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Abstract

We study automorphisms and the mapping class group of irreducible
holomorphic symplectic (IHS) manifolds. We produce two examples of
manifolds of K3[2] type with a symplectic action of the alternating group
A7. Our examples are realized as double EPW-sextics, the large cardinality
of the group allows us to prove the irrationality of the associated families
of Gushel-Mukai threefolds. We describe the group of automorphisms of
double EPW-cubes. We give an answer to the Nielsen realization problem
for IHS manifolds in analogy to the case of K3 surfaces, determining when a
finite group of mapping classes fixes an Einstein (or Kähler-Einstein) metric.
We describe, for some deformation classes, the mapping class group and its
representation in second cohomology. We classify non-symplectic involutions
of manifolds of OG10 type determining the possible invariant and coinvariant
lattices. We study non-symplectic involutions on LSV manifolds that are
geometrically induced from non-symplectic involutions on cubic fourfolds.

iii



iv



Contents

Introduzione iii

Introduction vii

1 Preliminaries 1
1.1 Lattice theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Basic definitions and examples . . . . . . . . . . . . . 1
1.1.2 Lattices with a prime action, existence and uniqueness 5

1.2 Deformation theory . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Irreducible holomorphic symplectic manifolds . . . . . . . . . 9

1.3.1 Basic facts and examples . . . . . . . . . . . . . . . . . 9
1.3.2 Cohomological properties . . . . . . . . . . . . . . . . 12
1.3.3 Period maps and Torelli theorems . . . . . . . . . . . . 15
1.3.4 Cones and birational geometry . . . . . . . . . . . . . 20
1.3.5 Teichmüller spaces and the mapping class group . . . . 23
1.3.6 Birationalities and automorphisms . . . . . . . . . . . 25

2 Constructions of IHS manifolds 31
2.1 Double EPW-sextics and double EPW-cubes . . . . . . . . . 31

2.1.1 Definitions and basic properties . . . . . . . . . . . . . 32
2.1.2 Automorphisms of double EPW-sextics . . . . . . . . 36
2.1.3 Automorphisms of double EPW-cubes . . . . . . . . . 37
2.1.4 EPW manifolds and Gushel-Mukai varieties . . . . . . 40

2.2 Moduli spaces of sheaves on symplectic surfaces . . . . . . . . 42
2.3 Cubic fourfolds and Laza-Saccà-Voisin manifolds . . . . . . . 47

3 Very symmetric double EPW-sextics and irrational GM three-
folds 51
3.1 Double EPW-sextics with an action of A7 . . . . . . . . . . . 51
3.2 Irrational Gushel-Mukai threefolds . . . . . . . . . . . . . . . 54

4 The Nielsen realization problem for IHS manifolds 57
4.1 Formulation of the problem and known results for K3 surfaces 57
4.2 Sections of the representation map . . . . . . . . . . . . . . . 58

v



vi CONTENTS

4.3 Lift of an order 2 subgroup . . . . . . . . . . . . . . . . . . . 60
4.4 Nielsen realization for IHS manifolds . . . . . . . . . . . . . . 61

5 Non-symplectic involutions of manifolds of OG10 type 65
5.1 Classification of non-symplectic involutions . . . . . . . . . . 65

5.1.1 Admissible invariant and coinvariant sublattices of Λ . 65
5.1.2 Invariant and coinvariant lattices of L . . . . . . . . . 67

5.2 Induced non-symplectic involutions on Laza-Sacca-Voisin man-
ifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A Computations about the very symmetric examples 75
A.1 Finding the Lagrangians subspaces . . . . . . . . . . . . . . . 75
A.2 Local equations of the EPW and its singular locus . . . . . . 77
A.3 The singular locus is smooth . . . . . . . . . . . . . . . . . . . 79

B Tables of lattices 81

Bibliography 89



Introduction

This thesis is devoted to the study of IHS manifolds, their automorphisms
and their mapping class group. The interest in IHS manifolds is quite
recent, it rose after the Beauville-Bogomolov decomposition theorem [Bea83,
Theorem 2] for compact Kähler manifolds with trivial first Chern class. Any
such manifold (up to an étale cover) is the product of a complex torus,
Calabi-Yau manifolds and IHS manifolds. A compact Kähler manifold X
is an IHS manifold when it is simply connected and there is a holomorphic
symplectic form generating H2,0(X). As a consequence of Yau’s proof of
Calabi’s conjecture, these manifolds correspond exactly to simply connected
Riemannian manifolds whose holonomy group is the symplectic group Sp(n).
The IHS manifolds of dimension two are K3 surfaces, which were known for
a long time, but the first higher dimensional examples are quite recent and
are due to Beauville [Bea83] and Fujiki [Fuj83]. It turned out to be quite
hard to construct new examples of IHS manifolds, up to deformation. The
first example of higher dimensional IHS manifold is the Hilbert scheme of
points on a K3 surface, parametrizing the 0-dimensional subschemes of fixed
length n. Manifolds deformation equivalent to such an example are called of
K3[n] type. A similar construction is possible for Abelian surfaces and the
subvariety of the Hilbert scheme consisting of points that sum to zero is an
IHS manifold. Manifolds deformation equivalent to this example are called
of Kumn type. The discovery of a symplectic form on the moduli space of
semistable coherent sheaves on symplectic surfaces due to Mukai [Muk84]
led to the hope that new examples of IHS manifolds could be constructed as
moduli spaces. Many mathematicians contributed to the development of a
good theory which was indeed fruitful, one can refer to [HL10] for a complete
treatment. All the smooth moduli spaces of sheaves on symplectic surfaces are
deformation equivalent to the already known examples, but O’Grady produced
desingularizations of two singular moduli spaces obtaining two new examples,
one in dimension ten [O’G99] and one in dimension six [O’G03]. Manifolds that
are deformation equivalent to O’Grady’s six dimensional example are called
of OG6 type and manifolds that are deformation equivalent to O’Grady’s ten
dimensional example are called of OG10 type. This technique of constructing
new examples is somehow saturated, in fact Lehn and Sorger in [LS06] and
then with Kaledin in [KLS06] showed that there are no other possibilities for
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singular moduli spaces to admit a symplectic resolution. Moreover, Perego
and Rapagnetta [PR13] proved that the singular moduli spaces that admit a
resolution which is an IHS manifold have a resolution which is deformation
equivalent to the O’Grady’s examples. General facts about moduli spaces
of sheaves on symplectic surfaces and their relation with IHS manifolds are
outlined in section 2.2.

The main tool for the study of K3 surfaces is the intersection pairing
on the second cohomology together with the Hodge decomposition of the
complex cohomology. The reason is the global Torelli theorem due to Šapiro
and Šafarevič [PSS71] that allows to recover a K3 surface S from its second
cohomology H2(S,Z) and study Hodge isometries of H2(S,Z) that preserve
the Kähler cone in order to understand automorphisms of S. A striking fact
is that also for a higher dimensional IHS manifold X there is a quadratic
form on H2(X,Z), called the Beauville-Bogomolov-Fujiki form, that allowed
Huybrechts [Huy11], Markman [Mar11] and Vebitsky [Ver13] to define the
moduli space of IHS manifolds with its period map and to formulate Torelli
theorems for IHS manifolds. They obtain slightly weaker statements, but
there are counterexamples to the strongest version of the Torelli theorem, we
give an overview of these results in subsection 1.3.3. The Torelli theorem
together with the fundational work of Nikulin [Nik76,Nik79] about lattices
provide the fundamental theory to study finite groups of automorphisms of
IHS manifolds.

The following is an overview of what is known about automorphsims of
IHS manifolds. Symplectic automorphisms are automorphisms that preserve
the symplectic form, while non-symplectic automorphisms are the ones that
do not preserve it. The main techniques that are used to understand aut-
morphisms of IHS manifolds are realizing finite groups of automorphisms as
groups of lattice isometries, or determine invariant and coinvariant lattices for
finite (prime) order automorphisms. A classification of finite groups of sym-
plectic automorphisms of K3 surfaces is due to Mukai [Muk88], an attempt of
classification of finite groups of automorphisms that might not be symplectic
is given in [BH21]. There is a classification of prime order symplectic automor-
phisms in terms of invariant and coinvariant lattices for K3[2] type in [Cam12]
and [Mon12], a classification of symplectic groups of automorphisms K3[2] type
is available in [HM19] with a contribution in [Waw22]. The study of automor-
phisms of manifolds of Kum2 type is developed in [BNWS13,MTW18,BC22].
Contributions for the investigation of prime order non-symplectic automor-
phisms on manifolds of K3[n] type were given by many authors and can be
found in [Bea11,OW13,BCS16,BCMS16,CKKM19,CC20,CCC21]. Manifolds
of OG10 type have no finite symplectic automorphisms different from the
identity [GGOV22] and for manifolds of OG6 type symplectic automorphisms
act trivially in cohomology [GOV23], non-symplectic automorphisms of prime
order are classified in [Gro22] for manifolds of OG6 type. Steps towards the
classification of non-symplectic automorphisms of prime order for manifolds
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of OG10 type are given in [BC22], while a classification of non-symplectic
involutions is available in chapter 5. Explicit constructions of manifolds with
large groups of symplectic automorphisms are given in [BS21] for K3 surfaces
and in [DBvGKKW17,Son21,DM22,CDM23], section 3.1 for manifolds of
K3[2] type.

Not many explicit families of IHS manifolds are available, we recall some
constructions. Beauville and Donagi proved that the variety of lines on a
cubic fourfold is a manifold of K3[2] type [Bea83]. O’Grady associated a
manifold of K3[2] type called double EPW-sextic to any general Lagrangian
subspace of

∧3C6 [O’G13] and Iliev, Kapustka, Kapusta, Ranestad associated
to any such Lagrangian space a manifold of K3[3] type called double EPW-
cube [IKKR19]. Iliev and Ranestad showed that the variety of sums of ten
cubes in six variables is of K3[2] type [IR01]. Debarre and Voisin constructed
a manifold of K3[2] associated to a 3-form on a 10-dimensional vector space,
called the Debarre-Voisin variety [DV10]. Lehn, Lehn, Sorger and van Straten
constructed a family of manifolds of K3[4] type as compactifications of moduli
spaces of twisted cubics on cubic fourfolds [LLSVS17]. Laza, Saccà and
Voisin constructed a manifold of OG10 type called LSV manifold associated
to a cubic fourfold [LSV17], Voisin constructed another manifold of OG10
type called twisted LSV manifold associated to the cubic fourfold [Voi18].
Recently Li, Pertusi and Zhao constructed a family of manifolds of OG10 type
as resolutions of singular moduli spaces of Bridgeland stability conditions
on the derived category of cubic fourfolds [LPZ22]. All the above families
vary in 20 moduli, we recall the definitions and construction of double EPW
manifolds in section 2.1 and the definition of LSV and twisted LSV manifolds
in section 2.3.

Many of the known explicit constructions of IHS manifold are modular
constructions on Fano manifolds, or have a Hodge-theoretical link with Fano
manifolds. The most important relation for this thesis is that there are
associated families of Gushel-Mukai (GM) manifolds to any EPW-sextic
[DK20b]. Gushel-Mukai manifolds are precisely Fano manifolds of dimension
n ∈ {3, 4, 5}, degree 10, Picard rank 1 and index n − 2. It is known that
GM fivefolds are rational, the rationality of GM fourfolds is not known but
similarly to cubic fourfolds it is expected that the very general GM fourfold is
irrational, while the general GM threefold is irrational and there is the belief
that any such threefold is. Despite this, there were no explicit examples of
irrational GM threefolds before [DM22], where a family of such manifolds was
exhibited. We contribute in constructing other two families of irrational GM
threefolds in section 3.2, as families associated to very symmetric examples
of double EPW-sextics presented in section 3.1. The other construction
that we exploit is the one of LSV manifolds associated to cubic fourfolds.
In section 5.2 we determine a numerical criterion for a manifold of OG10
type for being bimeromorphic to a twisted LSV manifold, then starting from
the classification of involutions on cubic fourfolds [Mar23] we determine the
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possible non-symplectic involutions of manifolds of OG10 that are induced
by a cubic fourfold on the associated LSV manifolds. These involutions
are of two different types and constitute geometric examples of the abstrac
classification of non-symplectic involutions of manifolds of OG10 given in
section 5.1.

A slightly more differential approach in the study of IHS manifolds is
to consider the Teichmüller space (parametrizing complex structures on the
manifolds) instead of the moduli space. Many questions in this setting lead
to the same answers since the Teichmüller space is in fact a covering space
of the moduli space, but it is quite natural to study the mapping class
group in this context that can be more complicated than the automorphisms
group. A natural question about the mapping class group of a manifold is
the Nielsen realization problem, which was originally formulated by Nielsen
in [Nie42, Section 4], and then affirmatively solved by Kerckhoff in [Ker83].
The question is whether any finite group G of mapping classes of a complex
curve can be lifted to a group of diffeomorphisms (which preserve the metric
and the complex structure). Equivalently, one wonders if G fixes any point
in the Teichmüller space. The answer to the same question for K3 surfaces is
given by Farb and Looijenga in [FL21, Theorem 1.2]: their result shows that
if S is a K3 surface not every finite subgroup G ⊂ Mod(S) = π0(Diff+(S))
can be lifted, but there is a G-invariant ΓG ⊆ H2(S,Z) which determines if it
is possible or not. We contribute giving an answer to the Nielsen realization
problem for IHS in section 4.4, in the spirit of the result for K3 surfaces and
using a similar condition for the lattice ΓG. Inspired by [BK23] we address
other related questions, in section 4.2 we describe the shape of the mapping
class group for some classes of IHS manifolds and in section 4.3 we show
examples of IHS manifolds in any dimension for which the topological version
of the Nielsen realization problem has a different answer than the differential
one.

Structure of the thesis

In chapter 1 we give basic definitions and results that will be useful in the
following chapters. In the first section we give basic notions and few relevant
results in lattice theory. The second section is very brief, we recall basic
notions of deformation theory together with a description of the deformation
space of manifolds with trivial canonical bundle. The third section is the core
of this chapter and gathers all the basic definitions, results and examples
about IHS manifolds. We give a broad overview of the following aspects:
basic cohomological properties, the period map and the Torelli theorems, the
structure of the various cones associated to the manifold, the Teichmüller
space, the mapping class group, birationalities an automorphisms.

In chapter 2 we recall some constructions of IHS manifolds that will be



CONTENTS xi

used in the following chapters. In the first section we recall the construction
of double EPW-sectics and double EPW-cubes, give the basic properties
and describe their automorphisms. The automorphism group of the double
EPW-sextics was studied by Kuznetsov [DM22, Appendix A], here we get an
analogous description for the groups of autormophisms of double EPW-sextics
and this is the only innovative part of the chapter. In the second section
we give an overview about moduli spaces of sheaves on symplectic surfaces,
describing the notion of stability and giving a panoramic of the properties of
the moduli spaces depending on the choice of the Mukai vector and the choice
of the stability. In the third section we give the definitions of LSV manifold
and twisted LSV manifold associated to a cubic fourfold, then we illustrate
the Hodge theoretical link of these manifolds with the cubic fourfold.

In chapter 3 we construct two explicit examples of double EPW-sextics
with a symplectic action of the alternating group A7 and prove the irrationality
of the associated families of Gushel-Mukai threefolds. According to the
classification in [HM19], the group A7 is one of the maximal groups that can
act symplectically on a manifold of K3[2] type, showing that our examples are
among the most symmetric ones. The project is primarily inspired by [DM22],
where many ideas have been taken from and adjusted to our case. We point
out the related works [Son21,CDM23] where other very symmetric manifolds
of K3[2] type are constructed. The rough idea is simple: if a Lagrangian space
has a linear action of A7, then the double EPW-sextic will also have an action
of the group. Our two IHS fourfolds of K3[2] type are in a sense dual to each
other and non-isomorphic as polarized manifolds. Debarre and Kuznetsov
associated families of Gushel-Mukai varieties to a Lagrangian space [DK20b].
Moreover, there is an action of the group on the intermediate Jacobian of
the associated Gushel-Mukai threefolds. The big cardinality of the group
combined with the Clemens-Griffiths criterion allows us to show that any
Gushel-Mukai threefold associated to our examples is irrational. The general
Gushel-Mukai threefold is irrational [Bea77] but no explicit examples of such
irrational threefolds was known before [DM22], we contribute here with two
other families of examples.

In chapter 4 we give an answer to the Nielsen realization problem for IHS
manifolds, generalizing the result of Farb and Looijenga [FL21, Theorem 1.2]
for K3 surfaces. We also give some partial answers to questions related to this
problem, we describe for some deformation classes the shape of the mapping
class group and its representation in cohomology, in the spirit of [BK23].
In the first section we formulate the various question that we address in
the chapter. In the second section we show that for some of the known
deformation types the representation map Mod(X) → O+(H2(X,Z)) admits
a section over its image. In the third section we give an example of a group
of order of two mapping classes of a manifold of K3[n] type that lifts to a
group of homeomorphisms but does not lift to a group of diffeomorphisms,
using a known example for K3 surfaces. In the fourth section we address the
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Nielsen realization problem for IHS manifolds.
In chapter 5 we classify non-symplectic involutions of manifolds of OG10

type, describing their invariant and coinvariant lattices. In the first section we
show how we get an exhaustive list for the above lattices and show that any
pair of invariant and coinvariant lattices in our list is geometrically realized
as invariant and coinvariant on a non-symplectic involution on a manifold
of OG10 type. In the second section we study non-symplectic involutions
of a LSV manifold induced from non-symplectic involutions on the cubic
fourfold, we prove that these involutions are regular and describe their action
in cohomology.

In Appendix A we provide more details about some computations con-
cerning the examples of double EPW-sextics with a symplectic action of
A7 of chapter 3, complementing with codes we run with GAP [GAP21] and
Macaulay2 [M2].

In Appendix B we collect the tables of lattices that are used in chapter 5,
which provide the classification of non-symplectic involutions of manifolds of
OG10 type.



Chapter 1

Preliminaries

1.1 Lattice theory

In this section we give basic definitions and some useful classical results
about lattices. The main reference is [Nik79] where most of the facts can be
found, other valid references are [Huy16] and [MM09].

1.1.1 Basic definitions and examples

Definition 1.1.1. A lattice L is a a free Z-module of finite rank with a
non-degenerate integral bilinear form

(−,−) : L×L → Z.

The signature (l+, l−) of L is the signature of the real extension of (−,−)
on LR = L⊗ZR. The lattice is positive-definite if l− = 0 and negative-definite
if l+ = 0, otherwise it is called indefinite. A lattice is hyperbolic if it is
indefinite and l+ = 1.

Definition 1.1.2. A lattice L is called even if x2 := (x, x) ∈ 2Z for any
x ∈ L.

The divisibility div(x) of an element x ∈ L is the positive generator of the
ideal {(x, y)|y ∈ L} ⊆ Z. There is an obvious notion of direct sum of lattices,
moreover a subgroup N ⊆ L is a sublattice if the restriction of the bilinear
form to N is still non-degenerate. A sublattice N ⊆ L is called primitive
if L /N is a free Abelian group. The saturation of a sublattice N ⊆ L is
the smaller primitive sublattice of L containing N, it can be identified with
(N⊥)⊥ ⊆ L

A morphism of lattices is a morphism of groups that preserves the bilinear
forms, an isometry is a bijective morphism of lattices and the group of
isometries of a lattice L is denoted by O(L). The Cartan-Dieudonné theorem
[MM09, Theorem 9.10] guarantees that O(L⊗ZR) is generated by reflections

1



2 1.1 Lattice theory

with respect to non-isotropic vectors, hence it is possible to give the following

Definition 1.1.3. Let spin : O(L⊗ZR) → {±1} be the groups homomor-
phism that takes value +1 on reflections for a vector v with v2 < 0.

This restricts to a map spin : O(L) → {±1} called spinor norm whose ker-
nel is denoted by O+(L) and consists of elements that preserve the orientation
of a maximal positive-definite subspace of L⊗ZR.

Consider the dual lattice

L∨ = HomZ(L,Z) ∼= {x ∈ L⊗ZQ|(x, l) ∈ Z∀l ∈ L}

and observe that L ⊂ L∨ is a finite index subgroup.

Definition 1.1.4. The discriminant group of L is the finite group AL :=
L∨ /L.

The determinant of the bilinear form disc(L) is called discriminant of
L and it equals to |AL | = [L∨ : L]. The length l(AL) is the minimum
number of generators of AL. If the lattice is even, then there is a well-
defined Q-bilinear form bAL

: AL×AL → Q/Z with associated quadratic
form qAL

: AL → Q/2Z.
There is a natural map O(L) → O(AL) that sends an isometry φ ∈ O(L)

to the induced isometry φ ∈ O(AL) with respect to the quadratic form qAL
,

denote its kernel by Õ(L).

Definition 1.1.5. A lattice L is called unimodular if the group AL is trivial.
The lattice is called p-elementary for a prime number p if AL

∼= (Z/pZ)k for
some positive integer k.

Notice that L is unimodular if and only if L∨ ∼= L, if and only if det(L) =
±1.

Example 1.1.6. Let 0 ̸= n ∈ Z. Denote by [n] the rank one lattice generated
by an element x such that x2 = n. In this case, A[n]

∼= ⟨xn⟩ ∼= Z/nZ and
qA[n]

(xn) = 1
n . In general, if L is a lattice, L(n) denotes the lattice with

the same underlying module but where the bilinear form is multiplied by n.
Notice that disc(L(n)) = disc(L)nrk(L) and there is a short exact sequence

0 → L /nL → AL(n) → AL → 0,

in particular if L is unimodular then AL(n)
∼= (Z/nZ)rk(L).

Example 1.1.7. The rank two lattice U :=

(
0 1
1 0

)
is an even unimodular

hyperbolic lattice called hyperbolic plane.



1. Preliminaries 3

Example 1.1.8. Relevant lattices are the lattices An,Dn,E6,E7,E8 asso-
ciated to the relative Dynkin diagrams. They can be seen as Z-modules
generated by the vertexes {ei} of the Dynkin diagram and bilinear form given
by e2i = 2, (ei, ej) = −1 if the two vertexes are connected by an edge and
(ei, ej) = 0 if they are not. The Dynkin diagrams are displayed in Table 1.1
together with the discriminant groups of the associated lattices.

We give the matrix representation of some of the examples that will
appear more often in this thesis, notice that E8 is unimodular.

A2 =

(
2 −1
−1 2

)
D4 =


2 −1

2 −1
−1 −1 2 −1

−1 2



E8 =



2 −1
−1 2 −1

−1 2 −1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2
−1 2


An injective morphism of lattices N → L with primitive image is called

a primitive embedding. Two primitive embeddings N ⊂ L and N ⊂ L′ are
isometric if there is an isometry L → L′ that restricts to the identity on N,
if the isometry just takes N to itself we say that the embeddings detemine
isometric primitive sublattices.

An overlattice of L is a lattice T for which there is an embedding of
finite index L ⊂ T, meaning that L /T is a finite group. The orthogonal
complement N⊥ of a sublattice N ⊂ L is again a sublattice and the finite index
embedding N⊕N⊥ ⊂ L makes L an overlattice of N⊕N⊥, the inclusion is

L graph AL

An≥1 Z/(n+ 1)Z

Dn≥1 Z/2Z⊕ Z/2Z n even

Z/4Z n odd

E6 Z/3Z

E7 Z/2Z

E8 {0}
Table 1.1: ADE lattices
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strict in general. To specify that the orthogonal complement of N is taken
inside L we use the notation N⊥L.

Consider an even lattice L and an overlattice L ⊆ T, then there are
embeddings L ⊆ T ⊆ T∨ ⊆ L∨. Set HT = T /L, so that HT ⊆ T∨ /L ⊆
L∨ /L = AL is an isotropic subgroup and (T∨ /L)/HT = AT.

Lemma 1.1.9. Let L be an even lattice, then there is a bijective correspon-
dence between overlattices of L and isotropic subgroups of AL. Moreover, if
T is an overlattice and HT the associated isotropic group then:

1. H⊥
T = T∨ /L ⊆ AL;

2. qAT
= qAL |AT

.

Proof. [Nik79, Proposition 1.4.1].

Notice that giving a primitive embedding of an even lattice S into an even
lattice L is equivalent to give L as an overlattice of S⊕S⊥L and hence by the
previous lemma it amounts to give an isotropic subgroup HL ⊆ AS⊕AS⊥ .
More precisely:

Lemma 1.1.10. Given even lattices S,N and a pair (H, γ) where H ⊆ AS is
a subgroup and γ : H → AN an inclusion of groups such that qN ◦γ = −qS |H ,
then there exists a unique overlattice T of S⊕N with discriminant form q
and

(qS ⊕ qN)|Γ⊥
γ /Γγ

∼= q

where Γγ ⊆ AS⊕AN is the graph of γ.
Two such pairs (H, γ), (H ′, γ′) determine isometric primitive embeddings

of S in T if and only if H = H ′ and the maps γ, γ′ are conjugate to each other
via some isometry of N, while the pairs define isometric primitive sublattices
when there exist φ ∈ O(S) and ψ ∈ O(N) such that γ ◦ φ = ψ ◦ γ′.

Proof. [Nik79, Proposition 1.5.1].

Lemma 1.1.11. The primitive embedding of an even lattice S into an even
lattice L is determined by the data (HS, HL, γ,N, γN) where HS ⊆ AS and
HL ⊆ AL are subgroups, γ : HS → HL is an isometry with respect to the
restrictions of the quadratic forms qAS

, qAL
, N is an even lattice of signature

(l+ − s+, l− − s−) and

γN : qN ∼= (qS ⊕−qL)|Γ⊥
γ /Γγ

is an anti-isometry, where Γγ ⊆ AS⊕AL is the graph of γ.
Moreover, the data (HS, HL, γ,N, γN), (H ′

S, H
′
L, γ

′,N′, γ′N) determine iso-
metric primitive sublattices if and only if H ′

S = µ(HS) for some µ ∈ O(AS)
and there exist φ ∈ O(AL), ψ : N → N′ isometries such that γ′ ◦ ψ = φ ◦ γ
and µ ◦ γN = γ′

N′ ◦ ψ. In the particular case where also H ′
S = HS, the data

determine isometric primitive embeddings.
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Proof. [Nik79, Theorem 1.15.1].

The following is a specific case of the previous result.

Lemma 1.1.12. Let L be an even lattice of signature (l+, l−) and Λ an
even unimodular lattice of signature (λ+, λ−). The existence of a primitive
embedding of L in Λ is equivalent to the existence of a lattice N of signature
(n+, n−) such that:

• l+ + n+ = λ+ and l− + n− = λ−;

• AL
∼= AN and qAL

∼= −qAN
.

Consider Õ
+
(L) := Õ(L) ∩O+(L), we have the following

Lemma 1.1.13 (Eichler’s criterion). Let L be an even lattice such that
U⊕2 ⊆ L. Let x, y ∈ L and consider the associated classes x, y ∈ AL.
Suppose that

1. x2 = y2,

2. div(x) = div(y),

3. x = y in AL,

then there exists ϕ ∈ Õ
+
(L) such that ϕ(x) = y.

Proof. [GHS09, Proposition 3.3].

1.1.2 Lattices with a prime action, existence and uniqueness

We consider lattices with an isometry of prime order, this often leads to
p-elementary lattices. We recall the most useful criteria for existence and
uniqueness of lattices with fixed invariants.

Lemma 1.1.14. Let Λ be a unimodular lattice and L ⊂ Λ a primitive
sublattice. Then we have AL

∼= AL⊥ ∼= Λ
L⊕L⊥ as groups.

Notice that in this case the only isotropic group associated to the embed-
ding is the trivial group and the embedding is unique.

Consider a lattice L, if G ⊆ O(L) then the set of fixed points is a sublattice
LG called the invariant lattice and its orthogonal LG = (LG)⊥ is called the
coinvariant lattice.

Lemma 1.1.15. Let L be a lattice and G ⊂ O(L) the group generated by an
isometry of prime order p. Then, m := rk(LG)/(p− 1) is an integer and

L

LG⊕LG
∼= (Z/pZ)a

as groups, where a ≤ m. Moreover, there are natural embeddings of L
LG ⊕LG

in the discriminant groups ALG and ALG
.
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Proof. [Boi12, Lemma 5.3], [MTW18, Lemma 1.8].

In particular, when Λ is a unimodular lattice then LG and LG are p-
elementary.

