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Abstract

Depth prediction is at the core of several computer vision applications, such as

autonomous driving, augmented reality, and robotics. Approaches for depth pre-

diction can be divided into two main classes: active and passive sensing. Active

depth sensing is the de-facto standard of applications requiring depth sensing on its

excellent accuracy and low latency in varied environments. Passive depth sensing

using cameras requires a large baseline and careful calibration to obtain accurate

depth results. Deep learning has significantly facilitated the development of dense

depth prediction, affecting the accuracy of models inferring depth from images or

multi-modal data. Moreover, despite the wide literature concerning depth prediction,

there are open problems. Most works adopted computationally expensive models,

posing a significant challenge for devices with limited computational resources. Fur-

thermore, current models seldom study the inherent characteristics of depth, which

still hold significant potential.

This thesis focuses on addressing some issues related to depth prediction. Com-

pact and effective models were proposed to recover dense results across diverse

settings, both supervised and self-supervised methods, from color camera images

and sparse LiDAR measurements. Additionally, by analyzing the characteristics of

the depth map, contrastive learning techniques are introduced to improve the depth



iv

prediction network’s learning ability and unlock further potential. All experiments

are validated on the commonly used datasets, including KITTI and the NYU depth

v2 dataset, following the standard metrics to compare our proposals with previous

representative state-of-the-art works.
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Introduction

Computer vision enables machines to interpret and understand visual information

from images or videos, and contains tasks like object detection, image recognition,

and 3D scene understanding, widely applied in fields like robotics and image analysis.

Depth prediction is an important computer vision task that aims at measuring the

distance of pixels in the image from the camera. Depth sensing methods can be

categorized into two primary categories: active and passive sensing. Representatives

of the active depth techniques are Laser Imaging Detection and Ranging (LiDAR),

structured-light, and time-of-flight (ToF) cameras. They uniformly sample the depth

of the entire scene by measuring the signal’s travel time from emitter to receiver at a

constant scan rate, providing high fidelity and precise depth information. Nonetheless,

LiDARs are prohibitively expensive and provide only sparse point clouds. Structured-

light and ToF cameras, such as the Microsoft Kinect, have limited range and are

sensitive to ambient light interference. Passive depth sensing utilizes multi-view

vision, inferring depth from environmental cues without emitting signals. It usually

refers to the problem of reconstructing an accurate 3D scene structure from multiple

images with known camera poses and intrinsic, prevalent in computer vision, robotics,

and 3D imaging. Passive methods are typically less affected by adverse weather and

offer advantages in simplicity and reduced power consumption.
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2 Introduction

The acquisition of dense and accurate depth maps is of utmost importance for

various applications, such as autonomous driving, 3D scene reconstruction, and

augmented reality. Existing active depth sensors, including LiDARs, structured-light-

based depth sensors, and ToF cameras, fail to get dense depth maps and provide only

sparse measurements due to inherent limitations. Passive depth sensing, relying on

image disparities from multiple cameras, can generate dense depth maps. However,

this approach depends on accurate triangulation, which is computational-consuming

and usually fails at textureless regions or occlusions within complex scenes. These

limitations have driven significant interest in inferring high-quality dense depth maps

through cost-effective and energy-efficient approaches.

Traditional computer vision relies on handcrafted algorithms and predefined rules

to interpret visual data. However, the advance of deep learning has revolutionized

the field, showing its immense capabilities across various computer vision tasks. Deep

learning-based computer vision has achieved remarkable accuracy in tasks such as

image classification, object detection, depth prediction, and image segmentation.

This technology also greatly promotes the advancement of depth prediction. Utilizing

neural networks, depth prediction models infer high-quality 3D depth details from

images or sparse point clouds [1, 2]. Driven by these successes, in this thesis, we

will inquire about the application of deep learning to depth prediction. We propose

compact and efficient depth prediction models from images and sparse accurate

measurements, as well as study the features of depth distribution to enhance the

models’ learning. More specifically, The main topics covered by this thesis will be

supervised compact depth completion network (Chapter 3) , together with a self-

supervised lightweight depth estimation network with few LiDAR measurements

(Chapter 4). In order to exploit more of the properties of the depth distribution, we

will also introduce contrastive learning to improve the prediction model’s learning

without increased parameters and computational complexity (Chapter 5).



CHAPTER1

Related Work
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4 Chapter 1. Related Work

In this chapter, a thorough review of the main works relevant to this thesis will

be reported. To understand this research thesis, this Chapter provides an extensive

overview of related works in the fields of depth prediction, with a particular focus

on depth completion, and monocular depth estimation. Moreover, we also review

relevant literature about feature fusion, contrastive learning, and self-attention, and

how these technologies have been adopted for this research thesis.

Depth completion. Depth completion aims at recovering dense depth maps from

sparse and incomplete measurements. For accurate depth information sampling,

high-performance LiDAR sensors are suitable for outdoor scenarios and Time-of-

Flight (ToF) sensors, such as Microsoft Kinect, work well for indoor scenes. Hawe et

al. [3] reconstructed disparity maps from very few measurements with a conjugate

subgradient method. Liu et al. [4] proposed a combined wavelet-contourlet dictionary

to estimate dense depth maps. Ma et al. [5] leveraged the regularity (e.g., many

planar surfaces with few edges) in the depth to recover dense depth. Ku et al. [6]

utilized a series of hand-crafted classical image processing algorithms to infer a dense

depth map from image and sparse depth map inputs.

Learning methods greatly facilitate depth completion. Uhrig et al. [7] proposed a

sparsity-invariant convolution layer to consider the location of missing data while

addressing data sparsity within deep networks. Huang et al. [8] proposed sparsity-

invariant multi-scale encoder-decoder network for sparse inputs and feature maps

is also proposed. Ma et al. [9, 10] utilize early fusion to combine sparse depth

with a color image and feed them into an encoder-decoder CNN, which boosts the

performance of depth completion. Multi-branch network architecture is an effective

approach to fuse multi-modal data as reported in [11, 12, 13, 14, 15]. Spatial

propagation networks (SPN) [16] is another popular depth-refinement approach [17,

18, 19, 20, 21]. DeepLiDAR [13] introduces pixel-wise surface normals as geometric

constraints and proposes multiple branches to generate dense depth maps jointly.

GuideFormer [22] and CompletionFormer [23] introduce transformers in this task

as well. Graph representations have been used [24, 25, 26] for better modeling

the relationships between sparse point clouds, while transformers [22, 23] have

been deployed to model long-range relationships. Recurrent networks can effectively
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recover dense predictions from sparse representations [17, 18, 19, 20, 21, 27].

Depth estimation. Single image depth estimation is a computer vision task

estimating the 3D structure or scene geometry from a single 2D image without the

need for multiple images or stereo pairs [28]. It is crucial for various applications,

including Augmented Reality, Autonomous Driving, and 3D Scene Reconstruction.

Early works on depth estimation using RGB images usually relied on hand-crafted

features and probabilistic graphical models. Saxena et al. [29] estimated the absolute

scales of different image patches and inferred the depth image using a Markov

Random Field model. Karsch et al. [30, 31] proposed a technique for estimating

depth from video by employing non-parametric sampling methods. Konrad et al.

[32] exploited to estimate the depth of a query image by combining the depths of

images with photometric content most closely matches retrieved from a database.

Regarding depth estimation, learning-based depth estimation approaches gained

much interest in the literature in recent years. Eigen et al. [33, 34] proposed a

multi-stage, coarse-to-fine network to estimate depth from a single image, and Liu et

al. [35] formulated depth estimation into deep CNN and a continuous conditional

random field, and attained visually sharper transitions and local details. Laina et

al. [36] a fully convolutional architecture based on the ResNet for depth estimation.

Some works introduce attention mechanisms to achieve significant performance

improvements [37, 38, 39, 40, 41, 42, 43, 44]. There have been numerous main-

stream methods formulating depth estimation by discretizing continuous depth range

into discrete bins, and classification-and-regression problems [45, 46, 47, 48]. A

high-order geometric constraint is also employed to reconstruct depth prediction in

[49, 50]. Some multi-task works predict depth maps by jointly learning with other

vision tasks [51, 52, 53, 54]. DANet [45] proposes to utilize depth distribution as

supervision for the prediction.

Self-supervised depth estimation. In recent years, self-supervised monocular

depth prediction has gained significant attention, with two primary training methods

being explored using either stereo images [55] or monocular videos [56] in the

absence of dense labels. Garg et al. [55] propose the first framework that uses an

image reconstruction loss on stereo images to train a monocular depth model. In
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contrast, Zhou et al. [56] leverage a framework that jointly estimates depth and

pose by utilizing video sequences and a photometric loss at training time. Godard et

al. [57] proposed an automatic occlusion method, Monodepth2, which minimized

photometric error to reduce the artifacts at the object boundary, and improved the

sharpness of the occlusion boundary. Subsequent works followed both paths [58, 59,

60, 61, 62, 63, 64], significantly improving the accuracy of self-supervised solutions

and shrinking the gap with supervised ones. To address the moving object problem,

some works also introduce an efficient strategy by introducing an additional loss to

ignore dynamic objects [57, 65, 66, 67, 68].

Self-supervised depth estimation with sparse measurements. A very recent

trend consists of estimating dense depth from images and sparse measurements, e.g.,

LiDAR data, in a self-supervised manner, reducing deployment costs at the minimum.

We position this task at the intersection between self-supervised depth estimation

and completion, given the minimal impact of the few LiDAR scans available with

respect to the usual standard 64-beam setup for outdoor depth completion. Some of

them [10, 69, 70, 71] construct such depth estimation network by minimizing the

photometric error across monocular sequences, as well as minimizing the discrepancy

between the sparse inputs and the dense outputs. Ma et al. [10] proposed a self-

supervised training framework on sequences of color and sparse depth images with

pose estimation using the PnP method. Choi et al. [71] designed a self-supervised

network leveraging sparsity-invariant CNNs [7] to extract sparse depth features and

pixel-adaptive convolutions to fuse image and depth features for challenging indoor

environments. LidarStereoNet [72] proposed a Lidar-stereo fusion network in an

unsupervised learning scheme. Feng et al. [73] proposed a representative solution

in this field using a two-stage network to infer dense depth maps. LidarTouch [74]

explored self-supervised depth estimation with few LiDAR data in multiple depth

completion networks and pose estimation methods.

Lightweight Dense Prediction. There is practical demand for lightweight net-

works as more mobile and on-edge devices emerge. MobileNet [75, 76] and Shuf-

fleNet [77], were developed specifically for devices with limited computing power.

BiSeNet [78] and BiSeNetV2 [79] are lightweight networks for semantic segmenta-
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tion, using two-stream paths for modeling low-level details and high level semantic

information. PyD-Net [62] and PyD-Net2 [63] are pyramidal architectures for self-

supervised monocular depth estimation, deployed on edge devices as well [80, 81,

82]. ICNet [83] uses cascade down-sampled images as input and fuses multi-scale

features to pursue efficiency.

