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Abstract

The pervasive availability of connected devices in any industrial and societal sector is push-
ing for an evolution of the well-established cloud computing model. The emerging paradigm of
the cloud continuum embraces this decentralization trend and envisions virtualized computing re-
sources physically located between traditional datacenters and data sources. By totally or partially
executing closer to the network edge, applications can have quicker reactions to events, thus en-
abling advanced forms of automation and intelligence. However, these applications also induce
new data-intensive workloads with low-latency constraints that require the adoption of special-
ized resources, such as high-performance communication options (e.g., RDMA, DPDK, XDP,
etc.). Unfortunately, cloud providers still struggle to integrate these options into their infrastruc-
tures. That risks undermining the principle of generality that underlies the cloud computing scale
economy by forcing developers to tailor their code to low-level APIs, non-standard programming
models, and static execution environments. This thesis proposes a novel system architecture to
empower cloud platforms across the whole cloud continuum with Network Acceleration as a Ser-
vice (NAaaS). To provide commodity yet efficient access to acceleration, this architecture defines a
layer of agnostic high-performance I/O APIs, exposed to applications and clearly separated from
the heterogeneous protocols, interfaces, and hardware devices that implement it. A novel system
component embodies this decoupling by offering a set of agnostic OS features to applications:
memory management for zero-copy transfers, asynchronous I/O processing, and efficient packet
scheduling. This thesis also explores the design space of the possible implementations of this ar-
chitecture by proposing two reference middleware systems and by adopting them to support in-
teractive use cases in the cloud continuum: a serverless platform and an Industry 4.0 scenario. A
detailed discussion and a thorough performance evaluation demonstrate that the proposed archi-
tecture is suitable to enable the easy-to-use, flexible integration of modern network acceleration
into next-generation cloud platforms.
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1 Introduction

In the last two decades, cloud computing has become a cornerstone of modern digital economy,
pushing organizations across the globe to radically shift their approach to IT resources, now per-
ceived as utilities accessed anytime from anywhere on a pay-per-use basis. The success of this model
is rooted in the possibility to achieve significant economies of scale. By efficiently spreading the
high costs of operations, such as hardware purchase, maintenance, power supply, etc., over a large
customer base, cloud providers can offer IT resources as a service at competitive prices. Hence, the
cloud model represents a cost-effective option for any organization, as it allows developers to fo-
cus exclusively on their core business logic and to outsource traditionally burdensome duties such
as infrastructure maintenance, resource scaling, and support to continuous availability. Under a
technical perspective, two key concepts are among the key pillars of cloud computing: the use of
homogeneous general-purpose technologies at scale, which allows providers both to maximize their
customer base and to reduce costs by purchasing off-the-shelf hardware components, and the cen-
tralization of those resources in large-scale datacenters, which minimizes maintenance costs and
maximizes resource usage efficiency [18, 39].

In parallel, an unprecedented process of digitalization has been reshaping virtually any appli-
cation domain. The widespread adoption of the Internet of Things (IoT) concept [11] and the
exponential growth in the number of connected devices is fueling the digital transformation of
areas such as automotive and transportation, industrial automation (Industry 4.0), healthcare,
telecommunications, tourism, education, entertainment, and many others. At the core of this
transformation is the possibility to collect huge volumes of raw data that a new generation of
smart applications can transform into insightful information, possibly by leveraging the recent,
significant advancements in next-generation telecommunication networks (5G and beyond) and
in Artificial Intelligence (AI) techniques [14, 20, 76, 92, 119, 123, 96]. Powered by cloud platforms,
such information enables innovative processes, services, and products in any industrial and soci-
etal sector, such as the concepts of digital twins and smart cities [69, 128].

In this context, the possibility for devices deployed virtually everywhere to connect to the cloud
is enabling a new class of interactive cloud applications that hold a high potential for the digi-
tal transformation and innovation of companies in any sector, by combining the advantages of
the cloud model with the opportunity for customized and real-time decision-making, innova-
tive adaptive services, and advanced forms of automation [21, 113, 119]. However, these applica-
tions are also pushing the well-established cloud computing model to show its inherent limita-
tions. These applications are indeed substantially different from those traditionally handled by
cloud infrastructures, because they require that events initiated from outside the datacenter trig-
ger cloud-hosted tasks and produce timely answers back to the event source. The production of
timely answers to remote events entails demanding system requirements: to move and query a
large amount of data (e.g., camera inputs), to perform fairly heavy computations on them (e.g.,
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1 Introduction

Machine Learning inference models), and to minimize response latencies. Instead, centralized
cloud infrastructures are designed and optimized to collect and process huge quantities of data
through offline batched processing, such as data analytics, and tend to privilege throughput at
the expense of tail latency [8, 30, 71]. As a result, the design of many cloud platforms is currently
ill-suited to support these new requirements in terms of online data-intensive and low-latency
responses. For example, many industrial processes require sub-millisecond latencies, whereas a
round-trip to the cloud may take tens of milliseconds.

In recent years, new trends emerged to provide the necessary infrastructural support to interac-
tive applications. Among them, two are particularly relevant for this work: on the one hand, the
physical proximity of resources improves the response times to events [23, 113]; on the other hand,
the adoption of modern software and hardware acceleration technologies may potentially reduce
the computation and communication overhead of cloud services [85, 24, 59, 48]. As we briefly
summarize in the following, these trends promote the principles of resource decentralization and
hardware specialization, thus raising questions about the future evolution and economic sustain-
ability of large-scale infrastructures that are based on opposite foundations [121]. To answer these
questions, this thesis proposes an architecture for the integration of heterogeneous acceleration
technologies as a Service into the cloud model and for the portability of interactive applications
across the cloud continuum.

A new computing paradigm: the cloud continuum

To support the emerging class of interactive applications, modern cloud infrastructures are ex-
panding beyond their traditional boundaries, by including a hierarchy of virtualized computing
resources physically located between traditional cloud datacenters and data sources, according to
the idea that physical proximity reduces the communication latency. The resulting computing
model is a fluid dissemination of virtualized resources named as cloud continuum [113, 115]. In
the continuum, providers offer cloud-like features, for example by assigning slices of the resources
to different applications, by guaranteeing isolation and by distributing the workload at all lev-
els of the infrastructure [23]. The adoption of a cloud-based model ensures the portability and
the fluid migration of user-defined applications across the whole continuum, characterized by a
higher resource heterogeneity than in centralized datacenters, thus conveying the emerging trend
of resource decentralization within the standard cloud paradigm.

Modern I/O acceleration technologies

With the end of Moore’s law, processor performance increased of just about 3.5% per year in the
last eight years. Over the same period, other hardware components significantly improved: for
example, the standardized Ethernet link speed increased from 1 Gbps to 1 Tbps [40, 58]. This
different performance evolution trend reverses the traditional assumption in computer systems
that I/O operations are slower than host processors in moving data: as the standard software
stacks available in common operating systems involve the processor in I/O operations, they are
becoming the bottleneck of datacenter I/O [17, 29, 67]. As a consequence, datacenter providers
are either increasingly offloading I/O operations to hardware accelerators, devices that implement
in hardware basic functions such as computing (e.g., Graphics Processing Units, GPUs), stor-
age (e.g., Non-Volatile Memory Express, NVMe), and networking (e.g., smart Network Interface
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Cards, NICs), or to alternative software stacks (e.g., the Data Plane Development Kit, DPDK).
By removing the processor from data plane operations (CPU-bypassing approach), or at least by
reducing its intervention (kernel-bypassing), accelerators let applications leverage the full speed of
modern hardware, and providers to dedicate a bigger portion of CPUs to user applications.

However, the practical large-scale adoption of these accelerators in cloud platforms still comes
with several technical challenges. On the one hand, a lack of support to virtualization and sharing
among multiple users makes them difficult to integrate within existing cloud infrastructures [24,
28, 59]. On the other hand, they introduce a fundamental problem of code portability: these tech-
nologies expose deeply different and very low-level programming abstractions and associated in-
terfaces, so that developers must tailor their code to one specific technology, thus harming porta-
bility and maintainability, and binding it to specific execution environments [25, 131].

The need for an integrated approach

To support the development, deployment and execution of interactive applications, this thesis
proposes to integrate heterogeneous acceleration technologies as core components of the cloud con-
tinuum model. Currently, these aspects have largely been considered separately: research on cloud
continuum focused on reducing response latency by moving computation, at least partially, closer
to the data sources, whereas a significant body of work investigated techniques to maximize the
performance of accelerators for backend services in datacenters. As a result, today user applica-
tions in the cloud, from core to edge platforms, cannot leverage acceleration options even if these
are available, because of the cloud integration issues of these options previously discussed.

The lack of an integrated approach represents a serious obstacle for the success of the digital
transformation in any societal and industrial environment. If applications either in core or edge
datacenters cannot directly access I/O acceleration options as a service, they would either rely on
legacy alternatives, unable to meet the desired performance requirements, or at least partially reject
the cloud model by designing custom hardware and software solutions. That is already happening
in core clouds: major providers currently offer forms of dedicated physical resources (bare-metal
instances) with direct access to specific accelerators [6, 13, 53]. This solution is far from ideal and
definitely not cost-effective, as it forces providers to manage separate infrastructures and users to
pay higher prices to rent these services, thus substantially negating the benefits of the cloud model.
Nevertheless, there is a need for heterogeneous, specialized hardware and low latency for applica-
tions within the cloud as many applications involve multiple services in the cloud communicating
with each other and they need to be power-efficient. This need is even more pressing at the net-
work edge: although the physical proximity to datasources helps reducing response latencies, the
overhead introduced by standard general-purpose software and hardware is still unacceptable in
many critical areas, such as industrial automation or autonomous transportation [50, 105].

This thesis considers three main challenges that currently prevent the integration of acceler-
ation technologies within the cloud model. First, application portability: in the cloud contin-
uum, application code should run unmodified across heterogeneous resources, including possibly
different acceleration technologies whose interfaces and programming models are very heteroge-
neous. To tackle this issue, this work investigates the possibility of defining a technology-agnostic
interface to provide cloud users with a uniform access point to heterogeneous I/O acceleration op-
tions. That possibility would bring significant advantages in terms of code reusability and main-
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1 Introduction

tainability, as well as ease of development and deployment in the heterogeneous context of the
cloud continuum. At the same time, the definition of a uniform interface for high-performance
I/O carries several relevant research questions that this thesis discusses in depth. On the one hand,
the choice of a certain programming model has a strong impact on both the achievable I/O per-
formance and on the compatibility with legacy applications and the effort required by users to
become familiar with it. On the other hand, the definition of a certain abstraction level for that
interface entails a trade-off between the simplicity of the exposed API and the degree of visibility
and control users have on the underlying I/O technologies. This thesis will propose new options
within this space and discuss their advantages and drawbacks.

Another integration challenge is represented by the special-purpose, low-level abstractions that
acceleration devices expose to user applications. The majority of the I/O acceleration technologies
bypass the standard I/O stack for the sake of performance, by offloading it to specialized hardware
devices or by letting users provide a more efficient software implementation. However, bypassing
the standard general-purpose datapath of current OSes also has several drawbacks: in particular,
it forces developers to re-implement from scratch basic OS features such as memory management,
thread scheduling, packet scheduling, etc. These requirements make it difficult for inexperienced
system developers to efficiently leverage the modern option of I/O accelerations and raise the de-
velopment and maintenance costs for accelerated solutions tailored to specific application scenar-
ios. Building on a significant body of previous work, this thesis considers the possibility of pro-
viding a general-purpose datapath that implements those features on behalf of the users, similar
to what OSes offer for standard networking, but designed for high-performance I/O. In particu-
lar, this work identifies a set of design principles that all modern acceleration technologies adopt
to guarantee high I/O performance. By following these principles, this thesis proposes a new
technology-agnostic architecture for general-purpose, high-performance I/O that can be mapped
to several heterogeneous acceleration technologies with negligible performance overhead.

The third integration obstacle considered in this thesis is the significant lack of flexibility in
the acceleration solutions. Cloud computing traditionally relies on a layer of virtualization to de-
couple the physical resources from the user view. By letting applications directly interact with
hardware devices, acceleration technologies tend to bypass even that layer, making it difficult for
providers to support typical cloud features such as multi-tenancy, live migration, enforcement of
Quality of Service (QoS) and security policies. However, the majority of hardware manufacturers
do not currently offer built-in support for these fundamental cloud features (with few notable
exceptions [44, 70]). This thesis is among the first attempts to consider the need for virtualization
and flexibility when designing a software-based datapath for general-purpose accelerated network-
ing, to minimize the requirements on cloud platforms to support accelerated I/O.

An architecture for Acceleration-as-a-Service in the cloud continuum

This thesis proposes a solution for the integration of heterogeneous acceleration technologies
as first-class citizens of cloud infrastructures across the continuum, ranging from standard core
clouds to edge cloud platforms. This solution is based on a novel architecture for Network Acceler-
ation as a Service (NAaaS) that provides general-purpose, system-level support for the definition
of portable and accelerated cloud applications, specifically targeting the emerging class of interac-
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tive applications previously introduced. The architecture is organized in three layers, addressing
the three integration challenges defined above.

• The interface layer defines a high-level set of primitives that make I/O-accelerated applications
easy to program while retaining performance efficiency. These primitives must be agnostic to
technology-specific details, thus ensuring transparent code portability.

• The system layer provides a set of technology-agnostic system features for high-performance
I/O that are typically bypassed by acceleration technologies, offering them as a service to applica-
tions. These features include memory management for zero-copy data transfers, thread schedul-
ing strategies to efficiently handle asynchronous I/O operations, and packet scheduling policies
for traffic prioritization.

• The plugin layer specializes for each specific acceleration technology the features defined by the
system layer, adopting the necessary optimizations to maximize performance. These implemen-
tations must be self-contained plugins, thus enabling the dynamic attachment of user code to
different technologies.

This three-layered architecture effectively decouples the application code from the underlying
I/O acceleration technologies and guarantees that the acceleration performance is preserved, thus
fulfilling the requirements for NAaaS. To demonstrate that, this thesis explores the design space
of the possible implementations of this architecture, highlighting the trade-offs that emerge in
terms of application portability, ease of programming, performance efficiency, and integration
with virtualized environments. To support the discussion, two complete and original reference
systems, implementing the proposed architecture, will be introduced: a data distribution middle-
ware and a userspace OS module. These systems are designed to offer one or more network acceler-
ation techniques (RDMA, DPDK) as a service to applications in cloud environments. The choice
of these systems is motivated by several use cases of interactive applications in heterogeneous do-
mains. In particular, this thesis will show how these systems can be effective in supporting NAaaS
for two reference scenarios: a platform for serverless computing and a framework to support virtual
Programmable Logic Controllers (vPLCs), key components in the Industry 4.0 revolution.

In the last part of the thesis, an extensive quantitative evaluation of the two reference systems,
first in isolation, then in comparison with existing alternatives, and finally within the two pro-
posed use cases, will prove that the proposed architecture results in superior performance, better
portability, and full integration with existing cloud platforms and tools.

Thesis structure and organization

The remainder of the thesis is organized according to the following structure. Chapter 2 pro-
vides a more detailed definition of the concept of cloud continuum and motivates why and in
which scenarios it is reasonable to consider that network acceleration options are available even
outside the traditional large-scale cloud datacenters. To this end, two application scenarios are
introduced: the emerging concept of serverless computing and the rapidly developing idea of In-
dustry 4.0. Chapter 3 gives the necessary background about network acceleration technologies,
with a specific focus on both the difficulty of using them in general-purpose programs, and the
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1 Introduction

complexity of their integration into existing software stacks. To demonstrate that, the Chapter
reports the experience of optimizing a complex application, Derecho [63] (a library for State Ma-
chine Replication), to be used with RDMA, proving that only a careful design allows to properly
leverage the potential benefits of that acceleration option.

Chapter 4 defines the concept of Network Acceleration as a Service and discusses the significant
body of previous work that paved the way for the contributions of this work. Chapter 5 intro-
duces the architecture proposed by this thesis, discussing the role and responsibility of each layer,
and the trade-offs that might emerge while implementing them. Then, Chapter 6 proposes two
complete reference implementations of the architecture, guided by the requirements of different
application domains. These systems are first described in isolation, and then used to support a
more complex and domain-specific scenarios where interactive applications are needed. Chap-
ter 7 reports the results of a thorough quantitative evaluation of those systems, discussing the
advantages and the open challenges related to the adoption of the proposed architecture in the
selected application scenarios. Finally, Chapter 8 concludes this thesis by providing insights into
future research directions.
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2 The Cloud Continuum

This Chapter briefly reviews the evolution of the cloud computing paradigm toward a more dis-
tributed model called cloud continuum, which embraces the recent trend of resource decentral-
ization. In particular, the discussion will focus on the challenges that arise from the introduction
of virtualization in application scenarios characterized by a high heterogeneity of the available
resources and of the application requirements. As these challenges emerge specifically in connec-
tion with the networking infrastructure, the main techniques currently used for I/O and network
virtualization are briefly introduced, showing how these might add significant latency overhead.

The last part of the Chapter introduces two scenarios in which interactive applications are en-
abled by the cloud continuum. On the one hand, the emerging serverless computing service model
allows users to easily deploy fine-grained, event-triggered function pipelines across the contin-
uum, thus allowing developers in several domains to easily define even complex applications. On
the other hand, the possibility to deploy cloud services in relatively powerful edge cloud platforms
is driving the digital transition of many industrial areas, a process sometimes referred as Industry
4.0: the physical proximity of cloud resources to industrial equipment allows companies to replace
specialized technologies with general-purpose tools while still fulfilling their performance require-
ments. Overall, these will be the reference scenarios for the implementation of the architecture
proposed in this thesis.

2.1 Introduction to Cloud Computing

Since its definition, the cloud computing paradigm gained wide popularity in virtually any eco-
nomical and social sector. The key reason of that success resides in the availability of computation,
networking, and storage resources as a service, accessible anytime and anywhere, so that compa-
nies in any economical sector no longer need to buy and maintain their own on-premise IT infras-
tructure. Cloud providers transparently manage the physical infrastructure, billing users for their
real resource usage, e.g., charging per time unit, number of requests to a service, or amount of
transferred data (pay-per-use model). Thus, companies can elastically scale resources based on the
actual demand, saving upfront costs and avoiding to pay for idle machines under low traffic, but
still being able to respond to peaks of demand. Depending on the agreement between users and
providers (Service Level Agreement, SLA), different kinds of cloud resource offerings are possible:
a widely popular classification distinguishes between Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and Software as a Service (SaaS) depending on the user visibility of the underlying
computing resources [80]. Although this categorization no longer captures the whole spectrum
of available offerings, it is still considered an important reference [36].

This thesis focuses on the IaaS model, where users obtain exclusive access to VMs or contain-
ers. Users get access to all the machine resources, their operating systems and applications, whereas
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the provider keeps control on the underlying physical cloud infrastructure. Indeed, resource vir-
tualization is a key pillar of the cloud computing model, as it decouples the users perspective of
working on dedicated resources from the provider physical view and plays a crucial role in the
dynamicity that characterizes any cloud offering. For example, it enables the elastic scaling of
resources in response to the current load of users, saving them significant costs compared to on-
premise approaches. Virtualization also enables multi-tenancy: the same physical resources can
be allocated to different users, even belonging to different organizations. Because providers can
optimize the use of their equipment, they can also offer a cheaper service: multi-tenant clouds
generally represent the most economically appealing solution for most enterprises.

2.2 The Cloud Continuum

The success of the Internet of Things (IoT) concept and its widespread adoption across various
application domains are driving an evolution in the cloud computing paradigm. With the perva-
sive availability of connected devices, there is an increasing demand for applications to consume,
analyze, and generate diverse data from a variety of sources. Centralized cloud infrastructures can
only partially meet these demands and new computing infrastructures, able to host applications
at edge devices, have started to appear in recent years, improving aspects such as response time and
reducing bandwidth use. For example, the concepts of Mobile Cloud Computing (MCC) [34] and
Fog Computing [23, 26] have promoted the offloading of compute-intensive tasks to cloud services
running on the telco infrastructure, which is increasingly able to host general-purpose virtualized
application components [1]. Concurrently, the success of the Edge Computing [115] has demon-
strated that deploying resources co-located with data sources can be crucial to allow cloud services
to meet key performance targets.

Combining the ability of running performance-sensitive, localized applications both at the
edge and within the telco infrastructure with the high-capacity from the cloud, the Cloud Contin-
uum has emerged as a paradigm that can support heterogeneous requirements of small and large
applications through multiple layers of a computational infrastructure that combines resources
from the edge of the network as well as from the cloud [113]. The resulting infrastructural model
is a composition of edge, fog, and cloud to support IoT-based applications, thus constituting a
three-tiered hierarchical infrastructure that is illustrated in Fig. 2.1 and discussed in the following.

• Cloud. Centralized core datacenters host large-scale computing capacity in buildings specially
designed to host them, deployed in few locations because of special infrastructure requirements,
such as power, space, cooling, as well as the need for specialized workforce and the associated
cost management. Cloud providers offer users virtually infinite resources through a pay-per-use
model, as described in Section 2.1.

• Fog. The fog infrastructure, in turn, is organized in a hierarchy of resources, sometimes called
fog nodes, spanning among the edge of the network and the cloud datacenters. Although the
density of fog nodes or the number of layers may vary depending on the location, the lower fog
layer is typically considered to be one hop away from the edge layer (e.g., WiFi or cell phone
antennas). Additional layers may enhance the computing capacity of the fog tier and ease data
processing or movement: generally, the lower devices are in this hierarchy, the lower is the re-
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Figure 2.1: The three-tiered hierarchical infrastructure of the cloud continuum.

sponse latency they can provide, but also the smaller their computing capacity. The telco Mo-
bile Edge Computing (MEC) model is a clear example of this infrastructure: the availability of
powerful general-purpose servers close to antennas and base stations not only support the most
modern cellular standards (5G and beyond), but can potentially host any kind of service that is
offloaded from user end-devices [1].

• Edge. The edge layer corresponds to the geographically distributed locations where end-devices
are deployed and usually accommodates the most latency-sensitive applications. Depending on
the considered scenario, this layer may correspond directly to the set of end-devices that seek
cloud connectivity (e.g., mobile phones, smart cameras, etc.) or to a more structured environ-
ment able to host even powerful resources in local small-scale datacenters. In the first case, de-
vices equipped with a small amount of computing resources can directly pre-compute or pre-
process raw data for applications to avoid soaking the cloud. In the second case, instead, the
concept of edge datacenter emerges to place cloud service instances directly one network hop
away from large device deployments. Section 2.2.1 will discuss more about the latter scenario.

Overall, these layers are characterized by a high degree of heterogeneity. On the computing
side, several devices with very different capabilities are involved at each layer, ranging from power-
ful servers to small devices with only pre-processing capabilities. Under a networking perspective,
data must generally cross one or more tiers of the Edge-Fog-Cloud infrastructure, potentially in-
volving different connection technologies: for instance, mobile devices will typically adopt wire-
less connections to communicate with a fog node, whereas monitoring sensors within a factory
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will likely employ wired connections. As a consequence, different communication protocols are
involved, and different communication links will provide different properties in terms of mobility
and performance.

The hierarchical model of the cloud continuum is very effective to support applications that
have very different QoS requirements, as their components can be distributed among devices at
different levels of the Edge-Fog-Cloud infrastructure depending on the application needs (e.g.,
latency, computing capacity, data locality). However, such intrinsic heterogeneity poses a signif-
icant problem of code portability and maintainability: different hardware, software stacks, and
communication protocols require to tailor applications for a specific deployment environment,
making it complex to dynamically leverage the flexibility of the Edge-Fog-Cloud continuum.

For that reason, a key idea in the cloud continuum paradigm is to rely on a layer of virtualiza-
tion that, like in cloud datacenters, decouples physical resources from the application code. The
resulting computing model is a continuum of virtualized resources offered as a service that enable
the dynamic migration of application components across the different layers, thus overcoming
the issues arising from the high degree of heterogeneity of the continuum. Across the continuum,
providers can thus operate according to a cloud-like model, for example by assigning slices of the
resources to different tenants, by guaranteeing isolation, and by distributing the workload at all
levels of the infrastructure. As a result, it is possible to flexibly and dynamically support heteroge-
neous QoS requirements and to significantly improving response times and service interactivity
for performance-critical components [23, 113].

Performance Challenges in the Cloud Continuum

Although resource virtualization is the key of the success of the cloud model, even across the
Edge-Fog-Cloud continuum, it can also become an obstacle when users try to deploy the most
performance-critical applications. As discussed in Chapter 1, a founding principle of the cloud
model is to provide a general-purpose platform to support any application in any domain, thus
enlarging the number of potential customers and making the model economically sustainable for
both customers and providers. The need to provide generality through virtualization necessarily
leads to the introduction of various software layers between user applications and the underlying
infrastructure. However, in the most performance-critical scenarios, the performance overhead
introduced by these layers can significantly impact the possibility of applications to meet their
performance requirements, even when cloud services are in execution at the Edge layer. We will
discuss these issues extensively in Chapter 3, observing how the networking infrastructure is gen-
erally the most affected by these overhead even in those scenarios where low network latencies are
crucial to ensure the correct operations of applications. Preliminary to that is the discussion in
Section 2.3 about the main techniques to virtualize networking in cloud infrastructures.

This thesis will mainly target the traditional Cloud and the Edge layers of the the Edge-Fog-
Cloud infrastructure. In particular, this thesis will consider scenarios where the edge infrastruc-
ture is composed by large deployments of devices, such as wired sensors and actuators, directly
connected to a local edge datacenter, which we will better define in the next Section. The inter-
play between these two layers is indeed crucial for the application domains considered in this work,
and the availability of fairly powerful resources at both these locations make it possible to design
cloud-enabled support systems that can provide both flexibility and high-performance.
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2.2.1 The cloud edge datacenter

Whereas the concept of core cloud datacenter is well known in literature, the more recent idea of
edge cloud is still not widely recognized. In this thesis, with the term edge cloud we refer to small-
scale computing environments deployed in the same location as edge devices (e.g., IoT devices)
but managed as full-fledged cloud platforms. The kind of resources available in these scenarios
are comparable to those in core clouds, although at a smaller-scale, powerful enough to run fairly
heavy workloads and serve as a first hop to interact with the smaller devices, thus ensuring minimal
response latencies from local instances of critical services.

Besides the different scale, a key feature of edge cloud platforms is a much higher degree of
resource heterogeneity than core cloud datacenters. The latter are indeed few centralized infras-
tructures, usually managed by a single providers and thus mostly equipped with homogeneous
hardware and software. The scattered geographical distribution of edge clouds, their higher num-
ber, and their management by several different actors make them quite different from each other,
also depending on the specific domain they must serve. Nevertheless, these details are generally
hidden to the end user by a virtualization layer which ensures the portability of the code and its
management through usual cloud tools, such as orchestrators.

In recent years, edge cloud platforms have started to appear in several diverse application do-
mains. The most well-known example in literature, although properly belonging to the Fog layer,
is the telco Multi-access Edge Computing (MEC) [1]. The MEC concept consists in the position-
ing of general-purpose powerful devices co-located with antennas and base stations in order to
deploy cloud services that can gain contextual information and real-time awareness of their local
environment. More recently, the process of industrial digital transformation known as Industry
4.0 has promoted the deployment of proper small-scale datacenters, such as factory-local server
racks, to improve cloud service responsiveness [50, 105]. In the transportation industry, driven
by new applications of autonomous use cases, the need for local high processing power is trans-
forming vehicles (including cars, trains, planes, etc.) into high-tech units where typical datacenter
technologies are required [86].

