and categorical variables at the same time and with multi-class re-
sponse variables.

On these data we fitted the models that performed the best in the simula-
tion study (Section 2.4.2), namely the fgld, the normal, the kde and the discrete.
Results in terms of accuracy from 10-fold cross-validation are presented in Ta-
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fgld normal kde discrete

cleveland 80.79 80.13 80.46 82.15
credit 80.36 73.94 76.28 84.36

diabetes 76.05 75.39 75.01 65.24
glass 57.58 45.84 54.55 53.23
heart 82.96 81.48 81.11 82.22

ionosphere 73.23 82.35 91.75 88.07
letter 65.39 64.28 70.48 51.57
sonar 70.18 67.63 75.49 74.90

thyroid 93.20 93.42 95.02 92.08
vehicle 59.32 44.92 57.15 62.50

waveform 80.28 80.00 79.86 75.24
wbcd 94.73 92.95 93.67 88.90

Table 2.5: Accuracy from different naïve Bayes methods (columns) applied on 12
benchmark datasets (rows). The results are obtained from 10-fold cross-validation.

ble 2.5. We can note that no method is uniformly superior to the others. In
general, the additional flexibility given by the fgld, the kde and the discrete,
with respect to the normal, proves advantageous. We can note the fgld per-
forms comparatively well and there are multiple datasets where it achieves the
maximum accuracy.

2.5.2 Variable selection

In this section we illustrate the proposed strategy for variable selection on a real
dataset. We revisit data from Altman (1968), available in the R package MixGHD
(Tortora et al., 2021), by adding noise variables. The original dataset contains
information about n = 66 companies that have filed for bankruptcy. Our task is
to predict the status of the firms (0 for ‘bankruptcy’ or 1 for ‘financially sound’).
The original predictors are two measurements related to the earnings of the
firm. On top these two relevant variables we added 198 irrelevant variables
sampled from a standard normal distribution, for a total p = 200. The goal
is to check whether the variable selection procedure developed in Section 2.3
is able to identify the two real variables, and then to compare the accuracy of
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various naïve Bayes classification algorithms in the complete dataset and with
some other values of p.
To this aim we considered the naïve Bayes classifiers, with the previously used
methods for estimating the distribution (normal, kde, discretization and fgld).
We also compare these classifiers to other commonly used ones: k-nearest
neighbors with k = 3, logistic regression and linear discriminant analysis.
First we computed the p-values associated with the test for each variable, and
by using a procedure for controlling the false discovery rate (the Benjamini-
Hochberg procedure), we correctly reject the null hypothesis only for the two
original variables. Next, we re-ordered variables in ascending order by the
obtained p-values and we compare the classifiers in datasets with an increasing
number of variables, where variables with progressively higher p-values are
included. Results are shown in Table 2.6 for values of p = 2, 50, 100, 150, 200.
A visual representation of the naïve Bayes with the fgld is shown in Figure 2.6,
where the first 7 variables in terms of p-value are visualised, separated by class,
with a histogram and the density from the estimated fgld. It can be noted how
the fgld can capture the skewness present in the first two original variables.

p = 2 p = 50 p = 100 p = 150 p = 200
KNN k = 3 92.42 65.15 54.55 43.94 43.94
LDA 90.91 72.73 54.55 57.58 46.97
Logistic regression 95.45 56.06 53.03 53.03 53.03
naïve Bayes discrete 84.85 87.88 84.85 71.21 63.64
naïve Bayes fgld 95.45 87.88 78.79 69.70 60.61
naïve Bayes KDE 93.94 92.42 95.45 81.82 69.70
naïve Bayes normal 93.94 92.42 90.91 84.85 77.27

Table 2.6: Leave-one-out cross validation accuracy for different classification algo-
rithms applied to the bankruptcy dataset with added noise variables. The columns
are for different numbers of variables (p), being the ones with the lowest p-values for
the fgld test.

We can note that the naïve Bayes with the fgld reaches its maximum with
p = 2, that is with the original variables. This is the best accuracy obtained
in a leave-one-out cross validation scheme, and the method is the best strat-
egy together with logistic regression. As more and more noise variables are
included the performance of all methods deteriorates, with the naïve Bayes
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classifiers being pretty robust. This robustness, in particular of the normal and
KDE naïve Bayes classifiers, has also been noted by the fact that it can hap-
pen that they retain or improve their accuracy even in presence of a moderate
number of noisy variables, probably due random changes related to the small
number of units n. However, the improvement given by the selection is sizable
for all methods, and most of them benefit from the selection given by the fgld
test, reaching very high accuracies when only the two original variables are
included.
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Figure 2.3: Results from a simulation study comparing different methods for the naïve
Bayes classifier. Each panel represents a distributional scenario under which the data
was simulated. Results are presented as scaled differences from the fgld, where a value
higher than 0 means that for a setting (combination of sample size, number of variable
and correlation structure) the method had a larger mean misclassification error than
the fgld.
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Figure 2.4: Distribution of empirical type I errors across 200 parameter sets for the
fgld (left panel) and quad (right panel) for different group sample sizes. As the sample
size increases, empirical type I errors get closer to their nominal 5% value. The left
panel refers to the fgld, the right panel to the quad.

27



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

n

20

50

100

200

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

n

20

50

100

200

Figure 2.5: ROC curves based on the identification of whether a variable has the same
distribution across two groups. Results are obtained by computing the hypothesis test
across 1,000 variables, of which only half have the same distribution across the two
groups.
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Figure 2.6: Naïve Bayes classifier with fgld applied to the bankruptcy dataset with
added noise variables. The 7 variables with the lowest p-values are shown on the
columns, while the rows identify the response class. The visualisation includes a his-
togram and the density function from the estimated fgld.
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Chapter 3

Bayesian Estimation of a
Quantile-based Factor Model

3.1 Introduction
Specifying a quantile function offers a valid approach to defining a continuous
random variable as an alternative to the conventional probability density func-
tion (pdf ) or cumulative distribution function (cdf ). The resulting quantile-
based distributions offer a means to define flexible distributions with only a
few parameters. This is often achieved by specifying analytical expressions
involving quantile functions for simple and common distributions. Adhering
to certain rules ensures that the resulting expression remains a proper quan-
tile function: a notable example of a property enjoyed by quantile functions
is their closure with respect to convex linear combinations. This innovative
approach for the construction of general quantile functions was introduced by
Gilchrist (2000).

Themain disadvantage of workingwith quantile-based distributions is that
estimation procedures that are routinely employed, especially Bayesian infer-
ence and maximum likelihood procedures, become more computationally ex-
pensive. This is due to the fact that, for a quantile-based distribution the den-
sity function is generally not available analytically and can be only evaluated
with the help ofmore computationally expensive numerical inversionmethods,
whereas most of statistics relies on the likelihood function, which entails the
evaluation of several density functions. Other methods have been extensively
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used in this context, particularly L-moments estimation (Hosking, 1990), and
other quick and reliable procedures are available such as least squares (Redivo
et al., 2023), as shown in the previous chapter.

Recently however, there has been renewed interest in the Bayesian estima-
tion of quantile-based distributions, in particular thanks to a recent article by
Perepolkin et al. (2023) that systematises such procedures and gives suggestions
regarding the computational tools to adopt.

In the present work, we will begin by providing a brief review of the
Bayesian estimation of the flattened generalized logistic distribution (fgld), which
has been initially introduced in Chakrabarty and Sharma (2021). Next, we
employ this quantile-based distribution to model the univariate distribution of
the latent variables within a factor model, assuming that the factors are inde-
pendent. This method is somewhat similar to the independent factor analy-
sis (Attias, 1999; Montanari and Viroli, 2010b), where the probability density
function for the latent variables is defined by mixtures of Gaussians.

To account for identifiability and estimation constraints, we use MCMC
(Markov Chain Monte Carlo) methods for model estimation. Moreover, we
explore the issue of model selection related to the number of factors using
information criteria. Finally, we illustrate the use of the proposed model using
data from the European Social Survey, which pertains to opinions on trust,
ideals, and the functioning of institutions and democracy; we also compare
the results with those obtained by using the classical factor analysis and the
independent factor analysis models.

The remainder of the chapter is structured as follows. In Section 3.2 quantile-
based distributions and their Bayesian estimation are introduced. In Section
3.3 we develop the independent factor analysis model, its estimation and dis-
cuss model selection. We conclude the chapter with the empirical illustration
on the European Social Survey data (Section 3.4).
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3.2 Bayesian estimation of quantile-based distri-
butions

The quantile function for a continuous random variableX , having cumulative
distribution function F (x) = P (X ≤ x), is defined as:

QX(u) = inf{x : F (x) ≥ u},

with 0 ≤ u ≤ 1. If F (x) is strictly increasing, then the quantile function can
be defined simply as the inverse function of the cdf:

QX(u) = x = F−1(u).

The derivative of the quantile function:

qX(u) =
∂QX(u)

∂u
,

is called quantile density function and provides the key link to the density
function of X :

f(x) =
1

qX(F (x))
. (3.1)

Quantile-based distributions are defined via an analytical quantile function and
in general we can assume that this will not be analytically invertible, thus not
allowing for an expression for the cdf or for the pdf. The evaluation of the pdf
of a point must then rely on a numerical inversion of the quantile function:

u = Q−1
X (x),

which can then be plugged into the quantile density function to evaluate the
density:

f(x) = f(QX(u)) =
1

qX(u)
.

The numerical inversion needed for computing u is equivalent to finding
the root, that is the zero, of the function

QX(u)− x = 0.

In Perepolkin et al. (2023) some possible choices for a root-finding algorithm
are listed and we follow their suggestion of using the Brent braketing algo-
rithm, which is available in R (R Core Team, 2023) as the function uniroot.
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Interestingly, the authors also made available that same algorithm for its use in
Stan (Stan Development Team, 2023) in the supplementary materials of that
same article.

If we assume that our data x = (x1, . . . , xn) is made of independent and
identically distributed realizations from a random variable X , dependent on a
parameter θ, the likelihood can be written as usual:

f(x | θ) =
n∏

i=1

f(xi | θ).

To evaluate the likelihood for a quantile-based distribution, we must first nu-
merically derive the cdf at all sample points and then use Equation 3.1 for eval-
uating the density at each point:

u = (u1, . . . , un) ui = Q−1
X|θ(xi)

f(x | θ) =
n∏

i=1

1

qX|θ(ui)
.

(3.2)

To compute the formula of Bayesian inference that gives us the unnormalized
posterior distribution of the parameter θ:

f(θ | x) ∝ f(x | θ)f(θ),

we are only missing the prior distribution for the parameter, f(θ). This can ei-
ther have a density-based distribution, which is thus readily available for evalu-
ation, or can in turn be defined via a quantile-based distribution. For the latter
case, that will not be pursued here, refer to Nair et al. (2022) and Perepolkin
et al. (2023).

Deriving a conjugate family from a quantile-based distribution seems like
a tall order, given that few common distributions have an analytical density
quantile function that can be recognized as part of the posterior distribution.
Nevertheless, in Nair et al. (2022), formulas are given for deriving the quantile
function of the posterior distribution and some approximations are proposed
to estimate posterior mean and median.

The solution that will be taken here is instead that of relying on Markov
Chain Monte Carlo (MCMC) methods to obtain samples from the posterior
distribution. This procedure has been first explored in Haynes and Mengersen
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(2005) for the g-and-k distribution. In particular they relied on theMetropolis-
Hastings (MH) algorithm, which can be easily adapted to the case at hand by
evaluating the likelihood using Equation 3.2. More specifically, the MH al-
gorithm for obtaining samples from the posterior distribution defined with a
quantile-based likelihood can be written as:

• Initialize the parameter(s) θ = θ(0).

• For each iteration t = 1, . . . , T :

– Sample θ∗ from a proposal distribution g(θ | θ(t−1)).

– Evaluate the unnormalized posterior at the new value θ∗:

u∗i = Q−1
X|θ∗(xi) i = 1, . . . , n

f(θ∗ | x) ∝
n∏

i=1

1

qX|θ∗(u∗i )
f(θ∗)

– Take the proposal as the new value of the chain θ(t) = θ∗ with
probability r or stay at the previous iteration of the chain θ(t) =

θ(t−1) with probability 1− r, with r is defined as:

r = min

(
f(θ∗ | x)g(θ(t−1) | θ∗)
f(θ(t) | x)g(θ∗ | θ(t−1))

, 1

)
The computational bottleneck of this algorithm is given by the evaluation

of the unnormalized posterior, due to the numerical inversion needed for com-
puting u∗i . This also implies that the computational complexity grows quickly
with the number of observations. To save some computational cost, at each
iteration, one should keep the previous value of the posterior density in mem-
ory. Moreover, as it is pointed out in Haynes andMengersen (2005), if we have
multiple parameters, θ = (θ1, . . . , θp), it is recommendable to update them all at
once, by having a multivariate proposal distribution, instead of updating them
one-at-a-time, thus having to compute the posterior only once per iteration.

3.2.1 Bayesian estimation for the fgld

The flattened generalized logistic distribution (fgld) (Chakrabarty and Sharma,
2021) adds two parameters to the logistic distribution, one of the few common
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distributions having an analytical expression for the quantile function. The
first one is δ, allowing for skewness, and the second is κ, allowing for a flatter
shape of the density. The quantile function is equal to:

Q(u) = α + β [(1− δ) log (u)− δ log (1− u) + κu]

with β > 0, 0 ≤ δ ≤ 1 and κ ≥ 0. The resulting quantile density function is:

q(u) = β

[
1− δ

u
+

δ

1− u
+ κ

]
,

and consequently the log likelihood of data (x = (x1, . . . , xn)) coming from
the fgld can be written as:

ℓ(θ) = f(x | θ) = −n log β −
n∑

i=1

log

[
1− δ

ui
+

δ

1− ui
+ κ

]
(3.3)

with θ = (α, β, δ, κ) and ui = Q−1
X|θ(xi).

The Bayesian estimation of this distribution has been considered in Pere-
polkin et al. (2023), where it is chosen as the response distribution for a para-
metric quantile regression model. For our purposes we only consider its un-
conditional estimation, which is a stepping stone for the factor analysis model
presented in Section 3.3.1. In Perepolkin et al. (2023), the algorithm used for
the MCMC sampler is the robust adaptive Metropolis (Vihola, 2012), as im-
plemented in the R package fmcmc (Yon and Marjoram, 2019), which we will
also consider later.

From initial investigations, we found that adopting a simple MH algorithm
of the type described in the previous section, with independent proposals for
each parameter, leads to poor results. The variances of the proposal densities
are the main tuning parameters of such an algorithm: their impact is relevant
on the mixing of chains and finding values that work adequately for the data at
hand can be quite challenging, thus the algorithm usually gives quite unsatis-
factory results. For this reason, we turn to the more efficient adaptive MCMC
algorithms, which can automatically tune the proposal variances: we will con-
sider the adaptiveMetropolis (AM) (Haario et al., 2001) and the robust adaptive
Metropolis (RAM) (Vihola, 2012). Using a similar notation to Vihola (2012),
we can frame both of these methods as special cases of the following proposal
scheme for a general p−dimensional parameter θ:

θ∗ = θ(t−1) + L(t−1)z(t),
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where z(t) is a sample from symmetric distribution (we will use a multivari-
ate normal distribution with identity covariance matrix), θ(t−1) is the previ-
ous value in the chain and L(t−1) is a non-singular matrix that determines the
covariance among the parameters: var(θ∗) = L(t−1)L(t−1)⊤. For instance, if
L(t) = Ip for each t, then the proposal becomes that of a randomwalkMetropo-
lis. In the adaptive proposals instead, the matrix L(t−1) is based on the previous
samples of the chain: the resulting algorithm loses the Markov chain property,
while still maintaining ergodicity under fairly general conditions, allowing the
estimation of integrals from the resulting samples. The AM scheme is based
on an asymptotic result as the parameter dimension p increases, which tells
us that the optimal proposal covariance matrix of a Gaussian proposal density,
minimising the asymptotic variance of the MCMC algorithm under certain
regularity conditions, is approximately equal to:

var(θ∗) =
2.382

p
Σ, (3.4)

where Σ is the posterior covariance of the parameters (Roberts et al., 1997).
The AM algorithm substitutes Σ for St−1, the covariance matrix among the
samples up to iteration t− 1:

var(θ∗) = L(t−1)L(t−1)⊤ =
2.382

p
St−1 + ϵIp, (3.5)

where the additive term is there to ensure invertibility, with ϵ taken as a small
value (i.e. 10−6), and L(t−1) can be derived via the Cholesky decomposition.
The RAM scheme, on top of estimating the covariance of the target distri-
bution, has also the goal of coercing the acceptance rate of the Metropo-
lis algorithm, whose optimal mean value across the chain is approximately
r∗ = 23.4%, a figure that comes from the same asymptotic result mentioned
previously. The covariance of the RAM proposal is based on the following
equation:

L(t)L(t)⊤ = L(t−1)

(
Ip + ηt(r

(t) − r∗)
z(t)z(t)⊤

∥z(t)∥22

)
L(t−1)⊤.

Again, L(t) can be found as a Cholesky factor of the right hand side, where ηt
is a diminishing adaptation factor, which we fix as in Vihola (2012), ηt = t−

2
3 ,

and r(t) is the acceptance probability at the t-th iteration.
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To use the AM or the RAM proposal schemes for the fgld we need to transform
its parameters to being unbounded:

θ = (α, log (β),Φ−1(δ), log (κ)),

whereΦ−1(·) stands for the quantile function of a standard normal distribution.
For simplicity the priors are also defined on this reparametrization:

θ1 ∼ Normal(µ = 0, σ2 = 100), θ2, θ4 ∼ Normal(0, 4), θ3 ∼ Normal(0, 1),

which imply log-normal priors for the positive parameters β and κ and a uni-
form for δ, thanks to the probability integral transform1. Although the priors
for θ2 and θ4 might seem restrictive, they imply a 99% quantile above 100 in the
scale of the original parameters, thus being still weakly informative priors. The
likelihood in Equation 3.3 will also be evaluated in terms of reparametrized pa-
rameters, while results will be shown with respect to their original version.