Feature-level Fusion approaches. Deep learning methods for depth completion

usually aggregate depth and image information at the feature level. Lee et al.

[84] propose a cross-guidance between image and depth encoder branches and

fuse multi-modal features through attention. GuideNet [85] adopts image features

as guidance and fuses multi-modal features with skip connections across encoder-

decoder networks. FusionNet [14] adopts global branches to guide local branches by

concatenating features from different branches.

Multi-level feature fusion also proved effective [86, 87]. Feature pyramid net-

works [88] utilizes a top-down architecture with lateral connections and fuse multi-

scale feature through features sum. UNet++ [89] proposes a nested UNet to learn the

importance of features at different layers and adopts a dense skip connection to ag-

gregate multi-scale features. DFANet [90] develops a cross-level feature aggregation

strategy to boost accuracy.

Contrastive learning. Contrastive learning has achieved remarkable progress

employing discriminative learning by contrasting positive pairs against negative pairs

in representations space [91] and some works target visual representation learning

[92, 93, 94, 95, 96]. SimCLR [96] implements contrastive learning in a simple

network framework, where positive pairs are from data augmentation of the same

image, while negative ones are from different images. MoCo [94] maintains a queue

of negative samples and turns one branch of a Siamese network into a momentum

encoder to improve the queue consistency. Some recent works [97, 98, 99] have

introduced contrastive learning for dense prediction. ReSim [100] learns regional

representations from a pair of views originating by sliding windows from the same

image. DenseCL [98] optimizes a pairwise contrastive loss at the pixel level between

two different image views. Ke et al. [101] propose a weakly supervised segmentation

method that utilizes contrastive relationships between pixels and segments in the
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feature space. Alonso et al. [102] utilize a memory bank to contrast the features from

labeled and unlabeled data employing end-to-end training. Some works [103, 104]

use a contrastive loss to generate high-frequency details for image super-resolution

tasks. Shen et al. [105] propose contrastive differential learning in image translation

and use it for depth-to-depth synthesis.

Window-based Approaches. Long-range dependency is a notable cue and

Transformers [106], Markov Random Fields (MRFs) [107] and Conditional Random

Fields (CRFs) [108, 109] use it to boost their learning ability. However, these methods

have a severe drawback in the computational complexity, increasing quadratically

with image size. Purposely, some works aim at addressing this issue. Dosovitskiy et

al. [110] apply a transformer on sequences of image patches for image classification

tasks. Pyramid ViT [111] uses a progressive shrinking pyramid and spatial-reduction

attention to reduce computations of the transformer on large feature maps. Swin

Transformer [112] proposes a novel architecture that computes attention within a

patch-based window and uses a shifting window approach to capture attention in

non-overlapping regions. Yuan et al. [42] employ a window-based CRFs approach for

monocular depth estimation. CSWin [113] proposes a self-attention within a cross-

shaped window in different directions, which yields strong representation learning

with limited computation cost.

Self-attention and Transformers. Self-attention is well-known for modeling

long-range dependencies in learning. Wang et al. [114] introduced self-attention

to computer vision and presented a novel non-local network with great success in

multiple vision tasks. CCNet [115] further proposed sparsely-connected graphs to

generate sparse attention maps through a criss-cross path, which can reduce the

complexity.

Transformer networks in Natural Language Processing (NLP) have achieved great

success, which sparked great interest in the computer vision community. Dosovitskiy

et al. [110] is the first to apply pure Transformer architecture for visual recognition

tasks and propose Vision Transformer (ViT), achieving astonishing performance on

visual classification benchmarks. Wang et al. [111] proposed Pyramid ViT (PVT), a

hierarchical design for ViT, and proposes a progressive shrinking pyramid and spatial-
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reduction attention for various pixel-level dense prediction tasks. SegFormer [116]

further improved the vision transformer’s performance by introducing overlapping

patch embedding, depth-wise convolution, and efficient attention. Swin Transformer

[112] is a hierarchical Transformer architecture whose representation is computed

with shifted windows.
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In this chapter, we introduce popular datasets and protocols used to evaluate

predicted results for depth prediction tasks.

2.1 Reference datasets

Comparing recently introduced methods to prior research is feasible due to the

availability of popular datasets providing dense ground-truth depth maps. In this

chapter, we present two popular depth prediction datasets and their commonly used

splits representing the most adopted datasets to measure the accuracy of depth

prediction algorithms.

2.1.1 KITTI dataset.

KITTI benchmark [117] is an outdoor dataset captured from autonomous driving

platforms for use in mobile robotics and autonomous driving, as shown in Fig 2.1.

It is a popular and challenging real-world computer vision benchmark, including

multiple tasks of interest: stereo, depth, optical flow, visual odometry, 3D object

detection, and 3D tracking. In this thesis, we focus on depth prediction tasks.

Fig. 2.1: KITTI Recording Platform.

KITTI depth completion dataset[1, 7] is a popular outdoor dataset providing

sparse depth maps captured by Velodyne LiDAR HDL-64e, color stereo images, and

corresponding semi-dense ground truth, as shown in Fig. 2.2. In the depth completion

task, the sparse depth maps provide 5.9% valid depth values on all pixels, while

the ground truth maps contain 16% valid depth values over the whole image. The



2.1. Reference datasets 13

dataset contains 85895 training frames, with 1000 more selected validation frames,

and 1000 test data for which ground truth is withheld.

Fig. 2.2: Samples from the KITTI depth completion dataset. From top to bottom:
RGB images, raw LiDAR datas, and annotated depth maps, respectively.

KITTI Eigen Split [33] is a popular data split, a subset of the full KITTI depth

prediction dataset. When using this split, preprocessing was performed to remove

static frames, as in [56, 57], thus, 39,910 and 4,424 images were used for training

and validation, respectively, and 697 images were used for evaluation.

2.1.2 NYU depthv2 dataset.

The NYU Depth v2 dataset [2] is an indoor dataset with depth measurements acquired

by a Microsoft Kinect device. It consists of 120K RGB images and depth maps

at 480×640 resolution collected from 464 different indoor scenes captured by a

Microsoft Kinect sensor, as shown in Fig. 2.3. In the depth completion task, for

the training data, we utilized a subset of ∼50K images from the official training

split. Each image was downsized to 320×240, and then 304×228 center-cropping was

applied. The official test split of 654 images was used for evaluation and comparisons.

In the depth estimation task, we used 249 scenes for training and 215 scenes (654

images) for testing, resulting in 24231 image depth pairs for the training set.
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Fig. 2.3: Samples of the RGB image, and the raw depth image from the NYU
Depth v2 dataset.

2.2 Evaluation Metrics.

In this chapter, we will report the standard protocols used to evaluate and compare

the approaches proposed in this work of thesis with the state-of-the-art.

In KITTI depth completion task, we adopt the official evaluation protocol from

the KITTI depth completion benchmark [7] to evaluate our work, computing four

standard metrics: the mean absolute error (MAE, mm), root mean squared error

(RMSE, mm), mean absolute error of the inverse depth (iMAE, 1/km) and root mean

squared error of the inverse depth (iRMSE, 1/km). Among them, RMSE and MAE

directly measure depth accuracy, while RMSE is more sensitive and selected to rank

all the submitted methods on the KITTI leaderboard.

In NYU Depth Dataset v2 [2] depth prediction task, we use common metrics in

the field: RMSE, Mean Absolute Relative Error (REL), Absolute relative difference

(Abs Rel), Square relative difference (Sq Rel), log rmse (rmse log), average log error

(Log10), and percentage of predicted pixels where the relative error is within a

threshold (δi).
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Among these evaluation metrics, RMSE measures the square root of the average

of the squared differences between prediction and ground truth (GT).

RMSE =
√√√√ 1

V

∑
v∈V

∣∣∣ dgt
v − dpred

v

∣∣∣2 (2.1)

iRMSE calculates the square root of the average of the squared differences

between the prediction and GT inverse depth values, typically expressed in units of

1/km.

iRMSE =
√√√√ 1

V

∑
v∈V

∣∣∣ 1/dgt
v − 1/dpred

v

∣∣∣2 (2.2)

RMSE and iRMSE both provide a measure of the overall accuracy by considering

the differences between predictions and GT. RMSE focuses on depth values directly,

while iRMSE focuses on inverse depth values, providing insights into the model’s

performance in different representations of depth.

MAE measures the average absolute difference between the prediction and GT.

MAE provides a straightforward indication of the average magnitude of errors in

depth prediction, without considering the direction of the errors.

MAE = 1
V

∑
v∈V

∣∣∣ dgt
v − dpred

v

∣∣∣ (2.3)

iMAE measures the mean absolute difference between the prediction and GT

inverse depth values, usually expressed in units of 1/km.

iMAE = 1
V

∑
v∈V

∣∣∣ 1/dgt
v − 1/dpred

v

∣∣∣ (2.4)

Similar to RMSE and iRMSE, MAE and iMAE offer a measure of the average dis-

crepancy between predictions and GT, but with an emphasis on absolute differences

rather than squared differences. This can be useful for understanding the typical

magnitude of errors without the influence of squared terms.

REL computes the mean of the absolute relative differences between prediction

and ground truth (GT), normalized by GT.
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REL = 1
V

∑
v∈V

∣∣∣ (dgt
v − dpred

v )/dgt
v

∣∣∣ (2.5)

Abs Rel indicates the absolute difference between prediction and GT, normalized

by GT.

Abs_Rel = 1
V

∑
v∈V

|dpred
v − dgt

v |
dgt

v
(2.6)

REL and Abs Rel provide measures of relative errors, which normalize the errors

by GT. They are useful for understanding the proportional accuracy of the predictions

across different depth ranges. REL is particularly informative when considering errors

relative to the magnitude of GT.

Sq Rel computes the squared difference between prediction and GT, normalized

by GT.

Sq_Rel = 1
V

∑
v∈V

(dpred
v − dgt

v )2

dgt
v

(2.7)

RMSE Log measures the square root of the average of the squared differences

between the logarithms of prediction and GT.

rmse_log =
√√√√ 1

V

∑
v∈V

(log(dpred
v ) − log(dgt

v ))2 (2.8)

Log10 measures the mean of the absolute differences between the logarithms of

prediction and GT, usually on base 10 logarithms.

Log_10 = 1
V

∑
v∈V

|log(dpred
v ) − log(dgt

v )| (2.9)

RMSE Log and Log10 metrics analyze the logarithms of depth values, offering

insights into the model’s performance on a logarithmic scale. They excel in capturing

errors across a broad spectrum of depth values, addressing situations where linear

metrics like RMSE might lack clarity in interpretation.

The percentage of predicted pixels where the relative error is within a threshold,
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δτ = max

(
dgt

v

dpred
v

,
dpred

v

dgt
v

)
< τ, τ = 1.25, 1.252, 1.253 (2.10)
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The content of this chapter has been presented at the 33rd British Machine Vision

Conference (BMVC 2022) - “A Cascade Dense Connection Fusion Network for Depth

Completion” [11].

