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Abstract

In this thesis we explore the combinatorial properties of several polynomials arising in matroid
theory. Our main motivation comes from the problem of computing them in an efficient way
and from a collection of conjectures, mainly the real-rootedness and the monotonicity of their
coefficients with respect to weak maps. Most of these polynomials can be interpreted as Hilbert—
Poincaré series of graded vector spaces associated to a matroid and thus some combinatorial
properties can be inferred via combinatorial algebraic geometry (non-negativity, palindromicity,
unimodality); one of our goals is also to provide purely combinatorial interpretations of these
properties, for example by redefining these polynomials as poset invariants (via the incidence
algebra of the lattice of flats); moreover, by exploiting the bases polytopes and the valuativity
of these invariants with respect to matroid decompositions, we are able to produce efficient
closed formulas for every paving matroid, a class that is conjectured to be predominant among
all matroids. One last goal is to extend part of our results to a higher categorical level, by
proving analogous results on the original graded vector spaces via abelian categorification or
on equivariant versions of these polynomials.



Introduction

As it often happens, we start with an example.

Example. Let X = (IP’1 ((C))n This is a compact Kéahler manifold, and thus its cohomology
ring H*(X, C) satisfies the following cohomological theorems.

e (Poincaré duality) We have an isomorphism

H"%(X,C) = H" (X, C)*.

e (Hard Lefschetz Theorem) If w is an ample class in H?(X,Z), define the k-Lefschetz
operator LE as the k-intersection product with w for every k < n. This gives rise to an
isomorphism

LF  H"%(X,z) =2 H""*(X,C)
for every 0 < k < n.

Together with the Hodge-Riemann bilinear relations, these three results are known as the Hodge
package (or Kdhler package). The Hilbert-Poincaré series of X, i.e.

Hilb(X,C)(x) = Y dim H*(X, C)a*,
k>0

is the polynomial Z(x) = (z + 1) (we shift the dimensions because we are only interested in
the even degrees, as the cohomology in odd degree is zero). Its coefficients, also known as the
Betti numbers, are the binomial coefficients (Z) The combinatorial properties of this sequence
of numbers are overabunding. Here are some of them

e (Non-negativity). (Z) is a non-negative integer for every k; moreover it is strictly positive
for 0 < k£ < n and zero otherwise.

(Symmetry). (Z) = (nfk) for every k.

(Unimodality). () > (,",) for every k < 2.

(Log-concavity). (Z)2 > (") (kil) for every k.

e (Real-rootedness). Every root of the polynomial Z(z) =}, (})z* is real.

The previous example poses the following question. Which one is more interesting, the vari-
ety X or the polynomial Z(z) naturally associated to it? Surely, the whole geometric structure
that one can associate to a variety (or even the graded vector space associated to it) must carry
more information. In support of this point of view, the first three combinatorial properties



listed above can actually be seen as a consequence of geometry, respectively of the fact that
Z(x) is a Hilbert—Poincaré series, and that Poincaré duality and Hard Lefschetz hold. On the
other hand, some would argue that proving properties of the binomial coefficients via Hodge
theory could be an overkill. Purely combinatorial proofs of all those facts exist and this is why
almost everyone has first met the numbers (1,2,1) looking at the subsets of {1,2} and not at
the cohomology ring of P! x P!. In this sense, combinatorics is useful to geometers, as it offers
clean methods to perform computations. Lastly, one might overturn the original point of view
and argue the following: the symmetry and unimodality of the sequence {(Z)}, is very easy
to prove, combinatorially or with direct computations, and it foreshadows a deeper result at
the algebraic or geometric level (i.e. the Hodge package); in this sense, a geometer might pose
conjectures by taking combinatorial statements and trying to upgrade them.

The lines get even blurrier when we discover that combinatorial results on sequences of
integers were first proved as corollaries of geometric statements. This was the case with the
long-standing conjecture due to Heron, Rota, and Welsh, now a theorem by Adiprasito, Huh
and Katz.

Theorem ([AHKIS]). For every matroid M, the sequence of Whitney numbers of the first kind
(w;) is log-concave, i.e. w? > Wi 1Wiy1-

The proof given by Adiprasito, Huh and Katz heavily relies on a combinatorial version of
the very geometric Hodge package. On the other hand, sometimes the Betti numbers of some
variety appear to have interesting combinatorial properties, but geometry alone does not have
the tools to show that they hold. How would you prove that

(dim H*(X,C))* > dim H* (X, C) dim H**! (X, C)

is true when X = (P!(C))" without knowing that you are talking about the binomial coeffi-
cients? How could you even try to investigate how general this statement about log-concavity
is for every variety without developing new combinatorials tools?

The goal of this thesis is to make an exposition of the properties of some old and new invari-
ants in matroid theory; these are five polynomials that were introduced and whose properties
were proved with a continuous and fruitful interplay of geometry and combinatorics. They are

e The characteristic polynomial xm(x) and its reparametrisation, the Poincaré polynomial
ma(z) = (=2)™ Mxm(z™),

e The Z-polynomial Zy(x),
e The Kazhdan—Lusztig polynomial Py(x),
e The Chow polynomial Hy (),

e The augmented Chow polynomial Hy(x).

Each of the five polynomials above can be seen as the Hilbert—Poincaré series of the coho-
mology of a variety associated to a hyperplane arrangement A, or of an abstract combinatorial
version of it. These are, respectively,

e The complement of the arrangement M (A) and the Orlik-Solomon algebra OS(M),

e The Schubert variety Y (A) and the intersection cohomology module TH(M),



e The reciprocal plane Yy(A) and the stalk at the empty flat of the intersection cohomology
module TH(M)y,

e The De Concini-Procesi wonderful variety X (A) and the Chow ring CH(M),

e The augmented wonderful variety X (A) and the augmented Chow ring CH(M).

Regarding their relationship with geometry and combinatorics, each of these polynomials has
a different story to tell: historically, the characteristic polynomial was introduced combinatori-
ally and then later given a geometric interpretation; the Kazhdan—Lusztig—Stanley polynomials,
Py (x) and Zu(z) were given a combinatorial and geometric interpretation in the same articles
they were defined in; the two Chow polynomials Hy(x) and Hy(z) have been firstly introduced
as geometric objects that additionally have interesting combinatorial properties. Regarding
the way in which properties of these polynomials were proved, we have again a mixture of
both approaches. Since these objects are interesting from a combinatorial point of view, great
emphasis is given to trying to reprove theorems that were proved “geometrically” only using
combinatorics, or to use geometric theorems to prove new combinatorial results. What one has
in the end is a rich intertwined picture, and unravelling this tangle makes the task of creating a
coherent exposition more challenging than expected. It now seems that our discussion can ei-
ther be well-organized or chronologically accurate. We choose to prioritise the former, meaning
that some polynomials will not be presented in the same way as they were first introduced.

Our exposition is based on the following articles, all of which were written in the course
of the last two years, [FV22], [FNV22], [KNPV23|, [FMSV22]. Section deals with some
of the contents of a work not yet published, joint with Ben Elias, Dane Miyata and Nicholas
Proudfoot. We have also included (few) additional results that do not appear in the articles
mentioned above.

Outline

We now describe how this thesis is organized. In Chapter [1| we start by laying down all the
necessary combinatorial background that we will need: matroids in Section [1.1] posets and
their incidence algebras in Section polytopes in Section [1.3] and properties of polynomials
in Section In Chapter [2] we provide a geometric background to motivate the rest of the
discussion. We start in Section [2.1] by considering hyperplane arrangements and then building
varieties associated to them. In order to obtain combinatorial invariants attached to a matroid
in a “geometric way”, we extract information from these varieties using only the combinatorics
associated to them (i.e. in our case, the lattice of flats of the underlying matroid). This
lets us build the three main algebraic objects we are interested in, the Orlik—Solomon algebra
in Section [2:2.1] the Chow ring in Section 2:2.2] and the intersection cohomology module in
Section In Chapter |3| we focus on the combinatorics of their Hilbert—Poincaré series.
In particular, in Section we list some open conjectures and show how to obtain answers
using the lattice of flats and the geometry of matroid polytope decompositions. Chapter [] is
dedicated to the study of paving matroids, a predominant class of matroids in which we are able
to obtain more interesting results. In Chapter [5] we upgrade the properties of our polynomials
to a higher categorical level: Section [5.1]deals with equivariant polynomials of paving matroids,
i.e. polynomials whose coefficients are virtual representations of a group of symmetries, while
Section [5.2l upgrades the notion of valuativity to functors defined on a new category of matroids
with weak maps.
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Chapter 1

Preliminary notions

1.1 Matroid theory

A matroid is, loosely speaking, the combinatorial object that abstracts the notion of linear
independence. The name comes from matriz, as these objects were introduced by Whitney in
[Whi35] as a generalization of the columns of a matrix A € My, (K). The type of matroid
arising in this context will be further studied in Sections[1.1.2.2] and [1.1.4]

1.1.1 First definitions

We begin our discussion by giving an abstract definition of matroids with many different equiv-
alent axiomatic systems. For explicit examples we refer to Section The fact that all
these axioms define the same class of objects is not entirely trivial, however, as these results
are classical in the literature and for brevity of exposition, we omit the proofs to focus more on
how to use these definitions as tools. Our main references are [OxI11] and [Wel76].

1.1.1.1 Axiomatic systems

Definition 1.1.1.1. A matroid M is a pair (E,T), where F is a finite set and Z = Z(M) C 2F
is a family of subsets of E that satisfies the following three conditions:

Inpet.
12 (Monotonicity) It Iy € Z and Iy C Iy, then Iy € T.

I3 (Augmentation) If Iy, I, € T with #Is > #I;, then there exists e € Iy \ I; such that
11 U {6} el.

The elements of Z are called the independent subsets of M. Properties I1, I2 and I3 are also
called the independence axioms of matroids.

When working with matroids, it is customary to identify a matroid with its ground set and
speak of subsets or elements of M, rather than E. Axiom I2 tells us that Z is a lower ideal in
the poset (2, C). Thus, we can describe it by listing only its maximal elements.

Definition 1.1.1.2. A maximal independent subset of a matroid M is called a basis.

The following theorem gives a complete characterization of the family of bases of a matroid.
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Theorem 1.1.1.3. A family of subsets B C 2F of a finite set E is the family of bases of a
matroid M on a ground set E if and only if it satisfies the following two conditions:

B1 B#0.

B2 (Bases exchange) If B1,Bs € B and By # Ba, for every ey € By \ Ba, there exists an
element es € Ba \ By such that (B1 \ {e1}) U {ea} € B.

If M has a family of bases B = B(M), a set I is independent if and only if there exists a basis
B € B such that I C B.

Remark 1.1.1.4. The bases B of a matroid M will be used further in Section [L.3 to define a
polytope associated to a matroid M called the matroid polytope.

Definition 1.1.1.5. A set that is not independent is said to be dependent. A minimally
dependent subset of a matroid M is called a circuit.

The following theorem gives a complete characterization of the family of circuits of a matroid.

Theorem 1.1.1.6. A family of subsets C C 2% of a finite set E is the family of circuits of a
matroid M on a ground set E if and only if it satisfies the following three conditions:

C1héecC.
C2 If C;,C5 € C and Cy C Cs, then C1 = Cs.

C3 If C,Cs € C, Cy # Cy and e € Cy N Cs, then there exists C3 € C such that C3 C
(Cl U 02) \ {6}

If M has a family of circuits C = C(M), a set I is independent if and only if it does not contain
any circuit C € C.

Definition 1.1.1.7. An element e € E is called a loop if it is contained in no bases of M. It
is called a coloop if it is contained in every basis of M. If a set of cardinality 2 is a circuit, i.e.
{e1,e2} € C, we say that e; and ey are parallel. If a matroid does not contain any loops or
parallel elements, it is said to be simple.

To study the properties of independence it is also useful to introduce the concept of rank.
Definition 1.1.1.8. The rank function rk of a matroid M is defined as
rk : 2% — Z
A r}lgzx#(AO I).

The following theorem gives a complete characterization of the rank function of a matroid.

Theorem 1.1.1.9. A function vk : 28 — Zs is the rank function of a matroid M on a ground
set E if and only if it satisfies the following three conditions:

R1 For Ac 2P, 0 <rkA < #A.
R2 (Monotonicity) If Ay C Ay, then tk A; <tk As.
R3 (Semimodularity) For every Ay, As € 2F,

I‘kAl + I‘kA2 Z I‘k(Al U AQ) + I‘k(Al n AQ)
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If M has a rank function rk = rky, a set I is independent if and only if tk I = #1.

We call rk M := rk E the rank of the matroid. Notice that this number is also the cardinality
of every basis B € B(M). Similarly, we define the corank of the matroid as crck M := #E —rk M
and the corank function of M as crk A :=rkM — rk A.

Remark 1.1.1.10. Since all the theorems we have listed so far fully characterize matroids,
they could be taken as axiomatic systems to define them. In particular, we can refer to them
as bases axioms, circuits axioms and rank axioms, respectively. In matroid theory we say that
these sets of axioms are cryptomorphic, i.e. they are isomorphic in the sense that they define
the same class of objects, but the proof of this fact is not entirely trivial.

1.1.1.2 Flats

We now define in a little more details one last family of subsets of a matroid called flats. The
family of flats will be needed in Section [[.2:3]in order to build a poset associated to a matroid
M called the lattice of flats. As we will see, a flat can somehow be seen as a set “closed” under
dependence relations.

Definition 1.1.1.11. Let M be a matroid. A subset F' € 2% is called a flat if for any e € E\ F
rk(F U {e}) =rk F + 1.
The family of flats of M is denoted F = F(M).

Definition 1.1.1.12. If rk(A U {e}) = rk A, we say that e depends on A and we write e ~ A.
We also define the closure operator as the function o : 2¥ — 2F such that o(A) is the set of all
elements in F that depend on A.

Proposition 1.1.1.13. The following statements are equivalent and give a characterization of
the flats of a matroid:

F1 FelF.
F2 o(F)=F.
F3 Ifec E\F, then e~ F.

Remark 1.1.1.14. These statements about flats can be proved directly from the definition of
.

e tk A =rko(A).
o If e € A, then e ~ A, therefore, A C ¢(A) and if A; C Ay, then (A4;) C o(A4s).
From all the previous considerations, observe that the following statements hold

Proposition 1.1.1.15. For every matroid M, the ground set E is a flat and it is maximal
by containment. Moreover, the set of all the loops of a matroid is a flat and it is minimal by
containment.

Definition 1.1.1.16. A flat of rank 1 is called an atom of M. A flat of corank 1 is called a
hyperplane (or coatom) of M.

Theorem 1.1.1.17. If Fy, Fs € F, then F1 N Fy € F.
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Proof. From the previous remarks Fy; N Fy C o(F; N Fy). Conversely, since Fy N Fy C Fy, Fy,
we have that o(F; N Fy) C o(Fy),o(F3) and so

O'(Fl ﬂFQ) - O'(F1) ﬂo’(FQ) = NEs.
Then, by Theorem [1.1.1.13] F} N F5 is a flat. O

Remark 1.1.1.18. Since F is closed under taking intersections, we can fully characterize a
matroid from its family of hyperplanes. One can show that a family H C 2F is the family of
hyperplanes of a matroid if and only if

H1 For every distinct Hy,Hy € H, Hy ¢ Hs.

H2 For every e € E and Hy,Hs € H with e ¢ Hy U Hy, there exists Hs € H such that
(Hl N HQ) @] {6} C Hs.

The family of flats of M then contains E and all the possible intersections of elements in H.

1.1.1.3 Maps of matroids

We are now interested in describing maps between matroids, i.e. maps between ground sets that
preserve the matroid structure. These will be useful in Section where we build a category
of matroids whose morphisms are given by these maps.

Definition 1.1.1.19. Let M = (E,Z(M)) and M’ = (E’,Z(M’)) be matroids on ground sets F
and E’ with the same cardinality. A map ¢ : E — E’ is called a weak map if

e H(I') € Z(M),

for every I' € Z(M’). A weak map is rank preserving if =1 (B’) € B(M) for every B’ € B(M')
(which, of course, implies that rk M = rk M’, hence the name). In addition, we say that ¢ is an
isomorphism of matroids if it extends to a bijection

©: B(M) — B(M").
If there exists an isomorphism between M and M’ we say that the two matroids are isomorphic.

Rank preserving weak maps let us define the following poset (see [Luc75]).

Definition 1.1.1.20. Given the family of matroids over a fixed ground set and of fixed rank,
the weak order is defined as the poset where M < M’ if and only if there exists a rank preserving
weak map M — M’. We can also quotient this poset and work on isomorphism classes. The
initial object is the uniform matroid Uy, while the terminal object is the matroid By @ Ug n—x

(see Sections and for the definition of these matroids).

Remark 1.1.1.21. Definition says that a map ¢ is a weak map if, after a relabelling
of the ground set, M’ has more dependencies than M. The map ¢ is an isomorphism if and only
if it preserves, equivalently, the families Z, B, C, F, H or the rank function rk. An example of
weak map that is not rank preserving is built in Section [1.1.3.4

Remark 1.1.1.22. We can now partition matroids into isomorphism classes. In doing so, it is
useful to identify the ground set E with the interval [n]. When in Section we talk about
the matroid with some properties, we mean the isomorphism class of all matroids with that
property. Similarly, in Section we list all isomorphism classes of matroids on ground
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sets with less than five elements. It is worth noticing that the identification £ — [n] involves a
choice: whenever this choice is not wanted, or needed, or the ground set on which the matroid
is defined is important not up to isomorphism, we will omit this identification (see also Remark
1.1.2.1)).

A matroid is always isomorphic to itself via the identity map idg. Sometimes, however, a
matroid can have non-trivial automorphisms. This leads us to give the following definition.

Definition 1.1.1.23. For a matroid M = (E, B(M)), we denote by Aut(M) < &g the group of
symmetries of M, i.e. permutations of the ground set F that extend to an action on B(M).

This definition will be needed firstly in Section [5.1] where we upgrade polynomial invariants
of matroids to graded representations of Aut(M). This will be then used to compute invariants
by exploiting the symmetries of different matroids.

1.1.2 Examples

We now give several different examples of (isomorphism classes of) matroids that are going to
be useful in the following discussions.

1.1.2.1 Uniform and Boolean matroids

Fix a set E and a non-negative number k& < #FE. The uniform matroid of rank k over E,
denoted Uy, g, is the matroid with

e Family of bases B(Uy g) = (],f) ={BCE|#B=k},
e Family of circuits C(Ux.g) = (,,7,)-

The automorphism group of the uniform matroid Uy g is &g. When k = #E we denote the
matroid Bg and call it the Boolean matroid over E. This is the matroid with only one basis,
E. and no circuits.

Remark 1.1.2.1. When the ground set E is not important up to isomorphisms, the isomor-
phism class of uniform matroids of rank k over n elements will be denoted by Uy, ,,.

1.1.2.2 Matrices

Let k <nand A € Mgy, (K) be a matrix of rank k. The matroid M = M(A) associated to A is
the matroid with ground set E = {columns of A} and family of bases B = {bases of Col(4)},
where Col(A) denotes the vector space spanned by the columns of A. From this example we
understand where the terms independent and rank come from. In fact, I C F is independent
if and only if the columns are linearly independent over K and the rank function rk coincides
exactly with the notion of rank in linear algebra. Matroids arising in this way are called K-
realizable. Realizable matroids will play a fundamental role and will be studied further in
Section with the equivalent notion of hyperplane arrangements.

1.1.2.3 Graphic matroids

Consider a multigraph G = (V, E), where E denotes the set of edges. The matroid M = M(G)
associated to G is the matroid on the ground set E with

e Family of bases B = {spanning forests of G},
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e Family of circuits C = {cycles of G}.

A matroid M is said to be graphic if there exists a graph G such that M is isomorphic to
M(G). From this example we understand where the term circuit comes from, as the circuits of
a graphic matroids correspond to the cycles of the associated graph.

Example 1.1.2.2. Boolean matroids B,, are graphic and can be realized by any tree with n
edges. Uniform matroids of corank 1, U, _; ,, are graphic and can be realized by a cycle graph
with n edges.

Example 1.1.2.3. It can be shown that the matroid U 4 is not graphic. See Section for
an explanation.

1.1.2.4 Paving matroids

A matroid M is said to be paving if every circuit has cardinality at least rk M. A matroid M is
sparse paving if and only if every subset of E of cardinality rk M is either a basis or a circuit.
This also implies that every sparse paving matroid is paving. Equivalently, a matroid is paving
if and only if every flat up to rank rk M — 2 is independent and it is sparse paving if and only
if in addition to that every hyperplane has cardinality either rk M or rk M — 1.

Remark 1.1.2.4. The hyperplanes of a sparse paving matroid of cardinality rk M are also
circuits. Therefore, they are also known as circuit-hyperplanes.

See Proposition [1.1.3.15] Proposition [1.1.3.17] and Proposition for different charac-
terizations. This class of examples is very famous in matroid theory thanks to the following
conjecture by Mayhew, Newman, Welsh, and Whittle.

Conjecture 1.1.2.5 ([MNWWTII1]). The family of sparse paving matroids is predominant
among the class of all matroids.

In other words, it is expected that asymptotically almost all matroids are sparse paving.
Paving and sparse paving matroids are the main object of study in Chapter [ The following
statement is trivial.

Proposition 1.1.2.6. FEvery uniform matroid is sparse paving.
Here are some more interesting examples of paving matroids.

Proposition 1.1.2.7. The graphic matroid on the complete graph K, is sparse paving.

Figure 1.1: The complete graph K4

Proof. The matroid M(K) has rank 3 and 6 elements. The 3-subsets of E(K4) are either cycles
or spanning trees. O
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Definition 1.1.2.8. Consider the point-line configuration in P? depicted in Figure The
Fano matroid F7 is the matroid of rank 3 over the seven vertices where a 3-subset of points is
a basis if and only if the points are not colinear.

Figure 1.2: A visual representation of the Fano matroid Fr.

Definition 1.1.2.9. Consider the picture in Figure[I.3] The Vdmos matroid Vg is the matroid
of rank 4 over 8 elements whose bases are all the 4-subsets of vertices that do not form one of
the five shaded rectangles. The automorphism group of Vg is generated by the following four

elements:
r1 = (12), s1=(17)(28), r2=(34), and s2 = (35)(46).

Figure 1.3: A visual representation of the circuit-hyperplanes of the Vamos matroid Vg.

Proposition 1.1.2.10. The matroids F; and Vg are sparse paving.

Remark 1.1.2.11. The matroids F7 and Vg are interesting for questions regarding realizability
discussed in Section [[L.1.4l
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Definition 1.1.2.12. A Steiner system of type (d,k,n) consists of a set E of cardinality n
along with a family H of k-element subsets (called blocks) with the property that every d-subset
of E is contained in exactly one block.

A Steiner system (E,H) of type (d, k,n) determines a paving matroid of rank d + 1 on the
ground set E characterized by the property that H is the set of hyperplanes [Wel76, Chapter
12.3]. Given a Steiner system (F,H) of type (d, k,n) and an element e € E, one can construct
a new Steiner system (E/e,H/e) of type (d — 1,k — 1,n — 1) by putting E/e := E \ {e} and
H/e :={H\{e} | H € H,e € H}. The notation is consistent with the operations defined in
Section

There is a unique Steiner system of type (5,6,12) up to isomorphism, which is typically
denoted S(5,6,12). The automorphism group of S(5,6,12) is the Mathieu group Mjs. This
group acts 4-transitively on the ground set, and the stabilizer of a point is the Mathieu group
Mj;. Thus we may perform the aforementioned operation to obtain a Steiner system S(4,5, 11)
with an action of Mj;.

There is also a unique Steiner system of type (5, 8,24) up to isomorphism, which is denoted
S(5,8,24), and is known as the Witt geometry. The automorphism group of S(5,8,24) is the
Mathieu group Mas4, which acts 5-transitively on the ground set. The stabilizer of a single
point is the Mathieu group Mass, which acts on the corresponding Steiner system S(4,7,23).
The stabilizer of a pair of points is the Mathieu group Mss, which acts on the corresponding
Steiner system S(3, 6, 22).

1.1.2.5 Matroids on at most five elements

It is enough to list isomorphism classes of connected matroids, as all the other ones can be
obtained by performing direct sums. Moreover, since a matroid is connected if and only if its
dual is (see Proposition , we are going to list only the matroids up to rank [%W We list
them first by cardinality of the ground set, then by rank and by number of bases. We could
have listed the possible families of bases, but it is easier to describe them using operations
coming from Section

n=1: UO,l-
n=2: ULQ.
n=3: U173,

n=4: U1747 t(Ul,z @32)a U2747
n=>5: Uz t(Uz3®B2), t(Ui2 @ U2 ®By), t(U12 ®Usz3), Ugs.

1.1.3 Classical operations

A natural question is how to build new matroids from known ones. In this section we review
some well-known operations. We give the definitions in terms of the rank function for simplicity,
but of course each one could be described using all the other axiom systems.

1.1.3.1 Direct sum

Definition 1.1.3.1. Let My = (E1,1ky) and My = (Es,rks) be two matroids. Their direct sum
is a matroid of rank rk M; + rk My

M1 D M2 = (E1 (] EQ,I‘k),
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where 1k A := 1k (AN E7) + rka(A N Ey) for every A C Fy U Es.
Example 1.1.3.2. The Boolean matroid B,, can be written as a direct sum of n copies of Bj.

If a matroid M cannot be written as a direct sum of two non-empty matroids M = M; & M,
we say that the matroid is connected. Otherwise we say that M is not connected and there is
a unique (up to order) way of writing M = @, M; where all the matroids M; are connected.
These are called the connected components of M.

Example 1.1.3.3. Each loop and coloop of a matroid M forms a connected component of M.
Every uniform matroid Uy, is connected, except for when k = 0, in which case it is a direct
sum of n loops, or when k = n, in which case it is a direct sum of n coloops, i.e. a Boolean
matroid.

1.1.3.2 Minors

Definition 1.1.3.4. Let M = (E,rk) be a matroid and S C E. The restriction of M to S is a
matroid of rank rk .S
M|S = (S,rkM‘S),

where tky 4 A := 1k A for every A C S. The restriction to the subset £\ {e} is also known as
the deletion of e from M and is denoted M\ e.

Example 1.1.3.5. The restriction of a uniform matroid Uy, to a subset S of cardinality
s < k is isomorphic to a Boolean matroid Bs. The deletion of any element of the ground set is
isomorphic to

Uk,n \ e= Uk;nfl-

Definition 1.1.3.6. Let M = (E, k) be a matroid and S C E. The contraction of M by S is
a matroid of rank rkM —rk .S
M/S = (E\S,I‘kM/S),

where rky g A = k(A U S) —rk(S) for every AC E'\ S.

Example 1.1.3.7. The contraction of a uniform matroid Uy, by a subset .S of cardinality
s < k is isomorphic to a uniform matroid Ug_ 5.

Definition 1.1.3.8. We say that N is a minor of M if N can be obtained from M by a sequence
of restrictions and contractions.

Several theorems in matroid theory are stated in terms of minors. An example appears later
in this Section as Theorem [[LT.4.5

Example 1.1.3.9. Each of the connected components of a matroid M is a minor of M. If
M = M; © My, then equivalently My = Mg, or M; = M/Es.

1.1.3.3 Dualization

Definition 1.1.3.10. Let M = (E,rk) be a matroid. Its dual is a matroid of rank #E — rk M
M* = (E,rk"),

where rk* A = rk(F \ A) + #A — rk M. This operation is an involution, i.e. (M*)* = M.

Example 1.1.3.11. The dual of a uniform matroid Uy, is isomorphic to a uniform matroid
Un—k,n-
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Example 1.1.3.12. If ¢ is a coloop in M it becomes a loop in M* and viceversa.

Example 1.1.3.13. The operations of deletion and contraction by an element are dual to each

other, i.e.
M/e = (M*\e)".

Theorem 1.1.3.14. There is a bijection between C(M) and H(M*) given by
C(M) — H(M)

C— E\C
E\C <+ H.

Proof. If C' € C(M), then rkm(C) = #C — 1 and, for every e € C, tkm(C'\ {e}) = #C — 1. By
dualizing, this means that

tky« (E\ C) =1tkm(C) + #(E\C) —tkm E = #FE —1tkM —1=1kM* -1
and, for every e & E\ C

kv« ((E\ C)U {e}) =rtkm(C \ {e}) + #(E\ CU{e}) —rtkm E = #E —rkM = rk M*.

The notion of duality lets us give an equivalent definition for sparse paving matroids.

Proposition 1.1.3.15. A matroid is sparse paving if and only if it is paving and copaving (i.e.
its dual is also paving).

1.1.3.4 Truncation

Definition 1.1.3.16. Let M = (E,rk) be a matroid. Its truncation is a matroid of rank
rkM -1
t(M) = (E,1k),

where 1k’ A := min{rk A,rkM — 1}. The notation #/(M) denotes the composition of the trun-
cation j times /(M) = t(/=1(M)).

The operation of truncation lets us give yet another equivalent definition for paving ma-
troids.

Proposition 1.1.3.17. A matroid is paving if and only if its truncation is isomorphic to a
uniform matroid.

Remark 1.1.3.18. If M is a matroid on the ground set E the identity on E induces a weak
map
M — ¢(M),

which is, of course, not rank preserving. It is a weak map since if I € Z(¢t(M)) then rk’ I = #1I,
which implies that min{rk I,tk M — 1} = #1. If I is not independent in M, then #I = kM —1
and rk I = rk M which is a contradiction.



CHAPTER 1. PRELIMINARY NOTIONS 18

1.1.4 Realizability

We now consider again matroids coming from matrices defined in Section By taking the
orthogonal complement of each of these vectors we might consider the list of the corresponding
codimension-1 subspaces. These are known as hyperplane arrangements, one of the most famous
classes of matroids. A standard reference to study hyperplane arrangements is [OT92]. This
class will be exploited in Chapter [2|in order to work on matroids using geometry. Fix a field K
and a K-vector space V. A hyperplane arrangement over K is a finite list of codimension one

affine subspaces of V,
A={H,...,H,}.

If the arrangement is central, i.e. the intersection of all the hyperplanes in A is non-empty, this
defines a matroid by setting

E=A,

I € 7 if and only if codim ﬂ H; = #I.
el

We call this matroid M(A). It should be clear that the rank function rk is given by the
codimension and the flats F are in bijection with the subspaces obtained by intersecting the
hyperplanes in A. If the intersection of all the hyperplanes Vg := (1, H; is of positive
dimension, we can always define an arrangement over V/Vg with the same underlying matroid.
We call this arrangement essential. The dimension of the ambient space is now equal to the
rank of the matroid rk M.

Definition 1.1.4.1. Given a matroid M, if there exists an arrangement A over K such that
M = M(A), then M is said to be realizable over K or K-realizable. A matroid is realizable if it
is realizable over some field K and it is regular if it is realizable over every field.

For our purposes it is important to understand if a matroid is realizable (hence there is
some geometry we can associate to our combinatorial object) or not.

Example 1.1.4.2. Every graphic matroid is regular. We show that for a connected graph.
First we observe that the cardinality of any spanning tree is equal to the number of vertices
minus one, hence we can label the vertices of G as v1,...,v;xmy1. Consider a vector space V'
over K with a basis {¢1,...,orkm+1} of V*. Fix a spanning tree B € B(M(G)) and assign
every edge e = (v;,v;) in B to the vector ®(e) := ¢; — ¢; € V*. Then, every edge e ¢ B
forms a cycle with some elements e;,,...,e; of B. Define ®(e) := — Z;:1 ®(e;;). Now by
defining H, = ker ®(e) for every edge e we obtain the desired arrangement 4. Notice that Hg
is 1-dimensional and we can quotient by it to obtain an essential arrangement.

Example 1.1.4.3. The uniform matroid U 4 is not realizable over [F2, as there are only three
distinct lines in (F2)2. In particular it is not graphic (See Example [1.1.2.3). The matroid Fy
defined in Definition [1.1.2.8) and its dual F3 are realizable over K if and only if char K = 2.

Remark 1.1.4.4. For trivial reasons, the matroid Us 4 @ F7 is not realizable over any field.
The matroid Vg defined in [1.1.2.9]is the smallest matroid that is not realizable over any field
(IBET1]).

Given a matroid M, the realizability problem asks to find every field K over which the
matroid is realizable. This is in general a difficult task. The regularity problem is instead fully
solved with a list of excluded minors.
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Theorem 1.1.4.5 ([Tuth8]). A matroid is regular if and only if it does not contain any of the
forbidden minors Us 4, F7 or F3.

Of course any matroid containing these as minors is not regular. The converse implication
is harder to prove and can be found in [Sey79]. Instead of requiring a matroid to be regular,
we can ask for it to be realizable over some field.

Theorem 1.1.4.6 ([Nell8, Theorem 1.1]). Almost all matroids are not realizable.

This means that asymptotically, as we let the cardinality of the ground set grow to infinity,
the proportion of matroids that are realizable over some field approaches zero. We said that
in Chapter |2| we want to build varieties associated to hyperplane arrangements and recover
polynomial invariants for matroids from them. The previous theorem by Nelson warns us that
even if we are able to do that, we then need to find a way to extend those definitions to all the
other matroids (which are almost all matroids) where we cannot work with geometric tools.

1.1.5 First examples of polynomial invariants

Given a class of mathematical objects, a classic thing to do is to describe its elements via
invariants. A matroid invariant is a function f defined on matroids such that if M and M’ are
isomorphic, then f(M) = f(M’). An example of invariant is, for example, the rank rk M or the
cardinality of the ground set. Of course one is interested in computing invariants that carry
with them more information. This subsection is devoted to describe some invariants that are
very well known in the literature.

1.1.5.1 Tutte polynomial

The Tutte polynomial of a matroid is an important invariant that encodes many fundamental
features of the matroid. Concretely, the Tutte polynomial of M = (FE,rk) is the bivariate
polynomial defined by

Tu(e,y) = 3 (x — DEM=kA(y  y#a—ia, (1.1)
ACE

Much of the relevance of this polynomial comes from the fact that it is the most general
“deletion-contraction” invariant, that is, every deletion-contraction invariant is a specialization
of Tyy. The following theorem could be taken as an equivalent recursive definition.

Theorem 1.1.5.1 ([Whi86]). Let M be a matroid. If M is the empty matroid, set Ty(z,y) = 1.
Otherwise for every e € E
rTwne(z,y) if e 15 a coloop of M,
Tu(,y) = { yTune(2,y) if e is a loop of M,
Twe(x,y) +Tmye(w,y)  otherwise.
As a direct consequence of this recursion, one has that if M is not empty, then Ty (0,0) = 0.

From the previous result, one can show by induction that the Tutte polynomial always has
non-negative coeflicients. Moreover, the following results are easily shown by induction.

Proposition 1.1.5.2. The Tutte polynomial of the uniform matroid Uy, is

oo =3 (M- (1) 5 3 (Do-vee

=0 i=k+1
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In particular,
Tg, (x,y) = z™.

Closed formulas for most of the classical operations are also well known.
Theorem 1.1.5.3. The following equalities for the Tutte polynomial hold:

o Tv,om, (z,y) = Tw, (z,y) Tm, (2, y).

o T (z,y) = Tu(y, x).

o (z=1)Tyw(z,y) =Tw(z,y) + (2y — 2 —y)Tu(L,y).

1.1.5.2 The S-invariant

In [Cra67, Proposition 3], Crapo proved that if #F > 2, then M is connected if and only if
the coefficient of the monomial 'y in the Tutte polynomial of M is strictly positive. The
coefficient of this monomial is known in the literature as the S-invariant and is denoted by
B(M). The S-invariant can also be computed with the following recursive formula.