First, we compare the performance of the AM and RAM algorithms that
we have just introduced for obtaining posterior samples for the fgld parame-
ters. Both of them were implemented in R: for the AM we use the recursive
formula of the covariance matrix presented in Haario et al. (2001), while to
efficiently update the proposal covariance matrix of the RAM based on Equa-
tion 3.5, a function from the R package ramcmc (Helske, 2021) is used. On
top of this code made specifically for estimating the fgld parameters, we also
consider the implementation of the two Metropolis algorithms given by the R
package fmcmc, which has a general purpose function for MCMC sampling to
which one can provide a function for the target density. The two Metroplis
algorithms both with two implementations were compared on a sample of size
100 from the fgld with parameters {α = 3, β = 1, δ = 0.7, κ = 1}; they were
run 10 times with random starting points with 20,0000 samples of which the
first 10,000 are discarded as burn-in.

Computational results are shown in Table 3.1: we note that AM has some-
times difficulty in reaching the stationary distribution within the fixed number
of iterations, which results in the sometimes extremely low effective sample
sizes (ESS). Even in the runs where the AM has its highest ESS, however, it
is still below the RAM, which is more stable in the ESS across the different

1The implied prior is uniform as long as the distribution defined by the quantile function
that transforms δ into θ3, and the prior for θ3 coincide.

36



ESS mean ESS range Relative ESS/time Mean acceptance rate

AM 63 1− 381 0.2 1.1%

AM fmcmc 89 1− 295 0.2 4.1%

RAM 385 243− 471 1.0 24.1%

RAM fmcmc 299 230− 391 0.5 25.6%

Table 3.1: Comparison of two adaptive Metropolis algorithms (AM and RAM) with
two implementations (specialized R code and package fmcmc) in terms of effective
sample size (ESS), computing time and mean acceptance rate.

chains. The acceptance rate of the RAM, as expected, is very close to its op-
timal target. We also note that the bespoke R implementation is faster for the
both algorithms, and thus the most computationally efficient algorithm seems
to be the RAM with a specialized R function.

To test the Bayesian estimation of the fgld with this latter approach, we
carried out a small simulation study. We considered the following 5 sets of
parameters, in which the four numbers refer to (α, β, δ, κ):

• logistic = (0, 1, 0.5, 10−5)

• exponential = (0, 1, 10−5, 10−5)

• fgld1 = (3, 1, 0.7, 1)

• fgld2 = (0, 1, 0.5, 3)

• fgld3 = (−2, 2, 0.99, 0.3).

The first two sets are named after the two common distributions that they
reproduce (apart from the fact of κ not being exactly equal to 0 and δ to 1).
The shape of the densities is shown in Figure 3.1.

From each distributionwe have taken three samples of size n = {50, 100, 1000}
and we have run the RAM algorithm for 20,000 iterations, of which the first
10,000 serve as burn-in. The resulting posterior distributions for each param-
eter are displayed in Figure 3.2.

We can see how in general the sampler is able to recover the true values
of the parameters, with most credible intervals covering them and becoming
smaller as the sample size increases. We have inspected the chains visually and
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Figure 3.1: Probability density functions for the fgld with 5 sets of parameters which
include the logistic and exponential distributions as special cases.

in general the convergence to the true values sets in quite fast. With expo-
nential data however, there is sometimes correlation both within and between
chains of the different parameters, which deviate temporarily from their stable
distribution. This is the reasonwhy the Geweke diagnostic test is significant (at
the 1% level) for 3 parameters of the exponential with n = 500. For all other
chains the test is not significant. The average effective sample size, exclud-
ing exponential data, where for the aforementioned problems is slightly below
200, is a bit above 400, consistent with the previous computational comparison
(Table 3.1).

3.2.2 The standard fgld

Given the great versatility shown in Figure 3.1 by the fgld shows with different
sets of parameters, we are interested in employing it as the distribution for the
latent variables in a factor model. In order to achieve the identifiability of the
model we need the distribution to be in so-called standard form, that is having
expected value equal to 0 and variance equal to 1.

The expressions for both these moments have been derived in Chakrabarty
and Sharma (2021):

E(X) = α + β
(
2δ − 1 +

κ

2

)
(3.6)

var(X) = β2

(
1− 4δ(1− δ) +

κ

2

(
1 +

κ

6

)
+
π2

3
δ(1− δ)

)
. (3.7)

They are both non linear functions of the parameters and consequently equal-
ity constraints involving these expressions cannot be included as is in a con-
vex optimization problem. Luckily instead, in the context of Bayesian Monte
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Figure 3.2: Posterior distributions for the parameters of the fgld (columns) for three
parameter settings (rows); within each panel the results obtained from three samples of
increasing size are shown. Results are based on 10,000 posterior samples obtained after
10,000 burn-in iterations. Two nested credible intervals of probabilities 80% and 95%
are shown and the point indicates the posterior median (for this the R package ggdist
was used, Kay (2023)). Vertical dotted lines signal the true value of the parameter.
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Carlo methods, where the sampling procedure starts from a proposal value,
these constraints can be easily implemented.

At each iteration of the MCMC algorithm, it is enough to propose new
values for δ and κ and then compute the values for α and β that meet the
moment constraints. The computation of α and β involves solving this simple
system: α + β h1(δ, κ) = 0

β2 h2(δ, κ) = 1,
(3.8)

where functions h1 and h2 are the collection of the terms involving δ and κ
from the expressions in Equation 3.6. Then, the posterior can be evaluated
and the algorithm works as usual. In this way we are constraining the sampler
to only work within the family of the standard fgld.

We have implemented a similar RAM algorithm to the one presented in the
previous section, the only difference being that now proposals are only being
made for two parameters (δ and κ), with the same specifications in terms of
priors as before. The other two parameters α and β, are degenerate random
variables, being a deterministic transformation of the other two.

To illustrate the functioning of the algorithm, we have carried out a small
simulation study similarly to Section 3.2.1, where three sets of parameters are
considered, which aim to exemplify the range of shapes that the standard fgld
distribution can take. The parameters, in the order (α, β, δ, κ), are the follow-
ing:

• fgld-std-1: (−0.0055, 1.1, 0.5, 0.01)

• fgld-std-2: (−0.82, 1.0, 0.9, 0.01)

• fgld-std-3: (−1.2, 0.66, 0.9, 2).

The values of α and β are reported approximately as they are a consequence
of the other two, and do not in general end up being round numbers. The
shape of the resulting density functions is shown in Figure 3.3. The resulting
posterior distributions for parameters δ and κ are reported graphically in Figure
3.4. In general, we see that the behaviour of the algorithm is satisfactory. The
posterior credible intervals cover the true parameter value in most cases and
results significantly improve with the highest sample size. Moreover, there
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Figure 3.3: Probability density functions for the standard fgld under three sets of pa-
rameters resulting in symmetric, right-skewed and flattened right-skewed shapes.

does not seem to be problems of convergence, the chains have been visually
inspected and they all pass the Geweke diagnostic test at a confidence level of
1%. Finally, the average effective sample size across all chains is around 1100,
with little variation among them.

3.3 The independent factor analysis model
The classical factor analysis (FA) is a model for describing a multivariate ran-
dom variable x of dimension p in terms of latent causes. It assumes that x,
whose realizations are observable, is the linear combination of a small number
of latent random variables, called factors, that make up the vector y of dimen-
sion k ≪ p, with the addition of a random noise component u:

x = Λy + u, (3.9)

where the matrix Λ (of dimension p × k), defining the linear combination,
is called the matrix of factor loadings. The loadings are the main inferen-
tial quantity of interest, as they describe the relation between the observed
variables in x and the latent variables in y, which sometimes can provide an
insightful description and summary of the observed data.
Without loss of generality we assume mean-centered data. Hence the distri-
butional assumptions for the classical factor analysis model are the following:

u ∼ Normal(0p,Ψ)

y ∼ Normal(0k, Ik)

u ⊥ y,
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Figure 3.4: Posterior distributions for the parameters of the standard fgld (columns)
for three parameter settings (rows); within each panel the results obtained from three
samples of increasing size are shown. Results are based on 10,000 posterior samples
obtained after 10,000 burn-in iterations. Two nested credible intervals of probabilities
80% and 95% are shown and the point indicates the posterior median (for this the R
package ggdist was used, Kay (2023)). Vertical dotted lines signal the true value of
the parameter.
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where the two expected values are set to zero. The covariance of u is a di-
agonal matrix, while the covariance of y is set to the identity matrix. This
latter assumption is made because the model with an arbitrary covariance ma-
trix Ω would be indistinguishable from one in which in which y∗ = Ω− 1

2y

andΛ∗ = ΛΩ
1
2 , that is one having sphered latent variables (Montanari and Vi-

roli, 2010b). This latest consideration points to the main lack of identifiability
exhibited by this model, its invariance under orthogonal rotations, that is:

x = Λy + u = ΛG⊤Gy + u = Λ∗y∗ + u,

whereG is orthogonal (G⊤G = I),Λ∗ = ΛG⊤ andy∗ = Gy ∼ Normal(0k, Ik).
Besides being interpretable from the perspective of latent variables, the

FA model can also be seen as a sparse or parsimonious covariance estimation
method for normal data, in fact the model can simply be described as:

x ∼ Normal(0p,Σ)

with
Σ = ΛΛ⊤ +Ψ. (3.10)

This simplification can be derived either by integrating out the latent variable
y or by considering the closure of normal distributions (in this case y and u)
with respect to sums.

A generalization of the normal factor model is the so-called independent
factor analysis (IFA) model (Attias, 1999; Montanari and Viroli, 2010b). The
main difference is that the latent variables y are allowed to take a more gen-
eral non-Gaussian distribution, in particular they are considered to be a vector
made up of mutually independent univariate Gaussian mixtures:

y = (y1, . . . , yk) with mutually independent entries

f(yj) =

Gj∑
gj=1

wjgjN (µjgj , σjgj) j = 1, . . . , k,

where gj indicates the generic component of the mixture describing the j-
th latent variable having a total number of Gj components. In contrast to
normal distributions, where uncorrelatedness is equivalent to independence,
in this setting the independence assumption among the factors needs to be
made explicitly, which explains the name of the model.
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In the IFA model we make the same assumptions about the distribution of
the error term u and about the independence between y and u as in the FA
model. Moreover, also the moment assumptions about y coincide. In principle
the covariance matrix of y could be any diagonal matrix, but similarly to the
FA case, the model still has an identifiability problem, which in this case is the
invariance with respect to scale transformations:

x = Λy + u = ΛD
1
2D− 1

2y + u = Λ∗y∗ + u, (3.11)

whereD is diagonal. InMontanari andViroli (2010b) the relationship between
FA and IFA is explored more in depth, and also connections to Independent
Component Analysis (ICA) are considered. In that same article, the IFAmodel
is shown to be interpretable as a mixture of factor analysers: if we introduce
a latent indicator variable z for the allocation of the elements of y in their
mixture components, the distribution of y conditional on z becomes normal:

y | z ∼ Normal(µz,Vz)

and similarly to the FA case, the variable y can be integrated out obtaining:

x | z ∼ Normal(Λµz,ΛVzΛ
⊤ +Ψ).

This distribution can be seen as part of the complete likelihood from a mixture
of factor analysersmodel, that is a normalmixturewhere the covariance of each
component is modelled via the FA covariance structure shown in Equation
3.10. This framing of the model allows for the estimation via an EM algorithm
similar to the one used for Gaussianmixturemodels: this algorithm is presented
and explored in Montanari and Viroli (2010b). The IFA model is estimated
from a Bayesian perspective using a Gibbs sampler in Viroli (2007). The results
shown there will serve as a blueprint for the estimation of our novel IFAmodel,
which will be described in the following section.

The IFA model, thanks to its mixture modelling approach, allows for the
factor variables having arbitrarily flexible distributions, however, it comes with
the added burden of selecting the number of components for each element of
the latent variable. An alternative approach is using a distribution with param-
eters that affect moments higher than second, such as skewness and kurtosis,
thus parametrically estimating non-Gaussian factors. This strategy obviates
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the need of model selection within each factor, while in the process it loses the
possibility of having multi-modal factors.

This issue has been explored in Montanari and Viroli (2010c), where the
factors are modelled with the multivariate skew normal (MSN) distribution
(Azzalini and Capitanio, 1999). In particular a property of the MSN distri-
bution is utilized: any starting MSN distribution (z) can be transformed, via
an invertible affine function (y = Az), to another MSN distribution with in-
dependent components that are all standard normal expect for one, which is
univariate skew normal, in a sense absorbing all the skewness of the starting
multivariate distribution. Using this canonical form of the distribution for the
latent vector y greatly simplifies the estimation problem and moreover, it puts
the model within the context of IFA. Once a solution with factors having the
canonical form of the MSN is found, a rotation can be applied to the loadings
to possibly simplify their interpretation; although the canonical form is lost,
the rotated y remains within the MSN family.

The IFA model can be seen as a special case of a factor model where the
joint vector of factors is modelled as a multivariate Gaussian mixture:

f(y) =
G∑

g=1

wgN (µg,Σg) .

This model, called heteroskedastic factor mixture analysis, has been introduced
in Montanari and Viroli (2010a) and has recently been extended in a Bayesian
context in Chandra et al. (2023), where it is called Lamb; here the number
of components G can go to infinity, thanks to non-parametric priors on the
weights, such as the Dirichlet Process. In the latter article, the model is mo-
tivated by high-dimensional clustering, and very interestingly it is shown to
avoid some pitfalls, investigated in the same article, that affect model-based
clustering. If the clustering is performed in the original high-dimensional
space, common choices for the group covariance structure lead to asymptotic
(as p increases) posteriors for the partition that assign either all observations to
one component or each observation to a different component. The represen-
tation of the model when integrating out the latent factors becomes:

x ∼
G∑

g=1

wgN
(
Λµg,ΛΣgΛ

⊤ +Ψ
)
. (3.12)
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In IFA the total number of components for the mixture model of the latent
factors is G =

∏k
j=1Gj , that is any combination of the univariate mixture

components defines a component in the multivariate mixture. Given the inde-
pendence among the univariate mixture, it can only define diagonal matrices
in the component variances Σg, making it a special case of the model shown
in Equation 3.12.

3.3.1 IFA model with standard fgld distributed factors

The main model equation takes the same form as IFA:

x = Λy + u,

the only difference being the distribution used for the random vector of factors
y:

y = (y1, . . . , yk) with mutually independent entries

yj | θj ∼ Standard fgld(θj) j = 1, . . . , k

where θj = (αj, βj, δj, κj), with the constraints presented in Section 3.2.2.
With θ we will denote the collection of all these parameters across the k latent
variables. Moreover, for ease of notation, we will denote as

f(y | θ) =
k∏

j=1

f(yj | θj)

the joint density function of the latent variables, even though these density
functions are not available in analytical form, each of them being modelled
with a quantile-based distribution.

In Montanari and Viroli (2010c) a formal justification for using a non-
Gaussian distribution for the factors is developed. It is noted that a factor model
should be invariant to reversals in the direction of measurement, which trans-
lates to the factor distribution being closed with respect to a change of sign.
This is the case for the fgld: if X ∼ fgld(α, β, δ, κ), then −X ∼ fgld(−α −
κβ, β, 1 − δ, κ), which can be derived by applying the so-called reflection-
rule: Q−X(u) = −QX(1− u) (Gilchrist, 2000).

In order to estimate the model, we develop an MCMC algorithm, and for
this we must first derive the unnormalized posterior distribution. Introducing
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the latent variables y as part of the parameters, the likelihood of the model
takes the following form:

x | y,Λ,Ψ ∼ Normal(Λy,Ψ),

while the posterior of interest is the joint distribution of parameters and latent
variables conditional on the observed data x:

f(y,Λ,Ψ,θ | x) ∝ f(x | y,Λ,Ψ) f(y | θ) f(θ) f(Λ) f(Ψ).

The prior distributions for each θj are set as follows:

δj ∼ Uniform(0, 1)

κj ∼ Log-normal(µ = 0, σ = 4).

The matrix Ψ is diagonal with entries denoted as (Ψ1, . . . ,Ψp), for each of
them the prior is set as:

Ψl ∼ Inverse-gamma(a0, b0)

For matrix Λ we define a prior each of its rows, denoted as λl

λl ∼ Normal(0, Ik).

This is a routinely employed prior for the factor loadings in Bayesian models,
and, for instance, is the same one used in Ghosh and Dunson (2009).

For theMCMCalgorithmwe implement aMetropolis-within-Gibbs strat-
egy (Robert andCasella, 2010), where the outer part of the algorithm is a Gibbs
sampler, which means that each block of parameters is sampled from its full
conditional distribution. However, in contrast to the IFA model with normal
mixtures (Viroli, 2007), some full conditional distributions cannot be sampled
from directly and for them we employ a Metropolis-Hastings algorithm.