2.3 Networking in the Cloud Continuum

From a networking perspective, virtualization is critical to support the communication patterns
of modern cloud applications, independently of their deployment position in the cloud contin-
uum hierarchy. Cloud users tend to instantiate multiple VMs to host their application compo-
nents, which reciprocally communicate. To support this pattern, cloud providers must enforce
two forms of virtualization: not only an efficient network access (I/O virtualization), but also
virtual private overlay networks among machines (network virtualization). There are multiple
technical challenges associated with those two kinds of virtualization: in particular, which inter-
face customers should use to access the network and which virtualization techniques allow VMs
of the same tenant to efficiently communicate while preserving their isolation.

Although these aspects are certainly not the only concerns for cloud providers, according to
the scientific literature they are today the most clear example of the limits of the cloud model, as
the overhead introduced by these forms virtualization is emerging as the main networking bot-
tleneck. To help the reader understand the motivation for the alternative solutions introduced in
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the next chapters, this Section provides an overview of the current standard approaches to these
fundamental cloud networking aspects (network access interfaces, virtualization techniques, ser-
viceability). Then, Chapter 3 will provide a brief background on the emerging alternative options
to these approaches, and Chapter 5 will introduce an architecture to integrate them within the
cloud model, to support Network Acceleration as a Service (NAaaS) for faster cloud networking.

2.3.1 Network Access Interface

The IaaS model provides users with the ability to obtain the same environment they would have
on a bare-metal cluster, by accessing instances of VMs or containers. Under a networking perspec-
tive, this model brings several advantages, particularly the capability to run unmodified applica-
tion binaries within the virtualized environment, which enables users to take advantage of virtu-
alization without any change to their existing applications. At the same time, cloud developers
can create new applications without the burden of learning and understanding new frameworks,
programming languages, or interfaces, as they can continue to use the same tools they are familiar
with. Such flexibility stems from the availability of virtual network interfaces within VMs and
containers, which cloud users may access by using standard system and programming tools: in
particular, applications can use the standard and ubiquitous POSIX Socket API to communicate
over the network. Unfortunately, the ease of programming guaranteed by this standard interface
comes at the price of multiple copies of the payload data. Modern options for high-performance
networking base their better performance on zero-copy data transfers, but trading portability and
ease of programming for performance efficiency (see Chapter 3).

2.3.2 Virtualization techniques

Resource virtualization is a fundamental principle across the whole cloud continuum infrastruc-
ture. From a networking perspective, we already distinguished between two kinds of virtual-
ization, I/O virtualization and network virtualization, according to previous literature on this
topic [57, 94]. Although those two aspects are closely intertwined, the former case refers to the
mechanisms to enable Virtual Machines (VMs) or containers running on a shared physical host
to access an external network. Instead, the latter case considers the techniques to create virtual pri-
vate overlay networks among a set of VMs or containers belonging to the same users or tenants.
Both these aspects are crucial for cloud networking as they influence the performance, flexibility,
and isolation properties of communication. The following paragraphs briefly discuss the standard
approaches typically used by cloud providers to enforce those two forms of virtualization [49, 50,
57, 68, 74, 109, 124].

I/O virtualization

A critical challenge for applications running in virtualized environments is to efficiently access
I/O devices, especially when network performance is a critical concern. The techniques to obtain
an efficient end-host network performance differ for VMs and containers. For VMs, the most
prominent approaches are direct device assignment and paravirtualization, represented in Fig. 2.2
left and center.
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Figure 2.2: The two prominent techniques for I/O virtualization for VM: direct device assignment (left)
and paravirtualization (center). On the right, two modes for container networking: host
(dashed line) and overlay (solid line).

Direct device assignment reserves a device instance exclusively to a VM or container (passthrough),
so each virtual environment (VM or container) requires a distinct physical network adapter. To
mitigate this heavy scalability limit, recent devices support a form of hardware-assisted virtual-
ization called Single Root IO Virtualization (SR-IOV [91]) that makes them appear as multiple
separate devices called Virtual Functions (VFs). Each VF can be assigned to different VMs as if it
were a distinct device. Either way, direct device assignment allows to exclude the hypervisor from
the network critical path: virtualized applications can access the network as if they were physical
hosts, thus achieving the best network performance. However, this technique tightly couples net-
work devices and virtual environments, strongly limiting the inherent flexibility of virtualization:
for example, live migration becomes impossible to support, because the hypervisor cannot create
a snapshot of the network state [95].

The paravirtualization technique, instead, splits the device driver into a frontend driver, located
in the guest OS of a VM, and a backend driver on the host (Fig. 2.2), where those two drivers
exchange commands through a dedicated communication channel. This separation lets the hy-
pervisor in full control over the network control and data planes, thus providing a high degree of
flexibility: because traffic is mediated by software, it can be easily controlled. However, this also in-
troduces overhead on data path operations, especially when crossing the guest/host boundaries.
The virtio [109] framework is the de facto standard tool for paravirtualization, and it allows the
hypervisor to expose paravirtualized devices to the guests. To mitigate the performance overhead
introduced by paravirtualization, virtio clearly separates the data plane, which handles the actual
network traffic between the host and the guest, and the control plane, which allows to exchange
control messages about the data plane. The data plane is implemented as a set of shared memory
areas, called virtqueues, between the frontend driver on the guest and the backend driver on the
host. Those memory regions are managed as couples of ring buffers holding the network data
to be received and transmitted, similarly to the actual queues of physical network devices. Each
virtual device can have zero or more queues associated, with the limitation that each queue must
have associated a distinct vCPU. Conversely, the control plane consists of a notification mech-
anism used between the frontend and the backend driver to discover and signal new data in the
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queues. For network devices, that notification mechanism is implemented as a direct inter-process
communication channel between the two drivers.

The paravirtualization technique is popular for VMs, but it introduces an overhead that is of-
ten unacceptable in the case of containers. Indeed, containers are considered a lightweight form of
virtualization compared to virtual machines, as they let applications execute directly on the host
operating systems [98]. Various mechanisms are used to isolate containerized applications from
the host; from the networking perspective, each container is generally assigned a network names-
pace, which includes a separate instance of the kernel networking stack (Fig. 2.2 right). Hence,
it is possible to create interfaces directly in that namespace, without resorting to virtio, to assign
arbitrary IP addresses, and to use the same device drivers installed in the host. In host mode, data
are forwarded directly to the device driver, so the network configuration is the same as bare-metal
applications (dashed line in Fig. 2.2). Otherwise, data can be directed by using a software-based
datapath to a software bridge (overlay mode) and then forwarded to the host networking stack for
the actual network access (solid line).

Network virtualization

In case of I/O direct device assignment for VMs (or host networking mode for containers), the traf-
fic of a virtualized application appears on the network as the traffic of a bare-metal application on a
physical host. This option might make sense in a dedicated infrastructure, such as a private cloud
or on-premise infrastructure, but is not suitable for multi-tenant scenarios, where traffic isolation
among tenants is paramount. Instead, generally providers adopt a paravirtualization approach
(for VMs) or the overlay networking mode for containers, with the goal of segregating user traf-
fic within controlled boundaries (network virtualization). The key technology to enable network
virtualization is the virtual switch, a software module, traditionally located in the host kernel, that
acts as packet dispatcher among network interfaces. Once the traffic of a virtualized application
reaches the backend driver (in case of VMs, see Fig. 2.2 center) or exits the network namespace (in
case of containers, see Fig. 2.2 right), the switch forwards it on the physical network. In the cloud
context, virtual switches represent the first network hop for user applications. Hence, they are the
main tool for providers to build logically isolated, virtual private overlay networks to connect user
application components, or to implement customer-supplied network spaces. Importantly, the
software flexibility allows cloud providers to offer a richer network semantics, by configuring traf-
fic shaping policies and dynamically adapting such configuration to external events, e.g., mutated
network conditions, new policies to enforce, or user requests. With software switches on each
host, providers can easily scale such network control actions to a high number of servers, while
at the same time keeping the actual physical network simple, scalable, and thus very fast. Impor-
tant traffic shaping policies include network isolation of VMs and containers via different forms
of tunneling, such as VXLAN [77], security, migration, QoS enforcement, and generally all the
observability aspects that providers adopt to monitor their infrastructure. For instance, to leverage
this flexibility as much as possible, major cloud providers design their own software switches [43],
although open-source versions are widely available (e.g., Open Virtual Switch [89]).
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2.4 Application scenarios

This last Section introduces two scenarios, serverless computing and Industry 4.0, in which the
availability of the cloud continuum infrastructure potentially enables companies to bring the flex-
ibility of cloud applications even in domains characterized by demanding performance require-
ments. These scenarios are particularly interesting also because they offer examples of the chal-
lenges that still need to be addressed in the cloud continuum: although the literature in this field
tends to trade performance for the flexibility of resource virtualization, sometimes that is not prac-
tically viable. Hence, new forms of infrastructural support should be adopted to further reduce
the performance footprint of resource virtualization, especially in terms of network latency.

Depending on the performance requirements, applications in both areas might be deployed
across the cloud continuum: in the core cloud, if more processing power is needed, or in the edge
cloud, when real-time constraints are paramount. When considering the edge cloud, this thesis
will focus on deployments in which devices are connected with cloud platforms through a wired
link. Although wireless connectivity is critical in many use cases, such as those with mobility
involved, the scenarios characterized by wired connections are typically the most demanding on
the supporting cloud infrastructure, as even µs-scale networking overhead become critical for the
correct application behavior, just like in large-scale datacenters [17].

2.4.1 Serverless computing

Serverless computing is an emerging proposition in the cloud offering landscape that promotes
a higher level programming abstraction, further decoupling application code from the under-
lying system and hardware infrastructure. Following a wider trend of resource disaggregation,
the serverless model relies on the execution of short-lived stateless functions in response to events,
which can be internal or external to the execution platforms. In cloud platforms, serverless com-
puting was mainly introduced as Function as a Service (FaaS), a service model which tasks cus-
tomers only with the creation of the business logic of functions and transparently offloads any
other aspect to the platform, including scaling, deployment, monitoring, security [15, 99]. Major
cloud providers have embraced this paradigm and already provide managed FaaS offerings, and
many open-source projects are under active development as well [116].

The unit of execution in FaaS consists of a stateless function that is instantiated and executed
in response to an incoming event. This capability allows for fine-grained resource control and
elastic auto-scaling, which are appealing advantages for a broad range of applications including
IoT, interactive data analytics, and even ML tasks. For instance, the possibility to spawn a high
number of fine-grained short-lived functions might significantly reduce both the costs and the
response latency of highly parallel jobs, such as stream processing [45]. Hence, this model is po-
tentially well-suited for the cloud continuum: because all the infrastructural aspects are offloaded
to the providers, user functions might in principle be executed at any layer of the IoT-Fog-Cloud
infrastructure, depending on the performance requirements.

One novel concept rapidly developing across these platforms is the capability of composing
functions to create tailored processing pipelines. By decoupling complex functionalities into sim-
pler ones, function composition encourages modularity and promote function reusability, thus
further reducing the development effort and also the time-to-market of even complex applica-
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tions. Many interactive IoT applications in the cloud continuum can be easily expressed in terms
of function pipelines: for instance, a traffic monitoring applications would have a first ingestion
layer, which receives real-time video streams from monitoring cameras, a second layer that tracks
the objects (vehicles) visible in the images, a third layer that predicts the trajectory of each object
and detects potential collisions, and a final stage that outputs the results whether in local storage
or as a warning back to the camera location. All these layers can be easily obtained as off-the-shelf
functions that, combined together, create a non-trivial intelligent and reactive application [119].
Furthermore, by deploying the pipeline as close as possible to the event source, providers could
minimize its response latency.

Despite its great advantages under many aspects, FaaS support in cloud platforms across the
continuum still faces several challenges. Among the most relevant for this thesis, the ephemeral
nature of the functions poses several issues when fine-grained state sharing needs arise, demand-
ing efficient, scalable and cost-effective forms of I/O management. That includes both storage and
networking primitives, such as broadcast, aggregation and shuffling [90]. This aspect is particu-
larly relevant when considering function pipelines that must respect some form of time constraint.
Indeed, current function composition solutions exhibit some performance issues: response la-
tencies can materialize not only from a bad user-defined chaining logic but also from inefficient
infrastructural support to function composition [16]. At the same time, most FaaS solutions are
not optimized to handle bursts of short-lived functions, an inherent property of this increasingly
popular approach, that can amplify the overhead in the function invocation path [126]. In ad-
dition, no current FaaS platform adopts resource-aware optimizations to exploit the specificity
of the underlying hardware and software resources, a paramount feature in the context of cloud
continuum [112, 117].

This thesis will investigate the challenges related to the efficient I/O operations of pipelines
of functions in FaaS platforms. In particular, Section 6.2.3 will introduce DIFFUSE, a middle-
ware solution based on shared memory that acts as a conveyor of data to improve function-to-
function communication performance. The implementation of this scheme is totally transparent
to the end users, but it can opportunistically leverage modern network software and hardware
available at any deployment site across the cloud continuum, thus enabling, when possible, high-
performance zero-copy communication between functions (see Chapter 6).

2.4.2 Industry 4.0 and beyond

The term Industry 4.0 refers to the digital transformation of industrial processes, especially in
manufacturing and automation industries, through the integration or the replacement of tradi-
tional specialized Operation Technologies (OT) with general-purpose Information Technologies
(IT). The goal of this transition, also known as the fourth industrial revolution, is the creation
of smart factories, through which companies expand their operations beyond local and limited
environments to a broader, global, and interconnected industrial sector. Machines continuously
generate and export data that are filtered, processed, and analyzed in near real-time to extract busi-
ness insights and facilitate accurate and cost-effective decision-making. Thanks to the introduc-
tion of the Industrial Internet of Things (IIoT), sensors and software are embedded in smaller
and smarter connected devices that allow cloud-native communications and immediate actions
on the surrounding environment [27, 119].
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In this context, the increasing amount of raw data produced by machinery and the necessity of
analyzing them is rapidly pushing companies to replace or adapt machine field technologies from
proprietary ad hoc industrial protocols to open and more flexible standards [46, 88]. Industries
have a real opportunity to enhance the automation level and the cohesion between OT and IT in
a cost-effective and affordable manner by utilizing Commercial-off-the-Shelf (COTS) hardware
and software. This has several benefits: increased community support, reduced maintenance ef-
fort, continuous updates, and improved cybersecurity.

However, despite the several advantages of such integration, the practical replacement of spe-
cialized technologies, such as embedded logic controllers (PLCs), with IT-enabled components
is still difficult to achieve: OT were specifically designed to support demanding requirements in
terms of latency, jitter, and Quality of Service (QoS), whereas IT for best-effort behavior and a
general-purpose use. As a result, even when cloud-native solutions, such as virtualized controllers
(vPLCs) are deployed in edge clouds, they cannot always offer the deterministic behavior and low
network latency required by traditional specialized solutions, or do so by sacrificing the generality
of IT. This thesis will consider various use cases in the context of Industry 4.0 and show that, by
integrating the option for Network Acceleration as a Service, it is possible for cloud services to meet
even the most demanding constraints of industrial applications.

2.5 Conclusion

The increasing number of connected (Industrial) Internet of Things (IIoT) devices has fueled a
trend of decentralization of computing resources from traditional centralized datacenters to lo-
cations closer to data sources, with many advantages such as a better service responsiveness and
enhanced automation at the network edge. In recent years, the cloud computing paradigm has
evolved to embrace that trend. The concept of cloud continuum promotes the management of
devices, distributed even outside datacenters, as a continuum of virtualized resources, where user
code can be dynamically deployed depending on application requirements. However, the intro-
duction of virtualization is not always a panacea: under a networking perspective, traditional vir-
tualization techniques can introduce additional performance penalties. Significant examples of
these challenges arise in the reference scenarios introduced in this Chapter: serverless computing
and Industry 4.0.

The next Chapter introduces a set of I/O acceleration technologies that have proved successful as
high-performance alternatives to the standard I/O software stacks. Although these technologies
hold the potential to mitigate the performance overhead introduced by virtualization, especially
at the network edge, they are also quite hard to integrate within cloud platforms. The architecture
introduced in Chapter 5 aims at making such integration possible, thus offering the long-sought
option for Network Acceleration as a Service to cloud developers.
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3 End-Host Network Acceleration

System developers are increasingly adopting modern hardware and software technologies that ac-
celerate the I/O operations of their applications. The need for I/O acceleration is driven by a
significant shift in the workloads that general-purpose infrastructures need to support: from of-
fline computations on large batches of data to online and possibly intelligent responses to events.
These workloads are extremely demanding in terms of resources and executing them on general-
purpose CPUs would not be as efficient as adopting specialized technologies to support them, such
as Graphics Processing Units (GPUs), Non-Volatile Memory Express (NVMe), or Data Process-
ing Units (DPUs).

This Chapter provides the necessary technical background to understand the potential ben-
efits, the challenges, and the trade-offs associated with the use of I/O accelerators, with specific
focus on end-host networking, as motivated in the Introduction. Rather than delving into com-
plex technical details, this Chapter aims at presenting the common design principles behind differ-
ent network acceleration technologies (RDMA, DPDK, XDP, etc.), which are all based on the
fundamental concept of clear separation between the control and the data planes of communica-
tion [93, 19].

Although all these options share the same design principles and goals, each technology im-
plements them in very different ways. This heterogeneity, combined with a programming model
completely different from the standard POSIX interfaces, makes it difficult for inexperienced users
to leverage these options and requires developers to carefully tailor their code for a specific technol-
ogy. As an example of this complexity, the Section 3.5 reports the experience of the optimization
of Derecho [63], a complex system library for State Machine Replication. By carefully re-designing
the internal protocols, it was possible to obtain a 10x improvement in the throughput of the sys-
tem for small messages, but at the price of a careful, low-level, and time-consuming process of
code tailoring to properly leverage the high-performance capabilities of RDMA [62].

3.1 Design principles

With the end of Moore’s law, processor performance increased of just about 3.5% per year in the
last eight years, in sharp contrast with the growth rate of communication links in datacenters
and the rapid standardization of higher Ethernet network link speeds [40, 58]. Fig. 3.1 shows this
evolution of over the past 25 years. This different performance evolution trend reverses the tradi-
tional assumption in computer systems that network operations are slower than host processors
in processing packets: because the CPU is involved in the data processing pipeline, the standard
networking stack available in common operating systems is becoming the bottleneck of datacen-
ter networking [17, 29, 67]. At the same time, the increasing amount of CPU cycles spent for
high-performance networking is subtracted to user applications, i.e., to the core business of cloud
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Figure 3.1: A comparison between the performance improvement of Ethernet link speeds and processor
speeds in the last 25 years.

and datacenter providers. For example, in a typical long-lived TCP flow between two hosts, more
than 50% of the total CPU cycles are spent for data copies at the end hosts [29]. For an average
request, a server running a simple key-value store spends only 6% of the total CPU cycles within
the application logic, whereas 85% is spent within the kernel networking stack [67].

Based on these considerations, network acceleration technologies tend to improve end-host
networking by minimizing the processor intervention on the data plane. This idea belongs to an
overarching trend that reflects a shifting balance that many recent researchers have highlighted:
modern networking links are so fast that to utilize its full potential, developers must clearly sep-
arate the control plane, which expresses the application logic and thus entails CPU intervention,
from the data plane, where data must be free to move at the link speed [19, 93]. This way, ap-
plications can leverage the full speed of modern communication links, and datacenter providers
dedicate a bigger portion of their CPUs to user applications.

The clear separation of control and data planes to minimize the CPU intervention in data trans-
fers has important consequences on the design of end-host high-performance I/O stacks. It is pos-
sible to identify three key design principles that modern network acceleration technologies follows
to guarantee such separation, as discussed in the following.

• Zero-copy Data Transfers. Memory copy operations are by far the most significant bottleneck
for end-host networking [29, 67]. Ideally, a complete separation between control and data planes
would require a model in which any host involved in the communication has a single copy of
any given data item at a certain memory location: the network equipment places incoming data
at in a designed area (or reads them from it), from which data is never moved. The control
plane refers to the items by sharing references to that location. Although maintaining just a
single copy of each data item might not be always practically viable for many reasons (isolation,
security, etc.), high-performance network protocols should strive to minimize their number.
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• Minimal Context Switching. Context switches between processes, especially at the boundary
between userspace and the kernel, use precious CPU cycles. Hence, it should be avoided to
perform protocol processing and other data plane actions in the kernel, as that involves passing
controls multiple times between user and kernel processes. Ideally, data plane operations should
be performed by a single process or thread in userspace, thus also improving data and instruction
cache locality, or, even better, completely offloaded to hardware.

• Asynchronous Processing. Because control and data plane execute at very different speeds,
network interfaces and protocols should be ideally designed to be completely asynchronous
and lock-free, thus avoiding that control plane stalls data plane, or vice versa. That is practically
not always possible, for instance when parallel network processing is performed on multi-core
processors, but the more this separation is enforced, the better network performance will be.

As shown in Fig. 3.2, these principles are quite a disruptive departure from the design of stan-
dard end-host networking, as they are based on opposite assumptions: standard interfaces (e.g.,
POSIX sockets) and protocol stacks (e.g., kernel TCP/IP) impose multiple copies of payload data,
are kernel-based, and synchronous by default. Instead, modern high-performance networking
techniques force a redesign of the systems and applications that want to leverage their advantages,
as Section 3.5 will show with an example. That is not only an issue for end-users, which should
refactor their applications, but also for cloud providers. Cloud platforms are indeed currently not
ready to accommodate this kind of acceleration: in cloud computing, physical resources are hid-
den behind a layer of virtualization, whereas acceleration technologies remove even the operating
system layer between applications and the hardware. Chapter 5 will discuss that in more detail,
by introducing a new architecture that designed to make this integration much easier.

To make the picture even more complex, not only network acceleration technologies follow
opposite design principles compared to the standard ones, but they implement these principles
in ways that substantially differ across technologies, in terms of API, resource usage, hardware re-
quirements, and performance efficiency. Such diversity reflects the original specific purposes they
were built for, but as they are increasingly adopted as general-purpose options, it practically be-
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Figure 3.2: Standard kernel-based (left) vs accelerated network stack (right) of a hardware-based technology,
RDMA. RDMA clearly separates the control path (solid line) from the data path (dashed line).
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Technology Kernel integration API Zero-copy CPU intervention

Kernel TCP/IP In-kernel AF_INET Socket No Per-packet
XDP In-kernel AF_XDP Socket Yes Per-packet
DPDK Kernel-bypassing RTE Yes Busy polling
RDMA Kernel-bypassing Verbs Yes Hardware offloading

Table 3.1: A comparison between the main options for end-host networking in the edge cloud.

comes an obstacle for developers, because code tailored for one of those will not be easy to adapt
for another. This problem is especially relevant for edge computing scenarios, which are charac-
terized by a high degree of resource heterogeneity. Furthermore, as these interfaces are typically
designed with performance in mind, they are also quite low-level, detailed, and require the knowl-
edge of several different concepts and abstractions.

The following Section will provide a brief introduction to a number of these technologies, by
distinguishing between software-based acceleration, which includes the Linux Accelerated Data
Path (XDP) and the Data Plane Development Kit (DPDK), and hardware-based acceleration,
which includes Remote Direct Memory Access (RDMA). The goal of this discussion is not to
delve into the details of each option, but rather to present their main features and understand how
the common design principles previously introduced are practically implemented. In particular,
the discussion will focus on the network interface exposed to end users, on zero-copy networking,
on the context switches they require, and on the asynchronicity of the programming model they
impose. Table 3.1 reports a summary of these considerations.

3.2 Software Acceleration

Software-based acceleration techniques improve end-host network performance without requir-
ing any special hardware to be installed. On the one hand, that is an economical advantage, as
the existing general-purpose network equipment can be used. On the other hand, the absence of
dedicated hardware means that compute-intensive operations such as protocol processing must
be performed by the CPU.

This Section considers two options, Linux XDP and DPDK. Both of them focus on removing
the other sources of overhead, in particular data copies. XDP is the most conservative option
and executes within the kernel, whereas DPDK adopts a kernel-bypassing approach that removes
also the user/kernel context switches. The trade-off among these option is between performance
and observability: DPDK is faster because bypasses the kernel, but XDP retains the benefits of
running in-kernel, such as the standard tools for monitoring. In the following, more details are
discussed for each of these technology.

3.2.1 The Linux Express Data Path (XDP)

The Linux kernel introduced the eXpress Data Path (XDP) as the lowest layer of its network stack,
located within the driver of network devices [122]. At this stage, XDP allows the execution of user-
provided code (eBPF programs) for each packet, including forwarding the packet itself to and from
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a userspace socket: this way, XDP allows to send and receive packets without involving the other
network stack components, thus avoiding expensive operations such as memory allocation for
incoming packets. The price to pay is that some amount of CPU is spent to forward each packet
between the driver and the socket.

To use XDP, developers have first to open a socket of type AF_XDP and a shared memory
area to allow the zero-copy packet writes/reads (directly or through higher-level libraries such as
libxdp [129]). Then, users send packets by placing data into the memory area and writing a packet
descriptor to the socket. Once received the descriptor, the eBPF program will send the packet on
the network without copies. Packet reception works in the same way, but roles are reversed. If
the network card supports it, it is possible to offload the eBPF program execution to the hardware.
Therefore, this approach bypasses the kernel TCP/IP network stack, achieving efficient zero-copy
and low-overhead data transfers. In turn, however, the user has to provide its own implementation
of the network and of the transport layer protocols (e.g., mTCP [61]).

3.2.2 The Data Plane Development Kit (DPDK)

The Data Plane Development Kit (DPDK) is a set of C libraries designed to accelerate packet
processing workloads running on a wide variety of CPU architectures [48]. Originally designed
by Intel in the context of the softwarization of network functions, the flexibility and performance
of these library has rapidly made it an interesting option also for end-host networking. Compared
to XDP, DPDK takes a step further and completely bypass the OS kernel, hence representing a
kernel-bypassing technology. This approach results in a reduced scheduling overhead, because
there is no context change between userspace and kernel processes on the critical datapath.

The key insight of DPDK is that its libraries let users directly interact with a userspace version
of the network device drivers, called Poll Mode Drivers (PMDs). The user application and the
userspace driver exchange packet data on a shared memory area called memory pool. To send a
packet, the user must provide to the driver a pointer to the appropriate memory area. On the
receive side, incoming packets are placed by the driver into a pre-established memory area, and the
corresponding pointers are returned to the user. Just like XDP, DPDK allows the user to directly
manipulate L2 (Ethernet) frames. If applications need higher-level packet processing, they must
provide their own protocol stack.

Beside the bypassing of the kernel, a second key feature of DPDK is that it allows asynchronous
processing: DPDK libraries do not notify applications of incoming data, but it is responsibility
of the user to periodically check for that. To minimize latency, usually applications employ one or
more threads (lcores), each pinned to a separate core, that continuously check for messages from
the applications to be sent on the network and from the network to be sent to the application.
This busy polling approach is very effective in terms of performance, but it also represents one of
the major drawbacks of DPDK because it induces a high CPU consumption.

3.3 Hardware Acceleration

Hardware-based acceleration techniques offload one or more computationally intensive tasks to a
network accelerator, a special-purpose hardware device. In the networking domain, these devices
can effectively execute performance-sensitive operations, such as packet processing, much faster
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than general-purpose processors, thus allowing application developers to leverage the full perfor-
mance potential of modern network links. On the reverse side, the requirement of special hard-
ware might become a significant entry barrier to developers, although the prices of these devices
are increasingly more accessible.