0 it M= U,
BM)=<(1 it M=Uj 1,
B(M\ e)+ B(M/e) if e is neither a loop nor a coloop.

By inspecting the formulas in Theorem one has
Proposition 1.1.5.4. The following equalities hold:

e If My and My are not empty, then S(M; & Mg) = 0.

o If #E > 2, then B(M) = S(M*).

1.1.5.3 Characteristic polynomial

The last polynomial we introduce in this section is the characteristic polynomial xm(x). We
define it as
() = (=)™ My (1 - z,0).

This gives us directly the formula

XM(I) — (71)rkM Z (7z)rkM7rkA(71)#A,rkA
ACE

_ Z (—1)#AgrkM—rk 4,

ACE

Equivalently, the characteristic polynomial is defined by the following recursion.
Theorem 1.1.5.5. For every matroid M, the following deletion-contraction formula holds.
1 if M= Uo,o

xm(z) = (z - Dxme() if e is a coloop
XM\e(T) = Xmye(®)  otherwise.
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As a direct consequence of its definition we also notice that
xm(1) = (=1)™ M7 (0,0) = 0.
This motivates us to define the reduced characteristic polynomial as

Fu(z) =

r—1"

Proposition 1.1.5.6. The following holds:
rtkM—-1-— rkM— d
B0 = (-1 (1) = 0 ()
|z=1

By inspecting the formulas in Theorem [1.1.5.3] one has the following.
Proposition 1.1.5.7. The following hold:

* XmioM, () = xwm, (%) Xm, (2).

o oxim(2) = xm(@) + (—1)™M (2 — 1) xm(0).

Lastly, we record here the values of ym(z) and Xy («) for uniform matroids.
Proposition 1.1.5.8. The characteristic polynomial of the uniform matroid Uy, ,, is

-« if T\, ki p(n—1
we = S (G)e e (D))

In particular,
xg,(x) = (z —1)"

Lemma 1.1.5.9. The reduced characteristic polynomial of the uniform matroid Uy ,, is

k—1

T, (@) = S (-1 (” - 1) o1,

=0 J
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1.2 Poset theory

The family of flats give a cryptomorphic set of axioms for matroids, i.e. one is able to fully
reconstruct the matroid by only knowing F(M). When they are ordered by inclusion in a poset,
they form a lattice known as the lattice of flats of the matroid, £(M). Isomorphic lattices of flats
define matroids that are isomorphic up to simplification, i.e. up to removal of loops and parallel
elements. In our geometric approach to matroids this is good enough, as in the realizable case
loops correspond to identically zero 1-forms (whose kernel is the whole ambient space and not
a codimension 1 subspace) and parallel elements correspond to parallel 1-forms (which then
define the same hyperplane). Then, to define a matroid invariant we can first work on £(M)
and then extend the definition to non-simple matroids by properly defining the “corner cases”.
In this section we want to revise the theory of incidence algebras of posets, applied in particular
to geometric lattices defined in Section One of the goals is to redefine the characteristic
polynomial defined in Section [1.1.5.3| only in terms of this lattice of flats. Once we are able to
obtain this, in Section we are able to give the definition of several polynomial invariants
that will be of both geometric and combinatorial interest.

1.2.1 Incidence algebra

Most of the ideas that we revise in this Section can be found in [Prol8]. For a poset (P, <) we use
the following notations. The interval between u and v is the subposet [u,v] ={w € P |u<w <
v}. We will only work with locally finite posets, i.e. where every interval [u, v] is finite. The maz-
imal (resp. minimal) elements of P are max P = {u € P | if u < v (resp. u > v) then v = u}.
Even if it is not needed for the whole section, we will always assume that P has a unique
maximal and minimal element, denoted 1 and 6, respectively.

Definition 1.2.1.1. The incidence algebra of P is defined as
1(P) = [] zlx).
[u,v]

An element f € I(P) is a function f that maps every interval [u,v] to a polynomial f([u,v]) :=
fiuv)(®). We can extend a function f € I(P) to a function f : P x P — Z[z] by setting
Jiuw)(x) = 0 whenever u £ v.

Since P is locally finite, I(P) admits the following convolution product. If f and g are in
I(P), f g is the element of I(P) whose components are given by

(f*g)[uﬂ)](x): Z f[u,w](x)g[w,v](x)

u<w<v

With the convolution product, I(P) becomes an associative algebra. Its unity is given by the

function
1 fu=v
5[u,v] (.’E) = .
0 ifu#wv

Theorem 1.2.1.2. The function § is the multiplicative unit of 1(P).
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Proof. Let f € I(P). We show that f«xd =3 f = f.

u<w<v
_f[uv]( ’U’U] Z fuw 6[101)]( )
u<w<v
= f[u,v] (.’17)
For (8 * f)[u,.](x) the proof is analogous. O

One of the easiest functions inside I(P) is the function ¢.
Definition 1.2.1.3. Let P be a locally finite poset. We define ¢ € I(P) as
C[u,v] (l‘) =1
for every u < v.

We are now interested in computing inverses with respect to the convolution product. First
of all, we observe that left and right inverses coincide.

Proposition 1.2.1.4. Let f be a function that admits a left and right inverse, i.e. there exist
two functions g1 and g such that g1 x f = f*xgo = 9. Then, g1 = go.

Proof. We just need to compute g * f * go and exploit the associativity of the product.
G1=g1%0=g1%(fxg2) = (g1 % f) % g2 =05 % g2 = ga.
O

The following result lets us characterize the elements of I(P) that admit a multiplicative
inverse.

Theorem 1.2.1.5. Let f € I(P). There exists a multiplicative inverse g = f~' if and only if
Jiuu) = £1 for every u € P.

Proof. Suppose there exists g € I(P) such that f+xg=gx* f =4J. Then,

meaning that fi, , () is invertible in Z[z], i.e. f,.(x) = +1. Conversely, we build g by
induction by setting gpu,.)(z) = fiu,u] (x) for every u and

Z guw] f[wv()

u<wv

g[u,v] (x) = f[v ] ( )
[

Since (jy,u)(7) = 1, the function ¢ admits an inverse. This is known as the Mébius function
I
Theorem 1.2.1.6. For every poset P, the function p := (™' is the function
ifu=wv,

(@)=
14 u,v - :
- - Zugwgv Hlu,w] qu <w.

Proof. This follows directly by expanding the convolution (u * ()fy.(z) as in the proof of
Theorem [[L2.T.5 O
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1.2.2 Graded lattices
The following definition can be found in [Bre99, Section 2].

Definition 1.2.2.1. A weak rank function r is a function r € I(P) that satisfies the following
properties

® Ty € 7Z C Z[z] for every u < v,
o If u < v then 7, >0,
o If u < w < wthen 7y w) + Tw,o] = Tu]-

We say that a poset P is weakly ranked if it is a locally finite poset equipped with a weak
rank function. If P has a unique minimal element 0 we can reconstruct the whole weak rank
function r from the values r, := T ,u)> which we call rank of u. If in addition to that P also

has a unique maximal element T, we call rp := ry the rank of the poset P.

The incidence algebra of weakly ranked posets has some additional structure that we want
to exploit. We denote by Z(P) the subring of functions such that deg f, .)(x) < 7[,,). This
subring is also equipped with an involution

.]?[u,v] (SU) =gl f[u,v] ((Eil).

Definition 1.2.2.2. A function f € Z(P) is symmetric if f: f.

Definition 1.2.2.3. An element x € Z(P) is a P-kernel if rp, ) =1 and k™! = K.

Definition 1.2.2.4. If P is a weakly ranked poset, its characteristic function x = xp can be
defined as a function on the incidence algebra
X = p*G,

or more explicitly,
X[’U.ﬂ)] (x) = Z M[u)w]lﬁ'[w,u] .

u<w<v

If P has 0 and 1, we define the characteristic polynomial x p(x) := X.1)(%)- From the definition,
this is a monic polynomial of degree rp.

Remark 1.2.2.5. The characteristic function is a P-kernel, as

X*X = (nx Q) # (i) = 6.

Theorem 1.2.2.6 ([Prol8 Theorem 2.2]). If k is a P-kernel, there exist unique functions f
and g such that

d f[u,u] (z) = lu,u) (z) =1,
4 qu <, deg f[u,v]a degg[u,v] < %;
o f=kxfandj=gxr.

We call these functions the right (resp. left) Kazhdan-Lusztig—Stanley function associated to
K.
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Remark 1.2.2.7. The right and left Kazhdan—Lusztig—Stanley functions of s are both invert-
ible. Their inverse functions are the (unique) functions that satisfy

F= e,
et 1

g l=Kkxg "

Example 1.2.2.8. If k = y, the left Kazhdan-Lusztig—Stanley function is trivial, i.e. g = (,
as

Crx=Cxpx(=0%C=.
The right Kazhdan-Lusztig—Stanley function of x is more interesting. For matroids, this is
defined in Section [[.2.4]

Definition 1.2.2.9. For every P-kernel k, we define the associated Z-function to be
Z=gxrxf=gxf=gxf

From the definition, we quickly see that Z is a symmetric function. As the P-kernels can
be seen as generalizations of the characteristic polynomials, we want to introduce a generalized
version of the reduced characteristic polynomial.

Theorem 1.2.2.10. If x is a P-kernel, then ki, (1) = 0 for every u < v.

Proof. Since k * k = 0, we write

rp(e) + 2™ rp(e™) == Y a™wg (e A, g (@),

s

By induction, since every interval in the sum is non-trivial and r, < rp for every u # T, the
whole sum evaluates to 0. Therefore,

2 I{P(].) = 0,
from which the result follows. O

This motivates us to define the following

Definition 1.2.2.11. For every poset P with 0 and 1 and for every P-kernel k, the reduced
P-kernel k is the function

B e ifu=w
Rluw] () = ’“[Lll(”:) otherwise.

If u # v, K[y () is a polynomial of degree r, — 7, — 1. The value for the corner case u = v
is set to be -1 to make computations in Theorem [T.2.4:22] easier.

Example 1.2.2.12. By definition of xp(z),

xp(l) = Z Hou) = 0,

ueP

where the sum is zero from Theorem [1.2.1.6] The reduced characteristic polynomial X p(z) is

defined as

Tolo) = X0
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We also record here a result that will be useful later.

Lemma 1.2.2.13. The following equalities hold for &:

| Gp(x) —gp()

(9*R)p(x 1 ,
(F* f)p(z) = —fp(x)inlfp($)'

Proof. Let us prove the statement for g. Since (¢ * k) p(z) = gp(z), by adding and subtracting
(x —1) (gp(z) Kz 7)), we obtain
gp(z) = gp(x) + (x — 1) (9 *R)p(z) + gp(z) (z — 1),
from which the statement follows. The proof for f is identical. O
Lemma 1.2.2.14. If k = x, then the identity for g reduces to
_ z (2"t —1)
> Xpui) = T a1
ueP

While % is clearly not a P-kernel, we observe, thanks to Theorem [1.2.1.5| that it admits an

inverse.

Definition 1.2.2.15. The function ¢ such that
R*L=1L1%R =0,
is called the reduced inverse of the P-kernel.

By expanding the convolution product, one notices that the degree of tp(x) is rp — 1, which
directly implies that the function is not symmetric.

Example 1.2.2.16. We call the reduced inverse of x the Chow function of P and, if P has a
minimal and maximal element, we call

Hp(z) = —L0.7) ()
the Chow polynomial of P.

We call this function the Chow function in analogy to what we define later in Section [T.2.4}
The polynomial invariant Hy,(z) associated to a matroid M is proved to be the Hilbert—Poincaré
series of the Chow ring of the matroid.

In analogy with Definition we also give the following definition.

Definition 1.2.2.17. If ¢ is the reduced inverse of a P-kernel k, its augmented version is
L=g*L,
where g is the left Kazhdan-Lusztig—Stanley function of .

Example 1.2.2.18. If k = x, then ¢ will be called augmented Chow function of P. If P has 0
and 1, we call

Hp(z) == =57 (2).
the augmented Chow polynomial of P.
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1.2.3 Geometric lattices

In this section we show that the family of flats F(M) of a matroid M has the structure of a
lattice called lattice of flats.

Definition 1.2.3.1. Let M be a matroid. The poset L(M) = (F, Q) is called the lattice of flats
of M.

Remark 1.2.3.2. The following properties of £(M) hold:
e £(M) is finite with a minimum, 0 = o(§) = {loops of M}, and a maximum, 1 = E;
e An element of £(M) covers 0 if and only if it is a flat of rank 1;
e An element of £(M) is covered by 1 if and only if it is a flat of corank 1;

e A flat Fy covers another flat F5 in £(M) if and only if F5, C F} and rk F} = rk Fr+1. This
implies that the poset £(M) is ranked, with rank function equal to the length function of
chains.

Theorem 1.2.3.3. The lattice of flats L(M) is indeed a lattice. Moreover, the rank is semi-
modular, that is,
rk(F1 V F2) —|—rk(F1 A Fg) S I'kFl + I'kFQ.

Proof. By Theorem [1.1.1.17] the meet of two elements exists and it is well defined,
Fl /\F2 = F1 ﬂFQ.

The join is defined as Fy V Fy := o(F; U Fy). To prove the semimodularity we use the fact that
the rank function is semimodular on every subset and Remark [1.1.1.14] to obtain

tk(F1 V Fy) +1k(Fy A Fy) =1k(o(Fy U F)) + rk(F1 N Fy)
:I‘k(Fl @] FQ) + I‘k(Fl N FQ)
§rkF1 +I‘kF2.

O

Definition 1.2.3.4. A finite ranked lattice £ is called geometric if it is semimodular and
atomistic, i.e. any element F' € L can be written as the join of atoms of the lattice,

Fels F= \/ e.

e atom
e<F

Theorem 1.2.3.5. A finite lattice L is isomorphic to the lattice of flats L(M) of a matroid M
if and only if it is geometric.

Proof. We have already proved that £(M) is semimodular. Let then F' be a rank r flat. Then,
there exists an independent set {ej,...,e.} € Z(M) contained in F. Each of its elements is
independent as a singleton and rk{e;,e;} = 2 for i # j, therefore e; ¢ o(e;). Hence, the atoms
o(er),...o(e.) are distinct and

F= \/ o(e;).

i=1

This proves that £(M) is geometric. Conversely, let £ be a geometric lattice with rank function

h. Define tk A :=h | Ve atom € |- The properties of the rank function then follow directly. [
ex
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It is noteworthy to see that M is completely described by £(M), if we decide to overlook
loops and parallel elements.

Theorem 1.2.3.6. The correspondence between a geometric lattice £ and the matroid M(L)
defined on the family of atoms of L is a bijection between the family of finite geometric lattices
and the family of simple matroids.

Proof. Let e1,es be two distinct atoms of a geometric lattice £. If rk is the rank function of
M(L), clearly rk{e1} = rk{e2} = 1, and rk{e;, ea} = 2, therefore we can conclude that M(£) is
simple and

LM(L)) =L

using Remark [1.1.1.14] Conversely, if £ = £(M) is the geometric lattice of a simple matroid
M, clearly
M(L(M)) = M.

O

From now on, unless otherwise stated, when working on geometric lattices we will always
assume that the underlying matroid is simple. In particular, then the minimal element is
o(?) = 0 and the set of atoms coincides with the ground set E.

1.2.3.1 Intervals and products

Most of the operations on matroids have a very clear interpretation on £L(M).

Proposition 1.2.3.7. Let My and My be two matroids on ground sets E1 and Es, respectively.
Then,
ﬁ(Ml (&5) Mg) = ,C(Ml) X E(MQ),

where L1 X Lo is a poset where (x1,22) < (y1,y2) if and only if v1 < y; and x2 < Y.

Proof. We only need to show that the flats of a direct sum are disjoint unions of a flat F; of
M; and a flat F» of My. Recall that tk A = rky, (AN Ey) + rkm, (A N Ey). For every flat F
of My @ My denote by F; = FNE; and Fy, = F'N Ey. Now, for every e € F, by using the
semimodularity of the rank function of M; @ Ms, the fact that F; N Fy, = () and the fact that
tk(F U {e}) =1k F + 1 since F is a flat, we get that

I‘k(Fl U {6}) + I‘kFQ Z I'k(Fl @] FQ) + 1.

Since F; and F» are disjoint, we know that rk(Fy U Fy) = rk Fy; + rk F5. The claim then
holds. O

What makes geometric lattices work so well with the incidence algebra is that they are a
downward-closed class of posets. Formally, the following result holds.

Theorem 1.2.3.8. Fvery interval in a geometric lattice is a geometric lattice.

Proof. Fix F in £ and consider the initial interval [, F']. This subposet is still clearly atomistic
and is equipped with a semimodular rank function, given by the restriction of rk, to F'. Consider
now the final interval [F, E]. This subposet is still a lattice and it is ranked with rank function
tkip, 5)(G) =tk (G) — 1k (F'). This rank function is still semimodular for trivial reasons. We
only need to check whether it is still atomistic. However, the atoms of [F, E], i.e. the flats of
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L that cover F' are in bijection with the set {oc(FU{e}) | e € E\ F}. Since G € [F, E] implies
that G = F'U,cq\ € We can write

G= U o(FUe)

e€G\F

and the claim follows. Lastly, for a generic interval [F,G] C £ we just need to observe that
[0, G] is initial in £ and [F,G] is final in [0, G]. O

Corollary 1.2.3.9. The interval [F,G] C L(M) is isomorphic to the lattice of flats of the
matroid (M|G) /F, where we first restricted to the flat G and then contracted by the flat F'.

Proof. This follows directly by the construction of the two rank functions in the previous
proof. O

Theorem 1.2.3.10. The family of hyperplanes of the truncation of M is
H(t(M)) ={F € F | ok F = 2},
i.e. the lattice of flats of t(M) is obtained by deleting all the hyperplanes from L(M).

Proof. The matroid ¢t(M) has rank equal to rkM — 1. We just observe that every independent
set up to rank rk M — 2 remains independent, therefore the rank function is also unchanged and
flats of rank rk M — 2 are still flats in ¢(M). Now, since the new bases have cardinality rk M — 1,
the only flat with that rank has to be E, meaning that every hyperplane in M cannot be a flat
in ¢(M). O

For dualization the situation becomes slightly trickier. The lattice of flats can be derived

from Theorem [[.1.3.14]

1.2.4 Polynomial invariants on the lattice of flats

We are finally ready to join the two previous sections and produce polynomial invariants for
matroids using the incidence algebra of £(M). We know that the poset £(M) is finite, hence
locally finite, and that it is weakly ranked with the rank function being the matroid rank
function rk as shown in Theorem We have already observed in Proposition [1.1.1.15
that the poset £(M) has a minimal and a maximal element. Moreover, since by Theorem
every interval in £(M) is itself a matroid, this means that a function f in I(£L(M)) can
actually be thought as a function

f : {simple matroids} — Z[x]
By defining separately the values of f on matroids with loops we are able to obtain a function

f : Mat — Z[z], which is invariant up to isomorphism. Let us start by showing how to obtain
the characteristic polynomial.

Theorem 1.2.4.1. There is a unique way to assign to each loopless matroid M a polynomial
xm(z) € Z]x] called the characteristic polynomial of M defined as

XM (l‘) — Z M[@,F]xrk M—rkF.
Fel(M)
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By setting xm(z) = 0 if M is a matroid with loops, we completely define x as a polynomial
invariant x : Mat — Z[z]. This polynomial coincides with the polynomial defined in Section
1.1.5.3| thanks to the following result.

Theorem 1.2.4.2. Let M be a simple matroid, then
Yo pFA= N u@,F).
ACE FeL(M)
rk A=j rk F=j

Proof. By induction on j. If j < 1 the statement trivially holds since M is simple. Suppose
now it holds for every j < rkM and let us prove it for 57 = rk M. Then,

rkM—1
u0.8)=— Y p0.0=- 3 Y u.c)
GeL(M) j=0 GeL(M)
G<E rk G=j
rkM—1
D Y S
j=0 ACE ACE
rk A=j rk A<rkM
DGR S
ACE ACE
rk A=rk M

where the latter sum is zero from the known combinatorial fact that

Hence, we have just proved that

Adding on all flats of rank j we get

Yoou@E) =Y > (D)F= Y (-pFA

Fel(M) FeL(M) ACF rk A=j
rk F=j rk F=j rk A=rk '

where the last equality follows since if rk A = j there is a unique flat of rank j that contains
A, namely o(A). O

The following fact will be useful later. A proof can be found in [Rot64].

Lemma 1.2.4.3. The coefficients of the characteristic polynomial xm(z) alternate in sign.
More specifically, o
(=)™ M 2y (@) > 0.

Lemma 1.2.4.4. The Mdébius function p and the ¢ function are both multiplicative under direct
sums, 1i.e.
HeMi@Mz) = HL(My) HL(Mo)

and similarly for (.
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Proof. This follows from Theorem [1.2.3.7] It is sufficient to prove it only for initial intervals of
the form [@, F} U Fy] where Fy € L(M;) and F» € £L(M3). If Fy U Fy = (, the result is trivial.
Otherwise,

KO, FiuF] = — Z H[0,G1uG:]
GlucggFlqu
== > EpGUR]— Y, BORUGI— Y, D, HO.GiLG)
G1§F1 G2§F2 G1§F102§F2
— M0, F) Z Hio,G1] — K0, Fy) Z Hip,Go] — Z H[0,G4] Z H(0,G2]
Gr<F Ga<Fy Gr<Fy Ga2< Py

= [0, Fy] H[0,Fs] T+ H[0,Fy] B[0,Fs] — H[0,F1] K0, Fs)

where the third equality follows by the inductive hypothesis. The proof for { is trivial as
) < FyUF, if and only if ) < Fy and § < Fy in £(M;) and £(Ms) respectively. O

Theorem 1.2.4.5. The characteristic polynomial s multiplicative under direct sums, i.e.

XM @M, (33) = XM, (l‘) XMz (.23)

Proof. 1f either My or My has loops, then M; & M5 also has loops and the claim trivially holds.
Otherwise, the result follows from the multiplicativity of p and (. O

Theorem 1.2.4.6. For every matroid M the following equality holds
> @™ xm (@ xmye(z) = 0.
FeL(m)
Proof. 1f M has loops, every restriction M|r has loops and thus the claim trivially holds. If M
is loopless this is equivalent to saying that xm is a £(M)-kernel. O

Since x is a L(M)-kernel, this motivates us to introduce the Kazhdan—Lusztig-Stanley func-
tions for matroids. As we have observed in Example we are interested only in the right
function. This was first studied by Elias, Proudfoot and Wakefield in [EPWI16] without using
the language of incidence algebras.

Theorem 1.2.4.7. There is a unique way to assign to each loopless matroid M a polynomial
Pu(z) € Z[z] such that the following conditions hold:

(i) If tkM =0, then Py(x) = 1.
(ii) If tkM > 0, then deg Pu(z) < 1 rk M.
)

(iii) For every matroid M, the following recursion holds:

"M Py ( Z M (2) Pvyr(2).
FeL(M)

Remark 1.2.4.8. Written as is, the third condition does not give us a recursive definition for
Py(x) in terms of matroids with smaller rank. In fact, for F' = ) one finds the term Py(z)
inside the sum. To overcome this issue, one needs to write the formula as

2 MPy(z™1) — Pu(z) = Z M (%) Puyr(z)
FeL(M)
0
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and then observe that the condition on the degree lets us compute the polynomial by truncating
the sum on the right-hand-side at degree L% rk MJ.

Remark 1.2.4.9. Notice that if M is loopless the recursion implies that P is the right Kazhdan—
Lusztig-Stanley function of x in I(£(M)). If M is a matroid with loops, every restriction M|p
contains loops and therefore the right hand side of the defining equation is equal to zero. This
implies that we can then set Py(z) = 0 for every matroid with loops. This defines uniquely
the Kazhdan—Lusztig polynomial of M for every matroid M.

Theorem 1.2.4.10. The Kazhdan-Lusztig polynomial Py(z) is multiplicative under direct
sum, i.e.

PM1®M2<x) = PMl(x) PM2(x)'

Proof. If either M1 or My has loops, the claim is trivial. Otherwise, this follows by induction
from the multiplicativity of . O

As discussed in Remark we can also compute inverses of the Kazhdan—Lusztig—
Stanley functions. Again, the left function of  is trivial (g~! = u), while the right one gives
us a more interesting polynomial. This motivates us to give the following definition, first
introduced in [GX21, Theorem 1.2].

Theorem 1.2.4.11. There is a unique way to assign to each loopless matroid M a polynomial
Qm(z) € Z[zx] such that the following conditions hold:

(i) IftkM =0, then Qu(z) = 1.
(i) If tkM > 0, then deg Qm(z) < 3Tk M.
(iii) For every matroid M, the following recursion holds:

(_x)rk MQM (l‘_l) — Z (_1)rk M‘FQM‘F(m)xrk M_rkFXM/F(x_l)-
FeL(M)

Remark 1.2.4.12. Notice that if M is loopless the function with components (—1)"™*MQp(z)
is the inverse of P in I(£(M)). This means that

S Pup(@) (~)FM R Qup(a) = 0

FelL(M)

and

Z (=)™ MP Q. () Pyyp(x) = 0.

FeL(M)

By using the first relation, one can see that if M is a matroid with loops then Qm(z) = 0. This
defines uniquely the inverse Kazhdan—Lusztig polynomial of M for every matroid M.

Theorem 1.2.4.13. The inverse Kazhdan—Lusztig polynomial Qm(x) is multiplicative under
direct sum, i.e.

Qmy oM, (J?) =Qwm, (.’I}) Qm, (l‘)
Proof. The proof is identical to the one for Py(z). O

To conclude the discussion on the Kazhdan—Lusztig—Stanley functions, we last introduce
the Z-polynomial, first studied in [PXY18].
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Definition 1.2.4.14. For every matroid M, the Z-polynomial of M is defined as

Zw(x)= > @™ Pyp(x).
FeL(M)

Remark 1.2.4.15. Notice that if M is loopless, the recursion defines the Z-function of x in
I(L£(M)). Moreover, one can directly check that the Z-polynomial of a matroid with loops is
equal to the one corresponding to its simplification.

From the general discussion in Definition [I.2:2.9] the Z-polynomial is a symmetric polyno-
mial of degree rk M. This actually gives us a way of defining both Py(z) and Zy(z) simulta-
neously, as shown in [BV20].

Theorem 1.2.4.16. There is a unique way to assign to each matroid M a polynomial Py(z) €
Z|z] such that the following properties hold:

(i) If tkM =0, then Pu(x) =0 unless E is empty, in which case Py(x) = 1.
(ii) If tkM > 0, then deg Pu(z) < 1tk M.
)

(iii) For every matroid M, the polynomial

ZM(J?) = Z J}rkFPM/F(J?)
FeL(Mm)

is palindromic, i.e. ¥*MZy(x71) = Zu(z).
This defines uniquely the Z-polynomial of M for every matroid M.

Corollary 1.2.4.17. The Z-polynomial Zy(z) is multiplicative under direct sum, i.e.

ZMl@Mz (.’L’) = ZMl(x) ZMz (:E)

In [FMSV22], we prove the following theorem that shows a first parallelism with the Z-
polynomial.

Theorem 1.2.4.18. There is a unique way to assign to each matroid M a polynomial ﬂM (z) €
Z[x] such that the following conditions hold:

i) If tkM =0, then ﬂ x) =0, unless E is empty, in which case ﬂ x)=1.
M M

(ii) If tkM > 0, then deg Hy(z) < tkM and z™*M~1H,,(z~1) = Hy, ().

)

(iii) For every matroid M, the polynomial

Hu(z) = Y o™ Hy p(@)
FeL(M)

s palindromic.

This defines uniquely the Chow polynomial and the augmented Chow polynomial of M for
every matroid M, as

~

Hy(e) = Hy(x)  and  Hu(x) = Hy(a).
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As it turns out, although the second condition only requires that deg ﬂM (z) < rk M, the last
part of the statement will end up guaranteeing that in fact deg ﬂM(x) =degHy(z) =rkM -1,
and therefore the condition xrkM’lﬂM (x71) = ﬂM (z) states that ﬂ(x) is palindromic.

For the proof, we rely on an elementary symmetric decomposition that is of particular
interest in Ehrhart theory due to the work of Stapledon (see also [BS21] and [AT21] for related
work on real-rootedness of these decompositions). Precisely, we need a slight modification of
[Sta09l Lemma 2.3].

Lemma 1.2.4.19. Let p(x) be a polynomial of degree d. There exist unique polynomials a(x)
of degree d and b(x) of degree at most d — 1 with the properties that a(x) = z%a(z™') and

b(z) = 2% 1b(x~1), and that satisfy
p(r) = a(z) + b(z).

Proof. Let us denote by p;, a;, and b; the coefficients of z° in each of p(x), a(x), and b(x).
The condition that dega(z) = degp(x) and degb(x) < degp(z) implies that ag = pg and the
condition that z%a(z~!) = a(x) yields that ag = pg as well. This together with a(z) + b(z)
determines by = pg — pgq, and this in turn determines by_1 = by = pp — pg- Continuing this way,
we determine all the coefficients of a(z) and b(z) inductively. Indeed, for each ¢ the coefficients
are determined by the equations

a; =pd+ - +Pd—i—Po— " —Pi-1,
bi=po+-+pi—Pi— """ — Pdi- O

Proof of Theorem[1.2.7.18, In Section we have already produced two polynomials, Hy, ()
and Hy (z) that satisfy all these properties. Let us prove the statement by induction on the size
of the ground set of M. We need to establish the uniqueness of Hy,(z), as Hy(z) is determined
by the former. If M has cardinality n = 0, then rk M = 0 and the polynomial ﬁM(az) is uniquely
defined and equal to 1 by the first property. Now, assume the uniqueness has already been
established for matroids with cardinality at most n—1, and consider a matroid M of cardinality
n. The polynomial
Sw(z):= Y «™F Hyp(a),
FeL(M)
F£0

is uniquely determined because all the matroids M/F for flats F # () have ground sets with
cardinality at most n—1. Observe that since F' = E (the ground set of M) is a nonempty flat of
M, in Sm(x) we have a summand of degree rk M, whereas for F' C E, condition (ii) guarantees

that deg (xrkFﬁM/F(x)> <rkF+1k(M/F)—1=rkM — 1. In particular deg Syw(z) = rk M.

Now, using Lemma [1.2.4.19] we can find unique polynomials a(x) and b(x) such that
dega(z) = rkM, degb(z) < rkM — 1, the polynomial a(x) is palindromic, the polynomial
b(z) satisfies b(x) = z"*M~1p(x~1), and the following property holds:

Sm(z) = a(x) + b(x).

In particular, by defining ﬁM (z) := —b(x), which satisfies the requirements of (ii), we obtain
that N N
Y @™ Hy,p(x) = Hy() + Su(z) = —b(z) + Su(z) = a(),
FEL(M)
which is palindromic, as required. Notice that the uniqueness of the decomposition of Lemma
yields the uniqueness for Hy(x) as we claimed. O
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Remark 1.2.4.20. Notice that if M is a matroid with loops Hu(z) is equal to the one corre-
sponding to its simplification.

Remark 1.2.4.21. Since Hy(z) and Hy(x) are palindromic and their degrees are tkM — 1
and rk M respectively, it follows from the above recursion that

HM((E) _ CL’rkMHM(I'_l) _ xrkM Z T~ rkFEM/F(x_l)
FeL(M)

=l+uz E Hy/r ().
FEL(M)
F#E

Clearly, this new recursion also implies the previous one.

Lastly, the following discussion lets us define Hy,(z) independently from Hy (x) as the inverse
of Xy (). Its uniqueness is guaranteed by Theorem[1.2.4.18] Since x is a £(M)-kernel in a poset
with unique minimal and maximal elements, this lets us assign to each non-empty loopless
matroid M the polynomial
xm(2)

z—1"

Xm(z) :=

By setting Yy (z) = 0 for every matroid with loops and Xy (z) = —1 for the empty matroid,
this defines uniquely the reduced characteristic polynomial of M for every matroid M. As we
observed, X is invertible in I(£(M)); this lets us give the following definitions.

Theorem 1.2.4.22. There is a unique way to assign to each matroid M a polynomial Hy,(z) €
Z[x] such that the following conditions hold:

(i) If tkM =0, then Hy(x) = 0, unless E is empty, in which case Hy(x) = 1.

(ii) For every matroid M, the following recursion holds:

Hy(z) = Z YM‘F(‘%‘)HM/F(‘T)'
FeL(M)
A0

This defines uniquely the Chow polynomial of M for every matroid M.



CHAPTER 1. PRELIMINARY NOTIONS 36

1.3 Polytope theory

Now that we have defined our polynomials in terms of £(M) it might be worth it to see if we
have other ways of computing them using different axiomatic systems, for example the bases
axioms. To work with them, we start by arranging the bases to form a polytope P(M) and
then we define the notion of valuativity with respect to it.

1.3.1 Matroid polytopes

We are now ready to define a polytope associated to a matroid M. For every finite set E
we denote by R¥ the finite dimensional real vector space of the formal linear combinations of
elements {e; | ¢ € E'}. For every subset S C E we use the notation

eg = Z €.
icS
Definition 1.3.1.1. Let M = (E, B) a matroid. We define the matroid polytope P(M) as
P(M) := conv{ep | B € B}.
Example 1.3.1.2. The matroid polytope of the Boolean matroid P(B,,) consists of one point.

It should be clear that every zp is a {0, 1}-vector. A polytope whose vertices are all {0,1}-
vectors is called a {0,1}-polytope. Something less evident at first sight is that the points zp
are exactly the vertices of P(M).

Proposition 1.3.1.3 ([Fer22al, Proposition 1.2.4]). For every matroid M,
Vert P(M) = {ep | B € B}.
It turns out that the matroid polytope P(M) encodes all the information regarding B(M)
and therefore all the information regarding the matroid itself.

Theorem 1.3.1.4 ([GGMSS7]). A polytope P C R¥ is the matroid polytope of a matroid M
on a ground set E if and only if it satisfies the following two conditions:

P1 P is a {0,1}-polytope,
P2 Every edge of P is equal to e; — e; for some i # j.

Remark 1.3.1.5. Notice that if the vertices give us the bases B(M), the edges are exactly
the exchanges that we can perform with the exchange axiom. As a direct consequence of this
cryptomorphic definition, we also notice the following. Denote by (z;);cg the coordinates of a
point x € R¥. As every basis B € B has the same cardinality equal to rk M, then

Z(xB)l = Z 1=rkM
i€l i€B

and the same holds for every point in their convex hull. Therefore, a matroid polytope P(M)
actually lives in the affine hyperplane {}, ., z; = rkM} C RE.

Proposition 1.3.1.6. Let M be a matroid on N elements and let ¢(M) denote the number of
its connected components. Then,

d(M) := dim P(M) = n — ¢(M).

In particular, a matroid M is connected if and only if dimP(M) =n — 1.



CHAPTER 1. PRELIMINARY NOTIONS 37

Example 1.3.1.7. Consider the uniform matroid Uy ,,. Its matroid polytope is also known as
the hypersimplex Ay . This is a (n — 1)-dimensional polytope unless £ = 0 or k = n, in which
case it is a point.

Some of the classical operations from Section [[.1.3] are relatively easy to describe at the
level of matroid polytopes.

Proposition 1.3.1.8. If My = (E1,By) and My = (E3, Bs) are two matroids, then
P(M1 & Mg) = P(My) x P(My) C RFHF2,
Proposition 1.3.1.9. Let M be a matroid. Then
PM*)=(1,...,1) = P(M),
i.e. the matroid polytope of the dual can be obtained performing the involution (x;) — (1 — ;).