3.1 Introduction

Fig. 3.1: Cascade Dense Connection Fusion Network in action. Our model predicts
accurate dense depth maps from RGB frame and LiDAR points, using a fraction of
the parameters compared to most of the existing methods.

With the benefit of a high-resolution color image and deep learning, current

methods [14, 118, 119, 120] based on convolutional neural networks (CNNs) have

made significant progress in inferring dense depth map from multi-modal data.

Nevertheless, most of these existing depth completion methods rely on complex and

heavy CNNs, unsuitable for in-vehicle and edge devices. Moreover, these models

often use naive aggregation approaches, such as features concatenation or sum,

resulting in sub-optimal strategies when fusing multi-modal data.

To tackle these problems, we propose a Cascade Dense Connection fusion network

composed of a cascade of Dense Connection Fusion (DCF) blocks. Inspired by

[12, 89, 121, 122], we stack our lightweight DCF blocks in a progressive manner

instead of building a heavy encoder-decoder network, which allows for saving many

parameters. More specifically, the DCF block can learn multi-modal and multi-level

features by dense connections and multi-scale learning. We construct a Modality-

Aware Aggregation module for learning the multi-modal representations and a

Multi-Scale Pyramid Fusion module for learning multi-level features. Figure 3.1 plots

the relationship between parameters and the primary evaluation metric, i.e., RMSE,

for the proposed model and state-of-the-art depth completion approaches. We can
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Dense Connection Fusion Block CNN 

SDi Sparse depth map for stage i Di Predicted depth map for stage i

Fig. 3.2: Pipeline of the proposed method. The image backbone extracts image
features and feeds them to dense connection fusion (DCF) blocks. Three DCF blocks
are stacked progressively for three stages. DCF0, DCF1, DCF2, from small to big.

notice how CDCNet achieves a favorable trade-off compared to existing methods.

We propose a lightweight Cascade Dense Connection fusion Network (CDCNet)

for depth completion, which depends on dense connections to extract and learn depth

and RGB features efficiently and effectively. We design Modality-Aware Aggregation

(MAA) and Multi-Scale Pyramid Fusion (MSPF) modules for learning multi-modal

and multi-level representations more effectively. And more, experimental results

show that CDCNet is competitive with state-of-the-art approaches on the KITTI depth

completion benchmark while counting much fewer parameters.

3.2 Cascade Dense Connection Fusion Network for Depth

Completion

This section describes our proposal for effective and efficient depth completion

performed by processing an RGB image and sparse depth data.

We first present our Cascade Dense Connection fusion Network. Then, in subse-

quent sections, we provide details for the proposed functional modules, i.e., Dense

Connection Fusion block, Modality-Aware Aggregation module and Multi-Scale Pyra-
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mid Fusion module. The overall architecture of CDCNet is depicted in Figure 3.2. It

takes a color image and a sparse depth map to progressively recover a dense depth

map. The image backbone consists of 10 convolutional layers with 3 × 3 filters. The

3th, 5th, 7th and 9th layers have stride 2 while the others have stride 1. The depth

backbones are built using 6 layers defined following the same structure of the first

6 layers of the image backbone. All convolutions are followed by BatchNorm and

ReLU functions. One image backbone and one depth backbone have 84K and 46K

parameters, respectively. Following [12, 14, 15], we stack lightweight blocks instead

of designing a heavy backbone to learn feature representations. The image backbone

extracts multi-scale features, providing meaningful information on semantics and

texture as guidance to recover depth. We denote the extracted image features as

F 1
I , F 2

I , F 3
I , F 4

I , F 5
I , with cumulative strides of 1, 2, 4, 8, 16, respectively. Image

features are then fed to the three cascade DCF blocks, namely DCF0, DCF1, DCF2.

Apart from image features, quarter-sized sparse map SD0, half-sized depth SD1,

and full-sized depth map SD2 are fed to the abovementioned three blocks. Each

stage outputs a dense prediction at the same input size, with residual connections

integrating the three outputs. Note that all the feature maps in our model have

the same number of channels, i.e., C = 32, except for multi-scale learning parts.

This way, our network is very lightweight. For simplicity, we omit some connection

lines about residual connections in Figure 3.2. More details about how residual

connections are integrated into each module can be found in [12].

3.2.1 Dense Connection Fusion Block

Most depth completion methods use naive concatenation or sum operations to aggre-

gate either heterogeneous depth and image features or homogeneous depth features

from different levels. This strategy usually yields sub-optimal results and misleads

the fusion process. Recent works [15, 89, 122, 123] show that dense connection and

continual fusion are good choices to learn representations. Inspired by these works,

we design DCF block which fully utilizes dense connection to aggregate multi-modal

and multi-level representations, as illustrated in Figure 3.3 (a). Commonly, deep fu-

sion networks depend on stacking more layers and increasing channel dimensionality
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Fig. 3.3: Illustration of the main modules building CDCNet. (a) Dense Connection
Fusion Block. (b) Modality-Aware Aggregation Module. (c) Multi-Scale Pyramid
Fusion Module. Best viewed in color.

to get better results. In contrast, our model adopts a shallow structure and a small

number of channels for feature aggregation. Consequently, apart from the standard

top-to-down scheme with skip connections, we add an intermediate feature in the

aggregation space to compensate for the shallow architecture. The intermediate fea-

ture combines features from the same and the higher level at different sizes. Instead

of using feature concatenation or sum operation, we also design a modality-aware

aggregation module to exploit the discriminative information from the heterogeneous

image and depth features, described hereafter.

3.2.2 Modality-Aware Aggregation Module

Different modalities have different attributes to exploit for feature aggregation;

therefore, the critical factor for multi-modal fusion consists of exploiting the valuable

information from each of the modalities. Image features contain rich semantic

information, yet depth features represent strong distance-perceptive information.

Most image and depth feature fusion approaches use concatenation operation, which

fails to exploit more information from multiple modalities. Hence, we propose

a modality-aware aggregation module (Figure 3.3 (b)) which aims at enhancing
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(a) high-level (b) middle-level (c) low-level (d) output

Fig. 3.4: Visualization of multi-level feature maps. From left to right, (a) high-level,
(b) middle-level and (c) low-level feature maps, followed by (d) output of the MSPF
module.

multi-modal representation learning. Concretely, given input image features and

depth features FI , FD ∈ Rc×h×w in each module, we first concatenate them as

Fcat ∈ R2c×h×w, then use conv1 × 1 to smooth Fcat and get F
′
cat ∈ R2c×h×w, Global

Average Pooling, conv1 × 1 and sigmoid() functions, in order to obtain the modality-

aware vector w ∈ c × 1 × 1 from multi-modal features, which can be formalized

as:

w = σ(conv1 × 1(GAP (conv1×1(FI , FD)))) (3.1)

For F
′
cat, conv3 × 3 are used to get Fcoarse ∈ Rc×h×w. The enhanced features are

obtained as:

FM = w
⊗

conv3×3(conv1×1(FI , FD)) (3.2)

Then, we get the modality-aware integrated result FM ∈ Rc×h×w.

3.2.3 Multi-Scale Pyramid Fusion Module

For multi-level features fusion as well, most existing works [9, 12, 15, 18, 19]

make use of concatenation or sum operation, which weakens the representation

capability of cross-level features. For our task, high-level features have more semantic

information while low-level features have more texture information and sparse depth

representation, as shown in Figure 3.4(a,b,c). To aggregate multi-level features

effectively, we construct a multi-scale pyramid fusion module embedded into the

DCF block, as illustrated in Figure 3.3(c). Our motivation arises from Atrous Spatial

Pyramid Pooling (ASPP) [124] that uses multiple branches to extract multi-scale

features. However, ASPP introduces many parameters and high computational
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overhead. Thus, inspired by [125], we construct MSPF in a lightweight way. Suppose

FH , FM , FL ∈ Rc×h×w represent the upsampled high-level feature, the middle-level

feature, and the downsampled low-level feature, respectively, which are inputs of the

MSPF module. We first apply a 1×1 convolution to perform channel pooling for the

concatenated multi-level features and get F0 ∈ Rc×h×w. Then, we equally split F0

into four feature maps F1, F2, F3, F4 ∈ Rc/4×h×w along the channel dimension, as

F0 = conv1×1(FH , FM , FL)

F1, F2, F3, F4 = Split(F0)
(3.3)

Then, for each sub-portion Fi of the original feature map F0, we apply four 3×3 depth-

wise separable convolutions with dilation rates of 1, 2, 4, 8 and 1×1 convolution to

implement multi-scale learning and get F 1
i , F 2

i , F 3
i , F 4

i , F 5
i ∈ Rc/4×h×w, i = 1, 2, 3, 4,

then we use two consecutive 1×1 convolutions to merge the feature maps F M
i ∈

Rc×h×w and F M ∈ Rc×h×w:

F 1
i = conv1×1(Fi)

F 2
i = convd=1

3×3(Fi)

F 3
i = convd=2

3×3(Fi)

F 4
i = convd=4

3×3(Fi)

F 5
i = convd=8

3×3(Fi)

F M
i = conv1×1(F 1

i , F 2
i , F 3

i , F 4
i , F 5

i )

F M = conv1×1(F M
1 , F M

2 , F M
3 , F M

4 )

(3.4)

where, convd=i
3×3 denotes 3×3 depth-wise atrous convolution with dilation rate of i.

In the end, we add a residual connection and leverage channel attention [126] to

refine the output features, as

F M = F M + F0

F out = F M
⊗

σ(conv1×1(GAP (F0)))
(3.5)

where F out ∈ Rc×h×w is the final refined feature.

By splitting features and implementing multi-scale learning with depth-wise
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separable convolutions separately, we dramatically cut down computational complex-

ity and reduce the number of parameters. Moreover, the aggregate results embed

semantic and texture information from multi-level features, as shown in Figure

3.4(d).

3.2.4 Loss Function

To learn accurate prediction of dense depth maps, we train our network to minimize

mean squared error (MSE) and mean absolute error (MAE) losses [12]. A multi-stage

and multi-weighted loss function L is the combination of three parts:

L =ω
N∑

i=1
(L2(D2

i , D̂2
i ) + L1(D2

i , D̂2
i ))+

ω
N∑

i=1
(L2(D1

i , D̂1
i ) + L1(D1

i , D̂1
i ))+

N∑
i=1

(L2(D0
i , D̂0

i ) + L1(D0
i , D̂0

i ))

(3.6)

where N represents the set of valid pixels. D2, D1, D0 denote the predicted depth

maps from DCF blocks 0, 1 and 2 respectively, and D̂2, D̂1, D̂0 the corresponding

semi-dense ground truth maps. Following [12], we set ω to 1 for the first 6 epochs,

then decimating it to 0.1 for 11 epochs, and finally disabling it (ω = 0) until the end

of the training procedure.