Definition 1.1.16. Let L be an even lattice, define

δ(L) :=

{
0 if qAL

(x) ∈ Z/2Z for any x ∈ AL

1 otherwise
.

Theorem 1.1.17. An even 2-elementary lattice L of signature (l+, l−) is
determined by the data (l+, l−, l(AL), δ(L)) up to isometry. Moreover, there
exists an even 2-elementary lattice of given (l+, l−), l(AL) = a ≥ 0 and
δ(L) = δ ∈ {0, 1} if and only if the following conditions are satisfied:

a ≤ l+ + l−;

l+ + l− ≡ a (mod 2);

if δ = 0, then l+ − l− ≡ 0 (mod 4);

if a = 0, then δ = 0 and l+ − l− ≡ 0 (mod 8)

if a = 1, then l+ − l− ≡ 1 (mod 8);

if a = 1 and l+ − l− ≡ 4 (mod 8), then δ = 0;

if δ = 0 and l+ + l− = a, then l+ − l− ≡ 0 (mod 8).

Proof. [Nik79, Theorem 3.6.2].

Theorem 1.1.18. There exists an even hyperbolic p-elementary lattice L
with p ̸= 2, r = rk(L) and a = l(AL) if and only if the following conditions
are satisfied:

a ≤ r;

r ≡ 0 (mod 2);

if a ≡ 0 (mod 2), then r ≡ 2 (mod 4);

if a ≡ 1 (mod 2), then p ≡ (−1)r/2−1 (mod 4);

if r ̸≡ 2 (mod 8), then r > a > 0.

The isometry class of the lattice is uniquely determined by (r, a) when r ≥ 3.

Proof. [RS81, Section 1].

The following result helps to reduce to hyperbolic lattices.

Theorem 1.1.19. Let L be an even indefinite lattice of signature (l+, l−)
with l+, l− ≥ 1 such that rk(L) ≥ l(AL) + 3, then L admits U as a direct
summand. If instead l− ≥ 8 and rk(L) ≥ l(AL) + 9, then L admits E8(−1)
as a direct summand.
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Proof. [Nik79, Corollary 1.13.5].

For some indefinite lattices is still possible to recover the isometry class
from the signature and the quadratic form.

Theorem 1.1.20. Let L be an even indefinite lattice with signature (l+, l−)
and quadratic form qL such that rk(L) ≥ l(AL) + 2, then the data (l+, l−, qL)
uniquely determines the isometry class of L.

Proof. [Nik79, Corollary 1.13.3].

Let p be a prime number and consider the ring of p-adic integers Zp, let
L be a lattice. Set lp(AL) := l(AL⊗Zp) and

(qAL
)p := qAL⊗Zp : AL⊗Zp ×AL⊗Zp → Qp/2Zp,

observe that Qp/2Zp ∼= Qp/Zp for p ̸= 2.

Example 1.1.21. Define the following rank two lattices

u(k) :=

(
0 2k

2k 0

)
, v(k) :=

(
2k+1 2k

2k 2k+1

)
expressed by their intersection matrices. The discriminant forms are respec-
tively given by the following matrices

qu(k) =

(
0 1

2k
1
2k

0

)
, qv(k) =

(
1

2k−1
1
2k

1
2k

1
2k−1

)
.

Theorem 1.1.22. Let L be an even indefinite lattice with signature (l+, l−),
such that

1. rk(L) ≥ lp(AL) + 2 for all primes p ̸= 2,

2. if rk(L) = l2(AL) then (qAL
)2 admits either (qu(1))2 or (qv(1))2 as a

direct summand.

Then the data (l+, l−, qL) uniquely determines the isometry class of L and
the homomorphism O(L) → O(AL) is surjective.

Proof. [Nik79, Theorem 1.14.2].

1.2 Deformation theory

In this section we summarize few basic facts about deformations of complex
manifolds, our main references are [GHJ12] and [Voi02]. In the whole section
X will be a compact complex manifold.
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Definition 1.2.1. A deformation of X is a smooth proper morphism between
connected complex spaces X → B with a point 0 ∈ B such that there is an
isomorphism X0

∼= X.

We introduce the deformation-equivalence relation:

Definition 1.2.2. Two compact complex manifolds X1, X2 are deformation
equivalent if there is a smooth proper morphism between connected complex
spaces X → B and points b1, b2 ∈ B such that Xb1 ∼= X1 and Xb2 ∼= X2.

By Ehresmann’s lemma [Voi02, Proposition 9.3], a deformation is a locally
trivial fibration from the differential point of view. Hence, deformation
equivalent manifolds share the same topological invariants.

Definition 1.2.3. A deformation X → (B, 0) of X is called universal if
any other deformation X ′ → (B′, 0′) is isomorphic to the pullback under a
uniquely determined morphism φ : S′ → S with φ(0′) = 0.

If a universal deformation exists, then it is unique up to isomorphism. We
will denote by X → Def(X) the universal deformation of X when it exists.
The existence of a universal deformation is guaranteed in the following case:

Theorem 1.2.4 (Kuranishi). Let X be a compact complex manifold with
H0(X, TX) = 0, then a universal deformation exists. Moreover, the universal
deformation is universal for any of its fibers.

It is interesting to know when properties of a manifold like being Kähler
or having trivial canonical bundle are preserved when deforming the manifold.

Proposition 1.2.5. Let X be a compact Kähler manifold and X → B a
deformation of X ∼= X0, then:

1. For t ∈ B close to 0, the fiber Xt is compact Kähler.

2. If KX is trivial, then KXt is trivial for t close to 0 and the dimension
of H1(Xt, TXt) does not depend on t.

Proof. [Voi02, Proposition 9.20 and Proposition 9.23].

Lemma 1.2.6. Let X → Def(X) be the universal deformation of a compact
complex manifold with H0(X, TX) = 0. For any t close to 0 ∈ Def(X) there
is a natural isomorphism TtDef(X) ∼= H1(Xt, TXt).

Definition 1.2.7. Suppose X admits a universal deformation X → Def(X).
We say that deformations are unobstructed if dim T0Def(X) = dimDef(X),
i.e. Def(X) is smooth at 0.
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Proposition 1.2.5 readily applies to compact Kähler manifolds X with
trivial canonical bundle, implying that if Def(X) is reduced then deformations
are unobstructed and Def(X) is smooth in a neighborhood of 0. It is a non-
trivial but very important fact that in this case the deformation space is
reduced:

Theorem 1.2.8 (Bogomolov-Tian-Todorov). Let X be a compact Kähler
manifold with trivial canonical bundle, then deformations are unobstructed.

1.3 Irreducible holomorphic symplectic manifolds

In this section we give a general overview about irreducible holomorphic
symplectic (IHS) manifolds. We recall basic results and the most recent
advances, exposing the general theory with supplement of details about
known examples and some explicit constructions.

1.3.1 Basic facts and examples

We give the definition of irreducible homolorphic symplectic (IHS) mani-
fold and the one of hyper-Kähler (HK) manifold and recall the equivalence of
the two definitions, then we recall the original motivation of study of such
manifolds (Theorem 1.3.6) and finally introduce known examples.

Definition 1.3.1. A complex compact Kähler manifold X is called irreducible
homolorphic symplectic (IHS) if:

1. π1(X) = {1},

2. H0(X,Ω2
X) = CσX with σX everywhere non-degenerate.

The form σX is called symplectic form.

The existence of a non-degenerate two-form σX ∈ H0(X,Ω2
X) implies that

X has even complex dimension dimCX = 2n, moreover the form induces an
isomorphism TX ∼= ΩX between the tangent and the cotangent bundles. The
canonical bundle KX = Ω2n

X is trivialized by the form σnX , thus c1(X) = 0.

Definition 1.3.2. A compact Riemannian manifold (M, g) of real dimension
4n is called hyper-Kähler (HK) if the holonomy group Hol(g) equals the
symplectic group Sp(n). In this case the metric g is called a hyper-Kähler
metric.

If g is an hyper-Kähler metric, then there exist three complex structures
I, J,K with K = IJ = −JI such that g is Kähler for any of them. Moreover,
for any complex structure λ = aI + bJ + cK with a, b, c real numbers such
that a2 + b2 + c2 = 1, the metric g is Kähler with respect to λ. There are
associated Kähler forms ωλ = g(λ(−),−).
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Definition 1.3.3. Let X be a compact Kähler manifold. The Kähler cone
KX ⊂ H1,1(X,R) is the open convex cone of Kähler classes on X.

The next two results show that the definitions of IHS manifolds and
HK manifolds coincide. For details we refer to [GHJ12, Proposition 23.3,
Theorem 23.5].

Proposition 1.3.4. Let (M, g) be a HK manifold, then the complex manifolds
(M, I), (M,J) and (M,K) are IHS manifolds.

The following is a consequence of Yau’s Theorem.

Theorem 1.3.5. Let X be an IHS manifold, then for any α ∈ KX there
exists a unique hyper-Kähler metric on the underlying real manifold M such
that X = (M, I) and α = [ωI ].

In some sense, IHS manifold are one of the building blocks of compact
Kähler manifolds with trivial first Chern class, as stated in the next result.
This is the original motivation for the interest in this kind of manifolds.

Theorem 1.3.6 (Beauville-Bogomolov decomposition). Let Z be a compact
complex Kähler manifold with c1(Z)R = 0. Then there exists an étale cover
Z̃ → Z such that

Z̃ ∼= T ×
∏
i

Xi ×
∏
j

Yj

where T is a complex torus, Xi are IHS manifolds and Yj are Calaby-Yau
manifolds.

Proof. [Bea83, Theorem 1].

The better known examples of such manifolds are K3 surfaces:

Definition 1.3.7. A K3 surface is a complex surface S such that KS
∼= OS

and H1(S,OS) = 0.

It was proved in [Siu83] that every K3 surface is Kähler, moreover one
can easily show (cf. [Huy16]) that the definition implies that a K3 surface is
simply connected and it has a unique symplectic form up to scalars. It follows
that K3 surfaces are examples of IHS manifolds and, conversely, any IHS
manifold of dimension 2 is a K3 surface. One could wonder if it is possible
to remove the hypothesis to be Kähler in the definition of IHS manifold,
but the last is really needed since an example of manifolds not admitting a
Kähler structure but satisfying all the other conditions was found in [Gua94].
It is highly non trivial fact that all K3 surfaces are deformation equivalent
(see [Kod64]).

Example 1.3.8. We recall some examples among the most classical con-
structions of K3 surfaces:
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1. A double cover S → P2 branched along a smooth sextic C ⊂ P2.

2. A smooth quartic hypersurface S ⊂ P3.

3. A smooth complete intersection of a quadric and a cubic in P4.

4. A smooth complete intersection of three quadrics in P5.

There are just few other examples of IHS manifolds in higher dimension,
up to deformation.

Example 1.3.9 (Hilbert scheme of points on a K3 surface). Let S be a
projective K3 and n ≥ 2 an integer. Denote by S[n] the Hilbert scheme of
n points on S, i.e. the space parametrizing zero-dimensional subschemes
(Z,OZ) with dimC OZ = n. Fogarty proved that the Hilbert-Chow morphism

ρ : S[n] → S(n)

(Z,OZ) 7→
∑
p∈S

l(OZ,p)p

is a resolution of singularities, which is a blow-up of the diagonal ∆ ⊂ S(n),
whose exceptional divisor E parametrizes non-reduced schemes. Moreover,
Beauville proved in [Bea83] that S[n] is a projective IHS manifold of dimension
2n, its symplectic form comes from the one on S. The space S[n] exists even
if S is not projective, it is only a complex space called the Douady space. A
manifold which is deformation equivalent to S[n] for a K3 surface S is called
of K3[n] type.

A similar approach works for A[n], where A is an Abelian surface, with
the difference that A[n] is not symply connected.

Example 1.3.10 (Generalized Kummer manifolds). Let A be an Abelian
surface and n ≥ 2 an integer, consider the composition of the Hilbert-Chow
morphism with the summation map

s : A[n+1] → A

(Z,OZ) 7→
∑
p∈A

l(OZ,p)p

and set Kn(A) = s−1(0). The map s happens to be an isotrivial fibration
and Beauville proved in [Bea83] that Kn(A) is an IHS manifold of dimension
2n, called generalized Kummer. A manifold deformation equivalent to Kn(A),
for A an Abelian surface, is called a manifold of Kumn type.

Notice that for n = 1 we get S[1] = S and K1(A) = K(A) which is just
the Kummer surface of A (the symplectic resolution of A/{±1}), suggesting
the name for the higher-dimensional analogue.
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Example 1.3.11 (O’Grady’s manifolds). Two other examples of IHS mani-
folds can be produced starting from moduli spaces of sheaves on projective
symplectic surfaces surfaces. These are resolutions of singular moduli spaces,
we remind to Theorem 2.2.11 and the relative section for more detailed
description. Manifolds deformation equivalent to these esamples are called
respectively of OG10 type and OG6 type.

The previous examples are representatives of the only known deformation
families, which are distinct since they present different topological invariants,
as we will see in the next section.

1.3.2 Cohomological properties

We resume the most important cohomological properties of an IHS mani-
fold X, as the lattice structure on the second cohomology and its interplay
with the Hodge decomposition. An easy consequence of the definition is the
following:

Proposition 1.3.12. Let X be an IHS manifold of dimension 2n. Then for
0 ≤ r ≤ n

H0(X,ΩrX) =

{
Cσ(r/2)X if r is even
0 if r is odd.

In particular, χ(X,OX) = n+ 1.

Since X is compact Kähler, the Hodge decomposition is available:

H(X,C)k =
⊕
p+q=k

H(X)p,q

where H(X)p,q = Hq(X,ΩpX) and H(X)p,q = H(X)q,p, for k an integer.
In this case, the decomposition for k = 2 reads

H(X,C)2 = σXC⊕H(X)1,1 ⊕ σXC

since σX is a generator for H(X,C)2,0. Suppose that our choice of the
symplectic form is such that

∫
(σXσX)

n = 1.

Definition 1.3.13 (Beauville-Bogomolov-Fujiki form). Define the following
quadratic form

qX(α) = (n/2)

∫
X
α2(σXσX)

n−1 + (1− n)(

∫
X
ασn−1

X σX
n)(

∫
X
ασnXσX

n−1)

for α ∈ H2(X,R) and denote by bX(−,−) the bilinear form associated to qX .

The following shows that the bilinear form has in fact a topological nature
and can be defined on the integral cohomology.
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Theorem 1.3.14 (Beauville-Fujiki relation). There exists a positive real
number cX , called the Fujiki constant, such that

qX(α)
n = cX

∫
X
α2n

for all α ∈ H2(X). In particular, qX can be normalized such that it is a
primitive integral quadratic form on H2(X,Z).

Proof. [GHJ12, Proposition 23.14].

Observe that the universal coefficient theorem with the fact that H1(X,Z) =
0 implies that H2(X,Z) is torsion-free, hence qX gives to H2(X,Z) a structure
of a lattice.

Proposition 1.3.15. The form qX on H2(X,R) has signature (3, b2(X)− 3)
where b2(X) is the second Betti number of X, more precisely if α ∈ KX then
qX is positive on Rα⊕ (H2,0⊕H0,2)R(X) and negative on its complement. In
the Hodge decomposition of H2(X,C), the space H1,1(X,C) is an orthogonal
summand with respect to the form bX .

Proof. [GHJ12, Corollary 23.11].

We point out that the form qX and the Fujiki constant cX are bimero-
morphic and deformation invariants.

Definition 1.3.16. The sublattice

NS(X) = H2(X,Z) ∩H1,1(X)

is called the Neròn-Severi lattice.

Using the exponential sequence and H1(X,OX) = 0 one finds NS(X) =
Pic(X) and for this reason when considering IHS manifold the rank ρ(X)
of NS(X) is called Picard rank. From the fact that H1,1(X) is orthogonal
to (H2,0⊕H0,2)(X), it follows that NS(X) = H2(X,Z) ∩ ω⊥ where ω is the
Kähler form.

Definition 1.3.17. The transcendental lattice is the sublattice

T(X) = NS(X)⊥ ⊂ H2(X,Z).

There is the following useful projectivity criterion:

Proposition 1.3.18. Let X be an IHS manifold, then X is projective if and
only if there exists α ∈ NS(X) with qX(α) > 0.

Proof. [GHJ12, Proposition 26.13].
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We report the lattice properties of the known deformation types of IHS
manifolds.

Example 1.3.19. If S is a K3 surface, then the Beauvile-Bogomolov-Fujiki
form coincides with the intersection paring in the middle cohomology, which
forms the following unimodular lattice:

(H2(S,Z), qS) ∼= E8(−1)⊕2 ⊕U⊕3 .

For the next two examples, the lattices were computed in [Bea83] while
information about the Fujiki constant and the Euler characteristic of divisors
can be found in [Deb22,Huy16].

Example 1.3.20. Let S be a K3 surface, then for any n ≥ 2 we have:

H2(S[n],Z) = H2(S,Z)⊕ Zδ

where 2δ is the class of the exceptional divisor E of the Hilbert-Chow mor-
phism. The latter, equipped with the form qS[n] , is isometric to the lattice

E8(−1)⊕2 ⊕U⊕3⊕[−2(n− 1)],

this gives b2(S[n]) = 23 and sign(H2(S[n],Z)) = (3, 20). The discriminant
lattice is

Z
2(n− 1)Z

∼= ⟨ δ

2(n− 1)
⟩

with discriminant quadratic form given by ( 1
2(n−1)), the Fujiki constant is

cS[n] =
(2n)!
n!2n .

Example 1.3.21. Let A be an Abelian surface and n ≥ 2. Similarly to the
previous example, in the second cohomology of a manifold of Kummer type
there is an extra class coming from the Hilber-Chow morphism:

H2(Kn(A),Z) = H2(A,Z)⊕ Zδ

which, equipped with qKn(A), is isometric to

E8(−1)⊕2 ⊕U⊕3⊕[−2(n+ 1)],

so that b2(S[n]) = 7 and sign(Kn(A),Z)) = (3, 4). The discriminant lattice is

Z
2(n+ 1)Z

∼= ⟨ δ

2(n+ 1)
⟩

with discriminant quadratic form determined by ( 1
2(n+1)), the Fujiki constant

is cKumn(A) =
(2n)!
n!2n (n+ 1).
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Example 1.3.22. Let X be the O’Grady’s six dimensional example. The
example is constructed starting from an Abelian surface A, we have again
that H2(A,Z) ⊂ H2(X,Z) but the situation is a bit more complicated and
there are two extra classes:

(H2(X,Z), qOG6) ∼= U⊕3⊕[−2]⊕2,

it follows that b2(X) = 8 and it is known that cX = 60. For these features
we refer to [Rap07].

Example 1.3.23. Let X be the O’Grady’s ten dimensional example. The
example is constructed starting from a K3 surface S, again H2(S,Z) ⊂
H2(X,Z) and similarly to the previous example there are two extra classes:

(H2(X,Z), qOG10) ∼= E8(−1)⊕2U⊕3⊕A2(−1),

it follows that b2(X) = 24 and it is known that cX = 945. For these features
we refer to [Rap08].

Remark 1. We stress that the second Betti numbers of the previous examples
are different, hence they are not deformation equivalent to each other. More-
over, any manifold which is deformation equivalent to one of these examples
share the same lattice (H2(X,Z), q) and Fujiki constant.

1.3.3 Period maps and Torelli theorems

We introduce the period domain and the period map, then we give an
overview of the Torelli theorem in terms of the period map. We introduce
parallel transport operators and recall the Torelli theorem in terms of parallel
transport operators and Hodge theory.

Definition 1.3.24. A marked IHS manifold (X, η) is an IHS manifold X with
an isometry η : H2(X,Z) ∼= L. Two marked IHS manifolds (X, η), (X ′, η′) are
isomorphic if there exists an isomorphism f : X → X ′ such that η′ = η ◦ f∗.

By definition, if σX is the symplectic form ofX, the relations bX(σX , σX) =
0 and bX(σX , σX) > 0 hold. This inspires the definition of the period domain,
which is a suitable space where the symplectic forms live.

Definition 1.3.25. The period domain associated to L is the complex space

ΩL := {y ∈ P(LC)|bX(y, y) = 0, bX(y, y) > 0}.

We remark that Proposition 1.2.5 applies in the case of IHS manifolds,
giving that dimH1(Xt, TXt) = dimH1(Xt,ΩXt) = dimH1,1(Xt) is constant
for a deformation Xt close to X0 = X, and a similar proof yields the following:
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Proposition 1.3.26. Let X be an IHS manifold and X → B a deformation
of X, then any fiber Xt with t close to 0 ∈ Def(X) is an IHS manifold.

For t in a neighborhood of 0 ∈ Def(X) we know by Ehresmann’s lemma
that H∗(X,Z) ∼= H∗(Xt,Z), so if we fix a marking η : H2(X,Z) ∼= L we have
a marking ηt : H

2(Xt,Z) ∼= L for any t close to 0. We say that X with
this family of markings is a deformation of the pair (X, η). Moreover, by
the previous proposition we know that a Hodge decomposition H2(X,C) ∼=
H2(Xt,C) = H2,0(Xt)⊕H1,1(Xt)⊕H0,2(Xt) of the fibers is available in this
neighborhood, we want to encode the variation of the degree-two Hodge
structure: the symplectic form σXt recovers all the information.

Definition 1.3.27. Let X → (B, 0) a deformation of (X, η) and U ⊂ B a
suitable neighborhood of 0, define the map

P : U → ΩL

by setting P(t) := [ηt(σXt)] for t ∈ U . When considering the universal
deformation, the map P : Def(X) → ΩL is called local period map.

The map P is holomorphic, moreover and the following remarkable fact
holds:

Theorem 1.3.28 (Local Torelli). Let (X, η) be a marked IHS manifold, then
the local period map

P : Def(X) → ΩL

is a local isomorphism.

Proof. [Bea83, Theorem 5].

We introduce the moduli space of marked IHS manifolds:

Definition 1.3.29. The moduli space of marked IHS manifolds is given by

ML := {(X, η)|η : H2(X,Z) ∼= L}/ ∼=

where the equivalence relation is the isomorphism of marked IHS manifolds.

A structure of complex analytic space on ML is given by Theorem 1.3.28,
but unluckily it is well-known that the space is not Hausdorff. We recall that
the deformation space is smooth by Theorem 1.2.8, hence ML is.

Gluing the local period maps P : Def(X) → ΩL one gets:

Definition 1.3.30. The map

P : ML → ΩL

is called the global period map.
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Consider a connected component M0
L of the moduli space ML. The global

period map is surjective, more precisely Huybrechts proved the following:

Theorem 1.3.31 (Surjectivity of the period map). The restriction of the
period map P0 : M0

L → ΩL is surjective.

Proof. [Huy16, Proposition 25.12].

In the case of K3 surfaces, the period (S, η) recovers the isomorphism
class of S and the general fiber consists of two points (the space has two
connected components) given by the choice ±η. The next two examples show
that in higher dimension the situation is worst.

Example 1.3.32. Let S be a K3 surface with Pic(S) = ZC with C a smooth
rational curve, then X = S[2] contains C [2] ∼= P2, let X ′ be the Mukai flop
of X along P2 as in [Muk84]. Then by [Deb84] the two manifolds are not
isomorphic, but there are markings of X,X ′ for which they have the same
period.

In the previous case the two manifolds with the same period are still
bimeromorphic, but the situation could be even worst.

Example 1.3.33. Consider a non-projective complex torus T which is not
isomorphic to the due torus T∨. Let X = K2(T ), X ′ = K2(T

∨) and E,E′ the
exceptional divisors of the resolution of singularities of the symmetric products
of T and T∨. The two manifolds cannot be bimeromorphic, otherwise E,E′

would be and then T ∼= Alb(E) ∼= Alb(E′) ∼= T∨. However, by [Nam02] there
are markings for which X and X ′ have the same period and in particular we
will see that they must lie on different components of the moduli space.

The following statement was proved by Huybrechts, Markman and Ver-
bitsky, it describes how the period map fails to be injective.

Theorem 1.3.34 (Global Torelli). The restriction of the period map P0 :
M0

L → ΩL is generically injective. When the injectivity fails, the fiber of a
point y ∈ ΩL consists of pair-wise inseparable points. Inseparable points are
represented by bimeromorphic manifolds.

Proof. [Mar11, Theorem 2.2].

In particular, bimeromorphic IHS manifolds are deformation equivalent.
The concept of parallel transport operator was introduced to keep track of

the variations of Hodge structure that avoid changing connected component
in the moduli space.

Definition 1.3.35. Let X,Y be IHS manifolds and ϕ : H2(X,Z) → H2(Y,Z)
a lattice isometry. We say that ϕ is a parallel transport operator if there exists
a smooth proper family π : X → B and a continuous path γ : [0, 1] → B
with Xγ(0) ∼= X, Xγ(1) ∼= Y and such that ϕ is induced by parallel transport
along γ in the local system R2π∗Z.
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Two points (X, η), (X ′, η′) in ML belong to the same connected compo-
nent if and only if η′ ◦ η−1 is a parallel transport operator.

Definition 1.3.36. A parallel transport operator ϕ : H2(X,Z) → H2(X,Z)
is called a monodromy operator, the group generated by such operators is
denoted by Mon2(X) ⊂ O(H2(X,Z)). The subgroup of monodromy operators
that preserve the Hodge structure is denoted by Mon2Hdg(X) ⊂ Mon2(X).

The number of connected components of the moduli space ML is com-
puted by the index [O(H2(X,Z)) : Mon2(X)] of the subgroup of monodromy
operators. That index is finite by [Mar11, Lemma 7.5], hence the number of
connected components is finite. Once a marking η : H2(X,Z) → L is fixed,
one can define the monodromy group

Mon2(L) := {η ◦ ϕ ◦ η−1|ϕ ∈ Mon2(X)} ⊂ O(L)

of the lattice L which does not depend on (X, η), but only on the connected
component M0

L ⊂ ML it belongs to. In case the subgroup Mon2(X) ⊂
O(H2(X,Z)) is normal then Mon2(X) is independent of the choice of the
connected component.

The Torelli theorem can be then reformulated as follows.

Theorem 1.3.37 (Torelli Hodge-theoretical). Let X,Y two deformation-
equivalent IHS manifolds, then:

1. X and Y are bimeromorphic if and only if there is a parallel transport
operator ϕ : H2(X,Z) → H2(Y,Z) which is an isomorphism of integral
Hodge structures.

2. Let ϕ : H2(X,Z) → H2(Y,Z) be a parallel transport operator which is an
isomorphism of integral Hodge structures. There exists an isomorphism
f : Y → X such that ϕ = f∗ if and only if f sends some Kähler class
on X to some Kähler class on Y .

Proof. [Mar11, Theorem 1.3].

The monodromy group of the known deformation types was computed
with the contribution of many authors. We introduce some necessary notation
and give an overview of the results.

Definition 1.3.38. Let X be an IHS manifold, define the cone of positive
classes

C̃X := {α ∈ H1,1(X,R)|bX(α, α) > 0} ⊂ H1,1(X,R).

By [Mar11, Lemma 4.1] there is a canonical generator of H2(C̃X ,Z) ∼= Z,
so it makes sense to talk about orientation-preserving automorphisms of C̃X .
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Definition 1.3.39. Denote by

O+(H2(X,Z)) ⊂ O(H2(X,Z))

the index 2 subgroup consisting of isometries that induce an orientation-
preserving automorphism of C̃X .

The subgroup O+(H2(X,Z)) is normal and it can be identified with the
kernel of the determinant of the spinor norm (cf. [MM09, Section 10] and
Definition 1.1.3).

Example 1.3.40. Let S be a K3 surface, then by [Bor86, Theorem A] we
have Mon2(S) = O+(H2(S,Z)) and hence the moduli space of marked K3
surfaces has two connected components identified by the correspondence
(S, η) 7→ (S,−η).

Definition 1.3.41. Let X be an IHS manifold, define the group

W(X) := {ϕ ∈ O+(H2(X,Z))|ϕ = ± id ∈ O(AH2(X,Z))},

and denote by χ : W(X) → {±1} the corresponding character.

Example 1.3.42. Let X be an IHS manifold of K3[n] type. Markman
in [Mar11] proved that

Mon2(X) = W(X)

and that Mon2(X) is a normal subgroup of O(H2(X,Z)). It follows that the
index of the subgroup is 2r−1 where r = ρ(n− 1) is the number of distinct
primes dividing n− 1. In particular, Mon2(X) = O+(H2(X,Z)) when 2n−1

is a prime power.