Network accelerators can be significantly heterogeneous in terms of hardware implementation,
supported tasks and protocols, interface exposed to developers, and programmability. From a
hardware perspective, most devices are built using three main technologies, namely Field Gate
Programmable Arrays (FPGAs), Application-Specific Integrated Circuits (ASICs), or Systems-
on-a-Chip (SoCs), each with different characteristics and properties. Depending on their goals in
terms of product cost and complexity, manufacturers and researchers can decide to embed spe-
cific network functions in a network card (e.g., [84, 75]), or to provide them through an addi-
tional device (bump-in-the-wire approach [31, 44]). From a software perspective, developers in-
teract with these devices through interfaces that can have different degrees of standardization,
expressiveness, ease of programmability, and associated performance overhead, depending on the
underlying hardware.

Toward a unification, Remote Direct Memory Access (RDMA) has emerged in the last decade
as a convenient, cost-effective approach to network acceleration, supported by several different
kinds of hardware. Compared to XDP and DPDK, not only it bypasses the network, but it relies
on a hardware-based implementation of network protocols that further reduces the CPU inter-
vention on network operations.

3.3.1 Remote DirectMemory Access (RDMA)

Remote Direct Memory Access (RDMA) is a standard communication model that allows a pro-
cess to directly access the memory address space of another process on a remote machine [85]. The
RDMA specification defines an asynchronous, general-purpose semantics that does not require
a specific implementation: any hardware device, including in principle general-purpose CPUs,
may implement its model [9]. It is in that way that, as shown in Figure 3.2, RDMA introduces
a uniform access layer to hardware acceleration. Originally designed to work on special-purpose
Infiniband network fabric, RDMA recently became available also for Ethernet networks (RDMA
over Converged Ethernet, RoCE [10]), which made it available also for general-purpose network-
ing, and became a popular networking technique both in industry and academia, resulting in a
wide deployment of this technology even in cloud datacenters.

RDMA communication follows two main steps. First, the communicating peers should regis-
ter a local memory area with the network card (memory region) and establish a remote connection
by opening a Queue Pair (QP), which comprises a couple of work queues for send and receive op-
erations. Then, the actual communication may start. RDMA operations are asynchronous by
nature: a node can issue a series of service requests to be executed by the hardware, pushing them
to the proper queue. Those requests include the transfer of portions of local memory to remote
memory regions, or vice versa. The network card enforces these requests in a transparent way, by
implementing in hardware the necessary protocols. There are two possible kinds of transfers: two-
sided, which requires the receiver to actively listen to incoming data, and one-sided, which allows
a process on one machine to asynchronously access a region of application memory on a remote
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node. A great advantage of the latter is that the remote CPU is not involved at all, thus making
the latter kind of operations generally faster.

Despite its great performance advantages, however, RDMA has proved quite difficult to use in
general-purpose settings. The de facto RDMA interface, called Verbs, is very low-level and requires
the manipulation of several objects. Moreover, the high performance achievable with RDMA
links (today, up to 400 Gbps) is difficult to leverage and require a careful application design, as
Section 3.5 reports. Furthermore, because RDMA was originally conceived for High Performance
Computing, it presents several issues in terms of isolation, security, and scalability that arise when
considering its integration in cloud platforms. Therefore, although RDMA is one of the most
promising technologies for network accelerators, it is also considered one of the most difficult to
use and to integrate in the cloud model.

3.4 Deterministic Networking

Network acceleration allows applications to minimize the end-host overhead associated with data
copies, protocol processing, and process scheduling. That overhead does not only impact net-
work metrics such as latency and throughput, but also the predictability of network operations.
This property is increasingly important in the context of the cloud continuum, in which general-
purpose network hardware and protocols is progressively replacing domain-specific solutions.

Although it is not properly an acceleration technique, this Section introduces Time-Sensitive
Networking (TSN), a vital protocol in those scenarios, such as Industry 4.0 (see Section 2.4.2),
in which network predictability is paramount to support real-time industrial traffic.

3.4.1 Time-Sensitive Networking (TSN)

The Time-Sensitive Networking (TSN) protocol consists of a set of standards that aim to make
Ethernet networks deterministic to support real-time industrial traffic [42].

The first critical requirement of real-time applications is to have a time synchronization mech-
anism so that all the communication participants have a unique time reference. In the context
of TSN, this mechanism is provided by the IEEE 802.1AS standalone protocol that extends the
Precision Time Protocol (PTP) with a specialized profile called generic Precision Time Protocol
(gPTP). This extension defines two main entities, the Clock Master (CM) and the Clock Slave
(CS), that each network participant can associate with a network device. In this way, the device
can take part in the clock synchronization process [83].

A second standard (IEEE 802.1Qbv) defines a new traffic shaper, called Time-Aware Shaper
(TAS), designed to schedule network frames that belong to different types of time-critical flows.
Specifically, the standard defines time-aware communication windows, called time-aware traffic
windows, each associated with a specific queue of a network device. Each window can be used
to transmit different classes of traffic, and for this reason, it is divided into time slots that repeat
cyclically: frames belonging to the same class of traffic are buffered until the next opening of the
time slot associated with their class. In this way, assured traffic is guaranteed to have low latency
and jitter, and best-effort traffic cannot interfere with it. In practice, windows and slots are defined
through a Gate Control List (GCL) that identifies the moments in time when one or more queues
are open for frame transmission [83].
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The TSN protocol is therefore complementary to the network acceleration techniques pre-
sented in the previous part of the Chapter, and it mainly acts on packet scheduling strategies.
Because a complete solution for high-performance applications in the cloud continuum must also
support these kinds of requirements, one of the reference systems presented in Chapter 6 will also
include a scheduler compliant with TSN.

3.5 Challenges of network acceleration

This Section presents an example of the challenges associated with the efficient use of high-speed
network acceleration technologies, in particular of RDMA. The goal of the following discussion
is to further motivate the need for an abstraction layer that hides from cloud developers, whose
expertise is generally not system-level programming, the complexity of dealing directly with ac-
celeration technologies. Modern cloud applications are indeed complex systems, consisting of
multiple interacting components and software layers: the efficient use of acceleration technolo-
gies in those contexts requires a high degree of knowledge of both the application and the specific,
low-level details of the target acceleration technology. Otherwise, the risk is to leave unused a sig-
nificant portion of the performance provided by acceleration technologies: the example we pro-
pose in this Section is highly representative of how complex systems can expose subtle causes of
inefficiencies, which only a specialized set of optimizations can effectively address. We claim that
unifying these optimizations in a general-purpose abstraction for high-performance I/O would
greatly help developers, who would benefit from them without having to delve into the low-level
details of heterogeneous acceleration technologies.

In particular, the following discussion introduces three optimizations, generally applicable to
any high-performance communication systems, and describes how they were identified starting
from a careful performance analysis of the inefficiencies of an RDMA-based library, Derecho [63],
considered as an example of a modern complex system that relies on high communication perfor-
mance to provide its services. Derecho is a mature, RDMA-capable, open-source library for State
Machine Replication. It offers point-to-point and multicast communication options, supporting
failure atomicity, total ordering, and optional message logging with durability. We noticed that the
system was unexpectedly slow when the objects to replicate were small (<10 KB), and identified
three main causes for this poor performance and three optimization techniques to address them.
Those solutions turned out to have general applicability in other coordination-based distributed
libraries running on high-speed networks, so we grouped them under a single methodology called
Spindle [62]. For the sake of brevity, this Section will present a summary of the work, highlighting
the aspects relevant for this thesis.

This work is best understood as the next step in a progression of insights concerned with lever-
aging modern high-speed communication devices. Prior work explored optimizing the match
between RDMA and data movement [35, 65]. Derecho introduced a novel monotonic repre-
sentation of control data that facilitates opportunistic batching. Spindle shifts the focus to the
interaction between the application and the RDMA library.
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3.5.1 Spindle: Techniques for optimizing atomic multicast on RDMA

My contribution to this work, developed with Sagar Jha and Ken Birman at Cornell University,
consisted in the implementation of the ideas, equal participation in formulating some of the receiver-
side optimizations, and the evaluation of the system over the multiple iterations of the work.

The Derecho library

The Derecho library [63] implements fault-tolerant State Machine Replication for groups of pro-
cesses, and its protocols have been proved correct using standard techniques and the implemen-
tation checked using the Ivy protocol verifier [22]. Derecho shines when running over RDMA:
it sends small messages with one-sided RDMA writes, and large ones in a binomial tree pattern
using two-sided RDMA transfers.

When handling the replication of small data-objects, Derecho adopts a protocol called Small
Message Protocol (SMC). It manages a set of ring-buffers within a table, shared among the group
members: one row per sender. To send a message, an application must wait until a slot of the table
is free, fill it with relevant data, and then increment a “messages ready” counter. SMC will then
issue the corresponding RDMA write to first push the data to the remote group members, and
then the counter. Ideally, the size of the buffer should be large enough to avoid senders running
out of free slots, thus enabling continuous sending.

Periodically, a thread polls a series of predicates that check for new events in the table. Three are
of special interest when exchanging small messages. A send predicate detects whether the applica-
tion has prepared new messages that are ready to be sent. A receive predicate monitors the SMC
slots to discover new messages, and the corresponding trigger acknowledges the reception of these
messages to the other members. Finally, a delivery predicate checks the SST for messages whose
reception has been acknowledged by all the members, and thus are ready to be delivered to the ap-
plication. The performance of these predicates is crucial for the performance of the applications,
hence we targeted them in our optimization work.

SmallMessage Optimization

During the evaluation of the Derecho performance for small messages, i.e. under about 10KB, we
noticed that the system was unexpectedly slow, identified three main causes for this poor perfor-
mance, and defined three optimization techniques to address them. Those solutions, which we
refer collectively as Spindle, turned out to have general applicability in other coordination-based
distributed settings.

Opportunistic batching. A key source of inefficiency in SMC was that the latency of send-
ing control data (e.g., acks for receiving a message) is comparable to the latency of sending the
application messages themselves. Figure 3.3 shows that the RDMA write latency for small mes-
sages increases only marginally with the data size, rising from 1.73 µs for 1-byte data to 2.46 µs
for 4KB data. This behavior particularly affects the Derecho receive and delivery predicates previ-
ously described, which generate an ack for every new receive and delivery event. Worse, posting
each RDMA request to the NIC takes about 1 µs in our setting, a significant delay in light of the
critical role of the predicate thread for Derecho. We address this issue by batching events at differ-
ent stages of the communication pipeline: send, receive and delivery. Instead of letting the system
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Figure 3.3: RDMA latency vs data size. Latency remains almost constant for up to 4KB message size.

wait to accumulate a fixed-sized batch of messages, which would disrupt performance, we adopt
a form of self-balancing opportunistic batching: a batch can be smaller or larger depending on the
number of events a predicate discovers as it loops. For example, the send predicate checks to see if
multiple messages are ready. If so, it aggregates them on the fly, and sends a batch. Interestingly,
the opportunistic batching of messages or acknowledgments leads to an improvement of both
throughput and latency. In contrast, traditional batching mechanisms wait to collect each batch,
thus hurting latency.

Null-send scheme. Derecho employs a fixed, ordered membership for each epoch, delivering
messages in round-robin order by sender. However, this implies that if a sender is not ready to
send its next message, the delivery of messages from other senders could be delayed. The problem
is that application sending rates might not be steady, and even if they are, delays can be introduced
by the OS (e.g., scheduling or interrupt-servicing). To address this issue, we introduce a null-send
scheme: when a sender node detects that it is due to send a message but has none ready, it sends
a dummy zero-sized message (called null), permitting continued delivery of messages from other
senders. This scheme introduces a negligible bandwidth overhead while making the system adapt
very well to real-time delays.

Efficient thread synchronization. Applications access shared data structures when accessing
messages or preparing new ones to send. Here, locking protects against concurrency conflicts but
can delay the predicate thread. Additionally, many predicates were interleaving accesses to that
state and RDMA write operations. As the latter are costly (they can consume 20-50% of the total
predicate time), we refactored the predicate code and placed RDMA operations only at the end.
Since the logic of a predicate does not depend on the state at a remote node, but only on what
is present in the local SST, it is safe to release locks before proceeding with the time-consuming
communication operations. Moreover, this optimization increases batch sizes.

Performance evaluation

We assess the performance impact of those three optimizations by comparing the optimized sys-
tem against a baseline version of the Derecho protocols.

Our performance tests employ an application replicated on an increasing number of processes
(group size from 2 to 16), each running on a separate physical host. In one test every member
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Figure 3.4: Performance of the atomic multicast protocol with one subgroup and 10KB message size, before
and after our proposed optimizations. The term subgroup refers to a subset of processes that
replicate the same data-objects.

is a sender, whereas there is a single sender in the other test case. Each sender node sends a total
of 1 million messages using the new, strongly consistent, QoS option. All members receive every
message, and deliver them in the same order. In this graph we fix the message size at 10KB, but
we also evaluated smaller sizes and obtained very similar results. The tests were executed on our
local cluster equipped with 16 physical machines connected with a 12.5GB/s (100Gbps) RDMA
Infiniband switch. Each machine has 16 physical cores and 100GB of RAM.

Figure 3.4 plots the results. Overall, we see that Derecho’s bandwidth utilization increased from
1GB/s to 9.7GB/s in the “all senders” case, and network utilization improves from 10% to 77.6%.
Even with just one sender, where performance declines with the subgroup size due to increased
coordination overheads, our optimizations significantly improved both bandwidth and latency.

3.6 Conclusion

Motivated by the increasingly pressing need to meet stringent performance deadlines, in recent
years cloud developers have started to adopt different forms of I/O acceleration. All these options
follow the overarching trend of separation between control and data plane, which, in the network-
ing domain, translates into the design principles of zero-copy data transfers, userspace network
protocols, and asynchronous processing. This Chapter introduced three modern network acceler-
ation technologies that implement those principles to varying degrees, ranging from in-kernel ac-
celeration (XDP), to kernel-bypassing (DPDK), to specialized hardware offload (RDMA). These
technologies provide significant performance advantages to applications, but tend to sacrifice the
ease of use as they expose low-level interfaces and complex programming models. For example,
this Chapter reported on the experience of optimizing a State Machine Replication library for
RDMA, showing that only careful code tailoring allows to leverage the maximum network speed.

As a consequence, these technologies are not currently ready for an integration within standard
cloud platforms in the cloud continuum. The next Chapter will introduce a novel architecture
that, by decoupling user code from the specific implementations of these technologies, paves the
way toward the option for Network Acceleration as a Service in the cloud.
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4 NAaaS Requirements and Related
Work

In the last decade, cloud computing has embraced the trend of resource decentralization through
the concept of cloud continuum (Chapter 2). Today, the pressing need to fulfill increasingly de-
manding performance requirements is pushing toward a process of resource specialization that
clashes with the core cloud principle of virtualization (Chapter 3). The first part of this Chapter
defines the concept of Network Acceleration as a Service (NAaaS) as a way to make the emerging
forms of network acceleration accessible through the standard cloud service model.

Then, the second part of the Chapter considers the significant amount of previous research that
set the ground for this thesis. In particular, previous work is organized in three parts, correspond-
ing to the three key challenges that currently prevent the integration of specialized acceleration
technologies into the cloud continuum paradigm: the definition of agnostic interfaces to acceler-
ate I/O operations (Section 4.2.1); the system architecture to support them (Section 4.2.2); and
the virtualization of acceleration solution in cloud platforms (Section 4.2.3).

4.1 Network Acceleration as a Service (NAaaS)

The cloud model is founded on the key principle of resource virtualization (see Chapter 2). Virtu-
alization enables users to obtain any kind of resource as a service, ensuring immediate access, un-
restricted usage, and the added advantage of elastic scaling. At the same time, it enables providers
to flexibly and automatically manage their infrastructure and monitor its real-time status.

Virtualization also introduces an overhead that used to be acceptable until recent years. As
software and hardware I/O acceleration becomes available (see Chapter 3), such interposition be-
comes a performance bottleneck. To contrast this trend, the short-term strategy of major providers
has so far consisted in the almost complete removal of such virtualization layer: customers inter-
ested in acceleration can rent bare-metal instances equipped with specialized devices [5, 6, 12, 13,
52, 53]. Although this solution retains the performance properties granted by those devices, that
model has several disadvantages compared to traditional cloud platforms: tenant isolation is en-
forced through dedicated resources, a solution that is not cost-effective neither for providers nor
for the end customers. Furthermore, the almost complete absence of a virtualization layer mini-
mizes the flexibility of those instances, to the point of preventing typical cloud features, such as
live migration or the definition of virtual private overlay networks, to be available.

Concept definition

By embracing this trend of specialization, this thesis claims the need for the full integration of
acceleration devices as first-class citizens into cloud platforms across the whole cloud continuum
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toward the ultimate goal of enabling Network Acceleration as a Service. Expanding upon the exist-
ing forms of I/O and network virtualization, NAaaS envisions that user applications in a virtu-
alized cloud environment have the option to configure accelerated overlay networks that offer the
native link performance through a standard, high-level, and easy to use interface. This proposi-
tion is particularly important in the context of performance-sensitive applications, as their success
is contingent upon the availability of these advanced networking options, as thoroughly exposed
in the remainder of this work.

Main challenges

The practical implementation of NAaaS encounters two primary challenges. A first critical ques-
tion concerns the selection of the most suitable technology cloud platforms should provide access
to. Given the dynamic nature of the cloud continuum and the imperative to ensure code porta-
bility, there is not an obvious choice. Chapter 3 reviewed some of the available options, noting
how their heterogeneity may harm portability. Hence, the interface exposed to users must ideally
be technology-agnostic, but even so, an additional concern is whether such an interface should
be similar to the native ones of the supported accelerators, which require a certain expertise to be
used, or should rather provide a higher-level, easier-to-use set of primitives.

A second concern is the compatibility between the cloud virtualization layer, which decouples
applications from resources, and network acceleration options, which provide high performance
by bypassing any system interposition later. That is a significant challenge for providers, as they
rely on such decoupling to enforce infrastructure control, including observability tools and auto-
matic management actions.

4.2 Relatedwork

A significant body of previous work paved the way to the ideas and concepts introduced in this
thesis. This Section presents a summary of the most significant contributions for this work, or-
ganized in three parts. First, Section 4.2.1 surveys the works that propose agnostic interfaces to
accelerate I/O operations, considering in particular the programming model and the level of ab-
straction of the proposed APIs. Second, to support agnostic APIs, a suitable system architecture
is required: Section 4.2.2 categorizes different approaches proposed in literature. Finally, Sec-
tion 4.2.3 presents a summary of recent contributions toward more efficient forms of I/O vir-
tualization in cloud platforms. The works in the latter category have the goal to let applications
designed for a specific acceleration technology (in most cases, RDMA) to run unmodified within
VMs or containers, while also preserving the native performance of the underlying network. Ta-
ble 4.1 summarizes this classification and highlights the most significant works in each category.

4.2.1 Agnostic interfaces for I/O acceleration

Network acceleration technologies are based on the key principle of separation between control
and data planes, as discussed in Section 3.1. The most efficient way to materialize this principle is
to require applications to adopt an asynchronous programming model: as a result, the native inter-
faces of these technologies are all fundamentally asynchronous. However, that is also a significant
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Section Category Most relevant works

Section 4.2.1
Agnostic interfaces
for I/O acceleration

Synchronous interfaces
VSocket [124], SocksDirect [74]

RSocket [107], VMA [81]

Remote Regions [3]

Asynchronous interfaces Libfabric [54], Demikernel [131]

Section 4.2.2
System support for
agnostic interfaces

LibraryOS IX [19], Demikernel [131]

OS module Snap [78], TAS [67]

Section 4.2.3
Virtualization

of I/O acceleration

Hardware offload AccelNet [44]

Efficient paravirtualization FreeFlow [68], VSocket [124]

Hybrid virtualization HyV [94], MasQ [57]

Table 4.1: A schematic classification of the most relevant literature for this thesis.

departure from standard network APIs, which are based on an opposite synchronous program-
ming model. In this context, previous research on agnostic network acceleration interfaces has
either tried to privilege portability over performance or vice versa.

Synchronous interfaces

A flourishing line of research focused on adapting standard APIs, such as POSIX Sockets or
the POSIX file system access interface, to be transparently accelerated through RDMA: among
the most relevant examples, RSocket [107], VMA [81], and Remote Regions [3]. This is a chal-
lenging task because, as discussed in Chapter 3, acceleration technologies and standard interfaces
follow opposite design principles. Indeed, all these contributions sacrifice performance in favor
of application portability and ease of programming, as they allow applications to execute with-
out modifying their source code or requiring developers to learn new programming abstractions.
VSocket [124] and SocksDirect [74] are recent attempts to minimize this performance overhead, in
particular by reducing the number of copies on the datapath to those strictly required by the stan-
dard interfaces. By providing a cloud-native support for a zero-copy datapath behind the Socket
layer, both these solutions achieve much better performance than previous alternatives. Although
the overhead induced by data copies remains non-negligible, especially for big payloads, for many
users that is acceptable in light of the portability advantages of this approach.

Finally, all these solutions have a relevant issue: the system support that backs them is tailored
for RDMA, making the use of other acceleration options impossible. A solution that satisfies the
NAaaS requirements should instead support a set of acceleration technologies, possibly pluggable
as this thesis proposes.

Asynchronous interfaces

Recently, Libfabric [54] and Demikernel [131] emerged as the most complete proposals for new
agnostic interfaces based on an asynchronous programming model and also not tailored to a specific
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acceleration technologies. They differ for the different abstraction layers of their API: libfabric
offers a driver-level interface, whereas Demikernel targets system-level developers.

The libfabric library is an industry-grade, mature API that enables applications to run on a wide
set of high-performance communication technologies. Developers code against a transparent set
of primitives, which the library then translates to the native operations of the specific technol-
ogy chosen by the user when launching the application. Libfabric supports RDMA, for which
was mainly designed, but also other technologies, including DPDK and kernel-based TCP/IP.
A key design choice in libfabric is that the interface exposed to the users is very low-level, and it
closely follows the structure and programming model of RDMA Verbs. That makes it a very thin
layer between applications and the underlying technology, limiting its duties to little more than
an adapter and thus minimizing the overhead introduced on each operation. Behind this design is
the goal to serve experienced developers that need full control on system resources (e.g., memory
management) and benefit from the most advanced features of the native technology (e.g., HPC,
RDMA databases, RPC libraries, etc.): all these aspects remain in control of the user application.

On the opposite, Demikernel represents a recent effort that targets general users looking to im-
prove the performance of their applications without specific knowledge on network acceleration.
To this end, Demikernel exposes a higher-level interface designed to be familiar to its target users:
an extension of the standard POSIX Socket interface that lets applications submit asynchronous
I/O operations. Differently from libfabric, within these libraries Demikernel implements typi-
cal OS features (memory management, I/O scheduling, network stacks) on behalf of the users,
when the corresponding services are bypassed by the selected acceleration technology, following
an approach better described in the next Section.

Overall, these two interface solutions aim at maximizing the networking performance and thus
ask programmers to adopt a non-standard programming model. Therefore, the target of these
works are mainly new applications developed with performance awareness. Furthermore, these
interfaces do not assume the availability of a specific acceleration technology, thus representing a
suitable solution for application portability across heterogeneous environments.

4.2.2 System support to agnostic interfaces

Any kind of agnostic interface requires some form of system-level support to implement the prim-
itives exposed to applications for a specific acceleration technology. Different architectural choices
are possible to build such support, and two of them have been recently proposed in literature as
the most efficient in combination with network acceleration: on the one hand, Demikernel pro-
poses an approach based on the libraryOS model, whereas Snap [78] and TAS [67] introduce the
idea of a microkernel-inspired userspace OS module. The discussion in this Section defines these
two approaches and their differences, which are also graphically represented in Figure 4.1. In both
cases, the fundamental idea is that applications should not be in charge of re-implementing typi-
cal system features bypassed by each technology, such as memory management or protocol stacks,
which are instead provided by the system support. Although that is not the only possible design
choice, because, for example, Libfabric leaves these features to be implemented directly by appli-
cations, that is the most suitable approach to meet the needs and the experience level of standard
cloud users.
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Figure 4.1: Different system architectures to support agnostic interfaces for high-performance end-host
networking. Dashed red lines represent address spaces.

LibraryOS architecture

To support its agnostic interface, Demikernel adopts an approach known in literature as library
OS [19, 93, 97, 64]. According to this model, the same interface is implemented by a set of userspace
libraries, each specialized for a different network acceleration technology (DPDK, RDMA, and
kernel TCP/IP are supported). Within the library, all the kernel-based systems features that are
bypassed by the associated technologies are re-implemented in userspace, relieving the end user
from this burden. In this case, all the code (application and system support) executes in the same
address space of the application that is using them, resulting in a high efficiency and minimal over-
head. However, each application also needs the visibility of at least one suitable network interface.
For example, if RDMA is used, an RDMA NIC should be visible to the application, because a
new instance of an RDMA-compliant libraryOS will be started. If DPDK is chosen, the applica-
tion needs to “own” the network interface, removing it from the visibility of other applications in
the same system. When applications are deployed in the cloud, for instance as containers running
in VMs, these requirements might be challenging to support, as Section 4.2.3 discusses.

OSModule architecture

On the other hand, another line of research proposed a more dynamic model. Although these
works do not directly target network acceleration technologies, they investigate strategies to im-
prove the system-level support to application I/O, by defining new techniques for high-performance
userspace network processing. These works introduce a microkernel-inspired model to support
faster network operations. Both Snap [78] and TAS [67] design a userspace OS module that cen-
tralizes network processing, offering it as a service to all the applications running on the same
host. Under this model, applications submit I/O operations to the OS module through shared-
memory channels, and the module executes the corresponding network processing. TAS adopts
this model to provide a fast path for a userspace implementation of the TCP protocol in the spe-
cific context of RPC workload. Snap is a more general work that allows the definition of custom
packet processing modules.

This microkernel-inspired models is particularly suitable for high-performance networking be-
cause it retains the advantages of a centralized network stack, as it currently happens for kernel-
based networking, even in presence of kernel-bypassing technologies. Among these advantages is

35



4 NAaaS Requirements and Related Work

the efficient management of the system resources, including memory allocation, cache-efficient
thread scheduling, and the support to transparent software upgrades. This model also promotes
higher flexibility: applications can move among different environments and, as long as there is a
running instances of the userspace OS module, dynamically attach to the network service on the
local host, without the need to instantiate additional resources. In contrast, the use of uncoordi-
nated OS libraries would instantiate a new datapath per application, requiring dedicated resources
(e.g., CPU cores for polling).

The centralized management of the system resources promoted by this model has also a practi-
cal consequence for applications that execute in cloud platforms: whereas the use of OS libraries
requires that each application has the visibility of a suitable network interface, with this central-
ized approach that should be enforced only for the userspace OS module, significantly simplifying
the requirements to provide infrastructural support for network acceleration in cloud platforms.
However, these advantages come at the price of an increased overhead for Inter-Process Commu-
nication (IPC), because the application and the system code run in different address spaces.

4.2.3 Virtualization of I/O acceleration

When considering the integration of I/O acceleration as a commodity into cloud platforms, pro-
viders must support the efficient access of virtualized applications to the physical devices. A good
I/O virtualization solution consists in the definition of a virtual I/O device that preserves the per-
formance of the corresponding physical device as much as possible. Chapter 2 has briefly intro-
duced the standard techniques currently adopted in cloud platforms for this purpose, highlight-
ing how these are not well-suited to support a set of technologies based on opposite design princi-
ples. Starting from this consideration, recent research works have proposed alternative strategies
to achieve efficient forms of I/O virtualization for network hardware accelerators.