3.3 Experimental Results

In this section, we evaluate our method and compare it to state-of-the-art solutions

on the KITTI depth completion benchmark [1, 7]. we adopted the official evaluation

protocol from the KITTI to evaluate our model, i.e., MAE, RMSE, iMAE, and iRMSE.

3.3.1 Implementation Details

We implement CDCNet using Pytorch and train it with a single NVIDIA RTX 3090

GPU. All the parameters are optimized using Adam (β1 = 0.9, β2 = 0.999). The

learning rate is initialized to 0.001 and multiplied by 0.5 every 5 epochs. A weight

decay factor is set to 0.0002. The network is trained for 30 epochs using a batch
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size of 6 samples. Training images are cropped to a resolution of 1216×352 pixels.

The experiments in the ablation study are carried out by training CDCNet on 10000

samples from the training set and by evaluating on the validation split.

3.3.2 Comparison with state-of-the-art

We compare our model to the state-of-the-art methods published on the KITTI depth

completion benchmark. Table 3.1 shows quantitative results retrieved from the

online leaderboard. We report the comparison of our method with others in terms

of parameters, accuracy and runtime. The number of parameters and runtime

are partially taken, respectively, from [127] and [128]. Our lightweight network,

CDCNet, outperforms most previous methods under the primary evaluation metric

RMSE and achieves results comparable with those by state-of-the-art models. In

particular, CDCNet achieves accuracy close to GuideNet [85], CSPN++ [17], NLSPN

[19], MDANet [15], with respectively 1.3%, 3.0%, 3.4% and 28% of their total

parameters. Compared with MSG-CHN [12] which inspires our method, CDCNet gets

better results by using only 69% of its parameters. Due to the diversity of hardware

platforms used by each method, performing a fair comparison for what concerns

runtime is not trivial. Nevertheless, these results still suggests that our method is

faster than most state-of-the-art methods. SPN-based methods [17, 18, 19] slow

down their inference time because of the iterative spatial propagation step. PwP

[129], DeepLiDAR [13], GuideNet [85] and PENet [130] adopt multi-branch, heavy

backbones – i.e., ResNet – which are time-consuming. In contrast, CDCNet takes

shorter inference time, despite it processes data in a stacked manner.

For what concerns the main competitor inspiring our work, i.e. MSG-CHN [12],

for a fair comparison we use the authors’ code and measure its runtime on the same

hardware platform used by CDCNet. Our model runs in 0.03 seconds, slower than

MSG-CHN [12], because of the feature aggregation modules we introduced. However,

this is compensated with higher accuracy and fewer parameters. In summary, CDCNet

gets competitive results with clearly fewer parameters on the KITTI depth completion

benchmark.

Figure 3.5 reports a qualitative comparison between results yielded by state-of-
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Fig. 3.5: Qualitative comparison with state-of-the-art methods. From top to
bottom: RGB image, results of Spare-to-Dense[10], CSPN[18], DeepLiDAR[13],
NLSPN[19], MSG-CHN[12], and Ours, respectively.We zoom-in the yellow dotted
regions at the right.

the-art methods and ours, with the latter being in the last row. Our dense connection

fusion strategy, which can efficiently exploit high-level semantic and low-level context

information, yields accurate depth maps, preserves finer details on complex structure

boundaries and recovers more accurate contours for thin structures in faraway scenes.

3.3.3 Ablation Study

In this section, we demonstrate the effectiveness of the components proposed in this

paper.

Impact of Modality-Aware Aggregation Module. By surveying most of the

works for KITTI depth completion, concatenation and sum emerge as the dominant

image and depth fusion strategies [9, 10, 12, 13, 14, 15, 17, 18, 19, 118, 130].

Besides the methods on the KITTI benchmark, [133] proposed a gated fusion for
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Methods
Parameters

(M)

RMSE

(mm)

MAE

(mm)

iRMSE

(1/km)

iMAE

(1/km)

runtime

(s)
Platform

Sparse-to-Dense [10] - 814.73 249.95 2.80 1.21 0.08 Tesla V100

PwP [129] 29.10 777.05 235.17 2.42 1.13 0.10 Tesla V100

FusionNet [14] 2.50 772.87 215.02 2.19 0.93 0.02 RTX 2080Ti

FuseNet [131] 1.90 752.88 221.19 2.34 1.14 0.09 -

NConv [132] 0.36 829.98 233.26 2.60 1.03 0.02 Tesla V100

DeepLiDAR [13] 53.40 758.38 226.50 2.56 1.15 0.35 RTX 2080Ti

CSPN [18] - 1019.64 279.46 2.93 1.15 1.00 Titan X

CSPN++ [17] 28.80 743.69 209.28 2.07 0.90 0.20 Tesla P40

NLSPN [19] 25.80 741.68 199.59 1.99 0.84 0.13 RTX 2080Ti

PENet [130] 133.70 730.08 210.55 2.17 0.94 0.16 RTX 2080Ti

GuideNet [85] 63.30 736.24 218.83 2.25 0.99 0.14 GTX 1080Ti

ACMNet [24] 4.90 744.91 206.09 2.08 0.90 0.35 RTX 2080Ti

MDANet [15] 3.07 738.23 214.99 2.12 0.99 0.03 Tesla P100

MSG-CHN [12] 1.25 762.19 220.41 2.30 0.98 0.01 RTX 3090

CDCNet (ours) 0.87 738.26 216.05 2.18 0.99 0.03 RTX 3090

Tab. 3.1: Quantitative results on the KITTI test set. We report the amount of
parameters, standard evaluation metrics and runtime for state-of-the-art models and
CDCNet.
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Component
RMSE

(mm)

Parameters

(K)

Sum 879.81 672

Concat 874.01 727

Gated 882.26 699

MAA 870.39 730

Component
RMSE

(mm)

Parameters

(K)

Memory

(GB)

Speed

(ms)

Sum 876.46 616 3.499 18.063

Concat 874.01 727 3.600 18.673

ASPP 870.56 1178 4.286 23.923

MSPF 863.65 695 4.007 27.830

Tab. 3.2: Ablation study on MAA (left) and MSPF (right) modules. Sum denotes
feature sum operation; Concat denotes feature concatenation operation; Gated
denotes Gated Fusion. Parameters, Memory and Speed refers to the entire network
processing.

dense image and depth feature fusion. To measure the impact of the MAA module

on the final accuracy, we replace it with the alternatives mentioned above in these

experiments. It is worth noting that the remaining components are kept unchanged;

only the fusion module on which the comparison focuses on changes. From Table 3.2,

on the left, we can observe that our fusion strategy yields better results compared

to alternative methods, with a limited increase in the number of parameters. Gated

fusion results are the worst for this task since this strategy is designed for dense

feature fusion, whereas depth features are usually very sparse in completion task.

Impact of Multi-Scale Pyramid Fusion Module. To validate the effectiveness of

MSPF, we compare the performance achieved by CDCNet when using it or when it

is replaced by sum, concatenation or ASPP alternatives. As shown in Table 3.2, on

the right, the results demonstrate that the lightweight MSPF module can achieve the

best performance. However, this improvement comes at the expense of speed.

Yet, when directly compared with ASPP, MSPF introduces fewer parameters and

requires fewer GPU memory thanks to feature splitting and depth-wise convolutions.

3.4 Conclusion

In this work, we proposed a lightweight yet effective cascade dense connection fusion

network, CDCNet. By stacking the dense connection fusion blocks, image and depth

features are aggregated effectively in a progressive manner. We employ a modality-

aware aggregation method to enhance the fusion of image and depth features.

Then, a lightweight multi-scale learning module boosts multi-level feature fusion.
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We evaluate CDCNet on the KITTI depth completion dataset achieving competitive

results compared to state-of-the-art methods, yet using much fewer parameters.
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The content of this chapter has been presented at the 34th British Machine Vision

Conference (BMVC 2023) - “Lightweight Self-Supervised Depth Estimation with

few-beams LiDAR Data” [134].

4.1 Introduction

Despite accurate results achieved by supervised depth prediction methods through the

years [19, 20, 23, 48, 54, 135, 136, 137, 138, 139, 140], two main shortcomings still

limit the deployment of these approaches as a mature technology. On the one hand,

dense ground truth depth annotation is needed to train completion networks. To

obtain such data, manual labor [7] is necessary to aggregate several scans performed

over time, possibly by a LiDAR sensor sensing the higher density of points possible.

Self-supervised depth completion approaches [10, 69, 70, 71] try to soften this

constraint by learning from monocular videos and sparse LiDAR how to infer dense

depth maps. On the other hand, there is the much higher cost of LiDAR sensors

compared to conventional color cameras: indeed, this scales with the density of

measurements the sensor can deliver, with 64-beams LiDARs – and more recent,

128-beams devices – costing tens of thousands of dollars. At the same time, cheaper

solutions characterized by much fewer emitters (e.g. 4-beams) exist, at the expense

of making the completion task even more challenging. On this track, estimating

depth from few-beams LiDAR data [73, 141], possibly in a self-supervised manner,

represents the cheapest chance to develop a framework capable of densifying sparse

depth measurements and requiring low-cost depth sensors to deploy it. Nonetheless,

solutions proposed so far [73, 141] still rely on very complex CNNs, counting tens of

millions of parameters and thus putting some constraints on the hardware capabilities

required for deployment.

Common strategies to collect depth data rely on active sensors, precisely mea-

suring the distance of objects in the scene by perturbing them through some signals.

However, they only provide sparse depth information, resulting in many empty re-

gions for which no measurement is available. For instance, the Velodyne HDL-64e

LiDAR used in the KITTI dataset provides accurate, yet sparse depth data with a

density lower than 6% compared to the image resolution. This fact makes it hard
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to tackle downstream perception tasks such as detection, semantic segmentation,

or instance segmentation. Fortunately, many methods have been proposed and re-

markable progress has been achieved in depth prediction tasks with the help of deep

learning.

Supervised depth prediction methods, such as depth completion [12, 13, 17,

25, 84] and depth estimation [33, 36, 52, 120] requires high-quality and large-

scale dense depth labels, which are expensive and hard to get. Self-supervised

monocular depth estimation [10, 56, 57, 58, 62, 63] with multi-view images are

trained to predict the dense depth and camera ego-motion without label and utilize

the re-projection photo-metric loss as supervision. Nevertheless, both methods have

some shortcomings. Supervised methods call for dense annotated depth maps and

are hard to cope with the non-annotated scenes. Self-supervised methods suffer

from some significant challenges, such as undesirable prediction on low-texture

regions. Reprojection loss recovers the depth to an ambiguous scale. Thus it would

be attractive to combine the strength of self-supervised depth estimation and the

observed sparse depth measurements. [71, 72, 73, 142] extend self-supervised

training scheme with sparse depth measurements. These approaches combine the

advantages of sparse measurements and self-supervised monocular depth estimation

which can ground the predictions to metric scale and train the model without dense

depth labels. while [71, 72] use sparse convolution [7]. These methods failed to

deal with monocular video with sparse measurements in a lightweight and effective

way. And all methods stress the consistency between the prediction and input in the

sparse depth domain, they ignore the outlier in the inputs.