Example 1.3.43. Let X be a IHS manifold of Kumn type. Mongardi proved
in [Mon16a, Theorem 2.3] that

Mon2(X) = {ϕ ∈ W(X)|det(ϕ)χ(ϕ) = 1}.

Example 1.3.44. Let X be an IHS manifold of OG6 type. Mongardi and
Rapagnetta proved in [MR21, Theorem 5.4] that the monodromy group is

Mon2(X) = O+(H2(X,Z)).

Example 1.3.45. Let X be an IHS manifold of OG10 type. Onorati proved
in [Ono22, Theorem 5.4] that the monodromy group is

Mon2(X) = O+(H2(X,Z)).
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1.3.4 Cones and birational geometry

In order to study the bimeromorphic geometry of an IHS manifold X and
its automorphisms, it is convenient to introduce several cones contained in
C̃X ⊂ H1,1(X,R) that depend on the Beauville-Bogomolov form.

Definition 1.3.46. The Kähler cone is the cone KX ⊂ H1,1(X,R) of Kähler
classes. The positive cone is the connnected component CX ⊂ H1,1(X,R) of
C̃X = {α ∈ H1,1(X,R)|bX(α, α) > 0} containing a Kähler class.

The two cones are convex and there is the inclusion KX ⊂ CX .

Definition 1.3.47. The birational Kähler cone is defined as

BKX :=
⋃

f :X99KY

f∗KY

where f : X 99K Y runs over all the bimeromorphic maps from X to another
IHS manifold Y .

There are inclusions KX ⊂ BKX ⊂ CX . Moreover, the cone BKX is not
convex:

Theorem 1.3.48 (Boucksom-Huybrechts). A class α ∈ CX is Kähler if and
only if

∫
C α > 0 for any rational curve C ⊂ X.

Proof. [Bou01, Theorem 1.2].

Remark 2. One can consider the inclusion H2(X,Z) ↪→ H2(X,Q). Since for
any α, β ∈ CX it holds bX(α, β) > 0, for the previous statement it is enough
to check rational curves C such that qX(C) ≤ 0.

Corollary 1.3.49. If H1,1(X) ∩ H2(X,Z) = 0, then KX = CX . The same
holds if X is projective and Pic(X) = ZH.

Definition 1.3.50. A prime divisor onX is a reduced and irreducible effective
divisor E. A prime divisor is called prime exceptional if qX(E) < 0. An
effective divisor is called exceptional if its prime factors are prime exceptional
and their intersection matrix is negative-definite. Denote the set of prime
exceptional divisors of X by Pex(X).

Definition 1.3.51. The fundamental exceptional chamber of X is

FEX = {α ∈ CX |bX(α,D) > 0 for any D exceptional}.

By [Mar11, Proposition 5.6] the fundamental exceptional chamber is
characterized by classes α ∈ CX with bX(α,D) > 0 for any non-zero uniruled
divisor D. For a K3 surface S these are exactly rational curves, hence by
Theorem 1.3.48 one has FES = KS .
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Proposition 1.3.52. Let X,Y be IHS manifolds and g : H2(X,Z) →
H2(Y,Z) be a parallel transport operator which is an isomorphism of Hodge
structures. Let α ∈ FEX , then g(α) ∈ FEY if and only if there exists a
bimeromorphic map f : Y 99K X such that f∗ = g.

Proof. [Mar11, Corollary 5.7].

As a consequence, there are the following inclusions

BKX ⊂ FEX ⊂ BKX

as in [Mar11, Proposition 5.6], in particular KX ⊂ FEX .
Since the positive cone is invariant under the action of Mon2Hdg(X), the

following definitions are well-posed.

Definition 1.3.53. Let X be an IHS manifold.

1. An exceptional chamber of CX is g(FEX) for g ∈ Mon2Hdg(X).

2. A Kähler-like chamber of CX is g(f∗(KY )) for g ∈ Mon2Hdg(X) and
f : X 99K Y a bimeromorphic map.

It is a consequence of Theorem 1.3.37 that if two chambers intersect
then the chambers must coincide. Moreover, by [Mar11, Lemma 5.11] any
Kähler-like chamber is contained in some exceptional chamber.

For a divisor D we consider the reflection RD ∈ O+(H2(X,Z)) given by

RD(α) := α− 2
(D,α)

(D,D)
D,

notice that by [Mar11, Proposition 6.2] if E is prime exceptional then RE ∈
Mon2Hdg(X). Consider the normal subgroup

WExc = {RE |E ∈ Pex(X)} ⊂ Mon2Hdg(X)

and the subgroup Mon2Bir(X) ⊂ Mon2Hdg(X) of all monodromy operators
induced by bimeromorphic maps from X to itself (cf. subsection 1.3.6 and
Proposition 1.3.74).

The action of these groups on the chambers is described by the following

Theorem 1.3.54. Let X be an IHS manifold, then it holds:

1. The group Mon2Hdg(X) acts transitively on the set of exceptional cham-
bers, the group WExc acts simply-transitively on the set of exceptional
chambers.

2. Any exceptional chamber is the interior of a fundamental domain for
the action of WExc on CX
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3. The Mon2Hdg(X)-stabilizer of FEX equals to Mon2Bir(X)

4. Mon2Hdg(X) =WEcx ⋉Mon2Bir(X)

Proof. [Mar11, Theorem 6.18].

Definition 1.3.55. A divisor D ∈ Pic(X) is called a wall divisor if its
class is primitive with qX(D) < 0, and for any g ∈ Mon2Hdg(X) one has
g(D)⊥ ∩ BKX = ∅. The set of wall divisors on X is denoted by ∆(X).

The orthogonal complements of wall divisors cut BKX in Kähler-like
chambers, one of the chambers is given by KX while the other chambers are
Kähler cones of birational models of X. In particular, notice that we have
Pex(X) ⊆ ∆(X).

Theorem 1.3.56. Let X,Y be IHS manifolds and D ∈ ∆(X). Consider a
parallel transport operator g : H2(X,Z) → H2(Y,Z) such that g(D) ∈ Pic(Y ),
then g(D) ∈ ∆(Y ).

Proof. [Mon15, Theorem 1.3].

It follows that Mon2Hdg(X) preserves the set ∆(X), and so the wall and
chamber structure of BKX . In the spirit of Theorem 1.3.48, wall divisors can
be described as multiples of extremal rational curves up to Mon2Hdg(X)-action
(see [KLCM19, Proposition 2.3], [Mon15, Proposition 1.5]).

It suffices to classify the prime exceptional divisors and wall divisors to
parallel transport, this was done for the known deformation types with a
numerical criterion.

Proposition 1.3.57. Let n ≥ 2. There exist the following monodromy-
invariant embeddings:

1. H2(X,Z) ↪→ E8(−1)⊕2 ⊕U⊕4 with orthogonal complement generated
by v with v2 = 2n− 2, if X is of K3[n] type.

2. H2(X,Z) ↪→ U⊕4 with orthogonal complement generated by v with
v2 = 2n+ 2, if X is of Kumn type.

Proof. [Mar11, Theorem 9.3], [Wie18, Theorem 4.9].

Example 1.3.58. Let X be a manifold of K3[n] type and D ∈ Pic(X), denote
by ⟨v,D⟩sat the saturation of the lattice generated by v of Proposition 1.3.57
and D. Then by [KLCM19, Theorem 2.9], [BM14] and [Yos12], we have that
D is a wall-divisor if and only if there exists a class s ∈ ⟨v,D⟩sat such that
one of the following holds:

1. 0 ≤ qX(s) < bX(v, s) ≤ qX(v)+qX(s)
2

2. qX(s) = −2 and 0 ≤ bX(v, s) ≤ qX(v)
2 .
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Example 1.3.59. Let X be a manifold of Kumn type type and D ∈ Pic(X),
denote by ⟨v,D⟩sat the saturation of the lattice generated by v of Proposi-
tion 1.3.57 and D. Then by [KLCM19, Theorem 2.9], [BM14] and [Yos12], we
have that D is a wall-divisor if and only if there exists a class s ∈ ⟨v,D⟩sat
such that:

0 ≤ qX(s) < bX(v, s) ≤
qX(v) + qX(s)

2

Example 1.3.60. Let X be a manifold of OG6 type, then by [MR21,
Proposition 6.8] we have:

Pex(X) = {D ∈ Pic(X)|D primitive with qX(D) = −2, div(D) = 1, 2}
∆(X) = Pex(X) ∪ {D ∈ Pic(X)|D primitive with qX(D) = −4,div(D) = 2}.

Example 1.3.61. Let X be a manifold of OG10, then by [MO22, Theorems
3.2, 5.5] we have:

Pex(X) = {D ∈ Pic(X)|D primitive with qX(D) = −2 or qX(D) = −6, div(D) = 3}
∆(X) = Pex(X) ∪ {D ∈ Pic(X)|D primitive with qX(D) = −4 or qX(D) = −24,div(D) = 3}.

1.3.5 Teichmüller spaces and the mapping class group

Some literature about IHS manifolds has a slightly different approach
in the study of the period map and the moduli space. The flavour is more
differential and the moduli space is replaced with the Teichmüller space,
which turns out to be an étale cover of the moduli space. The results are
equivalent, but the latter permits the study of a slightly weaker equivalence
than holomorphic automorphism. The following definitions and results can
be found in [Loo21,Ver13,Ver20].

Let X = (M, g, I) be an IHS manifold, where g is a hyper-Kähler metric
and I a complex structure, and fix a marking η : H2(X,Z) ∼= L.

Definition 1.3.62. Consider an IHS manifold X = (M, g, I), the set of all
complex structures J that make (M,J) an IHS manifold, up to differential
isotopy equivalence, is called the Teichmüller space and it is denoted by T .

The choice of a complex structure J determines H2,0(M,J) independently
to the choice of a Kähler metric, hence there is a map P : T → ΩL which is
called again the period map and it is a local isomorphism by [Ver13, Theorem
1.9], giving to T the structure of complex space.

One can consider two variants of Teichmüller spaces, with their associated
period maps.

Definition 1.3.63. Consider an IHS manifold X = (M, g, I), denote by THK
the set of hyper-Kähler metrics with unitary volume and a complex structure,
up to differential isotopy.
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There is a period map PHK : THK → ΩL × P(LR) whose first component
is P and second component consist of the choice of the ray spanned by the
Kähler form ωX associated to the metric. By [Loo21, Corollary 3.7], this
map is a local diffeomorphism with its image Ω̃L, that is a proper subset of
ΩL × P(LR) since ωX ∈ H1,1(X,R).

Definition 1.3.64. Consider an IHS manifold X = (M, g, I), denote by TEin
the space of Einstein metrics on M with unitary volume up to differential
isotopy.

There is a period map PEin : TEin → Gr+(3,LX ⊗R) that sends (M,h)
to the positive-definite real 3-space P = ⟨σX + σX , i(σX − σX), ωX⟩, where
X = (M,h, J) and J is any complex structure for which h is Kähler. The
map PEin is a local diffeomorphism, giving to TEin a differentiable structure.

According to [Loo21], there is a commutative diagram with respective
vertical period maps

T THK TEin

ΩL Ω̃L Gr+(3,LX ⊗R)

P PHK PEin

where the horizontal maps to the right simply forget the choice of a complex
structure and hence are locally trivial 2-sphere bundles, while the horizontal
maps to the left forget the choice of a ray in the Kähler cone and consist of
locally trivial bundles with contractible fibers.

We now give the definition of mapping class group, state some results
about its action on the set of connected components of the Teichmüller space
and relate its action in cohomology to the monodromy group. Since all the
fibration between the different Teichmüller spaces have connected fibers, the
sets of connected components coincide and the results hold for any of them.

Definition 1.3.65. Let Diff+(X) be the group of orientation-preserving
diffeomorphisms. The mapping class group of X is the group Mod(X) :=
Diff+(X)/Diff+(X)0 = π0(Diff+(X)) where Diff+(X)0 denotes the con-
nected component of Diff+(X) containing the identity.

By definition, the group Mod(X) has a well-defined action on the Teich-
müller space via pull-back.

Definition 1.3.66. The Torelli group T(X) is the kernel of the representation
map ρ : Mod(X) → O+(H2(X,Z)).

Theorem 1.3.67. Consider the action of T(X) on T . Then

1. An element of T(X) fixing a point in T acts trivially on its connected
component.
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2. The group T(X) acts on π0(T ) with finitely many orbits and every
connected component has finite stabilizer.

Proof. [Ver20, Theorem 3.1].

Following the discussion in [Ver13, Section 1.2], the moduli space of
marked IHS manifolds can be reobtained as

ML = T /T(X)

where the quotient simply identifies some of the connected components of T .

Proposition 1.3.68. Let C be a connected component of the Teichmüller
space, then ρ(Mod(X)C) = Mon2(X) where Mod(X)C is the Mod(X)-stabilized
of the component C.

Proof. [Ver13, Theorem 7.2].

We say that a linear form δ ∈ L∨ is negative if its kernel has signature
(3, b2(X)− 4), or equivalently if its image via the embedding L∨ ⊂ LQ has
negative square. If C is a connected component of the Teichmüller space, let
∆C ⊂ L∨ be the set of indivisible negative forms which are represented by an
irreducible rational curve for an hyper-Kähler metric belonging to C.

There is the useful description of the image of the period map of Einstein
metrics:

Proposition 1.3.69. Consider X in a connected component C of TEin, then
the period map PEin maps C diffeomorphically onto

Gr+(3,LR)∆C = Gr+(3,LR) \
⋃
δ∈∆C

Gr+(3, δ⊥ ⊗ R),

in particular C is simply connected.

Proof. [Loo21, Corollary 4.4].

By Theorem 1.3.48 and the previous results, it is equivalent to consider
δ ∈ ∆C or δ ∈ ∆(X).

1.3.6 Birationalities and automorphisms

Let Aut(X) be the group of automorphisms of X and Bir(X) the group
of bimeromorphic maps from X to itself, clearly Aut(X) ⊂ Bir(X). We will
sometimes refer to elements in Bir(X) as birationalities.

It is a general fact that for a compact complex manifold

dim(Aut(X)) = h0(TX)
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so that for an IHS manifold h0(TX) = h0,1(X) = 0 and hence Aut(X) is
finite.

There is a well-defined map

ν : Bir(X) → O(H2(X,Z)),

a remarkable fact is that by [HT10, Theorem 2.1] Ker(ν) is a deformation
invariant, which was computed for the known deformation classes. Moreover,
Ker(ν) ⊂ Aut(X).

Example 1.3.70. Let X be an IHS manifold of K3[n] type (including n = 1,
i.e. K3 surfaces), then Ker(ν) = {id} by [Bea83, Lemma 3].

Example 1.3.71. Let X be an IHS manifold of Kumn type, then Ker(ν) ∼=
(Z/nZ)4 ⋊ Z/2Z by [BNWS11, Corollary 3.3]. If X = Kumn(A) for an
Abelian surface A then we have Ker(ν) = A[n] ⋊ {± id} where A[n] is the
group of n-torsion points of A.

Example 1.3.72. Let X be an IHS manifold of OG10 type, then Ker(ν) =
{id} by [MW17, Theorem 2.1].

Example 1.3.73. Let X be an IHS manifold of OG6 type, then Ker(ν) ∼=
(Z/2Z)8 by [MW17, Theorem 4.2]. When X is the resolution of a moduli
space of sheaves on an Abelian surface A we have Ker(ν) = A[2] × A∨[2]
where A∨ is the dual surface.

Recall that we defined Mon2Bir = ν(Bir(X)) in subsection 1.3.4. The fol-
lowing properties are consequence of Theorem 1.3.37 and [Huy03, Proposition
9.1]:

Proposition 1.3.74. Let X be an IHS manifold, then:

1. ν(Bir(X)) = Mon2Bir(X) ⊂ Mon2Hdg(X)

2. ν(Aut(X)) = {g ∈ Mon2Hdg(X)|g(KX) = KX}

3. ν−1(ν(Aut(X))) = Aut(X)

4. Ker(ν) ⊂ Aut(X)

5. Ker(ν) is finite.

If S is a K3 surface then from subsection 1.3.4 we have Aut(S) = Bir(S),
but there are examples of IHS manifolds X for which the inclusion Aut(X) ⊂
Bir(X) is strict. Nonetheless, we have the following

Proposition 1.3.75. Let X be a very general IHS manifold, then Aut(X) =
Bir(X).
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Proof. Corollary 1.3.49.

It is worth to notice that if X is projective, then by [BS12, Theorem
2] Bir(X) is finitely generated. We mention that there are examples of K3
surfaces with automorphisms of infinite order (see [SI77]).

Definition 1.3.76. LetG ⊂ Aut(X) a subgroup and fix a marking H2(X,Z) ∼=
L. The invariant lattice LG ⊂ L is the invariant lattice for the induced action
of G, the coinvariant lattice is LG = (LG)⊥.

If G = ⟨f⟩ we will sometimes write Lf and Lf instead of LG and LG.
Consider the morphisms

Bir(X) → Aut(H0(X,Ω2
X))

∼= C∗

Aut(X) → Aut(H0(X,Ω2
X))

∼= C∗

and denote the kernels respectively by Birs(X) and Auts(X), given by bimero-
morphic maps and automorphisms that preserve the symplectic form σX .

Definition 1.3.77. Biremorphic maps in Birs(X) and automorphisms in
Auts(X) are called symplectic, elements that are not symplectic are called
non-symplectic. Groups G ⊂ Birs(X) and G ⊂ Auts(X) are groups of
symplectic bimeromorphic maps and symplectic automorphisms of X.

Notice that if G ⊂ Bir(X) is a finite group, then there is a short exact
sequence

0 → Gs → G→ µm → 0

where Gs ⊂ Birs(X) is the symplectic part of the group and µm is the cyclic
group of order m. This in particular applies when G ⊂ Aut(X).

Remark 3. It is a striking fact that if there is a non-symplectic f ∈ Aut(X),
then by [Bea83, Proposition 6] X is a projective IHS manifold.

It is easy to prove the following

Proposition 1.3.78. Let G ⊂ Bir(X) be non-trivial a finite group, then:

• If G ⊂ Birs(X), then T(X) ⊂ LG and LG ⊂ NS(X). Moreover, LG is
negative-definite and does not contain prime exceptional divisors. If in
particular G ⊂ Auts(X) then LG does not contain wall divisors.

• If G ∩ Birs(X) = {id} contains a non-symplectic element, then LG ⊂
NS(X) and T(X) ⊂ LG. Moreover, LG is hyperbolic.

Remark 4. If X is very general with G ⊂ Aut(X) finite, then by [Nik76, §3]
one has LG = T(X) if G ⊂ Auts(X) and LG = NS(X) if G∩Auts(X) = {id}.
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The following result is due to Nikulin.

Proposition 1.3.79. Let f ∈ Aut(X) be such that f∗σX = ξmσX with ξm a
primitive m-th root of unity. Then, φ(m) divides rk(T(X)), where φ is the
Euler function. In particular, φ(m) ≤ b2(X)− rk(NS(X)).

This can be applied and made specific for the known deformation types,
one has φ(m) ≤ b2(X)− 1 and this gives a bound on m.

Proposition 1.3.80. For a projective IHS manifold, the map

Ψ: Aut(X) → O(Pic(X))

f 7−→ f∗

has a finite kernel.

Proof. [Deb22, Proposition 4.1].

From this, we have the following description of finite groups of automor-
phisms.

Corollary 1.3.81. Let X be a projective IHS manifold. A group of auto-
morphisms G ⊂ Aut(X) is finite if and only if it fixes an ample class on
X.

Proof. If G is finite, then let H ∈ Pic(X) = NS(X) be any ample class. The
class

η =
∑
g∈G

g∗H

is invariant under G and it is still ample.
Now assume that G fixes an ample class H. Let Ψ be as in Proposi-

tion 1.3.80, and put ΨG = Ψ|G, so that kerΨG is finite. Define the quotient
G̃ = G/ kerΨG and note that G̃ acts faithfully on NS(X). Set N = H⊥NS(X)

and observe that N is negative definite since NS(X) is of index (1, k) for
some integer k and H2 > 0 as H is ample, then N is negative definite. This
implies that the group O(N) is finite, moreover any isometry f ∈ O(NS(X))
which fixes H is uniquely determined by its restriction to N. In conclusion
|G̃| ≤ |O(N)| which means that G̃ is finite and also G is.

We denote by AutH(X) the subgroup of automorphisms that fix the ample
class H, and denote by AutsH(X) the subgroup of symplectic automorphisms
that fix the ample class H.

In the following we give a brief overview of the research towards a classifi-
cations of finite groups of automorphisms of IHS manifolds. The techniques
for doing that are heavily based on lattice theory.
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Lemma 1.3.82. Let X be an IHS manifold deformation equivalent to one
of the known examples, then G ⊂ Auts(X) induces the trivial action on the
discriminant group AH2(X,Z).

Proof. For K3[n] type we refer to [Mon16b], for Kumn type we refer to
[MTW18, Lemma 5.1], for OG6 type we refer to [GOV23] and for OG10 type
to [GGOV22].

Definition 1.3.83. The Leech lattice L is the unique negative-definite lattice
of rank 24 that does not contain any element of square −2.

Definition 1.3.84. Let Co1 := O+(L) where L is the Leech lattice, it is a
simple group usually called Conway’s first sporadic group.

Denote by W (E8) the Weyl group of the diagram E8.

Theorem 1.3.85. Let G ⊂ Mon2(X) ∩ ν(Auts(X)) be a finite group, then:

1. If X is of K3[n] type, then G is isomorphic to a subgroup of Co1.

2. If X is of Kumn type, then G is isomorphic to a subgroup of W (E8).

3. If X is of OG6 type or OG10 type, then G = {id}.

Proof. The case of manifolds of K3[n] type is treated in [Mon16b], the case of
Kumn type in [Mon16b], for manifolds of OG6 in [GOV23] and for manifolds
of OG10 type in [GGOV22].

Notice that for manifolds of OG6 type there are symplectic automorphisms
of finite order, but they all act trivially in cohomology.
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Chapter 2

Constructions of IHS manifolds

In this chapter we provide a description of some constructions of IHS
manifolds. The first section is dedicated to double EPW-sectics and double
EPW-cubes, these examples provide locally complete families in the moduli
spaces of manifolds of K3[2] type and K3[3] type respectively. We recall
the description of the automorphism group of EPW-sextics and we prove a
similar description for the automorphism group of EPW-cubes. The second
section is dedicated to moduli spaces of semistable sheaves on symplectic
surfaces, here a precise definition of manifolds of OG6 type and OG10 type
is given and an overview of the properties of these spaces is given. The third
section is dedicated to LVS manifolds, a construction of manifolds of OG10
type associated to cubic fourfolds, together with a brief survey on the Hodge
theory of cubic fourfolds.

2.1 Double EPW-sextics and double EPW-cubes

In this section we recall two constructions of IHS manifolds, one of K3[2]

type and the other of K3[3] type. They are repectively called double EPW-
sextics and double EPW-cubes, they form (locally) complete families in
the moduli spaces of IHS manifold of repectively manifolds of K3[2] and
K3[3] type, meaning that the families are open sets in the respective moduli
spaces. The constructions are quite related to each other and both families
are parametrized by a Lagrangian vector space. Originally, Eisenbud-Walter-
Popescu introduced the EPW-sextics then O’Grady constructed their double
cover and showed that it is an IHS manifold of K3[2] type. With a similar
construction, Iliev-Kapustka-Kapustka-Ranestad defined EPW-cubes as sub-
manifolds of a Grassmannian and showed that their double cover is an IHS
manifold of K3[3] type. We recall the construction, the basic properties and
then discuss their automorphisms.

31
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2.1.1 Definitions and basic properties

Fix a complex 6-dimensional vector space V6 and a volume form vol :∧6 V6 ∼= C, this gives a symplectic form η :
∧3 V6 ×

∧3 V6 → C where
η(α, β) = vol(α ∧ β) for α, β ∈

∧3 V6.

Definition 2.1.1. Let LG(
∧3 V6) be the Grassmannian parametrizing La-

grangian subspaces, i.e. maximal isotropic subspaces A of
∧3 V6.

Set

Σ := {A ∈ LG(

3∧
V6)|P(A) ∩Gr(3, V6) ̸= ∅}

where Gr(3, V6) sits in P(
∧3 V6) via the Plücker embedding.

Definition 2.1.2. We say that A ∈ LG(
∧3 V6) has no decomposable vectors

if there is no x ∧ y ∧ z ∈ A for x, y, z ∈ V6, equivalently A /∈ Σ.

By [O’G12, Proposition 2.1] the locus Σ is a divisor in LG(
∧3 V6). Given a

scheme S, we also consider Lagrangian subbundles A of
∧3 V6⊗OS , bundles

with the feature that the fiber at any point is a Lagrangian subspace. These
are characterized by fitting in an exact sequence

0 → A →
3∧
V6 ⊗OS → A ∨ → 0

where A ∨ ⊂
∧3 V6 ⊗OS is the image of A via the isomorphism

η :

3∧
V6 ⊗OS

∼=−→
3∧
V ∨
6 ⊗OS .

Consider two Lagrangian subbundles A1,A2 ⊂
∧3 V6 ⊗OS . Symilarly to

above, there is a map λA1,A ∨
2
: A1 → A ∨

2 and we let

Sk = Sk(A1,A2) ⊂ S

be the corank-k degeneracy locus, S0
k := Sk \ Sk+1. Define

Ck = Ck(A1,A2) := Coker(λA1,A2)|Sk(A1,A2)

the restriction of the cokernel of λA1,A2 to the various degeneraci loci and
consider

Rk := (

k∧
Ck)

∨∨, (2.1)

which is a rank 1 reflexive sheaf Sk.
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Theorem 2.1.3. Suppose that Sk is a normal variety, Sk+1 has codimension
at least 2 in Sk, and suppose that S0

k is dense in Sk. Then for any line bundle
M on Sk with

(det(A1)⊗ det(A2))|Sk
∼= M (2)

there is a double cover

f : S̃k = SpecSk
(OSk

⊕ (M ⊗ Rk)) → Sk

such that:

1. There is an isomorphism f∗OS̃k

∼= OSk
⊕ (M ⊗ Rk).

2. The morphism f is étale over S0
k.

If moreover every element of H0(Sk,O∗
Sk
) is a square, then the cover is unique

up to isomorphism.

Proof. [DK20a, Theorem 4.2].

The double covers of EPW-sextics and EPW-cubes can be realized as
particular covers of Theorem 2.1.3.

Fix a Lagrangian subspace A ∈ LG(
∧3 V6) and let F :=

∧3 TP(V6)(−3)
where TP(V6) is the tangent bundle of the projective space. As the fiber over
[v] ∈ P(V6) of the bundle F is given by F[v] = v ∧

∧2 V6, it is clear that the
bundle is Lagrangian.

Definition 2.1.4. For k ≥ 0 define

YA[k] := Sk(A⊗OP(V6), F ),

YA := YA[1] is called the EPW-sextic associated to A.

Any hypersurface which is projectively equivalent to the EPW-sectic
associated to a Lagrangian space is called EPW-sextic. One has explicitly

YA[k] = {[v] ∈ P(V6)|dim(A ∩ F[v]) ≥ k}

and YA = det(A⊗OP(V6) → F∨)).
Set

∆ := {A ∈ LG(
3∧
V6)|YA[3] ̸= ∅},

by [O’G13, Proposition 2.2] it is a divisor that does not coincide with Σ.

Theorem 2.1.5. Suppose A has no decomposable vectors. Then

1. The hypersurface YA is a normal integral sextic.

2. The singular locus of YA coincides with YA[2], which is an integral
normal Cohen-Macaulay surface of degree 40.
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3. The singular locus of YA[2] consists of YA[3] which is finite and smooth,
moreover YA[4] = ∅.

4. The locus ∆ is a divisor in LG(
∧3 V6), hence for A general YA[3] = ∅.

Proof. The result is a summary of many results in [O’G13,O’G12,O’G15,
O’G16], they are also gathered in [DK20a, Theorem 5.1].

In this case det(A⊗OP(V6)) is trivial and det(F ) ∼= OP(V6)(−6), so that
the line bundle det(A⊗OP(V6))⊗ det(F ) ∼= OP(V6)(−6) has a unique square
root OP(V6)(−3) and Theorem 2.1.3 applies.