This Section classifies these contributions in three main categories, which we visually represent
in Fig. 4.2: new forms of hardware offload (AccelNet [44]), a more efficient paravirtualization
technique (FreeFlow [68], VSocket [124]), and hybrid solutions that combine the advantages of
both (HyV [94], MasQ [57], SocksDirect [74]).

Hardware offload

The hardware-based virtualization provided by techniques such as SR-IOV [91] (see Section 2.3)
follows an all-or-nothing approach that lacks the flexibility of software-based control and data
paths, making features like monitoring and live migration almost impossible to achieve. To over-
come this issue, AccelNet [44] has explored the possibility to combine the efficiency of the har-
dware-based approach with the flexibility and programmability of paravirtualization: instead of
exposing a SR-IOV Virtual Function (VF) directly to applications, AccelNet creates a standard
virtual interface through which applications connect with negligible overhead. During regular
network operations, this interface is attached to a SR-IOV VF, benefiting from its close-to-line-
rate network performance. Only when dynamic actions are required (e.g., live migration), the
virtual interface is temporarily and transparently attached to a traditional paravirtualized datap-
ath to ensure the sufficient degree of flexibility.

Fig. 4.2 shows this technique on the left, where dotted lines represent the control and data paths
during transition periods. Assuming that most applications do not often need to be migrated
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Figure 4.2: I/O virtualization approaches for network accelerators: hardware offload (left), efficient par-
avirtualization (center), and hybrid virtualization (right). The solid lines represent the control
path, the dashed lines the data path. The dotted line on the left figure represent the temporary
data and control paths during dynamic network operations. The thick dots on the center figure
represent shared memory.

or to change their network configuration, this technique enables to leverage the full hardware
speed and introduces a high performance overhead only during the temporary transition periods.
However, when the datapath is offloaded to the hardware, cloud providers do not have visibility
on the network operations, making certain actions such as monitoring still impossible to achieve
in software: indeed, AccelNet proposes to integrate them directly into the hardware NIC.

Efficient paravirtualization

FreeFlow [68] and VSocket [124] propose a more efficient version of paravirtualization (see Sec-
tion 2.3) designed for RDMA support. These proposals clearly separate the control and data
planes, with the goal to remove the processor involvement from the data path and to enable forms
of asynchronous, zero-copy communication to move packet payloads between the frontend and
the backend drivers (see Fig. 4.2 center). For the data plane, these works propose the use of shared
memory areas between the two drivers, generally implemented as ring buffers, where message pay-
loads will be placed. That way, the two drivers only have to exchange notifications about new mes-
sages in the designated area. In turn, the backend driver might register the shared memory area
with the RNIC, thus enabling true zero-copy operations: every time a VM and container posts a
write operation, the payload of the request is accessible directly from the NIC, and vice versa for
reception, thus removing time-consuming payload copies from the data path.

However, device drivers must still involve the processor to exchange request descriptors and
completion notifications. Although these descriptors are generally exchanged through asynchro-
nous communication channels, such as UNIX sockets or virtio queues, these mechanisms might
still introduce too much overhead and ultimately become the performance bottleneck for RDMA.
FreeFlow mitigates also this problem through the definition of a fast path for latency-critical ap-
plications, such that even the notification exchange happens over a shared memory area. Even
though this mechanism is effective, especially to improve latency, it also requires a spinning thread
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that continuously polls for updates the memory area, a solution not ideal for cloud environments
where processor cores are precious assets [44].

Hybrid virtualization

A number of works have introduced a form of hybrid virtualization to balance the flexibility of
the paravirtualization mechanism with the performance efficiency of I/O acceleration option [94,
57, 74]. Compared to the form of efficient paravirtualization described in the previous paragraph,
hybrid solutions take a step further toward the separation between data and control planes, remov-
ing from the data plane even the overhead of the software-based notification channels. Indeed, as
shown in Fig. 4.2 on the right, hybrid virtualization adopts a standard paravirtualization mecha-
nism for control-plane actions (e.g., connection establishment), but lets the hardware accelerator
directly access the memory area where guest applications place payload data through a complex
mechanism of memory remapping.

This approach represents a interesting trade-off between flexibility and performance, because
the hypervisor maintains control on the data plane to enforce properties such as isolation and
portability, but without performance penalties. However, hybrid virtualization also comes with
some relevant drawbacks. First, it requires a modified version of the vendor-specific driver for the
NIC to be loaded into the guest kernel, thus limiting the portability of the VMs and introducing
a strong maintenance constraint. Secondly, just like in hardware-based solutions, the hypervisor
loses the possibility to enforce the different data plane policies that are typically used by cloud
providers to manage traffic on established data connections.

A final consideration about hybrid approaches is that all the existing proposals only consider
VMs, except for SocksDirect [74], which offers a socket interface for containerized applications: a
monitor process runs in each host, acting as a backend driver with the role to set up the direct data
path among local or remote containers. Communication occurs through a shared memory chan-
nel for containers located on the same host, whereas remote containers interact directly without
the mediation of the monitor, according to the hybrid approach. In this case, since a container
is just a process for the operating system, there is no need for a custom frontend driver and con-
tainerized applications can directly use the host driver.

4.3 Conclusion

This Chapter opened with the definition of the concept of NAaaS as a way to integrate the grow-
ing trend of resource specialization, and specifically of network acceleration, within cloud com-
puting platforms, including the traditional core datacenters and the more recent extension of the
cloud continuum. Although this concept is still in its infancy, it derives from a significant body
of literature that explored the most important challenges related to its implementation. The sec-
ond part of this Chapter surveyed the most relevant of these works, highlighting the trade-offs
between portability and performance that emerge at the interface, at the system, and at the infras-
tructure layers. Combined together, these contributions hold the potential to enable NAaaS in
cloud platforms.

However, finding the best combination that suits the heterogeneous scenarios emerging in the
cloud continuum is not an easy task and previous work did not investigate that in an integrated
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way: the contributions surveyed above focus each on a specific aspect, but none proposes a solu-
tion that spans all of them. Considering the network interfaces, standard APIs favor portability
over performance, whereas other agnostic proposals adopt an asynchronous programming model
to maximize performance. At the system level, previous work mostly focused on the definition of
supports for fast packet processing alternative to the standard kernel-based stack, but without
specific attention to the integration of heterogeneous acceleration technologies. At the infras-
tructural layer, instead, the goal of the presented works is to enable the efficient virtualization of
specific acceleration options (usually, RDMA), but the possibility to have multiple and heteroge-
neous technologies is not considered. In light of these observations, the next Chapter introduces
a novel architecture to support NAaaS in cloud platforms that takes all these considerations into
account.

39





5 AnArchitecture forNAaaS in the
Cloud Continuum

The previous Chapter defined the concept of NAaaS and reviewed the significant body of re-
search that sets the ground for this work. Although the combination of these previous contribu-
tions hold the potential to enable NAaaS in cloud platforms, previous work did not investigated
this problem in an integrated way that could be suitable for the heterogeneous scenarios emerging
in the cloud continuum.

This Chapter first introduces a novel architecture to provide system support to the transparent
I/O acceleration of applications in the cloud continuum. The goal of this architecture is twofold:
on the one hand, to allow the portability of performance-sensitive applications across the whole
continuum. On the other hand, to maximize the performance provided by acceleration options at
the local application deployment site. The proposed architecture is organized into three layers: the
interface, the system, and the plugin layers. The second part of this Chapter discusses the role of
each layer, the possible implementations, and the trade-offs between portability and performance
that emerge from each of them.

5.1 A novel system architecture forNAaaS

This thesis proposes an architecture for Network Acceleration as a Service in cloud platforms, to
enable applications spanning the whole cloud continuum to transparently accelerate their I/O
operations. Based on the discussion in Section 4.1, the requirements for NAaaS are twofold:
user applications must be portable across a continuum of virtualized resources and must have the
option to efficiently leverage any acceleration technology available at the deployment site, even if
these options may be very heterogeneous and difficult to integrate into virtualized environments.

Novelty of the contribution

The related work discussed in Section 4.2 significantly contributed to the conceptualization of
the architecture proposed in this thesis. The main novelty of this proposal is the adoption of an
integrated perspective on several topics previously considered only in isolation: agnostic interfaces
for heterogeneous I/O acceleration options, their system support, and the virtualization of high-
performance I/O. In this work, all those aspects are combined to provide a complete, unified, and
general-purpose solution to provide NAaaS in the context of the cloud continuum.

First, several previous contributions investigated different possible design choices for a high-
performance, general-purpose I/O datapath, alternative to the standard kernel-based option (Sec-
tions 4.2.1 and 4.2.2). However, these options did not consider the need to support heteroge-
neous forms of high-performance networking, including those that offload some features to dif-
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ferent kinds of hardware devices. On the contrary, this thesis adopts the same design principles
of those contributions to define a unified abstraction for the coexistence of heterogeneous high-
performance I/O options within a single framework, to reduce the degree of complexity exposed
to users and, at the same time, to expand the range of I/O acceleration options they can leverage,
thus accounting for the typical heterogeneity of the cloud continuum scenarios.

Two more recent contributions already considered the possibility of integrating different I/O
acceleration technologies within the same system [131, 25]. However, they propose two different
systems that are specialized for a specific deployment scenario, respectively a datacenter and a plat-
form for the execution of virtual network functions. In contrast, this thesis takes a step further and
defines a more general architecture, by isolating and characterizing three main components that
must be provided by any solution for the integration of heterogeneous I/O acceleration. The def-
inition of these components derives from the abstraction and definition of the three common de-
sign principles of network acceleration technologies, which this work is the first to explicitly state
(Section 3.1). Furthermore, this work explores two novel implementations of the proposed archi-
tecture: a data distribution service, which allows the transparent interchange of heterogeneous
I/O technologies to support communication within distributed applications (Section 6.2); a new
middleware that decouples the user requirements on communication, expressed via QoS policies,
from the actual technology that carries user data (Section 6.3).

Overall, there is still no complete solution to the challenge of offering a high-performance I/O
datapath, agnostic to the specific acceleration technology that supports it, to virtualized applica-
tions in cloud platforms. The related literature on the virtualization of acceleration technologies
(Section 4.2.3) only considers solutions specialized for a specific hardware or software option. In
contrast, the architecture proposed in this thesis is designed for heterogeneity. On the one hand,
the architecture requires that user applications are portable among different acceleration options,
thus accounting for situations in which only some of the latter are supported by the provider.
On the other hand, the implementations that we propose are designed to minimize the require-
ments for virtualization on the provider (e.g., by allowing multiple applications to share the same
NIC) and easily adapt to the possible future evolution of I/O accelerators toward better support
of virtualization features in next-generation cloud platforms (Chapter 8).

Definition of the architecture

The key insight of the solution proposed in this work is a clear separation between the layer of ag-
nostic API exposed to applications and its implementation by specific acceleration technologies.
This separation is embodied by a novel system layer that defines a technology-agnostic set of OS
features, corresponding to those typically bypassed for the sake of performance, designed to fol-
low the principles of zero-copy transfers, minimal context switches, and asynchronous processing
introduced in Section 3.1. This decoupling approach benefits both cloud users and providers deal-
ing with acceleration. Application developers are freed from the burden to re-implement these
system features from scratch and can avoid tailoring their code for a specific accelerator. At the
same time, it is easy for providers to integrate these agnostic features with the specific I/O mech-
anisms provided by the actual acceleration technologies.

Based on these considerations, this thesis proposes a modular architecture for NAaaS based on
three layers that define how applications access high-performance I/O capabilities, which are the
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agnostic systems features that must be provided to support these capabilities, and how these can
be combined with the low-level mechanisms defined by different acceleration technologies:

• An interface layer exposes a technology-agnostic set of primitives to user applications, thus pro-
moting code portability across heterogeneous deployment sites. A key responsibility of this
layer is to define how users designate which communication channels require acceleration. This
choice might be either explicit, hence leaving to the user a certain degree of visibility on which
specific technology should be actually used, or implicit, hence delegated to the platform based
on user-provided hints. Section 5.1.1 discusses the role of this layer more in detail, by also ad-
dressing the trade-offs that can emerge in terms of portability and performance.

• A system layer embodies the actual decoupling abstraction between the application code and
the underlying technologies. This layer defines a set of OS system features as a service to applica-
tions that would otherwise need to implement them from scratch. Among these features, there
is memory management for zero-copy data transfers, thread scheduling to handle asynchronous
operations, and packet scheduling to allow traffic prioritization. Section 5.1.2 further details
these features and how they are designed after the design principles of modern acceleration tech-
niques to be easily combined with their low-level mechanisms.

• A plugin layer implements the applications’ network operations by using the native interface
of the actual acceleration technologies and by interacting with the agnostic features defined by
the system layer. This layer must be organized in a modular way to segregate the technology-
specific details into pluggable components, thus potentially allowing applications to dynamically
attach to different acceleration options. Within each modular component, providers can adopt
the necessary optimizations to maximize performance, such as those introduced in Section 3.5,
and provide additional system features if required (e.g., protocol stack). Section 5.1.3 provides
more insights into the role of this layer, including how this modular architecture favors the
integration of I/O acceleration options in cloud infrastructures.

The decoupling role of the system layer is the distinguishing feature of this architecture for
NAaaS: by programming against an agnostic interface, users can design portable applications
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Figure 5.1: A schematic representation of the proposed architecture.
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that, thanks to the modular plugin layer, can attach to the possibly heterogeneous acceleration
options available in different deployment sites. The role of each layer is discussed in more detail
in the following Sections, as different design choices and trade-offs emerge in terms of application
portability, performance efficiency, and integration with virtualized environments.

5.1.1 The interface layer

The interface layer defines the set of primitives through which applications transparently access
accelerated I/O operations. The ultimate goal of this layer is to enable a write once, run every-
where service model, so it is paramount that these primitives remain unchanged across the whole
cloud continuum. Beyond that, the definition of a suitable interface for this layer also requires
to consider two other crucial aspects. On the one hand, the interface must define a programming
model that is compatible with high-performance I/O. On the other hand, because applications in
the cloud continuum have deeply heterogeneous requirements, it must define a mechanism for
developers to designate which communication channels require acceleration, and more broadly,
which are their QoS requirements.

Programming model

The previous discussion in Section 4.2.1 on agnostic interfaces highlighted that two different pro-
gramming models, synchronous and asynchronous, have been adopted in literature to provide
access to high-performance I/O, with a different balance between application portability and per-
formance. On one side, APIs such as the standard Socket guarantee ease of programming and
backward compatibility because of their ubiquitous adoption, but they are also bound to a syn-
chronous programming model that requires a significant processor intervention on the data path.
On the other side, alternative agnostic interfaces propose an asynchronous model to maximize
performance, based on zero-copy data transfers and minimal processor involvement in I/O oper-
ations, but require developers to redesign applications to take full advantage of it.

Both models are a possible choice for this layer. Indeed, although a high-performance interface
for NAaaS would be based on the asynchronous model, the vast amount of legacy cloud appli-
cations still need to be supported through standard APIs, even if that reduces the effectiveness of
the acceleration support.

Choice of Acceleration

Applications in the cloud continuum are characterized by heterogeneous QoS requirements, as
widely discussed in Chapter 2. The most important QoS parameter considered in this thesis is the
need for I/O acceleration, but several others are relevant, such as resource consumption. Hence,
this architecture requires that any implementation of the interface layer let users specify the QoS
requirements of their communication channels: for instance, which ones require acceleration.

The kind of mechanisms exposed to users to operate this choice is critical to determine the de-
gree of visibility and control they have on the whole infrastructure. Different interfaces can make
users explicitly choose which acceleration technology they want to bind their code to, or instead
leave this choice implicit, delegating the mapping to the system support. The explicit approach
is already adopted in literature by driver-level (e.g., libfabric) and system-level (e.g., Demikernel)
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agnostic interfaces: the desired mapping in the local deployment environment is a configuration
option to set before the application instantiation. This option is static, as the mapping remains the
same once the application is started, and it is suitable for scenarios where the kind of locally avail-
able resources is known a priori. Instead, the implicit approach moves to the underlying system
layer the choice of which acceleration technology must be used to support the user code, leaving
to users the possibility to provide hints about the mapping through high-level QoS options. This
is a more dynamic option that is particularly useful in contexts characterized by heterogeneous re-
sources and high mobility of application components, such as those arising at the network edge,
and potentially enables to attach at runtime the same code to different technologies.

Existing examples of the implicit approach are middleware interfaces, such as the OMG Data
Distribution Service (DDS) [88] and the OPC-UA [46], which are indeed used mostly at the net-
work edge, where such dynamic use cases typically arise. However, although these interfaces offer
a wide range of high-level QoS parameters to be associated to I/O channels, none o them currently
considers the option for acceleration. The next Chapter introduces two possible implementations
of middleware-level interfaces that follow this approach.

5.1.2 The system layer

The system layer is the core of the proposed architecture as it offers system support for high-
performance I/O as a service to applications running on the same machine. This layer represents
an alternative to the standard I/O stack of common operating systems by providing an equivalent
set of features, but designed according to the modern principles of zero-copy transfers, minimal
context switches, and asynchronous processing. The technology-agnostic design of these features
effectively supports the uniform interface exposed to applications, and decouples user code from
the internal mechanisms used by each acceleration technology to provide them.

The features provided by this layer correspond to those typically bypassed by applications that
use acceleration techniques and whose efficient re-implementation is typically burdensome for
the average cloud user. Because data copies are the most relevant source of overhead in tradi-
tional stacks, memory management for zero-copy data transfers is one of the main responsibili-
ties of this layer, which must manage memory allocation on behalf of applications to minimize
copies. Strictly related to memory management is the scheduling of the asynchronous tasks that
act on such memory, such as commanding output actions, detecting incoming data, or progress-
ing packet processing: following the experience reported in Section 3.5, another crucial feature
needed by applications is to interact with the OS to efficiently schedule one or more threads to ex-
ecute these tasks, balancing performance and resource consumption. Finally, many applications
especially at the network edge have specific QoS requirements that require the prioritization of
traffic belonging to certain I/O channels, such as in industrial environments (see Section 3.4):
to meet these needs with minimal overhead, the system layer must also provide the possibility
to schedule I/O operations according to these priorities. The next paragraphs will describe these
features in more details, explaining how they can be designed in a technology-agnostic way.

The design and implementation of these features in an agnostic way is key to the goal of en-
abling NAaaS in the cloud continuum. However, this choice also forces the system layer to only
provide access to the minimum set of common functions among the supported technologies. For
example, a distinguishing feature of RDMA is one-sided data transfers (see Section 3.3.1). How-
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ever, either an agnostic version of this feature is provided at this layer (similarly to Snap [78]), or
it cannot be exposed to applications. This limitation derives from the intended target of the pro-
posed architecture: average cloud users that need application portability across the cloud contin-
uum. Hence, this architecture is not designed to support applications with more advanced needs,
such technology-specific features of a higher degree of control on the system resources. Other
architectures, such as the libfabric library, are more suitable for those applications.

Zero-copy memory management

Modern I/O acceleration techniques adopt a common approach to achieve the goal of zero-copy
data transfers. During a preliminary registration phase, one or more memory areas are registered
with the NIC for Direct Memory Access (DMA). Then, applications place data to send and re-
trieve received data from these memory areas.

To generalize this mechanism and hide it from application, the system layer directly manages
memory allocation on behalf of the served applications. When an application attaches to the sys-
tem, the system registers memory areas with the NIC. Then, whenever needed, the application
asks the system for a memory buffer, writes on it, and submits an output request. On the receive
side, the application gets a buffer containing the incoming data from the system, consumes it, and
then releases it back. This general mechanism has the advantage of being independent from the
specific details of each acceleration technology, but also to reproduce the common behavior of all
these options. Hence, it is easy for the system to interact with the plugin layer as both support the
same kind of operations.

Thread scheduler for asynchronous operations

According to the principle of data and control plane separation, applications designed for high-
performance I/O follow an asynchronous model, such that I/O operations and protocols are
driven by the application needing the data instead of data receive or transmit events driving the
application. In this context, the architecture proposed by this thesis leaves to user applications
only the responsibility to submit send requests to the lower layers and to detect incoming data
from them. These requests are then translated by the plugin layer, which will be better described
in Section 5.1.3, into technology-specific operations.

To this end, the role of the system layer is to ensure that the asynchronous I/O and protocol
processing actions of the plugins are executed frequently enough to avoid stalling the send and re-
ceive pipelines, which would hurt performance, but also not too frequently, as that would induce
a higher CPU consumption than necessary. To balance these needs, the system layer must define a
thread scheduling strategy, possibly by interacting with the operating system, that considers two
key aspects: which and how many threads will execute the plugin logic, and how these threads are
scheduled in the OS, to ensure they have priority over other application processes.

The choice of the number of threads to dedicate to the plugin asynchronous operations is not
trivial. On the one hand, modern powerful multi-core processors allow multiple threads to oper-
ate in parallel on I/O operations, thus compensating for the relative slow speed of a single core (see
Chapter 3). However, multi-core I/O processing also carries a set of issues. First, it may require
the introduction of locks on shared resources, thus potentially stalling the overall processing. Sec-
ond, handling multiple cores also increases the need for multiple context changes, which is a major
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source of overhead as previously discussed. Finally, single-thread processing allows to maximize
the use of the data and instruction cache, which can be very efficient (see also Section 3.5). Over-
all, because different threading models can have a significant impact on performance and resource
consumption, the system layer should ideally define a set of possible strategies and leave the choice
to users or providers on which is the most appropriate for their specific requirements.

Packet scheduler

Performance-sensitive applications, especially at the network edge, might require the prioritiza-
tion of some I/O channels that carry critical traffic. Section 3.4 introduced an example of the
techniques typically used for that purpose, including the definition of standard protocols such as
TSN to implement this prioritization across all the network components involved in the trans-
mission. Considering end-host I/O, the key component to ensure traffic prioritization is a packet
scheduler, which must detect packets belonging to the critical flows and prioritize their forward-
ing to/from the network.

According to the design principle of minimal context changes, the system layer should not
rely on externally-provided scheduler, such as those provided by the OS (e.g., Traffic Control in
Linux), but must define its own scheduler and integrate its actions within the threading strategy
previously described. Ideally, this scheduler should provide a default behavior, e.g., FIFO schedul-
ing, but also support custom strategies from users. That would allow, for example, the system layer
to natively support the TSN scheduling required by industrial edge applications.

5.1.3 The plugin layer

The responsibility of the plugin layer is to translate the agnostic primitives exposed to user applica-
tions into the corresponding operations of the selected acceleration technology. Whereas memory
management, threading model and packet scheduling are managed directly by the system layer,
the plugins interact with these features to define the actual operations for memory registration
and data send/receive using technology-specific mechanisms. As previously anticipated, the fun-
damental design choice proposed in this thesis is to organize the support for each technology as a
modular and self-contained component that can be attached as a plugin to the system layer, thus
effectively decoupling the general system support for high-performance I/O from the specific im-
plementation details. This choice has two main consequences that are discussed in the following:
it gives the opportunity for technology-specific optimizations that are transparent to the final user,
and it greatly simplifies the use of network accelerators from cloud environments.

Internally, each plugin might find it necessary to provide additional system features required by
the associated acceleration technology. In the case of networking, a typical missing feature is a net-
work protocol stack (usually, TCP/IP), as all the network acceleration options bypass the standard
version provided by the OS. Whereas some options implement it in hardware, such as RDMA,
others require that a software version is provided. By freeing the end-user from this responsibil-
ity, each plugin may also introduce more efficient protocol implementations and performance
optimizations: whereas the in-kernel implementation is designed for maximum generality at the
expenses of performance, custom implementations can explore different trade-offs and possibly
reduce generality in favor of a more efficient processing. Overall, the plugin-based architecture
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segregates all the necessary optimizations for a specific technology (e.g., the techniques identified
in Section 3.5), without requiring the end-user to be involved.

A second important consequence of this modular organization is the easier integration of net-
work acceleration options in cloud platforms. Currently, cloud applications in need for acceler-
ation should directly interact with a suitable network interface, which is hard to provide while
maintaining both the native performance efficiency and the typical cloud flexibility, as widely
discussed in Chapter 3. The architecture proposed in this thesis removes this constraint: user
applications access I/O capabilities through an agnostic interface, and it is the plugin layer that
interacts with network interfaces. Hence, applications have maximum flexibility, as they can be
moved wherever and whenever necessary and attach to a different local plugin. In turn, providers
can effectively adopt the most efficient form of I/O virtualization (e.g., hardware offloading) with-
out compromising application portability.

5.2 Conclusion

This Chapter introduced a novel architecture designed to enable NAaaS in cloud platforms across
the whole cloud continuum. The architecture was presented through the definition of the three
layers that constitute it: the interface, the system, and the plugin layer. This design neatly sepa-
rates the agnostic system features exposed to users from the specific mechanisms adopted by the
acceleration technologies: this decoupling enables the development and deployment of portable
cloud applications and their transparent yet efficient access to I/O acceleration options. Further-
more, this decoupling also eases the integration of these acceleration options in cloud platforms,
thus effectively paving the way for a practical implementation of NAaaS.

The next Chapter will focus on how the three layers of the proposed architecture can be practi-
cally implemented, by proposing two reference implementations systems and discussing how they
represent two different design choices in the space of the possible implementations.
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The general architecture proposed in this thesis defines the specification for the system support
to NAaaS in cloud platforms, but it does not mandate a specific implementation, leaving many
practical design choices to system developers. This Chapter explores the different implementa-
tion choices possible at the different layers of the architecture and shows that these may lead to
very different systems, thus flexibly adapting to heterogeneous application requirements. At the
same time, these implementations still retain the fundamental properties of application porta-
bility and efficient access to acceleration technologies from cloud environments across the whole
cloud continuum as required by the NAaaS definition.

After an initial general discussion about the possible implementation choices, this Chapter in-
troduces two reference implementations of the proposed architecture: a data distribution middle-
ware called DerechoDDS, and a userspace OS module called INSANE. The key difference between
them is at the system layer, where the two implementations follow two distinct models to answer
their application requirements. To demonstrate their effectiveness in supporting interactive ap-
plications across the cloud continuum (see Chapter 1), a practical use case is presented for each of
them: DerechoDDS is used to support the creation of faster function pipelines in a serverless com-
puting platform, whereas INSANE is used to support a demanding application in the Industry
4.0 domain, potentially in combination with a 5G network infrastructure.

6.1 Implementation design choices

This Section explores the implementation choices that are possible for each of the architecture
layers defined in Chapter 5, and motivates why some of them are particularly interesting for this
work. Although each layer has a distinct and well-defined purpose, the implementation choice at
one layer may have relevant consequences on the others: for instance, the choice of an interface
may influence the design of the system layer, which in turns provides the mechanisms that plugins
must specialize. Therefore, the next Section 6.2 and Section 6.1 will show how these choices can
be combined together to create two systems with different properties.

6.1.1 Interface layer

The interface layer specification leaves great implementation freedom to system developers, recog-
nizing that standard interfaces, usually synchronous, are still widely used although not particularly
suitable for high-performance I/O. The only constraint on the system interface is the availability
of a mechanism for users to identify which I/O channels need acceleration.