Proposition 1.3.1.10. Let M be a matroid. Fix a subset S C E and consider the linear

Sfunctional
Ps T le
ies

The matroid polytope P(M|g © M/S) = P(M|g) x P(M/S) is the (unique) highest dimensional
face of P(M) on which vg is mazimized.

Remark 1.3.1.11. Lastly, we observe that, thanks to the notion of matroid polytope, we
can finally have a more geometric description of the (rank preserving) weak maps described in
1.1.1.19] A bijection ¢ : E — E’ is a rank preserving weak map between M and M’ if and only
if

FH(P(M')) € P(M).

The weak order introduced in Definition [1.1.1.20| can now be interpreted as the poset of
matroid polytopes with respect to inclusion (up to a rigid transformation given by a relabeling
of the elements of the ground set). In Section we provide a categorification of this poset.
With this interpretation, it is clear that, after fixing the rank k£ and the ground set F, idg
induces a weak map from Uy g to any matroid, as every matroid polytope is contained in the
respective hypersimplex. The identity also induces a weak map from a matroid M to M g®&M/S
for every subset S C E, as P(M|g @ M/S) is a face of P(M).

1.3.2 Decompositions and the valuative group

We now proceed to describe how to decompose matroid polytopes in smaller matroid polytopes.
Among many, standard references for this are [AFRI0] and[DF10]. Let us fix a ground set E.
For every matroid M, let 1y be the function on R¥ that takes the value 1 on P(M) and 0
otherwise. Let Mat(E) be the free abelian group with basis given by matroids on E. Let
i(E) C Mat(E) be the kernel of the homomorphism from Mat(E) to the group of Z-valued
functions on R¥ taking M to 1y, and let Val(E) be the quotient of Mat(E) by i(E). The group
Val(E) is called the valuative group on E.

The subgroup i(F) C Mat(E) admits a concrete presentation, which we now describe. Let
M be a matroid on E. A decomposition of M is a collection N of matroids on E with the
following properties:

e If N € NV, then every nonempty face of P(N) is equal to P(N’) for some N € .
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e If NN € NV, then P(N) NP(N’) is a (possibly empty) face of both P(N) and P(N’).

e We have P(M) = U P(N).
NeN

More informally, N is a collection of matroids on E whose polytopes are the closed cells of a
cellular decomposition of P(M).

Example 1.3.2.1. Let E = {1,2,3,4}. Let M be the uniform matroid of rank 2 on F, let N be
the matroid whose bases are all subsets of cardinality 2 except for {3,4}, let N’ be the matroid
whose bases are all subsets of cardinality 2 except for {1,2}, and let N” be the matroid whose
bases are all subsets of cardinality 2 except for {1,2} and {3,4}. In Figure the matroid
polytope of M is the octahedron, the matroid polytopes of N and N’ are the two pyramids, and
the matroid polytope of N” is the square. The family that consists of N, N’ and N” and all their
faces forms a decomposition of the matroid M. It is worth it to point out that as P(N) = P(N’)
(i.e. there exists a rigid transformation of R* that sends P(N) to P(N’) given by a permutation
of the ground set E), then N = N’. Moreover, P(N”) is the face of P(N) on which ¢34y is
maximized, and the face of P(N") on which ¢y oy is maximized. In fact,

N’ = N|{374} @ N/{3,4}

N" = Nig o, @ N'/{1,2}.

13

14
24

13

34

Figure 1.4: A decomposition of the matroid M = Uy 4. The label ij refers to the point that
takes the value 1 in the i-th and j-th coordinates, such as 12 = (1,1,0,0).

Elements of N are called faces. We say that a face N € N is internal if P(N) is not contained
in the boundary of P(M). We write NV}, to denote the set of internal faces N € N with d(N) = k.
In Example the internal faces are N, N’ and N”. The following theorem follows from
[AFRI0L Theorem 3.5] and [DF10), Corollary 3.9].



CHAPTER 1. PRELIMINARY NOTIONS 39

Theorem 1.3.2.2. If N is a decomposition of M, then
= (=DF Y Nei(E
k NeN}
Furthermore, i(E) is spanned by elements of this form.

Example 1.3.2.3. Any matroid M has a trivial decomposition consisting of M itself along with
all of the matroids N such that P(N) is a face of P(M). In this example, M is the only internal
face.

Example 1.3.2.4. The matroids N, N’, and N” in Example are the three internal faces
of A/. There are also many faces that are not internal, corresponding to the eight facets, twelve
edges, and six vertices of P(M). The generator of i(E) corresponding to this decomposition is
depicted in Figure [.5

9 Lo

Figure 1.5: The generator of i(E) from the decomposition of M = Ug 4.

We are finally ready to state the main definition of this section.

Definition 1.3.2.5. Let A be an abelian group. A homomorphism f : Mat(E) — A is called
a valuative matroid invariant if f vanishes on i(E), or equivalently if f factors through Val(E).

More concretely, f is valuative if for every M and every decomposition N,

(=DTFM) =D (=D)" > f(N)
k

NENk

1.3.3 Examples of valuative invariants

Unexpectedly, it turns out that a lot of invariants associated to matroids are valuative.

1.3.3.1 G-invariant
We begin this discussion by introducing the Derksen invariant G.

Definition 1.3.3.1. Let M = (F, rk) be a matroid on a ground set E of cardinality n. Consider
the set of all possible chains of subsets of F

§:S()§51§§Sn
with #S; = j. For every such S consider the {0, 1}-vector 7(S) = [r;] € {0,1}" given by
T, = I‘k(S,L) — rk(Si,l),

for every 1 < i < n. Then, we define the G-invariant of M to be

G(M) =) r(S).

S



CHAPTER 1. PRELIMINARY NOTIONS 40

Example 1.3.3.2. The value of the G-invariant for the uniform matroid Uy, is
G(Ugn) =nl1...10...0],
with exactly k ones and n — k zeros.

The G-invariant is proved to be valuative in [Der09]. Moreover, the following stronger result
holds.

Theorem 1.3.3.3 ([DEL0, Theorem 1.4]). The G-invariant is universal for all valuative ma-
troid invariants, i.e. the coefficients of G span the vector space of all valuative matroid invari-
ants with values in Q.

This means that any invariant that is obtained by specializing G is also valuative.

1.3.3.2 Tutte polynomial

Theorem 1.3.3.4 ([Der09, Theorem 1.1]). Let M be a matroid of rank k over n elements. The
Tutte polynomial of M can be obtained from G(M) by the specialization

1. _ 1 k—wt[ry.. rm]( _ 1)m—wt[r1...rm]

" Z m!(n —m)! ’

where wtlry ... 7] is the sum of the first m entries of r. In particular, Ty (z,y) is valuative.

Corollary 1.3.3.5. The characteristic polynomial xm(x) can be obtained from G(M) by the

specialization
m ph—wt [r1...mm]

THZ m'n— m)l 7

hence xm(x) is valuative and so is the Teduced characteristic polynomial Xy (z).

The valuativity of the characteristic polynomial was first proved by Speyer in [Spe08, Lemma
3.4].

1.3.3.3 Hopf monoids

One issue with valuative invariants and matroid polytope decompositions is that there is no
combinatorial algorithm to produce all such decompositions for a given matroid. Proving that a
function satisfies an inclusion-exclusion formula with respect to every decomposition therefore
seems to be an impossible task. However, we can rely on some results due to Ardila and
Sanchez [AS23], who were able to find an algorithm to combine valuative invariants to produce
new valuative invariants using the theory of Hopf monoids as developed by Aguiar and Mahajan
in [AM10].

Definition 1.3.3.6. A Hopf monoid H consists of the following data:

e A vector space H[E] for every finite set E and an isomorphism H[f] : H{E] — H[E’] for
every bijection f: E — E'.

e A product mg : H[S] ® H[T| — HIE] for each decomposition £ = S UT such that the
following axioms hold:

(Naturality) Let E and E’ be two sets and f : E — E’ be a bijection. Let £ = SUT
be a decomposition and let f|g and fi7 be the restrictions of f to S and T', respectively.
This gives us a decomposition of E’ = f(S) U f(7T') and a pair of bijections fis : S — f(S5)
and fip : T — f(T). Then, we have the following commutative diagram.
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H[S] @ H[T] ——=% s H[E]
yﬂﬁd®me] le
HIf(S)] @ HF(T)] 25 HIE

(Unitality) We have H[] = K. Denote the unit of that vector space by 1. For every
x € H[E] and for the two trivial decompositions £ = FUQ =0 U E, we have

mpp(z,1) =my p(l,z) = 2.

(Associativity) Let E = RU S UT be a decomposition. Then we have the following
commutative diagram

H[R] ® H[S] ® H[T] “2™5% H[R] @ H[S UT]

lmR,g ® id J/mR,SuT
H[R L S] @ H[T] TRST s H[E]

This allows us to define a multiplication map mg, s,
E=5U---U8.

s, for any set decomposition

.....

o A coproduct Agr : H{E] — H[S] @ H[T] for each decomposition £ = SUT such that the
following axioms hold:

(Naturality) Let E and E’ be two sets and f : E — E’ be a bijection. Let £ = SUT
be a decomposition and let f|g and fi7 be the restrictions of f to S and T', respectively.
This gives us a decomposition of E’ = f(S) U f(T') and a pair of bijections fis : S — f(S5)
and fip : T — f(T). Then, we have the following commutative diagram.

H[S] ® H[T] +—— H[E]

Ags,T
fﬂﬁd@me] JHU
HI($)] @ Hf(T)] §——— H[E

(Counitality) We have H[)] = K. Denote the counit of that vector space by 1. For
every x € H[E] and for the two trivial decompositions F = EL () = () U E, we have

AE7@(I) :x®17
Ay p(z) =1® .

(Coassociativity) Let E = RUSUT be a decomposition. Then we have the following
commutative diagram

H[R] @ H[S] & H[T] &——— HIR| @ H[SUT]

AR,s ® idT AR,SuTT

H[RU S| ® H[T] +——— HI[E]

ARrus,T



CHAPTER 1. PRELIMINARY NOTIONS 42

e Moreover, m and A have to satisfy an additional axiom:

(Compatibility) Let E = S; U Sy = Ty U Ty be two decompositions of E. Let A =
S1NTy, B=5S1NT,, C=S,NT; and D = S5NT5 be their pairwise intersections. Then,
we have the following commutative diagram

ms, .Sy ATy, T,

H[S] @ H[Sy] H[E] H[T:] ® H[T3]
J{AA,B ® Ac,p ma,c ® mB,DT

H[A] ® H[B] ® H[C] ® H[D] 2272 H[A] @ H[C] ® H[B] ® H[D]

where £ is the braiding map S(z ® y) = (y ® z).
We can now give the class of matroids a Hopf monoid structure.
Definition 1.3.3.7. We construct the Hopf monoid Mat as follows.
e Mat[E] is the K-vector space generated by every matroid on the ground set E.
e The product of Mg € Mat[S] and My € Mat[T] is
mg.r(Mg ® Mp) := Mg & My € Mat[E].

e The coproduct of M is
Asr(M) = Mis ® M/S.

Remark 1.3.3.8. We would like to remark how mgr and Ag r interact with each other. On
one hand, we have Ag o mgr = id; on the other, we have that

(ms,r o Agr) (M) =Mg@®M/S.
In terms of matroid polytopes, this is a function that sends a matroid polytope P(M) to its

face P(M|s) x P(M/S) as discussed in Proposition

We are finally ready to state the main theorem that we need to link Hopf monoids to the
theory of valuative invariants.

Theorem 1.3.3.9 (J[AS23, Theorem C]). Let E = S1U...USy be a decomposition and consider
valuative matroid invariants f; : Mat[S;] — R for every 1 < i < k, where R is a ring with
multiplication m. Then, the function f1 x...x fi : Mat[E] — R defined as

f1*~-~*fk 3:m0(f1®---®fk)°ASh...,Sk
18 a valuative matroid invariant.

Corollary 1.3.3.10. Using Theorem we observe that if f and g are valuative matroid
muvariants, then so is

(f*g)(M):= > f(Mis) g(M/S).

SCE
Moreover, if g(M) = 0 whenever M has loops, then the previous sum reduces to
(frg)M):= > f(Mp)g(M/F).
FeL(M)

The previous Corollary implies that the convolution product of two valuative functions in
the incidence algebra of £(M) is again valuative. This will be used in Section to prove
that the polynomials that arose in Section [1.2.4] are valuative.
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1.4 Polynomial invariants

In Section [1.1.5| and Section we have associated some polynomials to every matroid. We
are now interested in understanding more about the properties of these polynomials. In this
Section we recap all the known results that we need in the theory of polynomials, mostly
following [Bralsl.

1.4.1 Properties of a polynomial

When looking at a polynomial the first thing that comes to mind is to study its roots. In this
section we give some way to relate the roots of a polynomial to its coefficients. To do so we
will work with the following toy example.

Example 1.4.1.1. Denote by b, (z) the polynomial defined as

This polynomial is clearly real-rooted, i.e. all its roots are real. In fact b,(z) = (z + 1)" and
therefore it has a root A = —1 with multiplicity n.

We state here a result known as the Gauss—Lucas Theorem that we will need later.

Theorem 1.4.1.2. Let f(x) € Clz] be a polynomial of degree at least one. All zeros of %f(x)
lie in the convex hull of the zeros of f(x). In particular, if f(x) is real-rooted then so is %f(:z:)

A much less strict condition to require on a polynomial is the one of unimodality.

Definition 1.4.1.3. A sequence of integers (ag, ..., a,) is unimodal if there exists 0 < i < n
such that

aj—1 < aj; forevery 1 <j<ianda; >ajpq foreveryi <j<n—1.
A polynomial is unimodal if its coefficients form a unimodal sequence.

Example 1.4.1.4. The polynomial b, (z) is unimodal, as
o _(n
i1—1 7
for every i < . The unimodality then follows from the symmetric property
n\ ([ n
i) \n—i)

As we will see in Sections[1.4.1.1]and [1.4.1.2] the notion of real-rootedness and unimodality
are related.

1.4.1.1 Log-concavity
Definition 1.4.1.5. A sequence of integers (ag, . . ., a,) is log-concave if for every 1 <i <n—1
ai—1 Qi1 < a?.

The sequence is ultra log-concave if (a;/ (7)) is log-concave. A polynomial is (ultra) log-concave

i

if its coefficients form a (ultra) log-concave sequence.
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Example 1.4.1.6. The polynomial b, (x) is log-concave, in fact with a direct check one can

show that )
T'l N ‘n .n @z—il-ln—z—{—1>1,
) —\i—1 1+ 1 ) n—1v

which is clearly true. Moreover, it is also trivially ultra log-concave, as a constant sequence is
log-concave.

We also have the following chain of implications.

Proposition 1.4.1.7 ([Gal05]). Let f(x) be a polynomial with non-negative coefficients. We
have the following strict implications

f(z) is real-rooted = f(x) is ultra log-concave = f(z) is log-concave = f(x) is unimodal.

Proof. Let f(z) = Y1 ja;z’ and write a; = (})b;. Then by Theorem [1.4.1.2f the polynomial

1d i\, s, s~ (n-1 .
ndmf(x)zn(z>blz ;( ; )bi+1x

=0

is real-rooted. Moreover,
n
_ n i
" flzh) = Z (i)bn_ixl
=0
is also real-rooted. By applying repeatedly these two operations, we obtain the real-rooted
polynomial
bj—l + 2bjl’ + bj+1£l?2.

Since this is real-rooted, its discriminant is non-negative, which then implies that b? > bj_1bj1
and concludes the proof of the first implication. For the second implication, since (a;) is ultra
log-concave we know that

iy o1 Gig

M (M) )

for every 1 <i¢ <n — 1. Then,

0
() G "

2
a; >

The claim then follows from the computations made in Example Lastly, if we had an
index j such that
aj—1 > a5 < aj41,

this would imply that a? < aj_1a;4+1 which contradicts the hypothesis of log-concavity. O

1.4.1.2 Palindromicity and ~-positivity

Definition 1.4.1.8. A sequence of integers (ag, ..., ay,) is symmetric if a; = a,_; for every
0<i<%. A polynomial f(z)=>, a;x’ is symmetric with center of symmetry % if a; = aq_;
for every i € Z. This can be rephrased by saying that f(x) satisfies 2% f(z~!) = f(x). If the
center of symmetry is dcg#f(“’), then f(z) is called palindromic.
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Example 1.4.1.9. The polynomial b, (x) is palindromic as
n\ ([ n
i) \n—i

Palindromic polynomials are ubiquitous objects in combinatorics. A powerful tool to prove
the unimodality of a non-negative palindromic polynomial is provided by the notion of ~y-
positivity or y-non-negativity.

The first step is to state a basic result that allows one to encode a palindromic polynomial
inside a new polynomial with half of the number of terms.

for every 0 <4 < % and degb,(z) = n.

Proposition 1.4.1.10 ([Gal05] Proposition 2.1.1]). If f(x) € Z[x] is a palindromic polynomial
of degree n, then there exist integers Yo, ..., z| such that

[5]
@) =3yt (14 a)" 2, (1.2)
1=0

Proof. Let us prove first that the family of polynomials u;(z) = (1 4 2)" 2 for 0 <i < | 2]
is linearly independent. In fact, if we call v; the vector having the coeflicients of degrees
0 <j <[5/ of the polynomial u;, we see that the first non-zero entry of v; is exactly a 1 in the
i-th position. In other words, the square matrix S of size (|%] +1) x ([2] + 1) obtained by
putting each v; as the i-th row, is upper-triangular and has ones in the diagonal. This means
that the polynomials u; are linearly independent as we claimed, so that they generate the space
of palindromic polynomials of degree d (which itself has dimension | %] + 1). In particular P
can be written as a real linear combination of the u;’s. The fact that det(S) = 1 guarantees

that whenever P has integer coefficients, the ~y;’s are integers too. O

Definition 1.4.1.11. Let f(z) be a palindromic polynomial of degree n. If 7o, ... ;Y| z| are as
in equation (|1.2), we define the v-polynomial associated to f by

3] _
Vf(z) = vix'.

1=

(=)

If f(z) is a palindromic polynomial of degree n, we will say that f(x) is y-positive if all the
coefficients of v,(x) are non-negative.

We have the following important result by Gal [Gal05], which establishes links between
properties of f(z) and properties of v¢(z).

Proposition 1.4.1.12. Let f(x) be a palindromic polynomial of degree n with positive coeffi-
cients. We have the following strict implications

vi(x) is negative real-rooted < f(x) is real-rooted = f(x) is y-positive = f(x) is unimodal.
Proof. For the first “if and only if”, notice that

X

@) = (g ) A+ 0" (13)

If f(z) is real-rooted so is y¢(z). Moreover, as f(x) is assumed to have positive coefficients, all
the roots of f(z) are negative, and thus so are all the roots of y;(x). On the other hand, let us
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assume that v¢(z) has only negative real roots. Assume that z is a complex number such that
f(z) = 0. We want to prove that z is a negative real number. If z = —1, then there is nothing
to prove. Otherwise, by the negative real-rootedness of v (z), it follows that ﬁ € R™. By

2
noticing that (1fz)2 = (\/2+{/F> , we obtain that v/z + V27! is a pure imaginary number.

However, for every complex number z, Re /2 and Re v/z=1 have the same sign. As in our case
their sum has real part zero, it means that actually both of them were pure imaginary numbers.
In particular /Z is a pure imaginary number, which tells us that z is a negative real number.

For the second implication, let us assume that f(x) is real-rooted. As before, since the
coefficients of f(z) are positive, all the roots of f(z) must be negative. Also, as f(x) was
assumed to be palindromic, we may pair the zeros of f(z) into groups of the form r and % and
write

%]
fla) = A+ 1) [T@+r)@+ 5),
i=1
where £ = 0,1 according to the parity of d and A is some constant. Observe that

(et )= (1+2) + (i - = 2z,
ri T
which is a non—negativeﬂ linear combination of the polynomials 2°(1+z)? and 2! (1+2)°. After
multiplying all such factors, this property still holds, and thus ¢ (z) has positive coefficients.
The last implication follows directly from the fact that a positive sum of the unimodal
palindromic polynomials z%(x + 1)"~2¢ (all of which can be thought as having “degree n”,
completing with zeros accordingly) will be again a palindromic unimodal polynomial. O

Example 1.4.1.13. The last two implications are strict. Consider, for example, the polynomial
fi(z) = 2* 4+ 423 + 72 + 42 + 1. Tt is not difficult to show that vy, (z) = 2% + 1. In particular,
f1 is y-positive but not real-rooted. On the other hand, if we take fo(x) = 22 + 2 + 1, this is a
unimodal polynomial whose y-polynomial is v¢, (z) = —z + 1.

Observe that a nonzero symmetric polynomial f(x) € Z[z] has a unique center of symmetry.
In other words, there is exactly one integer d such that x¢f(x~!) = f(x). In particular,
whenever f is symmetric there is no ambiguity in writing v¢(z), even when the degree of the
polynomial f(z) is not specified. We have the following toolbox of basic identities that exhibit
the behavior of the assignment f(x) — 7¢(z) under simple operations.

Lemma 1.4.1.14. Let f(x) and g(z) be symmetric polynomials. Then, we have:
(1) vrg(x) = 71(2) - Y9(2).

(i)

(ill) Yat1)p(z) =75 (2)-

(iv) If f(z) and g(x) have the same center of symmetry, then yiyq(x) = v(x) + v4(x).

Yaf(T) = 2 - 75 ().

1.4.2 Some nice families of polynomials

We present some families of polynomials that will be of much importance when we deal with
the Hilbert-Poincaré series arising in Section [2.4]

1As 7; is positive, we may use the inequalities between the arithmetic and geometric mean and obtain that

Tiw‘%
1<, /r-L< L from where it follows that r; + % —22>0.
k2

)
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1.4.2.1 Eulerian polynomials

One of the most pervasive objects in enumerative combinatorics is the family of Eulerian poly-
nomials. Given a permutation o € &,,, n > 1, written in one-line notation as ¢ = oy - - - 0, the
number of descents of o is defined as the cardinality of the set {i € [n — 1] : 0; > 041}, and is
denoted by des(o). For n > 1, we define the n-th Fulerian polynomial as

Ap(z) = Z gdes(@)
oeS,

We note that this differs by a factor of  from the definition in [Stal2l p. 33]. Furthermore, we
define Ag(z) = 1. Explicitly, we have:

1 ifn=0,1,
x+1 if n=2,

A (z) = 22 +4x+1 if n =3,
22+ 1122 + 11z + 1 if n =4,
zt + 2623 + 6622 + 26z +1 if n =5,
etc.

The polynomials A, (x) are palindromic and deg A, (z) = n — 1 for every positive n. It is a
classical result attributed to Frobenius that these polynomials are real-rooted (for a proof, see
[Brald, Example 7.3]). The coefficients of the Eulerian polynomials admit several combinatorial
interpretations, many of which can be found in [Stal2l Chapter 1].

1.4.2.2 Derangement polynomials

A permutation ¢ € G, is said to be a derangement if o; # i for all i, i.e. if o has no fixed
points. The set of all derangements on n elements is usually denoted by ®,,. For each n > 1,
the n-th derangement polynomial, denoted d,,(x), is defined by

dp(z) := Z %),
oED,

where exc(o) 1= #{i € [n] : 0; > i} denotes the number of excedances of 0. We extend this to
n = 0 by defining do(z) := 1. The first few values of d,(x) are:

1 ifn=0,
0 ifn=1,
T ifn=2,

do(z) =< 2% +2 if n=3,
23+ T+ if n =4,
x4+ 2123 + 2122 + 2 if n =35,
etc.

We have degd,, () = n— 1 for every positive n. With only the exception of dy(x), the poly-
nomials d,, () are a multiple of 2 and are symmetric with center of symmetry 7. Derangement
polynomials are known to be real-rooted (see for example [GS20, Theorems 3.5 and 4.1]).
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1.4.2.3 Binomial Eulerian polynomials

A related family of polynomials that will play an important role is that of the binomial Fulerian
polynomials, which were named this way, e.g. in [SW20l [Ath20]. The n-th binomial Eulerian

polynomial A, (z) is defined by

Ap(z) =1+ xil (Z‘) A;(x).

In particular, the first few values of these polynomials are given by:

1 ifn=0,
r+1 ifn=1,
2?24+ 3x+1 if n =2,

gn(x): 23+ 722+ T +1 if n =3,
2t + 1523 + 3322 + 152 + 1 if n =4,
2% +31z* + 13123 + 13122 + 31z + 1 ifn =25,
etc.

We note that deg A, (x) = n for every n. It is a non-obvious fact that these polynomials are
palindromic and y-positive, see for example [PRWO0S8, Theorem 11.6] or [Ath20, Theorem 1.1].
Furthermore, they are real-rooted, by [HZ19, Theorem 3.1] or [BJ22 Theorem 4.4].

1.4.2.4 Haglund—Zhang polynomials

To any sequence s = (s1,...,5,) € Z2,, Haglund and Zhang associate a generalized binomial
Eulerian polynomial Ej(z) in the following way. First, define the set

IZ={e=(e1,...,en) €EZ":0<e; < s; forall 0 <i < n},

where we set eg = e,4+1 = 0 and sg = s,,+1 = 1. Furthermore, we say that ¢ € [0, n] is an ascent
of e e Inif & < %, and that it is a collision if % = % We write asc(e) and col(e) for the
number of ascents and collisions of e, respectively. Now define the polynomial

E%(x) = Z (1+ x)c"l(g)xasc(g).
e€Ty

The main result of Haglund and Zhang [HZ19, Theorem 1.1] proves that all such polynomials
are real-rooted.

Theorem 1.4.2.1. Let s = (s1,...,5,) € Z2y. Then E3(x) is real-rooted.

We mention explicitly that one of the motivations of Haglund and Zhang to define their
polynomials originates in the work of Savage and Visontai [SV15] and Gustafsson and Solus
[GS20], in which they define similar real-rooted polynomials which are indexed by vectors of
positive integers.
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Geometry

2.1 Varieties

The purpose of this section is to define some varieties associated to hyperplane arrangements,
namely the complement of an arrangement, the De Concini-Procesi wonderful model, the re-
ciprocal plane, the Schubert variety and the augmented wonderful model. Their cohomology
(be it ordinary cohomology or some more refined version of it like the intersection cohomology)
can be extracted in a purely combinatorial way by working on the intersection poset of the
arrangement, i.e. the lattice of flats of the associated matroid. This motivates us to find a
combinatorial version of these geometric structures even for non-realizable matroids. This will
be done in the remaining of the chapter, in Section [2.2.1] 2.2.2] and [2.2.3}

We discussed in Section how one can build a matroid M = M(A) from a central
hyperplane arrangement A on a vector space V' (where we can require A to be essential if we
want the rank of the matroid to be equal to the dimension of V'). Here is an example we will
carry throughout this section to build all the varieties.

Example 2.1.0.1. Let A = {H;, Hy, H3} be an arrangement over a 2-dimensional vector space
given by the following equations,

Hy ={z; =0},
H, :{xl + 29 = 0}7
H3 :{(ﬂg = 0},

The underlying matroid has as bases (g ) and is isomorphic to Uy 3. This is also a graphic
matroid realized by the 3-cycle, (the complete graph over 3 vertices). In particular, then, it is
a regular matroid, therefore we do not need to worry about questions of representability.

We also recall the following constructions in analogy with the usual matroid operations.
For simplicity, and since we will not need the general case, we will only define them in terms
of flats.

Definition 2.1.0.2. Let A be an arrangement over V and denote by M = M(A) its associated
matroid. Consider a flat F' € L£(M) and the corresponding subspace V¢ = [, H;. We define
the following arrangements:

49
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e The restriction to F, denoted A|p is the arrangement Ajp = {H;}icr. This is the ar-
rangement obtained by considering all the hyperplanes that contain Vg. After quotienting
by Hp we obtain an arrangement in V/Vp that corresponds to the matroid restriction
Mp.

e The localization to F, denoted A/F is the arrangement over Vp given by {H; N Vg | ¢ €
E\ F}. This corresponds to the operation of matroid contraction M/F'.

Instead of working with the previous definition, it will be convenient for us to define an
arrangement as follows.

Definition 2.1.0.3. A hyperplane arrangement A over a K-vector space V is a finite list of
non-zero linear forms

A:{@la"w@n}-

We recover the previous definition by setting H; = ker ¢;. Of course the same hyperplane
H; can be defined with any scalar multiple of ¢;, but we claim that this is not important for
our purposes.

Remark 2.1.0.4. With the latter definition, we exclude identically zero forms from our list
because those would not give us codimension 1 subspaces. This amounts to say that the
underlying matroid is loopless.

The vector space V' can now be seen as a subspace of K” by means of the linear map

f:V-K?
z = (pi(z)).

Consider a subset S C E such that there exist a; € K, (a;)ics # (0,...,0) such that

> aipi =0.

€S

We call such a subset a dependency of the arrangement 4. A minimal dependency C will
be called a circuit of the arrangement; these correspond exactly to the circuits C(M) of the
underlying (realizable) matroid M. The circuits give a defining set of equations for V' as a
subspace of K”. Conversely, any subspace of K™ gives rise to a matroid by following the same
procedure in reverse. If we want to work with loopless matroids, this means that V' cannot be
contained in any coordinate hyperplane.

An arrangement A can be stratified in the following way. Consider

Jg = ﬂH and Hg = Jg \ U Jr.
i€s SCT
Then, Hg is non-empty if and only if S is a flat of M and
U H;, = |_| Hp.
i€E FeL(M)

F#0

Observe also that z € Hp C V if and only if the set of indices {i € E | z; = 0} is exactly
F'. Moreover, the non-zero entries give us exactly the arrangement A/F.
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Example 2.1.0.5. The matroid B, is realized by V = K!, which can be stratified as {0} and
K*. A different way of realizing the arrangement in Example [2.1.0.1]is to consider

V ={(s,5+t1)|stecK}cK>
If we use (z;) as coordinates of K3, V is the subspace given by the equation
{z1 — 29+ 23 = 0}.

This is exactly the only circuit of M.
To study the stratification with the following interpretation, we can fix a point x € V and
consider the vector (¢;(z)) € K®. These are the strata of A we obtain:

o Hy={(s,s+1t,t)|s,s+1t,t#0},
o Hy ={(0,¢t,t) | t#0},

o Hy={(s,0,~5) | s 0},

o Hy={(s,5,0)[s#0},

e Hp=1{(0,0,0)}.

It is also useful to consider the projectivization of an arrangement, by taking the projec-
tivization P(H;) for every hyperplane H; € A. If V is the subspace of K™ that corresponds to
A, we can look at P(V') to recover all the proper flats.

Example 2.1.0.6. The projectivization of the Boolean arrangement B; gives a single point
{[1]} = “P°(K)”. In Example [2.1.0.1] the corresponding projective strata are

o P(Hy) ={[s:s+t:t]|s,s+t,t#0},
o P(Hy) = {0:1: 1]},

o P(Hz) = {[1:0: —1]},

o P(H3) = {[1:1:0]}

2.1.1 Complement of an arrangement

The first geometric object associated to A that we study is the complement of the arrangement
M(A),
M(A) =V \ | Hi,
icE
or, equivalently, the stratum Hy C (K*)F
The projectivization P(M(A)) is defined by

PM(A)) = B(V)\ | P()

or equivalently as the projective stratum P(Hp).

Let us start with some remarks on the combinatorial and geometric properties of M(A).
If we work over a finite field K = F,, then V is a discrete set of points of cardinality ¢*. The
complement M (A) then consists of a finite set of points.
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Theorem 2.1.1.1. If A is an arrangement over a finite field Fy, then the cardinality of M(A)
18 equal to

#FM(A) = xm(q)-

Proof. We prove it by induction on the number of hyperplanes in A. If the arrangement is
empty the statement clearly holds. Otherwise, consider the arrangement A\ {¢.} in KE\e},
Then #M(A\{¢c}) = xm\c(q). All the corresponding points in K¥ are in M(.A) unless z, = 0.
However, the points that satisfy ze = 0 and zy # 0 for every f # e are exactly the ones in
M(A/e), which are counted, by induction, by xm/.(¢). Therefore,

#FM(A) = xme(@) = xmye(@) = xm(a),
where the last equality comes from the deletion-contraction formula from Theorem [1.1.5.5, [

If the arrangement is over the real numbers, every hyperplane cuts V into two halfspaces.
Hence, the complement is a disjoint union of contractible connected components.

Theorem 2.1.1.2 ([Zas79]). If A is an arrangement over R, then the number of connected
components of M(A) is equal to

#{ connected components of M(A)} = (—1)" Mxm(-1).

The proof relies again on the deletion-contraction formula. One can also obtain similar
results for the projectivization P(M(A)).

Theorem 2.1.1.3. If A is an arrangement over a finite field Fy, then the cardinality of
P(M(A)) is equal to
#P(M(A)) = xXm(q)-

Example 2.1.1.4. The complement of a Boolean arrangement B,, is M(B,) = (K*)" and
therefore if we realize it over a finite field F,, then #M(B,) = (¢—1)" = xs, (¢). If instead we
realize it over R, the complement has 2" = (=1)"(—1—1)" = (—=1)"xs, (—1) connected compo-
nents. If we consider the arrangement from Example the characteristic polynomial of
Uz3 18 XU, s (7) = 2% — 3z + 2, thus Xy, , () = = — 2. If we work on a finite plane (F,)* (which
has ¢? points), each hyperplane is a line with ¢ points. Notice that as a result of removing all
the points of the three lines the origin is also removed three times. By adding it back twice we
obtain

#M(A) = ¢* — 3¢+ 2.

The projectivization of A is an arrangement of three points on a projective line, thus
#P(M(A)) =(¢+1) -3=q—2=Xy,,(q)-
For real arrangements notice that A cuts R? in six regions, and XU, 5 (—1) = 6.

The situation becomes more interesting when we start to consider arrangements over C. In
this case, the complement M(.A) is a smooth variety, which is studied in more details in Section

22T
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2.1.2 Wonderful model

We now proceed to describe the second variety we are interested in, the De Concini—Procesi
wonderful model X (A), first introduced in [DCP95].

Definition 2.1.2.1. For a fixed hyperplane arrangement 4 we start by considering the projec-
tivization in P(K¥) and the corresponding strata P(Hr). Then, we proceed by blowing up in
P(V) all the points P(Hp) corresponding to corank 1 flats, then the strict transforms of P(Hp)
for corank 2 flats, and so on up to rank 1 flats. The resulting variety is the De Concini—Procesi
wonderful model X 4.

In X 4 we have a divisor for every non-empty proper flat of M, and two divisors intersect if
and only if the two flats are comparable in £(M). As usual, far from the blow-up, the variety
is unchanged, thus the complement P(M(A)) naturally sits inside X 4.

Example 2.1.2.2. The wonderful model of the Boolean matroid Xg is known as the permu-
tohedral variety. In particular, Xp is a point. Consider Example The projectivization
P(V) is a 1-dimensional projective space and the three projective strata P(H;) are points on
P'. The blow-up of these three points leaves the variety unchanged. This means that

X 4 2 PY(K).

2.1.3 Reciprocal plane

We follow [EPWT6]. Taking the reciprocal of all the coordinates of (K*)¥ is an automorphism
of the complement M(A) C (K*)¥. After applying it, we obtain

1
MA)™! = {(z) | 2 #0Vi € B} C (KX)F.
We define the reciprocal plane of A as

Yo(A) := M(A)T ¢ KZ,

where we allow some coordinates to be equal to zero. The choice of notation is consistent
with Section m By considering the equations of M(A) given by the dependencies of the
arrangement we find the following defining set of equations. If ;.- a;; = 0 is a circuit, then

Z a; H Zj = 0.
ieC  j#i
This variety is also stratified,
}/@(A) = |_| XF7
FeL(M)
with strata indexed by all the flats of the matroid M
Xp = {() | 5= 0 & i ¢ F}NYp(A).