Theorem 2.1.6. Suppose A has no decomposable vectors. Then

1. There is a unique double cover πA : ỸA → YA branched along YA[2]
such that

πA∗OYA
∼= OYA ⊕ R1(−3).

The scheme ỸA is integral and normal, smooth out of π−1
A (YA[3]).

2. There is a unique double cover π2A : ỸA[2] → YA[2] branched along YA[3]
such that

π2A∗OYA[2]
∼= OYA[2] ⊕ R2(−3).

The scheme ỸA is integral and normal, smooth out of (π2A)
−1(YA[3])

and with ordinary double points along (π2A)
−1(YA[3]). Moreover, R2

∼=
ωYA[2].

Proof. [O’G13] and [DK20a, Theorem 5.2].

The double cover ỸA is called double EPW-sextic, it carries a canon-
ical polarization H = π∗AOYA(1) and the image of the morphism ỸA →
P(H0(ỸA, H)∨) is isomorphic to YA.

Theorem 2.1.7. Suppose A ∈ LG(
∧3 V6) \ (Σ ∪∆), then ỸA is a polarized

IHS manifold of K3[2] type with a polarization of degree 2 and divisibility 1.

Proof. [O’G13, Theorem 4.25].

Denote by U the tautological bundle of Gr(3, V6) and set T := V6 ∧
∧2 U ,

the fiber at a point U ∈ Gr(3, V6) is given by TU = V6 ∧
∧2 U , so that T is a

Lagrangian bundle.

Definition 2.1.8. For k ≥ 0 define

ZA[k] := Sk(A⊗OGr(3,V6), T ),

ZA := ZA[2] is called the EPW-cube associated to A.
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More explicitely,

ZA[k] = {U ∈ Gr(3, V6)| dim(A ∩ TU ) ≥ k}

via the inclusion T ↪→ V6 ⊗ OGr(3,V6). Every sixfold in Gr(3, V6) which is
projectively equivalent to the EPW-cube associated to a Lagrangian space is
still called EPW-cube. Set

Γ := {A ∈ LG(

3∧
V6)|ZA[4] ̸= ∅},

by [IKKR19, Lemma 3.6] it is a divisor and by [IKKR19, Lemma 3.7] it
has no common components with ∆, so that the three divisors Σ,Γ,∆ are
different.

Theorem 2.1.9. Suppose A has no decomposable vectors. Then

1. The scheme ZA is an integral normal Cohen-Macaulay sixfold of degree
480, its singular locus coincides with ZA[3].

2. The scheme ZA[3] is an integral normal Cohen-Macaulay threefold of
degree 4944, its singular locus coincides with ZA[4], which is finite and
smooth, moreover ZA[5] = ∅.

3. The locus Γ is a divisor in LG(
∧3 V6), hence for A general ZA[4] = ∅.

Proof. [IKKR19, Propostition 2.6,Corollary 2.10].

In this case det(A⊗OGr(3,V6)) is trivial, while there is an exact sequence

0 →
3∧
U → V6 ∧

2∧
U → (V6/U)⊗

2∧
U → 0

so that det(T ) ∼= det(
∧3 U )⊗det((V6/U )⊗

∧2 U ) ∼= OGr(3,V6)(−4). The line
bundle det(A⊗OGr(3,V6))⊗det(T ) ∼= OGr(3,V6)(−4) has a unique square root
OGr(3,V6)(−2) and Theorem 2.1.3 applies again.

Theorem 2.1.10. Suppose A has no decomposable vectors. Then there is a
unique double cover πA : Z̃A → ZA branched along ZA[3] such that

πA∗OZA
∼= OZA

⊕ R2(−2).

The scheme Z̃A is integral and normal, smooth out of π−1
A (ZA[3]).

Proof. It follows Theorem 2.1.3.

By [DK20a, Lemma 5.8] the double cover πA : Z̃A → ZA coincides with
the one constructed in [IKKR19] when A /∈ Γ, and Z̃A is called double EPW-
cube. The double EPW-cube carries a canonical polarization h = π∗AOZA

(1)

and the image of the morphism Z̃A → P(H0(Z̃A, h)
∨) is isomorphic to ZA.

Theorem 2.1.11. Suppose A ∈ LG(
∧3 V6) \ (Σ ∪ Γ), then Z̃A is a polarized

IHS manifold of K3[3] type with polarization of degree 4 and divisibility 2.

Proof. [IKKR19, Theorem 1.1].
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2.1.2 Automorphisms of double EPW-sextics

From now on, we will suppose A /∈ Σ. For such Lagrangian subspaces
there is a nice description of the automorphisms of the associated EPW-sextic
and its double cover.

The automorphisms of a EPW-sextic YA are essentially linear automor-
phisms of the Lagrangian space:

Aut(YA) = {g ∈ PGL(V6)|(
∧3

g)(A) = A} =: PGL(V6)A (2.2)

and this is a finite group by [DK18, Proposition B.9].
Every automorphism of YA induces an automorphism of the double cover

ỸA that fixes the polarization H = πA∗OYA(1) (proof of [DK18, Proposition
B.8(b)]), conversely any automorphism of ỸA that fixes H induces an iso-
morphism P(H0(ỸA, H)∨) ∼= P(V6) hence descends to an automorphism of
YA. Denote by AutH(ỸA) the group of automorphisms that fix the class H
and by ι the covering involution of πA. The discussion above gives a central
extension

1 → ⟨ι⟩ → AutH(ỸA) → Aut(YA) → 1, (2.3)

moreover denoting by AutsH(ỸA) the subgroup of AutH(ỸA) consisting of
symplectic automorphisms, one gets an extension

1 → AutsH(ỸA) → AutH(ỸA) → µr → 1 (2.4)

with µr a finite group of order r. Note that the image of ι in µr is given by
−1.
Consider the embedding Aut(YA) ↪→ PGL(V6) and let G be the inverse image
of Aut(YA) via the canonical map SL(V6) → PGL(V6). It follows that G
is an extension of Aut(YA) by the cyclic group ⟨γ⟩ with γ6 = id, so we
have an induced representation of G on

∧3 V6 and this factors through a
representation of Ãut(YA) := G/⟨γ2⟩. Since A is preserved by this action, we
have a morphism of central extensions

1 ⟨γ3⟩ Ãut(YA) Aut(YA) 1

1 C∗ GL(A) PGL(A) 1

(2.5)

and by [DM22, Lemma A.1] the vertical maps are injective.

Proposition 2.1.12 (Kuznetsov). Let A ⊂
∧3 V6 be a Lagrangian subspace

with no decomposable vectors. Then the extensions (2.3) and (2.4) are trivial
and r = 2. In particular there is an isomorphism

AutH(ỸA) ∼= Aut(YA)× ⟨ι⟩

which splits (2.3) and the factor Aut(YA) corresponds to the subgroup AutsH(ỸA).
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Proof. [DM22, Proposition A.2].

Recall that since A has no decomposable vectors there is a canonical
connected double covering

ỸA[2] → YA[2],

moreover there is a morphism Aut(YA) → Aut(YA[2]) and since as YA is
not contained in any hyperplane, the morphism is injective. As [DM22,
Proposition A.6 (Kuznetsov)] shows, the group of lifts of automorphisms of
YA to automorphisms of ỸA[2] is isomorphic to Ãut(YA), hence there is an
injection Ãut(YA) ↪→ Aut(ỸA[2]).
Recall that the analytic representation of a finite group G acting on an
Abelian variety X is the composition

G→ EndQ(X) → EndC(TX,0). (2.6)

We recall the useful

Proposition 2.1.13. Suppose the surface YA[2] is smooth. The restriction
of the analytic representation of Aut(ỸA[2]) on Alb(ỸA[2]) to the subgroup
Ãut(YA) is the injective middle vertical map in the diagram (2.5).

Proof. [DM22, Proposition A.7].

2.1.3 Automorphisms of double EPW-cubes

Consider a double EPW-sextic ỸA with polarization HA and a double
EPW-cube Z̃A with polarization hA. Set

Λ
ỸA

:= H⊥
A ⊂ H2(ỸA,Z) ∼= LK3[2]

and
Λ
Z̃A

:= h⊥A ⊂ H2(Z̃A,Z) ∼= LK3[3] ,

then define
Λ := U⊕2⊕E8(−1)⊕2 ⊕ [−2]⊕2

and observe that there are the lattice isometries Λ ∼= Λ
ỸA

∼= Λ
Z̃A

. If the
Lagrangian subspace is general enough, then by [KKM22, Proposition 1.2]
there is also an isometry of Hodge structures between Λ

ỸA
and Λ

Z̃A
.

We recall that there are moduli spaces of double EPW-sextics and double
EPW-cubes

Msex := (LG(
3∧
V6) \ (Σ ∪∆))//PGL(V6),

Mcub := (LG(

3∧
V6) \ (Σ ∪ Γ))//Aut(Gr(3, V6))
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with respective period domains

Ωsex := {x ∈ ΛC|x2 = 0, x · x > 0}/O(Λ, H),

Ωcub := {x ∈ ΛC|x2 = 0, x · x > 0}/O(Λ, h),

where O(Λ, H) and O(Λ, h) are the subgroups of O(Λ) obtained by restriction
of isometries that respect the inclusions H⊥ = Λ ⊂ LK3[2] and h⊥ = Λ ⊂
LK3[3] . There respective period maps

Psex : Msex → Ωsex,

Pcub : Mcub → Ωcub

associating to the double EPW’s their Hodge structures. Notice that H2 = 2
and div(H) = 1, while h2 = 4 and div(h) = 2, so by Lemma 1.1.13 there
is only one orbit of elements with those given squares and divisibilities in
LK3[2] and in LK3[3] .

Fix a basis of V6 and recall there is an element δ ∈ Aut(Gr(3, V6)) that
sends a 3-space to the direct complement determined by sending any 3-vector
to its dual with respect to the symplectic form, moreover there is a map that
we will call again δ ∈ Aut(LG(

∧3 V6)) defined by δ(A) = A⊥ := Ker(A∨)
where A∨ is the dual of A with respect to the symplectic form.

Proposition 2.1.14. There is a map

p : Msex 99K Mcub

which is generically 2 : 1, of degree less or equal than 2, which sends [ỸA]
to [Z̃A]. Points with the same image consist of elements [ỸA1 ], [ỸA2 ] with
A1, A2 ∈ LG(

∧3 V6) in the same ⟨δ⟩ × PGL(V6)-orbit.

Proof. The map sends the class of a double EPW-sextic [ỸA] to the class of
the EPW-cube [Z̃A] associated to the same Lagrangian space A. Since we
have an inclusion O(Λ, H) ⊂ O(Λ, h) there is a quotient map i : Ωsex → Ωcub
and by [KKM22, Theorem 1.1] the diagram

Msex Mcub

Ωsex Ωcub

p

i

is commutative over an opportune open set. By Lemma 1.1.13 the groups
O(Λ, H) and O(Λ, h) can be computed for particular choices of H and h,
showing that in this case the index of O(Λ, H) in O(Λ, h) is 2 and hence the
degree of the map i is always bounded by 2.

For the last part of the statement, by the proof of [IKKR19, Propo-
sition 5.1] if ZA1 , ZA2 are isomorphic as polarized manifolds then ∃g ∈
Aut(Gr(3, V6)) such that g(A1) = A2. One concludes using the description
Aut(Gr(3, V6)) ∼= PGL(V6)× ⟨δ⟩.
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Observe that by the description of the moduli spaces, the only case when
the map is 1 : 1 happens when δ(A) = A⊥ = A.

Corollary 2.1.15. Two Lagrangian spaces A1, A2 have the same associated
EPW-cube ZA1 = ZA2 ⊂ Gr(3, V6) if and only if A1 = A2 or A1 = δ(A2).

Proof. There is a commutative diagram

LG(
∧3 V6) LG(

∧3 V6)/⟨δ⟩

Msex Mcub

q

πsex πcub

p

where the vertical arrows are the quotient maps for the PGL(V6)-action
and the horizontal upper arrow is the quotient by δ. Fibers of the vertical
maps are in both cases PGL(V6)-orbits of some Lagrangian space, hence
EPW-cubes associated to different Lagrangian subspaces can only be related
by δ since the statement is already known for EPW-sextics.

Set Aut(Gr(3, V6))A := {g ∈ Aut(Gr(3, V6))|g(A) = A}, as in the case of
EPW-sextics, all the automorphisms are linear:

Corollary 2.1.16. We have an isomorphism Aut(ZA) ∼= Aut(Gr(3, V6))A.

Proof. Clearly Aut(Gr(3, V6))A ↪→ Aut(ZA). Suppose g ∈ Aut(ZA), then g
induces an automorphism of P(H0(ZA,OZA

)∨) ∼= P(
∧3 V6) which fixes the

locus ZA and hence the embedding of the Grassmannian by [IKKR19, Lemma
5.2]. In particular, g determines a linear action on

∧3 V6 up to scalar
multiplication and using Corollary 2.1.15 we have either Yg(A) = YA or
Yg(A) = Yδ(A). Moreover, we know from [O’G16, Proposition 1.2.1] that this
implies either g(A) = A or g(A) = δ(A), hence g ∈ Aut(Gr(3, V6))A.

In the following we generalize the proof of Proposition 2.1.12 in the case
of EPW-cubes.

Proposition 2.1.17. Let A ⊂
∧3 V6 a general Lagrangian with no decompos-

able vectors and ZA the associated EPW-cube. Let Z̃A → ZA be the associated
double EPW-cube, then

Auth(Z̃A) ∼= Aut(ZA)× ⟨ι⟩

where ι is the branching involution and the group Aut(ZA) corresponds to the
subgroup Autsh(Z̃A).

Proof. Since A ̸∈ Σ, by Theorem 2.1.3 and Theorem 2.1.9 we have Z̃A =
Spec(OZA

⊕ R2(−2)), where R2
∼= ωZA

(2) is defined by (2.1) . It is clear
from the construction that there is an inclusion Aut(ZA) ⊆ Aut(R2), hence
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any element of Aut(ZA) lifts to an automorphism of Z̃A which fixes the
polarization. Viceversa, any element of Auth(Z̃A) induces an automorphism
of P(H0(Z̃A, h)

∨) ∼= P(H0(ZA,OZA
)∨) ∼= P(

∧3 V6) which fixes the locus ZA
and again fixes the embedding of the Grassmannian by [IKKR19, Lemma 5.2].
Moreover, the covering involution ι is an involution fixing the polarization,
hence there is a central extension

1 → ⟨ι⟩ → Auth(Z̃A) → Aut(ZA) → 1.

Let the group G be the preimage of Aut(ZA) via the map SL(V6)× Z/2Z →
PGL(V6)× Z/2Z, so there is an extension

1 → µ6 → G→ Aut(ZA) → 1

and observe that ΩZA
has a structure of G-bundle via the linear action

G ↪→ GL(
∧3 V6), moreover the action descends to the quotient G̃ = G/µ3.

This gives a central extension

1 → µ2 → G̃→ Aut(ZA) → 1.

The group G̃ acts on the canonical bundle ωZA
=

∧6 ΩZA
, where the order two

subgroup µ2 = µ6/µ3 acts trivially. Since OZA
(1) has a linearization where µ2

acts by −1, then it will act trivially on OZA
(2) and hence trivially on ωZA

(2).
In conclusion, the action of the group G on ωZA

(2) ∼= R1 descends to the
quotient G/µ6 ∼= Aut(ZA) and using the description Z̃A ∼= Spec(OZA

⊕ R1)

we get an injection Aut(ZA) → Auth(Z̃A) which is a section of Auth(Z̃A) →
Aut(ZA).
The action of Aut(Z̃A) on H2(Z̃A,OZ̃A

) ∼= σ
Z̃A

C determines a morphism
ϕ : Aut(Z̃A) → C∗, with finite (cyclic) image, that sends ι to −1. The groupG
has a trivial action on H2(Z̃A,OZ̃A

). Indeed, the action factors to the quotient
Aut(ZA) and the inclusions Aut(ZA) ⊂ Aut(Gr(3, V6)) ⊂ PGL(

∧3 V6) show
that G has no non-trivial character (characters of linear transformations
act by their determinant). In conclusion there is the following split exact
sequence

1 → Aut(ZA) → Auth(Z̃A) → ⟨ι⟩ → 1

which is equivalent to

1 → AutsH(Z̃A) → Auth(Z̃A) → Img(ϕ) → 1.

2.1.4 EPW manifolds and Gushel-Mukai varieties

Here we explain the relation between the EPW construction and Gushel-
Mukai varieties, which is very deeply described in [DK20b] and [Deb20]. We
also briefly discuss the rationality problem for threefolds.



2. Constructions of IHS manifolds 41

Recall that a manifold X is Fano if −KX is ample, where KX denotes the
canonical bundle. In this case the index iX = div(−KX) is the divisibility of
−KX in the Picard lattice Pic(X).

Let V5 be a 5-dimensional complex vector space.

Definition 2.1.18. A Gushel-Mukai manifold (GM) of dimension n = 3, 4, 5
is the smooth complete intersection of the Grassmannian Gr(2, V5) ⊂ P(

∧2 V5)
with a linear space Pn+4 and a quadric.

Gushel-Mukai manifolds are Fano manifolds with Picard number 1, index
n− 2 and degree 10. Moreover, the converse is also true:

Theorem 2.1.19 (Mukai). Any Fano manifold of dimension n = 3, 4, 5 of
Picard rank 1, index n− 2 and degree 10 is a Gushel-Mukai manifold.

Proof. [Muk95].

The Hodge diamonds of GM varieties can be found in [Deb20, Proposition
4.1]. The relation with the EPW construction is the following:

Theorem 2.1.20. Let A ∈ LG(
∧3 V6) \ Σ. There is a bijection between the

set of isomorphism classes of GM varieties of dimension n and isomorphism
classes of triples (V6, V5, A), where V5 ⊂ V6 is a hyperplane that satisfies

dim(A ∩
∧3

V5) = 5− n.

Proof. [DK20b, Theorem 3.6].

To a GM variety X we can associate an EPW sextic YA where (V6, V5, A)
is the class associated to X by the above correspondence. The other way
around, if A is a Lagrangian space of

∧3 V6, we define a family of GM varieties
associated with A consisting of all the GM varieties X such that YA is an EPW
sextic associated with X. We point out that, by [Deb20, Theorem 2.6] for
every n = 3, 4, 5 there is a coarse moduli space of GM varieties of dimension
n, which is quasi-projective irreducible of dimension 25− (5− n)(6− n)/2
with a surjective morphism to the moduli space of EPW-sextics.

Theorem 2.1.21. Consider a Lagrangian space A and an associated GM
variety XA. Any other GM variety of the same dimension associated either
to A or to its dual δ(A) is bimeromorphic to XA.

Proof. [Deb20, Theorem 3.2].

The above result shows that the rationality of a GM variety only depends
on the associated Lagrangian space.

The picture about rationality of GM varieties is the following. Any GM
fivefold is rational by [Deb20, Proposition 3.3]. The rationality of GM fourfolds
is not known, there are some rational examples (see [Deb20, Examples 3.4,
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3.5, 3.6]) but it is expected that the very general GM fourfolds are irrational.
The general GM threefold is known to be irrational by [Bea77, Theorem
5.6(ii)], while there is the belief that any such threefold should be irrational.
There were no explicit examples of irrational GM threefolds before [DM22]
where a 2-dimensional family of GM threefolds is described, we give other
two families of irrational GM threefolds in section 3.2.

An effective technique to prove that a threefold X is irrational is the
study of its intermediate Jacobian

Jac(X) := H2,1(X)∨/H3(X,Z)

which is a principally polarized Abelian variety.

Theorem 2.1.22 (Clemens-Griffiths criterion). Let X be a rational projective
threefold. The intermediate Jacobian Jac(X) is isomorphic to the product of
Jacobians of curves, as principally polarized manifolds.

The criterion was used by Clemens and Griffiths to prove that any cubic
threefold is not rational, as a consequence of the study of the theta divisor.
A similar technique is used for proving that the general GM threefold is not
rational, but a clear description of the theta divisor is not available yet in
this case.

The following gives information about the intermediate Jacobian of a GM
threefold, which is a 10-dimensional principally polarized variety.

Theorem 2.1.23. Let A ∈ LG(
∧3 V6) \ Σ, consider any GM threefold XA

associated with A and the associated EPW-sextic YA. There is a canonical
principal polarization θ on the Albanese variety Alb(ỸA[2]) such that there is
an isomorphism

(Jac(XA), θA) ∼= (Alb(ỸA[2], θ))

of principally polarized manifolds.

Proof. [DK20b, Theorem 1.1].

This allows for example to induce a linear action of a group on A to an
action on Jac(XA) by means of Proposition 2.1.13, as it is done in [DM22]
and in section 3.2.

2.2 Moduli spaces of sheaves on symplectic surfaces

We remind general results about moduli spaces of coherent sheaves on
projective symplectic surfaces. These spaces are very interesting because they
sometimes give examples of IHS manifolds.

Recall that the dimension of a sheaf is by definition the dimension of
its support and a sheaf is called pure if any non-trivial proper subsheaf has
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the same dimension. Consider a projective surface Σ and let H ∈ Pic(Σ) be
an ample line bundle. For any F ∈ Coh(Σ) and for any n ∈ Z consider the
Hilbert polynomial

PH(F )(n) = χ(F (nH))

and the reduced Hilbert polynomial

pH(F ) =
PH(F )

αH(F )

where αH(F ) is the leading coefficient of PH(F ).

Definition 2.2.1. A sheaf F ∈ Coh(S) is called stable (resp. H-semistable)
if it is pure and if for any 0 ̸= E ⊊ F the inequality

pH(E)(n) < pH(F )(n) resp. pH(E)(n) ≤ pH(F )(n)

holds for n≫ 0.

A H-semistable sheaf is called H-polystable if it is direct sum of H-stable
sheaves.

Definition 2.2.2. The Mukai lattice of the surface Σ is

H̃(Σ,Z) := H0(Σ,Z)⊕H2(Σ,Z)⊕H4(Σ,Z)

with pairing given by

(v0, v2, v4) · (w0, w2, w4) :=

∫
Σ
(−v0w4 + v2w2 − v4w0).

The lattice H̃(Σ,Z) is endowed with a Hodge structure of weight 2 by
imposing H0(Σ,Z) and H4(Σ,Z) being of type (1, 1).

Definition 2.2.3. The Mukai vector of F is given by

v(F ) = ch(F )
√

td(Σ) ∈ H̃(Σ,Z),

where ch(F ) is the Chern character of F and td(Σ) is the Todd class of Σ.
Any vector v = (v0, v2, v4) ∈ H̃(Σ,Z) with v2 ∈ NS(Σ) is also called Mukai
vector.

Recall that for a K3 surface S and F ∈ Coh(S) we have

v(F ) = (rk(F ), c1(F ), ch2(F )) + rk(F )),

while for an Abelian surface A and F ∈ Coh(A) we have

v(F ) = (rk(F ), c1(F ), ch2(F )).
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Definition 2.2.4. A vector v ∈ H̃(Σ,Z) is called primitive if its components
have no common divisors different from one.

It is known that if F ∈ Coh(Σ) is semi-stable, then there is an associated
Jordan-Hölder filtration 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk−1 ⊂ Fk = F , whose
graded factors Fi+1/Fi have the same reduced Hilbert polyomial as F and
are uniquely determined, up to reordering, by F .

Definition 2.2.5. We say that two sheaves E,F ∈ Coh(Σ) are S-equivalent
if they have the same graded factors in the Jordan-Hölder filtration.

Stable sheaves are S-equivalent precisely if they are isomorphic, and in
any S-equivalence class there is a polystable sheaf.

Definition 2.2.6. Denote by Mv(Σ, H) the moduli space of H-semistable
sheaves with fixed Mukai vector v up to S-equivalence. Denote by Ms

v(Σ, H)
the open locus of H-stable sheaves that are not H-semistable.

The moduli space is constructed by Gieseker in [Gie77], where it is shown
that Mv(Σ, H) is projective and it is the compactification of Ms

v(Σ, H). The
interest in this moduli space is due to the following

Theorem 2.2.7. Let Σ be a projective symplectic surface. Fix a Mukai
vector v ∈ H̃(Σ,Z), then Ms

v(Σ, H) is smooth of dimension v2 + 2. Moreover,
Ms
v(Σ, H) admits a symplectic form.

Proof. [Muk84].

The moduli space is well-understood for a generic choice of polarization.

Definition 2.2.8. A polarization H on Σ is called v-generic for v ∈ H̃(Σ,Z)
if for every H-polystable sheaf E with v(E) = v and every direct summand
F of E, we have v(F ) ∈ v ·Q.

A geometric characterization of v-genericity is given in [PR13, Section 2],
where it is described in terms of a wall and chamber decomposition of the
positive cone of Σ.

Observe that by [Saw16, Lemma 2] we have Ms
v(Σ, H) = Mv(Σ, H) in

case that v is primitive and the polarization H is v-generic. Many authors
studied and described this space, before stating their achievement we need
another piece of construction.

Let A be an Abelian surface, fix F0 ∈ Mv(A,H) and consider the map

av : Mv(A,H) −→ A×A∨

F 7→ (Alb(c2(F )),det(F )⊗ det(F0)
−1)

where Alb : CH0(A) → A is the Albanese homomorphism. The map av
happens to be isotrivial, set Kv(A,H) = a−1

v (0).
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Theorem 2.2.9. Consider a projective K3 surface S and an Abelian surface
A, both coming with a primitive Mukai vector v and a v-generic polarization
H. The followings hold:

1. Mv(S,H) is a reduced point in case v2 = −2.

2. Mv(S,H) is a K3 surface in case v2 = 0, moreover there is a Hodge
isometry v⊥/Zv ∼= H2(Mv(S,H),Z).

3. Mv(S,H) is an IHS manifold of K3[n] type with n = v2+2
2 in case v2 ≥ 2,

moreover there is an Hodge isometry v⊥ ∼= H2(Mv(S,H),Z).

4. Kv(A,H) is an IHS manifold of Kumn type with n = v2−2
2 in case

v2 ≥ 6, moreover there is an Hodge isometry v⊥ ∼= H2(Kv(A,H),Z).

Proof. [Muk84], [Yos01].

Example 2.2.10. Let S be a K3 surface and v = (1, 0, 1 − n) ∈ H̃(S,Z),
then a pure sheaf F ∈ Coh(S) with v(F) = v is of rank 1 with c1(F) = 0
and c2(F) = n, in particular it is torsion-free on its support since it consists
of points. Suppose E ⊂ F is a non-trivial proper subsheaf, then rk(E) =
rk(F) = 1, F/E is torsion and then

pH(F)(n)− pH(E)(n) = χ(F(nH))− χ(E(nH)) = χ(F/E(nH)) > 0

for n ≫ 0 and for any polarization H. Consider the reflexive sheaf (hence
locally free) F∨∨ ∼= OS . The cokernel of the inclusion F ↪→ F∨∨ is the
structure sheaf OZ of a zero-dimensional subscheme Z ⊂ S, so the sheaf F
is identified with the ideal sheaf of the subscheme F ∼= IZ and we have an
identification Mv(S,H) ∼= S[n]. Similarly, the generalized Kummer varieties
can be re-obtained as Albanese fibers of moduli spaces of sheaves on Abelian
surfaces.

If v is not primitive, but v = mw with w primitive and m > 1, then
Mw(Σ, H) can be singular out of Ms

w(Σ, H). One can ask whether there
exists a symplectic resolution, a resolution of singularities with a symplectic
form that extends the one on Ms

w(Σ, H).

Theorem 2.2.11. The following hold:

1. Consider a projective K3 surface S, v = (2, 0,−2) and a v-generic
polarization H. There is a symplectic resolution M̃10 := M̃v(S,H) →
Mv(S,H) =: M10 that is an IHS manifold of dimension 10 and second
Betti number 24.

2. Consider an Abelian surface A, v = (2, 0,−2) and a v-generic polar-
ization H. Then there is a symplectic resolution K̃6 := K̃v(A,H) →
Kumv(A,H) =: K6 that is an IHS manifold of dimension 6 and second
Betti number 8.



46 2.2 Moduli spaces of sheaves on symplectic surfaces

Proof. [O’G99], [Rap08] and [O’G03].