3.3.2 Derivation of the full conditional distributions

Until now, for ease of notation, we have considered a single random variable
x of dimension p. In this section instead, for completeness, we will consider
the usual scenario where our data is made of n samples from x, denoted as
xi = (xi1, . . . , xil, . . . , xip), with i = 1, . . . , n. The samples will be collectively
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referred to as X, a matrix of dimension n × p having xi as the i-th row. The
same notation is used for the latent vectors yi = (yi1, . . . , yij, . . . , yik), jointly
denoted as Y, an n × k matrix having yi as the i-th row. The likelihood
becomes:

f(X | Y,Λ,Ψ) ∝ det (Ψ)−
n
2 exp

(
−1

2

n∑
i=1

(xi −Λyi)
⊤Ψ−1(xi −Λyi)

)
(3.13)

The full conditional distribution of the generic element Ψl of matrixΨwill be
equal to:

f(Ψl | ·) ∝ Ψ
−n

2
−a0−1

l exp

(
− 1

Ψl

∑n
i=1(xil − λ⊤

l yi)
2

2
− b0

Ψl

)
,

where λl denotes the l-th row of Λ. This expression can be recognized as
being proportional to an Inverse-gamma distribution:

Ψl | · ∼ Inverse-gamma
(
a0 +

n

2
, b0 +

∑n
i=1(xil − λ⊤

l yi)
2

2

)
.

The full conditional distribution for each latent variable yi will be equal to:

f(yi | ·) ∝ exp

(
−1

2
y⊤
i Λ

⊤Ψ−1Λ+ y⊤
i ΛΨ−1xi

) k∏
j=1

f(yij | θj).

We cannot sample directly from this expression, so we use a random walk
Metropolis, where to improve the performancewe employ the so-called Laplace
approximation. The idea is to approximate the posterior covariance matrix
in the asymptotically optimal proposal covariance (see Equation 3.4) with the
Fisher information matrix evaluated at the maximum likelihood estimate (see
Chopin and Ridgway (2017) for an extensive treatment and comparison with
other algorithms). In the case at hand, wanting a sample from the full con-
ditional posterior of yi, the density of xi | yi plays the role of the likelihood,
and thus we have that the Fisher information is equal to Λ⊤Ψ−1Λ, for what is
effectively a linear model (xi = Λy+u). This expression is used as the proposal
covariance matrix for elements of yi and it is evaluated at the current values of
the parameters, which does not require the further computation of the max-
imum likelihood estimate. This procedure leads to better performance both
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in terms of time and mixing, than using a fixed scale random walk Metropolis
updating the elements of yi one-at-a-time.

AMetropolis-Hastings algorithm also needs to be employed to sample from
the full conditional distribution of θj :

f(θj | ·) ∝
n∏

i=1

f(yij | θj)f(θj).

If we consider (y1j, . . . , ynj) as a sample, this full conditional distribution simply
defines the posterior distribution for a standard fgld: therefore we can use the
RAM algorithm presented in Section 3.2.2 to sample from it.

The full conditional for each row ofΛ is a multivariate normal distribution:

λl | · ∼ Normal

(
1

Ψl

SλY
⊤x[l],Sλ

)

with Sλ =
(
Ik +

1
Ψl
Y⊤Y

)−1

, where l = 1, . . . , p.
The MCMC algorithm also needs to take into account the identifiability

issues that come with a latent factor model. Given that this is effectively an
IFA model, the issue relates to an invariance of the model under scale trans-
formations as shown in Equation 3.11.

A first solution we consider is applying a specific scale transformation at
each iteration of the algorithm so that both the factors and the loadings stay
at a particular solution. The transformation employed is the standardization
of the latent factors. Denote by D the k × k diagonal matrix containing the
variances of the latent factors, then after having derived a new sample for Y
from its full conditional distribution, it is transformed toY∗ = YD− 1

2 , and the
inverse transformation is applied to the factor loadings Λ = Λ∗D− 1

2 .
The second solution is similar to that employed in Ghosh and Dunson

(2009), where the authors use the technique of parameter expansion: themodel
fromwhich sample are taken is overparameterized, that is it has some unidenti-
fiable parameters. This, counter-intuitively, allows for more efficient sampling
and from the unidentifiable working parameters, the inferential parameters of
interest can still be recovered by taking the appropriate transformations that
link the two sets of parameters. This transformation can be done even after the
MCMC chain is derived, making it a so-called offline procedure. The Ghosh-
Dunson model and its sampling algorithm are described in Appendix B. In our
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case, the idea is to work not with a standard fgld, but with its centered version,
which means only enforcing the first of Equations 3.8, thus allowing for the
variance of the latent factors to be different from 1. The working model is
thus:

x = Λ∗y∗ + u

where y∗ = Φ
1
2y, with Φ

1
2 being a diagonal matrix that contains the standard

deviations of the latent factors, and y being the vector of standardized latent
factors. Consequently, the inferential value for the matrix of factor loadings
is: Λ = Λ∗Φ

1
2 . In the case of the fgld, the standard deviation at each iteration

can be computed based on Equation 3.6. Moreover, the parameters δ and κ
do not change under a scale transformation of an fgld random vector, so their
posterior chains can be used without transformations.

We compare the two algorithms given by the two identification strategies,
which we refer to as scaling and parameter expansion, in a small simulation
study similar to that of Section 3.2.1, whose results are shown in Table 3.2,
based on 10 runs of the two algorithms on data generated with the following
setup: n = 100, p = 7, k = 2,

Λ⊤ =

[
−2 0.5 1.2 1 −2.5 0 1

0.1 3 0.5 1.5 −0.5 −2 0

]
,

diag(Ψ) = (0.15, 0.1, 0.02, 0.05, 0.01, 0.1, 0.01),

θ1 = (−0.68, 0.68, 0.50, 2.0),

θ2 = (−0.94, 0.99, 0.95, 0.1).

In this setting the scaling approach works better in terms of absolute bias
(defined as the absolute value of the difference between the parameter value
and its posterior mean). The parameter expansion algorithm works a bit better
in terms of autocorrelation in the chains of Λ (testified by the ESS values),
which is the main drawback of the first approach, but at the expense in the
mixing of the θ parameters, where there is an extra parameter to be sampled.
On the whole the scaling approach seems thus to work better, and, given that
we are mostly interested in interpreting the values of θ and Λ, we prefer this
algorithm, which we will use in the following.
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Parameter Absolute bias mean Absolute bias range ESS mean ESS range

Parameter expansion
Λ 0.256 0.001− 2.327 169 6− 1, 239

Ψ 0.032 0.005− 0.061 2, 533 718− 5, 326

θ 0.264 0.005− 0.877 431 80− 765

Scaling
Λ 0.141 0.006− 0.486 72 3− 1, 217

Ψ 0.033 0.005− 0.061 2, 527 753− 5, 206

θ 0.189 0.007− 0.773 747 106− 1, 287

Table 3.2: Comparison of two algorithms for the IFA with fgld model with two iden-
tification strategies (parameter expansion and scaling), in terms of absolute bias and
effective sample size (ESS).

3.3.3 Using information criteria for choosing the number
of factors

In this section we briefly consider the selection of the number of factors in
the general factor analysis context. In the setting of a normal factor model
estimated via maximum likelihood, we can employ a likelihood ratio test: we
iteratively test the hypothesis that the covariance is adequately specified by the
structure in Equation 3.10 with an increasing number of factors, and choose
the first model for which the null hypothesis is not rejected. This model se-
lection approach is employed in Montanari and Viroli (2010c) to show that a
normal FA model cannot satisfactorily identify a model with a skew factor,
as the hypothesis is generally rejected for all feasible values of k (the number
of latent variables), which are bounded above by the well-known Lederman’s
condition.

In the Bayesian context instead, the parameter k can be included in the
inference process directly, thus solving at the same time both estimation and
model selection, at the cost of a greater computational complexity. This ap-
proach is taken in Lopes and West (2004) with the use of a reversible jump
MCMC algorithm, while in Ghosh and Dunson (2009) they estimate the pos-
terior probabilities for the number of factors: these can be written in terms of
Bayes factors, which can in turn be approximated by using the so-called path
sampling approach. In each of the two articles, some simulations are shown
where the proposed approach works very well, however, among the model
selection methods against which they compare, there are also information cri-
teria based on maximum likelihood estimates. In particular, the BIC criterion
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is shown to perform as well as the more complex methods based on the esti-
mation of posterior probabilities for the models.

For this reason, in the present manuscript we propose the use of informa-
tion criteria for the selection of the number of factors, also when estimating
the factor model with Bayesian methods. The log-likelihood for the normal
factor model can be written in compact form as:

ℓ(Σ) = −n
2

(
log (2π det (Σ)) + trace(Σ−1S)

)
(3.14)

where
Σ = ΛΛ⊤ +Ψ

and
S =

1

n
X⊤X,

assuming to be working with a centred data matrix X. This is the normal
likelihood where the latent factors have been integrated out and can be readily
computed for a normal FA model. For the IFA with fgld factors the latent
factors cannot be easily integrated out and thus the log-likelihood needs to be
computed by taking the logarithm of the expression in Equation 3.13.

The BIC evaluates Equation 3.14 at the maximum likelihood estimate Σ̂

and is equal to:
BIC = −2ℓ(Σ̂) + log (n) · pFA

where
pFA = p(k + 1)− k(k − 1)

2
, (3.15)

is the effective number of parameters of the model. The use of this criterion for
the FA model has been debated (see for instance Drton and Plummer (2017)),
as some of the theoretical justifications for its use do not hold. Moreover, it is
not a criterion specifically designed for Bayesian inference. For these reasons
we also consider the use of two fully Bayesian information criteria, which are
the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) and the
Widely Applicable InformationCriterion (WAIC) (Watanabe, 2010). TheDIC
is defined as:

DIC = −2 log p(x | θ̂Bayes) + 2pDIC

where the notation is taken from Gelman et al. (2013): log p(x | θ̂Bayes) stands
for the log-likelihood evaluated at the posteriormean of the parameters (θ̂Bayes),

52



and pDIC is the effective number of parameters computed as:

pDIC = 2varTt=1

(
log p(x | θ(t))

)
,

that is two times the sample variance of the log-likelihood across all T posterior
samples. With a similar notation, the WAIC is defined as:

WAIC = −2 lppd + 2 pWAIC2,

where the first part is the computed log pointwise posterior predictive density:

lppd =
n∑

i=1

log

(
1

T

T∑
t=1

p(xi | θ(t))

)
,

and the second part is again a correction for effective number of parameters:

pWAIC2 =
n∑

i=1

varTt=1

(
log p(xi | θ(t))

)
.

Wealso consider the BICMcriterion (Raftery et al., 2007), a posterior simulation-
based version of the BIC, which is computed as:

BICM = 2ℓ̂max + log (n) · p̂

with

ℓ̂max =
1

T

T∑
t=1

log p(x | θ(t)) + varTt=1

(
log p(x | θ(t))

)
and p̂ = pDIC.

To test the efficacy of these information criteria in selecting the right num-
ber of factors in the normal factor model, we revisit two simulation studies
carried out in Ghosh and Dunson (2009), the first one of which originally
proposed in Lopes and West (2004). We use the Gibbs sampler algorithm for
the Bayesian normal factor model introduced in Ghosh and Dunson (2009),
which allows for a fast and efficient posterior sampling.

In the first simulation we have a one-factor (k = 1) model with the follow-
ing settings: n = 100, p = 7,

Λ = (0.995, 0.975, 0.949, 0.922, 0.894, 0.866, 0.837)⊤
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and
diag(Ψ) = (0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30).

The maximum number of identifiable factors is 3; we run the selection for 100
simulated datasets. We run for 25,000 iterations with the first 5,000 as burn-
in. To check the compatibility of results with the original simulations we also
consider the BIC computed from the maximum-likelihood estimate among
the criteria. The results are shown in Table 3.3: we can see that all criteria
work very well in this simple case.

k = 1 k = 2 k = 3

BIC 100 0 0
BICM 100 0 0
DIC 98 2 0
WAIC 100 0 0

Table 3.3: Frequency of selectedmodel according to different information criteria. For
the BIC the maximum likelihood estimate was used, while for the others are based on
Ghosh-Dunson Bayesian factor model.

We also applied the Bayesian information criteria to the IFA model with
the standard fgld. The settings are the same, we just add the parameters for the
distribution of the factor: θ = (α = −1.05, β = 0.81, δ = 0.90, κ = 1.00). For
this model, given its higher computational demand, we have run the selection
for 10 simulated datasets and the burn-in was set at 12,500. The results are
shown in Table 3.4: these are much more mixed than in the previous case, this
might be due to the inclusion of the latent variables in the likelihood. However,
the BICM still seems to perform satisfactorily.

k = 1 k = 2 k = 3

BICM 8 2 0
DIC 6 3 1
WAIC 1 6 3

Table 3.4: Frequency of selected model according to different information criteria,
computed from the posterior samples of the IFA model with standard fgld.
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In the second simulation we have n = 100, p = 7, and k = 3, with the
parameters being equal to:

Λ⊤ =

0.89 0.00 0.25 0.00 0.80 0.00 0.50 0.00 0.00 0.00

0.00 0.90 0.25 0.40 0.00 0.50 0.00 0.00 −0.30 −0.30

0.00 0.00 0.85 0.80 0.00 0.75 0.75 0.00 0.80 0.80

 ,
and

diag(Ψ) = (0.2079, 0.19, 0.1525, 0.2, 0.36, 0.1875, 0.1875, 1, 0.27, 0.27).

The simulationwas carried in the sameway the previous one and themaximum
number of factors considered is 4. The results are shown in Table 3.5: again all
criteria perform very well, only the WAIC is slightly less accurate in selecting
the correct number of factors. Again we also carried out the simulation for the

k = 1 k = 2 k = 3 k = 4

BIC 0 0 100 0
BICM 0 0 100 0
DIC 0 0 100 0
WAIC 0 0 90 10

Table 3.5: Frequency of selectedmodel according to different information criteria. For
the BIC the maximum likelihood estimate was used, while for the others are based on
Ghosh-Dunson Bayesian factor model.

IFA model with the standard fgld, the factor parameters were set as:

θ1 = (−1.05, 0.81, 0.90, 1.00)

θ2 = (−0.68, 0.68, 0.50, 2.00)

θ3 = (0.14, 0.94, 0.30, 0.50).

The results, shown in Table 3.6, point to the fact that in this scenario the use
of information criteria does not work properly in the identification of the true
model. We suspect the issue might be due to the use of the complete likeli-
hood, and to test this hypothesis we repeat the two simulations with the normal
model, but evaluating the information criteria based on the complete likeli-
hood of the model. Results, shown in Table 3.7, point to a deterioration of
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k = 1 k = 2 k = 3 k = 4

BICM 10 0 0 0
DIC 5 2 2 1
WAIC 0 0 6 4

Table 3.6: Frequency of selected model according to different information criteria,
computed from the posterior samples of the IFA model with standard fgld.

the performance of the criteria, in particular in the second scenario. However,
some useful insights can be derived by this empirical study: when working
with the complete likelihood, the WAIC tends to favour more complex mod-
els, compared to the BICM,which is more conservative, resembling the typical
trade-off between AIC and BIC in the frequentist setting.

k = 1 k = 2 k = 3

BICM 99 1 0
DIC 98 2 0
WAIC 43 36 21

k = 1 k = 2 k = 3 k = 4

BICM 77 20 3 0
DIC 58 26 16 0
WAIC 0 4 57 39

Table 3.7: Frequency of selectedmodel according to different information criteria. For
the BIC the maximum likelihood estimate was used, while for the others are based on
Ghosh-Dunson Bayesian factor model.

3.4 Illustrationwith European Social Survey data
In this section we apply the IFA model with standard fgld factors that we have
developed to data taken from the European Social Survey (ESS) (Norwegian
Social Science Data Services, 2020). The ESS is a recurring survey about atti-
tudes and behaviour that started in 2001 and is carried out every 2 years in most
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European countries, Round 10 has 30 participating countries. The probability
of inclusion is computed with the goal of obtaining a sample that can be used
for estimating quantities about the national population of interest. The ques-
tionnaire contains items that are present in each round (the core section) and
so-called rotating modules, which are groups of questions that focus more in
depth on a particular topic and are sometimes repeated in later rounds. More-
over, in each iteration of the survey, a 21-item measure of human values and
some test questions for the validation of some items are present.

In Round 10 of the ESS, there is rotating module called “Europeans’ under-
standings and evaluations of democracy”, which explores the attitudes of citizens
regarding the importance they assign to some characteristics related to democ-
racy; all of these questions start with ‘How important you think it is for democracy
in general that . . . ’ and have an 11-point measurement scale from 0 (‘Not at all
important for democracy in general’) to 10 (‘Extremely important for democracy in
general’). Questions about the same characteristics are then asked in relation to
the country of the respondent, with the incipit ‘To what extent you think each
of the following statements applies in [country]’, again on 11-point scale that goes
from 0 (‘Does not apply at all’) to 10 (‘Applies completely’).

These items have been used to form some variables with the idea of ap-
plying the IFA model we have developed. Given the high correlations among
groups of items and to increase the degree of continuity of the variables, vari-
ables have been constructed that are themean of some original variables. There
is some arbitrariness in the groupings, although, within each group, all vari-
ables have the same measurement scale and relate to the same topic to an extent
that the constructed variable can be easily described.

All items from this module have been used with the exception of stpldmi,
which is an alternative to the item chpldmi, the items gptpelc and keydec
which were not correlated to other items relating to the same topic. Finally,
two items (implvdm and accalaw) were excluded because they have a differ-
ent measurement scale to the other items and are not enough to construct a
continuous summary variable.

On top of the questions related to democracy, we have also retained a group
of 8 questions part of the core module on political views, these are all questions
about trust in institutions starting with ‘How much you personally trust each of
the institutions . . . ’, again on 0-10 scale from ‘No trust at all’ to ‘Complete trust’.
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The list of items that have been used in the analysis is shown in Table
3.8, which shows the questions, and the relation between original and con-
structed variables. For the questions related to democracy there is a second
set of variables (from corresponding questions) that refer to the country of
the respondent, the variable names are the same but with a ‘c’ at the end and
the same naming distinction has been used for the constructed variables. The
constructed variables can be briefly described as follows:

• trst_pol: trust in political entities and institutions.