Example 2.1.3.1. The reciprocal plane of B,, is (K!)", as we have no circuits. The reciprocal
plane of the arrangement in Example [2.1.0.1] is obtained by taking the closure of

1 1 1

MAT =G 7573

) | s,+t,t # 0},
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By using the equations computed in [2.1.0.5] we find the defining set of equations
Yb(.A) = {2’22’3 — 2123+ 2122 = 0}

The strata are

o Xy ={(0,0,0)},

o X1 ={(;,0,0),s # 0},

o Xy = mwﬂ»)s+t#0h

o X3={(0,0,1),t# 0},

o Xp={(11 1) ss+t,t£0}=M(A)!

Observe how the dimension of every stratum is equal to the rank of the corresponding flat.
Moreover, the following theorems hold.

Theorem 2.1.3.2. Given a stratum X,

Xp = M(Ar)
Xp = |_| Xg & Y@(A‘F).
G<F

Example 2.1.3.3. Consider the arrangement Aj;. The corresponding matroid M), is isomor-
phic to a Boolean matroid B;. The stratum X; is

1
X = {(8,0,0> 5 # 0} 2 KX 2 M(Ap) 7!
When closing the stratum X; we add exactly the point zero corresponding to the empty flat,
X1 =X UXg=K"2Yy(A)).
We are also interested in the local geometry of this variety.
Theorem 2.1.3.4. The reciprocal plane Yy(A/F) associated to the contraction by F is a normal

slice to the stratum Xp.

2.1.4 Schubert variety

We follow [PXY18]. There are several ways of taking a projectivization of the ambient space
K®. We can consider K¥ = J[,.;,K' and then take the projective closure of each of the
separate n lines separately. We define the Schubert variety Y (A) of the arrangement A as the

closure of the set
{(Jz1 : 1],y [2n 1))} C (]P’l)".

Fix coordinates ([x; : y;]) for this new ambient space. This variety was also studied in [AB16]
and [HW17a]. By considering the equations of M(A) given by the dependencies of the arrange-
ment we find the following defining equation. If ), a;p; = 0, then

Zaixi Hyj =0.

ieC J#i
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This variety is also stratified,

|_| YF7

FeL(M)
with strata indexed by all the flats of the matroid M

Example 2.1.4.1. The Boolean matroid B,, has Schubert variety isomorphic to (P!)". The
Schubert variety of the arrangement in Example [2.1.0.1]is obtained by taking the closure of V'
in (P1)?,

V={(s:1,[s+t:1],[t: 1))} C (PH)°.
By using the equations computed in [2.1.0.5| we find the defining set of equations

Y (A) = {z1y2y3 — T211y3 + 23192 = 0}.

The strata are

o Yp={([1:0][1:0][1:0D)},

o Vi ={([z1:1],[1:0],[1:0])},

o Yo ={([1:0], [z +xo:1],[1:0])},

o Yy ={([1:0],[1:0][zs: 1))},

o Yo ={([z1:1],[o1 + 2o : 1, [22: 1)} =V

Observe how the dimension of every stratum is equal to the rank of the corresponding flat.
Moreover, the following theorem holds.

Theorem 2.1.4.2. Given a stratum Y,

Yp = V/Hp
Yp = |_| Yo 2 Y (Apr).
G<F

Example 2.1.4.3. Consider the arrangement A;;. The stratum Y7 is
Vi ={([z1:1],[1:0],[1:0))} 2K' 2 V/Hj.

When closing the stratum Y; we add exactly Yy, which is the point at infinity [1 : 0]® that gives
us P! =K' U {0}, i.e. o
Vi=Y1UYy=P 2Y(A,).

We are also interested in the local geometry of this variety. Consider the affine chart

Up = {x; # 0 for every i} centered at the point at infinity Y. Working on the chart [1 : 2],
one finds exactly the same points of Yy(.A). More precisely, the following theorem holds '

Theorem 2.1.4.4. Locally at the point at infinity, the Schubert variety is isomorphic to the
reciprocal plane, 1.e.
Y(A)NUp 2 Yy(A).

More generally, locally at a point x € Yr, the variety is isomorphic to Yy(A/F) X Yg.



CHAPTER 2. GEOMETRY 56

2.1.5 Augmented wonderful model

The last variety we want to construct is the augmented wonderful model X 4, firstly studied in
[BHM™22a).

Definition 2.1.5.1. For a fixed hyperplane arrangement A, we start by considering the ambient
space P(V @ K) = V UP(V). Consider the subspaces P(Hp) as linear subspaces of P(V).
Then, we proceed by blowing up all the points corresponding to corank 1 flats, then the strict
transforms of P(Hp) for corank 2 flats, and so on up to rank 1 flats. The resulting variety is
the augmented wonderful model X 4.

Since all the blowups are centered in the hyperplane at infinity P(V'), V remains an open
subspace of X 4. Moreover, the strict transform of the hyperplane at infinity is clearly isomor-
phic to X 4.

Remark 2.1.5.2. A different construction of X 4 involves the Schubert variety Y (A). The
variety Y(A) is singular and it admits X 4 as a canonical resolution, obtained first by blowing
up Yp, then the strict transforms of all the strata Y corresponding to flats of rank 1 and so
on.
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2.2 Combinatorial cohomology rings

Once we have obtained geometric objects from hyperplane arrangements, we are interested in
studying their cohomological properties. As the goal is to produce invariants for the underlying
matroid M = M(A), the hope is that the answer becomes purely combinatorial, in the sense
that varieties coming from arrangements realizing isomorphic matroids will have the same
cohomology. Moreover, if the resulting answer is indeed only dependent on the matroid M, we
can then try to define these cohomology rings for every matroid (even if there are no varieties
associated to them anymore), not just the 0% that is representable (see Theorem .

2.2.1 Orlik—Solomon algebra

We now proceed to build the first combinatorial graded vector space, the Orlik—-Solomon algebra.
We quickly recap the classical construction by Orlik and Solomon in the case of a realizable ma-
troid following [OT92]. Consider a complex arrangement A and H*(M(A)) := H*(M(A),Z),
the cohomology ring with integer coefficients of its complement. The degree 1 of H!(C*,Z) in
De Rham cohomology can be generated by the form

1 dz
2mi 2
and, more generally, each hyperplane H; € A gives a generator in cohomology given by

1 depi
Wy = —— )
! 211 ©;

where ¢; is the form representing the hyperplane H;. One can show that the set {[w;]}icr
generates H*(M(A)). Denote by A(E) the exterior algebra generated in degree 1 by {u;}icp
and with ug := A;cgu;. For these definitions, we need to identify E with the interval [n],
equipped with the natural order inherited by N. The derivation in A(E) is given by

r

Jug = Z(—l)jfrukg\{uij}

Jj=1

for S = {uil, PN 7’[1,1‘7'}.
Consider the homomorphism

o : \(E) - H (M(A))
u; = [wil-
We call the kernel of ® the Orlik-Solomon ideal I4. This is described by the following result.
Theorem 2.2.1.1. The Orlik—Solomon ideal I 4 is generated by
{Ouc | C € C(M)}.

We define the Orlik—Solomon algebra of the arrangement A to be the quotient

OS(A) := /\I(f)

In [OT92] Section 5.4] we find the proof of the following result.
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Theorem 2.2.1.2. The map
OS(A) — H*(M(A))

is an isomorphism of graded algebras.

One quickly notices that the definition of OS(A) only relies on the underlying matroid M.
This motivates us to define it for every matroid and not just the representable ones.

Definition 2.2.1.3. Let M be a loopless matroid. The Orlik—Solomon algebra of M is the
quotient

OS(M) = %5)

where A\(F) is the exterior algebra generated in degree 1 by elements {u}ecr and Iy is the
Orlik—Solomon ideal defined by

Iv = (Buc | C € C(M)).

By construction, since Iy is homogeneous, OS(M) is graded, with the grading induced by
the natural one on A(E). The set of generators of Iy given by circuits is minimal; one could
indeed consider the ideal generated by {Oug} for every dependent set S C E. This implies that
OS'(M) = 0 for every i > rk M, hence we can write

rk M

0S*(M) = 5 0S*(M).
=0

We now present some known results on OS(M).

Theorem 2.2.1.4 (Brieskorn’s Lemma [OT92, Lemma 5.91]). For every matroid M,

rk M

osSM) =P & 0S' (M)
i=0 FEL(M)
rk FF=¢
Theorem 2.2.1.5 ([OT92, Theorem 5.87]). Consider a matroid M and a fized element e € E.
Then for every i > 0 the following is a split short exact sequence

0 — OS‘(M\ &) — OS (M) — OS""*(M/e) — 0.

Lastly, we produce an explicit additive basis for OS(M) called the nbc basis. This basis is
not canonical and depends on a linear order w of the ground set E. For the rest of this section,
we identify F with {1,...,n} with the natural ordering inherited from N. For every circuit
C € C(M) we define the associated broken circuit to be C := C'\ min,, C.

Lemma 2.2.1.6. If a set is dependent, then it contains a broken circuit.

Proof. Every dependent set contains a circuit C, which in turns contains the broken circuit

C. O

Among all the independent sets, we say that I € Z(M) is a non-broken-circuit set (or nbc
for short) if it does not contain any broken circuit (for a fixed linear order of the ground set w).

Consider the grading on A(E) given by setting the degree of u; equal to ¢. The grading
induces an increasing filtration on OS(M) whose i-th piece is equal to the image of classes of
degree < i in A(E), and the associated graded ring gr OS(M) is isomorphic to the quotient

_ A(E)
grOS(M) = {ug | C €CM)y’
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Theorem 2.2.1.7 ([0T92, Theorem 3.43]). Given a matroid M and a linear order of its ground
set w, the family
{us | S is nbe of cardinality i}

is a basis for gr OS'(M). Moreover,
{us + Im | S is nbc}

is a basis for OS(M) as a graded vector space.

Example 2.2.1.8. Consider the matroid from Example|2.1.0.1)on the groundset E = {1, 2, 3}.
The family of circuits of this matroid is C(M) = {123} and therefore the only broken circuit is
{23}. A basis for OS*(Us 3) is given by

OS(Uz,3) = Q@ Q(uy, ug, uz) ® Q(uiz, uis).

2.2.2 Chow rings

As with the Orlik—Solomon algebra OS(M) from the previous section, one can now build the
cohomology ring of the smooth projective varieties X (A) and X (A) and then try to generalize
this construction to every matroid.

In [FY04] Feichtner and Yuzvinsky introduced the notion of Chow ring for an arbitrary
finite atomic lattice. Their construction takes as inputs an atomic lattice £ and a so-called
building set G C L, and returns a ring D(L£,G) that they refer to as the Chow ring of L with
respect to G. In our setting, the atomic lattice £ will be the lattice of flats of a loopless matroid
L(M) and the building set will be the so-called mazimal one Gyax, which is given by all the
non-empty flats. The following result lets us conclude that the Chow ring of X 4 is completely
determined combinatorially.

Theorem 2.2.2.1 ([FY04, Corollary 2]). Let L(M) be the lattice of flats of a representable
matroid M and A an arrangement that realizes M. Then

D* (L, Gumax) = H*(X(A),Z).

By making a slight modification to its presentation, and following the notation of [BHM™22al,
we can now introduce the Chow ring of a matroid using the following definition.

Definition 2.2.2.2. Let M be a loopless matroid. The Chow ring of M is the quotient
CH(M) = Qfzp | F € LIM)\{D, E}]/(L+ J),
where the ideals I and J are defined respectively by
I = {(zpxp | F1,F, € LIM)\ {0, E} are incomparable) ,
J = <ZmF—ZxF|i,jeE>.
i€F JEF

In [BHM™22a] and [BHM™22b)|, Braden, Huh, Matherne, Proudfoot, and Wang introduced
an “augmented” version of the Chow ring of a matroid CH(M) and showed that this is isomor-
phic to the Chow ring of X (.A).
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Definition 2.2.2.3. Let M be a loopless matroid. The augmented Chow ring of M is the

quotient
CH(M) = Qlzp, ye | F € LM)\{E} and e € E]/(I +J),

where the ideals I and J are defined respectively by

I:<ye—ZmF|e€E>,

eZF
J={(zxpxp, | F1,F2 € LIM)\ {E} are incomparable) + (y. zp | F € LIM)\{E}, e € F).

The augmented Chow ring can be defined in terms of the construction of Feichtner and
Yuzvinsky, namely as the Chow ring of the lattice of flats of the free coextension of M with
respect to a certain building set; we refer to [EHL22] Lemma 5.14] for more details regarding
this perspective. One can also recover the Chow ring CH(M) from the augmented Chow ring
CH(M) by quotienting by the ideal generated by {y. | e € E}.

By construction, since all the ideals are homogeneous, both the Chow ring CH(M) and the
augmented Chow ring CH(M) are graded rings, with the grading induced by the one on the
polynomial ring. Moreover, by the incomparability relations given by J and J, it is easy to
deduce that CH'(M) = 0 for every i > rkM and CH*(M) = 0 for every i > rk M 4 1. Therefore,
both rings admit a decomposition of the form

rkM—1 rk M
CHM)= @ CH'(M),  CH(M)=HCH M).
1=0 1=0

We now present some known results on CH(M) and CH(M).

One of the main results of Feichtner and Yuzvinsky, [FY04, Corollary 1], simplifies the
computational challenge of building CH(M) by providing an explicit Grobner basis for the
Chow ring of an atomic lattice with respect to an arbitrary building set.

Theorem 2.2.2.4. If M has no loops, then CH(M) has a basis consisting of monomials of the
form x;?ll ---x}'gj, wherer €N, 0 =Fy CF, C---CF,, and 0 <m; <tkF; —rkF;_ 1 for all
te{l,...,r}.

The next result provides a counterpart result for the augmented Chow ring. Given a flat
F of M, choose any maximal independent set I C F, and let yr := [[..;y. € CH(M). The
element yr does not depend on the choice of I [BHM™22a, Lemma 2.11(2)].

Proposition 2.2.2.5. For any matroid M, the augmented Chow ring CH(M) has a basis con-
sisting of monomials of the form ypox?ll -~-x?:, where r € N, Fy C Fy C --- C F,., and
0<m; <tkF; —tkF;,_q forallie{l,...,r}.

Proof. Let m C CH(M) be the ideal generated by {y. | € € E}. The argument in the proof of
[BHM™22b, Proposition 1.8] shows that we have an isomorphism

er CH(M) := Q% n% ~ (P CH(M/F)[-kF], (2.1)
i> FeL(M)

where CH(M/F')[— rk F'] embeds into gr CH(M) by sending a polynomial nin {z¢ | F C G C E}
to the polynomial yrn. We may therefore use the basis for each CH(M/F) from Theorem|[2.2.2.4
to construct a basis for gr CH(M), and this lifts to a basis for CH(M). O
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Notice that Theorem [2.2.2.4] also uses the variable z g, while our definition of CH(M) does
not. The two definitions coincide if we introduce the relation

rp = — E TE.

FeL(M)
el
The definition does not depend on the choice of e € E. In [AHKIS] this element of the Chow
ring was denoted by « := —zp.

Example 2.2.2.6. The Chow ring of the matroid from Example [2.1.0.1]is
CH(Uz,3) = Q(1) & Q(ov).

The augmented Chow ring is

CH(Uz;3) = Q(1) ® Q{ev, y1, y2,y3) ® Q(y123)-

2.2.3 Intersection cohomology module

The graded Mébius algebra of M is the graded vector space

H(M) = @ Qva

FeL(M)

where yp is placed in degree rk F. It is made into a graded algebra via the multiplication

_Jyrve itk F4+1kG =1k(FVG),
Yrie =0 it tk F+ 1k G > tk(F V G).

We note that H(M) is a graded subalgebra of CH(M) |[BHM™22al, Proposition 2.18]; thus,
we may view CH(M) as a graded H(M)-module.

Definition 2.2.3.1. Let M be a matroid. The intersection cohomology module of M, denoted
by TH(M), is the unique (up to isomorphism) indecomposable graded H(M)-module direct sum-
mand of CH(M) that contains H(M). The stalk at the empty flat of TH(M) is the graded vector
space IH(M)y := IH(M) ®g(m)y Q, where Q is the one-dimensional graded H(M)-module placed
in degree zero.

Remark 2.2.3.2. In [BHM™22b| Definition 3.2], a construction of IH(M) is given as an explicit
H(M)-submodule of CH(M).

This construction mimicks the construction of Y(A4) and Yy(A) in the realizable case. We
follow Section 1.3 in [BHM™22b].

We observed in Remark[2.1.5.2] that the variety Y (A) admits a canonical resolution to X (A).
The graded Mobius algebra H(M) is isomorphic to the rational cohomology ring H®(Y (A))
[HW17bl Theorem 14], and the augmented Chow ring CH(M) is isomorphic to the rational
Chow ring of X (A), or equivalently to the rational cohomology ring H®(X (A)).

By applying the decomposition theorem to the map from X (A) to Y (A), we find that the
intersection cohomology TH®(Y (A)) is isomorphic as a graded H*(Y (A))-module to a direct
summand of H*(X(A)) (All of these cohomology rings and intersection cohomology groups of
varieties vanish in odd degree, and our isomorphisms double degree. So H'(M) = H2(Y (A)),
CH'(M) = H?(X(A)), TH (M) = TH*(Y(A)), and so on). An extension of an argument of
Ginzburg [Gin91] shows that IH®*(Y'(A)) is indecomposable as an H®*(Y (A))-module, which
implies that it coincides with TH®(M).
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Example 2.2.3.3. The intersection cohomology module of the matroid from Example [2.1.0.1
is given by
IH(M) := Q(1) ® Q(y1,y2,y3) ® Q(y123)-
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2.3 Hodge Theory

2.3.1 Combinatorial Hodge Theory
Definition 2.3.1.1. We say that a graded Artinian ring

Gy
i=0
is a Poincaré Duality Algebra of dimension r if
o AY~(Qand A" = Q,
o Ai=(fori<0ori>r,
e the multiplication in A® gives isomorphisms
A™" — Homg (A%, A).
Definition 2.3.1.2. We call degree map any isomorphism
deg: A" — Q.

Example 2.3.1.3. The graded polynomial ring R®* = Q[z]/(z"!) trivially satisfies all the
properties of a Poincaré duality algebra. A degree map on R® is given by the evaluation
z" = 1.

Definition 2.3.1.4. Let € A', 0<i< %
e The Lefschetz operator L), associated to £ on A' is the linear map
Li: A" AT
TR YA Tr
e The Hodge-Riemann form Q' associated to ¢ on A’ is the symmetric bilinear form
Qi A" x A' -Q
(u1,ug) —(—1)"deg(uy - Lius);
e The primitive subspace P} of A" associated to { is
Pl ={u€ A" | (- Lj(u) =0} C A"
Definition 2.3.1.5. Let A® be a Poincaré Duality Algebra.
e A* has property (HL), if L} is an isomorphism, for every i < 5-
e A* has property (HR), if Q} is positive definite on P}, for every i < 5

e If L} is an isomorphism, then A ' ‘
A = Pt A
If A® has property (HL), we have the Lefschetz decomposition

A =prr,
j=0

for every ¢ < 5. This decomposition is orthogonal with respect to Q5.
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If A® is a Poincaré Duality Algebra that has property (HL), and (HR),. Then we say that A®
satisfies the Hodge package.

Example 2.3.1.6. In Example[2.3.1.3] let £ =  and deg : " — 1. Then,
e The multiplication by z"~2* is a Lefschetz operator that has property (HL),;
e P’=Q and P! = {0} for all i # 0; hence (HR), is trivially true for i # 0 and
(=1)°deg(az""?%) = a® > 0,
for every a # 0.

e It follows immediately that the Lefschetz decomposition is trivial for every i, as
P =2'P’ = Q(a").

Proposition 2.3.1.7. Suppose that A® satisfies the Hodge package. Denote by p(x) its Hilbert—
Poincaré series, i.e.

k
p(z) ;= Hilb(4, z) = Zdim Al gt
i>0
Then,

e Poincaré duality implies that dim A* = dim A*=%. In turn, this implies that the polynomial
p(x) is palindromic.

e The property (HL), implies that dim A"~! < dim A" for every i < g This is because the
multiplication by ¢ injects A1 in A’ as a direct summand. In turns, this implies that
the polynomial p(x) is unimodal.

2.3.2 Hodge theory for matroids and consequences

A remarkable result in matroid theory is that three of the graded vector spaces defined in
Section [2.2] satisfy the Hodge package.

Theorem 2.3.2.1 ([AHKIS, Theorem 1.4], [BHM™22a, Theorem 1.6]). For every matroid M,
CH(M) and CH(M) are Poincaré duality algebras, i.e. for every nonnegative integer i < %rk M
the bilinear pairing

CH'(M) x CH*M™ " (M) > Q  (n1,7m2) > deg(mmg)

is non-degenerate. Moreover, let

with cp, + cp, > cpur, + CrnF, for every incomparable flats Fy and Fo and cy = cg = 0.
Then, CH(M) satisfies (HL); and (HR),. Analogous results hold for CH(M).

Theorem 2.3.2.2 (|[BHM™22bl Theorem 1.6]). For every matroid M, TH(M) satisfies Poincaré
duality, i.e. for every nonnegative integer i < %rk M the bilinear pairing

TH (M) x TH*MU(M) = Q@ (11, 72) + deg(mmn2)
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1s non-degenerate. Moreover, let

{= Z CFTF, cr > 0 for every rank 1 flat F' of M.
)

FeLMm
rk F'=1

Then, IH(M) satisfies (HL), and (HR),.

Corollary 2.3.2.3. For every loopless matroid M the following results hold:
o The Hilbert-Poincaré series of CH(M) and CH(M) are palindromic unimodal polynomials.
e The Hilbert—Poincaré series of IH(M) is a palindromic unimodal polynomial.

Using this combinatorial version of Hodge theory for matroids, Adiprasito, Huh and Katz
proved the following in [AHKIS].

Theorem 2.3.2.4 (Heron-Rota-Welsh Conjecture). The characteristic polynomial of a matroid
M is log-concave.

In particular, the proof exploits the Hodge-Riemann bilinear relations in degree 1 of CH(M)
and an interpretation of the coefficients of ym(z) as products of powers of elements in CH' (M).

2.3.2.1 Semi-small decomposition

In [BHM™22a] Braden, Huh, Matherne, Proudfoot, and Wang found a semi-small decomposition
for both the Chow ring and the augmented Chow ring of arbitrary loopless matroids. These
decompositions can be used to prove the Hodge package for both of these rings. Before stating
this result, let us introduce some useful notations: whenever M is a loopless matroid, for every
e € E we define two special families of flats of M:

S, =S M) ={FelM):0CFCE\{e}and FU{e} € LIM)},
Se=8.M)={FeL(M): FC E\{e}and FU{e} € L(M)}.
Theorem 2.3.2.5 ([BHM™22a, Theorems 1.2 and 1.5]). Let M be a loopless matroid and let

e € E be an element that is not a coloop. Then, there is an isomorphism of CH(M \ {e})-
modules:

CH(M) = CHM \ ¢) & €D CH(M/(F U {e})) ® CH(Mr)[-1].
Fes,

Additionally, there is an isomorphism of CH(M \ {e})-modules:
CH(M) = CH(M \ ¢) & @ CH (M/(F U{e})) ® CHMp)[-1].
FeS.
If, instead, e is a coloop, then
CH(M) = CH(M\ e) ® CH(M \ ¢)[-1] & @ CH(M/(F U {e})) © CH(Mf)[~1]
Fes,

and

CH(M) = CH(M \ e) & CH(M \ ¢)[-1] & €D CH(M/(F U {e})) @ CH(Mp)[-1].
FeS.

We stress the fact that in the case of augmented Chow rings, the terms appearing in the
direct sum depend on the Chow ring (as opposed to augmented) of certain contractions.
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2.4 Hilbert—Poincaré series

The goal of this section is to take the polynomials that we defined in Section and give
them a geometric interpretation as Hilbert—Poincaré series of graded vector spaces.

2.4.1 Characteristic polynomial

Since OS*(M) is graded, it makes sense to compute its Hilbert—Poincaré series.

Definition 2.4.1.1. The Poincaré polynomial of a matroid M is the Hilbert—Poincaré series
of its Orlik—Solomon algebra, i.e.

mu(z) := Hilb(OS(M), ) =) _ dim(OS'(

>0
Using Theorem [2.2.1.5| we are able to obtain a combinatorial formula for mu(z).

Theorem 2.4.1.2. For every matroid M,

)rkM

m(z) = (=) Mxm(—z").

Proof. If tk M = 0 the statement is true. Otherwise, Theorem [2.2.1.5] implies that
™m(x) = Tm\e(®) + 2 TM e (T)

for any e € E. We can now use the induction hypothesis on both polynomials on the right
hand side, as they correspond to matroids with smaller rank or ground set. If e is a coloop of
M, then M = M’ @ e and
() =(1 +2)(=2)" M xw (—2 )
=(—a)xe, (—2 ) (=) M I ()
=(=a)™ Mxm(=z7).

If e is not a coloop,

(@) =(—=2)" Mxme (=271 + 2(—=2) M xmye(—2 )
:(_x)rkM (XM\&(_x_l) - XM/e(_x_l))
=(—2)"*Mxm(—z).
In both cases we used the deletion-contraction formula from Theorem [1.1.5.5 O

Recall that we also have a notion of projectivization of the arrangement, P(A). Since
the complement of a projective arrangement may be viewed as the complement of an affine
arrangement, everything we said can be extended to the projective case using the results for
affine arrangements found in [OT92] Section 3.2].

Theorem 2.4.1.3. If P(A) is a projective arrangement over C, then the Hilbert—Poincaré
series of the cohomology ring of the complement P(M(A)) satisfies

(—2)" M X (™) = Hilb(H* (P(M(A))), ).
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2.4.2 Chow polynomials
Since both CH(M) and CH(M) are graded, it makes sense to study the Hilbert—Poincaré series.

Definition 2.4.2.1. For every matroid M, we denote by Hy,(x) and Hu(z), respectively,

k—1
Hy (x) := Hilb(CH(M), z) = > _ dimg(CH'(M)) 2*,
1=0
k
Hy(z) := Hilb(CH(M), z) = ) _ dimg(CH'(M)) 2.
=0

Theorem [2.2.2.4] when translated into the setting of Hilbert-Poincaré series, yields the
following formula.

Proposition 2.4.2.2. Let M be a loopless matroid. The Hilbert—Poincaré series of the Chow
ring CH(M) is given by

T 1 _ IrkFifrkFiflfl)

m= Y [

0=FoCF1 G- CFy i=1

Here the sum is taken over all the non-empty chains of flats starting at the empty set, i.e.
0=Fy G- CFy in LIM) for every 0 <m <1kM — 1[]]

This is the counterpart for the augmented Chow ring.

Proposition 2.4.2.3. Let M be a loopless matroid. The Hilbert—Poincaré series of the aug-
mented Chow ring CH(M) is given by

z(1—=z

rkFo) T m(l _xrkF,;—rkF,;_l—l)

Hu(z) =1+ > =

FoCF G- CFyp i

1—=x
1
Here the sum is taken over all the non-empty chains of flats, i.e. Fy C --- C Fy, in L(M) for
every 0 <m <k —1.

Proof. As mentioned before, one can construct the augmented Chow ring of £(M) by considering
the lattice of flats of the free coextension of M and taking a suitable building set on it; this allows
one to use the Grobner basis of Feichtner and Yuzvinsky. This computation was carried out
by Mastroeni and McCullough in [MM22] Section 5.1]. In particular, the basis they construct
in [MM22| Corollary 5.4] immediately yields our claimed formula. Alternatively, see [EHL22]
Lemma 7.8] or [Lia22l Corollary 3.12]. O

We point out that although the formulas of Propositions [2.4.2.2] and [2.4.2.3] can be used to
compute the Hilbert—Poincaré series of (augmented) Chow rings of small matroids, a drawback
that they have is that they require iterating over all the chains of flats in the matroid. The total

. . |
number of chains of flats of a matroid on n elements can be as large as 10;% (see sequence
2

A000670/in the OEIS [Slo18]), so this approach is also considerably slow even for relatively small
values of n. The goal of [FMSV22| Section 3.3] is to find clearer and more efficient formulas.
The rest of this section is devoted to present those formulas.

The following result, is a first link between these two Hilbert—Poincaré series and the func-
tions in I(£(M)) defined in Section [1.2.4]

1The chain consisting of only the empty flat yields m = 0, and the corresponding summand is an empty
product, which by convention will be considered as 1.
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Proposition 2.4.2.4. Let M be a loopless matroid. Then
Z fcrkFHM/F(x)-
FeL(M)

In particular, the Hilbert—Poincaré series of the Chow ring and of the augmented Chow ring as
defined in satisfy the recursion of Theorem|1.2.4.18

Proof. From the formula of Proposition [2.4.2.2] by considering each flat F' # @) as the term Fj
in the chain, we see that

1_xrkF 1) 1_l.rkF—rkFl )
Hy, =1 _
H Y > It
FeL(M) F=F1CFC---CFy, i=1
FA40
1 _ xrk Ffl)
=1+ Z T “Hyp(2). (22)
FeL(M)
FA0

The summand equal to 1 comes from considering the chain that consists of only the flat Iy = )
separately. The last equation follows from the fact that the lattice of flats of M/F is isomorphic
to the interval [F, E] in £(M). Analogously, by applying the same argument to the formula of
Proposition we can fix the flat F' = Fj of the chain and write

1_ rk F 1_ rk F; —rk F; _
R N I |
FeL(M) FCF CFyC--CFy i=1 -
_ 17xrkF) q
=1+ Y S Hur()
FeL(M)
17xrkF)
=1+ Z 11— -Hyyp(2). (2.3)
FeL(M)
F#0
s(-s") _ sQ-s")

Observe that for each mteger r > 1, we have that £

z". In particular, by

1— l1—zx
combining Equations (2.2)) and ( -, we obtain
1 _ xrkF 1) W F
Hu(z) =1+ Z ————— Hyr(2) Z ™" Hyp(z)
FeL(M) FeL(M)
F#) F#£0
=Hy(z) + Z xrkFﬂM/F(x)
FeL(M)
F£0
= Z xrkFﬂM/F(m)-
FeL(M)
This proves the desired recursion. O

Remark 2.4.2.5. Notice that Proposition [2:4.2.4] can also be obtained by taking Hilbert—
Poincaré series in Equation (2.1).
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Theorem 2.4.2.6. Let M be a loopless matroid. Then, the Hilbert—Poincaré series of the Chow
ring of M satisfies

1 if tkM =0
Hy(z) = Y recw X, () Huyp(z)  otherwise. - (2.4)
FAD

In particular, the Chow polynomial and the augmented Chow polynomial defined in Section|1.2.4
are, respectively, the Hilbert—Poincaré series of the Chow ring and the augmented Chow ring
for every matroid M.

Proof. To establish this result, it suffices to prove that the polynomial in the statement satisfies
all the properties of Theorem [[.2.4.18 The first two conditions are immediate to check, and
for the last, it will suffice to verify that Hy,(z) satisfies the recursion of Remark We
have a chain of equalities:

1+ Z Hy/p(z) =1+ Z Z Y(M/F)W(JJ)H(M/F)/G(@

FeL(M) FeL(M)GEL(M/F)
F#E F;éE G#0

=1tz Z Z X(M/F) e (F) Hyya ()

FEL(M) GEL(M)

F#E  GDF
=1tz Z Hy,c(z) Z X(M/F)\G\F z)
GEL(M) FeL(M
G#0 FCG
=14z Y Hypgl) > X(m,)/F (%)
GeL(M) FeL(Mg)
G#D FCG
1 _ .TrkM‘G
=1l+=x Z HM/G(x) T —s (2.5)
GeL(M)
G#0
= HM(.’E),
where in the last two equalities we used Lemma [1.2.:2.14] and the formula we had obtained in
Equation ([2.3)). O

Once we have established this relation between the polynomials, by taking Hilbert—Poincaré
series of the decompositions in Theorem [2.3.2.5] one also obtains the following additional rela-
tions.

Theorem 2.4.2.7. Let M be a loopless matroid and let e € E be an element that is not a
coloop. Then,

Hu(2) = Hy\(2) + = Z Hy/(rugep (@)Hu, . (2)
FesS,

and

Hu(z) = Hu\e(z) + 2 Z Hyy(pufep) (@) Hm, - (2).
Fes,

If e € E is a coloop, then

Hy(z) = (1+2)Hy(z) + 2 Z Hy/(rugep) (2)Hu, . (2)
Fes,
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and
Hum(z) = (1 +2) Hwe(2) + = Z Huyy(rugey) (@) Hmy ().
FeS.
At this point it is also of interest to produce a recursion for Hy(z) in terms of Hilbert—
Poincaré series of augmented Chow rings of contractions Hy,r(z) for F' € L£(M), but with
specific care to not make any references to Hy ().

Theorem 2.4.2.8. Let M be a loopless matroid. Then the Hilbert—Poincaré series of the
augmented Chow ring of M satisfies

Hu(z)=— Y p0 F)1+z+--+a™") Hyp(x). (2.6)
FeLlL(M)
F£0
In particular, the above recursion and the initial condition Hy(xz) = 1 if M is empty uniquely
define the map associating to each loopless matroid the Hilbert—Poincaré series of its augmented
Chow ring.

Proof. The proof relies on Theorems [1.2.4.18) and [2.4.2.6] Starting from the right-hand side of
Equation (2.6 (without the minus sign) and using the recursion of Theorem [1.2.4.18] we have

1_xrkF+1
Z N(Q)vF)ﬁHM/F(x)
FelL(M)
FA£D
1_mrkF+1 . .
= > M(@»F)ﬁ > ™ Hy o (x)
FeL(M) GeL(M)
F#) GDF
1— rk F+1
Z Hy/a(z) Z H(waF)xrkGﬂkFif_ )
GeL(M) FeL(M) *
G#0 0AFCG

where in the last step we just interchanged the order of summation. Now, breaking the inner
sum into a difference of two sums yields

= > Huul@) ! > @ F)a O N (0, Pzt

GeL(M) FeL(M) FeL(M)
G#D P£FCG P£FCG

Z HM/G 1= ((XM‘G(Q:) _ xrkG) n mrkGH)
GeL(M

G;é@
=- Z XM, () Hyya (@) Z xrkGHM/G( )-
GeL(M) GeL(M)
G#0 G#0

Using the recursions of Theorem and Theorem [1.2.4.18] we obtain

= —Hy(z) — (Hu(z) — Hy(z))
= —HM (x),

and therefore the proof is complete. O
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2.4.3 Kazhdan—Lusztig—Stanley polynomials
Theorem 1.9 in [BHM™22b]| lets us describe the Hilbert—Poincaré series of TH(M) and TH(M)y.
Theorem 2.4.3.1 ([BHMT22Db, Theorem 1.9]). Let M be a loopless matroid.

o The Kazhdan—Lusztig polynomial of M coincides with the Hilbert—Poincaré series of the
stalk at the empty flat of TH(M). In other words,

Pu(z) =) dimg(TH (M)y) 2.
i>0

o The Z-polynomial of M coincides with the Hilbert-Poincaré series of the intersection
cohomology module of M. In other words,

Zw(x) =Y dimg(TH'(M)) 2.

i>0
The proof is mostly based on the following results.