As already remarked in Example 1.3.11, these resolutions have different
Betti numbers than manifolds of K3[n] type and Kumn type, so they are not
deformation equivalent. Manifolds deformation equivalent to M10 or M6 are
called rispectively of OG10 type or of OG6 type. Numerical invariants of the
latter can be found in Example 1.3.22 and Example 1.3.23.

A general picture for choices of non primitive Mukai vector is given by
the following:

Theorem 2.2.12. Let Σ be a projective symplectic surface. Fix a Mukai
vector v = mw with w primitive of positive square and m > 1. Suppose that
w = (w0, w2, w4) is such that either w0 > 0 and w2 ∈ NS(Σ), or w4 ≠ 0 and
w2 = c1(E) with E an effective divisor. Pick a v-generic polarization H.
Then:

1. If m = 2 and w2 = 2 then there is a symplectic resolution M̃v(Σ, H) →
Mv(Σ, H) that is the blow up along the singular locus Mv(Σ, H) \
Ms
v(Σ, H) with reduced stucture.

2. If m > 2 or m = 2 and w2 > 2 then Mv(Σ, H) does not admit any
symplectic resolution and it has locally factorial singularities.

Proof. [LS06], [KLS06].

The first item of the previous theorem was studied in detail.

Definition 2.2.13. Let Σ be a projective symplectic surface with an ample
line bundle H and a Mukai vector v. We say that (Σ, v,H) is an OLS-triple
if:

1. The polarization H is primitive and v-generic

2. We have v = 2w with w a primitive Mukai vector with w2 = 2

3. If w = (w0, w2, w4) then w0 ≥ 0, w2 ∈ NS(Σ) and if w0 = 0 then
w2 = c1(E) with E an effective divisor.

The triple is after O’Grady, Lehn and Sorger.

Theorem 2.2.14. Let (Σ, v,H) be a OLS-triple.

1. If Σ = S is a projective K3 surface, then there is a symplectic resolution
M̃v(S,H) → Mv(S,H) which is an IHS manifold of OG10 type obtained
as the blow up along the singular locus

2. If Σ = A is an Abelian surface, then there is a symplectic resolution
K̃v(A,H) → Kv(A,H) which is an IHS manifold of OG6 type obtained
as the blow up along the singular locus
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Proof. [PR13, Theorem 1.6].

As in the other cases there is a strong relation between the cohomology
of the moduli space and the Mukai lattice.

Theorem 2.2.15. Let (Σ, v,H) be an OLS-triple.

1. Suppose Σ = S is a projective K3 surface, then π∗v : H2(Mv,Z) →
H2(M̃v,Z) is injective and there is a Hodge isometry

λv : v
⊥ → H2(Mv,Z)

for the lattice structure and the Hodge structure induced by π∗v .

2. Suppose Σ = A is an Abelian surface, then π∗v : H2(Kv,Z) → H2(K̃v,Z)
is injective and there is a Hodge isometry

νv : v
⊥ → H2(Kv,Z)

for the lattice structure and the Hodge structure induced by π∗v .

Proof. [PR13, Theorem 1.7].

2.3 Cubic fourfolds and Laza-Saccà-Voisin mani-
folds

We recall few facts about cubic fourfolds and present two families of
manifolds of OG10 type associated to a cubic fourfold.

Let Y ⊂ P5 be a cubic fourfold, the intersection product gives to H4(Y,Z)
a lattice structure and this restricts to the primitive cohomology as

H4(Y,Z) ⊃ (h2)⊥ = H4(Y,Z)prim ∼= E⊕2
8 ⊕U⊕2⊕A2

where h denotes the class of a hyperplane section.

Theorem 2.3.1. The map

Aut(Y ) → O(H4(Y,Z))

is injective.

Proof. [JL17, Proposition 2.12], [MM63].

The Hodge decomposition on the middle cohomology reads

H4(Y,Z) = H3,1(Y )⊕H2,2(Y )⊕H1,3(Y )

where H3,1(Y ) has dimension 1, hence many definitions given for IHS mani-
folds work in this context.
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Definition 2.3.2. Let Y be a cubic fourfold, ϕ ∈ Aut(Y ) is called symplectic
if it acts trivially on the generator of H3,1(Y,C) and it is called non-symplectic
otherwise.

An important feature of the Hodge decomposition of a cubic fourfold is
that the construction of the period map is very similar to the one of IHS
manifolds. Following [Voi86] and [Laz10] we consider the dimension 20 moduli
space of cubic fourfolds M and the perod domain D with the period map

P : M → D

that associates the Hodge structure on the middle cohomology. Similarly to
the case of IHS manifolds, the space H1,3(Y ) determines the Hodge decom-
position of H4(Y,C).

Definition 2.3.3. A vector of square 2 in a lattice is called a short root and
a vector of square 6 and divisibility 3 in a lattice is called a long root.

There is a precise description of the image of the period map in terms of
long and short roots:

Theorem 2.3.4 (Torelli Theorem for cubic fourfolds). The period map of
cubic fourfolds

P : M → D

is an isomorphism over its image, consisting of Hodge structures with no long
and short roots among the (2, 2)-classes.

Proof. [Laz10, Theorem 1.1].

Moreover, we have the following:

Theorem 2.3.5 (Hodge theoretical Torelli Theorem for cubic fourfolds).
Let Y1, Y2 be cubic fourfolds and ϕ : H4(Y2,Z) → H4(Y1,Z) an isometry of
polarized Hodge structures, then there exists a unique isomorphism f : Y1 → Y2
such that f∗ = ϕ.

Proof. [Voi86].

We say that a marking for Y is a primitive lattice Kd = ⟨h2, l⟩ ⊂ H2,2(Y,Z)
with h the class of a hyperplane section, l ∈ H2,2(Y,Z) and disc(Kd) = d.

Definition 2.3.6. Let Cd ⊂ M be the set of cubics that admit a marking
Kd. The sets Cd are called Hasset divisors.

Hasset divisors are in fact divisors, moreover we have a non-emptiness
criterion:
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Theorem 2.3.7 (Hassett). The set Cd is an irreducible divisor in M, non-
empy if and only if

d > 0 and d ≡ 0, 2( mod 6).

Proof. [Has00, Theorem 1.0.1].

Consider Y ⊂ P5 a smooth cubic fourfold, the dual projective space (P5)∨

parametrizing the hyperplane sections YH = Y ∩H ⊂ Y and the open set
U ⊂ (P5)∨ parametrizing the smooth hyperplane sections. We will often
write P5 instead of (P5)∨, if it does not lead to confusion. Denote by

Jac(YH) = H1(YH ,Ω
2
YH

)∨/H3(YH ,Z)

the intermediate Jacobian of the hyperplane section, which is a principally
polarized Abelian fivefold. Over U consider the fibration

πU : JU (Y ) → U

whose fiber over the smooth hyperplane section YH consists of the intermediate
Jacobian Jac(YH). It was proved in [DDFPDM96] that JU (Y ) is quasi-
projective and it admits a symplectic form σU for which πU is a Lagrangian
fibration.

Following [Voi18] there is another Lagrangian fibration

πtU : J tU (Y ) → U

whose fibers are given by twisted Jacobians, similarly to the previous case.
It is not easy to find reasonable compactifications, but this was done in

the following:

Theorem 2.3.8. Let Y be a smooth cubic fourfold. There exist smooth
projective compactifications J(Y ), J t(Y ) of JU (Y ), J tU (Y ) with projective flat
morphisms π : J(Y ) → P5, πt : J t(Y ) → P5 extending πU , πtU . Moreover,
J(Y ), J t(Y ) are manifolds of OG10 type.

Proof. [LSV17], [Sac23, Theorem 1], for the twisted case [Voi18].

The compactification J(Y ) is called the LSV manifold associated to Y ,
while J t(Y ) is called the twisted LSV manifold associated to Y . There is an
effective relative theta divisor Θ ⊂ J(Y ) obtained as the closure of the union
of theta divisors of the smooth fibers, it has the property that qJ(Y )(Θ) = −2.
There is another class L = π∗OP5(1), that together with Θ span a hyperbolic
lattice ⟨L,Θ⟩ = UY ⊂ NS(J(Y )). For a very general cubic fourfold Y one
has NS(J(Y )) = UY , in particular the family can not be locally complete
since there are always two algebraic classes in the LSV manifolds. Similarly,
in the twisted case there are classes Lt,Θt ∈ NS(J t(Y )) spanning a lattice
⟨Lt,Θt⟩ = Ut

Y
∼= U(3).
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Proposition 2.3.9. There is a morphism of Hodge structures

α : H4(Y,Z)prim → U⊥
Y ⊂ H2(J(Y ),Z)

and there exists an integer N > 0 such that −N(x.y) = qJ(Y )(α(x), α(y))

for any x, y ∈ H4(Y,Z)prim. The same statement holds replacing J(Y ) with
J t(Y ) and UY with Ut

Y .

Proof. [Ono22, Proposition 4.1], for the twisted case [MO22, Lemma 7.1].

Consider an automorphism ϕ ∈ Aut(Y ), this acts on the universal family
of hyperplane sections YU → U and on the fibrations JU (Y ) → U, J tU (Y ) →
U , inducing bimeromorphic maps that we call ϕ̃ ∈ Bir(J(Y )) and ϕ̃t ∈
Bir(J t(Y )). From the fact that ϕ̃, ϕ̃t preserve the classes L,Lt and Θ,Θt,
it follows that ϕ̃ acts trivially on UY ⊂ NS(J(Y )) and ϕ̃t acts trivially on
Ut
Y ⊂ NS(J t(Y )).

Proposition 2.3.10. Let Y be a cubic fourfold such that the fibers of π :
J(Y ) → P5 are irreducible. Then any birational morphism τ ∈ Bir(J(Y ))
that fixes the class L extends to a regular automorphism τ ∈ Aut(J(Y )).

Proof. [Sac23, Proposition 3.11].

Notice that by [LSV17], the hypothesis of the proposition is satisfied
whenever Y is general.



Chapter 3

Very symmetric double
EPW-sextics and irrational GM
threefolds

We construct two examples of projective IHS fourfolds of K3[2] type
with an action of the alternating group A7, making them some of the most
symmetric IHS manifold fourfolds according to the classification in [HM19].
They are realized as double EPW sextics and this allows us to construct an
explicit family of irrational Gushel-Mukai threefolds.

The structure of this chapter is as follows: in the first section we outline
the construction of the IHS manifold fourfolds and in the second section
we prove that for any of the two sextics we construct, each member of the
associated family of GM threefolds is irrational. In Appendix A we give more
details about some computations we performed, including codes that we run
with GAP [GAP21] and Macaulay2 [M2].

3.1 Double EPW-sextics with an action of A7

The general idea is to find a Lagrangian space which is invariant under the
action of the group A7, to get an invariant EPW-sextic. Our first attempt,
the most naïve way to proceed, is to consider the natural representation of
A7 on a 7-dimensional space and quotient out by the trivial subrepresentaton
(the one generated by the sum of basis vectors). This leads to an irreducible
6-dimensional representation and with exactly the same construction as it
follows, one gets an invariant EPW-sextic. This is in fact three times a
quadric so we had to discard it and look for a reduced sextic.

According to [WCN85], there exists a group (going by the notation from
the atlas) 3.A7 such that 3.A7/⟨ω⟩ ∼= A7 with ω an element of order 3. This
group has a unique irreducible representation ρ : 3.A7 → C6 that we call V 6

51
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and is generated by the elements ( [ATLAS])

α =



1 0 0 0 0 0
0 ξ23 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

−1 + ξ3 0 1− ξ3 −ξ3 ξ3 1
2 0 −1 −1 0 −1

 ,

β =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0
−1 1 −ξ3 0 ξ3 1

 ,

where ξ3 is a primitive third root of unity. Note that this induces a repre-
sentation on

∧3 V 6. Moreover, since ω has order 3 the representation V 6

induces an action of the quotient A7 on
∧3 V 6, we denote this (faithful)

representation of A7 by W .
The irreducible complex representations of A7 of dimension smaller or equal
than 20 have dimensions 1, 6, 10, 10, 14, 14 and 15 and can be read in Table A.1,
Appendix A. We point out that the two 10-dimensional representations are
not isomorphic.

Lemma 3.1.1. The representation W decomposes as the direct sum of the
only two irreducible 10-dimensional representations R1 = (A1, ρ1) and R2 =
(A2, ρ2) of the group A7, moreover the underlying vector spaces A1, A2 ⊂∧3 V6 of those representations are Lagrangian.

Proof. The fact that W has the mentioned decomposition is just a computa-
tion of characters (we used GAP), the subrepresentations being Lagrangian
is easily checked with computer algebra. We remind to section A.1 and
Table A.1 for more details.

As a consequence of (2.2), setting A = A1, A2 leads to an EPW-sextic
YA ⊂ P5 which is invariant under the action of A7. The representations R1

and R2 are dual to each other, so the manifolds YA1 and YA2 are projectively
dual to each other and hence δ(A1) = A2 (cf. [O’G06, Section 3]). From now
on A will denote one of the two specific Lagrangian spaces.

Proposition 3.1.2. The Lagrangian space A has no decomposable vectors,
the degeneracy locus YA[3] is empty, so A ∈ LG(

∧3 V6) \ (Σ ∪ ∆), and in
consequence the EPW-sextic YA is singular along the degree 40 smooth surface
YA[2]. Hence the double cover ỸA → YA is a smooth IHS fourfold.
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Proof. From Theorem 2.1.7 it suffices to prove that A does not belong to
Σ and ∆. According to [O’G15] the singular locus is given by the union of
the 40-degree surface YA[2] with planes P(U) where U is a three-dimensional
subspace of W such that

∧3 U ⊂ A.
Our computation with Macaulay2 shows that the singular locus has

degree 40 (see section A.2) so it must coincide with YA[2] (cf. Theorem 2.1.5),
thus there are no decomposable vectors in A.

We also compute the singular locus YA[3] of YA[2] (see section A.3), and
it turns out to be empty, completing the proof.

Corollary 3.1.3. The fourfold ỸA has a symplectic action of the group A7

and the action fixes the polarization H (i.e. A7 ↪→ AutsH(ỸA)).

Proof. Use Proposition 2.1.12 and (2.2).

Lemma 3.1.4. The group AutsH(ỸA) is finite.

Proof. Follows from Corollary 1.3.81 as (by definition) it fixes H. We can also
prove it in a somehow more direct way. We know from Proposition 2.1.12 that
AutsH(ỸA) ∼= Aut(YA), Proposition 3.1.2 ensures that A has no decomposable
vectors and [DK18, Proposition B.9] guarantees that the last group is finite.

Proposition 3.1.5. There is an isomorphism AutsH(ỸA)
∼= A7.

Proof. Using the fact that AutsH(ỸA) is finite combined with the fact that A7

is maximal [HM19, Theorem A and Table 6], one concludes that the inclusion
A7 ↪→ AutsH(ỸA) is in fact an isomorphism.

Now we are ready to show that the two examples we found ỸA1 and ỸA2

are not isomorphic as polarized manifolds. We will need the following lemma.

Lemma 3.1.6. There are no f ∈ GL(V6) such that
∧3 f(A1) = A2.

Proof. Set h =
∧3 f and denote the non isomorphic representations Ri =

(Ai, ρi) for i = 1, 2. Notice that h : A1 → A2 defines an isomorphism of
representations, and so a faithful representation

(A2, h ◦ ρ1 ◦ h−1) ∼= R1

which is then not isomorphic to R2. This means that one has the inclusions

A7 ⊂ ⟨(h ◦ ρ1 ◦ h−1)(g), ρ2(g)|g ∈ A7⟩ ⊂ Aut(YA2)

where the first one is strict and the second follows from (2.2) since all
the automorphisms of the middle group are expressed by third wedges of
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automorphisms of V6 which preserve the Lagrangian A2. We conclude again
using the isomorphisms

Aut(YA2)
∼= AutsH(ỸA2)

∼= A7

from Proposition 2.1.12 and Proposition 3.1.5 to get a contradiction.

Proposition 3.1.7. The manifolds (ỸA1 , H1) and (ỸA2 , H2) are not isomor-
phic as polarized manifolds where Hi = π∗Ai

OYAi
(1) for i = 1, 2.

Proof. By [O’G15, page 486], if A1, A2 ∈ LG(
∧3 V6)

0 are not in the same
orbit of PGL(

∧3 V6), then ỸA1 and ỸA2 have different periods, so they cannot
be isomorphic. Lemma 3.1.6 finishes the proof.

We also obtain the following information on the constructed manifolds.

Proposition 3.1.8. The transcendental lattice is given by

T(ỸA) ∼=
(
6 0
0 70

)
.

Proof. Based on [Waw22, Table 1], a projective IHS fourfold of K3[2] type
admitting an action of a group extension of A7 and fixing a primitive ample
vector H with H2 = 2 in NS(X) ⊂ H2(X,Z) must have the transcendental
lattice from the statement. Conclude recalling that by Theorem 2.1.7 the
polarization HA satisfies H2

A = 2.

3.2 Irrational Gushel-Mukai threefolds

In this section we give the main application of our construction: any
element in the families of GM threefolds associated to the two Lagrangian
spaces described in the previous sections is irrational.

Let XA be any GM threefold associated with A and let Jac(XA) be its
intermediate Jacobian. Recall that A ̸∈ Σ and so by Theorem 2.1.23 there
are a canonical principal polarization θ on the Albanese variety Alb(ỸA[2])
and a canonical isomorphism

(Jac(XA), θXA)
∼= (Alb(ỸA[2]), θ) (3.1)

between principally polarized Abelian varieties. Furthermore, the tangent
spaces at the origin of these varieties are isomorphic to A. Explicitly,

T
Alb(ỸA[2]),0

∼= TJac(XA),0
∼= A. (3.2)

The action of A7 on Jac(XA) gives the following feature
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Proposition 3.2.1. The principally polarized variety (Jac(XA), θXA) is in-
decomposable.

Proof. Suppose it was isomorphic to a product of m ≥ 2 nonzero indecom-
posable principally polarized Abelian varieties.
Since A7

∼= Aut(YA), the diagram (2.5) reads:

1 ⟨γ3⟩ Ã7 A7 1

1 C∗ GL(A) PGL(A) 1

ψ

ρa
ρ

π

(3.3)

where Ã7 is an extension of A7 by the group of order two, ρa is the analytic
representation Ã7 → GL(TJac(XA),0) by Proposition 2.1.13 and ρ is the
irreducible representation A. Now ρa ̸= ρ ◦ ψ since both representations are
faithful, but the equality π ◦ ρa = π ◦ ρ ◦ ψ holds by construction (using the
commutativity of the diagram (2.5)). This means that the two actions on A
differ by scalar multiplication, hence if one of the representations decomposes
then the other must do so as well. We supposed that the Jacobian is a
product and so the analytic representation decomposes in the sum of the
tangent spaces of the components, but this is a contradiction since A was
irreducible as A7-representation.

Combining this property with the group having a big cardinality, we get
the result sought after:

Theorem 3.2.2. Any smooth GM threefold associated with the Lagrangian
A is irrational.

Proof. The proof is inspired by the one of [DM22, Theorem 5.2]: we want to
use the Clemens-Griffiths criterion (Theorem 2.1.22.
Since (Jac(XA), θXA) is indecomposable, we can reduce to treat the case
where (Jac(XA), θXA)

∼= (Jac(C), θC) for C a curve of genus 10. We have a
faithful action of A7 on the Jacobian, by the Torelli theorem the group of
automorhpisms of that Abelian variety is either Aut(C) or Aut(C)×Z/2Z. In
conclusion A7 embeds in one of those two groups, but this is a contradiction
since |A7| = 2520 and |Aut(C)| < 756 by Hurwitz’s bound [Mir95, Theorem
3.7].
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Chapter 4

The Nielsen realization problem
for IHS manifolds

We give an answer to the Nielsen realization problem for IHS manifolds in
terms of the same invariant used for K3 surfaces. Moreover, we address some
related questions: we determine that, for some of the known deformation
types the representation of the mapping class group on the second cohomology
admits a section on its image, and we show that for manifolds of K3[n] type
the problem of lifting diffeomorphisms has a different answer than the case
of homeomeorphisms.

4.1 Formulation of the problem and known results
for K3 surfaces

Let X be a IHS manifold with LX = H2(X,Z) and consider the following
diagram

Diff+(X) Mod(X) O+(LX)

Homeo(X) O(LX)

ρ

,

the two following statements hold when S is a K3 surface:

Theorem 4.1.1 ( [BK23],Theorem 1.1). Let S be a K3 surface. There is a
section s : O+(LS) → Mod(S) of ρ : Mod(S) → O+(LS).

Theorem 4.1.2 ( [BK23],Theorem 1.2). Let S be a K3 surface. There is a
subgroup of Mod(S) of order 2 which does not lift to a subgroup of order 2 of
Diff+(S). The image of the subgroup in O+(LS) is non-trivial and it lifts to
an order 2 subgroup of Homeo(S).

We consider an IHS manifold X and G a finite subgroup of Mod(X), we
can ask the following:

57
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Problem (Nielsen realization). Does there exists an Einstein metric g on X
such that G is realizable as a subgroup of Isom(X, g)? Can the metric g be
chosen to be also Kähler?

We want to generalize to the situation where X is a higher dimensional
IHS manifold, answer to the Nielsen realization problem (as done in [FL21,
Theorem 1.2]) and give analogues of Theorem 4.1.1 and Theorem 4.1.2.

With the above setting, in section 4.2 we determine that, for X of type
K3[n] type with n− 1 a prime power or OG10 type, the map ρ : Mod(X) →
O+(H2(X,Z)) admits a section. In section 4.3 we show that a similar example
of order two group of mapping classes can be produced for IHS manifolds of
K3[n] type. In section 4.4 we define an invariant analogous to the invariant
ΓG used for K3 surfaces and conclude that a similar condition gives an answer
to the Nielsen realization problem.

4.2 Sections of the representation map

Denote by Γ the image of Mod(X) via the representation map ρ, there
are inclusions Mon2(X) ⊆ Γ ⊆ O+(LX).

In the case of K3 surfaces, Mod(S)C maps isomorphically onto O+(LS) =
Mon2(S) via ρ giving the isomorphism

Mod(S) ∼= T(S)⋊O+(LS)

which implies Theorem 4.1.1. In this particular case, the moduli space
of marked K3 surfaces MLS

= T /T(S) is connected and T(S) permutes
transitively the connected components of THK .

Remark 5. If X is an IHS manifold of dimension bigger than 2 then Mod(X)
could be just an extension of T(X) and Γ, similarly Mod(X)C could be an
extension of Mon2(X) and T(X) ∩ Mod(X)C , but by [Ver20, Remark 2.5]
the intersection T(X) ∩ Mod(X)C is always finite. Moreover, T(X) acts
on π0(THK) with finitely many orbits, each connected component has finite
stabilizer and an element of T(X) which fixes an element g ∈ T fixes the
entire connected component of g ( [Ver20, Theorem 3.1]). In general, the
moduli space of marked IHS manifold manifolds MLX

= T /T(X) could have
more connected components, but each one is simply connected.

Rephrasing what we said before, Mon2(X) ∼= Mod(X)C precisely when
T(X) ∩Mod(X)C is trivial and Mod(X) ∼= T(X)⋊ Γ exactly when ρ admits
a section on its image. There could be a section of ρ over its image even if
Mon2(X) is a proper subgroup of O+(LX) and on the other hand a priori
there is still the possibility that Mon2(X) = Γ = O+(LX) but Mod(X) is a
not the semidirect product of T(X) and the stabilizer of a component.
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Here we generalize the proof of [BK23, Theorem 1.1] in some cases. Note
that in this setting most of the groups we consider are discrete. If G is a
group we denote by EG the universal bundle of G and by BG the classifying
space of G.

Let X = (M, g, I) and recall that the kernel of the map Aut(X) →
O+(LX) is a deformation invariant, hence it is the same for any complex
structure that makes g a Kähler metric.

Lemma 4.2.1. If X is such that Aut(X) → O+(LX) is injective, then T(X)
acts freely on TEin. In particular, the projection TEin → TEin/T(X) =:
MEin is a principal T(X)-bundle.

Proof. Suppose that there are [φ] ∈ T(X) and [g] ∈ TEin such that φ(g) = g′

is isotopic to g, then the path connecting g′ to g connects φ to a diffeo-
morphism φ′ which fixes g. The diffeomorphism φ′ acts as an orientation-
preserving isometry on the 2-sphere of complex structures associated to g so
it must preserve a complex structure and hence φ′ ∈ Aut(X) is an automor-
phism acting trivially in cohomology, in conclusion φ′ = id and this implies
[φ] = [id].

We set M = TEin ×Mod(X) EMod(X).

Lemma 4.2.2. Suppose X is such that Aut(X) → O+(ΛX) is injective, then
there is a homotopy equivalence

M ∼= MEin ×Γ EΓ.

Proof. Since EMod(X)× EΓ is a model for Mod(X) we have

M ∼= TEin ×Mod(X) (EMod(X)× EΓ),

which has a fibration over TEin×Mod(X)EΓ with contractible fiber EMod(X).
The base space has the homotopy type of a CW-complex hence the fibration
is a homotopy equivalence and since the action of T(X) is free on TEin by
Lemma 4.2.1, then TEin ×Mod(X) EΓ = MEin ×Γ EΓ.

Proposition 4.2.3. Let X be an IHS manifold such that Aut(X) → O+(LX)
is injective, then ρ : Mod(X) → O+(LX) has a section over its image Γ.

Proof. The long exact sequence of homotopy groups associated to the fibration
MEin → M → BΓ implies that

π1(MEin) → π1(M) → π1(BΓ) → π0(MEin)

is exact. Moreover, the connected components of the Teichmüller space have
the same topology of the ones of the moduli space because T(X) simply per-
mutes some components and hence π1(MEin) = 1 by Proposition 1.3.69. The
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natural projection map M → BΓ induces an injection π1(M) ↪→ π1(BΓ) = Γ
and from the description of M, the map M → BΓ must factor as

M → BMod(X) → BΓ.

In conclusion, the induced map s : π1(M) → π1(BMod(X)) = π0(Mod(X)) =
Mod(X) is a splitting of ρ : Mod(X) → Γ ⊆ O+(LX).

Corollary 4.2.4. If X is of K3[n] type with n− 1 a power of a prime, or X
is of OG10 -type, then ρ : Mod(X) → O+(LX) has a section.

Proof. In these cases Mon2(X) = Γ = O+(LX) and Aut(X) → O+(LX) is
injective.

Question 1. What can be said about the other known deformation types?

The group Mon2(X) is available for all the known deformation types. If
it is maximal, then Γ = O+(X), but if it is a proper subgroup of O+(LX),
then Γ is not known by the author.
Moreover, in the case Aut(X) → O+(LX) is not injective the argument given
above does not work, but it is a priori not clear if the same result might hold
or not.

4.3 Lift of an order 2 subgroup

We now consider the Hilbert scheme of points S[n] of a K3 surface S and
its symmetric product S(n). Notice that for f ∈ Diff(S) the induced map
f (n) fixes the singular locus ∆ = {(x1, . . . , xn) ∈ S(n)|∃i ̸= j;xi = xj} ⊂ S(n)

and hence it lifts via the resolution

S[n] → S(n)

to an element f [n] ∈ Diff+(S[n]) which fixes the exceptional locus, by the
proof of [Boi12, Lemme 1]. This gives the inclusion

Ψ : Diff+(S) ↪→ Diff+(S[n])

since two elements f, g ∈ Diff+(S) such that f [n] = g[n] must coincide: by
contracting the exceptional divisor f (n) = g(n) and then restricting to the
small diagonal S ∼= {(x1, . . . , xn) ∈ S(n)|x1 = · · · = xn} ⊂ ∆ ⊂ S(n) one gets
f = g. With a similar argument, there is an injection

O+(LS) ↪→ O+(LS[n])

with a retraction again given by contraction and restriction.
If two elements f and g lie in the same path connected component of Diff+(S),
applying Ψ gives a path from f [n] to g[n] so there is also a well-defined map

Mod(S) → Mod(S[n])
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and a commutative diagram

Diff+(S) Mod(S) O+(LS)

Diff+(S[n]) Mod(S[n]) O+(LS[n])

. (4.1)

We recall the following construction from [BK23, Section 3]: S is topologically
homeomorphic to 3(M×M)♯2(N), where N denotes the compact and simply-
connected topological 4-manifold with intersection form the negative E8-
lattice and M is the 2-sphere. Let f0 : M ×M → M ×M be given by
f(x, y) = (y, x). Consider the equivariant connected sum 3(M ×M), the
sum of three copies of (M ×M,f0), remembering that f0 has fixed points.
Attaching two copies of N , we get a continuous involution f : S → S.