The POSIX Socket interface has indeed the advantage of being standard, but it is also limiting
in terms of performance, as widely discussed in the previous chapters. If the application require-
ments are compatible, as often happens in the cloud continuum, a possible standard alternative

49



6 Reference Implementations

to sockets might be a higher-level messaging middleware interface, for instance that of the OMG
Data Distribution Service (DDS) [88]. DDS exposes a standardized and technology-agnostic in-
terface that lets applications exchange data according to a publish-subscribe model: messages are
exchanged as updates to topics and delivered to all the topic subscribers. DDS uses high-level pa-
rameters, called QoS policies, to let developers associate communication properties to topics, such
as whether I/O operations should be asynchronous. Therefore, the DDS interface is well-suited
as an implementation of the interface layer, because it combines a standardized set of operations
with an implicit choice of the underlying technology through QoS parameters, as well as the the
option for asynchronous I/O. However, DDS also carries some intrinsic problems: the high num-
ber of possible QoS parameters makes it quite complex to use for the average developer; on top of
that, it is not a general-purpose interface, thus not suitable for any kind of application.

Alternative to standard interfaces are the custom proposals surveyed in Section 4.2, in partic-
ular Demikernel [131], which introduces system-level primitives similar to the standard sockets
but oriented to an asynchronous programming model. The Demikernel interface could indeed
be considered a possible implementation of the interface layer, although the choice of which I/O
technology to use is explicitly required to the user, making the mapping too static for the most dy-
namic edge use cases. By combining the desirable features of DDS with concepts from the Demik-
ernel experience, Section 6.3 will introduce a novel middleware interface that is general-purpose,
based on QoS parameters for an implicit choice of which technology map to I/O operations, and
designed to be easy to use for the average developer. These characteristics make it a suitable choice
for applications across the whole continuum, and an ideal candidate as an implementation of the
interface layer.

6.1.2 System layer

Section 4.2.2 introduced two system models that are well-known in literature to support high-
performance userspace I/O operations.

system features from userspace components. A first approach is the libraryOS: the system-level
code runs in the same address space of the application that is using it, removing inter-process over-
head but also statically binding that application instance to a specific I/O technology and, usually,
to a specific network interface within the deployment environment. The second possibility is to
have a OS module that runs as a separate process and centralizes the system features for all the appli-
cations running on the same host. In this latter case, the inter-process communication overhead
between applications and the module is compensated by a more efficient use of the local resources,
such as processor caches and network interfaces, within the module itself.

These two system models answer to different application requirements. The libraryOS ap-
proach is more static in terms of mapping applications to a specific I/O technology, because it
substantially collapses the system features (system layer) and their technology-specific implemen-
tation (plugin layer) into a set of uncoordinated libraries, one per technology. That might be
efficient and easier to implement, especially if there is only one or a very small number of applica-
tions on a single machine. Conversely, the OS module approach keeps the system and the plugin
layer well separated, allowing a higher degree of dynamicity for the supported applications, as typ-
ically required in edge environments, and resulting in a better resource usage in case of multiple
applications using its services.
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Because of the relevance of both these models, this thesis presents an implementation example
for each of them: the DerechoDDS system introduced in Section 6.2 follows the libraryOS model,
whereas INSANE in Section 6.2 is designed as an OS module.

6.1.3 Plugin layer

At the plugin layer, the main challenge is to preserve the efficiency of the raw acceleration tech-
nologies in combination with the agnostic features provided by the system layer. The reference
implementations proposed by this Chapter will focus on two network acceleration technologies:
RDMA, as an example of hardware-based acceleration technology, and DPDK, as an instance of
a software-based option. In the latter case, this layer should provide additional systems features,
in particular a network stack (usually, TCP/IP) as DPDK does not provide it and bypasses the
kernel-level implementation. Overall, this layer could also offer more sophisticated features, such
as in the case of the DerechoDDS system that is presented below.

6.2 DerechoDDS: A Data DistributionMiddleware

The discussion presented in this Section is a brief summary of a series of papers developed in collabo-
ration between our research group and Ken Birman at Cornell University. I was the leading author
of this work and contributed to the idea formulation and to the system implementation of the system,
with help from Weijia Song about the integration with the Derecho library [102, 103]

The first reference implementation introduced in this Chapter is DerechoDDS, a novel system
compliant with the OMG Data Distribution Service standard [88]. Many applications delegate
the management of the communication among their components to a middleware layer deployed
between their code and the underlying operating systems, protocol stacks and hardware. This
approach reduces development time and effort, facilitating integration, reusability, extensibility,
and better overall scalability. Among the available options, the DDS standard is already designed
to transparently support a set of different network technologies that can be used interchange-
ably without application code changes. To achieve this goal, the DDS standard clearly separates
its interface, called Data-Centric Publish-Subscribe (DCPS), from the underlying technologies.
However, no commercial implementation currently supports network acceleration.

The new implementation presented here provides the option to transparently accelerate DDS
applications through RDMA by providing a new pluggable library designed according to the li-
braryOS system model. Indeed, especially at the network edge, many applications that adopt DDS
have limited dynamicity requirements, but strong constraints in terms of minimal communica-
tion overhead, such as in safety-critical settings like automotive or avionics. Therefore, a libraryOS
approach is more suitable for a new implementation of this middleware, and the pressing need for
high performance motivates the adoption of a form of network acceleration like RDMA.

Interestingly, the acceleration provided by RDMA enables the DDS middleware to provide ad-
ditional guarantees: not only improved communication performance, but also strong properties
such as data consistency among distributed components without heavy performance penalties. By
mapping the DCPS interface to Derecho [63], a library for high-performance state machine repli-
cation (see Section 3.5), DerechoDDS provides an optimal RDMA hardware mapping, breaks
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past performance records, and is also able to offer additional consistency guarantees. That opens
the perspective of novel use cases for this middleware, such as for applications that need a signif-
icant degree of fault-tolerance, or to share some plan of action among components that will be
each responsible for a distinct aspect, as Section 6.2.3 will demonstrate.

The following discussion provides first a brief background on the DDS interface, explaining
how it is particularly suitable to be accelerated through RDMA while still remaining transparent
for the user. Then, the system-level implementation of DerechoDDS is described, with a focus
on how the libraryOS approach basically collapses together the system and the plugin layer of the
reference architecture.

6.2.1 Standard interface and programming model

The standard Data-Centric Publish-Subscribe (DCPS) interface is based on the abstraction of
a Global Data Space (GDS), where topics are represented by distributed objects of a given type
(Figure 6.1). Within the application, publishers write their messages as updates to their local copy
of the topic-object, whereas subscribers monitor the object for updates. Under the covers, the
DDS system layer intercepts these updates and propagates the update to the local copies of the in-
terested subscribers. The implementation of this abstraction through standard communication
protocols requires the plugin layer to operate an explicit translation between object updates and
messages to be sent on the network. Intuitively, this translation is not necessary with RDMA:
by registering the corresponding memory area with the NIC, the middleware could simply com-
mand the transfer of the local object copy to the relevant remote subscribers, leaving the message
translation to the RNIC.

A rich set of parameters, called QoS policies, allows the developer to control several properties
about how the update propagation should happen. For example, the Durability QoS controls
the lifetime of data written to the GDS. It supports four values: (1) Volatile, if data should be
discarded immediately after delivery; (2) Transient Local, if data should be stored in the local cache
of publishers and subscribers, thus allowing late joiners to catch up; (3) Transient, which ensures

Figure 6.1: The DDS abstraction of a Global Data Space [33].
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that data are kept even beyond the lifetime of single publishers or subscribers; (4) Persistent, which
stores those data in persistent memory to make them survive system failures.

As anticipated in Section 6.1, a key insight of this work is that it is possible to extend this set
of QoS parameters to let user express the need for higher performance. Hence, in this work we
suggest the introduction of two new QoS parameters. One should be the Acceleration QoS, which
can be used by developers to signal the need for a certain topic to be accelerated. Furthermore, as
previously discussed, the availability of a fast communication option also allows to introduce the
option for a stronger degree of consistency among distributed copies of the GDS: these properties
can be expressed through new Consistency QoS parameter.

6.2.2 System library implementation

The implementation of the interface layer in DerechoDDS is collapsed together with its own
RDMA implementation, according to the libraryOS model. That results in a pluggable library
that can be used interchangeably with other libraries, in turn providing support for other commu-
nication technologies such as the kernel-based TCP/IP. In addition to the motivations previously
introduced for this choice, this model is also suitable to offer the option for a higher degree of data
consistency in DDS by supporting a state machine replication model (SMR) [114].

Because the primary concern of DerechoDDS is communication performance, it implements
the DCPS interface by mapping it to the Derecho library, already introduced in Section 3.5, which
is highly optimized for RDMA and is particularly suitable to implement the GDS. Indeed, the
publisher simply operates directly on the shared object, with the effect that the published message
is created “in place,” i.e., directly in the memory region that Derecho will copy to remote peers via
RDMA.

DerechoDDS stores

The first step to build DerechoDDS was to model the concept of DDS Global Data Space (GDS).
We addressed this by defining a set of distributed key-value stores, one for each Durability option:
NoStore for volatile, TransientStore for transient local, and PersistentStore for persistent (Fig. 6.2).
As a consequence, we can represent DDS Topics as objects of a user-defined type that live in one of
these three K/V stores: The object key serves as a topic name (for keyless topics [88]) or the name
plus a set of fields of the corresponding type (for keyed topics). Once we defined this mapping,
we implemented these three stores as Derecho replicated objects. First, we defined a basic set of

Figure 6.2: Architecture of DerechoDDS.
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Figure 6.3: Zero-Copy data path of DerechoDDS for Volatile durability.

operations to access the store: the most important one is put, which inserts a new object in the
store, if the corresponding key does not exist, or updates its value if it already exists. Then we
modeled the state on which such operations act, which depends on the desired durability level:
the NoStore store does not have an actual state, as updates fade after application delivery. The
Transient store keeps the last n received updates in main memory, as well as the Persistent store
which additionally backs them up in persistent storage. For reasons of brevity, in the following
we will focus on the Volatile case.

Zero-copy data path and Acceleration QoS

Once the stores were defined, we mapped the standard DDS interface onto them as seen in Fig-
ure 6.3. As a first step the publisher registers the generating function by calling DataWriter.write.
Internally, DerechoDDS calls the put operation to update the topic value on the corresponding
store, which in turn will ask Derecho a free memory buffer. When the buffer is available, Dere-
cho requests that the user-supplied message generation logic build the message ( 2 ), after which
it can push the message remotely via Derecho multicast ( 3 ). On reception, the Derecho core
notifies DerechoDDS of the update. The middleware places in a topic-specific variable a pointer
to the received message, and then invokes the subscriber’s listener ( 4 ). Within the listener, the
user-provided logic retrieves the value ( 5 ).

Thanks to this zero-copy data path, DerechoDDS can be configured to achieve much better
performance than existing commercial implementations, as Chapter 3 will demonstrate. This
work proposes to introduce a new Acceleration QoS parameter to let users control this aspect in a
transparent way, thus potentially opening up the possibility that other forms of acceleration are
supported. The most basic version of this option could have two values, such as to have accelerated
or non-accelerated topic. More sophisticated alternatives would be possible as well, such as those
that will be introduced by INSANE in Section 3.

Consistency QoS

This work proposes the introduction of a new QoS policy, Consistency, to allow users to enhance
the maximum DDS consistency level from eventual to atomic. Consistency offers two possible
values. The eventual setting selects for the standard OMG behavior, while the atomic option se-
lects for SMR guarantees. Derecho itself has two forms of multicast: a weakly reliable one, and
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Durability QoS Consistency QoS Derecho Service

Volatile Eventual NoStore, Unordered subgroup
Atomic NoStore, Ordered subgroup

TransientLocal Eventual TransientStore, Unordered subgroup
Atomic TransientStore, Ordered subgroup

Persistent Eventual PersistentStore, Unordered subgroup
Atomic PersistentStore, Ordered subgroup

Table 6.1: Mapping of DDS Durability QoS on Derecho.

an atomic option. Accordingly, it suffices for DerechoDDS to select the appropriate primitive, as
seen in Table 6.1. If eventual consistency is selected, DerechoDDS will deliver any update to the
relevant subscribers as soon as it is available. In contrast, for atomic consistency, DerechoDDS se-
lects the Derecho atomic multicast, which will delay delivery until the SMR obligations of totally
ordered, fault-tolerant delivery can be assured. As such, the latency costs of the atomic option are
of particular interest, and we evaluate them carefully in Section 7.2.1.

6.2.3 Use case: a serverless platform

This Section summarizes two works developed as an integration between the research project of my col-
league Andrea Sabbioni, which works mainly on serverless computing, and my work on DerechoDDS
and on network acceleration technologies [110, 111]. We contributed equally to the formulation of the
ideas and to the experimental evaluation of the system, whereas I led the work on the actual imple-
mentation of a prototype of the proposed serverless platform.

The availability of a data distribution middleware that couples the advantages of network ac-
celeration with the abstraction of a potentially strongly consistent distributed object store opens
up new usage scenarios: although most of the commercial DDS implementations are oriented
to support mission-critical applications at the network edge, the proposed DerechoDDS can be
useful for a broader range of applications across the whole cloud continuum.

To demonstrate that, this Section presents DIFFUSE: a DIstributed and decentralized plat-
Form enabling Function composition in Serverless Environments. DIFFUSE embodies an inno-
vative infrastructural support in FaaS environments (see Section 2.4.1), thus enabling the efficient
and transparent composition of functions through the distributed shared-memory abstraction
implemented by DerechoDDS. In this work, the middleware is used as a pluggable support, serv-
ing as a conveyor of messages among the platform components.

Additional background

Section 2.4.1 already introduced the concepts of serverless computing, FaaS, and the current open
challenges related specifically to the problem of composing functions into efficient pipelines. In
addition to these considerations, Figure 6.4 depicts the typical components of a FaaS platform.
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Figure 6.4: High level FaaS architectural model based on a Message-oriented Middleware (MoM), where
the middleware decouples the controller and the function. In alternative approaches (direct
invocation scheme) the function invocation is enacted by the controller.

The first element, directly interfacing with the incoming event, e.g., event generated at the net-
work edge, is the trigger. This component receives external events from heterogeneous sources,
via potentially different protocols, and converts them to local events for the FaaS platform. The
events generated by the trigger are then managed by a controller which, based on configuration
parameters provided by the user, forwards the event(s) to the proper function. Overall, the con-
troller is tasked with the function lifecycle management.

The function constitutes the unit of execution in FaaS, encapsulating the business logic used
to process specific events. A function is composed by an environment, e.g., Java, an invoker, and
the business code. The invoker receives events, injects the business code deployed by the end-user,
and successively launches the function to execution. The code is always executed inside a proper
environment comprising all the required dependencies, e.g., system libraries.

Mainstream FaaS platforms implement this function invocation scheme either through a clien-
t/server pattern or through a publish/subscribe approach by exploiting a Message-oriented Mid-
dleware (MoM) as an additional component of the architecture. The reliance on a publish/sub-
scribe scheme allows the controller to be relieved from part of its responsibilities such as load
balancing, event delivery, etc., delegating them to the MoM [41].

Outline of DIFFUSE

In this Section, we present a detailed view of DIFFUSE, outlining its main components, interac-
tion flow(s), and the mechanism at the basis of the function composition feature. This proposal
relies on DerechoDDS as a strongly-consistent shared-memory middleware capable of exploiting
modern hardware capabilities, embodying a similar semantic to the in-host shared-memory com-
munication. To emphasize the role of DerechoDDS in the support of this work, the last part of
this Section briefly discussion on the characteristics of other middleware frameworks that could
potentially be adopted in place of DerechoDDS, thus also evidencing the broad spectrum of de-
ployment options currently supported.
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Function composition architecture

The composition mechanism comprises two layers: (i) the configuration and coordination layer
instrumenting the FaaS platform components, and (ii) the function-to-function communication
layer serving as a conveyor of messages between components.
Configuration and coordination. Our proposal offers to users the capability to define custom
processing pipelines expressed via association rules, residing outside the functions’ business logic.
Currently, the association rules are shipped to the controller in a JSON-based format, and allow
the definition of generic, graph-shaped processing pipelines whereby the pipeline continuation is
determined by the output of the executed function. This also supports run-time modifications
and updates to the processing pipeline, adding to the flexibility of the approach.

Indeed, at instantiation time and periodically, the FaaS components - trigger and invoker - can
request the necessary configuration from the controller and participate in advancing the execu-
tion of the processing pipeline. These asynchronous updates allow moving the FaaS controller
outside the chain invocation mechanism, thus reducing the function response times compared to
the approach where the controller is involved in each function invocation.

Fig. 6.5 shows an example of a processing pipeline that is composed of three functions, namely
A, B and C. In a hypothetical scenario, the execution of the pipeline is triggered because of a
user issued request, calling function A into execution. Upon function A termination, depending
on its returned output inspected by the invoker component, the continuation of the pipeline
will be either the execution of function B or C. It is important to note that in contrast to the
reflective invocation mechanism where the (control) burden is offloaded to the controller entity,
in our approach the control logic is decentralized and distributed to invoker entities.
Function-to-function communication mechanism. Once a pipeline configuration file is pushed
to the platform, the components establish a series of communication queues (topics) used to ex-
change application and control data among them. In particular, the function-to-function com-
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Figure 6.5: DIFFUSE relies on a MoM-based approach for function-to-function communication; invokers
retrieve function invocation requests directly from the MoM triggering function execution.
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munication mechanism relies on publish/subscribe middleware to transparently invoke the next
function in the pipeline. Back to our example, once function A terminates the execution, the in-
voker consults the output and depending on the value, forwards the output either to Queue A or
Queue B, consequently triggering the execution of function B or C, respectively. That allows to
dynamically scale the number of invoker instances and to increase the level of parallelism.

In these settings, the MoM acts as a conveyor for all messages and events, hence it is of para-
mount importance that the solution be efficient and gracefully scale with the number of requests.
At the same time, it is desirable the platform be agnostic and decoupled by the specificities of the
underlying MoM solution, promoting portability and openness to future extensions. To this end,
we have introduced an abstraction layer (orange box near the Invoker and Controller in Fig.6.5)
decoupling the components from the specific MoM APIs by implementing a set of high-level
primitives such as the creation of a communication channel, send and receive of messages, etc.

In the following, we present how we adapted DerechoDDS to implement the DIFFUSE plu-
gin interface, thus allowing us to exploit modern hardware, guaranteeing low-latency and high-
bandwidth communication. Next, we discuss the other MoM alternatives and overall character-
istics, adding to the deployment spectrum of our platform.

DSMQueue: a Distributed Shared-Memory Queue

The Distributed Shared-Memory Queue (DSMQueue) is a thin interface layer, alternative to the
full-fledged OMG DDS interface, that we built to adapt the DIFFUSE MoM plugin interface
to DerechoDDS. Beyond a greater simplification of the syntactical details, there is no semantic
difference to the interface presented for DerechoDDS, and its implementation relies on the same
library that is described in Section 6.2.2.

DSMQueue represents a zero-copy, delete-after-read data transfer mechanism embodying a
similar semantic to the the Linux kernel mqueue primitive, but it is able to move data across re-
mote hosts. More in detail, DSMQueue is a distributed queue that exposes a push and a pop oper-
ation and may be configured to offer different semantics, such as FIFO (default) or LIFO. In the
following, we present the other MoM solutions already integrated in our framework, discussing
their characteristics and tradeoffs that emerge.

MoMDeployment Considerations

Adding to the deployment spectrum of our proposal, we identified two other state-of-the-art
MoM solutions, namely Apache Kafka and Redis Stream [7, 51]. In specific, Kafka is a highly scal-
able, open-source event streaming platform, while Redis Stream is a streaming abstraction built
on top of the widespread persistent Redis database.

Table 6.2 provides a summary of some characteristics the different MoM solutions embody.
All the options offer advanced state replication and consistency mechanisms for improved load
distribution and fault tolerance. In particular, Kafka exploits a multi-broker mechanisms with a
configurable level of topic (channel) replication, while Redis employs a classical Driver-Worker
active replication scheme. Similarly, our DSMQueue proposal replicates queue state (data) ex-
ploiting RDMA to guarantee the highest possible performance. DSMQueue, which is based on
the Derecho library, adopts the same active replication pattern of Redis, but the logic is completely
decentralized, thus eliminating the need for a driver node on the critical data path. In this setting,
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MoM Delivery semantic Delivery Order Load Balancing

Kafka
Exactly-Once,

At-Least-Once,
At-Most-Once

Within single partition
total ordering

Producer-side:
Static,

Round-Robin

Redis Stream At-Least-Once
At-Most-Once Total Ordering

Consumer-Side:
First come
First served

DSMQueue Exactly-Once Total Ordering
Consumer-Side:

First come
First served

Table 6.2: Properties of different MoMs supported by DIFFUSE.

all the nodes are equal peers that agree on the same shared state, thus achieving the maximum
possible degree of parallelism.

Concerning the delivery semantics, DSMQueue offers an exactly-once semantic, while Redis
offers an at-least-once embodying less synchronization overhead when compared to DSMQueue.
This behavior may lead to a lower use of the network resources, but does not guarantee the con-
sistency of the shared state in case of failure of one or more nodes, which DSMQueue is always
able to guarantee. Kafka is the only one of the three solutions that, thanks to its deep integration
with Apache Zookeeper, allows choosing among all the three delivery semantics at-most-once, at-
least-once, and exactly-once at a topic granularity.

Section 7.3 will present an experimental evaluation of DIFFUSE, assessing our proposal while
varying the underlying MoM support. In particular, we evaluate and compare the capabilities of
DSMQueue with the other traditional MoMs, identifying possible deployment trade-offs.

6.2.4 Concluding remarks

This Section presented DerechoDDS as the first reference example of the architecture proposed
in this thesis. Its implementation as a libraryOS is motivated by the kind of applications typically
supported by the DDS middleware, which are mostly static but highly demanding in terms of
minimal performance overhead. By introducing the option for the transparent RDMA acceler-
ation of DDS-based communication, this Section showed that not only to guarantee the appli-
cation portability, but also to expand the capabilities of the middleware by providing additional
semantic guarantees (data consistency).

The second part of the Chapter showed how the possibility to obtain transparently accelerated
communication opens up new use cases for the DDS middleware itself: DIFFUSE is an an inno-
vative platform that, based on DerechoDDS, enables the efficient and transparent composition of
functions in the context of the emerging FaaS computing paradigm.
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6.3 INSANE: A userspace OS module

The system described in this Section is the result of a joint research effort with my colleague Andrea
Garbugli [101, 104]. I lead the INSANE project and proposed the initial idea formulation, whereas
Andrea is the reference author for the Industry 4.0 use case and the TSN-related features [49, 50,
105]. We both contributed equally to the prototype implementation and experimental evaluation.

The second reference implementation of the proposed architecture builds on the experience of
DerechoDDS with the goal to offer general-purpose and easier-to-use access to accelerated I/O,
and also a more dynamic support for applications in the cloud continuum. According to these
design goals, INSANE (Integrated aNd Selective Acceleration for the Network Edge) is a novel
middleware optimized for the emerging class of edge cloud applications that combine intelligent
logic, stringent performance requirements, and heterogeneous deployment scenarios. Overall,
INSANE is a system natively designed to offer Network Acceleration as a Service and follows the
OS module model. It consists of two main components: a runtime, which must be in execution on
each participating machine, and a client library that exposes the API to the applications, allowing
them to interact with the runtime. A set of datapath plugins then specializes the runtime for a
wide set of acceleration technologies, including RDMA, DPDK, and Linux XDP.

On the one hand, similarly to the DDS interface but in a much more simplified fashion, the
INSANE interface lets developers declare their communication requirements through high-level
QoS policies and uses them as hints to dynamically bind each I/O channel to the most appropri-
ate network acceleration technology available at the deployment site. On the other hand, the IN-
SANE system support is designed as a userspace OS module that effectively decouples application
code from the specific technology dynamically found at the participating nodes, thus maintaining
high network efficiency while also easing code development and portability. By clearly separating
the system layer and the plugin layer, INSANE also supports much more dynamic use cases in
which containerized applications can be seamlessly migrate across different locations without re-
quiring time-consuming configuration actions.

In the following, we describe more in detail the INSANE API and how it can ease the porta-
bility of latency-sensitive and network-intensive edge applications. Then, we provide an overview
of the runtime architecture to understand how the INSANE primitives are mapped to heteroge-
neous network technologies. Finally, Section 6.3.5 proposes a use case to highlight the benefits
of using INSANE in a typical Industry 4.0 scenario: we implement in software a Programmable
Logic Controller (PLC) and use INSANE to make it run in a container while also fulfilling its
demanding performance requirements.

6.3.1 The INSANE interface

The INSANE client library exposes a minimal interface that meets three key requirements. First,
developers must find it easy to use, in contrast with the currently available interfaces of network
acceleration techniques that require them to know a myriad of complex and low-level details. At
the same time, the interface must be expressive enough to enable the efficient implementation of
heterogeneous domain-specific abstractions on top of INSANE. Furthermore, the interface must
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Stream

Source
(id=4)

Sink
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Figure 6.6: An INSANE channel is created between sources and sinks with the same channel id within the
same stream.

be agnostic to the underlying transport protocols and only expose high-level policies to inform the
middleware about the quality requirements of different data flows.

To keep the interface as simple as possible, the INSANE API defines few basic concepts. A com-
munication channel represents a unidirectional data flow among endpoints, which can interact lo-
cally or through the network. A channel may only exist within a stream, an abstract concept that
associates a set of quality requirements to one or more channels. In the context of a stream, a com-
munication channel is established among endpoints called sources, which produce data, and sinks,
which consume data. Each channel is uniquely identified by an application-provided channel id,
that users must pick according to their higher-level business logic. For example, an INSANE-
based Message-oriented Middleware (MoM) would typically assign channel ids according to topic
names. Figure 6.6 shows an example of an INSANE channel: sources and sinks opened within
the same stream and with the same channel id will communicate on the same channel.

The concept of the stream is fundamental in this interface. Only sources and sinks belonging
to the same stream can exchange data, because the stream defines the set of quality requirements
for the communication. Depending on those requirements, INSANE will transparently map the
channel to a technology-specific concept, e.g., a kernel-based socket. When sinks and sources are
co-located, we enable direct data forwarding using shared memory.

Figure 6.7 shows the complete INSANE APIs. Any application must first open a communica-
tion session with the local runtime. Then, it can open one or more streams by specifying a set of
quality options, which the next paragraph will cover extensively. Once a stream is open, it is pos-
sible to create sinks and sources to define the desired communication channels using the channel
id mechanism previously described.

All the available operations on sinks and sources are asynchronous in order to ease zero-copy
communication. To send a new message from a source, users have to first require a memory area
(buffer) from the runtime. Then, the application can write the message into that buffer and emit
it, thus signaling to the middleware that data is ready to be sent. This operation returns a token
that can later be used to retrieve the outcome of the operation. Similarly to Demikernel [131], we
do not offer after-write protection: developers must not modify the buffer content once it has been
emitted. On the sink side, we offer three different ways to receive data. Users can register a callback
to be called every time a new message is received for that sink. Alternatively, users can directly call
the consume operation, which can be configured to either return immediately, regardless of the
presence of new data, or to block until new data is available. In any case, to preserve the zero-copy
semantic, new data is returned as a pointer to a memory area borrowed from the runtime. Hence,
as soon as the user finishes processing the data, it should return the memory to the middleware by
explicitly releasing that buffer.
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1 /* Open and close a session */

2 int init_session();

3 int close_session();

4
5 /* Stream */

6 stream_t create_stream(options_t opts);

7 void close_stream(stream_t stream);

8
9 /* Source APIs */

10 source_t create_source(stream_t stream, int channel);

11 void close_source(source_t source);

12 buffer_t get_buffer(source_t src, size_t size, int flags);

13 int emit_data(source_t src, buffer_t buffer);

14 int check_emit_outcome(source_t source, int id);

15
16 /* Sink APIs */

17 sink_t create_sink(stream_t stream, int channel, data_cb cb);

18 void close_sink(sink_t sink);

19 int data_available(sink_t sink, int flags);

20 buffer_t consume_data(sink_t sink, int flags);

21 void release_buffer(sink_t sink, buffer_t buffer);

Figure 6.7: The INSANE interface.