• trst_sys: trust in systemic institutions.

• demo_gov(c): democracy characteristics related to government inter-
ventions.

• demo_fun(c): democracy characteristics related to the electoral and demo-
cratic process.

• demo_pop(c): democracy characteristics related to the participation and
representation of the population.

After the selection and construction of the analysis variables, the sample has
been restricted to respondents from Italy. Moreover, observations with miss-
ing values in at least one of the original variables considered were excluded;
this resulted in a sample size of 1081. A graphical representation of the result-
ing data is presented in Figure 3.5. From the kernel density estimates of the
variables we can see how some of them are very skewed, such as demo_gov
and demo_fun with most respondents assigning very high importance to the
related characteristics.

We have then fit the IFA model with the standard fgld with k, the number
of factors, ranging from 1 to 4. The algorithm was run each time for 25,000
iterations, with the first half serving as burn-in. There are no signs of problems
with the convergence; traceplots for the models with k = 1 and k = 2 are
shown in Appendix B. The information criteria do not offer an unequivocal
guidance as towhich value of k to choose, both theDIC and the BICM increase
with k, while the WAIC does the opposite. We consider the two simplest
models with k = 1 and k = 2, with the latter offering the most interesting
results in terms of factor loadings and factor scores.
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Question Original
variable

Constructed
variable

Trust in country’s parliament trstprl

trst_pol

Trust in politicians trstplt
Trust in political parties trstprt
Trust in the European Parliament trstep
Trust in the United Nations trstun

Trust in the police trstplc

trst_sysTrust in legal system trstlgl
Trust in scientists trstsci

The government protects all citizens against poverty gvctzpv

demo_gov
The government takes measures to reduce differences in income levels grdfinc
The rights of minority groups are protected rghmgpr
The courts treat everyone the same cttresa

National elections are free and fair fairelc

demo_funDifferent political parties offer clear alternatives to one another dfprtal
The media are free to criticise the government medcrgv

The views of ordinary people prevail over the views of the political elite viepol

demo_pop
The will of the people cannot be stopped wpestop
Government changes policies in response to what most people think chpldmi
Citizens have the final say on political issues by voting directly in referendums votedir

Table 3.8: Variables from the European Social Survey Round 10 that have been in-
cluded for the analysis. On the left column are the questions, on the central column
are the variable names in the original data set, and on the right column are the vari-
ables that have used for the factor analysis, that are the mean of the group of variables
to their left.
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trst_pol trst_sys demo_gov demo_fun demo_pop demo_govc demo_funcc demo_popc
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o_gov
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o_fun
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Figure 3.5: Scatter plot matrix showing all pairwise relationships between the 8 vari-
ables used for the factor analysis. On the diagonal are the kernel density estimates of
each variable.
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In the following we will compare results with two other models, the clas-
sical normally distributed factor analysis model fitted via maximum likelihood,
and the IFA model with normal mixtures fitted again according to maxi-
mum likelihood with the EM algorithm (Montanari and Viroli, 2010b). For
the latter we fit models with mixtures of three components for each factor
(Gj = 3, j = 1, . . . , k), to ensure enough flexibility.

To make the results from the three models more easily comparable, we
choose an arbitrary, but consistent, order and sign for the columns of Λ: these
are arranged in descending orderwith respect to the their squared sum,

∑k
j=1 λ

2
lj ,

and their sign is such that the sum of their elements is positive. These rules are
already implemented in the built-in R function factanal, used for the maxi-
mum likelihood estimation of the FAmodel. This changes, applied to the fitted
scores, do not affect any of the models as they are invariant to both permuta-
tions and sign changes to the latent factor variables.

The factor loadings from the models with k = 2 are presented graphically
in Figures 3.6 and 3.7. The visualisation represents the loadings in the two-
dimensional plane given by the two latent factors, in a similar way to a biplot,
but without the factor scores. The plot allows for an immediate identification
of which groups of variables are related the most to each factor. First of all, we
can see how the loadings from the two IFAmodels (Figure 3.7) are very similar
between them and also very similar to the ones given by the classical factor
model with varimax rotation (Figure 3.6). This gives us some reassurance in
robustness of the obtained solution to different model specifications. The two
factors also turn out to be quite interpretable:

• The first one is related to the perceived characteristics of democracy in
Italy and to the trust variables: respondents with high values for this
factor will have generally high trust in politics and institutions and will
also perceive that generally the features of democracy are present in Italy.

• The second factor is instead closely related to the ideal characteristics of
democracy and tells us that in general people tend to give similar an-
swers to the aspects related to the government (demo_gov), functioning
of democracy (demo_fun) and popular representation (demo_pop).

Next we consider the factor scores, that is the fitted values for the latent
variables yi. In the IFA with the standard fgld the factor scores are part of
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Figure 3.6: Factor loadings from the classical factor analysis with k = 2, with no
rotation (left panel) and with varimax rotation (right panel).
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Figure 3.7: Factor loadings from the IFA with standard fgld (left panel) and from the
IFA with normal mixtures (right panel).
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Figure 3.8: Factors scores with their fitted probability density estimate from the mod-
els with k = 1.

the model estimation and we can take their posterior mean as a summary for
their value. For both the classical and the independent factor analysis mod-
els, the scores are not part of the estimation procedure and need to computed
afterwards; for this we choose the Bartlett estimator:

ŷi = (Λ̂⊤Ψ−1Λ̂)−1Λ̂⊤Ψ−1xi i = 1, . . . , n.

The distribution of the factor scores from the three models with k = 1 is
shown in Figure 3.8. Overlaid on each histogram is the probability density
that is predicted by the model: for the classical FA we have a standard normal
distribution, for IFAwith normal mixtures we have the 3-component Gaussian
mixture with the estimated coefficients and for the IFA with standard fgld we
plot the probability density at the posterior mean of the parameters. For this
first factor, the scores from the IFA with normal mixtures is slightly skewed,
while the solution with the fgld has a flatter shape that reflects the uniformity
of the modelled scores around the center of the distribution. If look at the same
picture from the models with k = 2, Figure 3.9, we see that the distribution of
the scores for the second factor are skewed for all models. Of course, for the
FA model the theoretical normal distribution does not match the fitted scores;
for the IFA with normal mixture there is some correspondence between the
histogram and the density function, but it is greater for the IFA with standard
fgld, as it also has the advantage of deriving the scores in the modelling itself.
In Table 3.9 we further compare the empirical distribution of factor scores for
the 6 models we have just considered with computations for sample skewness
and kurtosis. We highlight that in the second factor of the model with k = 2

the IFA with the standard fgld is able to achieve greater values in terms of
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Figure 3.9: Factors scores with their fitted probability density estimate from the mod-
els with k = 2.

skewness and kurtosis with a fewer number of parameters than the IFA with
the normal mixture. The number of effective parameters for the FA model is
given in Equation 3.15. For the IFA with normal mixture this turns out to be
p(k+ 1)+ (3

∑k
j=1Gj − k)2, and for the IFA with the standard fgld is equal to

p(k+ 1) + 2k. The latter model can thus, as in this case, achieve the flexibility
of the normal mixture model with a smaller number of parameters.

2The formula refers to the estimation routine we have used, which does not constraint
the expected value and variance of the latent variables. If that were the case the number of
parameters would be equal to: p(k + 1) + 3(

∑k
j=1Gj − k)
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k = 1

Method # parameters sample skewness sample kurtosis

FA 16 -0.06 2.34
IFA normal mixture 24 0.30 2.41
IFA fgld 18 0.08 2.12

k = 2

Method # parameters
sample skewness sample kurtosis

1 2 1 2

FA 23 0.01 -1.32 2.50 5.48
IFA normal mixture 40 -0.40 -1.51 2.56 6.70
IFA fgld 28 -0.07 -1.81 2.19 7.30

Table 3.9: Comparison of the models with k = 1 and k = 2 in terms of number of
parameters and shape of the factor scores.

65



Chapter 4

Multivariate Analysis and
Classification with the Integrated
Rank-Weighted Depth

4.1 Introduction
In multivariate analysis the identification of order statistics, quantiles and typ-
ical or atypical patterns is very challenging due to the lack of an order among
observations, which is instead natural in the real line R1 (Kong and Mizera,
2012; Serfling, 2002). Since the early 1990s, considerable advancements have
been made in developing more generalized statistics for assessing centrality
and outlyingness of data in Rp, with p ≥ 2, and to identify central regions
within a data cloud, comprising points with a specified degree of centrality.
These advancements are grounded in the concept of statistical depth, which
naturally arranges the sample points in a center-outward order. A depth func-
tion assigns a real number to each point of a multivariate dataset measuring
the outlyingness of the point with respect to the barycenter. Thus, it provides
a way to quantify how far an observation is from the center of the dataset, and
is also used to identify order statistics via depth-induced contours.

Several popular depth functions have been introduced to measure the cen-
trality of data points within a dataset. Notably, the halfspace depth (Tukey,
1975) finds the minimum probability of halfspaces containing the point, while
the Mahalanobis depth (Liu and Singh, 1993) offers an alternative measure
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based on the well-known Mahalanobis distance. In addition to these, var-
ious other depth functions, such as the simplicial, regression, and majority
depth, have been proposed and applied across diverse domains, including clas-
sification, quality control in manufacturing, and exploratory statistical analysis.
From a theoretical standpoint, Liu et al. (1999) and Serfling and Zuo (2000)
provided the foundational general and constructive definition of depth func-
tions, outlining crucial postulates like invariance, monotonicity, convexity,
and continuity. Recently, Mosler and Mozharovskyi (2022) delved into the
various notions of multivariate depth statistics, emphasizing both theoretical
and practical aspects, such as invariance, uniqueness, robustness, and compu-
tational feasibility.

In this chapterwe focus on a depth function called integrated rank-weighted
(IRW) depth (Ramsay et al., 2019), which in turn is based on the integrated
depth notion introduced by Cuevas and Fraiman (2009). For multivariate real
data, integrated depths can be thought of as the expected value along infinite
random directions of a univariate depth function computed on the projected
data. We show that the IRW depth is affine invariant with sphered data, thus
possessing all the properties of so-called statistical depth functions (Serfling
and Zuo, 2000; Serfling, 2002); and we also show that the Mahalanobis depth
is closely related to the concept of integrated depth function. In addition, we
demonstrate that the IRW depth provides a complete characterization of the
probability distribution of the data.

The strength of this depth definition lies in its generality, allowing for flex-
ible model choices in the projected spaces. Among the models we consider for
the univariate distributions we find the quantile-based fgld distribution to be a
valuable option (Redivo et al., 2023; Chakrabarty and Sharma, 2021). We will
also explore the depth regions and contours induced by the IRW depth func-
tion, highlighting its non-convex nature, which comes with both advantages
and disadvantages. Nonetheless, this characteristic adds versatility and adapt-
ability, making it particularly suitable for analyzingmultivariate data with var-
ious shapes and distributions. Thanks to the flexibility of model choices and
to its computational efficiency, the IRW depth function, serves as a promis-
ing tool for supervised classification tasks. In the same perspective of Ghosh
and Chaudhuri (2005), we adopt maximum depth as a principle to measure
the largest proximity to specific class distributions. The asymptotic optimality
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of the classifier is demonstrated, under the same assumptions of the median
classifier by Hall et al. (2009), which basically entail that the alternative pop-
ulations may have arbitrary distributions and differ by locations shifts. The
performance of the proposed method is evaluated through simulated experi-
ments and real data application, and is shown to be very good, especially when
compared to the same classification methods based on other depth notions.

The remainder of the chapter is structured as follows: in Section 4.2, we
review the most important depth functions and we provide the definition of
the IRW depth and its connections to other depth functions. We also derive
some theoretical properties, starting with its population version and then in-
troducing its sample counterpart with a demonstration of its asymptotic strong
consistency as the sample size increases.

Moving on to Section 4.3, we demonstrate the practical application of the
IRW depth function in supervised classification. We establish the asymptotic
optimality of its maximum depth classifier, ensuring accurate classification
with diminishing misclassification rates as the sample size, dimensionality, and
the number of random projections considered tend towards infinity. The per-
formance of the classifier is evaluated through empirical experiments in Section
4.4, encompassing both simulated and real data scenarios. The proofs of the
theoretical results are found in Appendix C.

Furthermore, to facilitate the implementation of our approach, we provide
a software package called dqclass in R, which is available in the reproducibil-
ity materials. This open-source package enables users to easily compute the
IRW depth and the resulting classifiers in their own research or analyses.

4.2 Integrated rank-weighted depth

4.2.1 Depth functions

Let X be a multivariate random variable of dimension p with probability dis-
tribution F . A depth function measures how deep or central a point x ∈ Rp

is with respect to a data cloud of points sampled from X or with respect to
the theoretical distribution of X itself. It can be formalized as a function
D(x, F ) : Rp×F → R, where usually the codomain is restricted to the interval
[0, 1] so that the most central point(s) have a depth equal to 1. In the following
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theoretical definitions of some of the most popular statistical depths are given:

- Halfspace or Tukey’s depth (Tukey, 1975; Donoho and Gasko, 1992).
For a multivariate random vector X with distribution F the halfspace
depth of a point x ∈ Rp is given by the minimum probability of a halfs-
pace that contains that same point:

HD(x, F ) = inf{P (H) : H is a closed halfspace,x ∈ H}.

- Mahalanobis depth (Mahalanobis, 1936).
It is inversely proportional to the Mahalanobis distance:

MD(x, F ) =
[
1 + (x− µF )Σ

−1
F (x− µF )

]−1
,

where µF and ΣF are the mean vector and dispersion matrix of X,
which, if needed, can be estimated from sample data, giving rise to the
sample version of the depth function.

- Simplicial depth (Liu, 1990; Serfling and Zuo, 2000).
It is defined as a probability that the point x ∈ Rp at which we want to
compute the depth, belongs to a random simplex inRp. The latter can be
defined as the convex hull of a set of p+ 1 random points, the definition
is thus:

MS(x, F ) = P (x ∈ conv({X1, . . . ,Xp+1}),

where X1,X2, . . . ,Xp are independent copies of X and conv({·}) indi-
cates the convex hull.

- Projection depth (Liu, 1992; Serfling and Zuo, 2000).
The projection depth value of a given point x ∈ Rp with respect to the
distribution F can be defined as:

PD(x, F ) =
1

1 + O(x, F )
,

where O(x, F ) is an outlyingness measure:

O(x, F ) = sup
s∈Sp−1

∣∣Q(s,x, F )∣∣,
where Sp−1 is the unit sphere in Rp:

Sp−1 = {s ∈ Rp : s⊤s = 1}.
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The function Q(s,x, F ) = s⊤x−µ(Fs)
σ(Fs)

represents the normalized projec-
tion of x onto the unit vector s. Fs is the distribution of sTX. The pro-
jection depth and its associated estimators depend on the choice of µ(Fs)

and σ(Fs). A commonly used robust choice is given by the median and
median absolute deviation, respectively. The depth is thus defined as the
worst case outlyingness of x in any one-dimensional projection.

For a comprehensive listing of other important depth functions see Mosler
and Mozharovskyi (2022).

In their seminal work, Serfling and Zuo (2000) introduced a comprehen-
sive framework for depth functions and outlined four essential properties that
such functions should possess. Specifically, they denote as a statistical depth
function a non-negative and bounded function, satisfying the following key
properties:

(i) Affine invariance: The depth function remains invariant under changes
in the coordinate system or scale of the underlying measurements.

(ii) Maximality at the center: The deepest central point within the dataset
attains the highest depth value.

(iii) Monotonicity: As a point moves away from the deepest central point, the
depth function monotonically decreases.

(iv) Asymptotic behavior: The depth function approaches zero as a point
moves towards infinity.

The halfspace depth meets all these desirable properties. In contrast, the Ma-
halanobis depth function qualifies as a proper depth function only when the
underlying distributionF is symmetric, with affine equivariant first and second
moments (Serfling and Zuo, 2000).

Another crucial aspect of a depth function lies in its capacity to effectively
identify and characterize the underlying distribution F based on the depth
scores for all possible values of X. Various depth functions exhibit varying
degrees of power in this task, making the selection of an appropriate depth
function critical for accurately characterizing and understanding the data dis-
tribution. For example, while theMahalanobis depth can only identify the first
two moments of F , while the so-called zonoid depth (Koshevoy and Mosler,
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1997) can fully determine F . Special attention has been devoted to the charac-
terization property of the Tukey depth function (Struyf and Rousseeuw, 1999;
Koshevoy, 2002; Nagy, 2021; Kong and Zuo, 2010): the halfspace depth can
identify a finite discrete distribution uniquely, but it may not do so for infinite
discrete or continuous distributions.

In addition to these features, a depth function evaluated for a sample should
be consistent to its population counterpart, as the sample size increases, and
should be computationally efficient, i.e., it should be possible to compute the
depth values of data points efficiently even for large p.

Given that our goal in this manuscript is that using depth functions as a
tool for classification, we want to work with a depth that is both flexible, thus
able to accommodate a wide range of shapes for the class distributions, and
at the same time computationally efficient and feasible for a wide range of
data sizes, in particular as the number of variables increases. For instance, the
Mahalanobis depth is very easy and cheap to compute, but not very flexible,
being limited to represent elliptical contours, similarly to assuming a Gaussian
density. Depth notions based on geometrical notions instead, such as simplicial
and halfspace depths, are very flexible but quite expensive to compute especially
as the number of dimensions increases. Our choice has been that of focusing
on the class of integrated depth functions, which will be introduced in the next
section and will be shown throughout to possess both of these qualities. They
are still closely related to the more common depths that we have just listed,
but deal with the multivariate nature of problem with the popular and fruitful
approach of resorting to projections.