Therefore, we take a further step toward inexpensive solutions for densifying

sparse LiDAR data developing a lightweight yet effective self-supervised network

for this task. Our proposal involves the use of a multi-stage architecture that is

designed to effectively utilize the guidance provided by color images during the

densification process. For this purpose, we revise Sparsity-invariant CNNs [7] and

introduce a novel layer called Guided Sparsity-invariant CNNs, capable of effectively

processing the contextual information provided by dense guidance. Moreover, to

further improve the accuracy of our model, we implement a Distance-Dependent
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Outlier Mask, capable of mitigating the impact of outliers in the sparse data on the

resultant dense depth map.

In this work, we propose a lightweight yet effective self-supervised network

processing few-beams LiDAR data and a single image. It counts as few as ∼600K

parameters. At the core of our architecture, we propose a Guided Sparsity-invariant

CNN block, which can deal with sparse data to produce depth features under the

guidance of dense color images or depth maps. To cope with outliers in the sparse

input data, we introduce a Distance-Dependent Outlier Mask to mitigate the impact

on the final predictions. We evaluate our framework processing data from cheap

(4-beams) and expensive (64-beams) LiDAR sensors, achieving state-of-the-art per-

formance in the former case and yielding results equivalent to existing models in

the latter case, despite utilizing only about 2% of the parameters required by those

models.

4.2 Self-Supervised Depth Estimation from LiDAR data

This section describes our proposal for a self-supervised depth estimation network

from color images and sparse LiDAR measurements. The proposed self-supervised

framework aims at predicting a dense depth map D̂ ∈ RH×W ×3 from monocular

image I ∈ RH×W ×3 and the sparse 4-beams LiDAR depth map S ∈ RH×W , which

is aligned with I. We formulate this task as a self-supervised learning problem,

obtaining supervision from color images in a video and the very same input depth

points. Figure 4.1 provides an overview of the architecture of our framework.

4.2.1 Self-Supervised Depth Estimation from few-beams LiDAR

We introduce our framework for self-supervised completion, which consists of two

main networks to predict depth and ego-motion [56].

Lightweight Multi-stage DepthNet: The DepthNet takes a single image I, and

the corresponding sparse depth map S as inputs to progressively recover a dense

depth map D̂. It follows a multi-stage design, common in literature [11, 12, 13,

15, 85, 130], consisting of one image backbone and three cascade depth estimation

networks. The former extracts multi-scale color features through convolutions and
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Fig. 4.1: Overview of our framework: A DepthNet processes a single image and
corresponding LiDAR data to predict a dense depth map. A PoseNet estimates the
camera ego-motion from two images during training.

downsampling operators, encoding semantics and texture as guidance to recover

dense depth. These features are then fed to the three cascade Depth Estimation Blocks

(DEB), namely DEB0, DEB1, DEB2, from left to right in Fig. 4.1, respectively. The

three blocks are compact encoder-decoder networks, sharing the same architecture

for the decoder, processing sparse depth points at a quarter (S0), half (S1), and full

resolution (S2) respectively – with S0, S1 being downsampled from S2, i.e., S points

on the image plane – as well as color features. Each encoder relies on Guided Sparse

Convolutions – introduced in the remainder – having 32 output channels each. The

decoders predict outputs at the exact resolution as the original input to the specific

DEB block, processing image features from the image backbone. Residual connections

[11, 143] integrate the results by the three after upsampling to full resolution.

PoseNet: Inferring camera ego-motion is essential for learning depth estimation

from videos in a self-supervised manner. Thus, following [57], our PoseNet uses an

ImageNet pre-trained ResNet18, taking two stacked color images as input to infer

their 6-DoF relative pose. This network is needed at training time only.

4.2.2 Guided Sparsity-Invariant Convolution

Although most of the existing approaches [11, 12, 13, 15, 85, 130] rely on standard

CNNs to extract sparse depth features through dedicated branches, Uhrig et al. [7]

demonstrated that this approach is sub-optimal when dealing with highly-sparse data,

and proposed Sparsity-invariant CNNs (SCNNs) to handle it better. However, SCNNs



38 Chapter 4. Lightweight Self-Supervised Depth Estimation with LiDAR Data

Fig. 4.2: Guided Sparsity-invariant CNN (GSCNN).

do not exploit any guide from color images usually coupled with the sparse data we

aim at densifying, a powerful cue seldom ignored when available [11, 12, 13, 15, 85,

130]. To overcome this lack of the original SCNNs, we revise it to exploit additional

dense guidance, as shown in Fig. 4.2.

Specifically, we propose Guided Sparsity-Invariant CNNs (GSCNNs) to overcome

one main limitation of SCNNs, which struggle to recover sharp object boundaries due

to the lack of awareness of semantic and dense structural cues that are available on

RGB images instead. For this purpose, we introduce dense guidance d as an additional

input to SCNNs, which will guide the propagation process of sparse data s within

the network. The dense guidance can be color image, depth maps, or multi-channel

depth features, and the input sparse feature can be LiDAR data or multi-channel

depth features. A standard convolution operator processes these features, then

multiplied to sparse features processed according to the standard SCNN design – i.e.,

a binary validity mask m is used to identify the meaningful features of the sparse data

from those extracted out of invalid inputs – and then a final convolution produces

the enhanced, sparse features output of the GSCNN layer.

This revised design keeps the merits of SCNNs to deal with sparse data s more

effectively than CNNs while complementing its lack of semantic knowledge with the

dense guide d. GSCNNs can be formalized as follows:

fi(d, s, m) =
∑

j∈Ω(i)
w3

j [(
∑

j∈Ω(i)
w2

j dj)(
∑

j∈Ω(i) mj sj w1
j∑

j∈Ω(i) mj + ϵ
+ b)] (4.1)
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Fig. 4.3: DEB encoder. Five GSCNN layers extract sparse depth features each with
decreasing kernel sizes from 7 × 7 to 3 × 3.

with Ω(i) being the convolution window centered in i, w1, b weights and bias

already present in standard SCNNs and w2, w3 the additional weights used to process

d.

We use GSCNNs to extract sparse depth features in DEB encoders. For DEB0, we

stack five GSCNN layers, as shown in Fig. 4.3, using the color image as guidance

alone. In DEB1 and DEB2, we use GSCNN layer in the first layer only, this time

guided by dense output predicted by the previous DEB block, i.e. DEB0 and DEB1

for the two, respectively.

4.2.3 Loss function

Following the literature [71, 73, 142, 144], our model is trained using three loss

terms that are optimized jointly:

Ltotal = αLph + βLsm + γLsd (4.2)

with Lph, Lsm, Lsd denoting the photometric consistency, smoothness, and sparse

depth consistency losses, weighted by α, β and γ, respectively. Following [57], we

compute these terms on intermediate depth predictions, i.e., on the output of each

DEB block upsampled to the original input resolution.

Photometric Consistency Loss. Given the camera intrinsic matrix K, we synthe-

size the target image I ′
t by warping the source image Is according to the estimated

depth and relative poses. As in [55, 57], we evaluate the pixel-level similarity be-

tween I ′
t and the real target image It using a combination of an L1 pixel-wise loss
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term and the Structural Similarity (SSIM) [145] term:

Lph(It, I ′
t) = α

1 − SSIM(It, I ′
t)

2 + (1 − α) ∥ It − I ′
t ∥, (4.3)

We adopt auto-masking [57] to filter out static pixels and the occluded region.

Smoothness Loss. We enforce a smoothness constraint on the dense depth maps

by utilizing texture information from the input color image [57]:

Lsm = | ∂xd∗ |e−|∂xIt| + | ∂yd∗ |e−|∂yIt|, (4.4)

with ∂x, ∂y being gradients along x and y direction, and d∗ = d̂t/d̂t normalized

inverse depth.

Sparse Depth Consistency Loss. We enforce consistency between densified and

sparse depth using the scale-invariant [33] depth loss:

Lsi = 1
2n2

∑
i,j

(
(log yi − log yj) − (log y∗

i − log y∗
j )
)2

(4.5)

with y and y∗ being the predicted and input depth over the whole depth map

space Ω, respectively, and n the number of pixels.

The raw sparse depth data contains outliers primarily due to the displacement

between the LiDAR and the color camera. This misalignment causes the projection of

some background points to overlap with foreground objects, as shown in Fig. 4.4.

This fact would yield background points to emerge on the foreground objects in the

predicted dense maps, causing inaccuracy near the depth discontinuities.

To avoid this behavior, we design a Distance-Dependent Outlier Mask M by

setting a threshold σ on the discrepancy Dδ between prediction D̂ and sparse depth

measurements S. Such a threshold is dynamic, it varies in the different distance

ranges over the sparse depth domain Ω, since a relatively more significant error is

tolerable when predicting a farther depth value [146, 147].

To ease convergence, we empirically first set σ = 4.0 for the first 2 epochs:
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Fig. 4.4: Outliers on depth data. Three images and corresponding LiDAR points,
with overlapping background and foreground points.

M(x) =


1 if Dδ(x) < σ

0 otherwise.

(4.6)

Then, we set multiple thresholds σi according to different depth ranges:

M(x) =



1 if Dδ(x) < σ1, ∀ D̂(x) < 5

1 if Dδ(x) < σ2, ∀ 5 ≤ D̂(x) < 10

1 if Dδ(x) < σ3, ∀ 10 ≤ D̂(x) < 20

1 if Dδ(x) < σ4, ∀ 20 ≤ D̂(x) < 30

1 if Dδ(x) < σ5, ∀ 30 ≤ D̂(x)

0 otherwise.

(4.7)

with σ1, σ2, σ3, σ4, σ5 set to 0.2, 0.4, 0.8, 1.0, 2.0. We will analyze the effect of a

fixed threshold σ over the whole depth range in the ablation study.

The overall, sparse depth consistency loss Lsd is then defined as:

Lsd =ω
∑
x∈Ω

Lsi(M(D̂0(x), S(x))) + ω
∑
x∈Ω

Lsi(M(D̂1(x), S(x))) +
∑
x∈Ω

Lsi(M(D̂2(x), S(x)))

(4.8)

with D̂0(x), D̂1(x), D̂2(x) being the predicted depth maps, S the sparse input
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depth, M an outlier mask used to ignore them – described in the remainder – and

ω a hyper-parameter to control the impact of the loss on intermediate predictions.

Specifically, we use a multi-stage training scheme by setting ω = 1 for 10 epochs and

then reducing it to 0.5 until convergence.

4.3 Experimental Results

We introduce our experiments on two tasks: 1) self-supervised depth estimation

from color images and few-beam LiDAR data and 2) depth completion without

groundtruth.