Proposition 2.4.3.2 ([BHM™22b, Proposition 1.8, 1.7]). Let m be the graded mazimal ideal
of H(M). Then,
IH(M)y = TH(M)/mIH(M).

This graded vector space vanishes in degree > %rk M. Moreover,

m'TH(M)/m™MTHM) = 5 THM/F)[—].
FeL(M)
rk F=q
Theorem [2.4.3.1] then follows by taking Hilbert—Poincaré series and observing that these
polynomials are the unique polynomials that satisfy Theorem [1.2.4.16

Remark 2.4.3.3. The similarity between the recurrence linking Py (x) to Zy(z) with the one
linking Hy(z) to Hu(x) is also hinted by the fact that CH(M)y := CH(M) ®gmy Q, and that
the latter is isomorphic to CH(M) (see [BHM™22a, Remark 1.4]). In other words, in terms
of stalks [BHM™22b| Section 5], the Chow ring CH(M) is the stalk at the empty flat of the
augmented Chow ring CH(M).

The following formula was first proved in [PXY18] and gives a way of computing the poly-
nomial Py(x) as an alternating sum that counts flags of flats.
Given a sequence i, ...,41 of positive integers we define the r- Whitney number as

WM(iT,.. -7i1) = #{(FT7...,F1) | F.<...<F, FJ € £(M) and CI‘ij = Z]}

i.e. the number of flags of flats of prescribed corank in the lattice of flats £(M).
Given positive integers j and r along with a subset S C [r], let

t;(S):=min{k |k >jand k ¢ S} € [r +1].

Theorem 2.4.3.4. Let M be a loopless matroid of rank k on the ground set E. The Kazhdan—
Lusztig polynomial Py (x) is equal to

Py(z) =1+ ZIZ Z (71)#5’ Z Wwm (atT(S) T ar_1,...,04,(s) + ao) .

r=1 Sc(r] 0<a1<...§a7‘+1
ap=
ar,=1
ary1=rk —1i
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We observe that Theorem and Theorem both let us produce formulas for the
polynomials xm(z), mm(x), Hy(x) and Hy(z) for a matroid M in terms of a deletion M \ e. A
natural question is whether an analogous statement can be made for Py(X) and Zu(z). Before
formulating it, we introduce the following notation.

Definition 2.4.3.5. For every matroid M we define

rkM—1
2 |R if rkM i
7(M) ::{[x [Pu(z) if tk M is odd,

0 if rk M is even.

Theorem 2.4.3.6 ([BV20, Theorem 2.8]). Let M be a loopless matroid and e € E be an element
of the ground set that is not a coloop. Then,

rkM—rk F

Pu(z) = Pune(z) — & Puse(z) + Y 7 (M/(FU{e})) 2™ Py, (x),
FeS.
Zu(@) = Zane(z) + > 7(M/(FU{e})) 2™ 5 Zy . (x)

FeS.

Observe that a priori this result does not witness any decompositions at the level of (stalks
of) intersection cohomology modules for generic matroids, even though the formula is motivated
by algebraic geometry and computations on the Schubert variety Y (A) in the case when M is
realizable.



Chapter 3

Combinatorics

3.1 Combinatorial properties

We are now interested in developing a combinatorial theory for all the polynomials that arose
as Hilbert—Poincaré series in Section [2:4] In particular, one of the main motivations to study
their combinatorial properties is the following collection of conjectures on their real-rootedness
that we refer to as the “real deal” with matroids.

Conjecture 3.1.0.1. For every matroid M, the following polynomials have only real roots.

o ([FS22, Conjecture 10.19]) The polynomial Hy (), i.e. the Hilbert-Poincaré series of the
Chow ring CH(M).

o ([Ste21, Conjecture 4.3.3]) The polynomial Hu(x), i.e. the Hilbert—Poincaré series of the
augmented Chow ring CH(M).

e ([PXY18, Conjecture 5.1]) The polynomial Zy(x), i.e. the Hilbert—Poincaré series of the
intersection cohomology module TH(M).

o (|GPYITY, Conjecture 3.2]) The polynomial Pu(x), i.e. the Hilbert-Poincaré series of
the stalk TH(M)g at the empty flat of TH(M).

Using the formulas we describe in Chapter [4] we are able to provide the following experi-
mental evidence in support of these conjectures.

Proposition 3.1.0.2. If M is a sparse paving matroid with at most 40 elements, then Hy(x)
and Hy(z) are real-rooted. If M is a sparse paving matroid with at most 30 elements, then
Pu(x) and Zy(x) are real-rooted.

Another intriguing collection of conjectures prescribes for which matroids these polynomials
have maximal coefficients, for fixed rank k and cardinality of the ground set n.

Conjecture 3.1.0.3. Uniform matroids mazximize the coefficients of Kazhdan—Lusztig polyno-
mials, Z-polynomials, Chow polynomials and augmented Chow polynomials among all matroids
with fived rank and cardinality.

The conjecture for Py(z) is attributed to Gedeon (unpublished); we show that it holds
for all paving matroids later in Corollary 4.1.3.9] In Section [3.1.5] we prove instead that its

73
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counterpart for the polynomials Hy,(z) and Hu(x) holds for all matroids.

The degrees of the polynomials Py(z), Qu(z) and Zy(x) are of much interest in the frame-
work of Kazhdan—Lusztig—Stanley theory for matroids, as they might suggest interlacing prop-
erties for their roots. A matroid M is said to be non-degenerate if Py(z) has degree | XM=1 |
(this is of course related to the invariant 7 introduced in Definition [2.4.3.5). Gedeon, Proudfoot
and Young posed the following conjecture.

Conjecture 3.1.0.4 ([GPY17c]). Every connected regular matroid is non-degenerate.

This conjecture remains open, but it is important to point out that the class of regular
matroids is extremely restrictive (see again Theorem [1.1.4.6]).

3.1.1 Properties arising from algebraic geometry

We now list some known combinatorial properties of these polynomials that are a direct con-
sequence of them being Hilbert—Poincaré series of a graded vector space. Then, we highlight
which of these properties can be proven in a purely combinatorial setting.

Remark 3.1.1.1. The request of a “fully combinatorial” proof can be misleading at first and
one should be careful with interpretating its meaning. We have been using the term geometric
whenever the matroid is realizable, i.e. there is a variety that can be attached to the matroid
over which we can compute some version of its cohomology. In this sense, the graded vector
spaces OS(M), CH(M), CH(M), TH(M) and ITH(M)p are indeed combinatorial, as one is able
to produce them for every matroid, not just the realizable ones. In this context, we want to
look at the polynomials as invariants on the lattice of flats £(M) as defined in Section [1.2.4]
For a proof to be “fully combinatorial” we would like then to be able to verify the statements
without mentioning neither the five graded vector spaces we listed above, nor the fact that
these polynomials compute their Hilbert—Poincaré series, and, as a consequence, without using
the heavy algebro-geometric machinery that this interpretation carries.

e (Non-negativity) As their coefficients represent the dimensions of some vector spaces, of
course, my(z), the three Kazhdan—Lusztig—Stanley polynomials, and the two Chow poly-
nomials all have non-negative coefficients. Combinatorially, one can show that my(z) has

non-negative coefficients by using Lemma/|1.2.4.3{and the fact that my (z) = (—2)™ Mym(—271).

For the two Chow polynomials, one could use Proposition [2.4.2.4] and Theorem [2.4.2.6
and rederive Propositions [2.4.2.2] and [2.4.2.3] which are explicitly non-negative. A fully
combinatorial proof of the non-negativity of the other polynomials is yet to be obtained.
Notice that the corresponding formula with flags of flats of Theorem is alternating
in sign and therefore not explicitly positive. However, we show in Theorem [£:2.1.1] that
the three Kazhdan—Lusztig—Stanley polynomials are non-negative for every sparse paving
matroid.

e (Palindromicity) As a consequence of Poincaré duality, we have mentioned in Corollary
2.3.2.3 that Hy(z), Hu(z) and Zu(z) are palindromic. Combinatorially, we showed this
in Theorem [[.L2.4.76] and Theorem [[.2.4.18

o (Log-concavity) The only known log-concave polynomial is xm(z), as discussed in Theorem
[2:3:24] This also implies that it is unimodal as proved in Proposition [[.4.1.7]

e (Unimodality) The Z-polynomial and the two Chow polynomials are unimodal as a con-
sequence of the Hard Lefschetz.
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o (y-positivity) Section is devoted to showing the v-positivity of Zm(z), Hy(z) and
Hpm(z). The proof is combinatorial even though for the Chow polynomials it exploits
Theorem which is a consequence of the semi-small decompositions described in

Theorem 2.3.2.5]

3.1.2 Uniform matroids

It appears evident, from Conjecture [3.1.0.3] that the values of our polynomials for uniform
matroids are of great interest. They will also become fundamental in Chapter[d] We collect here
the results that were already known in the literature for Kazhdan—Lusztig—Stanley polynomials

Theorem 3.1.2.1 (JGLX"21) Theorem 1.3 and 1.5] [GX21], Theorem 3.3]). For every k < n the
Kazhdan—Lusztig polynomial, the inverse Kazhdan—Lusztig polynomial and the Z-polynomial of
the uniform matroid Uy, ,, are

n—k—1 . .
1 (n k—i4+h\[(i—=1+h\ ,
R (@)= k—z(z) — <h+i+1)( h )x

h=0

N

Zuk,n(x)=§; (e (D) mz:li(h—n—l—k—i—l)—&—n—k<i—l+h>(k—i—i—h)xi.

() = (h+1)(n—k) h h

Corollary 3.1.2.2. In particular, for Boolean matroids

7

3

PBn(x) =1

Qs, (x) =1,
Zp,(z) = (z+1)".

The above formulas can be found either by setting & = n in the formula for uniform matroids,
or by exploiting the multiplicativity of P, ) and Z under direct sum and by knowing their
values on Bj.

One of the goals pursued in [FMSV22] is determining Hy(z) and Hm(z) whenever M is
an arbitrary uniform matroid. We mention that the polynomials Hy,(x) for arbitrary uniform

matroids were addressed by Hameister, Rao, and Simpson in [HRS21]. One of their main results
[HRS21] Theorem 5.1] is useful to retrieve the following facts.

Theorem 3.1.2.3. Let M = B,, be isomorphic to a boolean matroid. Then,
Hg, (z) = An(2),
where A,, is the n-th Eulerian polynomial defined in Section . Let M = U,,_1,, be isomor-

phic to a corank 1 uniform matroid. Then,

HUH,L” (Z‘) = ;dn (l’),

where d,(x) denotes the n-th derangement polynomial.
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Unfortunately, deducing compact expressions for Chow polynomials of arbitrary uniform
matroids via their result seems rather difficult; although their formula is nice in terms of
statistics of permutations, it is intricate from a computational point of view.

Without making any references to augmented Chow rings of matroids, the polynomial Hy(x)
for Boolean matroids has been studied in detail recently in [PRWOS, [Ath20), [SW20l [HZ19,
Han21l [BJ22]. To be precise, one has the following.

Theorem 3.1.2.4. Let M = B,, be isomorphic to a Boolean matroid. Then,
Hs, (z) = 4, (),
where A, () denotes the n-th binomial Eulerian polynomial.

A further motivation to study the Hilbert—Poincaré series of Chow rings and augmented
Chow rings is that they may be viewed as vast generalizations of the Eulerian, binomial Eulerian,
and derangement polynomials, and within this broader framework one can derive interesting
new identities relating them.

We now collect the results on uniform matroids as presented in [FMSV22l Section 3.5].
We start by producing more general formulas using the incidence algebra of the lattice of
flats £(M). These new formulas work for arbitrary matroids, but will be of particular use to
produce the first concrete expressions for the Hilbert—Poincaré series of both the Chow ring
and the augmented Chow ring of arbitrary uniform matroids. Since H and X are inverse of each
other up to a sign in the incidence algebra of £(M) (see Definition [1.2.2.15), and since left and
right inverses in the incidence algebra coincide by Proposition [[.2.1.4] we are able to produce
the following alternative convolution.

Proposition 3.1.2.5. Let M be a loopless matroid on E. The following formula holds:

Hy(z) = Z Hy,,. () Xm/r ().
FeL(Mm)
F+£E

This proposition provides a recursion that is particularly useful to compute Hy,(x) whenever
M is an arbitrary uniform matroid. The reason for this is that the restriction M|z for F' € L(M)
is always a Boolean matroid whenever F' is a proper flat. One of the motivations for this
idea came from the Kazhdan—Lusztig theory of matroids, where the inverse Kazhdan—Lusztig
polynomial plays a role to compute the Kazhdan-Lusztig polynomial of arbitrary uniform
matroids in [GX21] Section 3].

Corollary 3.1.2.6. The Hilbert—Poincaré series of the Chow ring of a uniform matroid of rank
k and cardinality n is given by

Ho ()= ()@, @

Jj=0

This formula can be made explicit because the reduced characteristic polynomial of a uni-
form matroid is not difficult to compute (see Lemma [1.1.5.9). Regarding the augmented case,
one can use Theorem [2.4.2.8] and carefully work again with inverses in the incidence algebra to
produce a formula similar to that of Proposition for Hu(z).

Proposition 3.1.2.7. Let M be a loopless matroid on E. The following formula holds:

Hu(@) = = > Hup (@) (B B) (14 @+ o 4 kM0,

FeL(M)
F+E
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The above proposition yields a formula for the Hilbert—Poincaré series of the augmented
Chow ring of arbitrary uniform matroids, via expressing them in terms of binomial Eulerian
polynomials.

Corollary 3.1.2.8. The Hilbert—Poincaré series of the augmented Chow ring of a uniform
matroid of rank k and cardinality n is given by

Hy, . (z) = ki(_m’f—l—j (”) (Z B 1 :j) A@) (Lt a4t 2.

i=0 J

Although Corollary and Corollary are explicit expressions, they are both
alternating sums, due to basic properties of the Mébius function and the reduced characteristic
polynomial. In the remainder of this section we aim to show the positivity of Hy,(z) and Hm(z)
by producing an alternative explicit formula. That result provides the cleanest way we are
aware of for computing the Hilbert—Poincaré series of Chow rings and augmented Chow rings
of uniform matroids. The proof will be carried out by leveraging the following lemma, whose
proof relies on (and later will extend) a recursion found by Juhnke-Kubitzke, Murai, and Sieg
[JKMS19] for derangement polynomials.

Lemma 3.1.2.9. Let M = B, be a Boolean matroid on a ground set E of n > 1 elements.
Then, by considering only chains of flats that end at the top element E of L(M), we have

rk F; —rk Fiflfl)

AC D DI | (= A——

D N e |

‘,El‘kF()) m l,rkFifrkFi_lfl)
FoC--CFp=E =1

Proof. Let us prove the first identity. For each n > 1, denote by 0, (x) the sum on the right-
hand side. By considering what the penultimate element of the chain ending in F is, we see
that the sequence 0, (z) satisfies the recurrence

n—2

HOESY (?)aj(x)(x a2,

=0

In [JKMS19, Corollary 4.2], it is proved that this recursion determines the derangement poly-
nomials, and hence we have 0, (z) = d,(z) for each n > 1, as claimed.

To prove the second identity we rely on the first. Call the right-hand side a,,(z). Choosing
the set Fy we obtain

a,(x)

j (?) @+ +- 427 (x)

where the last equality follows from the locality formula for the h-polynomial of the barycentric
subdivision of the boundary of the (n— 1)-simplex, i.e. from combining [Sta92 Proposition 2.4]
and [Sta92, Theorem 3.2]. O
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Theorem 3.1.2.10. The Hilbert—Poincaré series of the Chow ring and augmented Chow ring
of arbitrary uniform matroids are given by
k-1

Hy, (2)= > (;‘) dj(@)(1+a + -+ 2F179),

=0
k—1 n )

Hu () =140 3 (1) A3ttt 1),
=0

Proof. Let us apply the formula of Proposition to the uniform matroid Uy, ,,. Each chain
of flats ) = Fy C - -+ C F,,, appearing in the sum either has F,,, C F or F},, = E. Lemma|3.1.2.9
tells us that, for each flat F* C F of rank j, the sum over all chains finishing at F' yields the
polynomial d;(z). On the other hand, by fixing the flat F,,_;, Lemma also allows us to
calculate the sum of all the summands for which F;,, = E. This yields

= /n = /n (1 — ki1
@0 =3 (1) dito + 3 (1) ayto) T,
: J " ] T
7=0 7=0
After rearranging, the claimed identity is proved. The formula for the augmented Chow ring
follows in a completely analogous way. O

Remark 3.1.2.11. The expression for Hy, , (z) derived in the last statement bears an intrigu-
ing resemblance to the h-polynomials of the class of polytopes known as partial permutohedra,
studied recently in [BCC™22]. More precisely, compare our formula with their [BCC™22, The-
orem 3.17].

3.1.2.1 The Hameister—Rao—Simpson conjecture

The formula from Corollary [3.1.2.6] essentially resolves a conjecture posed by Hameister, Rao,
and Simpson in [HRS21] regarding the face enumeration of the Bergman complex of a matroid
(i.e. the order complex of the proper part of the lattice of flats). For a matroid M we denote
by A(E(M)) the order complex of the proper part of the lattice of flats of M; this complex is
also known as the Bergman complex and has been studied for example in [AKO6]. This is a
simplicial complex whose simplices correspond to chains of proper non-empty flats of M. One

can consider its f-polynomial, defined by fA(/f(M))(‘T) = Z?:o fi—1 %" where each f; counts

the number of i-dimensional faces and d := dim A(L(M)) = rkM — 2. Both the f- and the
h-polynomial, which is defined by hA(Z(M))(x) = fA(E(M)) (z—1), have non-negative coefficients
(the first is clear; for the second we refer to [Bj692, Section 7.6]); each of them is conjectured
to have only real roots [AK23, Conjecture 1.2]. Hameister, Rao, and Simpson observed that
the following equation holds for several small cases of k£ and n:

k .
n—1—1
hA(Z(Uk,n))(x) = Z ( k—1i ) EUi,n ($)7

i=1
and conjectured that this holds for all £ and n. Corollary 3.17 in [FMSV22] shows that this
conjecture is true.

Corollary 3.1.2.12 ([HRS21, Conjecture 6.2]). Let us denote by NTn n))(x) the h-polynomial
of the Bergman complex of Uy, ,,. Then 7

k .
ha(zuy..) (@) = Z (n ;i; 1) Hy, (2). (3.1)
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The work of Brenti and Welker [BWO0S8, Theorem 1] provides an explicit formula for the
polynomials on the left-hand side in terms of Eulerian polynomialsﬂ concretely,

k—1 n |
DA ) = Z_:O (j>Aj(fc) (x = 1)F1.

By applying the principle of inclusion-exclusion and the preceding formula, the conjecture of
Hameister, Rao, and Simpson is asserting that

Hy, () =) ()" (n ;: 1) hiazw, ) (@)

- i > () ()a@e-n= (32)

J

In what follows, we show how one can manipulate the right-hand side of Corollary [3.1.2.6
to prove this equality.

Lemma 3.1.2.13. The following identity of binomial coefficients holds:
<n+p+q—|—1> 7% (p+j> <q+n—j>
n 2\ G )\ n-j )

A proof of the above identity can be found in Riordan’s book [Rio79) p. 148]; alternatively
one can prove it just by induction. We are ready to prove the Conjecture.

Proof. Proof of Corollary [3.1.2.12] As we have indicated before, proving the above equality is
equivalent to proving the validity of equation (3.2). Let us denote by (x) the right-hand side
of that equation. Notice that we can expand the term (x — 1)*~1=7 to obtain

o (N () (7 )t

which after interchanging the first two sums becomes

i—1i—j—1

(=22

j_
i=1j=0 (=0

58 e () () s

and after interchanging the order of the second and third sum and relabelling,
k—1k—i—1

-3 3 zk: S (" ;f; 1) (TZ‘) (j o ’) Aoyl (33)

i =0 j=l+i+1

1Using Brenti and Welker’s terminology, the displayed formula is explained by considering the simplicial
complex given by the (k — 1)-skeleton of an n-simplex, and using the fact that the barycentric subdivision yields
the order complex of the lattice of flats of the matroid Uy ,, without the top element.
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On the other hand, by combining Corollary [3.1.2.6] and Lemma [1.1.5.9] the Hilbert—Poincaré
series of the Chow ring of Uy, ,, is given by

% J:O

and after reindexing the second sum with / =k —i —j — 1,

S () (M e o

By Lemma [3.1.2.13] after reparameterizing, we have the following equality:

S (T

j=L+i+1

which allows us to conclude that the expressions of equations (3.3) and (3.4)) are equal, and
hence (x) = Hy, (z), and the proof is complete. O

3.1.2.2 Haglund—Zhang polynomials

In [EMSV22] Section 5.1], we establish the real-rootedness of Hy(x) when M = Uy, ,, is an arbi-
trary uniform matroid by showing that Hy, , () is an example of a Haglund-Zhang polynomial

(see Section [1.4.2.4)).

Based on computational evidence, we first conjectured and then proved that, for convenient
choices of the vector s, one can obtain the Hilbert—Poincaré series of the augmented Chow ring
of arbitrary uniform matroids.

Theorem 3.1.2.14 ([FMSV22, Theorem 5.1]). Fors=(n—k+2,n—k+3,...,n), we have

Ey_,(z) = Hy,, (2).
In particular, Hy, , (z) is always a real-rooted polynomial.

Observe that the preceding statement is an extension of the real-rootedness of the binomial
Eulerian polynomials. When the uniform matroid is the Boolean matroid B, by taking s =
(2,3,...,n) one has EZ_,(z) = A,(x) = Hg, (). This particular case was precisely the content
of another result of Haglund and Zhang [HZ19l Theorem 3.1].

Let us fix integers k and n such that 2 < k < n. We can consider the vector of consecutive
integers s := (n—k+2,...,n) € Z*—1 and define the set T = I,;i_l. In other words, we have

—{61,.. ekl Zk7120§€i<81‘f01‘1§i§k‘—1},

where additionally we use the conventions ey = e = 0 and so = s = 1.
We are interested in proving that the polynomial

Ek,n(x) — Z (1+x)col(o)l_asc(o) (35)

0€Lk n

is precisely Hy, ,(z). Observe that even though the vector s = (n — &k +2,...,n) is not well-
defined whenever k = 0 or k = 1, we can make sense of the definition of the polynomial E, ,,(z)
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for those values of k, just by setting E; () := 41 and Ey ,(z) := 1. In particular, note that
E4 ,(x) is consistent with equation by interpreting that there is only one “empty” vector
in 7, ,, leading to a single collision and no descents after adding the left zero coordinate eqg = 0
and the right zero coordinate e; = 0.

The first step towards proving Theorem [3.1.2.14] consists of showing the following lemma.

Lemma 3.1.2.15. The polynomials Ey, ,(x) satisfy the following recursion

k—1
Egn(z) = Ex—1n-1(z) + Z (n J_ 1> Aj(@) Ep_1—jn—1-;(x).

§=0
This, along with the initial conditions Ey n,(x) =1 for all n > 0, determines them uniquely.

Proof. Observe that since the elements of s are consecutive integers, a position ¢ € [0,k — 1]
is a collision if and only if e; = e;41 = 0. Similarly, ¢ € [0,k — 1] is an ascent if and only if
e; < ej+1. Notice that each element e € Zj,, can be thought of as an element of Z,, ,, by adding
zeros to the left. For instance, (2,2,3) € Z47 can be embedded into Z7 7 as (0,0,0,2,2,3). In
particular, following the bijection ©: &,, — I, of the proof of [HZI9, Theorem 3.1], which
is defined by 7 +— (tp—1,...,t1) where t;, = #{j > i : m; < m;}, we have that the preimage of
Zk.n — I under © are precisely the permutations o € &,, such that o,, > 01 > -+ > oy
Let us denote this set of permutations &, 1, for each k£ and n. In particular, again reasoning
as in the proof of [HZ19, Theorem 3.1], we obtain

Ek’n<$) = Z (1 +$)C01(§)xa30(2) — Z (1 _’_x)bad(o)xdes(o)’
e€Tk n SIS

where bad(c) = {i € [n] : 0,_1 < 0; and 0; < o, for all j > i}, with the convention that oy = 0
and des(o) ={ie[n—1]:0;, > 0i41}.

Notice that if 0 = 0y --- 0, € 8, has the property that oy = 1, then 7 := 05---0,, can
be thought of as an element of &,,_1 ;_1, and des(o) = des(7), but bad(c) = bad(7) + 1. On
the other hand, if o; = 1 for j > 1, then the condition that the last n — k elements of the
permutation are in increasing order forces 2 < j < k. There are (7;:11) ways of choosing the
elements o ---o;_1 and, for every possible choice, this part will not contain any bad elements;
at position j — 1 we have a descent because o;_; > o; = 1, and the possible permutations
Ojt1- -0y are in bijection with the elements of &,,_; ;—;. Everything considered, we have

" n—1
Bun(o) = (U4 2)Bicrna () +2 3 (72 1) Aa(0) Bicsss o),

and, after reindexing the sum to be from j = 1 to k — 1 and then rearranging, we obtain the
desired recursion. O

A proof of the next result can be found, for example, in [Pet15, Theorem 1.5].

Lemma 3.1.2.16. The Eulerian polynomials satisfy the following recurrence:
n—1 n
M) = A 40 3 (1) ) A0,
Jj=0

Now we have all the ingredients to prove Theorem |3.1.2.14]
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Proof. Clearly, the polynomials on the right match the base cases Eg,(x) = 1 for all n > 0.
Hence, it suffices to show that they satisfy the recurrence of Lemma[3.1.2.15] Let us focus only
on the sum appearing in that recursion; later we will multiply by x and add the expression
corresponding to Ey_1,n—1(z). We have:

kl(n_l) <1+xk§:j(n_l_J>Al(x)(1+~-+x’“2ji))
X (" ) R S5 ol K | Gk PYE PV TR

j=0 =0

m

noticing that (";1) ("_1_j) = (?ﬂ ) (H'J) and making the change of variables r =i + 7,

=l k—1k—2

5 ot () () s
i=o N 7 =0 r=;

interchanging the order of summation,

r=0 j=

I
gl

=0

using Lemma [3.1.2.16]

r
r=0

E
—

I
<)

J

splitting the second sum and using that (1 +--- + 2% 27")(z — 1) = 217" -1

- j_z_é (n i 1) Ajl@) ¥ kz::: (n . 1) Arsr(@)(1+- - +ab 27 + kz::: <” - 1) ("1 — 1) A, (a),

cancelling terms in common between the first and the third sums above,

= <Z_ DAk-l(x) +Z (” - 1)Ar+l<x><1 gk +Z (" 1>zk1r,4r<x>,

grouping the first term and the last sum,

k

:’:z:z(";l)ArmxH-. -2r) 4 _0( ) LT 4, (),

s

reindexing the first sum to start at r =1,

- 1(:?) (@)1 + -4 ah 17 +kzl( ) T A ().

r=1 r=0
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Now, to conclude the proof we multiply this expression by z and add the term corresponding
to Ex_1,n—1(x) to obtain

1+l‘§<n;1>Aj(g;)(1+...+xk—2—j)
e g(?:i)Aj(w)(l+~ ) +j§§< >xk1jAj(x) :

in the second summation above (the first of the second line), we can isolate the term corre-
sponding to zF~177

=1+x§<n;1> Aj(x) (14 -+ 2F279)

O o et T Pt

we separate the j = 0 term from the first and the fourth sum,

=l+a((l4+2"2)+a"1)

we use Pascal’s identity ("J 1) + (?:11) = (7;) with the first and the second sum and with the
third and the fourth sum,

=14z (1+---+xk—1)+§(?)Aj(x)(1+-~ 2h279) +Z<) el

finally, we can group the two sums, and add the case j = 0, to obtain the desired expression,

:1+x§(?)Aj(a;)(1+~-~+x’“—1‘f). 0

Remark 3.1.2.17. Given that the polynomials Hy, , () are related to the generalized binomial
Eulerian polynomials studied in [HZ19], it is natural to ask whether the same holds for arbitrary
matroids. The answer is no: if M = Uz 4@ U 1 we can compute Hy (x) = 1423z +5522+2323+
2%, and an exhaustive computer search shows that there is no s € ZZM ™! with E‘ko_l(x) =
Hw ().
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Remark 3.1.2.18. We do not know of any analogues of Theorem for the usual Chow
ring. Recall that H, (z) = %dn(az), and hence it is reasonable to search among known
generalizations of the derangement polynomials. Although the work of Gustafsson and Solus
[GS20] provides one such generalization via Ehrhart local h*-vectors, we were not able to
produce HUnfz,n(I) as a particular case of their polynomials. In general, the polynomials
Hy, , () do not arise as instances of the polynomials studied in [HZ19]: if M = Us, then
Hy(z) =1+ 51z + 16122 + 5123 + 2, and an exhaustive computer search shows that there is
no s € ZXM=2 with B3 \,_,(z) = Hy ().

3.1.3 ~y-positivity

We now seek to close the gap on the real-rootedness conjectures by giving results for every
matroid, not just the uniform ones as we did in Theorem[3.1.2.14] A nice stepping stone towards
showing real-rootedness is given by the notion of y-positivity (see Proposition|1.4.1.12)). These
results come from [FMSV22] Section 3.6 and 4.3].

3.1.3.1 Chow polynomials and augmented Chow polynomials

Theorem 3.1.3.1. Let M be a loopless matroid. The polynomials Hy(x) and Hy(x) are -
positive.

Proof. We proceed by induction on the size of the ground set of M. If the matroid M has a
ground set of cardinality 1, then M = By. In this case, Hy(2z) = 1 and Hy(z) = z + 1. The
associated y-polynomials are vg,, (x) =1, and g, () = 1, and hence they are y-positive.

Assuming that we have proved the validity of the statement for all matroids with cardinality
at most n— 1, let us consider a matroid M having cardinality n. If M is a Boolean matroid, then
Theorems [3.1.2.3| and [3.1.2.4] tells us that Hy(z) = Ay (z), the Eulerian polynomial, whereas
Hm(z) = A, (), the binomial Eulerian polynomial. As we mentioned in Section both of
these families of polynomials are known to be real-rooted and hence -positive.

If M is not Boolean, then there is at least one element e € E that is not a coloop. Using
Theorem in combination with Lemma we obtain the following two recursions:

(),

Vit (2) = Vi (@) F 2 Y Yy o, ()
FeS, (M)

M|F

i () = Vi, (2) + 2 Z Vi rogey () Vit (2).
FeS.(M)

Observe that the induction hypothesis guarantees that each of the summands on the right-hand
side has non-negative coefficients. The proof is now complete. O

Remark 3.1.3.2. The preceding proof relies on the y-positivity of the Eulerian and the bino-
mial Eulerian polynomials. Although these two results are now well-known, since their proofs
are not straightforward (see [PRW08| Section 11]), a reasonable question that the reader might
ask is whether it is possible to circumvent the base cases of Boolean matroids in the induction,
or at least give a self-contained proof including this case. The answer is yes; in fact, the second
case of the semi-small decompositions of Theorem [2:4.2.7] lets us deal with deleting coloops.
By computing the graded dimensions, one obtains formulas for Hyg, () and Hugg, () when
deleting the coloop corresponding to the ground set of the direct summand By. Therefore, by
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Lemma [1.4.1.14] at the level of y-polynomials one has

Mes, () =0, (0) + 2 Y om0 (1), (2),
FeL(M)
P£F£E
TYHues, (l‘) = THwm (x) +z Z THy, p (.’13) ’YHM‘F (CL‘)
FeL(m)
F#E
In particular, since all the restrictions and contractions in a Boolean matroid are again Boolean,
reasoning inductively one proves that the vy-polynomial of Hy,(z) and Hy(z) have non-negative
coefficients for all Boolean matroids. This gives an independent proof of the y-positivity of the
families of Eulerian and binomial Eulerian polynomials.

The ~-positivity phenomenon for Hilbert—Poincaré series of Chow rings of matroids was
also observed independently by Botong Wang in private communication with the authors of
[FMSV22].

Continuing with our digression about this «-positivity phenomenon really being a conse-
quence of the decompositions of Theorem [2:3:2.5] we comment about what may happen if one
pretends to extend this property to other posets.

Observe that if we consider the Chow functions Hp(z) and Hp(z) for arbitrary posets, the
real-rootedness and the ~-positivity fail. For instance, the poset depicted in Figure has

Hp(z) = 2* + 72 + 112? + T2 + 1,
Hp(z) = 2 + 8z* + 182 4 1827 + 8z + 1.

We observe that Hp(z) and Hp(z) are not real-rooted since they are not even ~-positive. In
this case we have yu, (2) = yu, (2) = —2® + 3z + 1.

Figure 3.1: A poset P.

We conclude our digression by making one final remark about the practicality of using The-
orem to compute Hilbert—Poincaré series. Although the semi-small decomposition does
yield a recurrence relation that can be used to compute Hilbert—Poincaré series for arbitrary
matroids, making this computation efficient in practice requires memorization in one form or
another, together with a fast way of deciding whether two matroids are isomorphic.

3.1.3.2 Z-polynomials

Now our main goal is to prove that the Z-polynomial of a matroid is always ~-positive. To
prove this result we are going to use the counterpart of the deletion formula for Chow rings
and augmented Chow rings (coming from a semi-small decomposition), due to Braden and
Vysogorets that we stated in Theorem [2.4.3.6]
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Theorem 3.1.3.3. For every matroid M, the polynomial Zy(x) is y-positive.

Proof. Tt suffices to prove the statement only for loopless matroids. We proceed by induction
on the cardinality of the ground set of M. If the matroid M is empty, the rank of M is zero and
thus the Z-polynomial is Zy(z) = 1, and the associated ~y-polynomial is 7z, (z) = 1.

Assuming that we have proved the validity of the statement for all matroids with ground
sets of cardinality at most n — 1, let us consider a matroid M having ground set of cardinality
n. If M is a Boolean matroid, then Zy(z) = (z + 1)™. In this case, one obtains vz, (z) = 1,
which has non-negative coefficients.

If M is not Boolean, then there is at least one element e € E that is not a coloop. Using
the result by Braden and Vysogorets, we obtain the following recurrence for the «-polynomial:

Yo (@) = Vg (@) + D T(M/(FULe}) 27 v, (@),
FeSe

Observe that the induction hypothesis guarantees that each of the summands on the right-hand
side has non-negative coefficients. The proof is complete. O

Remark 3.1.3.4. We stress the fact that we are using that the 7-invariant is always a non-
negative integer. This fact is highly non-trivial and follows from the non-negativity of the
coefficients of the Kazhdan—Lusztig polynomials of matroids as proved by Theorem We
know of no proof of the non-negativity of 7(M) that does not rely on that.

Remark 3.1.3.5. Although the Kazhdan—Lusztig polynomial is not palindromic in general, a
reasonable question that the reader might ask is whether it is non-symmetric v-positive in the
sense of [Athl8| Section 5.1]. In particular, one could ask whether Py(z) is always right or
left ~-positive. Unfortunately it is not the case. As Athanasiadis points out, being right or left
~y-positive implies unimodality, and the peak of the coefficients is attained in the middle terms.
However, observe that

Py, 16 (7) = 143027 + 320322° + | 91728 |o° + 764402* + 231002° + 26402% + 104z + 1

and the peak is not in the middle terms (which correspond to degrees 3 and 4). In fact,
experimentation suggests that the peak of Py, ,(v) is always attained approximately at the
coefficient of degree [£].