Theorem 4.3.1. Let X be an IHS manifold of K3[n] type. There is a subgroup
of Mod(X) of order 2 which does not lift to an order 2 subgroup of Diff+(X).
The image of this group in O+(LX), which is not trivial, lifts to a subgroup
of order 2 in Homeo(X).

Proof. Let f ∈ Homeo(S) be the topological involution described above
and consider the induced action ϕ ∈ O+(LS) ⊂ O+(LS[n]). Clearly we can
put ϕ̃ = s(ϕ) ∈ Mod(S[n]), where s : O+(LS) → Mod(S[n]) is obtained by
composing the section of Mod(S) → O+(LS), which exists by Theorem 4.1.1,
with the middle vertical arrow in diagram (4.1). We observe that φ̃ is
non-trivial because by construction it has non-trivial action in cohomology.

Using the commutativity of (4.1) we can choose a lift of ϕ̃ of the form
h[n] ∈ Diff+(S[n]) for some h ∈ Diff(S). Then h[n] cannot be an involution,
since h ∈ Diff+(S) acts in cohomology as ϕ and this is a contradiction
to [BK23, Theorem 3.1].

The statement for general X follows by Ehresmann’s Lemma.

This provides an example of order two subgroup of Mod(X) which does
not admit a lift to Diff+(X), but whose representation in second cohomology
lifts to Homeo(X).

4.4 Nielsen realization for IHS manifolds

Let X be an IHS manifold and let G be a finite subgroup of Mod(X), by
abuse of notation its image in O+(LX) will be sometimes denoted again by
G. We want to give an answer to the Nielsen realization problem in terms of
a lattice which is invariant, as done in [FL21, Theorem 2.1] for K3 surfaces.
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Since Gr+(3,LR) is the symmetric space of O+(LR), it is non-positively
curved and then G must fix a point P . This means that P is a G-invariant
positive 3-space, and hence there is a linear representation G→ SO(P ) of P .
Let IG be the sum of all the irreducible G-subrepresentations of LR which
are isomorphic to any of the ones appearing in P .

Definition 4.4.1. Let ΓG = I⊥G ∩LX .

Remark 6. Notice that in [FL21] this is denoted by LG but this might lead to
confusion because LG sometimes denotes the coinvariant lattice (LG)⊥ where
LG = {v ∈ L |g(v) = v∀g ∈ G}, but the coinvariant lattice and ΓG in fact
differ in general. For example, ΓG is always negative definite but if G comes
from the action of non-symplectic automorphisms then the coinvariant lattice
LG is not definite.

Recall that if C is a connected component of the Teichmüller space,
∆C ⊂ L∨

X denotes the set of indivisible negative forms which are represented
by an irreducible rational curve for an IHS manifold metric belonging to C.

Theorem 4.4.2. Let G be a finite subgroup of Mod(X).

1. G lifts to a group of isometries of an Einstein metric if and only if G
fixes a connected component C of TEin and ΓG does not contain any
element of ∆C .

2. G lifts to a group of automorphisms if and only if G fixes a connected
component C of TEin, ΓG does not contain any element of ∆C and Γ⊥

G

contains the trivial representation (in this case the metric can be chosen
so that X is projective and G acts by algebraic automorphisms).

Similarly, a finite subgroup of O+(LX) lifts under the same conditions when
it is contained in Mon2(X).

Proof. From the description in Proposition 1.3.69, each connected component
C of the Teichmüller space is mapped diffeomorphically onto

Gr+(3,LR)∆C = Gr+(3,LR)−
⋃
δ∈∆C

Gr+(3, δ⊥ ⊗ R)

which is connected (and simply connected). This in particular means that if
G comes from a group of isometries for an Einstein metric, then the image P
via the period map is G-invariant and not orthogonal to any δ ∈ ∆C , hence
ΓG does not contain any δ. If G preserves a metric which is also Kähler,
then the positive cone must be preserved by G and we can find a G-invariant
Kähler class which spans the trivial representation in Γ⊥

G.
Suppose now that G is a subgroup of Mod(X) which preserves a connected

component of the Teichmüller space and for which ΓG does not contain any
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element in ∆C . We argue as in the proof of [FL21, Theorem 1.2]: among the
G-invariant 3-spaces P ⊂ Γ⊥

G⊗R, the ones such that P⊥∩LX = ΓG are dense,
so we can find a positive-definite P ⊂ Γ⊥

G⊗R such that P⊥∩LX = ΓG. Now,
since P does not lie in any δ⊥ for δ ∈ ∆C , the surjectivity of the period map in
Proposition 1.3.69 ensures that there exists a IHS manifoldX = (M, g, I) with
period P and such that g ∈ C. By hypothesis G ⊆ Mod(X)C hence its action
in cohomology consists of monodromy operators by Proposition 1.3.68 and
then there is a lift of G (possibly an extension) in Diff+(X). By construction
P is fixed by G and hence g is preserved, so that G consists of isometries
for the metric g. Lastly, having the trivial representation in Γ⊥

G means that
G fixes a positive class 0 ̸= k ∈ P and hence the orientation determines a
complex structure on k⊥ ⊂ P which, again by surjectivity of the period map,
is achieved by a complex structure on X that makes g a Kähler metric.
The trivial representation is spanned by a positive integral (1, 1)-class, so we
can conclude using Huybrechts’ projectivity criterion Proposition 1.3.18.

The situation could be much more complicated than for K3 surfaces:
as already noticed in [Mar11, Question 10.5] the stabilizer Mod(X)C could
depend on the component C and it could intersect nontrivially the Torelli
group, so it could happen that not every subgroup of O+(LX) is the image of
some stabilizer of a component and even those which are could have elements
acting trivially on LX . In case G ⊆ Mon2(X) is the image of a group which
intersects non-trivially T(X), then a lift could be found but it would be an
extension of G.
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Chapter 5

Non-symplectic involutions of
manifolds of OG10 type

In the first section of this chapter we classify the non-symplectic invo-
lutions on manifolds of OG10 type. Our classification is lattice-theoretical
and consists of determining the involutions by their invariant and coinvariant
lattices. In the second section we study the induced transformations of a
non-symplectic involution of a cubic fourfold on the associated LSV manifold.

5.1 Classification of non-symplectic involutions

In this section we let L := E8(−1)⊕2 ⊕U⊕3⊕A2(−1) be the abstract
lattice isometric to the second cohomology of a manifold of OG10 type, recall
that there is a unique embedding (up to isometry) L ↪→ Λ in the unimodular
lattice Λ := E8(−1)⊕2⊕U⊕5 with orthogonal complement given by L⊥ ∼= A2.
We classify the non-symplectic involutions of manifolds of OG10 by listing the
possible invariant and coinvariant lattices of their action in cohomology, this
is achieved passing to the classification of invariant and coinvariant lattices
of an involution on Λ.

5.1.1 Admissible invariant and coinvariant sublattices of Λ

First of all we list pairs of invariant lattices ΛG and coinvariant lattices
ΛG of Λ with prescribed signature, where G is generated by an involution.

Proposition 5.1.1. Let G ⊂ O(Λ) be a subgroup of order 2. If sgn(ΛG) =
(2, rk(ΛG)− 2) then the pairs (ΛG,ΛG) appear in Table B.1. If sgn(ΛG) =
(3, rk(ΛG)− 3) then the pairs (ΛG,ΛG) appear in Table B.1 where the roles
of ΛG and ΛG are inverted.

Proof. Since G is cyclic of order 2 and Λ is unimodular, then ΛG and ΛG must
be 2-elementary lattices and their discriminant groups are anti-isometric by
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Lemma 1.1.15, in particular they have the same length. Use Theorem 1.1.17
to get all the possible isometry classes of such lattices by varying the signature,
the length a and the invariant δ. Any such pair of lattices are invariant and
coinvariant lattices for the isometry that acts trivially on the invariant lattice
and as −1 on the coinvariant lattice.

Lemma 5.1.2. Consider the primitive embedding L ↪→ Λ. If φ ∈ O(L)
is an isometry such that φ = id ∈ O(AL) then it extends to and element
φ̃ ∈ O(Λ) acting trivially on L⊥ ⊂ Λ. If φ ∈ O(L) is an isometry such that
φ = − id ∈ O(AL), then φ extends to an isometry φ̃ ∈ O(Λ) that acts on L⊥

permuting the generators of L⊥ ⊂ Λ.

Proof. Let a, b be generators of A2(−1) ⊂ L and consider the generator
[a−b3 ] = [a+2b

3 ] of L ∼= Z/3Z. If φ ∈ O(L) is such that φ = id then φ([a−b3 ]) =

[a−b3 ] hence φ(a − b) = a − b + 3w with w ∈ L. Let c, d be generators of
L⊥ ∼= A2, its discriminant group is also Z/3Z and it is generated by [ c−d3 ]

with discriminant form given by q( c−d3 ) = 2/3. Notice that L⊕A2 has an
overlattice isometric to Λ which is generated by L, a−b+c−d

3 and a+2b+c+2d
3 .

We extend φ to L⊕A2 by imposing φ(c) = c and φ(d) = d and we obtain
an extension φ̃ of φ on Λ as follows:

φ̃(
a− b+ c− d

3
) =

φ(a− b) + c− d

3

and
φ̃(
a+ 2b+ c+ 2d

3
) =

φ(a+ 2b) + c+ 2d

3
.

If φ ∈ O(L) is such that φ = − id then φ([a−b3 ]) = [ b−a3 ] hence we extend φ
to L⊕A2 by imposing φ(c) = d and φ(d) = c and we obtain an extension φ̃
of φ on Λ as follows:

φ̃(
a− b+ c− d

3
) =

φ(a− b) + d− c

3

and
φ̃(
a+ 2b+ c+ 2d

3
) =

φ(a+ 2b) + d+ 2c

3
.

Proposition 5.1.3. Let G ⊂ O(L) be a subgroup and consider its image
G ⊂ O(AL). Consider the primitive embedding L ↪→ Λ, and let c and d be
the generators of A2 = L⊥ ⊂ Λ.

• If |G| = 1 there exists a subgroup G′ ⊂ O(Λ) such that G′ restricts
to G on L and LG = ΛG′. In particular sgn(LG) = sgn(ΛG′) and
sgn(LG) = sgn(ΛG′

)− (2, 0).
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• If |G| = 2 there exists a subgroup G′ ⊂ O(Λ) such that G′ restricts to
G on L and LG = (c−d)⊥ ⊂ ΛG′ , LG ∼= (c+d)⊥ ⊂ ΛG′

. In particular
sgn(LG) = sgn(ΛG′)− (1, 0) and sgn(LG) = sgn(ΛG′

)− (1, 0).

Proof. Direct consequence of Lemma 5.1.2.

Notice that for a subgroup G ⊂ O(L) of prime order p, the situation were
|G| = 2 will happen only for p = 2.

5.1.2 Invariant and coinvariant lattices of L

Consider an isometry φ ∈ O(L) and let G ⊂ O(L) the subgroup generated
by φ. We say that φ ∈ O(L) is non-symplectic if sgn(LG) = (1, rk(L) − 1)
and sgn(LG) = (2, rk(L)− 2).

Let X be a manifold of OG10 type with a marking η : H2(X,Z) ∼= L and
let G ⊂ Aut(X) be a group generated by a non-symplectic automorphism of
order p, then by Proposition 1.3.78 the group G ⊂ O(L) is generated by a
non-symplectic isometry in the above sense. Viceversa:

Proposition 5.1.4. Let G ⊂ O(L) be a group of prime order p generated
by a non-symplectic isometry, then there exists an irreducible holomorphic
symplectic manifold X of OG10 type with a marking η : H2(X,Z) ∼= L such
that G ⊂ Aut(X) and G is generated by a non-symplectic automorphism.

Proof. The proof is analogous to the one of [Gro22, Proposition 3.4]. A
generator φ of G is non-symplectic and hence one can endow LC with a
weight-two Hodge structure such that LG = L1,1

C ∩L. By the surjectivity
of the period map there exists a manifold X of OG10 type and a marking
H2(X,Z) ∼= L which is an isomorphism of Hodge structures. By construction
G consists of Hodge isometries, moreover since all the algebraic classes are
fixed then the positive cone is point-wise fixed and so the Kähler cone is. In
this case we know that Mon2(X) = O+(L), we want to prove that G ⊂ O+(L).
This is clear when p ̸= 2 since it is odd and φp = id, while if p = 2 we have
spin(φ) = +1 using [Gro22, Lemma 2.4] with sign(LG) = (2, rk(LG)− 2), so
that φ ∈ O+(L) in any case. Since G ⊂ Mon2Hdg(X) and a Kähler class is
preserved by G we can conclude by Theorem 1.3.37, as the representation
map on the second cohomology is injective for manifolds of OG10 type
by [MW17, Theorem 2.1]. In particular, X is projective by Remark 3.

Theorem 5.1.5. Let X be a manifold of OG10 type and let G ⊂ Aut(X) be
a subgroup of order 2 generated by a non-symplectic involution, then the pair
(LG,LG) appears either in Table B.2 or in Table B.3. Viceversa, any such
pair consist of the invariant and coinvariant lattices for a non-symplectic
involution on a manifold of OG10 type.



68 5.2 Induced non-symplectic involutions on Laza-Sacca-Voisin manifolds

Proof. Consider the induced action G ⊂ O(L) and extend it to an action
G̃ ⊂ O(Λ) according to Lemma 5.1.2. The two different extensions lead to
the possible cases where LG = Λ

G̃
or there are inclusions LG ⊂ Λ

G̃
and

LG ⊂ ΛG̃ with complement of rank 1. When the pair (LG,LG) is determined,
one can endow L with a Hodge structure that makes LG and LG the invariant
and coinvariant lattices of a non-symplectic involution, then conclude using
Proposition 5.1.4.

In case the induced action on the discriminant group is trivial then
by Lemma 5.1.2 we have a primitive embedding A2 ⊂ ΛG̃ and we have
LG = A⊥ΛG̃

2 since the orthogonal complement of the embedding L ↪→ Λ is
isometric to A2. When there is a primitive embedding A2 ↪→ ΛG̃ it is unique
up to isometries by Lemma 1.1.11 because A2 is 3-elementary and since the
orthogonal complement satisfies Theorem 1.1.22.

In case the induced action on the discriminant group is non-trivial we
consider the unique primitive embedding A2 ↪→ Λ and observe that in this
case [2] = ⟨a+ b⟩ is G̃-invariant, where a, b are generators of A2 = L⊥ ⊂ Λ,
since G̃ permutes them. Consider the lattices ΛG̃ in Table B.1 that admit [2]
as a primitive sublattice. We compute the list of possible LG = [2]⊥ΛG̃

for all
the primitive embeddings [2] ↪→ ΛG̃. Then we obtain LG as the orthogonal
complement of the primitive embedding LG ↪→ L when such an embedding
exists.

Orthogonal complements of the previous embeddings are uniquely deter-
mined up to isometry because of Theorem 1.1.20 in most of the cases, by
Theorem 1.1.22 in all the other cases. When applying the latter result, recall
that qAD4(−1)

∼= qv(1) and qAU(2)
∼= qu(1).

5.2 Induced non-symplectic involutions on Laza-
Sacca-Voisin manifolds

We study the bimeromorphic involutions induced by non-symplectic
involutions of a cubic fourfold on the LSV manifold, with the help of the
Hodge relation of the cubic fourfold with the associated twisted LSV manifold.

Analogously to the case of IHS manifolds we have that if ϕ ∈ Aut(Y ) is
symplectic then (H4(Y,Z)prim)ϕ ⊆ H2,2(Y,Z)prim and if ϕ is non-symplectic
we have (H4(Y,Z)prim)ϕ ⊆ H2,2(Y,Z)prim. In this section, a cubic fourfold
Y with an automorphism ϕ ∈ Aut(Y ) is called general if one of the above
inclusions is an equality, accordingly to Remark 4. A stronger version of
Proposition 2.3.9 holds in the twisted case, but unfortunately the isometry
of the following proposition has no direct geometric interpretation, contrarly
to the previous isogeny.
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Proposition 5.2.1. Let Y be a cubic fourfold, then there is an Hodge isometry
H4(Y,Z)prim(−1) ∼= UY (3)

⊥ ⊂ H2(J t(Y ),Z).

Proof. Recall that by [LPZ22] there is a LPZ manifold associated to the cubic
fourfold Y that we denote by M̃σ(2(λ1 + λ2),AY ), which is the resolution
of a moduli space of Bridgeland semistable objects in the Kuznestov compo-
nent AY of Db(Y ), Mukai vector 2(λ1 + λ2) and stability condition σ. We
know by [GGO22, Example 2.13] that there is a Hodge-isometric embedding
H4(Y,Z)prim(−1) ↪→ H2(M̃σ(2(λ1+λ2),AY ),Z) with orthogonal complement
of type (1, 1) and isometric to U(3). The manifold M̃σ(2(λ1 + λ2),AY ) is
birational to J t(Y ) by [LPZ22, Theorem 1.3], hence composing the Hodge
isometries we get the following Hodge isometry

H4(Y,Z)prim(−1)
∼=−→ UY (3)

⊥ ⊂ H2(J t(Y ),Z).

We give a numerical criterion for a manifold of OG10 type to be bimero-
morphic to a twisted LSV.

Proposition 5.2.2. Let X be a manifold of OG10 type, there exists a cubic
fourfold Y such that X is bimeromorphic to J t(Y ) if and only if

• There a primitive embedding U(3) ↪→ NS(X).

• The lattice U(3)⊥(−1) ⊂ NS(X)(−1) has no short or long roots.

Proof. If X and J t(Y ) are bimeromorphic, then there is a Hodge isometry
H2(J t(Y ),Z) ∼= H2(X,Z), so the embedding Ut

Y ⊂ NS(J t(Y )) ∼= NS(X) in-
duces the embedding of U(3) in NS(X). We know from Proposition 5.2.1 that
the lattice (Ut

Y )
⊥ ⊂ H2(J t(Y ),Z) is Hodge-isometric to H4(Y,Z)prim(−1).

The description of the image of the period map of cubic fourfolds in The-
orem 2.3.4 ensures that there are no long or short roots in H4(Y,Z)prim.
Viceversa, if there are no short or long roots in U(3)⊥(−1) ⊂ NS(X)(−1)
then again by Theorem 2.3.4 we know that U(3)⊥(−1) ⊂ H2(X,Z)(−1) is
Hodge isometric to H4(Y,Z)prim for a cubic fourfold Y , which is also Hodge
isometric to U(3)⊥(−1) ⊂ H2(J t(Y ),Z)(−1). We can extend the Hodge
isometry to the entire lattice H2(X,Z) ∼= H2(J t(Y ),Z) using [Nik79, Corol-
lary 1.5.2] with the fact that all the isometries of the discriminant groups are
induced by isometries of the lattices in this case. We conclude that X and
J t(Y ) are bimeromorphic, this is possible since U(3) is primitive and of type
(1, 1) in both cases.

Recall that an automorphism of the cubic Y induces a bimeromorphism
of the LSV manifold J(Y ).

Lemma 5.2.3. Let Y be a cubic fourfold, ϕ ∈ Aut(Y ) is symplectic if and
only if ϕ̃ ∈ Bir(J(Y )) is.
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Proof. Proposition 2.3.9 or [Sac23, Lemma 3.2]

Notice that composing the bimeromorphism ϕ̃ with the involution τ that
acts as (−1) on the fibers of JU (Y ) → U turns it from symplectic to non-
symplectic and viceversa. Moreover, ϕ̃ acts trivially on the discriminant
group, while τ acts as − id.

Lemma 5.2.4. Let Y be a cubic fourfold, then there exists N > 0 such that
there is the following finite index embedding of lattices

UY ⊕H2,2(Y,Z)prim(−N) ⊆ NS(J(Y )).

Proof. We know that the hyperbolic lattice UY is a lattice of (1, 1) type,
and from Proposition 2.3.9 we know that there is a finite index embedding
H2,2(Y,Z)prim(−N) ⊆ U

⊥NS(J(Y ))

Y for some N > 0.

Lemma 5.2.5. Let Y be a cubic fourfold, ϕ ∈ Aut(Y ) an automorphism of
finite order and ϕ̃ ∈ Bir(J(Y )) the induced bimeromorphism. Then UY ⊆
H2(J(Y ),Z)ϕ̃ and there are inclusions

(H4(Y,Z)prim)ϕ(−N) ⊆ U⊥
Y ⊂ H2(J(Y ),Z)ϕ̃

for some N > 0.

Proof. The anti-isogeny

α : H4(Y,Z)prim → U⊥
Y ⊂ H2(J(Y ),Z)

of Proposition 2.3.9 is an isomorphism of rational Hodge structures. Recall
from [MO22, Lemma 7.1] that the map α is the restriction of the map
[Z]∗ ◦ q∗ : H4(Y,Z) → H(J(Y ),Z) where q : UY → Y is the inclusion of
linear sections and [Z]∗(x) = π1∗(π

∗
2x.Z) where Z ∈ CH2(J(Y )×P5 UY )Q is

a distinguished cycle and π1, π2 the respective projections.
Clearly, replacing Z with Z̃ = 1√

ord(ϕ)

∑
n≥0 ϕ

n(Z) in the above definition,

one gets an ϕ-invariant map

α̃ : H4(Y,Z)prim → U⊥
Y ⊂ H2(J(Y ),Z)

which is an anti-isometry of rational Hodge structures. Then one concludes
that there is N > 0 such that (H4(Y,Z)prim)ϕ(−N) ⊆ U⊥

Y ⊂ H2(X,Z)ϕ̃.

We can recover a cubic fourfold from a certain action on a manifold of
OG10 type.

Proposition 5.2.6. Let X be a manifold of OG10 with a marking H2(X,Z) ∼=
L and let k = 1, 3. Let f ∈ Aut(X) be a non-symplectic automorphism of
prime order with a primitive embedding U(k) ↪→ Lf ⊆ NS(X) such that
such that putting T := U(k)⊥NS(X) ⊂ NS(X) the lattice T(−1) contains no
short and long roots. Then there is an associated cubic fourfold Y with an
automorphism ϕ ∈ Aut(Y ) such that:
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• (H4(Y,Z)prim)ϕ(−1) ∼= U(k)⊥Lf
if f = id ∈ O(AL),

• (H4(Y,Z)prim)ϕ(−1) ∼= Lf if f ̸= id ∈ O(AL).

Proof. The lattice N := U(k)⊥L ⊂ L is abstractly anti-isometric to the lattice
of primitive middle cohomology of a cubic fourfold for k = 1, 3. Moreover, N
inherits a Hodge structure such that N2,2 = T. By hypothesis T(−1) has
no short or long roots, so by Theorem 2.3.5 there exists a cubic fourfold Y
such that H4(Y,Z)prim ∼= N(−1) as Hodge structures. The lattice N(−1)
has an induced action from the one of f that preserves the Hodge structure,
we want to extend it to an action on H4(Y,Z) that preserves the square of an
hyperplane class ⟨h2⟩ = H4(Y,Z)⊥prim ⊂ H4(Y,Z). This can be done whenever
f acts trivially on the discriminant group AL(−1)

∼= AN.
If f acts trivially on the discriminant group, then we have an extension of

f on H4(Y,Z) fixing h2, so by Theorem 2.3.5 there is a unique automorphism
ϕ ∈ Aut(Y ) inducing f , in this case Nf (−1) ∼= U(k)L

f
and Nf (−1) ∼= Lf .

The case where f acts as − id on the discriminant group is possible only
when f is an involution, hence we can replace f with g := −f so that there
exists a unique ϕ ∈ Aut(Y ) inducing g, in this case Ng(−1) ∼= Lf and
Ng(−1) ∼= U(k)L

f
.

Remark 7. An automorphism on a cubic fourfold Y induces a natural
bimeromorphism on J(Y ), but it is a priori not clear how to relate its action
in cohomology with the action on the cohomology of the cubic fourfold, because
of the index N of Lemma 5.2.4. In particular, the induced action on J(Y )
will satisfy the hypothesis of Proposition 5.2.6 but then there seems to be
no reason to conclude that the associated cubic fourfold is Y itself. All the
information about the transformation which is induced geometrically is given
by Lemma 5.2.4 and Lemma 5.2.5, the other associated transformations exist
only for Hodge-theoretical reasons.

The involutions of a cubic fourfold were classified in [Mar23, Theorem 1.1]
where their action is cohomology is described, there are three types ϕ1, ϕ2, ϕ3,
where ϕ2 is symplectic and ϕ1, ϕ3 are not. Moreover, cubic fourfolds with the
involution ϕ3 belong to C14 ∩ C8 and cubic foufolds with the involution ϕ1
belong to C8. The Hasset divisor C14 consists of the closure of the locus of
Pfaffian cubic fourfolds. It is known that for a Pfaffian cubic fourfold Y the
manifolds J(Y ) and J t(Y ) are isomorphic, while by [GGO22, Proposition
4.3] together with [LPZ22, Theorem 1.3] we have that for a cubic fourfold Y
in C8 the manifolds J(Y ) and J t(Y ) are bimeromorphic.

The description of the invariant and coinvariant lattices of an involution
on a cubic fourfold according to [Mar23, Theorem 1.1] involves the following
lattice:
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Definition 5.2.7. The lattice M is the lattice given by the following matrix

M =



6 2 −2 2 −2 2 −2 2 −2
2 4 −2
−2 −2 4 −2
2 −2 4 −2
−2 −2 4 −2
2 −2 4 −2
−2 −2 4 −2
2 −2 4 −2 −2
−2 −2 4

−2 4


that can also be described as the unique index 2 overlattice of D9(2)⊕ [24].
Notice that we have the isometry U⊕M(−1) ∼= [2]⊕[−2]⊕E6(−2)⊕D4(−1).

The above classification allows us to describe the induced bimeromorphic
non-symplectic involutions of manifolds of OG10 induced by an involutions
of cubic fourfolds via the LSV construction, and prove that they are regular
in the general case.

Proposition 5.2.8. The non-symplectic involutions of a cubic fourfold Y
induce the following bimeromorphisms on J(Y ):

• ϕ1 induces an non-symplectic involution f1 ∈ Bir(J(Y )) such that
Lf1 = U⊕E6(−2) and Lf1 = U⊕2⊕D4(−1)⊕3,

• ϕ3 induces a non-symplectic involution f3 ∈ Bir(J(Y )) such that Lf3 =
U⊕M(−1) and Lf3 = U⊕[2]⊕ [−2]⊕9,

where L = H2(J t(Y ),Z).

Proof. By [Mar23, Theorem 1.1] we have a classification of possible invariant
and coinvariant sublattices of H4(Y,Z)prim for non-symplectic involutions
on a general Y . Furthermore, we know that if Y is a cubic fourfold with
a non-symplectic involution then Y ∈ C8 and J(Y ) is bimeromorphic to
J t(Y ), so that NS(J(Y )) ∼= NS(J t(Y )). Denote by Yi a cubic fourfold with
the involution ϕi for i = 1, 3. Using Proposition 5.2.1 we have embeddings
NS(J(Y1)) ⊃ UY1(3)

⊥ ∼= E6(−2) and NS(J(Y3)) ⊃ UY3(3)
⊥ ∼= M(−1),

hence NS(J(Y1)) = U⊕E6(−2) and NS(J(Y3)) = U⊕M(−1). We know
that since the involutions are non-symplectic Lfi ⊆ NS(J(Yi)) must hold for
i = 1, 3 and by Lemma 5.2.5 the inclusion is a finite index embedding, hence
Lf1 appears in Table B.2 with signature (1, 7) and Lf3 with signature (1, 11).
We exclude all cases apart from the ones in the statement, since for those there
are vectors of square two that would produce short roots in H2,2(Yi,Z)prim
by Proposition 5.2.1 and this is a contradiction to Theorem 2.3.4.
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Corollary 5.2.9. The general involution ϕi ∈ Aut(Y ) induces a regular
automorphism fi ∈ Aut(J(Y )) for i = 1, 3. Moreover, for any general
involution f ∈ Aut(X) on X of OG10 type with H2(X,Z)f = U⊕E6(−2)
or H2(X,Z)f = U⊕M(−1) there is a cubic fourfold Y such that X is
bimeromorphic to J(Y ) and f is bimeromorphically induced by the involution
f1 ∈ Aut(J(Y )) or f3 ∈ Aut(J(Y )).