4.3.1 Datasets.

We focus on self-supervised depth estimation with LiDAR data in the outdoor environ-

ment. KITTI dataset [1] is popularly used in depth estimation. For what concerns the

few-beams LiDAR setting, we follow [73] and evaluate our method on the Eigen split

[34] of the KITTI original dataset[1] by uniformly sampling the sparse 4-beams data

from original 64-beams LiDAR data [73, 148]. Regarding the standard depth comple-

tion setting – i.e., with 64-beams LiDAR – we test on the KITTI Depth Completion

validation set [7].

4.3.2 Implementation Details.

We use PyTorch [149] and train our model with a single NVIDIA RTX 3090 GPU,

implemented starting from [73] code base. The sparse depth is normalized in the

range [0, 1] before being processed by our model, which predicts multi-scale dense

disparity maps, and then brings them back to the metric scale. All the parameters

are optimized using Adam (β1 = 0.9, β2 = 0.999). The learning rate is initialized

to 0.004 and multiplied by 0.5 every 8 epochs. We set the weight decay factor to

0.0002, and the network is trained for 40 epochs using a batch size of 20 samples

with input images downsampled to 640 × 192.
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Method Input Train Parameters
The lower the better The higher the better

Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

(1)
Dorn [146] M M+Sup 99M 0.099 0.593 3.714 0.161 0.897 0.966 0.986

BTS [50] M M+Sup 52M 0.091 0.555 4.033 0.174 0.904 0.967 0.984

(2)
MonoDepth2 [57] M S 14M 0.109 0.873 4.960 0.209 0.864 0.948 0.975

MonoDepth2 [57] M M+S 14M 0.107 0.849 4.764 0.201 0.874 0.953 0.977

(3)

LEGO [153] M M - 0.162 1.352 6.276 0.252 0.783 0.921 0.969

PackNet-SfM [58] M M >50M 0.111 0.785 4.601 0.189 0.878 0.960 0.982

MonoDepth2 [57] M M 14M 0.115 0.903 4.863 0.193 0.877 0.959 0.981

(4)

Guizilini et al. [141] M+L M+L >50M 0.082 0.424 3.73 0.131 0.917

FusionDepth[73] M+L M+L 26M 0.078 0.515 3.67 0.154 0.935 0.973 0.986

FusionDepth*[73] M+L M+L 26M 0.076 0.490 3.63 0.149 0.934 0.974 0.986

FusionDepth (Refined Depth)[73] M+L M+L >26M 0.074 0.423 3.61 0.150 0.936 0.973 0.986

Ours M+L M+L 628.53K 0.069 0.476 3.31 0.144 0.943 0.975 0.987

Tab. 4.1: Depth prediction on KITTI Eigen Split. All methods process 640×192
images. M , S, and L respectively indicate Monocular, Stereo, and Sparse LiDAR data,
with Sup referring to supervised training with accurate ground truth. Results for
existing methods are directly taken from [73]. * means retrained by ourselves (with
better results).

4.3.3 Depth Estimation from few-beams LiDAR

Following [73], we compare our model with methods representative of four main

categories: (1) supervised monocular networks [50, 146]; self-supervised monocular

networks trained on (2) stereo pairs [57, 150, 151] or (3) monocular videos [56, 57,

152]; (4) self-supervised monocular methods from few-beams LiDAR[73, 141]. Table

4.1 collects the outcome of our experiments. In the case of FusionDepth, the authors

employed GDC (post-processing) results as a form of supervision, leading to further

improvements in performance. However, it is important to note that GDC requires

additional parameters and computational resources. To ensure a fairer comparison,

we have deliberately chosen to adopt the FusionDepth results without GDC and

prioritize the evaluation of pure self-supervised models. Not surprisingly, methods

processing even the few depth points from 4-beams LiDARs notably outperform the

others. Among them, our model achieves the best results on the Eigen split, with

extremely few parameters.

Moreover, we evaluate the accuracy achieved by our model on another very-sparse

setting, i.e. by randomly sampling only a few hundred depth points from the sparse
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Methods Params Samples Abs Rel RMSE

Sparse-to-dense [10] 26.1M 100 0.074 4.11

FusionDepth [73] 26M 100 0.074 4.11

Ours 628.53K 100 0.072 4.13

Liao et al. [154] - 225 0.113 4.50

Sparse-to-dense [10] 26.1M 200 0.069 3.92

FusionDepth [73] 26M 200 0.069 3.92

Ours 628.53K 200 0.066 4.01

Tab. 4.2: Self-supervised depth estimation. Experiments with randomly sampled
LiDAR.

Methods Params RMSE iRMSE iMAE

Sparse-to-dense [10] 26M 1342.33 4.28 1.64

DPP [69] ≈ 18.8M 1310.03 - -

VOICED [70] ≈ 6.4M 1230.85 3.84 1.29

SelfDeco [71] - 1212.89 3.54 1.29

FusionDepth [73] 26M 1193.92 3.39 1.28

Ours 628.53K 1234.75 3.25 1.29

Tab. 4.3: Self-supervised depth completion. Experiments with 64-beams LiDAR.

LiDAR [10, 73, 154]. Table 4.2 collects the outcome of this experiment. Even in this

very challenging scenario, our model yields results close to existing methods while

being much more compact.

4.3.4 Depth Completion

Finally, we also evaluate our method when processing denser depth maps provided by

a more expensive HDL-64 LiDAR sensor – the one used by the standard KITTI depth

completion dataset, yet training in a self-supervised manner. The performance of

our model and existing self-supervised solutions on the KITTI completion validation

set are reported in Table. 4.3. Despite the much fewer parameters, our lightweight

network achieves results comparable with those yielded by state-of-the-art models.
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4.3.5 Ablation Study

We conclude with ablation studies to assess the effectiveness of the proposed modules,

DEBs, GSCNNs, and the outlier mask. All experiments are conducted with the few-

beams LiDAR setting on the Eigen split.

Fig. 4.5: Ablation studies – qualitative comparison between outputs by using,
from top to bottom, by GSCNNs, SCNNs, and CNNs. The top two inputs consist of
image and LiDAR data. The first four columns represent the extracted feature maps,
while the remaining columns display the predicted results.

Fig. 4.6: Ablation studies – qualitative results between different masks. Depth
maps predicted, from left to right, without using any outlier mask, a fixed σ = 4.0 or
0.2, confidence predicted over the input depth or our strategy.

Cascade Depth Estimation Blocks. Our network progressively recovers dense

depth map block by block, with each DEB predicting a dense depth map. To better

study the effectiveness of this module, we conducted a study on the impact of the

number of blocks regarding performance, speed, and computation cost, as presented
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in Table 4.4. All the results indicate that the models run on a single RTX 3090, with

an input resolution of 1216×352. Through experimentation with the number of

DEBs ranging from 2 to 4, we observed that increasing the number of blocks leads

to higher computation costs without consistent performance improvement beyond

three blocks. Consequently, an architecture comprising three cascade DEBs is the

best suited for our purposes.

DEB Blocks GFLOPs Params FPS latency Abs Rel

2 44.3 335K 160.16 0.006s 0.072

3 46.8 468K 123.79 0.008s 0.069

4 47.5 475K 100.97 0.010s 0.075

Tab. 4.4: Ablation studies. Comparison between models deploying different numbers
of DEBs.

Guided Sparsity-Invariant Convolution. To validate the effectiveness of GSCNN,

we compared the performance of three different variants of our framework, obtained

by using the proposed GSCNNs, the original SCNNs, or the standard CNNs to build

the DEB encoders. From Table 4.5, we can observe that using GSCNNs yields better

results on two out of three metrics compared to alternative methods, in particular in

terms of RMSE, with only a limited increase in the number of parameters.

To further validate this finding, we visualize the feature maps extracted from

images and sparse data in the last block and the predicted results by the three

methods in Fig. 4.5. Using GSCNNs (2nd row) allows for extracting much more

detailed features, already allowing for distinguishing foreground objects from the

background and prediction with clearer boundaries and details. In contrast, SCNNs

and CNNs (3rd and 4th rows) extract features exposing grid artifacts and scarce

semantic information. Based on the above analysis, GSCNN demonstrates superiority

over SCNN and CNN in both quantitative and qualitative comparisons, despite having

limited additional parameters.

Distance-Dependent Outlier Mask. To validate the effectiveness of the proposed

outlier mask, we compare its performance with alternative approaches [155, 156] –

by adding a binary confidence layer in our model to identify the outlier in the sparse

input – as well as to the use of a fixed threshold σ for any depth range. Results are
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Layers Params Abs Rel Sq Rel RMSE

CNN 363.971K 0.072 0.463 3.450

SCNN 446.611K 0.070 0.450 3.466

GSCNN 628.531K 0.069 0.476 3.312

Tab. 4.5: Ablation studies. Comparison between CNNs, SCNNs[7] and GSCNNs.

reported in Table 4.6. From it, we can notice that our strategy is the only one yielding

consistent improvements on any metric. Figure 4.6 shows a qualitative comparison

between the dense depth maps predicted according to the different strategies. The

absence of any outlier mask (2nd column) produces holes in the foreground objects,

like using a fixed threshold σ = 4.0 (3rd column). A stricter threshold equal to 0.2

(4th column) can alleviate this behavior, yet without significant improvements on

the final accuracy according to Table 4.6, while using confidence still cannot prevent

holes from appearing in the densified maps (5th column). Our strategy (rightmost

column) can remove holes and improve results quantitatively.

Methods Abs Rel Sq Rel RMSE

w/o mask 0.071 0.504 3.492

σ = 4.0 0.070 0.489 3.429

σ = 0.2 0.070 0.538 3.434

confidence 0.071 0.465 3.472

ours 0.069 0.476 3.312

Tab. 4.6: Ablation studies. Comparison with different masking techniques.

4.4 Conclusion

In this chapter, we have proposed a lightweight architecture for self-supervised depth

estimation from sparse depth points and color images. Thanks to the revised Guided

Sparsity-Invariant CNNs design, our model can accomplish accurate predictions

without the need for over-parametrized layers. Moreover, the proposed Distance-

Dependent Outlier Mask prevents outliers in the sparse data from irremediably

damaging the predicted dense depth map. Experimental results with multiple settings,

i.e. 4-beam, 64-beam, and a few hundred depth points, LiDAR data show that our
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model yields state-of-the-art accuracy with a minimal fraction of the parameters used

by existing frameworks.
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The content of this chapter has been presented at the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR) Workshop on End-to-End Autonomous

Driving: Perception, Prediction, Planning and Simulation (E2EAD 2023) - “Con-

trastive Learning for Depth Prediction” [157].

5.1 Introduction

Regardless of the adopted setup, little effort in the literature focuses on analyzing the

distribution of depth data in a statistical manner. In the real world, the depth changes

smoothly within adjacent pixels belonging to the same object’s surface. However,

when depth prediction models infer the depth, they may output different results, as

shown in Fig. 5.1. These models formulate depth prediction as a regression task,

and the output value within an extremely small region changes slowly. When a weak

model predicts the depth, it is common to find that the result is represented by peaks

in a narrow range of depth values, which can be observed from depth predictions

and depth histograms in Fig. 5.3.