We believe that this set of primitives answers our design goals of simplicity, flexibility, and trans-
parency toward multiple network acceleration options. At the same time, this API is expressive
enough to allow the definition of very different higher-level interfaces. To demonstrate this claim,
in Section 6.3.4 we report our experience in implementing and deploying two very different ap-
plications, a decentralized messaging queue and an image streaming framework. Both the applica-
tions were easy to develop and demonstrate a significant performance advantage from the selective
acceleration capabilities guaranteed by INSANE.

6.3.2 The INSANEQoS policies

A key contribution of this work is the possibility to associate a set of quality requirements to
each communication channel through the concept of stream. These requirements are defined in
terms of high-level Quality of Service (QoS) policies, thus effectively making INSANE transparent
toward the low-level network details. In line with our goal of maximum simplicity, we reduce the
number of available options to the essential. INSANE currently defines three possible quality
options that can be associated to a stream: the degree of datapath acceleration, the level of tolerable
resource consumption, and the time-sensitive constraints of a data stream.

The datapath acceleration policy signals to the middleware whether a specific data flow requires
any network acceleration or the regular kernel-based networking would suffice. In case the acceler-
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ation is needed, edge developers must have control over the associated cost. For this purpose, users
can set the resource consumption policy to specify whether resource usage is a concern to take into
account when mapping data flows to specific technologies. For example, DPDK requires a high
CPU consumption that may be unacceptable in some contexts. Finally, a third policy allows users
to characterize data flows depending on their time sensitiveness. This policy specifies the packet
scheduling strategy for the packets of that flow. By default, a FIFO scheduler handles all the pack-
ets and sends them to the network as soon as the user code emits them. Instead, if the stream is
labeled as time sensitive, we offer a scheduling strategy compliant with the Time-Sensitive Net-
working (TSN) standard [42] to provide a deterministic network behavior (see Section 3.4).

As soon as a new stream is created, INSANE maps the stream quality requirements to the most
appropriate network technologies available in the dynamically determined deployment environ-
ment, according to a user-configured mapping strategy. If no custom strategy is provided, IN-
SANE acts as follows. If no acceleration is required, the kernel-based UDP protocol is always used.
Otherwise, RDMA is the best alternative, because it offers the best network performance for a low
resource usage (network operations are offloaded to the NIC). However, RDMA is typically used
in bare-metal deployments and is not yet available in most cloud settings. Hence, INSANE alter-
natively maps user code to DPDK if resource usage is not a concern, otherwise to XDP. In fact,
XDP is generally slower but does not require a set of CPU cores to continuously spin to detect the
arrival of new packets [66]. Because this mapping is performed at runtime by INSANE, triggered
by the creation of a stream, the user code always remains unchanged, independently of the actual
deployment execution. In any case, INSANE considers these policies as hints about the applica-
tion performance requirements and adopts a best-effort attempt to build the mapping between
quality and actual technologies. Thus, if acceleration is required but no acceleration technology
is available, INSANE will fall back to the standard kernel-based network stack and warn the user
about this decision.

Following a precise design choice, INSANE does not offer additional communication control
policies. Thus, for example, there is no built-in way to define a specific fault tolerance semantic.
The adopted approach is that developers are responsible to design mechanisms as part of their
own custom logic. In this way, we leave them free to easily re-implement existing solutions on top
of INSANE with little effort. This is in line with many middleware systems, such as the OMG
DDS [88], that already assume a best-effort network and provide their own solutions to build ad-
ditional guarantees [87].

6.3.3 The INSANE runtime

This Section discusses the architecture of the INSANE runtime, which is designed to be a userspace
OS module offering Network Acceleration as a Service. In particular, more than what discussed
for DerechoDDS, the focus of this Section is how the different system features of the architectural
system layer (Section 5.1.2) are implemented to uniform the network operations of heterogeneous
technologies, which we use as a support for the primitives discussed in the previous Section.

According to the OS module design, the client library and the runtime framework of INSANE
reside in separate processes. The advantages of this model in terms of flexibility, dynamicity, and
address space isolation come at the price of a necessary inter-process communication (IPC) be-
tween the two components, which is absent in systems that run their own logic in the same polling
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Figure 6.8: The INSANE Architecture.

thread. However, not only the associated overhead is small in our case of zero-copy network-
ing [78], but many factors contribute to minimize it while also retaining the advantages of this
model: in particular, state-of-the-art lock-free queues [47, 125], combined with modern multi-
core processors and IPC optimization techniques [120, 56, 82].

The INSANE runtime has four main components, represented in Figure 6.8: a memory man-
ager, a packet scheduler, a pool of polling threads, which answer the need for agnostic system-layer
features (Section 5.1.2). A set of datapath plugins, clearly separated from the other features, imple-
ment the plugin layer (Section 5.1.3). The memory manager, in particular, effectively implements
the abstraction that decouples the homogeneous interface offered to the applications from the
highly heterogeneous details of each transport technology. At the system startup, the memory
manager reserves a memory area (memory pools) to contain application data. That area is divided
into memory slots, uniquely identified within the pool by a slot id. When a new application con-
nects to the runtime, it maps part of that area in its own address space. From then on, the appli-
cation and the memory manager communicate by exchanging slot ids that refer the position of
relevant data in that area.

Figure 6.9 illustrates the communication flow between a sink and a source. As a preliminary
operation, each application must connect to the runtime (init_session). Then, to send a new
packet, the application requires to the manager a memory slot ( 1 ). If a free slot exists, the man-
ager sends the corresponding slot id to the client library, which provides the application with a
pointer to the associated memory area. Thus, the user can directly write the packet content in
the shared memory. Once finished writing, the application emits the packet ( 2 ) and the IN-
SANE client library communicates the corresponding slot id to the runtime. Once received the
token, the packet scheduler schedules the packets for send according to the time sensitiveness pol-
icy. By default, our scheduler adopts a FIFO strategy, but others are possible as we discuss in the
next paragraph. On the reception side, the mechanism works symmetrically. The NIC places the
newly arrived packets in a designated memory area. When the manager detects them, it sends the
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Figure 6.9: The INSANE communication flow when using the DPDK plugin.

relevant slot ids to the client library, which offers applications a pointer to the same memory are
where data has previously been placed ( 3 ). Once done, the application must return the token to
the runtime to make it available for subsequent operations ( 4 ).

The implementation of this general mechanism for the different network technologies is re-
sponsibility of the datapath plugins. Each plugin, one per available network acceleration tech-
nique, must define a send and a receive operation. The send operation sends the scheduled pack-
ets to the currently bound network, using the low-level API of each specific technology. Before
that, in the case of DPDK and XDP, the packet processing engine processes the outgoing packets
through the userspace network protocol stack; this step is unnecessary for kernel-based network-
ing, which uses the kernel stack, and for RDMA, which offloads the task to the hardware. On the
reception side, the datapath plugins use the technology-specific API to check for newly arrived
packets. Such new packets are first processed by the packet processing engine, if necessary, and are
then dispatched to the relevant applications according to the previously described mechanisms.

The execution of the datapath logic is responsibility of a pool of polling threads. The number
of these threads and their mapping to the datapath plugins is flexible and configurable depending
on the user needs in terms of performance, scalability, and resource consumption. Depending on
performance goals, one or more threads can be dedicated to a specific datapath, thus leveraging
cache locality and packet processing parallelism. On the opposite, when resource consumption is
paramount, INSANE can be configured to run more than one plugin on a thread, at the cost of
a lower performance. In any case, to avoid scheduling overhead, each polling thread is pinned to
a different processor core; at the same time, threads are automatically paused when idle.
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Packet scheduler

The packet scheduler provided by INSANE detects new packets from applications and schedules
their actual transmission based on the application-provided time-sensitiveness QoS. The scheduler
is designed to be general and to possibly allow users to customize the scheduling strategy according
to their need. By default, in addition to providing a FIFO strategy, INSANE also supports the
Time-Sensitive Networking (TSN) standard (see Section 3.4). In this configuration, the scheduler
works as a Time-Aware Shaper (TAS) compliant with the IEEE 802.1Qbv standard, specifically
designed for soft real-time applications.

This solution is particularly innovative considering the currently available options, as today this
packet scheduling option is not available as a userspace component. Bare-metal applications can
use directly the kernel-based one, which however forces them to use the standard kernel-based
TCP/IP networking and to inherit all the overhead we highlighted for the kernel-based datapath.
Containerized applications cannot even access this option, as popular virtual switches (e.g., Linux
bridge, Open vSwitch, etc.) do not support it. Therefore, our solution is the first to provide
deterministic packet scheduling for unmodified application binaries running in containers, and a
faster userspace version for applications running bare metal or in VMs.

Cloud integration

As anticipated at the beginning of this Chapter, a significant advantage of the OS module design
is the possibility for an easier integration of I/O acceleration technologies into cloud platforms.
Because applications access I/O as a service from the module, they do not need to directly in-
teract with a network interface. That makes both the I/O and network virtualization tasks (see
Section 2.3) much easier for cloud providers, as the dynamicity requirements of applications are
already fulfilled by the OS module. That also allows to support multiple applications with the
same network interface, instead of requiring the provider to offer a distinct NIC (as a SR-IOV VF
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Figure 6.10: Two possible INSANE deployments in a cloud platform.
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or as a vNIC) to each of them. Yet that does not hurt performance, as the actual I/O operations
are implemented using the native technology interface.

Figure 6.10 shows two possible deployment options of INSANE in a cloud platform. On the
left side, a hardware approach is shown. That is the most efficient option, as the interface accessed
by the INSANE runtime is a slice of the physical NIC directly assigned to the VM. However, that
approach requires the provider to include in the NIC a switching component to operate the nec-
essary network virtualization (see Section 2.3). That feature could in turn require a custom design
such as that in AccelNet [44] or the exploitation of specific SmartNIC features [84]. Alternatively,
the provider should rely on a software switch, that is less efficient even in its most optimized forms
as commented in Section 4.2, but easier to set up and deploy. The choice of the most suitable sup-
port is up to cloud providers, but INSANE is designed to be compliant with both options.

Furthermore, independently of the solution adopted for network virtualization, INSANE is
also designed to allow a flexible management of both applications and of the INSANE runtime
through standard cloud tools. Both applications and the runtime can indeed be deployed as con-
tainers (e.g., Docker containers) and thus be integrated with standard cloud orchestration tools
(e.g., Kubernetes [32]). To further promote the integration of INSANE with the cloud ecosys-
tem, we implemented INSANE as a Kubernetes network plugin that can be seamlessly integrated
alongside existing options (e.g., Flannel, Calico) [72]. That makes it possible to automate the de-
ployment of INSANE-based applications by requiring the availability of an INSANE runtime
directly from the configuration and deployment automation tools cloud developers are already
used to adopt for this purpose.

6.3.4 Application example: LUNAR applications

A key design goal for INSANE is to ease the development of a broad set of general-purpose appli-
cations with heterogeneous requirements in edge cloud nodes. To demonstrate that our interface
effectively answers this purpose, we use the INSANE API to build two typical edge applications,
a message-oriented middleware (Lunar MoM) for data distribution and a data streaming frame-
work (Lunar Streaming). We demonstrate that INSANE enables the portability of these appli-
cations across various network technologies while delivering very close (ns-scale overhead) perfor-
mance to the native technology interfaces. The performance evaluation of these two applications
is presented in Section 7.4.

LUNARMoM

The previous discussion about DerechoDDS and the DIFFUSE serverless platform demonstrated
the wide range of possible usage scenarios for Message-oriented Middleware systems. We built
a simple decentralized MoM, called LunarMoM, using the INSANE API. Mapping the MoM
abstractions to the INSANE primitives is straightforward: the resulting application, consisting
of just 135 lines of C code, defines two main primitives to publish or subscribe on a topic, lu-
nar_publish and lunar_subscribe. The publish function takes the topic name, which is then
hashed to obtain the topic id, and a callback function as arguments, and opens a INSANE source
if this is the first publication for that topic. Then, it gets a buffer from INSANE, executes the
user callback to fill it, and sends it. Under the hood, INSANE will forward the messages to the
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reachable remote INSANE runtimes and deliver them to the subscribed sinks. The subscriber
function is symmetric.

Therefore, we conclude that INSANE dramatically simplifies the development of a lightweight
messaging system that, as the next Chapter will show, also outperforms currently available alterna-
tives. Additionally, LunarMoM is portable across all supported networking technologies, making
it a promising solution for data dissemination at the network edge. LunarMoM is still a prototype,
but we believe it shows how existing messaging systems could leverage INSANE to significantly
improve their performance and portability.

LUNAR Streaming Framework

In edge cloud scenarios, users often have to deal with applications involving real-time streaming
and analysis of huge amounts of data, such as intelligent applications based on ML or image pro-
cessing. Especially in an industrial environment, we can easily be faced with a type of application
where, during the manufacturing process, a series of cameras take images of the product dur-
ing different stages of production. These images are usually transmitted in real-time to a central
computing node. If defects are detected in the semi-finished product, the control systems might
interact with the production line to reactively handle the failure.

Such real-time streaming applications can be designed in a client-server manner, where one or
more clients ask to receive a stream of data, and the server sends them adapting the bit-streams
according to network and QoS requirements [127]. To support their QoS requirements, stream-
ing applications frequently exploit data fragmentation and/or compression techniques. For our
prototype, called Lunar Streaming, we use only fragmentation, leaving compression as future
development, as it is outside the scope of our framework.

Lunar Streaming exposes a simple set of APIs, starting with lnr_s_open_server to open the
server-side application and with lnr_s_connect that allows clients to connect to it. Thus, the
server application must implement a simple interface by exposing two methods: get_frame and
wait_next. The first allows to get a new frame, while the second pauses the server waiting for the
next frame. To start streaming, the server application must invoke lnr_s_loop which performs
the following steps: (i) requesting a new frame (ii) fragmenting and sending the frame and (iii)
waiting for the next frame to restart the loop until the end of streaming.

Implementing a full stack of streaming protocols is beyond the scope of this work, but this Sec-
tion demonstrated that the INSANE interface allows the creation of even complex applications,
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Figure 6.11: Lunar Streaming framework application.

68



6.3 INSANE: A userspace OS module

such as a streaming framework, with few lines of code. The evaluation proposed in Section 7.4
will then show how that simplicity is not at the expenses of performance, which remains close to
that of the raw network acceleration technologies.

6.3.5 Use case: a framework for Industry 4.0 applications

The lack of a cloud support capable of providing high-performance I/O operations has been a
significant obstacle to the pervasive adoption of the cloud paradigm in several domains. That is
particularly clear in the case of Industry 4.0 (see Section 2.4.2), in which the increasingly pervasive
digitalization still falls short of expectations of a full cloud integration. This Section discusses
how the INSANE middleware is a promising solution to bridge this gap, and can be even used in
combination with the 5G cellular infrastructure for more complex usage scenarios.

Industry 4.0 and the role of vPLCs

The increasing amount of scattered data produced by machinery and the necessity of analyzing
them is rapidly pushing companies to replace or adapt machine field technologies from propri-
etary ad hoc industrial protocols to open and more flexible standards, enhancing the automation
level and the cohesion between Operation Technologies (OT) and Information Technologies (IT)
in a cost-effective and affordable manner by utilizing Commercial-off-the-Shelf (COTS) hardware
and software. This has several benefits: increased community support, reduced maintenance ef-
fort, continuous updates, and improved cybersecurity. A noticeable example of such integration
is the idea of Virtual Programmable Logic Controllers (vPLCs), which enhance the function-
alities of a Programmable Logic Controller (PLCs) with the flexibility only virtualized software
can guarantee. Historically, the introduction of PLCs was an essential building block of the au-
tomation revolution in industrial control systems. Nowadays, vPLCs stand as the ideal choice to
embody the integration of OT and IT: coupled with containerization tehcnologies and general-
purpose hardware, vPLCs integrate the flexibility of the microservice architecture, becoming even
more portable and allowing migration of cloud services closer to the machine field.

However, the actual implementation of vPLCs and other IT-enabled components is still diffi-
cult to achieve: OT has demanding requirements in terms of latency, jitter, and Quality of Service
(QoS), whereas IT is designed for best-effort behavior. As a consequence, current cloud-native
virtualized controllers cannot offer the deterministic behavior and low network latency required
by traditional specialized solutions or do so by sacrificing the generality of IT.

Overview of the solution

This Section proposes an open framework that combines a set of vendor-agnostic technologies
to fully support the adoption of containerized PLCs in industrial control infrastructures. At the
same time, the framework guarantees compliance with typical OT requirements such as determin-
istic network behavior and low-latency communication with the controlled devices. Within our
framework, containerized vPLCs are managed by the Kubernetes orchestrator [32] and use the
OPC-UA middleware interface [46] to distinguish traffic towards cloud-based nodes (IT traffic)
and toward the controlled devices (OT traffic). The key novelty of our solution is a clear separa-
tion between the infrastructural support for those communications. Whereas IT traffic follows
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Figure 6.12: Overall Architecture of the vPLC Framework

the standard best-effort datapath of general-purpose operating systems, OT traffic relies on the
INSANE runtime to remove typical I/O virtualization overhead and to provide determinism.

We begin the description of our solution from its core component, the vPLC, which we place
within a container. That choice minimizes the overhead of virtualization while retaining its several
benefits in terms of enhanced portability and scalability, isolated and reproducible environments,
simplified dependency management, and improved resource efficiency. Containerization allows
industrial control systems to benefit from orchestration tools: in our framework, we use Kuber-
netes as the orchestrator and insert the vPLC container in a Kubernetes pod, thereby ensuring
its automated scaling, high availability, reliability, and efficient resource allocation in the control
infrastructure.

As previously discussed, the hardest challenge for a framework supporting vPLCs is to ful-
fill their mixed-criticality communication requirements. On the one hand, the vPLC communi-
cates with the IT infrastructure on a best-effort network, exchanging data with the cloud (or edge
cloud). On the other hand, it must also interact with the controlled devices on the time-critical
network fabric with no or minimal difference from traditional dedicated connections. Given the
substantial differences between those two classes of traffic, we decided to provide them a corre-
sponding substantially different infrastructural support, at the same maintaining programming
transparency for software PLC programmers as well as compatibility with existing PLC software.

Middleware interface

We consider that vPLC adopts the OPC-UA middleware for both IT and OT communications [27,
73]. OPC-UA guarantees developers a single point of access to the network, transparent scalabil-
ity for the interaction with the cloud, and also the rich and standard OPC information model
to interact with the OT devices. Given this requirement, we decided not to use the INSANE
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API - which is more suitable for newly-designed applications - but to layer the standard OPC-UA
interface on top of the INSANE runtime, routing through it only the relevant traffic.

We leverage a specific configuration of OPC-UA, the TSN profile, to let developers signal time-
critical traffic directed to the OT fabric (OT traffic) and thus requiring determinism and bounded
latency, whereas we assume that best-effort guarantees suffice for any other communication (IT
traffic). We route IT traffic (blue line in Figure 6.12) through the standard datapath of container-
ized applications on general-purpose operating systems, which makes packets cross various soft-
ware layers before reaching the physical network. In parallel, we leverage INSANE to offer a high-
performance, TSN-enabled datapath for OT traffic.

System support and cloud integration

INSANE is used in combination with a userspace virtual switch in the host (Figure 6.10 right) to
create a virtual overlay network between the vPLC and its controlled devices: any packet sent on
that overlay is handled by INSANE, which is configured to use the TSN-compliant scheduling
policy that let applications associate an expected transmission time to each output packet. When
this time comes, the scheduler will send the packet on an accelerated communication channel.
This approach bypasses the performance overhead and the intrinsic variability of the standard
in-kernel datapath, thus ensuring deterministic and low-latency communication.

Overall, this solution combines a set of open-source tools, protocols, and technologies to sup-
port the effective deployment of vPLCs as containers in cloud platforms. That would significantly
reduce the development and operationalization cost of traditional PLCs, allowing much more
flexibility, and guaranteeing the respect of the demanding performance requirements of OT. Fur-
thermore, the use of open-source technologies protects our solution from new and hidden forms
of vendor lock-in (e.g., the use of proprietary hypervisors). The next Chapter demonstrates these
properties by running vPLCs within our framework over a real industrial testbed.

Ultra-Low Latency 5G Scenarios

The INSANE middleware presented in this Section, as well as all the implementations proposed in
this thesis, mainly focus on core or edge datacenters, characterized by wired connectivity and thus
more sensitive to any I/O overhead. However, the increasingly wider deployment and adoption of
the 5G cellular standard provides the option for a ultra-reliable, low-latency communication op-
tion even on Wide-Area Networks. In the following, we briefly comment whether the INSANE
implementation would allow containerized applications deployed in different locations (e.g., two
factories) to communicate while also respecting Ultra-Low Latency (ULL) requirements.

A commonly-agreed definition is that ULL refers to the possibility of remote processes to com-
municate with sub-millisecond latencies [130]. If these processes are industrial controllers de-
ployed in different facilities, this goal becomes challenging to guarantee and requires that each
involved actor optimize its operations. In particular, application developers could generally as-
sume the availability of no more than 40% of the total latency budget, leaving the remaining to
the external provider operations in WAN. Figure 6.13 provides a graphical representation of this
subdivision: if a subscriber should receive any update within at most 1ms from its publication in
a remote location, the application developer should consider to have no more than 400 µs avail-
able for its own network operations at both sides. Consequently, very often the current trend
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Figure 6.13: Typical latency budget distribution in ULL applications.

of applications in mission-critical domains is to try to minimize their share of network overhead,
including that induced by resource virtualization, thus trading flexibility for performance.

In contrast, the new option for NAaaS provided by INSANE would allow developers to meet
these stringent deadline without forgoing flexibility, by reducing the unpredictability of tradi-
tional I/O virtualization and bypassing the typical sources of overhead in the standard datapath.
In the evaluation of the INSANE-powered vPLC, the next Chapter will briefly show that a vir-
tualized industrial controller can communicate with remote devices and keep latency values well
below the threshold set by ULL requirements, thus further proving how the INSANE support is
a suitable tool for applications across the whole continuum.

6.3.6 Concluding remarks

This Section presented the INSANE middleware as the second reference system for this thesis.
The choice of implementing the system layer as a userspace OS module is the distinguishing fea-
ture of that system and brings many advantages compared to DerechoDDS: not only a higher
flexibility, but also a better integration with cloud platforms (I/O virtualization) and with stan-
dard cloud tools for operation automation, such as Kubernetes.

Coupled with a general-purpose, easy-to-use interface, the design of INSANE is indeed very
effective in providing the option for NAaaS in cloud platforms across the whole continuum. To
prove that, this Section first introduced two applications (a MoM and a streaming framework)
that showcase the ease of programming deriving from the novel INSANE API, as well as its gen-
erality. Then, a more complete use case was presented: the implementation of a PLC, a crucial
component of industrial automation, as a containerized software application that still manages to
meet very demanding performance requirements. Furthermore, these advantages can be coupled
with the emerging cellular standards (5G and beyond) to support even larger-scale use cases.

6.4 Conclusion

This Chapter presented two reference implementations of the general architecture for NAaaS
proposed in this thesis: DerechoDDS and INSANE. Although the discussion involved all the
three architectural layers, the key difference between them is at the system layer. DerechoDDS,
which follows an approach based on the libraryOS model, is effective in supporting accelerated
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applications, even beyond its traditional employment: the DIFFUSE serverless platform demon-
strates that. By strictly coupling the offered system features with their implementation from an
acceleration technology, the resulting system is indeed very efficient especialy for applications with
strong performance requirements and little need for dynamicity. Conversely, the INSANE mid-
dleware adopts a OS module approach. This choice introduces additional IPC overhead for the
interactions between applications and the INSANE runtime, but the possibility to centralize the
I/O processing in the runtime also makes a much more efficient use of the system resources, is
much easier to support in cloud platforms, and enables multiple applications to dynamically at-
tach and detach from the runtime.

Whereas the discussion in this Chapter focused mostly on the design choices of the presented
implementations, on the application portability they enable, and on their cloud integration, Chap-
ter 7 will propose their experimental evaluation and that of the associated use cases, thus proving
that they also preserve the performance properties of the native acceleration technologies and their
advantages over the currently existing solutions.
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7 Experimental Assessment and
Results

This Chapter reports the experimental evaluation of the two reference implementations described
in Chapter 6 and of the systems and frameworks proposed for the associated use cases. Whereas
the previous discussion mostly focused on the architectural aspects of these systems and on their
design with respect to different system models, here these systems are considered under a perfor-
mance perspective to validate the claim that they can provide NAaaS by adding only a minimal
datapath overhead.

The discussion is structured as follows. After a description of the experimental settings, both
DerechoDDS and INSANE are first evaluated in isolation, to investigate their performance prop-
erties, and then in comparison with similar systems on basic performance metrics such as latency
and throughput. In the second part, the solutions proposed for the two use cases of Serverless
Computing and Industry 4.0 are considered.

7.1 Experimental testbed

The performance evaluation in this Chapter was mainly conducted on three different testbeds,
whose specifications are reported in Table 7.1. The first two match typical edge cloud environ-
ments. In the first setting, two nodes are directly interconnected in order to minimize the over-
head of network operations and magnify any system-induced delay on the measured metrics. In
the second one, eight nodes are used, but equipped with a less powerful processor and NIC. In-
stead, the third scenario represents a typical core cloud infrastructure, where we reserved two nodes
interconnected by a switch in order to have complete control on all the performance-related as-
pects.

Testbed CPU RAM NIC Switch

Edge
Cloud 1

18-core Intel i9-
10980XE @ 3.00GHz 64GB Mellanox DX-6

100Gbps —

Edge
Cloud 2

10-core Intel E5-
2640v4 @ 2.4GHz 64GB Mellanox DX-4

25Gbps Dell Z9264F-ON

Core
Cloud

32-core AMD
7452 @ 2.35GHz 128GB Mellanox DX-5

100Gbps Dell Z9264F-ON

Table 7.1: Setup of the and public testbeds for the evaluations.
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These relatively resource-rich testbeds are realistic for our target scenarios and, at the same time,
answer the practical need of pushing the middleware systems to their limit. For instance, given the
high performance of the considered acceleration technologies, a less powerful NIC would capped
the bandwidth and artificially flattened the differences among different acceleration options.

7.2 Microbenchmarks

The goal of this first Section is to investigate the basic performance properties of the two systems.
In both cases, the main metrics are the network latency and the throughput achievable in different
scenarios. To put these numbers in perspective, these systems are also compared with existing
alternatives, highlighting the differences that the emerge and discussing their causes.

7.2.1 DerechoDDS evaluation

The goal of the DerechoDDS evaluation is to demonstrate that not only the added consistency
guarantees do not harm performance when compared with weak consistency, but also that Dere-
choDDS can match the performance limits of the hardware even in the strongly consistent mode,
and can ride out periods when the network briefly becomes fully saturated. We believe that this
opens the door to use of SMR even in today’s most demanding mission-critical scenarios, as well
as in all those environments that need these guarantees coupled with high network performance.
All the tests in this Sections were performed on the Cloud Edge 2 testbed, by selecting for all the
topics the DerechoDDS accelerated QoS that maps communication to RDMA.