We are also able to show that the Z-polynomial of every uniform matroid is y-positive by
producing an explicit formula for its coefficients. We record here the result

Theorem 3.1.3.6. For every uniform matroid Uy, the polynomial Zy,, ,(x) is y-positive.
Moreover, the constant term is always 1, and for i > 0 the i-th coefficient of Yzu, , (x) is

o, @ =) S(kz 2. (36)

Jj=i

3.1.4 Valuativity

One last property that will be fundamental in Chapters [f] and [f] is being valuative, as described
in Section [I.3.:2] We give in details the proof for the Chow polynomials and record the results
for the Kazhdan-Lusztig-Stanley polynomials that were already known in the literature.

Theorem 3.1.4.1. The map H : Mat — Z[x] given by M — Hy,(z) is a valuative invariant.
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This result was first proved by Ferroni and Schréter in [FS22] Theorem 10.15] by using a
general type of valuation involving arbitrary chains of subsets in a matroid along with Propo-
sition Although the idea of that proof is simple, the details can be quite technical. In
[FMSV22] we used Theorem to give a much more compact proof.

Alternative proof of Theorem[3.1.4.1. The map H : Mat[)] — Z|x] is clearly a valuation, be-
cause the only matroid on the empty set is the empty matroid and hence H is constant. Now,
assume that H behaves valuatively for matroids with ground sets of size at most n—1. Consider
the map V : Mat — Z[x] defined by

Hy(x if M has a ground set of size at most n — 1,
VM(Z‘) _ {M( ) g

0 otherwise.

Since all the matroids involved in a matroid decomposition share a common ground set, the
map V is a valuative invariant. Let M be a matroid with a ground set E of size n. If M has
a loop e, it means that P(M) lies on the hyperplane 2. = 0 in R¥ and hence so do all the
matroid polytopes involved in a decomposition of M. In particular, all of them have loops, and
H is identically zero in all of them and hence a valuation. If M is loopless we can write:

Hy(z) = Z Xm, - Hu/p(2) = Z Xm,, Huya (@) = Z XM, Ymy/a(z).
FEL(M) §AACE ACE
F0

The second equality is explained because Hy 4 (z) vanishes when M/A has loops, and this
happens if and only if A is not a flat of M. Theorem [1.3.3.9| shows that H behaves valuatively,
because both the maps M — Y and M — Vi (z) are valuations. Hence H is a valuation on
Mat, and the induction follows. O

Theorem 3.1.4.2. The map H : Mat — Z[x] given by M — Hy(z) is a valuative invariant.

Proof. As we said in the proof of Theorem [3.1.4.1] if a matroid has loops, all the matroids
appearing in a decomposition have the same loops. In particular, for matroids with loops H is
a valuation if and only if it is a valuation when removing the common loops. For a loopless
matroid M on E we have

Hy(z) = Z JUrkFﬂM/F(l") = Z g Ma HM/A(x)v
FeL(M) ACE

and since both M + ™M and M + H,,(z) are valuations, we can conclude the valuativeness
of M — Hy(x) as well. O

Analogous reasoning shows that the Kazhdan—Lusztig—Stanley polynomials are valuative.

Theorem 3.1.4.3 ([AS23| Theorems 8.8 and 8.9], [FS22, Theorem 11.6]). The maps

Mat — Z[x]
P: M~ Py(z)
Q@M= Qu(z)
Z: M Zy(x)

are valuative invariants.
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3.1.5 Monotonicity and weak maps
Theorem 3.1.5.1 ([FMSV22]). Let M be a loopless matroid of rank k on a ground set of size
n. The following inequalities hold:

Hu(z) = Hy, ,(2),

HM(a?) j Huk'n (Z‘)

In other words, uniform matroids mazximize coefficient-wisely the Chow polynomials and aug-
mented Chow polynomials among all matroids with fized rank and size.

The main ingredients that make the proof possible are the formulas obtained in Propositions
[2.4.2.2] and [2.4.2.3] Before stating the main result of this subsection, we start with a useful
combinatorial lemma.

Lemma 3.1.5.2. Let M be a loopless matroid on a ground set E having size n and rank k. To
each chain Fy C --- C F,, of flats of M we can associate injectively a chain Gy € -+ C Gy, of
flats of Uy, in such a way that vkm Fj = rky, , G for each j =0,...,m.

Proof. Let us assume that the ground set of M is the set of integers E = {1,...,n}; the
natural total order of the ground set induces a total order for the subsets of E = [n] with
fixed cardinality given by comparing lexicographically any pair of sets. Fix a chain of flats
Fo C--- C Fy, of M. Let us call tky F; = r; for each j = 0,...,m. Among all the independent
subsets of Fy that have rank ry, consider the lexicographically minimum set Iy. Since Iy is
independent in M, it has cardinality at most k, and hence it is independent in Uy ,, as well. We
define the flat Gy as the closure of Iy in Uy ,,. Notice that

I‘kukﬁn Go = I‘kukm I() = #IO = I'kM IO = I‘kM Fo.

In fact, observe that Gg = E or Gy = Iy according to whether Fy = F or Fy C E. Assume
we have already constructed Gy C --- C G5 for s > 0. To construct the flat G541 we proceed
as follows. First, among all the independent sets of M contained in Fy4; that have rank 7544
and contain I, consider the lexicographically minimum set 41, and now define G441 as the
closure of Iy in Uy . Since Isy; was independent in M it is independent in Uy, as well, and
hence tky Gs11 = rkm Is11 = #1541 = rsp1. Since Igy1 2 I, the monotonicity of the closure
operator in M guarantees that Gs11 2 Gs. Observe that the whole construction is injective,

because each flat F; of the original chain in M can be recovered by taking the closure of G; in
M. O

Proof of Theorem[3.1.5.1. Consider Hy,(z) and Hy(z). Observe that the formulas of Proposi-
tion 2:4:2.2] and Proposition 2.4.2.3] express them as sums over a set of certain chains of flats of
M of polynomials with non-negative coefficients. Using the map of Lemma we can asso-
ciate injectively a chain of flats in Uy ,, in which the flats have the same ranks correspondingly.
In other words, each summand appearing in the expressions of Hy,(z) (resp. Hu(x)) appears
in Hy, () too (resp. in Hy, , (x)). This proves the desired inequalities. O

With a more general version of Lemma it is possible to extend the preceding state-
ment to a broader setting. Consider a rank-preserving weak map N — M between two matroids
M and N. It is reasonable to ask whether it is possible to map injectively chains of flats of M
to chains of flats of N preserving the ranks. In fact a straightforward modification of the proof
of Lemma, yields a map that already appears to work. We note, however, that care is
needed, especially because of the injectivity requirement. On the other hand, the case of chains
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consisting of only one flat is already a non-obvious and challenging statement whose proof can
be found in [Luc75l, Proposition 5.12]. This can be used to prove the monotonicity under weak
maps of the Whitney numbers of the second kind. Observe that it is not true in general that
there is an order preserving map from the family of flats of N to the family of flats of M (see
the example and the digression in [Luc75l p. 259]).



Chapter 4

Paving matroids

4.1 Relaxation

All the operations from Section either changed the cardinality of the ground set, the rank
of the matroid, or both. However, if one has a matroid M = (E,B), it is reasonable to ask
under which conditions it is possible to add a new member A C F to the family B so that
(E,BU{A}) is again a matroid.

Theorem 4.1.0.1. Let M be a matroid and H C E a circuit-hyperplane, i.e. H € CNH.
Then,

B=BU{H}
is the family of bases of a matroid M.
Proof. See for example [OxI11l Proposition 1.5.14]. O

The operation of building M from M is known as circuit-hyperplane relaxation. This oper-
ation is among the most basic tools in matroid theory and, according to a result by Truemper
[Tru82], this is essentially the only way of constructing new matroids from old ones by adjoining
exactly one extra basis. The rest of this Section is dedicated to studying a generalization of
this operation as presented in [FNV22]. If now we wanted to add a family of subsets A1, ..., A
to the family B, we can ask what conditions we can impose on them in order to guarantee that
BU{Aj,...,As} is again the family of bases of a matroid. In order to extend and generalize
this operation, we introduce some terminology.

Definition 4.1.0.2. Let M be a matroid. A hyperplane H of M is said to be stressed if all
the subsets of H of cardinality rk M are circuits. Equivalently, H is stressed if and only if the
restriction Mg is uniform.

Later, in Proposition we will see a prototypical family of matroids having a stressed
hyperplane.

Remark 4.1.0.3. A flat that can be obtained as a union of circuits is said to be cyclic. A
stressed hyperplane of cardinality at least rk M is therefore a cyclic hyperplane. The converse
is, however, not true.

Example 4.1.0.4. Consider a matroid M with a circuit-hyperplane H; since H is a circuit,
#H =rk H + 1, and since it is a hyperplane, rk H = rk M — 1. Hence #H = rk M and the only
subset of H of cardinality rk M is H itself, which was initially assumed to be a circuit.

90
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In other words, the notion of stressed hyperplanes covers the case of circuit-hyperplanes. Of
course, this notion is more general. Its statement introduces some new notation and terminology
that will be useful to elaborate the theory that leads to the proofs of our main results.

It turns out that, in general, the presence of a stressed hyperplane H such that #H > rkM
provides a way of transitioning from the matroid M into another matroid with more bases.

Theorem 4.1.0.5. Let M = (E, B) be a matroid. If H is a stressed hyperplane of M, then the
set

B=BU{SCH:#S=rkM},
is the family of bases of a matroid M = (E, E)

Proof. Since H is a hyperplane, we have that tk H = rkM — 1. If #H = rkM — 1 then there is
nothing to prove because B = B. Let us assume that #H > rk M. Observe that as H is stressed,
if S is a subset of H of cardinality rk M, it must be a circuit, so we have rk.S = rkM — 1.

To prove that B is the set of bases of a matroid we have to check that it verifies the exchange
property. Let us consider two members B; and Bs of B and an element x € By \ Bs. We have
four cases:

e If By, By € B. Here there is nothing to do, because the exchange property between B
and By in the matroid M extends to B.

e If By € Band By C H with #By =1kM. Let uscall X = (By \{z})UBs and Y = H.
Observe that X UY = (B; \ {z}) UH and X NY = ((B; \ {z}) N H) U Bs. By the
semimodularity of the rank function of M, we have the inequality

tk X +rkY >rk(XUY) +rk(X NY).

» If By \ {z} C H, then choosing any y € B \ By, we have that (B; \ {z}) U {y} is a
subset of cardinality rk M of H, and thus belongs to B, and the proof ends.

» If By \ {2z} € H, then tk(X UY) =1k((B1 \ {z}) UH) =k, as we are adding a new
element to the flat H which initially had rank rk M — 1. Hence, the inequality above
translates into

rk((By \ {z})UB3) 4+ (tkM —1) > tkM +1k(X NY),
and since X NY D B, in particular its rank is at least rkM — 1. So
rk((B1 \ {z}) U B2) > rk M.

Note that this inequality is in fact an equality. Hence, there is a basis B3 of M
contained in (B \ {x}) U Ba. Note that B3 # Bj since & ¢ By by assumption, and
so there is an element y € Bs \ By such that (B; \ {z}) U{y} € B by the exchange
property. Note that B3\ By C Bs \ By, and so y is in fact an element of By \ By as
desired.

o If By C H, #B; = rkM and By € B. As B; \ {z} is an independent set of cardinality
rkM — 1 in M, by the third independence axiom I3, there exists a y € By \ (B1 \ {z}) so
that By = (By \ {z}) U {y} is a basis for M.

e If By, By C H with #B; = #Bs = rk M. In this case, by choosing any y € By \ B; we
can form a set (B; \ {#}) U {y} C H which has cardinality rk M and thus belongs to B.
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O

This operation of changing circuits contained in hyperplanes into bases will be referred to
as stressed hyperplane relaxation. If H is a stressed hyperplane in M and M is the matroid
constructed as above, we will say that we have relazed H and that M is a relazation of M.

We make the brief comment that relaxing a stressed hyperplane which is also independent,
by definition does not change the matroid M. We can ignore such hyperplanes and focus only
on those that have cardinality at least rk M, in order to guarantee that our matroid indeed
changes when we do a relaxation.

Now we give a characterization of the matroids that arise by performing a stressed hyper-
plane relaxation. In other words, it is possible to describe an intrinsic property of a matroid
that reveals that it actually comes from the relaxation of a stressed hyperplane in another
matroid.

Proposition 4.1.0.6. Let M = (E, B) be a matroid. Assume that A is a subset of E with the
following three properties.

e A£FE.
o The set B ={B’' C A| #B’' =1kM} is a proper subset of B.
e For every x € E\ A and every B’ € B', the set B' U {x} is a circuit of M.

Then B\ B’ is the set of bases of a matroid N. Moreover, A is a stressed hyperplane in N and
M = N.

Proof. 1If we consider any basis B’ € B’ and x € A then, by the third assumption, we have that
B’ U{x} is a circuit. Thus, removing any other element yields an independent set of rank equal
to rkM in M. In other words,

(B'\{V}Hhu{z}eB\B (4.1)

for every V' € B’ and x ¢ A.

To show that B\B' is the family of bases of a matroid, as B\B’ # @ by the second assumption,
we only need to prove that the bases exchange property holds. To this end, consider two distinct
bases By, By € B\ B’ and an element a € B; \ B2. Since By and By are bases in M, by applying
the bases exchange property in this matroid, we have that there exists b’ € By \ B; such that

(Bi\ {a}) U{V'} € B.

If (B1\{a})U{b'} & B, then there is nothing to prove. Henceforth, we will assume that
(B1\ {a}) U{t'} € B'. Observe that this implies that there is some B’ € B’ such that

By \{a} = B"\ {v'}. (4.2)

Now, since By ¢ B, in particular Bs\ A # ), because of the first and the second assumption.
Let us pick any = € By \ A. By (4.1)), it follows that

(B'\{p'})ufz} € B\B.

Combining this with equation (4.2)) shows that there exists an x € By \ Bj such that (B \
{a})U{z} € B\ B, and hence the bases exchange property holds within the family B\ B'.
To finish, it remains to show that A is a stressed hyperplane in the matroid N = (E, B\ B').
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e Let us prove that A is a hyperplane of N. Choose any basis B’ € B’. Let us pick any
v ¢ Aand b € B. By (L), if we call B = (B’ \ {V'}) U {z}, we have B € B\ B'. In
particular, notice that B’ \ {b'} C B € B\ B’, and hence it is an independent set in N.
In other words, rkn(B’ \ {¢'}) = rkM — 1. Since B’ \ {¥/} C B’ C A, we obtain that
rky A > rkM — 1. The second assumption in the statement of Proposition [£.1.0.6] implies
that A contains no basis of N, so rky(A4) = rkM — 1. Also, since AU {z} 2 B € B\ B,
we have that rky(A U {z}) = rk M. Since x ¢ A was arbitrary, we get that A is indeed a
hyperplane in N.

e Observe that every B’ € B’ is a circuit in N. This is implicit in the preceding paragraph,
as for every b € B’, we know by (4.1) that B’ \ {b'} is contained in a basis of N or,
equivalently, is independent.

O
Definition 4.1.0.7. A subset A as in the preceding result, will be called a free subset of M.

Assume that M is a matroid having a free subset A of cardinality rk M. It follows from the
second condition that in fact A has to be a basis. We call such subset a free basis. In other
words, any circuit-hyperplane becomes a free basis after being relaxed. This is used later in
Section to study questions regarding non-degeneracy.

Remark 4.1.0.8. We mention that, after the introduction of this operation, stressed hyper-
plane relaxation was further generalized in [FS22] to the operation of stressed subset relazation
on the class of split matroids. However, it is hard to prove numerical results for all matroids in
that class, as bounds become too broad and formulas too general. That is why, for the purpose
of this work, we decided to state everything only in terms of this operation.

4.1.1 Structural properties

If M is a relaxation of M, many of the properties of M are still present in M. For example, their
rank functions differ only on a “small” list of subsets.

Proposition 4.1.1.1. Let M be a matroid and let H be a stressed hyperplane. If M denotes
the relaxed matroid, then the rank function rk of M is given by

FA tkA+1 if ACH and #A > k
T =
rk A otherwise,

where tk is the rank function of M.

Proof. Observe that rk A < rkA for each A, as M contains all the bases of M. Assume that A
is a set with rk A < rkA. By using the definition of the rank functions of both matroids, we
have
1161112?)'\;) #ANI) < gnga;li #(ANS).
#S=rkM

In particular, we can choose S C H with #S = rkM (and hence S is a circuit of M) such that
#(ANS) > #(ANI) for all independent sets I of M. Let us prove that S C A. If we choose
any x € S, we have that S\ {z} is independent. Because of how we chose S, it follows that

#AN(S\ {z})) <#(ANS).
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which implies that = € A, and we have S C A as we claimed. Hence this shows that #A > rk M
when rk A < rkA. B

Now we prove that we also have A C H when rk A < 1kA. To this end, observe that since
tkS =1kM —1and S C A, we must have rk A > kM — 1. Also, since tk A < rkA < rk M, we
obtain that rk A =rkM — 1 and rkA = rk M. Assume that A ¢ H, and take z € A\ H. Since
x ¢ H,rk(SU{z}) =rkM, as the flat spanned by S U {z} is E, because the flat spanned by S
is the hyperplane H. Since S C A and z € A, we obtain that S U {z} C A and

rkM =r1k(SU{z}) <rkA=rkM -1,

which is a contradiction. It follows that A C H. In summary, we have proved that the strict
inequality rk A < rkA holds only for the subsets A C H of cardinality at least rk M, as was
claimed. O

It is natural to ask what the stressed hyperplanes of an already relaxed matroid are. The
next results provide a proof that, in fact, after relaxing one stressed hyperplane, the remaining
stressed hyperplanes of the original matroid continue to be stressed in the new matroid.

Proposition 4.1.1.2. Let M be a matroid with two distinct stressed hyperplanes Hi and Hs.
Then #(Hl N HQ) < rkM — 2.

Proof. Since H; and Hs are distinct hyperplanes, their intersection F = H; N Hy is a flat
strictly contained in both of them. In particular, rk F' < rk H; = rk M —1. Since H; is stressed,
its subsets of cardinality greater than or equal to rk M have rank rkM — 1. Hence, the only
possibility is that #(H; N Hy) = #F <rtkM — 2. O

Proposition 4.1.1.3. Let M be a matroid with two distinct stressed hyperplanes Hy and Hy.
If M is the matroid obtained from M after relaxing Hy, then Ho is a stressed hyperplane in M.

Proof. For i € {1,2} consider C; = (rf,(,l), the subsets of cardinality rk M of H;. That is, C; is
the set of circuits contained in hyperplane H;. Observe that

e H, is a hyperplane in M. Since Hy does not satisfy the conditions of Proposition
for its rank to increase in M, we know that rkH, = rkM — 1. Suppose H; is not a flat
in M, and so rk(Hy U {z}) = tkM — 1 for some = ¢ Hs. Then this would imply that
rk(Hs U {z}) = rkM — 1 again by Proposition since Hy U {z} is not contained in
Hy, which contradicts the fact that Hs is a hyperplane in M.

e The elements of Cy are circuits in M. By Proposition 4.1.1.2, C; N Cy = (). In particular,
we can use Proposition |4.1.1.1] to obtain that the members of Cy are still circuits in M,
since their ranks do not change, and neither do the rank of their subsets.

In particular, the definition implies that Hs is in fact stressed in |\7|, as desired. O

Let us now give a description of how the family of flats of a matroid changes when one
applies this operation.

Proposition 4.1.1.4. Let M be a matroid and let H be a stressed hyperplane. If M s the
relared matroid, then

LM) = (LM \{H})U{AC H | #A=1kM—1}. (4.3)
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Proof. Let F be a flat of M that is not a flat of M. We claim that rkF = rk F. Indeed, if it
was not the case then, by Proposition we would have that F C H and #F > rkM.
Both conditions imply that rkF' = 1k M since every subset of cardinality rk M of H is a basis
in M, and since F' is a flat, F' has to be the ground set, which cannot happen as F' was not a
flat of M. Now, since F' is not a flat of M, we know that there exists some x ¢ F' such that
rk(F U {x}) =1k F. Since F is a flat in M, it follows that

rk(F U {z}) > 1kF = 1k F = 1k(F U {z}).

Using Proposition again, we have that F U {z} C H and #(F U {z}) > rkM. Notice
that we must have #(F U{z}) = rk M, because otherwise it would be the case that #F > rk M
and also F' C H, which yields to a contradiction as in the first paragraph. Hence, F' has to be
a subset of cardinality rk M — 1 of H. So we have proved the inclusion C in equation .

Let us prove the other inclusion. Choose a flat F € £(M) \ {H}. Consider any element
x ¢ F. We have that tk F' < rk(F U {z}). Also,

rkF < rk(F U {z}) < tk(F U {z}).

Assume that rkF = rk(F U{z}). The double inequality above shows that rkF = rk(F U {z}) >
tk F. By Proposition [f.I.1]] it follows that F C H and #F > rkM. This is impossible,
because the only flat of M contained in H and having cardinality at least rk M is H itself, and
we assumed F € L(M)\ {H}. It follows that tkF < rk(F U {z}) which, since x ¢ F was
arbitrary, implies that F' is a flat of M.

Now, choose F' C H such that #F = rkM — 1. Since all the subsets of cardinality rkM of
H are independent in M, in particular, rkF = rkM — 1. If we choose any element z &€ F, we
have two cases.

o If x € H, then F U {z} is a subset of H of cardinality rk M, and is thus independent in
M. This says that tk(F U {z}) > rkF.

o If z ¢ H, then rk(H U {z}) > rk(H U {z}) = rk M, because H is a hyperplane in M. In
particular rk(H U {z}) = rk M, and since rk(F) = tkM — 1 and F C H. Since the flat
spanned by F in M is H and 2 ¢ H, we have that rk M = rk(F U {z}) < rk(F U {z}), so
the inequality rk(F U {z}) > rkF holds, as kM > rkM — 1.

It follows that in either case rk(F U {x}) > rkF, which proves that F is a flat of M and the
proof is complete. O

We end this section with a prototypical class of matroids with a stressed hyperplane.

Proposition 4.1.1.5. The matroid Iy, p, p, = Up—1,,DU1 n_p 5 a matroid of rank k, cardinality

n having a stressed hyperplane of cardinality h. Also, the relazed matroid Ay p, n, = g ppn has
the following property
si(Agnn) = Uk pt-

Proof. Notice that the considerations on the rank and the cardinality of IIj, 5, are consequences
of the definition of the direct sum of matroids. Now, let us label the ground set of Il ., as
E ={1,...,n} such that B4 = {1,...,h} is the ground set of Uy_1 5 and By = {h+1,...,n}
is the ground set of Uy _p,.

We claim that E is a stressed hyperplane. This follows readily from the fact that it is a flat
of rank k£ — 1 and any subset S C FE; of cardinality k is a circuit when considered as a subset
of Uk—l,h-
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Now, to prove that the simplification of the matroid Ay j . is isomorphic to the uniform
matroid Uy p4+1 we have to look at the flats first.

The flats of Il p, », are exactly the disjoint unions of a flat of Uy_; , and a flat of Uy ,,—p.
In other words, F'is a flat of Il j, ,, if and only if

A(FNE)€{0,1,....k—2h} and #(FNEs) e {0,n—h}.
Thus, by Proposition the flats F € L(Ak n.n) have to satisfy either
#(FNE)e{0,1,....k—2,k—1} and #(FNE,) =0,
or #(FNEy) €{0,1,....k—2,h} and #(FNEy) =n—k.

Notice that the set Es is an atom of this lattice of flats. The remaining h atoms are the
elements of F;. Moreover, if we label the elements of F; as 1, ... ,E and label the atom E> as
h + 1, we can construct an order-preserving bijection from the lattice of flats of Ay 5., to the
family of subsets of {1,...,h + 1} having cardinalities in {0,...,k — 1,h + 1}. The latter is
just isomorphic to the lattice of flats of Uy 41, which implies that the simplification of Ay 4.
is isomorphic to Uy p41, as desired. O]

Remark 4.1.1.6. In [HMM™22], an alternative presentation for the matroid Ay, is achieved
by a description as a lattice path matroid. They also provide several formulas and results
regarding the Ehrhart polynomial for paving matroids and Ay p r,.

In light of this new operation we can redefine the classes of matroids that we introduced in

in the following way.
Proposition 4.1.1.7. A matroid M s

e paving if and only if it can be relaxed to the uniform matroid with a series of stressed-
hyperplane relaxations.

e sparse paving if and only if it can be relazed to the uniform matroid with a series of
circuit-hyperplane relaxations.

The previous proposition also highlights the containment of the classes
{sparse paving matroids} C {paving matroids} C {all matroids}

Proof. First, let us show that every hyperplane in a paving matroid is stressed. Observe that
a hyperplane of cardinality less than rk M is tautologically stressed. Consider a hyperplane H
of cardinality at least rkM in M. A subset S C H has rank rkS < rkH = rkM — 1, and if
we choose S so that #S = rkM, then rk.S > rkM — 1 because M is paving. It follows that
rk.S = rkM — 1. Again, since M is paving, any proper subset of S is independent, so that in
particular S is a circuit, and as S is arbitrary, it follows that H is stressed. B
We also observe that the relaxation of a paving matroid is still paving. In fact, if M is
obtained from M via relaxing a stressed hyperplane H, then as we added only a few bases when

we passed from M to M, we have Z(M) C Z(M). As Z(M) already contained all the subsets of
cardinality rk M — 1 of the ground set, it follows that so does |\7|, and hence it is paving as well.
Lastly, if we relax all the hyperplanes of M of cardinality at least rk M, we end up obtaining a
paving matroid of rank rk M such that all of its hyperplanes have cardinality tkM — 1, i.e. a
uniform matroid.

In sparse paving matroids we observe that no hyperplane can have size larger than the rank
of the matroid. The statement then follows after observing that stressed hyperplanes in sparse
paving matroids coincide with circuit-hyperplanes. O
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4.1.2 Polytopal interpretation

The reader might object to the introduction of the parameter n in the definition of IIj p »
in Proposition since in the end, Ay, is just the uniform matroid Uy p41 with some
extra (parallel) elements. However, from a geometric point of view, the matroids Ay j ., are the
“pieces” that one is gluing to the base polytope of a matroid M of rank k& and cardinality n
when relaxing a stressed hyperplane of cardinality h. _

Let M be a matroid with a stressed hyperplane H and M be its relaxation. Consider the
matroid

Uk ge = Uy p\g ® Ug—1.1,

and let Ay g g denote the relaxation of Il g g with respect to the stressed hyperplane H of
II; 5. The base polytope of Il g g is a face of the base polytopes of both A, ; g 7 and M.
For Ay m g, it is the facet on which the linear functional x — Ze y Te is maximized. For M it
is the face on which the linear functional = — ) ., @ is maxmnzed and it is a facet unless
M =1l g.g. Let N be the collection of matroids consisting of M, A, Iy g g, and all of
their faces. The following theorem is proved in [FS22, Theorem 5.5].

Theorem 4.1.2.1. The collection N is a decomposition of M. If M =1l g, then N is the
trivial decomposition of Ag i g. If not, then the only internal faces of N are M, Ay g g, and
. m,E-

A paving matroid is obtained by starting with a hypersimplex Ay, and then cutting out
pieces corresponding to P (A, ., ) for suitable subsets H C E.

4.1.3 Polynomial invariants

The polytopal interpretation given in and Proposition [4.1.1.7 together give us a great tool
to compute matroid invariants for paving matroids.

Theorem 4.1.3.1. Let f be a valuative invariant and let M be a paving matroid of rank k and
cardinality n. Suppose M has exactly A, stressed hyperplanes of cardinality h. Then

FM) = F(Uen) = Y A (f(Akpn) = f(Mkpn) -

h>k

Moreover, if [ is invariant up to simplification,

fM) = f(Ugn) — Z)\h (Ukag1) — f(Ug—1,n @ By)).

h>k

Lastly, if f is multiplicative under direct sum, this reduces to

f(M) = f(Ugn) — ZM (Ukhg1) — f(Uk—1,n) f(B1)) -

h>k

Since in Section we observed that the Tutte polynomial Ty (z,y), the characteristic
polynomial xm(z), the reduced characteristic polynomial Xy (z), the Kazhdan—Lusztig-Stanley
polynomials Py(z), Qu(x) and Zu(z), the Chow polynomial Hy,(z) and the augmented Chow
polynomial Hy(x) are all valuative, the previous result gives us a fast non-recursive formula to
compute all these polynomials for every paving matroid only in terms of uniform matroids, for
which we have closed formulas.
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4.1.3.1 An alternative proof for Kazhdan—Lusztig—Stanley polynomials

Without mentioning the valuativity property, an alternative proof of the relaxation formula for
the three Kazhdan-Lusztig—Stanley polynomials is possible. This is the content of [FNV22]
Section 4]. The reason to include it is that in Section [5.1| we generalize the relaxation operation
to equivariant polynomials and that proof follows this line of thoughts.

The main idea is to think of the definition of these polynomials on the lattice of flats.
Since the relaxation changes £(M) only at the top (see Proposition , there is hope that
performing a relaxation changes the invariants in a controlled way. Here is what happens for
the Tutte polynomial.

Proposition 4.1.3.2. Let M be a matroid of rank k having a stressed hyperplane H of cardi-
nality h. The Tutte polynomial of the relaxed matroid M is given by

h
Ta(e,y) = Tl y) + (@ +y—a9) 3 (’;) (v—1)*.
=k

Proof. 1f rk is the rank function on M and rk is the rank function on M, by Proposition |4.1.1.1
these two functions agree everywhere except on the sets of cardinality at least k contained in
H. Hence, we can manipulate the Tutte polynomial for M in the following way.

Tile,y) = Tulz,y) = Y (@ — 1) FEHA(@y - py#a-ka

ACH
#A>k
_ Z (:L' . 1)rkE7rkA(y . 1)#A7rkA
ACH
HA>k
— r— 1)y — 1)#AF — 2 — Dy — 1)#A-E+L
Yy Yy
ACH ACH
#A>k H#A>k
—(1—(z=Dy—-1) > (y—n#+*
ACH
HA>k

:(w+y—wy)~ik<?)(y—1)j’f. O

J

Corollary 4.1.3.3. If M is a matroid having a stressed hyperplane H such that #H > kM,
then the relaxed matroid M is connected.
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Proof. Assume that rk M = k and that #H = h. By Proposition [4.1.3.2] we have that

BM) = [z'y )T (2, y)

] CIETME e (R
=k

) Z (?) (y— 1)

J

h ol
M +jz=;(—1) (j)
h—1
s+ (1)),
where in the last step we used the identity (!~]) = Z?:k(—l)j —k (?) which can be proved by

induction on k. In particular, since 3(M) > 0 and (Z:i) > 0, it follows that (M) > 0, which

proves that M is connected. O

An equivalent rewording of the preceding result is that every matroid having a free subset
is connected.

Lastly, we show that the characteristic polynomial is also well-behaved with respect to the
operation of relaxation.

Corollary 4.1.3.4. Let M be a matroid of rank k_having a stressed hyperplane of cardinality
h. The characteristic polynomial of the relazation M is given by

(o) = xwe) + (04 =) () ).

Moreover,

() = ulo) - () ):

Proof. Using Proposition 4.1.3.2] we have

(@) = (=1)*T(1 — ,0)

= (=1)* [ Tm(1 — 2,0) + (1 — 2) i()

j=k
h—1
= o) + (F =) ().
where in the last step we used again the identity Z R(—1)7F (;‘) = (2:}) O

Now that we know that the relaxation of stressed hyperplanes has nice consequences for the
Tutte polynomial, the characteristic polynomial and the lattice of flats, it is natural to ask if
there are consequences on further invariants of matroids. In this section we will see that it is
the case for the Kazhdan—Lusztig—Stanley framework. The following is the fundamental result.
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Theorem 4.1.3.5. For every pair of integers k,h > 1 there exist polynomials p n(x), qrn(x)
and zi, p () with integer coefficients, having the following property: for every matroid M of rank
k having a stressed hyperplane of cardinality h,

Py (x) = Pu(x) + pr,n(@),
Qu(r) = Qu(z) + qxn(z),
Zm(aj) = Zmu(z) + zk,h(x),

where M denotes the corresponding relaxation of M.

Proof. Observe that the matroids M and M always have the same rank. We proceed by induction
on the rank of the matroids, k. For a matroid M of rank & = 1 and cardinality n, having a
stressed hyperplane of cardinality h means it contains exactly A > 1 loops. This implies that
Pu(z) = 0. When we relax this stressed hyperplane, we obtain the matroid M = Uy ,,, hence
Py (x) = 1. This means that py x(z) = 1.

Now, let us write down the defining relations for the Kazhdan—Lusztig polynomials of M

and M:
k» —
x PI\NA(J? ) Z XM|F M/F( )
FeL(M)
F#0

and

z* Pu(z™") — Z M (2) Py r ().
FeL(M)
FA0

Subtracting the right-hand-side of the second equation from the right-hand-side of the first,
we get an expression consisting on four terms:

S X, (@) P (@) = xw (@) Py s () + X (2) = xmi()
FCH
#F=k—1 (2) ®3)

(1)
+ Z (XM‘F M/F() XM|F($)PM/F(3;‘)>.

FeL(M)
F#0,H,E

4

Let us show that each of these terms does not depend on M, and only depends on h and k.
The items below correspond to the labeled terms above. In what follows, we will take advantage
of the fact that as H is stressed, every subset of cardinality at most k — 1 of H is independent.

1. F is independent in M since #F =k —1, and so ,C(I\~/|| r) is isomorphic to the Boolean
matroid on k — 1 elements. On the other hand, M/F is a rank 1 matroid since F' is
independent on M of cardinality k — 1, so Py / rlr) =1

2. Sincerk H = k—1, it follows that tk(M/H) = 1 and so Py, g (z) = 1. Also, Mg = Up_1 .

3. By Corollary X (@) —xm(z) = (1 — x)(—l)k(Zj)
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4. In this case, note that l\~/I‘F = M, since any flat of cardinality at most £k — 1 in M is

already in M, by Proposition If F ¢ H, then |\7I/F = M/F, and so terms in this
sum where F' ¢ H vanish. Otherwise, if F C H, note that M is the Boolean matroid on
#F elements and M /F is obtained via relaxing H \ F' in M/F. Hence, the terms where
F C H may be rewritten as xg,.(z) - (Py(z) — Py(z)), where N = M/F, and N is the
relaxation of H \ F'in M/F. Because F' # (), we have rkN < rk M, and so by induction
Py(z) — Py(z) is a polynomial only depending on h and k.