Fig. 5.1: Imaging system and depth prediction process. The depth changes
smoothly within adjacent pixels belonging to the same portion of the object, while
this is not always the case for depth predicted by neural networks. Best viewed in
color.

A depth histogram is a graphical representation of the value distribution in a

depth map. By focusing on the depth distribution analysis in Fig. 5.3, we can notice

how histograms change considerably: indeed, in poor-quality depth maps, depth

histogram is usually concentrated in limited intensity values, whereas high-quality
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(a) (b) (c)

Fig. 5.2: Three synthetic depth maps and corresponding histograms. (a), (b) are
two smooth surfaces and (c) is a depth discontinuity.

(a) (b) (c) (d) (e) (f)
Fig. 5.3: Illustration of different quality depth maps. From left to right, rows 1 and
2: (a) the color image (first row) and one region in the next two rows corresponding
to the red box in the original image. Columns (b, c, d, e, f) show depth maps of
different quality, from worse to better. Row 3 reports depth histograms for the depth
maps corresponding to the area within the red box. We took (b-e) from four training
stages of CDCNet[11] on the KITTI depth completion task [1].

depth maps have a more regularized distribution spread into a broader interval.

To further confirm this observation, we synthesize three ideal depth maps for

two smooth surfaces and one discontinuity – i.e. common structures in the real

world – and construct their depth histogram, as shown in Fig. 5.2. We can observe

that the distributions of depth values in the histograms are much more regular.

Therefore, we argue that regularizing such distributions can yield higher-quality

depth maps. Accordingly, by focusing on the structure of objects from a microscopic

perspective, any object can be seen as the composition of several small, smooth

surfaces interleaved by depth discontinuities, whose depth distributions can be

regularized.
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Thus, we inquire whether a learning method can regularize the distribution of the

depth predictions by a deep network. The recent contrastive learning approaches [94,

96, 158] proposed to contrast positive pairs – i.e., elements sharing the same label –

against negative pairs – elements with different labels – in the representations space,

which looks suitable for our purpose. Therefore, we introduce a contrastive learning

framework tailored for depth prediction. Specifically, we propose a Window-based

Contrastive Learning module (WCL) which segments the depth feature maps into non-

overlapping windows and computes a contrastive loss only within each one, similarly

to how recent Vision Transformers [112] compute self-attention on local windows. It

allows us, in a more tractable manner rather than acting on the whole depth features,

to contrast the depth values in small regions and expand their distribution locally by

constructing positive and negative pairs in the depth representation and enlarging the

gap between them. To the best of our knowledge, we are the first to apply contrastive

learning for depth prediction, focusing on expanding depth distribution.

In this work, we propose a novel method combining contrastive learning with

depth prediction, contrasting depth distribution to improve accuracy. We propose a

Window-based Contrastive Learning (WCL) module for depth prediction by learning

similarity, forming positive and negative pairs of features, and computing contrastive

loss within a window. Experimental results and a detailed ablation study with

different depth prediction models demonstrate the effectiveness of our proposal.

5.2 Contrastive learning for Depth Prediction

In this section, we first present the motivation for our work and how WCL can

improve depth prediction.

5.2.1 Motivation

In the imaging system, the image is a perspective projection of a 3D scene, and

the corresponding depth map reflects the distance between each point in the scene

and the viewpoint. Almost all surfaces of observed objects have discrete depth

values and adjacent pixels, even within small regions, have similar but different

depth values. As shown in Fig. 5.3, the histograms of different depth images
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with different accuracy change dramatically, and high-quality depth maps have a

more regular depth distribution than low-quality ones. Hence, an intuitive idea to

model this assumption consists in regularizing such distribution. For this purpose,

applying contrastive learning by clustering the different pixels in the representation

space seems a promising strategy for possibly regularizing the depth distribution.

Moreover, it has been recently applied in an unsupervised manner [94, 96, 97, 98,

99], thus not making use of labels. Some recent works [99, 101, 159, 160] focus

on dense predictions, such as semantic segmentation, and use similarity or affinity

between pixels, images, or features to construct contrastive loss for the pixels with

the same label that share similar low-level features (color, texture) or high-level

representation. Specifically, [159, 160] propose to use the semantic similarities

among labeled pixels to contrast representation. Ke et al. [101] explore different

types of contrastive relationships, such as low-level image similarity and feature

affinity in weakly supervised segmentation. Chaitanya et al. [99] use contrastive

learning at the level of local and global features. All these methods assume that

pixels belonging to the same object share the same representation and label since the

target task is semantic segmentation. However, this assumption does not hold when

facing depth prediction tasks, since even pixels from the same object category may

have different representations and depth labels. Indeed, distinguishing the positive

and negative pairs in the depth map is challenging, and some of the main issues

about deploying a contrastive loss in depth prediction tasks are:

• Discriminating between positive and negative examples for all pixels is chal-

lenging. For example, in Fig. 5.4, we can easily define the set (A, B) as a

positive pair since the two are close in distance and representation and the set

(A, D) as a negative pair being far in distance and representation. However, for

the set (B, C), it is hard to define whether they are positive or negative pairs

since they are close in distance but belong to different objects.

• Constructing and computing a global relationship graph for all pixels is highly

resource-consuming. For instance, if we consider an H × W image, its rela-

tionship map results in size HW × HW, thus forming positive and negative

pairs and contrasting them yields massive memory footprints, computation,
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and time.

• It is hard to contrast further the long-range sets, such as set (A, D), even in

low-quality maps since there is already a significant distance between the two

points.

Fig. 5.4: Example of different points in the scene. A and B are two points on the
same, front-parallel surface, while C and D are points on two distinct cars. Although
both A-B and C-D pairs of points belong to similar objects, A-B exposes stronger
similarity for the depth prediction task – i.e., they are very close, while C-D points
are at very different distances.

For the reasons outlined, employing contrastive learning on the whole image is

challenging. Purposely, we introduce the concept of local similarity in our method.

As already pointed out, the output depth of a deep network changes smoothly within

a small region. Therefore, a pixel has more similarities with its surrounding pixels.

The closer the two pixels are, the stronger the similarity. For instance, The similarity

between A and B is stronger than the similarity between A and others in Fig. 5.4.

To deal with these issues, inspired by some works [42, 112, 113], we propose for

depth prediction a cost-effective window-based approach for contrastive learning. We

limit the similarity calculation and construct the positive and negative pairs within

small regions rather than on the entire feature map, which is a more reasonable and

resource-saving strategy. Thus, we set pairs with strong similarity as positive pairs

and ones with weak similarity as negative pairs. Enlarging the gap between them

also makes depth distribution better regularized and yields more accurate results.
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5.2.2 Window-based Contrastive Learning (WCL)

Fig. 5.5 depicts the architecture of the proposed WCL module. It segments one

H×W×C feature map into multiple tiles of the same size, each containing N × N

elements. In our approach, these windows are the domain where contrastive learning

comes into play.

Fig. 5.5: Illustration of WCL module. Our module segments one H × W × C feature
map into multiple tiles of the same size, each containing N × N elements. Then,
it computes a similarity map and constructs positive and negative pairs within the
window. By enlarging the gap between positive and negative pairs, the features
representation becomes more meaningful of the depth distribution in the scene.

Given a generic features map F ∈ RH×W ×C , for instance, the output of a convo-

lutional layer, we partition it into windows X ∈ RN×N×C . For each, we extract query

Q ∈ RN×N× C
2 and key K ∈ RN×N× C

2 features by linear projections of the input X as

Q = XWQ

K = XWK

(5.1)

The similarity map T ∈ RN2×N2
between each element in the window is computed

by means of dot product and normalization as

T = QT

∥Q∥
K

∥K∥
(5.2)

We employ the exponential function exp() to make the similarity map non-negative.

Then, we sort T in descending order:

T
′ = sort(T ) (5.3)

and use contrastive learning to enlarge the gap between positive and negative pairs
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Fig. 5.6: WCL positioning. Illustration of a network with a WCL module embedded
in between two conventional layers.

in the representation space. We sample the first N1 of T
′

as positive pairs PT , and

the last N1 negative pairs as NT to compute the contrastive loss Lcloss as

Lcloss = 1
Nw

∑Nw
i=1 − log

∑N1
j=1 PT /N1∑N1
j=1 NT /N1

+ a (5.4)

with a being a constant set to 1; N1 being set to the 20% of the total N2; Nw being

the number of windows. Accordingly, the total loss function of a depth prediction

network employing window-based contrastive learning is defined as:

Ltotal = Ldepth + w ∗ Lcloss (5.5)

with Ldepth the original depth loss from the depth prediction network, and w a

weighting term for the contrastive loss.

Our WCL module is specifically designed for depth prediction tasks and can be

seamlessly integrated into many networks. As shown in Fig. 5.6, the WCL block

works on feature maps between two layers. This way, the module enables the contrast

between the positive and negative pairs in the representation space.

5.3 Experimental Results

In this section, we evaluate our method on three main depth prediction tasks, i.e.,

depth completion, monocular depth estimation, and self-supervised monocular depth

estimation. We provide an exhaustive evaluation of our proposal on KITTI dataset,

NYU depth v2 dataset, and their splits. We select a set of models representative of
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Method
RMSE

(mm)

MAE

(mm)

iRMSE

(1/km)

iMAE

(1/km)

MSG-CHN 820.145 223.987 2.425 0.979

MSG-CHN+WCL 810.273 222.719 2.428 0.973

Tab. 5.1: Quantitative results on KITTI depth completion dataset [7]. Comparison
between MSG-CHN and its WCL counterpart.

the three specific tasks, to which we apply our method to improve their accuracy

consistently. Any model and its WCL variant are trained using the standard hyper-

parameters reported in the original papers. We retrain them both with and without

our module, allowing for a fair comparison under the same experimental setting (i.e.,

data, hardware support). This comes with little effort since our WCL module is a

plug-and-play component easily embeddable in any depth prediction architecture.

All the experiments are conducted using the PyTorch framework, on a single NVIDIA

RTX 3090 GPU.

5.3.1 Depth completion

We consider two depth completion methods [10, 12], respectively MSG-CHN and

Sparse-to-Dense. MSG-CHN [12] is a multi-branch guided cascade hourglass network

for depth completion. Sparse-to-Dense [10] is built with an early-fusion network

for multi-modal data. We insert our module between the last two layers of each

branch in MSG-CHN and train it on the KITTI dataset [7]. In Sparse-to-Dense, we use

ResNet18 [143] as the backbone to extract features, we insert our module between

the last two layers of the decoder and train it on NYU Depth v2[2]. We use the same

training parameters, except for the batch size, for both networks. The batch size

is set to 8 and 12, respectively. For the two networks, we set w = 0.2, N = 7 and

w = 0.1, N = 7 respectively. Tab. 5.1 and Tab. 5.2 show that both MSG-CHN and

Sparse-to-Dense can benefit from our WCL module. Fig. 5.7 shows a qualitative

comparison between MSG-CHN and its counterpart using WCL on a sample from the

KITTI dataset. We can notice how our module allows for more precise boundaries

at depth discontinuities. Fig. 5.8 instead compares Sparse-to-Dense models on the

NYUv2 dataset, highlighting the same behavior observed for MSG-CHN.
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Method
RMSE

(mm)
REL δ1.251 δ1.252 δ1.253

Sparse-to-Dense 0.1097 0.0185 99.39 99.91 99.98

Sparse-to-Dense +WCL 0.1038 0.0149 99.41 99.92 99.99

Tab. 5.2: Quantitative results on NYU Depth v2 Dataset [2]. Comparison between
Sparse-to-Dense and its WCL counterpart.