4.2.2 Integrated depth functions

The notion of integrated depth functions has been introduced by Cuevas and
Fraiman (2009) with the stated goal of being able to deal with infinite di-
mensional data, such as that encountered in functional analysis. Similarly to
the projection depth introduced in the previous section it is based on infinite
random univariate projections. Given a univariate depth function denoted as
D1, and a probability measure Q, the general definition of the integrated dual
depth (IDD) is:

DID(x, F ) =

∫
D1(f(x), Ff(X)) dQ(f),
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where x can belong to a Banach space and f is a function belonging to its dual
space. In the present work, we only focus on real-valued data, so that x ∈ Rp

and we fix Q to be the uniform distribution on the unit sphere, the so-called
Haar measure, then the definition becomes:

DID(x, F ) =

∫
Sp−1

D1(s
⊤x, Fs⊤X)ds = ES

[
D1(s

⊤x, Fs⊤X)
]
.

From this expression we see that the IDD can be seen as the expected value
along the infinite random directions belonging to unit sphere (s ∈ Sp−1) of a
univariate depth evaluated at the projected target point according to the pro-
jected probability distribution.

In Cuevas and Fraiman (2009), the authors focus only on the IDD defined
on the univariate version of the simplicial depth: a simplex in one dimension
is a closed segment and the probability that a point x belongs to a random
segment [X1, X2], with X1, X2

iid∼ F is given by:

SD1(x, F ) = P (x ∈ [X1, X2]) = P (X1 ≤ x ≤ X2) = F (x) (1− F (x−)),

where F (x−) is a shorthand notation for limx→x− F (x). Another integrated
depth function is introduced in Ramsay et al. (2019), where the authors choose
as starting point the univariate halfspace depth. The univariate equivalent of a
halfspace is a ray, and there are only two rays at the point x whose probability
we need to consider, resulting in the following definition:

HD1(x, F ) = min{F (x), 1− F (x−)}. (4.1)

The integrated depth derived from HD1 is called integrated rank-weighted
(IRW) depth, and given that it is the depth that we will focus for the remainder
of this work we denote it simply as D:

D(x, F ) = 2

∫
Sp−1

HD1(s
⊤x, Fs⊤X)ds,

where the factor 2 steps in so that the maximum of the univariate depth is
equal to1. In Ramsay et al. (2019), the authors also add at the denominator a
term for the volume of the p-dimensional sphere, so that also the integrated
depth has a maximum of 1; however, in the present work we choose, without
loss of generality, to avoid the term, which is only a multiplication constant
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PDF

CDF

Depth

Figure 4.1: Probability density function (PDF), cumulative distribution function
(CDF) and univariate halfspace depth function of a generic skew random variable.
The dashed line denotes the median.

not needed in the actual computation, thus simplifying the notation. The fac-
tor 2 instead, simplifies if we express min{x, y} = x+y−|x−y|

2
, resulting in this

equivalent expression:

D(x, F ) =

∫
Sp−1

(1− F (x) + F (x−)− |1− F (x)− F (x−)|) ds,

where to simplify notation x ≡ s⊤x and F ≡ Fs⊤X. Furthermore, we assume
from here on that the cumulative distribution of the projection is continuous
along each direction, which results in the following working definition for the
IRW depth:

D(x, F ) = ES

[
1− 2|FS⊤X(S

⊤x)− 0.5|
]
. (4.2)

The univariate depth underlying this definition,D1(x, F ) = 1−2|F (x)−0.5|,
is represented in Figure 4.1 along with the density (PDF) and the cumulative
distribution functions (CDF). It can be seen as a simple transformation of the
CDF made in such a way that it reaches its maximum value at the median and
it decreases linearly as a function of the CDF as the probability moves away
from 0.5, reaching 0 at the extremes of the domain of the random variable.
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The Mahalanobis distance, on which the depth by the same name is based,
is connected to the idea of integrating the results from random uniform direc-
tions as the following Lemma shows.

Lemma 5 LetX be a multivariate random variable of dimension pwith centerµ and
finite precision matrixΣ−1 = W⊤W, and let X̃ = WX be a sphering transformation
having center at µ̃ = Wµ and identity covariance matrix. Let x be a generic point
of Rp, and x̃ its counterpart after sphering. Then, the expectation of all the Euclidean
distances of the projected point s⊤x̃ to s⊤µ̃ over the uniformly distributed directions
s ∈ Sp−1, coincides with the Mahalanobis distance between x to µ, divided by p.

The proof can be found in the Supplementary Material. This is mostly a theo-
retical result as using this result for computing theMahalanobis distance would
still require the knowledge or computation of the covariance matrix in order to
derive the sphering matrix. In the following Corollary the Mahalanobis depth
is restated based on the expression for the distance we have just found:

Corollary 1 The Mahalanobis depth can be also evaluated based on the expected
value along infinite random projections as:

MD(x) =
[
1 + pES

[(
S⊤x̃− S⊤µ̃

)2]]−1

,

Next, we consider the four properties introduced in Serfling andZuo (2000),
that define a so-called statistical depth function, in relation to the IRW depth.
In the paper where the depth has been first introduced (Ramsay et al., 2019),
three of these are proven and it is noted that the depth does not possess affine
invariance. In the following theorem we show that also the latter is achieved
with sphered data.

Theorem 3 Given x ∈ X with finite precision matrix Σ−1 = W⊤W and let
X̃ = WX be the sphering transformation with identity covariance matrix. The depth
function on sphered data

D(x, F ) = ES

[
1− 2|FS⊤X̃(S

⊤x̃)− 0.5|
]
, (4.3)

is bounded, non-negative and satisfies the following properties:

(i) The depth is affine invariant, that is D(Ax+b, FAX+b) = D(x, FX) for any
random vectorX in Rp, any non-singular p× p matrixA and any p-vector b;
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(ii) D(µ, F ) = supx∈Rp D(x, F ) holds for any F ∈ F having center at µ;

(iii) for any F ∈ F having center at µ, D(x, F ) ≤ D(x′, F ) holds with x′ =

µ+ α(x− µ) and α ∈ [0, 1];

(iv) D(x, F ) → 0 as ∥x∥ → ∞.

The proof of point (i) is provided in the Supplementary Material.

In the following theorem, we demonstrate that the IRW distribution depth
function is unique with respect to F , and as a result, it uniquely characterizes
the random variable.

Theorem 4 Let X be a continuous random variable. The integrated rank-weighted
depth function defined in (4.2) completely characterizes the underlying distribution of
X.

The proof is given in the Supplementary Material.

4.2.3 Sample version and computation

In Ramsay et al. (2019) the authors provide an exact formula for the computa-
tion of the IRW depth given some data points: it is based on a weighted sum
of ranks and from it the depth function takes its name.
The intuition for the formula can be built in the bidimensional case: the rel-
ative ranking between the projection of a target point and that of any point
in the data only changes when projection directions cross the bisector line
between the two points. With directions parallel to the bisector, the two pro-
jected points coincide, and thus the bisector divides the space in two sections
where the relative ranking between the two points is constant. This reasoning
can be repeated by considering the direction parallel to the bisector between
the target point and any point in the data: all of these directions will create
circular sectors where the ranking of the projected points is constant. Then,
the empirical distribution function is substituted for the CDF in the most gen-
eral formula for the univariate halfspace depth HD1 (Equation 4.1): its value
only depends on the rankings and will also be constant within each sector.
The depth can finally be computed as a weighted average ofHD1 within each
sector, with the weights given by the angles of the sectors. This formula can
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also be extended to higher dimensions and in general to any depth based on
the projection of univariate CDFs. For a general dimension p and sample size
n however, the complexity needed for computing the depth is dominated by a
term of the order O(np−1), which makes the computation expensive in higher
dimensions.

Another way of computing the depth based on a sample, and the one we
employ, is approximating the expected value of Equation 4.2 with the sam-
ple mean, randomly sampling directions on the unit sphere. This computa-
tion method, which is a Monte Carlo approximation of the integral, has been
proposed in Cuevas and Fraiman (2009) and it has the great advantage that
its computation complexity is only linear in the dimensionality of the space:
given B random directions on which the computation is based the order is
O(Bnp), as mentioned in (Ramsay et al., 2019).

Let Xn be a sample of size n from X. Then the sample version of the IRW
depth for a generic point x, given B randomly sampled spherical directions
(whose generic element is denoted as sb) is given by:

DB(xi, F̂n) =

∑B
b=1

[
1− 2|F̂s⊤b Xn

(s⊤b x)− 0.5|
]

B
. (4.4)

An illustration of the computation of the IWR depth from a bivariate sam-
ple is given in Figure 4.2. Few equally spaced directions, for illustrative pur-
poses, are shown in the left panel, the red target point in the data cloud is
where each of the univariate depth functions on the right panel is evaluated.
The mean of the values will gives us the approximation to the IRW depth.

Two choices need to made when working with the sample version of this
depth: the estimator for the univariate CDF along each direction and the num-
ber of random directions.

In Cuevas and Fraiman (2009) and Ramsay et al. (2019) the authors only
consider the substitution of the unknown population CDF for its empirical
counterpart. However, we feel that the flexibility that the depth allows in
choosing how to model the distribution function is a strength of the defini-
tion since it allows the method to handle a wide range of data types, making
it suitable for diverse applications. In the following examples and applications
we consider three models: the Gaussian distribution; the flattened generalized
logistic distribution (fgld) (Chakrabarty and Sharma, 2021), which is a flexible
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Figure 4.2: Illustration for the approximation of the IRW depth: on the left panel there
is a data cloud, nine color-coded directions and in red we have the target point; on the
right panel we have the univariate depth functions along the nine directions, evaluated
at the point of interest.

quantile-based distribution with four parameters, allowing for skewness and
flatness in the shape of the density and finally we also consider the kernel den-
sity estimation (KDE) as a nonparametric approach to distribution fitting. The
fgld is estimated via least squares as in Redivo et al. (2023). For the KDE we use
a normal kernel and the default bandwidth selection method employed in the
density function in R. For estimating the CDF, the KDEmethod is translated
to:

F̂ (x) =
1

n

n∑
i=1

Φ

(
x− xi
s

)
,

where Φ is the Gaussian CDF and s is the bandwidth. The other choice, the
number of directions B, is strictly related to computational efficiency. On the
one hand, the depth computation is easily scalable for multivariate data as it
tackles the issue of dimensionality by projectingmultivariate data into univari-
ate data, effectively overcoming any limitations imposed by the dimensionality
of variables. On the other hand, the computational efficiency is influenced by
the choice of the number of projections denoted by B. While a large value of
B is necessary to ensure asymptotic results, like its consistency to the theoret-
ical definition of the depth (see Theorem 5), it can slow down the estimation
process, especially when the sample size is also large. Therefore, careful con-
sideration is needed to strike a balance between accuracy and computational
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time.
In the following theorem we consider the strong consistency ofDB(x, F̂n)

as an estimator of the theoretical population depth. A similar result is stated
in Ramsay et al. (2019), for which we give in this work detailed proof in the
Supplementary Material.

Theorem 5 As n → ∞ and B → ∞ the sample depth converges almost surely to
the population depth function:

DB(x, F̂n)
a.s.−−−→ D(x, F ) (4.5)

Empirical consistency

To check how well the approximation works for a finite sample and a finite
number of random directions, we carried out a small empirical simulation,
whose results are shown in Figure 4.3. To look at the convergence of the
computed value of the depth at a certain target point, we can see how this
value changes as we add more and more random directions. To also account
for the variability in the procedure, we can get multiple such sequences by
using different sets of random directions. In each panel of the figure we show
100 such random paths, which are cumulative means up to a certain number of
directions B.

The data is simulated from amultivariate normal distributionwith center in
the origin. A covariance matrix of dimension p = 50 has been sampled from a
Wishart distribution, and the covariancematrices for the other dimensions (p =
10 and p = 2) have been taken as the top-left submatrices of it. Within each
dimensionality p, the samples of different sizes (n = {50, 100, 250}) form nested
sets of observations, that is as n increases new observations are added, so that
results are more comparable, the difference being the new information coming
from the additional units. Also, the target point is fixed for each dimension p,
and it is found as a point having a fixed Mahalanobis distance (the quantile of
level 0.68 of the chi-squared distribution χ2

d.f.=p times p), so that that the depth
can have similar values across the dimensions.

Figure 4.3 shows that, at least for this simple Gaussian data, the value of
the computed depth is quite stable even for low values of n and does not need
an appreciably larger number of directions when p is large. The convergence
as the number of directions increases seems quite fast in all settings and for all
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Figure 4.3: Each panel represents 100 random paths for the sample version of the IRW
depth approximatedwith an increasing number of random directions (B in the x-axis).
The columns show different numbers of variables (p) and the rows different sample
sizes (n).
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of them an empirical convergence seems to have been reached with B = 500,
which is the value that we will also use in Section 4.3.

Remark 1 Direction importance.

One might wonder whether it is worthwhile to consider the fact that differ-
ent directions could contribute differently to determining the depth of a point.
The issue can be framed as asking whether it makes sense to weigh the direc-
tions by transforming the definition in Equation 4.4 into a weighted average
using coefficients wb, to be determined according to some criterion. Intu-
itively, a direction is informative when it is able to concentrate the units more
around the barycenter, this is mainly in the perspective of classification (see
Section 4.3), where we want to separate multiple groups. However, if data
are sphered, the variability along each direction is constant, since the marginal
distributions along each direction have unit variance. More importantly, for
each direction, the sum of the depths of all points is also constant. In particular,
given dib = 1− 2|F̂s⊤b Xn

(s⊤b xi)− 0.5|, we have

n∑
i=1

dib ∼=
n

2
, (4.6)

for every b, and this sum converges to n
2
as the sample size increases. Therefore,

surprisingly, for the purpose of determining the depth, the directions all have
the same importance. In order to prove Equation 4.6, without loss of general-
ity, consider an even n for which the median is at position n/2. Then result is
exact if F̂n is the empirical distribution function, since in this case:

n∑
i=1

dib = n− 2
n∑

i=1

(
i

n
1[i>n/2] −

i

n
1[i<n/2]

)
.

The approximation comes from the fact that F̂n(x)
a.s.−−−→ F (x) ∀x.

Remark 2 Mahalanobis distance preservation.

Lemma 5 is very important from an empirical point of view, since it guaran-
tees that the expected value of the distances between univariate projections on
sphered data is proportional to the Mahalanobis distance on the original mul-
tivariate data. This ensures coherence between the Mahalanobis depth and the
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Figure 4.4: First panel: data drawn from a multivariate Gaussian. Second panel:
sphered data.

expected value across the projections of Euclidean distances on sphered data.
Take, for example, the point cloud represented in the first panel of Figure 4.4.
The red point with original coordinates {2,-1} is clearly further away from
the data cloud than the green point with coordinates {3.5,4.5}. Their Ma-
halanobis distances are 6.4 and 2.6, respectively. Table 4.1 shows the depths
obtained on sphered and non-sphered data.

xa = {2,−1} xb = {3.5, 4.5}
without sphering 0.193 0.085

with sphering 0.082 0.206

Table 4.1: Computed depths for the two points on raw data and on sphered data.

From this example, it is clear that on raw data the green point xa is projected
far from the barycenter of the data in a limited number of directions, while xa

is projected far from the barycenter for most directions. But sphering makes
angles and distances constant along the different projections, and on sphered
data the depth indicated that xb is deeper than xa. This is also evident from the
second panel of Figure 4.4.

Remark 3 Prediction.

The IRW depth has a theoretical definition based on a population probability
distribution F , moreover, its sample version can be based on a model (para-
metric or non-parametric) for Fs⊤Xn

. The fact that the depth defines a model
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Figure 4.5: Two univariate halfspace depth functions on the top panel and their mean
in the bottom panel.

for the data is a great advantage in terms of prediction. Unlike other depth
functions that are defined only for empirical distributions, it is possible to esti-
mate the depth for new out-of-sample values once the distributions along each
direction have been estimated. The ability to provide predictions makes this
depth function a good candidate tool for supervised classification purposes, as
it will be shown in the next sections.

4.2.4 Depth regions and contours

The setDR(p, F ) = {x : D(x, F ) ≥ p} is the p−th depth region for 0 ≤ p ≤ 1.
The corresponding contour is defined as DC(x, F ) = {x : D(x, F ) = p}.

Theorem 6 The depth regions associated to the IRW depth function are affine equiv-
ariant (on sphered data), nested but not necessarily convex.

A formal proof is given in the Supplementary Material. Intuition for the proof
arises from the fact that the quasi-concavity of the depth function is a necessary
and sufficient condition for the convexity of depth regions (Zuo, 2003). The

82



IRW depth function is quasi-concave along each spherical direction, as shown
in the top panel of Figure 4.5. However, the sum of quasi-concave functions
is not necessarily quasi-concave, and an example is given in the bottom panel
of Figure 4.5, where two univariate depths are summed. Therefore, the ex-
pected value, which is based on summing comes from summing infinite such
univariate depth functions is not necessarily quasi-concave.

fgld kde normal

chi−square (df = 3)

normal
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Figure 4.6: IRW depth contours based on three different CDF estimators: normal,
fgld and KDE (on the columns), for data drawn from a standard Gaussian and a chi-
squared distribution with 3 degrees of freedom (on the rows).

Convexity is an interesting characteristic for a depth function: it assures
that, for any two points in the space, if their depths are above a certain level,
then any point lying on the line segment connecting these two points will
also have a depth above that level. Advantages of having convex depth regions
include their clear geometric interpretation, which aids in visualizing and sum-
marizing the dataset’s structure, as well as their robustness against outliers and
contamination in the data. On the other hand, non-convex depth regions of-
fer particular advantages in scenarios that require accurate representation of
complex and intricate data structures, such as datasets with intricate patterns
or clusters. They are also beneficial when capturing specific characteristics or
outliers that may be overlooked by convex regions. Additionally, non-convex
depth regions enhance discrimination in classification tasks by effectively dis-
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tinguishing between different classes or groups, accounting for within-class
variability and capturing specific boundaries.