Latency and Throughput

The first evaluation of DerechoDDS is a performance comparison against other four commercial
DDS implementations that we selected for their widespread adoption in the community. Two
are mature products: RTI Connext 6.0 [108] and Adlink OpenSplice Community 6.9 [2]. The
other two are emerging implementations, Eclipse Cyclone DDS 0.7 [37] and eProsima FastDDS
2.3 [38]. Our comparison includes a latency and a throughput test, each repeated at least five
times for different payload sizes and for different numbers of subscribers. The single publisher
and the subscribers are all on different nodes to stress the network performance. We used volatile
durability, reliable reliability, and UDP multicast as the transport protocol to obtain a consistency
level equivalent to the eventual consistency of DerechoDDS on RDMA.

The latency test is a simple ping-pong application designed to highlight any overhead in the
DDS send and receive pipeline. This test measures the round-trip time (RTT) of every sample
published on a “ping” topic and received by a remote subscriber which sends it back to the pub-
lisher. In case of multiple subscribers, the first “pong” message is considered. We run this test for
60 seconds, disabling sample batching and using a keep-last-1 history.

With small messages in a single subscriber scenario (Fig. 7.1a), DerechoDDS in eventual con-
sistency mode exhibits approximately 50% higher latency than the best UDP-based alternatives,
even though it still performs better than some of the products. On average, the strong consistency
guarantee adds another 40% performance penalty for those sizes. These numbers could be sub-
stantially improved with a careful optimization of our prototypical implementation, as RDMA
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Figure 7.1: Median Round-Trip Time for different payload sizes and numbers of subscribers.

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38
4

32
76
8

64
00
0

0

5000

10000

15000

20000

25000

Payload Size (Bytes)

B
an

d
w
id
th

(M
b
p
s)

RTI Connext OpenSplice Cyclone

FastDDS DerechoDDS - Eventual DerechoDDS - Atomic

(a) Increasing payload sizes with 1 publisher and 1 sub-
scriber

1 2 3 4 5 6 7

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of subscribers

B
an

d
w
id
th

(M
b
p
s)

RTI Connext OpenSplice Cyclone

FastDDS DerechoDDS-Eventual DerechoDDS-Atomic

(b) 8KB payload size and an increasing number of sub-
scribers

Figure 7.2: Average throughput for different payload sizes and number of subscribers.

is incredibly sensitive even to tiny delays [62]. But this pattern only holds up to 4KB. With mes-
sage sizes higher than 8KB, the situation is reversed: even the atomic mode has a 2x lower median
latency than the alternatives: this is where the true potential of RDMA emerges, as protocol-
induced delays becomes negligible. If we scale the 8KB case to more subscribers (Fig. 7.1b), we see
that the performance advantage is substantially preserved for the eventually consistent case, but
that DerechoDDS with its atomic guarantee incurs a delay while waiting to ensure that the SMR
properties have been achieved. This delay rises to as much as 1ms, but then stabilizes and remains
constant as the number of subscribers is increased from 4 to 7.

The throughput test asks whether each DDS can fully saturate available bandwidth when a
publisher continuously updates a topic with one remote subscriber: a crucial capability on high-
speed networks. Fig. 7.2 plots the results. We observe that FastDDS is much slower than the
others. This product lacks data batching, putting it at a substantial disadvantage. DerechoDDS
on RDMA almost saturates the available bandwidth for bigger message sizes, a result impossible
to obtain when using UDP and the reliable QoS: the traditional networking stack cannot handle
such a high throughput, so many packets are lost and the retransmission cost increases. We also
observe that the atomic mode in DerechoDDS does not suffer an excessive overhead, and for 64KB
payload size it is still 2.3x faster than the best existing DDS implementation.
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Reliability

This experiment compares DerechoDDS with RTI Connext (fastest among the four DDS prod-
ucts). One publisher writes small (128 byte) critical updates with reliable QoS. DerechoDDS
always runs in reliable mode, but is additionally configured with atomic consistency. We picked
a constant data publishing rate of 60K samples per second, which guarantees that no packets are
lost by RTI Connext, and publish for 10s. Both systems deliver all messages within 11s (Fig. 7.3).

Next, we introduce a second publisher and a second remote subscriber on the same network.
These produce and consume low-importance data, expressed using the best-effort reliability for
RTI Connext and eventual consistency for DerechoDDS. In our first experiment, we configure
the second producer to generate a steady rate of background traffic designed to fully saturate the
network link when both publishers are running at once (dashed lines). We see that DerechoDDS
obtains a reduced share of the network, requiring 16 seconds to complete the transmissions, but
then is finished. In contrast, RTI exceeds the peak network capacity, causing some packets to be
dropped because of congestion. In reliable QoS mode, these must later be retransmitted, so we
see a series of retransmission requests (blue bars) and a second wave of deliveries, ending after 20s.

As a final experiment we reconfigure our second publisher to be bursty: it pauses for 2s, then
sends rapidly for 1s. Fig. 7.4 plots the results. RTI Connext sends at full speed regardless of net-
work load, causing a high rate of lost packets, so the subscriber issues many retransmission requests
and the total test time once again jumps from 11s to 20s. DerechoDDS runs at a slightly lower
bandwidth but with no loss: the RDMA hardware has a built-in mechanism that only transmits
data when the receiver is ready for the incoming bytes. Fig. 7.3a shows that although the data
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(b) RTI Connext over UDP multicast

Figure 7.3: Throughput of the critical traffic flow under different network conditions
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Figure 7.4: Impact of bursts of low-importance traffic on a critical traffic flow.
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rate of the critical flow drops from 60K to 40K packets per second, the experiment completes in
16 seconds, 20% faster than for RTI. We should note that RTI connect offers a proprietary API
with which the application can explicitly throttle its rate of publications. A knowledgeable user
could configure the two DDS applications (critical and background) to prevent loss in this exper-
iment. We did not evaluate this option because it is not automated: the application designer must
anticipate the congestion conditions and specify the peak rate of transmission for each topic.

Overall, the evaluation of DerechoDDS shows that even in its strongest QoS configuration,
communications on the accelerated topics of DerechoDDS is highly efficient, equaling or exceed-
ing the bandwidth of existing DDS products while also reducing latency.

7.2.2 INSANE evaluation

For this evaluation, we build a C prototype of the INSANE runtime that supports two network
technologies, namely kernel-based UDP and DPDK. The integration of RDMA and XDP is on-
going work, but we prioritized the two former options because these are the most commonly
adopted in the edge cloud ecosystem: unlike RDMA, they do not require special hardware, are
easy to use from cloud environments, and yet are representative of the differences between kernel-
based and kernel-bypassing networking.

Our evaluation of INSANE focuses proving that the agnostic features provided by the system
layer actually introduce minimal overhead compared to the native communication technologies.
To put the results in perspective, we compare INSANE to Demikernel [131], the most complete
and state-of-the-art alternative option to transparently access kernel-bypassing technologies, and
show that the additional dynamicity provided by INSANE comes with comparable or even better
performance. Furthermore, we also consider the packet scheduling strategies and show that our
time-sensitive policy allows to achieve a more predictable network behavior.

Latency and Throughput

To demonstrate that INSANE introduces a minimal overhead compared to using each native
technology directly, we build a benchmarking application for latency and throughput. For la-
tency we used a simple ping-pong application designed to highlight any overhead in the send and
receive pipeline. It measures the round-trip time (RTT) of a single message sent from one host
and immediately echoed back by a remote receiver. We repeat this test for 1 million messages. The
throughput benchmark is a stress test application that evaluates how much of the available net-
work bandwidth is practically achievable when a sender continuously sends 1 million messages
at full speed to a remote receiver. We measure throughput as the amount of payload data (good-
put) received in the time unit. We run every throughput experiment 10 times. We implement

Interface Lines of Code (LoC) Increase

INSANE 189 —
UDP socket 227 +20%
DPDK 384 +103%

Table 7.2: LoC to implement the benchmarking application.
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Figure 7.5: Round-Trip Time (RTT) for increasing payload sizes.
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Figure 7.6: INSANE fast latency breakdown (64B)

the benchmarking application in three versions: one that uses UDP sockets, one that uses native
DPDK, and one that uses the INSANE API. First, even for such a simple benchmarking applica-
tion, INSANE minimizes the amount of code necessary for networking, as Table 7.2 summarizes,
without requiring developers to understand the details of each technology.

Figure 7.5a and Figure 7.5b report the latency of INSANE for increasing payload sizes when
using two different datapath acceleration QoS: slow, which maps network operations to UDP
sockets, and fast, which maps to DPDK. Overall, we note that there is no significant difference
among different payload sizes. In the Edge Cloud testbed, we observe that INSANE fast keeps very
close to raw DPDK, with an increase of the median RTT values of at most 1 µs. The same gap
separates INSANE slow from the pure kernel-based UDP benchmark. Hence, we can conclude
that INSANE introduces on average a 500 ns overhead on each UDP packet both in fast and slow
mode. In the Core Cloud setup, we note a general increase in RTT values, as we expect, because of
the introduction of a switch between the two hosts. According to our measurements, the switch
adds on average 1.7 µs and packets must traverse it twice. However, INSANE’s latency increases
more than expected, adding around 1.7 µs to the raw DPDK median values. We investigate this
increase by breaking the latency value into its main components in Figure 7.6. In addition to
the expected increase of the network latency, we also observe a significantly higher time spent by
INSANE in the send and receive operations.

The culprit of this behavior is that the processor on the cloud servers is significantly slower
than in our edge testbed1. Although INSANE tries to minimize the processor intervention on

1https://www.cpubenchmark.net/high_end_cpus.html
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the critical path, the requirement to support multiple applications running as separate processes
makes it hard to further reduce the amount CPU cycles required for internal operations. This
overhead could be reduced by parallelizing the datapath plugins over multiple polling threads in
order to better leverage the multi-core capabilities of modern processors.

To put our INSANE performance in perspective, in Figure 7.7 we expand our latency experi-
ments to include a wider range of systems, reporting the average RTT for 64B payload size, so to
consider a challenging case where any protocol overhead is magnified. In particular, we include
two versions of the pure UDP socket benchmark, one with blocking receive, and one that con-
tinuously polls a non-blocking socket. Without surprise, we note that the former is much slower
than the latter, as process wake-ups are costly in terms of latency. Furthermore, we implement the
same test using Demikernel [131], binding it to two of the libraries it offers: Catnap, which maps
network operations to kernel-based sockets, and Catnip, which maps to DPDK. Those libraries
correspond to INSANE with slow and fast datapath QoS respectively. We observe that Catnap
is slightly slower than the native socket application in both testbeds. INSANE slow has almost
the same performance as Catnap in the edge cloud setup, and 1.9 µs slower on average in the core
cloud setting. If we consider DPDK, we observe the same trend discussed in the previous para-
graph. On the edge testbed, INSANE fast adds 690 ns to Catnip’s latency, which in turn adds
820 ns to the raw DPDK performance. When we consider the performance in the cloud, all the
latencies increase. However, unlike INSANE fast, Catnip preserves almost the same gap to raw
DPDK. Indeed, Demikernel has a much simpler logic to deliver the payload to applications, as it
is a library compiled with the application. INSANE fast suffers more from the slower processor,
but its runtime still shows a competitive latency performance despite the additional dynamicity
it can offer to multiple concurrent applications.
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Figure 7.7: Average RTT of raw network technologies, INSANE, and Demikernel for 64B payload size.
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Figure 7.8: Throughput benchmark for INSANE and the other reference systems.
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Although latency is a crucial metric in edge cloud, applications also expect to fully leverage the
available network bandwidth when they need to quickly transfer big data payloads, e.g., camera
images for remote analysis. In this case, we found no significant performance difference between
the two testbeds; hence, we only report data for the edge cloud testbed. Figure 7.8a evaluates the
throughput of INSANE fast and INSANE slow, comparing it with the corresponding Demiker-
nel libraries, with kernel-based UDP sockets, and with raw DPDK for increasing payload size. To
avoid the fragmentation overhead, we enable jumbo frames for payloads bigger than 1.5KB. We
observe that raw DPDK can quickly saturate our NIC, as it does not perform any data processing.
Despite the need for inter-process communication, INSANE fast shows the second best perfor-
mance, reaching peaks of 90Gbps for the biggest payload; whereas Catnip shows a significantly
lower throughput. This difference reflects a different use of the underlying DPDK library: Catnip
is optimized for latency [131] and sends one packet per time on the network. Conversely, INSANE
adopts a form of opportunistic batching [65, 62] at sender side, similar to the technique presented in
Section 3.5: messages ready for send are sent as a batch, but never waiting for a fixed-size batch to
fill up. This way, we reach the highest throughput under intense traffic without harming latency
significantly, as shown in the previous paragraphs. Indeed, when we do not adopt this technique,
like in INSANE slow, we observe that Demikernel and INSANE perform in the same way.

Finally, one of the distinguishing points of INSANE, modeled after the OS module approach,
is that it can support multiple applications on the same host at the same time. In Figure 7.8b we
repeat the throughput test by increasing the number of sinks connected to the runtime on the
receiver host, listening on the same channel id, but from separate applications. The plot reports
the average throughput received by all the sinks for 1KB of payload size. We note that for up to 6
concurrent sinks, the average received throughput drops only by 8% compared to the single-sink
solution. A significant degradation starts to emerge with 8 sinks (−39%), a number of co-located
applications that we consider unusually high for a typical edge context.

Overall, our experiments demonstrate that INSANE can achieve µs-scale latencies and tens of
Gbps bandwidth utilization, showing competitive or even better performance than other kernel-
bypassing systems, on different environments, despite the added dynamicity, portability and flexi-
bility it offers to developers. Even better, we showed that INSANE can serve multiple concurrent
applications with no or minimal performance degradation.

Deterministic network behavior

A core component of INSANE is the packet scheduler, which in the previous experiments was
operating using the default FIFO strategy. Here, we want to assess whether this INSANE com-
ponent can effectively provide deterministic guarantees to time-sensitive flows in a cloud environ-
ment. Hence, we consider again the latency test, but instead of the RTT between two remote
applications here we focus on the one-way latency, assuming that the two nodes of the cloud edge
1 testbed are synchronized (see Section 3.4). Figure 7.9 represents the deployment adopted for
this test: two remote applications, a publisher and a subscriber, deployed as containers on the two
physical hosts. We use INSANE with its DPDK plugin, and a userspace version of Open Virtual
Switch (OVS) which in turn uses DPDK to bypass the kernel network stack.

The goal of this test is to measure the network determinism, i.e., whether a packet expected
by the subscriber at a certain time succeeds in meeting its deadline: the publisher sends a UDP
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Figure 7.9: Container-based deployment of INSANE on the Cloud Edge 1 testbed.

0 10 20 30 40 50

Latency (µs)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(%

)

Bare-metal Pub/Sub
INSANE Pub/Sub

Figure 7.10: CDF with packets of 256 bytes.

packet every1ms, hence the subscriber expects to receive it with the same periodicity. To compare
the results, we also consider a bare-metal application, where the publisher and the subscriber are
regular applications that send/receive using the kernel-level datapath and TSN scheduler.

Figure 7.10 plots the Cumulative Distribution Function (CDF) of the experiment results for
the two cases, INSANE-based and kernel-based applications. Ideally, the curve should be as verti-
cal as possible, implying a highly predictable packet reception time. In this context, the bare metal
application and the containerized application using INSANE show overlapping performance,
very close to the ideal behavior. In particular, for INSANE the 90% and the 99% probability
correspond to 26.4 µs and 28.1 µs respectively. These absolute latency values are higher than
those presented in the previous Section: the reason is the adoption of OVS, a software-based so-
lution for I/O and network virtualization.

In the top part of the graph, we also observe that the INSANE-based deployment is more pre-
cise than the bare-metal one: that is the effect of a dedicated packet scheduler, whereas the kernel-
based datapath and scheduler are source of additional unpredictability. These results show that
INSANE is able to provide the same guarantees than the kernel-based support for determinism,
while also retaining all the advantages we previously discussed.
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7.3 Use case: Serverless Computing

This Section presents the performance evaluation for the DIFFUSE serverless platform, which
was described in Section 6.2.3 as a use case for the DerechoDDS middleware. The overall goal
of this evaluation is to show that the strongly-consistent shared memory abstraction provided by
DerechoDDS not only simplifies the creation of function pipelines, but also brings significant
performance advantages compared to other MoM solutions.

In particular, the three considered MoM solutions (Kafka, Redis, and the DerechoDDS-based
DSMQueue) are evaluated under three representative workloads: (i) a constant-rate stream of
requests, (ii) a stream of incoming requests issued at an increasing rate, and (iii) a large batch of
requests submitted to the system in a small amount of time. The first workload aims to assess
the properties of our serverless platform in a steady regime of incoming requests, whereas the
second and the third scenarios reproduce a typical traffic pattern that arises when a high number of
concurrent events need to be processed in batch (e.g., process all the tweets with a specific hashtag).

For this evaluation, we employ a lightweight, short-lived business logic with an execution time
of about 60 µs. Upon termination, the last function of each pipeline appends a timestamp to its
output, later on used to compute the different metrics. Response times are measured as the time-
lapse between the moment the request is issued and the termination timestamp of that function
(end-to-end latency). We define as throughput the number of satisfied requests per unit of time. We
examine how these metrics, as well as the total execution time, vary under an increasing compo-
sition length. In this assessment, we vary the number of composable functions from 2 to 5, and
each function is packaged as a distinct container, although embodying the same business logic.
Also, the application graphic is a linear path, hence no branching logic is considered.

The experiments are conducted on the Cloud Edge 1 testbed. On each machine, we run a single
instance of the function invoker, which has access to the code of the function to be executed in
the experiment. On one of the nodes, we also run a traffic generator process, which we use as a
trigger to simulate different ingress traffic patterns: the trigger forwards the invocation requests
to the invokers using the MoM.

We configure Kafka with at-least-once semantic to avoid the overhead introduced by transac-
tions in an exactly-once mode, and for the same reason, the number of partitions in the topic is set
equal to the number of nodes with a replication factor of 1. Redis was deployed as a single instance
in one of the two nodes and set-up in order to create a Redis Stream with one single active group,
i.e., function invokers cooperate to consume a different portion of the same stream of messages.
Finally, we configure DSMQueue to replicate the shared-memory queue across a group of three
processes, the trigger and the two invokers. We configure the underlying DerechoDDS support to
enforce strong consistency across the replicas and to use RDMA-accelerated topics, and to keep
the shared state in volatile memory, with no persistence support. In the following, we discuss the
experimental results and the trade-offs that emerge.

7.3.1 Constant-rate stream of incoming requests

In this first experiment, we would like to investigate the system behavior under a steady regime.
Hence, the trigger issues a fixed number of requests at a constant rate of 1000 requests/second,
and the experiment is run by varying the length of the function composition from 2 to 5.

84



7.3 Use case: Serverless Computing

2 3 4 5
0.1

0.5

1

5

10

50

Lenght of function composition

L
a
te
n
cy

(m
s)

DSMQueue Redis

Kafka

Figure 7.11: End-to-end latency at a steady regime. Note that the logarithmic y-axis magnifies the whiskers
bars in the case of DSMQeue.

Figure 7.11 shows the end-to-end latency of each execution as a function of the composition
length. Note the logarithmic scale in the y-axis, which magnifies the length of the whiskers for the
smaller values. We can observe two important trends. First, as expected, the latency increases with
the composition length. This increment is generally attributed to the time taken to execute more
functions, and the time spent in the (de)queuing operations. At this request rate, the MoMs can
sustain the traffic with little to no queueing effects, hence the delay contribution is mainly to be
attributed to networking and synchronization of concurrent requests. In all configurations, the
latency increment is linear, but there are important differences. For DSMQeueue, the median
latency shows a 2x increment when switching from 2 to 5 functions: much of it is the function
execution time, whereas only 33% is caused by additional middleware operations. This increment
is more evident in Redis, which demonstrates a higher (3x) latency increment between 2 and 5
functions. As the function execution time is constant, the additional latency time is caused by
the middleware operations, which in this case account for the 86% of the total increment. Kafka
exhibits similar behavior, but with an even higher increment factor (4x).

The second consideration is about the relative performance of the different middleware solu-
tions. For the simplest case of two functions in the composition, DSMQueue shows the best
median latency (284 µs). While Redis is able to keep up (2x slower), Kafka demonstrates an or-
der of magnitude higher latency (22x slower). The amount of these latency gaps increases as the
composition length increases: for a composition of length 5, Redis is 3.2x worse than DSMQueue
(554 µs), and Kafka is again out of scale (49x higher latency).

In conclusion, the DerechoDDS-based DMSQueue with RDMA support outperforms the
other alternatives, which rely on traditional TCP/IP networking and higher-layer constructs to
implement advanced capabilities. Kafka adopts a similar semantic to the other MoMs (see Sec-
tion 6.2.3), yet it shows the worse performance by far, and this is to be attributed to its default
message/topic persistency support. DSMQueue and Redis have a more similar architecture, but
Redis is between two and three times slower in this context.
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7.3.2 Incremental rate stream of incoming requests

Herein, we would like to assess system scalability by subjecting the platform to an increased rate
of incoming requests, varying from 1 to 65K requests/seconds. In this scenario, the composition
length is kept constant to 3, representing a common option in real-world scenarios e.g., simple
map-reduce operations etc. Figure 7.12 shows the end-to-end throughput and latency (y-axis in
log scale) of the proposal under a varying rate of incoming requests.

Figure 7.12a shows that the different configurations gracefully scale up the resources to keep up
with demand, and throughput increases linearly up to a certain inflection point before starting to
decline. This critical point corresponds to the maximum input rate that a middleware can sus-
tain without queuing any request: after a threshold, new requests begin to queue up, competing
with the existing invocation requests, using up the available resources. The critical rate is similar
for DSMQueue and Redis, which start to queue requests between 8K and 12K requests/second,
whereas this behavior emerges much earlier in Kafka, at about 240 requests/second.

As one may expect, the competition for resources between incoming and enqueued requests
has a direct effect on latency (Figure 7.12b). Up to the critical input rate, DMSQueue shows a
better end-to-end latency than Redis, averaging about 500 µs versus 1ms. Shortly after the criti-
cal rate, DSMQueue shows an increasingly oscillatory effect, whereas, surprisingly, Redis exhibits
a decline in latency. Finally, between 8K (Redis) and 16K (DSMQueue) requests/second, perfor-
mance degrades rapidly and reaches a similar regime of much higher latency (tens of ms), although
DSMQueue still demonstrates a much better behavior. Finally, we observe that Kafka, even in low
request regimes, demonstrates an order of magnitude higher latency than both Redis (10x slower)
and DSMQueue (20x slower).

Overall, DSMQueue performs well in terms of latency (2x) and has comparable throughput to
Redis. This behavior remains constant up to a critical ingress rate, as well as for the highest input
rates, while the behavior of both systems becomes unstable during the transition between those
two phases. In addition to the motivations provided for the constant-rate stream experiment, it
is noteworthy to point out that the DSMQueue zero-copy datapath fully manifests its benefits as
the message size grows. This leads to extra spare time, not spent on copying data.

On the other hand, the poor performance of Kafka is to be attributed to the MoMs consistency
mechanism used to maintain a distributed, structured and durable commit log of events: any
request - ingress data to functional components of the chain - must be acknowledged prior to
serving successive ones. Considering the high ingress load and the additional load generated by
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Figure 7.12: End-to-end latency and throughput with a varying rate of ingress traffic.
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intermediate results of function executions, the topics acquire an increasing backlog of requests
(events) subject to the dynamics of the commit log. As a consequence, the invoker entities tasked
with the execution of functions and output serialization to Kafka are subjected to ever-increasing
waiting times, expecting an acknowledgment from the broker. This in turn results in a lower
end-to-end chain throughput with a respective spike in terms of latency. The specific interval
where the phenomenon manifests itself is tied to the current testbed characteristics (CPU, RAM
etc.): to mitigate it, could rely on the topic partitioning feature of Kafka, distributing the load
among cluster nodes according to design-time criteria. It is noteworthy to point out that in our
current setting, Kafka is configured with an “at-least-one” semantic, more optimistic in terms of
performance with respect to an “at-most-one” semantic.

7.3.3 Burst of incoming requests

In this experiment, we assess the behavior of the platform when subjected to a sudden burst of
concurrent requests. To this end, our trigger produces a burst of 10K invocation requests at the
highest possible sending rate. This way, we intentionally exacerbate the queuing effect described
for the previous experiments: the message queue will fill up with invocation requests, as the invok-
ers will not be able to consume them at the same rate. We keep the composition length constant
to 3 functions: this further stresses the queue, as per our architecture each pipeline execution
requires the invokers to produce and consume new requests to and from the queue.

In this setting, we are interested in the total time the system takes to consume the entire batch
of concurrent requests. Figure 7.13a breaks down the total execution time by plotting the Cumu-
lative Distribution Function (CDF) of the pipeline execution time.

In this case, the different behavior of the considered systems depends on the different waiting
times between the execution of two consecutive functions. Such waiting time is determined by
the different communication overhead introduced by each solution, which directly affects the
speed at which they process the backlog of requests. In particular, the trend that we observe is the
same we described for the previous experiment. The shared memory approach of DSMQueue is
the fastest in processing the request batch (2.25 seconds), Redis takes about twice that time (4.71
seconds), and Kafka is an order of magnitude slower (86.06 seconds) as shown in Figure 7.13b.
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Figure 7.13: Response time CDF with varying MoM support.
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7.3.4 MoM enabled load balancing

In this last experiment, we investigate how the different properties of the three MoMs (Kafka,
Redis, and the DerechoDDS-based DSMQueue) impact the distribution of the pipeline workload
across the available nodes. Indeed, one driving motivation for this work is to enable DIFFUSE to
scale across a varying number of hosts and to efficiently use all the available resources. To effectively
measure such efficiency, we are interested in how the workload is distributed when the available
machines are subject to different load conditions.

To this end, we run the same experiment discussed for the burst experiment, but this time the
adopted function is more computationally expensive than the one in the prior experiments, to-
taling an average execution time of 60ms. Also, to better highlight the differences between the
MoMs, one of the two available hosts executes a background application, saturating its comput-
ing, memory, and disk resources. This way, we expect that the same function will take a different
execution time depending on the host it is executing on: in one case, the function will compete
with the background application to acquire the necessary resources, whereas those will be imme-
diately available on the other host. We want to understand if and how each MoM takes the server
load condition into account when deciding, transparently to the user, how to distribute the in-
coming workload.

Figure 7.14a shows the results. As expected, the same function on the two hosts takes a sig-
nificantly different amount of time to complete: on average, 35ms on the idle one, and more
than twice, about 85ms, on the other. We observe that Redis and DMSQueue execute about
30% of the workload on the saturated server, leaving almost 70% of it to the idle machine. On
the contrary, Kafka assigns the same number of functions to both hosts. This different behavior
is directly linked to the way each MoM implements the queue abstraction. In DSMQueue and
Redis Stream, the queue is a (logically) single FIFO buffer that processes compete to access, either
when producing or consuming new data. In our setting, these processes correspond to the two

Kafka Redis DSMQueue
0

10

20

30

40

50

60

70

80

90

100

%
of

to
ta
l
ex
ec
u
te
d
fu
n
ct
io
n
s

Server under stress

Server without stress

(a) Distribution of functions across the hosts

Kafka Redis DSMQueue

900

950

1000

1050

1100

1150

1200

T
ot
al

ex
ec
u
ti
on

ti
m
e
(s
)

(b) Total test execution time

Figure 7.14: Load balancing behavior of the different MoMs
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invokers. Since the function execution on the idle host takes approximately half of the time taken
on the saturated one, the invoker on the idle host ends up consuming more than twice the number
of functions than the invoker on the saturated host: an indirect form of load balancing induced
by the load on each node. Kafka, instead, blindly follows a round-robin scheme, assigning an
equal number of functions to each host. While this approach eliminates the need for coordina-
tion among the invokers - which no longer need to compete to access the queue - it also does not
take the actual server load into account. As a consequence, many more functions are scheduled on
the saturated host, leaving unused resources on the idle host: this is clearly inefficient, and it results
in a significant increase in the time needed by Kafka to process the function batch (Figure 7.14b).