Fig. 5.7: Qualitative comparison on the KITTI depth completion dataset [1]. From
top to bottom: RGB image, results of MSG-CHN [12], and MSG-CHN [12]+WCL,
respectively. We zoom within the red line regions at the right; WCL achieves more
precise object boundaries where the red arrow points.

Fig. 5.8: Qualitative comparison on the NYUv2 depth dataset[2]. From left
to right, top to bottom, RGB image, ground truth, results of Sparse-to-Dense [10]
and Sparse-to-Dense [10]+WCL. On the right of each image, we zoom into the red
rectangle. With WCL, predicted depth maps expose more precise structures and
boundaries.
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Methods
higher is better lower is better

δ1.25 δ1.252 δ1.253 AbsRel Sq Rel RMSE RMSE log log10

BTS-ResNet50 0.865 0.975 0.993 0.119 0.075 0.419 0.152 0.051

BTS-ResNet50+WCL 0.871 0.977 0.994 0.117 0.072 0.409 0.149 0.050

BTS-DenseNet-121 0.865 0.976 0.995 0.120 0.075 0.421 0.152 0.051

BTS-DenseNet-121+WCL 0.869 0.977 0.994 0.117 0.072 0.413 0.149 0.050

Tab. 5.3: Quantitative results on NYUv2 [2] – Monocular Depth estimation.
Comparison between BTS variants and their WCL counterparts.

5.3.2 Monocular Depth estimation

For this task, we select BTS [50] as a baseline. It is a state-of-the-art method using

local planar guidance layers as geometric constraints to guide the features to depth

upsampling in the decoding phase. We use BTS variants with different backbones,

i.e., ResNet50 [143] and DenseNet-121 [161], on NYUv2 for the monocular depth

estimation task. We use the same training parameters suggested by the authors [50],

except for the batch size that is set to 10. For this task, we set w = 0.1, N = 7 for both

the backbones. Tab. 5.3 shows that our WCL module allows consistent improvements

over both BTS variants.

5.3.3 Self-Supervised Monocular Depth Estimation

Self-supervised monocular depth estimation eliminates the need for ground truth

depth labels, which are usually hard to source. Supervision can be obtained in

the form of monocular videos or stereo images. We select MonoDepth2 [57] as a

state-of-the-art baseline for this task, simultaneously learning for depth and relative

poses between consecutive frames in a video to implement the aforementioned self-

supervised training scheme. We test it on the KITTI dataset [1] using the Eigen

split [33]. Its training is realized by minimizing the photometric re-projection errors,

either between temporally adjacent frames or stereo images. We use ResNet18 [143]

as the backbone, process images resized to 192 × 640, and keep the same training

parameters detailed by the authors [57]. In both cases, we evaluate our module

setting w = 0.01, N = 7. Tab. 5.4 confirms that our method can also boost the



60 Chapter 5. Contrastive Learning for Depth Prediction

accuracy of self-supervised depth estimation frameworks.

Methods Train
higher is better lower is better

δ1.25 δ1.252 δ1.253 AbsRel Sq Rel RMSE RMSE log

Monodepth2 M 0.871 0.957 0.980 0.118 0.912 4.911 0.196

Monodepth2 + WCL M 0.873 0.959 0.981 0.116 0.852 4.837 0.194

Monodepth2 S 0.865 0.949 0.975 0.109 0.909 5.015 0.208

Monodepth2 + WCL S 0.867 0.951 0.975 0.109 0.892 4.961 0.207

Tab. 5.4: Quantitative results on KITTI Eigen split [33] – Self-Supervised Monoc-
ular depth estimation. All methods are trained and tested with 192×640 images.
The best results in each category are in bold; M: Monocular supervision; S: Stereo
supervision.

5.3.4 Ablation Study

In this section, we conduct an ablation study to verify the impact of the different

hyper-parameters of our WCL module. For the experiments in this section, we focus

on the depth completion task; we use a subset of 10,000 samples from the KITTI

depth completion dataset for training and evaluate the performance on the validation

split. Images are center-cropped to 1216×256, to focus on regions with available

LiDAR points. We use Sparse-to-Dense [10] as the baseline network and adopt

ResNet-18 as the backbone. All the parameters are optimized using Adam (β1 =

0.9, β2 = 0.99), and the weight decay factor is set to 0.0001. The learning rate is

initialized to 0.001, decayed by {0.5, 0.2, 0.1, 0.01} at epoch {10, 15, 20, 25}. The

network is trained for 30 epochs using a batch size of 10 samples. RMSE, MAE, and

iMAE are used as the evaluation metrics.

Window size. We measure how the window size over which the contrastive loss

is applied impacts the final results. Tab. 5.5 collects the outcome of this experiment.

We evaluate our module with window sizes, 3, 5, 7, 9, 11, 13, 15. w is fixed instead,

to 0.1. We can observe that window with N = 7 outperforms others according to

the main evaluation metric, RMSE. In contrast, bigger window sizes cannot improve

further while increasing the computational requirements. A small window size

(N = 3) yields negligible improvements, probably because most 3 × 3 regions are not
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significant enough for applying contrastive learning effectively.

Window size

(N)

RMSE

(M)

MAE

(mm)

iMAE

(1/km)

baseline 930.326 269.866 2.575

3 927.818 266.248 2.536

5 925.169 267.290 2.813

7 922.512 264.044 2.030

9 925.358 267.614 2.045

11 926.511 263.053 2.639

13 925.072 265.628 2.429

15 925.074 264.810 2.022

Tab. 5.5: Ablation results on the different window sizes on KITTI depth comple-
tion validation set.

Shifted windows When using WCL, all windows are non-overlapped. Thus, dis-

tribution optimization occurs locally. Previous works exploiting windows processing

as well [42, 112] use effective shifted window partitioning to introduce connections

between neighboring non-overlapping windows. We ran an ablation study about

whether shifted window partitioning can bring improvement in our method or not.

Following [42, 112], we shift the windows by (N
2 , N

2 ) pixels in the feature map and

calculate the contrastive loss after computing the loss of the previous windows. We

set w = 0.1 and N = 7. We shift the windows 1, 2, 3, 4 times. From the results in

Tab. 5.6, we can conclude that shifting the windows does not bring improvement

while increasing computational cost.

Embedded module Location Our WCL module can be easily embedded in

between network layers, allowing to contrast pixels in the representation space. The

baseline network has six layers in the decoder stage. We define them as layer5, layer4,

layer3, layer2, layer1, and layer0 from bottleneck to final layer. We performed an

ablation study to determine how much improvement our module can bring when

placed at different locations within the network. We set w = 0.1 and N = 7 in all the

experiments except the last one. In the last one, we set w1 = 0.1 for the contrastive

loss between layer1 and layer0 and w2 = 0.0001 between layer2 and layer1. From

the results in Tab. 5.7, we can find that the closer to the final layer, the better the



62 Chapter 5. Contrastive Learning for Depth Prediction

Shift number

(N)

RMSE

(M)

MAE

(mm)

iMAE

(1/km)

baseline 930.326 269.866 2.575

0 922.512 264.044 2.030

1 923.461 266.447 2.692

2 926.473 265.348 2.228

3 929.037 266.340 2.083

4 927.404 264.493 2.324

Tab. 5.6: Ablation results on the shift number on the KITTI depth completion
validation set.

results. The outputs from the layers near the final layer present features strongly

related to final depth maps, while the outputs near the bottleneck show higher-level,

semantical information. Partitioning and contrasting the outputs near the bottleneck

break semantic information and cause degradation.

Location
RMSE

(M)

MAE

(mm)

iMAE

(1/km)

baseline 930.326 269.866 2.575

-1 922.512 264.044 2.030

-2 928.279 267.821 2.150

-3 929.924 264.688 2.594

-4 932.127 270.720 1.992

-5 940.022 270.118 2.120

-1 & -2 912.286 263.886 6.604

Tab. 5.7: Ablation results on the different locations on KITTI depth completion
validation set. -1 denotes between layer1 and layer0; -2 denotes between layer2 and
layer1; -3 denotes between layer3 and layer2; -4 denotes between layer4 and layer3;
-5 denotes between layer5 and layer4.

5.4 Conclusion

In this work, we presented a Window-based Contrastive Learning (WCL) module

for depth prediction. Our approach partitions the image into windows, and the



5.4. Conclusion 63

contrastive loss is implemented within each. Accordingly, it constructs and sorts

positive and negative pairs, then enlarges the gap between the two in feature space,

which makes depth distribution more meaningful of the real depth in the scene.

We evaluate our method on multiple depth prediction tasks, such as depth comple-

tion, depth estimation, and self-supervised depth estimation, reporting consistent

improvements.





Conclusion

Summary of Thesis Achievements

In this thesis, several techniques leveraging deep learning have been contributed

to propose compact and effective depth prediction models from both images and

multi-modal data. Specifically, compact depth prediction models have been pro-

posed for multi-modal data, which combine both image and LiDAR data. These

models are lightweight and have very few parameters while achieving state-of-

the-art performance according to the standard evaluation protocols that cater to

resource-constrained devices, such as in-vehicle and edge ones. By exploiting inher-

ent characteristics of depth distribution, contrastive learning methods, have been

successfully deployed to enhance depth prediction models’ learning ability to get

more accurate results without increasing resource consumption.

65
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Ongoing and future work

The ongoing work aims to introduce the affinity of image pixels in the depth prediction

task. The widely used datasets, such as KITTI dataset [1] and Nuscenes [162], have

semi-dense depth labels, therefore it is hard to get fine and rich-detailed depth results

in supervised methods. Whether more supervisory information be introduced to

improve prediction models’ performance, especially in the results of object details?

Images have rich texture information and it is easier to obtain semantic and detailed

cues which can be helpful and serve as supplementary supervision can help improve

the depth prediction networks. The current work focuses on using affinity from image

features as additional supervision to improve the prediction accuracy of the model.

Future research endeavors will explore more deep learning methodologies that

aim to advance depth prediction. Future research directions will include the study

of other tasks (e.g. 3D reconstruction, binocular stereo depth, multi-view stereo,

and others) using sparse accurate measurements. Incorporating sparse yet accurate

depth measurements from either active depth sensors or conventional passive depth

sensing methods into images can significantly enhance prediction accuracy while

simultaneously eliminating scale ambiguity.
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