Proof. From Proposition 5.2.8 we know that NS(J(Y )) = H2(J(Y ),Z)fi ,
hence all the algebraic classes are fixed so the ample cone and the Kähler
cone are, then using Theorem 1.3.37 we conclude that fi ∈ Aut(J(Y )).
For the second part, the existence of the cubic fourfold Y follows from
Proposition 5.2.2, the same argument as the proof of Proposition 5.2.6 shows
that the action in cohomology is compatible with the Hodge isometry of
Proposition 5.2.1.

Remark 8. The classification of possible invariant and coinvariant lattices
for involutions on manifold of OG10 type together with lattice computation
for involutions induced by a cubic fourfold allow us to exclude some values of
the constant N of Proposition 2.3.9, for example N ̸= 2, 5, 6 and many others
can be checked.

We believe that it is not a coicidence that ϕ1, ϕ3 induce regular involutions
on J(Y ) and that the actions in cohomology are predicted by the Hodge
isometry in Proposition 5.2.1, in fact we expect this would happen also for
higher order automorphisms. It would be reasonable to expect a equivariant
version of the Hodge isometry in Proposition 5.2.1, for this reason probably
N = 1 would hold in Proposition 2.3.9.
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Appendix A

Computations about the very
symmetric examples

We provide codes for the computations we ran using computer algebra. For
the computations of characters we used GAP [GAP21], and Macaulay2 [M2]
for the other computations.

This appendix consists of three sections, the aim is to find the Lagrangian
spaces A and justify computations about the singular locus of YA, in par-
ticular conclude that it consists of a smooth surface completing the proof
of Proposition 3.1.2. In section A.1 we compute the Lagrangian spaces. In
section A.2 we compute equations for the EPW-sextic and its singular locus
over an appropriate finite field, so that those objects can sit as fibers in a flat
family whose central fiber is the solution to the equation on complex numbers.
In section A.3 we compute the locus YA[3] and conclude that dimension and
degree of the spaces over the complex numbers are the same as the ones over
the finite field, proving that A ∈ LG(

∧3 V6) \ (Σ ∪∆).

A.1 Finding the Lagrangians subspaces

The following is the scheme of the GAP code that computes the bases of
two Lagrangian subspaces of

∧3 V6 represented as C20 (more precisely Q[ξ21]
in the code) respectively invariant under two non-isomorphic 10-dimensional
representations R1 and R2 of A7. We compute the the invariant subspaces
using the formula for a projection

Pi =
∑
g∈A7

χRi(g)ϕW (g),

where χRi is the character of the representation Ri (i = 1, 2) and ϕW : A7 →
GL(C20) is the 20-dimensional representation. For more details on the
characters, see Table A.1.

75
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InducedMapOnWedge := function(Mat)
#computes the matrix of the linear map induced by the matrix Mat on
#the third Exterior Power of the underlying space in the basis of
#lexographically ordered simple vectors
#obtainted through multiplication of the canonical basis

#...
end;;

CheckLagrangianWedge3_6 := function(L)
#checks if a subspace of Wedge^3V_6 is a Lagrangian space

#...
end;;

OrbitSpace := function(vec, Gr, F)
#returns the space spanned by the orbit of
#the vector vec by the group Gr over the field F

#...
end;;

#http://brauer.maths.qmul.ac.uk/Atlas/alt/A7/gap0/3A7G1-Ar6B0.g
#6-dimensional representation of 3.A7
#defined in the ring Z extended by 21st root of unity
Gens_3A7_6 := [

#...
];;

#induced representation on Wedge^3C^6; it acts as A7 now
Gens_A7_20 := [InducedMapOnWedge(Gens_3A7_6[1]),

InducedMapOnWedge(Gens_3A7_6[2])
];;

b := E(7)+E(7)^2+E(7)^4;;
B := -1-b;;
CC := ConjugacyClasses(A7_20);
ImportantCC := []; #only the classes of nonzero are important for computation
for C in CC do

if Trace(Representative(C)) <> 0 then
Add(ImportantCC, C);

fi;
od;
#below we mark which classes have traces -b and -B in 10 dimensional representations
#first one has trace -b under representation and B under the dual,
#the second one the same in reverse
#the rest have a trace equal half the trace from the one on the Wedge^3 C^6
for ind in [1..Length(ImportantCC)] do

if Trace(Representative(ImportantCC[ind])) = -1 then
if flag then

ind1 := ind;
flag := false;

else
ind2 := ind;

fi;
fi;
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od;
e1 := CanonicalBasis(Rationals^20)[1];
#almost any nonzero vector would suffice

#P_a will be the projection on a subspace invariant under A7_20
#it will give a 10 dimensional representation
P_1 := 0 * IdentityMat(20,20);;
for ind in [1..Length(ImportantCC)] do

Paux := 0 * IdentityMat(20);
for g in ImportantCC[ind] do

Paux := Paux + g;
od;
if ind = ind1 then

P_1 := P_1 + b * Paux;
elif ind = ind2 then

P_1 := P_1 + B * Paux;
else

P_1 := P_1 + Trace(Representative(ImportantCC[ind]))/2 * Paux;
fi;

od;
A_1 := OrbitSpace(v_1, A7_20, CF(21));
CheckLagrangianWedge3_6(R_1); #returns true
#the computation as above for A_2 follows

Below is the character for A7 including the 20-dimensional reducible
representation we obtained on the exterior power space.

Conj. class id [ab−1ab] [a] [a−1bab] [a−1bab2] [b] [ababab2] [ab] [a−1b]

V0 1 1 1 1 1 1 1 1 1

V6 6 2 3 0 0 1 −1 −1 −1

V10 10 −2 1 1 0 0 1 −1
2(1− i

√
7) −1

2(1 + i
√
7)

V ′
10 10 −2 1 1 0 0 1 −1

2(1 + i
√
7) −1

2(1− i
√
7)

V14 14 2 2 −1 0 −1 2 0 0

V ′
14 14 2 −1 2 0 −1 −1 0 0

V15 15 −1 3 0 −1 0 −1 1 1

W 20 −4 2 2 0 0 2 −1 −1

Table A.1: Character table of A7

A.2 Local equations of the EPW and its singular
locus

The following Macaulay2 code computes equations over a finite field for
the EPW sextic associated to a Lagrangian space, checks that the sextic is
irreducible and has the right degree. Lastly, it computes the singular locus
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of the EPW and check it is a surface of degree 40. The two Lagrangian
subrepresentations we take into account are defined over the field Q[ξ21],
where ξ21 is a 21-st primitive root of unity.
We choose p = 127 so that the 21-st cyclotomic polynomial decomposes as

Φ21(v) ≡127

12∏
j=1

gj(v)

in the polynomial ring F127[v] in exactly as many factors as [Q[ξ21] : Q] = 12.
It follows that the decomposition of the ideal (127) in the ring of integers
Z[ξ21] is given by

(127) =
12∏
j=1

qk

where qj = (127, gj(ξ21)) and hence the residue field of Z[ξ21] at any prime q
in the decomposition is exactly F127. Set D as the DVR obtained by localizing
Z[ξ21] at any such q. To be more explicit we can put q = (127, ξ21 − 25)
which is one of the factors in the decomposition.

In the following code we read the roots of unity in F127 via the left-
down association in the following commutative diagram where we chose
q = (127, ξ21 − 25)

Z[x] Z[x]/(Φ21(x)) Z[ξ21]

F127[x] F127[x]/(x− 25) F127

which is in fact the same procedure as taking the residue field at the prime q
of D.
p = 127;
F = ZZ/p;
R = F[v];
I = ideal (v^12-v^11+v^9-v^8+v^6-v^4+v^3-v+1); --21st cyclotomic polynomial
J = decompose(I);
length J --returns 12
K = toField(R/J_0);
P = K[x,y,z,t,u,w];
--Matrix of coordinates
M = matrix {

{ 0,0,0,0,0,0,0,u,-t,z},
{0,0,0,0,0,-u,t,0,0,-y},
{ 0,0,0,0,u,0,-z,0,y,0},
{0,0,0,0,-t,z,0,-y,0,0},
{ 0,0,0,0,0,0,0,0,0,x},
{ 0,0,0,0,0,0,0,0,-x,0},
{ 0,0,0,0,0,0,0,x,0,0},
{ 0,0,0,0,0,0,0,0,0,0},
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{ 0,0,0,0,0,0,0,0,0,0},
{ 0,0,0,0,0,0,0,0,0,0}

};
MM = M + transpose ( M );
--Mat is the symmetric matrix associated to the basis of the lagrangian A
Lambda = Mat-MM; --The EPW is given by
d = det(Lambda); --polynomial of degree 6, the equation for the EPW
I = ideal d;
degree(I) --returns 6
s = ideal singularLocus I; --singular locus of the EPW over the finite field
dim(s) --returns 3, so the projective dim is 2
degree(s) --returns 40

The code for computing the equations for EPW-sextics is based on the
Appendix of [KKM22].

A.3 The singular locus is smooth

Consider the proper map P5
D → SpecD, this induces a map V (I) →

SpecD where V (I) is the zero locus of our homogeneous equation inD[x0, . . . , x5].
In this setting, the fiber over the ideal (0) is the solution to the equation
with coefficients in Q[ξ21] and the fiber over the ideal q is the solution to the
equation with coefficients in the residue field F127. Since the map is proper,
the image must be either the closed point q or the entire scheme SpecD, in
particular if the fiber Xq is empty then the fiber X(0) must be empty as well.
We compute the locus YA[3] as the zero locus of the ideal generated by the
8 × 8 minors of the symmetric matrix whose zero locus is the EPW. The
outcome of the computation is that the locus YA[3] is empty over the finite
field and this implies that it is also empty over the complex numbers, proving
that A ̸∈ ∆.

The solutions over the two fields lie in a flat family and then the singular
locus of YA has dimension 2 and degree 40 over the complex numbers. In
conclusion the singular locus of the EPW coincides with the smooth surface
YA[2], since YA[2] has already degree 40 [O’G12, Corollary 1.10] and is already
contained in the singular locus. This gives A ̸∈ Σ

--The ideal generated by the 8x8 minors describes the locus Y_A[3]
J = minors(8,Lambda);
-- Dimesion of Y_A[3] (affine chart)
dim(J)
--Homogeneous ideal whose associated variety is Y_A[3]
Jh = saturate homogenize(J,x);
--Projective variety Y_A[3]
Z = Proj(P/Jh);
dim(Z1) --returns -2

Variables that are not defined here are the same as above.
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Appendix B

Tables of lattices

This appendix contains the tables of lattices classifying non-symplectic
involutions on manifold of OG10.

Table B.1: Pairs (ΛG,ΛG) for G ⊂ O(Λ) of prime order p = 2 and sgn(ΛG) =
(2, rk(ΛG)− 2).

No. rk(ΛG) ΛG ΛG sgn(ΛG) a δ

1 4 E8(−1)⊕2 ⊕ U⊕2 ⊕[−2]⊕2 U⊕[2]⊕2 (2, 20) 2 1

2 4 E8(−1)⊕2 ⊕ U⊕[2] ⊕ [−2]⊕3 [2]⊕3 ⊕ [−2] (2, 20) 4 1

3 5 E8(−1)⊕2 ⊕ U⊕2 ⊕[−2] U⊕2 ⊕[2] (2, 19) 1 1

4 5 E8(−1)⊕2 ⊕ U⊕[2] ⊕ [−2]⊕2 U⊕[2]⊕2 ⊕ [−2] (2, 19) 3 1

5 5 E8(−1)⊕2 ⊕ [2]⊕2 ⊕ [−2]⊕3 [2]⊕3 ⊕ [−2]⊕2 (2, 19) 5 1

6 6 E8(−1)⊕2 ⊕ U⊕2 U⊕3 (2, 18) 0 0

7 6 E8(−1)⊕2 ⊕ U⊕U(2) U⊕2 ⊕U(2) (2, 18) 2 0

8 6 E8(−1)⊕2 ⊕ U⊕[2] ⊕ [−2] U⊕2 ⊕[2] ⊕ [−2] (2, 18) 2 1

9 6 E8(−1)⊕2 ⊕ U(2)⊕2 U⊕U(2)⊕2 (2, 18) 4 0

10 6 E8(−1)⊕2 ⊕ [−2]⊕2 ⊕ [2]⊕2 U⊕[2]⊕2 ⊕ [−2]⊕2 (2, 18) 4 1

11 6 E8(−1) ⊕ U⊕D4(−1)⊕2 ⊕ U(2) U(2)⊕3 (2, 18) 6 0

12 6 E8(−1) ⊕ U⊕D4(−1)⊕2 ⊕ [2] ⊕ [−2] [2]⊕3 ⊕ [−2]⊕3 (2, 18) 6 1

13 7 E8(−1)⊕2 ⊕ U⊕[2] U⊕3 ⊕[−2] (2, 17) 1 1

14 7 E8(−1)⊕2 ⊕ [2]⊕2 ⊕ [−2] U⊕2 ⊕[2] ⊕ [−2]⊕2 (2, 17) 3 1

15 7 E8(−1) ⊕ U⊕2 ⊕D4(−1) ⊕ [−2]⊕3 U⊕[2]⊕2 ⊕ [−2]⊕3 (2, 17) 5 1

16 7 E8(−1) ⊕ U⊕D4(−1) ⊕ [2] ⊕ [−2]⊕4 [2]⊕3 ⊕ [−2]⊕4 (2, 17) 7 1

17 8 E8(−1)⊕2 ⊕ [2]⊕2 U⊕3 ⊕[−2]⊕2 (2, 16) 2 1

18 8 E8(−1) ⊕ U⊕2 ⊕D4(−1) ⊕ [−2]⊕2 U⊕2 ⊕[2] ⊕ [−2]⊕3 (2, 16) 4 1

19 8 E8(−1) ⊕ D4(−1)⊕2 ⊕ [2]⊕2 U⊕[2]⊕2 ⊕ [−2]⊕4 (2, 16) 6 1

20 8 E8(−1) ⊕ U⊕[2] ⊕ [−2]⊕7 [2]⊕3 ⊕ [−2]⊕5 (2, 16) 8 1

21 9 E8(−1) ⊕ U⊕2 ⊕D4(−1) ⊕ [−2] U⊕3 ⊕[−2]⊕3 (2, 15) 3 1

22 9 E8(−1) ⊕ U⊕D4(−1) ⊕ [2] ⊕ [−2]⊕2 U⊕2 ⊕[−2]⊕4 ⊕ [2] (2, 15) 5 1

23 9 E8(−1) ⊕ D4(−1) ⊕ [2]⊕2 ⊕ [−2]⊕3 U⊕[2]⊕2 ⊕ [−2]⊕5 (2, 15) 7 1

24 9 E8(−1) ⊕ [2]⊕2 ⊕ [−2]⊕7 [2]⊕3 ⊕ [−2]⊕6 (2, 15) 9 1

25 10 E8(−1) ⊕ U⊕U(2) ⊕ D4(−1) U⊕2 ⊕U(2) ⊕ D4(−1) (2, 14) 4 0

26 10 E8(−1) ⊕ U⊕D4(−1) ⊕ [2] ⊕ [−2] U⊕3 ⊕[−2]⊕4 (2, 14) 4 1

27 10 U⊕2 ⊕D4(−1)⊕3 U⊕U(2)⊕2 ⊕ D4(−1) (2, 14) 6 0

28 10 E8(−1) ⊕ D4(−1) ⊕ [2]⊕2 ⊕ [−2]⊕2 U⊕2 ⊕[2] ⊕ [−2]⊕5 (2, 14) 6 1

29 10 U⊕U(2) ⊕ D4(−1)⊕3 U(2)⊕3 ⊕ D4(−1) (2, 14) 8 0

30 10 U⊕2 ⊕D4(−1)⊕2 ⊕ [−2]⊕4 U⊕[2]⊕2 ⊕ [−2]⊕6 (2, 14) 8 1

31 10 U⊕D4(−1)⊕2 ⊕ [2] ⊕ [−2]⊕5 [2]⊕3 ⊕ [−2]⊕7 (2, 14) 10 1

32 11 E8(−1) ⊕ U⊕2 ⊕[−2]⊕3 E8(−1) ⊕ [2]⊕3 (2, 13) 3 1

33 11 E8(−1) ⊕ D4(−1) ⊕ [2]⊕2 ⊕ [−2] U⊕3 ⊕[−2]⊕5 (2, 13) 5 1

34 11 E8(−1) ⊕ [2]⊕2 ⊕ [−2]⊕5 U⊕2 ⊕[2] ⊕ [−2]⊕6 (2, 13) 7 1

35 11 U⊕2 ⊕D4(−1) ⊕ [−2]⊕7 U⊕[2]⊕2 ⊕ [−2]⊕7 (2, 13) 9 1

36 11 U⊕D4(−1) ⊕ [2] ⊕ [−2]⊕8 [2]⊕3 ⊕ [−2]⊕8 (2, 13) 11 1

37 12 E8(−1) ⊕ U⊕2 ⊕[−2]⊕2 E8(−1) ⊕ U⊕[2]⊕2 (2, 12) 2 1

38 12 E8(−1) ⊕ U⊕[2] ⊕ [−2]⊕3 E8(−1) ⊕ [2]⊕3 ⊕ [−2] (2, 12) 4 1

39 12 E8(−1) ⊕ [2]⊕2 ⊕ [−2]⊕4 U⊕3 ⊕[−2]⊕6 (2, 12) 6 1
Continues on next page
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Table B.1, follows from previous page

No. rk(ΛG) ΛG ΛG sgn(ΛG) a δ

40 12 U⊕2 ⊕D4(−1) ⊕ [−2]⊕6 U⊕2 ⊕[2] ⊕ [−2]⊕7 (2, 12) 8 1

41 12 U⊕D4(−1) ⊕ [2] ⊕ [−2]⊕7 U⊕[2]⊕2 ⊕ [−2]⊕8 (2, 12) 10 1

42 12 U⊕[2] ⊕ [−2]⊕11 [2]⊕3 ⊕ [−2]⊕9 (2, 12) 12 1

43 13 E8(−1) ⊕ U⊕2 ⊕[−2] E8(−1) ⊕ U⊕2 ⊕[2] (2, 11) 1 1

44 13 E8(−1) ⊕ U⊕[2] ⊕ [−2]⊕2 E8(−1) ⊕ U⊕[2]⊕2 ⊕ [−2] (2, 11) 3 1

45 13 E8(−1) ⊕ [2]⊕2 ⊕ [−2]⊕3 E8(−1) ⊕ [2]⊕3 ⊕ [−2]⊕2 (2, 11) 5 1

46 13 U⊕2 ⊕D4(−1) ⊕ [−2]⊕5 U⊕3 ⊕[−2]⊕7 (2, 11) 7 1

47 13 U⊕D4(−1) ⊕ [2] ⊕ [−2]⊕6 U⊕2 ⊕[2] ⊕ [−2]⊕8 (2, 11) 9 1

48 13 D4(−1) ⊕ [2]⊕2 ⊕ [−2]⊕7 U⊕[2]⊕2 ⊕ [−2]⊕9 (2, 11) 11 1

49 13 [2]⊕2 ⊕ [−2]⊕11 [2]⊕3 ⊕ [−2]⊕10 (2, 11) 13 1

50 14 E8(−1) ⊕ U⊕2 E8(−1) ⊕ U⊕3 (2, 10) 0 0

51 14 E8(−1) ⊕ U⊕U(2) E8(−1) ⊕ U⊕2 ⊕U(2) (2, 10) 2 0

52 14 E8(−1) ⊕ U⊕[2] ⊕ [−2] E8(−1) ⊕ U⊕2 ⊕[2] ⊕ [−2] (2, 10) 2 1

53 14 E8(−1) ⊕ U(2)⊕2 E8(−1) ⊕ U⊕U(2)⊕2 (2, 10) 4 0

54 14 E8(−1) ⊕ [2]⊕2 ⊕ [−2]⊕2 E8(−1) ⊕ U⊕[2]⊕2 ⊕ [−2]⊕2 (2, 10) 4 1

55 14 U⊕U(2) ⊕ D4(−1)⊕2 E8(−1) ⊕ U(2)⊕3 (2, 10) 6 0

56 14 U⊕2 ⊕D4(−1) ⊕ [−2]⊕4 E8(−1) ⊕ [2]⊕3 ⊕ [−2]⊕3 (2, 10) 6 1

57 14 U(2)⊕2 ⊕ D4(−1)⊕2 D4(−1)⊕2 ⊕ U⊕U(2)⊕2 (2, 10) 8 0

58 14 D4(−1)⊕2 ⊕ [2]⊕2 ⊕ [−2]⊕2 U⊕3 ⊕[−2]⊕8 (2, 10) 8 1

59 14 U⊕U(2) ⊕ E8(−2) D4(−1)⊕2 ⊕ U(2)⊕3 (2, 10) 10 0

60 14 U⊕[2] ⊕ [−2]⊕9 D4(−1)⊕2 ⊕ [2]⊕3 ⊕ [−2]⊕3 (2, 10) 10 1

61 14 E8(−2) ⊕ U(2)⊕2 E8(−2) ⊕ U⊕U(2)⊕2 (2, 10) 12 0

62 14 [2]⊕2 ⊕ [−2]⊕10 U⊕[2]⊕2 ⊕ [−2]⊕10 (2, 10) 12 1

63 15 E8(−1) ⊕ U⊕[2] E8(−1) ⊕ U⊕3 ⊕[−2] (2, 9) 1 1

64 15 E8(−1) ⊕ [2]⊕2 ⊕ [−2] E8(−1) ⊕ U⊕2 ⊕[2] ⊕ [−2]⊕2 (2, 9) 3 1

65 15 U⊕2 ⊕D4(−1) ⊕ [−2]⊕3 E8(−1) ⊕ U⊕[2]⊕2 ⊕ [−2]⊕3 (2, 9) 5 1

66 15 U⊕D4(−1) ⊕ [2] ⊕ [−2]⊕4 E8(−1) ⊕ [2]⊕3 ⊕ [−2]⊕4 (2, 9) 7 1

67 15 D4(−1) ⊕ [2]⊕2 ⊕ [−2]⊕5 U⊕3 ⊕[−2]⊕9 (2, 9) 9 1

68 15 [2]⊕2 ⊕ [−2]⊕9 U⊕2 ⊕[2]⊕2 ⊕ [−2]⊕9 (2, 9) 11 1

69 16 E8(−1) ⊕ [2]⊕2 E8(−1) ⊕ U⊕3 ⊕[−2]⊕2 (2, 8) 2 1

70 16 U⊕2 ⊕D4(−1) ⊕ [−2]⊕2 E8(−1) ⊕ D4(−1) ⊕ U⊕[2]⊕2 (2, 8) 4 1

71 16 U⊕2 ⊕[−2]⊕6 E8(−1) ⊕ U⊕[2]⊕2 ⊕ [−2]⊕4 (2, 8) 6 1

72 16 U⊕[2] ⊕ [−2]⊕7 E8(−1) ⊕ [2]⊕3 ⊕ [−2]⊕5 (2, 8) 8 1

73 16 [2]⊕2 ⊕ [−2]⊕8 U⊕3 ⊕[−2]⊕10 (2, 8) 10 1

74 17 U⊕2 ⊕D4(−1) ⊕ [−2] E8(−1) ⊕ U⊕3 ⊕[−2]⊕3 (2, 7) 3 1

75 17 U⊕2 ⊕[−2]⊕5 E8(−1) ⊕ U⊕2 ⊕[2] ⊕ [−2]⊕4 (2, 7) 5 1

76 17 U⊕[2] ⊕ [−2]⊕6 E8(−1) ⊕ U⊕[2]⊕2 ⊕ [−2]⊕5 (2, 7) 7 1

77 17 [2]⊕2 ⊕ [−2]⊕7 E8(−1) ⊕ [2]⊕3 ⊕ [−2]⊕6 (2, 7) 9 1

78 18 U⊕2 ⊕D4(−1) E8(−1) ⊕ U⊕3 ⊕D4(−1) (2, 6) 2 0

79 18 U⊕U(2) ⊕ D4(−1) E8(−1) ⊕ U⊕2 ⊕U(2) ⊕ D4(−1) (2, 6) 4 0

80 18 U⊕D4(−1) ⊕ [2] ⊕ [−2] E8(−1) ⊕ U⊕2 ⊕D4(−1) ⊕ [2] ⊕ [−2] (2, 6) 4 1

81 18 U(2)⊕2 ⊕ D4(−1) E8(−1) ⊕ U⊕U(2)⊕2 ⊕ D4(−1) (2, 6) 6 0

82 18 U⊕[2] ⊕ [−2]⊕5 E8(−1) ⊕ U⊕D4(−1) ⊕ [2]⊕2 ⊕ [−2]⊕2 (2, 6) 6 1

83 18 [2]⊕2 ⊕ [−2]⊕6 E8(−1) ⊕ D4(−1) ⊕ [2]⊕3 ⊕ [−2]⊕3 (2, 6) 8 1

84 19 U⊕2 ⊕[−2]⊕3 E8(−1)⊕2 ⊕ [2]⊕3 (2, 5) 3 1

85 19 U⊕[2] ⊕ [−2]⊕4 E8(−1) ⊕ U⊕2 ⊕D4(−1) ⊕ [2] ⊕ [−2]⊕2 (2, 5) 5 1

86 19 [2]⊕2 ⊕ [−2]⊕5 E8(−1) ⊕ U⊕D4(−1) ⊕ [2]⊕2 ⊕ [−2]⊕3 (2, 5) 7 1

87 20 U⊕2 ⊕[−2]⊕2 E8(−1)⊕2 ⊕ U⊕[2]⊕2 (2, 4) 2 1

88 20 U⊕[2] ⊕ [−2]⊕3 E8(−1)⊕2 ⊕ [2]⊕3 ⊕ [−2] (2, 4) 4 1

89 20 [2]⊕2 ⊕ [−2]⊕4 E8(−1) ⊕ U⊕2 ⊕D4(−1) ⊕ [2] ⊕ [−2]⊕3 (2, 4) 6 1

90 21 U⊕2 ⊕[−2] E8(−1)⊕2 ⊕ U⊕2 ⊕[2] (2, 3) 1 1

91 21 U⊕[2] ⊕ [−2]⊕2 E8(−1)⊕2 ⊕ U⊕[2]⊕2 ⊕ [−2] (2, 3) 3 1

92 21 [2]⊕2 ⊕ [−2]⊕3 E8(−1)⊕2 ⊕ [2]⊕3 ⊕ [−2]⊕2 (2, 3) 5 1

93 22 U⊕2 E8(−1)⊕2 ⊕ U⊕3 (2, 2) 0 0

94 22 U⊕U(2) E8(−1)⊕2 ⊕ U⊕2 ⊕U(2) (2, 2) 2 0

95 22 U⊕[2] ⊕ [−2] E8(−1)⊕2 ⊕ U⊕2 ⊕[2] ⊕ [−2] (2, 2) 2 1

96 22 U(2)⊕2 E8(−1)⊕2 ⊕ U⊕U(2)⊕2 (2, 2) 4 0

97 22 [2]⊕2 ⊕ [−2]⊕2 E8(−1)⊕2 ⊕ U⊕[2]⊕2 ⊕ [−2]⊕2 (2, 2) 4 1

98 23 U⊕[2] E8(−1)⊕2 ⊕ U⊕3 ⊕[−2] (2, 1) 1 1

99 23 [2]⊕2 ⊕ [−2] E8(−1)⊕2 ⊕ U⊕2 ⊕[2] ⊕ [−2]⊕2 (2, 1) 3 1

100 24 [2]⊕2 E8(−1)⊕2 ⊕ U⊕3 ⊕[−2]⊕2 (2, 0) 2 1
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Table B.2: Pairs (LG,LG) for G ⊂ O(L) of prime order p = 2, trivial action
on the discriminant group.