Figure 4.6 shows the depth contours obtained by applying the IRW depth
function with different estimators for the cumulative distribution functions: a
Gaussian distribution, the quantile-based fgld, and the KDE method. Data are
generated from a standard Gaussian and from a chi-squared distribution with
3 degrees of freedom.

4.3 Supervised Classification
Thanks to previous theorems establishing the consistency of the sample esti-
mator and highlighting its unique characterization property, the IRW depth
can be employed to determine whether a new observation belongs to a specific
population among various populations. As a result, it proves to be a valuable
tool within the framework of supervised classification.

In supervised classification, the parameters of the class distributions are es-
timated using an observable training set. Within each class we estimate uni-
variate CDFs on a set of random projections, which then allows to measure
the depth of a point with respect to each of the classes. The allocation of a
new observation from the test set to the appropriate class is determined by the
maximum depth criterion among the K populations (Ghosh and Chaudhuri,
2005). Given a new statistical unit y, the predicted class is the one with respect
to which the unit has the maximum depth. The classifier can be expressed as:

argmax
k∈K

D(y, F (k)).

where D(y, F (k)) represents the depth of y with respect to the population k,
whose distribution is denoted asF (k). The prior probabilities of the populations
are assumed to be equal. The use of the IRW depth in the previous classifier
offers the advantage of a larger flexibility. In contrast to traditional convex
depth functions, the non-convex nature of the IRW depth function provides
more versatility in capturing complex decision boundaries and intricate data
structures. This flexibility allows for a more accurate and nuanced classifica-
tion, particularly in datasets with intricate patterns or clusters. Moreover, the
definition allows for multiple choices in the modelling of the univariate pro-
jections, that can be driven by the data types and shapes. Finally, the IRW is
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more computationally efficient than other flexible depths, such as the halfspace
or simplicial depths.

4.3.1 Asymptotic optimality

Ghosh and Chaudhuri (2005) established the asymptotic properties of the max-
imum depth classifier based on the sample version of some depth functions,
under certain conditions. They specifically demonstrated that when the pop-
ulation distribution is elliptic, with the density function strictly decreasing in
every direction from its center of symmetry, the risk of maximum depth clas-
sifier based on some specific depths (including halfspace, simplicial, and pro-
jection depths) converges to the optimal Bayes risk as the sample sizes of the
classes increase.

In this work we extend these findings to provide an optimality result for
arbitrary population distributions, assuming that class differences arise due to
location shifts. This assumption is commonly used as the basis for the asymp-
totic optimality of other classifiers based on median differences or quantile
distances (Hall et al., 2009; Hennig and Viroli, 2016; Farcomeni et al., 2022b).

Consider the sample maximum depth classifier based on the IRW depth:

argmax
k∈K

B∑
b=1

[
1− 2|F̂ (k)

s⊤b X
(s⊤b y)− 0.5|

]
= argmin

k∈K

B∑
b=1

|F̂ (k)

s⊤b X
(s⊤b y)− 0.5|.

If F̂ (k)

s⊤b X
is a proper strictly monotonically increasing function, the sample clas-

sifier can be equivalently rewritten in terms of L1 distance of the projected
point with respect to the medians of the classes:

argmin
k∈K

B∑
b=1

∣∣s⊤b y −Me(k)(s⊤b X)
∣∣ , (4.7)

whereMe(k)(s⊤b X) is the median of the projected data s⊤b X(k) belonging to the
class k. Therefore, from this standpoint, the maximum depth classifier, utiliz-
ing IRW depth functions, can be viewed as an extension of the median-based
classifier (Hall et al., 2009). More precisely, unlike the median-based classifier,
which operates on marginal distributions, the maximum depth classifier con-
siders the distributions derived from projections on arbitrary directions and it
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coincides with the median classifier when B = p and s1, . . . , sp are the canon-
ical directions. This distinction allows for a more flexible approach provided
that each F̂ (k)

s⊤b X
(s⊤b y) gives a good fit of the true F (k)

s⊤b X
(s⊤b y).

ForK = 2 populations, the classification rule criterion for the sample IRW
depth-based classifier can be written as

d(y, s1, . . . , sB) =
B∑
b=1

{
|F̂ (2)

s⊤b X
(s⊤b y)− 0.5| − |F̂ (1)

s⊤b X
(s⊤b y)− 0.5|

}
, (4.8)

where X are fully observed units in the training set and y is a new unit to be
classified. The classifier assigns y to the first population when d(y, s1, . . . , sB)
is positive and vice versa. Its extension to K > 2 classes requires contrasting
each class against the remaining K − 1 classes.

In the next theorem, we prove that under certain assumptions, the misclas-
sification rate of the sample IRWdepth-based classifier converges to zero when
the number of projections grows to infinity along with the sample size and the
variable dimension. The theorem has the same structure of the optimality re-
sult provided in Hall et al. (2009), but it is based on milder assumptions.

Our theorem is developed for anyK = 2 classes, but its extension toK > 2

is straightforward even if notationally heavy.

Theorem 7 Consider n = max(n1, n2), with n1 and n2 denoting the sample sizes
of the two groups in the training set and a set of B directions sampled from a unit
p-sphere, having (at least) the same order of n. Assume

(i) The p variables X(k)
1 , X

(k)
2 , . . . , X

(k)
p have each the same distribution asW1+

µ
(k)
1 ,W2 + µ

(k)
2 , . . . ,Wp + µ

(k)
p , respectively. Moreover,Me(Wj) = 0 ∀j and

sup
j≥1

Var(Wj) = A2 < +∞. Define Z(k) ≡ s⊤X(k).

(ii) The first moments of the projections are uniformly bounded in a strong sense.
This implies that ∀c > 0 and ∀s, ∃v with |s⊤v| > c such that

inf
b≥1

inf
|s⊤b v|>c

E |s⊤b W + s⊤b v| − E |s⊤b W| > 0.

(iii) For some ϵ > 0, the proportion of values b ∈ {1, 2, . . . , B} for which

|s⊤b µ(2) − s⊤b µ
(1)| > ϵ

86



multiplied by n1/2, say n1/2♯Kϵ, is of larger order thanB, which meansB
(
n1/2♯Kϵ

)−1

goes to zero as n and B increase.

Under the previous assumptions, the IRW depth-based maximum depth classifier in
(4.8) makes the correct choice asymptotically, as p → ∞, and both B, n1 and n2

diverge with p.

Observe that the first assumption implies that the two populations differ up
to location-shifts µ(k)

j frommedian centered distributions with finite variances.
No assumption about the population distributions is made, differently from
Ghosh and Chaudhuri (2005), which requires them to be elliptic and strictly
decreasing in every direction from their center of symmetry.

Condition (ii) concerns uniform continuity and boundedness along every
direction sb. The last assumption guarantees the consistency of the classifier,
allowing a small number of nonzero signals as the number of directions B and
the sample size n increase.

4.4 Empirical Analysis
To evaluate the performance of supervised classification with the IRW depth,
we conduct experiments on both simulated and real datasets. In our com-
parative analysis, we assess the classification accuracy of our approach against
several popular methods: these include depth-based classifiers based on other
depth definitions including the Mahalanobis, projection and halfspace depths,
and other general classifiers: linear discriminant analysis (LDA), quadratic dis-
criminant analysis (QDA), k-nearest neighbors (k-NN) and support vector
machines (SVM). For the computation of the other depth functions and for
fitting the DD-classifier introduced in Section 4.4.2 we use the R package
ddalpha (Pokotylo et al., 2019).

4.4.1 Simulated data

In this section, we examine the effectiveness of the IRWdepth-basedmaximum
depth classifier on simulated datasets. We consider various scenarios, including
datasets with varying degrees of complexity and different feature spaces. By
comparing our approach with established methods, we aim to demonstrate
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the strengths of the IRW depth and its potential for achieving competitive
performance in supervised classification tasks.

We generate simulated datasets with different sample sizes n = {50, 100, 250}
and feature dimensions p = {2, 10, 50}. For each combination, we consider
both independent and correlated data to evaluate the performance of the IRW-
depth classifier under different levels of dependency among variables.

To explore the robustness of our approach to different data distributions, we
generate data from three different scenarios: normal, Student’s t-distribution
with 3 degrees of freedom, and skewed data obtained through the transfor-
mation log(|tν=3|). These distributions allow us to assess the performance of
the IRW depth maximum depth classifier on datasets with varying levels of
symmetry and tail behavior.

For each combination of sample size, feature dimension, data dependency,
and data distribution, we generate 100 simulated datasets each made of K = 2

classes. Each dataset consists of training and test sets of the same sample size
n. The training set is used to estimate the class parameters, while the test set
is used for evaluating the classification performance. In our experiments, we
employ B = 500 random directions to compute the IRW depth for each ob-
servation. This allows us to capture the directional information and determine
the allocation of the test observations to the appropriate class.

We compare the IRW depth-based maximum depth classifier with the
Gaussian, the fgld and the KDE as CDF estimators (MIWR); maximum depth
classifiers based on different definitions of depths: Mahalanobis depth (MM),
projection depth (MP), simplicial depth (MS) and halfspace depth (MH), and
finally LDA and QDA. It is worth noting that QDA and the maximum depth
classifier based on the Mahalanobis distance (MM) are very similar: the Maha-
lanobis distance is part of the group-specificmultivariate normal density which
is the model implicitly assumed in QDA, the only differences being the priors
(estimated as the class frequencies of the training set) that are included in the
QDA classification rule based on the posterior probability, and the term in-
volving the determinant of the group covariance matrix, which is part of the
normal density but not of the Mahalanobis distance.

To summarize and compare results among the different classifiers and across
the simulation settings, we present the relative performance of each classifier
with respect to the misclassification rate of the IRW-based classifier with the
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KDE, which is taken as reference. More specifically, the results are given by
computing the following scaled error difference:

djk =
ejk − ej1

ēj
,

where ejk stands for the misclassification rate for method k (with 1 being the
reference method) in the j-th setting, and ēj being the average misclassifi-
cation rate for the j-th setting. Results are presented in Figures 4.7, 4.8 and
4.9, which refer respectively to Gaussian, Student’s t and skewed data. Results
from correlated and uncorrelated independent variables are pooled together,
so each boxplot is made of 200 points (100 replicates times the 2 correlation
structures). Some methods for some settings are missing: QDA and MM can-
not be performed when ng ≥ p, because of the inversion of the group-specific
covariance matrix based on ng points, while the simplicial depth, and conse-
quently its associated classifier (MS), becomes too computationally expensive
when p ≥ 10.

The results of our experiments demonstrate the effectiveness of the clas-
sification methods based on the IRW depth. For Gaussian data, these meth-
ods generally outperform other approaches, including LDA and QDA, which
also demonstrate competitive performance. It is also worth noting that LDA
exhibits higher variability in the misclassification rates across different runs.
When the data has heavier tails, such as in the case of the t-distribution, LDA
emerges as the best-performing method, particularly as the feature dimension
(p) increases. However, the methods based on the IRWdepth consistently rank
second in terms of performance. In the case of skewed data, once again, the
methods based on the IRWdepths exhibit superior performance, with the KDE
and the fgld models showing slightly better results compared to the Gaussian
distribution. In this scenario, both LDA and QDA perform poorly, especially
for larger feature dimensions (p = 10 and p = 50), while no significant differ-
ences among the classifiers are observed for p = 2.

The classifiers based on other depths, except for the halfspace depth, show
comparable performance to the IRW depths for p = 2, but their performance
deteriorates as p increases. While the halfspace depth method shows reasonable
performance for small feature dimensions (p), its effectiveness quickly dimin-
ishes as p increases. We do not observe significant effects of the sample size (n)
on the classification performance.
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Figure 4.7: Relative performance of the classifiers with respect to the maximum depth
classifier based IRW depth with KDE, which is taken as baseline. Gaussian data.

Overall, our findings highlight a very good performance of the IRWdepth-
based methods, which generally outperform maximum depth classifiers based
on other depths and other common approaches including LDA and QDA.

4.4.2 Real data application

In this section we apply various classification methods to real datasets, com-
monly used as benchmarks when comparing different algorithms. We com-
pare the following classifiers: LDA, QDA, k-nearest neighbours (KNN), sup-
port vector machines (SVM), maximum depth classifiers based on the Maha-
lanobis depth (MM), on the halfspace depth (MH), and on the IRW depth with
the three chosen distributions (MIRW_normal, MIRW_flgd, andMIRW_kde),
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Figure 4.8: Relative performance of the classifiers with respect to the maximum depth
classifier based IRW depth with KDE, which is taken as baseline. t-distributed data.

and DD-classifiers, which we introduce next, based on the same depths.
For K = 2 classes, the DD-plot represents the depth values of the data

points with respect to the two underlying distributions, and thus transforms
the samples from any dimension to a simple two-dimensional scatter-plot. On
this so-called depth space, where the coordinates are the depths with respect to
a class category, the idea behind the DD-classifier is that of looking for a non-
linear curve, a polynomial, that best separates the two classes. In the DD-plot
the classification boundary chosen by the maximum depth classifier is instead
simply the bisector line between the two axes. In Figure 4.10 the translation
from the original data space to the depth space given by the DD-plot is illus-
trated, with the addition of classification boundaries of the maximum depth
and DD-classifiers. The DD-classifier was first proposed by Li et al. (2012)
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Figure 4.9: Relative performance of the classifiers with respect to the maximum depth
classifier based IRW depth with KDE, which is taken as baseline. Skewed data ob-
tained via the transformation log |tν=3|.

and has been extended in Lange et al. (2014). The DD-classifier has shown to
lead to better separation and increased performance with respect to maximum
depth classifiers, in particular, it is a great improvement when homoskedastic-
ity among the groups is too restrictive of an assumption. The method can be
easily extended to K > 2, by applying a majority vote on the results coming
from training the classifier on each pair of response classes.

We applied the methods listed earlier to six datasets, whose sample sizes,
number of variables, and of classes are indicated in Table 4.2. Three of these
(Biomed, Blood and Image3) have also been used in Li et al. (2012).

The bankruptcy dataset (Bank), available in the R package MixGHD, con-
tains the ratio of retained earnings (RE) to total assets and the ratio of earnings
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Figure 4.10: Graphical illustration of depth-based classification. In the left panel the
scatter-plot of simulated data from two classes is shown. The right depicts the DD-
plot with the maximum depth classifier (bisector line) and DD-classifier (polynomial
separator).

Bank Biomed Blood Image3 Image4 Ionosphere WBCD
n 66 209 748 990 1320 351 569
p 2 4 3 8 7 32 30
K 2 2 2 3 4 2 2

Table 4.2: Dataset information: sample size (n), number of variables (p) and number
of classes (K).

before interests and taxes (EBIT) to total assets of 66 American firms recorded
in the form of ratios and the response variable is whether the firms filed for
bankruptcy. The biomedical data (Biomed), available at http://lib.stat.
cmu.edu/datasets/, consists of four different blood measurements for 134
normal individuals and 75 carriers of rare genetic disorders. The blood trans-
fusion dataset (Blood) contains information on 748 blood donors randomly
selected from the donor database of the Blood Transfusion Service Center in
Hsin-Chu City, Taiwan. This dataset is available at the UCI Machine Learn-
ing Repository (Dua and Graff, 2019b). The two groups of donors depend on
whether or not the donor donated blood in March 2007. The three variables
are months since the last donation, total number of donations, and months
since the first donation. Two datasets are taken from the Image Segmentation,
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Bank Biomed Blood Image3 Image4 Ionosphere WBCD
LDA 0.101 0.175 0.295 0.132 0.100 0.195 0.067
QDA 0.052 0.141 0.289 0.086 0.080 0.111 0.047
KNN 0.046 0.142 0.290 0.166 0.104 0.184 0.084
SVM 0.051 0.175 0.309 0.072 0.073 0.115 0.056
MM 0.162 0.263 0.325 0.174 0.167 0.289 0.086
MH 0.131 0.208 0.303 0.376 0.326 0.361 0.101
MIRW_flgd 0.057 0.290 0.309 0.375 0.361 0.313 0.110
MIRW_normal 0.094 0.282 0.342 0.377 0.371 0.394 0.117
MIRW_kde 0.058 0.255 0.309 0.370 0.351 0.347 0.109
PM 0.066 0.132 0.278 0.089 0.071 0.104 0.061
PH 0.134 0.216 0.286 0.259 0.218 0.317 0.101
PIRW_flgd 0.061 0.136 0.274 0.091 0.070 0.089 0.054
PIRW_normal 0.062 0.126 0.281 0.091 0.072 0.088 0.054
PIRW_kde 0.064 0.135 0.269 0.091 0.071 0.089 0.055

Table 4.3: Mean classification error rates from 100 random training-test splits.

again part of the UCI repository. The data contains pixel information for dif-
ferent materials: cement, window, brickface (Image3, with K = 3), and with
the addition of a fourth class, sky, for Image4. The Ionosphere dataset, also
available from the UCI repository, concerns the classification of radar returns
from the ionosphere. The targets were free electrons in the ionosphere: ‘good’
radar returns are those showing evidence of some type of structure in the iono-
sphere, while ‘bad’ returns are those that do not; their signals pass through the
ionosphere. Finally, the WBCD dataset, from the UCI repository, concerns
the diagnosis of breast cancer into malignant or benign based on 30 features
computed from a digitized image of a fine needle aspirate of a breast mass.