Even though Redis and DSMQueue already provide an implicit form of load balancing, an
explicit mechanism could lead to faster function execution times, and, as a consequence, to im-
provements on the overall system throughput. The development of a new load balancing mech-
anism requires the introduction of an observability layer, providing real time information on the
resource usage.

Overall, these results show that networking techniques like RDMA may bring significant per-
formance advantages and enhanced QoS guarantees. At the same time, systems based on standard
networking interfaces represent a valid alternative in environments with more conventional set-
tings or specific constraints on development, deployment, or scale of the infrastructure. Because
DerechoDDS gives both options, we conclude that it is a suitable support for applications with
heterogeneous requirements, even for uses cases not generally served by major commercial imple-
mentations.

7.4 INSANE-based LUNAR applications

To prove the ease of programming and of I/O acceleration provided by the INSANE interface,
Section 6.3.4 introduced two applications: LUNAR MoM and LUNAR Streaming. The eval-
uation proposed in this Section aims at supporting the claim that the provided simplicity is not
traded for performance, and that applications that are developed using the INSANE high-level
interface can effectively achieve the native performance of I/O acceleration technologies.

LunarMoM

To evaluate the performance of LunarMoM, we compared LunarMoM against two widely used
decentralized messaging systems in that environment, Cyclone DDS [37] and ZeroMQ [60]. We
configured these systems to use a UDP transport and conducted two performance benchmarks: a
ping-pong test, to measure the round-trip time between a publisher and a remote subscriber, and
a throughput test, to evaluate effective bandwidth utilization. The tests were conducted on the
Edge Cloud 1 testbed.

The results, as shown in Figure 7.15a, indicate that LunarMoM has the lowest latency in both
fast (using DPDK) and slow (using UDP) modes. Compared to the raw INSANE performance
(Figure 7.5a), we observed that LunarMoM adds ns-scale overhead to INSANE, resulting in sta-
ble low latency. The performance of Cyclone (+45%) is comparable to that of systems that use
blocking sockets in their receiver thread, although with higher variability. ZeroMQ’s UDP sup-
port, on the other hand, adds additional 20 µs latency compared to Cyclone. Similar consider-
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Figure 7.15: Performance benchmark for Lunar MoM and other reference systems.

ations apply to the throughput evaluation (Figure 7.15b), where DPDK allows LunarMoM to
significantly increase bandwidth utilization, while Cyclone and LunarMoM slow have similar be-
haviour. ZeroMQ showed unstable performance and was excluded from the graph.

In conclusion, our experimentation demonstrates that INSANE dramatically simplifies the
development of a lightweight messaging system that outperforms currently available alternatives,
with ns-scale latency overhead compared to the INSANE interface. Additionally, LunarMoM is
portable across all supported networking technologies, making it a promising solution for data
dissemination at the network edge. LunarMoM is still a prototype, but we believe it shows how
existing messaging systems could leverage INSANE to significantly improve their performance
and portability.

LUNAR Streaming framework

To test Lunar Streaming we implemented a simple application that streams raw images, i.e., for
each image frame we send RGB values for every single pixel (Figure 6.11). We use sample images
of different common sizes (Table 7.3) and compare our INSANE-based implementation with
one that uses the sendfile primitive. Since sendfile sends data directly from a file descriptor
loaded into the kernel without involving user space, it actually implements a sender-side zero-copy
technique. For this reason, we believe it can be a good reference for our framework.

To demonstrate the performance of our streaming prototype, we evaluate: (i) the number of
frames per second (FPS) the client application can handle (Figure 7.16a), and (ii) the average end-
to-end latency for frame transmission (Figure 7.16b), i.e., the time between the server application
sending a frame (including fragmentation) and the client application receiving the reconstructed
frame. As we can see Lunar streaming allows very good results in both latency and FPS, especially
in the fast case. For the latter, the system consistently performs better than the sendifle version.

Resolution HD Full HD 2K 4K 8K

Size (MB) 2.76 6.22 11.6 24.88 99.53

Table 7.3: Size of the images sent in the streaming benchmark.
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Figure 7.16: Benchmark for Lunar Stream and sendfile.

In particular, for images up to 4K, we can support frame rates above 100 FPS, and even above 1000
FPS in the case of low-quality images. Latency never exceeds 10ms for images up to a maximum
resolution of 4K, making Lunar streaming an excellent candidate in applications such as tactile
internet [130] or real-time simulations (e.g., cloud gaming [79]). Hence, even just by sending raw
images, we obtained excellent results: we emphasize that INSANE can be easy to use and effective
in accelerating existing streaming frameworks [4].

7.5 Use case: Industry 4.0

This Section is dedicated to the evaluation of the Industry 4.0 use case presented in Section 6.3.5,
in which the INSANE middleware - in particular, its system layer - is used to support the execu-
tion of a virtualized industrial controller within an edge cloud platform. To make this solution
acceptable, however, it is necessary to demonstrate that the proposed deployment can meet the
demanding performance requirements of this industrial controller.

To this end, we evaluate the performance of a vPLC application running within our framework
with a twofold purpose. First, we want to assess the virtualization overhead introduced on the
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Figure 7.17: Schematic representation of the vPLC testbed.
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network by the use of containers. Hence, we compare the behavior of the same vPLC application
running in two configurations (supported by INSANE in a cloud edge, and bare-metal) in a real
industrial testbed, represented in Figure 7.17. Second, we evaluate the compliance of the results
with the requirements of the strictest industrial communication scenarios.

For the purpose of this evaluation, we implement a simple software PLC that we consider a
black-box, as we only investigate its networking performance, and that runs in a Docker container.
Internally, the vPLC implements an OPC-UA publisher using the open-source OPC-UA imple-
mentation open62541 [100]. The evaluation analysis is conducted on the Cloud Edge 1 testbed.
As shown in Figure 7.17, on one host we deploy the INSANE runtime through Kubernetes. As
in previous evaluations, we use the INSANE DPDK plugin. On the other host, on the same local
network, we run an OPC-UA listener to reproduce the behavior of an industrial device. The two
nodes and the switch are synchronized using the PTP protocol, as required by TSN. In particular,
the two nodes run the linuxptp implementation and are configured as PTP slave clocks, where the
switch works as the PTP master clock of the network.

7.5.1 VirtualizationNetworkOverhead

In this first part, we evaluate the virtualization overhead associated with containerization by com-
paring the performance of the vPLC (1) containerized within our framework and (2) running
bare-metal on the same hardware. In both cases, the vPLC is configured to publish OPC-UA
messages with a cycle of 25 µs, a typical value in the most demanding industrial scenarios (see also
Section 7.5.2). The test measures two representative indicators of time-sensitive communications:
end-to-end latency and jitter. The end-to-end latency of a message is defined as the time interval
between the transmission time set by the publisher and the actual reception time by the OPC-UA
subscriber. The jitter measures how much the actual arrival time of each message differs from the
expected arrival time: more precisely if ti is the arrival time of the i-th message, its jitter is defined
as Jitter(i) = ti − (ti−1 + T ), where T is the transmission period (in this work, T = 25µs).

Figure 7.18 reports the end-to-end latency and jitter measured for the two considered cases and
for three typical payload sizes (64B, 256B, 1024B). A first consideration is that the performance
of the containerized version of the vPLC is always very good (orange boxes in Figure 7.18a), with
median latency values ranging from 29.7 µs in the case of small packets (64B) to 50.1 µs for
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Figure 7.18: Performance of the test vPLC running bare-metal (green) and within our framework (orange).
The experiment is repeated for increasing payload sizes.
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1024B. These values are very close to those registered for the bare-metal deployment, showcasing
a constant difference of about 7.6 µs, whereas latency variability is negligible in both cases. The
constant performance difference originates in the additional network steps required for packets
to reach the network in the containerization case: instead of being directly sent and received on
the wire, in our framework they have to cross the INSANE scheduler and a virtual switch, as well
as a VXLAN encapsulation step and vice-versa on the receiver side. Nevertheless, the overhead of
these steps is minimal.

The performance strength of our approach is even clearer by considering jitter, reported in
Figure 7.18b. The median value is around 0 in all cases, as expected on a deterministic network,
but the variability, although minimal, is lower in the containerization case. This is the effect of the
INSANE scheduler, already commented in Section 7.2.2: a userspace TSN scheduler introduces
less variability than the standard kernel-based version, even in this small-scale experiment with no
background traffic to introduce noise.

From these results, we conclude that containerization in our framework introduces minimal
overhead in terms of network latency, and even improves determinism by supporting the OT
traffic with a more efficient packet scheduler. In the next paragraph, we comment on how these
results are suitable for the most demanding industrial control applications.

7.5.2 Industrial Communication Compliance

We now briefly comment on whether our framework effectively meets its design goals of flexibility
and high-performance support for virtualized control applications. On the flexibility side, we
execute vPLCs in Docker containers managed by Kubernetes, on a general-purpose operating
system and COTS hardware, adopting standard communication protocol stacks. These are all
open-source resources easy to integrate with IT platforms: hence, we consider meeting the goal
of an open and vendor-independent framework for vPLCs. On the performance side, previous
work [55] considers that the most demanding industrial applications, such as closed-loop motion
control, require cycles under 1ms with a jitter of at most 1 µs. Our evaluation proves that vPLCs
within our framework can support even significantly shorter cycles (25 µs), with a jitter below
the 1 µs for more than 90% of the times (Figure 7.18b), despite not being co-located with the
controlled machines as in traditional PLC deployments. Therefore, our framework successfully
enables vPLCs to also meet the strictest performance requirements of the OT traffic, thus paving
the way for full integration of OT and IT in the next-generation industrial control infrastructures.

7.5.3 Ultra-low Latency 5G scenarios

Section 6.3.5 briefly commented on the new possibilities emerging with the increasingly wider
deployment of 5G (and beyond) standard cellular networks. These technologies promise to sup-
port very low latencies across remote locations: even in the demanding scenario of Industry 4.0 it
is possible to envision use cases with component distributed across the continuum and still able
to meet Ultra-Low Latency requirements. Practically, we previously considered that in such a sce-
nario the application developers would have a very limited latency budget for their overall network
operations, which is generally considered to be no more than 400 µs considering all the involved
locations.

93



7 Experimental Assessment and Results

To prove that our INSANE middleware is capable of meeting even these demanding require-
ments, we set up an experiment similar to that presented in Section 7.5. However, instead of
using containers, we considered that VMs would generally be used in this more distributed case.
Hence, our testbed Cloud Edge 1 was configured of a VM on one host, hosting a publisher ap-
plication supported by INSANE, and a VM on the other host, where the subscriber is hosted,
in turn supported by INSANE. The goal of the test is to demonstrate that the one-way latency
between these two application components remains below the ULL threshold of 400 µs. As in
the previous configuration, INSANE is configured to use the DPDK plugin and to adopt a TSN-
compliant packet scheduling strategy, and we use the OVS DPDK implementation to set up a
software datapath on the host.

As a comparison, we consider two other possible configurations. First, a kernel-based virtual
switch instead than OVS-DPDK to create an overlay network between the two machines. Second,
we also run the tests by deploying the publisher and the subscriber on the bare-metal hosts.

Performance results

Figure 7.19 and Figure 7.20 show the results of the latency tests. Let us first consider the behavior
of the virtualized applications. We note that the option with the kernel-based datapath strug-
gles to meet our target deadline: in particular, Fig. 7.20 shows that the average message latency,
computed every 10 seconds on all the messages exchanged since the previous measurement, is just
below the threshold. We observe the same if we consider the median values reported in Fig. 7.19a
for all the considered payload sides, which means that about half of the measures exceed the ULL
constraints. Even worse, despite the use of the TSN protocol to reduce the latency variability, jit-
ter remains relatively high (Fig. 7.19b). Instead, if we consider the kernel-bypassing approach we
observe the opposite behavior: the average latency remains just above 100 µs during all the experi-
ments and the overall median value is around 120 µs for all the message sizes. That median value is
about 3.25 times lower than the kernel-based alternative and it represents just the 30% of the total
available latency budget. Even better, the jitter is really small for all the considered cases, which
means that this option can effectively preserve the determinism provided by TSN. We conclude
that the kernel-bypassing network virtualization approach can effectively allow virtualized TSN
applications to respect of the ULL constraints and to preserve a reduced latency variability.
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Figure 7.19: End-to-end latency and jitter for different payload sizes and network virtualization techniques.
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Figure 7.20: End-to-end latency averaged every 10 seconds, for 64 bytes payload size. The red line is the
latency threshold.

The significant difference between the considered approaches depends on the way they handle
the packets between the external network and the virtio backend driver (see Figure 2.2 in Sec-
tion 2.3). In the traditional kernel-based approach, packets forwarded by the virtual switch data-
plane should still traverse the Linux kernel networking stack, which is notoriously slow (schedul-
ing, interrupts, data copies, context switches). Then, it is not surprising that the network per-
formance is much better, both in terms of latency and jitter, if we bypass that stack completely.
Even though this speed comes at the price of dedicating 100% of part of the CPU cores to han-
dle packet processing, and the overall complexity in network setup and management increased,
kernel-bypassing on the host can fully satisfy our ULL constraints.

Finally, we compare the performance of our virtualized TSN application against those of the
same application running on bare-metal hosts. For the 64 bytes case, the average latency of the
bare-metal application is constantly around 175 µs and the median is 190 µs, with a small jitter.
These values are about two times lower than the kernel-based virtualization approach. This result
is easy to explain: in the former each UDP packet should traverse only the host kernel, whereas in
the latter packets are also managed by the guest kernel. On the other hand, it may appear quite
surprising that the kernel-bypassing virtualization approach performs even better than the bare-
metal alternative: it is true that the host kernel is bypassed, but packets still need to be handled by
the guest kernel. There are two main reasons for this particular behavior. First, as we discussed, the
kernel-bypassing technique is really much more efficient than the operations in the host kernel, as
it avoids data copies. Second, the network operations in the host kernel require a context switch
to a kernel thread, whereas the guest kernel executes in the same process that operates the VM.
Thus, on our testbed, once a single UDP packet with a payload of 64 bytes is received by the host
network device, it takes 20 µs to be delivered to the application on the guest. The same operation
on the same packet takes 70 µs through the host kernel. Therefore, the combination of those
two factors with a traffic pattern that magnifies any network overhead explains this performance
effect. In fact, our virtualized INSANE-based application appears even faster than the bare-metal
equivalent (36% lower latency, considering the median value for 64B packets) and provides almost
the same jitter.

In conclusion, these performance results demonstrate that applications that rely on INSANE
can fulfill ULL constraints even when executing in virtual machines. We also noted that kernel-
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based network virtualization solutions introduce a high latency variability and struggle to meet the
target deadline, whereas kernel-bypassing techniques provide excellent results, as they consume
only 30% of the available latency budget.

7.6 Conclusion

The key requirement to enable NAaaS in cloud platforms is that user applications access heteroge-
neous high-performance I/O with minimal overhead and through a uniform interface. Through a
thorough experimental assessment, this Chapter demonstrated how the two reference implemen-
tations of the architecture proposed in this thesis, DerechoDDS and INSANE, can indeed achieve
those goals. The evaluation also showed that they can support a wide spectrum of applications
across the whole continuum, combining the advantages of the cloud model with the performance
of I/O acceleration. In the following, we briefly summarize the key insights that derive from our
experimental evaluation.

• Portable high-performance. The microbenchmarks for DerechoDDS and INSANE show
that these systems introduce only ns-scale overhead compared to the raw network technologies
supported, in line with the requirements of modern µs-scale applications in the cloud contin-
uum. At the same time, DerechoDDS and INSANE offer such performance through a uniform
API, making applications portable across heterogeneous deployment scenarios. In particular,
the design chosen for the INSANE implementation (userspace OS module) adds further dy-
namicity, enabling multiple applications to dynamically attach and detach to the system, as re-
quired, for instance, during the live migration of a cloud service.

• Ease of use. The uniform and high-level interface exposed by DerechoDDS and INSANE, ac-
cording to the proposed architecture, makes it possible to easily develop new applications that
automatically inherit the performance benefits of the supported I/O acceleration technologies.
The description and evaluation of the INSANE-based LUNAR applications demonstrate both
the ease of use of the proposed interface and the associated performance advantages.

• Reduced overhead for strong properties. The availability of an easy-to-use accelerated dat-
apath makes it possible for applications to amortize the overhead typically associated with of-
fering strong properties. We showed that by considering two examples. First, the strong dis-
tributed consistency of DerechoDDS. Then, the determinism of the virtual PLC, designed for a
performance-critical Industry 4.0 scenario.

• Support to heterogeneous QoS requirements. The plugin-based design of the proposed
architecture allows applications to adapt their behavior to heterogeneous constraints in terms
of development, deployment, or scale of the available infrastructure. As discussed in particular
for the serverless use case based on DerechoDDS, different I/O technologies can be suitable for
different requirements: applications that use an implementation of our proposed architecture
can dynamically and transparently adapt to heterogeneous and changing requirements.

The next Chapter will consider future research directions to improve two key aspects covered
by this thesis: the perspectives for a better integration of the proposed reference implementations
with cloud platforms, and the open challenges that currently obstacle this possibility.
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This Chapter concludes this thesis by summarizing the lessons learned from the design and the im-
plementation of an architecture for Network Acceleration as a Service for the cloud continuum.
The implementation of two reference systems and their deployment in support of heterogeneous
use cases raised several research questions of broad interest as the system community shifts to
consider the network edge as an integral part of the cloud computing ecosystem. In that setting,
the emerging network acceleration technologies promise to enable new reactive applications even
far from centralized datacenters, as those introduced in this work, but they also bring additional
heterogeneity in an ecosystem that already struggles to define standard system practices.

The following discussion summarizes the most important open challenges toward the goal of
NAaaS by distinguishing two planes: architectural and infrastructural. From the architectural
perspective, each layer poses interesting problems to system developers aiming to ease access to I/O
acceleration for the average cloud users. From the infrastructural perspective, various obstacles
currently prevent a full integration of I/O acceleration technologies in cloud platforms. Finally,
possible future extensions of this thesis work are discussed.

8.1 Architectural challenges

The discussion in this Section considers the three layers of the system architecture proposed in
Chapter 5 and, based on the implementation experiences reported in this thesis, reviews the open
challenges for each of them.

8.1.1 Interface layer

The heterogeneity and complexity of the native interfaces of I/O acceleration technologies have
pushed researchers to define agnostic interfaces, like those proposed in this thesis, that provide ef-
ficient yet transparent access to these options. The discussions reported in the previous Chapters
highlighted the need for different applications to have agnostic interfaces at different abstraction
layers (see Section 4.2). However, many competing options are available even at the same ab-
straction layer and most of them are relatively recent in literature. This lack of standardization,
although natural at such an early stage of the research on this topic, is potentially an obstacle to
application portability.

The OMG DDS standard API, which is supported by one of the reference systems described
in this work, is an exception to this consideration because it was standardized more than a decade
ago [88]. Nonetheless, it suffers from a problem of high complexity and developers often refrain
from its use. On top of that, it was also never specifically designed for the asynchronous pro-
gramming model of modern I/O acceleration technologies, as demonstrated by the absence of an
appropriate QoS policy (see Section 6.2).
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Therefore, as the use of acceleration technologies becomes more and more common to support
the emerging class of cloud applications, the definition of asynchronous, easy-to-use, and standard
access interfaces will be a paramount concern for developers. By combining the most successful
features of previous proposals, the interface introduced in this thesis for the INSANE middleware
goes in this direction and supports these properties by design.

8.1.2 System layer

The system layer decouples the agnostic interface layer from the technology-specific implementa-
tion of the plugin layer. To enforce this separation, this thesis introduced a set of agnostic system
features, which are designed after the common principles of the I/O acceleration options but in-
dependent of the actual mechanisms that provide them: a zero-copy memory manager, a thread
scheduler, and a packet processing engine. However, the actual implementation of these features
in the two reference systems described in Chapter 6 raised several issues in terms of isolation and
security, observability, and multi-core datapath processing.

Isolation and security

The availability of a zero-copy datapath is paramount for the performance of accelerated I/O op-
tions. However, in multi-tenant environments, such as cloud platforms, it is also crucial to en-
force strict isolation between the customers’ code, which is considered untrusted, and the system
resources, including memory. Currently, system developers willing to leverage acceleration tech-
nologies must re-implement typical system features within their code and thus require the direct
visibility of system resources, which is unacceptable for providers. The availability of memory
management as a service, as proposed in this thesis, is a first but insufficient step for providers to
regain control over resources: a simple programming error may easily break isolation and provide
access to other applications’ memory. The definition of more advanced and efficient memory
isolation mechanisms is still an open research problem, as well as, more broadly, the safety and
security of acceleration technologies in shared environments [106, 118].

Observability

By bypassing the Operating System kernel for the sake of performance, I/O acceleration technolo-
gies also bypass the standard observability tools typically implemented in the kernel. In the cloud,
that also means losing the management and monitoring tools typically implemented in virtual
switches (see Section 2.3). Although this thesis did not specifically investigate this aspect, a future
research direction will be the introduction, at the system layer, of an agnostic feature for that pur-
pose, which the plugin layer would then need to specialize for each technology. That would offer
cloud users not only the option for a transparent I/O acceleration but also a transparent interface
to observe the behavior of I/O acceleration.

Multi-core processing

The implementation of both DerechoDDS and INSANE maps a single plugin (i.e., the code that
manages the I/O operations in a specific technology) to a single thread. This choice has many

98



8.2 Infrastructural challenges

advantages, especially for the small-scale applications that were supported for the performance
evaluation: reduced resource consumption, optimal use of data and instruction cache, and ab-
sence of synchronization issues. However, in particular when the system implementation follows
an OS module approach, the possibility to leverage the modern, powerful multi-core processors
for asynchronous end-host I/O operations is appealing. However, multi-core threading strategies
are also very hard to leverage, as the detailed study in [78] demonstrates. This thesis leaves the
investigation of multi-threaded strategies for high-performance end-host networking to future
work.

8.1.3 Plugin layer

The role of the plugin layer is the implementation of the agnostic I/O operations exposed to end-
users with the actual mechanisms provided by the native interfaces of the acceleration technolo-
gies. A practical yet fundamental problem revealed by the actual implementation of the two ref-
erence systems is that when large amounts of data must be sent on the network, a form of frag-
mentation, at some level of the network stack, is unavoidable. However, although some of the
considered network technologies support zero-copy packet fragmentation, only RDMA is cur-
rently capable also of zero-copy packet reconstruction. In all the other cases, the plugin code at
the receiver must copy the payloads of the incoming fragments to their final memory destination,
which is provided by the memory manager in the system layer. The introduction of plugin-level
support for fragmentation risks choking the receive pipeline with time-consuming data copies for
reconstruction. That contrasts with the goal of true zero-copy transfers. To avoid this issue, the
INSANE prototype currently does not support UDP/IP packet fragmentation: we resorted to
the use of jumbo frames for tests with the biggest payload sizes, following the same approach as
Demikernel [131], or to application-level data fragmentation and reconstruction. The definition
of a technique for zero-copy data reconstruction remains an open research challenge that will
probably require the availability of programmable hardware offloading mechanisms to be solved.

8.2 Infrastructural challenges

The integration of I/O acceleration options in cloud platforms at any level of the cloud contin-
uum is still a hot research topic. Section 2.3 surveyed several proposals on the virtualization of
RDMA-based applications, all striving to balance the need to preserve the raw hardware perfor-
mance with the typical dynamicity of software programmability. From our experience with the
INSANE cloud deployment (Section 6.3), none of the proposed virtualization solutions emerged
as a clear winner. Approaches based on a software virtual switch introduce CPU overhead into
the data path, which slows down performance and wastes valuable provider resources. Hybrid
approaches reduce this overhead but sacrifice a considerable degree of control on the data plane,
which would likely be unacceptable for major cloud providers. Yet, both the above solutions are
cost-effective and retain the flexibility advantages of a software-based control path. On the con-
trary, solutions based on specially designed hardware, such as AccelNet [31, 44], offload the data
plane operations to a custom device while also providing a high degree of control and programma-
bility. However, these approaches require a high upfront investment for research, development,
and deployment that only major datacenter providers can afford, and propose highly customized
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solutions difficult to generalize. Recent products released by major hardware manufacturers (e.g.,
NVIDIA [84]) have started to include commodity network virtualization functionalities, but
their use is currently still very limited.

The architecture proposed by this thesis introduces a novel perspective toward the availability
of NAaaS: because applications access I/O as a service from the system layer, the actual virtualiza-
tion mechanisms are hidden from users. That simplifies the provisioning of efficient acceleration
support, without performance compromises thanks to the plugin-based implementation of the
zero-copy datapath: the evaluation in Chapter 7 proves that this model allows even software-based
I/O virtualization strategies to meet stringent performance requirements. However, a hardware-
based approach would be even more effective in minimizing the overhead of the control plane
intervention on the data plane, but that would be sustainable only if proper support be avail-
able from hardware manufacturers, without requiring expensive customization, especially when
adopting acceleration options at small-scale in edge cloud environments.

To this end, it appears unavoidable that only close cooperation among all involved actors can
solve the open challenges that still clash with the goal of NAaaS: cloud providers and hardware
manufacturers are called to re-design their proposals and products to address the needs of next-
generation cloud platforms. On the one hand, cloud providers need to properly re-design their in-
frastructures according to the core principles of kernel-bypassing and hardware-accelerated tech-
niques. On the other hand, hardware manufacturers should explicitly support the cloudification
of their products, by enhancing the existing device features with built-in support for crucial as-
pects such as I/O and network virtualization, observability, and security.

8.3 FutureWork

The architecture for NAaaS proposed in this thesis embraces the trend of resource specializa-
tion that is emerging globally in response to the pervasive digitalization of society. This trend has
pushed cloud infrastructures, built on large-scale general-purpose hardware, to show their limita-
tions. More broadly, the growing success of expensive, specialized, and fragmented technologies
is leading to an overall decline of general-purpose technology [121]. In this context, the integration
of such specialized technologies as a service into next-generation cloud platforms might obtain
the crucial effect of mitigating and even reversing the negative effects of this trend, mainly related
to an excessive fragmentation of the computing landscape. The availability of specialized, up-
to-date technology through a standard, easily accessible, and widely used computing paradigm
would enable global organizations to meet their increasingly demanding requirements through a
homogeneous point of access without committing to massive upfront investments. That would
also give cloud providers the economical power to drive the evolution of hardware accelerators
according to their needs, such as cloud-friendly built-in support for resource virtualization.

This thesis contributed to this integration effort by focusing on end-host networking as the most
evident example of this specialization trend, fueled by the rapid recent advancements in network-
ing hardware. However, the architecture presented in Chapter 5 is actually generally applicable
to any form of I/O acceleration, including storage and computing technologies. Therefore, fu-
ture work will focus on adapting the reference implementations presented in Chapter 6 to in-
clude any form of I/O acceleration. This research direction is consistent with a new vision for
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next-generation cloud platforms based on a more radical separation between a data plane, almost
completely offloaded to specialized accelerators, and a control plane, running on CPU, that offers
them as a service to the applications. By providing the broader option for Acceleration as a Service,
next-generation cloud platforms will be able to embrace the current specialization trend and make
it scalable and sustainable, technically and economically, for the wide and general public of cloud
users across the whole continuum.
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