No. rk(ΛG) LG LG sgn(LG) a(LG) δ(LG)

1 4 E8(−1)⊕2 ⊕ U⊕2 ⊕[−2]⊕2 [2] ⊕ [−6] (2, 20) 2 1

2 5 E8(−1)⊕2 ⊕ U⊕2 ⊕[−2] A2(−1) ⊕ [2] (2, 19) 1 1

3 5 E8(−1)⊕2 ⊕ U⊕[2] ⊕ [−2]⊕2 [2] ⊕ [−2] ⊕ [−6] (2, 19) 3 1

4 6 E8(−1)⊕2 ⊕ U⊕2 U⊕A2(−1) (2, 18) 0 0

5 6 E8(−1)⊕2 ⊕ U⊕U(2) U(2) ⊕ A2(−1) (2, 18) 2 0

6 6 E8(−1)⊕2 ⊕ U⊕[2] ⊕ [−2] A2(−1) ⊕ [2] ⊕ [−2] (2, 18) 2 1

7 6 E8(−1) ⊕ [−2]⊕2 ⊕ [2]⊕2 [2] ⊕ [−2]⊕2 ⊕ [−6] (2, 18) 4 1

8 7 E8(−1)⊕2 ⊕ U⊕[2] U⊕A2(−1) ⊕ [−2] (2, 17) 1 1

9 7 E8(−1)⊕2 ⊕ [2]⊕2 ⊕ [−2] A2(−1) ⊕ [2] ⊕ [−2]⊕2 (2, 17) 3 1

10 7 E8(−1) ⊕ U⊕2 ⊕D4(−1) ⊕ [−2]⊕3 [2] ⊕ [−2]⊕3 ⊕ [−6] (2, 17) 5 1

11 8 E8(−1)⊕2 ⊕ [2]⊕2 U⊕A2(−1) ⊕ [−2]⊕2 (2, 16) 2 1

12 8 E8(−1) ⊕ U⊕2 ⊕D4(−1) ⊕ [−2]⊕2 A2(−1) ⊕ [2] ⊕ [−2]⊕3 (2, 16) 4 1

13 8 E8(−1) ⊕ D4(−1)⊕2 ⊕ [2]⊕2 [2] ⊕ [−2]⊕4 ⊕ [−6] (2, 16) 6 1

14 9 E8(−1) ⊕ U⊕2 ⊕D4(−1) ⊕ [−2] U⊕A2(−1) ⊕ [−2]⊕3 (2, 15) 3 1

15 9 E8(−1) ⊕ U⊕D4(−1) ⊕ [2] ⊕ [−2]⊕2 A2(−1) ⊕ [−2]⊕4 ⊕ [2] (2, 15) 5 1

16 9 E8(−1) ⊕ D4(−1) ⊕ [2]⊕2 ⊕ [−2]⊕3 [2] ⊕ [−2]⊕5 ⊕ [−6] (2, 15) 7 1
17 10 E8(−1) ⊕ U⊕U(2) ⊕ D4(−1) U(2) ⊕ A2(−1) ⊕ D4(−1) (2, 14) 4 0

18 10 E8(−1) ⊕ U⊕D4(−1) ⊕ [2] ⊕ [−2] U⊕A2(−1) ⊕ [−2]⊕4 (2, 14) 4 1

19 10 U⊕2 ⊕D4(−1)⊕3 U⊕E6(−2) (2, 14) 6 0

20 10 E8(−1) ⊕ D4(−1) ⊕ [2]⊕2 ⊕ [−2]⊕2 A2(−1) ⊕ [2] ⊕ [−2]⊕5 (2, 14) 6 1

21 10 U⊕2 ⊕D4(−1)⊕2 ⊕ [−2]⊕4 [2] ⊕ [−2]⊕6 ⊕ [−6] (2, 14) 8 1

22 11 E8(−1) ⊕ U⊕2 ⊕[−2]⊕3 D6(−1) ⊕ A2(−1) ⊕ [2] (2, 13) 3 1

23 11 E8(−1) ⊕ D4(−1) ⊕ [2]⊕2 ⊕ [−2] U⊕A2(−1) ⊕ [−2]⊕5 (2, 13) 5 1

24 11 E8(−1) ⊕ [2]⊕2 ⊕ [−2]⊕5 A2(−1) ⊕ [2] ⊕ [−2]⊕6 (2, 13) 7 1

25 11 U⊕2 ⊕D4(−1) ⊕ [−2]⊕7 [2] ⊕ [−2]⊕7 ⊕ [−6] (2, 13) 9 1

26 12 E8(−1) ⊕ U⊕2 ⊕[−2]⊕2 E8(−1) ⊕ [2] ⊕ [−6] (2, 12) 2 1

27 12 E8(−1) ⊕ U⊕[2] ⊕ [−2]⊕3 D6(−1) ⊕ A2(−1) ⊕ [2] ⊕ [−2] (2, 12) 4 1

28 12 E8(−1) ⊕ [2]⊕2 ⊕ [−2]⊕4 U⊕A2(−1) ⊕ [−2]⊕6 (2, 12) 6 1

29 12 U⊕2 ⊕D4(−1) ⊕ [−2]⊕6 A2(−1) ⊕ [2] ⊕ [−2]⊕7 (2, 12) 8 1

30 12 U⊕D4(−1) ⊕ [2] ⊕ [−2]⊕7 [2] ⊕ [−2]⊕8 ⊕ [−6] (2, 12) 10 1

31 13 E8(−1) ⊕ U⊕2 ⊕[−2] E8(−1) ⊕ A2(−1) ⊕ [2] (2, 11) 1 1

32 13 E8(−1) ⊕ [2] ⊕ [−2]⊕2 E8(−1) ⊕ [2] ⊕ [−2] ⊕ [−6] (2, 11) 3 1

33 13 E8(−1) ⊕ [2]⊕2 ⊕ [−2]⊕3 D6(−1) ⊕ A2(−1) ⊕ [2] ⊕ [−2]⊕2 (2, 11) 5 1

34 13 U⊕2 ⊕D4(−1) ⊕ [−2]⊕5 U⊕A2(−1) ⊕ [−2]⊕7 (2, 11) 7 1

35 13 U⊕D4(−1) ⊕ [2] ⊕ [−2]⊕6 U⊕[−2]⊕8 ⊕ [−6] (2, 11) 9 1

36 13 D4(−1) ⊕ [2]⊕2 ⊕ [−2]⊕7 [2] ⊕ [−2]⊕9 ⊕ [−6] (2, 11) 11 1

37 14 E8(−1) ⊕ U⊕2 E8(−1) ⊕ U⊕A2(−1) (2, 10) 0 0
38 14 E8(−1) ⊕ U⊕U(2) E8(−1) ⊕ U(2) ⊕ A2(−1) (2, 10) 2 0
39 14 E8(−1) ⊕ U⊕[2] ⊕ [−2] E8(−1) ⊕ A2(−1) ⊕ [2] ⊕ [−2] (2, 10) 2 1

40 14 E8(−1) ⊕ U(2)⊕2 U⊕D4(−1)⊕2 ⊕ A2(−1) (2, 10) 4 0

41 14 E8(−1) ⊕ [2]⊕2 ⊕ [−2]⊕2 E8(−1) ⊕ [2] ⊕ [−2]⊕2 ⊕ [−6] (2, 10) 4 1

42 14 U⊕2 ⊕D4(−1) ⊕ [−2]⊕4 D6(−1) ⊕ A2(−1) ⊕ [2] ⊕ [−2]⊕3 (2, 10) 6 1

43 14 U(2)⊕2 ⊕ D4(−1)⊕2 D4(−1) ⊕ U⊕E6(−2) (2, 10) 8 0

44 14 D4(−1)⊕2 ⊕ [2]⊕2 ⊕ [−2]⊕2 U⊕A2(−1) ⊕ [−2]⊕8 (2, 10) 8 1
45 14 U⊕U(2) ⊕ E8(−2) D4(−1) ⊕ U(2) ⊕ E6(−2) (2, 10) 10 0

46 14 U⊕[2] ⊕ [−2]⊕9 [2] ⊕ [−2] ⊕ E6(−2) ⊕ D4(−1) (2, 10) 10 1

47 14 U(2)⊕2 ⊕ [−2]⊕8 U(2) ⊕ [−2]⊕9 ⊕ [−6] (2, 10) 12 1
48 15 E8(−1) ⊕ U⊕[2] E8(−1) ⊕ U⊕A2(−1) ⊕ [−2] (2, 9) 1 1

49 15 E8(−1) ⊕ [2]⊕2 ⊕ [−2] E8(−1) ⊕ A2(−1) ⊕ [2] ⊕ [−2]⊕2 (2, 9) 3 1

50 15 U⊕2 ⊕D4(−1) ⊕ [−2]⊕3 E8(−1) ⊕ [2] ⊕ [−2]⊕3 ⊕ [−6] (2, 9) 5 1

51 15 U⊕D4(−1) ⊕ [2] ⊕ [−2]⊕4 D6(−1) ⊕ A2(−1) ⊕ [2] ⊕ [−2]⊕4 (2, 9) 7 1

52 15 D4(−1) ⊕ [2]⊕2 ⊕ [−2]⊕5 U⊕A2(−1) ⊕ [−2]⊕9 (2, 9) 9 1

53 15 [2]⊕2 ⊕ [−2]⊕9 A2(−1) ⊕ [2]⊕2 ⊕ [−2]⊕9 (2, 9) 11 1

54 16 U⊕2 ⊕D4(−1) ⊕ [−2]⊕2 E8(−1) ⊕ D4(−1) ⊕ [2] ⊕ [−6] (2, 8) 4 1

55 16 U⊕2 ⊕[−2]⊕6 D6(−1) ⊕ A2(−1) ⊕ U⊕[−2]⊕4 (2, 8) 6 1

56 16 U⊕[2] ⊕ [−2]⊕7 D6(−1) ⊕ A2(−1) ⊕ [2] ⊕ [−2]⊕5 (2, 8) 8 1

57 16 [2]⊕2 ⊕ [−2]⊕8 U⊕A2(−1) ⊕ [−2]⊕10 (2, 8) 10 1

58 17 U⊕2 ⊕D4(−1) ⊕ [−2] E8(−1) ⊕ U⊕A2(−1) ⊕ [−2]⊕3 (2, 7) 3 1

59 17 U⊕2 ⊕[−2]⊕5 E8(−1) ⊕ A2(−1) ⊕ [2] ⊕ [−2]⊕4 (2, 7) 5 1

60 17 U⊕[2]⊕2 ⊕ [−2]⊕5 E8(−1) ⊕ [2] ⊕ [−2]⊕5 ⊕ [−6] (2, 7) 7 1

61 17 [2]⊕2 ⊕ [−2]⊕7 D6(−1) ⊕ A2(−1) ⊕ [2] ⊕ [−2]⊕6 (2, 7) 9 1

62 18 U⊕2 ⊕D4(−1) E8(−1) ⊕ U⊕A2(−1) ⊕ D4(−1) (2, 6) 2 0
63 18 U⊕U(2) ⊕ D4(−1) E8(−1) ⊕ A2(−1) ⊕ U(2) ⊕ D4(−1) (2, 6) 4 0
64 18 U⊕D4(−1) ⊕ [2] ⊕ [−2] E8(−1) ⊕ A2(−1) ⊕ D4(−1) ⊕ [2] ⊕ [−2] (2, 6) 4 1

65 18 U(2)⊕2 ⊕ D4(−1) E8(−1) ⊕ U⊕E6(−2) (2, 6) 6 0

66 18 D4(−1) ⊕ [2]⊕2 ⊕ [−2]⊕2 E8(−1) ⊕ D4(−1) ⊕ [2] ⊕ [−2]⊕2 ⊕ [−6] (2, 6) 6 1

67 18 [2]⊕2 ⊕ [−2]⊕6 D4(−1) ⊕ D6(−1) ⊕ [2] ⊕ [−2]⊕3 (2, 6) 8 1

68 19 U⊕2 ⊕[−2]⊕3 E8(−1) ⊕ D6(−1) ⊕ A2(−1) ⊕ [2] (2, 5) 3 1
Continues on next page
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No. rk(ΛG) LG LG sgn(LG) a(LG) δ(LG)

69 19 U⊕[2] ⊕ [−2]⊕4 E8(−1) ⊕ A2(−1) ⊕ D4(−1) ⊕ [2] ⊕ [−2]⊕2 (2, 5) 5 1

70 19 [2]⊕2 ⊕ [−2]⊕5 E8(−1) ⊕ D4(−1) ⊕ [2] ⊕ [−2]⊕3 ⊕ [−6] (2, 5) 7 1

71 20 U⊕2 ⊕[−2]⊕2 E8(−1)⊕2 ⊕ [2] ⊕ [−6] (2, 4) 2 1

72 20 U⊕[2] ⊕ [−2]⊕3 E8(−1) ⊕ D6(−1) ⊕ A2(−1) ⊕ [2] ⊕ [−2] (2, 4) 4 1

73 20 [2]⊕2 ⊕ [−2]⊕4 E8(−1) ⊕ A2(−1) ⊕ D4(−1) ⊕ [2] ⊕ [−2]⊕3 (2, 4) 6 1

74 21 U⊕2 ⊕[−2] E8(−1)⊕2 ⊕ A2(−1) ⊕ [2] (2, 3) 1 1

75 21 U⊕[2] ⊕ [−2]⊕2 E8(−1)⊕2 ⊕ [2] ⊕ [−2] ⊕ [−6] (2, 3) 3 1

76 21 [2]⊕2 ⊕ [−2]⊕3 E8(−1) ⊕ D6(−1) ⊕ A2(−1) ⊕ [2] ⊕ [−2]⊕2 (2, 3) 5 1

77 22 U⊕2 E8(−1)⊕2 ⊕ U⊕A2(−1) (2, 2) 0 0

78 22 U⊕U(2) E8(−1)⊕2 ⊕ A2(−1) ⊕ U(2) (2, 2) 2 0

79 22 U⊕[2] ⊕ [−2] E8(−1)⊕2 ⊕ A2(−1) ⊕ [2] ⊕ [−2] (2, 2) 2 1

80 22 U(2)⊕2 E8(−1) ⊕ U⊕D4(−1)⊕2 ⊕ A2(−1) (2, 2) 4 0

81 22 [2]⊕2 ⊕ [−2]⊕2 E8(−1)⊕2 ⊕ [2] ⊕ [−2]⊕2 ⊕ [−6] (2, 2) 4 1

82 23 U⊕[2] E8(−1)⊕2 ⊕ U⊕A2(−1) ⊕ [−2] (2, 1) 1 1

83 23 [2]⊕2 ⊕ [−2] E8(−1)⊕2 ⊕ A2(−1) ⊕ [2] ⊕ [−2]⊕2 (2, 1) 3 1

84 24 [2]⊕2 E8(−1)⊕2 ⊕ U⊕A2(−1) ⊕ [−2]⊕2 (2, 0) 2 1

Table B.3: Pairs (LG,LG) for G ⊂ O(L) of prime order p = 2, non-trivial
action on the discriminant group.

No. rk(LG) LG = (LG)⊥L LG = [2]⊥ΛG
sgn(LG) a(LG) δ(LG)

1 3 [2]⊕2 ⊕ [−6] E8(−1)⊕2 ⊕ U⊕[−2]⊕3 (1, 20) 3 1

2 4 [2]⊕2 ⊕ A2(−1) E8(−1)⊕2 ⊕ U⊕[−2]⊕2 (1, 19) 2 1

3 4 [2]⊕2 ⊕ [−2] ⊕ [−6] E8(−1)⊕2 ⊕ [2] ⊕ [−2]⊕3 (1, 19) 3 1

4 5 U⊕[2] ⊕ A2(−1) E8(−1)⊕2 ⊕ U⊕[−2] (1, 18) 1 1

6 5 [2]⊕2 ⊕ [−2] ⊕ A2(−1) E8(−1)⊕2 ⊕ [2] ⊕ [−2]⊕2 (1, 18) 3 1

7 5 [2]⊕2 ⊕ [−2]⊕2 ⊕ [−6] E8(−1) ⊕ U⊕D4(−1)⊕2 ⊕ [−2] (1, 18) 5 1

8 6 U⊕2 ⊕A2(−1) E8(−1)⊕2 ⊕ U (1, 17) 0 0

9 6 U⊕U(2) ⊕ A2(−1) E8(−1)⊕2 ⊕ U(2) (1, 17) 2 0

11 6 U⊕[2] ⊕ [−2] ⊕ A2(−1) E8(−1)⊕2 ⊕ [2] ⊕ [−2] (1, 17) 2 1

12 6 U(2)⊕2 ⊕ A2(−1) E8(−1) ⊕ U⊕D4(−1)⊕2 (1, 17) 4 0

13 6 [2]⊕2 ⊕ [−2]⊕2 ⊕ A2(−1) E8(−1) ⊕ U⊕D6(−1) ⊕ [−2]⊕2 (1, 17) 4 1

14 6 [2]⊕2 ⊕ [−2]⊕3 ⊕ [−6] E8(−1) ⊕ U⊕D4(−1) ⊕ [−2]⊕4 (1, 17) 6 1

15 7 U⊕2 ⊕[−2] ⊕ A2(−1) E8(−1)⊕2 ⊕ [2] (1, 16) 1 1

16 7 U⊕[2] ⊕ [−2]⊕2 ⊕ A2(−1) E8(−1) ⊕ U⊕D6(−1) ⊕ [−2] (1, 16) 3 1

17 7 D4(−1) ⊕ [2]⊕2 ⊕ [−6] E8(−1) ⊕ U⊕D4(−1) ⊕ [−2]⊕3 (1, 16) 5 1

18 7 [2]⊕2 ⊕ [−2]⊕4 ⊕ [−6] E8(−1) ⊕ U⊕[−2]⊕7 (1, 16) 7 1

19 8 U⊕2 ⊕[−2]⊕2 ⊕ A2(−1) E8(−1) ⊕ U⊕D6(−1) (1, 15) 2 0

20 8 D4(−1) ⊕ [2]⊕2 ⊕ A2(−1) E8(−1) ⊕ U⊕D4(−1) ⊕ [−2]⊕2 (1, 15) 4 1

21 8 D4(−1) ⊕ [2]⊕2 ⊕ [−2] ⊕ [−6] E8(−1) ⊕ D4(−1) ⊕ [2] ⊕ [−2]⊕3 (1, 15) 6 1

22 8 [2]⊕2 ⊕ [−2]⊕5 ⊕ [−6] E8(−1) ⊕ [2] ⊕ [−2]⊕7 (1, 15) 8 1
23 9 U⊕D4(−1) ⊕ [2] ⊕ A2(−1) E8(−1) ⊕ U⊕D4(−1) ⊕ [−2] (1, 14) 3 1

24 9 D4(−1) ⊕ [2]⊕2 ⊕ [−2] ⊕ A2(−1) E8(−1) ⊕ D4(−1) ⊕ [2] ⊕ [−2]⊕2 (1, 14) 5 1

25 9 [2]⊕2 ⊕ [−2]⊕5 ⊕ A2(−1) E8(−1) ⊕ [2] ⊕ [−2]⊕6 (1, 14) 7 1

26 9 [2]⊕2 ⊕ [−2]⊕6 ⊕ [−6] U⊕D4(−1)⊕2 ⊕ [−2]⊕5 (1, 14) 9 1
27 10 U⊕U(2) ⊕ D4(−1) ⊕ A2(−1) E8(−1) ⊕ D4(−1) ⊕ U(2) (1, 13) 4 0
28 10 U⊕[2] ⊕ [−2] ⊕ D4(−1) ⊕ A2(−1) E8(−1) ⊕ D4(−1) ⊕ [2] ⊕ [−2] (1, 13) 4 1

29 10 U(2)⊕2 ⊕ D4(−1) ⊕ A2(−1) U⊕D4(−1)⊕3 (1, 13) 6 0

30 10 D6(−1) ⊕ [2]⊕3 ⊕ [−6] E8(−1) ⊕ [2] ⊕ [−2]⊕5 (1, 13) 6 1

31 10 [2]⊕2 ⊕ [−2]⊕6 ⊕ A2(−1) U⊕D4(−1)⊕2 ⊕ [−2]⊕4 (1, 13) 8 1

32 10 U(2)⊕2 ⊕ E6(−2) U⊕E8(−2) ⊕ D4(−1) (1, 13) 10 0

33 10 [2]⊕2 ⊕ [−2]⊕7 ⊕ [−6] U⊕D4(−1) ⊕ [−2]⊕8 (1, 13) 10 1

34 11 E8(−1) ⊕ [2]⊕2 ⊕ [−6] E8(−1) ⊕ U⊕[−2]⊕3 (1, 12) 3 1

35 11 U⊕2 ⊕ [−2]⊕6 ⊕ A2(−1) E8(−1) ⊕ [2] ⊕ [−2]⊕4 (1, 12) 5 1

36 11 D4(−1)⊕2 ⊕ [2]⊕2 ⊕ [−6] U⊕D4(−1)⊕2 ⊕ [−2]⊕3 (1, 12) 7 1

37 12 D4(−1) ⊕ [2]⊕2 ⊕ [−2]⊕4 ⊕ [−6] U⊕D4(−1) ⊕ [−2]⊕7 (2, 12) 9 1

38 11 [2]⊕2 ⊕ [−2]⊕8 ⊕ [−6] U⊕[−2]⊕11 (1, 12) 11 1

39 12 E8(−1) ⊕ [2]⊕2 ⊕ A2(−1) E8(−1) ⊕ U⊕[−2]⊕2 (1, 11) 2 1

40 12 E8(−1) ⊕ [2]⊕2 ⊕ [2] ⊕ [−2] E8(−1) ⊕ [2] ⊕ [−2]⊕3 (1, 11) 4 1

41 12 D4(−1)⊕2 ⊕ [2]⊕2 ⊕ A2(−1) U⊕D4(−1)⊕2 ⊕ [−2]⊕2 (1, 11) 6 1

42 12 D4(−1) ⊕ [2]⊕2 ⊕ [−2]⊕4 ⊕ A2(−1) U⊕D4(−1) ⊕ [−2]⊕6 (1, 11) 8 1

43 12 D4(−1) ⊕ [2]⊕2 ⊕ [−2]⊕5 ⊕ [−6] D4(−1) ⊕ [2] ⊕ [−2]⊕7 (1, 11) 10 1

44 12 [2]⊕2 ⊕ [−2]⊕9 ⊕ [−6] [2] ⊕ [−2]⊕11 (1, 11) 12 1
Continues on next page
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No. rk(LG) LG = (LG)⊥L LG = [2]⊥ΛG
sgn(LG) a(LG) δ(LG)

45 13 E8(−1) ⊕ U⊕[2] ⊕ A2(−1) E8(−1) ⊕ U⊕[−2] (1, 10) 1 1

46 13 E8(−1) ⊕ ⊕[2] ⊕ [−2]⊕2 A2(−1) E8(−1) ⊕ [2] ⊕ [−2]⊕2 (1, 10) 3 1

47 13 U⊕D4(−1)⊕2 ⊕ [2] ⊕ A2(−1) U⊕D4(−1)⊕2 ⊕ [−2] (1, 10) 5 1

48 13 U⊕D4(−1) ⊕ [2] ⊕ [−2]⊕4 ⊕ A2(−1) U⊕D4(−1) ⊕ [−2]⊕5 (1, 10) 7 1

49 13 U⊕[2] ⊕ [−2]⊕8 ⊕ A2(−1) U⊕[−2]⊕9 (1, 10) 9 1

50 13 [2]⊕2 ⊕ [−2]⊕9 ⊕ A2(−1) [2] ⊕ [−2]⊕10 (1, 10) 11 1

51 14 E8(−1) ⊕ U⊕2 ⊕A2(−1) E8(−1) ⊕ U (1, 9) 0 0
52 14 E8(−1) ⊕ U⊕U(2) ⊕ A2(−1) E8(−1) ⊕ U(2) (1, 9) 2 0

53 14 E8(−1) ⊕ U⊕2 ⊕A2(−1) E8(−1) ⊕ [2] ⊕ [−2] (1, 9) 2 1

54 14 E8(−1) ⊕ U⊕[2] ⊕ [−2]⊕2 ⊕ [−6] U⊕D6(−1) ⊕ [−2]⊕2 (1, 9) 4 1

55 14 U⊕U(2) ⊕ D4(−1)⊕2 ⊕ A2(−1) U(2) ⊕ D4(−1)⊕2 (2, 9) 6 0

56 14 U⊕2 ⊕D4(−1) ⊕ [−2]⊕4 ⊕ A2(−1) U⊕D4(−1) ⊕ [−2]⊕4 (1, 9) 6 1

57 14 U⊕2 ⊕E8(−2) ⊕ A2(−1) U⊕E8(−2) (1, 9) 8 0

58 14 U⊕D4(−1) ⊕ [2] ⊕ [−2]⊕5 ⊕ A2(−1) D4(−1) ⊕ [2] ⊕ [−2]⊕5 (1, 9) 8 1
59 14 U⊕U(2) ⊕ E8(−2) ⊕ A2(−1) E8(−2) ⊕ U(2) (1, 9) 10 0

60 14 U⊕[2] ⊕ [−2]⊕9 ⊕ A2(−1) [2] ⊕ [−2]⊕9 (1, 9) 10 1

61 15 E8(−1) ⊕ U⊕2 ⊕[−2] ⊕ A2(−1) E8(−1) ⊕ [2] (1, 8) 1 1

62 15 E8(−1) ⊕ D4(−1) ⊕ [2]⊕2 ⊕ [−2] U⊕D4(−1) ⊕ [−2]⊕3 (1, 8) 5 1

63 15 U⊕D6(−1) ⊕ [2] ⊕ [−2]⊕4 ⊕ A2(−1) U⊕[−2]⊕7 (1, 8) 7 1

64 15 D6(−1) ⊕ [2]⊕2 ⊕ [−2]⊕5 ⊕ A2(−1) [2] ⊕ [−2]⊕8 (1, 8) 9 1

65 16 E8(−1) ⊕ D4(−1) ⊕ [2]⊕2 ⊕ A2(−1) U⊕D4(−1) ⊕ [−2]⊕2 (1, 7) 4 1

66 16 E8(−1) ⊕ [2]⊕2 ⊕ [−2]⊕4 ⊕ A2(−1) U⊕[−2]⊕6 (1, 7) 6 1

67 16 E8(−1) ⊕ [2]⊕2 ⊕ [−2]⊕5 ⊕ [−6] [2] ⊕ [−2]⊕7 (1, 7) 8 1
68 17 E8(−1) ⊕ U⊕D4(−1) ⊕ [2] ⊕ A2(−1) U⊕D4(−1) ⊕ [−2] (1, 6) 3 1

69 17 E8(−1) ⊕ U⊕[2] ⊕ [−2]⊕4 ⊕ A2(−1) U⊕[−2]⊕5 (1, 6) 5 1

70 17 E8(−1) ⊕ [2]⊕2 ⊕ [−2]⊕5 ⊕ A2(−1) [2] ⊕ [−2]⊕6 (1, 6) 7 1

71 18 E8(−1) ⊕ U⊕2 ⊕[−2]⊕4 ⊕ A2(−1) U⊕[−2]⊕4 (1, 5) 4 1

72 18 E8(−1) ⊕ U⊕[2] ⊕ [−2]⊕5 ⊕ A2(−1) [2] ⊕ [−2]⊕5 (1, 5) 6 1

73 19 E8(−1)⊕2 ⊕ [2]⊕2 ⊕ [−6] U⊕[−2]⊕3 (1, 4) 3 1

74 19 E8(−1) ⊕ U⊕2 ⊕[−2]⊕5 ⊕ A2(−1) [2] ⊕ [−2]⊕4 (1, 4) 5 1

75 20 E8(−1)⊕2 ⊕ [2]⊕2 ⊕ A2(−1) U⊕[−2]⊕2 (1, 3) 2 1

76 20 E8(−1)⊕2 ⊕ [2]⊕2 ⊕ [−2] ⊕ [−6] [2] ⊕ [−2]⊕3 (1, 3) 4 1

77 21 E8(−1)⊕2 ⊕ U⊕[2] ⊕ A2(−1) U⊕[−2] (1, 2) 1 1

78 21 E8(−1)⊕2 ⊕ [2]⊕2 ⊕ [−2] ⊕ A2(−1) [2] ⊕ [−2]⊕2 (1, 2) 3 1

79 22 E8(−1)⊕2 ⊕ U⊕2 ⊕A2(−1) U (1, 1) 1 1

80 22 E8(−1)⊕2 ⊕ U⊕[2] ⊕ [−2] ⊕ A2(−1) [2] ⊕ [−2] (1, 1) 2 1

81 23 E8(−1)⊕2 ⊕ U⊕2 ⊕[2] ⊕ A2(−1) [2] (1, 0) 1 1
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