Table 4.3 shows the results from applying each method to the different
datasets in terms of mean misclassification rates from 100 random training-
test splits. The IRW depth-based classifiers consistently exhibit competitive
performance, frequently surpassing popular classifiers and other depth-based
methods. On the WBCD dataset with a large feature dimension of 30, QDA
demonstrates superior performance. Additionally, the k-NN and SVM clas-
sifiers also exhibit competitive performance, emerging as the best methods in
two cases.

In almost all cases depth-based classifiers benefit in terms ofmisclassification
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rates when using the polynomial separator of the DD-classifier, instead of the
simple maximum depth assignment. Among DD-classifiers, the one based on
the halfspace depth (PH) is the one that performs the worst, and is also the
one that shows the least improvement from its maximum depth counterpart
(MH). The DD-classifier with the Mahalanobis depth (PM) instead is quite
competitive, probably due to its computational stability and simplicity and the
presence of datasets with quite a large ratio between observations and variables.
However, the DD-classifiers based the IRW depth (PIRW) perform generally
slightly better, and reach multiple times the best error rates, with no clear
winner among the three distributional approaches.

These findings suggest that the IRW depth coupled with the DD-classifier
approach effectively handles diverse real-world datasets with varying com-
plexities and feature spaces. Furthermore, this method exhibit superior per-
formance compared to traditional classifiers in specific scenarios, showcasing
their potential as valuable tools for data analysis and classification tasks.
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Chapter 5

Conclusions

In this thesis, we have explored the use of quantile-based distributions and the
closely related concept of depth functions for statistical modelling and classifi-
cation tasks.

In the first part, Chapter 2, we started by investigating the family of linear
quantile functions, focusing on the flattened generalized logistic distribution
(fgld). Through a least squares estimation procedure, we derived unbiased and
asymptotically normal estimators, enabling the development of a reliable test-
ing procedure. As by-products, strategies for variable importance and variable
selection have been obtained by the simple application of the testing proce-
dure developed in the first part of the work. The fgld quantile distribution
demonstrated great flexibility in capturing a wide range of data shapes, mak-
ing it a valuable tool for statistical analysis and classification. The proposed
novel naïve Bayes classifier based on the quantile distribution showed promis-
ing performance in empirical studies, paving the way for further exploration of
its potential in various applications. A challenging extension for future work is
to develop an inferential framework for multivariate quantile functions, in the
spirit of Farcomeni et al. (2022), with potentially different applications and sta-
tistical purposes. One could also consider an extension to quantile regression,
where we speculate that the evaluation of the impact of changes in explana-
tory variables on marginal distributions of an outcome could be straightfor-
ward within the family of linear quantile functions (Firpo et al. 2009).

In the second part of this thesis, Chapter 3, we have integrated the use
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of quantile-based distributions in the multivariate model of independent fac-
tor analysis. This can serve as a multivariate parametric model with a built-in
dimension reduction strategy, where the focus is usually on exploring and de-
scribing the relationships among the observed variables and possibly finding
an interpretable summary of them.
We developed the model in a Bayesian framework, and we showed that the
quantile-based fgld can be estimated via an MCMC algorithm. In its unre-
stricted form, results greatly improve by using adaptive Metropolis Hastings
algorithms and we found the robust adaptive Metropolis proposal scheme to be
a good choice. When fixing the first two moments of the distribution, obtain-
ing the standard fgld, the same algorithm improves its performance thanks to
the reduced number of parameters. The estimation is of course more compu-
tationally expensive than with density-based distributions. This is particularly
true as the sample size increases, as the numerical inversion needed to evaluate
the likelihood is the computational bottleneck of the process and is also the
source of some increased numerical instability in the MCMC algorithms with
respect to density-based likelihoods. However, thanks to the great computing
power available in modern PCs, it now possible to routinely use quantile-based
distributions in the Bayesian context.
The issue of the selection of the number of factors is confronted and for the
Bayesian normal factor model we have shown that information criteria that
are especially designed for this inferential framework, such as the DIC, WAIC
and BICM, work well in simulated experiments. The results are not so satis-
factory for the IFAmodel that we introduce and this is probably due to the fact
that we can only rely on a complete likelihood, which has also shown to work
poorly for model selection in the classical normal model. Further investigation
into this aspect is needed. An alternative approach for model selection could be
using a shrinkage prior on a very large loadings matrix to automatically select
the number of factors as in the so-called sparse Bayesian infinite factor model
(Bhattacharya and Dunson, 2011).

The IFA model that we introduce is able to directly adapt to a wide range
of factor distributions and this has been shown in an illustration with data com-
ing from the European Social Survey. The results have been compared closely
with those coming from the classical normal factor model and with the origi-
nal IFA model, which uses normal mixtures to fit the factor distributions. We
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show that our model is able to capture flexible distributions, which for the first
two factors result in a flatter shape and very high skewness respectively. It is
able to achieve this with fewer parameters than the IFA with normal mixtures.

In the third part of the thesis, Chapter 4, we have focused on and extended
the recently introduced integrated rank-weighted (IRW) depth function. This
depth function satisfies the essential properties of statistical depths for sphered
data; it is computationally feasible even in high dimensions, given an approx-
imation based on random projections and it is flexible thanks to the various
models one can choose for the univariate distributions resulting from the pro-
jections, among which the fgld proves a valuable choice. Moreover, thanks to
its characterization property, it can be utilized for prediction out-of-sample,
making it applicable to supervised classification problems.

Through simulated experiments and real data applications, we have eval-
uated the performance of the IRW depth in classification and demonstrate its
effectiveness in particular compared to other depth-based classifiers that use
other depth notions. Our experiments and the theoretical asymptotic opti-
mality the maximum depth classifier based on the IRW depth, highlight the
strength of classifiers based on it in handling datasets with varying complexities
and feature spaces, offering superior performance in many scenarios.

Future research directions encompass exploring various model choices in
the projected spaces to handle mixed-type data effectively. Additionally, a
compelling area of interest lies in investigating the potential usefulness of this
depth function in the context of unsupervised classification. Unsupervised
learning tasks, which involve clustering and pattern discovery without labeled
data, present a challenging yet crucial domain for exploring the depth func-
tion’s utility in identifying underlying structures and patterns within data.
Finally, in empirical data analysis, the presence of outliers can significantly
impact the robustness and reliability of statistical methods. Thus, improving
the understanding of how the methodological framework copes with and ac-
commodates outliers will provide insights into its applicability in real-world
scenarios.
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Appendix A

Appendix of Chapter 2

Proof of Lemma 1

We assume that the quantile distribution function is linear with respect to pa-
rameters θ = (θ1, . . . , θp).

Q(u) = θ1 h1(u) + · · ·+ θp hp(u).

The expected value of the i-th order statistic can be written as follows, where
g(u) is the density of a Beta distribution with parameters equal to i and n−i+1.

E(X(i)) =

∫ 1

0

Q(u) g(u) du =

=

∫ 1

0

[θ1 h1(u) + · · ·+ θp hp(u)] g(u) du =

=

∫ 1

0

[θ1 h1(u)g(u) + · · ·+ θp hp(u)g(u)] du =

= θ1

[∫ 1

0

h1(u)g(u) du

]
+ · · ·+ θp

[∫ 1

0

hp(u)g(u) du

]
=

= θ1 b1i + · · ·+ θp bpi

This shows that the expected value of a generic order statistic is linear with
respect to those same parameters. Alternatively we can think of the proof in
terms of maps, the quantile distribution function

Q : θ −→ Q(θ)
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is a linear map by hypothesis with the following two defining properties:

Q(θ1 + θ2) = Q(θ1) +Q(θ2)

Q(α θ1) = αQ(θ1)

the expected value
E : Q −→ E(X(i))

is also a linear map (a definite integral is a linear map from the space of all real-
valued integrable functions to R). The composition of linear maps is linear, so
E ◦Q is linear.

Proof of Lemma 2
To obtained the expected value of the i-th order statistic of a sample of size n
we need to solve the following integral:

E[X(i:n)] =
1

B(i, n− i+ 1)

∫ 1

0
[θ0 + θ1 u+ θ2 log u− θ3 log (1− u)] ui−1(1− u)n−i du

The first two additive terms are easily solvable by recognizing the beta func-
tion: ∫ 1

0

ui−1(1− u)n−i du = B(i, n− i+ 1)∫ 1

0

ui(1− u)n−i du = B(i+ 1, n− i+ 1)

For solving the third term we can use the following rule, in which a and b are
two positive real numbers.∫ 1

0

log xxa−1 (1− x)b−1 dx =

∫ 1

0

∂

∂ a
xa−1 (1− x)b−1 dx =

=
∂ B(a, b)

∂ a
=

∂

∂ a

Γ(a) Γ(b)

Γ(a+ b)
=

=
Γ′(a)Γ(b)Γ(a+ b)− Γ(a)Γ(b)Γ′(a+ b)

Γ(a+ b)2
=

=
Γ(a)Γ(b)

Γ(a+ b)

[
Γ′(a)Γ(a+ b)

Γ(a)Γ(a+ b)
− Γ′(a+ b)

Γ(a+ b)

]
= B(a, b) (ψ(a)− ψ(a+ b))
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In a similar way it can be shown that:∫ 1

0

log (1− x) xa−1 (1− x)b−1 dx = B(a, b)(ψ(b)− ψ(a+ b))

Thus the third and fourth term are equal respectively to:∫ 1

0

log (u)ui−1(1− u)n−i du = B(i, n− i+ 1) (ψ(i)− ψ(n+ 1))

∫ 1

0

log (1− u)ui−1(1− u)n−i du = B(n− i+ 1, i) (ψ(n− i+ 1)− ψ(n+ 1))

By adding together the terms multiplied by their respective parameters and
simplifying the beta functions the final result is obtained.

Proof of Lemma 3
The covariance between the r-th and s-th order statistics is given by the fol-
lowing integral (David and Nagaraja, 2004):

Cov[X(r), X(s)] =
n!

(r − 1)!(s− r − 1)!(n− s)!

∫ 1

0

∫ v

0
(Q(u)− E[X(r)])(Q(v)− E[X(s)])

ur−1(v − u)s−r−1(1− v)n−s du dv

Denoting the product of factorials before the double integral as Cn,r,s, the
expected values of the order statistics as µr and µs, and carrying out the product
of the first two terms in the integral, the formula can be rewritten as:

Cov[X(r), X(s)] =Cn,r,s

∫ 1

0

∫ v

0

QuQv u
r−1(v − u)s−r−1(1− v)n−s du dv − µrµs

Given that the quantile function for the fgld has 4 terms. the productQuQv

will have 16 terms, so the integral can be split into 16 parts that can be tackled
one at the time. For instance, the solution of one of these 16 terms, up to the
multiplicative constant − θ2 θ3, is shown below:
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Cn,r,s

∫ 1

0

∫ v

0

log (u) log (1− v) ur−1(v − u)s−r−1(1− v)n−s du dv =

=Cn,r,s

∫ 1

0

log (1− v)(1− v)n−s

∫ v

0

log (u) ur−1(v − u)s−r−1 du dv =

=Cn,r,s

∫ 1

0

log (1− v)(1− v)n−svs−1

∫ 1

0

log (vt) tr−1(1− t)s−r−1 dt dv =

=Cn,r,s

∫ 1

0

log (1− v)(1− v)n−svs−1B(r, s− r) [log (v) + ψ(r)− ψ(s)] dv =

=Cn,r,sB(r, s− r)

∫ 1

0

log (1− v)(1− v)n−svs−1 [log (v) + ψ(r)− ψ(s)] dv =

= [ψ(n− s+ 1)− ψ(n+ 1)] [ψ(r)− ψ(n+ 1)]− ψ1(n+ 1)

The only integral that, to our understanding, has no easy expression through
the identification of special functions is the following (up to the constant−θ2 θ3),
whose solution involves a series:

Cn,r,s

∫ 1

0

∫ v

0

log (1− u) log (v) ur−1(v − u)s−r−1(1− v)n−s du dv =

=Cn,r,s

∫ 1

0

log (v) (1− v)n−s vs−1

∫ 1

0

log (1− vt) tr−1(1− t)s−r−1 dt dv =

=Cn,r,s

∫ 1

0

log (v) (1− v)n−s vs−1

∫ 1

0

∞∑
h=1

−(vt)h

h
tr−1(1− t)s−r−1 dt dv =

= − Cn,r,s

∞∑
h=1

B(h+ r, s− r)

h

∫ 1

0

log (v) (1− v)n−s vh+s−1dv =

= − Cn,r,s

∞∑
h=1

B(h+ r, s− r)

h

∂

∂ h

∫ 1

0

(1− v)n−s vh+s−1dv =

= − Cn,r,s

∞∑
h=1

B(h+ r, s− r)

h
B(n− s+ 1, h+ s)(ψ(h+ s)− ψ(n+ h+ 1)) =

=
Γ(n+ 1)

Γ(r)

∞∑
h=1

1

h

Γ(h+ r)

Γ(n+ h+ 1)
(ψ(n+ h+ 1)− ψ(h+ s))

After solving the 16 integrals and getting the 16 terms from the product
µr µs, terms with the same parameters can be collected: all of the terms involv-
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ing θ0 cancel out in the difference and the 6 combinations that are left make
up the terms shown in the resulting expression.

Proof of Lemma 4

The least squares estimator for the fgld distribution is given by equation 2.6.
The coefficients cin that form the linear combination of order statistics are
defined as follows:

θ̂ = (B⊤B)−1B⊤x(·) =
[
c1n c2n · · · c1nn

]

x(1)
x(2)
...

x(n)

 ,
that is they constitute the columns of the p× n matrix (B⊤B)−1B⊤. To prove
that they are bounded it is enough to prove that each of the elements in the
matrix (B⊤B)−1B⊤ is bounded.
We start by expanding matrix B:

B =


1 1

n+1
ψ(1)− ψ(n+ 1) ψ(n+ 1)− ψ(n)

...
...

...
...

1 i
n+1

ψ(i)− ψ(n+ 1) ψ(n+ 1)− ψ(n− i+ 1)
...

...
...

...
1 n

n+1
ψ(n)− ψ(n+ 1) ψ(n+ 1)− ψ(1)


The product B⊤B can be analytically defined up to the 4 entries that involve
the summations involving the digamma functions. For them we can only de-
fine an asymptotic order, which we will denote as k. In the following it will
be shown that for any k > 1 the boundedness of the coefficients is preserved:

B⊤B =


n n

2
−n n

n
2

n(1+2n)
6(1+n)

−3n−n2

4(n+1)
3n2+n
4(n+1)

−n −3n−n2

4(n+1)
O(nk) O(nk)

n 3n2+n
4(n+1)

O(nk) O(nk)


Next we need to compute the inverse of B⊤B. To this aim we will use the
formula for a block diagonal matrix in order to reframe the problem in terms
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of the inversion 2×2matrices (Petersen and Pedersen, 2012). First we identify
four 2× 2 blocks in B⊤B:

B⊤B =

[
A11 A12

A21 A22

]
,

then the inverse is defined as:

(B⊤B)−1 =

[
C−1

1 −A−1
11 A12C

−1
2

−C−1
2 A21A

−1
11 C−1

2

]
,

where

C1 = A11 −A12A
−1
22 A21

C2 = A22 −A21A
−1
11 A12.

In the following we derive the submatrices and their combinations needed
for the inverse, we will assume that the determinants written in big O notation
are not zero, so that the inverse can be computed.

A−1
22 = det(A22)

−1

[
O(nk) O(nk)

O(nk) O(nk)

]
= O(n−2k)

[
O(nk) O(nk)

O(nk) O(nk)

]
=

[
O(n−k) O(n−k)

O(n−k) O(n−k)

]

A21A
−1
11 A12 =

[
7n2+n
4n+4

−n(n+7)
4(n+1)

−n(n+7)
4(n+1)

7n2+n
4n+4

]
=

[
O(n) O(n)

O(n) O(n)

]

C2 =

[
O(nk) O(nk)

O(nk) O(nk)

]
−

[
O(n) O(n)

O(n) O(n)

]
=

[
O(nk) O(nk)

O(nk) O(nk)

]

C−1
2 =

[
O(n−k) O(n−k)

O(n−k) O(n−k)

]

A12A
−1
22 A21 =

[
O(n) O(n)

O(n) O(n)

][
O(n−k) O(n−k)

O(n−k) O(n−k)

][
O(n) O(n)

O(n) O(n)

]
=

=

[
O(n−1) O(n−1)

O(n−1) O(n−1)

]
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C1 =

[
O(n) O(n)

O(n) O(n)

]
−

[
O(n−1) O(n−1)

O(n−1) O(n−1)

]
=

[
O(n) O(n)

O(n) O(n)

]

C−1
1 =

[
O(n−1) O(n−1)

O(n−1) O(n−1)

]

A−1
11 A12 =

[
A21A

−1
11

]⊤
=

[
−5

2
−1

2

3 3

]

(B⊤B)−1 =


O(n−1) O(n−1)

O(n−1) O(n−1)

O(n−k) O(n−k)

O(n−k) O(n−k)

O(n−k) O(n−k)

O(n−k) O(n−k)

O(n−k) O(n−k)

O(n−k) O(n−k)


The final step is tomultiply the inversewe have just derived by the transpose

of B, which we will write in asymptotic notation:

B⊤ =


O(1) · · · O(1)

O(1) · · · O(1)

O(k) · · · O(k)

O(k) · · · O(k)


The final matrix (B⊤B)−1B⊤ will contain terms of order 1 (O(1)), that is
bounded, or below (from n−1 to n−k), so all the entries of the coefficients cin
are bounded.
Moreover, to prove that the functions that produce the coefficients cin are con-
tinuous it is enough to note that although no analytical form for the functions
is available, they are the result of products and sums of the continuous functions
that define the columns of B, so they will also be continuous.