The proof for Qum(z) is very similar. Let us write the defining recursion for M

()" Quz™) = D (U™ Qu, ()" e (@),

FeL(M)

and the analogue for M. Subtracting the second equation from the first we get

> (—1)k_1$Qm‘F($)X,\7|/F($_1) — (=1 2Qmy, (@) xmym (@) + 2 (xg(a™) = xm(z ™))
FCH
#F=k—1

3 (UM Qy @)y (@) = Quie @)y r(@))
FeL(M)
F#0,H,E

Similar observations to the ones made for py () let us show the independence from M and n.
Finally, we address the Z-polynomial by writing

Zm(x) = Z ™ Py r ()
FeL(M)

and the analogue defining recursion for M. Subtracting the second equation from the first, on
the right-hand-side we obtain

> o Py p(@) — 2" Py () + > xrkF<P,\~,|/F(x)—PM/F(x)).
FCH FeL(M)
#F=k—-1 F#H

From here, with observations similar to the ones made before, we deduce the independence
from M and n. O

Since now all three polynomials do not depend on the matroid we start from, as long as
they satisfy the conditions of having rank & and a stressed hyperplane of cardinality h, we can
take advantage of the example we explored in Proposition

Corollary 4.1.3.6. The polynomials pi.n(x), qr.n(x) and z, n(x) in Theorem are given
by

pk,h(x) = PUk‘h+1 (.’E) - PUk—l,h, (x)v
Qk,h(z) = QUk,}L+1 (:E) - QUk—l.h($)7
zk,h(m) = ZUk,h+1 (.’L‘) - (1 + x)ZUk—l,h(‘r)'
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Proof. By Proposition [4.1.1.5] the matroid Ilj p, has rank k, cardinality n and a stressed
hyperplane of cardinality h. Also, the simplification of the relaxation Ay p 5 is isomorphic to
the uniform matroid Uy p41. In particular, using this and Theorem {4.1.3.5] we obtain

PUk,h+1 (l‘) = PAk,h,n .Z')
)

where we used that Pv,em,(x) = Pu, (z) - Pu,(z) for all matroids. The proof for g (z) is
entirely analogous. For the Z-polynomial, we have to change slightly the last step, as Zy, ,, _, (x)
is equal to x + 1 for every rank 1 uniform matroid. O

In Section all these results will be specialized to sparse paving matroids, where h = k
and H is a circuit-hyperplane.

Remark 4.1.3.7. In Corollary [£.1.4.5] Corollary[£.1.4.8/and Proposition [f.1.4.11] we will give a
combinatorial interpretation for py n(x), gk, () and z n(x) by looking at some Young tableaux
and skew Young tableaux. As a consequence of that, we will show that, for every k < h, the
polynomials py (), gx n(z) and 2z n(x) have non-negative coefficients and their degrees are,
respectively, deg py.n(2) = deg g (z) = 552 | and deg 2y (z) = k — 1.

Since paving matroids are particularly well-behaved under the stressed hyperplane relax-
ation, as a consequence of Corollary [1.1.1.7] we obtain formulas for the Kazhdan-Lusztig poly-
nomial, the inverse Kazhdan—Lusztig polynomial and the Z-polynomial of paving matroids.
Specifically, the formulas depend only on the cardinality of the ground set, the rank and the
number of hyperplanes of each cardinality it has. These formulas coincide with the ones from

Theorem A 1.3.11

Theorem 4.1.3.8. Let M be a paving matroid of rank k and cardinality n. Suppose M has
exactly \, (stressed) hyperplanes of cardinality h. Then

Pu(z) = Py, (x) = Y An-prp(e

h>k
Qm(z) = Qu, . (¥) = > Mn- ez
h>k
Zn(x) = 2y, (1) = > An-zn(x
h>k

Proof. Since M is paving, according to Corollary 4.1.1.7] after relaxing all the hyperplanes of
cardinality at least k, we obtain the uniform matroid Uy, . In particular,

x) + Z A pren(z) = Py, (2),
h>k

from which the result follows for Py(z). An entirely analogous proof shows the corresponding
statement for Qum(z) and Zy(x). O

To see the formulas “explicitly”, it is enough to remark once again that Py(z), Qu(x) and
Zwm(z) admit closed expressions for all uniform matroids, as shown in Theorem As we
saw above, pi (), gin(x) and zg 5 (z) can be obtained from them.

The preceding result supports Conjecture [3.1.0.3]
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Corollary 4.1.3.9. If M is a paving matroid of rank k and cardinality n, then Pu(x), Qu(z)
and Zm(x) are coefficient-wise smaller than Py, , (x), Qu, , (x) and Zy, , (x), respectively.

Proof. This is now a direct consequence of Remark [4.1.3.7] and Theorem [4.1.3.8 O

4.1.4 Skew and Standard Young Tableaux
4.1.4.1 The main tableaux

In [FNV22| Section 6] we define tableaux-inspired objects, following the pace of [LNR20, Section
2], and the notation of [LNR21]. They will be used to provide combinatorial interpretations of
the coefficients of some of the polynomials that have appeared so far. First, consider the Young
diagram depicted in Figure 4.1

[ | ]

as H— )

Figure 4.1: The “Syt” shape.

Let Syt(a,,b) be the set of standard Young tableaux of the above shape. Notice that the
total number of boxes is a+2i+b. In other words, in each diagram, we are placing the numbers
in {1,2,...,a+2i+b} into the above diagram so that the rows and the columns strictly increase
from left to right and from top to bottom, respectively. We let syt(a, i, b) := # Syt(a, i,b), that
is, syt(a, i, b) is the number of Young tableaux with the above shape. We also define Syt(a, i, b),
a special subset of Syt(a,i,b) where the maximum entry is either at the bottom of the first or
(i + 1)-th column. Let syt(a,4,b) := # Syt(a, i, b).

Now, we turn our attention to a different (but related) object. Consider the skew Young
diagram in Figure 4.2

ay (3

Figure 4.2: The “Skyt” shape.

Observe that the total number of boxes is exactly a + 2¢ + b — 2. We define a legal filling
of the above shape as a filling of the boxes using all the integers from {1,2,...,a 4+ 2i+b— 2}
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in such a way that the values in the rows (respectively columns) strictly increase from left to
right (respectively, from top to bottom). Note that this is the same restriction on the entries
as mentioned above. We denote by Skyt(a,,b) the set of all such legal fillings, and we denote
skyt(a,i,b) := # Skyt(a,,b). That is, Skyt(a,i,b) is the collection of fillings for the above skew
Young diagram, and skyt(a, 4, b) is the number of these tableaux.

For our skew tableaux to be well-defined, we require a,b > 2 and ¢ > 1. To avoid undefined
scenarios, we use the following conventions:

e If i =0, then skyt(a,i,b) = 1.
e If i > 0 and at least one of a or b is less than 2, then skyt(a,,b) = 0.

In analogy with what we did for the first shape we introduced, we now consider a subclass
of the preceding skew Young tableaux, which we will denote Skyt(a,i,b). This set is the subset
of Skyt(a,i,b) so that 1 is always the entry at the top of the left-most column. The size of
Skyt(a, i,b) is denoted skyt(a,4,b). By convention, skyt(a,i,b) = 0 if i = 0.

4.1.4.2 Enumeration of tableaux and identities

We now give two identities that will be used later to give combinatorial interpretations for the
polynomials py, (), gx,n(x) and 2z p(x). First, we have a lemma relating the fillings of the two
diagrams mentioned above.

Lemma 4.1.4.1. We have
b—j

’ i1fa+b—1
syt(a,i,b—2i — 1) = (—1)J+1( ) skyt(a,i,j — 2i + 1).
7=0
Proof. This result follows from [LNR20, Lemma 21]. O

Now we provide two different results giving formulas for skyt(a, ¢,b) and syt(a, 4, b) in terms
of skyt(a,i,b) and syt(a,i,b), respectively.

Proposition 4.1.4.2.
skyt(a,i,b) = skyt(a,i,b) — skyt(a,i,b— 1).
Proof. Note that for every skew Young tableau in Skyt(a,,b), the number 1 is either
(Case 1) at the top of the left-most column, or
(Case 2) at the top of the right-most column.

In Case 1, these are exactly the members of STyt(a, i,b). In Case 2, observe that these are
in bijection with the members of Skyt(a,,b — 1). Given a tableaux A € Skyt(a,i,b — 1), we
construct a tableaux \ € Skyt(a,i,b) satisfying Case 2 above. First, add 1 to each value in A.
Then, add a cell to the top of the right-most column and place the number 1 there. This gives
the desired A, and hence, we have shown the desired result. O]

Proposition 4.1.4.3.
syt(a,i,b) = syt(a,i,b) — syt(a,i,b — 1).

Proof. Note that for every Young tableaux in Syt(a,i,b), the largest number, a + 2i + b, is
either
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(Case 1) at the bottom of the first column,
(Case 2) at the bottom of the (i + 1)-th column, or
(Case 3) in the right-most cell of the first row.

Note that Cases 1 and 2 make up the members of Syt(a,i,b). In Case 3, observe that these
are in bijection with the members of Syt(a,i,b — 1). Given a tableaux A € Syt(a,i,b — 1), we
construct a tableaux A € Syt(a,i,b) satisfying Case 3. Add a cell at the right end of the first
row in A, and place a 4 2¢ 4+ b in this cell. This gives the desired X, and hence, we have shown
the desired result. O

4.1.4.3 Interpreting the Kazhdan—Lusztig coefficients
One of the main results of [LNR20], is the following.

Theorem 4.1.4.4. [LNR20, Theorem 2] The Kazhdan-Lusztig polynomial for Uy ., is

145
Py, . (x) = Z skyt(n —k + 1,4,k — 2 + 1) 2"
i=0
In other words, the coefficients of the Kazhdan—Lusztig polynomial of all uniform matroids
can be interpreted using the skew tableaux we introduced above. As a consequence of this state-

ment, we obtain the following combinatorial description of the polynomial py j(x) appearing in
Theorem 4.1.3.5|

Corollary 4.1.4.5. For every k,h > 1, we have

L1551
Prn(x) = skyt(h —k + 2,0,k — 2i + 1) 2"
=0

In particular, pyn(x) is a polynomial with non-negative coefficients of degree L%J

Proof. Observe that

pk,h(m) = PUk,h+1 (JU) - PUk'—l,h (x)
1% L5 |
= skyt(h—k+2,i,k =2+ 1)a' — > skyt(h —k+ 2,4,k — 2i) 2’
=0 =0

where the first equality uses Corollary and the second uses Theorem [4.1.4.4

Now, we claim we can change the bounds of the two summations to make them match.
When £k is even, note that ¢ < % if and only if ¢ < % When £ is odd, note that substituting
i = E5L into skyt(h — k + 2,4, k — 2i) gives skyt(h — k + 2,552 1) = 0.
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Hence, regardless of k we have

k—1 k=2
2 2
> skyt(h =k 42,4,k — 20+ 1)’ =Y skyt(h — k+2,i,k — 2i) 2’
i=0 =0
L5 L]

I
(]

skyt(h —k+2,i,k — 20+ 1) 2" = > skyt(h —k +2,i,k — 2i) x

=0 1=0
L5)
=> skyt(h—k+2,i,k—2i+ 1)z
i=0
by Proposition [4.1.4.2 O
Remark 4.1.4.6. It is worth pointing out something subtle that occurs with the last equality
in the prior proof in the case where k is odd and i = % Recall that for this i we have

skyt(h — k + 2,4,k — 2i) = 0. However, note that in this case skyt(h—k+2,i,k —2i+ 1) equals
skyt( kgl ,2). Observe that for tableaux in Skyt(h — k + 2, %, 2), the only possible
location for the value 1 is at the top of the left-most column, since the top entry of the last
column is the last entry of the first row. So Skyt(h — k + 2, ’“51 ,2) = Skyt(h — k + 2, %, 2),
and hence skyt(h — k + 2, 551, 2) = skyt(h — k + 2, 551, 2).

Now, let us turn our attention to the inverse Kazhdan-Lusztig polynomial. We are able to
get nice formulas for this polynomial as well. The first step is to state an interpretation for the
coefficients of Qu, , ().

Theorem 4.1.4.7. The inverse Kazhdan—Lusztig polynomial of the uniform matroid Uy, is
L5
Qu., (@)= > syt(n—k+1dk—2i—1)x

=0
Proof. Firstly, we use [GX21], Theorem 1.3] to write
QUk,n (LC) = - Z (_1)rkM_rkFQ(Uk,n)|p(x)P(Uk,n)/F(x)’
F#E

Since F' can never be the ground set of Uy ,,, this means that (Uk’n)‘p is a boolean matroid for
any F'. Thus, combining similar terms, we have

Qu. () = -1y (k ! )P (@),

i=1 —J

where j ranges over flats so that j = rkM —rk F', that is, the flats of rank k — j.
Looking now at the coefficient [2']Qu, , (), using Theorem [4.1.4.4 we obtain that

k

[2'1Qu, . (x) = (~ f“( ])Skyt(nk+1,i,j2i+1).

Jj=0

Note we may allow the index j to start at 0 since in this case skyt(n —k+ 1,4,7 —2i+ 1) = 0.
By Lemma 4.1.4.1|with a =n —k+ 1 and b = k, we get

[2']Qu, . (z) = syt(n — k + 1,i,k — 2i — 1),
and the result follows. O
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We point out that a different proof of the preceding result can be given, along the lines of
[GXY22, Theorem 3.2]. On the other hand, in analogy with what we did for py (), we obtain
an interpretation for gy ().

Corollary 4.1.4.8. For every k,h > 1,
1552

Qen(@) = > syb(h—k+2,i,k— 2 —1)a’.
=0

In particular, g, n(x) is a polynomial with non-negative coefficients of degree L%J

Proof. The proof is equivalent to that of Corollary [£.1.4.5| by using Corollary [£.1.3.6]and Propo-
sition L.T.4.3] O

One can use the skew tableaux also to get a combinatorial formula for the Z-polynomial.

Corollary 4.1.4.9.

Zy, ., (x) =2F + (2’) skyt(n —k 4 1,i,k —j —2i + 1) 2.
j=0 i=0

Proof. Recall that by definition we have
Zu(z) = Z mrkFPM/F(x).
FeL(M)

Also recall that if M = Uy, ,,, the flats of rank r for < k—1 are the subsets of cardinality r. For
this M, we also have that M/F = Uy_4p ,—4p for every flat F. Hence, using Theorem [4.1.4.4
we have

k—1
n .
NCEED S () ELIE

k-1 L552)
=2k + (7)& Zskyt(n—k+1,i,k—j—2i+1)xi
— \J

7=0 i=0
k—11%52] n

=zF 4+ (‘>skyt(n—k—!—l,i,k—j—2i+1)x’+7. O
=0 i=o

Remark 4.1.4.10. As with Qu, , (z) and Py, , (), it is desirable to find an interpretation for
the coefficients of Zy, , (x) that corresponds to the number of Young tableaux of some shape.
Unfortunately, we have not been able to find such an interpretation. However, we can provide
one way of understanding the coefficients as counting a collection of skew tableaux with varying
diagram shapes. Observe that if ¢ < k, then

J

E
—

[+')2u, . (x)

I <.
=]

< " ,>skyt(nk+1,ij,k2i+j+1).
n—j

o

Jj=
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Note that skyt(n — k + 1,7 — j,k — 2i + j + 1) has n — j entries. Hence, one can interpret the
term (n J) skyt(n — k + 1 i— ], k —2i+4 j + 1) as counting the number of ways of filling skew
Young diagrams of the following shape with entries from {1,...,n} so that rows increase from
left to right and columns increase from top to bottom.

E—2i+j+1

n—k+1{ i—J

Figure 4.3: One of the diagrams related to the coefficients of Zy, , ().

Hence, the i-th coefficient of Zy, , (x) counts the number of such fillings for all diagrams as
above, varying in all possible values of j. This is what makes finding a single object that this
coefficient counts challenging—this coefficient counts fillings for diagrams of different sizes.

Proposition 4.1.4.11. For every k,h > 1,

zpn(z) = [(k:)—l]xk—wkz_: Z ( )skyth k+2ik—j—2+1)a

j=0 i=1
This implies that zx p () is a polynomial with non-negative coefficients of degree k — 1.

Proof. Let us write
Zlﬁh(l') = ZUk.h+1 (LU) - (1 =+ 'I)Zuk—l,h (13)

We use the theorem above to make the three terms more explicit.

k-1 1%5%] bt
Zukhﬂ(az):xk—&— ( ) )skyt(h—k—l—Z,z’,k—2@'—|—1)gv'H
' — = J
j=0 =1
k—2 [ 552 b N
x2Zy,_, ,(x) = z* + ( > skyt(h — k + 2,4,k — j — 2i) 2'TIH1
1 —0 =1
J %
k—1 552 n
=2F + ( 1)Skyt(h—kz—l—Q,i,k—j—2@'—}—1)95“']
= = M T
k-2 [E4=)
Zuyey (@) =2y Y ()Skyt(h k+2,ik — j — 2i) 2"t
7=0 =1

We proceed by subtracting the first two quantities. The degree-k terms cancel out and we
separate from the first sum the terms for j = 0 (which do not have a corresponding term in the
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second sum). After using the known combinatorial fact that (h';l) — (j h )= (?), this leaves
us with

5]

Z0g @) =3 2y, () = skyt(h — k+ 2,4,k — 2 + 1) 2’
=0

k—1 552

h
+ (,>skyt(h—k+2,z',k—j—2z‘+1)x“
- ° ]

= (ﬁ)skyt(h—k+2,i7k—j—2i+1)x+J

Now we want to subtract from what we obtained the quantity Zy,_, , (z). This gives us

k—1L552] L
Zen(@) =Y < ) skyt(h —k +2,ik —j — 2+ 1)z’ — gF~1
=0 =1 M
k—2 =5 I
- > (.)skyt(h—k-l—li,k—j—%)xﬂ
j=0 i=1 J
h k—1
= skyt(h — k +2,0,2)z" ! — ¢
k—1
k—2 [*51]
+ ()skyth k+2,k—j—2i+1)z"t
7j=0 =1
which gives us the desired result. O

4.1.5 Non-degeneracy

Lastly, we can answer some questions on the degrees of the Kazhdan—Lusztig-Stanley polyno-
mials, and thus on the non-degeneracy of a matroid M. As a consequence of Theorem [1.1.3.5]
and Corollary [4.1.4.5] we obtain the following result.

Corollary 4.1.5.1. If a matroid M has a free subset, then it is non-degenerate.

Proof. By Proposition we know that a matroid M of rank k having a free subset of
cardinality h is obtained after relaxing a stressed hyperplane of cardinality h in another matroid
N of rank k. We know that the coefficients of Py(z) are non-negative by Theorem [2.4.3.1] Also,
by Remark the polynomial py ,(z) has degree |52 |, hence the degree of Py(z) has to
be £ . O

Remark 4.1.5.2. We speculate that almost all matroids have a free subset. This conjecture
is weaker than Conjecture Such belief is supported also by [PvdP15, Section 4.1]. Tt
is also interesting to understand how many regular matroids have a free subset, that is how
many cases of Conjecture are covered by our results. This will be further investigated

in Section [4.2.3
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4.2 Sparse paving matroids

In this section, we specialize our results from Section to sparse paving matroids, which were
studied in [FV22]. Chronologically, the process happened in reverse, as the notion of stressed
hyperplane relaxation was introduced in a second time to generalize to paving matroids the
well-known operation of circuit-hyperplanes, which lets us deal with sparse paving matroids.

Remark 4.2.0.1. For k = h, the matroids from Proposition [4.1.1.5| become
My kn =Up—16 ®Up ek

and
Ai ko =t Tiom.

The latter is known as the minimal matroid which was studied, for example, in [Fer22b]. The
minimal matroid Ty, is graphic, and is obtained from a cycle graph with k£ edges by adding
n — k parallel edges to one of its edges.

One possible reason to approach this class and not the one of paving matroids comes from
the fact that, in a sparse paving matroid, the family of stressed hyperplanes and the one of
circuit-hyperplanes coincide. In particular, we are able to leverage some well-known upper
bounds for the maximum number of circuit-hyperplanes.

Lemma 4.2.0.2 ([MNRInVFE12, Theorem 4.8]). Let M be a sparse paving matroid of rank k
having n elements. Then, the number of circuit-hyperplanes \ of M satisfies:

)\ < n . 1 1
AT e VS R A

Remark 4.2.0.3. This bound was used to efficiently compute our families of polynomials as
mentioned in Proposition When M is sparse paving, their coefficients only depend on the
number of circuit-hyperplanes, hence can be computed without using the recursive formula. To
achieve this, we used T heorem (in particular, observe that the only non-zero contribution
from the sum is given by h = k) and the known closed formulas for uniform matroids.

Remark 4.2.0.4. There exist tighter bounds for the number of circuit-hyperplanes of a sparse
paving matroid of rank k£ and cardinality n for some particular values of k£ and n. In fact, this
quantity coincides with the independence number of the Johnson graph J(n, k), and with the
maximum number of words that a binary code with word-length n and constant weight & can
have, under the constraint of minimal distance 4. Also, Lemma [4.2.0.2] is a weaker version of
what in the coding theory literature is called the “Johnson Bound” (see [Joh62]). The exact
computation of this maximum is a difficult problem, and precise values are in fact known only
for few particular cases.

n

We will write Ay ,, to denote the expression (k) min {k%rl, n%kﬂ}

4.2.1 Non-negativity

Kazhdan-Lusztig-Stanley polynomials are already known to be non-negative, thanks to their
geometric interpretation as Hilbert—Poincaré series. However, it is still interesting to see if this
property can be recovered “combinatorially” (see Remark [3.1.1.1]).

Theorem 4.2.1.1. If M is a sparse paving matroid then Py(x), Qu(x) and Zy(z) have non-
negative coefficients.
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Proof. We assume that M has rank k, cardinality n, and exactly A circuit-hyperplanes. For
the non-negativity of Py(z) we refer to [LNR21, Theorem 1], although it is possible to give
an alternative proof using our formula. By using the results for uniform matroids listed in
Theorem B.1.2.7] and Theorem we can write

Zv(z) = 2y, ., (2) — Az (x)

="+ ((kL) —A(k—l)) k1

We will prove that each summand in the last expression is a polynomial with non-negative
coefficients. Observe that the second summand has a non-negative coefficient, since A < Ay ,,

by Lemma and:

ol < o (-0 =52 () < ()

Now, if we use that Py, .. (¥) = Ajn—k1;Pj,j(7) has positive coefficients (which is the first

statement in this theorem), it just suffices to verify the following inequality:

n k
. A j,n—k-+j > Ak,n( ->v
(’f - J) P j
which is just:

()5 o) ()t}

Since it is easy to verify the identity (kﬁj) ("7;“” ) =(}) (l;), it suffices to show only that:

. 1 1 . 1 1
min {j+1’ n—ki1 } > min { g nkarl} )

which holds trivially since j < k.
The proof for Qm(z) is a very cumbersome (and uninteresting) computation that we there-
fore omit. O

4.2.2 Free bases and regularity

Conjecture asserts that connected matroids that are regular are non-degenerate. Al-
though there is good evidence that almost all matroids are expected to possess a free basis (see
the discussion in [BPvdP15, Section 7.2]), a natural question that may arise at this point is
which of these are regular and connected.

Since almost all matroids are non-representable (see Theorem , in particular almost
all matroids are non-regular. However, although the family of matroids with a free basis is
expected to be asymptotically predominant, the family of regular matroids with a free basis is
almost negligible among the whole family of regular matroids.

Proposition 4.2.2.1. Let M be a regular matroid with a free basis. Then M is graphic, and is
obtained from a cycle graph with at least two edges by repeatedly adding a possibly empty set of
parallel edges to one of the edges of the cycle.
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Proof. Since M is regular, in particular M is binary. Let us call B the basis of M such that
B U {e} is a circuit for every e ¢ B. If E'\ B consists of only one element, then the conclusion
follows. Suppose then that we can pick two distinct elements y and z not in B. Since M is
binary, by [OxI11l Theorem 9.1.2] we have that the circuits C; = BU{y} and Cy = BU{z} are
such that the symmetric difference C1ACy = {y, 2z} is a disjoint union of circuits. Since both
B U {y} and B U {z} are circuits, it cannot happen that either {y} nor {z} are circuits. The
only possibility is that {y, z} is itself a circuit. From this, it follows that the elements of E \ B
are parallel to each other, and the proof is complete. O]

Remark 4.2.2.2. In other words, the only matroids that are regular and contain a free basis
are the matroids Ty ,, where 1 < k < n — 1, obtained by the circuit-hyperplane relaxation of
Ur—1, ® U1 n_k. Observe also that in Proposition [£.2.2.T] we can change the word “regular”
for “binary” and the conclusion still holds.

One might ask how many of the cases from Conjecture are covered by Corollary
i.e. by replacing free bases with free subsets. What causes the class of regular matroids
with a free basis to be small is that regular matroids are binary, and hence the family of circuits
must satisfy properties that are too restrictive (see [OxI11, Theorem 9.1.2]). Unfortunately, even
if the relaxation of stressed hyperplanes is more general than the circuit-hyperplane relaxation,
it still does not behave well with the property of being regular (in particular, binary). To be
precise, one has the following result.

Proposition 4.2.2.3. Let M = (E,B) be a regular matroid having a free subset. Then M
is graphic, and is obtained from a cycle graph with at least two edges by repeatedly adding a
possibly empty set of parallel edges to one of the edges of the cycle, i.e. M = Ay i, for some k
and n.

Proof. Assume that #F = n and that A is a free subset of cardinality h. Notice that the
matroid M|, is isomorphic to Uy ;. Also, M is connected, according to Corollary £.1.3.3] By
[OxI11, Theorem 10.1.1], as M is assumed to be regular, Uz 4 cannot be a minor of M. In
particular Us 4 cannot be a minor of Uy ;. Hence, we must have k € {0,1,h — 1, h}.

o If £k =0, then B = {@}. It is impossible for a matroid of rank 0 to contain a free subset,
so we discard this case.

e If k =1, as M is connected (and hence does not contain loops), we automatically have
that all the subsets of cardinality 1 of E are independent, and that every pair of them
is parallel. In other words, we just have M = U, ,,, and n > 2 as B; does not have free
subsets. Such a matroid is as described in the statement.

elf k=h—1,let uscall B = (’2) We have that A itself is a circuit, as the removal of
any of its elements yields an independent set (a basis, actually). We claim that all the
bases B € B’ are free bases. Let us pick any such B, and call z the only element such
that BU {z} = A. Observe that for every element not in B we have that it is either x
or it lies in the complement of A. In the first case, we already know that BU {z} = A is
a circuit, whereas in the second, as A is a free subset, we have that adding any element
not in A to B gives a circuit. In particular, we have that M has free bases and the result
follows from Proposition [4.2.2.1

e If k = h, then A is a free basis, and the conclusion follows again by Proposition |4.2.2.1

O
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Remark 4.2.2.4. The previous result tells us that the class of regular matroids with a free
subset is very small. To be more explicit, what the preceding proposition says is that this class
coincides with the class of regular matroids having a free basis.

4.2.3 Modularity and non-degeneracy

In light of Corollary it is reasonable to expect now that degenerate matroids are a very
restrictive class of matroids.

So far, computational experiments and partial results have yielded some examples of degen-
erate matroids, but up to this point they all seem to share one particular property: in some
sense they are very close to being modular.

In a preliminary version of [FV22], we left the following question.

Question 4.2.3.1 (Settled by N. Proudfoot). Is the following assertion true?
M is connected, simple and degenerate <= M is a projective geometry of rank k£ > 3

It is possible to prove that the implication < is true by noticing that projective geometries
are modular, and Elias, Proudfoot and Wakefield proved that modular matroids are degenerate
[EPW16, Proposition 2.14]. However, the implication = is not true, as can be shown by the
following example by Nicholas Proudfoot.

Example 4.2.3.2. Let M be the projective geometry representable over the field Fy of rank
5. Since M is modular, we know that Py(z) = 1, see [EPW16]. According to Sage [SD20],
we have that Py.(z) = = + 1 for any element e € F(M). Also, M\ e is a connected, simple
matroid with 30 elements and rank 5 that is not a projective geometry (it is not modular) but
is still degenerate.



Chapter 5

Beyond polynomial invariants

Once we have established nice properties of our polynomial invariants, a natural thing to do is
trying to generalize them. In this chapter we study two natural developments of our theory.
Firstly, if we work with a polynomial with non-negative integer coefficients, we can always try
to replace it with a graded vector space whose graded dimensions match the coefficients of
the polynomial. This process is called abelian categorification and in some senses is the exact
inverse of what we did when we took Hilbert—Poincaré series of graded vector spaces. A reason
for doing so is that some results on polynomials may be seen as a shadow of a result on vector
spaces. For example, one can regard Theorem as a consequence of Theorem In
fact, the deletion-contraction formula

[z']xm () = [2"]xme (@) — [T xmye (3),
follows directly from taking the Euler characteristic of this short exact sequence
0 — OSY(M\ e) = OS/(M) = OS*"'(M/e) — 0,
together with the fact that
dim OS(M) = (~1)™ M= 2k M=T]yy (a).

In the same sense, one can consider Theorem [2.2.1.4] as a categorification of the definition
of xm(z) given in Theorem [1.2.4.1] In particular, since

dim OS™M(M) = u(0, E),

we know that

dimOS* (M) = > (0, F)
FeL(M)
rk F'=¢

or, in other words,

XM(x): Z M(Q,F)xrkarkF'

FeL(M)

If the polynomials are invariants associated to some geometric objects (in our case, ma-
troids up to isomorphism) it is desirable to build these graded vector spaces from the objects.
Again, this is our case, as we showed in Section Moreover, if the objects have a non trivial
symmetry group W, a natural thing to do is see how this group acts on each graded component

114
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of the vector space. What we obtain is an equivariant polynomial, i.e. a graded representation
of W or, in other terms, a polynomial whose coefficients are given by representations of the
group W. If the polynomial has integer coefficients, it might be necessary to work in the ring
of virtual representations VRep(W), which is the Grothendieck group of the monoid Rep(W)
or, informally, a ring in which we consider formal integer combinations of representations of W.

In Section we recall the equivariant version of ym(z) and the Kazhdan—Lusztig—Stanley
polynomials and, in analogy with those, we introduce the equivariant Chow polynomials. As
an application we show that the formulas for paving matroids we described in Chapter [ still
hold and use them to compute concretely some examples of these polynomials. In Section [5.2]
we extend the notion of valuativity we introduced in Section to categorical invariants. As
an application we show that the Orlik—Solomon algebra is valuative in this new sense and, as
a consequence, we recover the valuativity of the characteristic polynomial.

Remark 5.0.0.1. Once the theory of categorical valuative invariants is fully developed, with
due care, one would be able to upgrade the notion of valuativity to equivariant polynomials.
This is the content of a project not yet published, joint with Ben Elias, Dane Miyata and
Nicholas Proudfoot. Since these results would generalize the results for paving matroids from
Section to general decompositions one could argue that the two sections should be
swapped with the theory on equivariant paving matroids presented as an application of a
more general theory of valuativity for equivariant matroid decompositions. However, we prefer
to keep this presentation more faithful to the chronological order in which the results were
developed, to highlight the fact that the results on equivariant paving matroids were proved
independently of the broader theory and hinted the possibility of the existence of a notion of
categorical valuative invariants, not vice versa.

5.1 Equivariant polynomials

In this section we list some known results on the equivariant versions of our polynomials. Most
of its content can be seen as a generalization of the work on the incidence algebra of £L(M). The
details can be found in [Pro2I]. We recall that W ~ M is an equivariant matroid whenever
W C Gp is a group acting by permutation of the elements of the ground set E that preserves
the matroid M.

For every equivariant matroid W ~ M we define its equivariant characteristic polynomial

XW (z) as
rk M

o (x) == Z(—l)i (W~ OSi(I\/I)) 2™ M=% ¢ or VRep(W)
i=0

Lemma 5.1.0.1 ([GPY17a, Lemma 2.1]). For every equivariant matroid W ~ M, x}/ (1) =
0 € gr VRep(W).

This also lets us define the equivariant reduced characteristic polynomial Xy () as

—wiy . Xu (@)

Consider now an equivariant matroid W ~ M and a subset of its ground set S C FE.
Both Mg and M/S admit actions of the stabilizer group Ws C W. We denote the trivial
representation of W by 1y .
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The equivariant Kazhdan—Lusztig polynomial Py (z) and the equivariant Z-polynomial Zy) (x)
are characterized by the following conditions ([BHMT22bl Corollary A.5]):

(i) If E =0, then PY(z) = Z}} () = my.
(i) If E # 0, then deg P\ (z) < 3tk M.
(iii) The polynomial Z}} (z) is palindromic, with degree equal to the rank of M:

#KMZW o 7Y) = 2 (@),

(iv) For every M,
Zy (@) = Y 2™ %Indy, PyS(2). (5.1)
[S]e2E /W

Remark 5.1.0.2. To be more explicit about how this works, let M be a matroid of rank & on
a non-empty ground set E, and assume that equivariant Kazhdan—Lusztig polynomials have
been defined for all matroids whose ground sets are proper subsets of F. Let

RW(%) = Z 255 In d P,\%SS( x).
[Sle(2E~{0})/W

Then PV (z) is the unique polynomial of degree strictly less than %k with the property that
ZW (x) :== Py (z) + R} (z) is palindromic of degree k.

Remark 5.1.0.3. We would like to remark that this is the categorification of the definition of
Py (x) and Zu(z) given by Theorem The first definition of P} (z) was given in terms
of X,‘\},,V(x) as its right Kazhdan-Lusztig-Stanley function in the equivariant incidence algebra
of L(M), i.e. as the graded virtual representation of W that satisfies,

(i) If E =0, then P} (x) = Tw.
(i) If E # 0, then deg P\ (z) < 3tk M.
(iii) For every M

NPy =Y Iall, (XM.F() PYE (« ))
(FleLm)/w

The equivariant inverse Kazhdan—Lusztig polynomial Q,‘\}AV(I) is characterized by the follow-
ing two conditions [Pro21l, Proposition 4.6]:

(i) If E =0, then Q) (z) = Tw.

(i) If E # 0, then
> (D)™ Y, (QU (2) @ Bify()) = 0. (5.2)

[S]e2E /W

Remark 5.1.0.4. The original definition of the (ordinary or equivariant) Kazhdan-Lusztig
polynomial of M and inverse Kazhdan—Lusztig polynomial of M applied only to loopless ma-
troids. With this definition, one can prove inductively that P\ (z) = 0 = Qi (z) whenever
M has a loop. In contrast, the polynomials Zl\‘j,V (x) are unchanged when we replace M with its
simplification. These are the most natural definitions from the geometric point of view.
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Remark 5.1.0.5. The contraction M/S is loopless if and only if S is a flat, so Remark[5.1.0.4
implies that we may replace the sums in equations (5.1) and (5.2) with sums over W orbits
in £(M). However, it will be more convenient for our purposes to work with the sum over all
subsets.

Remark 5.1.0.6. With these definitions, the equivariant Kazhdan—Lusztig—Stanley polyno-
mials are, a priori, virtual representations. This is the same issue that occured with their
non-equivariant version, as the characteristic polynomial has coefficients that alternate in sign.
However, [BHM™22b Theorem 1.3] proves that these graded representations are honest.

5.1.1 Equivariant deletion formula

By shadowing step-by-step the proof of the deletion formula by Braden and Vysogorets from
Theorem [2.:4.3.6] we can provide the following equivariant deletion formula for the equivariant
Kazhdan—Lusztig polynomial and the equivariant Z-polynomial, which were first proved in
[EMSV22], Section 4.5]. As it was already pointed out in [BV20, Remark 2.10], the action
W ~ M is not an action on the deletion M\ e. Therefore, our formula is, at best, with respect
to We, the stabilizer of the flat {e}.

Theorem 5.1.1.1. Let M be a loopless matroid and let e € E be an element that is not a
coloop. Then,

Py () = Py (z) — 2 By (2)

Y @ md o, (fMAFU{e) T R R (@)
[FleS./We

rkM—rk F
25 (@) = Zype (@) +[ ]Z/ 7 Indye Gy (T(M/(Fu{e}))WF”We &Z,\%imw"‘(x)).
FleSe/We

Here, T(M)W is defined analogously to the non-equivariant case.

Proof. We sketch how to define the proper tools that are needed for the proof. Let gr, VRep(W) =
VRep(W)[zT!] denote the ring of Z-graded virtual representations, i.e. the ring of Laurent
polynomials over the ring of virtual representations, and let #" (M) be the free module over
gry VRep(W) with basis indexed by £(M)/W. Define also

aEM = Y (&" el

[GleL(M)/W

where (Cg)w = gtkm Forkm G Ind%c (P,\‘,/lv/%(a:”)) For a proper flat F, define ([F]" similarly

in H"W*(Mp). Lastly, define a morphism by letting
AVe: HWVe (M) = HWV(M\ e)
[F] — 2kmve (F\{e}) —rkm FIF\ {e}]

and extending gr, VRep(W;)-linearly. Now, the element AWe(¢[E]"e) € HWe(M \ €) can be
written as

AVCIEM) = YD (GR) e e R (e,
[FleL(M)/W.
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Therefore, the coefficient corresponding to [(] is

e

[@] AWc(dE}WE) — (C(f')we g (C{Ee}> — kM (P'\I;|I/e (1,72) +3372P|\‘;|V/6e(x72)> )

Similarly, we can write

AWe(CE] ) = BN )]+ D Indyhy, (T(M/(F U {e}) V"W R ¢E]TEOWe)
[F]€S. /W
F#£E\{e}
and taking again the coefficient of [()] we obtain

[@1A" (1B

_ l,rkM PWe ($72) + Z wf(rkarkF) Indg‘vf;ﬁwﬁ (T(M/(F U {e}))WpﬂWe X P'\‘jli‘/lp;ﬁWe (1‘72))

M\e

[FleS./W.
Dividing by 2'*M yields the first result after a change of variable, with x in place of 272, The
proof for Z\y(x) is entirely analogous and relies on the definition of the gr; VRep(W,)-module

map &y, : HWe (M) — gr; VRep(W,) given by

q)h‘;lve —rky F
Z ap [F] — Z x ap.

[FleL(M)/ W, [FleL(M)/W,

5.1.2 Equivariant theory for paving matroids

Given a matroid M with a group action W and a stressed hyperplane H, let H be the W-
orbit of H. Let Wy C W denote the stabilizer of H, so that H = W/Wy. Let M be the
matroid obtained by relaxing every hyperplane in H, and note that the W-action on M induces
a W-action on M. The group Wy acts on H, inducing a homomorphism from Wy to the
permutation group Gy. If h = #H and we fix an ordering of H, then we can identify &g with
the symmetric group &;,. For any representation V of &, we will write Res% V' to denote
the pullback of V' to a representation of Wy (even though the homomorphism from Wy to &),
need not be an inclusion). Given a partition A of h, we write V) to denote the corresponding
irreducible representation of &j over the rational numbers, which is called the Specht module
associated with A. More generally, given a pair of partitions A and p with |A|— |u| = h, we write
Vi u to denote the corresponding skew Specht module, which is characterized by the property
that the multiplicity of V,, in V), is equal to the multiplicity of V) in

Indg s, (Vi B VL ).

5.1.2.1 Equivariant characteristic polynomial

Proposition 5.1.2.1. We have the following identity of equivariant characteristic polynomials:

AW () = X (2) + (= 1)*(1 = 2) Indlf, Ress, Vi 101
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Proof. We start by decomposing OS(M) using Theorem [2.2.1.4]

osSM)= € 08™(Mp),
FeL(Mm)

and similarly for OS(M). For each J € H, let
Kj={KCJ|#K=Fk—1},

and put

= |J K.

JeH
Then _
LIM)=LIM)UK \H,

and we obtain a similar decomposition

0SM)= P 0S™"(Mp).
FeL(M)
The canonical surjection ~
v : OS(M) — OS(M)
restricts to an isomorphism _
0S™ (M) = OS™ " (Mf)
for all flats FF € L(M) \ (H U{E}), a surjection

: @ 08" (M) — 08F (M)

KeKy

for each J € H, and a surjection
oF : 0S¥ (M) = OS*(M).

Let us compute the kernel of gp']‘;l. The domain of gp’}fl is isomorphic to the degree k — 1 part
of the Orlik—Solomon algebra of the Boolean matroid on the ground set H, which is isomorphic

to
Vih—k+1,1" o Vh—k+21"7

as a representation of &, = Gy. On the other hand, the codomain of @1;1_1 is isomorphic to
the degree k — 1 part of the Orlik—Solomon algebra of the uniform matroid of rank k£ — 1 on the
ground set H, which is isomorphic to V[h —k+2,1¥72]. Thus, the kernel of cpz_l is isomorphic
to ResG" V[h —k +1,1¥71]. We then have

Ker(p @ Ker(g i IndW Ker(cp’;fl) = IndVV‘éH ReSVGVZ Vih—k41,16-1]-
JeH
So far, this allows us to conclude that XW( ) — X1y (¥) vanishes in degrees greater than 1

and is equal to (—1)¥"1z Ind ReSW Vih—k+1,1x-1) in degree 1. The proof of the proposition
then follows from Lemma m [
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5.1.2.2 Equivariant Kazhdan—Lusztig—Stanley polynomials

The content of this Section comes from [KNPV23]. As in the non-equivariant case, to make
computations on paving matroids, we need the values of these polynomials for uniform matroids.
We record here the known formulas.

Theorem 5.1.2.2 ([GPY17a, Theorem 3.1],[GXY22 Theorem 3.7]). The equivariant uniform
matroid &,, ~ Uy, has the following equivariant Kazhdan—Lusztig polynomial

;J min(n—k,k—21)

i
Uk . E E Vin—2i—h+1,h41,20-1] %",

where each coefficient is expressed as a sum of Specht modules indexed by Young tableaux.
Alternatively, one can write each coefficient as a skew Specht module to obtain

PUGk"n( ) = Z Vin—2i,(k—2i+1)1]/[(k—2i—1)7] z',
i=0

Theorem 5.1.2.3 ([GXY22| Thoerem 3.2]). The equivariant uniform matroid &,, ~ Uy, has
the following equivariant inverse Kazhdan—Lusztig polynomial

5=
QUM Z Vin—k1,2i,10-2i-1) T

This is the equivariant version of Theorem [£.1.3.5]

Theorem 5.1.2.4. Fiz integers h > k > 1. There exist polynomials ka;L(a:), qu;L(a:), and

zkg;; (x), each with isomorphism classes of &p-representations as coefficients, such that for any

matroid M of rank k, any group W of symmetries of M, and any stressed hyperplane H of
cardinality h, the following identities hold:

8

PW(x) = Py (x) + Indy;, Res%’vj’; ka’;L( )
QW(:C) =QW (z) + Ind Resg,z 4% ;’L(x)

M
2Y (2) = 2 (x) + Indlf, Resy, =5 (x).

Let S C H be a non-empty proper subset, and let Ws C W be its stabilizer, which acts
on the contraction M/S. The matroid M/S := (M)/S can be obtained from M either by first
relaxing all of the stressed hyperplanes in H and then contracting S, or by first contracting S
and then relaxing a bunch of stressed hyperplanes in M /S, namely J\ S for all J € H such that
J contains S. This is not necessarily a single Ws-orbit, but rather a collection of Wg-orbits of
stressed hyperplanes.

More precisely, let L(S,H) := {w € W | wS C H}. This set admits an action by Wy via
left multiplication, as well as a commuting action of Ws via right multiplication. The quotients
by these actions can be described as follows:

C(S,H) :={wS |weW and wS C H} 2 L(S,H)/Ws
D(S,H) :={JeH|SCJ}=Wy\L(S, H),
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where the second isomorphism takes .J = wH to the coset Wiw™!. The double quotient

may be regarded as a set of Ws-orbits of stressed hyperplaneb of the matroid M/S, and relaxing

all of these orbits yields the matroid M /S. Let M / S be the matroid obtained by relaxing only
one of those orbits, namely the one containing the stressed hyperplane H \ S.
We now state and prove a lemma that will be a crucial ingredient in the inductive proof of

Theorem [5.1.2.4

Lemma 5.1.2.5. Suppose that Theorem holds for the matroids of rank equal to the
rank of M/S. Then we have

Indyy, (PAVAV/SS( ) — Pyfs( )) = > Indyy,. < 37 (x) — Pyip(a )>
[TIEWH\C(S,H)
Proof. Let i = #S. Theorem [5.1.2.4] for the action of Ws on M/S tells us that
Shoi Gy
PS;SS( x) — PWS(@ = Z Ind%SmWs RQSW%WS Prlih—i(@)-
[J]eD(S,H)/Ws
Theorem [5.1.2.4] for the action of W on M/T tells us that

% W, Shoi
M/TT( z) — PM/TT( )—IndWHmWT ReSWHﬁWTpk i)

The lemma now follows from the identification of D(S, H)/Ws with Wy \C'(S, H). O

Proof of Theorem[5.1.2.74 We proceed by induction on the rank k of our matroid. If k = 1,
then H is necessarily the set of all loops in M, and Wy = W. In this case, Remark
implies that we can take pfg(x) =V = qlgg (z) and zleg (x) = 0.

For the induction step, we will prove only the statements about P (z) and Z%IV (z); the
proof of the statement about QW( ) is nearly identical. By Remark[5.1.0.2} it will be sufficient

to prove that there is a polynomial TG}‘( ) such that

R&V(x) = R (z) + Indyy, Res%’vﬁl T}?Z(l‘)
The polynomials pf’};(a:) and zke;; (z) can be obtained from r,?,’;(a;) in the same way that we
obtain P (x) and Z}} (x) from R}Y (z). Assume k > 1, and consider the difference

RY (@)~ R (@)= > ™S mall, (PY (2) - Rifs()).
[Sle(2P\{0})/W
We break the sum into three different parts and analyze each part individually.

e Suppose S is a subset of E that is not contained in any element of #. In this case,
M/S = M/S, so the summand indexed by [S] vanishes.

_ : N Wh _
e The set S = H is a flat of M but not of M, and therefore P~H (z) = 0 by Remark|5.1.0.4

The contraction M/H is uniform of rank 1, so Pl\%HH( ) = Twy. Thus the summand

indexed by [H] is equal to

w S
—Indy,, vy, = —Indyy, RebWH TS, -
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e Suppose that ) € S C H. Our inductive hypothesis and Lemma [5.1.2.5] tell us that the
contribution indexed by [S] is equal to

ks 3 Indyy, < '\,AVK/T,T(x) — P,\‘,'”/T(m)) .
[T1EWH\C(S,H)
If we take the sum over all such [S], we get
S5 mal < 5 () - P,},’,‘;T(x)> .
(T]e(2P\{0,H})/ W

Our inductive hypothesis tells us that

W, Wi W < &
,WT;( z) — Pyjp(x) = Indyl Ay, Res Stn Wi Pt oh—pr (T)s

and therefore that

IS S
Ind%T( ,%%( T) — P[\%TT( )) —Ind Ind%TﬁW ReSWQﬂ#I;ZI pkh#ﬁTh #T( z)

_ w Sn_pnr Gh_znT
= Indyy; qwy, Resyy iy, Pe— s n— ar(T )

Sh (G
—Ind Indw Wi RSz vy, Pro #Th #T( z).

Taking the sum over all [T € (2 \ {0, H})/Wg, we get

Wit Sy, &
Z Ind Ay, Rebw;nWH Py h#T h— #T< z)
(T]€(2¥\{0,H})/Wn
w 0% Gn_ &
= Indy, Z Indyz A, Resl;’/;ﬁ%;{ Dy h#TTh #T( x)

(T1€(2"\{0,H})/ Wi

_ w Chpr  Gh_gT
= Indyy, § : Resy awi, Pr—4r n— #T( z) |,
0CTCH

where the second equality is a standard fact about induced representations; see for exam-
ple [Pro21], Lemma 2.7]. (Note that the individual terms in the sum are not representations
of Wy, but rather of Wy N Wr. An element w € Wy takes the term indexed by T to the
term indexed by wT'). We may rewrite this expression as

Sy Sh
Ind RebW’ Z pk}#Th #T() )
0CTCIh]

where now the individual terms in the sum are representations of Spypnr = Sp_yr,
and the entire sum is a representation of G;. Finally, we once again employ the same
standard fact about induced representations, this time using the action of &y, to rewrite
our expression as

h-1
IndWH Resﬁ/h Z Indb ‘& (T@,i &pfﬁ';hﬂ(x)) ,

i=1

which is manifestly of the desired form.
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Putting the four parts together, we may take

h—1
IS Shi
rkZ( = —7Tg, + Zlnde NGy (T@,i kafi’hfi(x)) )
This completes the proof. O

Next, we give explicit formulas for two of the three Gj,-equivariant polynomials appearing
in Theorem This is the equivariant version of Corollaries [4.1.4.5|and [4.1.4.8]

Theorem 5.1.2.6. When k = 1, we have p?ﬁ(x) =V = qffb(x) and ZC”( ) = 0. When
k > 1, we have the following explicit formulas

GL

P (@ Z Vih—2i41,(k—2i+1)i]/[k—24,(k—2i—1)i-1] T,
0<i<k/2

Sy

a1 (@) = Z (Vih—kt2,2i-1 1820 + Vipg1,26 16-20-1]) @
0<i<k/2

Remark 5.1.2.7. One can use similar methods to obtain an explicit formula for ZEZ (z), but
since this formula is considerably less elegant, we omit it.

We prove Theorem [5.1.2.6] by first examining a single example. Consider again the matroid
defined in Proposition
My hhg1 = Ug—1,n © By.

The group &y, acts on the first summand, which is a stressed hyperplane of cardinality h. The
relaxation A p p41 is isomorphic to Uy p41. We have the equalities

S S S

pk};(m) = PAkhh h+1 (‘T) o Pnkhh h+1 (‘T)
S

qky;ll( ) QAk h, h+1( ) an h, h+1( )’

so it will suffice to compute the four polynomials on the right-hand sides of the two equations.
We begin with the polynomials associated with the matroid Il j, +1. We have

Py (z) = Qg (x) = Vi,

and each of our three polynomials is multiplicative with respect to direct sums. By Theorem

5.1.2.2, we have

Pri’fhwhﬂ( T) = Plih (@)= Z Vin—2i, (k—20)1]/[(k—2i—2)i] T" (5.3)
i<(k—1)/2

By Theorem [5.1.2.3] we have

Qo ) = Q57,0 = 0 Viga i o (5.4)

i<(k—1)/2

By the same theorems, we have

S S S 7
Py, (@) =Resg ™ PO () = D Resgh ™ Vinoaigt (e-ainyi/fe—2i 1y 2 (5.5)
i<(k—1)/2

'In the expression for qf’fl(ac), we interpret the first term to be zero if ¢ = 0, and we interpret the second
term to be zero if ¢ > 0 and k = h.
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and

s 3 (S73 i
QAM h+1( ) Res b:+1 QS,::L( )= Z Res H V[h k+2,2¢,1k—2i—1] X" (5.6)
i<(k—1)/2

We compute the restrictions using the following lemma.

Lemma 5.1.2.8. If A is a partition of h + 1, then

Shit
Resa' ™' Vi = P Vi,
’

where X' ranges over partitions of h with the property that the Young diagram for X' is obtained
from the Young diagram for A by removing a single boz. If X and p are partitions with |\|—|p| =
h+1, then

Reng“ VA/H = @VA/#/,
#/

where p' ranges over partitions with the property that the Young diagram for p' is obtained
from the Young diagram for p by adding a single box.

Proof. The first statement is a well known special case of the Pieri rule. To prove the second
statement, let v be any partition of h. By Frobenius reciprocity, the multiplicity of V,, in
Resg:“ Vi/u is equal to the dimension of the hom space from Indg:Jrl Vi, to Vi, which is in
turn equal to the multiplicity of V) in

S
Indert;61><6| | Vl’ X Vv[l] X VU"

By the Pieri rule, this may be reinterpreted as the sum over all ' of the stated form of the
multiplicity of V) in
(S} h
IndgﬁlXGI y V.’ V.

In other words, it is the multiplicity of V,, in EB,y Vi O
Applying the second statement of Lemma [5.1.2.8/ to Equation (5.5)), we find that

PAG,:,%H] (z) = Z (V[h72i+1,(k72i+1)i]/[(k72i71)'i,1]+V[h72i+1,(kf2i+1)i]/[k72i,(k72if1)“1]> '
i<(k—1)/2
(5.7)
where we interpret the second term inside the parentheses to be zero if ¢ = 0. Similarly, applying
the first statement of Lemma to Equation , we find that

Q/QC:,L g () = Z (V[h—k+272i,1k—2i—2]+V[h—k+2727¢—1,1’«—%]+V[h—k+172i,1k—2i—1]> a', (5.8)
i<(k—1)/2

where we interpret the second term to be zero if i = 0, and we interpret the third term to be
zero if © > 0 and k = h.

Proof of Theorem|[5.1.2.0. The k =1 case was treated as the base case of the induction in the
proof of Theorem [5.1.2.4] so we may assume that & > 1. We compute p;’ h( ) by taking the
difference between Equations (5.7) and (5.3] . We observe that we have an 1som0rphlsm

Vih—2i41,(k—2i41)1)/[(k—2i—1)7,1] = Vih—2i,(k—24)7]/[(k—2i—2)]
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of skew Specht modules, which follows from the fact that the skew diagrams

[h—2i+1,(k —2i 4+ 1)"]/[(k — 2i — 1)",1] and [h — 24, (k — 2i)"]/[(k — 2i — 2)"]

a cancellation which gives us the formula for pf}L(a:) stated in Theorem We compute

qke;; () by taking the difference between Equations (5.8)) and (5.4)). O

are related by a horizontal translation [Kle05l, Proposition 2.3.5, Lemma 2.3.12]. This leads to
i5.1.2.6

An unpublished conjecture of Gedeon generalizes Conjecture [3.1.0.3| for Kazhdan—Lusztig—
Stanley polynomials to the equivariant case. Here is the formal statement.

Conjecture 5.1.2.9. Let M be a matroid of rank k on the ground set E, and let W be a
finite group that acts on E preserving M. Then the coefficients of PJ[I:E(SC) — PW(z) are honest

(rather than virtual) representations of W.

Remark 5.1.2.10. The fact that the constant and linear terms of PJZE(x) — PV (x) are
honest representations follows from [GPY17al Corollary 2.10]. In higher degrees, the conjecture

remains open.

Theorems [5.1.2.4] and [5.1.2.6] imply that Conjecture [5.1.2.9] holds for paving matroids.

Corollary 5.1.2.11. Conjecture holds when M 1is paving.

Proof. If M is paving, then M may be transformed into Uy g by relaxing finitely many W-
orbits of stressed hyperplanes. Theorems [5.1.2.4] and [5.1.2.6] imply that each of these relax-
ations changes the equivariant Kazhdan—ILusztig polynomial by adding a correction term whose
coefficients are honest representations. O]

Theorems [5.1.2.4) and [5.1.2.6] along with the known formulas for uniform matroids, provide
us with the tools to compute our equivariant polynomials for any paving matroid and any group
of symmetries. To illustrate this, we apply our results to compute the equivariant Kazhdan—
Lusztig polynomials in six specific examples.

5.1.2.3 The Vamos matroid

In this section we consider the Vdmos matroid (see Definition [[.1.2.9). The ground set of Vs
is equal to [8], and it is a paving matroid of rank 4 with 5 circuit-hyperplanes corresponding
to the five shaded rectangles in Figure [I.3] The automorphism group W of Vg is generated by
the following four elements:

r1=(12), s =(17)(28), 7r2=(34), and sz = (35)(46).

Note that W = Dy x D4, where the first factor is generated by r1 and s; and the second factor
is generated by 72 and ss.

Let H := {1,2,3,4} and H' := {3,4,5,6}. The orbit of H under the action of W consists
of the four circuit hyperplanes other than H’, and the stabilizer of H is

Wir = ((12), (34), (56), (78)) = 5.
In contrast, H’ is fixed by W. By Theorem we have

P\Z (z) = Res‘(,s[,8 Pub:fs (z) — Ind%{ Res%{ pfi (z) — Resﬁ;1 pfi (z).
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Here the first restriction is the pullback along the homomorphism from Wy to &4 given by the
action of Wi on H =2 [4], while the second is the pullback along the homomorphism from W
to &4 given by the action of W on H' = [4]. -

The formula for Put; % (z) is given in Theorem |5.1.2.2, and the formula for pZi (z) is given in
Theorem [5.1.2.6] Note that the constant term of Pli fs (z) is equal to the trivial representation
of dimension 1, as is the case for all loopless matroids [GPY17al Corollary 2.10]. All three
polynomials are linear, so the only non-trivial calculation is of the coefficient of x.

The calculation can be done explicitly using character tables. We use the following standard
representation of the character table for Dy:

2

e S T Sr T
i1l 1] 1 [1]1
Yo | 1] 1 | -1 1 |-1
s |1 1] -1 1] 1
ya | 1| 1] 1 | 1 |-1
s 1210 ] 0 -=2]0

The irreducible characters of W = Dy x Dy are of the form x; X x; for ¢,j € {1,...,5}. After
performing all of the restrictions and inductions, we find that the character of the linear term
of P! (x) is equal to

3x1 W1 +x1 BWxe +x1 Bxa +2x2 R x1 + x2 W xa + x2 M xa + xa R x1 + xa W xe
+x1 Boxs +x2 W xs + xa W xs +2x5 K x1 + x5 K oxe + x5 X xs + 2x5 X xs.

We observe that the value of this character on the identity is 33, so the non-equivariant
Kazhdan—Lusztig polynomial of Vg is Ry, (z) = 1+ 33z.

5.1.2.4 Steiner systems
We introduced Steiner systems in Definition

Remark 5.1.2.12. The Mathieu groups M7y, M2, Ms3, and Moy are each equal to the
automorphism groups of their corresponding Steiner systems. In contrast, Ms, is the unique
index 2 subgroup of the automorphism group of S(3, 6,22).

We will use the same notation to refer to a Steiner system and its associated matroid.
For example, we will denote by Pé\%ls 24) (z) the Mas-equivariant Kazhdan—Lusztig polynomial

of the matroid associated with the Steiner system S(5,8,24). We will refer to irreducible
characters of the Mathieu groups by the same indices used in the ATILAS of Finite Groups
ICCNT85.

Proposition 5.1.2.13. The equivariant Kazhdan—Lusztig polynomials of the matroids associ-
ated with the aforementioned Steiner systems are characterized as follows:

char PM11

5(4,5,11) (z
CharP

X1+ (x5 + xs) & + (x5 + xs) 2°

s(56.12) (%) = X1+ (X3 + X7+ Xs) ¢+ (X3 + X7 + X8 + xa1 + xaz + xa4) @

PM23

char S(4°7,23) (
(

xT

):
) =

char PS(3622) () =x1+ x5
) =x1+X5% + x9 2
) =

Charp 5(5.8,24) (% X1+ (Xs + x9) T + (Xo + X14 + X21) 2°.
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Non-equivariantly, we have

'5(4,5,11) () = 1 4 55w + 55x2
Ps5,6,12) () = 141202 + 4292
P53622)(33) 1+ 55z
(x) =1+ 230z + 25322
(z) =

1+ 735z + 483022

S(4,7,23)\ X

5(5,8,24) (L

Proof. All of these calculations are done using only Theorems [5.1.2.4] and [5.1.2.6] along with
the character tables found in the ATILAS. We provide a brief outline of the calculation only
for the most interesting case, namely S(5,8,24). The ground set of the matroid S(5,8,24) is
{1,...,24}. The group Moy acts transitively on the set of blocks. We have a distinguished block
H = {1,...,8}, whose stabilizer group is isomorphic to 2g x F3, where the alternating group
Ag = GL4(F2) acts linearly on the vector space F3. The homomorphism from the stabilizer
group to 6y = Gg is given by the projection onto 21g followed by the inclusion of 2(g into Ss.
Theorem E.T.2.4] tells us that

PA/([EQ)48 20y (7) = Resyt Pti2§4( )= Insz[xF‘* Resm w4 P, 58 (@)-

Using the formula for Pli *1,(z) in Theorem 5.1.2.2{and the formula for pfi (z) given in Theorem
5.1.2.6 this becomes a straightforward (if cumbersome) computer computation. O
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5.2 Categorical valuative invariants

In Corollary Theorem [3.1.4.3] Theorem and Theorem we showed that
our Hilbert-Poincaré series are valuative and we heavily exploited it in Section [4] to produce
fast formulas for paving matroids. However, the valuativity of these invariants still appears
mysterious. One can prove that these various polynomials are valuative, but we lack a clear
understanding of why they should be valuative. This last section is dedicated to giving an
explanation for this phenomenon by producing canonical exact sequences of graded vector
spaces. We include a full discussion for the Orlik—Solomon algebra OS(M).

5.2.1 Categories of matroids

Our goal in this section is to give precise definitions of a category of matroids, and what it
means for a functor from such a category to be valuative. Let M be the category in which
an object consists of a pair (E,M), where F is a finite set and M is a matroid on E, and a
morphism from (E,M) to (E’,M’) is a (rank preserving) weak map, as defined in Definition
1.1.1.19, For any finite set F, we define M(FE) to be the full subcategory of M consisting
of matroids on E, and we define M;q(E) to be the subcategory of M(E) consisting of only
morphisms given by the identity map idg. We then write M (E) for the additive closure of this
category, where now objects are formal direct sums of matroids and morphisms are matrices of
morphisms in M (E). Lastly, let Ch(M(E)) denote the (additive) category of chain complexes
in /\/ling(E)7 with the homological convention that differentials decrease homological degree by
one. Morphisms are chain maps between complexes. Let IC(M(E)) denote the homotopy
category of M (E), the quotient of Ch(M(E)) by the ideal of nulhomotopic chain maps.
This is a triangulated category. As usual, we use a superscript Ch’(M(E)) and K*(M(E)) to
indicate the full subcategory whose objects are bounded complexes.

We let [1] denote the usual homological shift on complexes, so that C[1] in degree i agrees
with C in degree 7 + 1.

Let A be an additive category, and let A be its split Grothendieck group. For an object X
of A we let [X] denote its symbol in A. We will be interested in functors ® to A from M;q(E).
Then ® induces a homomorphism from Mat(E) to A, sending a matroid M to [®(M)]. We say
that the functor categorifies the homomorphism.

Example 5.2.1.1. Let A be the category of finite dimensional graded vector spaces over Q.
The Orlik-Solomon functor OS : M — A takes a matroid M to its Orlik—Solomon algebra
OS(M), and sends a weak map ¢ : (E,M) — (E’,M’) to the algebra homomorphism OS(y) :
OS(M) — OS(M’) given by

OS(¢) : ue + Ug(e), foralle € E.

The Grothendieck group of A is isomorphic to the polynomial ring Z[z], and the functor OS
categorifies the Poincaré polynomial my(x).

5.2.2 The complex associated to a decomposition

Let NV be a decomposition of a matroid polytope P(M) of dimension d. We define an orientation
Q of N to be an arbitrary choice of orientation of each polyhedron in N, along with a choice
of orientation of P(M) itself. Given the pair (N, ), we define an object C}(N') as follows:

e Ifk<Oork>d+1, C(N)=0.
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o CL (V) =M.

e Forall0 <k <d, C{(N):= € N.
NENL

If N' € Ny_1 is a facet of N € Ny, then the (N,N’) component of the differential C{{(N) —
Ct (N is given by %1 times ¢y n/, depending on whether or not the orientation of P(N’)
matches the one induced by the orientation of P(N). If N’ is not a facet of N, then that
component of the differential is zero. For each N € Ny, the (M, N) component of the differential
C(?H(N) — C$(N) is given by +1 times ty n, depending on whether or not the orientation of
P(N) matches the one induced by the orientation of P(M). The statement that the differential
squares to zero is straightforward.

Example 5.2.2.1. Consider the decomposition N from Examples[1.3.2.1]and[1.3.2.4l The com-
plex C$(N) takes the form depicted in Figure Choose an orientation of the 3-dimensional
vector space {z | 1 + 22+ 23+ x4 = 2} C RE, and use this to induce orientations (M), Q(N),
and Q(N’). Choose Q(N”) to be the orientation induced by realizing P(N”) as a facet of P(N),
which is the opposite of the orientation induced by realizing P(N”) as a facet of P(N). We
have

Hom,y+ () (M,N @ N') = Q?,
and our first differential corresponds to the element (1,1). We also have
HomME(E)(N @ N, N") = Q2,

and our second differential corresponds to the element (1, —1). The composition is given by
dot product, and our differential squares to zero because (1, 1) is orthogonal to (1,—1).

Figure 5.1: The complex C$}(N) arising from the decomposition of M = Ug 4.

5.2.3 Valuativity

Let A be an additive K-linear category. Any functor ® : M(E) — A induces a func-
tor M*t(E) — A. This in turn induces a functor Ch’(M(E)) — Ch’(A) and a functor
K (M(E)) — KP(A). We abusively denote all these functors by the letter ®.

We say that a functor @ : M(FE) — A is valuative if, for any pair (A, Q), the complex
O(CL(N)) is split exact. Similarly, we say that ® : Miq(E) — A is valuative if, for any pair
(N, Q), ®(CE(N)) is split exact.

By Theorem any valuative functor categorifies a valuative homomorphism.

As a basic example, consider the trivial functor 7 : M(E) — Vecg that takes all matroids to
@ and all morphisms to the identity map. This categorifies the homomorphism that evaluates
to 1 on every matroid.
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Proposition 5.2.3.1. The trivial functor T is valuative.

Proof. Let d = dimP(M), and consider the complex 7(C%,;(N)) obtained by removing the
term in degree d+ 1. This complex coincides with the cellular chain complex that computes the
homology of the one point compactification of P(M) relative to the one point compactification
of OP(M), which is 1-dimensional and concentrated in degree d. We have an exact sequence of
chain complexes

0= 7(CL4(N)) = 7(CEN)) = Q[—d — 1] — 0.

We have observed that 7(C%,(N)) has 1-dimensional homology concentrated in degree d, while
Q[—d — 1] has 1-dimensional homology concentrated in degree d + 1. The boundary map in
the long exact sequence in homology is an isomorphism, which implies that the homology of
7(CE(N)) vanishes. O

5.2.4 The Orlik—Solomon functor

The purpose of this section is to prove that the Orlik—Solomon functor of Example is
valuative. Observe that, if idg : M — M’ is a morphism in M;q(FE), then the associated map
from OS(M) to OS(M’) is filtered, and therefore induces a map from gr OS(M) to gr OS(M’).
Let us describe this map explicitly.

The set {ug | S € nbc(M)} is a basis for gr OS(M). The map gr OS(M) — gr OS(M’) takes ug
to ug if S € nbe(M’) and to 0 otherwise. Let N be a decomposition of a matroid M on the
ground set F, and let d = d(M). For any S € nbc(M), consider the quotient complex VE (N, S)
of 7(C(N)) given by putting V2 (N, S) = Q and

VEW.9) = P @
NeEN}
Senbe(N)

for all 0 < k < d. More informally, V(N S) is obtained from 7(C$}(N)) by killing all terms
corresponding to internal faces N € A/ for which S & nbc(N). The previous paragraph implies
that we have an isomorphism of complexes

grOS(CIWN)) = P VN, 9[- #5]. (5.9)

Séenbe(M)

Our strategy will be to prove that V(N S) is exact, and use this to prove Theorem [5.2.4.3

5.2.4.1 Characterizing the nbc condition

Fix a subset S C E = {1,...,n}. For each e € E, let S, := {s € S| s > e}, and consider the
open half-space

H;’S:: r e RE | Z T > #S,
feScU{e}
Lemma 5.2.4.1. If M is a matroid on E, the following statements are equivalent:
(i) S € nbe(M),
(ii) Se U {e}, is independent for all e € E,
(i) PM)NH g #0 for alle € E,
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(iv) P(M)n () HEg #0.

eckE

Proof. The equivalence of (i) and (ii) is immediate from the definition of a broken circuit. We
next prove the equivalence of (ii) and (iii). If S, U {e} is independent, then it is contained in
some basis B, and xp € P(M) N H:S. Conversely, suppose that z € P(M) N H;:S. Then we
have

#S, < Z x5 <tk (Se U {e}),

feSe.u{e}

where the first inequality comes from the fact that x € H:'S and the second comes from the
fact that € P(M). This implies that the cardinality of S, U {e} is equal to its rank, which
means that it is independent.

We have now established the equivalence of (i), (ii), and (iii). The fact that (iv) implies
(iii) is obvious, thus we can finish the proof by showing that (ii) implies (iv). Assume that
(ii) holds, and for each e € E, choose a basis B, containing S, U {e}. In addition, choose real
numbers &, ..., e, with g9 =1, e, =0, and e, < gc_1/(#S. + 1) for all e € E. Let

T = 2(55_1 —€e)xp, € RE.
eck

The sum of the coefficients appearing in the definition of x is equal to €y — &, = 1, thus = is
in the convex hull of {xp, | e € E'}, which is contained in P(M). It thus remains only to prove
that z € H:S for all e € E. We have

Z Ty = Z Z (eg-1—&4) = Z Z (eg—1 —&¢) + Z (eg-1—&¢)-  (5.10)
feSeu{e} feS.uU{e} By f fE€Se By f Bgye

Note that, if g < f and f € §, then f € S, U {g} C B,. This implies that

S Y i) = 3 S i) = Y (co—ep) > 3 (co—ze) = #S.(1—20). (5.11)

f€Se By f feSe g<f fese feSe

In addition, we have e € B,, and therefore

Z (€g—1 —€g) > €ec1 — €6 > F#Se€e. (5.12)
Bg>e

Combining Equations (5.10)), (5.11]), and (5.12]), we find that
> wp > #S.(1—c) + #Seee = #S,

fesSeu{e}

and therefore x € H;S. O

5.2.4.2 A proof of the exactness

Fix a matroid M on the ground set E, a decomposition A" of M with orientation 2, and a set
S € nbe(M). Our goal in this section is to use Lemma/5.2.4.1|to prove the following proposition.

Proposition 5.2.4.2. The complex VXN, S) is exact.
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Proof. We will proceed in the same manner as the proof of Proposition As in that
argument, let d = d(M), and let VE,(N, S) be the complex obtained from V(N S) by removing
the term in degree d + 1. Our plz;no is to give a topological interpretation of this complex.

For any polytope P C R, let P denote its relative interior. Let

U=PM)N () H s
ecE

Since U is an intersection of convex open subsets of P(M), it is itself a convex open subset of
P(M). By Lemma[5.2.4.1} U is nonempty, therefore (U,dU) = (B4, §91).

For all N € NV, let Uy := U N P(N). Lemmaimplies that Uy # 0 if and only if N is
an interior face and S € nbc(N). The set U is the disjoint union of the convex open sets Uy,
and adding a single O-cell gives us a cell decomposition of the quotient U/ /0U. The complex
V2,(N,S) is precisely the cell complex that computes the reduced homology H,(U,dU) =
Q[-d.

The remainder of the proof is identical to the proof of Proposition[5.2.3.1] We have an exact
sequence of chain complexes

0— VN, S) = VW, S) = Q[-d— 1] — 0.

We have observed that V(N S) has 1-dimensional homology concentrated in degree d, while
Q[—d — 1] has 1-dimensional homology concentrated in degree d + 1. The boundary map in
the long exact sequence in homology is an isomorphism, which implies that the homology of
VYN, S) vanishes. O

Theorem 5.2.4.3. The categorical invariant OS is valuative.

Proof. We need to show that, for any matroid M on E and any decomposition N of M with
orientation Q, C(N) is exact. By Equation and Proposition CS$HN) admits a
filtration whose associated graded is exact. The spectral sequence of the filtered complex has
FE4 page equal to the homology of the associated graded and converges to the homology of the
original complex. In this case, the E; page is zero, so the original complex must be exact, as
well. O

2In the special case where M is loopless and S = ), Proposition [5.2.4.2| follows from Proposition [5.2.3.1]
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