Proof of Theorem 1

The theorem is based on the application of an asymptotic result regarding the
linear combinations of order statistics (David and Nagaraja, 2004, Theorem
11.4). The linear combination is denoted as:

Ln =
1

n

n∑
i=1

J

(
i

n

)
X(i),
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where the coefficients are cin = 1
n
J
(
i
n

)
. In our case Ln is the vector of the

least squares estimator θ̂. The conditions for the asymptotic normality of Ln

are that the variance of the distributionX is finite, which is true for the fgld, and
that the functions J(u) that define coefficients cin are bounded and continuous,
which is shown in Lemma 4. The expected value and variance of the limiting
normal distribution are given by the ones of the linear combination. In our
case these are equal respectively to the theoretical value of the parameters and
the variance of the least squares estimator, for which–in the case of the fgld–we
have an exact result, thanks to Lemmas 2 and 3.

Variance of the order statistics for the quad quantile function

Cov[X(r), X(s)] = θ21
r(n− s+ 1)

(n+ 1)2(n+ 2)
+

+ θ1 θ2
2r(n− s+ 1)(r + s+ 2)

(n+ 1)2(n+ 2)(n+ 3)

+ θ22
2r(r + 1)(n− s+ 1)(n(2s+ 3) + 5s+ 6)

(n+ 1)2(n+ 2)2(n+ 3)(n+ 4)
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Appendix B

Appendix of Chapter 3

Ghosh-Dunson Bayesian factor model
In Ghosh and Dunson (2009), the authors introduce a fast and efficient algo-
rithm for Bayesian factor analysis. They use a parameter expansion approach,
which involves taking posterior samples from an overparametrised working
model, from which the parameters of interest of the inferential model can be
recovered through a transformation.

To solve the identifiability problem of the factor model, thematrix of factor
loadings Λ is constrained to be lower triangular matrix. In the following, we
use the same notation as in the main text. It is worth noting that we denote the
l-th row of matrix Λ∗, which is also lower triangular, as λ∗

l . This means that
when l = 1, . . . , k the dimension of λ∗

l will range from 1 to k. Nonetheless, to
simplify notation, we denote them all in the same way; the distributions and
parameters referred to them should be understood as having the correspond-
ing dimension.

The working model is the following:

xi = Λ∗y∗
i + ui i = 1, . . . , n

ui ∼ Normal(0,Ψ) Ψ = diag(Ψ1, . . . ,Ψp)

y∗
i ∼ Normal(0,Φ) Φ = diag(Φ1, . . . ,Φk)
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which, integrating out the latent variables yi, becomes:

xi ∼ Normal(0,Λ∗ΦΛ∗⊤ +Ψ).

The transformations that turn the working parameters into their inferential
counterparts are the following:

Λ = Λ∗Φ
1
2diag(s)

yi = diag(s)Φ− 1
2y∗

i ,

where s is the vector containing the signs of the main diagonal of Λ∗:

s = sgn(Λ∗
11, . . . ,Λ

∗
kk).

The premultiplication by diag(s) in the previous formulas forces the main di-
agonal of Λ to be positive.

The priors are set as follows:

• λ∗
l ∼ Normal(µλ,Σλ) l = 1, . . . , p

• Ψl ∼ Inverse gamma(aΨ, bΨ) l = 1, . . . , p

• Φj ∼ Inverse gamma(aΦ, bΦ) j = 1, . . . , k

And the full conditionals, become:

• λ∗
l | · ∼ Normal

(
Sλ

(
Σ−1

λ µλ +
1

Ψl

Y∗⊤
l x[l]

)
, Sλ

)
with Sλ =

(
Σ−1

λ + 1
Ψl
Y∗⊤

l Y∗
l

)−1

and l = 1, . . . , p.

Y∗
l denotes the first min(l, k) columns of matrix Y∗, whose i-th row is

y∗
i , while x[l] denotes the l-th column of X.

• y∗
i | · ∼ Normal

(
SyΛ

∗⊤Ψ−1xi, Sy

)
with Sy =

(
Φ−1 +Λ∗⊤Ψ−1Λ∗)−1

• Ψl | · ∼ Inverse-gamma
(
aΨ +

n

2
, bΨ +

∑n
i=1(xil − λ∗⊤

l y∗
i )

∗2

2

)
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• Φj | · ∼ Inverse gamma

(
aΦ +

n

2
, bΦ +

1

2

n∑
i=1

y∗2ij

)

The Gibbs sampler works by sampling directing from the full conditional
posteriors of the working parameters. However, at each iteration the transfor-
mation formulas can be applied to get posterior samples from the inferential
parameters.

MCMC chains from the illustration with Euro-
pean Social Survey data
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Figure B.1: Traceplots for θ = (α, β, δ, κ) for the IFA model with fgld with k = 1 for
the ESS data.
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Figure B.2: Traceplots for Λ (left) and Ψ (right) for the IFA model with fgld with
k = 1 for the ESS data.
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Figure B.3: Traceplots forΛ for the IFA model with fgld with k = 2 for the ESS data.
The positions of the traceplots correspond to the positions of the parameters in the
8× 2 matrix.
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Figure B.4: Traceplots for Ψ (left) and θ (right) for the IFA model with fgld with
k = 2 for the ESS data.
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Appendix C

Appendix of Chapter 4

Proof of Theorems

Lemma 1

To prove the Lemma, start with ES

[
(S⊤x̃− S⊤µ̃)2

]
:

ES

[
(S⊤x̃− S⊤µ̃)2

]
= ES

[
(S⊤x̃− S⊤µ̃)⊤(S⊤x̃− S⊤µ̃)

]
=

= (x̃− µ̃)⊤ ES[SS
⊤] (x̃− µ̃)

Now consider that the covariance matrix of S, which is a uniform vector on
the sphere, is Ip

p
. Then:

ES

[
(S⊤x̃− S⊤µ̃)2

]
=

(x̃− µ̃)⊤ (x̃− µ̃)

p
=

=
(Wx−Wµ)⊤ (Wx−Wµ)

p
=

=
(x− µ)⊤ Σ−1 (x− µ)

p
.

Theorem 1

The depth function is clearly bounded and non-negative since it is the ex-
pectation of normalized cumulative distribution functions. The affine invari-
ance property implies that the method is independent of the coordinate sys-
tem used. Since the usual multivariate cumulative probability function is not
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affine invariant we can obtain a definition of depth function uniquely defined
on whitened random variables. More specifically, property (i) is true when
FS⊤Ỹ(S

⊤ỹ) = FS⊤X̃(S
⊤x̃) for any direction S, and constants A, b, where

X̃ = WxX, with Wx being a whitening matrix for X,
Y = AX+ b, Ỹ = WyY and Wy is a whitening matrix for Y. Notice that

FS⊤Ỹ(S
⊤ỹ) = P (S⊤Ỹ ≤ S⊤ỹ) =

= P (S⊤(WyAX+ b) ≤ S⊤(WyAx+ b)) =

= P (S⊤WyAX ≤ S⊤WyAx).

Thereforewe get thatP (S⊤WyAX ≤ S⊤WyAx) coincideswithP (S⊤WxX ≤
S⊤Wxx) when Wy is the whitening matrix Wy = WxA

−1. c

Theorem 2

Consider the function ΨS(x, F ) = 1 − 2|FS⊤X(S
⊤x) − 0.5|, which measures

the depth of the point x with respect to the distribution of X in the direction
of S.

We first show that S, ΨS(x, F ) uniquely characterizes the distribution of
X in all directions S. To do this, we use the Cramer-Wold theorem (Cramér
and Wold, 1936), which states that a probability measure on Rp is uniquely
determined by the marginal distributions along its one-dimensional infinite
projections. This result clearly holds for any invertible linear transformation
of marginal distributions, that are simply scaled and translated by a constant.
However, ΨS(x, F ), as a triangular transformation, is only piece-wise invert-
ible. Therefore, we need to modify it to make it invertible for any S and x.
We observe that if S ∈ Sp−1, then −S ∈ Sp−1 as well. Using this fact, we can
rewrite the IRW depth function as

ΨS(x, F ) = 1− 2
[
FS⊤X(S

⊤x)1[S⊤x≥0.5] + F−S⊤X(−S⊤x)1[S⊤x<0.5] − 0.5
]
,

which is invertible for given S and x.
Now, we claim that if ΨS(x, F ) fully characterize the multivariate distri-

bution ofX in all directions S, then the expected value ES[ΨS(x, F )] also char-
acterizes the distribution ofX. This can be proven by the following argument.
Fully characterization of the IRW depth means that if X1 and X2 are random
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variables in Rp with different distributions F (1)(x) ̸= F (2)(x), then

Pr
{
ES[ΨS(x, F

(1))] ̸= ES[ΨS(x, F
(2))]

}
= 1

for (at least) one value of x ∈ Rp. Or, alternatively,

Pr
{∣∣ES[ΨS(x, F

(1))]− ES[ΨS(x, F
(2))]

∣∣ = 0
}
= 0. (C.1)

This is true since it exist (at least) a point x ∈ Rp, such that F (1)(x) ̸= F (2)(x)

and, as a consequence, F (1)

S⊤X
(S⊤x) ̸= F

(2)

S⊤X
(S⊤x) due to the characterization

assumption along all directions. By the strong law of large numbers and by
the fact that ΨS(x, F ) ∈ [0, 1]∣∣ES[ΨS(x, F

(1))]− ES[ΨS(x, F
(2))]

∣∣
= lim

B→∞

∑B
b=1

∣∣ΨSb
(x, F (1))−ΨSb

(x, F (2))
∣∣

B
= ES

∣∣ΨS(x, F
(1))−ΨS(x, F

(2))
∣∣

Then observe that, since ΨS(x, F ) ∈ [0, 1] the expected value of the abso-
lute difference is zero only when theΨS(x, F

(1)) = ΨS(x, F
(2)) for all S, which

is not true since it fully characterizes the two different random variables, hence
(C.1) is satisfied.

Theorem 3

We want to show that as n→ ∞ and B → ∞

DB(x, F̂n)
a.s.−−→ D(x, F ).

If we assume that B and n diverge independently, it is enough to show that:

lim
n→∞

lim
B→∞

DB(x, F̂n) = D(x, F ).

By the strong law of large numbers we first observe that∑B
b=1

[
1− 2|F̂s⊤b Xn

(s⊤b x)− 0.5|
]

B

a.s.−−→ Es

[
1− 2|F̂s⊤Xn

(s⊤x)− 0.5|
]

that is

DB(x, F̂n)
a.s.−−→ D(x, F̂n)
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as B → ∞. Now, let Ds(x, F̂n) = 1 − 2|F̂s⊤Xn
(s⊤x) − 0.5| and Ds(x, F ) =

1 − 2|Fs⊤X(s
⊤x) − 0.5|. Notice that Ds(x, F̂ ) = Op(1), and provided the

estimator F̂n is consistent for F (as is the empirical distribution function thanks
to the Glivenko-Cantelli theorem), thenDs(x, F̂n)

a.s.−−→ Ds(x, F ). Thus by the
dominated convergence theorem

E[Ds(x, F̂n)] = D(x, F̂n) −−−→
n→∞

E[Ds(x, F )] = D(x, F ).

Theorem 4

The first two properties easily come from Theorem 1. Zuo (2003) established
that a necessary and sufficient condition for the convexity of depth regions
is that the associated depth function is quasi-concave. A functional T (x) =

F (x) is quasi-concave if T (λx1 + (1 − λ)x2) ≥ min{T (x1), T (x2)} for any
0 ≤ λ ≤ 1 and two points x1, x2 in R. The univariate depth transformation
along each direction is quasi-concave, but sums and the expectation of quasi-
concave functions are not necessarily quasi-concave. Hence, we can conclude
that contours and regions of the IRW depth function are not convex.

Theorem 5

The structure of the proof is an adaptation of the optimality theorem provided
in Farcomeni et al. (2022b) to the depth classifier. First observe that by equation
(6) in the paper, the classifier for Y with unknown label is equivalent to

B∑
b=1

{
|s⊤b Y −Me(2)(s⊤b X)| − |s⊤b Y −Me(1)(s⊤b X)|

}
.

Let µy denote the vector of marginal medians of Y, and put µ(k)
y = µ(k) −

µy for k = 1, 2 and write V = Y − µy. By the triangular inequality

|s⊤b Y −Me(2)(s⊤b X)| − |s⊤b Y −Me(1)(s⊤b X)|
= |s⊤b V − s⊤b µ

(2)
y | − |s⊤b V − s⊤b µ

(1)
y |

+ τ2|Me(2)(s⊤b X)− s⊤b µ
(2)|+ τ1|Me(1)(s⊤b X)− s⊤b µ

(1)|,

where τ1 and τ2 satisfy |τk| ≤ 1, k = 1, 2. Then, we define a new random
variable T1 ≡ T2 + τ1R1 + τ2R2 where T2 =

∑B
b=1 |s⊤b V − s⊤b µ

(2)
y | − |s⊤b V −
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s⊤b µ
(1)
y |, R1 =

∑B
b=1 |Me(1)(s⊤b X) − s⊤b µ

(1)| and R2 =
∑S

s=1 |Me(2)(s⊤b X) −
s⊤b µ

(2)| and we want to prove that ifY belong to the first population P (1)(T1 >

0) → 1, and viceversa.
Since the empirical medians converge to the population ones we have,

P (1)(T1 > c1 − 2c2Bn
−1/2) ≥ P (1)(T2 > c1)− P (R1 > c2Bn

−1/2)− P (R2 > c2Bn
−1/2)

≥ P (1)(T2 > c1)− 2

B∑
b=1

e−2n1δ
(1)
b − 2

B∑
b=1

e−2n2δ
(2)
b

for any c1, c2 > 0, where

δ
(k)
b =

[
min

{
F (k)

(
s⊤b µ

(k) +
c2B

n1/2

)
− 0.5, 0.5− F (k)

(
s⊤b µ

(k) − c2B

n1/2

)}]2
.

Now define

db = E
{
|s⊤b (V − µ(2)

y )| − |s⊤b (V − µ(1)
y )|

}
.

Given ϵ > 0, let Kϵ denote the set of indices b ∈ {1, 2, . . . , B} such that

|s⊤b µ2 − s⊤b µ1| > ϵ.

SupposeY belongs to the first population, i.e. it has distribution F (1). Un-
der this assumption we have

db = E1 |s⊤b (Z+ µ1 − µ2)| − E1 |s⊤b Z|,

where E1 is the expectation under F (1). Therefore, by assumption (ii) and
provided c ≥ ϵ, we have ∑

b∈Kϵ

db ≥ a(c)(♯Kc)

where a(c) > 0, with a(c) = E1 |s⊤b (Z + µ1 − µ2)| − E1 |s⊤b Z|. Then, for
E1(T2) =

∑B
b=1 db and ϵ→ 0, and ∀c, we have

E1(T2) ≥ a(c)(♯Kc), (C.2)

where ♯A denotes the cardinality of the set A. By the Chebychev inequality
and provided that c1 < 1

2
E1(T2), under assumption (i) we get

P (1)(T2 > c1) ≥ 1− P (1)(|T2 − E1(T2)| > c1) ≥ 1− c−2
1 E1{T2 − E1(T2)}2

≥ 1− c−2
1 var1(T2) ≥ 1− A2c

−2
1 B,
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where var1 denotes the variance under P (1). At this point it is possible to show
var1 is bounded, and differently from the asymptotic result in Hall et al. (2009),
here we do not require the projections obey to a ψ-mixing condition (Bradley,
2005). More specifically

var1(T2) = var1

{
B∑
b=1

(
|s⊤b (V − µ(2)

y )| − |s⊤b (V − µ(1)
y )|

)}

≤ var1

{
B∑
b=1

(
s⊤b (V − µ(2)

y )− s⊤b (V − µ(1)
y )
)}

= var1

{
B∑
b=1

(
s⊤b (W + µ(1) − µ(2))− s⊤b W

)}

≤
B∑
b=1

A2s
⊤
b sb + 2

B−1∑
b=1

B∑
b′=b+1

A2s
⊤
b sb′ . (C.3)

Now, we use the property that a uniform random variable on the sphere,
U ∈ Rp, converges to a standard Gaussian as p→ ∞ (Stam, 1982). Therefore,
for B → ∞, by the strong law of large numbers we have that the second term
of (C.3) become negligible as p increases since it converges to the covariance
of two independent standard Gaussians.

Finally, it remains to prove that c1 < 1
2
E1(T2). To this aim, consider c1 =

c3B
n1/2 , where c3 is a positive constant. By (C.2), the latter holds if c3Bn−1/2 <
1
2
a(c)Kc. But this is true because it implies that

B
(
n1/2♯Kc

)−1
<

1

2
a(c)c−1

3 ,

where the term on the left goes to zero according to assumption (iii) while
a(c) > 0, thus c−1

3 > 0. For c1 = c3B
n1/2 , we have

P (1)(T1 > c3Bn
−1/2−2c2Bn

−1/2) ≥ 1−A2
n

c23B
−2

B∑
b=1

e−2n1δ
(1)
b −2

B∑
b=1

e−2n2δ
(2)
b .

To complete the proof, we need to choose c3 and c2 such as

P (1)(T1 > 0) ≥ 1− ϵ.
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If B has (at least) the same order of n, we have that B ≥ A1n for a constant
A1 > 0. Therefore, we fix ϵ and choose c3 such that A2

c23A1
≤ ϵ. It follows that

A2B

c21
= A2

n

c23B
≤ A2

c23A1

≤ ϵ.

Then we choose c2 such that c3 > 2c2 and observe that 2
∑B

b=1 e
−2n1δ

(1)
b +

2
∑B

b=1 e
−2n2δ

(2)
b → 0 for n,B → ∞. Since this is true for each ϵ > 0, then

P (1)(T1 > 0) → 1, and similarly P (2)(T1 < 0) → 1.
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